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Preface

About the manual

The first edition of Foundations of Modern Macroeconomics did not include any end-
of-chapter exercises, although I posted quite a few questions plus models answers
on the website for the book. Over the years, many teachers using the book have
approached me for such exercises. This Exercise and Solutions Manual is my response
to their queries. In this manual you find a large number of exercises (plus extensive
solutions) for each chapter. The aim of this manual is to allow the diligent student
to further develop his or her skills in model-based macroeconomics. The manual
includes three types of exercises:

• Short questions. These questions often ask the student to comment on state-
ments regarding models discussed in the textbook. Typically, brief answers
are sufficient for the student to demonstrate an understanding of the material
under consideration. Sometimes, a short question asks the student to clarify a
concept by explaining it verbally, or by giving examples.

• Relatively straightforward long questions. These questions are usually centered
around a particular model. Students are asked to demonstrate an ability to de-
rive conclusions regarding macroeconomic phenomena by solving the model.
By learning to “play with” simple models, I expect that the student will be able
to construct his or her own models after studying this manual.

• Relatively difficult long questions which are a bit more challenging. To warn
the student, such questions are marked with a star (�). Other than that, the
objective behind these questions is the same as for the relatively easy ones.
The student learns how to solve macroeconomic problems by using consistent
and coherent macroeconomic models.

It must be stressed that the exercises and model solutions are not meant to em-
phasize a particular point of view about the field of macroeconomics or, for that
matter, the macro-economy itself. They are simply a reflection of the type of models
that have been used over the last four decades or so.

I have adopted the following notational system in this manual. The prefix Q
is used to label information (equations, tables, figures) appearing in the questions
themselves. So, for example, equation (Q1.2) refers to equation (2) in the question
dealing with a topic from Chapter 1. In short, the syntax is Qx.y, where x is the
chapter number and y is the object counter. The prefix A is used to label information
appearing in the answers, with the similar syntax Ax.y. Information from the main
textbook features the syntax x.y.
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About the authors

Although I use my role as the project’s “Central Scrutinizer” to write this Preface, this
edition of the manual carries two coauthors. The division of tasks was as follows.
Over many years, I produced the vast majority of the exercises and model solutions
that are found in this manual.

During the Spring and Summer of 2007, Ward E. Romp was employed as a part-
time postdoctoral researcher at the University of Groningen where he had success-
fully defended his dissertation in February of that year. I was able to enlist Ward as
a coauthor, and to get him to work on the manual on a part-time basis. Among other
things, he had the rather thankless task of collecting exercises and model solutions
from various locations on my hard disk drive and my equally chaotic paper filing
system. He also contributed a number of exercises himself. These were typically
based on the problem sets he produced whilst teaching part of the third year macro-
economics course at the University of Groningen in 2005 and 2006. Ward also pro-
duced some rather ingenious LATEX 2ε packages that are used to typeset this manual.

Laurie S.M. Reijnders is the coauthor who joined this project most recently. Laurie
is a final-year bachelor student in both economics and econometrics, whose efforts
on behalf of the main text have been documented in the Preface to that book. During
the last half year or so, Laurie sacrificed one day each week to check the exercises
and model answers for the first ten chapters of the book. Although these exercises
had been proofed very thoroughly before, she was nevertheless able to substantially
improve this part of the manual. The responsibility for the quality of the exercises
and model answers for the later chapters must–alas–be shouldered to a large extent
by myself.

Visible means of support

It somehow seems impossible to produce a book of this size without generating some
typos and errors. Needless to say, all such errors and typos will be published as
I become aware of them. I will make the errata documents available through my
homepage:

http://www.heijdra.org

So please let me know about any typos and/or errors that you may spot. The contact
address is:

info@heijdra.org

I will mention your name prominently on the website (as having contributed to the
public good). Of course, your name will also feature in the Acknowledgements sec-
tion in any future edition of this manual.

Eventually, the website will also include new exercises without model answers.
These questions may be of use to teachers in need of suitable exam questions. I
hereby solemnly declare that I will not release model solutions to these additional
exercises to anybody!

http://www.heijdra.org
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Chapter 1

Who is who in macroeconomics?

Question 1: Short questions

(a) Suppose that, in a closed economy, the central bank adjusts the money supply
in such a manner that the interest rate, R, is constant. Derive the slope of the
AD curve. Show what happens to the LM curve as a result of the central bank’s
policy.

(b) What do we mean with the notion that capital and labour are cooperative pro-
duction factors? Can you give an example where this holds true?

(c) Assume that firm investment depends only weakly on the interest rate. Does
that make the IS curve very steep or relatively flat? (In the usual diagram with
the interest rate on the vertical axis and real output on the horizontal axis.)

(d) What are the two most important differences between the views of the classical
and Keynesian economists?

(e) Consider the usual diagram with the real wage on the vertical axis and em-
ployment on the horizontal axis. Perfectly competitive firms use capital and
labour to produce output. Why must competitive labour demand functions be
downward sloping? Why must capital and labour be cooperative factors of
production?

Question 2: The Cobb-Douglas production function

Consider the Cobb-Douglas production function:

Y = F(N, K̄) = NεK̄1−ε, 0 < ε < 1, (Q1.1)

where Y is output, N is employment and K̄ is the capital stock. The capital stock is
fixed in the short run.

(a) Show that under perfect competition in the goods market the parameter ε cor-
responds to the national income share of wages.

(b) Derive the short-run labour demand and goods supply schedules, both in levels
and in terms of relative changes.

(c) What are the real wage elasticities of labour demand and the supply of goods?
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Question 3: The AS-AD model

Consider an economy with a representative profit maximizing producer with a Cobb-
Douglas production function:

Y = NαK̄1−α, 0 < α < 1, (Q1.2)

where Y is output, N labour, K̄ the (fixed) capital stock, and α a share parameter. This
producer maximizes short-run profits Π = PY −WN, with W denoting the nominal
wage rate and P the price level.

(a) Derive the explicit expressions for the labour demand curve and the real wage
elasticity of labour demand (εD). Does the partial derivative have the correct
sign (i.e., does labour demand decrease if the real wage rate goes up)?

The same economy has a representative consumer who maximizes utility U that
depends positively on consumption C and negatively on labour supply N.

U = C − γ
N1+σ

1 + σ
, γ, σ > 0. (Q1.3)

The consumer pays no taxes and cannot save or borrow, so she faces the expected
budget constraint:

PeC = WN. (Q1.4)

(b) Derive the labour supply curve and the expected real wage elasticity of labour
supply (εS). Which effect dominates, the income effect or the substitution ef-
fect?

(c) Derive the aggregate supply curve.

Suppose that the demand side of this economy is described (in the neighbourhood
of the equilibrium) by the aggregate demand curve:

Y = ξ + θ
M̄

P
(Q1.5)

where M/P is the real money supply.

(d) What is the interpretation and sign of θ? Explain.

(e) Derive graphically the short run effect (Pe given) and the long run effect of
an unexpected monetary shock assuming that the adaptive expectations hypo-
thesis holds:

Pe
t+1 = Pe

t + λ
[

Pt − Pe
t

]
. (Q1.6)

Is the model stable? What happens if consumers are blessed with perfect
foresight?



CHAPTER 1: WHO IS WHO IN MACROECONOMICS? 3

Question 4: Consumption tax

A representative household has the following utility function:

U = ln

(
C − γ

N1+σ

1 + σ

)
, (Q1.7)

where U is utility, C is consumption, N is labour supply, and the parameters γ and
σ are both positive. (The structure of the problem is such as to render the term in
round brackets positive.) The household budget constraint is given by:

PC = WN + Z0, (Q1.8)

where Z0 is exogenous non-labour income. The competitive labour demand is given
by:

ln N = ln K0 − 1

1 − α
[ln(W/P)− ln α] , (Q1.9)

where K0 is the exogenous capital stock and α is the efficiency parameter of labour
in the production function (0 < α < 1).

(a) Derive the labour supply function.

(b) Show what happens to optimal consumption and labour supply if non-labour
income increases. Explain the intuition behind your results (preferably with
the aid of a diagram).

(c) Introduce a consumption tax, tC, and compute the effects it has on optimal
consumption and labour supply.

(d) What kind of production function gives rise to a labour demand function as
given in equation (Q1.9)?

(e) Assume labour market clearing. Compute the general equilibrium effect on
employment and the real wage rate of the consumption tax introduced in part
(c).

Question 5: Tax incidence

In the book we have developed a very simple model of the aggregate labour market.
Suppose that we write this model as follows:

ND = ND(W/P, K̄), ND
W/P =

1

FNN
< 0, ND

K̄ = − FNK

FNN
> 0,

(Q1.10)

W/P = g(NS), gN > 0, (Q1.11)

[N ≡] ND = NS, (Q1.12)

where ND is labour demand, W is the nominal wage, P is the price level, K̄ is the
capital stock, NS is labour supply, and N is equilibrium employment. We assume
that the expected price is equal to the actual price (Pe = P) and that the labour
market is in equilibrium. Answer the following questions about this model. Use
graphical means as much as possible.
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(a) What do we assume implicitly in equation (Q1.11) about the income and sub-
stitution effects in labour supply? Explain intuitively how these effects operate.

(b) Assume that the government introduces a so-called payroll tax (tW), i.e. a tax
levied on employers which is proportional to the firm’s wage bill. The payroll
tax is thus a tax on the use of labour by firms. This tax changes the definition
of profit for the representative firm to: Π ≡ PF(N, K̄) − W(1 + tW)N. Explain
the effect of the payroll tax on the demand for labour.

(c) Demonstrate the effects of an increase of the payroll tax on employment (N)
and the gross real wage (W/P). Who ends up ultimately paying the payroll
tax—the firms or the worker-households?

(d) Introduce a value-added (consumption) tax (tC) in the simple labour market
model. Explain what happens to employment (N) and the gross real wage
(W/P). Who ultimately pays the tax?

(e) Use the insights from questions (b)–(d) to analyse the effects of a costly im-
provement of labour conditions. Who pays the costs eventually and who be-
nefits from the improvements?

Question 6: The Keynesian cross model

Consider a closed economy described by the following equations:

Y = C + I + G, (Q1.13)

C = C0 + c(Y − T), 0 < c < 1, (Q1.14)

where Y, C, I, G, and T are, respectively, output, consumption, investment, govern-
ment consumption, and taxes. C0 represents the exogenous part of consumption and
c is the marginal propensity to consume. Assume that prices are fixed and that I, G,
and T are all exogenous.

(a) Recall that Y = C + S + T. Derive the savings equation, i.e. the expression
relating S to aggregate income and the parameters of the model.

(b) Derive an expression for the equilibrium condition involving the savings equa-
tion.

(c) Demonstrate the so-called paradox of thrift by computing the effects on out-
put, saving, and consumption, of a decrease in C0. Why do we call this phe-
nomenon a paradox of thrift?

(d) Compute the output multiplier with respect to government consumption, dY
/dG, under the assumption that the government finances its additional spend-
ing by raising the tax (i.e. dT = dG). Explain the intuition behind thisso-called
Haavelmo (balanced-budget) multiplier. Show the different rounds of the mul-
tiplier process.

(e) Now assume that taxes depend positively on output, i.e. T = tY, where t is the
marginal (and average) tax rate (it is assumed that 0 < t < 1). Compute the
output multiplier with respect to government consumption, dY/dG, under the
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assumption that the government finances its additional spending by selling
bonds. Is the multiplier obtained here greater or smaller than the Haavelmo
multiplier? Show what happens to consumption and the government deficit
(G − T). Explain your answers both formally and intuitively.

Question 7: The import leakage

We extend the model of question 6 by assuming that the economy is open to trade
in goods and services. Assume that prices are fixed and that I, G, and T are all
exogenous. The economy is described by the following equations:

Y = C + I + G + X (Q1.15)

C = C0 + c(Y − T), 0 < c < 1, (Q1.16)

X = X0 − mY, 0 < m < 1, (Q1.17)

where X is net exports (exports minus imports), and m is the marginal propensity to
import goods and services. The exogenous component of net exports is given by X0.

(a) Solve the model by finding expressions for the endogenous variables (Y, C,
and X) in terms of the exogenous variables (I, G, C0, X0, and T) and the para-
meters (c and m). These are the so-called reduced-form expressions for output,
consumption, and net exports.

(b) Compute the output multiplier with respect to government consumption. Does
the propensity to import increase or decrease this multiplier? Explain the intu-
ition behind the import leakage.

(c) Compute the effect on output, consumption, and net exports of an increase in
world trade (represented by an increase in X0). Explain the intuition behind
your results.

� Question 8: The liquidity trap

A.C. Pigou was a colleague but not a big personal friend of Keynes. He refused to
take the so-called liquidity trap seriously. He claimed (just like Blinder and Solow, to
be studied in Chapter 2) that consumption also depends positively on real wealth (A,
for ”assets”), so that the economy can never find itself permanently in the “liquidity
trap.” Suppose that we write the consumption function as C = C(Y − T, A) (with
0 < CY−T < 1 and CA > 0) and that wealth consists of real capital plus real money
balances (A = K̄ + M/P). Explain that Pigou may well be right. Illustrate Pigou’s
argument graphically.
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� Question 9: The IS-LM-AS model with inflation

We can formulate the following classical macroeconomic model of a closed economy:

Y = C(Y − T) + I(R − π) + G, 0 < CY−T < 1, IR−π < 0, (Q1.18)

M/P = l(Y, R), lY > 0, lR < 0 (Q1.19)

ND = ND(W/P, K̄), (Q1.20)

W/P = g(NS), gN > 0, (Q1.21)

[N ≡] ND = NS, (Q1.22)

Y = F(N, K̄), (Q1.23)

where Y is aggregate output, C is consumption, T is taxes, I is investment, R is the
nominal interest rate, π is the anticipated inflation rate, G is government consump-
tion, M is the money supply, P is the price level, N is labour, and W is the nominal
wage. The endogenous variables are Y, P, N, R, and W. Exogenous are π, G, and K̄.
Technology features constant returns to scale.

(a) Interpret the equations.

(b) What are the effects of an adverse supply shock, proxied by a fall in the capital
stock, on the price level, the real wage, employment and output?

(c) Why do fiscal and monetary policy not affect employment and output?

(d) What are the effects of a fiscal and a monetary expansion on the price level and
the interest rate?

(e) Can you think of classical channels by which demand-side policies do affect
employment and output?
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Answers

Question 1: Short questions

(a) The effective LM curve is horizontal at the interest rate R0. The AD curve is
vertical, i.e. does not depend on the price level. See Figure A1.1.

(b) If capital and labour are cooperative production factors, then more capital in-
creases the marginal productivity of labour and more labour increases the mar-
ginal productivity of capital. A simple example (see page 4 in the textbook):
The use of robot mixers in the kitchen enhances the productivity of the cooks.

(c) The IS-curve describes equilibrium on the goods-market Y = C(Y) + I(R) + G.
Total differentiation gives the slope of the IS-curve (with R the variable on the
vertical axis and keeping G constant):

dY = CYdY + IRdR ⇒ [1 − CY]dY = IRdR ⇒ dR

dY
=

1 − CY

IR

If investment depends only weakly on the interest rate, then IR is very small,
so dR/dY is large and the IS-curve is almost vertical (very steep).

(d) Their answers to two questions are different: (a) can the government affect the
economy, and (b) should the government stabilize the economy. The classical
economists say (a) maybe, and (b) no. The Keynesians say (a) yes, and (b) yes.

(e) Competitive labour demand functions take the form W/P = FN (N, K). They
slope down in the (W/P, N) space because there are diminishing returns to the
labour input, FNN (N, K) < 0.

With constant returns to scale and only two factors of production, it must be
the case that FNK > 0. This result is proved formally in Intermezzo 4.1.

Question 2: The Cobb-Douglas production function

(a) Under perfect competition the representative firm hires labour up to the point
where the value of the marginal product of labour equals the nominal wage:

PFN = W (A1.1)

From the Cobb-Douglas equation (Q1.1) we get:

FN = εNε−1K̄1−ε = ε
Y

N
. (A1.2)

By combing (A1.1) and (A1.2) we obtain:

[FN =]
W

P
= ε

Y

N
⇒ ε =

WN

PY
. (A1.3)

Hence, ε represents the national income share of wages.
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Figure A1.1: Derivation of the AD curve under a constant interest rate
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(b) From equation (A1.1) and (A1.2) we get:

ε

(
N

K̄

)ε−1

=
W

P
⇒ N = K̄

(
W

εP

) 1
ε−1

. (A1.4)

By substituting (A1.4) into the Cobb-Douglas production function (Q1.1) we
obtain the short-run supply of output:

Y = NεK̄1−ε =

[
K̄

(
W

εP

) 1
ε−1

]ε

K̄1−ε ⇒ Y = K̄

(
W

εP

) ε
ε−1

. (A1.5)

In terms of relative changes we derive in a straightforward fashion from (A1.4)
and (A1.5):

dN

N
=

dK̄

K̄
− 1

1 − ε

[
dW

W
− dP

P

]
,

dY

Y
=

dK̄

K̄
− ε

1 − ε

[
dW

W
− dP

P

]
.

(c) The wage elasticities of labour demand and output supply are, respectively,
1/(1 − ε) and ε/(1 − ε) in absolute value.

Question 3: The AS-AD model

(a) The labour demand curve is obtained by setting marginal labour productivity
equal to the real wage rate:

FN(N, K̄) = W/P ⇒ α[K̄/N]1−α = W/P ⇒

N = K̄

[
W

αP

] 1
α−1

(A1.6)

The real wage elasticity of labour demand is:

εD = −W/P

N

∂N

∂(W/P)

Differentiate the labour demand equation (A1.6) with respect to W/P and we
have:

∂N

∂(W/P)
= − 1

1 − α

N

W/P
⇒ εD =

1

1 − α
.

Because 0 < α < 1, the real wage elasticity is always negative (real wages up,
labour demand down, as expected).

(b) Substitute C = WN/Pe into the utility function (Q1.3) and differentiate with
respect to N, set the first order condition to 0 and we have the labour supply
equation:

∂U

∂N
= 0 : γNσ = W/Pe ⇒ W/P = γ

Pe

P
Nσ (A1.7)
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The real wage elasticity of labour supply is:

εS =
W/P

N

∂N

∂(W/P)

Differentiate the labour supply equation (A1.7) with respect to W/P and we
have:

∂N

∂(W/P)
=

1

σ

N

W/P
⇒ εS =

1

σ
> 0

The substitution effect dominates the income effect.

(c) Substitute W/P of the labour supply equation (A1.7) into the labour demand
equation (A1.6):

N = K̄

[
γ

α

Pe

P
Nσ

] 1
α−1 ⇒ N =

[
α

γ

P

Pe
K̄1−α

] 1
1−α+σ

This is the relation between N and P. As you can see, if P goes up, N goes up.
Substitute the equilibrium level of labour into the production function, do all
the math correctly and we have the aggregate supply curve:

Y = B

(
P

Pe

)δ

(A1.8)

with:

δ ≡ α

1 − α + σ
, β ≡ α

[
1 − α

1 − α + σ
+

1 − α

α

]
, B ≡

[
α

γ

]δ

K̄β

(d) θ is the change in aggregate demand if real money balances increase 1 unit.
From the IS-LM model we know that θ must be positive (LM curve shifts to the
right).

(e) See Figure A1.2. The AD curve shifts to the right, households are surprised
at impact and have not yet adjusted their expected price levels, the AS curve
stays where it was. P and Y both increase from P0 to P1 resp. Y0 to Y1. In the
following periods households adjust their expectations based on the previous
forecasting error, and the AS-curve slowly shifts to the left until there is a new
equilibrium at E∞. The model is stable. If people are blessed with perfect
foresight, they always supply the correct amount of labour, so the AS-curve is
vertical and prices immediately jump to the new equilibrium E∞.

Question 4: Consumption tax

(a) Here we can use the substitution method. (Do not use the Lagrangian, it makes
the problem more difficult.) Substitute (Q1.8) into (Q1.7), transform the utility
function (Û = eU) and we have the simple utility function:

Û = (W/P)N + Z0 − γ
N1+σ

1 + σ
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Figure A1.2: Effect of a monetary expansion under AEH

Differentiation with respect to N gives the labour supply equation:

∂U

∂N
= 0 : N =

[
W/P

γ

] 1
σ

(b) Consumption increases one-for-one but labour supply stays the same. There
is no income effect in labour supply. Labour supply is given in the previous
question, exogenous transfers do not enter the labour supply function, so ap-
parently labour supply does not change. This means (through the budget equa-
tion) that all extra income is spent on consumption.

(c) The utility function (Q1.7) is unchanged, the new budget constraint is:

(1 + tC)PC = wN + Z0 ⇒ C =
(W/P)N + Z0

1 + tC
(A1.9)

Substitution of (A1.9) into the utility function (Q1.7) and transformation of that
utility function gives:

Û =
(W/P)N + Z0

1 + tC
− γ

N1+σ

1 + σ

Differentiation with respect to N gives the new labour supply equation:

∂U

∂N
= 0 : N =

[
W/P

(1 + tC)γ

] 1
σ

(A1.10)

Substitution of (A1.10) into the budget constraint (A1.9) gives optimal con-
sumption:

C = γ

[
W/P

(1 + tC)γ

] σ+1
σ

+
Z0

1 + tC
(A1.11)

A higher consumption tax decreases both labour supply and consumption.
Apparently the substitution effect dominates the income effect in the labour
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supply decision. To derive these effects formally, we differentiate the labour
supply (A1.10) and optimal consumption function (A1.11) to obtain:

∂NS

∂tC
= − γ

σ(W/P)

[
W/P

(1 + tC)γ

] 1+σ
σ

< 0

∂C

∂tC
= −γ2(σ + 1)

σ(W/P)

[
W/P

(1 + tC)γ

] 2σ+1
σ

− Z0

(1 + tC)2
< 0

(d) A Cobb-Douglas production function. The firm’s problem is:

max
{N}

Π = PY − WN subject to Y = NαK1−α
0

Substitution gives:

max
{N}

Π = PNαK1−α
0 − WN

The first order constraint is the labour demand equation:

αNα−1K1−α =
W

P

Taking natural logarithms gives:

ln α − (1 − α) [ln N − ln K0] = ln(W/P)

Rewriting gives the labour demand equation.

(e) Equating labour demand (Q1.9) and supply (A1.10) gives:[
w

(1 + tC)γ

]1/σ

= K
[ α

w

] 1
1−α

Rewriting yields:

w = (1 + tC)
1−α

1−α+σ B with B =
[
γKσα

σ
1−α

] 1−α
1−α+σ

Differentiation gives:

∂w

∂tC
= B

1 − α

1 − α + σ
(1 + tC)

σ
1−α+σ > 0

By substituting the expression for w into the labour supply expression we find:

N =

(
B (1 + tC)

1−α
1−α+σ

(1 + tC) γ

)1/σ

=

(
B

γ

)1/σ

(1 + tC)
−1

1−α+σ ,

from which we find immediately that:

∂N

∂tC
< 0
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Question 5: Tax incidence

(a) We assume that the substitution effect (SE) dominates the income effect (IE).
SE: if W/P ↑ then leisure is more expensive relative to consumption so the
household consumes less leisure and thus supplies more labour. IE: if W/P ↑
the value of the time endowment increases and the household is richer. Be-
cause leisure (like goods consumption) is a normal good, one consumes more
of it. Labour supply falls on that account.

(b) The firms sets its labour demand such that short-run profit is maximized. In
formal terms we have:

dΠ

dN
= PFN(N, K̄)− W(1 + tW) = 0 ⇒ FN(ND, K̄) = (1 + tW)(W/P)

where w ≡ W/P is the gross real wage. This equation is the implicit demand
for labour. By differentiating with respect to ND and tW (holding constant K̄
and w) we find:

FNNdND = (W/P)dtW ⇒ dND

dtW
=

(W/P)

FNN
< 0,

where the inequality follows from the fact that FNN < 0. For a given real wage,
an increase in tW shifts the demand for labour curve to the left, see Figure A1.3.

NN0N1

w

w0

w
S
1

w
D
1

E0

E1

A

B

N
S

N
D
0

N
D
1

Figure A1.3: Effect of a payroll tax

(c) It follows directly from Figure A1.3 that equilibrium employment and the gross
real wage both fall. The initial equilibrium is at point E0 and the new equi-
librium is at E1. In E0 we have g(N0) = (W/P)0 = FN(N0, K̄) whilst in E1

we have g(N1) = (W/P)S
1 and FN(N1, K̄) = (1 + tW)(W/P)S

1 = (W/P)D
1 .

Both the firm and the household end up paying part of the tax. For the house-
hold the real wage used to be (W/P)0 but it falls to (W/P)S

1 . The difference,

(W/P)0 − (W/P)S
1 is the part of the tax implicitly paid by the household (see

the segment E1B in Figure A1.3). For the firm, the real wage used to be w0

but inclusive of the tax it becomes (W/P)D
1 = (1 + tW)(W/P)S

1 . The firm thus

implicitly pays (W/P)D
1 − (W/P)0 which is the segment AB in Figure A1.3.
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(d) The value-added tax is a tax on the consumption of the worker (the supplier of
labour). The household maximizes:

max
{C,NS}

U ≡ U(C, 1 − NS) subject to (1 + tC)PC = NS,

The first-order condition is:

U1−N

UC
=

(W/P)

1 + tC
≡ wC.

Ceteris paribus W/P, the real wage that concerns the household (the so-called
consumer wage, wC) falls if tC is increased. If the substitution effect (SE) domin-
ates the income effect (IE) then the increase in tC leads to a reduction in labour
supply. Equilibrium employment falls and the gross wage, W/P, rises. Part of
the tax is paid by households (segment AB in Figure A1.4) and part is paid by
the firms (segment BE1).

NN0N1

w

w0

w1

E0

E1

A

B

N
S
0

N
S
1

N
D
0

Figure A1.4: Effect of a value-added tax

(e) A mandatory improvement of labour conditions costs the company money.
This can be seen as a payroll tax, it increases the costs per employee and the
employee does not receive a higher wage. According to part (b) and (c), the la-
bour demand curve shifts down and equilibrium employment and gross wage
rate both go down. As with the tax, both the firm and the employee pay for
part of the improvement. If the improved labour conditions lead to higher pro-
ductivity, the labour demand curve will shift back somewhat, thus partially
offsetting the initial shock.

Question 6: The Keynesian cross model

(a) From the information given in the question we derive:

S = Y − C − T

= (Y − T) − C0 − c(Y − T)

= (1 − c)(Y − T) − C0, (A1.12)



CHAPTER 1: WHO IS WHO IN MACROECONOMICS? 15

where 1 − c thus represents the propensity to save out of disposable income.
By adding T to both sides of equation (A1.12) we find the following expression:

S + T = (1 − c)(Y − T) − C0 + T

= (1 − c)Y + cT − C0. (A1.13)

Equation (A1.13) is useful because it can be used in combination with the equi-
librium condition derived in part (b).

(b) We know that Y = C + I + G = C + S + T. The second equality implies that
the equilibrium condition can be written as:

I + G = S + T. (A1.14)

The left-hand side is exogenous (in this model) and the right-hand side de-
pends on Y according to equation (A1.13) above.

(c) The paradox of thrift in words: an exogenous increase in the thriftiness of the
private sector ends up lowering income and leaving equilibrium saving un-
changed. Presumably, increased thriftiness is good, but it ends up causing a
bad effect on the economy. The increase in thriftiness is modelled by a de-
crease in C0 (see equation (A1.12) above). Formally, we find by combining
(A1.13)–(A1.14) that the equilibrium condition can be written as:

I + G = (1 − c)Y + cT − C0. (A1.15)

By differentiating both sides of (A1.15) with respect to C0 (and noting that I, G,
and T are exogenous) we obtain:

0 = (1 − c)
dY

dC0
− dC0

dC0
⇒ dY

dC0
=

1

1 − c
> 1. (A1.16)

From equation (A1.12) we get:

dS

dC0
= (1 − c)

dY

dC0
− dC0

dC0

= (1 − c)
1

1 − c
− 1 = 0, (A1.17)

where we have used (A1.16) in the final step. Hence, a decrease in C0 leads
to a decrease in Y but leaves S unchanged. The paradox of thrift has been
illustrated in Figure A1.5.

(d) We compute the Haavelmo multiplier. By substituting equation (Q1.14) into
(Q1.13) we obtain:

Y = C0 + c(Y − T) + I + G ⇒
Y =

C0 − cT + I + G

1 − c
. (A1.18)

By differentiating equation (A1.18) we obtain:

dY =
−cdT + dG

1 − c
=

−cdG + dG

1 − c
= dG ⇒(

dY

dG

)
dG=dT

= 1, (A1.19)
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Figure A1.5: The paradox of thrift

Round Effect on C Effect on Y
1 −cdG (1 − c)dG
2 cdY1 cdY1

3 cdY2 cdY2
...

...
...

n cdYn−1 cdYn−1

sum dCn dYn

Table A1.1: The multiplier process

where we have imposed the balanced budget requirement, dT = dG, in going
from the first to the second equality. To find out what happens to consumption
we differentiate equation (Q1.14) with respect to G:(

dC

dG

)
dG=dT

= c

[(
dY

dG

)
dG=dT

− dT

dG

]
= c[1 − 1] = 0, (A1.20)

where we have used (A1.19) and dT = dG in the final step.

The intuition behind the Haavelmo multiplier can be illustrated by explicitly
tracing the multiplier process (as in done in the text) for the Kahn multiplier).
In Table A1.1 we show the different “rounds” of the multiplier process.

In round 1 of the multiplier process consumption falls (due to the additional
taxes) but income rises (because private consumption falls by cdG but public
consumption rises by dG). In the second round the increase in output (and thus
in household income) boosts consumption by cdY1, where dY1 is the income
change in round 1. This in turn provides a boost to income in round 2. By
gathering terms in the second column of Table A1.1 we get the cumulative
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change in consumption after n rounds of the multiplier process:

dCn ≡
n

∑
i=1

dCi = −cdG + cdY1 + c2dY1 + c3dY1 + · · · + cn−1dY1

= −cdG +
[
c + c2 + · · · + cn−1

]
(1 − c)dG

= −cdG − (1 − c)dG +
[
1 + c + c2 + · · · + cn−1

]
(1 − c)dG

= −dG +
[
1 + c + c2 + · · · + cn−1

]
(1 − c)dG. (A1.21)

By letting n → ∞ we find that the term in square brackets on the right-hand
side of (A1.21) converges to 1/(1 − c) so that:

lim
n→∞

dCn = −dG +
1

1 − c
(1 − c)dG = 0, (A1.22)

which is—of course—the result we found analytically in equation (A1.20).

In a similar fashion we find for the output effect after n rounds:

dYn ≡
n

∑
i=1

dYi = (1 − c)dG + cdY1 + c2dY1 + c3dY1 + · · · + cn−1dY1

= (1 − c)dG +
[
c + c2 + · · · + cn−1

]
(1 − c)dG

=
[
1 + c + c2 + · · · + cn−1

]
(1 − c)dG. (A1.23)

Letting n → ∞ we find:

lim
n→∞

dYn =
1

1 − c
(1 − c)dG = 1, (A1.24)

which again confirms the analytical result obtained in (A1.19) above. In Figure
A1.6 we illustrate the Haavelmo multiplier graphically. The initial equilibrium
is at E0 and the final equilibrium is at E1. The dashed line from E0 to E1 repres-
ents the rounds of the multiplier process.

(e) By using the new tax schedule, T = tY, in equation (Q1.14) and combining the
resulting expression with (Q1.13) we obtain:

Y = C0 + c(Y − tY) + I + G ⇒ Y =
C0 + I + G

1 − c(1 − t)
. (A1.25)

For consumption we find:

C = C0 + c(1 − t)Y

= C0 + c(1 − t)
C0 + I + G

1 − c(1 − t)

=
C0 + c(1 − t)[I + G]

1 − c(1 − t)
, (A1.26)
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Figure A1.6: The Haavelmo multiplier

where we have used (A1.25) in going from the first to the second line. Similarly,
we find for the deficit:

G − T = G − tY

= G − t
C0 + I + G

1 − c(1 − t)

=
−t[C0 + I] + (1 − c)(1 − t)G

1 − c(1 − t)
, (A1.27)

where we have used (A1.25) in going from the first to the second line.

By using (A1.25)–(A1.27) we immediately find the following multipliers:

dY

dG
=

1

1 − c(1 − t)
> 1, (A1.28)

dC

dG
=

c(1 − t)

1 − c(1 − t)
> 0, (A1.29)

d(G − T)

dG
=

(1 − c)(1 − t)

1 − c(1 − t)
> 0. (A1.30)

The inequality in (A1.28) follows from the fact that 0 < c < 1 and 0 < t < 1
so that 0 < c(1 − t) < 1 follows readily. The output multiplier is larger than
the Haavelmo multiplier (given in (A1.19) above). In the text we explain the
tax leakage in detail. By financing with bonds, which play no further role in
the Keynesian Cross model, the dampening effect of taxation is reduced sub-
stantially. As equation (A1.29) shows, in this case consumption rises, whereas
it stays the same in the Haavelmo case.
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Question 7: The import leakage

(a) By substituting (Q1.16)–(Q1.17) into (Q1.15) we obtain:

Y = C0 + c(Y − T) + I + G + X0 − mY

= C0 − cT + I + G + X0 + (c − m)Y ⇒
Y =

C0 − cT + I + G + X0

1 − c + m
. (A1.31)

By substituting (A1.31) into (Q1.16) we find the reduced form expression for
consumption:

C = C0 + c

[
C0 − cT + I + G + X0

1 − c + m
− T

]

=
(1 − c + m)(C0 − cT) + c(C0 − cT + I + G + X0)

1 − c + m

=
(1 + m)(C0 − cT) + c(I + G + X0)

1 − c + m
. (A1.32)

Similarly, by substituting (A1.31) into (Q1.17) we find the reduced form expres-
sion for imports:

X = X0 − m
C0 − cT + I + G + X0

1 − c + m

=
(1 − c + m)X0 − m(C0 − cT + I + G + X0)

1 − c + m

=
(1 − c)X0 − m(C0 − cT + I + G)

1 − c + m
. (A1.33)

(b) Since the reduced form expressions contain only exogenous variables we can
obtain the multiplier directly from (A1.31). Indeed, by differentiating (A1.31)
with respect to G we obtain:

dY

dG
=

1

1 − c + m
> 0. (A1.34)

Formally we find from (A1.34) that:

∂ (dY/dG)

∂m
= − 1

(1 − c + m)2
< 0, (A1.35)

from which we conclude that the multiplier falls as the import propensity gets
larger. The import leakage implies that part of the additional income generated
by the fiscal impulse leaks away in the form of imports from abroad. These
imports are produced abroad and do not generate domestic income. Hence,
they put a dampening effect on the multiplier.

(c) From the reduced form expressions for Y, C, and X (given in (A1.31)–(A1.33)
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Round Effect on C Effect on X Effect on Y
1 0 dX0 dX0

2 cdY1 −mdY1 (c − m)dY1

3 cdY2 −mdY2 (c − m)dY2
...

...
...

...
n cdYn−1 −mdYn−1 (c − m)dYn−1

sum dCn dXn dYn

Table A1.2: The multiplier process with an import leakage

above) we find the following effects:

dY

dX0
=

1

1 − c + m
> 0, (A1.36)

dC

dX0
=

c

1 − c + m
> 0, (A1.37)

dX

dX0
=

1 − c

1 − c + m
> 0. (A1.38)

The increase in world trade leads to an increase in domestic demand because
(net) exports increase. This creates additional income which leads to a boost
in consumption and a slight fall in net exports (as imports increase). In Table
A1.2 we trace the different rounds of the multiplier process.

By adding the entries on column 2 of Table A1.2 we obtain the cumulative effect
on consumption after n rounds of the multiplier process:

dCn = 0 + cdY1 + c(c − m)dY1 + c(c − m)2dY1 + · · · + c(c − m)n−2dY1

= cdX0

[
1 + (c − m) + (c − m)2 + · · · + (c − m)n−2

]
. (A1.39)

Since |c−m| < 1 (see below) we find that the term in square brackets converges
to 1/(1 − (c − m)) as n → ∞. Hence, the effect on consumption ultimately
converges to:

lim
n→∞

dCn = cdX0
1

1 − (c − m)
=

c

1 − c + m
dX0. (A1.40)

This confirms the expression given in (A1.37) above. For exports we find:

dXn = dX0 − mdY1 − m(c − m)dY1 − m(c − m)2dY1 − · · ·
− m(c − m)n−2dY1

= dX0

[
1 − m(1 + (c − m) + (c − m)2 + · · · + (c − m)n−2)

]
(A1.41)

lim
n→∞

dXn = dX0

[
1 − m

1 − (c − m)

]

=
1 − c

1 − c + m
dX0. (A1.42)
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Finally, for output we obtain:

dYn = dX0 + (c − m)dY1 + (c − m)2dY1 + · · · + (c − m)n−1dY1

= dX0

[
1 + (c − m) + (c − m)2 + · · · + (c − m)n−1

]
(A1.43)

lim
n→∞

dYn = dX0

[
1

1 − (c − m)

]

=
1

1 − c + m
dX0. (A1.44)

It remains to show that −1 < c − m < 1. The first inequality implies c > m − 1
which holds because c > 0 and m − 1 < 0 (since m < 1). The second inequality
implies c < 1 + m which holds because c < 1 and 1 + m > 1 (since m > 0).

Question 8: The liquidity trap

With the modification suggested by Pigou, the model for the closed economy finding
itself in a “liquidity trap” is:

Y = C (Y − T(Y), K̄ + M/P)) + I(RMIN) + G,

M/P = l(RMIN, Y).

A reduction in the price level leads to an increase in real money balances (M/P).
Households feel wealthier and increase consumption accordingly. Aggregate de-
mand for goods and services is boosted. As a result, the slope of the AD curve is
negative even in the liquidity trap. The classical model is no longer inconsistent. In
formal terms we have:

dY = CY−T(1 − TY)dY +
IR

lR

[
d(M/P)− lYdY

]
︸ ︷︷ ︸

(�)

+CAd(M/P).

If LR → −∞ then R → RMIN and the term marked with (�) vanishes. The IS curve is
price sensitive as is the AD curve:(

dY

dP

)
AD

= − CA M/P2

1 − CY−T(1 − TY)
< 0.

Question 9: The IS-LM-AS model with inflation

(a) The only non-standard feature of the model is that investment now depends
on the real interest rate, R − π. Accumulating physical capital is a real activity
which thus involves the real rate of interest. In the standard IS-LM model
prices are fixed so we need not distinguish real from nominal interest rates.

(b) The model features the classical dichotomy. Equations (Q1.20)–(Q1.23) consti-
tute the aggregate supply side and determine unique values for the real wage,
employment and output as a function of the exogenous capital stock (and para-
meters of technology and labour supply). With output determined by the sup-
ply side, equations (Q1.18)–(Q1.19) determine the interest rate and the price
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Figure A1.7: An adverse productivity shock in the classical model

level as a function of the exogenous parameters (G, M, T, and π). Prices are
fully flexible.

The effect of a supply shock (proxied by a reduction in K̄) can be studied with
the aid of Figure A1.7. Equations (Q1.18)–(Q1.19) implicitly define the down-
ward sloping AD curve:

Y = AD

(
M

P
, G, T, π

)
, (A1.45)

with ADM/P > 0, ADG > 0, ADT < 0, and ADπ > 0. The first three partial
derivatives are standard but the fourth warrants some comment. In terms of
an IS-LM diagram, an increase in π, leads for a given nominal interest rate to a
decrease in the real interest rate, an increase in investment, and an outward
shift in the IS curve. The new IS-LM equilibrium occurs at a higher nominal
interest rate and a higher income level. In terms of the AD-AS diagram, the
AD curve shifts out.

Equations (Q1.20)–(Q1.23) implicitly define the AS curve which is vertical in
(P, Y) space and depends positively on the exogenous capital stock:

Y = AS(K̄), (A1.46)

with ASK̄ > 0. An increase in K̄ boosts labour demand (because the production
factors are cooperative), and leads to an increase in equilibrium employment
and a higher real wage. Output expands for two reasons: because of the direct
effect of K̄ itself and because of the induced employment effect.

In Figure A1.7, the decrease in K̄ shifts the AS curve to the left. Output falls
and the price level rises. The real wage falls because labour demand falls. The
price increase lowers real money balances so that the LM curve shifts to the left.
The interest rate increases and investment falls on that account. The decrease
in output also causes a reduction in consumption.
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(c) As is explained above, fiscal and monetary policy only affect the demand side
of the model and thus only affect P and R. Prices and wages are fully flexible.

(d) Fiscal policy: An increase in G (or a decrease in T) shifts the IS and AD curves
to the right. Since the AS curve is unaffected, the price level increases but
output is unchanged. The increase in the price reduces real money balances
and shifts LM to the left. On balance, output is unchanged and the interest rate
is increased. Government consumption crowds out private investment one for
one, i.e. dI = −dG.

Monetary policy: An increase in M shifts the LM and AD curves to the right.
Since the AS curve is unaffected, the price level increases but output is un-
changed. The increase in the price reduces real money balances and shifts LM
back to its original position. On balance, output and the interest rate are un-
changed but the price level is permanently higher. Real money balances are
constant, however, so we have that dP/P = dM/M.

(e) One channel by which demand-side policies can affect the supply side runs
via labour supply. Assume that labour supply contains a wealth effect, i.e. that
equation (Q1.21) is replaced by:

NS = NS(W/P, A), (A1.47)

where A ≡ K̄ + M/P represents tangible assets. We expect that the wealth ef-
fect in labour supply is negative, i.e. ∂NS/∂A < 0. As households are wealth-
ier they wish to consume more leisure and thus work less. The AS curve can
be written as:

Y = AS(M/P, K̄), (A1.48)

with ASM/P < 0. Both AD and AS are affected by fiscal and monetary po-
licy. Because prices are flexible, monetary policy is still neutral. Fiscal policy
shifts the AD curve to the right which leads to an increase in both equilibrium
output and the price level. For a given money supply, real money balances
fall which explains why output supply rises (households are less wealthy and
supply more labour). In Chapter 15 we show that the new classical model
of labour supply (based on intertemporal optimization) indeed gives rise to a
broadly defined wealth effect in labour supply. It is shown there that human
wealth (the present value of the after-tax time endowment) also affects labour
supply. This implies that the present value of taxes also affects the supply side
of the economy.

Another channel by which demand-side policies can affect the supply side runs
via the capital accumulation identity, K̇ = I(R − π) − δK. If anything changes
gross investment, then this will affect the capital stock (both during transition
and in the steady state) which in turn will affect the supply side. More details
are given in Chapter 14. Stock-flow interaction in IS-LM style models is studied
in more detail in Chapter 2.
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Chapter 2

Dynamics in aggregate demand
and supply

Question 1: Short questions

(a) What is the so-called “correspondence principle” and why is it so useful in
principle? Provide an example.

(b) What do we mean by “backward-looking stability ”? And what is “forward-
looking stability”? Provide and example of both concepts.

(c) Keynesians and monetarists engaged in a heated debate during the sixties and
seventies of the previous century. Topic of the debate was the question of
whether or not government consumption leads to crowding out of the cap-
ital stock. Explain why this debate could not be settled by simply appealing to
the correspondence principle.

Question 2: The Keynesian cross model (continued)

Consider the following Keynesian cross model for the closed economy:

Y = C + I + G, (Q2.1)

C = C0 + c(Y − T), 0 < c < 1, (Q2.2)

I = I0 + Ż, (Q2.3)

Ẏ = −γŻ, γ > 0, (Q2.4)

where Y is output, C is consumption, I is actual investment, G is government con-
sumption, T is taxes, I0 is planned investment, and Z is the stock of inventories. A
variable with a dot denotes that variable’s rate of change over time, i.e. Ż ≡ dZ/dt
and Ẏ ≡ dY/dt. C0 and I0 represent the exogenous parts of, respectively, consump-
tion and investment, and c is the marginal propensity to consume. Assume that
prices are fixed and that G and T are both exogenous.

(a) Interpret the equations of the model.

(b) Show that the model is stable. Illustrate your answer graphically by develop-
ing the phase diagram for the model.
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(c) Show the effects over time on output, consumption, actual investment, and
inventories, of a tax-financed increase in government consumption (dT = dG).
Is the short-run output multiplier smaller or larger than the long-run output
multiplier? Explain.

Question 3: The IS-LM model with capital accumulation

Consider the following simple model of the economy. Investment is endogenous
and depends (among other things) on the level of the capital stock. The equations of
the model are:

Y = C + I + G, (Q2.5)

C = C0 + cY, (Q2.6)

M

P
= β0Y + β1R, (Q2.7)

K̇ = I − δK, (Q2.8)

I = α0R + α1K + α2Y. (Q2.9)

Here c is the marginal propensity to consume (0 < c < 1), Y is aggregate output, C
is consumption, M/P is the real money supply (exogenous), R is the interest rate, G
is government consumption, I is gross investment, K is the capital stock, and K̇ ≡
dK/dt is the time rate of change in K.

(a) Provide an economic interpretation for equations (Q2.5)-(Q2.9). What signs do
you expect for α0, α1, α2, β0, en β1?

(b) Derive the stability condition for this model. Illustrate your answer with a
diagram.

(c) Derive the short-run and the long-run output multipliers with respect to an
increase in government consumption.

Question 4: Stability of the IS-LM model

Consider the following short-run dynamics in the closed-economy IS-LM model. It
is assumed that the price level is fixed and (for convenience) has been normalized to
unity (P = 1):

Ṙ = φ1

[
l(Y, R) − M

]
, φ1 > 0, (Q2.10)

Ẏ = φ2

[
C(Y − T) + I(R) + G − Y

]
, φ2 > 0, (Q2.11)

where Y is output, R is the interest rate, M is the money stock, C is consumption, T
is taxes, I is investment, and G is government consumption. As usual, a dot above a
variables denotes that variable’s time rate of change, i.e. Ṙ ≡ dR/dt and Ẏ ≡ dY/dt.

(a) Interpret these equations.

(b) Can you say something about the relative speeds of adjustment in the goods
and financial markets?



CHAPTER 2: DYNAMICS IN AGGREGATE DEMAND AND SUPPLY 27

(c) Use a two-dimensional phase diagram in order to derive the stability proper-
ties of this model and the qualitative nature of the transient adjustment paths
for output and the interest rate associated with a fiscal expansion.

(d) � Derive the stability condition for this model mathematically.

Question 5: The Blinder-Solow model

Consider a closed economy with fixed prices (P = P0 = 1 for convenience), a given
stock of capital (K = K̄) and wealth effects in the demand for money and the con-
sumption function:

Y = C + I + G, (Q2.12)

C = C(Y + B − T, A), 0 < CY+B−T < 1, CA > 0, (Q2.13)

I = I(R), IR < 0, (Q2.14)

T = T0 + t(Y + B), 0 < t < 1, (Q2.15)

M = l(Y, R, A), lY > 0, lR < 0, 0 < lA < 1, (Q2.16)

A ≡ K̄ + M + B/R, (Q2.17)

G + B = T + Ṁ + (1/R)Ḃ, (Q2.18)

where Y is output, C is consumption, I is investment, G is government consumption,
B is government debt, T is taxes, A is private wealth, R is the rate of interest, T0 is
the exogenous part of taxes, t is the marginal tax rate, K̄ is the capital stock, and M
is the money supply. As usual, a dot above a variables denotes that variable’s time
rate of change, i.e. Ṁ ≡ dM/dt and Ḃ ≡ dB/dt.

(a) Interpret the equations of the model.

(b) In the book we derive reduced-form expressions for output and the nominal
interest rate which we write here in short-hand notation as Y = AD(G, B, M)
and R = H(G, B, M). Draw IS-LM style diagrams to motivate the signs of
ADG, ADB, ADM, HG, HB and HM. Explain the intuition behind your results.

(c) Compute the “balanced-budget” output multiplier for the case in which the
additional government consumption is financed by means of additional taxes.
Assume that the government adjusts T0 in order to ensure that dG = dT. Show
that the required change in T0 satisfies 0 < dT0/dG < 1. Explain your results
graphically.

(d) Is the multiplier obtained in part c larger or smaller than the Haavelmo multi-
plier derived in Question 6(d) of Chapter 1? Explain any differences.

Question 6: Ricardian equivalence in the Blinder-Solow model

Some economists stress the importance of Ricardian equivalence, i.e. that bond fin-
ance or tax finance of a given stream of public spending is irrelevant for private
consumption. The idea is that bond finance is perceived as postponed taxation, so
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that households save in order to provide for future taxation. A simple way to allow
for this idea is to modify the Blinder-Solow model as follows:

C = C(YD, A), 0 < CYD < 1, CA > 0, (Q2.19)

YD ≡ Y + B − T − Ḃ/R, (Q2.20)

M/P = l(Y, R, A), lY > 0, lR < 0, 0 < lA < 1, (Q2.21)

A ≡ K̄ + M/P, (Q2.22)

G + B = T + Ṁ + (1/R)Ḃ, (Q2.23)

T = T0 + t(Y + B − Ḃ/R), 0 < t < 1, (Q2.24)

Y = C + I(R) + G, IR < 0, (Q2.25)

where C is consumption, YD is disposable income, A is household wealth, Y is out-
put, B is government debt, T is taxes, R is the interest rate, M is the money stock, P
is the fixed price level, K̄ is the capital stock, G is government consumption, T0 is the
lump-sum tax, t is the marginal tax, and I is investment. As usual, a dot above a vari-
ables denotes that variable’s time rate of change, i.e. Ṁ ≡ dM/dt and Ḃ ≡ dB/dt.

(a) Interpret the consumption function and the definition of private wealth, A.
Why does this modification not alter the conclusions regarding money finan-
cing?

(b) Show that under bond financing disposable income is simply income minus
government spending and thus demonstrate that private consumption rises
only with income minus government spending.

(c) Show that a bond-financed and a tax-financed rise in public spending have
identical effects on output, consumption and the interest rate and, furthermore,
that the short-run and long-run effects coincide.

(d) Show that under bond financing the government debt explodes unless taxes
rise strongly enough with government debt (or public spending is cut back
severely enough as government debt explodes).

Question 7: The Blinder-Solow model with capital accumulation

Consider a Blinder-Solow model of a small open economy with an integrated capital
market. Assume that the price level is fixed and has been normalized to unity (P =
1):

C = C(YD, A), 0 < CYD < 1, CA > 0, (Q2.26)

YD ≡ Y + B + F − T, (Q2.27)

T = T0 + t(Y + B + F), 0 < t < 1, (Q2.28)

M = l(Y, R, A), lY > 0, lR < 0, 0 < lA < 1, (Q2.29)

A ≡ K̄ + M + B/R + F/R∗, (Q2.30)

R = R∗, (Q2.31)

(1/R)Ḃ = G + B − T − Ṁ, (Q2.32)

(1/R)Ḟ = F + [Y − C − I(R) − G] , IR < 0, (Q2.33)
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where C is consumption, YD is disposable income, A is wealth, Y is output, B is
government bonds, F denotes net foreign asset holdings of the country, T is taxes, t
is the marginal tax rate, M is the money supply, R is the domestic interest rate, K̄ is
the fixed capital stock, R∗ is the world interest rate, G is government consumption,
and I is investment.

(a) Interpret the equations of this model. Which are the endogenous variables?
Which are the exogenous variables?

(b) Can you say something about the effectiveness of fiscal policy and stability
under money finance? Show that lA > R∗lY is a sufficient stability condition.

(c) Can you say something about the effectiveness of fiscal policy and stability
under bond finance?

Question 8: Adaptive expectations in a monetarist model

Consider the following monetarist model with adaptive expectations:

Mv = PY, v > 0, (Q2.34)

π = φ[y − y∗] + πe, φ > 0, (Q2.35)

π̇e = ζ[π − πe], ζ > 0, (Q2.36)

µ ≡ Ṁ/M, (Q2.37)

where M is the money supply, v is the velocity of circulation of the money supply
(a constant), P is the price level, y is the logarithm of output (y ≡ ln Y), π is the
actual inflation rate (π ≡ Ṗ/P), y∗ is the logarithm of full employment output, πe is
expected inflation, and µ is the growth rate in the money supply.

(a) Interpret these equations. Which are the exogenous and which are the endo-
genous variables?

(b) Show that the reduced form of this model is given by:

ẏ/y = µ − πe − φ[y − y∗], (Q2.38)

π̇e = ζφ[y − y∗]. (Q2.39)

(c) Demonstrate mathematically the stability of this model (i.e. prove that the two
eigenvalues have negative real parts).

(d) Use a phase diagram to derive the transient and steady-state effects on output
and inflation of a monetary disinflation (a cut in the monetary growth rate µ).

Question 9: More on adaptive expectations

Consider the following log-linear macroeconomic model of a closed economy fea-
turing adaptive expectations:

y = θ(m − p) + ψπe + ζg, θ > 0, ψ > 0, ζ > 0, (Q2.40)

π = φ[y − y∗] + πe, φ > 0, (Q2.41)

π̇e = λ[π − πe], λ > 0, (Q2.42)
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where y is output, m is the money supply, p is the price level, πe is expected inflation,
g is an index for fiscal policy, π ≡ ṗ is actual inflation (recall that, if P stands for the
price level, we have that π ≡ Ṗ/P = d ln P/dt ≡ ṗ), and y∗ is full employment
output. All variables are measured in logarithms and a dot above a variable denotes
that variable’s time rate of change. The endogenous variables are y, p, and πe. The
exogenous variables are g, m, and y∗. All parameters as well as y∗ are assumed to be
constant over time. The rate of nominal money growth is defined as µ ≡ ṁ.

(a) Interpret the equations of the model.

(b) Show that in the short run (for a given expected inflation rate) the model has
Keynesian features whilst it has classical features in the long run (with a vari-
able expected inflation rate).

(c) Investigate the stability properties of the model by deriving a system of differ-
ential equations in πe and y. Why is the model not automatically stable for all
parameter values, as was the case for the monetarist model of question 8?

(d) Derive the impact, transitional, and long-run effects on output, the price level,
actual inflation, and expected inflation, of an increase in the money growth
rate. Assume that the parameters satisfy φ(θ − ψλ)2

> 4λθ.

(e) Derive the impact, transitional, and long-run effects on output, the price level,
actual inflation, and expected inflation, of an increase in the index of fiscal
policy. Hint: do not forget that the fiscal impulse causes a positive impact
effect on output! Make the same assumption as in part (d).

Question 10: Optimization and computation

Suppose that we are considering a small open economy with a representative firm.
This firm is a price taker in the markets for its inputs and its outputs. The interest rate
and product prices are exogenously determined on world markets and for simplicity
assumed (or expected) to be constant. Prices are normalized to P = 1. The capital
stock depreciates at a constant rate δ > 0, so the capital stock evolves according to

Kt+1 = Kt + It − δKt, (Q2.43)

where It is investment in year t and Kt is the installed capital stock. Investment is
costly, the representative firm has to pay adjustment costs to install extra capital.
These adjustment costs are assumed to be quadratic in the level of investment. For
the sake of simplicity assume that labour is completely irrelevant in the production
process (the so-called AK-model). The representative firm chooses investment to
maximize the present value of future and current profits. The firm’s maximization
problem is:

max
{It}

V =
∞

∑
t=0

(
1

1 + R

)t

Πt =
∞

∑
t=0

(
1

1 + R

)t (
AKt − It − bI2

t

)
, (Q2.44)

where R is the interest rate, A is technology, and b is a strictly positive parameter.

(a) Solve the firm’s optimization problem and find expressions for the steady-state
levels of investment, capital and production.
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Take as parameter values A = 0.5, R = 0.03, δ = 0.07, and b = 5.

(b) What are the steady-state levels of production, capital, investment given these
parameter values?

(c) Suppose that the economy is in the steady state. A large earthquake destroys
20% of the installed capital stock. What happens with capital, investment, and
production over the next 10 years?

� Question 11: The multiplier-accelerator model

[Based on Samuelson (1939)] Consider the Samuelson-Hansen discrete-time variant
of the multiplier-accelerator model:

Yt = Ct + It + G, (Q2.45)

Ct = cYt−1, 0 < c < 1, (Q2.46)

It = v[Ct − Ct−1], v > 0, (Q2.47)

where Yt is output, Ct is consumption, It is investment, G is (time-invariant) govern-
ment consumption, c is the marginal propensity to consume, and v is the investment
acceleration coefficient (vc is thus the desired capital-output ratio).

(a) Interpret the equations of the model.

(b) Define the marginal propensity to save as s ≡ (1 − c). Show that the adjust-
ment path in output after, say, a rise in public spending can be characterized
by:

I v ≤ 1−√
s

1+
√

s
stable monotonic adjustment

II 1−√
s

1+
√

s
< v <

1
1−s stable cyclical adjustment

III 1
1−s < v <

1+
√

s
1−√

s
explosive oscillations

IV v ≥ 1+
√

s
1−√

s
steady, monotonic explosion

Illustrate your answers by constructing a diagram with v on the horizontal axis
and c on the vertical axis displaying the various qualitative modes of dynamic
adjustment.
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Answers

Question 1: Short questions

(a) Correspondence principle: only use stable models. This gives information that
is typically useful in comparative static exercises. Unstable models are use-
less because, following a shock, the system does not return to a meaningful
equilibrium.

(b) Backward-looking stability: history determines where you are. No need to
look at the future to know how the system evolves to the equilibrium. Forward-
looking stability: both the past and the future determine the adjustment path.
The forward-looking part typically deals with expectations.

(c) The correspondence principle is needed to ensure that the model is stable. But
stable models can still lead to crowding out or to crowding in. It all depends
on the slopes of IS and LM. See page 49 in the textbook.

Question 2: The Keynesian cross model (continued)

(a) Equation (Q2.1) is the national income identity. It holds trivially because I
includes unintended inventory formation. Equation (Q2.2) is the standard
Keynesian consumption function, featuring a marginal propensity to consume
between 0 and 1. Equation (Q2.3) shows that actual investment equals planned
investment (I0, assumed to be exogenous) plus unintended inventory change
(Ż). Equation (Q2.4) shows that firms are assumed to increase (decrease) pro-
duction if inventories fall (rise). This equation introduces some rudimentary
dynamics into the Keynesian Cross model.

(b) By substituting equations (Q2.2)–(Q2.3) into (Q2.1) we obtain:

Y = C0 + c(Y − T) + I0 + Ż + G ⇒
Ż = (1 − c)Y − [C0 − cT + I0 + G]. (A2.1)

By substituting (Q2.4) into (A2.1) we obtain the differential equation for Y:

Ẏ = −γ(1 − c)Y + γ[C0 − cT + I0 + G]. (A2.2)

Equation (A2.2) is a stable differential equation in Y because the coefficient for
Y on the right-hand side is negative, i.e. ∂Ẏ/∂Y = −γ(1 − c) < 0. Steady-state
output is computed by setting Ẏ = 0 in (A2.2) and solving for Y:

Y∗ =
C0 − cT + I0 + G

1 − c
. (A2.3)

We draw the phase diagram for the model in Figure A2.1. The initial steady
state is at point E0 with output equal to Y∗

0 . If actual output exceeds (falls short

of) Y∗
0 then Ẏ is negative (positive). The adjustment process is stable.

(c) We derive from equation (A2.3) that the tax-financed increase in government
consumption shifts the steady-state output level:

dY∗ =
−cdT + dG

1 − c
=

−cdG + dG

1 − c
= dG ⇒ dY∗

dG
= 1, (A2.4)
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Figure A2.1: Stability of the Keynesian Cross model

where we have used the balanced-budget requirement, dT = dG, in going
from the first to the second equality. Recall that (A2.4) is the famous Haavelmo
multiplier. In graphical terms, the Ẏ line is shifted vertically by γ(1 − c)dG in
Figure A2.1. At impact, actual output is unable to change instantaneously and
is thus equal to Y∗

0 . Demand is boosted, however, and unintended inventory

reductions prompt a jump in Ẏ. The economy jumps from E0 to A directly
above it. Over time, the economy moves along the new Ẏ line (labelled G = G1)
from A to E1. The paths for the remaining variables are easily deduced. At
impact, consumption falls (because the tax rises) and actual investment jumps
down (because Ż < 0 at impact). Over time, the gradual increase in Y causes a
gradual increase in consumption and the reduction in Ż causes an increase in
actual investment.

To find out what happens to steady-state consumption we use (Q2.2) and (A2.4):

dC∗

dG
= c

[
dY∗

dG
− dT

dG

]
= c(1 − 1) = 0. (A2.5)

Because Ż = 0 in the steady state and I0 is exogenous, there is no effect on
investment:

dI∗

dG
= 0. (A2.6)

We plot the impulse-response diagram in Figure A2.2.

Obviously, the short-run output multiplier is zero because it takes time before
output and production can be expanded. Running down inventories does not
create additional household income because these goods were produced in the
past. In the long run, however, output expands which does lead to additional
household income. That is the reason why the long-run (steady-state) multi-
plier exceeds the short-run multiplier.
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Question 3: The IS-LM model with capital accumulation

(a) Equation (Q2.5) is the national income identity. Equation (Q2.6) is the con-
sumption function. Psychological law of Keynes: 0 < c < 1. Equation (Q2.7)
in the money market equilibrium condition. We expect β0 > 0 (transactions
motive) and β1 < 0 (opportunity cost and speculative motive). Equation (Q2.8)
is the capital accumulation identity, linking gross investment (I) with net in-
vestment (K̇). Equation (Q2.9) is the optimal firm demand for investment. It
can be motivated with a static version of Tobin’s q theory. Investment depends
on I = FK/ (R + δ). We expect α0 < 0 due to heavier discounting. Also, we
expect FK ∝ Y/K, so that α2 > 0 and α1 < 0.

(b) Step 1: Solve (Q2.5)–(Q2.6) to get:

Y =
C0 + I + G

1 − c
. (A2.7)

Step 2: Solve equation (Q2.7) for R:

R =
1

β1

[
M

P
− β0Y

]

=
1

β1

[
M

P
− β0

C0 + I + G

1 − c

]
, (A2.8)

Step 3: Use (A2.7) and (A2.8) in (Q2.9) to get quasi-reduced form expression
for I:

I = α0R + α1K + α2Y

=
α0

β1

[
M

P
− β0

C0 + I + G

1 − c

]
+ α1K + α2

C0 + I + G

1 − c
⇒

I = Ω

[
α0

β1

M

P
+ α1K +

(
α2 − α0β0

β1

)
C0 + G

1 − c

]
, (A2.9)

where Ω is:

Ω ≡ 1 − c

1 − c + α0β0
β1

− α2

� 0.

Step 4: Use (A2.9) in equation (Q2.8):

K̇ = I − δK

= Ω
α0

β1

M

P
+ α1ΩK +

[
α2 − α0β0

β1

]
Ω

C0 + G

1 − c
− δK (A2.10)

Step 5: The model is stable if and only if ∂K̇/∂K < 0:

∂K̇

∂K
= α1Ω − δ < 0. (A2.11)

Since α1 < 0 and δ > 0 it follows that a sufficient condition for stability is
Ω > 0. This condition is not necessary: even if Ω < 0 the condition may be
satisfied. In the stable case, the phase diagram has a downward sloping K̇ line.
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(c) The short-run multiplier can be computed for a given K = K0. We obtain:

(1 − c)Y = C0 + α0R + α1K0 + α2Y + G,

R =
1

β1

[
M

P
− β0Y

]
,

so that:

(1 − c)Y = C0 +
α0

β1

[
M

P
− β0Y

]
+ α1K0 + α2Y + G[

1 − c +
α0β0

β1
− α2

]
Y = C0 +

α0

β1

M

P
+ α1K0 + G

1 − c

Ω
Y = C0 +

α0

β1

M

P
+ α1K0 + G

or: (
dY

dG

)SR

=
Ω

1 − c
� 0.

In the “regular” case, Ω > 0 and the multiplier is positive.

The long-run multiplier is computed by using (A2.10) and setting K̇ = 0 (stable
case):

δdK = α1ΩdK +

[
α2 − α0β0

β1

]
Ω

dG

1 − c

(δ − α1Ω)dK =

[
α2 − α0β0

β1

]
Ω

dG

1 − c(
dK

dG

)LR

=
1

δ − α1Ω

[
α2 − α0β0

β1

]
Ω

1 − c

=
1

δ − α1Ω

[
α2 − α0β0

β1

] (
dY

dG

)SR

� 0.

Question 4: Stability of the IS-LM model

(a) Equation (Q2.10) postulates that the interest rate rises if there is excess demand
for money (EDM) and falls if there is excess supply of money (ESM). The in-
tuition is as follows. If there is EDM there is automatically excess supply of
bonds (ESB). Bond prices fall and the interest rate rises. Vice versa for ESM
(and EDB). Equation (Q2.11) postulates that output rises if there is excess de-
mand for goods (EDG) and falls if there is excess supply of goods (ESG). The
intuition is, for example, provided by the adjustment of inventories studied in
question 2 above.

(b) One would expect that the financial markets (for money and bonds) adjust
much more quickly than the goods market. Hence, one would expect that φ1 is
much larger than φ2. In the limiting case, financial adjustment is infinitely fast
(φ1 → ∞) and the economy is always on the LM curve.
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(c) The phase diagram is drawn in Figure A2.3. The IS curve represents (R, Y)
combinations for which output is constant over time:

Ẏ = 0 ⇔ Y = C(Y − T) + I(R) + G. (A2.12)

By totally differentiating (Q2.11) with respect to Y, R, and G we get:

dẎ = φ2 [−(1 − CY−T)dY + IRdR + dG] . (A2.13)

Equation (A2.13) contains all the information we need. First, by setting dR =
dG = 0 we find that in points to the right (left) of the IS curve, output is falling
(rising) over time:

∂Ẏ

∂Y
= −φ2(1 − CY−T) < 0, (A2.14)

where the sign follows from the fact that φ2 > 0 and 0 < CY−T < 1. This
explains the horizontal arrows in Figure A2.3. Second, by setting dẎ = dG = 0
in (A2.13) we obtain the slope of the IS curve:(

∂Y

∂R

)
IS

=
IR

1 − CY−T
< 0. (A2.15)

Third, by setting dẎ = dR = 0 in (A2.13) we find that the IS curve shifts
horizontally to the right if government consumption is increased:(

∂Y

∂G

)
dẎ=dR=0

=
1

1 − CY−T
> 1. (A2.16)

The LM curve represents (R, Y) combinations for which the money market is
in equilibrium:

Ṙ = 0 ⇔ M = l(Y, R). (A2.17)

By totally differentiating (Q2.10) with respect to Y and R we obtain dṘ =
φ1 [lYdY + lRdR], from which we derive:

∂Ṙ

∂R
= φ1lR < 0,

(
∂Y

∂R

)
LM

= − lR

lY
> 0. (A2.18)

For points above (below) the LM curve, there is ESM and EDB (EDM and ESB)
and the interest rate falls (rises). This explains the vertical arrows in Figure
A2.3. The second result in (A2.18) shows that the LM curve slopes upwards.

The configuration of arrows in Figure A2.3 demonstrates that the equilibrium
E0 (where Ṙ = Ẏ = 0) is stable. If the economy starts out in point A, then it may
follow the stable trajectory through points B through E to eventually end up at
E0. In part (d) of this question we study the adjustment path more formally.
(Make sure that you understand why the trajectory is vertical at points B and
D and is horizontal at points C and E.)

In Figure A2.4 we show the effects of an increase in government consumption
assuming that the economy starts out in the initial steady-state equilibrium
E0. The fiscal policy shifts the IS curve to the right (to IS1). After this shock,
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Figure A2.3: Stability of the IS-LM model

point E0 is no longer the steady-state equilibrium: it is on the LM curve (so
there is money market equilibrium) but it lies to the left of the new IS curve
and thus features EDG. The arrows depict the dynamic forces associated with
the new equilibrium E1. Several types of adjustment paths towards the new
equilibrium at E1 are possible depending on the relative magnitudes of φ1 and
φ2. If financial adjustment is very fast (φ1 → ∞) then the economy moves
along the LM curve from E0 to E1. If goods market adjustment is very fast
(φ2 → ∞) then the economy would move instantaneously from E0 to A after
which it would gradually move from A to E1. In the intermediate case, with
both φ1 and φ2 finite, but the former much larger than the latter, one would
expect either monotonic adjustment (as with the dashed trajectory) or a case
in which the trajectory approaches E1 in a cyclical fashion (as drawn in Figure
A2.3).

(d) (See Chiang (1984, pp. 638-645) for further details). Formally we can investig-
ate local stability (near point E1) by differentiating (Q2.10)–(Q2.11) with respect
to R, Y, and G and writing the system in a single matrix equation:[

dṘ
dẎ

]
=

[
φ1lR φ1lY
φ2 IR −φ2(1 − CY−T)

] [
dR
dY

]
+

[
0

φ2dG

]
, (A2.19)

where ∆ is the Jacobian matrix on the right-hand side. It has the following
determinant and trace:

|∆| ≡ φ1φ2[−lR(1 − CY−T) − lY IR] > 0, (A2.20)

tr ∆ ≡ φ1lR − φ2(1 − CY−T) < 0. (A2.21)

The dynamic adjustment is regulated by the characteristic roots of the matrix
∆ which we denote by λ1 and λ2. Recall that the determinant of ∆ equals the
product of its characteristic roots (|∆| = λ1λ2) whilst the trace of ∆ equals the
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sum of its roots (tr ∆ = λ1 + λ2). Since |∆| > 0 and tr ∆ < 0 it must be the case
that both characteristic roots are negative (stable). The characteristic roots of ∆

are the zeros of the characteristic equation of ∆, A(λ) ≡ |∆ − λI| = 0. After
some manipulation we get:

A(λ) =

∣∣∣∣φ1lR − λ φ1lY
φ2 IR −φ2(1 − CY−T) − λ

∣∣∣∣
= (λ − φ1lR)[φ2(1 − CY−T) + λ] − φ1φ2lY IR

= λ2 − tr ∆λ + |∆| = 0. (A2.22)

Equation (A2.22) is a quadratic equation in λ which has two roots:

λ1 =
tr ∆ +

√
(tr ∆)2 − 4|∆|

2
, (A2.23)

λ2 =
tr ∆ −√

(tr ∆)2 − 4|∆|
2

. (A2.24)

There are two cases that are possible, depending on the sign of D ≡ (tr ∆)2 −
4|∆|.

• Case 1: If D > 0 then both roots are real and distinct. If D = 0 then the
roots are the same. In both cases the equilibrium is a stable node (adjust-
ment is monotonic as in the dashed trajectory in Figure A2.4).

• Case 2: If D < 0 then the roots are complex, i.e. 2λ1 = tr ∆ + i
√−D and

2λ2 = tr ∆− i
√−D where i is the imaginary unit (which satisfies i2 = −1).

The equilibrium is in that case a stable focus (stable but cyclical adjustment
towards E1). The adjustment is stable because the characteristic roots have
negative real parts (equalling tr ∆/2) but it is cyclical because these roots
are complex.
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Question 5: The Blinder-Solow model

(a) This model is explained in great detail in section 2.4 of the book. The only thing
that has been changed here is the tax function. Instead of using the general
functional form (2.61) we specify a particular (linear) tax schedule (Q2.15). This
allows us to parameterize the lump-sum tax, T0, and the marginal tax rate, t,
that both play a role in the question.

(b) By using (Q2.12)–(Q2.15) and (Q2.17) we obtain the expression for the IS curve:

Y = C[(1 − t)(Y + B) − T0, K̄ + M + B/R] + I(R) + G. (A2.25)

By totally differentiating this expression with respect to Y, R, M, and B we
obtain:

dY = CY+B−T(1 − t)(dY + dB) + CA[dM + (1/R)dB − (B/R2)dR]

+ IRdR + dG ⇒

dY =
[IR − (B/R2)CA]dR + [CY+B−T(1 − t) + CA/R] dB + CAdM + dG

1 − CY+B−T(1 − t)
.

(A2.26)

Equation (A2.26) can be used to characterize the IS curve. Setting dB = dM =
dG = 0 we find the slope of the IS curve:(

dY

dR

)
IS

=
IR − (B/R2)CA

1 − CY+B−T(1 − t)
< 0, (A2.27)

where the sign follows from the fact that IR < 0, CA > 0, 0 < CY+B−T < 1, and
0 < t < 1 (so that 0 < CY+B−T(1 − t) < 1 and the denominator is positive). As
in the standard IS-LM model without wealth effects the IS curve slopes down
in the model with wealth effects. To find the horizontal directions in which B,
M, and G shift the IS curve we hold the interest rate constant (dR = 0) and find
from (A2.26):

∂Y

∂M
=

CA

1 − CY+B−T(1 − t)
> 0, (A2.28)

∂Y

∂B
=

CY+B−T(1 − t) + CA/R

1 − CY+B−T(1 − t)
> 0, (A2.29)

∂Y

∂G
=

1

1 − CY+B−T(1 − t)
> 1. (A2.30)

Increases in B or M shift the IS curve to the right because the additional wealth
prompts households to expand consumption and boost aggregate demand. An
increase in G shifts IS to the right because aggregate demand is stimulated by
the additional government consumption. In all cases the denominator repres-
ent the multiplier effect. In Figure A2.5 we show the various effects on the
IS curve. Although the magnitudes of the shift generally differ for the differ-
ent variables (see (A2.28)–(A2.30)) we only show one rightward shift in Figure
A2.5.

By using (Q2.16)–(Q2.17) we obtain the expression for the LM curve:

M = l[Y, R, K̄ + M + B/R]. (A2.31)
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By totally differentiating this expression with respect to Y, R, B, and M we
obtain:

dM = lYdY + lRdR + lA[dM + (1/R)dB − (B/R2)dR] ⇒

dY =
(1 − lA)dM − (lA/R)dB − [lR − lAB/R2]dR

lY
. (A2.32)

Again we can find out all relevant information about the LM curve from (A2.32).
The slope of the LM curve is obtained by setting dM = dB = 0:(

dY

dR

)
LM

=
−lR + lAB/R2

lY
> 0, (A2.33)

where the sign follows from the fact that −lR > 0, lA > 0, and lY > 0. As in
the standard model, the LM curve slopes up. An increase in the interest rate
now causes a wealth effect in money demand as it leads to a reduction in bond
prices (see equation (2.59) in the text). To restore money market equilibrium,
output has to rise by more than if there is no wealth term in money demand.
Hence, as usually drawn (with R on the vertical and Y on the horizontal axis),
the LM curve is flatter in the presence of wealth effects. The horizontal shifts
in the LM curve are obtained by setting dR = 0 in (A2.32) and evaluating the
various partial derivatives:

∂Y

∂M
=

1 − lA

lY
> 0, (A2.34)

∂Y

∂B
= − lA/R

lY
< 0. (A2.35)

An increase in the money supply shifts the LM curve to right. It increases both
supply and (via the wealth effect) demand on the money market but the former
effect dominates the latter effect (as lA is less than unity). An increase in bonds
increases the demand for money which shifts the LM curve to the left. All the
effects have been illustrated in Figure A2.5.

Assume that the initial IS-LM equilibrium is at E0 where output is Y0 and the
interest rate is R0. An increase in B shifts the IS curve to the right and the LM
curve to the left. The equilibrium shifts from E0 to A, and the interest rate is
unambiguously higher (HB > 0) because both the consumption boost (the IS
shift) and the increase in money demand (the LM shift) necessitate an interest
rate increase. The effect on output is, however, ambiguous, as the consump-
tion effect works in the opposite direction to the money demand effect. This

explains why ADB � 0. (We have drawn the case of ADB < 0 in Figure A2.5.)

An increase in M shifts both the IS and LM curves to the right. The equilibrium
shifts from E0 to B, and output is unambiguously higher (ADM > 0). The effect
on the interest rate is ambiguous as the consumption effect (the IS shift) works
in the opposite direction to the net money supply effect (the LM shift). This

explains why HM � 0. (We have drawn the case of HM > 0 in Figure A2.5.)

Finally, if G increases the IS curve shifts to the right, the equilibrium shifts from
E0 to C, and both output and the interest rate increase (ADG > 0 and HG > 0).
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Figure A2.5: Effects of bonds, money, and government consumption

(c) The government uses T0 to ensure that dT = dG. We can solve the problem in
two steps. First we note that by using (Q2.12)–(Q2.14) and (Q2.17) the IS curve
becomes:

Y = C[Y + B − T, K̄ + M + B/R] + I(R) + G, (A2.36)

where it should be noted that we have not substituted (Q2.15) this time. Differ-
entiating (A2.36) with respect to Y, T, R, and G (using dT = dG and holding
constant B, M, and K̄) yields:

dY = dG +
IR − (B/R2)CA

1 − CY+B−T
dR. (A2.37)

From (A2.31) we obtain (again holding constant B, M, and K̄):

dR =
lY

−lR + lAB/R2
dY. (A2.38)

Combining (A2.37)–(A2.38) yields the expression for the balanced-budget out-
put multiplier:

dY = dG +
IR − CAB/R2

1 − CY+B−T

lY
−lR + lAB/R2

dY ⇒(
dY

dG

)
dT=dG

=
1 − CY+B−T

1 − CY+B−T + ζlY
, (A2.39)

where ζ is defined as:

ζ ≡ CAB/R2 + |IR|
lAB/R2 + |lR| > 0. (A2.40)
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We can determine the required change in the lump-sum tax residually by using
(Q2.15) in (Q2.18) and noting that Ṁ = Ḃ = 0 and dM = dB = 0:

dT = dG

dT0 + tdY = dG ⇒
dT0

dG
= 1 − t

(
dY

dG

)
dT=dG

= 1 − t
1 − CY+B−T

1 − CY+B−T + ζlY
. (A2.41)

It follows from (A2.41) that 0 < dT0/dG < 1. Intuitively the lump-sum tax
does not have to increase one-for-one with government consumption because
the output expansion endogenously generates additional tax revenue provided
the marginal tax rate is strictly positive (see the second term on the right-hand
side of (A2.41)).

(d) Recall that the Haavelmo multiplier derived in question 6(d) of Chapter 1 is
equal to unity. It is clear from (A2.39) that in the present setting the multiplier is
positive but less than unity. The reason for the difference is that the interest rate
changes as a result of the fiscal shock. This also happens in the standard IS-LM
model without wealth effects but in the present model the interest rate operates
via two channels. Even if both investment demand and money demand are
interest insensitive (so that IR = lR = 0), the interest rate change still affects
the multiplier because of the wealth effect caused by the revaluation of bonds
(i.e. ζ is still positive if IR = lR = 0).

Question 6: Ricardian equivalence in the Blinder-Solow model

(a) Disposable income, YD, is now equal to:

YD ≡ Y + B − T − Ḃ

R
, (A2.42)

whereas it is YD ≡ Y + B − T in the standard Blinder-Solow model. In this
view, the household understands that bond sales (with revenue Ḃ/R) are really
the same as delayed taxation. It therefore deducts them from income to com-
pute disposable income. Equation (Q2.22) shows that the household does not
view government bonds as net wealth–it is simply delayed taxation. (Ricardian
equivalence is studied in more detail in Chapter 5.)

The conclusions regarding money financing are not affected by the change in
the model because in that case Ḃ = 0 (no additional bond emissions) and dB =
0 (constant stock of bonds). Hence, the treatment of government debt does not
affect the conclusions.

(b) Under bond financing the money supply is constant (Ṁ = 0 and dM = 0).
Using (Q2.23) in (Q2.20) yields:

YD = Y +
(

B − T − Ḃ/R
)

= Y − G. (A2.43)



44 EXERCISE & SOLUTIONS MANUAL

By using (A2.43) and (Q2.22) in (Q2.19) the consumption function under bond
financing is obtained:

C = C(Y − G, K̄ + M/P). (A2.44)

Only the path of government consumption matters in the consumption func-
tion.

(c) Using (A2.44) and (Q2.25) we find that under bond financing the IS curve takes
the following format:

Y = C(Y − G, K̄ + M/P) + I(R) + G. (A2.45)

By differentiating the IS curve with respect to Y, R, and G we obtain:

dY = CYD (dY − dG) + IRdR + dG ⇒
dY = dG +

IR

1 − CYD
dR. (A2.46)

From the LM curve (equations (Q2.21)–(Q2.22)) we obtain:

lYdY + lRdR = 0 ⇒ dR = − lY
lR

dY. (A2.47)

Combining (A2.46)–(A2.47) yields the multiplier:

dY = dG − IR

1 − CYD

lY
lR

dY ⇒
dY

dG
=

1

1 + IR
1−C

YD

lY
lR

=
1 − CYD

1 − CYD + lY IR
lR

. (A2.48)

Since lY IR/lR is positive it follows that the multiplier lies between 0 and 1.

Under tax financing the government manipulates the lump-sum tax such that
dT = dG. In this case, Ḃ = Ṁ = 0 and dB = dM = 0 so that differenti-
ation of (Q2.19)–(Q2.20) also yields (A2.46). It follows that the multiplier under
tax financing is also equal to the expression in (A2.48). Furthermore, there is
no transitional dynamics in Y, C, I, and R in both cases. This explains why
the short-run and long-run multipliers are identical. (Under bond financing
there is dynamics in B but that has no effects on the IS-LM equilibrium because
bonds are not part of household wealth.)

(d) Under bond financing we have Ṁ = 0 so that the government budget identity
(Q2.23) can be written as follows:

(1/R)Ḃ = G + B − T0 − t[AD(G, M/P) + B − Ḃ/R], (A2.49)

where Y = AD(G, M/P) is the AD curve summarizing IS-LM equilibrium, and
ADG is the multiplier given in (A2.48) above. Equation (A2.49) can be rewritten
as follows:

Ḃ = RB + R

[
G − T0 − tAD(G, M/P)

1 − t

]
. (A2.50)

Equation (A2.50) is an unstable differential equation in B because the coeffi-
cient for B on the right-hand side is positive (R > 0). Unless the government
increases T0 (or decreases G), the government debt will explode according to
(A2.50). (In section 13.4 of the text we study the debt stabilization rules sug-
gested by Buiter.)
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Question 7: The Blinder-Solow model with capital accumulation

(a) Equation (Q2.26) is the consumption function depending positively on dispos-
able income (with a marginal propensity to consume between 0 and 1) and
household wealth. Equation (Q2.27) provides the definition of disposable in-
come. It includes interest income on both types of assets. Equation (Q2.28) is
a linear tax function. Equation (Q2.29) is the money market equilibrium con-
dition. Equation (Q2.30) is the definition of household wealth. It is the sum of
physical capital, money, and the value of domestic and foreign bond holdings.
Equation (Q2.31) is the interest parity condition, saying that identical assets
(like domestic and foreign bonds in this model are) earn the same rate of re-
turn. The economy is operating under a system of fixed exchange rates so we
do not have a term involving expected depreciation or appreciation of the ex-
change rate in (Q2.31). Equation (Q2.32) is the domestic government budget
identity also found in the standard Blinder-Solow model. Finally, equation
(Q2.33) is the expression for the current account, showing that the accumula-
tion of foreign bonds equals interest earnings on foreign bonds (first term on
the right-hand side) plus net exports (term in square brackets on the right-hand
side). Net exports equals domestic production (Y) minus domestic absorption
(C + I + G).

The endogenous variables in this model are: C, Y, YD, T, R, A, B, and F. The
exogenous variables are: K̄, M, T0, t, R∗, and G. The money supply is not
influenced by the accumulation of foreign bonds because these assets are held
by the household and do not form part of the domestic money base.

(b) By substituting (Q2.30)–(Q2.31) into (Q2.29) we find that the money market
equilibrium condition (i.e. the LM curve) reduces to:

M = l(Y, R∗, K̄ + M + (B + F)/R∗). (A2.51)

By differentiating (A2.51) with respect to M, Y, B, and F, we find:

dM = lYdY + lA [dM + (1/R∗)(dB + dF)] ⇔
dY =

(1 − lA)dM − (lA/R∗)(dB + dF)

lY
. (A2.52)

A higher money supply raises short-run equilibrium output, whereas higher
bond holdings (of either type) reduces it. By writing Y = AD(M, B, F), we find
the following partial derivatives from (A2.52): ADM = (1 − lA)/lY > 0 and
ADB = ADF = −(lA/R∗)/lY < 0. Note that we can now write:

dY = ADMdM + ADBdB + ADf d f . (A2.53)

Under money financing we have Ḃ = dB = 0 so that (Q2.32) can be rewritten,
by using (Q2.28), as:

Ṁ = G + B − T0 − t(Y + B + F). (A2.54)

By differentiating (A2.54) we obtain:

dṀ = dG − t [dY + dF]

= dG − t[ADMdM + (1 + ADF)dF], (A2.55)
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where we have used (A2.52) and (A2.53) (and noted that dB = 0 in this scen-
ario) in going from the first to the second line. For a given level of foreign
bonds, the adjustment in the money stock is stable because the coefficient in
front of dM on the right-hand side is negative (i.e. ∂Ṁ/∂M = −tADM < 0).
But F will not remain constant, so the stability proof must take into account
what happens to foreign bond holdings.

By substituting (Q2.26)–(Q2.28) and (Q2.30)–(Q2.31) into (Q2.33) we obtain the
following expression for the current account:

(1/R∗)Ḟ = F + Y

− C

(
(1 − t)(Y + B + F) − T0, K̄ + M +

B + F

R∗

)
− I(R∗) − G. (A2.56)

By differentiating (A2.56) (again setting dB = 0) we obtain:

1

R∗ dḞ = α(dY + dF) − CAdM − (CA/R∗)dF − dG

= α [ADMdM + (1 + ADF)dF] − CAdM − CA

R∗ dF − dG, (A2.57)

where α ≡ 1 − CYD (1 − t) and we have used (A2.53) in going from the first to
the second line.

Equations (A2.55) and (A2.57) can be written in a single matrix equation as:[
dṀ
dḞ

]
= ∆

[
dM
dF

]
+

[
1

−R∗
]

dG, (A2.58)

where the Jacobian matrix ∆ is defined as:

∆ =

[ −tADM −t(1 + ADF)
R∗ [αADM − CA] αR∗(1 + ADF) − CA

]
. (A2.59)

In order to determine stability of the dynamical system (A2.58) we must com-
pute the determinant and trace of ∆. The former is given by:

|∆| ≡ −tR∗
∣∣∣∣ ADM 1 + ADF

αADM − CA α(1 + ADF) − CA/R∗
∣∣∣∣

= −tR∗CA [−ADM/R∗ + 1 + ADF]

=
tCA [1 − lYR∗]

lY
, (A2.60)

where we have used the definitions of ADM and ADF (given below (A2.52))
in the final step. The necessary condition for the model to be stable is that both
characteristic roots of ∆, denoted by λ1 and λ2, are negative, i.e. that |∆| > 0
(recall that |∆| ≡ λ1λ2). Since t, CA, lY, and R∗ are all positive, the necessary
condition for stability is thus:

lYR∗
< 1. (A2.61)

Note that the fulfilment of (A2.61) is not sufficient for stability since (A2.61) is
also satisfied if both roots are positive (a situation of outright instability). All
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that (A2.61) ensures is that the (real parts of the) roots have the same sign.
We must check the trace of ∆ to find the necessary and sufficient condition for
stability. We find from (A2.59):

tr ∆ = −tADM + αR∗(1 + ADF) − CA. (A2.62)

Since t, ADM, and CA are all positive, we know that the first and the third term
on the right-hand side tend to make the trace negative. The second term on the
right-hand side is, however, ambiguous as the sign of 1 + ADF is ambiguous.
Recall that the trace equals the sum of the characteristic roots (tr ∆ ≡ λ1 + λ2).
Since the necessary stability condition ensures that the roots have the same
sign, the sufficient condition is that the sum of these roots must be negative,
i.e. tr ∆ < 0. To that effect we make the following assumption:

tr ∆ < 0 ⇔ CA + tADM > αR∗(1 + ADF). (A2.63)

Note that this trace condition is automatically satisfied if we make the assump-
tion that 1 + ADF < 0 which is the case if lA > lYR∗. A simple sufficient
condition for overall stability of the model under money financing is thus:

lYR∗
< lA. (A2.64)

Note that this condition automatically implies that (A2.61) holds because lA <

1.

If both (A2.61) and (A2.63) are satisfied the model is stable and we can solve
for the long-run effects of fiscal policy by setting dṀ = dḞ = 0 in (A2.58) and
solving for the long-run multipliers:[

dM
dG
dF
dG

]
= ∆−1

[−1
R∗

]
=

R∗

|∆|
[

CA/R∗ + (t − α)(1 + ADF)
−[CA + (t − α)ADM]

]
. (A2.65)

Interestingly, we are unable to establish the signs of dM/dG and dF/dG even
for the stable case. By substituting the definitions for α, ADF, and ADM into
(A2.65) we obtain:

dM

dG
=

lYCA − (lYR∗ − lA)(1 − t)(1 − CYD )

lY|∆| � 0, (A2.66)

dF

dG
=

−lYCA + (1 − lA)(1 − t)(1 − CYD )

(1/R∗)lY|∆| � 0, (A2.67)

If we assume that (A2.64) holds, then dM/dG > 0 but dF/dG is still ambigu-
ous. The long-run output multiplier is obtained by using (A2.66)–(A2.67) in
(A2.52) (and setting dB = 0):

dY

dG
=

1 − lA

lY

dM

dG
− lA

lYR∗
dF

dG

=
(1 − lA) [lYCA − (lYR∗ − lA)(1 − t)(1 − CYD )]

l2
Y|∆|

− lA[−lYCA + (1 − lA)(1 − t)(1 − CYD )]

l2
Y|∆|

=
lYCA − (1 − lA)(1 − t)(1 − CYD )lYR∗

l2
Y|∆|

� 0. (A2.68)
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It follows from (A2.68) that dY/dG is also ambiguous. This stands in stark
contrast to the closed-economy case, for which the long-run multiplier must
be positive (see equation (2.78) in the text). In this case, therefore, the Samuel-
sonian correspondence principle does not help in establishing the signs of the
long-run effects on the money supply, the stock of foreign bonds, and output
of a change in government consumption.

(c) Under bond financing we have Ṁ = dM = 0 so that (Q2.32) can be rewritten,
by using (Q2.28) and (Q2.31), as:

(1/R∗)Ḃ = G + B − T0 − t(Y + B + F). (A2.69)

By differentiating (A2.69) we obtain:

(1/R∗)dḂ = dG + dB − t(dY + dB + dF)

= dG + dB − t [(1 + ADB) dB + (1 + ADF) dF]

= dG + [1 − t (1 + ADB)] dB − t (1 + ADF) dF, (A2.70)

where we have used (A2.52) (and noted that dM = 0 in this scenario) in going
from the first to the second line. Note that for a given level of foreign bonds,
the adjustment in the stock of domestic bonds may or may not be stable:

(1/R∗)∂Ḃ

∂B
= 1 − t (1 + ADB) . (A2.71)

In the closed economy case, bond financing is stable if (and only if) the term
on the right-hand side is negative (see equation (2.82) in the text). In the open
economy case, we have to take into account the fact that the stock of foreign
bonds is variable.

By differentiating (A2.56) (setting dM = 0) we obtain:

(1/R∗)dḞ = α(dY + dF) − (1 − α)dB − (CA/R∗)(dB + dF) − dG

= α [(1 + ADF) dF + ADBdB] − (1 − α)dB

− (CA/R∗)(dB + dF) − dG, (A2.72)

where we have used (A2.52) in going from the first to the second line.

Equations (A2.70) and (A2.72) can be written in a single matrix equation as:[
dḂ
dḞ

]
= ∆

[
dB
dF

]
+

[
1

−R∗
]

dG, (A2.73)

where the Jacobian matrix ∆ is defined as:

∆ =

[
R∗[1 − t(1 + ADB)] −R∗t(1 + ADF)

−R∗[1 − α(1 + ADB)] − CA αR∗(1 + ADF) − CA

]
. (A2.74)

The determinant of ∆ is:

|∆| ≡ (R∗)2 [(α − t)(1 + ADB) − CA/R∗] , (A2.75)

where we have used the fact that ADB = ADF to simplify the expression. Since
α − t = (1 − t)(1 − CYD ) > 0 we find that a necessary condition for |∆| to be
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positive is that 1 + ADB is positive (just as in the closed-economy model–see
equation (2.82) in the text). The trace of ∆ is given by:

tr ∆ = R∗ [1 + (α − t)(1 + ADB) − CA/R∗] . (A2.76)

A necessary condition for stability is that the trace is negative. But that is only
possible if (α− t)(1 + ADB)−CA/R∗ is negative and less than −1. But then the
determinant is negative also (see (A2.75)). Hence, the model is unstable as one
root is negative and one is positive in that case. Since the model is unstable,
there is no point in computing the multipliers. (Here we cannot make use of
the saddle path property because both B and F are stocks, and stocks can’t
jump, no matter how hard they try.)

Question 8: Adaptive expectations in a monetarist model

(a) Equation (Q2.34) is Irving Fisher’s equation of exchange. In itself it is a simple
identity but by assuming that v is constant it becomes a behavioural equa-
tion relating the nominal money supply to nominal output. Equation (Q2.35)
is an expectations-augmented Phillips curve in which core (expected) inflation
drives up actual inflation even if output is at its full employment level. Equa-
tion (Q2.36) is the formulation of the adaptive expectations hypothesis (AEH)
in continuous time. Finally, equation (Q2.37) is the definition of the growth
rate in the nominal money supply. The endogenous variables are P, y, π, and
πe. The policy maker controls the money supply so M and µ are exogenous
variables as is y∗.

(b) The reduce the dimensionality of the model somewhat we can take the time
derivative of (Q2.34):

Ṁ

M
+

v̇

v
=

Ṗ

P
+

ẏ

y
⇒

µ = π +
ẏ

y
, (A2.77)

where we have used (Q2.37), imposed the assumed constancy of v (so that
v̇/v = 0), and used the definition of π to get to the final expression. By using
(A2.77) in (Q2.35) we find:

π = φ[y − y∗] + πe

µ − ẏ

y
= φ[y − y∗] + πe ⇒

ẏ

y
= µ − πe − φ[y − y∗], (A2.78)

which is equation (Q2.38) in the question. By substituting (Q2.35) into (Q2.36)
we obtain:

π̇e = ζφ[y − y∗], (A2.79)

which is equation (Q2.39) in the question.
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(c) To prove (local) stability of the model we linearize it around the initial steady
state. This steady state is such that output and expected inflation are both
constant over time, i.e. ẏ/y = π̇e = 0 so that it follows from (A2.78)–(A2.79)
that y = y∗ and πe = µ (it thus also follows from (Q2.36) that actual inflation
equals expected inflation, i.e. π = πe in the steady state). To linearise (A2.78)
we first rewrite it as follows:

ẏ = [µ − πe − φ[y − y∗]] y. (A2.80)

Equation (A2.80) expresses ẏ as a non-linear function of the endogenous vari-
ables (y and πe) and the exogenous variables (µ and y∗). We denote this func-
tion by ẏ = Ψ(y, πe). By using a first-order Taylor approximation (see, e.g.
(Chiang, 1984, pp. 256-258)) of this function around an initial steady state
(where y = y∗ and πe = µ0) we obtain:

ẏ ≈ Ψ(y∗, µ0) +
∂Ψ

∂y
[y − y∗] +

∂Ψ

∂πe
[πe − µ0], (A2.81)

where the partial derivatives ∂Ψ/∂y and ∂Ψ/∂πe are all evaluated at the lin-
earization point (y = y∗, πe = µ0). We find that Ψ(y∗, µ0) = 0, ∂Ψ/∂y = −φy∗
and ∂Ψ/∂πe = −y∗ so that (A2.81) reduces to:

ẏ = −φy∗[y − y∗] − y∗[πe − µ0], (A2.82)

where, from here one, we ignore the fact that (A2.82) is only an approximation
to (A2.80). Since (A2.79) is already linear (in y) it does not need to be linearised.
By combining (A2.82) and (A2.79) in a simple matrix equation we obtain:[

ẏ
π̇e

]
=

[−φy∗ −y∗
ζφ 0

] [
y − y∗

πe − µ0

]
, (A2.83)

where we denote the matrix on the right-hand side of (A2.83) by ∆. It has the
following determinant and trace:

|∆| ≡ λ1λ2 = ζφy∗ > 0, (A2.84)

tr ∆ ≡ λ1 + λ2 = −φy∗ < 0, (A2.85)

where λ1 and λ2 are the characteristic roots of the matrix ∆. It follows from
(A2.84)–(A2.85) that both roots are negative (if they are complex, they have
negative real parts–see below). Hence, the model is stable.

The characteristic roots of ∆ are the zeros of the characteristic equation of ∆,
A(λ) ≡ |∆ − λI| = 0. After some manipulation we get:

A(λ) =

∣∣∣∣−φy∗ − λ −y∗
ζφ −λ

∣∣∣∣ = λ (λ + φy∗) + ζφy∗

= λ2 − tr ∆λ + |∆| = 0. (A2.86)

Equation (A2.86) is a quadratic equation in λ which has two roots:

λ1,2 =
−φy∗ ±√

D

2
, (A2.87)

where D ≡ (φy∗)2 − 4ζφy∗. There are two possible cases that must be con-
sidered, depending on the sign of D.
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Figure A2.6: Stability in the monetarist model

(a) Case 1: If D > 0 then both roots are real and distinct. If D = 0 then the
roots are the same. In both cases the equilibrium is a stable node.

(b) Case 2: If D < 0 then the roots are imaginary, i.e. 2λ1 = −φy∗ + i
√−D

and 2λ2 = −φy∗ − i
√−D where i =

√−1 is the imaginary unit. The
equilibrium is in that case a stable focus.

(d) We present the phase diagram for the linearised model in Figure A2.6. The
(linearised) expression for ẏ is given in (A2.82) above. The ẏ = 0 line is given
by:

πe = µ0 − φ[y − y∗]. (A2.88)

This line is downward sloping in (πe, y) space. For points above (below) the
ẏ = 0 line, πe is too high (too low) compared to µ0, and output is falling (rising)
over time, i.e. ẏ < 0 (ẏ > 0). The output dynamics is illustrated with horizontal
arrows in Figure A2.6.

We derive from (A2.79) that the π̇e = 0 line is a vertical line for which y = y∗.
For points to the right (left) of this line, output exceeds (falls short of) the full
employment level so that expected inflation rises (falls) over time, i.e. π̇e

> 0
(π̇e

< 0). The dynamics of the expected inflation rate has been illustrated with
vertical arrows in Figure A2.6.

The configuration of arrows in Figure A2.6 confirms that the model is stable.
We sketch the adjustment path for the case where the equilibrium is a stable
focus. The economy is initially in point A, where π̇e = 0 (because y = y∗)
and ẏ > 0 (because πe

< µ0). The economy moves in north-easterly direction
towards point B, where ẏ = 0 and π̇e = 0. Thereafter the economy moves from
B to C to D to E, etcetera until it ultimately ends up in E0.

In Figure A2.7 we show the dynamic effects of a monetary disinflation (a cut
in the money growth rate from µ0 to µ1). It is clear from (A2.88) that this shock
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Figure A2.7: Disinflation in the monetarist model

shifts the ẏ = 0 line downwards, say from (ẏ = 0)0 to (ẏ = 0)1. The steady-
state equilibrium shifts accordingly from E0 to E1 and ultimately the (expected
and actual) inflation rate falls. In Figure A2.7 we sketch the adjustment tra-
jectory, E0 AE1, under the assumption that the equilibrium is a stable node (the
case of cyclical adjustment is easily visualized by looking at Figure A2.6). The
disinflation policy brings down inflation in the long run at the expense of a
short-run recession.

Question 9: More on adaptive expectations

(a) Equation (Q2.40) is the AD curve in logarithmic format. Real balances and
fiscal policy both shift the AD curve to the right, so it is obvious that θ and ζ
are both positive. The expected inflation term enters equation (Q2.41) because
the IS curve depends (via investment demand) on the real interest rate, R − πe,
whereas the LM curve depends on the nominal interest rate, R. Ceteris paribus
the nominal interest rate, an increase in expected inflation reduces the real in-
terest rate, boosts investment, shifts the IS curve to the right, and stimulates
output. Hence, according to this effect we have ψ > 0. Equation (Q2.41) is
an expectations-augmented Phillips curve in which core (expected) inflation
drives up actual inflation even if output is at its full employment level. Finally,
equation (Q2.42) is the formulation of the adaptive expectations hypothesis
(AEH) in continuous time.

(b) In the short run, the model is rather Keynesian because both p and πe are pre-
determined. Essentially the model reacts like the standard IS-LM model in the
short run. In the long run, p and πe adjust such that π = πe = µ and y = y∗.
Since y∗ is exogenous, demand management cannot affect it.

(c) To derive the system of differential equations we first substitute (Q2.41) into
(Q2.42):

π̇e = λφ[y − y∗]. (A2.89)
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Next we differentiate (Q2.40) with respect to time (noting that θ, ψ, and ζ are
all constant over time):

ẏ = θ (ṁ − ṗ) + ψπ̇e + ζ ġ

= θ(µ − π) + ψπ̇e + ζ ġ, (A2.90)

where we have used the definitions of inflation (π ≡ ṗ) and the money growth
rate (µ ≡ ṁ) in going from the first to the second line. By substituting (Q2.41)
and (A2.89) into (A2.90) and simplifying we obtain:

ẏ = θ[µ − φ[y − y∗] − πe] + ψλφ[y − y∗] + ζ ġ

= −φ(θ − ψλ)[y − y∗] − θ[πe − µ] + ζ ġ. (A2.91)

By using (A2.89) and (A2.91) we can derive the following matrix expression:[
ẏ

π̇e

]
=

[−φ(θ − ψλ) −θ
λφ 0

] [
y − y∗
πe − µ

]
+

[
0

ζ ġ

]
, (A2.92)

where we denote the matrix on the right-hand side as ∆. It has the following
determinant and trace:

|∆| ≡ λ1λ2 = λφθ > 0, (A2.93)

tr ∆ ≡ λ1 + λ2 = −φ(θ − ψλ) � 0, (A2.94)

where λ1 and λ2 are the characteristic roots of the matrix ∆. It follows from
(A2.93) that the two roots have the same sign. The model is only stable if these
roots are negative, but that can only be the case if the trace of ∆ is negative.
Hence, the necessary and sufficient stability condition is that θ > ψλ so that
tr ∆ < 0.

Note that by setting θ = 1 and ψ = ζ = 0 the model collapses to the monet-
arist model of question 8. As we found in question 8, and as is confirmed by
(A2.93)–(A2.94), the monetarist model is automatically stable. Stability is not
guaranteed in the more general model of this question because the expected
inflation term in the AD curve (Q2.40) represents a destabilizing influence. Re-
call that the position of the LM curve depends on real money balances (which
are eroded by actual inflation) whereas the position of the IS curve depends on
expected inflation which boosts output. So, if following a shock the expected
inflation effect in IS (and thus AD) is strong (ψ is large) and if expectations are
adjusted quickly (λ high) then the stabilizing effect of actual inflation (via the
LM curve) may be dominated by the destabilizing effect of expected inflation
(operating via the IS curve). See Scarth (1988, p. 60) for further insights on this
issue.

(d) To study the effects of an increase in the money growth rate we first derive the
effects on πe and y in a phase diagram. By using the first row in (A2.92) (or,
equivalently, equation (A2.89)) we find that the π̇e = 0 locus is given by:

λφ[y − y∗] = 0 ⇔ y = y∗. (A2.95)

In Figure A2.8 the π̇e = 0 locus is vertical. For points to the right (left) of
this curve, actual output exceeds (falls short of) its full employment level and
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Figure A2.8: Stability in the AD-AS-AEH model

expected inflation rises (falls). This is indicated by the vertical arrows in Figure
A2.8. The second row of (A2.92) (or, equivalently, equation (A2.91)) implies the
following expression for the ẏ = 0 line:

πe = µ − φ
θ − ψλ

θ
[y − y∗], (A2.96)

where we have used the fact that the fiscal index is kept constant (ġ = 0) in this
experiment. In view of the stability condition, θ > ψλ, we find that the ẏ = 0
line slopes downwards and passes through the point πe = µ for y = y∗. Note
that (A2.91) implies ∂ẏ/∂y = −φ(θ − ψλ) < 0 (given the stability condition).
Hence, for points to the right (left) of the ẏ = 0 line, output falls (increases) over
time. This has been illustrated with horizontal arrows in Figure A2.8. Just as in
the monetarist model of question 8, the steady-state equilibrium E0 is either a
stable node (if the characteristic roots of ∆ are real) or a stable focus (if these roots
are complex).

An increase in the money growth rate leaves the π̇e = 0 line unaffected but
shifts the ẏ = 0 line up. The steady-state equilibrium shifts from E0 to E1 in
Figure A2.9. At impact, nothing happens to πe because that is a predetermined
variable. Similarly, it follows from (Q2.40) that nothing happens to y either: p
and πe are predetermined as are the policy variables m and g. There is no jump
in the level of m, but only its rate of change is increased. In Figure A2.9 we
show the adjustment path under the assumption that the characteristic roots of
∆ are real. This is justified because the assumption made in the question in fact
ensures that the roots are real and distinct. Indeed, these characteristic roots
are:

ζ1,2 =
−φ(θ − ψλ)±√

D

2
, D ≡ φ[φ(ψλ − θ)2 − 4λθ] > 0, (A2.97)

where the sign of D is implied by the assumption made in the text.
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Figure A2.9: Money growth in the AD-AS-AEH model

In Figure A2.9, the transition path is given by the dashed line E0AE1. Expected
inflation rises monotonically, but output rises during the early stages of trans-
ition and thereafter falls back towards its full employment level. In Figure
A2.10 we show the time paths of the different variables. (These are so-called
impulse-response functions.) At the bottom of the figure we show the impulse,
consisting of an increase in the rate of money growth. This means that the time
path for m (also drawn in Figure A2.10) is steeper after the shock. The path
for output can be taken directly from the phase diagram in Figure A2.9. Points
A in Figures A2.9 and A2.10 correspond. Since actual output is higher than
full employment output during transition, it follows from (A2.89) (and from
the phase diagram) that π̇e is positive during transition. We can also derive
from (A2.89) that π̈e = 0 in point A (where ẏ = 0), i.e. the path for πe attains
an inflection point there. We conclude that the path for πe takes the S-shaped
form as drawn in Figure A2.10. It follows from (Q2.41) that the path for π − πe

is proportional to the path for y, i.e. inflation in continually underestimated
during transition (more on this in Chapter 3).

The path for the price level can best be described in relation to that of the
money supply, i.e. Figure A2.10 reports the path for real money balances,
m − p. At impact, both m and p are predetermined so nothing happens to
m − p either. In the long run, we find from (Q2.40) that:

y∗ = θ(m − p) + ψµ + ζg ⇒ d(m − p)

dµ
= −ψ

θ
< 0,

where we have used the fact that y = y∗, πe = π = µ in the steady state and
that g is constant by assumption. Real money balances fall in the long run.
The higher inflation rate shifts out the IS curve and to restore output to its full
employment level, the LM curve must shift to the left, i.e. real money balances
must fall. During the early phase of transition, money growth outstrips actual
inflation and real money balances increase over time. From (A2.90) we derive
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Figure A2.11: Fiscal policy in the AD-AS-AEH model

that in point A (where ẏ = 0), π − µ = (ψ/θ)π̇e
> 0, i.e. real money balances

have already started to decline over time in that point.

(e) We assume that the change in g is stepwise, i.e. dg > 0 but ġ = 0 both before
and after the shock. Looking at (A2.92) one would be tempted to conclude that
nothing happens at all. But something does happen, namely an impact change
in output. Indeed, we conclude from (Q2.40) that at impact (with m, p, and
πe all predetermined) the change in output is equal to dy = ζdg. In terms of
Figure A2.11, nothing happens to the π̇e = 0 and ẏ = 0 lines, but the economy
jumps from the initial steady state, E0, to point A, directly to the right of E0.
The adjustment path is thereafter given by ABCE0. (It is non-cyclical because
of the assumption stated in part (d) of the question.) There is no long-run effect
on output (as y = y∗ in the steady state) and no effect on actual and expected
inflation (as πe = π = µ in the steady state). The only thing that changes in
the economy is the steady-state level of real money balances. Indeed, by using
the steady-state version of (Q2.40) we find that:

y∗ = θ(m − p) + ψµ + ζg ⇒
d(m − p)

dg
= − ζ

θ
< 0. (A2.98)

We draw the impulse-response functions for this fiscal policy shock in Figure
A2.12. At the bottom of the diagram we show the shock, which is a stepwise
increase in g. Expected inflation gradually rises at first, reaches a maximum
at point B and thereafter gradually declines towards its initial level. Output
increases at impact but declines thereafter. At point B it reaches its full em-
ployment level but it continues to decline because inflationary expectations
are too high (relative to money growth). Eventually output reaches its lowest
level at point C, after which it gradually rises towards y∗ again. We conclude
from equation (Q2.41) that π − πe is proportional to the path of output. The
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Figure A2.12: Impulse-response functions

nominal money growth rate is unaffected in this experiment so m continues to
follow a linear trend line.

In order to determine the path of real balances, it is useful to derive the dy-
namical system characterizing the model directly in terms of (z, πe) dynamics,
where z ≡ m − p is real money balances. We derive the dynamical equation
for z as follows:

ż ≡ ṁ − ṗ = µ − π

= µ − πe − φ[θz + ψπe + ζg − y∗]
= −(1 + φψ)πe − φθz + µ + φy∗ − φζg, (A2.99)

where we have used (Q2.40)–(Q2.41) to get from the first to the second line. By
substituting (Q2.40)–(Q2.41) into (Q2.42) we obtain the dynamical equation for



CHAPTER 2: DYNAMICS IN AGGREGATE DEMAND AND SUPPLY 59

z

!

E0
µ

z0

B
 e

(B e=0)0

. (z=0)0

.

Figure A2.13: Real balances in the AD-AS-AEH model

πe:

π̇e = λφ[θz + ψπe + ζg − y∗]. (A2.100)

Equations (A2.99)–(A2.100) can be combined into one matrix equation as:[
π̇e

ż

]
=

[
λφψ λφθ

−(1 + φψ) −φθ

] [
πe

z

]
+

[
λφ(ζg − y∗)

µ − φ(ζg − y∗)

]
, (A2.101)

where we denote the Jacobian matrix on the right-hand side by ∆∗. It is straight-
forward to derive that |∆∗| = λφθ > 0 and tr ∆∗ = −φ(θ − λψ) < 0 (by the
stability condition). In Figure A2.13 we illustrate the phase diagram for the
rewritten model.

We conclude from (A2.99):(
∂πe

∂z

)
ż=0

= − φθ

1 + φψ
< 0, (A2.102)(

∂z

∂g

)
ż=0

= − ζ

θ
< 0, (A2.103)

∂ż

∂z
= −φθ < 0. (A2.104)

The ż = 0 line is downward sloping and shifts to the left if g is increased. For
points to the right (left) of the ż = 0 line, money balances fall (rise), i.e. ż < 0
(ż > 0). This has been illustrated with horizontal arrows in Figure A2.13.
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We conclude from (A2.100):(
∂πe

∂z

)
π̇e=0

= − θ

ψ
< 0, (A2.105)(

∂z

∂g

)
π̇e=0

= − ζ

θ
< 0, (A2.106)

∂π̇e

∂πe
= λφψ > 0. (A2.107)

The π̇e = 0 line is downward sloping (and steeper than the ż = 0 line) and
shifts to the left (by the same amount as the ż = 0 line) if g is increased. For
points above (below) the π̇e = 0 line, expected inflation rises (falls), i.e. π̇e

> 0
(π̇e

< 0). This has been illustrated with vertical arrows in Figure A2.13.

In Figure A2.14 we show the adjustment paths for πe and z following the ex-
pansionary fiscal policy. Both the ż = 0 and π̇e = 0 lines shift to the left (by the
same horizontal amount) and the steady-state equilibrium shifts from E0 to E1.
The adjustment is non-cyclical and proceeds along E0BDE1. It is not difficult
to show that point D must lie to the left of point C in Figure A2.12. Indeed, in
point C we have ẏ = 0 and π̇e

< 0 (and, of course, ġ = 0) so that it follows
from (A2.90) that θ(π − µ) = ψπ̇e

< 0, i.e. µ > π. Hence, in point C real
money balances are rising. But this means that point C is to the right of point
D in Figure A2.12.

Question 10: Optimization and computation

(a) Follow the steps in the book on pages 45–46 with FK = A and P = PI = 1 and
we obtain the first-order condition for investment:

It+1 − 1 + R

1 − δ
It +

A − (R + δ)

2b(1 − δ)
= 0 (A2.108)
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Denote steady-state variables with a hat (e.g. K̂). Setting It+1 = It in equation
(A2.108) we get:

Î =
1

2b

[
A

R + δ
− 1

]
(A2.109)

Capital follows immediately from equation (Q2.43) with Kt+1 = Kt, so K̂ =
Î/δ. Production follows from capital Ŷ = AK̂.

(b) Î = 0.4, K̂ = 5.714, Y = 2.857.

(c) There is just one level of investment for which equation (A2.108) is stable. This
implies that investment remains constant at It = 0.4. Capital was 5.714, but
20% is demolished in the earthquake, so K0 = (1 − 0.2) × 5.714 = 4.571. From
this we can calculate the path of capital: Kt = (1 − δ)tK0 +

[
1 − (1 − δ)t

]
I/δ.

Question 11: The multiplier-accelerator model

(a) Equation (Q2.45) is the goods market clearing condition, (Q2.46) is the con-
sumption function (c is the marginal propensity to consume), and (Q2.47) in
an investment accelerator. By substituting (Q2.46) into (Q2.47) we get the form
of this expression that is commonly reported in the literature:

It = vc[Yt−1 − Yt−2]. (A2.110)

(b) (See, e.g., Gandolfo (1971, pp. 55–56) for a more thorough treatment of this ma-
terial.) By substituting (A2.110) and (Q2.46) into (Q2.45) we obtain a difference
equation in output:

Yt = cYt−1 + vc[Yt−1 − Yt−2] + Ḡ ⇔
Yt − c(1 + v)Yt−1 + vcYt−2 = Ḡ. (A2.111)

We first solve the homogeneous part of the equation:

Yt − c(1 + v)Yt−1 + vcYt−2 = 0. (A2.112)

We try the solution Yt = Aλt in (A2.112):

Aλt − c(1 + v)Aλt−1 + vcAλt−2 = 0

Aλt−2
[
λ2 − c(1 + v)λ + vc

]
= 0 ⇒ (since Aλt−2 �= 0)

λ2 − c(1 + v)λ + vc = 0, (A2.113)

where (A2.113) is the characteristic equation of the difference equation (A2.112).
The roots of this quadratic equation are:

λ1,2 =
c(1 + v) ±√

D

2
, with D ≡ c2(1 + v)2 − 4vc. (A2.114)

There are two things we need to know about these roots, namely (a) whether
they are real or complex, and (b) whether they are smaller or greater than
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unity in absolute value. The first aspect regulates the type of adjustment (non-
cyclical or cyclical) whereas the second aspect determines stability. We study a
number of cases in turn.

Case 1: If D > 0 then both roots are real and distinct and both solutions solve
(A2.112). The general solution to (A2.112) is thus:

Yt = A1λt
1 + A2λt

2, (A2.115)

where A1 and A2 are arbitrary constants. The model is stable if both roots are
less than unity in absolute value, i.e. if |λ1| < 1 and |λ2| < 1.

Case 2: If D = 0 the roots are real and equal to each other, i.e. λ1 = λ2 =
c(1 + v)/2. In that case, Aλt

1 and Atλt
1 are both solutions to (A2.112), so that

the general solution to (A2.112) can be written as:

Yt = A1λt
1 + A2tλt

1, (A2.116)

where A1 and A2 are again arbitrary constants. The model is stable if the root
is less than unity in absolute value (i.e. |λ1| < 1).

Case 3: If D < 0 then the roots are complex (conjugate) numbers of the form
λ1 = α + βi and λ2 = α− βi, where i =

√−1, α ≡ c(1 + v)/2, and β ≡ √−D/2
. The modulus (or absolute value) of λ1 and λ2 is defined as:

|λ1| = |λ2| =
√

α2 + β2

=

√
c2(1 + v)2

4
+

(
√−D)2

4

=

√
c2(1 + v)2 + 4vc − c2(1 + v)2

4
=

√
vc. (A2.117)

Adjustment is stable (unstable) if and only if |λ1| = |λ2| < 1 (|λ1| = |λ2| > 1),
i.e. if vc < 1 (vc > 1).

In Figure A2.15 we plot v on the horizontal and c on the vertical axis. Obviously
we only need to consider values of c between 0 and 1. To determine for which
(c, v) combinations the roots are real or complex we compute the D = 0 line.
By using (A2.114) we obtain:

D = c(1 + v)2

[
c − 4v

(1 + v)2

]
. (A2.118)

Since both c and v are non-negative it follows from (A2.118) that the D = 0 line
is described by:

c =
4v

(1 + v)2
. (A2.119)

The properties of the D = 0 line are easily determined:

c(0) = 0,
dc

dv
=

4(1 − v)

(1 + v)3
. (A2.120)
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Figure A2.15: Regions of (in)stability

The D = 0 line goes through the origin, rises for 0 < v < 1, attains a maximum
at point A (where v = c = 1), and slopes downward for v > 1. It follows
furthermore from (A2.118) that for points above (below) the D = 0 line, D is
positive (negative). These sign configurations have been illustrated in Figure
A2.15.

Below the D = 0 line (for which the roots are complex), we have stability if
vc < 1 and instability if vc > 1 (see text below (A2.117)). In Figure A2.15,
we draw the line c = 1/v from point A. This line slopes downwards, and for
points above (below) it, the adjustment is unstable (stable).

There are four distinct regions in Figure A2.15. To establish the boundaries of
the different regions it is useful to describe the two branches of the D = 0 line
as a function of s ≡ 1 − c. By using (A2.119) we find:

s [≡ 1 − c] =
(1 + v)2 − 4v

(1 + v)2
=

1 − 2v + v2

(1 + v)2

=

(
1 − v

1 + v

)2

.

Taking the square roots we find two solutions:

1 − v

1 + v
=

√
s ⇔ v1 =

1 −√
s

1 +
√

s
, (A2.121)

1 − v

1 + v
= −√

s ⇔ v2 =
1 +

√
s

1 −√
s

, (A2.122)

from which it obvious that v1 < 1 < v2. The point for which c = 1/v yields a
third critical value for v, namely v3 = 1/(1− s). Since 1− s = (1−√

s)(1 +
√

s)
it follows that 1 < v3 < v2.

In region I, v is relatively small, D is positive, and the roots are real and distinct.
Since v < 1 it follows that c(1 + v)/2 < c < 1 and cv < 1. We know that



64 EXERCISE & SOLUTIONS MANUAL

λ1λ2 = vc and λ1 + λ2 = c(1 + v). Hence:

(1 − λ1)(1 − λ2) = 1 − (λ1 + λ2) + λ1λ2

= 1 − c(1 + v) + vc = 1 − c > 0.

This establishes that both roots are between 0 and 1 so that adjustment in re-
gion I is stable and monotonic. In region II, stability is satisfied (cv < 1) but the
roots are complex. The adjustment displays damped oscillation. In region III,
stability is not satisfied (as cv > 1) and the roots are complex, so the adjustment
displays explosive oscillations. Finally, in region IV, the stability is not satisfied
(as cv > 1) but the roots are real, so the adjustment displays monotonic explo-
sion.



Chapter 3

Rational expectations and
economic policy

Question 1: Short questions

(a) Assume that you have a fair coin that you are going to toss 100 times. When
heads come up you gain 1 euro and when tails come up you lose one euro.
What is your rational expectation regarding your total gains after 100 rounds
of tossing? How does your answer change if the probability of heads is 0.45?
Explain.

(b) “The hypothesis of rational expectations assumes that everybody is a brilliant
economist. Since brilliant economists are rather scarce, the assumption of ra-
tional expectations is absurd.” Explain and evaluate this proposition.

(c) “If private agents form rational expectations, then monetary stabilization po-
licy is both impossible and undesirable.” Explain and evaluate this proposition.

(d) Consider the rational expectations model of Stanley Fischer. Explain intuit-
ively why the so-called policy ineffectiveness proposition (PIP) still holds in
this model provided wage contracts are set for only one period in advance.

Question 2: Stabilization of demand shocks

Assume that the logarithm of aggregate output in period t (yt) can be written as:

yt = −δ[wt − pt], δ > 0, (Q3.1)

where wt and pt are, respectively, the logarithm of the nominal wage rate and the
price level in period t. The logarithm of labour demand is:

nD
t = −α[wt − pt], α > 0, (Q3.2)

and the logarithm of labour supply is given by:

nS
t = β[wt − Et−1 pt], β > 0, (Q3.3)

where Et−1 is the conditional expectation based on information dated period t − 1.
Assume that the labour market is always in equilibrium.
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(a) Derive the Lucas supply curve for this model.

(b) Assume that the aggregate demand curve for this economy can be written as
yt = mt − pt + ut, where mt is the nominal money supply and ut is a normally
distributed random shock term with mean zero and constant variance σ2 (i.e.
ut ∼ N(0, σ2)). The money supply rule is given by mt = mt−1 + µ, where µ is
a constant. Derive the rational expectations solutions for output and the price
level. Show that the money supply does not affect real output.

(c) Compute the asymptotic variance of real output.

Question 3: Overlapping wage contracts and the REH

Consider an economy with two-period wage contracts. Labour demand depends on
the actual price level, labour supply depends on the expected price level as usual.
The labour market is described by the following labour demand and labour supply
equation:

ND
t = ΓD ·

[
Wt

Pt

]−εD

and NS
t = ΓS ·

[
Wt

Pe
t

]εS

With ND and NS the labour supply and labour demand (both in levels). ΓD, ΓS,
εD and εS positive parameters. Wt is the nominal wage in period t, Pt is the actual
price level, Pe

t is the expected price level to hold in period t at the time of the wage
negotiations.

(a) Rewrite the labour demand and labour supply curves in logarithmic variables.
What is the interpretation of εD and εS?

(b) Derive the logarithm of the nominal wage to hold in period t, agreed upon in,
respectively, period t − 2 and t − 1 as a function of the expected price levels
and the model parameters. Denote the log of the nominal wage rate in period
t that results from the negotiations in period t − 2 by wt(t − 2) and in period
t − 1 by wt(t − 1).

Suppose that the aggregate demand and aggregate supply equations are (in log
levels):

yD
t = mt − pt and yS

t = 1
2 [α + pt −wt(t− 1)+ ut] +

1
2 [α + pt −wt(t− 2)+ ut]

with ut an autocorrelated shock, ut = ρut−1 + εt, εt ∼ N(0, σ2) and 0 ≤ ρ < 1.

(c) What is a typical example of a supply shock ut? And what is an example of an
autocorrelated shock?

(d) Derive the aggregate supply curve and the equilibrium price as a function of
the expected price levels at the time of the wage negotiations.

(e) Derive Et−2 pt, Et−1 pt, pt, and yt as functions of the expected money supply
and previous shocks.

Suppose that the monetary authorities set the money supply according to the follow-
ing rule: mt = µ1ut−1 + µ2ut−2.
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(f) What are the expectations in period t − 1 and t − 2 for the money supply in
period t? What are the forecast errors?

(g) Derive aggregate production as a function of the exogenous shocks, using the
results obtained under (f) and assuming that REH holds. What is the optimal
money supply rule, provided that the authorities want to minimize fluctu-
ations in the economy?

(h) What happens if there is no persistence in the shocks, i.e. ρ = 0? Does stabiliz-
ation policy still work?

Question 4: A variation on the Muth model

Assume that the market for a particular commodity is described by the following
model:

QD
t = a0 − a1Pt + Vt, a1 > 0, (Q3.4)

QS
t = b0 + b1Pe

t + Ut, b1 > 0, (Q3.5)

QD
t = QS

t [≡ Qt] , (Q3.6)

where QD
t is demand, Pt is the actual (market clearing) price, Vt is a stochastic shock

term affecting demand, QS
t is supply, Pe

t is the expected price (i.e. the price that sup-
pliers expect to hold in period t), Ut is a stochastic term affecting supply, and Qt is
the actual (market clearing) quantity traded in the market. It is assumed that the two
stochastic shock terms, Ut and Vt, are independent and normally distributed white
noise terms (there is no correlation between these terms and both terms display no
autocorrelation): Ut ∼ N(0, σ2

U) and Vt ∼ N(0, σ2
V). Assume that expectations are

formed according to the adaptive expectations hypothesis (AEH):

Pe
t = Pe

t−1 + λ[Pt−1 − Pe
t−1], λ > 0, (Q3.7)

where λ regulates the speed at which expectations adjust.

(a) Interpret the equations of the model.

(b) Derive the stability condition for the model. Explain both formally and intuit-
ively what you mean by stability in this model.

Next we replace the AEH assumption by the assumption of rational expectations
(the REH). Instead of (Q3.7) we use:

Pe
t = Et−1Pt, (Q3.8)

where the expectations operator, Et−1, denotes that agents form expectations using
information dated period t − 1 and earlier. The information set of the agents thus
includes Pt−1, Pt−2, etc., Qt−1, Qt−2, etc., as well as knowledge about the structure
and parameters of the model.

(c) Derive expressions for equilibrium output and the price level for this case. Is
the model stable? Explain.
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Question 5: Expectational difference equations

Suppose that the stochastic process for Yt is given by:

Yt = α0 + α1EtYt+1 + Ut, 0 < α1 < 1, (Q3.9)

where α0 and α1 are constants, Et is the conditional expectation (based on the period-
t information set), and Ut is a stochastic shock term. We assume that this shock term
features first-order autocorrelation:

Ut = θUt−1 + Vt, 0 < θ < 1, (Q3.10)

where θ is a constant and Vt is a white noise error term (with E(Vt) = 0 and E(V2
t ) =

σ2).

(a) Can you think of an economic example for which an expression like (Q3.9)
arises naturally?

(b) Compute the rational expectations solution for Yt. Hint: use the method of
undetermined coefficients by trying a candidate solution of the form Yt =
π0 + π1Ut and computing those values for π0 and π1 for which the candid-
ate solution is the correct solution.

(c) Compute the asymptotic variance of Yt. Show that it depends positively on the
autocorrelation parameter θ. Hint: first compute Yt − θYt−1 and then write it
as a difference equation.

Question 6: The Cagan model

[Based on (Cagan, 1956)] Phillip Cagan (one of Milton Friedman’s friends) was very
interested in the phenomenon of hyperinflation. He suggested that hyperinflation
could be studied by looking at the demand for money equation. Assume that money
demand, expressed in loglinear format, is given by:

mt − pt = γ − α [r + Et(pt+1 − pt)] + ut, α > 0, (Q3.11)

where mt is the money supply, pt is the price level, ut is a stochastic (white noise)
error term, α and γ are constants, and r is the real interest rate (assumed to be con-
stant). All variables are expressed in terms of logarithms. Assume that the money
supply process is described by:

mt = µ0 + µ1mt−1 + et, 0 < µ1 < 1, (Q3.12)

where et is a (white noise) error term and µ0 and µ1 are parameters.

(a) Explain why we can interpret equation (Q3.11) as a money demand equation.

(b) Compute the rational expectations solution for the price level, pt. Show that it
can be written as a linear function of a constant, mt and ut.
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Question 7: Fiscal policy under rational expectations

Consider the following loglinear model of a closed economy featuring rational ex-
pectations:

yt = a0 − a1 [Rt − Et−1(pt+1 − pt)] + a2gt + v1t, (Q3.13)

mt − pt = c0 + c1yt − c2Rt + v2t, (Q3.14)

yt = α0 + α1(pt − Et−1 pt) + α2yt−1 + ut, (Q3.15)

gt = γ0 + γ1gt−1 + γ2yt−1 + et, (Q3.16)

mt = µ0 + mt−1, (Q3.17)

where yt is output, Rt is the nominal interest rate, pt is the price level, gt is an index
for fiscal policy, and mt is the money supply. Furthermore, v1t, v2t, ut, and et are
stochastic (white noise) shock terms affecting the various equations of the model.
These terms are independent from each other, feature no autocorrelation, and are
normally distributed with mean zero and constant variance, i.e. v1t ∼ N

(
0, σ2

v1

)
,

v2t ∼ N
(
0, σ2

v2

)
, ut ∼ N

(
0, σ2

u

)
, and et ∼ N

(
0, σ2

e

)
. All variables, except the nominal

interest rate Rt, are measured in logarithms. The parameters of the model satisfy:
a1 > 0, a2 > 0, c1 > 0, c2 > 0, α1 > 0, 0 < α2 < 1, 0 < γ1 < 1, and µ0 > 0.

(a) Interpret the equations of the model.

(b) Derive the expression for the AD curve for this model. Denote the coefficients
for the AD curve by β0, β1, etcetera, and define the (composite) shock term
entering this equation by vt. State the stochastic properties of vt.

(c) Find the rational expectations solution for output.

(d) Is fiscal policy ineffective in this model? What does your conclusion imply
about the validity of the policy ineffectiveness proposition (PIP)?

(e) � Derive the rational expectations solution for the equilibrium price, pt. Show
that the price level moves one-for-one with the money stock.

Question 8: The labour market

Assume that the labour market is described by the following loglinear model:

nD
t = α0 − α1(wt − pt) + α2nt−1 + u1t, α1 > 0, 0 < α2 < 1, (Q3.18)

nS
t = β0 + β1(wt − Et−1 pt) + u2t, β1 > 0, (Q3.19)

nD
t = nS

t [≡ nt] , (Q3.20)

where nD
t is the demand for labour, wt is the nominal wage rate, pt is the price level,

nS
t is the supply of labour, and nt is equilibrium employment. The shock terms in

labour demand and supply are independent from each other, feature no autocor-
relation, and are normally distributed with mean zero and constant variance, i.e.
u1t ∼ N

(
0, σ2

u1

)
and u2t ∼ N

(
0, σ2

u2

)
. All variables are measured in logarithms.

Expectations are formed according to the rational expectations hypothesis and Et−1

represents the objective expectation conditional upon the information set available
in period t − 1.
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(a) Interpret the equations of the model. Why does the lagged employment term
(nt−1) feature in the labour demand equation? What do we assume about the
income and substitution effects in labour supply?

(b) Assume that the short-run production function can be written, in loglinear
terms, as yt = γ0 + γ1nt, where yt is aggregate output and 0 < γ1 < 1. Show
that the labour market model (Q3.18)–(Q3.20) in combination with the produc-
tion function gives rise to the Lucas supply curve (LSC). State and explain any
stability conditions that may be required.

(c) Derive the stochastic properties of the shock term of the LSC determined in
part (c).

Question 9: Liquidity trap

[Based on McCallum (1983)] Consider the following loglinear model of a closed eco-
nomy featuring rational expectations:

yt − ȳ = α1(pt − Et−1 pt) + α2(yt−1 − ȳ) + ut, (Q3.21)

yt = a0 − a1 [Rt − Et(pt+1 − pt)] + v1t, (Q3.22)

mt − pt = yt − c1

[
Rt − RMIN

]
+ v2t, (Q3.23)

where yt is actual output, ȳ is full employment output (assumed to be constant), pt

is the price level, Rt is the nominal interest rate, mt is the money supply, RMIN is
minimum interest rate (which is attained in the liquidity trap), and ut, v1t, and v2t

are stochastic (white noise) shock terms. These terms are independent from each
other, feature no autocorrelation, and are normally distributed with mean zero and
constant variance, i.e. ut ∼ N

(
0, σ2

u

)
, v1t ∼ N

(
0, σ2

v1

)
, and v2t ∼ N

(
0, σ2

v2

)
. All

variables except R and RMIN are measured in logarithms. To keep the model as
simple as possible we assume that the money supply is constant over time, i.e. mt =
m. The parameters of the model satisfy: α1 > 0, 0 < α2 < 1, a1 > 0, and c1 > 0.

(a) Interpret the equations of the model.

(b) Derive the expression for the AD curve and denote its coefficients by β0, β1,
and β2 and its shock term by vt. Explain what happens to the AD curve if the
economy finds itself in a Keynesian liquidity trap.

(c) � Compute the rational expectations solution for output and the price level.
Hint: use the method of undetermined coefficients and use trial solutions of
the form yt = π0 + π1yt−1 + π2ut + π3vt and pt = ω0 + ω1yt−1 + ω2ut + ω3vt.

(d) � Show that the model is internally inconsistent, and the price level is inde-
terminate, if the economy is in the liquidity trap. Demonstrate that Pigou’s
suggestion, that consumption depends on real money balances, leads to a con-
sistent model again.
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Question 10: PIP meets the Pigou effect

Consider the following loglinear model of a closed economy featuring rational ex-
pectations:

yt = a0 − a1rt + a2(mt − pt) + v1t, (Q3.24)

mt − pt = c0 + c1yt − c2Rt + v2t, (Q3.25)

yt = α0 + α1(pt − Et−1 pt) + α2yt−1 + α3kt + ut, (Q3.26)

kt+1 = γ1kt + γ2rt, (Q3.27)

mt = µ0 + µ1mt−1 + µ2yt−1 + et, (Q3.28)

rt ≡ Rt − Et−1(pt+1 − pt), (Q3.29)

where yt is output, rt is the real interest rate, mt is the money supply, pt is the price
level, Rt is the nominal interest rate, and kt is the capital stock. Furthermore, v1t,
v2t, ut and et are stochastic (white noise) shock terms affecting the various equations
of the model. These terms are independent from each other, feature no autocor-
relation, and are normally distributed with mean zero and constant variance, i.e.
v1t ∼ N

(
0, σ2

v1

)
, v2t ∼ N

(
0, σ2

v2

)
, ut ∼ N

(
0, σ2

u

)
, and et ∼ N

(
0, σ2

e

)
. All variables,

except the various interest rates (rt and Rt) are measured in logarithms. The para-
meters of the model satisfy: a1 > 0, a2 ≥ 0, c1 > 0, c2 > 0, α1 > 0, 0 < α2 < 1,
α3 > 0, 0 < γ1 < 0, γ2 < 0, and 0 < µ1 ≤ 1.

(a) Interpret the equations of the model.

(b) Derive the expression for the AD curve and denote its coefficients by β0, β1,
and β2 and its shock term by vt.

(c) Show that the expectational gap, pt − Et−1 pt, only depends on the shock terms
of AD, AS, and the money supply rule (i.e. vt, ut, and et) but not on the para-
meters of the money supply rule (i.e. µ0, µ1, and µ2).

(d) � Characterize the rational expectations solution for the model and show that
the policy ineffectiveness proposition (PIP) does not hold, unless the real balance
effect in the IS curve is absent.

McCallum (1980) argues that stabilization policy is not about stabilizing actual out-
put (yt) itself but rather about stabilizing the deviation of output relative to capacity
output (yt − ȳt). He suggests that in the context of the present model, capacity output
should be measured as follows:

ȳt = α0 + α2ȳt−1 + α3kt + ut. (Q3.30)

(e) Can you give a rationale for the expression in (Q3.30)?

(f) Show that the reinterpreted PIP holds in the model because the path for yt − ȳt

does not depend on the parameters of the money supply rule.
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Question 11: PIP and the output gap

Consider the following loglinear model of a closed economy featuring rational ex-
pectations:

yt = a0 − a1rt + a2(mt − pt) + v1t, (Q3.31)

mt − pt = c0 + c1yt − c2Rt + v2t, (Q3.32)

yt = α0 + α1(pt − Et−1 pt) + α2yt−1 + α3rt + ut, (Q3.33)

mt = µ0 + µ1mt−1 + µ2yt−1 + et, (Q3.34)

rt ≡ Rt − Et−1(pt+1 − pt), (Q3.35)

where yt is output, rt is the real interest rate, mt is the money supply, pt is the price
level, and Rt is the nominal interest rate. Furthermore, v1t, v2t, ut and et are stochastic
(white noise) shock terms affecting the various equations of the model. These terms
are independent from each other, feature no autocorrelation, and are normally dis-
tributed with mean zero and constant variance, i.e. v1t ∼ N

(
0, σ2

v1

)
, v2t ∼ N

(
0, σ2

v2

)
,

ut ∼ N
(
0, σ2

u

)
, and et ∼ N

(
0, σ2

e

)
. All variables, except the various interest rates (rt

and Rt) are measured in logarithms. The parameters of the model satisfy: a1 > 0,
a2 ≥ 0, c1 > 0, c2 > 0, α1 > 0, 0 < α2 < 1, and α3 > 0.

(a) Interpret the equations of the model.

(b) Show that the expectational gap, pt − Et−1 pt, only depends on the shock terms
of IS, LM, AS, and the money supply rule (i.e. v1t, v2t, ut, and et) but not on the
parameters of the money supply rule (i.e. µ0, µ1, and µ2).

(c) � Characterize the rational expectations solution for the model and show that
the policy ineffectiveness proposition (PIP) does not hold, unless the real balance
effect in the IS curve is absent.

(d) Define capacity output as ȳt = α0 + α2ȳt−1 + α3rt + ut and show that monetary
policy cannot be used to stabilize the output gap, yt − ȳt.

� Question 12: Contemporaneous information

Consider the following model of a closed economy featuring rational expectations.

yt = α0 + α1(pt − Et−1 pt) + ut, (Q3.36)

yt = β0 + β1(mt − pt) + β2Et(pt+1 − pt) + vt, (Q3.37)

mt = µ0 + µ1mt−1 + µ2yt−1 + et, (Q3.38)

where yt is output, pt is the price level, mt is the money supply, and ut, vt and et

are stochastic (white noise) shock terms affecting the various equations of the mo-
del. These terms are independent from each other, feature no autocorrelation, and
are normally distributed with mean zero and constant variance, i.e. ut ∼ N

(
0, σ2

u

)
,

vt ∼ N
(
0, σ2

v

)
, and et ∼ N

(
0, σ2

e

)
. All variables are measured in logarithms. The

parameters of the model satisfy: α1 > 0, β1 > 0, β2 > 0, and 0 < µ1 < 1. The
key thing to note is that agents are assumed to possess current aggregate informa-
tion when estimating the future inflation rate, i.e. Et (rather than Et−1) features in
equation (Q3.37).
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(a) Interpret the equations of the model.

(b) Find the rational expectations solution for output and show that the policy in-
effectiveness proposition (PIP) does not hold. Explain why this is the case.

(c) Compute the asymptotic variance of output. Should the government pursue a
countercyclical monetary policy? Explain the intuition behind your results.

� Question 13: Sticky prices

Consider the following model of a closed economy featuring rational expectations.

pt = p̃t − (1 − θ)( p̃t − Et−1 p̃t), (Q3.39)

yt = β0 + β1(mt − pt) + β2Et−1(pt+1 − pt) + vt, (Q3.40)

mt = µ0 + µ1mt−1 + µ2yt−1 + et, (Q3.41)

ȳt = ζ0 + ȳt−1 + ut, (Q3.42)

where pt is the actual price level, p̃t is the equilibrium price level (see below), yt is
actual output, mt is the money supply, and ȳt is full employment output. In equation
(Q3.39), p̃t is the price for which actual output, yt, equals its exogenously given full
employment level, ȳt. As usual, vt, ut and et are stochastic (white noise) shock terms
affecting the various equations of the model. These terms are independent from
each other, feature no autocorrelation, and are normally distributed with mean zero
and constant variance, i.e. vt ∼ N

(
0, σ2

v

)
, et ∼ N

(
0, σ2

e

)
, and ut ∼ N

(
0, σ2

u

)
. All

variables are measured in logarithms. The parameters of the model satisfy: 0 ≤ θ ≤
1, β1 > 0, β2 > 0, and 0 < µ1 < 1.

(a) Interpret the equations of the model.

(b) Consider the special case of the model for which θ = 1. Compute the rational
expectations solutions for output and the price level. Show that the policy inef-
fectiveness proposition (PIP) holds.

(c) Now use the general case of the model, with 0 < θ < 1, and solve for the ra-
tional expectations solution for output and the price level. Can the government
pursue a countercyclical monetary policy? Explain the intuition behind your
results.

(d) Compute the asymptotic variance of the output gap, yt − ȳt. Does the degree of
price stickiness, as parameterized by θ, increase or decrease output fluctuations
in the economy? Explain.

� Question 14: Automatic stabilizer

[Based on Scarth (1988, p. 190)] Consider the following Keynesian Cross model for-
mulated in discrete time.

Yt = Ct + It + Ḡ, (Q3.43)

Ct = c(1 − t)Yt, 0 < c < 1, 0 < t < 1, (Q3.44)

It = Ī + vYt−1 + Ut, 0 < v < 1 − c(1 − t), (Q3.45)
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where Yt is output, Ct is consumption, It is investment, Ḡ is exogenous government
consumption, c is the marginal propensity to consume, t is the tax rate, Ī is the exo-
genous part of investment, and Ut is a stochastic term. It is assumed that Ut is dis-
tributed normally with mean zero and variance σ2 (i.e. Ut ∼ N(0, σ2) in the notation
of Chapter 3) and that it features no autocorrelation.

(a) Interpret the equations of the model.

(b) Compute the asymptotic variances of output, consumption, and investment.
(See Intermezzo 3.1 on the asymptotic variance in Chapter 3 if you are unfa-
miliar with the concept). Denote these asymptotic variances by, respectively,
σ2

Y, σ2
C, and σ2

I .

(c) Does the tax system act as an automatic stabilizer in this model? Explain both
formally and intuitively.
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Answers

Question 1: Short questions

(a) See any introduction to statistics. Each toss of the coin gives you an expected
pay-off of 0.5 × 1 − 0.5 × 1 = 0 euro. 100 tosses gives you an expected pay-off
of 100 × 0 = 0 euro. If the probability of heads is 0.45, then the expected pay-
off for one toss is 0.45× 1− 0.55× 1 = −0.10. If you toss 100 times, you expect
a negative pay-off of 100 × 0.10 = 10 euro.

(b) False, all that the REH says is that the subjective expectation coincides with
the objective expectation. Not everybody needs to be a brilliant economist.
As long as there are no systematic mistakes, the REH is fine as an operating
assumption.

(c) False, with multi-period nominal wage contracts, the policy maker has an in-
formational advantage and thus can affect the economy. In this context it also
should do so, because the asymptotic variance of output is reduced (stabiliza-
tion).

(d) In this case the PIP still holds because the policy maker does not have an in-
formational advantage over the public. It cannot react to stale information.

Question 2: Stabilization of demand shocks

(a) Labour market clearing implies nS
t = nD

t or:

β[wt − Et−1 pt] = −α[wt − pt] ⇔ wt =
αpt + βEt−1 pt

α + β
. (A3.1)

By using this expression for wt in (Q3.1), we obtain:

yt = −δ[wt − pt]

= −δ

[
αpt + βEt−1 pt

α + β
− pt

]

= γ[pt − Et−1 pt], with γ ≡ δβ

α + β
> 0. (A3.2)

which is the Lucas supply curve.

(b) By using the aggregate demand curve and the Lucas supply curve we obtain:

mt − pt + ut = γ[pt − Et−1 pt] ⇔
(1 + γ)pt = γEt−1 pt + mt + ut. (A3.3)

Taking expectations we get:

(1 + γ)Et−1 pt = γEt−1Et−1 pt + Et−1mt + Et−1ut

= γEt−1 pt + mt, (A3.4)

where we have used the fact that Et−1Et−1 pt = Et−1 pt (law of iterated expect-
ations), Et−1mt = mt (no money supply surprises), and Et−1ut = 0 (best guess
of future demand shock). Solving for Et−1 pt yields:

Et−1 pt = mt. (A3.5)
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Using (A3.5) in (A3.3) we get the rational expectations solution for pt:

pt =
γEt−1 pt + mt + ut

1 + γ
=

γmt + mt + ut

1 + γ
= mt +

ut

1 + γ
.

Finally, by using this in the aggregate demand curve we get:

yt = mt − pt + ut

= mt −
[

mt +
ut

1 + γ

]
+ ut

=
γ

1 + γ
ut, (A3.6)

which shows that money supply only affects price level but not real output.

(c) The asymptotic variance of output is obtained by using (A3.6):

σ2
y ≡ Et−∞ [yt − Et−∞yt]

2

= Et−∞y2
t

=

(
γ

1 + γ

)2

Et−∞u2
t

=

(
γ

1 + γ

)2

σ2. (A3.7)

where we have used Et−∞yt =
γ

1 + γ
Et−∞ ut = 0 in going from the first to the

second line.

Question 3: Overlapping wage contracts and the REH

(a) nD
t = γD − εD[wt − pt] and nS

t = γS + εS[wt − pe
t ], εD is the real wage elasticity

of labour demand and εS is the expected real wage elasticity of labour supply.

(b) wt(t − 1) = γ + Et−1 pt and wt(t − 2) = γ + Et−2 pt with γ ≡ γD−γS
εD+εS

.

(c) Oil price shocks, bad harvest, anything with a direct effect on supply.

(d) Equate aggregate demand and aggregate supply, follow the steps on page 77.

yS
t = β + pt − 1

2 [Et−2 pt + Et−1 pt] + ut

pt = 1
2

[
mt − β + 1

2 [Et−1 pt + Et−2 pt] − ut

]
with β ≡ α − γ.

(e) Take expectations of the equilibrium price and solve for respectively Et−2 and
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Et−1.

Et−2 pt = 1
2 Et−2mt − 1

2 β + 1
4 [Et−2 pt + Et−2 pt] − Et−2ut

= Et−2mt − β − ρ2ut−2

Et−1 pt = 1
2 Et−1mt − 1

2 β + 1
4 [Et−1 pt + Et−2 pt] − 1

2 Et−1ut

= 2
3 Et−1mt − 2

3 β + 1
3 Et−2 pt − 2

3 ρut−1

= 2
3 Et−1mt + 1

3 Et−2mt − β − 2
3 ρut−1 − 1

3 ρ2ut−2

pt = 1
2 mt + 1

6 Et−1mt + 1
3 Et−2mt − β − 1

6 ρut−1 − 1
3 ρ2ut−2 − 1

2 ut

yt = 1
2 mt − 1

6 Et−1mt − 1
3 Et−2mt + β + 1

6 ρut−1 + 1
3 ρ2ut−2 + 1

2 ut

(f) Et−2mt = [µ1ρ + µ2]ut−2 Et−1mt = mt

mt − Et−2mt = µ1εt−1 mt − Et−1mt = 0

(g)

yt = β + 1
3 [mt − Et−2mt] +

1
6 ρut−1 + 1

3 ρ2ut−2 + 1
2 ut

Now use mt − Et−2mt = µ1εt−1, ut−1 = ρut−2 + εt−1, and ut = ρ[ρut−2 +
εt−1] + εt = ρ2ut−2 + ρεt−1 + εt and simple substitution gives the answer:

yt = β + 1
2 εt + 1

3 [µ1 + 2ρ]εt−1 + ρ2ut−2

If µ1 = −2ρ, fluctuations are minimized.

(h) Previous supply shocks contain no information about future supply shocks.
Stabilization still works, but it is optimal to do nothing, µ1 = 0!

Question 4: A variation on the Muth model

(a) Equation (Q3.4) is demand, (Q3.5) is supply, and (Q3.6) implicitly says that the
current price, Pt, clears the market. We have generalized the model used in the
text (given in (3.1)–(3.3)) by assuming that there are both demand and supply
shocks. Demand shocks could be due to random changes in tastes, income, or
prices of other commodities. Supply shocks are explained in the text. Equation
(Q3.7) is the discrete-time expression for the adaptive expectations hypothesis
(AEH).

(b) With stability we mean that the expectational errors go to zero eventually. Be-
cause there are random shocks in the model, the steady state will never actu-
ally be reached. But we can nevertheless study the stability issue by checking
whether the deterministic part of the model is stable. The stochastic part is
automatically stable because Ut and Vt are drawn from stationary probability
distributions.

We solve the model in a number of steps. First we solve for the actual price,
conditional on expectations and the stochastic error terms. We substitute equa-
tions (Q3.4)–(Q3.5) into (Q3.6):

b0 + b1Pe
t + Ut = a0 − a1Pt + Vt ⇔

a1Pt = (a0 − b0) − b1Pe
t + [Vt − Ut] ⇔

Pt =
a0 − b0

a1
− b1

a1
Pe

t +
1

a1
[Vt − Ut]. (A3.8)
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It follows from (A3.8) that the lagged price is given by:

Pt−1 =
a0 − b0

a1
− b1

a1
Pe

t−1 +
1

a1
[Vt−1 − Ut−1] . (A3.9)

By substituting (A3.9) into (Q3.7) we obtain a difference equation for Pe
t :

Pe
t = (1 − λ)Pe

t−1 + λ

[
a0 − b0

a1
− b1

a1
Pe

t−1 +
1

a1
[Vt−1 − Ut−1]

]

=

[
1 − λ

a1 + b1

a1

]
Pe

t−1 + λ
a0 − b0

a1
+

λ

a1
[Vt−1 − Ut−1] . (A3.10)

Stability requires the coefficient for Pe
t−1 (the term in square brackets on the

right-hand side) to be between 0 and 1 in absolute terms. It is clear that λ > 0
is a necessary (but not a sufficient) condition for stability. We look at the two
cases in turn. The first stable case is the one associated with stable monotonic
adjustment:

0 < 1 − λ
a1 + b1

a1
< 1 ⇔

−1 < −λ
a1 + b1

a1
< 0 ⇔

0 < λ
a1 + b1

a1
< 1. (A3.11)

The first inequality in (A3.11) holds automatically because λ, b1, and a1 are all
assumed to be positive and the second inequality can be rewritten as:

0 < λ <
a1

a1 + b1
, (monotonic adjustment). (A3.12)

The second case is associated with stable cyclical adjustment:

−1 < 1 − λ
a1 + b1

a1
< 0 ⇔

0 < 2 − λ
a1 + b1

a1
< 1 ⇔

1 < λ
a1 + b1

a1
< 2. (A3.13)

The inequality in (A3.11) can be rewritten as:

a1

a1 + b1
< λ <

2a1

a1 + b1
, (cyclical adjustment). (A3.14)

Intuitively, the expectations adjustment parameter must work in the right dir-
ection (i.e. it must be positive) but it must not be so large that it grossly over-
corrects expectational errors. In the monotonic case, the expectational gap is
gradually closed and the expectational errors all have the same sign. In the
cyclical case there is some over-correction but it is stable. The expectational
errors alternate in sign.
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(c) In order to compute the rational expectations solution of the model, we take
the conditional expectation of (A3.8):

Et−1Pt = Et−1

(
a0 − b0

a1
− b1

a1
Pe

t +
1

a1
[Vt − Ut]

)

=
a0 − b0

a1
− b1

a1
Et−1Pe

t +
1

a1
Et−1(Vt − Ut)

=
a0 − b0

a1
− b1

a1
Pe

t . (A3.15)

We have used the fact that a0, a1, b0, and b1 are in the information set of the
agent (they are known parameters) in going from the first to the second line.
In going from the second to the third line we have incorporated the fact that
the error terms both have an expected value of zero (Et−1Ut = 0 and Et−1Vt =
0), and that Pe

t is a non-stochastic constant (a subjective expectation held by
suppliers in the market).

The rational expectations hypothesis (REH) says that the subjective expectation
equals the objective expectation. By using (Q3.7) in (A3.15) we can solve for the
expected price level:

Pe
t =

a0 − b0

a1
− b1

a1
Pe

t ⇔ Pe
t =

a0 − b0

a1 + b1
. (A3.16)

In this model, with error terms featuring an expected value of zero, the ra-
tionally expected price level is simply the equilibrium price implied by the
deterministic part of the model.

To investigate stability of the model under the REH, we substitute (A3.16) into
(A3.8) and solve for the actual equilibrium price level:

Pt =
a0 − b0

a1
− b1

a1

a0 − b0

a1 + b1
+

1

a1
[Vt − Ut] ⇔

Pt =
a0 − b0

a1 + b1
+

1

a1
[Vt − Ut]. (A3.17)

It follows from (A3.17) that the model is automatically stable—no additional
conditions need to be imposed on the parameters. The price (and thus equi-
librium output) fluctuates because of random events affecting demand and/or
supply but the expectation formation process does not itself introduce any po-
tentially destabilizing effects into the market.

Question 5: Expectational difference equations

(a) Equation (Q3.9) is a so-called expectational difference equation. The actual realiz-
ation of Yt depends in part on the expectation regarding Yt+1. Such equations
are quite common in the economics literature. Blanchard and Fischer (1989, p.
215-217) give several examples. In one of these example, the arbitrage condi-
tion between a safe asset (say, a bank deposit which pays a constant interest
rate, R) and shares (paying dividends, dt) is written as:

R =
dt + Et pt+1 − pt

pt
, (A3.18)



80 EXERCISE & SOLUTIONS MANUAL

where pt is the price of the share at the beginning of period t. The left-hand
side is the net yield on the bank deposit and the right-hand side is the yield
on shares (i.e. the sum of dividend and the expected capital gain, expressed in
terms of the market price of the share). By rewriting (A3.18) we find:

pt =
1

1 + R

[
dt + Et pt+1

]
. (A3.19)

If the process for dt itself contains a stochastic term, equation (A3.19) has the
same form as equation (Q3.9) in the question. Another example is the Cagan
model, discussed in question 4.

(b) We can solve the expectational difference equations by repeated substitution
(forward iteration) or by using the method of undetermined coefficients. We
start with the latter method. The trial solution for Yt is:

Yt = π0 + π1Ut, (A3.20)

where π0 and π1 are the unknown coefficients that we wish to determine, i.e.
we want to relate them to the parameters of the model (α0, α1, and θ). It follows
from (A3.20) that Yt+1 can be written as:

Yt+1 = π0 + π1Ut+1. (A3.21)

By taking conditional expectations of (A3.21) and noting that (Q3.10) implies
Ut+1 = θUt + Vt+1 we obtain:

2EtYt+1 = π0 + π1EtUt+1

= π0 + π1Et (θUt + Vt+1)

= π0 + θπ1EtUt (because EtVt+1 = 0)

= π0 + θπ1Ut (because Ut is known in period t). (A3.22)

By substituting (A3.22) into (Q3.9) we obtain the following expression:

Yt = α0 + α1 [π0 + θπ1Ut] + Ut

= (α0 + α1π0) + (1 + α1θπ1) Ut. (A3.23)

The crucial thing to note is that (A3.23) has the same form as the trial solution
(A3.20), i.e. it has a constant and a term involving Ut. However, these two
solutions must not only have the same form but they must also be identical.
The trial solution and the model solution implied by the trial solution must
coincide. This requirement yields the following restrictions on the (previously
undetermined) coefficients π0 and π1:

π0 = α0 + α1π0 ⇔ π0 =
α0

1 − α1
, (A3.24)

π1 = 1 + α1θπ1 ⇔ π1 =
1

1 − α1θ
. (A3.25)

By substituting (A3.24)-(A3.25) into (A3.20) we find the rational expectations
solution for Yt:

Yt =
α0

1 − α1
+

1

1 − α1θ
Ut. (A3.26)
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The forward iteration method works as follows. We first write (Q3.9) for period
t + 1.

Yt+1 = α0 + α1Et+1Yt+2 + Ut+1. (A3.27)

Taking conditional expectations of (A3.27) yields:

EtYt+1 = α0 + α1EtEt+1Yt+2 + EtUt+1

= α0 + α1EtYt+2 + θUt, (A3.28)

where we have used the law of iterated expectations (EtEt+1Yt+2 = EtYt+2) and
knowledge of the shock process (EtUt+1 = θUt) in going from the first to the
second line. By using (A3.28) in (Q3.9) we find:

Yt = α0 + α1 [α0 + α1EtYt+2 + θUt] + Ut

= α0(1 + α1) + α2
1EtYt+2 + (1 + α1θ)Ut. (A3.29)

We have pushed the “problem” ahead of time since we now need to know
EtYt+2. Notice, however, that the influence of EtYt+2 is dampened by the coef-
ficient α2

1 which is less than α1 because 0 < α1 < 1.

But we can continue this iteration process indefinitely. For period t + 2, for
example, we find:

Yt+2 = α0 + α1Et+2Yt+3 + Ut+2 ⇒
EtYt+2 = α0 + α1EtEt+2Yt+3 + EtUt+2

= α0 + α1EtYt+3 + θ2Ut, (A3.30)

where we have used EtEt+2Yt+3 = EtYt+3 and EtUt+2 = θ2Ut to get to (A3.30).
Substitution of (A3.30) into (A3.29) yields:

Yt = α0(1 + α1) + α2
1[α0 + α1EtYt+3 + θ2Ut] + (1 + α1θ)Ut

= α0[1 + α1 + α2
1] + α3

1EtYt+3 + [1 + α1θ + (α1θ)2]Ut. (A3.31)

By now we recognize the emerging pattern and conclude that after N iterations
we would get:

Yt = α0

[
1 + α1 + α2

1 + · · · + αN−1
1

]
+ αN

1 EtYt+N

+
[
1 + α1θ + (α1θ)2 + · · · + (α1θ)N−1

]
Ut. (A3.32)

By letting N → ∞ we terms in square brackets converge to, respectively, 1/(1−
α1) (as 0 < α1 < 1) and 1/(1 − α1θ) (as 0 < α1θ < 1) and αN

1 EtYt+N → 0. As a
result, equation (A3.32) converges to:

Yt =
α0

1 − α1
+

1

1 − α1θ
Ut. (A3.33)

Of course, since we are dealing with one and the same model, equation (A3.33)
is identical to (A3.27) above.
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(c) The asymptotic variance of Yt is defined as follows (see Intermezzo 3.1 in
Chapter 3):

σ2
Y ≡ Et−∞ [Yt − Et−∞Yt]

2 . (A3.34)

Before computing σ2
Y, we first derive a convenient expression for Yt. By using

(A3.27) or (A3.33) for periods t and t − 1 we find:

Yt − θYt−1 =
α0(1 − θ)

1 − α1
+

1

1 − α1θ
[Ut − θUt−1] ⇒

Yt =
α0(1 − θ)

1 − α1
+ θYt−1 +

1

1 − α1θ
Vt, (A3.35)

where we have used equation (Q3.10) to simplify the expression. The advant-
age of working with (A3.35) rather than (A3.27) is that the former is in the
standard format dealt with in Intermezzo 3.1, whereas the latter is not. In par-
ticular, (A3.35) is a stable difference equation (because 0 < θ < 1) with a white
noise shock term. Following the same steps as in Intermezzo 3.1 in Chapter 3
we find:

σ2
Y ≡ Et−∞ [Yt − Et−∞Yt]

2

= Et−∞

[
θ2 (Yt−1 − Et−∞Yt−1)

2
]

+ Et−∞

[(
1

1 − α1θ

)2

V2
t +

2θ(Yt−1 − Et−∞Yt−1)Vt

1 − α1θ

]

= θ2σ2
Y +

(
1

1 − α1θ

)2

σ2
V , (A3.36)

where we have used the fact that Et−∞(Yt−1 − Et−∞Yt−1)Vt = 0 to arrive at the
final expression. By solving (A3.36) for σ2

Y we find:

σ2
Y =

1

1 − θ2

(
1

1 − α1θ

)2

σ2
V . (A3.37)

It follows from (A3.37) that the closer θ gets to unity, the larger are the terms in
round brackets on the right-hand side, and the larger is the asymptotic variance
of Yt.

Question 6: The Cagan model

(a) Since pt is measured in logarithms we know that pt+1 − pt ≡ ln(Pt+1/Pt),
where Pt is the price expressed in level terms. But Pt+1 ≡ Pt + ∆Pt+1 so that
Pt+1/Pt = 1 + πt+1, where πt+1 represents the inflation rate between periods
t and t + 1. For small enough values of x we know that ln(1 + x) ≈ x so
ln(Pt+1/Pt) ≈ πt+1. But this means that the term in square brackets equals the
nominal interest rate, i.e. Rt = r + Etπt+1. Equation (Q3.11) can thus be seen as
a money demand equation which depends negatively on the nominal interest
rate. Output does not feature in (Q3.11) because output effects are dwarfed by
the inflation effect under hyperinflation.
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(b) We can once again use the method of undetermined coefficients. Since we as-
sume the availability of a period-t information set, we postulate the following
trial solution:

pt = π0 + π1mt + π2ut, (A3.38)

where π0, π1, and π2 are the coefficients to be determined. It follows from
(A3.38) that:

pt+1 = π0 + π1mt+1 + π2ut+1, (A3.39)

so that Et pt+1 can be written as:

Et pt+1 = π0 + π1Etmt+1 + π2Etut+1

= π0 + π1 [µ0 + µ1mt + Etet+1] + π2Etut+1

= π0 + π1 [µ0 + µ1mt] , (A3.40)

where we have used (Q3.12) plus the fact that Etet+1 = Etut+1 = 0 to arrive at
(A3.40). By substituting (A3.40) into (Q3.11) we find:

mt − pt = γ − α [r + π0 + π1 [µ0 + µ1mt] − pt] + ut ⇒
pt =

−γ + α [r + π0 + π1µ0]

1 + α
+

1 + απ1µ1

1 + α
mt − 1

1 + α
ut. (A3.41)

The trial solution (given in (A3.38)) and the model solution induced by the trial
solution (given in (A3.41)) must be identical. We can find the πi coefficients
for which this is the case. By comparing (A3.38) and (A3.41) we find that the
coefficients for ut match if (and only if):

π2 = − 1

1 + α
. (A3.42)

The coefficients for mt coincide if (and only if):

π1 =
1 + απ1µ1

1 + α
⇔ π1 =

1

1 + α(1 − µ1)
. (A3.43)

Finally, the constant terms are the same if (and only if):

π0 =
−γ + α [r + π0 + π1µ0]

1 + α

(1 + α − α)π0 = −γ + α [r + π1µ0]

π0 = −γ + αr +
αµ0

1 + α(1 − µ1)
, (A3.44)

where we have used (A3.43) in the final step. By using (A3.42)–(A3.44) in
(A3.38) we find the rational expectations solution for pt in terms of parameters
of the model.

pt = −γ + αr +
αµ0

1 + α(1 − µ1)
+

1

1 + α(1 − µ1)
mt − 1

1 + α
ut. (A3.45)
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Question 7: Fiscal policy under rational expectations

(a) Equation (Q3.13) is the IS curve. Investment depends negatively on the real
interest rate (i.e. the nominal interest rate minus expected inflation) and pos-
itively on the index for fiscal policy. Equation (Q3.14) is the LM curve. The
real supply of money (left-hand side) equals the real demand for money (right-
hand side). Money demand is standard and depends negatively on the nom-
inal interest rate and positively on output. Equation (Q3.15) is an expectations-
augmented short-run aggregate supply curve featuring sluggish output ad-
justment. Finally, equation (Q3.16) is the fiscal policy rule followed by the gov-
ernment. Note that we now focus on fiscal, rather than monetary, policy. For
simplicity, we assume in (Q3.17) that the money supply grows at an exogen-
ously given rate µ0. There is no shock term in (Q3.17) so the money supply can
be forecasted perfectly by the economic agents.

(b) By solving the LM curve (given in (Q3.14)) for the nominal interest rate we
find:

Rt =
c0 + c1yt − mt + pt + v2t

c2
. (A3.46)

By substituting (A3.46) into the IS curve (given in (Q3.13)) and solving for out-
put, we find the AD curve:

yt = a0 − a1

[
c0 + c1yt − mt + pt + v2t

c2
− Et−1(pt+1 − pt)

]
+ a2gt + v1t

yt

[
1 +

a1c1

c2

]
=

[
a0 − a1c0

c2

]
+

a1

c2
(mt − pt) + a1Et−1(pt+1 − pt)

+ a2gt +

[
v1t − a1

c2
v2t

]
yt = β0 + β1(mt − pt) + β2Et−1(pt+1 − pt) + β3gt + vt,

(A3.47)

where β0, β1, β2, β3, and vt are defined as:

β0 ≡ a0c2 − a1c0

c2 + a1c1
�, β1 ≡ a1

c2 + a1c1
> 0, β2 ≡ a1c2

c2 + a1c1
> 0,

β3 ≡ a2c2

c2 + a1c1
> 0, vt ≡ c2v1t − a1v2t

c2 + a1c1
.

The shock affecting the AD curve, vt, is a composite expression featuring the
shocks to IS and LM. The weights that these terms get in (A3.47) can be under-
stood readily. A positive goods demand shock (v1t > 0) shifts the IS curve to
the right and expands output. A positive money demand shock (v2t > 0), on
the other hand, shifts LM to the left and reduces output.

Since v1t ∼ N
(
0, σ2

v1

)
and v2t ∼ N

(
0, σ2

v2

)
it follows from (A3.47) that vt ∼

N
(
0, σ2

v

)
(a linear combination of normally distributed variables is also nor-

mally distributed). Because v1t and v2t are assumed to be independent (so that
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E(v1tv2t) = 0) the variance of vt is given by the weighted sum of σ2
v1

and σ2
v2

:

σ2
v ≡ E(vt − E(vt))

2

= E(v2
t ) (as E(vt) = 0)

= E

((
c2

c2 + a1c1

)2

v2
1t +

( −a1

c2 + a1c1

)2

v2
2t

)
(as E(v1tv2t) = 0)

=

(
c2

c2 + a1c1

)2

σ2
v1

+

(
a1

c2 + a1c1

)2

σ2
v2

. (A3.48)

The key thing to note is that the shocks to IS and LM do not offset each other in
terms of the variance of the AD curve.

(c) The structure of the model is very similar to that of the basic Sargent-Wallace
model used in section 3.2 of the text. We can therefore utilize a similar solution
method. In the first step we use (Q3.15) and (A3.47) to solve for the equilibrium
price level:

pt =
β0 − α0 + α1Et−1 pt + β1mt + β2Et−1 (pt+1 − pt) + β3gt + vt − ut

α1 + β1
.

(A3.49)

In the second step we take the conditional expectation of (A3.49):

Et−1 pt =
β0 − α0 + α1Et−1 pt + β1mt + β2Et−1(pt+1 − pt) + β3Et−1gt

α1 + β1
, (A3.50)

where we have used the law of iterated expectations (so that Et−1Et−1 pt =
Et−1 pt and Et−1Et−1 pt+1 = Et−1 pt+1), recognized that the money supply is
exogenous (so that Et−1mt = mt), and incorporated the properties of the shock
terms (Et−1vt = Et−1ut = 0). In the third step, we deduct (A3.50) from (A3.49)
to get an expression for the expectational error:

pt − Et−1 pt =
β3 [gt − Et−1gt] + vt − ut

α1 + β1
. (A3.51)

According to (A3.51) only unexpected fiscal policy (gt − Et−1gt) and the shock
terms affecting AD and AS can give rise to an expectational error. By using
equation (Q3.16) we find that:

gt − Et−1gt = γ0 + γ1gt−1 + γ2yt−1 + et

− Et−1 [γ0 + γ1gt−1 + γ2yt−1 + et]

= et − Et−1et = et, (A3.52)

where we have used the fact that gt−1 and yt−1 form part of the information
set upon which Et−1 is based and that Et−1et = 0. By using (A3.51)–(A3.52) in
(Q3.15) we find the rational expectations solution for output:

yt = α0 + α1

[
β3et + vt − ut

α1 + β1

]
+ α2yt−1 + ut

= α0 + α2yt−1 +
α1β3et + α1vt + β1ut

α1 + β1
. (A3.53)
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(d) Fiscal policy is ineffective in this model because it cannot affect output. Ac-
cording to (A3.53) only lagged output and the stochastic terms et, ut, and vt

can affect output. The policy maker could follow a counter-cyclical policy rule
(with γ2 < 0) but this policy stance is well understood by the agents in the eco-
nomy who do not let their real plans be affected by it. Intuitively, the PIP holds
in this model because the model has strong classical features, such as perfectly
flexible prices and clearing markets, and there is no informational asymmetry.

(e) To find the rational expectations solution for the equilibrium price, pt, we could
in principle use the method of forward iteration on (A3.49). To get some idea
about what the solution will look like, we can first combine (A3.49) and (A3.50)
to get an expectational difference equation for pt which looks simple enough
to solve. We can write (A3.49)–(A3.50) in a single matrix expression as:[

1
β2−α1
α1+β1

0
β1+β2
α1+β1

] [
pt

Et−1 pt

]
=

[ β0−α0+β1mt+β2Et−1 pt+1+β3gt+wt
α1+β1

β0−α0+β1mt+β2Et−1 pt+1+β3Et−1gt
α1+β1

]
, (A3.54)

where wt ≡ vt − ut is a composite shock term. Denoting the matrix on the
left-hand side of (A3.54) by ∆ we find quite easily that:

∆−1 =

[
1

α1−β2
β1+β2

0
α1+β1
β1+β2

]
. (A3.55)

By using (A3.55) in (A3.54) we find the following solution for pt:

pt =
β0 − α0 + β1mt + β2Et−1 pt+1 + β3gt + wt

α1 + β1
+

+
α1 − β2

β1 + β2

β0 − α0 + β1mt + β2Et−1 pt+1 + β3Et−1gt

α1 + β1

=
β0 − α0 + β1mt

β1 + β2
+

β2

β1 + β2
Et−1 pt+1 +

β3

α1 + β1
gt

+ β3
α1 − β2

β1 + β2
Et−1gt +

1

α1 + β1
wt. (A3.56)

The key thing to note is that (A3.56) is an expectational difference equation very
much like the one studied in question 2 above. Since the parameter in front of
Et−1 pt+1 on the right-hand side of (A3.56) is between 0 and 1, we know that
the forward iteration method will yield the rational expectations solution for
pt.

Furthermore, equation (A3.56) gives us a strong clue as to the form of the trial
solution that would be useful if we want to use the method of undetermined
coefficients. Indeed, we expect to find that the following trial solution will
probably work:

pt = π0 + π1mt + π2gt + π3gt−1 + π4yt−1 + π5wt, (A3.57)

where π0, π1, π2, π3, π4 and π5 are the coefficients to be determined. Note
that, according to equation (Q3.16), Et−1gt = γ0 + γ1gt−1 + γ2yt−1 which is
why (A3.57) contains gt−1 and yt−1.
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We now check whether (A3.57) has the correct form to solve (A3.56). By leading
(A3.57) one period and taking conditional expectations we find:

Et−1 pt+1 = Et−1 (π0 + π1mt+1 + π2gt+1 + π3gt + π4yt + π5wt+1)

= π0 + π1(µ0 + mt) + π2Et−1gt+1 + π3Et−1gt + π4Et−1yt,
(A3.58)

where we have used Et−1mt+1 = µ0 + Et−1mt = µ0 + mt and Et−1wt+1 = 0 in
going from the first to the second line. By using equation (Q3.16) and taking
conditional expectations we find that Et−1gt can be written as:

Et−1gt = Et−1 (γ0 + γ1gt−1 + γ2yt−1 + et)

= γ0 + γ1gt−1 + γ2yt−1, (A3.59)

where we have used the fact that Et−1et = 0 in going from the first to the
second line. Similarly, by leading (Q3.16) one period and taking conditional
expectations we find that Et−1gt+1 is:

Et−1gt+1 = Et−1 (γ0 + γ1gt + γ2yt + et+1)

= γ0 + γ1Et−1gt + γ2 (α0 + α2yt−1) , (A3.60)

where we have used the fact that Et−1et+1 = 0 and Et−1yt = α0 + α2yt−1 (by
equation (A3.53)) in going from the first to the second line. By substituting
(A3.59)–(A3.60) into (A3.58) we find the following expression for Et−1 pt+1:

Et−1 pt+1 = π0 + π1µ0 + π2(γ0 + α0γ2) + π4α0 + π1mt

+ (π2γ1 + π3)Et−1gt + (π2γ2 + π4) α2yt−1

= π0 + π1µ0 + π2(γ0 + α0γ2) + π4α0 + γ0(π2γ1 + π3)

+ π1mt + γ1(π2γ1 + π3)gt−1

+ [γ2(π2γ1 + π3) + α2 (π2γ2 + π4)] yt−1 (A3.61)

By substituting (A3.59) and (A3.61) into (A3.56) we find the solution of the
model that is implied by the trial solution (A3.57).

pt =
β0 − α0 + β1mt + β3gt

β1 + β2
+ +β3

α1 − β2

β1 + β2
[γ0 + γ1gt−1 + γ2yt−1]

+
β2

β1 + β2

(
π0 + π1µ0 + π2(γ0 + α0γ2) + π4α0 + γ0(π2γ1 + π3)

+ π1mt + γ1(π2γ1 + π3)gt−1

+ [γ2(π2γ1 + π3 + α2 (π2γ2 + π4)] yt−1

)

+
1

α1 + β1
wt. (A3.62)

Equations (A3.62) and (A3.57) both express pt in terms of a constant, mt, gt,
gt−1, yt−1, and wt. Furthermore, by choosing the appropriate πi coefficients
these two expressions can be made identical. We compute the πi coefficients as
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follows. First, we note that wt appears in only one place in (A3.62) so it follows
readily from (A3.57) that:

π5 =
1

α1 + β1
. (A3.63)

The terms for mt in (A3.57) and (A3.62) coincide if:

π1 =
β1

β1 + β2
+

β2

β1 + β2
π1 ⇔ π1 = 1. (A3.64)

The price level moves one-for-one with the money stock, as was stated in the
question. The terms for gt coincide if:

π2 =
β3

α1 + β1
. (A3.65)

The terms for gt−1 coincide if:

π3 = β3
α1 − β2

β1 + β2
γ1 +

β2

β1 + β2
γ1(π2γ1 + π3) ⇔[

1 − β2γ1

β1 + β2

]
π3 =

γ1

β1 + β2

[
β3(α1 − β2) + β2γ1

β3

α1 + β1

]
⇔

π3 =
γ1β3

β1 + (1 − γ1)β2

[
α1 + β2

γ1 − α1 − β1

α1 + β1

]
, (A3.66)

where we have used (A3.65) to get from the first to the second line. The terms
for yt−1 coincide if:

π4 = β3
α1 − β2

β1 + β2
γ2 +

β2

β1 + β2
[γ2(π2γ1 + π3) + α2 (π2γ2 + π4)]

=
γ2

γ1
π3 +

α2β2

β1 + β2
(π2γ2 + π4) ⇔[

1 − α2β2

β1 + β2

]
π4 =

γ2

γ1
π3 +

α2β2γ2

β1 + β2

β3

α1 + β1
⇔

π4 =
γ2π3

γ1

β1 + β2

β1 + (1 − α2)β2
+

α2β2γ2

β1 + (1 − α2)β2

β3

α1 + β1
. (A3.67)

Note that in going from the first to the second line we have exploited the fact
that several terms for yt−1 are proportional to π3 (which is given in (A3.66)).
We have now expressed all the (interesting) πi coefficients in terms of the struc-
tural parameters and we have thus found the rational expectations solution for
the price level.

Question 8: The labour market

(a) Equation (Q3.18) is a dynamic labour demand function. The firm faces adjust-
ment costs on labour (just like it does on capital investment in Chapter 2). A
simple, though ad hoc, story could go as follows. Desired labour demand, n̄D

t ,
is a function of the real wage:

n̄D
t = ᾱ0 − ᾱ1 [wt − pt] , (A3.68)
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with ᾱ1 > 0. Actual labour demand, nD
t , is gradually changed according to a

(stochastic) stock adjustment mechanism:

∆nD
t = λ

[
n̄D

t − nD
t−1

]
+ u1t, 0 < λ < 1, (A3.69)

where ∆nD
t ≡ nD

t − nD
t−1 and λ is the speed of adjustment in labour demand.

By substituting (A3.68) into (A3.69) we obtain:

nD
t = λ

[
ᾱ0 − ᾱ1 [wt − pt] − nD

t−1

]
+ nD

t−1 + u1t

= λᾱ0 − λᾱ1 [wt − pt] + (1 − λ)nD
t−1 + u1t. (A3.70)

Equation (A3.70) is the same as (Q3.18) if we make the substitutions α0 ≡ λᾱ0,
α1 ≡ λᾱ1, α2 ≡ (1 − λ) and nD

t−1 = nt−1(market clearing also in the previous
period).

Equation (Q3.19) is the logarithmic version of the expectations-augmented la-
bour supply curve (see Chapter 1). Workers base their labour supply decision
on the expected price level, Et−1 pt. If the actual price level differs from the
expected price level then the workers supply an “incorrect” amount of labour.
By setting β1 > 0 we are implicitly assuming that the substitution effect dom-
inates the (absolute value of the) income effect in labour supply. This means
that the labour supply function is upward sloping.

(b) By substituting (Q3.20) into (Q3.18)–(Q3.19) we obtain the following matrix
expression:[

1 α1

1 −β1

] [
nt

wt

]
=

[
α0 + α1 pt + α2nt−1 + u1t

β0 − β1Et−1 pt + u2t

]
. (A3.71)

The matrix on the left-hand side is denoted by ∆ and has a determinant equal
to |∆| = −(α1 + β1). The inverse of ∆ is thus:

∆−1 ≡ 1

α1 + β1

[
β1 α1

1 −1

]
. (A3.72)

By using (A3.72) in (A3.71) we find the quasi-reduced form expressions for
equilibrium employment and the nominal wage rate:[

nt

wt

]
=

1

α1 + β1

[
β1 α1

1 −1

] [
α0 + α1 pt + α2nt−1 + u1t

β0 − β1Et−1 pt + u2t

]

=
1

α1 + β1

[
β1[α0 + α1 pt + α2nt−1 + u1t] + α1[β0 − β1Et−1 pt + u2t]

[α0 + α1 pt + α2nt−1 + u1t] − [β0 − β1Et−1 pt + u2t]

]
.

(A3.73)

By gathering terms, the expression for equilibrium employment can be written
more neatly as:

nt =
α0β1 + α1β0

α1 + β1
+

α1β1

α1 + β1
[pt − Et−1 pt] +

α2β1

α1 + β1
nt−1

+
β1

α1 + β1
u1t +

α1

α1 + β1
u2t. (A3.74)
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Several features must be noted about this expression. First, the employment
equation is stable if (and only if) the coefficient for nt−1 is less than unity in
absolute value. Since 0 < α2 < 1 and 0 < β1/(α1 + β1) < 1 this condition is
automatically satisfied. The second key feature of (A3.74) is that the employ-
ment equation depends on the expectational error, pt − Et−1 pt, and not on pt

and Et−1 pt separately. This is the logic of the Lucas supply curve.

By substituting (A3.74) into the production function (and noting that yt−1 =
γ0 + γ1nt−1) we obtain:

yt = γ0 + γ1

[
α0β1 + α1β0

α1 + β1
+

α1β1

α1 + β1
[pt − Et−1 pt]

+
α2β1

α1 + β1

yt−1 − γ0

γ1
+

β1u1t + α1u2t

α1 + β1

]

≡ ζ0 + ζ1 [pt − Et−1 pt] + ζ2yt−1 + ut, (A3.75)

where the ζi coefficients and the composite shock term are defined as follows:

ζ0 ≡ γ0 + γ1

[
α0β1 + α1β0

α1 + β1
− α2β1

α1 + β1

γ0

γ1

]
,

ζ1 ≡ α1β1γ1

α1 + β1
,

ζ2 ≡ α2β1

α1 + β1
,

ut ≡ β1γ1u1t + α1γ1u2t

α1 + β1
.

(c) In view of the properties of u1t and u2t it follows that the composite error term,
ut, is a normally distributed random variable with mean zero and a constant
variance, i.e. ut ∼ N

(
0, σ2

u

)
, where σ2

u is defined as:

σ2
u ≡

(
β1γ1

α1 + β1

)2

σ2
u1

+

(
α1γ1

α1 + β1

)2

σ2
u2

, (A3.76)

where we have also used the fact that u1t and u2t are independent (E(u1tu2t) =
0). Recall furthermore (from basic statistics) that a linear combination of nor-
mally distributed variables is itself a normally distributed variable.

Question 9: Liquidity trap

(a) Equation (Q3.21) is the Lucas supply curve. The lagged output term on the
right-hand side can be justified by postulating adjustment costs in labour de-
mand (see question 5 above). Equation (Q3.22) is the IS curve. There is a neg-
ative effect of the real interest rate via investment. Equation (Q3.23) is the LM
curve. We have assumed that the income elasticity of money demand is equal
to unity. In addition we allow for a liquidity trap (see Chapter 1) in that the
nominal interest rate is assumed to have a lower bound, RMIN. Formally the
economy is in the liquidity trap if we let c1 → ∞ in (Q3.23).
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(b) By rewriting (Q3.23) we obtain the following expression for the nominal in-
terest rate:

Rt = RMIN +
yt − (mt − pt) + v2t

c1
. (A3.77)

By substituting (A3.77) into (Q3.22) we obtain:

yt = a0 − a1Rt + a1Et(pt+1 − pt) + v1t

= a0 − a1

[
RMIN +

yt − (mt − pt) + v2t

c1

]
+ a1Et(pt+1 − pt) + v1t ⇔

(
1 +

a1

c1

)
yt = a0 − a1RMIN +

a1(mt − pt)

c1
+ a1Et(pt+1 − pt) + v1t − a1v2t

c1
.

(A3.78)

By rearranging (A3.78) somewhat we obtain the following expression for the
AD curve:

yt = β0 + β1Et(pt+1 − pt) + β2(mt − pt) + vt, (A3.79)

where the βi coefficients and the composite shock term ut are defined as fol-
lows:

β0 ≡ c1

a1 + c1

[
a0 − a1RMIN

]
, β1 ≡ c1a1

a1 + c1
,

β2 ≡ a1

a1 + c1
, vt ≡ c1

a1 + c1
v1t − a1

a1 + c1
v2t.

If the economy is in a liquidity trap, c1 → ∞, and (according to (A3.77)) Rt →
RMIN. We find that β0 → a0 − a1RMIN, β1 → a1, β2 → 0, and vt → v1t. The real
balance effect vanishes from the AD curve. Intuitively, this is because in the
liquidity trap case, the AD curve coincides with the IS curve with Rt = RMIN

imposed.

(c) We first solve the general case of the model and then investigate the implica-
tions of the liquidity trap. The model consists of the AS curve (given in equa-
tion (Q3.21)) and the AD curve (given in (A3.79) above). The trial solutions
mentioned in the question are restated here for convenience:

yt = π0 + π1yt−1 + π2ut + π3vt, (A3.80)

pt = ω0 + ω1yt−1 + ω2ut + ω3vt, (A3.81)

where the πi and ωi coefficients must be determined. We derive the parameter
restrictions in two steps.

Step 1. In the first step we use (A3.81) to derive:

Et pt+1 = Et (ω0 + ω1yt + ω2ut+1 + ω3vt+1)

= ω0 + ω1yt, (A3.82)
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where we have used the fact that Etyt = yt and Etut+1 = Etvt+1 = 0. By
substituting (A3.81) and (A3.82) into the AD curve (A3.79) we find:

yt = β0 + β1Et(pt+1 − pt) + β2(mt − pt) + vt

= β0 + β1 [ω0 + ω1yt] − (β1 + β2) [ω0 + ω1yt−1 + ω2ut + ω3vt]

+ β2m + vt

=
β0 − β2ω0 + β2m − (β1 + β2) [ω1yt−1 + ω2ut] + [1 − (β1 + β2)ω3] vt

1 − β1ω1
,

(A3.83)

where we have noted that the money supply is constant (mt = m). Equa-
tion (A3.83) must be identical to the trial solution for output (given in (A3.80)
above). This requirement yields four parameter restrictions:

π0 =
β0 + β2m − β2ω0

1 − β1ω1
, (A3.84)

π1 = − (β1 + β2)ω1

1 − β1ω1
, (A3.85)

π3 = − (β1 + β2)ω2

1 − β1ω1
, (A3.86)

π4 =
1 − (β1 + β2)ω3

1 − β1ω1
. (A3.87)

So after completing the first step we have obtained four restrictions for eight
parameters. To get the remaining four restrictions we must use the information
contained in the AS curve (Q3.21).

Step 2. In the second step we derive from (A3.81) that:

pt − Et−1 pt = ω0 + ω1yt−1 + ω2ut + ω3vt

− Et−1 [ω0 + ω1yt−1 + ω2ut + ω3vt]

= ω2ut + ω3vt, (A3.88)

where we have used the fact that Et−1yt−1 = yt−1 and Et−1ut = Et−1vt = 0.
By substituting (A3.88) into the AS curve (Q3.21) we obtain:

yt = ȳ + α1(pt − Et−1 pt) + α2(yt−1 − ȳ) + ut

= ȳ + α1(ω2ut + ω3vt) + α2(yt−1 − ȳ) + ut

= (1 − α2)ȳ + α2yt−1 + (1 + α1ω2)ut + α1ω3vt. (A3.89)

Equation (A3.89) must be identical to the trial solution for output (given in
(A3.80) above). This yields the following parameter restrictions:

π0 = (1 − α2)ȳ, (A3.90)

π1 = α2, (A3.91)

π2 = 1 + α1ω2, (A3.92)

π3 = α1ω3. (A3.93)

So after completing both steps of the solution procedure, we possess eight re-
strictions (namely, (A3.84)–(A3.87) and (A3.90)–(A3.93)) involving eight un-
known parameters (the πi and ωi parameters). Some subtle detective work
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will yield the solutions for these parameters in terms of the parameters of the
model itself.

By using (A3.85) and (A3.91) we find:

α2 = − (β1 + β2)ω1

1 − β1ω1
⇔

(1 − β1ω1)α2 = −(β1 + β2)ω1 ⇔
ω1 = − α2

(1 − α2)β1 + β2
. (A3.94)

We note the following auxiliary result from (A3.94) for future reference:

1 − β1ω1 =
β1 + β2

(1 − α2)β1 + β2
. (A3.95)

By using (A3.90) and (A3.84) we obtain:

(1 − α2)ȳ =
β0 + β2m − β2ω0

1 − β1ω1
⇔

β2ω0 = −(1 − α2)ȳ (1 − β1ω1) + β0 + β2m ⇔
β2ω0 = β0 + β2m − (1 − α2)(β1 + β2)ȳ

(1 − α2)β1 + β2
, (A3.96)

where we have used (A3.95) in going from the second to the third line. (For
future reference we note here that only β2ω0 is determined.) By using (A3.86)
and (A3.92) we find:

1 + α1ω2 = − (β1 + β2)ω2

1 − β1ω1
⇔

1 = −
[

α1 + (β1 + β2)
(1 − α2)β1 + β2

β1 + β2

]
ω2 ⇔

ω2 = − 1

α1 + (1 − α2)β1 + β2
, (A3.97)

where we have once again used (A3.95) in going from the first to the second
line. Finally, by using (A3.87) and (A3.93) we obtain:

α1ω3 =
1 − (β1 + β2)ω3

1 − β1ω1
⇔

α1ω3 (1 − β1ω1) = 1 − (β1 + β2)ω3 ⇔
ω3 =

(1 − α2)β1 + β2

(β1 + β2) [α1 + (1 − α2)β1 + β2]
, (A3.98)

where we again used (A3.95) in going from the second to the third line. Since
we have now expressed the πi and ωi coefficients in terms of the structural
parameters we have fully determined the rational expectations solutions for
output and the price level.

(d) If the economy is in a liquidity trap then β2 = 0. It follows from (A3.96) that ω0

is not determined in that case, i.e. the price level is indeterminate. Furthermore,
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both (A3.90) and the combination of (A3.84) and (A3.94) yield solutions for π0

and there is guarantee that these solutions will be the same. Hence, the model
is inconsistent.

If consumption depends on real money balances, as Pigou suggested, then the
IS curve becomes:

yt = a0 − a1 [Rt − Et(pt+1 − pt)] + a2(mt − pt) + v1t, (A3.99)

where a2 > 0. It follows that even if the economy is in the liquidity trap (so that
Rt = RMIN) the AD curve will contain a real balance effect and β2 in (A3.79)
will be positive. All parameters will be uniquely determined and the model
will be consistent again.

Question 10: PIP meets the Pigou effect

(a) [This model is discussed in detail by McCallum (1980, pp. 726-727 and 741).]
Equation (Q3.24) is the IS curve which depends negatively on the real interest
rate (via investment) and positively on a real balance effect (via a wealth ef-
fect in consumption). Equation (Q3.25) is a standard LM curve. It depends
positively on output (via the transactions motive) and negatively on the nom-
inal interest rate (opportunity cost of holding money instead of bonds). Equa-
tion (Q3.26) is a Lucas supply function with an endogenous capacity effect in-
cluded (the term involving the capital stock, kt). The capital stock positively
affects both labour demand (because capital and labour are cooperative pro-
duction factors in a constant returns to scale production function) and output
(directly via the production function). This explains why α3 is positive. Equa-
tion (Q3.27) is the dynamic equation for the capital stock. Next period’s capital
stock, kt+1, depends in part on the previous period’s capital stock, kt, and in
part on current investment which depends negatively on the real interest rate.
Finally, equation (Q3.28) is the money supply rule and (Q3.29) is the definition
for the real interest rate.

(b) By substituting (Q3.25) and (Q3.29) into (Q3.24) we obtain the expression for
the AD curve:

yt = a0 − a1 [Rt − Et−1(pt+1 − pt)] + a2(mt − pt) + v1t

= a0 − a1
c0 + c1yt − (mt − pt) + v2t

c2
+ a1Et−1(pt+1 − pt)

+ a2(mt − pt) + v1t

= β0 + β1(mt − pt) + β2Et−1(pt+1 − pt) + vt, (A3.100)

where the βi coefficients and the composite shock term vt are defined as:

β0 ≡ a0c2 − a1c0

a1c1 + c2
, β1 ≡ a1 + a2c2

a1c1 + c2
, β2 ≡ a1c2

a1c1 + c2
,

β3 ≡ c2

a1c1 + c2
, β4 ≡ a1

a1c1 + c2
, vt ≡ β3v1t − β4v2t.

(c) By combining equations (Q3.26) and (A3.100) we obtain the following expres-
sion for pt:

pt =
β0 − α0 + β1mt − α2yt−1 − α3kt + vt − ut + α1Et−1 pt + β2Et−1(pt+1 − pt)

α1 + β1
.
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(A3.101)

By taking the conditional expectation of (A3.101) we find:

Et−1 pt =
β0 − α0 + β1Et−1mt − α2yt−1 − α3Et−1kt

α1 + β1

+
α1Et−1 pt + β2Et−1(pt+1 − pt)

α1 + β1
, (A3.102)

where we have used the law of iterated expectations (Et−1Et−1 pt = Et−1 pt

and Et−1Et−1 pt+1 = Et−1 pt+1), and noted that Et−1yt−1 = yt−1 and Et−1ut =
Et−1vt = 0. By deducting (A3.102) from (A3.101) we find:

pt − Et−1 pt =
β1[mt − Et−1mt] − α3[kt − Et−1kt] + vt − ut

α1 + β1
. (A3.103)

From the money supply rule (Q3.28) we derive that mt − Et−1mt = et (because
Et−1mt−1 = mt−1, Et−1yt−1 = yt−1, and Et−1et = 0) and from the lagged
version of equation (Q3.27) we obtain kt − Et−1kt = 0 (because Et−1kt−1 = kt−1

and Et−1rt−1 = rt−1). By using these results in (A3.103) we obtain the desired
expression for the expectational gap:

pt − Et−1 pt =
β1et + vt − ut

α1 + β1
. (A3.104)

The key thing to note about (A3.103) is that it does not contain the parameters
of the money supply rule. Indeed, equation (A3.104) is identical to equation
(3.24) in the text.

(d) We cannot conclude from (A3.104) that the policy ineffectiveness proposition
is valid in this model. This is because the Lucas supply curve (Q3.26) not only
contains pt − Et−1 pt but also the current capital stock, kt. Only if kt is also
independent from the parameters of the money supply rule can we conclude
that the PIP is valid. But kt depends on the real interest rate, rt−1, so we need to
check whether this variable depends on the parameters of the money supply
rule. In short, to investigate the validity of the PIP we must solve the model.

For convenience we restate the equations of the model here:

yt = α0 + α1
β1et + β3v1t − β4v2t − ut

α1 + β1
+ α2yt−1 + α3kt + ut, (A3.105)

kt+1 = γ1kt +
γ2

a1
[a0 − yt + v1t]

+
a2γ2

a1

[
mt − Et−1 pt − β1et + β3v1t − β4v2t − ut

α1 + β1

]
(A3.106)

yt = β0 + β1

[
mt − Et−1 pt − β1et + β3v1t − β4v2t − ut

α1 + β1

]
+ β2Et−1(pt+1 − pt) + β3v1t − β4v2t, (A3.107)

mt = µ0 + µ1mt−1 + µ2yt−1 + et. (A3.108)
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Equation (A3.105) is the AS curve (Q3.26) with (A3.104) substituted and noting
the expression for vt (given in (A2b) above). Equation (A3.106) is obtained by
using the capital accumulation equation (Q3.27) and substituting the solution
for the real interest rate, rt, which is implied by the IS curve. Equation (A3.107)
is obtained by substituting (A3.104) and the expression for vt (given in (A2b)
above) into the AD curve (A3.100). Finally, equation (A3.108) is the money
supply rule.

Without a real balance effect. It is easy to show that the PIP still holds if there is
no real balance effect in the IS curve. In that case a2 = 0 and it follows from
(A3.105)–(A3.106) that the dynamic system for output and the capital stock
does not depend on the parameters of the money supply rule:

[
1 0
γ2
a1

1

] [
yt

kt+1

]
=

[
α2 α3

0 γ1

] [
yt−1

kt

]

+

[
α0 + α1

β1et+β3v1t−β4v2t
α1+β1

+ β1ut
α1+β1

γ2
a1

[a0 + v1t]

]
. (A3.109)

By inverting the matrix on the left-hand side, we can rewrite (A3.109) as fol-
lows: [

yt

kt+1

]
= ∆

[
yt−1

kt

]
+ Γ, (A3.110)

where ∆ and Γ are defined as:

∆ ≡
[

α2 α3

− γ2α2
a1

γ1 − α3γ2
a1

]
, (A3.111)

Γ ≡

 α0 + α1

β1et+β3v1t−β4v2t
α1+β1

+ β1ut
α1+β1

γ2
a1

[
a0 + v1t − α0 − α1

β1et+β3v1t−β4v2t
α1+β1

− β1ut
α1+β1

]

 . (A3.112)

We denote the characteristic roots of ∆ by λ1 and λ2. Equation (A3.110) repres-
ents a stable system provided these characteristic roots are less than unity in
absolute value (i.e. |λ1| < 1 and |λ2| < 1). (See Azariadis (1993, pp. 62-67) for
further details on the stability issue.)

With a real balance effect. If there is a non-zero real balance effect in the IS
curve (a2 �= 0), then (A3.105)–(A3.108) constitutes a simultaneous system in
yt, Et−1 pt+1, mt and kt+1 and the real and monetary subsystems do not separ-
ate. It is therefore to be expected that the PIP will not hold. To solve the model,
it is most convenient to write it in the following format first.


yt

kt+1

Et−1 pt+1

mt


 = ∆




yt−1

kt

Et−1 pt

mt−1


+ Γ, (A3.113)
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where ∆ ≡ ∆−1
1 ∆2 and Γ ≡ ∆−1

1 Γ1 and ∆1, ∆2, Γ1 are defined as:

∆1 ≡




1 0 0 0
γ2
a1

1 0 − a2γ2
a1

1 0 −β2 −β1

0 0 0 1


 ,

∆2 ≡




α2 α3 0 0
0 γ1 − a2γ2

a1
0

0 0 −(β1 + β2) 0
µ2 0 0 µ1


 ,

Γ1 ≡




α0 + α1
β1et+β3v1t−β4v2t

α1+β1
+ β1ut

α1+β1
γ2
a1

[
a0 + v1t − a2

β1et+β3v1t−β4v2t−ut
α1+β1

]
β0 − β1

β1et+β3v1t−β4v2t−ut
α1+β1

+ β3v1t − β4v2t

µ0 + et


 .

In principle (A3.113) can be solved by using the methods of Blanchard and
Kahn (1980). But it is clear that PIP will not hold, i.e. that output will generally
be affected by monetary policy.

(e) McCallum (1980, p. 727) argues that capacity output in period t (ȳt) should
be defined as that value of actual output that will materialize if there is (i) no
expectational error in period t (so that Et−1 pt = pt) and (ii) output was equal
to capacity output in the previous period also (so that yt−1 = ȳt−1). This is
what the definition in equation (Q3.30) captures. It is obtained by substituting
Et−1 pt = pt and yt−1 = ȳt−1 in the AS curve (Q3.26).

(f) By using (Q3.26) and (Q3.30) we find the following expression for the output
gap:

yt − ȳt = α1(pt − Et−1 pt) + α2 [yt−1 − ȳt−1] . (A3.114)

Since we have already shown that pt − Et−1 pt does not depend on the para-
meters of the money supply rule (see equation (A3.104) above) we conclude
that the reinterpreted PIP holds in the model. Monetary policy cannot be used
to stabilize the output gap.

Question 11: PIP and the output gap

(a) [This model is discussed in detail by McCallum (1980, p. 729).] Equation
(Q3.31) is the IS curve which depends negatively on the real interest rate (via
investment) and positively on a real balance effect (via a wealth effect in con-
sumption). Equation (Q3.32) is a standard LM curve. It depends positively
on output (via the transactions motive) and negatively on the nominal interest
rate (opportunity cost of holding money instead of bonds). Equation (Q3.33)
is a Lucas supply function with an endogenous capacity effect included (the
term involving the real interest rate, rt). The rationale behind this term is as
follows. Labour supply depends positively on the real interest rate via the in-
tertemporal substitution effect (see Chapter 15). If rt is high (relative to the
rate of time preference) then households postpone consumption of goods and
leisure and thus increase labour supply. Finally, equation (Q3.34) is the money
supply rule and (Q3.35) is the definition of the real interest rate.
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(b) By substituting (Q3.35) into (Q3.32) and using (Q3.31) we can obtain the fol-
lowing matrix expression for output, yt, and the real interest rate, rt:[

1 a1

c1 −c2

] [
yt

rt

]
=

[
a0 + a2(mt − pt) + v1t

−c0 + (mt − pt) + c2Et−1(pt+1 − pt) − v2t

]
. (A3.115)

By solving (A3.115) we obtain:

yt = β0 + β1(mt − pt) + β2Et−1(pt+1 − pt) + β3v1t − β4v2t, (A3.116)

rt = γ0 − γ1(mt − pt) − γ2Et−1(pt+1 − pt) + γ3v1t + γ4v2t, (A3.117)

where the βi and γi coefficients are defined as:

β0 ≡ a0c2 − a1c0

a1c1 + c2
, β1 ≡ a1 + a2c2

a1c1 + c2
, β2 ≡ a1c2

a1c1 + c2
,

β3 ≡ c2

a1c1 + c2
, β4 ≡ a1

a1c1 + c2
, γ0 ≡ a0c1 + c0

a1c1 + c2
,

γ1 ≡ 1 − a2c1

a1c1 + c2
, γ2 ≡ c2

a1c1 + c2
, γ3 ≡ c1

a1c1 + c2
,

γ4 ≡ 1

a1c1 + c2
.

Equation (A3.116) is the AD curve and equation (A3.117) is the quasi-reduced
form expression for the real interest rate (similar to what we called the H(·)
function in Chapter 2).

By substituting (A3.116)–(A3.117) into the AS curve (Q3.33) we find the follow-
ing quasi-reduced form expression for pt:

pt =
β0 − α0 − α3γ0 + (β1 + α3γ1)mt − α2yt−1

α1 + β1 + α3γ1

+
(β2 + α3γ2)Et−1(pt+1 − pt)

α1 + β1 + α3γ1

+
α1Et−1 pt + (β3 − α3γ3)v1t − (β4 + α3γ4)v2t − ut

α1 + β1 + α3γ1
. (A3.118)

By taking the conditional expectation of (A3.118) we find:

Et−1 pt =
β0 − α0 − α3γ0 + (β1 + α3γ1)Et−1mt − α2yt−1

α1 + β1 + α3γ1

+
(β2 + α3γ2)Et−1(pt+1 − pt) + α1Et−1 pt

α1 + β1 + α3γ1
, (A3.119)

where we have used the law of iterated expectations (Et−1Et−1 pt = Et−1 pt

and Et−1Et−1 pt+1 = Et−1 pt+1), and noted that Et−1yt−1 = yt−1 and Et−1ut =
Et−1v1t = Et−1v2t = 0. By deducting (A3.119) from (A3.118) we find:

pt − Et−1 pt =
(β1 + α3γ1)et + (β3 − α3γ3)v1t − (β4 + α3γ4)v2t − ut

α1 + β1 + α3γ1
, (A3.120)

where we have used the money supply rule (Q3.34) by noting that mt − Et−1mt

= et. Just as in the model of question 10, the expectational gap does not contain
the parameters of the money supply rule.
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(c) No real balance effect. If there is no real balance effect in the IS curve (so that a2 =
0) then equations (Q3.31) and (Q3.33) form a separate subsystem determining
yt and rt independent from the monetary side of the model. Indeed, by solving
(Q3.31) for the real interest rate, rt, and substituting the result into (Q3.33) we
obtain:

yt =
a1

a1 + α3

[
α0 + α1 [pt − Et−1 pt] + α2yt−1 +

α3

a1
(a0 + v1t)

]
. (A3.121)

Since α3 > 0 it follows that 0 < a1/(a1 + α3) < 1. Hence, equation (A3.121) is
a stable (stochastic) difference equation in yt. Since the expectational gap does
not contain the parameters of the money supply rule (see (A3.120)), it follows
that the PIP is valid in this case.

With a real balance effect. If there is a real balance effect in the IS curve (and
a2 �= 0), then the system does not separate into a real and a monetary block.
In principle the model can be solved by employing the methods of Blanchard
and Kahn (1980).

(d) By using the proposed capacity measure in equation (Q3.33) we find the fol-
lowing expression for the output gap:

yt − ȳt = α1[pt − Et−1 pt] + α2 [yt−1 − ȳt−1] . (A3.122)

Since we have already shown that pt − Et−1 pt does not depend on the para-
meters of the money supply rule (see equation (A3.120) above) we conclude
that the reinterpreted PIP holds in the model. Monetary policy cannot be used
to stabilize the output gap.

Question 12: Contemporaneous information

(a) [A very similar model is discussed in detail by McCallum (1980, pp. 736-737
and 742-743).] Equation (Q3.36) is the expectations-augmented AS curve. Ad-
justment costs are abstracted from so there is no lagged output term in (Q3.36).
Agents base their labour supply decisions on period-t − 1 dated information.
Equation (Q3.37) is the AD curve which depends positively on real money bal-
ances and the expected future inflation rate. (Expected inflation enters the AD
curve because the LM curve depends on the nominal rate of interest and the IS
curve on the real interest rate, the difference between the two being the expec-
ted inflation rate.) It is implicitly assumed that agents possess period-t dated
information when forming expectations about future inflation. Hence, the AD
curve is based on contemporaneous information. Finally, equation (Q3.38) is
the money supply rule.

(b) We solve the model by means of the method of undetermined coefficients. We
postulate the following trial solutions for yt and pt:

yt = π0 + π1mt−1 + π2yt−1 + π3ut + π4vt + π5et, (A3.123)

pt = ω0 + ω1mt−1 + ω2yt−1 + ω3ut + ω4vt + ω5et, (A3.124)

where the πi and ωi parameters must be determined. It follows from (A3.124)
that:

Et−1 pt = ω0 + ω1mt−1 + ω2yt−1, (A3.125)
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where we have used the fact that Et−1yt−1 = yt−1, Et−1mt−1 = mt−1, and
Et−1ut = Et−1vt = Et−1et = 0. By deducting (A3.125) from (A3.124) we obtain:

pt − Et−1 pt = ω3ut + ω4vt + ω5et. (A3.126)

By substituting (A3.126) into (Q3.36) and gathering terms we find:

yt = α0 + (1 + α1ω3)ut + α1ω4vt + α1ω5et. (A3.127)

The requirement that (A3.123) and (A3.127) must be identical yields the fol-
lowing restrictions:

π0 = α0, (A3.128)

π1 = 0, (A3.129)

π2 = 0, (A3.130)

π3 = 1 + α1ω3, (A3.131)

π4 = α1ω4, (A3.132)

π5 = α1ω5. (A3.133)

Next we use (A3.124) to compute Et pt+1:

Et pt+1 = Et [ω0 + ω1mt + ω2yt + ω3ut+1 + ω4vt+1 + ω5et+1]

= ω0 + ω1mt + ω2yt, (A3.134)

where we have used the fact that Etyt = yt, Etmt = mt, and Etut+1 = Etvt+1 =
Etet+1 = 0. By substituting (A3.134) into the AD curve (Q3.37) we find:

yt = β0 + β1(mt − pt) + β2Et(pt+1 − pt) + vt

= β0 + β1mt − β1 pt + β2(ω0 + ω1mt + ω2yt − pt) + vt

= β0 + β2ω0 + (β1 + β2ω1)mt − (β1 + β2)pt + β2ω2yt + vt

=
β0 + β2ω0 + (β1 + β2ω1)mt − (β1 + β2)pt + vt

1 − β2ω2
, (A3.135)

where we implicitly assume that β2ω2 �= 1 (the validity of this assumption is
verified below). By substituting (A3.124) and (Q3.38) into (A3.135) and collect-
ing terms we arrive at the following expression:

yt =
β0 + (β1 + β2ω1)µ0 − β1ω0

1 − β2ω2
+

(β1 + β2ω1)µ1 − (β1 + β2)ω1

1 − β2ω2
mt−1

+
(β1 + β2ω1)µ2 − (β1 + β2)ω2

1 − β2ω2
yt−1 − (β1 + β2)ω3

1 − β2ω2
ut

+
1 − (β1 + β2)ω4

1 − β2ω2
vt +

β1 + β2ω1 − (β1 + β2)ω5

1 − β2ω2
et. (A3.136)

Equation (A3.136) must be identical to (A3.123). This yields the remaining re-
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strictions:

π0 =
β0 + (β1 + β2ω1)µ0 − β1ω0

1 − β2ω2
, (A3.137)

π1 =
(β1 + β2ω1)µ1 − (β1 + β2)ω1

1 − β2ω2
, (A3.138)

π2 =
(β1 + β2ω1)µ2 − (β1 + β2)ω2

1 − β2ω2
, (A3.139)

π3 = − (β1 + β2)ω3

1 − β2ω2
, (A3.140)

π4 =
1 − (β1 + β2)ω4

1 − β2ω2
, (A3.141)

π5 =
β1 + β2ω1 − (β1 + β2)ω5

1 − β2ω2
. (A3.142)

By using (A3.128)–(A3.133) and (A3.137)–(A3.142) we can compute all the un-
known coefficients. It follows from (A3.129) and (A3.138) that:

(β1 + β2)ω1 = (β1 + β2ω1)µ1 ⇔ ω1 =
β1µ1

β1 + β2(1 − µ1)
. (A3.143)

From (A3.130) and (A3.139) we get:

(β1 + β2)ω2 = (β1 + β2ω1)µ2 ⇔ ω2 =
β1µ2

β1 + β2(1 − µ1)
, (A3.144)

where we have substituted (A3.143) in going from the first to the second line.
We compute from (A3.144) that:

1 − β2ω2 =
β1 + β2(1 − µ1 − β1µ2)

β1 + β2(1 − µ1)
, (A3.145)

from which it follows that β2ω2 �= 1 provided the numerator of (A3.144) is
non-zero. Since 0 < µ1 < 1, the numerator of (A3.145) is certainly positive for
counter-cyclical policy rules (for which µ2 < 0) or for a non-cyclical policy rule
(for which µ2 = 0). All that the condition β2ω2 �= 1 rules out are highly pro-
cyclical policy rules. Since these do not make any sense anyway, we simply
assume that µ2 ≤ 0 from here on.

By using (A3.131) and (A3.140) we find:

1 + α1ω3 = − (β1 + β2)ω3

1 − β2ω2
⇔ ω3 = − 1 − β2ω2

α1(1 − β2ω2) + β1 + β2
, (A3.146)

where 1− β2ω2 is given in (A3.145). By equating (A3.132) and (A3.141) we get:

α1ω4 =
1 − (β1 + β2)ω4

1 − β2ω2
⇔ ω4 =

1

α1(1 − β2ω2) + β1 + β2
. (A3.147)

By equating (A3.133) and (A3.142) we obtain:

α1ω5 =
β1 + β2ω1 − (β1 + β2)ω5

1 − β2ω2
⇔ ω5 =

β1 + β2ω1

α1(1 − β2ω2) + β1 + β2
. (A3.148)
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Finally, we find the constant term by equating (A3.128) and (A3.137):

α0 =
β0 + (β1 + β2ω1)µ0 − β1ω0

1 − β2ω2
⇔

ω0 =
β0 + (β1 + β2ω1)µ0 − (1 − β2ω2)α0

β1
. (A3.149)

Now that all the πi and ωi coefficients have been determined, we have com-
pleted the derivation of the rational expectations solution for output and the
price level.

By substituting (A3.146)–(A3.148) into (A3.126) we find that the expectational
gap can be written as:

pt − Et−1 pt = ω3ut + ω4vt + ω5et

=
−(1 − β2ω2)ut + vt + (β1 + β2ω1)et

α1(1 − β2ω2) + β1 + β2
. (A3.150)

Since µ1 and µ2 appear in the definitions for ω1 and ω2 it is clear from (A3.150)
that the policy ineffectiveness proposition is not valid in this model. By substi-
tuting (A3.150) into (Q3.36) and simplifying we obtain the rational expectations
solution for output:

yt = α0 +
(β1 + β2)ut + α1vt + α1(β1 + β2ω1)et

α1(1 − β2ω2) + β1 + β2
. (A3.151)

The PIP does not hold in this model because there is an informational asym-
metry between AS and AD. The former is based on period t − 1 dated inform-
ation whereas the latter is based on period t dated information.

(c) The asymptotic variance of output is defined as:

σ2
y ≡ Et−∞ [yt − Et−∞yt]

2 . (A3.152)

By using (A3.151) in (A3.152) we find after some straightforward computa-
tions:

σ2
y =

(β1 + β2)
2σ2

u + α2
1σ2

v + α2
1(β1 + β2ω1)

2σ2
e

[α1(1 − β2ω2) + β1 + β2]
2

. (A3.153)

Since the µ2 parameter appears in the expression for ω2 only (see (A3.144))
it follows from (A3.153) that countercyclical monetary policy can be used to
reduce output fluctuations. Indeed, by using (A3.144) and (A3.153) we find:

∂σ2
y

∂µ2
=

2σ2
y

α1(1 − β2ω2) + β1 + β2

α1β1β2

β1 + β2(1 − µ1)
> 0. (A3.154)

The lower is µ2, the lower is the asymptotic variance of output.
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Question 13: Sticky prices

(a) Equation (Q3.39) replaces the usual Lucas supply curve. It postulates that the
actual price level, pt, is a weighted average of the equilibrium price level, p̃t, and
the expectational error made (on the basis of period-t − 1 information) about
this equilibrium price. The nice thing about (Q3.39) is that it nests various
cases, depending on the magnitude of θ. If θ = 1, prices are perfectly flexible,
if 0 < θ < 1 the price is partially sticky (and dependent on “stale” information),
and if θ = 0 the price is completely predetermined. It thus incorporates both
classical and Keynesian scenarios as special cases.

Equation (Q3.40) is the standard AD curve, which depends positively on real
money balances and the expected future inflation rate. Equation (Q3.41) is the
money supply rule, which incorporates counter-cyclical monetary policy if µ2

is negative. Equation (Q3.42) is the expression for full employment output,
which grows at rate ζ0 and has a stochastic component ut.

(b) In order to solve the general model (with 0 ≤ θ ≤ 1) we must first find the
rational expectations solution for the equilibrium price level, p̃t. If we set θ =
1 it follows from equation (Q3.39) that pt = p̃t and thus, by definition, that
yt = ȳt for all time periods. So the rational expectations solution for output is
simply the path for ȳt (given in (Q3.42)):

yt = ȳt ⇒ yt = ζ0 + yt−1 + ut. (A3.155)

Hence it is obviously true that the policy ineffectiveness proposition is valid
with perfectly flexible prices (equation (A3.155) does not contain the paramet-
ers of the money supply rule). By substituting yt = ȳt into (Q3.40) we find that
the equilibrium price obeys the following expectational difference equation:

ȳt = β0 + β1(mt − p̃t) + β2Et−1( p̃t+1 − p̃t) + vt. (A3.156)

Since this expression contains expectations formed in period t− 1, we postulate
the following trial solution:

p̃t = π0 + π1mt−1 + π2ȳt−1 + π3vt + π4et + π5ut, (A3.157)

where the πi coefficients must be determined. It follows from (A3.157) that
Et−1 p̃t+1 is given by:

Et−1 p̃t+1 = Et−1(π0 + π1mt + π2ȳt + π3vt+1 + π4et+1 + π5ut+1)

= π0 + π1Et−1mt + π2Et−1ȳt

= π0 + π1 [µ0 + µ1mt−1 + µ2ȳt−1] + π2 [ζ0 + ȳt−1] , (A3.158)

where we have used the fact that Et−1vt+1 = Et−1et+1 = Et−1ut+1 = 0 in
going from the first to the second line, and employed (Q3.41)–(Q3.42) as well
as Et−1et = Et−1ut = 0 in going from the second to the third line. It also follows
from (A3.157) that Et−1 p̃t is equal to:

Et−1 p̃t = π0 + π1mt−1 + π2ȳt−1, (A3.159)

where we have used the fact that Et−1vt = Et−1et = Et−1ut = 0. By combining
(A3.158) and (A3.159) we find the following expression for the expected future
equilibrium inflation rate:

Et−1 ( p̃t+1 − p̃t) = π1µ0 + π2ζ0 − π1(1 − µ1)mt−1 + π1µ2ȳt−1. (A3.160)
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By substituting (A3.160) as well as (Q3.41)–(Q3.42) into (A3.156), and noting
that yt = ȳt, we can solve for p̃t. After some manipulations we find:

p̃t =
β0 + β1µ0 + β2 [π1µ0 + π2ζ0] − ζ0

β1
+

β1µ1 − β2π1(1 − µ1)

β1
mt−1

+
µ2(β1 + β2π1) − 1

β1
ȳt−1 +

1

β1
vt + et − 1

β1
ut. (A3.161)

Equations (A3.157) and (A3.161) must be identical. This requirement yields the
following parameters restrictions:

π0 ≡ β0 + β1µ0 + β2 (π1µ0 + π2ζ0) − ζ0

β1
, (A3.162)

π1 ≡ β1µ1 − β2π1(1 − µ1)

β1
, (A3.163)

π2 ≡ µ2(β1 + β2π1) − 1

β1
, (A3.164)

π3 ≡ 1

β1
, (A3.165)

π4 ≡ 1, (A3.166)

π5 ≡ − 1

β1
. (A3.167)

Equation (A3.163) can be solved for π1:

π1 =
β1µ1

β1 + β2(1 − µ1)
. (A3.168)

By using (A3.168) in (A3.164) we find the solution for π2:

π2 = − 1

β1

[
1 − β1µ2

β1 + β2

β1 + β2(1 − µ1)

]
. (A3.169)

Since π1 and π2 are both known, the constant term π0 is also uniquely deter-
mined in (A3.162). After some manipulations we obtain:

β1π0 ≡ β0 + µ0(β1 + β2π1) + ζ0(β2π2 − 1) ⇔
π0 =

β0

β1
+

β1 + β2

β1

[
β1µ0 + β2µ2ζ0

β1 + β2(1 − µ1)
− ζ0

β1

]
. (A3.170)

(c) To solve the general model, with 0 < θ < 1, we first use (A3.157) to compute:

p̃t − Et−1 p̃t = π3vt + π4et + π5ut

=
vt − ut + β1et

β1
, (A3.171)

where we have used (A3.165)–(A3.167) in the final step. By substituting (A3.171)
into equation (Q3.39) we obtain the following expression for the actual price
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level:

pt = p̃t − (1 − θ)( p̃t − Et−1 p̃t)

= p̃t − (1 − θ)
vt − ut + β1et

β1
(A3.172)

We derive from (A3.172) that expected actual future inflation equals expected
equilibrium future inflation:

Et−1 (pt+1 − pt) = Et−1 ( p̃t+1 − p̃t) , (A3.173)

where we have used the fact that Et−1vt+i = Et−1ut+i = Et−1et+i = 0 for
i ≥ 0. By substituting (A3.172)–(A3.173) into equation (Q3.40) we obtain the
following expression for actual output:

yt = β0 + β1

[
mt − p̃t + (1 − θ)

vt − ut + β1et

β1

]
+ β2Et−1( p̃t+1 − p̃t) + vt

(A3.174)

By substituting (Q3.41), (A3.157), and (A3.160) into (A3.174), we obtain the
following expression:

yt = [β0 + β1µ0 + β2(π1µ0 + π2ζ0) − β1π0]

+ [β1µ1 − β2π1(1 − µ1) − β1π1] mt−1

+ [µ2(β1 + β2π1) − β1π1] ȳt−1 + [1 − β1π3 + 1 − θ] vt

+ β1 [1 − π4 + 1 − θ] et − β1

[
π5 +

1

β1
− θ

β1

]
ut

=ζ0 + ȳt−1 + (1 − θ) [vt + β1et] + θut, (A3.175)

where we have used (A3.162)–(A3.167) in the final step. Since (A3.175) does
not contain the parameters of the money supply rule, the policy ineffectiveness
proposition holds despite the fact that prices are sticky. The reason for this
is that the private agents and the policy maker possess the same information
(unlike in the Fischer model). Any countercyclical policy will just affect the
price level but not output. See also McCallum (1980, p. 731).

(d) By using (Q3.42) and (A3.175) we can derive the following expression for the
output gap:

yt − ȳt = (1 − θ) [vt − ut + β1et] . (A3.176)

The asymptotic variance of the output gap is given by:

σ2
y−ȳ ≡ Et−∞ [(yt − ȳt) − Et−∞(yt − ȳt)]

2

= (1 − θ)2
[
σ2

v + σ2
u + β2

1σ2
v

]
, (A3.177)

where we have incorporated the stochastic properties of the shock terms (men-
tioned in the question) in the final step. It is straightforward to derive that the
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asymptotic variance of the output gap increases as θ gets smaller, i.e. as the
degree of price stickiness increases:

∂σ2
y−ȳ

∂θ
= −2(1 − θ)

[
σ2

v + σ2
u + β2

1σ2
v

]
< 0. (A3.178)

Intuitively, increased price stickiness makes the slope of the AS curve flatter.
This exacerbates the output effects of the shocks affecting the economy.

Question 14: Automatic stabilizer

(a) Equation (Q3.43) is the equilibrium condition in the goods market. Equation
(Q3.44) shows that consumption is proportional to after-tax income, with the
marginal propensity to consume between 0 and 1 (i.e. 0 < c(1 − t) < 1).
Equation (Q3.45) is a stochastic accelerator model of investment.

(b) To compute the asymptotic variances it is useful to first obtain the reduced
form expression for output. By substituting (Q3.44)–(Q3.45) into (Q3.43) we
obtain a difference equation in output:

Yt = c(1 − t)Yt + Ī + vYt−1 + Ut + Ḡ ⇒
Yt = x + λYt−1 + µUt, (A3.179)

where x, λ, and µ are defined as follows:

x ≡ Ī + Ḡ

1 − c(1 − t)
, (A3.180)

λ ≡ v

1 − c(1 − t)
, (A3.181)

µ ≡ 1

1 − c(1 − t)
. (A3.182)

In equation (A3.180) the variable x summarizes the effects on output of the
(constant) exogenous variables. By using the condition stated in the question
(0 < v < 1 − c(1 − t)) we find from (A3.181) that the output persistence coeffi-
cient, λ, lies between 0 and 1. This means that the difference equation (A3.179)
is stable. Furthermore, we observe from (A3.182) that the multiplier effect mag-
nifies the effects of stochastic investment shocks (i.e. µ > 1). Note finally, that
it follows from (A3.181)–(A3.182) that λ and µ are related according to λ = vµ.
We use this result below to simplify the expressions.

The asymptotic variance of output is defined as follows:

σ2
Y ≡ Et−∞ [Yt − Et−∞Yt]

2 , (A3.183)

where the expectations operator, Et−∞, indicates that we are computing the
variance of the stochastic output process from the perspective of someone liv-
ing at the beginning of time (no actual realizations of output and the error term
are known; only the process (A3.179) is known). We know that:

Et−∞Yt = Et−∞ [x + λYt−1 + µUt]

= x + λEt−∞Yt−1 + µEt−∞Ut

= x + λEt−∞Yt−1, (A3.184)
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where we have used the fact that x is exogenous, λ is a known parameter, and
the expected value of the error term is zero (Et−∞Ut = 0). It follows from
(A3.179) and (A3.184) that:

Yt − Et−∞Yt = x + λYt−1 + µUt − [x + λEt−∞Yt−1]

= λ [Yt−1 − Et−∞Yt−1] + µUt. (A3.185)

By using (A3.185) in (A3.183) we obtain the following expression for σ2
Y:

σ2
Y ≡ Et−∞ [Yt − Et−∞Yt]

2

= Et−∞ [λ [Yt−1 − Et−∞Yt−1] + µUt]
2

= Et−∞

[
λ2 [Yt−1 − Et−∞Yt−1]

2 + µ2U2
t + 2λµ [Yt−1 − Et−∞Yt−1] Ut

]
= λ2Et−∞ [Yt−1 − Et−∞Yt−1]

2 + µ2Et−∞U2
t

+ 2λµEt−∞ [Yt−1 − Et−∞Yt−1] Ut. (A3.186)

We know that Ut is independent from lagged output (Et−∞Yt−1Ut = 0) and
that it has an expected value of zero (Et−∞ (Et−∞Yt−1) Ut = (Et−∞Yt−1) Et−∞Ut

= 0) so the third term on the right-hand side of (A3.186) drops out. Further-
more, we know that the output process (A3.179) is stationary (because |λ| < 1)
so that the first term on the right-hand side is equal to σ2

Y also. Finally, we

know that Et−∞U2
t = σ2. By using all these results in (A3.186) we obtain the

following expression:

σ2
Y = λ2σ2

Y + µ2σ2 ⇒ σ2
Y =

µ2σ2

1 − λ2
=

λ2

1 − λ2

σ2

v2
. (A3.187)

The asymptotic variance of output is a multiple of the variance of the shock
term in the investment equation. The shock multiplier, λ2/(1 − λ2), is higher
the more persistent is the output process, i.e. the closer is λ to unity in (A3.179).

To derive the asymptotic variance of Ct we could follow the same steps as for
output but there is a quicker way which directly exploits equation (Q3.44). We
derive:

σ2
C ≡ Et−∞ [Ct − Et−∞Ct]

2

= Et−∞ [c(1 − t)Yt − Et−∞c(1 − t)Yt]
2

= c2(1 − t)2Et−∞ [Yt − Et−∞Yt]
2

= c2(1 − t)2σ2
Y =

c2(1 − t)2λ2

1 − λ2
· σ2

v2
, (A3.188)

where we have used (A3.187) in the final step. Just like for output, the asymp-
totic variance of consumption is proportional to the variance of the shock term
in the investment equation. This is, of course, not surprising because consump-
tion is proportional to output.

Finally, to derive the asymptotic variance of investment we use equation (Q3.45):

σ2
I ≡ Et−∞ [It − Et−∞ It]

2

= Et−∞ [ Ī + vYt−1 + Ut − Ī − vEt−∞Yt−1]
2

= v2Et−∞ [Yt−1 − Et−∞Yt−1]
2 + Et−∞U2

t

= v2σ2
Y + σ2. (A3.189)
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The asymptotic variance of investment has two sources, namely the variance
induced by the variance in output (first term on the right-hand side) and the
variance in the investment process itself (second term). By using (A3.187) in
(A3.189) and simplifying we obtain:

σ2
I = v2σ2

Y + σ2 = v2 λ2

1 − λ2

σ2

v2
+ σ2 =

1

1 − λ2
σ2. (A3.190)

(c) We use the asymptotic variances as measures for stabilization in the economy.
We observe from (A3.181) that the tax rate affects the persistence parameter. By
differentiating (A3.187) with respect to t we get:

∂σ2
Y

∂t
=

σ2

v2

∂ 1
λ−2−1

∂t
=

σ2

v2

2λ−3

[λ−2 − 1]
2

∂λ

∂t

= −σ2

v2

2λ−3

[λ−2 − 1]
2

c

1 − c(1 − t)
< 0. (A3.191)

The tax acts as an automatic stabilizer. An increase in t reduces both output
persistence (λ falls) and reduces the impact effect of shocks originating from
the investment sector (µ falls). It is not difficult to derive from, respectively,
(A3.188) and (A3.189), that the tax also reduces the asymptotic variances of
consumption and investment.



Chapter 4

Anticipation effects and
economic policy

Question 1: Short questions

(a) “A permanent (unanticipated) increase in the labour income tax causes an im-
mediate boost in firm investment because employers want to replace workers
by machines.” Explain and evaluate this proposition.

(b) “A permanent investment subsidy stimulates long-run investment much more
than a temporary subsidy does. The opposite holds in the impact period.”
Explain and evaluate this proposition.

(c) “An anticipated increase in the investment subsidy leads to an immediate re-
duction in firm investment.” Explain and evaluate this proposition.

(d) Suppose you are a somewhat junior minister of Finance. To stimulate invest-
ment in green energy there is a subsidy on investment in capital that generates
electricity in an environmental friendly way. However, due to its overwhelm-
ing success, this arrangement has become too expensive. There are simply too
many small firms making use of this policy initiative. You reach the decision
that you will have to abolish the subsidy. One of your advisers recommends
to implement this change immediately to prevent a temporary rush. Another
adviser disagrees, however, and tells you that it does not matter whether you
announce it or not, since it will not have anticipation effects. How is it possible
that these two persons reach different conclusions? With whom do you agree?
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Question 2: The IS-LM model with sticky prices

Consider a closed economy with sticky prices and an efficient term structure of in-
terest rates:

y = −σRL + g, (Q4.1)

m − p = −λRS + γy + α, (Q4.2)

ṗ = φ(y − ȳ), (Q4.3)

RL − ṘL

RL
= RS. (Q4.4)

Here m is the logarithm of the money supply, g is the logarithm of (an indicator for)
budgetary policy, p is the logarithm of the price level, y (ȳ) is the logarithm of the
(natural) output level. RL is the yield on long-term bonds (“perpetuities”), and RS is
the short-term interest rate.

(a) Provide a brief interpretation for these equations.

(b) Demonstrate the effect of an unanticipated and permanent increase in the nat-
ural output level (ȳ) on actual output, the long-term and short-term interest
rates, the price level, and the real money supply. Show the effects in a diagram
with time on the horizontal axis, and use tA as the indicator for the time at
which the shock in announced (“announcement time”).

(c) Now redo part b for the case in which the shock is announced (i.e. becomes
known to the public) before it actually takes place. The time at which the shock
actually occurs (the “implementation time”) is tI , so we assume that tA < tI .

(d) Show that an unanticipated and permanent budgetary expansion (rise in g)
leads to an immediate increase in the long-term interest rate. Show what hap-
pens (at impact, during transition, and in the long run) to output, the price
level, and the short-term interest rate. Illustrate your answers in an impulse-
response diagram.

(e) Show that an anticipated and permanent budgetary expansion (a future in-
crease in g) will cause a recession at first and will only stimulate the economy
further into the future. Show what happens (at impact, during transition, and
in the long run) to output, the price level, and the short-term interest rate. Il-
lustrate your answers in an impulse-response diagram.

(f) What happens to the long-term interest rate if the anticipated budgetary ex-
pansion (studied in the previous subquestion) does not take place? (At imple-
mentation time, tI , the government announces that it will keep g unchanged).
Illustrate your answers in an impulse-response diagram.

(g) � Assume that the real (rather than the nominal) long-term interest rate, rL ≡
RL − ṗ, features in equation (Q4.1). Assume furthermore that 0 < σφ < 1.
Study the (impact, transitional, and long-run) effects of an unanticipated and
permanent technology shock (an increase in ȳ). Illustrate your answers in an
impulse-response diagram.
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� Question 3: Leaning against the wind

[Based on Turnovsky (1979)] Consider the following model of a small open economy
featuring perfect capital mobility and sluggish price adjustment:

y = −ηR + δ(e + p∗ − p), η > 0, 0 < δ < 1, (Q4.5)

m − p = y − λR, λ > 0, (Q4.6)

ṗ = φ(y − ȳ), φ > 0, (Q4.7)

R = R∗ + ė, (Q4.8)

where y is actual output, R is the domestic interest rate, e is the nominal exchange
rate, p∗ is the exogenous foreign price level, p is the domestic price level, m is the
nominal money supply, ȳ is (exogenous) full employment output, and R∗ is the exo-
genous world interest rate. All variables, except the two interest rates, are measured
in logarithms. As usual, a dot above a variables denotes that variable’s time rate of
change, i.e. ṗ ≡ dp/dt and ė ≡ de/dt. Assume that the policy maker adopts the
following policy rule for the nominal money supply:

m − m̄ = −µ(e − ē), µ ≷ 0, (Q4.9)

where m̄ is the exogenous component of money supply, ē is the equilibrium exchange
rate, and µ is a policy parameter.

(a) Interpret the equations of the model. Which are the endogenous and which
are the exogenous variables? Explain why the policy rule embodies ‘leaning
against the wind’ if µ > 0. What do we mean by ‘leaning with the wind’?

(b) Derive the steady-state values of p and e as a function of the exogenous vari-
ables (denote the steady-state level of p by p̄).

(c) Show that the dynamic model can be written in the form:

[
ṗ
ė

]
= ∆

[
p − p̄
e − ē

]
with ∆ a 2 × 2 matrix. Hint: write the output gap and interest differential

as

[
y − ȳ

R − R∗
]

= Γ

[
p − p̄
e − ē

]
, and then use (Q4.5) and (Q4.7) to write

[
ṗ
ė

]
=

Ξ

[
y − ȳ

R − R∗
]

.

(d) Under what condition(s) is the model saddle-point stable? Which is the jump-
ing variable and which is the predetermined variable?

(e) Illustrate the phase diagram of the model for the case where the policy maker
engages strongly in ‘leaning against the wind’ (so that ηµ > λδ).

(f) Assume that ηµ = λδ. Derive the (impact, transitional, and long-term) effects
of an unanticipated and permanent increase in the foreign price level, p∗. Why
is there no transitional dynamics in this case?

Question 4: The term structure of interest rates

Assume that there are two investment instruments: very short-term bonds and per-
petuities (bonds with infinite term to maturity). The short-term bonds carry an in-
terest rate of RS whilst the perpetuities carry a coupon payment of unity and have
an internal rate of return equal to RL.
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(a) Derive the condition for the efficient term structure of interest rates.

(b) Assume that the short-term interest rate is initially equal to R0
S. Show the dy-

namic effects on the long-term interest rate, RL, of an anticipated increase of
the short-term interest rates in the future. As in the book, let tA represent the
time at which the news about the shock is received by the agents (the “an-
nouncement” time) and let tI be the time at which the shock actually happens
(the “implementation” time). The short-term interest rate is thus equal to R0

S

for tA ≤ t < tI and equal to R1
S for t > tI . Illustrate your answer with the aid

of a phase diagram.

(c) Show what happens to the long-term interest rate when some time after tA but
before tI , it becomes clear to the agents that the expected interest rate hike will
not happen (and that the interest rate thus will remain equal to R0

S after tI).

Question 5: Fiscal policy with fixed nominal wages and
perfect foresight

[Based on Calvo (1980)] In this question we study an ad hoc dynamic IS-LM model
of a closed economy. The nominal wage rate is assumed to be fixed, say at W̄. Agents
are blessed with perfect foresight. You are given the following information about the
structure of the economy.

r + δ = FK (K, L) , (Q4.10)

W̄

P
= FL (K, L) , (Q4.11)

Y = F (K, L) , (Q4.12)

M̄

P
= L (Y, r + πe, A) , (Q4.13)

C = C (Y − T, r, A) , (Q4.14)

A = K +
M̄

P
, (Q4.15)

T = G, (Q4.16)

K̇ = Y − C − G − δK, (Q4.17)

πe = π

[
≡ Ṗ

P

]
, (Q4.18)

where r is the real interest rate, K is the capital stock, L is employment, P is the
price level, Y is gross output, M̄ is the money supply (fixed exogenously), πe is the
expected inflation rate, C is consumption, T is taxes, A is total wealth, G is useless
government consumption, π is the actual inflation rate, and δ is the depreciation
rate. The production function features constant returns to scale and has all the usual
properties (see Intermezzo 4.3 in the book). The money demand function features
the partial derivatives LY > 0, LR < 0 (with R ≡ r + πe), and 0 < LA < 1. The
partial derivatives of the consumption function are given by 0 < CY−T < 1, Cr < 0,
and CA > 0. As usual, a variable with a dot denotes that variable’s time derivative,
e.g. K̇ ≡ dK/dt.

(a) Provide a brief discussion of the economic rationale behind these equations.
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(b) Prove that output can be written as Y = Φ (P) · K, with Φ′(P) > 0. Also show
that r = Ψ (P) − δ with Ψ′ (P) > 0.

(c) Show that the core of this model can be written in terms of a fundamental
system of differential equations in K and P.

(d) Prove that, evaluated at the steady state (in which Ṗ = K̇ = 0), the economy
has the following features:

δ11 ≡ ∂K̇

∂K
� 0, δ12 ≡ ∂K̇

∂P
> 0,

δ21 ≡ ∂Ṗ

∂K
> 0, δ22 ≡ ∂Ṗ

∂P
� 0.

(e) Show that there are four possible sign configurations for δ11 and δ22 for which
the model is saddle-point stable. State the conditions that must hold and draw
the phase diagrams for the four possible cases. Which variable is the jumping
variable? And which one is the pre-determined (sticky variable)?

(f) Study the effects of an unanticipated and permanent increase in government
consumption for the four cases. Derive the impact, transitional, and long-run
effects on P and K and illustrate with phase diagrams.
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Answers

Question 1: Short questions

(a) False, this is the reverse of Figure 4.9 in the book. As tL rises, W goes up,
less labour is demanded and (for a given K) FK falls. This leads to a fall in
investment, not an increase.

(b) True. A temporary investment subsidy has no permanent effects, a permanent
investment subsidy has.

An investment subsidy decreases the costs of capital, so marginal productivity
of capital must also decrease. Assuming decreasing, but positive marginal be-
nefits, the total stock of capital must increase. This implies more investments
to keep the total capital stock at its new, higher level. A temporary investment
subsidy causes firms to bring their future investments forward to ‘make hay
while the sun shines’. This has a strong effect on current investment, no effect
on long term investment.

(c) True, see Figure 4.6 in reverse. The anticipated increase prompt firms to de-
crease investment now (postpone) in order to get the higher subsidy later.

(d) The answer lies (as always) in the assumptions. Use the model of section 4.1.2.
If the real wage is constant then we get the situation as described in Figure
4.2 of the book with a constant marginal product of capital. A lower invest-
ment subsidy shifts the K̇ = 0 line upward and to the left. The saddle path
is horizontal and coincides with the q̇ = 0 line. It does not matter whether
you announce your decision or not, investments only change at the time of the
implementation, there are no announcement effects.

If labour is fixed instead of wages, then the marginal product of capital is no
longer constant and we have the situation described in Figure 4.6 of the book.
The q̇ = 0 line is now downward sloping. An anticipated abolition of the
investment subsidy will result in a temporary rush of firms in order to get
the subsidy while it exists (see the analysis in the book). If we surprise the
investors and do not announce the abolition, then investment will go down
immediately and we have (obviously) no anticipation effects.

Which assumption is more likely to hold? Given the fact that most investors
that used this subsidy were small (single-person?) companies, it is unlikely
that they will fire themselves. Any shock will have a direct impact on their
wage, so the second scenario (fixed labour) is more likely.

Question 2: The IS-LM model with sticky prices

(a) Equation (Q4.1) is the IS curve. Investment is assumed to depend negatively on
the long-term interest rate. Equation (Q4.2) is the LM curve. Money demand
depends negatively on the short-term interest rate, and positively on output.
Equation (Q4.3) is the Phillips curve, relating the price change to the output
gap. Equation (Q4.4) is the expression for the efficient term structure of interest
rates. The instantaneous yields on perpetuities and on short-run instruments
are equalized. There are no unexploited arbitrage opportunities and perfect
foresight is assumed.
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(b) We must first derive the phase diagram of the model. By using (Q4.1)–(Q4.2)
we can solve for RS as a function of the exogenous variables (g, m, and ȳ) and
the dynamic variables (p and RL).

m − p = −λRS + γ[−σRL + g] + α ⇒
RS =

−γσRL + γg + α − (m − p)

λ
. (A4.1)

By using (Q4.1) in (Q4.3) and (A4.1) in (Q4.4) we find:

ṗ = φ(−σRL + g − ȳ) (A4.2)

ṘL

RL
= RL −

[−γσRL + γg + α − m + p

λ

]
(A4.3)

=
(λ + γσ)RL − γg + m − p − α

λ
. (A4.4)

We have a dynamic system with one predetermined variable (the price, p) and
one non-predetermined “jumping” variable (the long-term interest rate, RL).
We thus expect that the model exhibits the saddle path structure. We illustrate
the phase diagram in Figure A4.1.

It follows from (A4.2) that the ṗ = 0 line is given by:

ṗ = 0 ⇔ RL =
g − ȳ

σ
. (A4.5)

Since both g and ȳ are exogenous it follows that the ṗ = 0 line is horizontal.
For points above (below) the line, the long-term interest rate is too high (low),
investment is too low (high), output falls short of (exceeds) its full employment
level, and the price falls (rises). These dynamic forces have been illustrated
with horizontal arrows in Figure A4.1.

It follows from (A4.4) that the ṘL = 0 line can be written as:

ṘL = 0 ⇔ RL =
γg + α − (m − p)

λ + γσ
. (A4.6)

For points above (below) this line, the long-term interest rate exceeds (falls
short of) the short-term rate and the long-term rate rises (falls) over time. These
dynamic forces have been illustrated with vertical arrows in the figure.

It follows from the configuration of arrows that the equilibrium at E0 is saddle-
point stable. The only convergent trajectory is given by SP, which is the saddle
path associated with E0. An unanticipated and permanent increase in ȳ shifts
the ṗ = 0 line down. See Figure A4.2. At impact the economy jumps to point
A. In the long run, the equilibrium moves to E1. Both p and RL = RS go down.
The effects on the other variables are easily deduced. See Figure A4.3.

(c) We use the intuitive solution principle to solve the dynamics of RL and p:

• Jumps in RL are allowed only at impact, i.e. for t = tA.

• For tA ≤ t < tI the dynamic adjustment is determined by the old equilib-
rium.
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Figure A4.1: Phase diagram
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Figure A4.2: Unanticipated increase in natural output level
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Figure A4.3: Impulse response diagrams
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Figure A4.4: Anticipated increase in natural output level

• At t = tI the economy arrives smoothly (without jumps) at the saddle
path associated with the new equilibrium.

The phase diagram is presented in Figure A4.4, where E0 and E1 are, respect-
ively, the initial and new steady-state equilibria. The adjustment path is given
by the jump from E0 to A at impact (t = tA), a gradual move from A to B (for
tA < t < tI) and a gradual move from B to E1 (for t ≥ tI). The intuitive prin-
ciple shows why this is the case. At time t = tI the economy must be on the
new saddle path SP. This furnishes point B. Between tA and tI the old dynamics
(as shown by the arrows) are relevant, i.e. point B is approached from a north-
westerly direction. This furnishes point A. There must be a downward jump in
RL at impact because otherwise the economy would never get to the new equi-
librium without violation of the intuitive solution principle. It follows from
Figure A4.4 that the adjustment in the long-term interest rate is monotonically
decreasing, whereas the price level rises at first and only starts to fall after the
shock has been implemented.

It is easy to show that the paths for y, RS, and RL are very similar to the ones
shown above.

(d) An unanticipated and permanent budgetary expansion (a once-off rise in g)
shifts both the ṗ = 0 and ṘL = 0 lines up in A4.1. To see which shift dominates,
we first solve (A4.2)–(A4.4) for the steady-state price level, p∗.

g − ȳ

σ
=

γg + α + p∗ − m

λ + γσ
⇔ p∗ = m − α +

λg − (λ + γσ)ȳ

σ
. (A4.7)

It follows from (A4.7) that dp∗/dg = λ/σ > 0, i.e. in Figure A4.5 the new
equilibrium, E1, lies north-east from the initial steady state, E0. At impact,
the price level is predetermined and the economy jumps from E0 to A directly
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Figure A4.5: An unanticipated and permanent budgetary expansion

above it. During transition the economy moves along the new saddle path, SP,
from A to E1. In Figure A4.6 we show the impulse-response functions for the
different variables. The shock hitting the system (the “impulse”) is the step-
wise change in g that occurs at time tA = tI , where tA is the announcement
date and tI the implementation date. The paths for p and RL can be inferred
directly from Figure A4.5: p features no impact jump but rises gradually to-
wards its new steady-state level; RL jumps at impact and thereafter rises fur-
ther towards its new steady-state level. Some smart detective work yields the
remaining effects. First we note from Figures A4.5 and A4.6 that ṗ is positive
but declining throughout the transition phase. It follows from (Q4.3) that ac-
tual output jumps at impact and gradually returns to its full employment level
during transition. In view of (Q4.1) it thus follows that at impact the boost in
demand caused by the increase in g offsets the decline in investment caused by
the increase in the long-term interest rate. Second, we note that ṘL is positive
but declining throughout transition. It follows from (Q4.4) that the short-run
interest rate lies below the long-run interest rate throughout the transitional
phase. Furthermore, it follows from (Q4.2) (plus the fact that m is exogenous
and p is predetermined) that the impact jump in RS is proportional to the im-
pact jump in y.

In Figure A4.7 we show an “IS-LM” style diagram to illustrate the effect on
output and the short-term interest rate. The (slightly unconventional) IS curve
is given by (Q4.1) and is vertical as investment depends on the long-term in-
terest rate (whereas the short-term interest rate is on the vertical axis of Figure
A4.7). Since the initial equilibrium is such that y = ȳ, IS0 represents the initial
IS curve. The LM curve is given by (Q4.2) and is upward sloping as usual.
The initial equilibrium is at E0. The increase in g shifts the IS curve to the
right (to IS1). Nothing happens to the LM curve (because m is constant and p
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Figure A4.7: IS-LM effects

is predetermined) so at impact the equilibrium shifts from E0 to A. The out-
put increase causes an excess demand for money which is eliminated by the
increase the short-term interest rate. During transition both IS and LM gradu-
ally shift to the left. The LM curve shifts because the price level rises and thus
decreases the real money supply. IS shifts because the long-term interest rate
increases which leads to a reduction in investment and output. Eventually, the
new steady state at E1 is attained.

(e) We use the intuitive solution principle to solve the dynamics of RL and p:

• Jumps in RL are allowed only at impact, i.e. for t = tA.

• For tA ≤ t < tI the dynamic adjustment is determined by the old equilib-
rium.

• At t = tI the economy arrives smoothly (without jumps) at the saddle
path associated with the new equilibrium.

The phase diagram is presented in Figure A4.8, where E0 and E1 are, respect-
ively, the initial and new steady-state equilibria. The adjustment path is given
by the jump from E0 to A at impact (t = tA), a gradual move from A to B (for
tA < t < tI) and a gradual move from B to E1 (for t ≥ tI). The intuitive prin-
ciple shows why this is the case. At time t = tI the economy must be on the
new saddle path SP. This furnishes point B. Between tA and tI the old dynamics
(as shown by the arrows) are relevant, i.e. point B is approached from a south-
easterly direction. This furnishes point A. There must be an upward jump in
RL at impact because otherwise the economy would never get to the new equi-
librium without violation of the intuitive solution principle. It follows from
Figure A4.8 that the adjustment in the long-term interest rate is monotonically
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Figure A4.8: Anticipated and permanent fiscal policy

increasing, whereas the price level falls at first and only starts to rise after the
shock has been implemented.

The impulse-response functions are presented in Figure A4.9. The paths for
p and RL (associated with the fiscal shock) can be taken directly from Figure
A4.8. A little detective work furnishes the paths for the remaining variables.
First we note from (Q4.1) that for tA ≤ t < tI the output effect is proportional
to the effect on RL (because g has not yet changed). Hence, output features
a negative impact jump and declines thereafter because investment falls. At
t = tI , g rises and output jumps to a level higher than full employment out-
put, ȳ. We observe that ṗ is positive for t ≥ tI so it follows from (Q4.3) that
y > ȳ during that time. Second, we note that ṘL is positive throughout the
adjustment. It thus follows from (Q4.4) that RS lies below RL throughout the
adjustment period (t ≥ tA).

To determine the path for the short-term interest rate we use the IS-LM style
diagram in Figure A4.10. The initial equilibrium is at E0. At impact, the up-
ward jump in RL causes the IS curve to shift to the left (from IS0 to IS1) as
investment is reduced. Since the LM curve is unaffected, the new equilibrium
is at point A where both output and the short-term interest rate are lower than
in the initial steady state. Hence, whereas the long-term interest rates increases
at impact the short-term interest rate falls at impact.

Between tA and tI , RL rises further (and IS gradually shifts further to the left
from IS1 to IS2) and p falls (so that LM shifts to the right, from LM0 to LMB,
because the real money supply increases). Both forces explain why the short-
term interest falls further during that time. One “split second” before tI the
economy finds itself in point B′ in Figures A4.9 and A4.10. In tI , however, g
is increased, the IS curve shifts to the right (from IS2 to ISB), and the economy
shifts instantaneously from point B′ to point B in Figure A4.10. The increased
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output leads to an increase in the short-term interest rate.

Transition after tI is straightforward: output gradually returns to its full em-
ployment level and the short-term interest rate gradually catches up with the
long-term rate. In terms of Figure A4.10, the IS curve gradually shifts from ISB

to IS0 and the LM curve shifts from LMB to LM1. The ultimate equilibrium is
at E1. It features a higher short-term (and long-term) interest rate because the
long-term increase in the price level has eroded the real money supply.

(f) Suppose that the economy has arrived at point B in Figure A4.8 (at time t = tI)
and that the policy maker at that time announces (unexpectedly) that g will
not in fact be changed, i.e. that it will remain equal to g0. This is a new shock
facing the agents because they thought that g would change to g1 at time t = tI .
We illustrate the resulting dynamics of p and RL in Figure A4.11. Since g is
unchanged the ultimate equilibrium is at E0 and the dynamics of E0 remain
relevant. At the time that news about the new shock is received (i.e. at t = tI),
the economy jumps from point B to point C directly below it. Point C lies on the
unique saddle path leading to the ultimate equilibrium E0 and the price level is
predetermined. After this impact shock, both the price level and the long-term
interest rate gradually increase towards their respective long-term levels. Since
nothing happens to g there are no long-term effects on any of the variables. The
time paths for the different variables have been illustrated in Figure A4.12. In
that figure the dotted lines are the paths associated with the new shock (the
solid and dashed lines are the solutions found in part (c) above). The path of
the long-term interest rate is deduced directly from Figure A4.11. Since RL rises
during transition (ṘL > 0) it follows from equation (Q4.4) that RL exceeds RS

throughout the transition. Hence, the short-term interest rate falls at time tI and
rises thereafter. In terms of the IS-LM diagram in Figure A4.10, the reduction in
RL at time tI shifts the IS curve to the right such that the new intersection with
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LMB lies south-east from point E0. This also explains why the output boost at
tI is smaller than if the fiscal increase had in fact occurred.

(g) The IS curve is now:

y = −σ [RL − ṗ] + g. (A4.8)

By substituting (A4.8) into (Q4.2) we can solve for the short-term interest rate:

RS =
−γσRL + γσ ṗ + γg + α − (m − p)

λ
. (A4.9)

By using (A4.9) in (Q4.4) we obtain:

ṘL

RL
= RL − RS

=
(λ + γσ)RL − γσ ṗ − γg − α + m − p

λ
. (A4.10)

By substituting (A4.8) into (Q4.3) we obtain:

ṗ = φ [−σRL + σ ṗ + g − ȳ] ⇔
ṗ =

φ

1 − σφ
[−σRL + g − ȳ] , (A4.11)

where the first term on the right-hand side is positive because 0 < σφ < 1 and
φ > 0. By substituting (A4.11) into (A4.10) and simplifying we obtain:

ṘL

RL
=

[λ(1 − σφ) + γσ] RL − γg + (1 − σφ)(m − p − α) + γσφȳ

λ(1 − σφ)
. (A4.12)
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The dynamical system (A4.11)–(A4.12) is qualitatively very similar to the one
studied in the previous parts. The phase diagram of the augmented model is
presented in Figure A4.13. The ṗ = 0 line is still given by (A4.5). We derive
from (A4.11) that:

∂ ṗ

∂RL
= − σφ

1 − σφ
< 0. (A4.13)

Hence, points above (below) the ṗ = 0 line output falls short of (exceeds) its
full employment level and prices fall (rise). See the horizontal arrows in Figure
A4.13.

We derive the ṘL = 0 line from (A4.12). Its slope is given by:(
dRL

dp

)
ṘL=0

=
1 − σφ

λ(1 − σφ) + γσ
> 0, (A4.14)

where the sign follows readily from the assumption that 0 < σφ < 1. We also
derive from (A4.12) that:

∂
(

ṘL
RL

)
∂RL

=
λ(1 − σφ) + γσ

λ(1 − σφ)
> 1. (A4.15)

For points above (below) the ṘL = 0 line, the long-term interest rate rises (falls)
over time. See the vertical arrows in Figure A4.13. Not surprisingly, the aug-
mented model is saddle-point stable, and the initial equilibrium is at E0.

Next we consider the effect of a permanent and unanticipated increase in ȳ. It
follows from (A4.5) (or, equivalently, from (A4.11)) that the ṗ = 0 line shifts
down. Similarly, it follows from (A4.12) that the ṘL = 0 line also shifts down.
To figure out the long-run effects on RL and p we set ṘL = 0 in (A4.12) and
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ṗ = 0 in (A4.11) and differentiate the resulting expressions with respect to RL,
p, and ȳ. After some manipulations we find:[

λ(1 − σφ) + γσ −(1 − σφ)
σ 0

] [
dRL(∞)
dp(∞)

]
= −

[
γσφ

1

]
dȳ. (A4.16)

The matrix on the left-hand side is denoted by ∆ and has a determinant equal
to |∆| = σ(1 − σφ) > 0. By Cramer’s Rule (see Mathematical Appendix) we
find:

dRL(∞)

dȳ
=

∣∣∣∣−γσφ −(1 − σφ)
−1 0

∣∣∣∣
|∆| = − 1

σ
< 0, (A4.17)

dp(∞)

dȳ
=

∣∣∣∣λ(1 − σφ) + γσ −γσφ
σ −1

∣∣∣∣
|∆| = −λ + γσ

σ
< 0. (A4.18)

It follows from (A4.17)–(A4.18) that both RL and p fall in the long run, i.e. in
Figure A4.13 the vertical shift in the ṗ = 0 line dominates that in the ṘL = 0
line and E1 lies south-west from E0. At impact the price level is predetermined
and the economy jumps from E0 to point A directly below it. Thereafter, the
economy moves gradually along the new saddle path, SP1, from A to the new
steady-state equilibrium at E1. Both RL and p move monotonically towards
their new steady-state levels.

In Figure A4.14 we present the impulse-response diagram for the different vari-
ables. To deduce the path for the short-term interest rate we use IS-LM style
diagram of Figure A4.15. The IS curve is obtained by substituting (A4.11) into
(A4.8). After some manipulation we obtain:

y = −σ [RL − ṗ] + g = −σ

(
RL + φ(ȳ − g)

1 − σφ

)
+ g

=
−σ(RL + φȳ) + g

1 − σφ
. (A4.19)

The increase in ȳ leads to a fall in RL so it is not a priori clear whether output
will fall or rise at impact. The reasonable case appears to be that the real interest
falls and output rises at impact. (It may be possible to prove this result by
more formal means, i.e. by explicitly computing the impact jump.) In this
case the IS curve shifts to the right in Figure A4.15, from IS0 to IS1. Since the
position of the LM curve is given at impact, the economy moves from E0 to A
immediately, and both output and the short-term interest rate increase. Over
time the IS curve continues to shift to the right and the LM shifts down. The
long-run equilibrium is at E1 where output is equal to its new full employment
level and the nominal interest rate equals the new equilibrium long-term rate
of interest.

Question 3: Leaning against the wind

(a) Equation (Q4.5) is the IS-curve for the open economy. Equation (Q4.6) is the
LM-curve. Equation (Q4.7) is the price adjustment rule. Equation (Q4.8) is
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the uncovered interest parity condition. The novel aspect of the model is in
equation (Q4.9). There we postulate that the policy maker adjusts the money
supply in the light of the exchange rate situation. Consider first the case of
µ > 0. If e > ē, then the domestic currency is undervalued relative to its equi-
librium level (recall that the dimension of e is domestic currency per unit of
foreign currency so a high value for e is a low value for the domestic currency).
The policy maker cuts back the money supply (relative to its normal level, m̄).
With flexible exchange rates this means that the domestic currency appreciates
somewhat, i.e. e becomes lower than it would have been without monetary ad-
justment (LM curve to the left, net capital inflows, excess demand for domestic
currency, appreciation of the domestic currency, IS to the left). It is called ‘lean-
ing against the wind’ because the monetary response moves the exchange rate
in the direction of the equilibrium exchange rate.

In the opposite case, with µ < 0, the policy maker engages in ‘leaning with
the wind.’ In response to an undervalued currency (e > ē) the money sup-
ply is increased so that the currency moves further away from its equilibrium
level (LM to the right, net capital outflows, excess supply of domestic currency,
depreciation of the domestic currency, IS to the right).

In equation (Q4.9) it is assumed that m̄ is an exogenously given component of
money supply. Monetary policy in this model consists of a change in m̄. The
endogenous variables in the model are y, R, m, p, e, and ē . The exogenous
variables are p∗, ȳ, R∗, and m̄.

(b) In the steady state ṗ = 0 and ė = 0. This implies that output is at its natural
(exogenous level) y = ȳ, the interest rate equals the world interest rate R = R∗
and the money supply is at the ‘natural’ level m = m̄. Using this in the LM-
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equation (Q4.6) we find:

p̄ = m̄ − ȳ + λR∗ (A4.20)

Substitution into the steady-state version of the IS-curve (Q4.5) gives for the
equilibrium exchange rate:

ȳ = −ηR∗ + δ [ē + p∗ − (m̄ − ȳ + λR∗)] ⇔
δē = (1 − δ)ȳ + (η + λδ)R∗ + δ(m̄ − p∗) ⇔
ē = m̄ − p∗ +

1 − δ

δ
ȳ +

η + λδ

δ
R∗. (A4.21)

In more convenient matrix notation we have:

[
p̄
ē

]
=

[
1 λ −1 0

1
η+λδ

δ
1−δ

δ −1

] 
m̄
R∗
ȳ
p∗


 . (A4.22)

Note that the steady-state levels p̄ and ē are fully determined by the exogenous
variables and parameters of the model. Furthermore, foreign prices p∗ have no
direct influence on the domestic price level p, only on the steady-state exchange
rate e (as would be expected).

(c) Equations (Q4.7) and (Q4.8) give (in matrix format):[
ṗ
ė

]
=

[
φ 0
0 1

] [
y − ȳ

R − R∗
]

(A4.23)

By subtracting the steady-state version of (Q4.5) from (Q4.5) we find: y − ȳ =
−η[R − R∗] + δ[e − ē]− δ[p − p̄]. Similarly, by subtracting the steady-state ver-
sion of (Q4.6) from (Q4.6) and using (Q4.9) we find: −µ[e − ē] − [p − p̄] =
[y − ȳ] − λ[R − R∗]. To simplify notation write these two equations in matrix
format:[

1 η
1 −λ

]
︸ ︷︷ ︸

≡ A

[
y − ȳ

R − R∗
]

=

[−δ δ
−1 −µ

]
︸ ︷︷ ︸

≡ B

[
p − p̄
e − ē

]

Pre-multiply both sides by A−1 and we have:[
y − ȳ

R − R∗
]

=
1

λ + η

[−[η + δλ] δλ − ηµ
1 − δ δ + µ

] [
p − p̄
e − ē

]
. (A4.24)

Substitution of equation (A4.24) into (A4.23) gives the required result:[
ṗ
ė

]
=

1

λ + η

[
φ 0
0 1

] [−[η + δλ] δλ − ηµ
1 − δ δ + µ

] [
p − p̄
e − ē

]

=
1

λ + η

[−φ[η + δλ] φ[δλ − ηµ]
1 − δ δ + µ

]
︸ ︷︷ ︸

≡ ∆

[
p − p̄
e − ē

]
. (A4.25)

Denote the elements of ∆ by δij.
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(d) The system (A4.25) is saddle-point stable if it has one negative (stable) eigen-
value and one positive (unstable) eigenvalue. The determinant of a matrix is
the product of its eigenvalues, so the system is saddle-point stable if and only
if its determinant is negative.

det(∆) = − φ

(η + λ)2
[(η + δλ)(δ + µ) + (1 − δ)(δλ − ηµ)]

= − δ(1 + µ)φ

η + λ

which is negative (given the restrictions on the parameters) if and only if µ +
1 > 0.

(e) Setting ṗ = 0 and ė = 0 gives the two lines in (e, p)-space:

ṗ = 0 : [e − ē] = − δ11

δ12
[p − p̄] = − η + δλ

ηµ − δλ
[p − p̄]

ė = 0 : [e − ē] = − δ21

δ22
[p − p̄] = − 1 − δ

δ + µ
[p − p̄]

Both are downward sloping if ηµ > λδ. Differentiation of (A4.25) gives the
stability characteristics:

∂ ṗ

∂p
= −φ[η + δλ]

λ + η
< 0,

∂ė

∂e
=

δ + µ

λ + η
> 0,

p is the stable (predetermined) variable, e is unstable (jumping) variable.

Finally we have to determine which line is steeper, the ṗ = 0 line or the ė = 0
line. Simple math gives:

η + δλ

ηµ − δλ
− 1 − δ

δ + µ
> 0 ⇔ δ(λ + η)(1 + µ) > 0

For 1 + µ > 0 the ṗ = 0 line is steeper. Finally we have all the information to
draw the phase diagram and derive the saddle path. As can be seen from the
arrows in Figure A4.16 there is one downward sloping saddle path.

(f) First we derive the phase diagram for this specific case under the old foreign
price level. For ηµ = λδ the dynamic system collapses to[

ṗ
ė

]
=

1

λ + η

[−φ[η + δλ] 0
1 − δ δ + µ

] [
p − p̄
e − ē

]
, (A4.26)

that is, the deviation of the exchange rate from the steady state has no impact
on the change of the price level. This is because the output gap (y − ȳ) has no
impact on ṗ as can be seen from equation (A4.24). As a result, the ṗ = 0 line is
vertical.

Next, we have to analyse what happens to the positions of the ṗ = 0 and ė = 0
lines if the foreign price level increases. An exogenous shock has an impact
on the steady-state values. The steady-state values are determined in equation
(A4.22). As can be seen from this equation, an increase of the foreign price level
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p∗ has no impact on the steady-state value p̄, but decreases ē. This means that
the ṗ = 0 line stays where it is, but the ė = 0 line shifts downward and to the
left. At the time of the shock, the exchange rate jumps to its new steady-state
level ē1 and the (sticky) prices stay at the original steady-state price level p̄. See
Figure A4.17 for a phase diagram.

Question 4: The term structure of interest rates

(a) The fundamental price of a perpetuity in the current period (PB(0)) is equal to
the present value of the coupon payments, using RL(0) for discounting:

PB(0) ≡
∫ ∞

0
1 · e−RL(0)tdt = − 1

RL(0)

[
e−RL(0)t

]∞

0
=

1

RL(0)
. (A4.27)

Hence, the price of a perpetuity is the inverse of the yield on the perpetuity.
The rate of return on investing in a perpetuity is equal to the coupon payment
plus the capital gain, expressed in terms of the market value of the perpetuity:

1 + ṖB

PB
=

1 − 1
R2

L

ṘL

1
RL

= RL − ṘL

RL
. (A4.28)

The rate of return on very short-term bonds (which do not carry a capital gain
or loss) is equal to RS. Since the two investment instruments are interchange-
able as far as the investors are concerned, arbitrage will ensure that the rate of
return on the two assets will be the same:

RS = RL − ṘL

RL
. (A4.29)

Equation (A4.29) represents the efficient term structure of interest rates. In
general we can write the market price of perpetuities in period t as:

PB(t) ≡ 1

RL(t)
=

∫ ∞

t
exp

[
−

∫ τ

t
RS(µ)dµ

]
dτ. (A4.30)
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Equation (A4.30) says that under an efficient term structure of interest rates, PB

consists of a stream of short-term interest rates.

If you really want to know, equation (A4.30) is derived as follows. First we note
from (A4.28)–(A4.29) that PB obeys the following linear differential equation.

ṖB = RSPB − 1. (A4.31)

We define the following integrating term:

∆(t, τ) ≡
∫ τ

t
RS(µ)dµ. (A4.32)

It follows from (A4.32) that d∆(t, τ)/dτ = RS(τ). By multiplying both sides of

(A4.31) by e−∆(t,τ) we find:

e−∆(t,τ)
[
ṖB − RSPB

]
= −1 × e−∆(t,τ) ⇔

d

dτ

[
e−∆(t,τ)PB

]
= −1 × e−∆(t,τ) ⇔

d
[
e−∆(t,τ)PB

]
= −1 × e−∆(t,τ)dτ. (A4.33)

Integrating both sides of (A4.33) from t to ∞ we obtain:

lim
τ→∞

e−∆(t,τ)PB(τ) − PB(t) = −
∫ ∞

t
1 · e−∆(t,τ)dτ. (A4.34)

The first term on the left-hand side of (A4.34) equals zero by the NPG condi-
tion (see Intermezzo 2.2 on the cost of capital in Chapter 2). The remaining
expression is identical to (A4.30).

(b) Formally, parts (b) and (c) of the question can be answered by using (A4.30).
Fortunately, there is also a much easier graphical method by which these ques-
tions can be answered. By rewriting (A4.29) somewhat we obtain the following
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(nonlinear) differential equation for RL:

ṘL

RL
= RL − RS. (A4.35)

In Figure A4.18 we characterize the dynamics of the long-term interest rate
with the phase diagram. On the vertical axis we place ṘL/RL and on the hori-
zontal axis we place RL. Equation (A4.35) is a linear upward sloping schedule
relating ṘL/RL to the difference between RL and RS. For points to the right
(left) of this line, RL exceeds (falls short of) RS and ṘL/RL is positive (negat-
ive). We have indicated these dynamical forces with arrows in Figure A4.18.
We reach the conclusion that the differential equation is unstable.

As is explained in the text, the instability of the differential equation is not
a problem because RL (or, alternatively, PB) is an asset price which can jump
at any instance of time. It is clear from Figure A4.18 that points like A and
B are not equilibria. The only equilibrium point is point E0, where the long-
term interest rate equals the given short-term rate, i.e. RL = R0

S. Note that if
the differential equation were stable, then all values for RL would qualify as
equilibrium points (because they would all eventually reach E0) so the price
of perpetuities would be indeterminate. Hence, the instability of (A4.35) is a
desirable feature because it pins down a unique long-term interest rate and
thus a unique market price of perpetuities.

In the question we postulate the following shock:

RS =

{
R0

S for tA ≤ t < tI

R1
S for t ≥ tI

where tA is the announcement time and tI the implementation time. We use
the intuitive solution principle (mentioned in section 4.1.2.1 of the text).
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Figure A4.19: An anticipated increase in the short-term interest rate

• A jump in RL (and thus in PB) can only occur at the time the news about
the shock reaches the agents, i.e. for t = tA (otherwise there would be
anticipated infinitely large capital gains/losses, which cannot be a market
equilibrium).

• Between announcement and implementation, tA ≤ t < tI , the old equilib-
rium, E0, determines the dynamic adjustment.

• At time t = tI , the long-term interest rate (and thus the price of perpetu-
ities) must reach its new equilibrium value in a continuous fashion, i.e.
without having to jump discretely.

In Figure A4.19 we illustrate the adjustment path that is uniquely determined
by the intuitive solution principle. Working backwards in time, we find that
the economy must be in point B at time t = tI . At that time the short term
interest rate increases and RL = R1

S is the new equilibrium long-term interest
rate. For tA < t < tI the economy must be on the trajectory associated with
the old equilibrium. Finally, for t = tA the economy must jump to some point
(say A) which is such that the path from A to B is covered in exactly the right
amount of time.

We show the impulse-response diagram in Figure A4.20. Before the news about
the shock was received, the short-term and long-term interest rates were the
same and equal to R0

S. At time tA, the long-term rate jumps up (to point A)
even though nothing has happened yet to the short-term rate. Between tA and
tI , the long-term rate gradually rises until it reaches the new short-term rate
R1

S exactly at time tI (see point B). Thereafter, the short-term and long-term
interest rates are the same again.

(c) Now assume that some time during transition it becomes clear that the interest
rate will not in fact increase at time tI at all but will stay constant. This is, in
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Figure A4.20: Impulse-response diagram

itself, new information. The only equilibrium that is possible is that the long-
term interest rate will jump instantaneously to its old equilibrium value R0

S.
This jump does not violate the intuitive solution principle because the fact that
the interest rate increase does not take place is an unanticipated shock itself.

Question 5: Fiscal policy with fixed nominal wages and
perfect foresight

(a) Equations (Q4.10)-(Q4.11) are the marginal productivity conditions chosen by
perfectly competitive firms not hindered by adjustment costs for investment.
Equation (Q4.12) is the production function, and (Q4.13) is the money market
equilibrium condition, equating the real supply of money (left-hand side) to
the real demand for money (right-hand side). The money demand function
has the usual features and includes a wealth effect (as in the Blinder-Solow
model). Equation (Q4.14) is the consumption function. Apart from dispos-
able income and wealth, consumption depends negatively on the real interest
rate. Implicitly, saving is assumed to depend positively on the real interest
rate. Equation (Q4.15) defines total financial wealth as the sum of real money
balances and (claims on) the capital stock. Since there are no adjustment costs
for investment, Tobin’s q is equal to unity so that K also represents the value
of the capital stock. Equation (Q4.16) is the government budget constraint.
There are no bonds and the money supply is constant. Equation (Q4.17) shows
that net capital accumulation equals the difference between net production,
Y − δK, and total consumption by the private and public sectors, C + G. It is a
closed economy, so there are no imports or exports. Last but not least, equation
(Q4.18) shows that agents are blessed with perfect foresight, i.e. the expected
inflation rate (left-hand side) is equal to the actual inflation rate (right-hand
side).

(b) Since technology features constant returns to scale, the marginal products of
labour and capital depend only on the capital intensity, κ ≡ K/L. (We also
know that FKL > 0 in the two-factor case.) From (Q4.11) we find that W̄ =
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PFL (κ, 1). Totally differentiating this expression (and setting dW̄ = 0) we find
that:

dκ

dP
= − FL (κ, 1)

PFKL (κ, 1)
< 0, (A4.36)

i.e. and increase in P results in a decrease in the capital intensity of production.
Write the implicit relationship as κ = φ (P).

But, using (Q4.11), output can be written as Y = K · F (1, 1/κ) = K · F (1, 1/φ (P)).
So we find that Φ (P) ≡ F (1, 1/φ (P)), with:

Φ′ (P) ≡ −FL (1, 1/φ (P)) · φ′ (P)

φ (P)2
> 0.

Finally, we can write (Q4.10) as r + δ = FK (κ, 1) = FK (φ (κ) , 1). Hence,
Ψ (P) ≡ FK (φ (κ) , 1) with Ψ′ (P) = FKK (φ (κ) , 1) · φ′ (P) > 0.

(c) By substituting (Q4.14)-(Q4.16) in (Q4.17) and noting Y = Φ (P) K and r =
Ψ (P) − δ we find the differential equation for K:

K̇ = Φ (P) K − C

(
Φ (P) K − G, Ψ (P) − δ, K +

M̄

P

)
− G − δK. (A4.37)

Similarly, equation (Q4.13) can written as:

M̄

P
= L

(
Φ (P) K, Ψ (P) − δ + πe, K +

M̄

P

)
. (A4.38)

But (A4.38) gives rise to an implicit function relating the expected inflation rate,
πe, to the endogenous variables, P and K, and the exogenous money supply,
M̄. We write this relationship as:

πe = Ω (P, K, M̄) , (A4.39)

with partial derivatives:

ΩP ≡ − (1 − LA) M/P2 + LYKΦ′ (P) + LRΨ′ (P)

LR
� 0, (A4.40)

ΩK ≡ − LYΦ (P) + LA

LR
> 0, (A4.41)

ΩM ≡ 1 − LA

P · LR
< 0. (A4.42)

Using (A4.42) in (Q4.18) we obtain the fundamental differential equation for P:

Ṗ

P
= Ω (P, K, M̄) . (A4.43)

(d) Totally differentiating (A4.37) around the steady state we find dK̇ = δ11dK +
δ12dP with:

δ11 ≡ [1 − CY−T ] · Φ (P∗) − CA − δ � 0,

δ12 ≡ [1 − CY−T ] · K∗ · Φ′ (P∗) − Cr · Ψ′ (P∗) +
CA M̄

(P∗)2
> 0,
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where P∗ and K∗ are the steady-state values for P and K respectively. The
sign of δ11 is ambiguous because. An increase in K boosts saving, but it also
increases consumption due to the wealth effect and necessitates higher replace-
ment investment.

Totally differentiating (A4.43) around the steady state we find dṖ = P∗ · dΩ =
P∗ · [ΩKdK + ΩPdP]. So we find immediately (from (A4.40)-(A4.41)) that δ21 ≡
P∗ΩK > 0 and δ22 ≡ P∗ΩP � 0.

(e) Around the steady state, the system can be written as:[
K̇
Ṗ

]
=

[
δ11 δ12

δ21 δ22

]
·
[

K − K∗
P − P∗

]
.

It is saddle-point stable if the determinant of the matrix on the right hand side
(which we denote by ∆) is negative so that there is one positive (unstable) root
and one negative (stable) root. In all cases we must have:

|∆| ≡ δ11δ22 − δ12δ21 < 0. (A4.44)

This leaves us with four cases.

• Case 1: δ11 < 0 and δ22 < 0.

• Case 2: δ11 > 0 and δ22 < 0.

• Case 3: δ11 < 0 and δ22 > 0.

• Case 4: δ11 > 0 and δ22 > 0.

To draw the phase diagrams we must define the isoclines. The K̇ = 0 line takes
the form:(

dP

dK

)
K̇=0

= − δ11

δ12
, (A4.45)

whilst the Ṗ = 0 locus is given by:(
dP

dK

)
Ṗ=0

= − δ21

δ22
. (A4.46)

For Case 1, both lines are upward sloping but the saddle-path condition (A4.44)
implies that the Ṗ = 0 line is steeper:(

dP

dK

)
Ṗ=0

>

(
dP

dK

)
K̇=0

⇔
δ21

−δ22
>

−δ11

δ12
⇔

δ12δ21 > −δ11 · −δ22 ⇔
0 > |∆| .

The arrow configuration confirms saddle-path stability. See Figure A4.21.

The other cases are deduced in a similar way. See Figures A4.22 to A4.24.
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Figure A4.25: Case 1: Expansionary fiscal policy

(f) By using (A4.37) we can write dK̇ = δ11dK + δ12dP − [1 − CY−T ] dG, so an
increase in government consumption shifts up the K̇ = 0 line in all cases (be-
cause δ12 > 0). We illustrate the transitional effects of an unanticipated and
permanent increase in government consumption for Case 1 only. See Figure
A4.25. At impact K is predetermined and P to the saddle path at point A. Dur-
ing transition, the economy moves along the saddle path from A to E1. Fiscal
policy increases the long-run price level and boosts the capital stock. The price
overshoots its long-run level at impact.

The following effects are now easy to deduce:

• Also in Cases 2-4 the long-run price level increases.

• In the long-run the capital stock increases in Case 2, but decreases in Cases
3-4.

• There is price-level overshooting in Case 2, but not in Cases 3-4.



Chapter 5

The government budget deficit

Question 1: Short questions

(a) “Anticipated technological improvements will reduce the size of bequests that
parents leave to their beloved offspring.” True, false, or uncertain? Explain.

(b) “The Minister of Finance should not bother to engage in tax smoothing if the
taxes are non-distortionary.” True, false, or uncertain? Explain.

(c) “Most Europeans with a completed university education are in fact million-
aires, even if they don’t possess a lot of tangible assets.” Defend this proposi-
tion by making use of the concept of total wealth.

(d) “A permanent reduction in government consumption must be accompanied by
a reduction in the tax rates, both now and in the future.” Explain and evaluate
this proposition.

(e) “Ricardian equivalence does not hold if there exist distorting taxes, even if
these taxes are held constant in the Ricardian experiment.” Explain and evalu-
ate this proposition.

(f) Why do people leave bequests in the overlapping-generation model? Under
which two conditions would transfers flow from young to old agents? How
would a pension system affect your answer?

Question 2: Tax smoothing

Use the theory of “tax smoothing” to answer the following questions.

(a) Explain what we mean by the golden rule of public finance. Explain the pros
and cons of that rule.

(b) Explain how a temporary increase in government spending must be financed.

(c) Explain how a permanent increase in public spending should be financed.

(d) Use the model to demonstrate what happens to the time paths of taxes and
public debt if the government consists of myopic (“short-sighted”) politicians.
(Hint: analyse the effects of a political rate of time preference, ρG, that is higher
than the market rate of interest, r.
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Question 3: The two-period model with tax smoothing

Use the two-period model of the representative household discussed extensively in
the book:

V = U(C1) +
1

1 + ρ
U(C2), (Q5.1)

A1 = (1 − t1)Y1 − C1, (Q5.2)

A2 = (1 + r1)A1 + (1 − t2)Y2 − C2, (Q5.3)

where V is life-time utility, ρ is the rate of time preference, Cτ is consumption in
period τ (= 1, 2) of the agent’s life, Yτ is the (exogenous) income in period τ, and Aτ

is financial assets possessed by the household in period τ. Assume that the house-
hold borrows in the first period and pay back its debt in the second period. Assume
furthermore that the periodic utility (or ‘felicity’) function, U(·), takes the following
iso-elastic form:

U(Cτ) ≡
{

C1−1/σ
τ −1
1−1/σ for σ > 0, σ �= 1

ln(Cτ) for σ = 1
(Q5.4)

(a) Interpret the model and derive the lifetime budget constraint. Explain what
you assume about A2.

Assume that the government only buys goods for its own consumption which it
finances with the revenues from taxes or with debt. The government initially has
no debt and exists, like everybody, just for two periods. The government can freely
borrow or lend at the same interest rate as the households.

(b) Derive the budget identities for both periods and the intertemporal govern-
ment budget constraint.

(c) Rewrite the household budget constraint using the government budget con-
straints and show that all tax parameters drop out of the household budget
constraint.

(d) Derive the expressions for optimal consumption and savings plans (i.e. C1, C2,
and S1 ≡ A1). Show that your expressions are the same as those in the book if
and only if σ equals 1.

The government realizes that there are costs associated with tax collection. Suppose
that the government minimizes the loss function LG by setting t1 and t2.

LG ≡ 1
2 t2

1Y1 + 1
2

t2
2Y2

1 + ρG
(Q5.5)

(e) What is the optimal ratio of t1 to t2 if government expenditure is given?

(f) Use as parameter values σ = 0.7, r1 = 0.05 (= 5% per period), ρ = 0.08,
ρG = 0.10, Y1 = 15, Y2 = 20, G1 = G2 = 4. Solve the model for these parameter
values. What is the household optimum if the government would have taxed
income at 15% (t1 = 0.15), or at t1 = 25%?

(g) What is the household optimum (C1, C2, and S1) under the parameter values
of the previous question if households cannot borrow, but are allowed to lend?
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Question 4: Ricardian equivalence

Carefully explain why the Ricardian equivalence theorem is invalid if any of the
following assumptions are made. (Be precise and concise and use figures if they
facilitate your argument.)

(a) Labour supply is endogenous.

(b) Households have only limited access to capital markets.

(c) New generations of households are born.

(d) Households are risk averse, there is a tax on income, and future income is
uncertain.

Question 5: Ricardian equivalence in the two-period model

Use the two-period model of the representative household discussed extensively in
the book.

V = U(C1) + βU(C2), (Q5.6)

A1 = (1 + r0)A0 + (1 − t1)Y1 − C1, (Q5.7)

A2 = (1 + r1)A1 + (1 − t2)Y2 − C2, (Q5.8)

where V is life-time utility, β ≡ 1/(1 + ρ) is the rate of felicity discounting due
to time preference, Cτ is consumption in period τ (= 1, 2) of the agent’s life, Yτ

is the (exogenous) income in period τ, and Aτ is financial assets possessed by the
household in period τ. Assume that the household saves in the first period of life in
order to enjoy a pleasant retirement in the second period of life. Assume furthermore
that the periodic utility (or “felicity”) function, U(·), takes the following iso-elastic
form:

U(Cτ) ≡ C1−1/σ
τ − 1

1 − 1/σ
, σ > 0, σ �= 1. (Q5.9)

(a) Interpret the model and derive the lifetime budget equation. Explain what you
assume about A2.

(b) Introduce the government and demonstrate Ricardian equivalence.

(c) Compute the expressions for optimal consumption and savings plans (i.e. C1,
C2, and S1 ≡ A1 − A0). Show that your expressions are the same as the ones in
the book if and only if σ is equal to unity.

(d) Assume that there is a broad income tax (which also taxes interest income).
Redo part (c). Show how consumption and saving depend on the income tax
rate. Decompose the results for consumption in terms of the income effect,
substitution effect, and the human wealth effect.
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Answers

Question 1: Short questions

(a) True, parents leave bequest to their beloved offspring to increase their own
utility (the children’s utility enters the parents utility function). By leaving a
bequest, the parents increase their children’s utility and thus their own.

If technology improves in the future, the children’s own income increases and
hence their consumption. Due to decreasing marginal utility, the children value
an extra unit of consumption less and the extra consumption that is made pos-
sible by the bequest has less value in utility terms. Parents will know this in
advance (it is an anticipated technological improvement) and they will leave a
smaller bequest to their children.

(b) False, even if taxes are non-distorting, there may be collection costs associated
with tax collection, that is, a part of total production is used in the tax collection
process and not available for consumption (or investment). In this setting, a
policy maker will want to minimize total collection costs by smoothing taxes
over time.

(c) True, their financial wealth may be low but their human wealth is typically
rather high. Human wealth represents the market value of the time endow-
ment. High skill translates into a high wage and thus high human wealth.

(d) In the positive theory of government spending and debt creation, this propos-
ition is true. You minimize the distorting effect of taxation that way. In terms
of Figure 5.5 in the textbook, the optimal point shifts from ET

0 to ET
1 and both t1

and t2 are cut.

(e) False, provided the distorting taxes are held constant, a Ricardian experiment
which involves non-distorting taxes still leads to neutrality.

(f) People leave bequests to their offspring if they like them enough, and the off-
spring is not expected to be incredibly rich. There are two conditions under
which transfers would flow from children to parents. First, if there is two-
sided altruism in the model, i.e. if the children’s utility function depends on
the parents’ welfare. Second, if it would be allowed by law for the parents to
leave negative bequests (and the children could be somehow forced to accept
this debt imposed on them by the parents). Certain pension systems induce
flows of money to go from the young (workers) to the old (retirees). We study
such pay-as-you-go schemes in Chapter 17.

Question 2: Tax smoothing

(a) The consolidated budget constraint of the government is given in equation
(5.73) in the book:

[Ξ1 ≡] (1 + r0)B0 + GC
1 +

GC
2

1 + r1
+

(r1 − rG
1 )GI

1

1 + r1
= t1Y1 +

t2Y2

1 + r1
, (A5.1)

where Ξ1 is the present value of the net liabilities of the government. We im-
mediately see the golden rule of public finance: to the extent that public invest-
ment projects earn a rate of return equal to the market rate of return (so that
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rG
1 = r1) they do not represent a net liability of the government. The govern-

ment should borrow the funds to finance these investments. The advantage
is that the government has no need to use distorting taxes in order to raise
the revenues. The disadvantage are: (i) it is sensitive to political abuse (politi-
cians will try to label government consumption items as if they are investment
items); (ii) it is not easy to estimate the rate of return on public investment pro-
jects (politicians will have an incentive to overstate it). Private sector firms that
continually invest in low-yielding projects will eventually go out of business.
The government does not have that disciplining device.

(b) By a temporary increase in public consumption we mean the situation in which
Ξ1 is unchanged, i.e. GC

1 rises but GC
2 falls, such that the net liabilities of the

government are unchanged. It is OK to leave the tax rates unchanged and to
finance the temporary increase in government consumption with debt. This
can be illustrated with the aid of Figure A5.1. For convenience, we assume that
r1 = ρG. In that figure the upward sloping line (labelled t1 = t2) is the tax
smoothing line, whereas the solid downward sloping line is the consolidated
budget constraint of the government (equation (A5.1)) rewritten in terms of
output shares:

t1 +
1 + γ

1 + r1
t2 = ξ1, (A5.2)

where ξ1 ≡ Ξ1/Y1, γ ≡ Y2/Y1 − 1 is the growth rate in the economy, and ξ1 is
given by:

ξ1 ≡ gC
1 +

1 + γ

1 + r1
gC

2 +
r1 − rG

1

1 + r1
gI

1 + (1 + r0)b0, (A5.3)

where gC
t ≡ GC

t /Yt, gI
1 ≡ GI

1/Y1, and b0 ≡ B0/Y1. The deficit in period 1 can
also be written in terms of output shares:

d1 ≡ D1

Y1
= rb0 + gC

1 + gI
1 − t1. (A5.4)

The spending point is defined as the point where d1 = 0, and is drawn as point
ES

0 in Figure A5.1. The optimal taxation point is given by point ET
0 . A tem-

porary increase in government consumption implies that the spending point
moves along the initial budget line from ES

0 to ES
1 . The optimal taxation point

is unaffected. Since the tax rates are not changed but spending in the first
period is increased, it follow from (A5.4) that the deficit in period 1 is increased
(dd1/dgC

1 = 1).

(c) A permanent increase in government spending implies that ξ1 itself increases.
In terms of Figure A5.1, the budget line shifts out. Assuming that the spending
increase takes place in the second period, the spending point moves from ES

0 to

ES
2 . The optimal tax point shifts from ET

0 to ET
1 so both tax rates are increased

immediately (in anticipation of the higher spending in the second period).

(d) The Euler equation for the government’s optimal tax plan is given by equation
(5.79) in the book:

t1

t2
=

1 + r1

1 + ρG
. (A5.5)
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Figure A5.1: Temporary and permanent spending shocks

It follows that a short-sighted government has the tendency to postpone tax-
ation, i.e. to set t1 much lower than t2. To figure out what happens to public
debt we note that the deficit in period 1 is given by (A5.4) above. Since the
policy maker chooses a low tax rate in the first period it runs a large deficit
in that period. As a result the debt in the second period is large. Recall that
D1 + D2 + B0 = 0. By rewriting this expression in terms of income shares we
get:

D1

Y1
+

D2

Y2

Y2

Y1
+

B0

Y1
= 0 ⇔ d1 + (1 + γ)d2 + b0 = 0 ⇔

−d2 =
d1 + b0

1 + γ
. (A5.6)

The surplus in the second period must be large due to the myopic nature of the
policy maker.

Question 3: The two-period model with tax smoothing

(a) According to (Q5.1), lifetime utility (V) is the sum of utility in the current
period and weighted utility in the second period. The household discounts
future utility because it exhibits time preference. Equations (Q5.2) and (Q5.3)
are budget identities, i.e. they hold by definition. We obtain the lifetime budget
constraint by setting A2 = 0. It makes no sense for the household to die with
positive assets (i.e. A2 ≤ 0) and capital markets will not allow the household
to die indebted (i.e. A2 ≥ 0). Combing the two inequalities yields A2 = 0 as
the solvency condition. By substituting (Q5.2) into (Q5.3) and setting A2 = 0
we find the household budget constraint:

C1 +
C2

1 + r1
= (1 − t1)Y1 +

(1 − t2)Y2

1 + r1
. (A5.7)



CHAPTER 5: THE GOVERNMENT BUDGET DEFICIT 149

(b) Government expenditures consist of government consumption G and interest
payments on debt. Initially the government has no debt (B0 = 0), so the gov-
ernment has no interest expenditures in the first period. The government has to
pay all its debt before the world ends, that is, B2 = 0. This gives the following
two expressions:

D1 ≡ G1 − t1Y1 = B1 (A5.8)

D2 ≡ rB1 + G2 − t2Y2 = B2 − B1 = −B1. (A5.9)

Solving the second budget identity for B1 and substitution into the first identity
gives:

B1 = G1 − t1Y1 =
t2Y2 − G2

1 + r1
⇒ G1 +

G2

1 + r1
= t1Y1 +

t2Y2

1 + r1
(A5.10)

This intertemporal budget constraint simply states that the present value of all
the government’s expenditures must be equal to the present value of its tax
revenues.

(c) Rewrite equation (A5.7):

C1 +
C2

1 + r1
= +Y1 +

Y2

1 + r
−
(

t1Y1 +
t2Y2

1 + r

)
and recognise that the term within brackets is exactly equal to the governments
tax revenues. Now use the GBC to get

C1 +
C2

1 + r1
= Y1 +

Y2

1 + r1
−
(

G1 +
G2

1 + r1

)
⇔ (A5.11)

C1 +
C2

1 + r1
= Y1 − G1 +

Y2 − G2

1 + r1
≡ Ω. (A5.12)

This last equation is the household budget constraint, taking into account that
the government must eventually pay all its debt. There are no tax parameters
equation (A5.12), this means that the tax parameters do not enter the household
optimization problem.

(d) Households maximize V by setting C1 and C2. The corresponding Lagrangian
is

L = U(C1) +
U(C2)

1 + ρ
+ λ

[
Ω − C1 − C2

1 + r1

]
The first order conditions are

∂L
∂C1

= 0 : U′(C1) = λ (A5.13)

∂L
∂C2

= 0 :
U′(C2)

1 + ρ
=

λ

1 + r1
(A5.14)

Combining (A5.13) and (A5.14) yields the Euler equation:

U′(C1)

U′(C2)
=

1 + r1

1 + ρ
. (A5.15)
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Government variables Household variables

t1 0.223 (1 − t1)Y1 11.649
t2 0.234 (1 − t2)Y2 15.319

t1Y1 3.351 C1 13.568
t1Y1 4.681 C2 13.303
D1 0.649 S1 -1.920
D2 -0.649 S2 1.920
B1 0.649 A1 -1.920
B2 0.000 A2 0.000

Table A5.1: Solution to the 2-period representative household model

Differentiating the instantaneous utility function (Q5.4) gives U′(C) = C−1/σ.
Using this in the Euler equation gives:

C2

C1
=

[
1 + r1

1 + ρ

]σ

. (A5.16)

which is only equal to equation (5.15) in the textbook if σ = 1.

We now know the relation between C1 and C2. Substitute the Euler equation
into the HBC (A5.12) and find:

C2

[
1 + ρ

1 + r1

]σ

+
C2

1 + r1
= Ω ⇒ C2 =

([
1 + ρ

1 + r1

]σ

+
1

1 + r1

)−1

Ω

(A5.17)

C1 +
[1 + r1]

σ−1

[1 + ρ]σ
C1 = Ω ⇒ C1 =

(
1 +

[1 + r1]
σ−1

[1 + ρ]σ

)−1

Ω (A5.18)

(e) This is exactly the problem on page 140 in the textbook! Note that the growth
of the economy (γ in the textbook) cancels in the government optimum so we
end up with expression (5.79) in the textbook:

t2 =
1 + ρG

1 + r1
t1 (A5.19)

(f) Derive the growth rates of taxes using equation (A5.19), present value of after
tax income Ω (equation (A5.12)), consumption in periods 1 and 2 (equations
(A5.18) and (A5.17)) and taxes in both periods (using equation (A5.10) and
(A5.19)). With these variables known, it is easy to derive all other relevant
variables like the government deficit in both periods, savings etc. . . In a pro-
gram like MS-Excel this is quite easy to implement (see Table A5.1) (There is
one problem: savings equilibrium. As you can see from the figures in the table,
national savings are not 0. We can solve this by postulating an open economy
framework. The interest rate is fixed and the rest of the world fills the savings
gap.)

For households it does not matter how taxes evolve, in this basic setup, Ricar-
dian equivalence holds.



CHAPTER 5: THE GOVERNMENT BUDGET DEFICIT 151

(g) As can be seen from Table A5.1 households would like to borrow in the first
period. If this is not possible, they will choose the best possible option, that
is, they will consume all of their after tax income in the first period C1 = (1 −
t1)Y1. Savings are zero and second period consumption is equal to second
period after tax income C2 = (1 − t2)Y2. In Figure A5.2 households would
like to consume point E1, but are restricted to their original after-tax income
endowment point E0.

C1C
U
1

Y
D
1

C2

C
U
2

Y
D
2

E0

E1

V0

V1

Figure A5.2: Borrowing constraints for households

Question 4: Ricardian equivalence

(a) If labour supply is endogenous then the tax rates will themselves introduce dis-
tortions. Whereas income is exogenously given in the standard case discussed
in the text, with endogenous labour supply Y1 and Y2 will depend on the tax
rates in the two periods. The Ricardian experiment (a cut in t1 and an increase
in t2) will then affect the present value of income of the households. As a res-
ult, Ricardian equivalence will not generally hold any more. See section 5.1.2
in the book.

(b) When households have only limited access to the capital markets Ricardian
equivalence will not generally hold any more. In section 5.1.3 in the text we
show that a household which faces binding borrowing constraints will be un-
able to attain its optimal consumption point. Instead, it will choose a second-
best optimal consumption plan that is restricted by income in the two periods.
A tax cut in the current period moves the income-endowment point in the dir-
ection of the optimal consumption point and makes the household better off.
Consumption in the two periods is affected and Ricardian equivalence does
not hold.
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(c) When new generations are born which are not altruistically linked with exist-
ing generations, then the future tax load will be carried by more shoulders. As
a result, a tax cut now will make current generations better off and will prompt
them to consume more. Ricardian equivalence will not hold. If, on the other
hand, the new generations are altruistically linked with the present genera-
tions then Ricardian equivalence will hold again. The reason is that positive
bequests will ensure that present and future generations are connected to each
other.

(d) When households are risk averse and future income is stochastic, then they
will engage in so-called precautionary savings. A tax cut now, matched by a tax
increase later, will ensure that precautionary savings fall. The reason is that
the future tax increase reduces the variance of future after-tax income. A tem-
porary tax cut thus boosts consumption, which is inconsistent with Ricardian
equivalence.

Question 5: Ricardian equivalence in the two-period model

(a) According to (Q5.6), lifetime utility (V) is the sum of felicity in the current
period and weighted felicity in the second period. The household discounts
future felicity because it exhibits time preference. Equations (Q5.7) and (Q5.8)
are budget identities, i.e. they hold by definition. We obtain the lifetime budget
constraint by setting A2 = 0. It makes no sense for the household to die with
positive assets (i.e. A2 ≤ 0) and capital markets will not allow the household
to die indebted (i.e. A2 ≥ 0). Combing the two inequalities yields A2 = 0 as
the solvency condition. By substituting (Q5.7) into (Q5.8) and setting A2 = 0
we find the household budget constraint:

C1 +
C2

1 + r1
= (1 + r0)A0 + (1 − t1)Y1 +

(1 − t2)Y2

1 + r1
≡ Ω. (A5.20)

(b) The government budget identities are:

rB0 + G1 − t1Y1 = B1 − B0, (A5.21)

rB1 + G2 − t2Y2 = B2 − B1 = −B1, (A5.22)

where Bτ is government debt in period τ (= 1, 2). The solvency condition
for the government is B2 = 0. By combining (A5.21) and (A5.22) and setting
B2 = 0 we find the budget constraint of the government:

(1 + r0)B0 + G1 +
G2

1 + r1
= t1Y1 +

t2Y2

1 + r1
. (A5.23)

Since government bonds are the only financial asset in this economy, Aτ = Bτ .
By using this in (A5.20) and (A5.23) we find:

(1 + r0)A0 = C1 +
C2

1 + r1
−
[
(1 − t1)Y1 +

(1 − t2)Y2

1 + r1

]

= t1Y1 +
t2Y2

1 + r1
−
[

G1 +
G2

1 + r1

]
, (A5.24)
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or:

C1 +
C2

1 + r
= Y1 − G1 +

Y2 − G2

1 + r
. (A5.25)

The tax parameters drop out of the rewritten household budget constraint. The
path of taxes does not matter for the real equilibrium in the economy.

(c) The Lagrangian associated with the optimization problem is:

L ≡ C1−1/σ
1 − 1

1 − 1/σ
+

1

1 + ρ

C1−1/σ
2 − 1

1 − 1/σ
+ λ

[
Ω − C1 − C2

1 + r

]
. (A5.26)

The first-order conditions are the budget constraint (A5.20) and:

∂L
∂C1

= C−1/σ
1 − λ = 0, (A5.27)

∂L
∂C2

= βC−1/σ
2 − λ

1 + r1
= 0. (A5.28)

By combining (A5.27)-(A5.28), the so-called consumption Euler equation is ob-
tained:

λ = C−1/σ
1 = β(1 + r1)C−1/σ

2 ⇒
(

C2

C1

)1/σ

= β(1 + r1) ⇒
C2

C1
= [β(1 + r1)]

σ . (A5.29)

Note that (A5.29) is the same as equation (5.15) in the book if σ = 1 (recall that
β ≡ 1/(1 + ρ)).

Next we find the levels of C1 and C2 by combining (A5.29) and the budget
constraint (A5.20). We obtain:

C1 +
[β(1 + r1)]

σ C1

1 + r1
= Ω

C1

[
1 + βσ(1 + r1)

σ−1
]

= Ω

C1 =
Ω

1 + βσ(1 + r1)σ−1
. (A5.30)

It follows from (A5.30) and (A5.29) that C2 is:

C2 = [β(1 + r1)]
σ C1 =

[β(1 + r1)]
σ

Ω

1 + βσ(1 + r1)σ−1
. (A5.31)

If σ = 1, then (A5.30) and (A5.31) coincide with the expressions found in equa-
tion (5.16) in the book.

Finally, by noting that S1 ≡ A1 − A0 we find:

S1 = A1 − A0 = r0 A0 + (1 − t1)Y1 − C1

= r0 A0 + (1 − t1)Y1 − Ω

1 + βσ(1 + r1)σ−1

= r0 A0 +
βσ(1 + r1)

σ−1 · (1 − t1)Y1 −
[
(1 + r0) A0 + (1 − t2)

Y2
1+r1

]
1 + βσ(1 + r1)σ−1

,

(A5.32)
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where we have used the definition of Ω in the final step.

(d) If interest income is taxed, then the household budget constraint becomes:

C1 +
C2

1 + r∗
= [1 + r(1 − t1)] A0 + (1 − t1)Y1 +

(1 − t2)Y2

1 + r∗
≡ Ω∗, (A5.33)

where r∗ ≡ r1(1 − t2). Retracing the steps performed in part (c) we find:

C1 =
Ω∗

1 + βσ(1 + r∗)σ−1
, (A5.34)

C2 =
[β(1 + r∗)]σ Ω∗

1 + βσ(1 + r∗)σ−1
. (A5.35)

The effects of taxes in the two periods are as follows. The effect of t1 operates
only via household wealth and leaves the intertemporal trade-off between C1

and C2 unchanged:

∂Ω∗

∂t1
= −(r0 A0 + Y1) < 0. (A5.36)

In terms of Figure A5.3, the lifetime budget constraint shifts inward in a par-
allel fashion. If the initial equilibrium is at E0 (where lifetime utility is V0),
after the tax increase the new equilibrium will be at E1 (where lifetime utility
is lower). The straight line from the origin, labelled EE, is the Euler equation:

C2

C1
= βσ [1 + r1(1 − t2)]

σ . (A5.37)

Since t1 does not affect the intertemporal trade-off between C1 and C2, E0 and
E1 lie on the same EE line. The move from E0 to E1 only causes an income effect
(IE).

An increase in the tax rate in the second period has more complicated effects.
First, it follows from the definition of r∗ that the after-tax interest rate falls:

∂r∗

∂t2
= −r1 < 0. (A5.38)

Second, it follows from the definition of Ω∗ in (A5.33) that wealth falls:

∂Ω∗

∂t2
= Y2

−(1 + r∗) + r1(1 − t2)

(1 + r∗)2
= − Y2

(1 + r∗)2
< 0. (A5.39)

In terms of Figure A5.4, the equilibrium shifts from E0 to E1. We can decom-
pose the total effect into the income effect (IE), the substitution effect (SE), and
the human wealth effect (HWE). The decrease in the after-tax interest rate,
given by (A5.38), is represented by the counter-clockwise rotation of the budget
line from its initial position to the dashed line aa. The decrease in wealth, as
given in (A5.39), is represented by the parallel shift of the aa line to the bb line.
In order to discover the pure substitution effect we draw the auxiliary line cc,
which is parallel to both aa and bb, in order to find the tangency point E’ along
the old indifference curve, V0.

The total effect can now be decomposed as follows:
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Figure A5.3: Increase in current tax rate
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Figure A5.4: Increase in future tax rate
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• The substitution effect (SE) is represented by the move from E0 to E’. The
decrease in the after-tax interest rate causes an increase in consumption in
the first period and a decrease in future consumption.

• The income effect (IE) is represented by the move from E’ to E”. Since the
household is poorer as a result of the tax increase, less of both goods is
consumed.

• The human wealth effect (HWE) is represented by the move from E” to
E1. Though future income is discounted less heavily (because r∗ falls) the
reduction in after-tax future income dominates this discounting effect (see
(A5.39)). Because the household is poorer, consumption of both goods is
decreased.



Chapter 6

A closer look at the labour
market

Question 1: Short questions

(a) Explain in general terms how the theory of efficiency wages can explain relat-
ively high youth unemployment.

(b) “An increase in the minimum wage leads to an increase in the unemployment
rate experienced by unskilled workers and an increase in the real wage re-
ceived by skilled workers.” Explain and evaluate this proposition.

Question 2: Two-sector model with a skill-biased productivity shock

Consider the two-sector labour market model discussed in section 6.2.1 in the text.
Assume, however, that the production function facing the representative firm is
given by:

Y = G (NU , ZSNS, K̄) ≡ F (NU , ZSNS) , (Q6.1)

where G (·) features constant returns to scale in the three production factors (skilled
and unskilled labour and capital), and F (·) features diminishing returns to scale
because K̄ is held fixed in the short run. We assume that FSU < 0. The term ZS is an
exogenous productivity term, representing the labour efficiency of skilled workers.
The rest of the model is unchanged. Supplies of the two labour types is exogenous:

NS
S = N̄S, NS

U = N̄U . (Q6.2)

(a) Derive expressions for the competitive demands for the two types of labour.

(b) Explain how an exogenous increase in ZS affects the labour market if there is
no minimum wage and wages are perfectly flexible. Explain your answer in a
two-panel diagram such as Figure 6.3 in the text.

(c) Redo part (b) for the case in which the minimum wage, w̄, is initially binding
in the market for unskilled labour only. Explain your answer in a two-panel
diagram such as Figure 6.3 in the text.
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Question 3: Progressive taxation

In Chapter 1 we took an informal look at the way in which the representative house-
hold chooses its optimal supply of labour. In this question we look more precisely
at this matter. In particular, we focus on the interaction between a progressive tax
system and the labour supply decision. The representative household has a utility
function which depends on consumption, C, and leisure, 1 − N, according to:

U = U(C, 1 − N), (Q6.3)

where the time endowment is unity and where N is labour supply. We assume that
the utility function is homothetic. The budget restriction is as usual:

C = WN − T, (Q6.4)

where T is the amount of tax paid by the household, and we set the price equal to
P = 1. Tax payments are assumed to depend on wage income according to:

T = tMWN − θ, θ > 0, 0 < tM < 1. (Q6.5)

According to (Q6.5), the household receives θ from the government (regardless of
whether it works or not) but must pay taxes over its wage income equal to tMWN.

(a) Compute the average tax rate, tA ≡ T/(WN), and the marginal tax rate, dT
/d(WN). Show that the tax system is indeed a progressive one.

(b) Show that at the optimal point, the marginal rate of substitution between leis-
ure and consumption can be written as follows:

U1−N

UC
= W(1 − tM). (Q6.6)

Explain intuitively why the marginal (rather than the average) tax rate features
in this expression.

The substitution elasticity between consumption and leisure is formally defined as
follows:

σCM =
%ge change in ∆C/(1 − N)

%ge change in U1−N/UC
≡ d ln(C/(1 − N))

d ln(U1−N/UC)
> 0. (Q6.7)

This coefficient measures the degree of substitutability between consumption and
leisure in the utility function. If σCM is very high then substitution is quite easy,
whereas substitution is difficult if σCM is low.

(c) Draw the indifference curves for the following three cases: σCM = 0, σCM = 1,
and σCM → ∞.

(d) Show that the two first-order conditions for utility maximization can be loglin-
earized as follows:

C̃ +

[
N

1 − N

]
Ñ = σCM[W̃ − t̃M],

C̃ = W̃ − t̃A + Ñ,

where C̃ ≡ dC/C, Ñ ≡ dN/N, W̃ ≡ dW/W, t̃M ≡ dtM/[1 − tM], and
t̃A ≡ dtA/[1 − tA]. Derive the loglinearized expressions for labour supply
and consumption.
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(e) Show (for the two cases σCM = 0 and σCM = 1) what happens to consumption
and labour supply if the tax system is made more progressive. Assume that
the average tax rate (evaluated at the initial optimum) remains unchanged.
Explain your answers with the aid of diagrams.

Question 4: Indivisible labour

Assume that jobs come in a fixed number of hours per day. In this setting, a house-
hold either has no work at all (N = 0) or works an exogenously determined number
of hours per day (N = N̄ < 1). If the household does not work, it receives an un-
employment benefit equal to B. Unemployment benefits are not taxed. The budget
restriction of an unemployed household is then:

PC = B, (Q6.8)

where P is the price level and C is consumption. An employed household has the
usual budget restriction:

PC = WN̄(1 − t), (Q6.9)

where t is the (constant) tax rate and W is the nominal wage. Assume that the unem-
ployment benefit is proportional to the after-tax income of the employed households.

B = γWN̄(1 − t), (Q6.10)

where γ is the so-called replacement rate (0 < γ < 1). The utility function of house-
hold i is given by:

Ui(C, 1 − N) ≡ Cα(1 − N)βi , (Q6.11)

where α > 0 and βi ≥ 0.

(a) Derive the labour supply decision for household i. Show that it depends on
the magnitude of βi. (Hint: do not differentiate anything.)

(b) Assume that the population size is Z and that the βi’s are distributed uniformly
over the interval [0, β̄]. Show that the replacement rate exerts a negative influ-
ence on aggregate labour supply in this economy.

(c) Assume now that the unemployment benefit is proportional to gross wage in-
come, i.e. B = γWN̄. Assume furthermore that γ < 1 − t. Redo part (a) and
derive the effect on aggregate labour supply of a higher tax rate.

Question 5: Efficiency wages

(a) Provide three reasons why it may be advantageous for a firm to pay its workers
a wage in excess of the market clearing wage.

(b) Explain why unemployment is a “necessary evil” for firms to get a well -
disciplined labour force in the Shapiro and Stiglitz (1984) model. Is unem-
ployment voluntary or involuntary in this model?
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Answers

Question 1: Short questions

(a) The basic underlying hypothesis of efficiency wages is that the net productivity
of workers depends positively on the wage rate they receive. More specifically,
the effort of a company’s employees depends positively on the gap between
the wage rate workers receive and the expected wage rate outside the firm. A
profit maximizing firm will pay its workers a mark-up over the outside option
and this mark-up will increase if the productivity-enhancing effect is stronger.

However, the higher the wage rate is that the firm pays to its workers, the less
workers it will hire and unemployment will be higher.

The young’s effort is very sensitive to difference in the wage they receive and
the expected wage they get outside their current job, which would imply that
the markup for the young is high, but also that unemployment among the
young will be higher.

(b) True, provided the minimum wage is binding for the unskilled only. See Figure
6.3 in the book. If w̄ increases, wU = w̄ increases. Demand for skilled workers
increases as does wS. This boosts the demand for unskilled workers a little.

Question 2: Two-sector model with a skill-biased productivity shock

(a) The representative firm maximizes profit by choosing the optimal production
level:

max
{NU ,NS}

Π ≡ PF(NU , ZSNS) − WU NU − WSNS. (A6.1)

This gives us the usual marginal productivity conditions:

FU(NU , ZSNS) = wU , (A6.2)

FS(NU , ZSNS) =
wS

ZS
≡ w̃S, (A6.3)

where wS ≡ WS/P, wU ≡ WU/P (note that FS(NU , ZSNS) ≡ ∂F/∂ (ZSNS)
is the marginal product of efficiency units of skilled labour). In (A6.3), w̃S is
the real wage for efficiency units of labour. Total differentiation of the two
equations gives:[

dNS

dNU

]
=

1

∆
·
[

FUU −FSU

−FSUZS FSSZS

] [
dw̃S − FSSNSdZS

dwU − FSU NSdZS

]
, (A6.4)

where ∆ ≡ ∆ ≡ ZS ·
[
FSSFUU − F2

SU

]
> 0 is a positive constant.

From (A6.4) we can derive:

∂ND
S

∂w̃S
=

FUU

∆
< 0,

∂ND
U

∂wU
=

FSS

∆
< 0, (A6.5)

∂ND
S

∂wU
= − FSU

∆
> 0,

∂ND
U

∂w̃S
= − FSUZS

∆
> 0. (A6.6)
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These effects are the same as in the text–see equations (6.12) and (6.13). De-
mand curves slope down and an increase in the price of one factor leads to an
increase in the demand for the other factor.

(b) The effect of an increase in ZS can also be obtained from (A6.4):

∂ND
S

∂ZS
= −

[
FSSFUU − F2

SU

]
NS

∆
= −NS

ZS
< 0, (A6.7)

∂ND
U

∂ZS
=

[FSU FSS − FSU FSS] NS

∆
= 0. (A6.8)

Holding constant real wages, w̃S and wU , the technology shock reduces the
demand for skilled labour and leaves the demand for unskilled labour unaf-
fected.

We can obtain the general equilibrium effects by recognizing that under flexible
wages, dNS = dNU = 0 (demands equal fixed supplies). Using this in (A6.4)
we find:

dw̃S = FSSNSdZS < 0, dwU = FSU NSdZS < 0.

In terms of Figure A6.1, an increase in ZS shifts the equilibrium from E0 to E1.
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NS NU
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!

!

D
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NU (wS0, wU)
D ˜
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S
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S

wS˜
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wS1˜

D
NS (wS, wU1)˜

NU (wS1, wU)
D ˜

wU0

Figure A6.1: A skill-biased shock and wages

(c) Now unemployment of unskilled workers will exist, both before and after the
shock. See Figure A6.2. In the left-hand panel the productivity shock shifts la-
bour demand from ND

S (w̃S, w̄)0 to ND
S (w̃S, w̄)1 and the skilled rental rate falls,

from w̃S0 to w̃S1. In the right-hand panel, labour demand shifts because of the
reduction in the skilled rental rate, from ND

U (w̃S0, wU) to ND
U (w̃S1, wU). Un-

employment gets worse because the minimum wage becomes a more binding
constraint than before the shock.

Question 3: Progressive taxation

(a) The average tax rate, tA, is defined as:

tA ≡ T

WN
=

tMWN − θ

WN
= tM − θ

WN
. (A6.9)
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Figure A6.2: A skill-biased shock and unemployment

The tax system is progressive if the average tax rate increases with the tax base
(labour income in this case). By differentiating (A6.9) with respect to WN we
obtain:

dtA

d(WN)
=

θ

(WN)2
> 0, (A6.10)

where the sign follows from the fact that we assume θ > 0. Hence, the tax
system is progressive.

The marginal tax rate, tM, is defined as:

tM =
dT(WN)

WN
> 0. (A6.11)

By assumption the marginal tax is constant (i.e. does not depend on income).
The tax curve has been illustrated in Figure A6.3. The marginal tax rate is
constant (equal to the slope of the tax curve) but the average tax rate increases
with WN. In points A and B, tM is the same but tA is higher in the latter point
(tB

A > tA
A).

(b) The household chooses consumption, C, and labour supply, 1 − N, in order
to maximize the utility function (Q6.3) subject to the budget constraint (Q6.4).
The Lagrangian expression is:

L ≡ U(C, 1 − N) + λ[WN − T(WN)− C], (A6.12)

The first-order necessary conditions are the constraint and:

∂L
∂C

= 0 : UC = λ, (A6.13)

∂L
∂N

= 0 : U1−N = λW(1 − tM). (A6.14)

Substitution of (A6.13) into (A6.14) gives the required expression for the mar-
ginal rate of substitution between leisure and consumption:

λ = UC =
U1−N

W(1 − tM)
⇒ U1−N

UC
= W(1 − tM). (Q6.6)
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Figure A6.3: A progressive tax schedule

Hence, the marginal tax rate features in the first-order condition for labour sup-
ply. Intuitively, this is because the household is making a marginal decision
concerning consumption and labour supply. It will take into account that the
average tax rates increases as more labour is supplied.

(c) The three cases correspond to, respectively, no substitution at all (Leontief,
σCM = 0), relatively easy substitution (Cobb-Douglas, σCM = 1), and perfect
substitution (Linear, σCM → ∞). In Figures A6.4–A6.6, the three cases have
been illustrated.

Consider first Figure A6.4, σCM = 0. Along a given indifference curve, we
obtain by differentiation:

dU = UCdC + U1−Nd(1 − N) = 0 ⇒ dC

d(1 − N)
= −U1−N

UC
. (A6.15)

For points on the indifference curve U0 that lie above point A, we have UC = 0
(additional consumption gives no extra utility), i.e. dC/d(1 − N) = −∞ there.
For points on the indifference curve U0 that lie to the right of point A we have
U1−N = 0 (additional leisure gives no extra utility), i.e. dC/d(1 − N) = 0
there. The household will always choose to be in the kink. This means that, no
matter what happens to the marginal rate of substitution between leisure and
consumption, the ratio between C and 1 − N is constant. This means that the
numerator of (Q6.7) (and thus σCM itself) is always zero.

Next, we consider Figure A6.5, which assumes that the utility function is Cobb-
Douglas:

U = Cα[1 − N]1−α, (A6.16)

with 0 < α < 1. The marginal rate of substitution between leisure and con-
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1−N

C

U0

U1

A

dC/d(1−N)=∞

dC/d(1−N)=0

Figure A6.4: Leontief utility function

sumption for the Cobb-Douglas utility function is:

U1−N

UC
=

(1 − α)Cα[1 − N]−α

αCα−1[1 − N]1−α
=

1 − α

α

C

1 − N
. (A6.17)

By taking logarithms and totally differentiating we get:

d ln

(
U1−N

UC

)
= d ln

(
C

1 − N

)
. (A6.18)

By using this in the definition of σCM (in equation (Q6.7)) we find that σCM = 1
for the Cobb-Douglas utility function.

Finally, we consider Figure A6.6, which assumes that the utility function is
linear:

U = β0 + β1C + β2[1 − N], (A6.19)

where β1 and β2 are positive constants. For this utility function, UC, U1−N ,
and thus the marginal rate of substitution between leisure and consumption
are all constant, i.e. U1−N/UC = β2/β1. It follows that d ln(U1−N/UC) = 0
regardless of C/(1 − N). Using this result in the definition of σCM (in equation
(Q6.7)) shows that σCM → ∞ for the linear utility function.

(d) The two relevant first order conditions are the equation for the marginal rate
of substitution (Q6.6) and the (slightly rewritten) budget constraint (Q6.4):

U1−N

UC
= W(1 − tM) (Q6.6)

C = (1 − tA)WN (Q6.4)
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Figure A6.5: Cobb-Douglas utility function

1−N

C

U0 U1

dC/d(1−N)=−U1−N/UC

Figure A6.6: Linear utility function
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with our knowledge of loglinearization we can skip all tedious steps and we
can immediately write:

1

σCM

[
C̃ +

N

1 − N
Ñ

]
= W̃ − t̃M ⇒ C̃ +

N

1 − N
Ñ = σCM[W̃ − t̃M]

C̃ = −t̃A + W̃ + Ñ

or in matrix notation:[
1 N

1−N
1 −1

] [
C̃
Ñ

]
=

[
σCM −σCM 0

1 0 −1

] W̃
t̃M

t̃A


 (A6.20)

The first matrix is always non-singular (determinant is −1/(1 − N)) and can
be inverted as:[

1 N
1−N

1 −1

]−1

=

[
1 − N N
1 − N −[1 − N]

]
Pre-multiplying equation (A6.20) with this inverse matrix gives the required
result (in matrix notation):

[
C̃
Ñ

]
=

[
σ[1 − N] + N −σ[1 − N] −N
[σ − 1][1 − N] −σ[1 − N] 1 − N

] W̃
t̃M

t̃A


 (A6.21)

(e) In the book we define the index of progressivity of the tax system as (see equa-
tion (6.51)):

s ≡ 1 − tM

1 − tA
. (A6.22)

A decrease in s represents a move towards a more progressive tax system. By
log-linearization of equation (A6.22) we find:

s̃ = t̃A − t̃M, (A6.23)

where s̃ ≡ ds/s. In the question we keep the average tax rate constant (t̃A = 0)
and increase the progressivity of the tax system by raising the marginal tax rate
(s̃ = −t̃M < 0). It follows from (A6.21) that consumption and labour supply
react according to:

C̃ = Ñ = −σCM[1 − N]t̃M, (A6.24)

where we have used the fact that the wage is unchanged (i.e. W̃ = 0 and we
are only looking at the labour supply response for a given gross wage rate). We
can conclude that labour supply falls unambiguously unless σCM = 0 in which
case it stays the same.

Consider Figure A6.7, which is based on the assumption that σCM = 0 (no sub-
stitution). Since utility depends on (consumption and) leisure, it is helpful to
rewrite the budget restriction in terms of leisure also. After some manipula-
tions we find that (Q6.4) can be written as:

C = θ + (1 − tM) · W − W(1 − tM) · [1 − N]. (A6.25)
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Even if the household does not work at all (N = 0) it can still consume the
lump-sum hand out from the government (C = θ in that case). The budget
restriction is drawn in Figure A6.7 as the straight line BC. The household is
initially at point E0. If the marginal tax rate is increased, the budget constraint
rotates in a counter-clockwise fashion and becomes the dashed line BD. In the
absence of any counter-measures, the household would choose point A on the
new budget line. In this experiment however, we must ensure that the average
tax rate (evaluated at the initial optimum E0) is not changed. We denote the
initial average tax rate by t̄A. Since, by definition, the household budget con-
straint can also be written as C = W(1 − tA)N, it follows that the new choice
point must lie along the following line:

C = W(1 − t̄A) − W(1 − t̄A)[1 − N]. (A6.26)

This line is drawn in Figure A6.7 as the straight line EF. Since tM > tA for a
progressive tax system, it is straightforward to show that EF is steeper than
BC (tM > tA). Because both W and t̄A are held constant, the position of the
‘alternative’ budget line is not affected by the change in the marginal tax rate.

It is now clear where the new choice point must lie as it must satisfy the fol-
lowing criteria:

• It must lie on the line EF (so that the average tax is constant).

• It must be on the dashed line from the origin (because households want
to consume goods and leisure in that proportion).

• There must be a tangency with a line parallel to BD.

It follows from these requirements that the choice point must be E0. In order
to keep the average tax rate constant, the policy maker must increase θ so that
the budget line BD shifts in a parallel fashion such that it passes through point
E0. The household continues to choose E0 and neither consumption nor labour
supply are changed.

1−N1

C

θ

0

A

B

C

D

E

F

E0

W [1− t̄A ]

θ +W [1−tM ]

Figure A6.7: Increasing tax progressivity (σCM = 0)
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Next we consider the Cobb-Douglas case (σCM = 1) in Figure A6.8. Equations
(A6.25) and (A6.26) are drawn as, respectively, BC and FE. The initial equilib-
rium point is at E0 (indifference curves are not drawn to avoid cluttering the
diagram). The increase in the marginal tax rate rotates the budget line BC to the
dashed line BD. In the absence of changes to θ, the household would choose
point A. It follows from (Q6.6) that the household wants to choose a lower
C/(1− N) ratio, i.e. the expansion path rotates clockwise from 0G to 0H. Point
A, however, does not satisfy the requirement that the average tax must remain
constant as it does not lie on the line EF. To satisfy that requirement the gov-
ernment must increase θ such that the budget line shifts in a parallel fashion
to intersect 0H and EF in point E1. Because the utility function is homothetic,
there is a tangency between the new budget line and an indifference curve at
point E1.

1−N1

C

θ

0

A

B

C

D

E

F

E0

E1

G

H

W [1− t̄A ]

θ +W [1−tM ]

Figure A6.8: Increasing tax progressivity (σCM = 1)

Question 4: Indivisible labour

(a) Household i maximizes utility, Ui = Cα(1 − N)βi , subject to the budget con-
straint:

PC =

{
B if N = 0

WN̄(1 − t) if N = N̄
(A6.27)

There are only two options for the household to check. It will choose N = 0
if this yields higher utility than N = N̄ and vice versa. By substituting N = 0
and N = N̄ into the utility function (Q6.11) we obtain:

Ui =


Ui

N=0 ≡
(

B
P

)α
if N = 0

Ui
N=N̄

≡
(

WN̄(1−t)
P

)α
(1 − N̄)βi if N = N̄

(A6.28)



CHAPTER 6: A CLOSER LOOK AT THE LABOUR MARKET 169

But, according to equation (Q6.10), we have B = γWN̄(1 − t) so the first ex-
pression in (A6.28) can be rewritten as:

Ui
N=0 =

(
B

P

)α

=

(
γWN̄(1 − t)

P

)α

. (A6.29)

By using (A6.29) and the second expression in (A6.28) we obtain:

Ui
N=N̄

Ui
N=0

=

(
WN̄(1−t)

P

)α
(1 − N̄)βi(

γWN̄(1−t)
P

)α = γ−α(1 − N̄)βi . (A6.30)

It follows that the household makes the following labour supply choice:

NS
i =

{
0 if γ−α(1 − N̄)βi < 1

N̄ if γ−α(1 − N̄)βi > 1
(A6.31)

The marginal household is indifferent between working and not working, i.e. it
has a βi = βM such that γ−α(1− N̄)βM = 1. By taking logarithms on both sides
of this expression we can solve for βM:

−α ln γ + βM ln(1 − N̄) = 0 ⇔ βM =
α ln γ

ln(1 − N̄)
> 0, (A6.32)

where the sign follows from the fact that 0 < γ < 1 and 0 < N̄ < 1 (so that
ln γ < 0 and ln(1 − N̄) < 0). Households whose βi exceeds βM prefer not to
work (they like leisure “too much”) whereas households with a βi smaller than
βM choose to work. (Someone with βi = 0 is the proverbial workaholic.)

(b) The βi coefficients are distributed uniformly over the interval [0, β̄]. The fre-
quency distribution of βi’s in the population is drawn in Figure A6.9. All
households with a βi ≤ βM are workers whereas all households with a βi >

βM are “loungers”. Since the population size is Z, there are thus (β̄ − βM)Z/β̄
loungers and βMZ/β̄ workers (who each work N̄ hours). Aggregate labour
supply is thus:

NS =
βMZN̄

β̄
. (A6.33)

The macroeconomic labour supply curve is drawn in Figure A6.10. Note that
this aggregate labour supply curve is vertical because βM does not depend on
the wage rate (due to the fact that unemployment benefits are linked to the
wage rate).

If γ is increased, then it follows from (A6.32)–(A6.33) that:

∂βM

∂γ
=

α

γ ln(1 − N̄)
< 0,

∂NS

∂γ
=

ZN̄

β̄

∂βM

∂γ
< 0, (A6.34)

where the signs follow from the fact that ln(1 − N̄) < 0. The reduction in βM

causes the aggregate labour supply curve to shift to the left, as is indicated in
Figure A6.10.
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Figure A6.10: Aggregate labour supply with indivisible labour
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(c) Now we assume that the unemployment benefits are linked to the gross wage,
i.e. B = γWN̄. By substituting this into the first expression in (A6.28) we
obtain:

Ui
N=0 =

(
B

P

)α

=

(
γWN̄

P

)α

=

(
γ

1 − t

)α (WN̄(1 − t)

P

)α

. (A6.35)

By using (A6.35) and the second expression in (A6.28) we find:

Ui
N=N̄

Ui
N=0

=

(
WN̄(1−t)

P

)α
(1 − N̄)βi( γ

1−t

)α
(

WN̄(1−t)
P

)α =

(
1 − t

γ

)α

(1 − N̄)βi . (A6.36)

The marginal household now has a βi = βM equal to:

α [ln(1 − t)− ln γ] + βM ln(1 − N̄) = 0 ⇔
βM =

α [ln γ − ln(1 − t)]

ln(1 − N̄)
> 0, (A6.37)

where the sign follows from the fact that ln(1 − N̄) < 0 and the assumption
that γ < 1 − t.

An increase in the tax rate, leads to an increase in γ/(1 − t) and thus to an
increase in the effective replacement rate. This implies that βM falls so that
aggregate labour supply falls.

Question 5: Efficiency wages

(a) The three magic words are recruit, retain, and motivate.

• Recruit Make sure that the best workers choose to join your firm (rather
than your competitor’s firm).

• Retain Make sure that your employees do not quit to go to another firm.

• Motivate Make sure that your employees provide sufficient effort on the
job.

(b) In the Shapiro-Stiglitz model, unemployment acts as a worker discipline device.
If they are caught shirking (not expending sufficient effort) then the firm can
fire the worker. If there were no unemployment, then there would be no way
to punish the worker because he/she would immediately find the same kind
of job. In the internal solution of the Shapiro-Stiglitz model, there is non-zero
unemployment and the threat of unemployment provides the firm with an ef-
fective instrument to limit shirking.
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Chapter 7

Trade unions and the labour
market

Question 1: Short questions

(a) Why does a monopoly union not choose to set wages such that all its members
are employed?

(b) “Breaking the power of trade unions is good for the investment climate in this
country.” Explain and evaluate this proposition.

(c) Explain why the iso-profit function must be horizontal at the point where it
intersects the demand for labour.

Question 2: Small talk. . .

On your day off you take a ride in Vienna’s Riesenrad and overhear a shabbily dressed,
quite conservative, economist making a number of rather strong claims. Since you
are an economist yourself, you feel obliged to comment on the statements. Here are
the claims:

(a) “In order to attain full employment of labour it is absolutely essential that
union power is broken down as much as possible.”

(b) “Highly centralized unions or perfect competition on the labour market are
both good for the employment level in an economy. Medium-sized unions, on
the other hand, are very bad for employment.”

(c) “Higher unemployment benefits lead to higher wage claims and thus to higher
unemployment. The degree of corporatism influences this relationship.”
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Question 3: The Blanchard-Summers model

Use the Blanchard-Summers model (see textbook, section 7.3) on fiscal increasing
returns.

Y = F(L, K̄), (Q7.1)

w = FL(L, K̄), (Q7.2)

tY = G + βw(1 − t)[N − L]. (Q7.3)

(a) Provide a brief interpretation of the equations.

(b) Assume that the after-tax real wage is constant. This may be, for example,
because of union influence. Show that the model admits two equilibria, namely
a ‘good’ and a ‘bad’ equilibrium.

(c) In order to judge the stability properties of the model we postulate that the
tax rate moves gradually over time to re-establish government budget balance.
Equation (Q7.3) is replaced by:

ṫ = γ[G + βw(1 − t)[N − L] − tY]. (Q7.4)

Show that the model is unstable around the bad equilibrium but stable around
the good equilibrium. What do you conclude from this result?

Question 4: Variable unemployment benefits

Assume that the unemployment benefits are linked to the net market wage rate. Use
a simple union model to discuss the effects of the following:

(a) Higher unemployment benefits.

(b) More intense competition on the goods market (due to, for example, increased
European integration).

(c) A more progressive tax system.

(d) A higher employers tax on labour (tE).

(e) A higher average tax rate on workers (tA).

Question 5: The two-sector labour market model

Consider the two-sector model of the labour market. In the first sector (the primary
sector) unions are prevalent, whilst in the second sector (the secondary sector) the
labour market is characterized by perfect competition.

(a) Show that there will be unemployment if the unemployment benefits are “too
high.” Explain the mechanism.

(b) Show what happens if “union bashing” leads to the elimination of trade unions
in the primary sector.

(c) Show the effects of a wage subsidy on labour in the secondary sector.
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Answers

Question 1: Short questions

(a) A trade union does not only care about the number of employed. Rather, it
cares about the ‘average utility level of its members’. Decreasing its wage
claims might increase the number of employed and thus the number of mem-
bers that receive a wage instead of the low unemployment benefit, but it de-
creases the wage received by the workers. A monopoly labour union sets the
wage rate that maximizes the ‘average utility level of its members’ subject to
the labour demand equation (that is, companies choose the number of em-
ployed given the wage rate set by the union). Even if it is possible to set a wage
that brings full employment (if the unemployment benefit is not too high), then
the labour union would not set this wage rate because the second effect above
would dominate the first. Like a monopolist in the goods market, the union
restricts output (i.e. employment) and thus drives up wages and union utility.

(b) Depends, it is true for the right-to-manage and monopoly union models. With
less powerful unions one gets closer to the competitive outcome. It is not true
for the efficient bargaining case.

(c) Profit is defined as:

π(w, L) ≡ F(L, K̄) − wL,

so that the iso-profit line has the slope:(
dw

dL

)
dπ=0

= − πL

πw
.

But πw = −L is always negative, so the slope of the iso-profit line is determi-
ned by the sign of πL = FL(L, K̄) − w. Obviously, πL = 0 for w = FL(L, K̄)
which is the labour demand curve.

Question 2: Small talk. . .

(a) The validity of this statement depends on the type of union model one uses. In
the monopoly union model and in the right-to-manage model the statement is
correct. In the first model breaking union power would presumably rob it of
its monopoly power (e.g. by allowing other unions to enter or by forbidding
unions altogether). In the extreme case, the wage would be driven to its reser-
vation level (B) and employment would be expanded from LM to LC in Figure
7.3.

In the right-to-manage model, breaking union power could be interpreted as
a decrease in λ, the relative bargaining power of the union in the generalized
Nash bargaining model. This would move the solution in the direction of the
competitive solution (point C in Figure 7.4) and expand employment.

In the efficient bargaining model, however, the statement is incorrect. In that
model, breaking union power can be interpreted as a decrease in the share of
output that goes to the workers (“wage moderation”), i.e. a reduction in k in
equation (7.22). In terms of Figure 7.5, this shifts the equity locus to the left and
reduces both the wage and employment. Jobs are turned into profits (rewards
to capital owners).
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(b) This statement touches on the idea of corporatism, discussed in section 7.2 of
the book. With weak (small) trade unions or with a competitive labour mar-
ket, there is little unemployment and low wages (see Figure 7.7 in the book).
A large (centralized) trade union also chooses a high employment-low gross
wages solution because it tends to ‘internalize’ the government budget con-
straint. It knows that high wage claims cause unemployment, high outlays on
unemployment benefits, and thus high labour income taxes and low after-tax
wages for the workers.

In the intermediate case, with medium sized unions, the economy is in the
worst of both worlds. The unions are large enough to cause damage (demand
high wages and cause unemployment) but they are too small to take the gov-
ernment budget constraint into account.

(c) This statement is true for all trade union models considered. With a high de-
gree of corporatism, the large unions will lower their markup to avoid causing
too much unemployment and excessively high labour income taxes.

Question 3: The Blanchard-Summers model

(a) Equation (Q7.1) is a constant returns to scale production function, (Q7.2) is the
labour demand function, (Q7.3) is the government budget constraint. It is a
short term model, i.e. capital is exogenous and constant. The tax rate is t, so
total tax revenues are tY. The government pays an unemployment benefit to
the unemployed, which is linked to the after tax wage rate (wN ≡ w(1 − t)).
The unemployment benefit equals the replacement ratio β times the after tax
wage rate. This means that total unemployment benefits are βw(1 − t)[N − L].
The tax rate is endogenous and ensures that the government budget constraint
holds.

The model contains four endogenous variables, Y, L, w, and t. To solve this
model we need one extra restriction.

(b) We follow the steps in the book. First derive the relationship between the after
tax wage rate and employment (equation (7.27) in the book):

wN ≡ w(1 − t) = FL(L, K̄) ·
[

F(L, K̄) − G − βw(1 − t)[N − L]

F(L, K̄)

]
(A7.1)

In Intermezzo 7.1 the first derivative of wN with respect to L is derived:

dwN

dL
=

(1 − t)wN

(1 − ωG)L
·
[
−1 − ωL

σ
+

(
β +

t

1 − t

)
ωL

]
(A7.2)

with ωG ≡ G/Y the share of government consumption in total production, σ
the elasticity of substitution, and ωL ≡ wL/Y the share of labour income in
output.

The sign of dwN/dL is determined by the term within square brackets. For a
high enough σ or β, this term is positive for high values of t and negative for
small values of t. If we use the government budget constraint (Q7.3) we see
that t is high for low employment levels and low for high employment levels
(the unemployment benefit must be financed with tax revenues). This means
that (A7.1) is humped shaped.
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The relation between wN and L is drawn in Figure A7.1. For a given after
tax wage rate w̄N there might be two levels of employment, one low (bad)
equilibrium LB and one high (good) equilibrium LG.

L

wN

L
B

w̄N

L
G

E
B

E
G

Figure A7.1: Fiscal increasing returns

(c) This equation states that taxes increase (ṫ > 0) if the government has a deficit,
taxes decrease (ṫ < 0) if the government has a surplus.

In Intermezzo 7.1 it is shown how to derive the linearized version of (Q7.4).

dṫ

dt
=

γσY

1 − ωL

[
−1 − ωL

σ
+

(
β +

t

1 − t

)
ωL

]
(A7.3)

The sign of this derivative is determined by the term within square brackets,
but this is exactly equal to the term that determines the sign in equation (A7.2)!
This means that dṫ/dt > 0 (an unstable situation) if dw/dL > 0 and dṫ/dt < 0
(a stable situation) if dw/dL < 0. So the equilibrium EB in Figure A7.1 is
unstable and EG is stable.

Question 4: Variable unemployment benefits

We are free to choose the simplest union model around. This is, of course, the mono-
poly union model with logarithmic member preferences and a constant elasticity of
labour demand. In part (b) of the question we must say something about the market
in which the firm sells its product. To do so we must expand the model somewhat.
In part (d) we must introduce the employers’ tax on labour into the model.

(a) According to equation (7.9) in the book, the monopoly union sets the wage
according to:

u(w) − u(B)

wuw
=

1

εD
. (A7.4)

Assuming that u(·) is logarithmic, we obtain:

w = e1/εD B. (A7.5)
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If εD is constant, it follows directly from (A7.5) that an increase in B leads to an
increase in the wage. Since labour demand slopes downwards, employment
drops off and unemployment increases.

(b) To study the effect of the firm’s market power in the goods market we must
move beyond the perfectly competitive model of the firm used in Chapter 7
(because there the firm has zero market power). Assume that the typical firm
j has (a little bit of) market power and faces a downward sloping (inverse)
demand curve for its product:

Pj = P(Yj), (A7.6)

with P′(·) < 0. The firm’s short-run profit, Πj, is defined by:

Πj ≡ PjF(Lj, K̄) − WLj, (A7.7)

where F(·) is a constant returns to scale production function, Lj is labour input,

and W is the nominal wage. The firm’s output is given by Yj = F(Lj, K̄). The
firm chooses its price, Pj, and its demand for labour, Lj, such that (A7.7) is
maximized, taking into account that lower output produces a higher product
price according to (A7.6). By inserting Pj = P(F(Lj, K̄)) into (A7.7) we obtain
profits in terms of Lj only:

Πj ≡ P(F(Lj, K̄))F(Lj, K̄) − WLj. (A7.8)

Maximizing (A7.8) with respect to Lj yields the following first-order condition:

dΠj

dLj
= P(·)FL + F(·)P′(·)FL − W = 0, (A7.9)

where FL ≡ ∂F/∂Lj is the marginal product of labour. By rearranging (A7.9)
somewhat, we obtain:

FL

[
P(·) + F(·)P′(·)] = W ⇔

FLP(·)
[

1 + Yj
P′(·)
P(·)

]
= W ⇔

FLPj

[
1 − 1

ηD

]
= W ⇔

FL =
ηD

ηD − 1

W

Pj
, (A7.10)

where ηD ≡ −P(·)/(YjP
′(·)) > 0 is the absolute value of the price elasticity of

firm j’s demand curve.

According to (A7.10), a firm with some market power equates the marginal
product of labour (left-hand side) to a gross markup (the first term on the right-
hand side) times the real wage rate. This markup, ηD/(ηD − 1) exceeds unity
(because ηD > 1) and is decreasing in the demand elasticity, ηD. (In the per-
fectly competitive case, ηD → ∞ and the markup is unity.) Hence, the higher
is ηD, the more competitive is the goods market, the lower in the markup, and
the higher is the demand for labour at a given real wage rate. We conclude that
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the demand for labour depends negatively on the markup and thus positively
on the demand elasticity, ηD.

LD = LD(w−, ηD
+

, K̄
+
) (A7.11)

If we look at the markup expression for the trade union (equation (A7.5) above)
we see that it is not the level of labour demand that matters but rather the elasti-
city of the labour demand curve. If this elasticity is constant (as we assume)
then nothing happens to the real wage if competitiveness is increased. In terms
of Figure A7.2, labour demand shifts to the right and the union’s optimal point
shifts from M0 to M1. Employment increases from LM

0 to LM
1 and unemploy-

ment decreases.
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Figure A7.2: Increased goods market competition and the monopoly union

(c) This issue is explained in detail in section 7.5.1 of the book. A fall in the degree
of progressivity (a rise in s in equation (7.42)) increases both the wage rate and
unemployment.

(d) Assume that the representative firm is perfectly competitive. Short-run profit
is defined as:

Π = PF(L, K̄) − W(1 + tE)L, (A7.12)

where tE is the payroll tax. Short-run profit maximization yields the marginal
productivity condition for labour:

FL(L, K̄) = (1 + tE)

(
W

P

)
. (A7.13)

An increase in tE shifts labour demand to the left. With a constant elasticity of
labour demand, the union does not change the real wage, so employment falls
and unemployment increases.

(e) This issue is explained in detail in section 7.5.1 of the book. An increase in
the average tax, tA, increases both the wage and unemployment–see equation
(7.42).
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Question 5: The two-sector labour market model

(a) See section 7.1.4 in the book.

(b) Consider Figure 7.6 in the book. If the unions are banished from the primary
sector, there will be entry of secondary sector workers into the primary sector
until wages are equalized in the two sectors. The economy will go to point C,
and (for the case drawn in the figure) unemployment will disappear. This is
because wC is strictly above the unemployment benefit, B.

(c) We again refer to Figure 7.6 in the book. A wage subsidy in the secondary
sector will stimulate labour demand in that sector, i.e. LD

2 (w2) will shift to the
left. Unemployment in the secondary sector will decrease as a result.



Chapter 8

Search in the labour market

Question 1: Short questions

(a) “An increase in the employers tax on labour (“payroll tax”) will lead to an
increase in unemployment, a lower real wage, and a longer unemployment
duration.” Explain and evaluate this proposition.

(b) Explain why the value of a vacancy is zero in the standard labour market search
model. Explain also that it can never be negative, even if there are restrictions
on the numbers of vacancies that can be posted.

(c) What do we mean by a Beveridge curve? What could make the Beveridge
curve shift?

(d) Explain how modern search theory uses the so-called matching function. How
can we use this function to compute the probability that a job seeker finds a
job? And, vice versa, how can we find the probability that an employer with
a vacancy finds a worker? Provide examples with the aid of a Cobb-Douglas
matching function.

Question 2: Search unemployment

Consider the following search-theoretic model of the labour market:

FK(K, Z0) = r + δ, (Q8.1)

γ0

q(θ)
=

FL (K(r + δ), Z0) − w

r + s
, (Q8.2)

w = (1 − β)z + β [FL (K(r + δ), Z0) + θγ0] , (Q8.3)

U =
s

s + θq(θ)
, (Q8.4)

where U is the unemployment rate, s is the (exogenous) job destruction rate, θ ≡
V/U is the labour market pressure index, V is the vacancy rate, K is the capital
stock, w is the real wage, z is the (exogenous) income of job seekers, r is the (exogen-
ous) real interest rate, γ0 is the employer’s (flow) search cost, and β is the relative
bargaining power of the worker. The underlying production function is written in
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general terms as F(K, Z0L) where Z0 is an exogenous index of (what economists call)
labour-augmenting technological change and L is employment. The technology features
constant returns to scale and you are reminded of the fact that the model applies to
single job firms (i.e. L = 1).

(a) Give a brief interpretation of these equations.

(b) Assume that the policy maker decides to provide a subsidy to the employers
for the search costs they have to incur. Show what happens to unemployment,
vacancies, and the real wage rate as a result of this policy measure.

(c) Assume that there is a once-off increase in the efficiency parameter Z0 (techno-
logical progress). Show what happens to the marginal products of capital and
labour (FK and FL) as a result of the shock.

(d) Show what happens to unemployment, vacancies, and the real wage rate as a
result of the change in technology mentioned in part (c). Illustrate your answer
with a two-panel diagram as used in the book.

(e) Show what happens to unemployment, vacancies, and the real wage rate if the
interest rate rises. Illustrate with the aid of a diagram and explain the economic
intuition.

(f) Assume that the policy maker decides to provide a subsidy to the employers
for the search costs they have to incur. As a result of this policy measure, γ0 is
reduced. Show what happens to unemployment, vacancies, and the real wage
rate as a result of this policy measure.

Question 3: A CES matching function

Assume that the matching function is given by:

XN =
[
(1 − α) (ZUUN)(σ−1)/σ + α (ZVVN)(σ−1)/σ

]σ/(σ−1)
, 0 < α < 1, (Q8.5)

where XN is the total number of matches (X is the matching rate), UN is the number
of unemployed job seekers (U is the unemployment rate), and VN is the number of
vacancies (V is the vacancy rate). ZU and ZV are exogenous shift factors. The labour
market tightness variable is denoted by θ ≡ V/U.

(a) Show that the matching function is linear homogeneous (i.e., it features con-
stant returns to scale). Explain which economic phenomena can be captured
by the shift factors, ZU and ZV .

(b) Explain why this matching function only makes economic sense if 0 < σ ≤ 1.

(c) Compute the implied functions q (θ, ZU , ZV), f (θ, ZU , ZV), and η (θ, ZU , ZV).
Verify that f (θ, ZU , ZV) = θ · q(θ, ZU , ZV). Show how these functions depend
on θ and on the shift factors, ZU and ZV .

(d) Consider the market equilibrium model given in equations (8.25)-(8.28) in the
book. Show what happens to the wage rate, labour market tightness, and the
equilibrium unemployment rate, if unemployed workers search more actively.

(e) Redo part (d), but assume that firms with a vacancy become a little more adept
at locating willing unemployed workers.
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Question 4: Downward real wage rigidity

Consider the basic labour market search model with a payroll tax as presented in
section 8.2.1 in the book. The key equations of this model are restated here:

F̄L − w · (1 + tE)

r + s
=

γ0

q(θ)
, (Q8.6)

w = (1 − β)z + β · F̄L + θγ0

1 + tE
, (Q8.7)

U =
s

s + θq(θ)
, (Q8.8)

where F̄L is the (fixed) marginal product of labour (F̄L ≡ FL(K(r + δ), 1), where
K (r + δ) is the optimal capital stock per active firm), tE is the payroll tax, and f (θ) =
θq (θ).

(a) Compute the comparative static effects on w, θ, U, and V of an increase in the
payroll tax.

(b) Denote the initial equilibrium real (consumer) wage rate by w0. Assume that
this real wage rate is inflexible in a downward direction. Following an exogen-
ous shock, workers are willing to negotiate with firms about wage increases
but are not willing to accept any wage decrease. Characterize such an equilib-
rium, using a two-panel figure like Figure 8.1 in the book.

(c) Show that, in the scenario sketched in part (b), the economy reacts differently
to an increase and a decrease in the payroll tax. Explain the economic intuition
behind your results.

� Question 5: Dynamics of unemployment and vacancies

[Based on Pissarides (2000)] In this question we study the dynamic adjustment pat-
tern of unemployment and vacancies outside the steady state. We ignore capital
altogether and assume that labour is the only factor of production, attracting a con-
stant marginal product, F̄L. You are given the information that outside the steady
state, the key arbitrage equations are given by:

rJV = −γ0 + q(θ) [JO − JV ] + J̇V , (Q8.9)

rJO = F̄L − w − sJO + J̇O, (Q8.10)

rYU = z + θq(θ) [YE − YU ] + ẎU , (Q8.11)

rYE = w − s [YE − YU ] + ẎE, (Q8.12)

where the notation is explained in the book and where ẋ ≡ dx/dt is the time deriv-
ative of x. The wage equation is given by:

w = (1 − β)z + β [F̄L + θγ0] , (Q8.13)

whilst the unemployment rate changes over time according to:

U̇ = s · (1 − U) − θq (θ) · U. (Q8.14)

There is free entry/exit of firms with a vacancy. The matching function is Cobb-
Douglas, i.e. X = UηV1−η , with 0 < η < 1.
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(a) Explain the economic intuition behind the dynamic terms appearing in (Q8.9)-
(Q8.12) and (Q8.14).

(b) Prove that there is a unique perfect foresight solution for wages, vacancies, and
labour market tightness, satisfying ẇ = J̇O = θ̇ = 0.

(c) Derive the system of differential equations for U and θ and prove that this
system is saddle-point stable. Illustrate your answer with the help of a graph,
featuring U on the horizontal axis and θ on the vertical axis.

(d) Suppose that the unemployment rate is higher than its steady-state value. Show
how vacancies and the unemployment rate converge over time. Employ the
usual diagram, featuring U on the horizontal axis and V on the vertical axis.

(e) Compute the effects of an increase in z, both at impact, over time, and in the
long run. Illustrate your answers with diagrams of the type employed in earlier
parts of this question.
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Answers

Question 1: Short questions

(a) True, a higher tE shifts the ZP curve down as the value of an occupied job
is reduced. The increase in the tax also puts downward pressure on wages
as the firm shift part of the burden to employees. As a result, both w and θ
fall. Unemployment rises and vacancies fall. Since θ ≡ V/U falls it is harder
to locate a job and unemployment duration increases. See Figure 8.3 in the
textbook.

(b) We typically assume that JV = 0 in the matching model. This is because it is
assumed that there is free entry or exit of firms with a vacancy. Exit or entry
ensures that there are no excess (i.e. positive) profits to be had. If there is a
restriction on the number of vacancies, we must distinguish two cases. If the
restriction is binding (too low from the market’s perspective), it will ensure
that JV > 0, i.e. it is valuable to possess a license to search for a worker in that
case. If the restriction is non-binding (again from the market’s perspective),
then the licenses are not scarce, i.e. they are worthless (JV = 0). Nobody can
be forced to open a vacancy if this would result in a loss.

(c) The Beveridge curve is the combination of vacancies (V) and unemployment (U)
for which the flow from employment to unemployment exactly matches the
reverse flow from unemployment to employment. Put differently, it plots equi-
librium (steady-state) unemployment as a function of the number of vacancies.
In the matching model the Beveridge curve is given by:

U =
s

s + f (θ)
,

where U is the unemployment rate, s is the (exogenous) job destruction rate,
f is the job finding rate of the workers, and θ ≡ V/U is the labour market
tightness variable. We typically draw the Beveridge curve in (V, U) space–see
for example panel (b) of Figures 8.1–8.5. The Beveridge curve is downward
sloping: for a given unemployment rate, a reduction in V leads to a fall in
the instantaneous probability of finding a job (i.e. f falls). For points below
the Beveridge curve the unemployment rate is thus less than the rate required
for flow equilibrium in the labour market (U < s/(s + f )). To restore flow
equilibrium (and return to the Beveridge curve) the unemployment rate must
increase.

The Beveridge curve is shifted if job destruction changes or if (ceteris paribus θ)
the job finding rate changes. The latter could take place if the matching process
becomes more productive, e.g. because of better information transmission in
the labour market (see below).

(d) The matching function describes the relation between the number of unem-
ployed, the number of vacancies and the number of successful matches on the
labour market in a period (in a discrete time model) or at any moment in time
(in a continuous time model). In modern search theory it is assumed that it
takes time until a company with a vacancy and an unemployed looking for a
job find each other. The number of matches increases as the number of unem-
ployed and/or the number of vacancies increase.
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If we assume that the matching function is of the Cobb-Douglas type, then we
may write the number of matches XN (where X is the matching rate and N the
exogenously given labour force) as

XN = (UN)a(VN)1−α (A8.1)

The probability that an employer with a vacancy finds an unemployed (q)
equals the number of matches divided by the number of vacancies.

q ≡ XN

VN
=

(UN)α(VN)1−α

VN
=

(
U

V

)α

= θ−α

The probability that an unemployed finds a job ( f ) equals the number of matches
divided by the number of unemployed.

f ≡ XN

UN
=

(UN)a(VN)1−α

UN
=

(
U

V

)α−1

= θ1−α

Question 2: Search unemployment

(a) Equation (Q8.1) is the marginal productivity condition for capital, determin-
ing the optimal capital stock (and thus the optimal size of production) of each
firm with a filled job. Equation (Q8.2) is a zero profit condition implied by the
free entry/exit of firms. Equation (Q8.3) is the wage setting rule that follows
from the generalised Nash bargaining between a firm with a vacancy and a po-
tential employee. Equation (Q8.4) is the Beveridge curve that determines the
equilibrium unemployment rate.

(b) The firm’s search costs γ0 decreases, the zero profit function in Figure 8.1 (in
the textbook) shifts up because to keep zero-profit with decreasing search costs,
wage costs must go up (given θ). The wage setting rule shifts down because
expected foregone search costs are going down as a result of the subsidy. The
effect on θ is clear, it will increase. Hence, equilibrium unemployment will
decrease and the number of vacancies will increase. The effect on the wage
rate is not unambiguous a priori. With mathematical methods we can derive
the ultimate effect on w.

By differentiating (Q8.2)–(Q8.3) we get:

γ0

q(θ)

[
dγ0

γ0
− dq(θ)

q(θ)

]
= − dw

r + s

dw = βγ0θ

[
dγ0

γ0
+

dθ

θ

]
But dq(θ)/q(θ) = −η(θ)dθ/θ (with 0 < η(θ) < 1) and (r + s)γ0/q(θ) = FL −w
so the system can be written as:[

η(w − FL) −1
−βγ0θ 1

] [
θ̃

dw

]
=

[
FL − w
βγ0θ

]
γ̃0.

The determinant of the matrix on the left-hand side is |∆| = −[η(FL − w) +
βγ0θ] < 0. Using Cramer’s Rule we get for θ:

γ0

θ

∂θ

∂γ0
=

1

|∆|
∣∣∣∣FL − w −1

βγ0θ 1

∣∣∣∣ =
βγ0θ + (FL − w)

|∆| < 0.
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For the wage rate we obtain:

γ0
∂w

∂γ0
=

1

|∆|
∣∣∣∣η(w − FL) FL − w

−βγ0θ βγ0θ

∣∣∣∣ =
βγ0θ(FL − w)[1 − η]

|∆| < 0.

Conclusion: since γ0 goes down, both w and θ increase as a result of the sub-
sidy.

(c) Technology features constant returns to scale. Hence FK and FN ≡ ∂F
∂(Z0L)

de-

pend only on K/Z0 (since L = 1). Thus, for a given interest rate, FK stays the
same. FL = Z0FN (where N ≡ Z0L). But FN is constant so that FL increases.
Readers of Chapter 13 will find this result easy to understand: in the question
we assume that there is (once-off) labour-augmenting technological progress.

(d) From the previous question we know that FL increases. This shifts both the
zero profit curve and the wage setting curve up. The zero profit curve shifts up
because the benefits of filling a vacancy go up, the wage setting curve goes up
because the workers demand a piece of the cake. Differentiating (Q8.2)–(Q8.3)
we get:

− (r + s)γ0

q(θ)

dq(θ)

q(θ)
= dFL − dw

dw = β

[
dFL + γ0θ

dθ

θ

]

But dq(θ)/q(θ) = −η(θ)dθ/θ (with 0 < η(θ) < 1) and (r + s)γ0/q(θ) = FL −w
so the system can be written as:[

η(w − FL) −1
−βγ0θ 1

] [
θ̃

dw

]
=

[−1
β

]
dFL.

The determinant of the matrix on the left-hand side is |∆| = −[η(FL − w) +
βγ0θ] < 0. Using Cramer’s Rule we get for θ:

1

θ

∂θ

∂FL
=

1

|∆|
∣∣∣∣−1 −1

β 1

∣∣∣∣ =
β − 1

|∆| > 0.

For the wage rate we obtain:

∂w

∂FL
=

1

|∆|
∣∣∣∣η(w − FL) −1

−βγ0θ β

∣∣∣∣ =
−β [γ0θ + η(FL − w)]

|∆| > 0.

Conclusion: the wage goes up (workers benefit), unemployment goes down,
and vacancies go up.

(e) If the interest rate rises then several things happen. First, it follows from equa-
tion (Q8.1) that firms scale down production, i.e. they reduce the stock of cap-
ital per worker. The reduction in K leads to a reduction in the marginal product
of labour (appearing in (Q8.2) and (Q8.3)) because the two production factors
are cooperative. Second, it follows from equation (Q8.2) that the value of occu-
pied job becomes smaller because FL − w is discounted more heavily. In terms
of Figure A8.1, the ZP condition (defined by (Q8.2)) shifts down as does the
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Figure A8.1: The effects of a higher interest rate

WS curve (defined by (Q8.3)). The wage rate unambiguously declines but the
effect on labour market tightness appears to be ambiguous from the diagram.
It can be shown mathematically, however, that θ falls as a result of the increase
in r. We follow the same approach as in Appendix A of Chapter 8. First we
loglinearize equations (Q8.2)-(Q8.3), holding constant z, δ, and β. (We allow γ0

to vary because we need this later in this question). We loglinearize (Q8.2) and
totally differentiate (Q8.3).

γ̃ + ηθ̃ =
dFL − dw

FL − w
− r

r + s
r̃, (A8.2)

where we used the definition of η in equation (8.4) in the text. For sake of sim-
plicity (later on) we do not loglinearize FL and w. Differentiation of equation
(Q8.3) yields:

dw = βdFL + βθγ0γ̃0 + βγ0θθ̃. (A8.3)

Equations (A8.2)–(A8.3) can be used to solve for θ̃ and dw in terms of r̃, dFL,
and γ̃0:[

η(FL − w) 1
−βγ0θ 1

] [
θ̃

dw

]
=

[
dFL − (FL − w)[γ̃0 + ( r

r+s )r̃]
βγ0θγ̃0 + βdFL

]
(A8.4)

The matrix on the left-hand side has a positive determinant (∆ ≡ η(FL − w) +
βγ0θ > 0), so it possesses a unique inverse:[−η(FL − w) −1

−βγ0θ 1

]−1

=
1

∆

[
1 −1

βγ0θ η(FL − w)

]
(A8.5)

Using (A8.5) in (A8.4) yields:[
θ̃

dw

]
=

1

∆

[
1 −1

βγ0θ η(FL − w)

] [
dFL − (FL − w)[γ̃0 + r

r+s r̃]
βγ0θγ̃0 + βdFL

]
(A8.6)

=
1

∆

[
− r(FL−w)

r+s 1 − β −[FL − w + βγ0θ]

− βγ0θr(FL−w)
r+s β[η(FL − w) + γ0θ] −(1 − η)βγ0θ(FL − w)

]  r̃
dFL

γ̃0
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By setting γ̃0 = 0 we obtain the result for θ̃ from the first line of (A6):

θ̃ = − FL − w

∆

r

r + s
r̃ +

1 − β

∆
dFL < 0. (A8.7)

As a result of the increase in the interest rate, the labour market tightness vari-
able falls for two reasons. First, the firm’s surplus per occupied job is discoun-
ted more heavily, thus reducing the value of occupied jobs and decreasing the
supply of vacancies. This rent discounting effect is represented by the first term
on the right-hand side of (A8.7). Second, the interest rate increase prompts
the firm to scale down by hiring less capital. This leads to a reduction in the
marginal product of capital. This labour productivity effect is represented by the
second term on the right-hand side of (A8.7).

In terms of Figure A8.1, panel (a), the equilibrium shifts from E0 to E1, and both
w and θ fall. In panel (b) the labour market tightness line rotates in a clockwise
fashion, from LMT0 to LMT1, unemployment increases and vacancies fall.

(f) A reduction in the firms’ search costs affects both the zero profit condition
(Q8.2) and the wage setting equation (Q8.3). In terms of Figure A8.2, the ZP
curve shifts up if γ0 falls. Intuitively, for a given value of θ, expected vacancy
costs γ0/q(θ) fall, so to restore zero-profit equilibrium the discounted value of
rents earned on labour ((FL − w)/(r + s)) must fall also, i.e. the wage must
rise. The WS curve shifts down. Intuitively, in the Nash bargaining outcome,
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Figure A8.2: The effects of a reduction in the firm search costs

the workers capture a part of the foregone search costs (θγ0) in the form of
higher wages–see equation (8.24) in the book. If these costs decline the wage
falls also.

By setting r̃ = dFL = 0 in (A8.6) we obtain:[
θ̃

dw

]
= − 1

∆

[
FL − w + βγ0θ

(1 − η)βγ0θ[FL − w]

]
γ̃0 (A8.8)

We observe from (A8.8) that a decrease in γ0 leads to an increase in both θ and
w (remember ∆ > 0). Hence, in terms of Figure A8.2, panel (a), the equilibrium
shifts from E0 to E1. In panel (b), the labour market tightness condition rotates
counterclockwise from LMT0 to LMT1. Unemployment falls and vacancies
increase.
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Question 3: A CES matching function

(a) We must prove that multiplication of UN and VN by λ > 0 gives a matching
total of λXN. To get more compact expressions, we define ρ ≡ (σ − 1)/σ. We
write (Q8.5) as XN = G (UN, VN) and find:

G (λUN, λVN) =
[
(1 − α) (ZUλUN)ρ + α (ZVλVN)ρ]1/ρ

=
[
λρ · [(1 − α) (ZUλUN)ρ + α (ZVVN)ρ]]1/ρ

= λ · G (UN, VN) .

The shift factor ZU captures how actively the job seekers are searching for a
job. Similarly, the shift factor ZV measures how keenly firms with a vacancy
are seeking potential workers.

(b) If σ is greater than unity (ρ > 0), then (Q8.5) implies that there can be matches
between job seekers and vacancies even if one of the parties is absent from the
market, i.e. G (0, VN) and G (UN, 0) are both positive and well defined–the
inputs UN and VN are non-essential in that case. This does not make any
economic sense. Note that the Cobb-Douglas specification is allowed because
both inputs are essential.

(c) We know from the definition in (8.2) that:

q ≡ G (UN, VN)

VN
=

[
(1 − α)

(
ZU

UN

VN

)ρ

+ α

(
ZV

VN

VN

)ρ]1/ρ

=

[
(1 − α)

(
ZU

θ

)ρ

+ αZ
ρ
V

]1/ρ

≡ q (θ, ZU , ZV) . (A8.9)

Similarly, using the definition for f in (8.5) we obtain:

f ≡ G(UN, VN)

UN
=

[
(1 − α)

(
ZU

UN

UN

)ρ

+ α

(
ZV

VN

UN

)ρ]1/ρ

=
[
(1 − α) Z

ρ
U + α (ZV · θ)ρ

]1σ/(σ−1)

≡ f (θ, ZU , ZV). (A8.10)

To verify that f (θ, ZU , ZV) = θ · q(θ, ZU , ZV) we multiply (A8.9) by θ:

θ · q(θ, ZU , ZV) = θ ·
[
(1 − α)

(
ZU

θ

)ρ

+ αZ
ρ
V

]1/ρ

=

[
θρ ·

(
(1 − α)

(
ZU

θ

)ρ

+ αZ
ρ
V

)]1/ρ

=
[
(1 − α) Z

ρ
U + α (ZV · θ)ρ

]1/ρ

≡ f (θ, ZU , ZV). (A8.11)
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Using (A8.9) we can find the partial derivatives of the q (θ, ZU , ZV) function:

∂q (θ, ZU , ZV)

∂θ
=

σ

σ − 1
·
[
(1 − α)

(
ZU

θ

)(σ−1)/σ

+ αZ
(σ−1)/σ
V

]σ/(σ−1)−1

×σ − 1

σ
(1 − α)

(
ZU

θ

)(σ−1)/σ−1

· −ZU

θ2

=

[
(1 − α)

(
ZU

θ

)(σ−1)/σ

+ αZ
(σ−1)/σ
V

]1/(σ−1)

× (1 − α)

(
ZU

θ

)−1/σ

· −ZU

θ2

=
[
q(σ−1)/σ

]1/(σ−1)
(1 − α)

(
ZU

θ

)−1/σ

· −ZU

θ2

= − (1 − α)
ZU

θ2

(
θq

ZU

)1/σ

< 0, (A8.12)

∂q (θ, ZU , ZV)

∂ZU
=

[
(1 − α)

(
ZU

θ

)(σ−1)/σ

+ αZ
(σ−1)/σ
V

]1/(σ−1)

× (1 − α)

(
ZU

θ

)−1/σ

· 1

θ

= (1 − α)
1

θ2

(
θq

ZU

)1/σ

> 0, (A8.13)

∂q (θ, ZU , ZV)

∂ZV
=

[
(1 − α)

(
ZU

θ

)(σ−1)/σ

+ αZ
(σ−1)/σ
V

]1/(σ−1)

αZ−1/σ
V

= α

(
q

ZV

)1/σ

> 0. (A8.14)

To obtain η (θ, ZU , ZV) we note from (8.4) in the book that:

η(θ, ZU , ZV) ≡ − θ

q
· ∂q (θ, ZU , ZV)

∂θ

=
θ

q
· (1 − α)

ZU

θ2

(
θq

ZU

)1/σ

= (1 − α)
ZU

qθ

(
θq

ZU

)1/σ

= (1 − α) ·
(

f

ZU

)(1−σ)/σ

> 0. (A8.15)

From (A8.10) we can derive:

1 = (1 − α)

(
f

ZU

)(1−σ)/σ

+ α

(
q

ZV

)(1−σ)/σ

, (A8.16)
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so it is clear that η (θ, ZU , ZV) is positive but less than unity.

The partial derivatives for f (θ, ZU , ZV) are very easy to get:

∂ f (θ, ZU , ZV)

∂θ
= q (θ, ZU , ZV) + θ · ∂q (θ, ZU , ZV)

∂θ

= q ·
[

1 +
θ

q
· ∂q (θ, ZU , ZV)

∂θ

]
= q · [1 − η (θ, ZU , ZV)] > 0, (A8.17)

∂ f (θ, ZU , ZV)

∂ZU
= θ · ∂q (θ, ZU , ZV)

∂ZU
=

1 − α

θ

(
θq

ZU

)1/σ

> 0, (A8.18)

∂ f (θ, ZU , ZV)

∂ZV
= θ · ∂q (θ, ZU , ZV)

∂ZV
= αθ

(
q

ZV

)1/σ

> 0. (A8.19)

(d) The model is given by:

F̄L − w

r + s
=

γ0

q(θ, ZU , ZV)
, (A8.20)

w = (1 − β)z + β [F̄L + θγ0] , (A8.21)

U =
s

s + f (θ, ZU , ZV)
, (A8.22)

where F̄L is the (fixed) marginal product of labour. Figure A8.3 shows what
happens to the equilibrium if ZU increases. Nothing happens to the wage set-
ting curve (A8.21), but the zero-profit condition (A8.20) shifts up. Holding
constant θ, and increase in ZU increases q and decreases γ0/q. This means that
the left-hand side of (A8.20) decreases as well, i.e. w rises. In the right-hand
panel, the LMT curve rotates counter-clockwise, say from LMT0 to LMT1.

The Beveridge curve shifts inward (toward the origin), say from BC0 to BC1.
This effect can be ascertained by noting that [s + f (θ, ZU , ZV)] · U = s so that:[

s + f − θ
∂ f

∂θ

]
· dU = −∂ f

∂θ
· dV − U

∂ f

∂ZU
dZU , (A8.23)

where the term in square brackets on the left-hand side is positive (because

f − θ
∂ f
∂θ = f

[
1 − θ

f
∂ f
∂θ

]
= f η > 0).

(e) The effects of an increase in ZV are exactly the same qualitatively as those of
an increase in ZU .

Question 4: Downward real wage rigidity

(a) The effect on w and θ can be gleaned from the sub-system (Q8.6)-(Q8.7). Totally
differentiating these expressions, holding constant r, s, γ0, β, F̄L, and z we find:

(1 + tE) dw + wdtE =
γ0 (r + s)

θq (θ)
· θq′ (θ)

q (θ)
dθ, (A8.24)

(1 + tE) dw + wdtE = (1 − β)zdtE + βγ0dθ. (A8.25)
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Figure A8.3: More efficient job seekers or vacancy fillers

By noting that η (θ) ≡ −θq′ (θ) /q (θ) we can write (A8.24)-(A8.25) in matrix
notation:[

1 + tE η (θ)
γ0(r+s)

θq(θ)

− (1 + tE) βγ0

]
·
[

dw
dθ

]
=

[ −w
w − (1 − β) z

]
· dtE.

The determinant of the matrix, ∆, on the left-hand side is positive:

|∆| = (1 + tE) ·
[

βγ0 + η (θ)
γ0 (r + s)

θq (θ)

]
> 0.

The comparative static results are thus:

[
dw/dtE

dθ/dtE

]
=

1

|∆| ·
[

βγ0 −η (θ)
γ0(r+s)

θq(θ)

1 + tE 1 + tE

]
·
[ −w

w − (1 − β) z

]

=
1

|∆| ·
[

−βγ0w − η (θ)
γ0(r+s)

θq(θ) [w − (1 − β) z]

− (1 − β) (1 + tE) z

]
. (A8.26)

Since w > (1 − β) z it follows readily that dw/dtE < 0 and dθ/dtE < 0. It
follows readily that dV/dtE < 0 and dU/dtE > 0. This case has been illustrated
in the book–see Figure 8.3.

(b) See Figure A8.4. Nothing happens to the zero-profit condition. The effective
wage setting curve is given by the horizontal segment passing through E2 and
E0 to the left of θ0, and the upward sloping segment of the WS0 curve to the
right of θ0.

(c) We know from part (a) that a decrease in tE reseults in an increase in θ and w.
So for this case, downward wage rigidity is not a problem.

An increase in the payroll tax, however, results in a decrease in both θ and w
(if wages are flexible). This is illustrated in Figure A8.4 by the shift from point
E0 to E1. With downward wage rigidity, however, the wage will be maintained
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Figure A8.4: The payroll tax under downward real wage rigidity

at w = w0. The constrained equilibrium is at point E2. Firms cut back on
vacancies because the tax-inclusive wage rate has increased. With downward
real wage rigidity, the effects on V and U are amplified compared to the case of
flexible real wages. Under downward real wage rigidity, quantity movements
take the place of price (i.e., real wage) movements.

Question 5: Dynamics of unemployment and vacancies

(a) In (Q8.9)-(Q8.12), the dynamic terms represent a second type of capital gain
(if positive) or loss (if negative) that may be obtained outside the steady state.
This capital gains does not arise from changing status (say from vacancy to
filled job or unemployed to employed), but because the value of the asset it-
self may change over time. Since agents are forward looking, they take these
perfectly anticipated capital gains and losses into account in valuing the asset
under consideration.

In equation (Q8.14), the dynamics in the unemployment rate is just the differ-
ence between the instantaneous flow into unemployment due to job destruc-
tion (first term on the right-hand side) and the instantaneous flow out of un-
employment due to successful matching.

(b) There is instantaneous free entry/exit of firms with a vacancy, so JV = J̇V = 0
at all times. By using this result in (Q8.9)-(Q8.10) we obtain:

JO =
γ0

q(θ)
, (A8.27)

J̇O = (r + s) JO + w − F̄L. (A8.28)

The wage rate only depends on the endogenous variable, θ. Similarly, (A8.27)
shows that JO only depends on θ so that we can use (A8.28) to derive a dif-
ferential equation for labour market tightness. By differentiating (A8.27) with
respect to time we find:

J̇O = −JO · q̇ (θ)

q (θ)
. (A8.29)
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Substituting (A8.27), (A8.29), and (Q8.13) into (A8.28) and rearranging we find:

−JO · q̇ (θ)

q (θ)
= (r + s) JO + (1 − β)z + β [F̄L + θγ0] − F̄L

− q̇ (θ)

q (θ)
= (r + s) +

(1 − β) (z − F̄L) + βθγ0

JO

= (r + s) + [(1 − β) (z − F̄L) + βθγ0] · q(θ)

γ0
. (A8.30)

The matching function implies that:

q (θ) = θ−η , (A8.31)

so that:

− q̇ (θ)

q (θ)
= η · θ̇

θ
. (A8.32)

Using these results in (A8.30) we find the differential equation for labour mar-
ket tightness:

η · θ̇

θ
= (r + s) + [(1 − β) (z − F̄L) + βθγ0] · θ−η

γ0
⇔

η · θ̇ = (r + s) θ + [(1 − β) (z − F̄L) + βθγ0] · θ1−η

γ0
. (A8.33)

Since the term in square brackets on the right-hand side is positive and 0 <

η < 1, equation (A8.33) represents an unstable differential equation in θ. The
only economically sensible solution for this differential equation is the steady-
state solution, i.e. θ̇ = 0 at all times. Following a time-invariant shock to one of
the exogenous variables appearing in (A8.33), θ immediately jumps to its new
steady-state value, θ∗. Since JV and w only depend on θ, they also have this
property.

(c) Since θq (θ) = θ1−η , equation (Q8.14) can be written as:

U̇ = s · (1 − U) − θ1−η · U, (A8.34)

i.e. U̇ depends negatively on both U and θ. We recall from (A8.33) that θ̇ only
depends on θ. Qualitatively, the dynamic system can thus be written as:[

U̇
θ̇

]
=

[
δ11 δ12

0 δ22

]
·
[

U̇
θ̇

]
, (A8.35)

with δ11 < 0, δ12 < 0, and δ22 > 0. Since the determinant of the Jacobian
matrix is equal to δ11δ22 and is negative, we must have characteristic roots of
opposite sign. The (U, θ)-dynamics is saddle-point stable, with U representing
the predetermined (sticky) variable and θ constituting the jumping variable.

In Figure A8.5 the iso-clines and dynamic forces are illustrated. Not surpris-
ingly, in view of the results found in part (b), the θ̇ = 0 line coincides with the
saddle path for this system. The unique equilibrium is at point E0. Steady-
state unemployment is U∗ and the steady-state labour market tightness vari-
able equals θ∗.
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Figure A8.5: Phase diagram for unemployment and labour market tightness

(d) In Figure A8.6 the economy is initially located at point A, where U0 > U∗ and
V0 > V∗. Since θ = θ∗, the economy gradually moves along the LMT curve
(repesenting θ̇ = 0 in the (V, U) diagram) toward the steady-state equilibrium,
E0.

(e) It is shown in the book (in Figure 8.1) that an increase in z leads to an increase
in w and a decrease in θ. Since there is no transitional dynamics in these vari-
ables, the steady-state values for w and θ jump at impact. The decrease in θ∗
is represented in Figure A8.5 by an downward shift in the saddle path. The
dynamics of U and of U and V are illustrated in, respectively, Figures A8.5 and
A8.6.
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Chapter 9

Macroeconomic policy,
credibility, and politics

Question 1: Short questions

(a) Explain why central bankers are often recruited from the more conservative
ranks of society. Explain the link with Ulysses strategy concerning the Sirens.

(b) “The central bank should not focus on inflation, but should do what is best for
the economy: stimulate production!” Explain and evaluate this proposition.

(c) “An ambitious government that wants to stimulate production is excellent for
the economy.” Explain and evaluate this proposition.

� Question 2: Capital taxation and income inequality

Consider a two period model. People differ only with respect to their initial capital
endowment Ki

1. The distribution of the initial capital endowment is skewed towards
the right, as is shown in Figure Q9.1. This implies that the average capital endow-
ment is larger than the median capital endowment, K̄1 > KM

1 .
The lifetime utility function of individual i is given by:

Ui = ln Ci
1 +

Ci
2

1 + ρ
, (Q9.1)

K
i
1K

M
1

K̄1

Poor Rich

Figure Q9.1: The frequency distribution of initial capital endowment
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with Ci
t consumption of individual i in period t and ρ the rate of time preference.

Capital is the only production factor in this economy, marginal capital productivity
is denoted by b. This implies that each individual’s income before taxes and transfers
in period t is given by:

Yi
t = bKi

t, t = 1, 2. (Q9.2)

At the beginning of period 2 everyone receives a lump-sum transfer Z. This transfer
Z is financed by a capital income tax tK on income in period 2. The corresponding
government budget constraint is:

Z = tKbK̄2 (Q9.3)

People vote by simple majority on the size of the capital income tax at the beginning
of period 1. The government budget constraint determines the lump-sum transfer.

(a) Show that the intertemporal budget constraint of individual i can be written
as:

Ci
2 = Z + [1 + b(1 − tK)][(1 + b)Ki

1 − Ci
1] (Q9.4)

(b) Derive optimal consumption Ci
1 and Ci

2 given the initial capital endowment Ki
1,

the lump-sum transfer Z and the capital income tax tK.

(c) Show that the (transformed) indirect utility function of individual i can be writ-
ten as:

Vi = − ln(1 + b(1 − tK)) − tKb

1 + b(1 − tK)
+

tKb(1 + b)

1 + ρ
[K̄1 − Ki

1] (Q9.5)

(d) Use the median voter theorem to derive the capital income tax tK as an (impli-
cit) function of the median capital endowment KM

1 .

(e) Show that the capital income tax increases if the initial capital endowment is
more skewed towards the right (i.e. there are more very wealthy people, K̄1 −
KM

1 increases).

(f) Suppose that the people vote again on the lump-sum transfer and the capital
income tax at the beginning of period 2. Are the at the beginning of period 1
announced capital income tax and lump-sum transfer time-consistent? What
are the consequences for savings and consumption if the rational expectations
hypothesis holds?

Question 3: Choice of policy instrument

[Based on Poole (1970)] In this question we study the classic paper by Poole (1970).
This paper shows how optimal economic policy was typically determined in the
literature predating the rational expectations revolution of the early 1970s. Assume
that the closed economy is described by the simple (log-linear) IS-LM model:

yt = α0 − α1Rt + ut, α1 > 0, (Q9.6)

mt − pt = β0 + β1yt − β2Rt + vt, β1 > 0, β2 > 0, (Q9.7)
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where yt is output, Rt is the nominal interest rate, ut is a stochastic shock term af-
fecting the IS curve, mt is the nominal money supply, pt is the price level, and vt

is a stochastic term affecting the LM curve. It is assumed that the two stochastic
shock terms, ut and vt, are independent and normally distributed white noise terms
(there is no correlation between these terms and both terms display no autocorrel-
ation): ut ∼ N(0, σ2

u) and vt ∼ N(0, σ2
v ). All variables except the interest rate are

measured in logarithms. Assume furthermore that the price level is fixed and can be
normalized to unity (so that pt ≡ ln Pt = 0 in (Q9.7)).

The policy maker is concerned about stabilizing the economy and wishes to use
monetary policy in order to minimize the following loss function:

Ω ≡ E (yt − y∗)2 , (Q9.8)

where Ω is a measure of social loss (the volatility of output around its target level)
and y∗ is the (fixed) target level of output, e.g. full employment output. The policy
maker can choose one of two instruments of monetary policy. It can control the
money supply and let the interest rate settle at its equilibrium level determined in
the economy. Alternatively, it can peg the interest rate and let the money supply
settle at the equilibrium level determined in the market.

(a) Interpret the equations of the model.

(b) Show that in the deterministic case, with both ut and vt identically equal to zero
in all periods, the two instruments of monetary policy are completely equival-
ent, i.e. it does not matter which one is used.

(c) Now assume that the IS curve is subject to stochastic shocks but the LM curve
is deterministic (i.e. ut ∼ N(0, σ2

u) and vt ≡ 0 for all periods). Show that the
rational policy maker will choose the money supply instrument. Illustrate your
answer both formally and with the aid of a diagram.

(d) Now assume that the LM curve is subject to stochastic shocks but the IS curve
is deterministic (i.e. ut ≡ 0 for all periods and vt ∼ N(0, σ2

v )). Show that the
rational policy maker will now choose the interest rate instrument. Illustrate
your answer both formally and with the aid of a diagram.

(e) Use the general stochastic model, with both ut and vt non-zero, and derive the
value of the loss function (Q9.8) under the two monetary instruments. Show
that the money supply instrument is preferred to the interest rate instrument if
the following condition holds:

α2
1σ2

v + β2
2σ2

u

(α1β1 + β2)
2

< σ2
u .

Explain your result intuitively.

Question 4: Rules versus discretion

The supply of goods is determined by:

y = ȳ + α[π − πe] + ε, (Q9.9)
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where y is output, ȳ is full employment output, π is inflation, πe is expected infla-
tion, and ε is a stochastic disturbance term with zero mean (E(ε) = 0) and constant
variance (E(ε2) = σ2). The preferences of citizen i are represented by:

Ωi =
1

2
[y − y∗]2 +

βi

2
π2, (Q9.10)

where y∗ is the optimal output level (from the perspective of all citizens). Each cit-
izen tries to attain a minimum level of Ωi, so equation (Q9.10) can be interpreted
as a “regret function” stating the welfare costs associated with being away from the
optimum (y = y∗, π = 0).

(a) Interpret these two equations.

(b) “Just like Ulysses, the President of the ECB should tie himself to the mast of
a zero-inflation rule.” Discuss this proposition in the light of the literature on
“rules versus discretion.” Assume in this part of the question that the prefer-
ences of the population are homogeneous (so that βi = β). Explain the import-
ance of the quantity ȳ − y∗ to your conclusion.

(c) Now assume that the population features heterogeneous preferences. Assume
furthermore that there is asymmetric information. In particular, when the
wages are set, the realization of the supply shock, ε, is unknown. The central
banker, on the other hand, is assumed to know this realization when he/she
sets monetary policy and determines the inflation rate. Explain why a majority
decision will lead to the appointment of a central banker who is more “right-
wing” than the population itself.

Question 5: Political business cycles

[Based on Nordhaus (1975)] In this question we study the political business cycle un-
der the assumption that private agents feature adaptive expectations about inflation.
The macroeconomic environment is summarized by the following two equations:

π (t) = Φ (U (t)) + α · πe (t) , 0 < α ≤ 1, (Q9.11)

π̇e (t) = β · [π (t)− πe (t)] , β > 0, (Q9.12)

where π (t) is the actual inflation rate at time t, πe (t) is the expected inflation rate at
that time, U (t) is the unemployment rate. It is assumed that Φ′ (·) < 0. The voting
public dislikes both inflation and unemployment, and the aggregate voting function
at time t is given by:

v (t) ≡ V (U (t) , π (t)) , (Q9.13)

with VU ≡ ∂V/∂U < 0, and Vπ ≡ ∂V/∂π < 0. Intuitively, v (t) represents the
performance score that the incumbent party receives from the public at time t. At
time t = 0, the incumbent has just won the election. There are elections every T
period, i.e. the next election will be held at time t = T. The incumbent party’s
objective function at time t = 0 is given by:

Ω ≡
∫ T

0
V (U (t) , π (t)) · eρtdt, ρ > 0, (Q9.14)
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The higher is Ω (0), the higher will be the appreciation of the public for this ad-
ministration’s economic policies. The parameter ρ measures the rate of decay of the
public’s memory. If ρ is large, the public hardly recalls the early performance of the
policy maker by the time the election occurs. Vice versa, if ρ is small the public has
a long memory. The policy maker maximizes Ω by π (t) and U (t) optimally, taking
into account the constraints imposed by (Q9.11)-(Q9.12). At time t = 0, the expected
inflation rate equals πe (0) = πe

0.

(a) Briefly explain the economic intuition behind equations (Q9.11)-(Q9.12).

(b) Formulate the incumbent party’s optimization problem as an optimal control
problem. Explain which are the control and state variables. Derive the first-
order conditions.

(c) Solve the incumbent party’s optimization problem. Assume that V (U (t) , π (t))

= −U (t)2 − ηπ (t) and Φ (U (t)) = γ0 − γ1U (t), with η > 0, γ0 > 0, and
γ1 > 0. Prove that the policy maker chooses a declining path for unem-
ployment over the term of its administration. Assume that ρ �= (1 − α) β.
(Just in case you forgot, you are reminded of the fact that eαx

> 1 − a for
x > 0 regardless of the sign of a.)

(d) � Derive the fundamental differential equation for πe (t), and prove that it is
stable. Compute the expected inflation rate at time T, and write it as πe (T).
State the condition that must hold in order for πe (T) to be equal to πe

0.
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Answers

Question 1: Short questions

(a) This is a commitment device to ensure that inflation remains relatively low.
By choosing somebody who is more inflation averse that himself, the median
voter commits to a better outcome (which he cannot produce himself). Ulysses
also used a commitment device by tying himself to the mast.

(b) In terms of the model used throughout the chapter, a central bank that stimu-
lates production instead of targeting on inflation has a low β. From equations
(9.10) and (9.11) we know that a low β leads to high inflation, but the expec-
ted (and average) production is still equal to the natural level of production.
A central bank that focuses on production only leads to higher inflation in the
long run.

(c) The answer to this question depends on how the government wants to stimu-
late production. If the government has a long term focus, the only way to stim-
ulate aggregate production is either to increase productivity or by stimulating
investment, thereby increasing the capital stock. To analyse these policies, we
would need a dynamic growth model which is one of the topics of Chapter 13.

If the government has a short term focus, then it can stimulate production
either by fiscal or monetary policy. The effectiveness of both policies crucially
depends on the exchange rate system and capital mobility (see Table 10.1 in the
textbook).

Moreover, from Chapter 9 we know that an over-ambitious government (target
production is much higher than natural production) might lead to higher infla-
tion because the optimal enforceable rule inflation (equation (9.35)) increases
as y∗ − ȳ increases. This is because the optimal enforceable region decreases.

Question 2: Capital taxation and income inequality

(a) A household’s budget restrictions in periods 1 and 2 are:

Ci
1 + [Ki

2 − Ki
1] = Yi

1 ⇒ Ci
1 + [Ki

2 − Ki
1] = bKi

1 (A9.1)

Ci
2 = Z + Ki

2 + (1 − tK)bKi
2 ⇒ Ci

2 = Z + [1 + b(1 − tK)]Ki
2 (A9.2)

Equation (A9.1) is obvious, the only income is capital income which an indi-
vidual can save and add to the initial capital endowment or consume. Note
that nobody pays taxes or receives transfers in the first period. In the second
period each individual receives Z in lump-sum transfers, but has to pay taxes
over his/her capital income. Finally, since the world ends at the end of period
two, there is no reason to have any capital left, so each individual can consume
its entire accumulated capital stock.

Combining equations (A9.1) and (A9.2) yields the required expression.

(b) Each individual maximizes his/her utility (Q9.1) subject to the intertemporal
budget constraint (Q9.4). The corresponding Lagrangian is:

Li = ln Ci
1 +

Ci
2

1 + ρ
+ λ

[
Z + [1 + b(1 − tK)][(1 + b)Ki

1 − Ci
1] − Ci

2

]
(A9.3)
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The first order conditions:

∂L
∂Ci

1

= 0 :
1

Ci
1

= λ[1 + b(1 − tK)]

∂L
∂Ci

2

= 0 :
1

1 + ρ
= λ

These first order conditions together with the intertemporal budget constraint
(Q9.4) give:

Ci
1 =

1 + ρ

1 + b(1 − tK)
(A9.4)

Ci
2 = Z + [1 + b(1 − tK)](1 + b)Ki

1 − (1 + ρ) (A9.5)

Later on we will need an expression for Ki
2. Use (A9.1) and (A9.4) to get:

Ki
2 = (1 + b)Ki

1 − C1 = (1 + b)Ki
1 −

1 + ρ

1 + b(1 − tK)
(A9.6)

(c) Substitute equations (A9.4) and (A9.5) into the utility function (Q9.1). The res-
ult is the indirect utility function (utility as a function of income, transfer and
tax rate):

V̂i = ln

(
1 + ρ

1 + b(1 − tK)

)
+

Z + [1 + b(1 − tK)](1 + b)Ki
1 − (1 + ρ)

1 + ρ

= ln(1 + ρ) − ln(1 + b(1 − tK)) +
Z + [1 + b(1 − tK)](1 + b)Ki

1

1 + ρ
− 1

(A9.7)

Dropping the terms with only exogenous variables and parameters (note: tK

and Z are not exogenous) gives:

V̂i = − ln(1 + b(1 − tK)) +
Z − tKb(1 + b)Ki

1

1 + ρ

Use the government budget constraint (Q9.3) to substitute Z out of this equa-
tion:

V̂i = − ln(1 + b(1 − tK)) +
tKbK̄2 − tKb(1 + b)Ki

1

1 + ρ
(A9.8)

From (A9.6) we can derive an expression for K̄2:

K̄2 = (1 + b)K̄1 − 1 + ρ

1 + b(1 − tK)
(A9.9)

and substitution into (A9.8) gives:

V̂i = − ln(1 + b(1 − tK))− tKb

1 + b(1 − tK)
+

tKb(1 + b)K̄1 − tKb(1 + b)Ki
1

1 + ρ

Collect terms and we have the required result.



206 EXERCISE & SOLUTIONS MANUAL

(d) The median voter theorem states that the median voter determines the res-
ult of the election, in this case the capital income tax. This median voter will
choose tK such that his/her utility is maximized, given his/her initial capital
endowment KM

1 . Maximization of (Q9.5) with Ki
1 = KM

1 gives the first order
condition:

∂VM

∂tK
=

b

1 + b(1 − tK)
− b[1 + b(1 − tK)] + b2tK

[1 + b(1 − tK)]2
+

b(1 + b)

1 + ρ
[K̄1 − KM

1 ]

=
b

1 + b(1 − tK)
− b(1 + b)

[1 + b(1 − tK)]2
+

b(1 + b)

1 + ρ
[K̄1 − KM

1 ]

=
−b2tK

[1 + b(1 − tK)]2
+

b(1 + b)

1 + ρ
[K̄1 − KM

1 ] = 0

Rewriting gives:

btK

[1 + b(1 − tK)]2
=

1 + b

1 + ρ
[K̄1 − KM

1 ] (A9.10)

(e) Equation (A9.10) implicitly defines tK as a function of K̄1 − KM
1 . Total differen-

tiation gives:

b[1 + b(1 − tK)]2 + 2b2tK[1 + b(1 − tK)]

[1 + b(1 − tK)]4
dtK =

1 + b

1 + ρ
d(K̄1 − KM

1 ) ⇒

b + b2 − b2tK + 2b2tK

[1 + b(1 − tK)]3
dtK =

1 + b

1 + ρ
d(K̄1 − KM

1 ) ⇒
b[1 + b(1 + tK)]

[1 + b(1 − tK)]3
dtK =

1 + b

1 + ρ
d(K̄1 − KM

1 ) ⇒

dtK

d(K̄1 − KM
1 )

=
1 + b

1 + ρ
· [1 + b(1 − tK)]3

b[1 + b(1 + tK)]
> 0

From this it is obvious that if K̄1 − KM
1 increases, tK increases.

The economic intuition is that there are gains to be made from the viewpoint of
the median voter to tax the wealthy and divide the revenues equally over the
entire population. Although the median voter will have to pay some capital
income tax, the benefits are larger (because of the skewed initial distribution).
The median voter will not fully tax capital income since this will take away the
incentive to save and thereby reduces the tax base.

Note that if the median voter’s initial capital endowment is exactly equal to the
mean, he/she will opt for no capital tax at all, he/she is not indifferent!

(f) At the beginning of the second period, the existing capital stocks Ki
2 are given.

The median voter realises this and maximizes his/her utility given only the
second period’s budget restriction (A9.2). The optimization problem for the
median voter is now:

max UM = CM
2 s.t. CM

2 = Z + [1 + b(1 − tK)]KM
2 (A9.11)

which results in the obvious indirect utility function:

V̂M = Z + [1 + b(1 − tK)]KM
2 (A9.12)
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Combine this with the government budget constraint (Q9.3), drop all the exo-
genous terms and we have:

VM = tKb[K̄2 − KM
2 ] (A9.13)

It is easily seen from (A9.13) that for K̄2 > KM
2 the median voter will pick the

maximum capital income tax, that is, tK = 1. The earlier announced tax rate is
time-inconsistent.

People will realise this according to the rational expectations hypothesis and
will not believe the earlier announced capital income tax. Everybody will max-
imize his/her utility given that tK = 1. Setting tK = 1 in equation (A9.4) gives
C1 = 1 + ρ which clearly shows that people save less.

Question 3: Choice of policy instrument

(a) Equation (Q9.6) is the IS curve. Demand for goods is affected negatively by
the interest rate (through investment) and there are stochastic demand shocks,
represented by ut. Equation (Q9.7) is the LM curve. The demand for real
money balances (in logarithms) depends positively on output (transactions de-
mand) and negatively on the nominal interest rate (opportunity cost of holding
money). We abstract from (expected) inflation, so the nominal interest rate fea-
tures in the IS curve.

Equation (Q9.8) is the objective function of the policy maker. The policy maker
wishes to steer actual output, yt, as closely as possible to some exogenously
given target output level, y∗. Both positive and negative deviations of actual
from target output are not appreciated by the policy maker. The policy maker
must either use the interest rate or the money supply as its instrument.

(b) In the deterministic case, both stochastic shocks are identically equal to zero
(ut = vt = 0 for all t). It is easy to show that in that case both instruments
serve equally well to stabilize output. In fact, they are completely identical.
The equivalence result is shown in Figure A9.1. Assume that the economy is
initially in point E0 where output falls short of its target level (yt < y∗).

Under the interest rate instrument the policy maker sets R = R∗, where R∗ is the
interest rate for which the IS curve gives an output level equal to y∗–see point
A in Figure A9.1. The LM curve is not very informative under the interest rate
instrument because the money supply is endogenous, i.e. if the policy maker
sets R = R∗ then the money supply will adjust such that IS0 and the dashed LM
curve, LM1, intersect at point A. R∗ can be computed by substituting y = y∗
(and ut = 0) into the IS curve and solving for R∗:

y∗ = α0 − α1R∗ ⇔ R∗ =
α0 − y∗

α1
. (A9.14)

The money supply that will result is computed by substituting yt = y∗ and
Rt = R∗ (and, of course, pt = 0 and vt = 0) in the LM curve (Q9.7). We obtain:

mt = β0 + β1 [α0 − α1R∗] − β2R∗

= β0 + α0β1 − (α1β1 + β2) R∗. (A9.15)



208 EXERCISE & SOLUTIONS MANUAL
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y*y

LM0

LM1

IS0
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A

!

!
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output target

Figure A9.1: Money supply and interest rate instruments

Under the money supply instrument, the policy maker sets the money supply,
m∗, such that the IS-LM equilibrium occurs at an output level of y∗. This is ob-
viously also at point A. The endogenous variables under this policy instrument
are output and the interest rate. The correct money supply is thus:

m∗ = β0 + α0β1 − (α1β1 + β2)R∗ (A9.16)

= β0 + α0β1 − (α1β1 + β2)
α0 − y∗

α1
. (A9.17)

The two instruments are equivalent and both hit the output target exactly, i.e.
yt = y∗ for all t and Ω = 0. The instrument equivalency result breaks down in
a stochastic setting, as parts (c)–(e) of this question illustrate.

(c) If only the IS curve is subject to stochastic shocks, then the money supply and
interest rate instruments are no longer equivalent. Under the interest rate in-
strument, the policy maker will set R∗ such that the IS curve is expected to yield
an output level of y∗, i.e. R∗ will be set according to the value given in (A9.14).
The actual output level is, of course, stochastic, because demand for goods is
subject to stochastic shocks that the policy maker (and the public) cannot fore-
cast. Hence, actual output is obtained by substituting R∗ (from (A9.14)) into
equation (Q9.6):

yt = α0 − α1R∗ + ut

= α0 − α1
α0 − y∗

α1
+ ut

= y∗ + ut. (A9.18)

Given the interest rate instrument, actual output fluctuates randomly around
its target level y∗. The asymptotic variance of output will thus be:

σ2
y

∣∣∣
R=R∗ = σ2

u . (A9.19)
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Under the money supply instrument, the policy maker sets the money supply
such that the expected IS-LM intersection occurs at an output level equal to y∗,
i.e. it sets m = m∗, where m∗ is given in (A9.16) or (A9.17). Since the IS curve
shifts stochastically, the actual IS-LM intersection will be somewhere along the
given LM curve based on m = m∗. To find actual output level, we first solve
equations (Q9.6)–(Q9.7) for output:

yt = α0 − α1

β2
[β0 + β1yt + vt − mt + pt] + ut ⇒

yt =
α0β2 − α1β0 + α1m∗ + β2ut

β2 + α1β1
, (A9.20)

where we have substituted pt = vt = 0 and mt = m∗ for all t in going from the
first to the second line. By substituting the expression for m∗ (given in (A9.17))
into (A9.20), we obtain an even simpler expression:

yt = y∗ +
β2

β2 + α1β1
ut. (A9.21)

Actual output fluctuates randomly around its target level, just like for the in-
terest rate instrument. The crucial difference between the two instruments is,
however, that the effect of the IS shocks is dampened somewhat under the
money supply instrument–the coefficient in front of ut in (A9.21) is between 0
and 1. The asymptotic variance of output is:

σ2
y

∣∣∣
m=m∗ =

(
β2

β2 + α1β1

)2

σ2
u . (A9.22)

Since the term in round brackets is between 0 and 1, it follows that:

σ2
y

∣∣∣
m=m∗ < σ2

y

∣∣∣
R=R∗ . (A9.23)

Hence a rational policy maker (one who wants to reduce output fluctuations)
chooses the money supply instrument if the LM curve does not fluctuate.

In terms of Figure A9.2, this result can be explained as follows. Let IS0 be the
expected position of the IS curve, i.e. equation (Q9.6) for E(ut) = 0, and let IS1

and IS2 be the IS curves for a given positive and negative IS shock respectively.
The deterministic equilibrium is at point E0, where y = y∗ and R = R∗. Under
the interest rate instrument, the policy maker maintains R = R∗ so that the
economy fluctuates between points A and B and output fluctuates between yA

t
and yB

t . Under the money supply instrument, the money supply is set such that
IS0 and LM0 intersect at point E0. As a result, the economy fluctuates between
points C and D, and output fluctuates between yC

t and yD
t . Output fluctu-

ations are smaller under the money supply rule because interest rate move-
ments act as automatic stabilizers. With a positive IS shock, the interest rate
rises under the money supply rule so that investment and thus output demand
is dampened somewhat.

(d) If only the LM curve is subject to stochastic shocks, then the instruments are
also not equivalent. Now the IS curve is not subject to fluctuations but the LM
curve fluctuates randomly. In terms of Figure A9.3, the IS curve is given by IS0
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Figure A9.2: Instruments and output fluctuations (deterministic LM curve)
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Figure A9.3: Instruments and output fluctuations (deterministic IS curve)
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and the expected position of the LM curve is LM0. LM1 and LM2 are associated
with, respectively, a positive and a negative money demand shock.

Under the interest rate instrument, the policy maker maintains R = R∗ and
lets the money supply be determined endogenously. As a result, the economy
stays in point E0. (The economy does not go to points C and D because in these
points the money supply is not in equilibrium.) Output is given by (A9.21) but,
since ut = 0 here, it does not fluctuate at all. There is perfect stabilization in
this case and the asymptotic variance of output is zero.

Under the money supply rule, the economy fluctuates between points A and B
and output fluctuates between yA

t and yB
t . To compute actual output under the

money supply instrument, we solve equations (Q9.6)–(Q9.7) for output:

yt = α0 − α1

β2
[β0 + β1yt + vt − mt + pt] + ut ⇒

yt =
α0β2 − α1β0 + α1m∗ − α1vt

β2 + α1β1
, (A9.24)

where we have set pt = ut = 0 and mt = m∗ for all t in going from the first to
the second line. By substituting (A9.17) into (A9.24) we obtain an even simpler
expression for output:

yt = y∗ − α1

β2 + α1β1
vt. (A9.25)

The asymptotic variance of output under the money supply instrument is thus:

σ2
y

∣∣∣
m=m∗ =

(
α1

β2 + α1β1

)2

σ2
v . (A9.26)

Since output can be perfectly stabilized under the interest rate instrument, the
rational policy maker prefers this instrument over the money supply instru-
ment.

(e) To solve the general instrument choice problem, we first solve (Q9.6)–(Q9.7) for
output. After some manipulation we obtain for the interest rate instrument:

yt = y∗ + ut, (A9.27)

and for the money supply instrument:

yt = y∗ +
β2ut − α1vt

β2 + α1β1
. (A9.28)

The asymptotic variance of output under the interest rate instrument is ob-
tained from (A9.27):

σ2
y

∣∣∣
R=R∗ = σ2

u . (A9.29)

The asymptotic variance under the money supply rule is obtained from (A9.28):

σ2
y

∣∣∣
m=m∗ =

β2
2σ2

u + α2
1σ2

v

(β2 + α1β1)
2

, (A9.30)
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where we have used the fact that ut and vt are independent random variables
(so that E(utvt) = 0).

It is easy to rewrite the quadratic loss function, given in equation (Q9.8), in
terms of the asymptotic variance of output:

Ω ≡ E (yt − y∗)2 = E (yt − E(yt))
2 ≡ σ2

y , (A9.31)

where we have used the fact that E(yt) = y∗ under both instruments (see equa-
tions (A9.27) and (A9.28)). Hence, the rational policy maker chooses that policy
instrument for which σ2

y is lowest. By comparing (A9.29) and (A9.30), we find
that the money supply instrument is the preferred instrument if (and only if):

β2
2σ2

u + α2
1σ2

v

(β2 + α1β1)
2

< σ2
u ⇔ σ2

u

σ2
v

>
α1

β1 (2β2 + α1β1)
. (A9.32)

According to (A9.32), the money supply instrument is optimal if the variance of
the IS shocks is large relative to that of the LM shocks. The intuition behind this
result is provided by the answer to part (c). Interest rate fluctuations dampen
the output fluctuations in that case.

Question 4: Rules versus discretion

(a) Equation (Q9.9) is the Lucas supply curve. Equation (Q9.10) is the objective
function of individual i in the population.

(b) If we assume that all citizens have the same coefficient of relative inflation aver-
sion, it does not matter who is the central banker. We can thus use the model
that is discussed in detail in section 9.1.2 of the book. If (before the ECB era) the
Dutch central banker can somehow commit to follow the behaviour of some
(more inflation-averse) central banker (say, the German one), then he/she can
effectively mitigate the effects of dynamic inconsistency somewhat. Even if the
other central banker follows discretionary policy, the resulting inflation rate
will be lower than the inflation rate the domestic central banker would choose.
As a result, welfare would be higher. As is clear from equation (9.41), delega-
tion to somebody else only occurs if ȳ �= y∗.

(c) This question is studied in detail in section 9.2 of the book. By choosing a per-
son more conservative than him-/herself, the median voter commits to a lower
discretionary inflation rate. Like in part (b) of this question, this leads to an in-
crease in social welfare because the adverse effects of dynamic inconsistency
are mitigated somewhat.

Question 5: Political business cycles

(a) Equation (Q9.11) is an expectations–augmented Phillips curve. In the short run
there is a trade-off between inflation and unemployment. This is represented
by the Φ (·) function. Inflation, however, also depends on expected inflation,
πe (t). This is a shift-variable in the Phillips curve. Equation (Q9.12) shows that
the expected inflation rate is adjusted adaptively, i.e. the model incorporates
the AEH (studied in detail in Chapter 1 of the book).
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(b) The incumbent party maximizes Ω subject to (Q9.11)-(Q9.12). The initial con-
dition is πe (0) = πe

0 and π (T) can be freely chosen. The Hamiltonian for this
problem is:

H ≡ V (U (t) , π (t)) · eρtdt + λ (t) · [β · [π (t) − πe (t)]]

+µ (t) · [π (t)− Φ (U (t)) − α · πe (t)] ,

where U (t) and π (t) are the control variables, πe (t) is the state variable, λ (t)
is the co-state variable, and µ (t) is the Lagrange multiplier associated with the
constraint (Q9.11).

The first-order conditions are, respectively,

∂H
∂U (t)

= VU (U (t) , π (t)) eρt − µ (t) Φ′ (U (t)) = 0, (A9.33)

∂H
∂π (t)

= Vπ (U (t) , π (t)) eρt + βλ (t) + µ (t) = 0, (A9.34)

for the control variables, and:

λ̇ (t) = − ∂H
∂πe (t)

= βλ (t) + αµ (t) , (A9.35)

for the state variable. Of course, ∂H/∂λ (t) = π̇e(t) just gives us back the state
equation (Q9.12), whilst ∂H/∂µ (t) = 0 slings back (Q9.11) at us. Given that
πe (T) is free, we must also have that:

λ (T) = 0. (A9.36)

(c) Using these specific functional forms, we can write the first-order conditions
(A9.33)-(A9.35) as:

U (t) =
γ1

2
µ (t) e−ρt, (A9.37)

βλ (t) + µ (t) = ηeρt. (A9.38)

By substituting (A9.37) into (A9.38) we find:

U (t) =
γ1

2
· [η − βλ (t) e−ρt

]
. (A9.39)

Once we know the path of λ (t), the path of U (t) follows readily from (A9.39).

By using (A9.38) in (A9.35) we obtain the differential equation for λ (t):

λ̇ (t) = (1 − α) βλ (t) + αηeρt. (A9.40)

Since 0 < α ≤ 1 and β > 0, this is an unstable differential equation which we
solve forward in time, taking into account the terminal condition (A9.36). Here
are the juiciest steps in the derivation:

λ̇ (t)− (1 − α) βλ (t) = αηeρt

d

dt

[
λ (t) e−(1−α)βt

]
= αηeρte−(1−α)βt

d
[
λ (t) e−(1−α)βt

]
= αηeρte−(1−α)βtdt.
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Integrating both sides from s to T (0 ≤ s ≤ T) we thus find:

∫ T

s
d
[
λ (t) e−(1−α)βt

]
= αη

∫ T

s
eρte−(1−α)βtdt

λ (T) e−(1−α)βT − λ (s) e−(1−α)βs =
αη

ρ − (1 − α) β

·
[
e[ρ−(1−α)β]T − e[ρ−(1−α)β]s

]
.

Finally, setting λ (T) = 0 and re-arranging we obtain:

−λ (s) · e−ρs =
αη

ρ − (1 − α) β
·
[
e[ρ−(1−α)β](T−s) − 1

]
. (A9.41)

By setting s = t and substituting (A9.41) into (A9.39) we find the path for
unemployment:

U (t) =
ηγ1

2
·
[

1 + αβ · e[ρ−(1−α)β](T−t) − 1

ρ − (1 − α) β

]
, (for 0 ≤ t ≤ T). (A9.42)

We observe from (A9.42) that:

dU (t)

dt
= −αβηγ1

2
e[ρ−(1−α)β](T−t)

< 0.

The policy maker starts with a high unemployment rate, and lets it fall over
time. At the end of its term in office, unemployment equals:

U (T) = U∗
T ≡ ηγ1

2
. (A9.43)

(d) The economic system is given by:

π (t) = γ0 − γ1U (t) + απe (t) , (A9.44)

π̇e (t) = β [π (t)− πe (t)] , (A9.45)

U (t) = U∗
T ·

[
1 + αβ · eρ∗(T−t) − 1

ρ∗

]
, (A9.46)

where ρ∗ ≡ ρ− (1 − α) β. Substituting (A9.44) and (A9.46) into (A9.45) we find
the fundamental differential equation for πe (t) for 0 ≤ t ≤ T:

π̇e (t) = β

[
γ0 − γ1U∗

T ·
[

1 + αβ · eρ∗(T−t) − 1

ρ∗

]
− (1 − α) πe (t)

]

= −β (1 − α) πe (t) + β

[
γ0 − γ1U∗

T ·
[

1 + αβ · eρ∗(T−t) − 1

ρ∗

]]
. (A9.47)

Since the coefficient in front of πe (t) on the right-hand side is negative, we sur-
mise that the differential equation is stable. But there is a time-varying shock
term on the right-hand side also, so we must dig a little deeper.
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To compute πe (T) we must solve this differential equation (backwards in time)
subject to the initial condition, πe (0) = πe

0. We show some steps. First we
define the forcing term, G (T − t):

G (T − t) = γ0 − γ1U∗
T ·

[
1 + αβ · eρ∗(T−t) − 1

ρ∗

]

≡ ζ0 − ζ1 · eρ∗(T−t), (A9.48)

with:

ζ0 ≡ γ0 − γ1U∗
T ·

[
1 − αβ

ρ∗

]
, ζ1 ≡ γ1U∗

Tαβ

ρ∗
.

Next, we write the fundamental differential equation as:

π̇e (t) + β (1 − α) πe (t) = βG (T − t) .

This implies that:

d

dt

[
πe (t) e(1−α)βt

]
= βG (T − t) e(1−α)βt ⇒∫ s

0
d
[
πe (t) e(1−α)βt

]
= β

∫ s

0
G (T − t) e(1−α)βtdt ⇔

πe (s) e(1−α)βs − πe (0) = β
∫ s

0
G (T − t) e(1−α)βtdt ⇔

πe (s) = πe
0e−(1−α)βs + β

∫ s

0
G (T − t) e(1−α)β(t−s)dt. (A9.49)

The final expression shows that πe (s) is a weighted average of the initial con-
dition and the time-varying shock. For πe (T) we find:

πe (T) = πe
0e−(1−α)βT + β

∫ T

0
G (T − t) e(1−α)β(t−T)dt.

By setting πe (T) = πe
0 we find the condition that is asked for in the question:

πe
0 = β ·

∫ T
0 G (T − t) e(1−α)β(t−T)dt

1 − e−(1−α)βT
. (A9.50)

If (A9.50) is satisfied, then the economy passes through the same (πe
0, U∗

T) point
in all election years. It displays a stable saw-tooth pattern in unemployment
and inflation over time–see Figure 8 in Nordhaus (1975, p. 185).
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Chapter 10

The open economy

Question 1: Short questions

(a) “A necessary condition for exchange rate overshooting to occur in Dornbusch-
style models (featuring perfect capital mobility and flexible exchange rates) is
that prices are sufficiently flexible.” True, false, or uncertain? Explain.

(b) If financial capital is completely immobile internationally and the economy
operates under a system of fixed exchange rates, then a bond financed increase
in government consumption will lead to an increase in the interest rate and
crowding out of investment. True or false? Explain.

(c) “In a two-country setting, uncoordinated fiscal policy always leads to excessive
spending by governments of the individual countries.” True, false, or uncer-
tain? Explain.

Question 2: The Mundell-Fleming model

Consider an open economy IS-LM model with perfect capital mobility (also known
as the Mundell-Fleming model). Assume that we extend the IS-LM model by in-
troducing international trade. Assume furthermore that the price level is fixed (say
P = P0) and that domestic and foreign bonds are perfect substitutes. The extended
model is given by:

Y = C + I + G + X (Q10.1)

C = C(Y − T) 0 < CY−T < 1 (Q10.2)

I = I(r), Ir < 0 (Q10.3)

T = T(Y), 0 < TY < 1 (Q10.4)

M/P = k(Y) + l(r) (Q10.5)

X ≡ EX(E)− IM(E, Y)E, EXE > 0, IME < 0, IMY > 0 (Q10.6)

r = r∗ + Ė/E (Q10.7)

where Y, C, I, G, T, and r are, respectively, output, consumption, investment, gov-
ernment consumption, taxes, and the interest rate. Furthermore, r∗ is the foreign
interest rate, EX is exports, IM is imports, E is the exchange rate (euros per unit
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of foreign currency), and X is net exports. Use this model to answer the following
questions. Assume that the expectations regarding the exchange rate are perfectly
inelastic (so that there is no speculation on the market for foreign exchange and the
Ė/E term can be put equal to zero).

(a) Interpret the equations.

(b) Explain the so-called Marshall-Lerner condition.

(c) Why is there less scope for Keynesian countercyclical policy in an open eco-
nomy with flexible exchange rate? How effective is monetary policy in such a
situation?

(d) Can the government of a less-than-fully employed economy stimulate employ-
ment without putting pressure on the interest rate (and the foreign exchange
rate)? Show how the government can engineer an appreciation of the currency
without harming employment. Distinguish the two cases of fixed and flexible
exchange rates.

(e) Explain why a small open economy with fixed exchange rates is extremely
sensitive to shocks in world trade. Is it possible to use monetary or fiscal policy
to counter the effects of world trade shocks?

Question 3: The Dornbusch model

Consider the following model of a small open economy featuring perfect capital
mobility and sluggish price adjustment.

y = −ηr + g + δ[p∗ + e − p], η > 0, 0 < δ < 1, (Q10.8)

m − p = y − λr, λ > 0, (Q10.9)

ṗ = φ[y − ȳ], φ > 0, (Q10.10)

r = r∗ + ė, (Q10.11)

where y is actual output, r is the domestic interest rate, g is an index for fiscal policy,
e is the nominal exchange rate, p∗ is the exogenous foreign price level, p is the do-
mestic price level, m is the nominal money supply, ȳ is full employment output, and
r∗ is the exogenous world interest rate. All variables, except the two interest rates,
are measured in logarithms. As usual, a dot above a variables denotes that variable’s
time rate of change, i.e. ṗ ≡ dp/dt and ė ≡ de/dt.

(a) Interpret the equations of the model.

(b) Suppose that the economy operates under a system of fixed exchange rates (e =
ē). What are the endogenous variables? What is the coefficient of monetary
accommodation (i.e. ∂m/∂p) in this model? Derive the (impact, transitional,
and long-term) effects of an expansionary fiscal policy (an increase in g).

(c) Now assume that the economy operates under a system of flexible exchange
rates. Derive the model’s phase diagram for the nominal exchange rate, e, and
the domestic price level, p.
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(d) Derive the (impact, transitional, and long-term) effects of an unanticipated and
permanent expansionary fiscal policy.

(e) Show that under flexible exchange rates an unanticipated and permanent in-
crease in the money supply leads to overshooting of the exchange rate in the
short-term.

(f) Derive the (impact, transitional, and long-term) effects of an anticipated and
permanent increase in the money supply.

(g) Show how your answer to parts (e) and (f) change if domestic prices are per-
fectly flexible, i.e. if φ → ∞ in equation (Q10.10).

Question 4: The Buiter-Miller model

[Based on Buiter and Miller (1982)] Consider the following model of a small open
economy featuring perfect capital mobility and sluggish price adjustment.

y = −η [r − ṗC] + δ[p∗ + e − p], η > 0, 0 < δ, γ < 1, (Q10.12)

m − pC = y − λr, λ > 0, (Q10.13)

pC ≡ αp + (1 − α)[p∗ + e], 0 < α < 1, (Q10.14)

ṗ = φ(y − ȳ), φ > 0, (Q10.15)

r = r∗ + ė, (Q10.16)

where y is actual output, r is the domestic interest rate, pC is the price index for goods
used in the domestic economy, e is the nominal exchange rate, p∗ is the exogenous
(and constant) foreign price level, p is the price of domestically produced goods,
ȳ is full employment output, m is the (constant) nominal money supply, and r∗ is
the exogenous world interest rate. All variables, except the two interest rates, are
measured in logarithms. As usual, a dot above a variables denotes that variable’s
time rate of change, i.e. ṗ ≡ dp/dt and ė ≡ de/dt. We define the auxiliary variables
l ≡ m − p (measure of “liquidity”) and c ≡ p∗ + e − p (index for “competitiveness”).

(a) Interpret the equations of the model. Which are the endogenous and which are
the exogenous variables?

(b) Derive the dynamical system for this model in terms of l and c. Show that
the model is saddle-point stable provided λ + αη(1 − λφ) > 0. Which is the
predetermined variable? Which is the jumping variable?

(c) Construct the phase diagram for the model. (Many saddle-point stable slope
configurations are possible. Assume that the ċ = 0 line is upward sloping and
l̇ = 0 line is downward sloping. State the corresponding parameter assump-
tions.)

(d) Derive the (impact, transitional, and long-term) effects on c and l of an unanti-
cipated and permanent increase in the money supply. Does overshooting of
the exchange rate occur in this model?



220 EXERCISE & SOLUTIONS MANUAL

Question 5: Dynamics of foreign reserves

Consider the following model of a small open economy with fixed prices (P = P0 = 1
for convenience) operating under a regime of fixed exchange rates.

Y = C(Y) + I(r) + G + X(Y, E), (Q10.17)

D + F = l(Y, r), (Q10.18)

Ḟ = X(Y, E) + KI (r − r∗) , (Q10.19)

where Y is output, C is consumption, I is investment, r is the domestic interest rate,
G is government consumption, X is net exports, E is the nominal exchange rate
(domestic currency per unit of foreign currency), D is domestic credit (government
bonds in the hands of the central bank), F is the stock of foreign exchange reserves
(measured in units of the domestic currency), and KI is net capital inflows. As usual,
a dot above a variable denotes that variable’s time derivative, i.e. Ḟ ≡ dF/dt. We
make the usual assumptions regarding the partial derivatives of the various func-
tions: 0 < CY < 1, XY < 0, Ir < 0, XE > 0, lY > 0, lr < 0, and KIr > 0.

(a) Interpret the equations of the model. What do we assume about the Marshall-
Lerner condition? Which are the endogenous variables? Which are the exo-
genous variables?

(b) Derive the fundamental differential equation for the stock of foreign exchange
reserves and show that the model is stable. Show that the speed of adjustment
increases as the degree of capital mobility increases and illustrate your argu-
ment with the aid of a diagram.

(c) Derive the so-called BP curve, representing (r, Y) combinations for which the
balance of payments is in equilibrium (Ḟ = 0). Assume that the BP curve is
flatter than the LM curve (when drawn in the usual diagram with r on the
vertical axis and Y on the horizontal axis). Show that this is the case if the
following condition holds: XYlr < lYKIr. Give an economic interpretation for
this condition.

(d) Derive the impact, transitional, and long-run effects on the endogenous vari-
ables of an increase in government consumption. Assume that the condition
mentioned in part (c) holds. Illustrate your answer with graphs and explain
the economic intuition.

(e) Derive the impact, transitional, and long-run effects on the endogenous vari-
ables of monetary policy. Illustrate your answers with a graph and explain the
intuition.
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� Question 6: Price flexibility in the Mundell-Fleming model

[Based on Mark (2001)] Consider the following Mundell-Fleming type model of a
small open economy:

mt − pt = yt − αrt, α > 0, (Q10.20)

yt = −β [rt − (Et pt+1 − pt)] + γ[p∗ + et − pt] + dt, β > 0, γ > 0,
(Q10.21)

rt = r∗ + Etet+1 − et, (Q10.22)

pt = p̃t − (1 − θ)[ p̃t − Et−1 p̃t], 0 ≤ θ ≤ 1, (Q10.23)

mt = mt−1 + vt, (Q10.24)

yt = ȳt−1 + zt, (Q10.25)

dt = dt−1 + ut, (Q10.26)

where mt is the nominal money supply, pt is the actual domestic price level, yt is out-
put, rt is the domestic (nominal) interest rate, et is the nominal exchange rate, p∗ is
the world price level (we normalize p∗ = 0), r∗ is the world (nominal) interest rate,
and p̃t is the equilibrium domestic price level, and ȳt is the full employment level
of output. In equation (Q10.23), p̃t is the price for which actual output, yt, equals
its exogenously given full employment level, ȳt. All variables except rt and r∗ are
in logarithms. Et and Et−1 denote conditional expectations based on, respectively,
period-t and period-t − 1 information. It is assumed that agents hold rational ex-
pectations. The shock terms, ut and vt, are independent from each other and are
both normally distributed with mean zero and constant variance, i.e. ut ∼ N

(
0, σ2

u

)
and vt ∼ N

(
0, σ2

v

)
. They also features no serial correlation.

(a) Provide a brief interpretation of these equations.

(b) Consider the special case of the model for which θ = 1. Define the real ex-
change rate as qt ≡ p∗ + et − pt. Solve for the rational expectations solutions
for the real exchange rate, the domestic price, and the nominal exchange rate.
Denote these solutions by, respectively, q̃t, p̃t, and ẽt.

(c) Show that the money supply does not affect the equilibrium real exchange rate,
q̃t. Explain intuitively why this is the case.

(d) Now use the general case of the model, with 0 < θ < 1, and solve for the
rational expectations solution for the real exchange rate, the domestic price,
the nominal exchange rate, and output.

(e) Does the classical dichotomy still hold for the sticky-price model solved in part
(d)? Can you find evidence for the overshooting property? Explain.
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Answers

Question 1: Short questions

(a) False, a necessary condition for overshooting is that prices are sticky, i.e. φ �
∞. If φ → ∞, then prices are perfectly flexible, y = ȳ at all times, and over-
shooting cannot occur (see section 10.3.1.1).

(b) True, see Figure 10.2 in the book. The IS curve shifts out and output increases.
Imports increase and the current account is in deficit. The money supply de-
clines as foreign reserves are lost in the maintenance of the exchange rate. The
LM curve shifts up and the interest rate increases. In the long run no effect on
output and lower investment.

(c) This is uncertain as it depends on further details of the two-country environ-
ment. The issue of policy coordination is studied in section 10.2.4 of the book.
If there exists nominal wage rigidity in both regions, then individual regions
spend too little in the uncoordinated regime. This is because individual fiscal
policy is a locomotive policy, and regions ignore the spill-over effects in the
uncoordinated scenario. The opposite holds if both countries experience real
wage rigidity. There uncoordinated spending is too high.

Question 2: The Mundell-Fleming model

(a) Equation (Q10.1) is the national income identity; (Q10.2) is the consumption
function: consumption depends on disposable income and the MPC is between
0 and 1; (Q10.3) is the investment function: investment depends negatively on
the rate of interest as this represents the “cost of funds” if a firm wants to in-
vest; (Q10.4) is the tax function: TY is the marginal tax rate which is between
0 and 1; (Q10.5) is the demand for real money balances: it depends positively
on output via the transactions motive and negatively on the interest rate (cash
management and the speculative demand for money); (Q10.6) is the equation
for net exports (equalling exports, EX, minus imports expressed in terms of
the domestic good, E · IM): import quantities depend on the price of domestic
goods relative to the price of foreign goods; (Q10.7) is the interest parity con-
dition according to which financial investments should have the same rate of
return domestically and abroad. The correction term, Ė/E, is needed to express
the rate of return in the same currency.

(b) The Marshall-Lerner condition answers the question about what happens to
net exports if the exchange rate of a country changes. The exchange rate, E,
is defined as domestic currency per unit of foreign currency (e.g. euros per
US dollar for an European). Hence, a devaluation (under fixed exchange rates)
or depreciation (under flexible exchange rates) amounts to an increase in E. We
want to know the sign of ∂X/∂E. We partially differentiate equation (Q10.6)
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with respect to E:

∂X

∂E
=

∂EX

∂E
− IM

∂E

∂E
− E

∂IM

∂E

= EXE − IM

(
1 +

E · IME

IM

)

=
Y

E

[
EX

Y

E · EXE

EX
− E · IM

Y

(
1 +

E · IME

IM

)]

=
Y

E

[
ωXεX − ωM(1 − εM)

]
, (A10.1)

where the shares (ωX and ωM) and the elasticities (εX and εM) are defined as:

ωX ≡ EX

Y
εX ≡ E · EXE

EX
> 0 (A10.2)

ωM ≡ E · IM

Y
εM ≡ −E · IME

IM
> 0 (A10.3)

Hence, ∂X/∂E > 0 if (and only if) the term in square brackets on the right-hand
side of (A10.1) is positive, i.e. if:

ωXεX − ωM (1 − εM) > 0. (A10.4)

For the special case in which net exports are initially zero (so that EX = E · IM
and thus ωX = ωM) we obtain an expression for the Marshall-Lerner condition
that is often reported in textbooks:

εX + εM − 1 > 0. (A10.5)

The sum of the export and import elasticities must exceed unity for the Marshall-
Lerner condition to hold.

(c) Under flexible exchange rates and with perfect capital mobility:

• There is equilibrium on the balance of payments (which is the sum of the
trade account and the capital account).

• The monetary authority does not intervene on the market for foreign ex-
change (the FOREX market) as it lets the currency fluctuate freely. As a
result, the stock of foreign assets of the central bank stays constant. This
means that the domestic money supply is constant also.

• The domestic interest rate is equal to the (exogenous) foreign interest rate,
i.e. r = r∗.

We can write the resulting model as follows:

Y = C (Y − T(Y)) + I(r∗) + G + X(Y, E), (IS curve), (A10.6)

M/P0 = k(Y) + l(r∗), (LM curve). (A10.7)

In mathematical terms, the IS equation contains two endogenous variables (Y
and E) whilst the LM equation only contains Y. It follows that the model is
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Figure A10.1: Monetary policy with flexible exchange rates

recursive and can be solved in a very simple fashion. From the LM equation
(A10.7) we find that monetary policy affects output:

1

P0
dM = kYdY ⇒ dY

dM
=

1

kYP0
> 0, (A10.8)

while fiscal policy does not (dY/dG = 0). An increase in G thus only affects
the exchange rate. Indeed, from the IS equation (A10.6) we obtain:

dG + XEdE = 0 ⇒ dE

dG
= − 1

XE
< 0. (A10.9)

(provided the Marshall-Lerner condition is satisfied). An increase in govern-
ment consumption thus leads to an appreciation of the domestic currency.
Fiscal and monetary policy can also be illustrated graphically. See Figures
A10.1 and A10.2.

(d) Flexible exchange rates: M ↑ so LM shifts to the right ⇒ domestic interest rate
lower than world interest rate ⇒ net outflow of financial capital ⇒ depreci-
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Figure A10.2: Fiscal policy with flexible exchange rates
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Figure A10.3: Fiscal and monetary policy with fixed exchange rates
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ation of the exchange rate ⇒ EX ↑ and IM ↓ ⇒ (if the ML condition holds) X ↑
⇒ IS to the right. Output and employment are both higher but the exchange
rate has depreciated. [See Figure A10.1].

Fixed exchange rates: G ↑ ⇒ IS shifts to the right ⇒ domestic interest rate higher
than world interest rate ⇒ net inflow of financial capital ⇒ increase in the
domestic money supply ⇒ LM to the right. Output and employment both
higher as is the money supply. [See Figure A10.3]

(e) Assume that there is a negative export shock: ceteris paribus output and the ex-
change rate, X ↓ ⇒ IS to the left ⇒ domestic interest rate lower than the world
interest rate ⇒ net outflow of financial capital ⇒ reduction in the money sup-
ply ⇒ LM also to the left. Output and employment are very sensitive because
the shock is magnified by the monetary contraction. Monetary policy is not
useful. Fiscal policy is (see part (d) above).

Question 3: The Dornbusch model

(a) Equation (Q10.8) is the IS curve for a small open economy. The real exchange
rate, p∗ + e − p, positively affects net exports, i.e. it is implicitly assumed that
the Marshall-Lerner condition is satisfied. Equation (Q10.9) is the LM curve.
The demand for real money balances features a unitary income elasticity. Equa-
tion (Q10.10) is the Phillips curve. The domestic price level rises (falls) if ac-
tual output exceeds (falls short of) full employment output. Finally, equation
(Q10.11) is the uncovered interest parity condition. Under perfect capital mo-
bility the yields on domestic and foreign financial assets are equalized. The
yield on domestic assets is r whereas the yield on foreign assets, expressed in
terms of the domestic currency, is r∗ + ė. The dimension of e is domestic cur-
rency per unit of foreign currency (e.g. euros per US dollar). Hence, an increase
in e represents a depreciation (or devaluation) of the domestic currency. Simil-
arly, a rise in the real exchange rate, p∗ + e − p, is called a real depreciation.

(b) Under fixed exchange rates, e is kept equal to some constant level ē by the
policy maker. The policy maker thus intervenes in the foreign exchange market
such that this target exchange rate is maintained. If the fixed exchange rate is
credible to the agents then they expect neither a devaluation nor a revaluation
of the currency, i.e. ė = 0. This means that the domestic interest rate equals
the foreign interest rate at all times, i.e. r = r∗. The endogenous variables in
the model are thus y, p, and m. By engaging in foreign exchange transactions
the monetary base is affected, which in turn implies that the money supply is
endogenous (see Chapter 11).

By substituting (Q10.8) into (Q10.11) and setting e = ē and r = r∗ we obtain
the following differential equation for p:

ṗ = φ[−ηr∗ + g + δ[p∗ + ē − p] − ȳ]. (A10.10)

It follows from (A10.10) that the price adjustment mechanism is stable, i.e.
∂ ṗ/∂p = −φδ < 0. By substituting (Q10.8) into (Q10.9) and setting e = ē
and r = r∗ we obtain the following equation for m:

m − p = −ηr∗ + g + δ[p∗ + ē − p] − λr∗ ⇔
m = (1 − δ)p − (η + λ)r∗ + g + δ[p∗ + ē]. (A10.11)
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Since the path for p is stable, it follows from (A10.11) that the path for the
money supply is also stable. The coefficient for monetary accommodation is
equal to 1 − δ. We study the effects of an expansionary fiscal policy with the
aid of Figure A10.4. In the top panel we plot the IS curve, with r = r∗ and
e = ē substituted in. It is downward sloping in (y, p) space because a higher
domestic price level worsens the real exchange rate. The ṗ = 0 line is obtained
from (Q10.10). If y exceeds (falls short of) ȳ, then ṗ > 0 (ṗ < 0). Stable ad-
justment proceeds along the relevant IS curve. In the bottom panel of Figure
A10.4 we plot the induced money supply, as given by (A10.11). Suppose that
the economy is initially at point E0 and assume that g is increased. As a result
of this policy shock, IS shifts up (from IS0 to IS1) and the LM curve shifts up
(from LM0 to LM1). Since the domestic price level is predetermined, the eco-
nomy jumps from E0 to point A directly above it in both panels. Both output
and the money supply increase at impact:

dy(0)

dg
=

dm(0)

dg
= 1, (A10.12)

where the notation dx(0)/dg represents the impact effect on variable x (the
impact period is normalized to equal 0).

At point A, output is larger than its full employment level so that the domestic
price rises gradually over time (ṗ > 0). In the top panel the economy moves
gradually from point A to the ultimate equilibrium at E1. In the bottom panel
the economy moves along LM1 from A to E1. There is no long-run effect on
output (as y = ȳ in the steady state) but the domestic money supply and price
level both increase:

dm(∞)

dg
=

dp(∞)

dg
=

1

δ
, (A10.13)

where the notation dx(∞)/dg represents the long-run effect on variable x. To
restore output to its full employment level, the real exchange rate must appre-
ciate (i.e. domestic goods must become more expensive to foreigners). Since
both ē and p∗ are fixed by assumption, the domestic price increase causes this
real appreciation.

(c) Under flexible exchange rates the domestic interest rate is no longer equal to
the foreign interest rate during the transitional phase. Since the exchange rate
is flexible the policy maker does not intervene in the foreign exchange market
and the money supply is constant (a policy variable). The phase diagram for e
and p can be derived as follows. First we use (Q10.8)–(Q10.9) to obtain quasi-
reduced-form expressions for output and the domestic interest rate.

y = −η
y − m + p

λ
+ g + δ[p∗ + e − p) ⇔

y
[
1 +

η

λ

]
=

η

λ
[m − p] + g + δ[p∗ + e − p] ⇔

y =
η[m − p] + λg + λδ[p∗ + e − p]

λ + η
. (A10.14)
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Figure A10.4: Fiscal policy under fixed exchange rates
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By substituting (A10.14) into (Q10.9) we find the expression for the domestic
interest rate:

λr = y − [m − p]

=
η[m − p] + λg + λδ[p∗ + e − p]

λ + η
− [m − p] ⇔

r =
−[m − p] + g + δ[p∗ + e − p]

λ + η
. (A10.15)

By substituting (A10.14) into (Q10.10) (and gathering terms) we obtain the ex-
pression for domestic inflation, ṗ:

ṗ = φ

[−(η + λδ)p + λδe + ηm + λg + λδp∗

λ + η
− ȳ

]
. (A10.16)

Similarly, by substituting (A10.15) into (Q10.11) (and gathering terms) we ob-
tain the expressions for nominal exchange rate depreciation:

ė =
(1 − δ)p + δe − m + g + δp∗

λ + η
− r∗. (A10.17)

Equations (A10.16)–(A10.17) together constitute the dynamical system for p
and e. This system can be characterized with the aid of a phase diagram as in
Figure A10.5. We derive the following results from equation (A10.16):

Figure A10.5: Phase diagram for the Dornbusch model

(
de

dp

)
ṗ=0

=
η + λδ

λδ
> 1, (A10.18)

∂ ṗ

∂e
=

φλδ

λ + η
> 0. (A10.19)
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Equation (A10.18) shows that ṗ = 0 line is upward sloping in (e, p) space,
whereas (A10.19) says that domestic inflation is positive (negative) for points
above (below) the ṗ = 0 line. (Intuitively, a nominal depreciation stimulates
domestic output which boosts inflation, and vice versa.) The dynamic forces
acting on the domestic price level have been illustrated with horizontal arrows
in Figure A10.5.

We derive the following results from equation (A10.17):(
de

dp

)
ė=0

= −1 − δ

δ
< 0, (A10.20)

∂ė

∂e
=

δ

λ + η
> 0. (A10.21)

According to (A10.20), the ė = 0 line is downward sloping in (e, p) space.
Equation (A10.21) says that points above (below) the ė = 0 line are such that
the domestic interest rate exceeds (falls short of) the foreign interest rate so that
ė > 0 (ė < 0). The dynamic forces acting on the nominal exchange rate have
been illustrated with vertical arrows in Figure A10.5.

The configuration of arrows in Figure A10.5 suggests that only one of all pos-
sible trajectories converges to the steady-state equilibrium, E0. Four unstable
trajectories have been drawn starting from points A through D. The stable tra-
jectory is the saddle path, SP. The model is saddle-point stable with the do-
mestic price level acting as the predetermined (‘non-jumping’) variable and the
nominal exchange rate acting as the non-predetermined (‘jumping’) variable.

(d) We can now study the effects of an unanticipated and permanent increase in g.
We first compute the long-run effects on e and p. By setting ṗ = 0 in (A10.16)
and ė = 0 in (A10.17) we obtain the following matrix expression for the steady-
state p and e:[−(η + λδ) λδ

1 − δ δ

] [
p(∞)
e(∞)

]
=

[−ηm − λg − λδp∗ + (λ + η)ȳ
m − g − δp∗ + (λ + η)r∗

]
. (A10.22)

The matrix on the left-hand side is denoted by ∆. We find that |∆| = −δ(λ + η)
and:

∆−1 =
1

δ(λ + η)

[ −δ λδ
1 − δ η + λδ

]
. (A10.23)

Combining with (A10.22) yields the reduced-form expressions:[
p(∞)
e(∞)

]
=

1

δ(λ + η)

[ −δ λδ
1 − δ η + λδ

] [−ηm − λg − λδp∗ + (λ + η)ȳ
m − g − δp∗ + (λ + η)r∗

]

=

[
m − ȳ + λr∗

m − p∗ − 1
δ g + 1−δ

δ ȳ + η+λδ
δ r∗

]
. (A10.24)

By differentiating (A10.22) with respect to g (holding constant m, p∗, ȳ, and
r∗) we find the long-run results on the domestic price level and the nominal
exchange rate:

dp(∞)

dg
= 0,

de(∞)

dg
= −1

δ
< 0. (A10.25)
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There is no long-run effect on the price level but the exchange rate appreciates
as a result of the fiscal shock. In terms of Figure A10.6, the fiscal shock shifts
both the ṗ = 0 and ė = 0 lines down (by the same vertical amount), and the
steady-state equilibrium shifts from E0 to E1. There is no transitional dynam-
ics because the price level is unaffected by the policy shock. Output and the
domestic interest rate are thus also unaffected by the fiscal policy.

Figure A10.6: Unanticipated and permanent fiscal policy

(e) To study the effects of an increase in the money supply we first compute the
steady-state results by differentiating (A10.24) with respect to m (holding con-
stant g, p∗, ȳ, and r∗):

dp(∞)

dm
=

de(∞)

dm
= 1. (A10.26)

Both the domestic price level and the nominal exchange rate rise by the same
amount in the long run. There is thus no long-run effect on the real exchange
rate. In the top panel of Figure A10.7, the ṗ = 0 line shifts to the right (from
( ṗ = 0)0 to ( ṗ = 0)1) whilst the ė = 0 line shifts up (from (ė = 0)0 to (ė =
0)1). The results in (A10.26) imply that the steady-state equilibria E0 and E1

lie on a straight line with a 45 degree slope (see the dashed line in the top
panel). The transitional dynamics is as follows. At impact the domestic price
level is predetermined and the economy jumps from E0 to point A directly
above it. The nominal exchange rate depreciates from e0 to e′ . In point A,
output exceeds its full employment level because the real exchange rate has
depreciated and net exports have risen. Over time the domestic price level
increases and the economy moves gradually along the saddle path from A to
E1. There is overshooting of the exchange rate in that the impact depreciation is
larger than the long-run depreciation. Because ė is negative during transition,
it follows from equation (Q10.11) that the domestic interest rate falls short of
the foreign interest rate during that time.
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Figure A10.7: Unanticipated and permanent increase in the money supply
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(f) We use the intuitive solution principle to study the effects of an anticipated and
permanent increase in the money supply. According to this principle:

• Jumps in e are allowed only at impact, i.e. for t = tA.

• For tA ≤ t < tI the dynamic adjustment is determined by the old equilib-
rium.

• At t = tI the economy arrives smoothly (without jumps) at the saddle
path associated with the new equilibrium.

The phase diagram is presented in Figure A10.8, where E0 and E1 are, respect-
ively, the initial and new steady-state. Obviously the long-run effects of the
shock are the same as in part (e). The transition path is, however, quite differ-
ent from that studied in part (e). Using the intuitive solution principle we find
that the stable trajectory arrives at point B (on the then relevant saddle path
SP1) at time t = tI . The old dynamics for tA ≤ t < tI implies that point B is
approached from a south-westerly direction. At impact the price level is pre-
determined, so the economy jumps from E0 to A. We thus conclude from the
upper panel of Figure A10.8 that the price level adjusts monotonically towards
its new (higher level) whilst the adjustment in the nominal exchange rate is
non-monotonic. For tA ≤ t < tI the exchange rate depreciates whereas for
t ≥ tI it appreciates. Hence, there is still overshooting of the exchange rate.
The path for the domestic interest rate follows readily from equation (Q10.11)
and the information regarding ė: r > r∗ (for tA ≤ t < tI) and r < r∗ (for
t ≥ tI). It jumps down at time tI because at that time the money supply is in-
creased (see equation (A10.15)). The time profile of the interest rate is obtained
by differentiating (A10.15) with respect to time:

ṙ =
(1 − δ) ṗ + δė

λ + η
, (A10.27)

where we have used the fact that ṁ = ġ = ṗ∗ = 0. For tA ≤ t < tI we have
ṗ > 0 and ė > 0 so the domestic interest rate rises during that time. In contrast,
for t ≥ tI we have ṗ > 0 and ė < 0 so the net effect on ṙ is not a priori clear.
Since r eventually has to equal r∗, we simply assume that ṙ is positive after
tI . (This result may be provable with more formal means beyond the scope of
this chapter.) The time profile for output is obtained by differentiating (A10.14)
with respect to time:

ẏ =
−(η + λδ) ṗ + λδė

λ + η
, (A10.28)

where we have again used the fact that ṁ = ġ = ṗ∗ = 0. For tA ≤ t < tI we
have ṗ > 0 and ė > 0 so the effect on output is ambiguous during that time.
(We assume in Figure A10.8 that output falls. Again, this may be provable by
more formal means beyond the scope of this chapter.) For t ≥ tI we have ṗ > 0
and ė < 0 so that output falls during that time.

(g) If the domestic price is perfectly flexible (and φ → ∞) it follows from (Q10.10)
that output is always equal to its full employment level (y = ȳ). We can thus
solve (Q10.8)-(Q10.9) for the domestic interest rate and price level as a function
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Figure A10.8: Anticipated and permanent increase in the money supply
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of the nominal exchange rate and the remaining exogenous variables (ȳ, g, m,
and p∗).[

η δ
λ −1

] [
r
p

]
=

[
g + δ[p∗ + e] − ȳ

ȳ − m

]
. (A10.29)

The matrix on the left-hand side is denoted by ∆. We find that |∆| = −(η + λδ)
and:

∆−1 =
1

η + λδ

[
1 δ
λ −η

]
. (A10.30)

Combining these two equations yields the reduced-form expressions:[
r
p

]
=

1

η + λδ

[
1 δ
λ −η

] [
g + δ[p∗ + e] − ȳ

ȳ − m

]

=
1

η + λδ

[ −(1 − δ)ȳ − δm + g + δ[p∗ + e]
−(λ + η)ȳ + ηm + λg + λδ[p∗ + e]

]
. (A10.31)

By using the reduced-form expression for r in (Q10.11) we obtain:

ė = r − r∗

=
−(λ + η)ȳ + ηm + λg + λδ[p∗ + e]

η + λδ
− r∗. (A10.32)

This is an unstable differential equation in the nominal exchange rate. The only
economically sensible solution for the exchange rate is such that convergence
to the steady state is ensured. We study the effects of monetary policy in Figure

Figure A10.9: Exchange rate dynamics with perfectly flexible prices

A10.9, which has ė on the vertical axis and e on the horizontal axis. The initial
steady state is at E0. An permanent increase in the money supply shifts the ė
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line to the right, from ė(m0) to ė(m1). If the shock is unanticipated then the only
stable solution is that the economy jumps at impact (t = tA = tI) from E0 to
E1. Any other change in the exchange rate would never get the economy to the
new steady-state equilibrium. The key thing to note is that there is no longer
exchange rate overshooting.

If the policy shock is anticipated, then the intuitive solution principle suggests
that the economy will arrive at point B for t = tI . For tA ≤ t < tI , the old
dynamics (given by the ė(m0) line) determine the adjustment of the exchange
rate. At time t = tA, the exchange rate jumps such that the path from A to
B is covered precisely during the transitional phase. Again we reach the con-
clusion that there is no overshooting of the exchange rate. In Chapter 11 we
show that price stickiness is a necessary (but not a sufficient) condition for the
overshooting result to hold (see section 10.3.1).

Question 4: The Buiter-Miller model

(a) Equation (Q10.12) is the IS curve for the open economy. The demand for out-
put depends negatively on the (appropriately defined) real interest rate, r− ṗC,
where pC is the price index for goods used for consumption and investment
in the domestic economy. Output demand depends positively on the real ex-
change rate, p∗ + e− p, and we thus assume implicitly that the Marshall-Lerner
condition is valid. Equation (Q10.13) is the LM curve, featuring a unit-elastic
demand for real money balances. Again the price index pC is used to deflate
the nominal money supply. Equation (Q10.14) is the definition of the price in-
dex. It is a weighted average of the price of domestically produced goods (p)
and the domestic currency price of foreign goods (p∗ + e). In section 10.1.4.1
we show in detail how the Armington trick can be used to rationalize such a
price index. Intuitively, we assume that the composite good used domestically is
a Cobb-Douglas combination of domestically produced and foreign-produced
goods, with weights α and 1 − α, respectively. Equation (Q10.15) is the price
adjustment rule stating that the domestic price level rises (falls) if actual out-
put exceeds (falls short of) full employment output. Finally, equation (Q10.16)
is the uncovered interest parity condition. The endogenous variables are y, r,
pC, e, and p. The exogenous variables are p∗, m, ȳ, and r∗.

(b) By differentiating (Q10.14) with respect to time (and noting that α and ṗ∗ are
constant over time) we find:

ṗC ≡ α ṗ + (1 − α)ė. (A10.33)

By substituting (A10.33) into (Q10.12) we obtain:

y = −η [r − α ṗ − (1 − α)ė] + δ[p∗ + e − p]. (A10.34)

Similarly, by substituting (Q10.14) into (Q10.13) we find:

m − αp − (1 − α)[p∗ + e] = y − λr. (A10.35)

Next we rewrite the system in terms of l ≡ m − p and c ≡ p∗ + e − p. Equation
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(A10.34) can be rewritten as:

y = −ηr + αη ṗ + (1 − α)ηė + δ[p∗ + e − p]

= −ηr + (1 − α)η(ė − ṗ) + [(1 − α)η + αη] ṗ + δ[p∗ + e − p]

= −ηr + (1 − α)ηċ − η l̇ + δc + ηṁ, (A10.36)

where we have used the fact that l̇ ≡ ṁ − ṗ and ċ ≡ ė − ṗ (since ṗ∗ = 0 by
assumption). Equation (A10.35) can similarly be rewritten in terms of l and c:

y − λr = m − αp − (1 − α)[p∗ + e]

= m − p − (1 − α)[p∗ + e − p]

= l − (1 − α)c. (A10.37)

We can rewrite the price adjustment equation (Q10.15) as follows:

− ṗ = φ(ȳ − y) ⇔ ṁ − ṗ = φ(ȳ − y) + ṁ ⇔
l̇ = −φy + φȳ + ṁ. (A10.38)

Finally, by using (Q10.15) and (Q10.16), we obtain the following expression:

ė − ṗ = r − r∗ − φ(y − ȳ)

ċ = r − φy − r∗ + φȳ. (A10.39)

We can now solve (A10.37) and (A10.39) for y and r, conditional upon ċ, l, c, r∗,
and ȳ. In matrix notation we get:

[
y
r

]
=

[
1 −λ
−φ 1

]−1 [
l − (1 − α)c
ċ + r∗ − φȳ

]

=
1

1 − λφ

[
1 λ
φ 1

] [
l − (1 − α)c
ċ + r∗ − φȳ

]

=
1

1 − λφ

[
l − (1 − α)c + λ [ċ + r∗ − φȳ]
φ [l − (1 − α)c] + ċ + r∗ − φȳ

]
. (A10.40)

By substituting the solutions for y and r (given in (A10.40)) into (A10.36) we
find:

[λ + λη − (1 − α)η(1 − λφ)] ċ + η(1−λφ)l̇ = [δ(1 − λφ) + (1 − α)(1 + ηφ)] c

− (1 + ηφ)l + η(1 − λφ)ṁ − (λ + η)(r∗ − φȳ). (A10.41)

Similarly, by substituting the solution for y into (A10.38) we obtain after some
manipulations:

λφċ + (1 − λφ)l̇ = (1 − α)φc − φl + (1 − λφ)ṁ − λφr∗ + φȳ. (A10.42)

Equations (A10.41)–(A10.42) can be written in a single matrix equations as:

∆1

[
ċ
l̇

]
= ∆2

[
c
l

]
+ Γ1


 ṁ

r∗
φȳ


 , (A10.43)
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where the matrices ∆1, ∆2, and Γ1 are defined as follows:

∆1 ≡
[

λ + η − (1 − α)η(1 − λφ) η(1 − λφ)
λφ 1 − λφ

]
, (A10.44)

∆2 ≡
[

δ(1 − λφ) + (1 − α)(1 + ηφ) −(1 + ηφ)
(1 − α)φ −φ

]
, (A10.45)

Γ1 ≡
[

η(1 − λφ) −(λ + η) λ + η
1 − λφ −λφ 1

]
. (A10.46)

The determinant of ∆1 is given by:

|∆1| = (1 − λφ) [λ + αη(1 − λφ)] . (A10.47)

Provided |∆1| �= 0, ∆−1
1 exists and is equal to:

∆−1
1 ≡ 1

(1 − λφ) [λ + αη(1 − λφ)]

[
1 − λφ −η(1 − λφ)
−λφ λ + η − (1 − α)η(1 − λφ)

]
.

(A10.48)

By using (A10.48) in (A10.43) we find that the dynamical system can be written
in the standard format as:[

ċ
l̇

]
= ∆

[
c
l

]
+ Γ


 ṁ

r∗
φȳ


 , (A10.49)

where ∆ and Γ are given by:

∆ ≡ ∆−1
1 ∆2 =


 1−α+δ(1−λφ)

λ+αη(1−λφ)
− 1

λ+αη(1−λφ)
φ[−λδ+(1−α)αη]

λ+αη(1−λφ)
− αηφ

λ+αη(1−λφ)


 , (A10.50)

Γ ≡ ∆−1
1 Γ1 =


0 − λ+η(1−λφ)

λ+αη(1−λφ)
λ

λ+αη(1−λφ)

1
(1−α)ηλφ

λ+αη(1−λφ)
λ+αη

λ+αη(1−λφ)


 . (A10.51)

The determinant of ∆ is equal to:

|∆| =
φ

[λ + αη(1 − λφ)]2

∣∣∣∣1 − α + δ(1 − λφ) −1
−λδ + (1 − α)αη −αη

∣∣∣∣
= − δφ

λ + αη(1 − λφ)
. (A10.52)

Saddle-point stability requires that |∆| is negative. Since δ and φ are both posit-
ive, the necessary and sufficient stability condition is thus that the denominator
of (A10.52) is positive, i.e. λ + αη(1 − λφ) > 0. This is the condition stated in
the question.

Under saddle-point stability, the competitiveness index is the jumping vari-
able (as the nominal exchange rate can jump if news becomes available) and
the liquidity index is the pre-determined variable. It can only jump when the
money supply jumps (p itself is pre-determined and cannot jump at all but m
is a policy variable which can jump discretely).
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Figure A10.10: Monetary policy and overshooting

(c) Next we construct the phase diagram presented in Figure A10.10. The ċ = 0
line is obtained from the first line of (A10.49):

[1 − α + δ(1 − λφ)] c − l = [λ + η(1 − λφ)] r∗ − λφȳ. (A10.53)

The slope of the ċ = 0 line is ambiguous as the sign of 1 − λφ is ambiguous. In
Figure A10.10 we assume that 1−λφ > 0 so that the term in square brackets on
the left-hand side of (A10.53) is positive and the ċ = 0 line is upward sloping.
For points above (below) the ċ = 0 line, the competitiveness index rises (falls)
over time:

∂ċ

∂c
=

1 − α + δ(1 − λφ)

λ + αη(1 − λφ)
> 0. (A10.54)

The l̇ = 0 line is obtained from the second line of (A10.49):

[−λδ + (1 − α)αη] c − αηl = −(1 − α)ηλr∗ − (λ + αη)ȳ. (A10.55)

The slope of the l̇ = 0 line is also ambiguous because the sign of the term
in square brackets on the left-hand side of (A10.55) is not unambiguous. In
Figure A10.10 we assume that this term is negative so that the l̇ = 0 line slopes
downward. For points to the right (left) of the l̇ = 0 line, the liquidity index
falls:

∂l̇

∂l
= − αηφ

λ + αη(1 − λφ)
< 0. (A10.56)

The arrow configuration in Figure A10.10 confirms that the model is saddle-
path stable.

(d) We study a step-wise increase in the money supply for which announcement
and implementation dates coincide. Hence, ṁ = 0 both before and after the



240 EXERCISE & SOLUTIONS MANUAL

shock, so it would appear (from (A10.49)–(A10.51)) that nothing affects the
dynamical system for c and l. This is not correct, however, because the impact
jump in m causes an equal-sized impact jump in l (as p is predetermined). In
terms of Figure A10.10, the liquidity index jumps at impact from l0 to l1. If the
competitiveness index were to remain unchanged (and the economy would
stay in point B) then the steady-state equilibrium E0 would not be reached.
The only stable trajectory reaching E0 is the saddle path SP. Hence, at impact
the economy jumps from E0 to point A on this saddle path. Since the saddle
path is upward sloping, overshooting still occurs in this model. There is no
long-run effect of the money supply increase on c but there is a positive effect
on competitiveness both on impact and during transition (a real depreciation).

Question 5: Dynamics of foreign reserves

(a) Equation (Q10.17) is the goods market equilibrium condition for a small open
economy (the IS curve). Equation (Q10.18) is the money market equilibrium
condition (LM curve). The left-hand side of (Q10.18) is the monetary base. We
abstract from a private (fractional reserve) banking system so that the monet-
ary base equals the money supply. Equation (Q10.19) is the balance of pay-
ments: the sum of net exports plus net capital inflows equals the change in
foreign exchange holdings by the central bank. We assume that a devaluation
of the currency (a rise in E) raises net exports, i.e. the Marshall-Lerner condi-
tion is assumed to hold. The endogenous variables are output, the domestic
interest rate, and the stock of foreign exchange reserves (Y, r, and F). Exogen-
ous are G, D, r∗, and E.

(b) Equations (Q10.17)–(Q10.18) summarize the IS-LM equilibrium and yield equi-
librium values for Y and r conditional upon the stock of foreign exchange re-
serves (F) and the exogenous variables (G, D, r∗, and E). As in Chapter 2 in the
text, we write these implicit relations as follows:

Y = AD(F, D, G, E), (A10.57)

r = H(F, D, G, E). (A10.58)

In order to examine the stability issue, we need expressions for the partial de-
rivatives of AD and H with respect to F (which we denote by, respectively, ADF

and HF). To examine the policy shocks in parts (c) and (d) of the question we
need to know ADG, HG, ADD and HD. Intuitively, the signs of these expres-
sions are easily obtained. An increase in F or D shifts the LM curve to the right
which leads to an increase in output and a fall in the domestic interest rate, i.e.
ADF = ADD > 0 and HF = HD < 0. An increase in G or E shifts the IS curve
to the right which leads to an increase in both output and the domestic interest
rate, i.e. ADG > 0, HG > 0, ADE > 0 and HE > 0.

Formally, we obtain the partial derivatives by totally differentiating (Q10.17)–
(Q10.18) with respect to all the variables. After some manipulation we obtain
the following matrix expression:[

1 − CY − XY −Ir

lY lr

] [
dY
dr

]
=

[
dG + XEdE

dF + dD

]
, (A10.59)
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where we denote the two-by-two matrix on the left-hand side by ∆. The de-
terminant of this matrix is:

|∆| ≡ lr(1 − CY − XY) + IrlY < 0, (A10.60)

where the sign follows from the fact that lr < 0, Ir < 0, lY > 0, 1 − CY > 0, and
−XY > 0. The inverse of ∆ is:

∆−1 =
1

|∆|
[

lr Ir

−lY 1 − CY − XY

]
. (A10.61)

Using (A10.61) and (A10.59) we obtain:[
dY
dr

]
=

1

|∆|
[

lr(dG + XEdE) + Ir(dF + dD)
−lY(dG + XEdE) + (1 − CY − XY)(dF + dD)

]
. (A10.62)

By allowing only one differential on the right-hand side of (A10.62) to be non-
zero we obtain the partial derivatives we are after. For example, by setting
dG = dE = dD = 0 and dF �= 0 we find:

[ADF ≡]
∂Y

∂F
=

Ir

lr(1 − CY − XY) + IrlY
> 0, (A10.63)

[HF ≡]
∂r

∂F
=

1 − CY − XY

lr(1 − CY − XY) + IrlY
< 0. (A10.64)

To investigate the stability of the model we differentiate (Q10.19) with respect
to F taking into account the induced effect on output and the interest rate:

∂Ḟ

∂F
= XYADF + KIr HF < 0, (A10.65)

where the sign follows readily because XY < 0, ADF > 0 (see (A10.63)),
KIr > 0, and HF < 0 (see (A10.64)). It follows from (A10.65) that the model
is stable. Furthermore, the larger is the degree of capital mobility, the larger is
KIr, and the faster is the rate at which the stock of foreign exchange reserves
adjusts toward its steady-state level. In the special case of perfect capital mo-
bility (KIr → ∞) adjustment is instantaneous. Paths with finite and infinite ad-
justment speeds have been illustrated in Figure A10.11. Under perfect capital
mobility (KIr → ∞) adjustment is instantaneous, say from E0 to E1. In con-
trast, under imperfect capital mobility (KIr � ∞) adjustment is only gradual
as represented by the dashed path originating from point E0.

(c) The BP curve represents (r, Y) combinations for which the balance of payments
is in equilibrium (Ḟ = 0). By setting Ḟ = 0 in (Q10.19) and differentiating with
respect to r and Y (holding constant E and r∗) we find XYdY + KIrdr = 0 or:(

dr

dY

)
BP

= −XY

KIr
> 0. (A10.66)

The slope of the LM curve is obtained by differentiating (Q10.18) with respect
to r and Y (holding constant D and F):(

dr

dY

)
LM

= − lY
lr

> 0. (A10.67)
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Figure A10.11: Adjustment speed and capital mobility

By comparing the two slopes in (A10.66) and (A10.67) we find that the BP curve
is flatter if:(

dr

dY

)
LM

>

(
dr

dY

)
BP

⇔ − lY
lr

> −XY

KIr
⇔ XYlr − lYKIr < 0, (A10.68)

where the final expression is the condition stated in the question. Note that
the condition is trivially met under perfect capital mobility because KIr → ∞

in that case. The economic interpretation of (A10.68) is that capital must be
sufficiently mobile. If (A10.68) holds, then the impact effect of an increase in
G is to shift the balance of payments into a surplus. Despite the fact that im-
ports increase (and net exports fall), the domestic interest rate rises by enough
to attract additional net capital inflows which dominate the reduction in net
exports. (Technically this result is stated in (A10.71) below.)

(d) We derive from (Q10.19) and (A10.62) that:

dḞ = −γFdF + γGdG, (A10.69)

where γF and γG are defined as follows:

γF ≡ −(XYADF + KIr HF) > 0, (A10.70)

γG ≡ XYADG + KIR HG =
XYlR − lYKIR

lR(1 − CY − XY) + IRlY
> 0, (A10.71)

where the sign of γG in (A10.71) follows from the condition (A10.68). The ad-
justment in the stock of foreign exchange reserves is shown in Figure A10.12.
Fiscal policy causes a balance of payments surplus and the economy jumps
from E0 to A directly above it. Over time, reserves gradually increase as the
economy moves from A to E1.

To figure out what happens to the remaining variables we draw the IS-LM-
BP diagram in Figure A10.13. The IS curve shifts to the right from IS(G0) to
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Figure A10.12: Adjustment in the stock of foreign exchange reserves

IS(G1). At impact F (and the money supply) is predetermined so the LM curve
stays put. Equilibrium shifts from E0 to A, and both output and the interest
rate rise. In point A there is a balance of payments surplus (Ḟ > 0 there) so
that the stock of foreign exchange reserves (and thus the money supply) starts
to rise. Over time the LM curve shifts from LM(F0) to LM(F1). The economy
moves gradually from A to E1. The domestic interest rate overshoots during
transition but the adjustment in output is monotonic. The impulse-response
diagrams are presented in Figure A10.14.

(e) Monetary policy consists of a so-called open market operation, i.e. the purchase of
bonds by the central bank on the open market (dD > 0). This raises the mon-
etary base and thus increases the money supply. By differentiating (Q10.19)
with respect to F and D, taking into account the induced effects on Y and r, we
obtain:

dḞ = −γFdF − γDdD, (A10.72)

where γF is defined in (A10.70) and γD is:

γD ≡ −(XYADD + KIr HD) > 0. (A10.73)

Inspection of (A10.62) reveals, of course, that ADD = ADF and HD = HF so
that γD = γF and (A10.72) can be written more compactly as:

dḞ = −γF(dF + dD). (A10.74)

As we saw above, the model is stable (because −γF < 0). In the steady state,
expansionary monetary policy leads to a loss of foreign exchange reserves (i.e.
dF/dD = −1 in the long run). In Figures A10.15–A10.17 we present, respect-
ively, the phase diagram, the IS-LM-BP diagram, and the impulse response
functions.
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Figure A10.13: IS-LM-BP equilibrium

Question 6: Price flexibility in the Mundell-Fleming model

(a) Mark (2001) presents a slightly more general version of this model. We follow
his solution method closely.] Equation (Q10.20) is the demand for real money
balances, featuring a unit output elasticity and a negative semi-elasticity for
the nominal interest rate. Equation (Q10.21) is the IS curve for the small open
economy. Output demand depends negatively on the expected real interest
rate (first term on the right-hand side) and positively on the real exchange rate
(second term). The real exchange rate measures the relative price of foreign
goods so the effect on domestic output demand is positive (implicitly it is thus
assumed that the Marshall-Lerner condition is satisfied). The IS curve is also
affected by a random demand shock term, dt. Equation (Q10.22) is the un-
covered interest parity expression, stating that yields on domestic and foreign
assets are the same (when measured in the same currency). Equation (Q10.23)
is a sticky-price adjustment rule. The variable p̃t represents the (hypothetical)
price for which yt equals ȳt. In equation (Q10.23) Et−1 p̃t is the predetermined
part of the price level, i.e. it is based on period-t − 1 information. The pricing
equation allows for three interesting cases, depending on the magnitude of θ.

(a) Perfect price flexibility. If θ = 1 then (Q10.23) reduces to pt = p̃t, i.e. the
actual price equals the equilibrium price.

(b) Complete price stickiness. If θ = 0 then (Q10.23) reduces to pt = Et−1 p̃t, i.e.
the actual price is set on the basis of information available in the previous
period and is completely pre-determined in the current period.

(c) Intermediate price flexibility. If 0 < θ < 1 then the current price is imper-
fectly flexible.

Equation (Q10.24) is the money supply rule, stating that the policy maker aims
for constant money supply but that there are stochastic shocks in the money
supply process. Equation (Q10.25) is the exogenous stochastic path for ȳt,
where zt is the stochastic supply term. Finally, equation (Q10.26) shows the
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Figure A10.15: Adjustment in the stock of foreign exchange reserves
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stochastic process for the demand shock, dt, where ut is the stochastic demand
term.

(b) We use tildes above variables to denote realizations under pure price flexibility.
If θ = 1 it follows from (Q10.23) that pt = p̃t and thus that ỹt = ȳt. The
domestic price is perfectly flexible and output is equal to its full employment
level at all times. By substituting (Q10.22) into (Q10.21) and noting that ỹt = ȳt

we find:

ȳt = −β [r∗ + Et(ẽt+1 − p̃t+1) − (ẽt − p̃t)] + γ(ẽt − p̃t) + dt

= −βr∗ − βEtq̃t+1 + (β + γ)q̃t + dt, (A10.75)

where we have used the definition of the real exchange rate (mentioned in the
question) in going from the first to the second line (qt ≡ et − pt). By rewriting
(A10.75) we find the expectational difference equation for the real exchange
rate under pure price flexibility:

q̃t =
βr∗ + ȳt − dt

β + γ
+

β

β + γ
Etq̃t+1. (A10.76)

Since the coefficient in front of Etqt+1 is between 0 and 1, the expectational
difference equation is stable and forward iteration will yield a solution. The
form of (A10.76) suggests that the following trial solution will be appropriate:

qt = πq0 + πq1 [ȳt − dt] . (A10.77)

Equation (A10.77) implies that Etqt+1 can be written as:

Etqt+1 = Et

[
πq0 + πq1 (ȳt+1 − dt+1)

]
= πq0 + πq1(ȳt − dt), (A10.78)

where we have used (Q10.25)-(Q10.26), by noting that Etȳt+1 = ȳt, and Etdt+1 =
dt (since Etzt+1 = Etut+1 = 0). By substituting (A10.78) and (A10.77) into
(A10.76) we find:

πq0 + πq1 [ȳt − dt] =
βr∗ + ȳt − dt

β + γ
+

β

β + γ

[
πq0 + πq1(ȳt − dt)

]
.

This expression must hold for all (ȳt − dt), so we find:[
1 − β

β + γ

]
πq0 =

βr∗

β + γ
⇒ πq0 =

βr∗

γ
,[

1 − β

β + γ

]
πq1 =

1

β + γ
⇒ πq1 =

1

γ
,

so that the REH solution for q̃t is:

q̃t =
βr∗ + ȳt − dt

γ
. (A10.79)

According to (A10.79) the equilibrium flex-price real exchange rate depends
positively on the foreign interest rate and output supply and negatively on the
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domestic demand shock. Monetary shocks play no role. For future use we note
that (A10.79) implies:

Etq̃t+1 = Et

[
βr∗ + ȳt+1 − dt+1

γ

]
=

βr∗ + ȳt − dt

γ
= q̃t (A10.80)

To solve for the equilibrium price, p̃t, we combine (Q10.20) and (Q10.22) and
note that ỹt = ȳt:

mt − p̃t = ȳt − α [r∗ + Etẽt+1 − ẽt] ⇒
(1 + α) p̃t = mt − ȳt + α [r∗ + Et(ẽt+1 − p̃t+1) − (ẽt − p̃t)] + αEt p̃t+1 ⇒

p̃t =
αr∗ + mt − ȳt

1 + α
+

α

1 + α
[Etq̃t+1 − q̃t] +

α

1 + α
Et p̃t+1

=
αr∗ + mt − ȳt

1 + α
+

α

1 + α
Et p̃t+1, (A10.81)

where we have used (A10.80) in the final step. This expectational difference
equation is stable because the coefficient in front of Et p̃t+1 is between 0 and 1.
We can again use the method of undetermined coefficients to solve (A10.81).
The trial solution p̃t = πp0 + πp1 [mt − ȳt] is fine, and–upon substitution in
(A10.81)–yields the following REH solution for p̃t:

p̃t = αr∗ + mt − ȳt. (A10.82)

A nominal shock (change in mt) raises the domestic price level, as is to be ex-
pected. An increase in domestic supply depresses the domestic price level.

Now that we have the rational expectations solution for both the real exchange
rate (A10.79) and the domestic price level (A10.82), we can easily deduce the
implied solution for the nominal exchange rate (under perfect price flexibility):

ẽt = q̃t + p̃t = mt +
(αγ + β) r∗ + (1 − γ)ȳt − dt

γ
. (A10.83)

An increase in mt increases et one-for-one; this is a nominal depreciation. The
effect of output supply on the nominal exchange rate depends on the sign of
1 − γ.

(c) As is clear from (A10.79), the money supply does not affect the equilibrium real
exchange rate. With perfect price flexibility, the model is quite classical and
thus features the classical dichotomy according to which nominal variables do
not affect real variables. It follows from, respectively, (A10.82) and (A10.83)
that the equilibrium domestic price and the nominal exchange rate are affected
one-for-one by the money supply.

(d) In summary, the flex-price system is fully characterized by:

q̃t =
βr∗ + ȳt − dt

γ
,

p̃t = αr∗ + mt − ȳt,

mt = mt−1 + vt,

ȳt = ȳt−1 + zt,

dt = dt−1 + ut,

ỹt = ȳt.
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To solve the general (sticky-price) version of the model, with 0 < θ < 1, we
must take equation (Q10.23) into account. First we note from (A10.82) that
p̃t − Et−1 p̃t can be written as:

p̃t − Et−1 p̃t = (mt − Et−1mt) − (ȳt − Et−1ȳt) = vt − zt. (A10.84)

According to (A10.84), agents can misestimate the equilibrium price either be-
cause there is a monetary surprise (vt) or because there is a shock to the IS
curve (zt).

By using (A10.84) in (Q10.23) we find:

pt = p̃t − (1 − θ) (vt − zt) . (A10.85)

For future use we note some useful results:

Et pt+1 = Et p̃t+1 = p̃t, (A10.86)

Et pt+1 − pt = (1 − θ) (vt − zt) , (A10.87)

pt = αr∗ + mt − ȳt − (1 − θ) (vt − zt) . (A10.88)

The first task at hand is to derive the expectational difference equation for qt.
Here are the steps. First, we substitute (Q10.21) into (Q10.20) to get:

mt − pt = − (α + β) rt + β [Et pt+1 − pt] + γ (et − pt) + dt. (A10.89)

Next we substitute (Q10.22) into (A10.89) and note that qt ≡ et − pt to get:

mt − pt = dt − (α + β) r∗ − (α + β) [Etqt+1 − qt] − α [Et pt+1 − pt] + γqt.

(A10.90)

By substituting (A10.88) and (A10.87) into (A10.90) and collecting terms we
find the expectational difference equation for the real exchange rate under stick
prices:

qt =
βr∗ + ȳt − dt + (1 + α)(1 − θ) [vt − zt]

α + β + γ
+

α + β

α + β + γ
Etqt+1. (A10.91)

Since the coefficient in front of Etqt+1 on the right-hand side is between 0 and
1, the expectational difference equation is stable and can be solved by forward
iteration. Since it is so much fun, we use the method of undetermined coeffi-
cients again. The trial solution qt = π0 + π1 [ȳt − dt] + π2 [vt − zt] turns out
to be just fine. Upon substitution in (A10.90) it yields the REH solution for the
real exchange rate:

qt =
βr∗ + ȳt − dt

γ
+

(1 − θ)(1 + α) [vt − zt]

α + β + γ
. (A10.92)

Since et = qt + pt, we can use (A10.88) and (A10.92) find the REH solution for
the nominal exchange rate under sticky prices:

et = mt +
(αγ + β) r∗ + (1 − γ) ȳt − dt

γ
+

1 − β − γ

α + β + γ
(1− θ) (vt − zt) . (A10.93)
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(e) By using (A10.79) in (A10.92) we find that the real exchange rate under sticky
prices can be written as:

qt = q̃t + (1 − θ)
1 + α

α + β + γ
(vt − zt) . (A10.94)

Under sticky prices, the nominal shock (the vt term) affects the real exchange
rate. The classical dichotomy does not hold in the short run.

By using (A10.83) in (A10.93) we find that the real exchange rate under sticky
prices can be written as:

et = ẽt + (1 − θ)
1 − β − γ

α + β + γ
(vt − zt) . (A10.95)

Provided β + γ < 1, the nominal shock causes the nominal exchange rate to
rise above its flex-price value. This is a form of the overshooting property of
the Dornbusch model.
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Chapter 11

Money

Question 1: Short questions

(a) According to Milton Friedman the optimal rate of inflation is zero. True, false,
or uncertain? Explain.

(b) Explain the constrained optimization problem (the choices of Z̄ and σZ) leading
to the first-order condition (11.69) in the book. Derive equation (11.82) in the
book.

(c) What is Friedman’s “full liquidity result”. Explain intuitively what it means.
State the main reasons why this result may not be valid.

(d) What are the three major roles played by money? Explain which of these roles
is the most distinguishing feature of money. Give examples.

(e) Consider the Bewley model discussed in section 11.3 of the book. Assume that
the utility function is logarithmic, i.e. U (Ct) = ln Ct. Show what happens to
optimal consumption in the two periods and money holdings if the inflation
rate, π1, is increased. Illustrate your result, using a diagram like Figure 11.2
in the text. Assume that the income endowment point is to the right of the
optimal consumption point (both before and after the shock).

Question 2: Optimal money growth

The representative agent is infinitely lived and has the following lifetime utility func-
tion:

V =
∞

∑
t=1

(
1

1 + ρ

)t−1

U(Ct, 1 − Lt, mt), (Q11.1)

where the felicity function, U(·), has the usual properties: (i) there is positive but
diminishing marginal felicity for both consumption and leisure, (ii) there exists a
satiation level for real money balances, m̄, and (iii) marginal felicity of real money is
diminishing. We abstract from physical capital, and assume that the representative
household can shift resources through time by means of government bonds and/or
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money. The periodic budget constraint in period t (= 1, 2, ....) is given in nominal
terms by:

(1 + Rt−1)Bt−1 + Wt(1 − τt)Lt + Mt−1 + PtTt = PtCt + Mt + Bt, (Q11.2)

where Bt−1 is the stock of government bonds held at the end of period t − 1, Rt−1 is
the nominal interest on government bonds paid at the end of period t − 1, Mt is the
stock of money balances at the beginning of period t, Wt is the nominal wage rate,
τt is the proportional tax on labour income, and PtTt is transfers received from the
government.

The firm sector is very simple. There is no capital in the economy and goods
are produced with labour only. The production function is given by Yt = Lt and
the perfectly competitive representative firm maximizes profits, Πt ≡ PtYt − WtLt,
given this linear technology.

The government budget identity is given in nominal terms by:

Rt−1Bt−1 + PtGt + PtTt = τtWtLt + (Mt − Mt−1) + (Bt − Bt−1) , (Q11.3)

where Gt is the consumption of goods by the government. The sum of spending on
interest payments on outstanding debt plus government consumption and transfers
to households (left-hand side) must be equal to the sum of the labour income tax
revenue, newly issued money balances, and newly issued government debt (right-
hand side).

(a) Rewrite the periodic budget constraints for the household and the government
in real terms. Use the definitions mt ≡ Mt/Pt, bt ≡ Bt/Pt, wt ≡ Wt/Pt, πt ≡
Pt+1/Pt − 1, and rt ≡ Pt(1 + Rt)/Pt+1 − 1.

(b) Prove that firm behaviour ensures that wt = 1 and Πt = 0. Prove that Yt =
Ct + Gt = wtLt.

Define the following discounting factor:

q0
t ≡

{
1 for t = 1

∏
t−1
i=1

1
1+ri

for t = 2, 3, ...
(Q11.4)

and assume that the following transversality conditions are satisfied:

lim
k→∞

q0
k+1bk+1 = 0, lim

k→∞

q0
k+1mk+1

1 + Rt+k
= 0. (Q11.5)

(c) � Prove that the household lifetime budget constraint can be written as:

a0 =
∞

∑
t=1

q0
t ·

[
Ct +

Rt

1 + Rt
· mt − wt(1 − τt)Lt − Tt

]
, (Q11.6)

where a0 ≡ (1 + r0)b0 + m0/(1 + π0). Provide an intuitive interpretation for
(Q11.6).

(d) Set up the Lagrangian expression for the household’s optimization problem,
using λ as the Lagrange multiplier. Derive and interpret the first-order neces-
sary conditions characterizing the household’s optimal plans regarding con-
sumption, labour supply, and money holdings.
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(e) � Substitute the first-order conditions (derived in the previous subquestion)
into the household lifetime budget constraint (Q11.6). Show that the adjusted
lifetime budget constraint can be written as:

a0UC(x1) =
∞

∑
t=1

(
1

1 + ρ

)t−1

[UC(xt) [Ct − Tt] + Um(xt)mt − U1−L(xt)Lt] ,

(Q11.7)

where UC(xt) ≡ ∂U(xt)
∂Ct

, U1−L(xt) ≡ ∂U(xt)
∂[1−Lt]

, Um(xt) ≡ ∂U(xt)
∂mt

, and xt ≡ (Ct, 1−
Lt, mt).

(f) � Derive the optimal money growth rate under the assumption that the policy
maker can freely adjust the level of transfers Tt in each period. Show that it
is optimal for the policy maker to satiate the representative household with
money balances. Prove that it is optimal to set τt = Rt = 0, πt = µt =
−ρ/ (1 + ρ).

(g) � Next, derive the optimal money growth rate under the assumption that the
policy maker does not have access to lump-sum transfers Tt in any period.
Show that the Friedman rule no longer applies in this case.

Question 3: Monetary superneutrality

[Based on Marini and Ploeg (1988)] In this question we study monetary superneut-
rality in an overlapping generations model of the Blanchard-Yaari type. The the-
oretical details of this model are discussed in Chapter 16. Here we simply study its
monetary properties. At time t, the lifetime utility function of a household of vintage
v ≤ t is given by:

EΛ(v, t) ≡
∫ ∞

t
ln U(v, τ)e(ρ+β)(t−τ)dτ, (Q11.8)

where U(·) is a CES sub-felicity function:

U(v, τ) ≡
[
εC(v, τ)(σ−1)/σ + (1 − ε)M(v, τ)(σ−1)/σ

]σ/(σ−1)
, 0 < ε < 1, σ > 0,

(Q11.9)

where C(v, τ) and M(v, τ) denote, respectively, consumption and real money bal-
ances of the household at time τ. The household’s budget identity is:

Ȧ(v, τ) = [r(τ) + β] A(v, τ) + W(τ)− T(τ)− C(v, τ)− [r(τ) + π(τ)] M(v, τ),

(Q11.10)

where π(τ) is the inflation rate. The monetary authority sets a constant rate of
growth, θ, of the nominal money supply so that the real money supply changes ac-
cording to:

Ṁ(τ) = [θ − π(τ)] M(τ). (Q11.11)

The production side of the model is very simple. For simplicity we assume that
the production function is Cobb-Douglas, i.e. Y(t) = K(t)αL(t)1−α. Labour supply is
exogenous so L(t) = 1. We consider a closed economy, so the goods market clearing
condition is given by Y(t) = C(t) + I(t) + G(t).
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(a) Interpret equations (Q11.10) and (Q11.11) of the model. Make sure you explain
why the inflation rate appears in these equations.

(b) Use the method of two-stage budgeting to solve the optimization problem for
individual households.

(c) Derive the aggregate consumption rule, the aggregate consumption Euler equa-
tion, and the differential equations for aggregate human and financial wealth
for the model.

(d) State the government budget identity and the solvency condition for the gov-
ernment.

(e) Show that the model features superneutrality of money if and only if the birth/
death rate is zero and the sub-felicity function is Cobb-Douglas (σ = 1). Show
that, for the case with β = 0 and σ = 1, an unanticipated and permanent
increase in the money growth rate leads to a discrete jump in the price level at
impact but causes no further transitional dynamics. Show the phase diagram
for real money balances and the impulse response functions for inflation, the
price level, and the nominal money supply.

(f) Assume that β > 0, σ = 1, B(τ) = 0 (for all τ), and that the government
balances its budget by means of lump-sum taxes. Show that an increase in
the money growth rate leads to a steady state increase in consumption and the
capital stock but causes an ambiguous effect on real money balances. Explain
the intuition behind your results.

(g) Make the same assumption as in part (f) and derive the long-run effects on
capital, consumption, and real money balances of a tax-financed increase in
government consumption. Explain the intuition behind your results.

� Question 4: Cash-in-advance constraint in continuous time

[Based on Kam (2004)] In this question we consider the cash-in-advance model in
continuous time. Less than fully confident readers may want to attempt this question
after studying the Ramsey model of Chapter 13. The infinitely-lived representative
household has a lifetime utility function of the form:

V ≡
∫ ∞

0
U (C (t)) e−ρtdt, (Q11.12)

where C (t) is consumption at time t, ρ is the rate of time preference (ρ > 0), and
U (·) is the felicity function featuring U′ (·) > 0 and U′′ (·) < 0. The household
budget identity is given by:

Ȧ (t) = F (K (t)) + T (t)− C (t)− π (t) m (t) , (Q11.13)

where F (·) is the production function (featuring F′ (·) > 0 and F′′ (·) < 0), A (t)
is the stock of assets, T (t) is transfers received from the government, π (t) is the
inflation rate (π (t) > 0), and m (t) is the real stock of money balances. As usual, we
have that Ȧ (t) ≡ dA (t) /dt. Total wealth consists of real money balances plus the
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capital stock, i.e. A (t) ≡ K (t) + m (t). Finally, the cash-in-advance (CIA) constraint
is given by:

m (t) ≥ C (t) . (Q11.14)

The household is blessed with perfect foresight and takes the path of government
transfers as given.

(a) Briefly comment on the household budget identity (Q11.13) and the CIA con-
straint (Q11.14).

(b) Explain why the CIA constraint will hold with equality. Show that (Q11.13)
can be rewritten as follows:

Ȧ (t) = F (A (t) − C (t)) + T (t) − [1 + π (t)] C (t) . (Q11.15)

(c) Solve the household’s optimization problem by means of optimal control meth-
ods.

(d) Use stars to designate steady-state variables. Let µ stand for the policy determi-
ned growth rate in the nominal money supply. Prove that π∗ = µ, T∗ = π∗m∗,
and dK∗/dµ = dC∗/dµ = 0.

� Question 5: Cash-in-advance with labour supply

[Based on Mansoorian and Mohsin (2004)] In this question we use the cash-in-advance
(CIA) constraint and endogenize the labour supply decision. Less than fully confid-
ent readers may want to attempt this question after studying the Ramsey model of
Chapter 13. The infinitely-lived representative household has a lifetime utility func-
tion of the form:

Λ ≡
∫ ∞

0
U (C (t) , 1 − L (t)) e−ρtdt, (Q11.16)

where C (t) is consumption at time t, L (t) is labour supply (1 − L (t) is leisure), ρ is
the rate of time preference (ρ > 0), and U (·) is the felicity function. It has the usual
features:

UC ≡ ∂U

∂C
> 0, U1−L ≡ ∂U

∂ (1 − L)
> 0,

UCC ≡ ∂2U

∂C2
< 0, U1−L,1−L ≡ ∂2U

∂ (1 − L)2
< 0,

UCCU1−L,1−L − (UC,1−L)2
> 0,

where UC,1−L ≡ ∂2U
∂C∂(1−L)

. The household budget identity is given by:

Ȧ (t) = r (t) A (t) + w (t) L (t) + T (t)− C (t)− [r (t) + π (t)] m (t) , (Q11.17)

where A (t) is the stock of tangible assets, r (t) is the real interest rate, w (t) is the real
wage rate, T (t) is transfers received from the government, π (t) is the inflation rate
(π (t) > 0), and m (t) is the real stock of money balances. Obviously, r (t) + π (t) is
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the nominal interest rate. As usual, we have that Ȧ (t) ≡ dA (t) /dt. Total wealth
consists of real money balances plus the value of the capital stock:

A (t) ≡ V (t) + m (t) . (Q11.18)

The cash-in-advance (CIA) constraint is given by:

m (t) ≥ C (t) . (Q11.19)

The household is blessed with perfect foresight and takes the path of government
transfers as given.

The perfectly competitive firm maximizes the value of the firm,

V (0) ≡
∫ ∞

0
[F (K (t) , L (t)) − w (t) L (t) − I (t)] e−R(t)dt, (Q11.20)

where R (t) ≡ ∫ t
0 r (s) ds is the cumulative interest factor, and I (t) is gross invest-

ment, and F (·) features constant returns to scale. The firm faces the capital accu-
mulation identity, K̇ (t) = I (t) − δK (t), and takes as given the initial capital stock,
K (0). The choice variables are I (t) and L (t) (and thus K (t)).

(a) Solve the household’s optimization problem by means of optimal control meth-
ods.

(b) Solve the firm’s optimization problem by means of optimal control methods.
Prove that V (0) = K (0) in the optimum.

(c) Use stars to designate steady-state variables. Let µ stand for the policy deter-
mined growth rate in the nominal money supply. Compute dK∗/dµ, dL∗/dµ,
dC∗/dµ, and dλ∗/dµ. Show that only the sign of dλ∗/dµ depends on the sign
of UC,1−L.

(d) Illustrate the effects on C∗ and 1 − L∗ of an increase in µ in a diagram. Assume
that U (C, 1 − L) is homothetic.
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Answers

Question 1: Short questions

(a) False. The opportunity costs of holding money (the nominal interest rate)
should be equal to zero.

(b) The objective function (11.65) can be written as:

E(U(Z̃)) = U(Z̄) − ησ2
Z. (A11.1)

The expression for Z̄ (given in (11.67) can be rewritten in terms of σZ:

Z̄ = S ·
[
(1 + rM)ω + (1 + r̄)(1 − ω)

]
= S ·

[
1 + rM + (1 − ω)

(
r̄ − rM

)]
= S ·

[
1 + rM +

σZ

SσR

(
r̄ − rM

)]
=

(
1 + rM

)
S +

σZ

σR

(
r̄ − rM

)
, (A11.2)

where we have used σ2
Z ≡ S2(1 − ω)2σ2

R to eliminate 1 − ω. The exogenous

parameters are rM, r̄, σR, and S. The investor chooses Z̄ and σZ in order to
maximize (A11.1) subject to (A11.2). The Lagrangian is:

L ≡ U(Z̄) − ησ2
Z + λ ·

[(
1 + rM

)
S +

σZ

σR

(
r̄ − rM

)
− Z̄

]
,

from which we obtain the first-order conditions:

∂L
∂Z̄

= U′(Z̄) − λ = 0,

∂L
∂σZ

= −2ησZ − λ
r̄ − rM

σR
= 0.

Combining we thus get:

1

λ
=

1

U′(Z̄)
=

1

2ησZ

r̄ − rM

σR

2ησZ

U′(Z̄)
=

r̄ − rM

σR
,

which is (11.69) in the text.

To derive equation (11.82) it is more convenient to work with equation (11.73)
in the book which directly addresses the optimal choice of ω. Equation (11.76)
writes the first-order condition for ω∗ as:

Φ
(

ω∗, σ2
R

)
≡ −U′

(
S
[
(1 + rM)ω∗ + (1 + r̄)(1 − ω∗)

] )
S
(

r̄ − rM
)

+2ηS2(1 − ω∗)σ2
R = 0. (A11.3)
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To get the uncompensated effect of a change in σR we use:

∂Φ
(
ω∗, σ2

R

)
∂ω∗ dω∗ +

∂Φ
(
ω∗, σ2

R

)
∂σR

dσR = 0,

or:

dω∗

dσR
= −

∂Φ(ω∗,σ2
R)

∂σR

∂Φ(ω∗,σ2
R)

∂ω∗

.

We find from (A11.3) that:

∂Φ
(
ω∗, σ2

R

)
∂ω∗ = U′′(Z̄)S2

(
r̄ − rM

)2 − 2ηS2σ2
R

= −2ηS2

[(
r̄ − rM

)2
+ σ2

R

]
,

∂Φ
(
ω∗, σ2

R

)
∂σR

= 4ηS2(1 − ω∗)σR.

It follows that:(
dω∗

dσR

)
UC

=
2(1 − ω∗)σR

(r̄ − rM)
2
+ σ2

R

> 0. (A11.4)

(In the text we use partial derivative notation for comparative static effects.)

As is explained in footnote 16 on page 342 of the text, the effect on ω∗ of a
(hypothetical) lump-sum change in Z̄ is given by:

∂ω∗

∂Z̄
= − ∂Φ/∂Z̄

∂Φ/∂ω∗ =
r̄ − rM

S
[
(r̄ − rM)

2
+ σ2

R

] (A11.5)

Using (A11.4) and (A11.5) we can verify (11.82) in the text.

(c) The full liquidity result states that the money supply should be expanded to
the point where the marginal benefit of money is (close to) zero and agents
are flooded with liquidity (money balances). Money is cheap to produce and
people should not economize on something that is not scarce. The nominal
interest rate must be set to zero since it represents the opportunity cost of hold-
ing money. Main reasons why it may not be valid: (i) there may be distorting
taxes, (ii) preferences may be non-separable, (iii) optimal taxation argument for
inflation taxation. See sections 11.4.3.2 and 11.4.3.3 in the text.

(d) Main functions: (i) medium of exchange, (ii) medium of account, and (iii) store
of value. See section 11.1. The first one is the most fundamental feature of
money.

(e) The relevant first-order condition is given by equation (11.33):

U′(C2)

U′(C1)
= (1 + ρ)(1 + π1),
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Figure A11.1: Inflation increase in the Bewley model

or:

C2

C1
=

1

(1 + ρ)(1 + π1)
.

This is a ray from the origin in Figure A11.1. An increase in π1 flattens this
line. Since m1 > 0 (before and after the shock) we can consolidate the lifetime
budget constraint:

C1 + (1 + π1) C2 = Y1 +
m0

1 + π0
+ (1 + π1) Y2.

An increase in π1 rotates the budget constraint around the income endowment
point in a counter-clockwise fashion. The new equilibrium is at EC

1 , C2 falls, C1

rises, and m1 falls. There is less need for money as a store of value because the
consumption point moves closer to the income endowment point. The shock
produces income and substitution effects. The SE is the move from EC

0 to A and

the IE is the move from A to EC
1 .

Question 2: Optimal money growth

(a) From (Q11.2) we find by dividing by Pt:

(1 + Rt−1)
Bt−1

Pt−1

Pt−1

Pt
+

Wt

Pt
(1 − τt)Lt +

Mt−1

Pt−1

Pt−1

Pt
+ Tt = Ct +

Mt

Pt
+

Bt

Pt

(1 + Rt−1)
Pt−1

Pt
bt−1 + wt(1 − τt)Lt + mt−1

Pt−1

Pt
+ Tt = Ct + mt + bt

(1 + rt−1)bt−1 + wt(1 − τt)Lt +
mt−1

1 + πt−1
+ Tt = · · · . (A11.6)
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From (Q11.3) we find in a similar fashion that:

(1 + rt−1)bt−1 + Gt + Tt = τtwtLt + mt − mt−1

1 + πt−1
+ bt. (A11.7)

(b) The first-order condition for profit maximization is dΠt/dLt = Pt − Wt = 0 or
wt = 1. By combining (A11.6) and (A11.7) we find that wtLt = Ct + Gt. But
wt = 1 and Lt = Yt so we find that Yt = Ct + Gt. Provided the household and
government budget identities are satisfied, so is the economy-wide resource
constraint.

(c) The household’s budget identity (A11.6) is a difference equation in bond hold-
ings, bt, which can be solved forward in time by repeated substitutions. After
some tedious but straightforward manipulations we find the following general
expression:

a0 =
1+k

∑
t=1

q0
t ·

[
Ct +

Rt

1 + Rt
mt − wt(1 − τt)Lt − Tt

]

+q0
k+1bk+1 + q0

k+1 ·
mk+1

1 + Rk+1
. (A11.8)

By letting k → ∞, and noting (Q11.5) we find that (A11.8) simplifies to (Q11.6).

(d) The household chooses sequences for its consumption, labour supply, and real
money balances (i.e. {Ct}∞

t=1, {Lt}∞
t=1, and {mt}∞

t=1) in order to maximize life-
time utility (Q11.1) subject to the lifetime budget constraint (Q11.6). The Lag-
rangian expression associated with this optimization programme is:

L ≡
∞

∑
t=1

(
1

1 + ρ

)t−1

U(Ct, 1 − Lt, mt)

+λ ·
[

a0 −
∞

∑
t=1

q0
t

[
Ct +

Rt

1 + Rt
mt − wt(1 − τt)Lt − Tt

]]
,

where λ is the Lagrangian multiplier. The first-order conditions for an interior
optimum are the constraint (Q11.6) and:

∂L
∂Ct

= 0:

(
1

1 + ρ

)t−1

UC(xt) = λq0
t , (A11.9)

∂L
∂Lt

= 0:

(
1

1 + ρ

)t−1

U1−L(xt) = λq0
t wt(1 − τt), (A11.10)

∂L
∂mt

= 0:

(
1

1 + ρ

)t−1

Um(xt) = λq0
t ·

Rt

1 + Rt
. (A11.11)

By eliminating the Lagrange multiplier from these expressions we obtain the
usual conditions equating marginal rates of substitution to relative prices:

U1−L(xt)

UC(xt)
= wt(1 − τt), (A11.12)

Um(xt)

UC(xt)
=

Rt

1 + Rt
, (A11.13)
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where UC(xt) ≡ ∂U(xt)
∂Ct

, U1−L(xt) ≡ ∂U(xt)
∂[1−Lt]

, Um(xt) ≡ ∂U(xt)
∂mt

, and xt ≡ (Ct, 1−
Lt, mt). In each period, the marginal rate of substitution between leisure and
consumption should be equated to the after-tax wage rate, whilst the marginal
rate of substitution between real money balances and consumption should be
equated to the opportunity cost of holding real money balances.

(e) The adjusted budget constraint is obtained by substituting the household’s
first-order conditions (A11.9)-(A11.11) into the regular, unadjusted, household
budget constraint (Q11.6). After some manipulation we obtain the following
expression:

a0 =
∞

∑
t=1

q0
t [Ct − Tt] +

∞

∑
t=1

q0
t

Rt

1 + Rt
mt −

∞

∑
t=1

q0
t Wt(1 − τt)Lt

=
1

λ

∞

∑
t=1

(
1

1 + ρ

)t−1 [
UC(xt) [Ct − Tt]

+Um(xt)mt − U1−L(xt)Lt

]
. (A11.14)

By applying (A11.9) for t = 1 and noting that q0
1 = 1 we derive that λ equals

the marginal utility of consumption in the first period, i.e. λ = UC(x1). By
substituting this result in (A11.14) we obtain (Q11.7). The advantage of work-
ing with (Q11.7) instead of with (Q11.6) is that the former expression no longer
contains the distorting tax instruments of the government (namely τt and µt).
This facilitates the characterization of the optimal taxation problem because the
social planning problem can be conducted directly in quantities (rather than in
terms of tax rates).

(f) The social planner chooses sequences for consumption, employment, and real
money balances (i.e. {Ct}∞

t=1, {Lt}∞
t=1, and {mt}∞

t=1) in order to maximize
lifetime utility of the representative household (Q11.1) subject to the adjus-
ted household budget constraint (Q11.7) and the economy-wide resource con-
straint Lt = Ct + Gt. We assume that the sequence of government consump-
tion, {Gt}∞

t=1, is exogenously given. The Lagrangian associated with this op-
timization programme is:

LG ≡
∞

∑
t=1

(
1

1 + ρ

)t−1 [
U(Ct, 1 − Lt, mt) + λG

t [Lt − Ct − Gt]

+ θG

(
UC(xt) [Ct − Tt] + Um(xt)mt − U1−L(xt)Lt

)]
− θGa0UC(x1), (A11.15)

where θG is the Lagrange multiplier for the adjusted household budget con-
straint and {λG

t }∞
t=1 is the sequence of Lagrange multipliers for the resource

constraint.

Assume that the policy maker can freely adjust the level of transfers (or taxes,
if negative), Tt, in each period. The first-order conditions for the sequence of
transfers, {Tt}∞

t=1, take the following form:

∂LG

∂Tt
= −θG

(
1

1 + ρ

)t−1

UC(xt) = 0. (A11.16)
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But, since the discounting factor on the right-hand side of (A11.16) is strictly
positive, and we have ruled out satiation of consumption (UC(xt) > 0), it
follows from (A11.16) that θG = 0. Intuitively, the availability of the lump-
sum instruments means that the adjusted household budget constraint does
not represent a constraint on the social optimization programme. The remain-
ing first-order conditions of the social plan are obtained by setting ∂LG/∂Ct =
∂LG/∂Lt = ∂LG/∂mt = 0 (for t = 1, 2, ...) and noting that θG = 0. After some
straightforward manipulation we find:

U1−L(xt)

UC(xt)
= 1, (A11.17)

Um(xt) = 0. (A11.18)

Equation (A11.17) shows that the marginal rate of substitution between leis-
ure and consumption should be equated to the marginal rate of transforma-
tion between labour and goods (which is unity since the production function
is linear). Equation (A11.18) is the Friedman rule requiring the policy maker to
satiate the representative household with money balances. Equations (A11.17)-
(A11.18) characterize the socially optimal allocation in terms of quantities. In
the final step we must find out what tax instruments the planner can use to
ensure that these conditions hold in the decentralized economy. By compar-
ing (A11.17)-(A11.18) to the first-order conditions for the household, given in
(A11.12)-(A11.13), we find that they coincide if there is no tax on labour income
and the nominal interest rate is zero, i.e. τt = Rt = 0. With a constant level of
government consumption (Gt = G for all t) the optimal allocation is constant,
i.e. Ct = C, Lt = L, bt = b, mt = m, Wt = W, and Tt = T for all t. The real
interest rate is equal to the rate of pure time preference, rt = ρ, and, since the
nominal rate is zero, it follows that the rate of inflation is constant and equal
to πt = −ρ/(1 + ρ). Since m is constant, the rate of money growth equals the
rate of inflation, i.e. µt = −ρ/(1 + ρ).

(g) Assume now that lump-sum taxes/transfers are not available, i.e. Tt = 0 for all
t. In the absence of such an instrument the policy maker is forced to raise the
required revenue, needed to finance the government’s consumption path, in a
distortionary fashion, i.e. by means of a tax on labour income and/or by means
of money growth (the inflation tax). In the remainder of this subsection we
briefly sketch the complications which arise in this setting. As before, the social
planner chooses sequences {Ct}∞

t=1, {Lt}∞
t=1, and {mt}∞

t=1) which maximize
(Q11.1) subject to (Q11.7) and the resource constraint Lt = Ct + Gt. We now
assume, however, that Tt = 0 for all t.

The first-order condition for an interior solution for real money balances is
given by ∂LG/∂mt = 0 for all t. By using (A11.15) we derive the following
conditions for, respectively, m1 and mt (t = 2, 3, ...):

0 = Um(x1) + θG [Um(x1) + m1Umm(x1)] + θG(1 + r0)UCm(x1), (A11.19)

0 = Um(xt) + θG [Um(xt) + mtUmm(xt)] , (A11.20)

where the term involving UCm(x1) appearing in (A11.19) is due to the fact that
the marginal utility of consumption in the first period in general depends on
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real money balances. In contrast to the lump-sum case, the Lagrange multi-
plier θG is now strictly positive. Intuitively, θG measures the utility cost of
raising government revenue through distortionary taxes (Ljungqvist and Sar-
gent (2000, p. 323)). An immediate consequence which follows from the first-
order conditions (A11.19)-(A11.20) is that the full liquidity rule is no longer op-
timal even if the felicity function is separable in consumption and real money
balances (so that UCm(xt) = 0). Indeed, in the separable case (A11.19) and
(A11.20) coincide and can be simplified to:

Um(xt) = −mtUmm(xt)
θG

1 + θG
> 0. (A11.21)

The optimal level of real money balances falls short of its satiation level and
the Friedman result no longer obtains in this setting.

Question 3: Monetary superneutrality

(a) Denoting nominal variables by the superscript N we find that the budget iden-
tity of the household is:

ḂN(v, τ) + ṀN(v, τ) + V̇N(v, τ) =
[

RN(τ) + β
] [

BN(v, τ) + VN(v, τ)
]

+ βMN(v, τ) + WN(τ) − TN(τ) − P(τ)C(v, τ), (A11.22)

where BN is nominal bond holdings, MN is the nominal money holdings, VN

is the nominal value of shares, RN is the nominal interest rate, WN is the nom-
inal wage, TN is nominal lump-sum taxes, and P is the price of the homo-
geneous good. Equation (A11.22) incorporates two notions. First, it is based
on the Keynesian assumption that claims on physical capital and government
bonds are perfect substitutes ensuring equalization of their ex ante rate of re-
turn. Second, though money holdings do not attract an interest rate they do
attract a payment from the life-insurance company: upon death, all assets in-
cluding money holdings revert to the insurance company.

By dividing (A11.22) by P we find:

ḂN(v, τ)

P(τ)
+

ṀN(v, τ)

P(τ)
+

V̇N(v, τ)

P(τ)
=

[
RN(τ) + β

]
[B(v, τ) + V(v, τ)]

+ βM(v, τ) + W(τ) − T(τ) − C(v, τ), (A11.23)

where B ≡ BN/P, V ≡ VN/P, M ≡ MN/P, W ≡ WN/P, and T ≡ TN/P.
By definition we have that ẊN/P = Ẋ + πX, where π ≡ Ṗ/P (for X ∈
{B, V, M}). Since there are no adjustment costs on investment, Tobin’s q is
unity and V(v, τ) = K(v, τ). Using these results in (A11.23) we find:

Ḃ(v, τ) + Ṁ(v, τ) + K̇(v, τ) =
[

RN(τ) − π(τ) + β
]
[B(v, τ) + V(v, τ)]

+ [β − π(τ)] M(v, τ) + W(τ)− T(τ)− C(v, τ)

= [r(τ) + β] [B(v, τ) + M(v, τ) + K(v, τ)]

− RN(τ)M(v, τ) + W(τ)− T(τ)− C(v, τ), (A11.24)
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where we have used the definition r(τ) ≡ RN(τ) − π(τ). By noting that
A ≡ B + M + K we find that (A11.24) coincides with equation (Q11.10) in the
question. The inflation rate appears in equation (Q11.10) because the nominal
interest rate, r + π, represents the opportunity cost of holding money.

Equation (Q11.11) is derived as follows. The monetary authority adopts the
following growth rule for the nominal money supply:

ṀN(τ) = θ(τ)MN(τ). (A11.25)

By noting that ṀN/P = Ṁ + πM we can rewrite (A11.25) as follows:

ṀN(τ)

P(τ)
= θ(τ)

MN(τ)

P(τ)
⇔

Ṁ(τ) + π(τ)M(τ) = θ(τ)M(τ) ⇔
Ṁ(τ) = [θ(τ)− π(τ)] M(τ). (A11.26)

Equation (A11.26) is identical to equation (Q11.11) in the question for a con-
stant rate of money growth. If the inflation rate is higher (lower) than the nom-
inal money growth rate, then the real money supply falls (increases) over time.
The inflation rate appears in equation (Q11.11) because the money growth rule
applies to the nominal money supply but we are interested in the growth rate
of the real money supply.

(b) Stage 1. We define full consumption as the sum of spending on consumption
and real money balances:

X(v, τ) ≡ C(v, τ) + [r(τ) + π(τ)] M(v, τ). (A11.27)

We postulate that:

PU(τ)U(v, τ) = X(v, τ). (A11.28)

By using (A11.27) in (Q11.10) and (A11.28) in (Q11.8) we find that the Hamilto-
nian for the dynamic optimization problem is:

H ≡ ln

(
X(v, τ)

PU(τ)

)
+ µ(τ) [(r(τ) + β)A(v, τ) + W(τ)− T (τ)− X(v, τ)] ,

(A11.29)

where X(v, τ) is the control variable, A(v, τ) is the state variable, and µ(τ)
is the co-state variable. The first-order conditions are ∂H/∂X(v, τ) = 0 and
−∂H/∂A(v, τ) = µ̇(τ)− [r(τ) + β] µ(τ) or:

1

X(v, τ)
= µ(τ), (A11.30)

µ̇(τ)

µ(τ)
= ρ − r(τ). (A11.31)

By combining (A11.30)–(A11.31) we find the Euler equation for full consump-
tion:

Ẋ(v, τ)

X(v, τ)
= r(τ)− ρ. (A11.32)
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The household budget constraint is derived by integrating equation (Q11.10)
(with (A11.27) inserted) forward in time and imposing the NPG condition

limτ→∞ A(v, τ) e−RA(t,τ) = 0:

A(v, t) + H(t) =
∫ ∞

t
X(v, τ)e−RA(t,τ)dτ, (A11.33)

where human wealth is:

H(t) ≡
∫ ∞

t
[W(τ)− T(τ)] e−RA(t,τ)dτ. (A11.34)

From the Euler equation (A11.32) we derive:

X(v, τ) = X(v, t)eRA(t,τ)−(ρ+β)(τ−t),

so that (A11.33) can be rewritten as:

X(v, t) = (ρ + β) [A(v, t) + H(t)] . (A11.35)

Full consumption in the planning period is proportional to total wealth in that
period.

Stage 2. Next we determine C(v, τ) and M(v, τ) such that U(v, τ) is maximized
subject to the restriction (A11.27), taking X(v, τ) as given. The Lagrangian is:

L ≡
[
εC(v, τ)(σ−1)/σ + (1 − ε)M(v, τ)(σ−1)/σ

]σ/(σ−1)

+ λ(τ) [X(v, τ) − C(v, τ) − [r(τ) + π(τ)] M(v, τ)] . (A11.36)

The first-order conditions are the constraint and ∂L /∂C(v, τ) = ∂L /∂M(v, τ) =
0. We find:

[·]1/(σ−1) εC(v, τ)−1/σ = λ(τ), (A11.37)

[·]1/(σ−1) (1 − ε)M(v, τ)−1/σ = λ(τ) [r(τ) + π(τ)] , (A11.38)

or, after eliminating λ(τ):

(1 − ε)M(v, τ)−1/σ

εC(v, τ)−1/σ
= [r(τ) + π(τ)] . (A11.39)

According to (A11.39), the marginal rate of substitution between money bal-
ances and consumption should be equated to the nominal interest rate. By
using (A11.39) in the constraint (A11.27), we find after some manipulations:

C(v, τ) = ω(r(τ) + π(τ))X(v, τ), (A11.40)

[r(τ) + π(τ)] M(v, τ) = [1 − ω(r(τ) + π(τ))] X(v, τ), (A11.41)

where ω(·) is the share of goods consumption in full consumption. It is defined
as follows:

ω(·) ≡ εσ

εσ + (1 − ε)σ [r(τ) + π(τ)]1−σ
. (A11.42)



268 EXERCISE & SOLUTIONS MANUAL

For future reference we note that (i) ω(·) = ε for the Cobb-Douglas case (σ =
1), and (ii) ω(·) has the following elasticity:

ηω ≡ [r(τ) + π(τ)] ω′(·)
ω(·) ≡ (σ − 1) [1 − ω(·)] . (A11.43)

Using (A11.41) and noting (A11.43) we find that the interest elasticity of money
demand is negative (and equal to ηω − σ = − [1 + (σ − 1)ω(·)]).

(c) Aggregation of (Q11.10), (A11.35), and (A11.40)–(A11.41) is straightforward
and results (for period t) in:

Ȧ(t) = r(t)A(t) + W(t)− T(t) − X(t), (A11.44)

X(t) = (ρ + β) [A(t) + H(t)] , (A11.45)

C(t) = ω(r(t) + π(t))X(t), (A11.46)

[r(t) + π(t)] M(t) = [1 − ω(r(t) + π(t))] X(t). (A11.47)

The Euler equation for full consumption is derived in the following manner:

Ẋ(t) = βX(t, t)− βX(t) + β
∫ t

−∞
Ẋ(v, t)eβ(v−t)dv

= β(ρ + β)H(t)− β(ρ + β) [A(t) + H(t)] + [r(t)− ρ] X(t) ⇒
Ẋ(t)

X(t)
= [r(t)− ρ] − β(ρ + β)

A(t)

C(t)
, (A11.48)

where we have used (A11.32) in going from the first to the second line. Fi-
nally, the differential equation for (individual and aggregate) human wealth is
obtained by differentiating (A11.34) with respect to time:

Ḣ(t) = [r(t) + β] H(t)− [W(τ)− T(t)] . (A11.49)

(d) We derive the government budget identity as follows. In nominal terms we
have:

ṀN + ḂN + TN = RN BN + PG, (A11.50)

ṀN = θMN . (A11.51)

By substituting (A11.51) into (A11.50) and dividing by P we find:

θ
MN

P
+

ḂN

P
+

TN

P
= RN BN

P
+ G ⇔ Ḃ + θM + T = rB + G, (A11.52)

where r ≡ RN − π, π ≡ Ṗ/P, and we have (again) used ḂN/P = Ḃ + πB. Ac-
cording to (A11.52), outlays of the government, consisting of interest payments
plus government consumption, is covered by new bond issues, seigniorage,
and lump-sum taxes.

By integrating equation (A11.52) forward in time and imposing the appropri-

ate NPG condition, limτ→∞ B(τ)e−R(t,τ) = 0, we find the government budget
restriction:

B(t) =
∫ ∞

t
[θ(τ)M(τ) + T(τ)− G(τ)] e−R(t,τ)dτ. (A11.53)

Outstanding debt must be covered (in present value terms) by future primary
surpluses.
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(e) The marginal productivity conditions for the competitive representative firm
are, for the Cobb-Douglas technology, given by:

r(t) + δ = αK(t)α−1, W(t) = (1 − α)Kα. (A11.54)

The system of differential equations characterizing the economy is:

K̇(t) = K(t)α − ω (r(t) + π(t)) X(t) − G(t)− δK(t), (A11.55)

Ẋ(t)

X(t)
= r(t)− ρ − β(ρ + β)

B(t) + K(t) + M(t)

X(t)
, (A11.56)

Ṁ(t) = [r(t) + θ(t)] M(t) − [1 − ω(r(t) + π(t))] X(t), (A11.57)

Ḃ(t) = r(t)B(t) + G(t) − θ(τ)M(τ)− T(τ), (A11.58)

where r(t) depends on K(t) (see (A11.54)) and B(t) must satisfy the restriction
(A11.53). Equation (A11.56) is obtained from (Q11.11) by noting that θ − π =
(r + θ) − (r + π) and by using (A11.47).

By superneutrality of money we mean that the money growth rate does not af-
fect the real economy, either during transition or in the long run. It is straight-
forward to show that superneutrality holds provided the birth/death rate is
zero (β = 0) and sub-felicity is weakly separable in consumption and money
balances (σ = 1). If both requirements are met, then the dynamical system
dichotomizes into real and monetary subsystems. Indeed, if β = 0 the genera-
tional turnover term disappears from (A11.56) and if σ = 1 goods consumption
does not depend on the nominal interest rate (ω(·) = ε in (A11.55)) and the real
subsystem simplifies to:

K̇(t) = K(t)α − εX(t)− G(t)− δK(t), (A11.59)

Ẋ(t)

X(t)
= αK(t)α−1 − (ρ + δ) (A11.60)

The money growth rate does not appear anywhere in (A11.59)–(A11.60) so
K(t), X(t), r(t), and C(t) are unaffected by it.

The monetary part of the model simplifies to:

Ṁ(t) = [r(t) + θ(t)] M(t)− (1 − ε)X(t), (A11.61)

where r(t) and X(t) are determined in the real subsystem (A11.59)–(A11.60).
Equation (A11.61) is an unstable differential equation in real money balances
(as the nominal interest rate is positive) so M(t) must be a jumping variable to
ensure economically sensible conclusions. The mechanism ensuring jumps in
real money balances is, of course, the adjustment in the price level. The nom-
inal money supply is predetermined (in the assumed absence of open market
operations) so an increase in P leads to a discrete jump in M.

To study the dynamic effects of an unanticipated and permanent increase in
the money growth rate, we assume for simplicity that the economy is initially
in the steady state, i.e. r(t) = ρ and X(t) = X (a constant) in (A11.61). In
Figure A11.2, we present the phase diagram for real money balances. The ini-
tial steady-state equilibrium is at E0 where π0 = θ0. An increase in the money
growth rate rotates the Ṁ(t) line counter-clockwise (around point A on the
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Figure A11.2: Monetary superneutrality

vertical axis) and shifts the steady-state equilibrium to E1. Since the shock
is permanent and unanticipated, the economy jumps at impact from E0 to E1

and real money balances fall from M0 to M1. Households economize on real
money balances because the additional money growth causes additional infla-
tion which drives up the nominal interest rate.

In Figure A11.3 we show the impulse-response functions. Since real money
balances feature no further transitional dynamics following the impact jump,
the inflation rate remains equal to the money growth rate. At impact the (log-
arithm of the) price level jumps after which it follows a steeper path over time.
The nominal money supply does not feature a jump but starts to grow at a
higher rate after the shock.

(f) The economy can in this case be characterized by the following differential
equations:

K̇(t) = K(t)α − C(t)− G(t)− δK(t), (A11.62)

Ċ(t)

C(t)
= r(t)− ρ − βε(ρ + β)

K(t) + M(t)

C(t)
, (A11.63)

Ṁ(t) = [r(t) + θ(t)] M(t) − 1 − ε

ε
C(t), (A11.64)

where we have used the fact that C(t) = εX(t) in various places. Of the state
variables, two are non-predetermined ‘jumping’ variables (X and M) whilst
the third is predetermined (K). To study its stability properties, we first lin-
earize the model around the initial steady state (for which K̇ = Ċ = Ṁ = 0).
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Figure A11.3: Impulse-response functions
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Linearizing (A11.62) yields:

dK̇(t)

K
= αKα−1 dK(t)

K
− C

K

dC(t)

C
− dG(t)

K
− δ

dK(t)

K
⇔

˙̃K(t) = rK̃(t)− ωCC̃(t)− G̃(t), (A11.65)

where ˙̃K(t) ≡ dK(t)/K, K̃(t) ≡ dK(t)/K, C̃(t) ≡ dC(t)/C, G̃(t) ≡ dG(t)/K,
ωC ≡ C/K and we have used the fact that in the steady state r + δ = αKα−1.
Note finally that all variables without a time index refer to values.

Linearizing (A11.63) yields:

dĊ(t)

C
= (r − ρ)

dC(t)

C
+ dr(t)− βε(ρ + β)

C
[dK(t) + dM(t)] ⇔

˙̃C(t) = (r − ρ) C̃(t) + dr(t)− (r − ρ)
[
ωKK̃(t) + (1 − ωK)M̃(t)

]
,

(A11.66)

where ˙̃C(t) ≡ dĊ(t)/C, M̃(t) ≡ dM(t)/M, ωK ≡ K/(K + M), and we have
used the fact that βε(ρ + β)/C = (r − ρ)/(K + M) in the steady state.

Linearizing (A11.64) yields:

dṀ(t)

M
= (r + θ)

dM(t)

M
+ dr(t) + dθ(t) − (1 − ε)C

εM

dC(t)

C
⇔

˙̃M(t) = (r + θ) M̃(t) + dr(t) + dθ(t)− (r + θ) C̃(t), (A11.67)

where ˙̃M(t) ≡ dṀ(t)/M and we have used the steady state version of (A11.64).
Finally, by using (A11.54) we can write dr(t) as:

dr(t) = −(1 − α)(r + δ)K̃(t). (A11.68)

By collecting (A11.65)–(A11.68), the linearized system of differential equations
can now be written in a single matrix equation as follows:


˙̃K(t)
˙̃C(t)
˙̃M(t)


 = ∆


 K̃(t)

C̃(t)
M̃(t)


− Γ, (A11.69)

where ∆ and Γ are defined as:

∆ ≡

 r −ωC 0
− [(r − ρ) ωK + (1 − α)(r + δ)] r − ρ − (r − ρ) (1 − ωK)

−(1 − α)(r + δ) − (r + θ) r + θ


 ,

(A11.70)

Γ ≡

 G̃(t)

0
−dθ(t)


 . (A11.71)

Saddle-point stability holds if (and only if) ∆ possesses one stable and two
unstable characteristic roots. We denote these roots by −λ1 < 0, λ2 > 0, and
λ3 > 0 and recall that |∆| = −λ1λ2λ3 so that saddle-path stability requires
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|∆| < 0. Since tr∆ = λ2 + λ3 − λ1 = 3r + θ − ρ > 0 (since r > ρ and r + θ > 0)
we find that there is at least one positive root. It is rather tedious to check
under which conditions |∆| < 0 holds so, for the purpose of this question, we
simply assume saddle-point stability.

We are now in the position to compute the long-run effects of an increase in

the rate of money growth. By setting ˙̃K(t) = ˙̃C(t) = ˙̃M(t) = 0 in (A11.69) and
using Cramer’s Rule we find the long-run effect on the capital stock:

K̃(∞)

dθ
=

1

|∆|

∣∣∣∣∣∣
0 −ωC 0
0 r − ρ − (r − ρ) (1 − ωK)
−1 − (r + θ) r + θ

∣∣∣∣∣∣
=

(r − ρ) ωC(1 − ωK)

−|∆| > 0, (A11.72)

where the sign follows from the fact that r > ρ and −|∆| > 0. Similarly, the
long-run effect on consumption is:

C̃(∞)

dθ
=

1

|∆|

∣∣∣∣∣∣
r 0 0

− [(r − ρ) ωK + (1 − α)(r + δ)] 0 − (r − ρ) (1 − ωK)
−(1 − α)(r + δ) −1 r + θ

∣∣∣∣∣∣
=

(r − ρ) r(1 − ωK)

−|∆| > 0, (A11.73)

whilst the long-run effect on real money balances is:

M̃(∞)

dθ
=

1

|∆|

∣∣∣∣∣∣
r −ωC 0

− [(r − ρ) ωK + (1 − α)(r + δ)] r − ρ 0
−(1 − α)(r + δ) − (r + θ) −1

∣∣∣∣∣∣
=

r (r − ρ) − ωC [(r − ρ) ωK + (1 − α)(r + δ)]

−|∆| � 0. (A11.74)

As Marini and van der Ploeg (1988, p. 778) point out, the effect on the cap-
ital stock resembles the conventional Mundell-Tobin effect. The increase in the
money growth rate increases long-run inflation one-for-one but leads to a fall
in the real interest rate. In the representative-agent model this latter effect is
impossible because the rate of time preference pins down the long-run real
interest rate in that model (as β = 0 and r = ρ). The effect on money bal-
ances is ambiguous in the OLG model because there are two effects operating
in opposite directions. On the one hand, the nominal interest rate rises, which
prompts a decrease in the demand for real money balances. On the other hand,
consumption rises, which causes an increase in the demand for real money
balances. In the representative-agent model only the first effect survives and
money demand falls in the long run.

(g) In the present scenario the government budget constraint (A11.58) simplifies
to T(t) = G(t) − θM(t) which can be ignored since T(t) does not appear any-
where in (A11.62)–(A11.64). Under the assumption of saddle-point stability
(|∆| < 0) the long-run effects of an increase in G can be computed by using
(A11.69)–(A11.71) (and setting dθ(t) = 0). The long-run effect on the capital
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stock is:

K̃(∞)

G̃
=

1

|∆|

∣∣∣∣∣∣
1 −ωC 0
0 r − ρ − (r − ρ) (1 − ωK)
0 − (r + θ) r + θ

∣∣∣∣∣∣
=

(r − ρ) ωK (r + θ)

|∆| < 0. (A11.75)

Similarly, the long-run effect on consumption is:

C̃(∞)

G̃
=

1

|∆|

∣∣∣∣∣∣
r 1 0

− [(r − ρ) ωK + (1 − α)(r + δ)] 0 − (r − ρ) (1 − ωK)
−(1 − α)(r + δ) 0 r + θ

∣∣∣∣∣∣ < 0.

(A11.76)

whilst the long-run effect on real money balances is:

M̃(∞)

G̃
=

1

|∆|

∣∣∣∣∣∣
r −ωC 1

− [(r − ρ) ωK + (1 − α)(r + δ)] r − ρ 0
−(1 − α)(r + δ) − (r + θ) 0

∣∣∣∣∣∣ < 0. (A11.77)

Question 4: Cash-in-advance constraint in continuous time

(a) The household budget constraint has some interesting features:

• We model a household producer supplying a unit of labour (L = 1) and
accumulating capital. The production function could be written as F (K, 1)
and implicit input payments exhaust output, F (K, 1) = wL + (r + δ) K.

• The inflation tax is given by π (t) m (t).

• The difference between total income, F (K (t)) + T (t), and total spending,
C (t) + π (t) m (t), is saved.

The CIA constraint has the following features:

• M (t) ≥ P (t) C (t), where M (t) is the nominal money supply and P (t)
is the price level. Money buys goods. In real terms we thus get m (t) ≡
M (t) /P (t) ≥ C (t).

• Sometimes the CIA constraint is written to include the real transfers, i.e.
m (t) + T (t) ≥ C (t).

• We implicitly assume that no cash is needed for capital accumulation pur-
poses.

(b) There is no direct utility from holding money (m (t) is not in the felicity func-
tion). These balances are costly to hold since π (t) > 0. As a result, the house-
hold holds as little money as possible, i.e. m (t) = C (t). Substituting this
result into (Q11.13) and noting that K (t) = A (t) − m (t) = A (t) − C (t) we
find (Q11.15).

(c) The current-value Hamiltonian is:

HC ≡ U (C (t)) + λ (t) · [F (A (t) − C (t)) + T (t) − [1 + π (t)] C (t)] ,
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and the first-order conditions are:

∂HC

∂C (t)
= U′ (C (t)) − λ (t) · [F′ (A (t)− C (t)) + 1 + π (t)

]
= 0,

λ̇ (t) = ρλ (t)− ∂HC

∂A (t)
=

[
ρ − F′ (A (t)− C (t))

]
λ (t) ,

lim
t→∞

λ (t) A (t) e−ρt = 0.

In summary, noting that K (t) = A (t) − C (t) we can write the first two condi-
tions as:

U′ (C (t)) = λ (t) · [F′ (K (t)) + 1 + π (t)
]

,

λ̇ (t)

λ (t)
= ρ − F′ (K (t)) .

(d) The growth rate of the nominal money supply is defined as:

µ ≡ Ṁ (t)

M (t)
,

where µ is a policy variables and Ṁ (t) ≡ dM (t) /dt. It follows that Ṁ (t) /P (t) =
µm (t). But we also know that:

ṁ (t) =
Ṁ (t)

P (t)
− M (t)

P (t)2
· Ṗ (t)

=
Ṁ (t)

P (t)
− m (t) π (t) ,

where π (t) ≡ Ṗ (t) /P (t). Using these results we find that real money bal-
ances change over time according to:

ṁ (t) = [µ − π (t)] · m (t) .

In the steady state we have that ṁ (t) = 0 so that π∗ = µ.

Newly created money is transferred to the household, i.e. Ṁ (t) = P (t) T (t).
It follows that:

T (t) ≡ Ṁ (t)

P (t)
= ṁ (t) + m (t) π (t) .

In the steady state ṁ (t) = 0 so that T∗ = π∗m∗ = π∗C∗.

The steady-state system (satisfying Ċ (t) = ṁ (t) = Ȧ (t) = λ̇ (t) = 0) is given
by:

U′ (C∗) = λ∗ · [F′ (K (t)) + 1 + µ
]

,

ρ = F′ (K∗) ,

0 = F (K∗) + µC∗ − [1 + µ] C∗ ⇔
C∗ = F (K∗) .

It follows immediately that K∗ and C∗ only depend on ρ. Hence dK∗/dµ =
dC∗/dµ = 0. The only variable that is affected by µ is the co-state variable, i.e.
dλ∗/dµ < 0
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Question 5: Cash-in-advance with labour supply

(a) The current-value Hamiltonian is:

HH
C ≡ U (C (t) , 1 − L (t))

+ λ (t) · [r (t) A (t) + w (t) L (t) + T (t) − C (t)− [r (t) + π (t)] m (t)] ,

where we have used the fact that m (t) = C (t). The first-order conditions are:

∂HH
C

∂C (t)
= UC (·) − λ (t) · [1 + r (t) + π (t)] = 0,

∂HH
C

∂L (t)
= −U1−L (·) + λ (t) · w (t) = 0,

λ̇ (t) = ρλ (t) − ∂HH
C

∂A (t)
= [ρ − r (t)] λ (t) ,

lim
t→∞

λ (t) A (t) e−ρt = 0.

(b) The current-value Hamiltonian is:

HF
C ≡ F (K (t) , L (t)) − w (t) L (t)− I (t) + ζ (t) · [I (t) − δK (t)] .

The first-order conditions are:

∂HF
C

∂L (t)
= FL (·) − ζ (t) · w (t) = 0,

∂HF
C

∂I (t)
= −1 + ζ (t) = 0,

ζ̇ (t) = r (t) ζ (t)− ∂HF
C

∂K (t)
= [r (t) + δ] ζ (t) − FK (·) ,

lim
t→∞

ζ (t) K (t) e−R(t) = 0.

The proof of V (0) = K (0) is standard and can be found in section 13.5.2 in the
book.

(c) In the steady state we have Ċ (t) = ṁ (t) = K̇ (t) = λ̇ (t) = 0 and π∗ = µ so
that the system simplifies to:

UC (C∗, 1 − L∗) = λ∗ · [1 + r∗ + µ] ,

U1−L (C∗, 1 − L∗) = λ∗ · w∗,

r∗ = FK (K∗, L∗) − δ = ρ,

w∗ = FL (K∗, L∗) ,

F (K∗, L∗) = C∗ + δK∗.

Since technology features constant returns, we can write r∗ = FK (κ∗, 1) − δ =
ρ, w∗ = FL (κ∗, 1), and F (K∗, L∗) = L∗ · F (κ∗, 1), where κ∗ ≡ K∗/L∗ is the
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capital intensity. It follows that κ∗, r∗ and w∗ are fixed (independent of µ) and
the core system is:

UC (C∗, 1 − L∗) = λ∗ · [1 + ρ + µ] ,

U1−L (C∗, 1 − L∗) = λ∗ · w∗,

L∗ · [F (κ∗, 1) − δκ∗] = C∗.

This system determines C∗, L∗, and λ∗ as a function of µ. Total differentiation
yields:

∆ ·

 dC∗

dL∗
dλ∗


 =


 λ∗

0
0


 · dµ

where ∆ is given by:

∆ ≡

 UCC −UC,1−L − (1 + ρ + µ)

−UC,1−L U1−L,1−L w∗
−1 C∗/L∗ 0


 .

The determinant of ∆ is:

|∆| = w∗UC,1−L − (1 + ρ + µ) U1−L,1−L − C∗

L∗ [w∗UCC − (1 + ρ + µ) UC,1−L]

=
1

λ∗

[
−
(

UCU1−L,1−L +
C∗

L∗ U1−LUCC

)
+ UC,1−L ·

(
U1−L +

C∗

L∗ UC

)]
.

Clearly, for UC,1−L ≥ 0 it follows readily that |∆| > 0. We assume that |∆| > 0
from here on.

By Cramer’s Rule we find:

dC∗

dµ
=

1

|∆| ·
∣∣∣∣∣∣

λ∗ −UC,1−L − (1 + ρ + µ)
0 U1−L,1−L w∗
0 C∗/L∗ 0

∣∣∣∣∣∣ = − 1

|∆|
λ∗w∗C∗

L∗ < 0,

dL∗

dµ
=

1

κ∗
dK∗

dµ
=

1

|∆| ·
∣∣∣∣∣∣

UCC λ∗ − (1 + ρ + µ)
−UC,1−L 0 w∗

−1 0 0

∣∣∣∣∣∣ = −λ∗w∗

|∆| < 0,

dλ∗

dµ
=

1

|∆| ·
∣∣∣∣∣∣

UCC −UC,1−L λ∗
−UC,1−L U1−L,1−L 0

−1 C∗/L∗ 0

∣∣∣∣∣∣ = − 1

|∆| ·λ∗
[

UC,1−LC∗

L∗ − U1−L,1−L

]
� 0.

So only in the last expression does the cross term, UC,1−L, show up.

(d) Optimal consumption is such that:

U1−L (C∗, 1 − L∗)
UC (C∗, 1 − L∗)

=
w∗

1 + ρ + µ
.
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Figure A11.4: The effect of nominal money growth on consumption and labour
supply

For a homothetic felicity function this represents a ray from the origin–see Fig-
ure A11.4. We also know that:

C∗ = ξ − ξ · [1 − L∗] ,

where ξ ≡ F (κ∗, 1) − δκ∗ > 0 is a constant. This is a downward sloping line
in the figure. The initial equilibrium is at point E0. An increase in µ rotates
the line from the origin in a clockwise fashion. The new equilibrium is at point
E1: C∗ falls and 1 − L∗ increases, i.e. L∗ falls also. Since κ∗ is constant, K∗ also
decreases. Inflation hurts capital accumulation.



Chapter 12

New Keynesian economics

Question 1: Short questions

(a) In this chapter we use models of monopolistic competition. In what sense do
such model incorporate elements of monopoly? And where does the competition
come in?

(b) Why is the multiplier derived in section 12.1 only “Keynesian” and not Keyne-
sian?

(c) Explain why we must assume the existence of positive fixed cost of production
in the monopolistic competition model with free entry or exit of firms.

Question 2: Cost function for a Dixit-Stiglitz technology

The technology of the final goods sector is given by:

Y ≡ Nη ·
[

1

N
·

N

∑
i=1

X
1/µ
i

]µ

, µ > 1, 1 ≤ η ≤ 2, (Q12.1)

where Y is output, Xi is the amount of input i used in production, and N is the
number of input varieties. The price of input i is denoted by Pi so that total cost is
equal to:

TCY ≡
N

∑
i=1

PiXi. (Q12.2)

The firm is a cost minimizer.

(a) Prove that the production function (Q12.1) features constant returns to scale.

(b) Prove that the production function features returns to specialization, provided
η > 1.

(c) Derive the cost function and the derived input demand functions. Prove that
the cost function is homogeneous of degree one in prices.

(d) Verify Shephard’s Lemma, i.e. the result that the partial derivative of the cost
function with respect to Pi yields an expression for the derived demand for
factor i.
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Question 3: The multiplier when taxes are distortionary

Consider the static model of monopolistic competition presented in section 12.1.1 in
the book. Assume that the tax function is given by:

T = T0 + τL · WL, 0 < τL < 1, (Q12.3)

where T0 is a constant and τL is the marginal tax rate. The rest of the model is un-
changed. Assume that the economy is initially in a zero-profit equilibrium and that
T0 is positive.

(a) Derive expressions for the representative household’s optimal choices of com-
posite consumption, C, consumption of variety j, Cj, and labour supply, L. Use
the method of two-stage budgeting.

(b) Explain how C, Cj, and L are affected by (i) the lump-sum part of the tax sched-
ule, and (ii) the marginal tax rate.

(c) Compute the short-run spending multipliers under the assumption that the
government adjusts T0 to balance the budget. Explain the intuition.

(d) Redo part (c) but now assume that the government adjusts τL to balance the
budget. Assume that the economy is on the upward sloping part of the Laffer
curve. Explain the intuition.

(e) Assume that an anti-government party wins the elections and achieves control
over macroeconomic policy. Assume that the new government cuts the num-
ber of civil servants and uses the cost savings to reduce the marginal tax rate
on labour. Show what happens to the economy in the short run.

� Question 4: Consumers in the New Keynesian model

[Loosely based on Yun (1996)] In this question we study household behaviour in the
New Keynesian model. The infinitely-lived representative household features the
following lifetime utility function:

Λt ≡
∞

∑
τ=t

(
1

1 + ρ

)τ−t

· U (Cτ , Lτ , mτ) , (Q12.4)

where Cτ is composite consumption, Lτ is labour hours, mτ is real money balances,
and ρ is the pure rate of time preference. To keep matters simple, the felicity function
is additively separable:

U (Cτ , Lτ , mτ) ≡ C1−1/σ
τ − 1

1 − 1/σ
− γL

L1+θ
τ

1 + θ
+ γM

m
1−1/η
τ − 1

1 − 1/η
, (Q12.5)

where σ, γL, θ, γM, and η are positive parameters. The household exhibits preference
for diversity and composite consumption is given by:

Cτ ≡
[

N

∑
j=1

Cj,τ
1/µ

]µ

, µ > 1, (Q12.6)
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where N is the (fixed) number of existing varieties, Cj,τ is a consumption good of
variety j at time τ, µ is a parameter (µ > 1). The price of variety j at time τ is
denoted by Pj,τ .

The household periodic budget identity is given by:

Wτ Lτ + (1 + Rτ−1) Bτ−1 + Mτ−1 + PτTτ = PτCτ + Mτ + Bτ , (Q12.7)

where Wτ is the nominal wage rate, Bτ−1 is the stock of single-period bonds at the
end of period τ − 1, Rτ−1 is the nominal interest rate received on such bonds, Mτ−1

is cash balances at the end of period τ − 1 (and thus at the beginning of period τ),
and PτTτ is nominal transfers. Real money balances are defined as mτ ≡ Mτ/Pτ .

(a) Prove that (Q12.6) indeed implies a preference for diversity on the part of the
household.

(b) For a given level of Cτ , the household chooses the consumption good varieties,

Cj,τ , such that total spending, ∑
N
j=1 Pj,τCj,τ , is minimized. Derive expressions

for the true price index, Pτ , and the conditional demand for variety j. Show

that ∑
N
j=1 Pj,τCj,τ = PτCτ .

(c) Solve the household’s optimization problem using the Lagrangian method.

(d) Loglinearize the key household decision rules around a steady-state path fea-
turing a constant inflation rate π∗. Along this path, all real variables are con-
stant.

� Question 5: Producers in the New Keynesian model

[Based on Yun (1996) and Hornstein and Wolman (2007)] In this question we study
producer behaviour in the New Keynesian model. This question continues question
4 and employs the notation introduced there. There are N small firms, where N is
a large constant. Each firm j produces a unique variety of the consumption good,
denoted at time τ by Cj,τ . We abstract from capital and the production function
facing firm j is given by:

Cj,τ = Aτ · Lj,τ , (Q12.8)

where Aτ is an index of general technology (common to all firms), and Lj,τ is the
labour input by the firm at time τ. Labour is perfectly mobile across firms so that in
period τ each firm is confronted with the same nominal wage rate, Wτ . The demand
curve facing firm j when it charges price Pj,τ is given by:

Cj,τ

Cτ
=

(
Pτ

Pj,τ

)ε

, (Q12.9)

where ε ≡ µ/ (µ − 1) > 1 is the price elasticity of demand (in absolute terms), Cτ

is aggregate consumption, and Pτ is the aggregate price index. Both Cτ and Pτ are
treated parametrically by individual firms. Nominal profit in period τ is defined as:

Πj,τ ≡ Pj,τCj,τ − Wτ Lj,τ =

(
Pj,τ − Wτ

Aτ

)
· Cj,τ , (Q12.10)
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where we have used (Q12.8) in the final step.
We adopt the Calvo (1983) price setting friction. Each period of time “nature”

draws a signal to the firm which may be a “green light” or a “red light” with prob-
abilities η and 1− η, respectively. These probabilities are the same for all firms in the
economy. A firm which has just received a green light can change its price optim-
ally in that period but must maintain that price (corrected for the core inflation rate,
π∗) until the next green light is received. The objective function for a firm that has
received a green light at the start of period t is given by:

ΩG
t ≡

[(
Qt,t − Wt

At

)
·
(

Pt

Qt,t

)ε

· Ct

]

+
1 − η

1 + Rt+1
·
[(

(1 + π∗) Qt,t − Wt+1

At+1

)
·
(

Pt+1

(1 + π∗) Qt,t

)ε

· Ct+1

]

+
(1 − η)2

(1 + Rt+1) (1 + Rτ+2)
·
[ (

(1 + π∗)2 Qt,t − Wt+2

At+2

)

×
(

Pt+2

(1 + π∗)2 Qt,t

)ε

· Ct+2

]
+ · · · , (Q12.11)

where Qt,t is the price set by the firm at time t, and in general:

Qt,t+k ≡ (1 + π∗)k · Qt,t, (for k = 1, 2, · · · ), (Q12.12)

where the first subscript denotes the time the price decision is made (period t), and
the second subscript designates the time for which the price is relevant (period t + k).
Until the next green light, the firm maintains the inflation corrected price.

(a) Explain intuitively why (Q12.11) is the correct objective function for the firm
facing a price setting decision in period t.

(b) Derive the optimal price set at time t, Qt,t.

(c) Derive an expression for the aggregate price index, Pt. Show that it can be
written in terms of Qt,t and Pt−1.

(d) Write the relative price of a re-optimizing firm at time t as qt,t ≡ Qt,t/Pt. Prove
that qt,t can be written as:

1 =

[
ηq

1/(1−µ)
t,t + (1 − η)

(
1 + π∗

1 + πt

)1/(1−µ)
]1−µ

, (Q12.13)

qt,t = µ · ΦN,t

ΦD,t
, (Q12.14)

ΦN,t = mct · Ct +
(1 − η) (1 + π∗)

1 + Rt+1

(
1 + πt+1

1 + π∗

)1+ε

· ΦN,t+1, (Q12.15)

ΦD,t = Ct +
(1 − η) (1 + π∗)

1 + Rt+1

(
1 + πt+1

1 + π∗

)ε

· ΦD,t+1, (Q12.16)

where mct ≡ Wt/ (AtPt) is real marginal cost, and 1 + πt ≡ Pt/Pt−1 is the
inflation rate.
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Question 6: Monetary policy in the New Keynesian model

[Based on Clarida, Galı́, and Getler (1999)] Consider the following basic New Keyne-
sian model of a closed economy.

xt = −φ · [Rt − Et (πt+1)] + Et (xt+1) + dt, φ > 0, (Q12.17)

πt = λxt + βEt (πt+1) + st, λ > 0, β > 0, (Q12.18)

dt = ρDdt−1 + εt, 0 ≤ ρD ≤ 1, (Q12.19)

st = ρSst−1 + ηt, 0 ≤ ρS ≤ 1, (Q12.20)

where xt ≡ yt − zt is the output gap (the difference between actual stochastic output,
yt, and the natural output level, zt), Rt is the nominal interest rate, πt ≡ Pt/Pt−1 − 1
is the inflation rate (Pt being the price level), dt is a stochastic demand shock, and
st is a stochastic supply shock. Except for Rt and πt, all variables are measured in
logarithms. The innovation terms, εt and ηt, are independent and identically distrib-
uted random variables with mean zero (Et (εt) = Et (ηt) = 0) and constant variances
(Et

(
ε2

t

)
= σ2

ε and Et

(
η2

t

)
= σ2

η )). Equation (Q12.17) is a New Keynesian “IS curve”
relating the current output gap negatively to the real interest rate, and positively to
the expected future output gap and the demand shock. Equation (Q12.18) is a New
Keynesian “Phillips curve” relating the inflation rate to the output gap, expected fu-
ture inflation, and the supply shock. The nominal interest rate is assumed to be the
instrument of monetary policy. The private sector is blessed with rational expecta-
tions.

The central bank has the following objective function which it wants to minimize:

Ωt ≡ 1

2
Et

[
∞

∑
i=0

βi ·
[
αx2

t+i + π2
t+i

]]
, (Q12.21)

where α > 0 is the relative weight placed on output gap fluctuations.

(a) Show that in this model the current output gap depends not only on the current
real interest rate and demand shock, but also on the expected value of future
real interest rates and demand shocks.

(b) Show how the New Keynesian Phillips curve differs from the standard ex-
pectation augmented Phillips curve. Show that in the New Keynesian Phillips
curve there is no lagged dependence in inflation.

(c) � Under discretionary monetary policy the central bank chooses in period t the
value of Rt+i (and thus xt+i and πt+i) such that Ωt is minimized subject to
(Q12.17)-(Q12.18). The central bank takes as given the inflation expectations
of the private sector. It re-optimizes in each period. Solve the optimization
problem and find the optimal discretionary solutions for πt, Rt, and xt.

(d) � Assume that the policy maker commits him/herself to follow a simple policy
rule of the following form:

xc
t = −ω · st, ω > 0, (Q12.22)

where xc
t is the value of the output gap that is attained under this policy rule,

and ω is the parameter of the policy rule. The central bank understands that its
rule influences private sector inflationary expectations, and takes this depend-
ence into account. Find the optimal value of ω.
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(e) Prove that the optimal rule-based inflation is lower than under discretion, and
that welfare is higher under the rule than under discretion.
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Answers

Question 1: Short questions

(a) On monopoly: in these models, each (small) producer faces a downward slop-
ing demand curve and thus has a tiny bit of marker power which can be ex-
ploited. Exploitation is limited because there are close substitutes available.
But the price will be set above marginal cost, just like a true monopolist will
do.

On competition: in these models there are many small producers who com-
pete with each other, taking each others prices parametrically. So there is no
strategic interaction between producers in that sense. Each producer is a small
agent in the overall market. (In contrast, in an oligopoly setting individual
firms very much condition their behaviour on the behaviour of their few com-
petitors.)

(b) It is “Keynesian” because it has some features reminiscent of Keynesian eco-
nomics. For example, the output multiplier is larger under monopolistic com-
petition than under perfect competetition–see equation (12.20). This is because
the additional profit income boosts consumption somewhat. Also, there is
an intimate link between the size of the multiplier and the welfare effect of
public spending under monopolistic competition (and absent under perfect
competition)–see equation (12.40).

It has un-Keynesian features as well. For example, private consumption falls
as a result of an increase in public consumption–see equation (12.21). The main
effect operates via the labour supply channel, a new classical mechanism. In
Keynesian theory, public consumption helps boost aggregate demand when
it is too low. The usual assumption in Keynesian economics is that of price
and/or wage stickiness. The New Keynesian model uses monopolistic price
setting in addition to the Calvo trick of infrequent price setting moments.

(c) The fixed costs are given by F in (12.10) and incurred if a firm is active, i.e. pro-
duces a positive amount of output. In the presence of fixed costs, the firm faces
increasing returns to scale at firm level because average cost falls as output ex-
pands. Each firm sets its price as a markup on its marginal cost, thus covering
its fixed cost. With free entry or exit of firms, a zero-profit equilibrium is at-
tained. The scale of each active firm is equal to Ȳ = F/[(µ − 1)k]. Hence, if F
were zero, the equilibrium size of individual firms would be indeterminate.

Question 2: Cost function for a Dixit-Stiglitz technology

(a) Let us write the production function in general terms as:

Y = F (N; X1, X2, · · · , XN) . (A12.1)
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Suppose we hold N constant but multiply every input by a positive scalar, λ.
We get from (Q12.1):

F (N; λX1, λX2, · · · , λXN) = Nη ·
[

1

N
·

N

∑
i=1

(λXi)
1/µ

]µ

= Nη ·
[

λ1/µ 1

N
·

N

∑
i=1

X
1/µ
i

]µ

= λNη ·
[

1

N
·

N

∑
i=1

(λXi)
1/µ

]µ

= λF (N; X1, X2, · · · , XN) . (A12.2)

Hence, output is also multiplied by λ, so (Q12.1) features constant returns to
the inputs, Xi.

(b) “Returns to specialization” is the production counterpart to what we call “pref-
erence for diversity” in the utility function. Following the treatment of the lat-
ter in section 12.1 we define average returns to specialization as:

ARTS ≡
F
(

N; X
N , X

N , · · · , X
N

)
F (1; X, 0, · · · , 0)

. (A12.3)

The numerator represents output that is produced if N varieties are employed
and each variety is set equal to Xi = X/N. We find:

F

(
N;

X

N
,

X

N
, · · · ,

X

N

)
= Nη ·

[
1

N
·

N

∑
i=1

(
X

N

)1/µ
]µ

= Nη ·
[

1

N
·
(

X

N

)1/µ N

∑
i=1

1

]µ

= XNη ·
[

1

N
·
(

1

N

)1/µ

· N

]µ

= XNη−1. (A12.4)

The denominator represents output that is produced if only one variety is em-
ployed (N = 1), say X1 = X and X2 = X3 = · · · XN = 0 (it does not matter
which particular input we use because the model is symmetric). Now we find:

F (1; X, 0, · · · , 0) = 1η ·
[

1

1
· X1/µ

]µ

= X. (A12.5)

By using (A12.4) and (A12.5) in (A12.3) we find:

ARTS ≡ Nη−1 ≡ φ (N) .

The elasticity of this function with respect to N is the marginal returns to spe-
cialization:

MRTS ≡ Nφ′ (N)

φ (N)
= η − 1.
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(c) The cost function minimizes total cost (by choice of inputs) of producing a
given level of output (taking as given input prices, Pi). Note that (Q12.1) can
be rewritten as:

Y∗ =

[
N

∑
i=1

X
1/µ
i

]µ

, (A12.6)

Y∗ ≡ YNµ−η is transformed output. We derive the minimum cost of producing
Y∗. The Lagrangian for this problem is:

L ≡
N

∑
i=1

PiXi + λ ·
[

Y∗ −
[

N

∑
i=1

X
1/µ
i

]µ]
,

where λ is the Lagrange multiplier. The first-order conditions are:

Pi = λµ ·
[

N

∑
i=1

X
1/µ
i

]µ−1

· 1

µ
X

(1−µ)/µ
i , (for all i).

Compare two varieties, i and j and we obtain:

Pi

Pj
=

(
Xi

Xj

)(1−µ)/µ

, (A12.7)

or:

X
1/µ
i = X

1/µ
j P

1/(µ−1)
j P

1/(1−µ)
i .

Summing over all i = 1, · · · , N we thus get:

N

∑
i=1

X
1/µ
i = X

1/µ
j P

1/(µ−1)
j ·

N

∑
i=1

P
1/(1−µ)
i .

Raising both sides to the power µ we get:

Y∗ =

[
N

∑
i=1

X
1/µ
i

]µ

= XjP
µ/(µ−1)
j ·

[
N

∑
i=1

P
1/(1−µ)
i

]µ

, (A12.8)

where we have used (A12.6). By rewriting somewhat we find that spending on
input j equals:

PjXj =
Y∗[

∑
N
i=1 P

1/(1−µ)
i

]µ · P
1/(1−µ)
j . (A12.9)

This expression is the derived demand for input j.

Total cost equals the sum of spending on all inputs, i.e. summing over j =
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1, · · · , N we find from (A12.9):

TCY ≡
N

∑
j=1

PjXj =
N

∑
j=1

Y∗[
∑

N
i=1 P

1/(1−µ)
i

]µ · P
1/(1−µ)
j

=
Y∗[

∑
N
i=1 P

1/(1−µ)
i

]µ ·
[

N

∑
j=1

P
1/(1−µ)
j

]

= Y∗ ·
[

N

∑
i=1

P
1/(1−µ)
i

]1−µ

.

Noting the definition of Y∗ we can thus find the final expression in terms of
output itself (rather than transformed output):

TCY ≡ Nµ−ηY ·
[

N

∑
i=1

P
1/(1−µ)
i

]1−µ

. (A12.10)

(d) By partially differentiating (A12.10) with respect to some j we find:

∂TCY

∂Pj
= Nµ−ηY · (1 − µ)

[
N

∑
i=1

P
1/(1−µ)
i

]−µ
1

1 − µ
P

1/(1−µ)−1
j

= Nµ−ηY ·
[

N

∑
i=1

P
1/(1−µ)
i

]−µ

P
µ/(1−µ)
j . (A12.11)

But this is just the derived demand for Xj given above (in equation (A12.9)).
Hence, for any input j we have that:

Xj =
∂TCY

∂Pj
. (A12.12)

This is Shephard’s Lemma (or the derivative property of the cost function).

Question 3: The multiplier when taxes are distortionary

(a) The representative household maximizes utility,

U ≡ Cα(1 − L)1−α, 0 < α < 1, (A12.13)

subject to the budget constraint:

N

∑
j=1

PjCj = (1 − τL) WL + Π − T0, (A12.14)

where C is defined as in the book:

C ≡ Nη

[
N−1

N

∑
j=1

Cj
(θ−1)/θ

]θ/(θ−1)

, θ > 1, η ≥ 1. (A12.15)
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The method of two-stage budgeting is explained in detail in Intermezzo 12.1.

The top level problem asserts that P · C = ∑
N
j=1 PjCj and writes the budget

constraint (A12.14) as PC = (1 − τL) WL + Π − T0. The top-level choice is
about C and L. The Lagrangian is:

L ≡ Cα(1 − L)1−α + λ · [(1 − τL) WL + Π − T0 − PC] ,

and the first-order conditions are:

∂L
∂C

= αCα−1(1 − L)1−α − λP = 0,

∂L
∂L

= − (1 − α) Cα(1 − L)−α + λ (1 − τL) W = 0.

Eliminating λ we thus get:

λ (1 − τL) W

λP
=

(1 − α) Cα(1 − L)−α

αCα−1(1 − L)1−α
⇔

(1 − τL) W

P
=

1 − α

α
· C

1 − L
. (A12.16)

For a given real wage rate, W/P, and increase in τL decreases the ratio C/ (1 − L).
By using (A12.16) in the slightly rewritten budget constraint we find:

PC + W (1 − τL) (1 − L) = (1 − τL) W + Π − T0

PC +
1 − α

α
· PC = · · ·

PC = α · [(1 − τL) W + Π − T0] (A12.17)

Using (A12.17) in (A12.16) we find:

(1 − τL) W(1 − L) =
1 − α

α
· PC

= (1 − α) · [(1 − τL) W + Π − T0] . (A12.18)

The indirect utility function is:

V =
IF

PV
,

with:

IF ≡ (1 − τL) W + Π − T0,

PV ≡
(

P

α

)α ( (1 − τL) W

1 − α

)1−α

.

The bottom-level problem is solved exactly as in Intermezzo 12.1. We thus find
that:

P ≡ N−η

[
N−θ

N

∑
j=1

P1−θ
j

]1/(1−θ)

, (A12.19)

Cj

C
= N−(θ+η)+ηθ

(
Pj

P

)−θ

, j = 1, . . . , N. (A12.20)
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(b) From (A12.17) we find the required partial equilibrium results:

∂C

∂T0
= − α

P
< 0,

∂C

∂τL
= −αW

P
< 0.

Both lead to a reduction in consumption. (The effects on Cj follow trivially
from (A12.20).) From (A12.18) we find the results for labour supply:

− ∂L

∂T0
= (1 − α) · ∂

∂T0

[
(1 − τL) W + Π − T0

(1 − τL) W

]
= − 1 − α

(1 − τL) W
< 0,

− ∂L

∂τL
= (1 − α) · ∂

∂τL

[
(1 − τL) W + Π − T0

(1 − τL) W

]

= (1 − α) · ∂

∂τL

[
1 +

Π − T0

(1 − τL) W

]

= (1 − α)
[Π − T0] · W

[(1 − τL) W]2
.

It follows that ∂L/∂T0 > 0, i.e. the income effect increases labour supply. Also,
the sign of ∂L/∂τL is determined by the sign of − [Π − T0]. Since Π = 0 initially
and T0 > 0, Π − T0 < 0 then ∂L/∂τL < 0, i.e. the substitution effect dominates
the income effect in labour supply.

(c) The full model is given by:

Y = C + G, (A12.21)

PC = αIF, (A12.22)

IF ≡ (1 − τL) W + Π − T0, (A12.23)

Π =
1

θ
PY − WNF, (A12.24)

τLWL + T0 = PG + WLG, (A12.25)

P = N1−ηµWk, (A12.26)

(1 − τL) W(1 − L) = (1 − α) IF. (A12.27)

Compared to the model in Table 12.1 in the book, only (A12.23) and (A12.25)
are affected.

To derive the short-run results, we note that N = N0 (fixed) so that w ≡ W/P =

N
η−1
0 / (µk) = w0 (fixed). The core expressions are:

Y = α (1 − τL) w0 + α
Π − T0

P
+ G,

Π

P
=

1

θ
Y − w0N0F,

τLw0L = G + w0LG − T0

P
,

L = α − 1 − α

(1 − τL) w0

Π − T0

P
. (A12.28)

The endogenous variables are Y, Π/P, L, and one of T0/P and τL.
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For the lump-sum tax case we find:

dY =
α

θ
dY − αd

T0

P
+ dG,

τLw0dL = dG − d
T0

P
,

(1 − τL) w0dL = − (1 − α)

[
1

θ
dY − d

T0

P

]
.

In matrix format:
 1 − α/θ 0 α

0 τLw0 1
− (1 − α) /θ − (1 − τL) w0 1 − α


 ·


 dY

dL
d (T0/P)


 =


 1

1
0


 · dG.

The determinant of the matrix on the left-hand side is:

|∆| = τL (1 − α) w0 + (1 − τL) w0

[
1 − α

θ

]
> 0.

Using Cramer’s Rule we find the comparative static results:

dY

dG
=

1

|∆| ·
∣∣∣∣∣∣

1 0 α
1 τLw0 1
0 − (1 − τL) w0 1 − α

∣∣∣∣∣∣ =
(1 − α) w0

|∆| > 0,

dL

dG
=

1

|∆| ·
∣∣∣∣∣∣

1 − α/θ 1 α
0 1 1

− (1 − α) /θ 0 1 − α

∣∣∣∣∣∣ =
(1 − α) (1 − 1/θ)

|∆| > 0,

d (T0/P)

dG
=

1

|∆| ·
∣∣∣∣∣∣

1 − α/θ 0 1
0 τLw0 1

− (1 − α) /θ − (1 − τL) w0 0

∣∣∣∣∣∣
=

τL
1−α

θ w0 + (1 − τL) w0

[
1 − α

θ

]
|∆| > 0.

If τL is strictly positive, we find that
d(T0/P)

dG < 1 because the employment
expansion generates additional tax revenue (and thus reduces the needed in-
crease in T0/P). The intuition behind these results is simple. The tax increase
induces an income effect which prompts the household to increase labour sup-
ply (and thus production).

(d) When the government keeps T0/P constant and instead changes τL to balance
the budget we find:

dY = −αw0dτL +
α

θ
dY + dG,

τLw0dL + w0LdτL = dG,

− (1 − τL) w0dL − w0(1 − L)dτL = (1 − α)

[
1

θ
dY − w0dτL

]
.
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In matrix format we obtain:
 1 − α/θ 0 αw0

0 τLw0 w0L
− (1 − α) /θ − (1 − τL) w0 (L − α) w0


 ·


 dY

dL
dτL


 =


 1

1
0


 · dG.

The determinant of the matrix on the left-hand side is:

|∆∗| =
w2

0

θ
· [(θ − α) (L − ατL) + α (1 − α) τL] > 0.

(We know that |∆∗| > 0 because the economy is on the upward sloping part
of the Laffer curve, i.e. the tax rate must increase if government consumption
goes up. See equation (A12.29) below.) The output multiplier is thus:

dY

dG
=

1

|∆∗| ·
∣∣∣∣∣∣

1 0 αw0

1 τLw0 w0L
0 − (1 − τL) w0 (L − α) w0

∣∣∣∣∣∣ =
(L − α) w2

0

|∆∗| > 0,

where we assume that T0 > Π = 0 so that L > α (see (A12.28) above)). For
employment and the tax rate we find:

dL

dG
=

1

|∆∗| ·
∣∣∣∣∣∣

1 − α/θ 1 αw0

0 1 w0L
− (1 − α) /θ 0 (L − α) w0

∣∣∣∣∣∣ =
(L − α) (1 − 1/θ) w0

|∆∗| > 0,

dτL

dG
=

1

|∆∗| ·
∣∣∣∣∣∣

1 − α/θ 0 1
0 τLw0 1

− (1 − α) /θ − (1 − τL) w0 0

∣∣∣∣∣∣
=

τL (1 − α) w0 + (1 − τL) w0 (θ − α)

θ · |∆∗| > 0. (A12.29)

Because there is negative non-labour income (Π − T0 < 0), the income effect
dominates the substitution effect in labour supply. The tax increase increases
labour supply and thus output.

(e) For this scenario we find:

dY = −αw0dτL +
α

θ
dY,

τLw0dL + w0LdτL = w0dLG,

− (1 − τL) w0dL − w0(1 − L)dτL = (1 − α)

[
1

θ
dY − w0dτL

]
.

In matrix format:
 1 − α/θ 0 αw0

0 τLw0 w0L
− (1 − α) /θ − (1 − τL) w0 (L − α) w0


 ·


 dY

dL
dτL


 =


 0

1
0


 · w0dLG.

The comparative static effects are thus:

dY

dLG
=

1

|∆∗| ·
∣∣∣∣∣∣

0 0 αw0

1 τLw0 w0L
0 − (1 − τL) w0 (L − α) w0

∣∣∣∣∣∣ = −α (1 − τL) w2
0

|∆∗| < 0,
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dL

dLG
=

1

|∆∗| ·
∣∣∣∣∣∣

1 − α/θ 0 αw0

0 1 w0L
− (1 − α) /θ 0 (L − α) w0

∣∣∣∣∣∣ =
[(θ − α) L − α (θ − 1)] w0

θ · |∆∗| < 0,

dτL

dLG
=

1

|∆∗| ·
∣∣∣∣∣∣

1 − α/θ 0 0
0 τLw0 1

− (1 − α) /θ − (1 − τL) w0 0

∣∣∣∣∣∣ =
[1 − α/θ] (1 − τL) w0

|∆∗| > 0.

By firing “useless” civil servants, the tax rate falls, and output and private
employment increase.

Question 4: Consumers in the New Keynesian model

(a) Note that (Q12.6) can be written as:

Cτ ≡ Nη ·
[

N−1
N

∑
j=1

Cj,τ
1/µ

]µ

, (A12.30)

with η = µ. In the text it is shown that η > 1 implies a preference for diversity.

(b) The derivations are structurally the same as for part (c) of question 2 above.
The Lagrangian is:

L ≡
N

∑
j=1

Pj,τXj,τ + λ ·
[

Cτ −
[

N

∑
j=1

C
1/µ
j,τ

]µ]
,

and the first-order conditions are:

Pi,τ

Pj,τ
=

(
Ci,τ

Cjτ

)(1−µ)/µ

.

It follows that total spending is:

N

∑
j=1

Pj,τCj,τ = Cτ ·
[

N

∑
j=1

P
1/(1−µ)
j,τ

]1−µ

≡ PτCτ , (A12.31)

where Pτ is the true price index:

Pτ ≡
[

N

∑
j=1

P
1/(1−µ)
j,τ

]1−µ

. (A12.32)

The conditional demand curve is:

Cj,τ

Cτ
=

(
Pτ

Pj,τ

)ε

, (A12.33)

where ε ≡ µ/ (µ − 1) > 1 is the price elasticity of demand (in absolute terms).
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(c) The household chooses sequences for Cτ , Lτ , Bτ , and Mτ in order to maximize
lifetime utility subject to the budget identity (and a solvency condition). The
Lagrangian expression is:

Lt ≡
∞

∑
τ=t

(
1

1 + ρ

)τ−t

·
[

C1−1/σ
τ − 1

1 − 1/σ
− γL

L1+θ
τ

1 + θ
+ γM

(Mτ/Pτ)1−1/η − 1

1 − 1/η

−λτ ·
[
Bτ + Mτ + PτCτ − Wτ Lτ − (1 + Rτ−1) Bτ−1 − Mτ−1 − PτTτ

]]
,

where λτ is the Lagrange multiplier for the constraint in period τ. The first-
order conditions for this problem (for τ = t, t + 1, t + 2, ...) are:

∂Lt

∂Cτ
=

(
1

1 + ρ

)τ−t [
C−1/σ

τ − λτPτ

]
= 0,

∂Lt

∂Lτ
=

(
1

1 + ρ

)τ−t [
−γLLθ

τ + λτWτ

]
= 0,

∂Lt

∂Mτ
=

(
1

1 + ρ

)τ−t
[
−λτ +

γM

Pτ
·
(

Mτ

Pτ

)−1/η

+
λτ+1

1 + ρ

]
= 0,

∂Lt

∂Bτ
=

(
1

1 + ρ

)τ−t [
−λτ + (1 + Rτ)

λτ+1

1 + ρ

]
= 0.

For the planning period (τ = t) these first-order conditions can be written in a
more compact format as:

C−1/σ
t = λtPt, (A12.34)

γLLθ
t = λtWt, (A12.35)

λt =
γM

Pt
·
(

Mt

Pt

)−1/η

+
λτ+1

1 + ρ
, (A12.36)

λt = (1 + Rt)
λt+1

1 + ρ
. (A12.37)

By combining (A12.34) and (A12.35) we find:

γLLθ
t C1/σ

t =
Wt

Pt
, (A12.38)

i.e. the marginal rate of substitution between labour and consumption is equated
to the real wage rate. By using (A12.36)-(A12.37) we find:

[λt =]
γM

Pt
·
(

Mt

Pt

)−1/η

+
λt+1

1 + ρ
= (1 + Rt)

λt+1

1 + ρ
⇔

γM ·
(

Mt

Pt

)−1/η

=
Rt

1 + Rt
λtPt ⇔

γM ·
(

Mt

Pt

)−1/η

=
Rt

1 + Rt
C−1/σ

t , (A12.39)
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where we have used (A12.37) in going from the first to the second line, and
(A12.34) in going from the second to the third line. Equation (A12.39) says
that the marginal rate of substitution between real money balances and con-
sumption is equated to the nominal interest rate factor, Rt/ (1 + Rt) (see also
Chapter 11).

Finally, by using (A12.34) and (A12.37) we find:

1

Pt
C−1/σ

t =
1 + Rt

1 + ρ

1

Pt+1
C−1/σ

t+1 ⇔
(

Ct+1

Ct

)1/σ

=
1 + rt

1 + ρ
, (A12.40)

where we have used the definition of the real interest rate:

1 + rt ≡ Pt (1 + Rt)

Pt+1
=

1 + Rt

1 + πt+1
, (A12.41)

where πt+1 ≡ (Pt+1 − Pt) /Pt is the (expected) inflation rate. The key expres-
sions characterizing the household’s decisions are (A12.38)-(A12.40).

(d) Taking logarithms, equation (A12.34) can be written as:

ln γL + θ ln Lt +
1

σ
ln Ct = ln Wt − ln Pt. (A12.42)

Along the steady-state path (denoted by stars), we thus obtain:

ln γL + θ ln L∗ +
1

σ
ln C∗ = ln W∗

t − ln P∗
t . (A12.43)

Deducting (A12.43) from (A12.44) we obtain:

θ L̃t +
1

σ
C̃t = W̃t − P̃t,

where L̃t ≡ ln (Lt/L∗), C̃t ≡ ln (Ct/C∗), W̃t ≡ ln (Wt/W∗
t ), and P̃t ≡ ln (Pt/P∗

t ).

Similarly, from (A12.39) we find:

ln γM − 1

η
[ln Mt − ln Pt] +

1

σ
ln Ct = ln

(
Rt

1 + Rt

)
,

ln γM − 1

η
[ln M∗

t − ln P∗
t ] +

1

σ
ln C∗ = ln

(
R∗

1 + R∗

)
,

where R∗ = r∗ + π∗ = ρ + π∗ is the steady-state nominal interest rate. Around
Rt = R∗, we can use the approximation:

ln

(
Rt

1 + Rt

)
≈ ln

(
R∗

1 + R∗

)
+

1 + R∗

R∗
(1 + R∗) · 1 − R∗ · 1

(1 + R∗)2
· [Rt − R∗]

= ln

(
R∗

1 + R∗

)
+

1

R∗ ·
[

Rt − R∗

R∗

]
.
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We thus find:

− 1

η

[
M̃t − P̃t

]
+

1

σ
C̃t =

1

R∗ ·
[

Rt − R∗

R∗

]
, (A12.44)

where M̃t ≡ ln (Mt/M∗
t ).

From (A12.40) we find:

ln Ct+1 − ln Ct = σ · [ln (1 + rt) − ln (1 + ρ)] ,

ln C∗ − ln C∗ = σ · [ln (1 + ρ) − ln (1 + ρ)] ,

so that:

C̃t+1 − C̃t = σ · ln

(
1 + rt

1 + ρ

)
≈ σ · rt − ρ

1 + ρ
,

where we have used the following approximation (for rt ≈ r∗ = ρ):

ln

(
1 + rt

1 + ρ

)
≈ ln

(
1 + ρ

1 + ρ

)
+

1 + ρ

1 + ρ

1

1 + ρ
· [rt − ρ] =

rt − ρ

1 + ρ
.

Finally, the relationship (A12.41) can be used to deduce:

1 + Rt = 1 + rt + πt+1 + rtπt+1,

1 + R∗ = 1 + ρ + π∗ + ρπ∗,

so that:

Rt − R∗ ≈ (rt − ρ) + (πt+1 − π∗) ,

where we ignore the cross term, rtπt+1 − ρπ∗.

Summarizing, the household’s (approximated) decision rules are given by:

θ L̃t +
1

σ
C̃t = W̃t − P̃t

− 1

η

[
M̃t − P̃t

]
+

1

σ
C̃t =

1

R∗ ·
[

Rt − R∗

R∗

]
,

C̃t+1 − C̃t = σ · rt − ρ

1 + ρ
,

Rt − R∗ = (rt − ρ) + (πt+1 − π∗) .

Question 5: Producers in the New Keynesian model

(a) A lot of the intuition is explained in section 12.3.3 in the book, though in terms
of a cost minimization problem (rather than a profit maximization problem).
Key features of (Q12.11) are:

• The firm chooses Qt,t at time t and re-optimizes with probability η in
period t + 1. If the firm gets a green light in period t + 1, it re-optimizes.
It formulates ΩG

t+1 and chooses Qt+1,t+1. This choice does not affect the
choice of Qt,t in period t.
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• There is a probability 1 − η that there is a red light in period t + 1. In that
case the firm sets Qt,t+1 = (1 + π∗) Qt,t (the inflation correction) but faces
marginal cost Wt+1/At+1 and the aggregate price index Pt+1.

• The probability that there are two red lights in a row (periods t + 1 and

t + 2) is (1 − η)2. In that case, the price is Qt,t+2 = (1 + π∗)2 Qt,t, and the
firm faces marginal cost Wt+2/At+2 and the aggregate price index Pt+2.

• Because time is involved and profits are in nominal terms, the firm dis-
counts future profits at the nominal interest rate.

(b) The optimal Qt,t is set such that ΩG
t is maximized. Differentiating ΩG

t with re-
spect to Qt,t (holding constant the aggregate variables, Pt+τ , Ct+τ , At+τ , Wt+τ ,
and Rt+τ) we find:

dΩG
t

dQt,t
=

[
1 − ε · Qt,t − MCt

Qt,t

]
·
(

Pt

Qt,t

)ε

· Ct

+
(1 − η) (1 + π∗)

1 + Rt+1
·
[

1 − ε · (1 + π∗) Qt,t − MCt+1

(1 + π∗) Qt,t

]

×
(

Pt+1

(1 + π∗) Qt,t

)ε

· Ct+1

+
(1 − η)2 (1 + π∗)2

(1 + Rt+1) (1 + Rt+2)
·
[

1 − ε · (1 + π∗)2 Qt,t − MCt+2

(1 + π∗)2 Qt,t

]

×
(

Pt+2

(1 + π∗)2 Qt,t

)ε

· Ct+2 + · · · ,

where MCt+τ ≡ Wt+τ/At+τ stands for marginal cost at time t + τ. Several
simplifications can be made. First, the terms in square brackets can be written
as: [

1 − ε · Qt,t − MCt

Qt,t

]
= 1 − ε + ε

MCt

Qt,t

=
1 − ε

Qt,t
· [Qt,t − µ · MCt] ,

where µ ≡ ε/ (ε − 1) is the markup. Similarly, for later periods we find:[
1 − ε · (1 + π∗)k Qt,t − MCt+k

(1 + π∗)k Qt,t

]
= 1 − ε + ε

MCt+k

(1 + π∗)k Qt,t

=
1 − ε

Qt,t
·
[

Qt,t − µ · MCt+k

(1 + π∗)k

]
.
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Gathering results, we find the first-order condition:

Q1+ε
t,t

1 − ε
· dΩG

t

dQt,t
= [Qt,t − µ · MCt] · Pε

t · Ct

+
(1 − η) (1 + π∗)

1 + Rt+1
·
[

Qt,t − µ · MCt+1

1 + π∗

]
·
(

Pt+1

1 + π∗

)ε

· Ct+1

+
(1 − η)2 (1 + π∗)2

(1 + Rt+1) (1 + Rt+2)
·
[

Qt,t − µ · MCt+2

(1 + π∗)2

]
·
(

Pt+2

(1 + π∗)2

)ε

· Ct+2

+ · · · = 0,

Solving for Qt,t we find:

ΞD · Qt,t = µ · ΞN ,

where ΞD and ΞN are defined as:

ΞD ≡ Pε
t Ct +

(1 − η) (1 + π∗)1−ε

1 + Rt+1
Pε

t+1Ct+1 +
(1 − η)2 (1 + π∗)2(1−ε)

(1 + Rt+1) (1 + Rt+2)
Pε

t+2Ct+2 + · · · ,

and:

ΞN ≡ MCtP
ε
t Ct +

(1 − η) (1 + π∗)−ε

1 + Rt+1
MCt+1Pε

t+1Ct+1

+
(1 − η)2 (1 + π∗)−2ε

(1 + Rt+1) (1 + Rt+2)
MCt+2Pε

t+2Ct+2 + · · · .

In compact notation we can write:

Qt,t = µ · ∑
∞
k=0 (1 − η)k (1 + π∗)−εk Dt,t+kMCt+kPε

t+kCt+k

∑
∞
k=0 (1 − η)k (1 + π∗)(1−ε)k Dt,t+kPε

t+kCt+k

, (A12.45)

where Dt,t+k is a discounting factor, such that Dt,t = 1 and:

Dt,k ≡ 1

1 + Rt+1
· 1

1 + Rt+2
· · · · · 1

1 + Rt+k
, (for k = 1, 2, · · · ). (A12.46)

(c) As is explained in the text, η (1 − η)s is the fraction of firms which last changed
their prices in period t − s. The aggregate price index in period t is given by:

P
1/(1−µ)
t ≡

N

∑
j=1

P
1/(1−µ)
j,t

= ηQ
1/(1−µ)
t,t + η (1 − η) Q

1/(1−µ)
t−1,t + η (1 − η)2 Q

1/(1−µ)
t−2,t + · · ·

= ηQ
1/(1−µ)
t,t + η (1 − η) [(1 + π∗) Qt−t,t−1]

1/(1−µ)

+η (1 − η)2
[
(1 + π∗)2 Qt−2,t−2

]1/(1−µ)
+ · · · . (A12.47)
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The aggregate price index one period before is given by:

P
1/(1−µ)
t−1 ≡

N

∑
j=1

P
1/(1−µ)
j,t−1

= ηQ
1/(1−µ)
t−1,t−1 + η (1 − η) Q

1/(1−µ)
t−2,t−1 + η (1 − η)2 Q

1/(1−µ)
t−3,t−1 + · · ·

=
(1 + π∗)−1/(1−µ)

1 − η
·
[

η (1 − η) [(1 + π∗) Qt−1,t−1]
1/(1−µ)

+η (1 − η)2
[
(1 + π∗)2 Qt−2,t−2

]1/(1−µ)

+η (1 − η)3
[
(1 + π∗)3 Qt−3,t−3

]1/(1−µ)
+ · · ·

]

=
(1 + π∗)−1/(1−µ)

1 − η
·
[

P
1/(1−µ)
t − ηQ

1/(1−µ)
t,t

]
, (A12.48)

where we have used (A12.47) in the final step. Rewriting (A12.48) we obtain:

P
1/(1−µ)
t = ηQ

1/(1−µ)
t,t + (1 − η) [(1 + π∗) Pt−1]

1/(1−µ) ⇔
Pt =

[
ηQ

1/(1−µ)
t,t + (1 − η) [(1 + π∗) Pt−1]

1/(1−µ)
]1−µ

. (A12.49)

The current aggregate price is a CES weighted sum of the currently optimal
price, Qt,t, and the core-inflation-corrected lagged aggregate price. (1 + π∗) Pt−1.

(d) Equation (Q12.13) follows from (A12.49) and noting that:

Pt =

[
P

1/(1−µ)
t

(
η

(
Qt,t

Pt

)1/(1−µ)

+ (1 − η)

[
(1 + π∗)

Pt−1

Pt

]1/(1−µ)
)]1−µ

= Pt ·
[

ηq
1/(1−µ)
t,t + (1 − η)

(
1 + π∗

1 + πt

)1/(1−µ)
]1−µ

. (A12.50)

The expression in (Q12.13), is obtained from (A12.45) by dividing by Pt and
writing the numerator in terms of real marginal cost:

qt,t ≡ Qt,t

Pt
= µ · ΦN,t

ΦD,t
,

ΦN,t ≡
∞

∑
k=0

(1 − η)k (1 + π∗)−εk Dt,t+kmct+k

(
Pt+k

Pt

)1+ε

Ct+k, (A12.51)

ΦD,t ≡
∞

∑
k=0

(1 − η)k (1 + π∗)(1−ε)k Dt,t+k

(
Pt+k

Pt

)ε

Ct+k. (A12.52)
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Using (A12.51) we can write ΦN,t as:

ΦN,t ≡ mct · Ct +
(1 − η) (1 + π∗)

1 + Rt+1
mct+1

(
1 + πt+1

1 + π∗

)1+ε

Ct+1

+
(1 − η)2 (1 + π∗)2

(1 + Rt+1) (1 + Rt+2)
mct+2

(
(1 + πt+1) (1 + πt+2)

(1 + π∗)2

)1+ε

Ct+2

+ · · · . (A12.53)

Similarly, we can write ΦN,t+1 as:

ΦN,t+1 ≡ mct+1 · Ct+1 +
(1 − η) (1 + π∗)

1 + Rt+2
mct+2

(
1 + πt+2

1 + π∗

)1+ε

Ct+2

+
(1 − η)2 (1 + π∗)2

(1 + Rt+2) (1 + Rt+3)
mct+3

(
(1 + πt+2) (1 + πt+3)

(1 + π∗)2

)1+ε

Ct+3

+ · · · . (A12.54)

Using (A12.54) we immediately see that (A12.53) can be written recursively as:

ΦN,t ≡ mct · Ct +
(1 − η) (1 + π∗)

1 + Rt+1

(
1 + πt+1

1 + π∗

)1+ε

· ΦN,t+1,

which is the result to be proved.

Similarly, for ΦD,t and ΦD,t+1 we find:

ΦD,t ≡ Ct +
(1 − η) (1 + π∗)

1 + Rt+1

(
1 + πt+1

1 + π∗

)ε

Ct+1

+
(1 − η)2 (1 + π∗)2

(1 + Rt+1) (1 + Rt+2)

(
(1 + πt+1) (1 + πt+2)

(1 + π∗)2

)ε

Ct+2 + · · · ,

and:

ΦD,t+1 ≡ Ct+1 +
(1 − η) (1 + π∗)

1 + Rt+2

(
1 + πt+2

1 + π∗

)ε

Ct+2

+
(1 − η)2 (1 + π∗)2

(1 + Rt+2) (1 + Rt+3)

(
(1 + πt+2) (1 + πt+3)

(1 + π∗)2

)ε

Ct+3 + · · · .

It follows that:

ΦD,t ≡ Ct +
(1 − η) (1 + π∗)

1 + Rt+1

(
1 + πt+1

1 + π∗

)ε

· ΦD,t+1,

which is (Q12.16).
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Question 6: Monetary policy in the New Keynesian model

(a) Equation (Q12.17) is a first-order expectational difference equation that we can
solve forward in time. We show some steps. We know that in period t + 1:

xt+1 = −φ · [Rt+1 − Et+1 (πt+2)] + Et+1 (xt+2) + dt+1.

Substituting this result into (Q12.17) we thus get:

xt = −φ [Rt − Et (πt+1)] + +dt

Et (−φ [Rt+1 − Et+1 (πt+2)] + Et+1 (xt+2) + dt+1)

= −φ [Rt − Et (πt+1)] − φEt [Rt+1 − Et+1 (πt+2)]

+Et (Et+1 (xt+2)) + Et (dt+1) + dt

= −φ [[Rt − Et (πt+1)] + Et [Rt+1 − Et+1 (πt+2)]]

+dt + Et (dt+1) + Et (xt+2) ,

where we have used the fact that

Et (Et+1 (πt+2)) = Et (πt+2) , and Et (Et+1 (xt+2)) = Et (xt+1)

in the final step (see also Chapter 3). But we can keep substituting, i.e. the next
one to substitute would be xt+2. But the pattern should be clear by now. We
obtain:

xt = Et

[
∞

∑
i=0

(−φ · [Rt+i − πt+1+i] + dt+i)

]
, (A12.55)

i.e. the current gap depends on the expectation of all current and real interest
rates and demand shocks.

(b) The standard expectations augmented Phillips curve is the inverse of the Lucas
supply curve. We would write the Lucas supply curve, for example, as:

xt = γ · [πt − Et−1 (πt)] + s∗t , (A12.56)

with γ > 0. The output gap depends on the expectational error, for example
because workers are fooled and supply too much (if πt > Et−1 (πt)) or too
little (if πt < Et−1 (πt)) labour. Solving (A12.56) for inflation we would get the
following standard Phillips curve:

πt = Et−1 (πt) +
1

γ
· [xt − s∗t ] . (A12.57)

Current inflation depends on what is was expected to be in the previous period,
on the current output gap, and on the current supply shock.

By solving (Q12.18) forward in time we obtain for the New Keynesian Phillips
curve:

πt = Et

[
∞

∑
i=0

βi · [λxt+i + st+i]

]
. (A12.58)

In this specification, current inflation depends on the expectation regarding
current and future output gaps and supply shocks.
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(c) To solve this problem, we follows the two-step procedure suggested by Clarida
et al. (1999, p. 1671). In the first step we let the central banker minimize Ωt

subject to the Phillips curve (Q12.18). In the second step we find the implied
optimal interest rate.

The Lagrangian for the first step problem is:

L ≡ 1

2

[
αx2

t + π2
t

]
+ µt · [πt − λxt − (βEt (πt+1) + st)]

+
1

2
Et

[
∞

∑
i=1

βi ·
[
αx2

t+i + π2
t+i

]]

+Et

∞

∑
i=1

µt+i · [πt+i − λxt+i − (βπt+i+1 + st+i)] ,

where µt+i are the Lagrange multipliers. In principle, the central banker chooses
xt+i and πt+i for all i = 0, 1, 2, · · · , but is re-optimizes every period so the only
first-order condition of interest in period t is the one pertaining to πt and xt

(appearing only on the first line of the Lagrangian expression. We easily find:

∂L
∂πt

= πt + µt = 0,

∂L
∂xt

= αxt − λµt = 0.

Combining these expressions we obtain:

xt = −λ

α
πt. (A12.59)

This is a policy of leaning against the wind: if inflation is higher than the target
(of zero) then the central bank reduces the output gap (by raising the nominal
interest rate) and vice versa if inflation is lower than the target level.

To find the expressions for xt and πt, we first substitute (A12.59) into the Phil-
lips curve (Q12.18) and then impose the rational expectations assumption. The
first step yields:

πt = −λ2

α
πt + βEt (πt+1) + st

πt =

[
1 +

λ2

α

]−1

· [βEt (πt+1) + st]

=
αβ

α + λ2
· Et (πt+1) +

α

α + λ2
· st. (A12.60)

This is an expectational difference equation, the solution of which is child’s
play. We postulate the trial solution:

πt = ζ0 + ζ1st, (A12.61)
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where ζ0 and ζ1 are the unknown coefficients. It follows from (A12.61) and
(Q12.20) that Et (πt+1) = Et (ζ0 + ζ1st+1) = ζ0 + ζ1ρSst. Substituting this res-
ult into (A12.60) we find:

ζ0 + ζ1st =
αβ

α + λ2
· [ζ0 + ζ1ρSst] +

α

α + λ2
· st ⇔

ζ0 ·
[

1 − αβ

α + λ2

]
=

[
[1 + ζ1βρS] α

α + λ2
− ζ1

]
· st,

which must hold for all st. We find that ζ0 = 0 and ζ1 is:

ζ1 =
α

α [1 − βρS] + λ2
.

In summary, the discretionary solutions for xt and πt are given by:

πt =
α

α [1 − βρS] + λ2
· st, (A12.62)

xt = − λ

α [1 − βρS] + λ2
· st. (A12.63)

The implied optimal solution for Rt is obtained by substituting (A12.62)-(A12.63)
into (Q12.17):

φRt = φEt (πt+1) + Et (xt+1) + dt − xt

=
αφ

α [1 − βρS] + λ2
Et (st+1) − λ

α [1 − βρS] + λ2
Et (st+1)

+dt +
λ

α [1 − βρS] + λ2
· st,

=
αφρS + λ (1 − ρS)

α [1 − βρS] + λ2
st + dt,

or:

Rt =
1

φ

αφρS + λ (1 − ρS)

α [1 − βρS] + λ2
st +

1

φ
dt. (A12.64)

(d) If the private sector believes the rule, then the Phillips curve can be written as:

πc
t = λxc

t + βEt

(
πc

t+1

)
+ st

= −λωst + βEt

(
πc

t+1

)
+ st,

where πc
t is the inflation rate under the rule. Solving the expectational differ-

ence equation (using the trial solution, xc
t = ζ1st), we obtain:

πc
t =

1 − λω

1 − βρS
· st. (A12.65)

By substituting (Q12.22) and (A12.65) into the objective function (Q12.21), we
can express Ωt in terms of the choice variable, ω, and the parameters of the
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model:

Ωc
t ≡ 1

2
Et

[
∞

∑
i=0

βi ·
[
α
(
xc

t+i

)2
+
(
πc

t+i

)2
]]

=
1

2
Et

[
∞

∑
i=0

βi ·
[

α (−ωst+i)
2 +

(
1 − λω

1 − βρS
st+i

)2
]]

=
1

2
·
[

αω2 +

(
1 − λω

1 − βρS

)2
]
· Et

[
∞

∑
i=0

βi · s2
t+i

]
.

The second term in square brackets on the right-hand side is the unavoidable
turbulence in the economy due to supply shocks. The first term in square
brackets, however, contains the choice variable ω, and the optimal choice of
ω minimizes that term:

ω∗ = arg min

[
αω2 +

(
1 − λω

1 − βρS

)2
]

. (A12.66)

The first-order condition is:

0 = αω∗ − λ (1 − λω∗)
(1 − βρS)2

⇔

ω∗ =
λ

α (1 − βρS)2 + λ2
. (A12.67)

The resulting optimal rule-based solutions for xc
t and πc

t are thus:

xc
t = −ω∗ · st = − λ

α (1 − βρS)2 + λ2
· st, (A12.68)

πc
t =

1 − λω∗

1 − βρS
· st

=
α (1 − βρS) ω∗

λ
· st =

α (1 − βρS)

α (1 − βρS)2 + λ2
· st (A12.69)

(e) Recall from (A12.62) that the discrete inflation rate is given by:

πd
t =

α

α [1 − βρS] + λ2
· st. (A12.70)

Using (A12.70) in (A12.69) we find:

πc
t

πd
t

=

α
α[1−βρS]+λ2/(1−βρS)

· st

α
α[1−βρS]+λ2 · st

=
α [1 − βρS] + λ2

α [1 − βρS] + λ2/ (1 − βρS)
< 1,

because 1/ (1 − βρS) > 1. For a given supply shock, inflation is less severe
under the rule than under discretionary policy.



Chapter 13

Exogenous economic growth

Question 1: Short questions

(a) Show that the Solow-Swan model with labour-augmenting technological change
can account for stylized facts (SF1)–(SF6) mentioned in the textbook.

(b) “An economy is dynamically inefficient if its citizens are short-sighted and
save too little. Savings should be stimulated by the policy maker in a dynam-
ically inefficient economy.” Explain and evaluate these propositions.

(c) Explain intuitively why, in the context of the extended Ramsey model, a lump-
sum tax-financed increase in government consumption leads to crowding in of
private capital and an increase in output. Explain also the transition mechan-
ism.

(d) Does the Cobb-Douglas production function Y = KαL1−α satisfy all the Inada
conditions? Are the inputs necessary?

(e) What would happen to the speed of adjustment of output in a Mankiw, Romer,
and Weil (1992) (MRW) model of a small open economy which has access to
unlimited flows of human capital (at a constant rental rate). The perceived
setting is one in which imports (or exports) of smart foreigners (highly skilled
workers) is unrestricted.

(f) In the book the concepts of human wealth and human capital are both used. Ex-
plain how these concepts differ.

(g) Explain how the speed of adjustment predicted by the standard Solow-Swan
model can be made more realistic.

(h) Explain why dynamic inefficiency is impossible in the standard Ramsey growth
model as given in Table 13.1 in the book. How could taxes/subsidies affect
your answer?

(i) “In the absence of adjustment costs of investment, the convergence speed in a
small open economy is infinite.” Evaluate and explain this statement.
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Question 2: The Harrod-Domar model

[Based on Harrod (1939) and Domar (1949)] One of the key notions underlying the
Solow-Swan model is the substitutability between capital and labour incorporated in
the aggregate production function [viz. equation (13.1) or (13.6)]. Even before Solow-
Swan made their contributions, Roy Harrod and Evsey Domar proposed a growth
model which negates the possibility of substitution between capital and labour. They
postulated the following aggregate production function:

Y(t) = min

(
K(t)

υ
,

L(t)

α

)
, υ > 0, α > 0, (Q13.1)

where Y(t), K(t), and L(t) are, respectively, aggregate output, the capital stock, and
employment, and the coefficients υ and α are fixed. The rest of the model is the same
as in the text:

S(t) = sY(t), 0 < s < 1, (Q13.2)

I(t) = δK(t) + K̇(t), (Q13.3)

I(t) = S(t), (Q13.4)

L̇(t)

L(t)
= nL, (Q13.5)

where S(t), I(t), s, and nL are, respectively, aggregate saving, aggregate investment,
the (constant) propensity to save, and the (constant) growth rate of the population.

(a) Draw the isoquants of the production function given in (Q13.1). Derive ex-
pressions for Y/K, Y/L, and K/L under the assumption that both production
factors are fully employed. What happens if the actual K/L is less than υ/α?
What if it is larger than υ/α?

(b) Show that, in order to maintain full employment of capital in the model, output
and investment must grow at the so-called “warranted rate of growth” which
is equal to [s − δυ]/υ.

(c) Show that, in order to maintain full employment of labour in the model, output
and investment must grow at the so-called “natural rate of growth” which is
equal to nL.

(d) Derive the condition under which the economy grows with full employment of
both factors of production. This is called the Harrod-Domar condition. What
happens if [s − δυ]/υ falls short of (exceeds) nL?

(e) Show that a Harrod-Domar like condition also appears in the Solow-Swan mo-
del but that the latter model does not suffer from the instability (or knife-edge
stability) of the Harrod-Domar model. Make sure that you explain the critical
role of capital-labour substitution.

Question 3: The production function

Assume that the production function, Y = F(K, L), satisfies assumptions (P1)–(P3)
stated in section 13.2 in the book. Define the per-worker production function, f (k),
as in equation (13.8).
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(a) Show that the marginal products of capital and labour (FK and FL, respectively)
can be written in terms of the per-worker production function.

(b) Prove that the per-worker production function has the following properties:

f ′(k) ≥ 0, lim
k→0

f ′(k) = +∞, and lim
k→∞

f ′(k) = 0.

(c) Assume that the production factors receive their respective marginal products.
Derive the expressions for the wage rate, W, and the rental rate on capital,
r + δ, when technology is Cobb-Douglas. What happens to (W, r) as k → 0
and as k → ∞? Derive the expression for the factor price frontier (FPF), i.e. the
expression linking W and r, and illustrate it graphically. Show what happens
to the FPF if general productivity increases.

Question 4: The wage-rental ratio

[Based on Burmeister and Dobell (1970)] Assume that the factors of production are
paid according to their respective marginal products, i.e. W = FL(K, L) and r + δ =
FK(K, L) as in equation (13.79) in the text. Abstract from technological progress.

(a) The wage-rental ratio, ω, is defined as follows: ω ≡ W/[r + δ]. Show that ω
can be written as a function of k only, i.e. ω = ω(k). Show that this function
can be inverted to yield k as a function of ω. Denote this function by k = ξ(ω).

(b) Identify the wage-rental ratio in a diagram with k on the horizontal axis and y
and W(k) on the vertical axis.

(c) The elasticity of substitution in production is defined as:

σKL ≡ FLFK

F(K, L)FLK
. (Q13.6)

Show that the elasticity of the ξ(ω) function, defined as
dk

dω

ω

k
, is equal to σKL.

Question 5: The Solow-Swan model

Consider the Solow-Swan model discussed in the book in section 13.2. Assume that
the economy features perfectly competitive firms.

(a) Derive the phase diagram for the model without technological progress with
output per worker, y, on the vertical axis and capital per worker, k, on the
horizontal axis. Show that in the balanced growth path the relative output
shares of capital and labour are constant. Show those shares in the diagram.

(b) Next assume that there is Harrod-neutral technological progress. Derive the
expressions for the rental rate on capital and the wage rate. Show that in the
balanced growth path the wage rate grows at the rate of technological pro-
gress (nA). Demonstrate the constancy of income shares and illustrate with a
diagram.
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(c) Abstract from technological progress but assume that the population growth
rate is not constant (as in the standard Solow-Swan model) but instead de-
pends on economic conditions. In particular, assume that nL is low for low
levels of output per worker (y), rises quite rapidly as y exceeds some “subsist-
ence level,” and starts to slow down again as y becomes very large. Show that
is possible for the model to exhibit multiple steady-state equilibria. Investig-
ate the stability of these equilibria and explain how the model can provide a
description of the theory of the “big push” (known from development econom-
ics).

Question 6: The Pasinetti model

[Based on Kaldor (1955), Pasinetti (1962), and Samuelson and Modigliani (1966)]
Consider the Solow-Swan model discussed in the text in section 13.2. Assume that
the economy features perfectly competitive firms and abstract from technological
progress. Assume that the savings function takes the form suggested by Nicholas
Kaldor:

S(t) = swW(t)L(t) + sp [Y(t)− W(t)L(t)] , (Q13.7)

where S(t), W(t), L(t), and Y(t) are, respectively, aggregate saving, the wage rate,
employment, and output. The propensity to save out of labour income is sw, and
the propensity to save out of profit income is sp. Both these savings propensities are
constant and it is assumed that 0 < sw < sp < 1. The rest of the model is standard
and is given by equations (13.3)–(13.6) in the book.

(a) Show that the savings function can be written as S(t) = s(t)Y(t), where s(t) is
defined as:

s(t) ≡ sw + (sp − sw)ωK(k(t)), (Q13.8)

and where ωK(·) ≡ (r(t) + δ)K(t)/Y(t) is the income share of capital.

(b) Derive the fundamental differential equation for output per worker. Assume
that the production function is CES with substitution elasticity 0 < σKL ≤ 1.
Demonstrate stability and uniqueness of the steady-state equilibrium. Illus-
trate your answer using a diagram with output per worker, y, on the vertical
axis, and capital per worker, k, on the horizontal axis.

(c) Show that income shares are constant along the balanced growth path and il-
lustrate this result in the diagram.

Question 7: The Solow-Swan model with population growth

Consider the standard Solow-Swan model in which the population, L(t), grows at
a constant exponential rate (L̇(t)/L(t) = nL). Abstract from technological progress
and assume that the labour force participation rate is a function of the real wage rate,
W(t), according to:

p(W(t)) =
N(t)

L(t)
, (Q13.9)
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where N(t) is employment. Assume that the production function is Cobb-Douglas:

Y(t) = K(t)αN(t)1−α, (Q13.10)

with 0 < α < 1.

(a) Derive the fundamental differential equation for the per capita capital stock
(k ≡ K/L) and show that it depends on the elasticity of the participation rate
with respect to the wage (ηpW) and on the elasticity of wages with respect to
per capita capital (ηWk).

(b) What are the likely signs of ηpW and ηWk? Explain intuitively.

(c) Explain both formally and intuitively what the effect of an endogenous parti-
cipation rate is on the adjustment speed of the economy.

Question 8: Some mathematics

[Based on Koopmans (1967) and Cass (1965)] In Intermezzo 13.3 we derive the con-
sumption Euler equation (13.68) by means of the Hamiltonian method. Study the in-
termezzo carefully, and answer the following questions.

(a) Derive the consumption Euler equation (13.68) by means of the Hamiltonian
method explained in Intermezzo 13.3. Explain the steps you make in your de-
rivation. Denote the co-state variable by µ(t). Which variable is the control
variable? Which one is the state variable?

(b) Develop the phase diagram for the Ramsey model with µ(t) on the vertical and
k(t) on the horizontal axis (rather than in the (c, k) space, as in Figure 13.8).

In the text we assume that the representative household has a lifetime utility function
as in (13.57). Assume now that the household has a slightly different lifetime utility
function:

Λ(0) ≡
∫ ∞

0
L(t)U(c(t))e−ρtdt, ρ > 0, (Q13.11)

where L(t) is the size of the population (i.e. the size of the dynastic family). Assume
a constant population growth rate, i.e. L̇(t)/L(t) = n.

(c) Compare and contrast (13.57) and (Q13.11). Derive the consumption Euler
equation for the modified model.

Question 9: Optimal investment

[Based on Intriligator (1971)] Consider the standard neoclassical growth model with-
out technological change. Assume that consumption per worker is fixed (at c(t) = c̄),
that capital does not depreciate (δ = 0), and that the population grows at a constant
exponential rate nL.

(a) Show that the growth rate of the capital stock, γK(t) ≡ K̇(t)/K(t), is maxim-
ized when this growth rate equals the marginal product of capital, i.e. when
γK(t) equals the interest rate.
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(b) Illustrate your result in part (a) graphically. Assume for convenience that tech-
nology is Cobb-Douglas. Hint: express γK(t) as a function of the capital-labour
ratio k(t).

(c) Generalize your result to the case with a positive depreciation rate (δ > 0).

Question 10: Welfare of future generations

[Based on Ramsey (1928) and Intriligator (1971)] In the original treatment of the prob-
lem of optimal economic growth, Frank Ramsey argued on the basis of ethical beliefs
that there should be no discounting of future felicity (ρ = 0). Since the welfare in-
tegral will then not generally converge, Ramsey suggested a different approach. He
assumed that there is a finite upper limit for either the production function or the
felicity function, in either case leading to a finite upper limit to utility called bliss, B:

B ≡ max
{c}

U(c) = U(cB), (Q13.12)

where cB is the bliss consumption per worker which is assumed to be finite. He then
postulated the following (undiscounted) objective function that is to be minimized:

R ≡
∫ ∞

0
[B − U(c(t))] dt, (Q13.13)

where R is a measure of “regret” (i.e. the social cost associated with deviating from
the bliss point). Solve the Ramsey problem of minimizing regret subject to the neo-
classical growth model. Assume that there is no technological change and that the
population is constant. Illustrate your answer with the aid of a diagram and show
that the model is saddle-point stable.

Question 11: The savings function

[Based on Kurz (1968)] One of the objections that has been raised against the Solow-
Swan model concerns the ad hoc nature of the savings function. In the so-called
“inverse optimum” problem we try to determine the class of household objective
functions which will in fact yield the Solow-Swan savings function as an optimal
policy rule. In this question we study this inverse optimum problem in detail. We
consider the following model:

k̇(t) = f (k(t))− c(t)− (δ + nL) k(t), (Q13.14)

c(t) = (1 − s) y(t), 0 < s < α, (Q13.15)

y(t) = Ak(t)α, 0 < α < 1, (Q13.16)

where k(t), y(t), and c(t) are, respectively, capital, output, and consumption per
worker. Capital depreciates at a constant rate, δ, and the population grows at an
exponential rate, nL. The savings rate, s, is constant. The economy is perfectly com-
petitive so the usual marginal productivity conditions for the production factors are
valid. Household behaviour is described by the Ramsey model of section 13.5.

(a) Show that equation (Q13.14) is a rewritten version of equation (13.59) in the
book.
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(b) Show that in the steady state, the various parameters are related according to:

δ + nL

s
=

ρ + δ + nL

α
, (Q13.17)

where ρ is the rate of time preference.

(c) Show that the only solution for the inverse optimum problem is the family of
utility functions featuring a constant elasticity of substitution. Show also that
σ = s and explain why we need the condition s < α for this result to make
sense.

� Question 12: The savings ratio in the Ramsey model

In the book we develop and solve the Ramsey model in terms of its implications for
consumption and capital per worker. In this question we study the Ramsey model
in terms of its implications for capital per worker and the savings ratio. Recall that
the savings ratio, s(t), is the proportion of income that is saved and invested:

s(t) ≡ S(t)

Y(t)
=

I(t)

Y(t)
=

K̇(t) + δK(t)

Y(t)
. (Q13.18)

It follows from (Q13.18) that consumption per worker is:

c(t) = (1 − s(t)) y(t), (Q13.19)

where y(t) = f (k(t)) is the intensive-form production function. The fundamental
differential equation for the capital stock is:

k̇(t) = s(t) f (k(t))− (δ + nL) k(t). (Q13.20)

Assume that the technology is Cobb-Douglas, i.e. y(t) = Ak(t)α with 0 < α < 1,
and that the felicity function is iso-elastic with intertemporal substitution elasticity
σ. Abstract from technological change.

(a) Solve the optimization problem in terms of the savings rate and the capital
stock per worker.

(b) Derive the fundamental differential equations for k and s.

(c) Denote the steady-state value for the savings rate by s∗. Illustrate the phase
diagram for the three possible cases, namely case (Q13.18) s∗ = σ, case (Q13.19)
s∗ > σ, and case (Q13.20) s∗ < σ. Explain the economic intuition behind the
dynamic adjustment for all three cases.

(d) Now solve for the optimal time path of the savings rate if the production func-
tion is f (k(t)) = Ak(t).

Question 13: Technological change

Consider the neoclassical growth model with technological progress and assume
that the aggregate production function is given by:

Y(t) = AP(t)F (AK(t)K(t), AL(t)L(t)) , (Q13.21)



312 EXERCISE & SOLUTIONS MANUAL

where AP(t) ≡ enHt summarizes “product augmenting” technical changes, AK(t) ≡
enSt summarizes “capital augmenting” technical change, and AL(t) ≡ enAt summar-
izes “labour augmenting” technical change. Assume that the representative house-
hold has the lifetime utility function (13.57) and faces the budget identity (13.59) and
an appropriately defined NPG condition.

(a) Show that the only technical progress consistent with a balanced growth equi-
librium is purely labour augmenting (“Harrod neutral”) technical change.

(b) Develop the solution to the household optimization problem in the case of Har-
rod neutral technological change, where nA > 0 and nS = nH = 0. Assume
that the utility function features a constant intertemporal substitution elasticity,
σ. Hint: recall that the wage rate grows exponentially on the balanced growth
path.

Question 14: Constant marginal utility

In the text we focus attention on the case in which household utility features a finite
intertemporal substitution elasticity. As an extension we now study the case for
which marginal utility is constant. The lifetime utility function (13.57) is replaced
by:

Λ(0) ≡
∫ ∞

0
c(t)e−ρtdt, (Q13.22)

where c(t) is consumption per worker. We study the social planning solution to
the household optimization problem. The fundamental differential equation for the
capital stock per worker, k(t), is:

k̇(t) = f (k(t))− c(t)− (δ + nL) k(t), (Q13.23)

where y(t) = f (k(t)) is output per worker. The production function satisfies the In-
ada conditions and there is no technological progress. The solution for consumption
must satisfy the following constraints:

c̄ ≤ c(t) ≤ f (k(t)) , (Q13.24)

where c̄ is some minimum consumption level (it is assumed that 0 < c̄ < cGR, where
cGR is the maximum attainable “golden rule” consumption level).

(a) Set up the appropriate current-value Hamiltonian and derive the first-order
conditions. Show that the solution for consumption is a so-called “bang-bang”
solution:

c(t) =




c̄ for µ(t) > 1

free for µ(t) = 1

f (k(t)) for µ(t) < 1

, (Q13.25)

where µ(t) is the co-state variable.

(b) Derive the phase diagram for the model and show that there exists a unique
saddle-point stable equilibrium. Show that this equilibrium is in fact reached
provided the initial capital stock per worker lies in the interval (kL, kU).
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Question 15: Intertemporal substitution

Assume that the lifetime utility function is given by:

Λ ≡
∫ ∞

0
U (C (τ)) eρτdτ, (Q13.26)

where U (·) is the felicity function and C (τ) is consumption. The intertemporal
substitution elasticity between C(t) and C(s) is formally defined as:

σ (C(t), C(s)) ≡ −U′ (C(s)) /U′ (C (t))

C(s)/C(t)

d (C (s) /C(t))

d [U′ (C (s)) /U′ (C(t))]
. (Q13.27)

(a) Provide an interpretation for (Q13.27) involving the marginal rate of substitu-
tion between C(s) and C(t).

(b) Derive expressions for d (C(s)/C(t)) and d [U′ (C(s)) /U′ (C(t))] under the as-
sumption that lifetime utility is held constant (so that the derivatives are eval-
uated along a given indifference curve).

(c) Prove that in the limit, as C(s) → C(t), the expression for σ (·) converges to:

σ (C(t)) ≡ − U′ (C(t))

C(t)U′′ (C(t))
. (Q13.28)
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Answers

Question 1: Short questions

(a) • SF1. Y/L grows at rate nA in steady-state model with labour-augmenting
technological change.

• SF2. K/L grows at rate nA.

• SF3. K/N is constant in balanced growth path. Rate of interest is then
also constant.

• SF4. K/Y is constant.

• SF5. Income shares are constant (since these depend on K/N)

(b) The first statement is false. Dynamic inefficiency deals with over saving (not
undersaving). The second statement is also false. Saving should be discour-
aged since the capital stock is already too high.

(c) Normality of leisure is the key. If T ↑then households feel poorer (drop in
human wealth) and cut back both consumption and leisure (C ↓ and (1− N) ↓).
Saving goes up and labour supply rises (as does wage income). Output rises
and in the long run the capital-labour ratio is restored. Hence, K ↑ and Y ↑.

(d) The Inada conditions deal with the behaviour of marginal factor products in
extreme case (See the textbook, section 13.2.1). We compute:

FL = (1 − α)KαL−α,

FK = αKα−1L1−α.

Holding constant K = K0, we derive:

lim
L→0

FL = lim
L→0

(1 − α)Kα
0 L−α = (1 − α)Kα

0 lim
L→0

L−α = +∞,

lim
L→∞

FL = lim
L→∞

(1 − α)Kα
0 L−α = (1 − α)Kα

0 lim
L→∞

L−α = 0,

because α > 0. Similarly, holding constant L = L0, we find:

lim
K→0

FK = lim
K→0

αKα−1L1−α
0 = αL1−α

0 lim
K→0

Kα−1 = +∞,

lim
K→∞

FK = lim
K→∞

αKα−1L1−α
0 = αL1−α

0 lim
K→∞

Kα−1 = 0,

because α < 1 (so that α − 1 < 0).

(e) If there are no adjustment costs on physical capital, both human and physical
capital would be jump variables. As a result, there would be no transitional dy-
namics at all (static model). The speed of adjustment would be infinitely high.
In the presence of capital adjustment costs there would be a well-defined in-
vestment demand. But the adjustment in human wealth is still instantaneous,
so that output would still be able to adjust immediately. Note that the MRW
model uses an ad hoc savings rate regarding physical capital accumulation, so
that the issue of r equalling the rate of time preference does not play a role.
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(f) Human wealth is the market value of the agent’s time endowment. Human
capital is the agent’s stock of (technical and other) knowledge that features
into the production function of firms. By accumulating human capital, the
agent can affect the path of wages it faces. It can thus also affect the size of its
human wealth in that way.

In short, human wealth is a component of the agent’s wealth (along with finan-
cial wealth). Human capital is a productive input (along with physical capital).

(g) By assuming a higher output share of capital. One way to do this is by as-
suming that capital is defined in broad terms, as the composite of physical and
human capital. This is the trick that Mankiw et al. (1992) use.

(h) As is clear from Figure 13.9 in the book, the Keynes-Ramsey capital stock is
smaller than the golden-rule capital stock. Technically, this is because the KR
interest rate equals ρ + n whilst the GR interest rate equals n. Since ρ is positive
(impatience), there is less capital in the KR case. But this all hinges on the
absence of tax distortions. If the government somehow distorts the savings
decision, for example with savings subsidies, it may induce people to save too
much. In that case, the subsidy-distorted KR equilibrium would lie to the right
of the GR point.

(i) In a small open economy, the real interest rate is determined in the world cap-
ital market and is exogenous to the domestic households and firms. In the
absence of adjustment costs, profit maximizing forms want to set the marginal
product of capital equal to the rental charge on capital, i.e. FK(K, 1) = r̄ + δ,
where we assume exogenous labour supply for convenience. But this means
that any exogenous change in r̄ will result in an immediate change in the cap-
ital stock. Physical capital is a flow variable in this case, and the adjustment
speed is infinite. This is not realistic.

Question 2: The Harrod-Domar model

(a) With full employment of both factors of production we have Y = K/υ and
Y = L/α. It follows that in that case:

Y

K
=

1

υ
,

Y

L
=

1

α
,

K

L
=

υ

α
. (A13.1)

In terms of Figure A13.1, the points for which both factors are fully employed
lie on the dashed line from the origin. If K/L (the actual capital-labour ratio)
falls short of υ/α then there will be unemployed labour (see point C). If K/L >

υ/α (in point B) there will be unemployed capital.

(b) By using equations (Q13.2)–(Q13.4) we get I = δK + K̇ = sY, which implies
that:

İ = sẎ, (A13.2)

where we have used the fact that s is constant. With full employment of capital
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Figure A13.1: Leontief technology

we have υY = K and thus:

Ẏ =
1

υ
K̇ =

1

υ
[I − δK]

=
1

υ
[I − δυY] (using K = υY)

=
1

υ

[
I − δυ

s
I

]
(using Y = I/s)

=

(
s − δυ

sυ

)
I. (A13.3)

Combining (A13.2) and (A13.3) yields:

Ẏ =
1

s
İ =

(
s − δυ

sυ

)
I ⇒

Ẏ

I
=

1

s

İ

I
=

s − δυ

sυ
⇒

Ẏ

sY
=

1

s

İ

I
=

s − δυ

sυ
⇒

Ẏ

Y
=

İ

I
=

s − δυ

υ
. (A13.4)

The expression in (A13.4) is the so-called warranted rate of growth.

(c) With full employment of labour we have L = αY and thus L̇ = αẎ. Since the
growth rate of labour is L̇/L = nL we derive the so-called natural growth rate:

Ẏ

Y
=

1
α L̇
1
α L

=
L̇

L
= nL. (A13.5)
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(d) The Harrod-Domar condition: equality between the natural and warranted
growth rates. Using (A13.4) and (A13.5) we can write the HD condition as:

nL =
s − δυ

υ
. (A13.6)

The HD condition is a knife-edge condition as nL, s, δ, and υ are all constants.

It follows that for nL >
s−δυ

υ there will be increasing unemployment of labour

whilst for nL <
s−δυ

υ there will be increasing unemployment of capital.

(e) In the Solow-Swan model we have a variable capital-labour ratio (k ≡ K/L)
rather than a fixed one as in the Harrod-Domar model. According to equation
(13.7) in the book we have:

k̇ = s f (k)︸︷︷︸
y

−(δ + nL)k. (A13.7)

In the steady state we have k̇ = 0 so that sy = (δ + nL)k. Rewriting this
expression yields:

s
y

k
− δ = nL

s

υ
− δ = nL, (A13.8)

where υ ≡ k/y = K/Y. Equation (A13.8) is the HD condition for the Solow-
Swan model. Variations in k (and thus in υ) ensure that this HD condition
always holds in the steady state. The substitutability of capital and labour thus
ensures that the knife-edge problem disappears.

Question 3: The production function

(a) Dropping the time index, we restate (13.8) here for convenience:

f (k) ≡ F (k, 1) , (A13.9)

where k ≡ K/L. Obviously, since, y = f (k), we also have:

Y = L f (k), (A13.10)

so that:

FK ≡ ∂Y

∂K
= L f ′(k)

dk

dK
= f ′(k), (A13.11)

FL ≡ ∂Y

∂L
= f (k) + L f ′(k)

dk

dL
= f (k)− L

K

L2
f ′(k) = f (k)− k f ′(k),

(A13.12)

where we use the fact that dk/dK = 1/L and dk/dL = −K/L2.

(b) We have shown in (A13.11) that f ′(k) = FK. Property (P2) thus establishes
that f ′(k) > 0, whilst property (P3) ensures that limk→0 f ′(k) = +∞ and
limk→∞ f ′(k) = 0.
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(c) The marginal productivity conditions for labour and capital are:

W = FL, r + δ = FK. (A13.13)

For the Cobb-Douglas production function, Y = AKαL1−α, we find that these
expression amount to:

W = (1 − α)Akα, (A13.14)

r + δ = αAkα−1. (A13.15)

The following limiting results can be derived with the aid of (A13.14)–(A13.15):

lim
k→0

W = 0, lim
k→0

(r + δ) = ∞

lim
k→∞

W = ∞, lim
k→∞

(r + δ) = 0
(A13.16)

For k ∈ [0, ∞) we can solve from (A13.14)–(A13.15):

[
W

(1 − α) A

]1/α

= k =

[
r + δ

αA

]1/(α−1)

. (A13.17)

Solving the outermost expressions yields the factor price frontier:

1 =

[
W

(1 − α) A

]1/α [ r + δ

αA

]1/(1−α)

⇔

W = A1/(1−α)

[
α

r + δ

]α/(1−α)

. (A13.18)

The factor price frontier has been illustrated in Figure A13.2. An increase in
general productivity causes an outward shifts in the factor price frontier, say
from FPF0 to FPF1.

Question 4: The wage-rental ratio

(a) The wage-rental ratio is:

ω(k) ≡ W

r + δ
=

FL

FK
=

f (k)− k f ′(k)

f ′(k)
. (A13.19)

Intuitively, ω only depends on k because technology features constant returns
to scale so that both FL and FK only depend on k. We can invert ω(k) because
its slope, ω′(k), is single signed. After some manipulations we find:

ω′(k) =
f ′(k) [ f ′(k) − f ′(k) − k f ′′(k)] − [ f (k)− k f ′(k)] f ′′(k)

[ f ′(k)]2

= − f (k) f ′′(k)

[ f ′(k)]2
> 0, for k ∈ (0, ∞), (A13.20)

where the sign follows from the fact that f (k) > 0, f ′(k) > 0, and f ′′(k) < 0
for k ∈ (0, ∞).
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Figure A13.2: The factor price frontier

(b) We illustrate the factor share in Figure A13.3. The capital stock is k∗ and the
line that is tangent to the production function at point E0 represents the rental
rate on capital, r∗ + δ. It follows that E0D represent the payment to capital,
(r∗ + δ)k∗, whilst DF is the wage payment, W∗. Since DF is the same as AB, we
find that (r∗ + δ) =AB/BC, i.e. the segment BC is the wage-rental ration, ω(k).
Formally, we observe that:

r∗ + δ =
f (k∗)
k − k

⇔ k − k =
f (k∗)

r∗ + δ
=

f (k∗)
f ′(k∗)

⇔

−k =
f (k∗) − k∗ f ′(k∗)

f ′(k∗)
=

W∗

r∗ + δ
≡ ω. (A13.21)

(c) We must relate the substitution elasticity, defined in (Q13.6), to the properties
of the per capital production function, f (k). By straightforward differentiation
we find:

FL = f (k)− k f ′(k), (A13.22)

FK = f ′(k), (A13.23)

FLK = FKL = − K

L2
f ′′(k), (A13.24)

and we recall that Y = L f (k). By using these results in (Q13.6) we find after
some manipulations:

σKL ≡ [ f (k)− k f ′(k)] f ′(k)

−L f (k) (K/L2) f ′′(k)
= − [ f (k)− k f ′(k)] f ′(k)

k f (k) f ′′(k)
. (A13.25)

By using (A13.20) and (A13.25), the elasticity of the ξ(ω) function can be deter-
mined:

dω

dk

k

ω
= − f (k) f ′′(k)

[ f ′(k)]2
k f ′(k)

f (k)− k f ′(k)
=

−k f (k) f ′′(k)

[ f (k)− k f ′(k)] f ′(k)
=

1

σKL
. (A13.26)
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Figure A13.3: Factor shares and the wage-rental ratio

It follows from (A13.26) that:

dk

dω

ω

k
= σKL. (A13.27)

Question 5: The Solow-Swan model

(a) The fundamental differential equation is given by equation (13.7) in the book:

k̇ = s f (k)− (δ + nL)k ⇔
k̇

s
= f (k)︸︷︷︸

y

− δ + nL

s
k. (A13.28)

We draw the two terms on the right-hand side of (A13.28) in Figure A13.4.
The steady-state is indicated by stars (k∗ and y∗). Recall that under perfect
competition the factor prices satisfy:

r = f ′(k) − δ, (A13.29)

W = f (k)− k f ′(k). (A13.30)

In point E0 we have that the slope of f (k∗) equals r∗ + δ, i.e. f ′(k∗) = r∗ + δ.
Since the slope is represented by the ratio E0A/BA we get:

r∗ + δ =
E0A

BA
=

E0A

k∗
⇒ E0A = (r∗ + δ)k∗. (A13.31)

Hence, the line segment E0A represents the gross income of capital. We derive:

W∗ = f (k∗) − k∗ f ′(k∗)
= y∗ − (r∗ + δ)k∗

= segment BC. (A13.32)

The line segment BC thus represents wage income.
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Figure A13.4: Factor shares

(b) With Harrod-neutral technological progress the fundamental differential equa-
tion becomes:

k̇ = s f (k)− (δ + nL + nA)k ⇔
k̇

s
= f (k)︸︷︷︸

y

− δ + nL + nA

s
k, (A13.33)

where k ≡ K/N, N = AL, and Ṅ/N = nA + nL. In the steady state we have:

f (k∗) =

(
δ + nL + nA

s

)
k∗. (A13.34)

Competitive firms solve the following maximization problem:

max
{K,L}

Π ≡ F(K, AL︸︷︷︸
N

) − (r + δ)K − WL. (A13.35)

The first-order conditions are:

∂Π

∂K
= 0 : FK = r + δ, (A13.36)

∂Π

∂L
= 0 : FN A = W. (A13.37)

Since W∗ = AFN(k∗, 1) and k∗ is constant along the balanced growth path, we
have:

Ẇ∗

W∗ =
Ȧ

A
= nA, (A13.38)
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i.e. the wage grows exponentially at rate nA along the BGP. Since the produc-
tion function features constant returns to scale (CRTS) we derive:

Y = FKK + FN N

= (r + δ)K +
W

A
N

= (r + δ)K + WL ⇒
1 = (r + δ)

K

Y
+

WL

Y
. (A13.39)

Along the balanced growth path (BGP) we have y∗ = f (k∗) and:(
K̇

K

)∗
=

(
Ẏ

Y

)∗
=

(
Ṅ

N

)∗
= nL + nA. (A13.40)

Hence, K/Y is constant as is WL/Y ((Ẇ/W)∗ = nA, (L̇/L) = nL, and (Ẏ/Y)∗ =
nA + nL). Next we define f (k) ≡ F(K/N, 1) = Y/N. Hence,

Y = NF

(
K

N
, 1

)
. (A13.41)

Differentiating (A13.41) with respect to N yields:

[FN ≡]
∂Y

∂N
= F

(
K

N
, 1

)
+ NFK(·)−K

N2

= f (k)− FK(·)k. (A13.42)

Differentiating (A13.41) with respect to K yields:

[FK ≡]
∂Y

∂K
= NFK(·) 1

N
= FK

(
K

N
, 1

)
. (A13.43)

Similarly, since Y = N f (k), we have that:

∂Y

∂K
= N f ′(k)

1

N
= f ′(k). (A13.44)

Combining the results we obtain:

W = AFN = A
[

f (k)− k f ′(k)
]

, (A13.45)

r + δ = FK = f ′(k). (A13.46)

We illustrate the factor shares in Figure A13.5.

(c) This question is loosely based on Branson (1972, p. 396). We assume that δ
and s are constant but that nL is an S-shaped function of per capita income. As
Figure A13.6 shows, there are three steady-state equilibria: two stable ones (at
E0 and E2) and one unstable one (at E1). A less developed country may get
stuck in the low-level steady-state equilibrium at E0. In particular, if it starts
out with k less than k∗U then the population growth rate is too high (relative to
saving) to allow net capital accumulation. The economy will move to E0 as a
result. A boost in the savings rate (or a windfall donation of k by rich countries)
may get the economy away from the low-level trap.
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Question 6: The Pasinetti model

(a) We know that with a constant returns to scale technology and perfectly com-
petitive firms output is fully exhausted by factor payments, i.e.:

Y(t) = W(t)L(t) + (r(t) + δ)K(t), (A13.47)

where r(t) is the interest rate and δ is the depreciation rate of capital (r(t) + δ
is the rental price of capital). By using (A13.47) in (Q13.7) we obtain:

S(t) = swW(t)L(t) + sp [Y(t)− W(t)L(t)] ⇒
S(t)

Y(t)
= sw

Y(t) − (r(t) + δ)K(t)

Y(t)
+ sp

(r(t) + δ)K(t)

Y(t)

= sw + (sp − sw)(r(t) + δ)υ(t) ≡ s(t), (A13.48)

where υ(t) ≡ K(t)/Y(t) is the capital-output ratio.

(b) The fundamental differential equation becomes:

k̇(t) = s(t) f (k(t))− (δ + nL)k(t) ⇒
k̇(t) =

[
sw + (sp − sw)ωK(·)] y(t)− (δ + nL)k(t), (A13.49)

where ωK(·) ≡ (r(t) + δ)k(t)/y(t) is the share of capital income. For the Cobb-
Douglas production function, y(t) = k(t)α, we have that ωK(·) = α so that
equation (A13.49) simplifies to:

k̇(t) =
[
(1 − α)sw + αsp

]
y(t) − (δ + nL)k(t) (A13.50)

The fundamental differential equation for the Cobb-Douglas case takes the
same form as Figure 13.1. For the general CES case, the propensity to save
depends on the capital stock. We find that in that case ωK(·) can be written as:

ωK(k(t)) = α

(
f (k(t))

k(t)

)(1−σKL)/σKL

. (A13.51)

By differentiating (A13.51) we obtain:

dωK(t)

ωK(t)
=

σKL − 1

σKL
[1 − ωK(t)]

dk(t)

k(t)
. (A13.52)

From (A13.52) we find that ω′
K(·) > 0 (< 0) if σKL > 1 (< 1). The capital share

is increasing (decreasing) in k if the substitution elasticity between labour and
capital is larger (smaller) than unity. In the question we consider the case for
which 0 < σKL ≤ 1. This means, by equations (14.6)–(14.7) in the book, that
ωK(0) = 1 and ωK(∞) = 0.

By using the definition for s(t) (given in (Q13.8)) we can rewrite (A13.49) as:

1

s(t)
k̇(t) = f (k(t))− φ(k(t))k(t), (A13.53)

φ(k(t)) ≡ δ + nL[
sw + (sp − sw)ωK(k(t))

] . (A13.54)
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Figure A13.7: Factor shares in the Pasinetti model

It is clear from the results obtained thus far that φ(0) = (δ + nL)/sp, φ(∞) =
(δ + nL)/sw, φ(0) < φ(∞) (since sw < sp), and:

φ′(k(t)) = − (δ + nL)(sp − sw)ω′
K(·)[

sw + (sp − sw)ωK(k(t))
]2

> 0. (A13.55)

It follows that the phase diagram for the CES case is a drawn in Figure A13.7.

(c) Using the same approach as before, we can identify the steady-state factor
shares in Figure A13.7.

Question 7: The Solow-Swan model with population growth

(a) We continue to work with capital per member of the population, i.e. k(t) ≡
K(t)/L(t). Of course, at any moment in time L(t) is predetermined but N(t)
can jump. The production function features CRTS and can thus be written as:

Y(t) = F(K(t), N(t)) = L(t)F

(
K(t)

L(t)
,

N(t)

L(t)

)
⇒

y(t) = F(k(t), n(t)), (A13.56)

where y(t) ≡ Y(t)/L(t) and n(t) ≡ N(t)/L(t). Since F(·) features CRTS we
also have:

y(t) = Fk(·)k(t) + Fn(·)n(t), (A13.57)

where Fk = FK and Fn = FN .

Competitive firms still hire labour and capital according to the usual productiv-
ity conditions:

r(t) + δ = FK(K(t), N(t)) = Fk(k(t), n(t)), (A13.58)

W(t) = FN(K(t), N(t)) = Fn(k(t), n(t)). (A13.59)
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Of course, since F(·) features constant returns to scale, FN(·) is homogeneous
of degree zero so that (A13.59) implies that the wage depends only on k/n. For
the Cobb-Douglas production function we find that (A13.56), (A13.58), and
(A13.59) simplify to:

y(t) = k(t)αn(t)1−α, (A13.60)

r(t) + δ = α

(
n(t)

k(t)

)1−α

, (A13.61)

W(t) = (1 − α)

(
k(t)

n(t)

)α

. (A13.62)

The labour market is described by (A13.62) and the rewritten version of (Q13.9):

p (W(t)) = n(t). (A13.63)

By loglinearizing (A13.62)–(A13.63) around the steady state we find:

W̃(t) = α
[
k̃(t)− ñ(t)

]
, (A13.64)

ηpWW̃(t) = ñ(t), (A13.65)

where W̃(t) ≡ dW(t)/W, k̃(t) ≡ dk(t)/k, ñ(t) ≡ dn(t)/n, and ηpW ≡ W p′(·)/
p(·) is the elasticity of the participation rate function. We observe (from (A13.64))
that for the Cobb-Douglas production function ηWk = α. By solving (A13.64)–
(A13.65) we find (provided 1 + αηpW �= 0):

ñ(t) =
αηpW

1 + αηpW
k̃(t), W̃(t) =

α

1 + αηpW
k̃(t). (A13.66)

The first expression in (A13.66) shows that n(t) is some function of k(t) in the
generalized model. For future reference, we denote this functional relationship
by:

n(t) = g (k(t)) , (A13.67)

where the elasticity of g(·) is given in (A13.66). The fundamental differential
equation for the per capita capital stock is now:

k̇(t) = sk(t)αg (k(t))1−α − (δ + nL)k(t), (A13.68)

where s is the constant savings rate. By loglinearizing (A13.68) around the
steady state we find after a number of steps:

dk̇(t)

k
= s

[
αkα−1g1−α dk(t)

k
+ (1 − α)kαg−α dg

k

]
− (δ + nL)

dk(t)

k

˙̃k(t) = skα−1g1−α
[
αk̃(t) + (1 − α)g̃(t)

]− (δ + nL)k̃(t)

= −(δ + nL)(1 − α)
[
k̃(t)− g̃(t)

]
, (A13.69)

where ˙̃k(t) ≡ dk̇(t)/k, g̃(t) ≡ dg(t)/g, and we have used the fact that skα−1g1−α =
δ + nL in the steady state. We know from (A13.66)–(A13.67) that:

g̃(t) =
αηpW

1 + αηpW
k̃(t). (A13.70)



CHAPTER 13: EXOGENOUS ECONOMIC GROWTH 327

By using (A13.70) in (A13.69) we find that:

˙̃k(t) = −(δ + nL)(1 − α)

[
1 − αηpW

1 + αηpW

]
k̃(t)

= − (δ + nL)(1 − α)

1 + αηpW
k̃(t), (A13.71)

where the term in round brackets represents the speed of convergence in the
economy. In the standard model, participation is exogenous, ηpW = 0, and
the convergence speed is equal to (δ + nL)(1 − α) (see section 13.3.3 in the
book). With endogenous participation, both ηWk = α and ηpW affect the speed
of convergence.

(b) The likely sign of ηpW is positive. This is the case if the substitution effect
dominates the income effect in labour supply. This is the usual assumption we
make, despite the fact that empirical evidence in support of this assumption is
rather scarce. For the Cobb-Douglas case we have already seen that ηWk = α
so that it follows automatically that 0 < ηWk < 1.

For the CES case it is more than likely that 0 < ηWk < 1 continues to hold. This
can be shown as follows. We write (A13.59) in implicit form as W = Fn(k, n)
and note that:

ηWk ≡ kWk

W
=

kFNK L

FN
=

KFNK

FN
=

KFK

Y

YFNK

FN FK
=

ωK

σKN
, (A13.72)

where ωK ≡ KFK/Y is the income share of capital and σKN ≡ FN FK/ (YFNK) is
the substitution elasticity between capital and labour. Since 0 < ωK � 1 and
σKN ≈ 1 it follows that 0 < ηWk < 1 is quite likely.

(c) In part (b) we motivate the assumption that ηpW > 0. It then follows from
(A13.71) that the convergence speed is slower in the extended model than in
the standard Solow-Swan model. Intuitively, as k rises during transition so
does the wage rate and the participation rate. But the additional labour that
is thus released needs to be equipped with capital also. The participation re-
sponse slows down the convergence speed.

Question 8: Some mathematics

(a) The household’s lifetime utility function is given in (13.68) which is restated
here for convenience:

Λ(0) ≡
∫ ∞

0
U(c(t))e−ρtdt, (A13.73)

with ρ > 0. The household budget identity and solvency condition are:

ȧ(t) ≡ [r(t)− n] a(t) + W(t)− c(t), (A13.74)

lim
t→∞

a(t) exp

[
−

∫ t

0
[r(τ)− n] dτ

]
= 0. (A13.75)

The current-value Hamiltonian is defined as:

H ≡ U(c(t)) + µ(t)
[
[r(t)− n] a(t) + W(t)− c(t)

]
, (A13.76)
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where c(t) is the control variable, a(t) is the state variable, and µ(t) is the co-
state variable. The (interesting) first-order conditions are ∂H /∂c(t) = 0 and
−∂H /∂a(t) = µ̇(t) − ρµ(t):

U′(c(t)) = µ(t), (A13.77)

µ̇(t)− ρµ(t) = − [r(t)− n] µ(t). (A13.78)

We can rewrite (A13.78) as follows:

µ̇(t)

µ(t)
= ρ + n − r(t). (A13.79)

By differentiating (A13.77) with respect to time, we find:

U′′(c(t))ċ(t) = µ̇(t). (A13.80)

By combining (A13.80) and (A13.77) we find:

c(t)U′′(c(t))

U′(c(t))

ċ(t)

c(t)
=

µ̇(t)

µ(t)
. (A13.81)

Finally, equations (A13.79) and (A13.80) can be combined to yield the con-
sumption Euler equation:

ċ(t)

c(t)
= σ(c(t)) [r(t)− n − ρ] , (A13.82)

where σ(·) is the intertemporal substitution elasticity:

σ(c(t)) ≡ − U′(c(t))

c(t)U′′(c(t))
. (A13.83)

(b) The model consists of (A13.82) and:

k̇(t) = f (k(t))− c(t)− (δ + n) k(t), (A13.84)

r(t) = f ′ (k(t))− δ. (A13.85)

Equation (A13.84) is the capital accumulation equation (see (T1.2) in Table 13.1)
and equation (A13.85) is the rental rate expression (T1.3). We assume that mar-
ginal felicity is positive throughout, i.e. U′ (c(t)) > 0 for all c(t). But this
means that we can invert U′ (c(t)) and write (A13.77) as:

c(t) = V (µ(t)) , (A13.86)

where V(·) ≡ U′−1 (·). (For example, if U (c(t)) ≡ ln c(t) then U′ (c(t)) ≡
1/c(t) and V [µ(t)] = 1/µ(t).) We find easily that V′(·) = 1/U′′ (·) < 0 (since
U′′ (·) < 0). We illustrate the typical V(·) function in the left-hand panel of
Figure A13.8. Note that positive consumption is measured along the horizontal
axis in the left-hand panel.

By using (A13.86) in (A13.84) we find that the capital accumulation equation
can be written in terms of k and µ:

k̇(t) = f (k(t))− V (µ(t))− (δ + n) k(t). (A13.87)
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Figure A13.8: Phase diagram in (µ, k) space

The k̇ = 0 line has been drawn in the right-hand panel of Figure A13.8. Its
slope is given by:(

dµ

dk

)
k̇=0

=
f ′(k) − (δ + n)

V′(µ)
� 0 for k � kGR, (A13.88)

where kGR is the golden-rule capital stock ( f ′(kGR) ≡ δ + n). For points above
(below) the k̇ = 0 line, µ is too high (too low), V is too low (too high) and capital
increases (decreases). This is indicated with horizontal arrows in Figure A13.8.

By using (A13.85) in (A13.79) we find that the dynamics of µ is given by:

µ̇(t)

µ(t)
= ρ + δ + n − f ′ (k(t)) . (A13.89)

The µ̇ = 0 line is vertical and defines a unique capital-labour ratio, kKR, which
is smaller than kGR ( f ′(kKR) ≡ ρ + δ + n). For points to the right (left) of the
µ̇ = 0 line, the capital stock is too high (too low) and the marginal product of
capital is too low (too high) so that µ rises (falls) over time. This is indicated
with vertical arrows in Figure A13.8.

The configuration of arrows confirms that the steady-state equilibrium at E0

is saddle-point stable. The saddle path is downward sloping and has been
drawn as SP in Figure A13.8. For all points on the saddle path we can find the
corresponding consumption levels in the left-hand panel of Figure A13.8.

(c) In (13.57) we postulate that household utility depends only on felicity per fam-
ily member. In equation (Q13.11) we instead postulate that utility depends on
total felicity of the family, which is felicity per family member times the number
of family members. Equation (Q13.11) is a Benthamite welfare function (named
after Jeremy Bentham) whereas (13.57) is a Millian welfare function (named after
John Stuart Mill).
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We can restate the optimization problem in a more convenient form by noting
that L(t) = L(0)ent so that (Q13.11) is:

Λ(0) ≡
∫ ∞

0
L(0)entU(c(t))e−ρtdt

=
∫ ∞

0
U(c(t))e−(ρ−n)tdt, (A13.90)

where we have normalized L(0) to unity in the final step. It must be noted
that the integral on the right-hand side of (A13.90) only converges if ρ > n.
Provided this condition holds, and there is not too much population growth
relative to the rate of time preference, the problem is again standard. The only
thing that is different is that the households adopts a lower discount rate, ρ∗ ≡
ρ − n, to evaluate future felicity.

The household maximizes (A13.90) subject to (A13.74)–(A13.75), taking initial
assets, a(0), as given. The current-value Hamiltonian is still given by (A13.76)
but the first-order conditions are now ∂H /∂c(t) = 0 and −∂H /∂a(t) =
µ̇(t) − (ρ − n)µ(t):

U′(c(t)) = µ(t), (A13.91)

µ̇(t)− (ρ − n)µ(t) = − [r(t)− n] µ(t). (A13.92)

By combining (A13.91)–(A13.92) we find that the consumption Euler equation
is now:

ċ(t)

c(t)
= σ(c(t)) [r(t)− ρ] . (A13.93)

With the alternative utility function (Q13.11), the rate of population growth
vanishes from the Euler equation. As a result, the steady-state interest rate
is equal to the rate of time preference, just as in the model with a constant
population.

Question 9: Optimal investment

(a) The model in this part of the question is:

Y(t) = C(t) + I(t), (A13.94)

I(t) = K̇(t), (A13.95)

Y(t) = F (K(t), L(t)) , (A13.96)

where we have used the fact that there is no government consumption (G(t) =
0) and capital does not depreciate (δ = 0). By using (A13.94)–(A13.96) we can
derive:

y(t) = c(t) + k̇(t) + nLk(t), (A13.97)

y(t) = f (k(t)) , (A13.98)
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where y ≡ Y/L, k ≡ K/L, and c ≡ C/L. By substituting c(t) = c̄ and (A13.98)
into (A13.97) we find that:

k̇(t) = f (k(t))− c̄ − nLk(t) ⇔

γk(t)

[
≡ k̇(t)

k(t)

]
=

f (k(t))− c̄

k(t)
− nL ⇔

γK(t)

[
≡ K̇(t)

K(t)
= γk(t) + nL

]
=

f (k(t))− c̄

k(t)
. (A13.99)

By maximizing γK(t) by choice of k(t) we find from (A13.99):

dγK(t)

dk(t)
=

k(t) f ′ (k(t))− [ f (k(t))− c̄]

[k(t)]2

=
1

k(t)

[
f ′ (k(t))− f (k(t))− c̄

k(t)

]
= 0. (A13.100)

In the neoclassical model (without depreciation) the capital rental rate expres-
sion is r(t) = f ′ (k(t)). By using this expression as well as (A13.99) in (A13.100)
we find the desired result.

dγK(t)

dk(t)
=

r(t)− γK(t)

k(t)
= 0 ⇔ r(t) = γK(t). (A13.101)

According to (A13.101), the growth rate of the capital stock is maximized in a
point for which the rate of interest equals this growth rate.

(b) In Figure A13.9 we draw the expression for the growth rate of capital for the
Cobb-Douglas case, with y = kα. Dropping the time index, we find that for the
Cobb-Douglas case, equation (A13.99) simplifies to:

γK =
kα − c̄

k
. (A13.102)

We derive the following properties:

lim
k→0

γK = −∞, lim
k→0

γK = 0, (A13.103)

dγK

dk
=

c̄ − (1 − α)kα

k2
, (A13.104)

d2γK

dk2
=

(1 − α)(2 − α)kα − 2c̄

k3
. (A13.105)

It follows from (A13.105) that d2γK/dk2
< 0 in the point for which γK is

optimized, i.e. (A13.101) describes a maximum. We observe, from equation
(A13.102), that point k0 in Figure A13.9 is defined as follows:

k0 ≡ (c̄)1/α . (A13.106)

The maximum point, k∗, is found by setting dγK/dk = 0 in (A13.104) and
solving for k:

k∗ ≡
(

c̄

1 − α

)1/α

. (A13.107)
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Figure A13.9: The growth rate of the capital stock

Finally, γK has an inflexion point for k = k1:

k1 =

(
2

2 − α

)1/α ( c̄

1 − α

)1/α

> k∗. (A13.108)

(c) With depreciation of capital, equation (A13.95) changes to:

I(t) = K̇(t) + δK(t), (A13.109)

so that (A13.97) is generalized to:

y(t) = c(t) + k̇(t) + (δ + nL) k(t), (A13.110)

and (A13.99) becomes:

γK(t) =
f (k(t))− c̄

k(t)
− δ. (A13.111)

The first-order condition for a maximum of γK is now:

dγK(t)

dk(t)
=

k(t) f ′ (k(t))− [ f (k(t))− c̄]

[k(t)]2

=
1

k(t)

[
f ′ (k(t))−

(
f (k(t))− c̄

k(t)

)]

=
r(t) + δ − (γK(t) + δ)

k(t)
= 0, (A13.112)

where we have used the fact that f ′ (k(t)) = r(t) + δ. It follows from (A13.112)
that the depreciation rate drops out of the first-order condition. This is rather
obvious as it enters the expression to be maximized linearly–see (A13.111).
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Question 10: Welfare of future generations

The fundamental differential equation for capital (per worker) is:

k̇(t) = f (k(t))− c(t)− δk(t). (A13.113)

The social planner chooses paths for consumption and the capital stock such that R
is minimized, subject to (A13.113) and taking as given the initial capital stock, k(0).
Of course minimizing R is the same as maximizing −R, so the Hamiltonian takes the
following format:

H ≡ [U (c(t))− B] + µ(τ)
[

f (k(t))− c(t)− δk(t)
]
. (A13.114)

The first-order conditions are ∂H /∂c(t) = 0 and −∂H /∂k(t) = µ̇(t) (no discount-
ing) so:

U′ (c(t)) = µ(t), (A13.115)

f ′ (k(t))− δ = − µ̇(t)

µ(t)
. (A13.116)

By combining (A13.115)–(A13.116) we find the consumption Euler equation:

ċ(t)

c(t)
= σ(c(t))r(t), (A13.117)

where r(t) ≡ f ′ (k(t))− δ is the interest rate and σ(·) is the intertemporal substitution
elasticity:

σ(c(t)) ≡ − U′(c(t))

c(t)U′′(c(t))
. (A13.118)

The phase diagram is presented in Figure A13.10. The k̇ = 0 line is derived from
(A13.113) and takes the following form:

c(t) = f (k(t))− δk(t). (A13.119)

It follows from (A13.119) (and the Inada conditions) that consumption is zero for
k = 0 and for k = kMAX. Consumption is maximized for the golden-rule capital
stock, kGR, where f ′

(
kGR

)
= δ and cGR = f

(
kGR

)− δkGR. For points below (above)

the k̇ = 0 line, consumption is too low (too high) and the capital stock rises (falls)
over time. This has been indicated with horizontal arrows in Figure A13.10.

According to (A13.118), the ċ = 0 line is the line for which the interest rate is zero.
This defines a unique (golden-rule) capital stock, kGR. For points to the left (right) of
the ċ = 0 line, capital is scarce (abundant), the interest rate is positive (negative), and
consumption rises (falls) over time. This has been indicated with vertical arrows in
Figure A13.10.

Given the configuration of arrows, the steady-state equilibrium E0 is saddle-point
stable and the saddle path, SP, is upward sloping. If the economy starts out with an
initial capital stock, k0, it will gradually accumulate capital until the optimal point
E0 is reached.
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Figure A13.10: The original Ramsey model

Question 11: The savings function

(a) Equation (13.59) in the book is:

ȧ(t) ≡ [r(t)− nL] a(t) + W(t)− c(t). (A13.120)

There is no government debt, so capital is the only asset and a(t) = k(t). There
are constant returns to scale and firms are perfectly competitive so the rental
expressions are r(t) + δ = f ′ (k(t)) and W(t) = f (k(t)) − k(t) f ′ (k(t)). Out-
put is fully exhausted by factor payments, so f (k(t)) = W(t) + [r(t) + δ] k(t).
Equation (A13.120) can then be rewritten as follows:

k̇(t) ≡ [(r(t) + δ) − (δ + nL)] k(t) + W(t)− c(t)

= y(t)− c(t)− (δ + nL) k(t)

= f (k(t))− c(t)− (δ + nL) k(t). (A13.121)

Equation (A13.121) coincides with (Q13.14) in the question.

(b) In the steady state we have both k̇ = 0 and ċ = 0. For the Cobb-Douglas
production function we derive from the fact that k̇ = 0:

sAkα = (δ + nL) k ⇔ αAkα−1 =
α (δ + nL)

s
. (A13.122)

From the condition ċ = 0 we find for the Cobb-Douglas function:

r = ρ + nL ⇔ αAkα−1 = ρ + δ + nL, (A13.123)

where we used the Euler equation (13.68) (see also (A13.123) below). By com-
bining (A13.122)–(A13.123) we find the result stated in equation (Q13.17) in the
question.
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(c) The first-order condition for the Ramsey model is summarized by the con-
sumption Euler equation (13.68), which is restated here:

ċ(t)

c(t)
= σ(c(t)) [r(t)− (ρ + nL)]

= σ(c(t))
[

f ′(k(t))− (ρ + δ + nL)
]

= σ(c(t))
[
αAk(t)α−1 − (ρ + δ + nL)

]
(A13.124)

where σ (·) is the intertemporal substitution elasticity. We derive from equation
(Q13.15)–(Q13.16) that:

ċ(t)

c(t)
=

ẏ(t)

y(t)
= α

k̇(t)

k(t)
, (A13.125)

where we have used the fact that both s and A are constant. By using (Q13.14)–
(Q13.16) in (A13.125) we find:

ċ(t)

c(t)
= α

[
sAk(t)α−1 − (δ + nL)

]
(A13.126)

We now have two expressions for consumption growth, namely equations
(A13.125) and (A13.126), which must both hold. By equating the two expres-
sions we find:

σ(c(t)) =
sαAk(t)α−1 − α (δ + nL)

αAk(t)α−1 − (ρ + δ + nL)

=
sαAk(t)α−1 − s (ρ + δ + nL)

αAk(t)α−1 − (ρ + δ + nL)
= s,

where we have used the expression in (Q13.17) to get to the second line. We
reach the conclusion that for a Cobb-Douglas production function, the solution
for the inverse optimal problem for a constant savings ratio (satisfying s < α) is
the constant elasticity of substitution (or iso-elastic) utility function with σ = s.
See Kurz (1968, pp. 166-170) for a more advanced discussion of this issue.

We need the condition s < α because the Ramsey model rules out the emer-
gence of dynamic inefficiency. If s were higher that α then we know from
the discussion surrounding equation (13.22) in the book that there would be
oversaving. Since this is impossible in a Ramsey model, the inverse optimum
problem does not have a solution for s > α.

Question 12: The savings ratio in the Ramsey model

(a) We solve the problem directly as a social planning problem. The solution is
identical to the solution chosen by the representative household. The social
planner chooses sequences for s(τ) and k(τ) such that the lifetime utility func-
tion of the representative household,

Λ(t) ≡
∫ ∞

t

[
[(1 − s(τ)) f (k(τ))]1−1/σ − 1

1 − 1/σ

]
eρ(t−τ)dτ, (A13.127)
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is maximized given the constraint (Q13.20) and taking as given the initial cap-
ital stock per worker, k(t). The current-value Hamiltonian for this problem
is:

H ≡ [(1 − s(τ)) Ak(τ)α]1−1/σ − 1

1 − 1/σ
+ µ(τ) [s(τ)Ak(τ)α − (δ + nL) k(τ)] ,

(A13.128)

where µ(τ) is the co-state variable, s(τ) is the control variable, and k(τ) is the
state variable. The first-order conditions are ∂H /∂s(τ) = 0 and −∂H /∂k(τ) =
µ̇(τ) − ρµ(τ):

0 =
[
µ(τ) − [(1 − s(τ)) Ak(τ)α]−1/σ

]
Ak(τ)α, (A13.129)

µ̇(τ)− ρµ(τ) = −α[(1 − s(τ)) Ak(τ)α]−1/σ (1 − s(τ)) Ak(τ)α−1

− αµ(τ)s(τ)Ak(τ)α−1 + (δ + nL) µ(τ). (A13.130)

Since the capital stock is strictly positive, (A13.129) can be simplified to:

µ(τ) = [(1 − s(τ)) Ak(τ)α]−1/σ . (A13.131)

Equation (A13.131) says that the marginal utility of wealth (left-hand side)
must be equated to the marginal utility of consumption (right-hand side). By
using making use of (A13.131), equation (A13.130) can be simplified to:

µ̇(τ)

µ(τ)
= ρ + δ + nL − αAk(τ)α−1. (A13.132)

Equation (A13.132) says that the rate of change in the marginal utility of wealth
is determined by the difference between ρ + nL and the interest rate (αAk(τ)α−1 −
δ).

(b) The fundamental differential equation for the capital stock per worker is given
in (Q13.20). The fundamental differential equation for the savings rate is de-
rived as follows. First we differentiate (A13.131) with respect to time:

µ̇(τ)

µ(τ)
= − 1

σ

[
− ṡ(τ)

1 − s(τ)
+ α

k̇(τ)

k(τ)

]
. (A13.133)

By combining (A13.132) and (A13.133) we obtain:

αAk(τ)α−1 − (ρ + δ + nL) =
1

σ

[
− ṡ(τ)

1 − s(τ)
+ α

k̇(τ)

k(τ)

]
⇔

ṡ(τ)

1 − s(τ)
= −σ

[
αAk(τ)α−1 − (ρ + δ + nL)

]
+ α

k̇(τ)

k(τ)
. (A13.134)

We derive from equation (Q13.20) that:

k̇(τ)

k(τ)
= s(τ)Ak(τ)α−1 − (δ + nL) . (A13.135)

Finally, by substituting (A13.135) into (A13.134) we find the fundamental (non-
linear) differential equation for the savings rate:

ṡ(τ)

1 − s(τ)
= (s(τ)− σ) αAk(τ)α−1 + σ [ρ + δ + nL]− α(δ + nL). (A13.136)
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(c) We use (A13.134) and (A13.135) to determine the steady-state values for k and
s. We find after some manipulations:

k∗ =

(
s∗A

δ + nL

)1/(1−α)

, (A13.137)

s∗ =
α (δ + nL)

ρ + δ + nL
. (A13.138)

Using these steady-state values, we can rewrite (A13.136) as follows:

ṡ(τ)

1 − s(τ)
= (s(τ)− σ) αAk(τ)α−1 − (s∗ − σ) [ρ + δ + nL] . (A13.139)

Case (Q13.18). If the steady-state savings rate, defined in (A13.138) above,
equals σ then the constant term drops out of (A13.139) so that ṡ(τ) > 0 (ṡ(τ) <

0) for s(τ) > σ (s(τ) < σ). The dynamic behaviour of the savings rate has been
illustrated with vertical arrows in Figure A13.11. Note that 0 < s(τ) < 1 is
ensured because 0 < c(τ) < y(τ). The k̇ = 0 line is obtained from (A13.135):

s(τ) =
δ + nL

A
k(τ)1−α. (A13.140)

It follows that the k̇ = 0 line has the convex shape as drawn in Figure A13.11.
It also follows from (A13.135) that ∂k̇(τ)/∂s(τ) > 0, i.e. the capital stock in-
creases (decreases) for points above (below) the k̇ = 0 line. This has been illus-
trated with horizontal arrows in Figure A13.11. The configuration of arrows
confirms that the model is saddle-point stable. The saddle path coincides with
the ṡ = 0 line. If the economy starts out with a capital stock per worker equal
to k0 then it will gradually move from A to E0 over time. This solution is, of
course, the same one we discussed in Question 11 above.

Case (Q13.19). If the steady-state saving rate exceeds the intertemporal substi-
tution elasticity (s∗ > σ) then the constant term does not drop out of (A13.139)
and the ṡ = 0 line can be written as:

s(τ) = σ + (s∗ − σ)
ρ + δ + nL

αA
k(τ)1−α

= σ +
s∗ − σ

s∗
· δ + nL

A
k(τ)1−α, (A13.141)

where we have used (A13.138) in getting from the first to the second line. The
phase diagram for this case is presented in Figure A13.12. The k̇ = 0 line is
still given by (A13.140) whilst the ṡ = 0 line is given by (A13.141). The latter
curve lies everywhere above σ (i.e. s(τ) > σ for all τ) and is upward sloping
but flatter than the k̇ = 0 line. The steady-state is at E0 and the saddle path
is upward sloping. We have already discussed the dynamics of the capital
stock (the horizontal arrows in Figure A13.12). The dynamics of the saving
rate follows from (A13.139):

1

1 − s(τ)

∂ṡ(τ)

∂k(τ)
= − (1 − α) (s(τ)− σ) αAk(τ)α−2. (A13.142)

Equation (A13.142) shows that ∂ṡ(τ)/∂k(τ) < 0 because 0 < α < 1 and s(τ) >

σ for all τ. Hence, the savings rate decreases (increases) over time for points to
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Figure A13.11: Dynamics of s(t) when s∗ = σ

the right (left) of the ṡ = 0 line. This is illustrated with vertical arrows. If the
initial capital stock is k0, then the economy moves gradually from point A to E0.
When s∗ > σ, the representative household has a relatively weak willingness
to substitute consumption through time. Ceteris paribus the interest rate, the
household chooses a relatively flat consumption profile. As capital and output
increase over time, so does the savings rate.

Case (Q13.20). If the steady-state savings rate falls short of the intertemporal
substitution elasticity (s∗ < σ) then the ṡ = 0 line, given in (A13.141), is
downward sloping and lies below σ for all values of the capital stock. The
situation has been illustrated in Figure A13.13. It follows from (A13.142) that
∂ṡ(τ)/∂k(τ) > 0 (because 0 < α < 1 and s(τ) < σ for all τ), i.e. the sav-
ings ratio rises (falls) for points to the right (left) of the ṡ = 0 line. Combined
with the dynamics of the capital stock this confirms that the equilibrium at E0

is saddle-point stable. With a relatively high intertemporal substitution elasti-
city, the saddle point is thus downward sloping. Hence, if the capital stock is
initially k0 the economy will move gradually to point E0 and the savings rate
will rise during transition.

(d) By setting α = 1 in (A13.136) we find the fundamental differential equation for
the savings rate:

ṡ(τ)

1 − s(τ)
= [s(τ)− σ] A + σ (ρ + δ + nL) − (δ + nL). (A13.143)

The key thing to note is that (A13.143) does not depend on the capital stock–it is
an unstable differential equation in s only. By defining the steady-state savings
rate, s∗, as the rate for which ṡ = 0 in (A13.143), we can rewrite (A13.143) as:

ṡ(τ) = (1 − s(τ)) (s(τ)− s∗) A, (A13.144)
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Figure A13.12: Dynamics of s(t) when s∗ > σ
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Figure A13.14: Saving rate dynamics with α = 1

where s∗ is:

s∗ ≡ σ (A − ρ) + (1 − σ) (δ + nL)

A
. (A13.145)

The first-order conditions for the optimum will ensure that s∗ is feasible, i.e.
that 0 < s∗ < 1.

We illustrate the differential equation for the savings rate in Figure A13.14. In
view of (A13.144), the savings rate rises (falls) over time if s(τ) exceeds (falls
short of) s∗. Hence, the only stable solution is that s(τ) = s∗ for all τ. There
is no transitional dynamics in the savings rate in this ‘AK’ model. (See also
Chapter 14 on this issue.) The constancy of the savings rate does not hinge on
the value of σ any longer.

Given that the savings rate is always equal to its steady-state level s∗ we can
find the growth rate in the capital stock (per worker) from equation (A13.135)
with α = 1 imposed:

γk(τ) ≡ k̇(τ)

k(τ)
= σ [A − (ρ + δ + nL)] . (A13.146)

Equation (A13.146) generalizes (14.10) in the book for the case of an optimally
chosen (rather than ad hoc) savings rate.

Question 13: Technological change

(a) We follow the approach of Barro and Sala-i-Martin (1995, pp. 54–55) to answer
this question. We write the production function as follows:

Y(t) = AP(t)F (AK(t)K(t), AL(t)L(t))

= enHtF
(
enStK(t), enAtL(t)

)
. (A13.147)
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By dividing both sides of (A13.147) by K(t) we find:

Y(t)

K(t)
=

enHt

K(t)
F
(
enStK(t), enAtL(t)

)
]

=
e(nH+nS)tK(t)

K(t)
F

(
1, e(nA−nS)t L(t)

K(t)

)

= e(nH+nS)tF

(
1, e(nA−nS)t L(t)

K(t)

)
. (A13.148)

The population grows at a constant exponential rate, L̇(t)/L(t) = nL, and in
the steady state K(t) grows at exponential rate γ∗

K ≡ K̇(t)/K(t). It follows that
in the steady state the labour-capital ratio is:

L(t)

K(t)
=

(
L

K

)
0

e(nL−γ∗
K)t, (A13.149)

where L0 and K0 are the initial labour force and capital stock, respectively. By
substituting (A13.149) into (A13.148) we find:

Y(t)

K(t)
= e(nH+nS)tF

[
1,

(
L

K

)
0

e(nA+nL−nS−γ∗
K)t

]
. (A13.150)

In the balanced growth path we must have that the right-hand side of (A13.150)
is constant. There are only two ways in which this is possible.

The first case is if technological progress is purely labour augmenting. In this

case, nH = nS = 0 (so that e(nH+nS)t = 1.) and γ∗
K = nA + nL (so that the

exponential term in (A13.150), e(nA+nL−nS−γ∗
K)t = 1).

The second case is if the term e(nH+nS)t is exactly offset by the term F (1, ·) in
(A13.150) for all t. This is only possible if the production function is Cobb-
Douglas. Assume that technology can be written as follows:

Y(t) = enHt
[
enStK(t)

]α [
enAtL(t)

]1−α
, (A13.151)

so that (A13.150) becomes:

Y(t)

K(t)
= e(nH+nS)t

(
L

K

)
0

e(1−α)(nA+nL−nS−γ∗
K)t

=

(
L

K

)
0

exp [(nH + nS + (1 − α) (nA + nL − nS − γ∗
K)) t] .

(A13.152)

The right hand side of (A13.152) is constant if and only if:

0 = nH + nS + (1 − α) (nA + nL − nS − γ∗
K) ⇔

γ∗
K = nL + nA +

nH + αnS

1 − α
. (A13.153)

But we can always write the Cobb-Douglas production function as involving
only labour-augmenting technological progress by appropriately defining the
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rate of Harrod-neutral technological progress. Indeed, the following produc-
tion function is identical to (A13.151) and only involves Harrod-neutral tech-
nological change:

Y(t) = K(t)α
[
en∗

AtL(t)
]1−α

, (A13.154)

where n∗
A is:

n∗
A ≡ nA +

nH + αnS

1 − α
. (A13.155)

(b) The household optimization problem with only Harrod-neutral technological
change is solved as follows. The production function can be written in terms
of efficiency units of labour (N(t)) as:

y(t) = f (k(t)) , (A13.156)

where y(t) ≡ Y(t)/N(t), k(t) ≡ K(t)/N(t), and N(t) ≡ enAtL(t). The repres-
entative firm hires capital and (raw) labour in order to maximize profit:

Π(t) ≡ F
(
K(t), enAtL(t)

)− (r(t) + δ) K(t) − W(t)L(t). (A13.157)

The first-order conditions are:

r(t) + δ = FK (K(t), N(t)) , (A13.158)

W(t) = enAtFN (K(t), N(t)) . (A13.159)

By using the expressions in (13.79) in the book we find that (A13.158)–(A13.159)
can be written in terms of the intensive-form production function:

r(t) + δ = f ′ (k(t)) , (A13.160)

W(t) = enAtW̄(t), W̄(t) ≡ f (k(t))− k(t) f ′ (k(t)) , (A13.161)

where W̄(t) can be interpreted as the “raw” wage rate. According to (A13.160)
the steady-state interest rate is constant. According to (A13.161) the steady-
state wage rate grows at the exponential rate nA, but the raw wage rate is con-
stant.

It is useful to transform the household optimization problem somewhat by
measuring consumption and assets in terms of efficiency units of labour. By
dividing (13.58) by N(t) we find:

Ȧ(t)

N(t)
≡ r(t)

A(t)

N(t)
+ W(t)

L(t)

N(t)
− C(t)

N(t)
⇔

ȧ(t) = [r(t)− (nA + nL)] a(t) + W̄(t)− c(t), (A13.162)

where a(t) ≡ A(t)/N(t) and c(t) ≡ C(t)/N(t). In going from the first to the
second line we have used that fact that Ȧ(t)/N(t) = ȧ(t) + (nA + nL) a(t),
Ṅ(t)/N(t) = nA + nL, and W(t)L(t)/N(t) = W̄(t). The key thing to note is
that assets accumulate at rate r(t)− (nA + nL) in (A13.162). Since consumption
per capita features in (13.57) we must rewrite the objective function in terms of
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consumption per efficiency unit of labour. We find in a straightforward manner
that (13.57) becomes:

Λ(0) ≡
∫ ∞

0
U
(
c(t)enAt

)
e−ρtdt, (A13.163)

The household chooses sequences for consumption and financial assets such
that lifetime utility (A13.163) is maximized, subject to the budget identity, given
in (A13.162), and a solvency condition, and taking as given the initial level of
assets (a(0)). The current value Hamiltonian is:

H ≡ U
(
c(t)enAt

)
+ µ(t)

[
[r(t)− (nA + nL)] a(t) + W̄(t)− c(t)

]
, (A13.164)

where c(t) is the control variable, a(t) is the state variable, and µ(t) is the co-
state variable. The first-order conditions are ∂H /∂c(t) = 0 and −∂H /∂a(t) =
µ̇(t)− ρµ(t):

enAtU′ (c(t)enAt
)

= µ(t), (A13.165)

µ̇(t)− ρµ(t) = −µ(t) [r(t)− (nA + nL)] . (A13.166)

We can rewrite (A13.166) as follows:

µ̇(t)

µ(t)
= ρ + nA + nL − r(t). (A13.167)

By differentiating (A13.165) with respect to time we find:

µ̇(t)

µ(t)
= nA +

U′′(·)
U′(·)

[
ċ(t)enAt + nAc(t)enAt

]
= nA − 1

σ

[
ċ(t)

c(t)
+ nA

]
, (A13.168)

where σ is the intertemporal substitution elasticity (which is constant by as-
sumption):

σ ≡ − U′ (c(t)enAt
)

U′′ (c(t)enAt) c(t)enAt
. (A13.169)

By combining (A13.165)–(A13.166) we find the consumption Euler equation:

ċ(t)

c(t)
= σ

[
f ′ (k(t))− (ρ + δ + nL)

]− nA, (A13.170)

where we have used (A13.160) in the final step.

Next we derive the fundamental differential equation for the capital stock (per
efficiency unit of labour). In the absence of government debt, the capital stock
is the only financial asset so K(t) = A(t) and thus also k(t) = a(t). By using
this result in (A13.162) we find:

k̇(t) = [r(t) + δ − (δ + nA + nL)] k(t) + W̄(t)− c(t)

= f (k(t))− c(t)− (δ + nA + nL) k(t), (A13.171)



344 EXERCISE & SOLUTIONS MANUAL

k(t)

E0

kKR

c(t)

k(t) = 0
.

c(t) = 0
.

kGR

A1

A2

A3
! !

!

!

SP

kMAX

Figure A13.15: Phase diagram

where we have used the fact that y(t) = (r(t) + δ) k(t) + W̄(t) in going from
the first to the second line.

The model is fully characterized by equations (A13.170) and (A13.171). The
phase diagram is presented in Figure A13.15. The k̇ = 0 line has the usual
shape and reaches its maximum for k = kGR which is defined implicitly by:

rGR ≡ f ′
(

kGR
)
− δ = nA + nL. (A13.172)

For points above (below) the k̇ = 0 line, consumption is too high (too low) and
the capital falls (increases) over time. This is indicated with horizontal arrows
in Figure A13.15. The ċ = 0 line is seen from (A13.170) to imply a unique
capital stock, kKR, which is defined implicitly by:

rKR ≡ f ′
(

kKR
)
− δ = ρ + nL +

nA

σ
. (A13.173)

It is not difficult to show that kKR falls short of kGR, i.e. that the steady-
state equilibrium at E0 must be dynamically efficient (see the discussion by
Barro and Sala-i-Martin (1995)). The consumption dynamics is derived from
(A13.170). For points to the right (left) of the ċ = 0 line, the capital stock is
too high (too low), the interest rate is too low (too high) and consumption falls
(increases) over time. This is indicated with vertical arrows in Figure A13.15.

It follows from the configuration of arrows that the steady-state equilibrium at
E0 is saddle-point stable. In the steady state, both k and c are constant so that
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K and C both grow at the rate of growth in N (which equals nA + nL):

γ∗
K ≡

(
K̇(t)

K(t)

)∗
= nA + nL, (A13.174)

γ∗
C ≡

(
Ċ(t)

C(t)

)∗
= nA + nL, (A13.175)

We thus reach exactly the same conclusion as we did in the Solow-Swan model
with technological progress (see section 13.2.2 in the book).

Question 14: Constant marginal utility

(a) The social planner chooses paths for per capita consumption and the capital
stock per worker such that (Q13.22) is maximized subject to (Q13.23)–(Q13.24)
and a transversality condition, taking as given the initial capital stock, k(0).
The current-value Hamiltonian is:

H ≡ c(t) + µ(t)
[

f (k(t))− c(t)− (δ + nL) k(t)
]
, (A13.176)

where c(t) is the control variable, k(t) is the state variable, and µ(t) is the
co-state variable. The current-value Hamiltonian is linear in the control vari-
able so we expect a bang-bang solution. The derivative of the current-value
Hamiltonian with respect to consumption is:

∂H
∂c(t)

= 1 − µ(t). (A13.177)

If µ(t) > 1 then it follows from (A13.177) that H is decreasing in consumption.
The planner sets consumption as low as is feasible, i.e. c(t) = c̄ if µ(t) > 1. On
the other hand, if µ(t) < 1 then H is increasing in consumption so it is optimal
to set consumption as high as possible, i.e. c(t) = f (k(t)) if µ(t) < 1. Finally, if
µ(t) = 1 then H does not depend on c(t) so consumption can be freely chosen.

The second first-order condition, µ̇(t) − ρµ(t) = −∂H /∂k(t), determines the
optimal path for the co-state variable:

− µ̇(t)

µ(t)
= f ′ (k(t))− (ρ + δ + nL) . (A13.178)

(b) To derive the phase diagram we first establish the boundaries for the capital
stock per worker that are implied by the minimum consumption requirement.
We derive from (Q13.23) that the k̇ = 0 line can be written as follows:

c(t) = f (k(t))− (δ + nL) k(t). (A13.179)

We have drawn the k̇ = 0 line in (c, k) space in Figure A13.16. By assumption, c̄
is less than the golden-rule consumption level so there are two points for which
consumption is exactly equal to c̄, points A1 and A3.

The phase diagram in (µ, k) space is drawn in Figure A13.17. The µ̇ = 0 line is
derived from (A13.178) and defines a unique capital stock per worker, k = kKR.
For points to the right (left) of the µ̇ = 0 line, the capital stock is too high (too
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Figure A13.16: The feasible range for the capital stock

low), the interest rate is too low (too high), and µ rises (falls) over time. This
has been indicated with vertical arrows in Figure A13.17.

The dynamics of the capital stock depends on the value of µ. If µ(t) < 1 then
c(t) = f (k(t)) so that it follows from (Q13.23) that k̇(t) = − (δ + nL) k(t), i.e.
the capital stock falls over time. This is indicated with horizontal arrows in
Figure A13.17. If µ(t) > 1, then c(t) = c̄ and it follows from (Q13.23) that the
capital stock increases over time for k(t) ∈ (kL, kU) but decreases over time for
0 < k(t) < kL and for k(t) > kU . These dynamic effects have been illustrated
with horizontal arrows in Figure A13.17.

The configuration of arrows shows that the steady-state equilibrium at E0 is
saddle-point stable. Provided the initial capital stock per worker is within the
feasible region, the economy will converge along a unique saddle path to E0.

Question 15: Intertemporal substitution

(a) We can write equation (Q13.27) as:

1

σ (C(t), C(s))
≡ − M̃RSs,t

[ ˜C(s)/C(t)]
, (A13.180)

where the marginal rate of subsitution between C(s) and C(t) is denoted by
MRSs,t which is defined as follows:

MRSs,t ≡ U′ (C(s))

U′ (C(t))
. (A13.181)

As usual, the tilde above a variables denotes that variable’s proportional rate
of change (e.g. x̃ ≡ dx/x). Hence, 1/σ (·) measures what happens (in per-unit
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Figure A13.17: Phase diagram when marginal utility is constant

terms) to the marginal rate of subsitution between C(s) and C(t) if the average
ratio is changed by one per-unit. Of course, the changes must be evaluated
along a given difference curve.

(b) The first expression is obtained as follows:

d

(
C(s)

C(t)

)
=

C(t)dC(s)− C(s)dC(t)

[C(t)]2
=

C(s)

C(t)

[
dC(s)

C(s)
− dC(t)

C(t)

]
. (A13.182)

The second expression is:

d

(
U′ (C(s))

U′ (C(t))

)
=

U′ (C(t)) U′′ (C(s)) dC(s) − U′ (C(s)) U′′ (C(t)) dC(t)

[U′ (C(t))]2

=
C(s)U′ (C(t)) U′′ (C(s))

dC(s)
C(s)

− C(t)U′ (C(s)) U′′ (C(t))
dC(t)
C(t)

[U′ (C(t))]2
.

(A13.183)

By taking the total differential of (Q13.26), considering only non-zero values
for dC(t) and dC(s) we find that the indifference curve implies:

dΛ =
∫ ∞

0
U′ (C (τ)) dC (τ) eρτdτ = 0 ⇒

0 = U′ (C(t)) dC(t)eρt − U′ (C(s)) dC(s)eρs ⇔
dC(s)

C(s)
= −C(t)

C(s)

U′ (C(t))

U′ (C(s))
eρ(s−t) dC(t)

C(t)
. (A13.184)
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Using (A13.184) in (A13.182) we obtain:

d

(
C(s)

C(t)

)
= −C(s)

C(t)

[
C(t)

C(s)

U′ (C(t))

U′ (C(s))
eρ(s−t) + 1

]
dC(t)

C(t)
,

lim
s→t

d

(
C(s)

C(t)

)
= −2

dC(t)

C(t)
. (A13.185)

Similarly, using (A13.184) in (A13.183) we get:

d

(
U′ (C(s))

U′ (C(t))

)
= −

C(s)U′ (C(t)) U′′ (C(s))
C(t)
C(s)

U′(C(t))
U′(C(s))

eρ(s−t) dC(t)
C(t)

[U′ (C(t))]2

−
C(t)U′ (C(s)) U′′ (C(t))

dC(t)
C(t)

[U′ (C(t))]2

= −C(t)
dC(t)

C(t)

[U′ (C(t))]
2 U′′(C(s))

U′(C(s))
eρ(s−t) + U′ (C(s)) U′′ (C(t))

[U′ (C(t))]2
.

(A13.186)

By taking the limit of (A13.186) we get:

lim
s→t

d

(
U′ (C(s))

U′ (C(t))

)
= −2C(t)

dC(t)

C(t)

U′′ (C(t))

U′ (C(t))
. (A13.187)

(c) Combining (A13.185) and (A13.187) we find that:

lim
s→t

1

σ (C(t), C(s))
= − lims→t M̃RSs,t

lims→t[ ˜C(s)/C(t)]
= −

−2C(t)U′′(C(t))
U′(C(t))

−2

= −C(t)U′′ (C(t))

U′ (C(t))
, (A13.188)

from which we derive that:

lim
s→t

σ (C(t), C(s)) = − U′ (C(t))

C(t)U′′ (C(t))
. (A13.189)



Chapter 14

Endogenous economic growth

Question 1: Short questions

(a) “Growth models of the capital-fundamentalist type are outrageous because
they all predict that the share of labour will go to zero in the long run.” Ex-
plain and evaluate this proposition.

(b) Why are the models in Chapter 13 called exogenous growth models and why
are the ones in Chapter 14 called endogenous growth models?

(c) “According to Nicholas Kaldor, the real interest rate is constant over very long
time periods, even if the capital stock increases by quite a bit. This implies that
growth must be of the endogenous growth variety studied in this chapter.”
True, false, or uncertain? Explain.

Question 2: Endogenous growth

Consider the following growth model of a closed economy. The technology is given
by:

Y(t) = Z1K(t) + Z2K(t)αL(t)1−α,

where Y(t) is output, K(t) is the capital stock, and L(t) is the employment. The
parameters feature the following properties: Z1 > 0, Z2 > 0, 0 < α < 1. The dynastic
family (the population) grows at a constant exponential rate, L̇(t)/L(t) = nL. The
lifetime utility function of the dynastic family (the representative agent) is given by:

Λ(0) ≡
∫ ∞

0

c(τ)1−1/σ − 1

1 − 1/σ
e−ρτdτ,

where c(τ) is per capita consumption, σ is the intertemporal substitution elasticity,
and ρ is the pure rate of time preference. We assume that 0 < σ < 1 and 0 < ρ � ∞.
The per capita budget identity is given by:

ȧ(t) = [r(t)− nL]a(t) + W(t)− c(t),

where a(t) is financial assets, r(t) is the real interest rate, and W(t) is the wage rate.
We abstract from a government. All markets are perfectly competitive.
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(a) Does technology satisfy constant returns to scale? Derive the intensive-form
expression for the production function.

(b) Prove that the dynamic expression for the capital stock per worker can be writ-
ten as:

k̇(t) = y(t)− c(t)− (δ + nL)k(t),

where y(t) ≡ Y(t)/L(t) and k(t) ≡ K(t)/L(t).

(c) Derive the expression for the consumption Euler equation.

(d) Compute the long-run growth rate. Assume that Z1 > ρ + δ + nL. Explain what
happens to the national income share of wages in the long run. Would you call
this model an exogenous growth model or an endogenous growth model?

(e) � Use the following transformed variables: v(t) ≡ y(t)/k(t) and z(t) ≡
c(t)/k(t). Derive the system of differential equation for v(t) and z(t) and draw
the phase diagram (Hint: place z(t) on the vertical axis and v(t) on the hori-
zontal axis).

Question 3: Minimum consumption and endogenous growth

[Based on Rebelo (1992)] Consider a simple model of endogenous growth. The rep-
resentative household has the following life-time utility function:

Λ(t) ≡
∫ ∞

t

[
[C(τ)− C̄]

1−1/σ − 1

1 − 1/σ

]
eρ(t−τ)dτ, (Q14.1)

where C̄ denotes the subsistence (or minimum) level of private consumption. The
production function displays constant returns to scale with respect to a very broad
measure of capital, i.e. Y(t) = AK(t). Ignore technological change and assume a
constant population. Assume furthermore that r > ρ and (1 − σ)r + σρ > 0 where
r ≡ A − δ.

(a) Derive an expression for the intertemporal substitution elasticity and show that
it depends on C̄. Explain the intuition.

(b) Derive an expression for the growth rate of the economy, both in the short run
and in the long run. Show that poor countries grow at a slower rate than rich
countries do.

(c) Consider a Ramsey model of classical growth with the same preferences as
before, but with a Cobb-Douglas production function and thus decreasing re-
turns to capital, i.e. Y(t) = F (K(t)) ≡ AK(t)α. Derive an expression for the
growth rate of the economy, both in the short run and in the long run. Is it now
possible for poor countries to grow faster than rich countries and catch up?
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Question 4: Asymptotic endogenous growth

Consider the following simple “Solow-Swan style” model of economic growth.

S (t) = s [Y (t) − T (t)] , 0 < s < 1, (Q14.2)

Y (t) = C (t) + I (t) + G (t) , (Q14.3)

K̇ (t) = I (t)− δK (t) , δ > 0, (Q14.4)

L̇ (t)

L (t)
= nL, nL > 0, (Q14.5)

Y (t) = AK (t) + BK (t)α L (t)1−α , A, B > 0, 0 < α < 1, (Q14.6)

G (t) = T (t) , (Q14.7)

where the variables take their usual meaning (see Chapter 13 in the book). The para-
meters A and B are exogenous constants (features of the technology).

(a) Does the production function satisfy the Inada conditions? Explain.

(b) Derive the fundamental differential equation for the capital stock per worker,
k (t) ≡ K (t) /L (t). Assume that G (t) = gL (t) where g is a time-invariant
constant.

(c) Derive a condition under which the model behaves like a standard Solow-
Swan exogenous growth model. Show that the model is stable and compute
the adjustment speed.

(d) Derive a condition under which the model behaves like an endogenous growth
model. Compute the asymptotic growth rate. What happens to the national
income share of labour in the long run?

(e) Study the effects of a tax-financed increase in government consumption for the
endogenous growth version of the model.

Question 5: External effect and endogenous growth

In this question we consider a version of the AK model. Individual, perfectly com-
petitive firms face the following technology:

Yi(t) = F(Ki(t), Li(t)) ≡ Z(t)Li(t)εL Ki(t)1−εL , 0 < εL < 1, (Q14.8)

where Z(t) is the level of general technology (taken as given by individual firms),
and Yi, Ki, and Li are, respectively, output, capital, and employment of firm i. There
are many firms, i = 1, 2, · · · , N0, where N0 is the fixed number of firms. The ag-

gregate variables are defined as Y ≡ ∑
N0
i Yi, K ≡ ∑

N0
i Ki, and L ≡ ∑

N0
i Li. There is

an external effect which ensures that general technology is positively affected by the
aggregate capital stock:

Z(t) = AK(t)εL , (Q14.9)

where A is a constant. Firms hire factors of production from the households and
maximize the stock market value of the firm. Capital depreciates at a constant rate,
δ. The household savings function is of the Keynes-Solow type:

S (t) = sY (t) , 0 < s < 1, (Q14.10)
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where s is the (exogenous) savings rate. We are considering a closed economy. The
aggregate labour force (equalling the population) grows at a constant exponential
rate, i.e. L̇ (t) = L (t) = nL > 0. Assume for simplicity that government consump-
tion is zero (G(t) = 0).

(a) Derive the marginal productivity conditions for labour and capital for each
firm. Show that firms all choose the same capital intensity, ki ≡ Ki/Li.

(b) Derive an expression for aggregate output. Prove that there are increasing
returns to scale at the macroeconomic level. Prove that the real interest rate
would increase exponentially in this economy (contra stylized fact (SF3) in
Chapter 13).

(c) Reformulate the formulation of the external effect (Q14.9) in such a way that a
standard AK model is obtained. Work with this revised model in the remainder
of this question.

(d) Show that the share of labour in total output is equal to εL.

(e) Compute the growth rate in per capita output, γy (t) ≡ ẏ (t) /y (t). Prove that
there is no transitional dynamics in this model.

(f) Prove that the growth rate in per capita output increases if there is an abrupt
and permanent decrease in the growth rate of the population. Explain the eco-
nomic intuition behind your result.

Question 6: Asymptotic capital fundamentalist model

You are given the following aggregate production function:

F(K(t), L(t)) ≡ AL (t) +
[
(1 − α) L(t)(σKL−1)/σKL + αK(t)(σKL−1)/σKL

]σKL/(σKL−1)
,

(Q14.11)

with A > 0, σKL > 1, and 0 < α < 1. Production is perfectly competitive. There is no
population growth, and the aggregate population is equal to L0. The representative
household’s Euler equation is given by:

ċ (t)

c (t)
=

Ċ (t)

C (t)
= σ [r (t) − ρ] , (Q14.12)

where c (t) is consumption per households member, C (t) ≡ L0c (t) is aggregate
household consumption, ρ > 0 and σ > 0. We consider a closed economy and the
government consumes a constant proportion of output, i.e. G (t) = g0Y (t), where
g0 is exogenous and time-invariant. All markets clear.

(a) Prove that the production function (Q14.11) features constant returns to scale.
Compute FK and FL and show that they only depend on the capital intensity,
k (t) ≡ K (t) L (t).

(b) Derive an expression for the intensive-form production function, f (k (t)) ≡
F(K(t)/L(t), 1).
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(c) Derive a condition under which the model displays endogenous growth in the

long run. Assume that ασKL/(σKL−1)
> ρ + δ. Hint: compute the following limit:

lim
k(t)→∞

f ′ (k (t)) . (Q14.13)

(d) Prove that an increase in the government’s consumption share, say from g0 to
g1, does not affect the asymptotic growth rate of the economy. Is g completely
neutral or does something in the economy react to an increase in g? Explain.
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Answers

Question 1: Short questions

(a) False. The statement is correct for the sub-class of models for which easy sub-
stitutability between labour and capital gives rise to endogenous growth. In
such models labour becomes less and less important as a production factor as
time goes on. The AK models based on external effects, on the other hand, are
perfectly consistent with a stable (non-zero) share of labour over time.

(b) They key distinction lies in whether or not the long-run growth rate is endo-
genous in the sense that it can be affected by economic policy. In the standard
Solow-Swan model, long-run growth equals the sum of the population growth
rate and the rate of growth in labour-augmenting technological change. Both
these growth rate are exogenously given. This is why we call such models
exogenous growth models, even though the transitional dynamics can be in-
fluenced by policy.

In the models of Chapter 14, the long-run growth rate typically can be affected
by policy instruments.

(c) False. In the standard Ramsey exogenous growth model, the steady-state real
interest rate is pinned down by the sum of the rate of time preference and
the population growth rate, i.e. r = ρ + n. This pins down a unique optimal
capital-labour ratio, k∗ ≡ (K/L)∗. If the population grows, the capital stock
will grow at the same rate in the steady state.

Question 2: Endogenous growth

(a) The production function features constant returns to capital and labour:

F(λL, λK) = Z1λK(t) + Z2[λK(t)]α[λL(t)]1−α

= λ
(

Z1K(t) + Z2K(t)αL(t)1−α
)

= λF(L, K).

The intensive-form production function is obtained by expressing everything
in per capita terms. We obtain:

Y(t)

L(t)
= Z1

K(t)

L(t)
+ Z2

K(t)αL(t)1−α

L(t)

y(t) = Z1k(t) + Z2k(t)α ≡ f (k(t)) .

We observe immediately that:

f ′ (k(t)) ≡ Z1 + αZ2k(t)α−1

lim
k(t)→∞

f ′ (k(t)) = Z1.

Hence, one of the Inada conditions does not hold! This smells like a capital
fundamentalist model in the long run.
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(b) We know that with a constant returns to scale technology and perfectly com-
petitive firms output is fully exhausted by factor payments, i.e.:

Y(t) = W(t)L(t) + (r(t) + δ)K(t),

or, in per capita terms:

y(t) = W(t) + (r(t) + δ)k(t).

There is no government (b(t) = 0) and we are dealing with a single durable
asset (a(t) = k(t)). Using these results in the budget identity above we find:

ȧ(t) = [r(t)− nL]a(t) + W(t)− c(t) ⇒
k̇(t) = [(r(t) + δ) − (δ + nL)]k(t) + W(t)− c(t) ⇒
k̇(t) = (r(t) + δ)k(t) + W(t)− c(t)− (δ + nL)k(t) ⇒
k̇(t) = y(t) − c(t)− (δ + nL)k(t).

(c) The household chooses paths for c(τ) and k(τ) in order to maximize Λ(0)
given the capital accumulation function, the technology, and a transversality
condition. The current-value Hamiltonian is:

H ≡ c(t)1−1/σ − 1

1 − 1/σ
+ µ(t) [ f (k(t))− c(t)− (δ + nL)k(t)] .

The state variable is k(t), µ(t) is the co-state variable, and c(t) the control vari-
able. The first-order conditions are:

∂H
∂c(t)

= c(t)−1/σ − µ(t) = 0,

µ̇(t) − ρµ(t) = − ∂H
∂k(t)

= µ(t)
[

f ′ (k(t))− (δ + nL)
]

.

Simplifying we get:

µ(t) = c(t)−1/σ,

µ̇(t)

µ(t)
=

[
ρ + δ + nL − f ′ (k(t))

]
.

By eliminating µ(t) from these expressions we obtain the consumption Euler
equation:

ċ(t)

c(t)
= −σ

µ̇(t)

µ(t)
= σ

[
f ′ (k(t))− δ − ρ − nL

]
,

= σ[r(t)− (ρ + nL)],

where r(t) ≡ f ′ (k(t))− δ.

(d) In the long run, the marginal product of capital approaches a constant (as
limk(t)→∞ f ′ (k(t)) = Z1) so that the interest rate approaches Z1 − δ > 0. The
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asymptotic growth rate in per capita consumption is obtained from the con-
sumption Euler equation:

γ∗
c ≡ lim

t→∞

ċ(t)

c(t)
= σ[ lim

t→∞
r(t)− (ρ + nL)]

= σ[Z1 − (δ + ρ + nL)] > 0.

Since W(t) = FL we find that:

W(t) = (1 − α)Z2K(t)αL(t)−α

= (1 − α)Z2k(t)α.

Hence, W(t)/y(t) is equal to:

W(t)

y(t)
=

(1 − α)Z2k(t)α

Z1k(t) + Z2k(t)α
=

(1 − α)Z2

Z2 + Z1k(t)1−α
,

so that limk(t)→∞ W(t)/y(t) = 0. In the long run human wealth (the present
value of wages) goes to zero and the household only consumes out of financial
wealth, i.e. the ratio between c(t) and k(t) will be constant in the long run, say

z∗ ≡ limt→∞
c(t)
k(t)

.

The asymptotic growth rate in the per capita capital stock is:

γ∗
k ≡ lim

t→∞

k̇(t)

k(t)
= lim

t→∞

(
y(t)

k(t)
− c(t)

k(t)

)
− (δ + nL)

= Z1 − z∗ − (δ + nL) = γ∗
c ,

where the last equality follows from the fact that z∗ is constant (so that γ∗
k =

γ∗
c ). We find that z∗ (the propensity to consume out of total wealth) equals:

z∗ = (1 − σ)[Z1 − (δ + nL)] + σρ > 0

This is an endogenous growth model of the capital fundamentalist type.

(e) The system of differential equations is:

k̇(t)

k(t)
=

y(t)

k(t)
− c(t)

k(t)
− (δ + nL),

ċ(t)

c(t)
= σ

[
f ′ (k(t))− (δ + ρ + nL)

]
.

A phase diagram with c(t) and k(t) on the axes is no good because these vari-
ables grow perpetually. By using the transformed variables, however, we can
rewrite the equations in stationary format. First we note that f ′ (k(t)) can be
rewritten as follows:

f ′ (k(t)) = (1 − α)Z1 + α
y(t)

k(t)
.
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Next we note from the production function that:

v(t) = Z1 + Z2k(t)α−1

v̇(t) = (α − 1)Z2k(t)α−1 k̇(t)

k(t)

= (α − 1)(v(t)− Z1)
k̇(t)

k(t)
,

where the one million dollar trick is again to note that Z2k(t)α−1 = v(t) − Z1.
We thus obtain from the capital growth equation that:

v̇(t) = (1 − α)[Z1 − v(t)][v(t)− z(t)− (δ + nL)].

This is equation (4.57) in Barro and Sala-i-Martin (1995, p. 162). Next we write:

ż(t)

z(t)
≡ ċ(t)

c(t)
− k̇(t)

k(t)

= σ[(1 − α)Z1 + αv(t) − (δ + ρ + nL)] − [v(t)− z(t)− (δ + nL)]

= σ[(1 − α)Z1 − (δ + ρ + nL)] + (δ + nL) + (σα − 1)v(t) + z(t)

= σ[(1 − α)Z1 − ρ] + (1 − σ)(δ + nL) − (1 − σα)v(t) + z(t).

This is equation (4.58) in Barro and Sala-i-Martin (1995, p. 162). In the final
step we can rewrite the system in deviation from the steady-state values z∗
and v∗ ≡ Z1.

v̇(t) = (1 − α)(v∗ − v(t))[v(t)− z(t)− (δ + nL)],

ż(t)

z(t)
= [z(t)− z∗] − (1 − σα)[v(t)− v∗].

Question 3: Minimum consumption and endogenous growth

(a) The intertemporal substitution elasticity is defined in the book below equation
(14.62):

σ (C(t)) ≡ − U′(C(t))

U′′(C(t))C(t)
. (A14.1)

By using the felicity function stated in (Q14.1) we find:

σ (C(t)) ≡ − (C(t)− C̄)
−1/σ

−(1/σ) (C(t)− C̄)
−1/σ−1

C(t)

= σ
C(t)− C̄

C(t)
. (A14.2)

According to (A14.2), the intertemporal substitution elasticity is no longer con-
stant when subsistence consumption enters the felicity function. Indeed, we
find from (A14.2) that σ(C̄) = 0, σ′ (C(t)) = C̄/C(t)2

> 0, and limC(t)→∞

σ(C(t)) = σ. So poor countries (with a low consumption level) have a lower
intertemporal substitution elasticity than rich countries (with a high consump-
tion level) do.
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(b) We solve the social planning solution to the optimal growth problem. The
social planner chooses paths for consumption and the capital stock such that
lifetime utility (Q14.1) is maximized subject to the capital accumulation equa-
tion:

K̇(τ) = AK(τ) − C(τ)− δK(τ), (A14.3)

where δ is the depreciation rate of the capital stock. The initial capital stock,
K(t), is taken as given by the social planner. The current-value Hamiltonian
for this optimization problem is:

H ≡ [C(τ)− C̄]
1−1/σ − 1

1 − 1/σ
+ µ(τ)

[
(A − δ) K(τ) − C(τ)

]
, (A14.4)

where C(τ) is the control variable, K(τ) is the state variable, and µ(τ) is the co-
state variable. The first-order conditions are ∂H /∂C(τ) = 0 and −∂H /∂K(τ) =
µ̇(τ) − ρµ(τ) or:

[C(τ)− C̄]
−1/σ

= µ(τ), (A14.5)

− µ̇(τ)

µ(τ)
= r − ρ, (A14.6)

where r ≡ A − δ is the competitive real interest rate. By combining (A14.5)–
(A14.6) we find the consumption Euler equation:

Ċ(τ)

C(τ)− C̄
= σ [r − ρ] . (A14.7)

Since r > ρ (by assumption) the growth rate in consumption is positive for
countries with a consumption level above subsistence.

In order to solve for the closed-form solution for consumption we rewrite the
Euler equation as follows:

Ċ(τ) = α [C(τ)− C̄] , (A14.8)

where α ≡ σ [r − ρ] is a positive constant. Equation (A14.8) is a linear differ-
ential equation with constant coefficients which can be solved in a straightfor-
ward manner. We find in a number of steps that:

e−ατ
[
Ċ(τ) − αC(τ)

]
= −αC̄e−ατ ⇔

d

dτ

[
C(τ)e−ατ

]
= −αC̄e−ατ ⇒∫ t

0
dC(τ)e−ατ = −αC̄

∫ t

0
e−ατ ⇔

C(t)e−αt − C(0) = −αC̄

[
e−αt − 1

−α

]
. (A14.9)

Simplifying (A14.9) yields the solution for consumption at time t:

C(t) = C(0)eαt + C̄
(
1 − eαt

)
. (A14.10)
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To determine C(0) we substitute (A14.10) into the intertemporal budget con-
straint:

K(0) =
∫ ∞

0
C(t)e−rtdt

=
∫ ∞

0

[
(C(0) − C̄) eαt + C̄

]
e−rtdt

=
C(0) − C̄

(1 − σ)r + σρ
+

C̄

r
, (A14.11)

where we have used the fact that α − r = σ(r − ρ) − r = − [(1 − σ)r + σρ] in
going from the second to the third line. (Note that the integral in (A14.11) only
exists if r exceeds α.) Using the same methods we find that:

K(t) =
∫ ∞

t
C(τ)er(t−τ)dτ

=

[
C(0) − C̄

(1 − σ)r + σρ

]
eσ(r−ρ)t +

C̄

r

=
C(t)− C̄

(1 − σ)r + σρ
+

C̄

r
. (A14.12)

By solving (A14.12) for C(t) we find:

C(t) = C̄ + [(1 − σ)r + σρ]

[
K(t) − C̄

r

]
. (A14.13)

By using (A14.13) in (A14.3) we find that the growth rate in the capital stock is:

γK(t) ≡ K̇(t)

K(t)
= r − C(t)

K(t)

= r − C̄

K(t)
− [(1 − σ)r + σρ]

[
1 − C̄

rK(t)

]

= σ(r − ρ)

[
1 − C̄

rK(t)

]
. (A14.14)

It follows from (A14.14) that the growth rate of poor countries is lower than
that of rich countries. The poor countries save less because they get high util-
ity from the consumption of basic needs. As the countries develop, growth
rates catch up. In the long run, both rich and poor countries end up with the
(asymptotic) growth rate σ(r − ρ). However, poor countries never catch up
with the level of wealth of rich countries. This pattern of growth has been
illustrated in Figure A14.1.

(c) Intuitively we expect that the long-run growth rate is zero for both rich and
poor countries as there is no population growth and no technical change. Form-
ally we can derive this result as follows. The differential equation for consump-
tion, given in (A14.7), becomes:

Ċ(t) = σ
[
F′(K(t)) − δ − ρ

]
[C(t)− C̄] , (A14.15)
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(K(t)

rich

poor

time

F(r - D)

Figure A14.1: Growth rates of poor and rich countries

where r(t) = F′(K(t))− δ is the interest rate determined according to the usual
rental rate expression. The key thing to note is that r(t) is no longer constant
when there are diminishing returns to capital.

The differential equation for the capital stock is:

K̇(t) = AK(t)α − C(t)− δK(t). (A14.16)

By linearizing (A14.15)–(A14.16) around the steady state (K∗, C∗) (using the
approach explained in section 13.6.2 in the book) we find:[

Ċ(t)
K̇(t)

]
=

[
0 σF′′(K∗) (C∗ − C̄)
−1 ρ

] [
C(t)− C∗
K(t) − K∗

]
, (A14.17)

where we used the fact that the steady-state interest rate equals the rate of
time preference, i.e. r∗ ≡ F′(K∗) − δ = ρ. The speed of adjustment in the
economy (denoted by β in the book) is represented by the stable characteristic
root (−β < 0) of the Jacobian matrix:

β ≡ ρ

2

[√
1 − 4σF′′(K∗) (C∗ − C̄)

ρ2
− 1

]

=
ρ

2

[√
1 +

4ασ(1 − α)(K∗)α−2 (C∗ − C̄)

ρ2
− 1

]
. (A14.18)

We derive in a straightforward manner that ∂β/∂ (C∗ − C̄) > 0 so the further
away the economy is from the subsistence level, the higher is the rate of growth
in the economy.
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The rate of growth in consumption is:

γC(t) ≡ Ċ(t)

C(t)
= σ

[
F′(K(t)) − δ︸ ︷︷ ︸

(a)

−ρ
][

1 − C̄

C(t)︸ ︷︷ ︸
(b)

]
. (A14.19)

Term (a) is lower for rich than for poor countries because rich countries have a
higher capital stock. Term (b) is lower for poor countries than for rich countries
because poor have a lower consumption level. It follows that during transition
poor countries may initially grow at a slower rate than rich countries. Eventu-
ally, however, poor countries must catch up with rich countries because both
types of countries have the same (zero) growth rate.

Question 4: Asymptotic endogenous growth

(a) The Inada conditions deal with the properties of FK and FL in extreme points.
We find:

FL ≡ (1 − α) BKαL−α, (A14.20)

FK ≡ A + αBKα−1L1−α. (A14.21)

It follows that:

lim
L→0

FL = +∞, lim
L→∞

FL = 0,

so for the marginal product of labour the Inada conditions hold. Also:

lim
K→0

FK = +∞, lim
K→∞

FK = A.

The last result violates an Inada condition.

(b) By substituting (Q14.3) into (Q14.4) we find:

K̇ (t) = [Y (t)− C (t)] − G (t)− δK (t) . (A14.22)

We know that Y = C + S + T so that Y − C = S + T. Substituting this result
and (Q14.2) into (A14.22) we find:

K̇ (t) = s [Y (t) − G (t)] − δK (t) , (A14.23)

where we have used (A14.25). Substituting (Q14.6) into (A14.23) we get:

K̇ (t) = s
[

AK (t) + BK (t)α L (t)1−α
]
− sG (t)− δK (t) . (A14.24)

Dividing by L (t) we thus get:

k̇ (t) = s
[
Ak (t) + Bk (t)α]− sg − (δ + nL) k (t) , (A14.25)

where k (t) ≡ K (t) /L (t) and g (t) ≡ G (t) /L (t).
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(c) The growth rate of k (t) is obtained by dividing (A14.25) by k (t):

γk (t) ≡ k̇ (t)

k (t)
= sA − (δ + nL) + sBk (t)α−1 − s

g

k (t)
. (A14.26)

Diagrammatically we can distinguish two cases–see Figures A14.2 and A14.3.

If sA < δ + nL then limt→∞ γk (t) < 0. Of course, this does not mean that
growth becomes negative. It means that there is a unique (stable) steady-state
level of k (t) = k∗ for which γk (t) = γ∗ = 0. See Figure A14.2. This the case of
exogenous economic growth.

The adjustment speed is computed as follows. We know that, around k∗, we
have:

Ak (t) + Bk (t)α ≈ Ak∗ + B (k∗)α +
[

A + αB (k∗)α−1
]
· [k (t) − k∗] . (A14.27)

By substituting (A14.27) into (A14.25) we find:

k̇ (t) = s
[
Ak∗ + B (k∗)α]+ s

[
A + αB (k∗)α−1

]
· [k (t) − k∗]

−sg − (δ + nL) k (t) . (A14.28)

But in the steady state we have that:

k̇∗ = 0 = s
[
Ak∗ + B (k∗)α]− sg − (δ + nL) k∗, (A14.29)

so that (A14.28) simplifies to:

k̇ (t) = −β [k (t)− k∗] , (A14.30)

where β is the speed of adjustment (around the steady state):

β ≡ (δ + nL) − s
[

A + αB (k∗)α−1
]

> 0. (A14.31)

(d) If sA > δ + nL then limt→∞ γk (t) = sA − (δ + nL) ≡ γ∗
> 0, where γ∗ is the

asymptotic endogenous growth rate. See Figure A14.3. The national income
share of labour is defined as:

ωL ≡ L · FL

Y
=

L (1 − α) BKαL−α

AK + BKαL1−α

=
(1 − α) Bkα

Ak + Bkα

=
(1 − α) B

Ak1−α + B
.

It follows that limk→∞ ωL = 0 (because limk→∞ k1−α = +∞).

(e) We have already imposed the government budget constraint. An increase in g
has no effect on the asymptotic endogenous growth rate, γ∗ ≡ sA − (δ + nL).
However, it does affect growth during transition. We find from (A14.26) that:

∂γk (t)

∂g
≡ k̇ (t)

k (t)
= sA − (δ + nL) + sBk (t)α−1 − s

k (t)
> 0,

i.e., for a given k (t) the growth rate falls. This effect has been illustrated in
Figure A14.3.
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Figure A14.2: Exogenous growth
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Figure A14.3: Asymptotic endogenous growth



364 EXERCISE & SOLUTIONS MANUAL

Question 5: External effect and endogenous growth

(a) Each firm i hires capital and labour to equate the rental rates to the respective
marginal products:

W =
∂Yi

∂Li
= εLZLεL−1

i K1−εL
i = εLZk1−εL

i , (A14.32)

RK = r + δ = (1 − εL) ZLεL
i K−εL

i = (1 − εL) Zk−εL
i , (A14.33)

where ki ≡ Ki/Li is the firm’s capital intensity. Since W and RK are the same
for all firms (perfect mobility of production factors), we immediately find that:

ki = k, (for all i). (A14.34)

(b) Aggregate output is defined as:

Y ≡
N0

∑
i=1

Yi, (A14.35)

because the goods are homogeneous. In view of (Q14.8) and (A14.34) we know
that Yi = ZLik

1−εL . Hence, we find:

Y =
N0

∑
i=1

ZLik
1−εL = Zk1−εL

N0

∑
i=1

Li = LZk1−εL , (A14.36)

where we have used the fact that ∑
N0
i=1 Li = L (labour market clearing). From

(Q14.9) we find:

Z = AKεL = A (kL)εL . (A14.37)

Substituting (A14.37) into (A14.36) we find the “macroeconomic production
function”:

Y (t) = L (t) Ak (t)εL L (t)εL k (t)1−εL

= AL (t)εL K (t) , (A14.38)

where we have used K (t) = k (t) L (t). There are increasing returns to scale at
the macroeconomic level. The interest rate is obtained by substituting (A14.34)
and (A14.37) into (A14.33):

r (t) + δ = (1 − εL) AL (t)εL , (A14.39)

which grows exponentially because L (t) does. The external effect is too strong
and the model runs foul of stylized fact (SF3) in Chapter 13.

(c) A correctly specified external effect sets:

Z (t) = Ak (t)εL . (A14.40)

Productivity depends the stock of capital per worker. Using (A14.40) in (A14.32)-
(A14.33) and (A14.36) we obtain:

W (t) = εLZ (t) k (t)1−εL = εL Ak (t)εL k (t)1−εL ⇔
W (t) = εL Ak (t) , (A14.41)

r (t) + δ = (1 − εL) A, (A14.42)

Y (t) = AK (t) . (A14.43)



CHAPTER 14: ENDOGENOUS ECONOMIC GROWTH 365

(d) We can rewrite (A14.41) as W (t) L (t) = εL AK (t) = εLY (t), i.e. the national
income share of labour is equal to εL.

(e) We know that Y = C + S = C + I or I = S. Also, K̇ = I − δK so that:

K̇ (t) = sY (t) − δK (t) = sAK (t) − δK (t) .

The growth rate is:

γK (t) ≡ K̇ (t)

K (t)
= sA − δ = γ∗. (A14.44)

Since Y (t) = AK (t) we find that γY (t) = γ∗ also. Output per worker grows
according to γy (t) = γ∗

y = γ∗ − nL. There is no transitional dynamics.

(f) If nL falls then γ∗
y increases. A given amount of capital accumulation is di-

luted more slowly by the growth in the labour force. This speeds up per capita
growth.

Question 6: Asymptotic capital fundamentalist model

(a) To obtain compact expressions we first define ζ ≡ (σKL − 1)/σKL. Let λ > 0
and compute F (λK, λL):

F (λK, λL) = λAL +
[
(1 − α) (λL)ζ + α (λK)ζ

]1/ζ

= λAL +
[
λζ ·

[
(1 − α) Lζ + αKζ

]]1/ζ

= λAL + λ
[
(1 − α) Lζ + αKζ

]1/ζ
= λF (K, L) ,

i.e. there are constant returns to scale. The marginal product of labour is:

FL = A +
1

ζ
·
[
(1 − α) Lζ + αKζ

]1/ζ−1 × ζ · (1 − α) Lζ−1

= A + (1 − α) Lζ−1 ·
[
(1 − α) Lζ + αKζ

](1−ζ)/ζ

= A + (1 − α) ·
[

L−ζ ·
[
(1 − α) Lζ + αKζ

]](1−ζ)/ζ

= A + (1 − α) ·
[
1 − α + αkζ

](1−ζ)/ζ
. (A14.45)

For the marginal product of capital we get:

FK = α ·
[
(1 − α) k−ζ + α

](1−ζ)/ζ
. (A14.46)

Both FL and FK depend on k only (as we know from Euler’s Theorem).
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(b) The intensive form production function is:

f (k) ≡ F

(
K

L
, 1

)

= A +
1

L
·
[

L(σKL−1)/σKL ·
[
(1 − α) + αk(σKL−1)/σKL

]]σKL/(σKL−1)

= A +
[
1 − α + αk(σKL−1)/σKL

]σKL/(σKL−1)
. (A14.47)

(c) We know (from (A14.46)) that:

f ′ (k) = α ·
[
(1 − α) k(1−σKL)/σKL + α

]1/(σKL−1)
(A14.48)

=
α[

(1 − α) k(1−σKL)/σKL + α
]1/(1−σKL)

. (A14.49)

If 0 < σKL < 1 (ζ < 0, difficult substitution between capital and labour), then

k(1−σKL)/σKL → +∞ as k → +∞. It follows from (A14.49) that limk→∞ f ′ (k) =
0. There cannot be endogenous growth because labour gets ever scarcer.

On the other hand, if σKL > 1 (ζ > 0, easy substitution between capital and

labour), then k(1−σKL)/σKL → 0 as k → +∞. It follows from (A14.49) that:

lim
k→∞

f ′ (k) =
α

α1/(1−σKL)
= ασKL/(σKL−1)

> 0. (A14.50)

There is a lower limit to the marginal product of labour and endogenous growth
is possible.

(d) We must first compute the asymptotic growth rate, γ∗. The full model is given
by:

K̇ (t) = Y (t)− C (t)− G (t) − δK (t) ,

Y (t) = AL (t) +
[
(1 − α) L(t)(σKL−1)/σKL + αK(t)(σKL−1)/σKL

]σKL/(σKL−1)
,

G (t) = g0Y (t) ,

Ċ (t)

C (t)
= σ [r (t)− ρ] ,

r (t) + δ = f ′ (k (t)) ,

L (t) = L0.

In per capita terms we thus get:

γk (t) ≡ k̇ (t)

k (t)
= (1 − g0)

f (k (t))

k (t)
− c (t)

k (t)
− δ, (A14.51)

γc (t) ≡ ċ (t)

c (t)
= σ

[
f ′ (k (t)) − (ρ + δ)

]
. (A14.52)
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The asymptotic growth rate is obtained from (A14.52) by letting k (t) → +∞:

γ∗ = lim
k(t)→+∞

γc (t) = σ

[
lim

k(t)→+∞
f ′ (k (t)) − (ρ + δ)

]
= σ

[
ασKL/(σKL−1) − (ρ + δ)

]
> 0. (A14.53)

Asymptotically, the c/k ratio is constant, i.e. The γk (t) = γ∗ also. We find
from (A14.51) that:

( c

k

)∗
= (1 − g0) lim

k(t)→+∞

f (k (t))

k (t)
− γ∗ − δ

= (1 − g0) ασKL/(σKL−1) − γ∗ − δ, (A14.54)

where we have used the fact that:

lim
k(t)→+∞

f (k (t))

k (t)
= lim

k→∞

A

k
+ lim

k→∞

[
(1 − α) k(1−σKL)/σKL + α

]σKL/(σKL−1)

= lim
k→∞

f ′ (k) = ασKL/(σKL−1).

An increase in g (from g0 to g1) does not affect γ∗ but decreases the long-run
consumption-capital ratio. The increase in public spending causes a reduction
in consumption. Note that there is transitional dynamics in this model (because
the marginal and average products of capital are only constant in the very long
run).
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Chapter 15

Real business cycles

Question 1: Short questions

(a) Real business cycle models are often criticized for their lack of internal propaga-
tion. What do we mean by that? How could we improve the internal propaga-
tion mechanism?

(b) “Depending on the persistence of a fiscal policy shock, investment may in-
crease or decrease during the early phases of adjustment in the RBC model.”
True or false? Explain.

(c) “In the unit-elastic RBC model, the long-run fiscal policy multiplier, dY(∞)/dG,
is zero if there is no income effect in labour supply.” True or false? Explain.

(d) In the unit-elastic RBC model there is a sharp difference in the response of la-
bour supply to (i) a purely temporary productivity increase and (ii) a perman-
ent productivity increase. How do income- and substitution effects explain this
difference?

Question 2: Small open economy model

[Based on Kim and Kose (2003), Correia, Neves, and Rebelo (1995) and Schmitt-
Grohe and Uribe (2003)] Consider the following model of an infinitely-lived repres-
entative household-producer living in a small open economy. The representative
household features the following lifetime utility function:

EtΛt ≡ Et

∞

∑
τ=t

(
1

1 + ρ

)τ−t

· ln

(
Cτ − γL

1 + σ
L1+σ

τ

)
, (Q15.1)

where Cτ is consumption, Lτ is labour hours, ρ is the pure rate of time preference,
and γL and σ are positive parameters. We model the household as a household-
producer, i.e. we assume that it makes both the consumption and production de-
cisions. The constraints it faces are:

Yτ + rτ Bτ = Cτ + Iτ + (Bτ+1 − Bτ) , (Q15.2)

Yτ = ZτK1−εL
τ LεL

τ , 0 < εL < 1, (Q15.3)

Kτ+1 = (1 − δ) Kτ + Φ

(
Iτ

Kτ

)
· Kτ , 0 < δ < 1, (Q15.4)
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where Iτ is gross investment, Yτ is output, Kτ is the stock of capital at the beginning
of period τ, and Zτ is a stochastic productivity shock. Equation (Q15.2) is the re-
source constraint. It says that total income (left-hand side) is spent on consumption,
investment, or asset accumulation. Here, Bτ is the stock of net foreign assets at the
beginning of period τ, and rτ is the real (world) rate of return on these assets. This
rate of return is stochastic and taken as given by the representative household. It is
assumed that the mean international rate of return, r̄, satisfies:

r̄ = ρ. (Q15.5)

Equation (Q15.4) is the capital accumulation constraint featuring adjustment costs.
It is assumed that Φ (·) is non-negative, concave, Φ′′ (·) < 0 < Φ′ (·), and features
Φ (δ) = δ and Φ′ (δ) = 1. The household chooses optimal sequences for Cτ , Lτ , Iτ ,
Yτ , Kτ+1, and Bτ+1 in order to maximize (Q15.1) subject to (Q15.2)-(Q15.5).

(a) Solve the household’s optimization problem, using the Lagrangian method ex-
plained in the text (see equations (15.62)-(15.65)).

(b) Loglinearize the model.

(c) To get to understand the model, first assume that Zt and rt are non-stochastic,
i.e. Zt = 1 and rt = r̄ = ρ. Show that the model displays hysteresis.

(d) Assume that Zτ and rτ both follow first-order autoregressive processes of the
form:

Z̃t = ξZZ̃t−1 + ηZ
t , 0 < ξZ < 1, (Q15.6)

r̃t = ξRr̃t−1 + ηR
t , 0 < ξR < 1, (Q15.7)

with ηi
t ∼ N

(
0, σ2

i

)
for i = Z, R and E

(
ηZ

t ηR
s

)
= 0 for all s and t (uncorrelated

innovations). Derive the system of stochastic difference equations for K̃t and
X̃t (the counterpart to (15.78) in the text).

(e) � Solve the system of stochastic difference equations using the method of un-
determined coefficients (see Appendix B.2 in Chapter 15 in the textbook.).

Question 3: The non-market sector

It is a well-known fact of life that the non-market sector is quite sizeable in advanced
economies. For example, in the United States, an average married couple spends
33 percent of its discretionary time working for a wage in the market sector and 28
percent of its time working in the home. Home production activities can include
things like cooking, cleaning, child care, gardening, shopping, etcetera. Similarly,
the figures indicate that investment in household capital (such as consumer durables
and residential structures) exceeds investment in market capital (producer durables,
non-residential structures). In this question we study the effects of introducing home
production into the RBC model.

The representative household has the following lifetime utility function:

Et Λt ≡ Et

∞

∑
τ=t

(
1

1 + ρ

)τ−t

ln
(

Cε
τ [1 − Lτ ]1−ε

)
, (Q15.8)
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where ρ captures the notion of time preference (ρ > 0), Cτ is composite consumption,
1 − Lτ is leisure, and 0 < ε < 1. Composite consumption itself depends on the
consumption of a market-produced good (CM

τ ) and a home-produced good (CH
τ ):

Cτ ≡
[

η
(

CH
τ

)(σ−1)/σ
+ (1 − η)

(
CM

τ

)(σ−1)/σ
]σ/(σ−1)

, (Q15.9)

where σ ≥ 0 is the substitution elasticity between CH
τ and CM

τ in composite con-
sumption, and 0 < η < 1. Labour time is spent either in the market sector (LM

τ ) or
on home production activities (LH

τ ):

Lτ ≡ LM
τ + LH

τ . (Q15.10)

Home-produced goods are only used for home consumption and the technology is
given by:

CH
τ = ZH

τ

(
LH

τ

)θ (
KH

τ

)1−θ
, (Q15.11)

where KH
τ is the stock of household capital, ZH

τ is a stochastic productivity term
affecting home production, and 0 < θ < 1. In addition to household capital, the
household also accumulates business (or market) capital, KM

τ , that it rents out to
firms in the market sector. The household budget constraint can be written as:

CM
τ + KM

τ+1 + KH
τ+1 = Wτ LM

τ + RK
τ KM

τ + (1 − δM)KM
τ + (1 − δH)KH

τ , (Q15.12)

where δM and δH denote the depreciation rates of, respectively, business capital and
household capital (0 < δM < 1 and 0 < δH < 1). Furthermore Wτ is the real wage
rate and RK

τ is the rental rate on business capital.

(a) What do we assume about the intertemporal substitution elasticity of the house-
hold’s felicity function?

(b) Interpret the household budget constraint (Q15.12). What do we assume about
the substitutability of the two types of capital?

(c) Solve the household optimization problem using the methods explained in the
book (viz. section 15.5.1.1). Interpret the various expressions you obtain.

The representative firm is perfectly competitive and produces homogeneous output,
Yτ , by renting business capital, KM

τ , and labour, LM
τ , from the household sector. The

production function is:

Yτ ≡ ZM
τ

(
LM

τ

)α (
KM

τ

)1−α
, (Q15.13)

where ZM
τ is a stochastic productivity term affecting market productivity, and 0 <

α < 1. The firm maximizes profit, Πτ ≡ Yτ − Wτ Lτ − RK
τ Kτ .

(d) Derive the first-order conditions for the firm’s optimal plans.

(e) What do we assume about the substitutability of working in the market sector
and in home production? Show how you can modify the household utility
function to capture the notion that working in the market is actually preferred
to working around the home.
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Question 4: A general RBC model

In this question we extend the continuous-time RBC model by assuming more gen-
eral preferences and technology. In particular, the felicity function (Φ(τ), appearing
in (15.1)) now takes the following form:

Φ(τ) ≡ U(τ)1−1/σX − 1

1 − 1/σX
, (Q15.14)

where σX is the intertemporal substitution elasticity and U(τ) is the sub-felicity func-
tion which depends on consumption (C(τ)) and leisure (1 − L(τ)):

U(τ) ≡
[
εCC(τ)(σCL−1)/σCL + (1 − εC)[1 − L(τ)](σCL−1)/σCL

]σCL/(σCL−1)
. (Q15.15)

We assume that the production function (15.11) is replaced by a more general CES
function featuring a constant elasticity of substitution, σKL:

F[K(τ), L(τ)] ≡
[
εLL(τ)(σKL−1)/σKL + (1 − εL)K(τ)(σKL−1)/σKL

]σKL/(σKL−1)
. (Q15.16)

The rest of the model is unchanged.

(a) Prove that the extended model incorporates the unit-elastic model studied in
the text as a special case.

(b) Use the method of two-stage budgeting (which is discussed inter alia in section
16.5.1.1 of the book) to solve the optimal plans of the representative house-
holds. Show that the Euler equation for full consumption is given by:

Ẋ(τ)

X(τ)
= σX [r(τ)− ρ] + (1 − σX)

ṖU(τ)

PU(τ)
, (Q15.17)

where PU(τ) is the true cost-of-living index:

PU(τ) ≡
{[

ε
εC
C (1 − εC)1−εC

]−1
W(τ)1−εC if σCL = 1[

ε
σCL
C + (1 − εC)σCL W(τ)1−σCL

]1/(1−σCL)
if σCL �= 1

(Q15.18)

Hint: start by postulating that full consumption and subfelicity are related ac-
cording to:

X(τ) ≡ C(τ) + W(τ)[1 − L(τ)] = PU(τ)U(τ). (Q15.19)

(c) Derive the marginal productivity conditions for labour and capital. Relate the
wage rate and the interest rate to, respectively, output per worker and output
per unit of capital. Explain the role of σKL in the factor demand equations.

(d) Show that the “great ratios” result still holds for the extended model studied
here.

(e) Derive the long-run output multiplier with respect to government consump-
tion (dY(∞)/dG) and show that it does not depend on the intertemporal sub-
stitution elasticity, σX . Give an economic interpretation for this result.
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Question 5: Government spending shocks in the unit-elastic model

Consider the unit-elastic RBC model discussed in section 15.5.1 of the text. Change
the lifetime utility function (15.59) to:

EtΛt ≡ Et

∞

∑
τ=t

(
1

1 + ρ

)τ−t [
εC ln

(
Cτ − γL

1 + θL
L (τ)1+θL

)
− (1 − εC)Lτ

]
, (Q15.20)

where Gτ is government consumption and α is a constant parameter (0 ≤ α ≤ 1).
The felicity function is linear in labour supply so we make use of the lottery model
developed by Hansen. The household views Gτ as an uncontrollable stochastic pro-
cess that is not dependent on any endogenous variables. The stochastic process for
Gτ is given by:

ln Gt = αG + ρG ln Gt−1 + εG
t , 0 < ρG < 1, (Q15.21)

where εG
t is the innovation term which is identically and independently distributed

with mean zero and variance σ2
G. Technology is deterministic. The rest of the model

is unchanged.

(a) Solve the household’s optimization problem, using the Lagrangian method ex-
plained in the text (see equations (15.62)-(15.65)).

(b) Loglinearize the model. Comment on the differences you find between this
model, and the standard unit elastic model of Table 15.4 in the book.

(c) Show that the quasi-reduced form for the interest rate is independent of the
capital stock. Solve for the rational expectations solution for consumption. Ex-
plain how private consumption depends on government consumption in this
model.

Question 6: No wealth effect in labour supply

Consider the extended Ramsey model discussed in sections 15.2–15.4 of the book.
Assume that the felicity function (15.2) is changed to:

Φ (τ) ≡ ln

(
C (τ)− γL

1 + θL
L (τ)1+θL

)
, (Q15.22)

with θL > 0.

(a) Solve the household optimization problem.

(b) Incorporate the results derived in part (a) into the model given in Table 15.1.
Derive the phase diagram for the model. Show that the model is saddle-point
stable.

(c) Loglinearize the model around the initial steady state (i.e., redo the relevant
expressions from Table 15.2).

(d) Compute the expressions for the various long-run spending multipliers, like
dY (∞) /dG, dC (∞) /dG, dI (∞) /dG etcetera. Explain the intuition behind
your results with the aid of the phase diagram.
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Answers

Question 1: Short questions

(a) See pages 15.5.2.1 and 15.5.2.2 of the book. Lack of propagation: output re-
sponse is virtually identical to shock input (technology shock). The model itself
does not add much in that sense. Better propagation:

• Add another slow moving stock variable (e.g. human capital).

• Sticky prices.

• Search unemployment.

(b) True, see Figure 15.6 in the book. If labour supply is highly elastic and the
shock is rather persistent, then net investment rises at impact. Output increases
a lot and the increase in G does not cause crowding out. The opposite happens
if the shock is rather transitory and labour supply is not very elastic.

(c) True, see Footnote 2 on page 502. If labour supply only depends on the wage
rate, an increase in lump-sum taxes will not cause labour supply to change.
Hence, the adjustment is fully borne by consumption, which is crowded out
one-for-one.

(d) For a purely temporary shock, the wage is only abnormally high in the shock
period itself. It is thus important to benefit from that high wage in the shock
period by working very hard then. This is the case where the substitution
effect is dominant. There is of course an income effect, but it is small because
the wage is only high in that one period.

The opposite holds for a permanent shock. In this case the income effect is
large, and the substitution effect is small (because the wage is higher than be-
fore in all periods, so no one period stands out).

Question 2: Small open economy model

(a) The Lagrangian expression is:

Lt ≡ Et

∞

∑
τ=t

(
1

1 + ρ

)τ−t

·
[

ln

(
Cτ − γL

1 + σ
L1+σ

τ

)
−λτ ·

[
Bτ+1 − (1 + rτ) Bτ − ZτK1−εL

τ LεL
τ + Cτ + Iτ

]
−µτ ·

[
Kτ+1 − (1 − δ) Kτ − Φ

(
Iτ

Kτ

)
· Kτ

]]
,

where λτ and µτ are the Lagrange multipliers for the constraints in period τ.
For convenience, we define Xτ as:

Xτ ≡ Cτ − γL

1 + σ
L1+σ

τ , (A15.1)
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The first-order conditions for this problem (for τ = t, t + 1, t + 2, ...) are:

∂Lt

∂Cτ
=

(
1

1 + ρ

)τ−t

Et

[
1

Xτ
− λτ

]
= 0,

∂Lt

∂Lτ
=

(
1

1 + ρ

)τ−t

Et

[
−γLLσ

τ

Xτ
+ εLλτZτK1−εL

τ LεL−1
τ

]
= 0,

∂Lt

∂Iτ
=

(
1

1 + ρ

)τ−t

Et

[
−λτ + µτΦ′

(
Iτ

Kτ

)]
= 0,

∂Lt

∂Kτ+1
=

(
1

1 + ρ

)τ−t

Et

[
−µτ + (1 − εL)

λτ+1

1 + ρ
Zτ+1K−εL

τ+1LεL
τ+1

+
µτ+1

1 + ρ

(
1 − δ + Φ

(
Iτ+1

Kτ+1

)
− Φ′

(
Iτ+1

Kτ+1

)
· Iτ+1

Kτ+1

)]
= 0,

∂Lt

∂Bτ+1
=

(
1

1 + ρ

)τ−t

Et

[
−λτ + (1 + rτ+1)

λτ+1

1 + ρ

]
= 0.

For the planning period (τ = t) these first-order conditions can be written in a
more compact format as:

λt =
1

Xt
, (A15.2)

γLLσ
t = εL

Yt

Lt
, (A15.3)

λt = µtΦ
′
(

It

Kt

)
, (A15.4)

µt = Et

[
(1 − εL)

λt+1

1 + ρ

Yt+1

Kt+1

+
µt+1

1 + ρ

(
1 − δ + Φ

(
It+1

Kt+1

)
− Φ′

(
It+1

Kt+1

)
· It+1

Kt+1

) ]
, (A15.5)

λt = Et

[
1 + rt+1

1 + ρ
· λt+1

]
, (A15.6)

Yt = ZtK
1−εL
t LεL

t . (A15.7)

(b) The deterministic steady state has the following features:

1

λ∗ = C∗ − γL

1 + σ
(L∗)1+σ ,

γL (L∗)1+σ = εLY∗,

ρ + δ

1 − εL
=

Y∗

K∗ ,

λ∗ = µ∗,

Y∗ + r̄B∗ = C∗ + I∗,

I∗ = δK∗,

Y∗

K∗ =

(
L∗

K∗

)εL

.
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The model features many great ratios, namely (Y/K)∗, (I/K)∗, (K/L)∗, and
thus also L∗. The hysteretic property of the model (see below) confines itself to
consumption and assets.

The loglinearized model is given by:

λ̃t = −X̃t, (A15.8)

σL̃t = Ỹt − L̃t, (A15.9)

λ̃t = µ̃t − σA

[
Ĩt − K̃t

]
, (A15.10)

µ̃t =
1

1 + ρ
Et

[
(ρ + δ)

(
Ỹt+1 − K̃t+1

)
+ µ̃t+1 + ρλ̃t+1

]
, (A15.11)

λ̃t = Et

[
ρ

1 + ρ
r̃t+1 + λ̃t+1

]
, (A15.12)

Ỹt = Z̃t + (1 − εL) K̃t + εLL̃t, (A15.13)

K̃t+1 = K̃t + δ
[
Ĩt − K̃t

]
, (A15.14)

where σA ≡ −δΦ′′ (δ) > 0. Of these, the only one that warrants further com-
ment is (A15.11). Differentiating (A15.5) around the deterministic steady state
we find:

(1 + ρ) dµt = Et

[
(1 − εL) d

(
λt+1

Yt+1

Kt+1

)
+ (1 − δ) dµt+1

+µ∗ (Φ′ (δ) − Φ′ (δ)− Φ′′ (δ) · δ
)

d

(
It+1

Kt+1

) ]
.

Dividing by µ∗ = λ∗ on both sides and simplifying we obtain:

(1 + ρ) µ̃t = Et

[
(1 − εL)

λ∗

µ∗
Y∗

K∗
(
λ̃t+1 + Ỹt+1 − K̃t+1

)
+ (1 − δ) µ̃t+1

−Φ′′ (δ) · δ2
(

Ĩt+1 − K̃t+1

) ]
.

By using the definition of σA and substituting (A15.10) we arrive at:

(1 + ρ) µ̃t = Et

[
(ρ + δ)

(
λ̃t+1 + Ỹt+1 − K̃t+1

)
+ (1 − δ) µ̃t+1

+δ
(
µ̃t+1 − λ̃t+1

) ]
.

After some cancellation of terms we obtain equation (A15.11).

(c) To derive the system of (stochastic) difference equations, we first condense the
model as much as possible. Using (A15.9) and (A15.13) we find:

Ỹt =
1 + σ

1 + σ − εL

[
Z̃t + (1 − εL) K̃t

]
,

Ỹt − K̃t =
(1 + σ) Z̃t − σεLK̃t

1 + σ − εL
. (A15.15)
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Note that ζ̃t ≡ µ̃t − λ̃t corresponds to Tobin’s q in a decentralized setting.
Deducting (A15.12) from (A15.11) we derive:

ζ̃t =
1

1 + ρ
Et

[
(ρ + δ)

(
Ỹt+1 − K̃t+1

)
+ ζ̃t+1 − ρr̃t+1

]
. (A15.16)

The system of difference equations is thus:

K̃t+1 = K̃t +
1

σA
· ζ̃t, (A15.17)

ζ̃t =
1

1 + ρ
Et

[
(ρ + δ)

(1 + σ) Z̃t+1 − σεLK̃t+1

1 + σ − εL

+ζ̃t+1 − ρr̃t+1

]
. (A15.18)

Equation (A15.17) is obtained by substituting (A15.10) into (A15.14), whereas
(A15.18) follows from (A15.15) and (A15.16).

For the deterministic case we can drop the expectations operator, Et (·), and set
Z̃t = r̃t = 0. After some manipulations we find:[

K̃t+1

ζ̃t+1

]
= ∆ ·

[
K̃t

ζ̃t

]
,

where ∆ is defined as:

∆ ≡
[

1 0
−(ρ+δ)σεL

1+σ−εL
1

]−1

·
[

1 1/σA

0 1 + ρ

]

=

[
1 0

(ρ+δ)σεL
1+σ−εL

1

]
·
[

1 1/σA

0 1 + ρ

]

=

[
1 1/σA

(ρ+δ)σεL
1+σ−εL

1 + ρ + (ρ+δ)σεL

σA(1+σ−εL)

]
.

We find that:

tr∆ = η1 + η2 = 2 + ρ +
(ρ + δ) σεL

σA (1 + σ − εL)
> 2,

|∆| = η1η2 = 1 + ρ > 1,

where η1 and η2 are the characteristic roots. The characteristic equation is thus:

F (s) ≡ |sI − ∆| = s2 − tr∆ · s + |∆| = 0.

We find that F (0) = |∆| > 0, F (1) = −
(

2 + (ρ+δ)σεL

σA(1+σ−εL)

)
< 0, F′ (s̄) = 0

and F′′ (s̄) > 0 for s̄ = tr∆/2 > 1 (a minimum). It follows that both roots
are positive an lie on either side of unity. The investment part of the model
is saddle-point stable. It follows from (A15.8) and the deterministic version of
(A15.12) that:

X̃t+1 = X̃t,

i.e. Xt features a unit root. The dynamics of L̃t is non-degenerate (proportional
to that of K̃t) so neither is the dynamics in C̃t.
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(d) By rewriting (A15.18) we find:

Et ζ̃t+1 = (1 + ρ) ζ̃t − (ρ + δ)
(1 + σ) EtZ̃t+1 − σεLEtK̃t+1

1 + σ − εL
+ ρEtr̃t+1

= (1 + ρ) ζ̃t − (ρ + δ)
(1 + σ) ξZZ̃t − σεL

[
K̃t + 1

σA
· ζ̃t

]
1 + σ − εL

+ ρξRr̃t, (A15.19)

where we have used (Q15.6)-(Q15.7). The stochastic system of difference equa-
tions is thus:[

K̃t+1

Et ζ̃t+1

]
= ∆ ·

[
K̃t

ζ̃t

]
+

[
0

ρξRr̃t − (ρ+δ)(1+σ)
1+σ−εL

ξZZ̃t

]
. (A15.20)

(e) We follow the approach in Appendix B.2 and postulate the trial solution:

ζ̃t = πKK̃t + πZZ̃t + πRr̃t, (A15.21)

where we want to determine the unknown constants, πK, πZ, and πR. It fol-
lows that:

Et ζ̃t+1 = πKEtK̃t+1 + πZEtZ̃t+1 + πREtr̃t+1

= πKK̃t+1 + πZξZZ̃t + πRξRr̃t.

Substituting these results into (A15.21) we find:[
K̃t+1

πKK̃t+1 + πZξZZ̃t + πRξRr̃t

]
= ∆ ·

[
K̃t

πKK̃t + πZZ̃t + πRr̃t

]

+

[
0

ρξRr̃t − (ρ+δ)(1+σ)
1+σ−εL

ξZZ̃t

]
.

This gives two expressions for K̃t+1 in terms of K̃t, Z̃t, and r̃t that must hold for
all combinations of these variables. By solving these equations we can express
the unknown coefficients in terms of structural parameters. (See Appendix B.2
of Chapter 15 for details.)

Question 3: The non-market sector

(a) The intertemporal substitution elasticity is equal to one. The felicity function
is logarithmic.

(b) The representative household makes the consumption and accumulation de-
cisions. Note that (Q15.12) can be rewritten in a more conventional form as:

Cτ + IM
τ + IH

τ = Wτ Lτ + RK
τ KM

τ − Tτ , (A15.22)

where IM
τ ≡ KM

τ+1 − (1 − δM)KM
τ and IH

τ ≡ KH
τ+1 − (1 − δH)KH

τ represent gross
investment in, respectively, business and home capital. This equation is thus a
generalized version of equation (15.60) in the book. Since we are adding up the
different types of capital, we implicitly assume that the two types of capital are
perfect substitutes as far as the household’s investment decision is concerned.
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(c) The household chooses sequences {Cτ}∞
t , {CM

τ }∞
t , {CH

τ }∞
t , {Lτ}∞

t , {LM
τ }∞

t ,
{LH

τ }∞
t , {KH

τ+1}∞
t , and {KM

τ+1}∞
t in order to maximize (Q15.8) subject to the

constraints and definitions (Q15.9)–(Q15.12), taking as given the initial stock
of total capital, KM

t + KH
t . It is thus assumed that household capital can cost-

lessly and instantaneously be turned into business capital and vice versa. The
Lagrangian expression for this problem is:

LH
t ≡ Et

∞

∑
τ=t

(
1

1 + ρ

)τ−t
[

εC ln Cτ + (1 − εC) ln[1 − LM
τ − LH

τ ]

− λτ

(
KM

τ+1 + KH
τ+1 + CM

τ − Wτ LM
τ − (RK

τ + 1 − δM)KM
τ − (1 − δH) KH

τ

)
− µτ

(
Cτ −

[
εH

(
CH

τ

)(σ−1)/σ
+ (1 − εH)

(
CM

τ

)(σ−1)/σ
]σ/(σ−1)

)

− νt

(
CH

τ − ZH
τ

(
LH

τ

)ηL
(

KH
τ

)1−ηL
)]

, (A15.23)

where we have substituted the time constraint (Q15.10) into the felicity func-
tion. The Lagrange multipliers are denoted by µτ , ντ , and λτ and the (interest-
ing) first-order conditions are:

∂LH
t

∂Cτ
=

(
1

1 + ρ

)τ−t

Et

[
εC

Cτ
− µτ

]
= 0, (A15.24)

∂LH
t

∂LM
τ

= −
(

1

1 + ρ

)τ−t

Et

[
1 − εC

1 − Lτ
− λτWτ

]
= 0, (A15.25)

∂LH
t

∂LH
τ

= −
(

1

1 + ρ

)τ−t

Et

[
1 − εC

1 − Lτ
− ντŴτ

]
= 0, (A15.26)

∂LH
t

∂CM
τ

=

(
1

1 + ρ

)τ−t

Et

[
µτ(1 − εH)

(
Cτ

CM
τ

)1/σ

− λτ

]
= 0, (A15.27)

∂LH
t

∂CH
τ

=

(
1

1 + ρ

)τ−t

Et

[
µτεH

(
Cτ

CH
τ

)1/σ

− ντ

]
= 0, (A15.28)

∂LH
t

∂KM
τ+1

=

(
1

1 + ρ

)τ−t

Et

[
−λτ + λτ+1

RK
τ+1 + 1 − δM

1 + ρ

]
= 0, (A15.29)

∂LH
t

∂KH
τ+1

=

(
1

1 + ρ

)τ−t

Et

[
−λτ + λτ+1

(ντ+1/λτ+1) R̂K
τ+1 + 1 − δH

1 + ρ

]
= 0,

(A15.30)

where Ŵτ is the imputed home wage, i.e. the marginal product of working at
home (producing home goods):

Ŵτ ≡ ηLZH
τ

(
LH

τ

)ηL−1 (
KH

τ

)1−ηL
= ηL

(
CH

τ

LH
τ

)
, (A15.31)

and R̂K
τ is the imputed rental charge on home capital, which is defined as:

R̂K
τ ≡ (1 − ηL)ZH

τ

(
LH

τ

)ηL
(

KH
τ

)−ηL
= (1 − ηL)

(
CH

τ

KH
τ

)
. (A15.32)
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For the planning period, τ = t, we can simplify these first-order conditions
into a number of static conditions and a dynamic condition. By using (A15.25)–
(A15.26) we find:

πt ≡ νt

λt
=

Wt

Ŵt
, (A15.33)

where πt is the relative price of home goods. According to (A15.33), labour
must be allocated across the two activities such that it yields the same real
(imputed) wage. By substituting (A15.24)–(A15.25) into (A15.27) we find:

λt =
εC(1 − εH)

Ct

(
Ct

CM
t

)1/σ

=
1 − εC

1 − Lt

1

Wt
⇒

Wt =
(1 − εC)/(1 − Lt)

[εC/Ct] (1 − εH)
(
Ct/CM

t

)1/σ
, (A15.34)

i.e. the marginal rate of substitution between leisure and consumption of the
home good must be equated to the wage rate. Similarly, by using (A15.24) and
(A15.26) in (A15.28) we find:

νt ≡ λtπt =
εCεH

Ct

(
Ct

CH
t

)1/σ

=
1 − εC

1 − Lt

1

Ŵt
⇒

Ŵt ≡ Wt

πt
=

(1 − εC)/(1 − Lt)

[εC/Ct] εH

(
Ct/CH

t

)1/σ
. (A15.35)

Again, the optimality condition calls for an equalization of the marginal rate
of substitution between leisure and home consumption with the relevant wage
rate, Ŵt. Equations (A15.34)–(A15.35) determine the optimal division between
home consumption and consumption of market goods as a function of the rel-
ative price, πt.

Next we use (A15.27)–(A15.28) to deduce a relationship between µt and λt.
Equations (A15.27)–(A15.28) imply:

CM
t =

(
µt(1 − εH)

λt

)σ

Ct, CH
t =

(
µtεH

λtπt

)σ

Ct, (A15.36)

where πt is defined in (A15.33) above. By substituting these expressions into
equation (Q15.9) we find:

C
σ−1

σ
t = εH

[(
µtεH

λtπt

)σ

Ct

] σ−1
σ

+ (1 − εH)

[(
µt(1 − εH)

λt

)σ

Ct

] σ−1
σ

1 = εH

(
µtεH

λtπt

)σ−1

+ (1 − εH)

(
µt(1 − εH)

λt

)(σ−1)

µt

λt
=

[
εσ

Hπ1−σ
t + (1 − εH)σ

]1/(1−σ) ≡ P(πt), (A15.37)

where P(πt) is the true price index of composite consumption. Since (A15.27)–
(A15.28) are essentially static decisions, (A15.37) holds not only for period t but
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also for all other periods, i.e. µτ/λτ = P(πτ). Note that (A15.24)–(A15.25) in
combination with (A15.37) imply:

(1 − εC)/(1 − Lτ)

εC/Cτ
=

Wτ

P(πτ)
. (A15.38)

The marginal rate of substitution between leisure and composite consumption
is equated to the real wage rate, using the true price index for composite con-
sumption as the deflator. Equation (A15.38) in the counterpart to (15.66) in the
book.

Equations (A15.29)–(A15.30) state that the two capital stocks should yield the
same ex ante rate of return. For period t we find from (A15.29)–(A15.30):

λt = Et

[
λt+1

1 + rt+1

1 + ρ

]
= Et

[
λt+1

1 + r̂t+1

1 + ρ

]
, (A15.39)

where rt+1 ≡ RK
t+1 − δM and r̂t+1 ≡ πt+1R̂K

t+1 − δM. By using (A15.24) and
(A15.37) we find that (A15.39) can be rewritten as:

εC

Ct
= Et

[
1 + rt+1

1 + ρ

εC

Ct+1

P(πt)

P(πt+1)

]
(A15.40)

= Et

[
1 + r̂t+1

1 + ρ

εC

Ct+1

P(πt)

P(πt+1)

]
. (A15.41)

Equation (A15.40) is the counterpart to (15.67) in the book. Of course, since cap-
ital is perfectly mobile across activities, ex post rates of return will also equalize,
i.e. rτ = r̂τ for all τ.

(d) The representative firm makes a static decision regarding output and input
demands. In period τ, the realization of the technology shock, Zτ is known
and the firm maximizes Πτ subject to the technology (Q15.13). The first-order
conditions are:

∂Πτ

∂LM
τ

= 0 : εL
Yτ

LM
τ

= Wτ , (A15.42)

∂Πτ

∂KM
τ

= 0 : (1 − εL)
Yτ

KM
τ

= RK
τ . (A15.43)

Because the technology features CRTS excess profit is zero (Πτ = 0 for all τ).

(e) Implicit in the formulation of the felicity function is the notion that the house-
hold derives disutility from its total work effort, LM

τ + LH
τ , regardless of where

the work takes place. It follows that LM
τ and LH

τ are perfect substitutes to the
household. Following Benhabib, Rogerson, and Wright (1991, p. 1171) we can
change this aspect of the model by adopting the following felicity function:

Uτ ≡ εC ln Cτ + (1 − εC) ln
(

1 − LM
τ − LH

τ

)
+ γLLM

τ , (A15.44)

with 0 < εC < 1 and 0 ≤ γL < 1 − εL. With this formulation, the marginal
disutility of working at home or in the market are:

− ∂Uτ

∂LM
τ

=
1 − εC

1 − Lτ
− γL = − ∂Uτ

∂LH
τ
− γL.
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Provided γL is strictly positive, working in the market sector is preferred to
working around the house. (Note that the sign restriction on γL ensures that
−∂Uτ/∂LM

τ remains positive.)

Question 4: A general RBC model

(a) In the unit-elastic model we have:

σX = 1 so that Φ = ln U (a)

σCL = 1 so that U = CεC (1 − L)1−εC (b)

σKL = 1 so that y = LεL K1−εL (c)

There are thus only two types of results to prove, namely results of type (a) and
of type (b).

To demonstrate result (a), we can use footnote 18 in Chapter 13. Given the
definition of Φ in equation (Q15.14), it follows that both the numerator and the
denominator go to zero as 1/σX → 1. We must therefore use L’Hôpital’s rule
for evaluating limits of the 0/0 type. We find:

lim
1/σX→1

Φ = lim
1/σX→1

−1 · U1−1/σX ln U

−1
= ln U.

To demonstrate result (b) we first take the logarithm of equation (Q15.15):

ln U =
ln (εCCx + (1 − εC)[1 − L]x)

x
,

where x ≡ (σCL − 1)/σCL. Both the numerator and the denominator go to zero
as x → 0 so we must again use L’Hôpital’s rule:

lim
x→0

ln U = lim
x→0

εCCx ln C + (1 − εC)[1 − L]x ln(1 − L)

εCCx + (1 − εC)[1 − L]x

= εC ln C + (1 − εC) ln(1 − L), (A15.45)

where we have used the fact that limx→0 Cx = limx→0(1 − L)x = 1 to get
from the first to the second line of (A15.45). It follows from (A15.45) that U =
CεC (1 − L)1−εC .

(b) According to the hint, given in equation (Q15.19), we can write U(τ) = X(τ)/
PU(τ). By using this result, the optimization problem for the household in stage
1 is to choose paths for X(τ) and A(τ) such that:

Λ(t) =
∫ ∞

t

[
(X(τ)/PU(τ))1−1/σX − 1

1 − 1/σX

]
eρ(t−τ)dτ,

is maximized subject to the household budget identity:

Ȧ(τ) = r(τ)A(τ) + W(τ)− T(τ) − X(τ), (A15.46)

and the NPG condition. The household takes as given its initial level of finan-
cial assets, A(t). Note that (A15.46) is obtained from (15.3) in the book by using
the definition of full consumption given in equation (Q15.19).
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The current-value Hamiltonian for this optimization problem is:

H ≡ (X(τ)/PU(τ))1−1/σX − 1

1 − 1/σX
+ µ(τ)

[
r(τ)A(τ) + W(τ)− T(τ)− X(τ)

]
,

where µ(τ) is the co-state variable, A(τ) is the state variable, and X(τ) is the
control variable. The first-order conditions are ∂H/∂X = 0 and −∂H/∂A =
µ̇ − ρµ, or:

(
X(τ)

PU(τ)

)−1/σX 1

PU(τ)
= µ(τ),

−r(τ)µ(τ) = µ̇(τ)− ρµ(τ).

Combining these first-order conditions yields:

µ̇(τ)

µ(τ)
= − 1

σX

[
Ẋ(τ)

X(τ)
− ṖU(τ)

PU(τ)

]
− ṖU(τ)

PU(τ)
= ρ − r(τ) ⇒

Ẋ(τ)

X(τ)
− ṖU(τ)

PU(τ)
+ σX

ṖU(τ)

PU(τ)
= σX [r(τ)− ρ] ⇒

Ẋ(τ)

X(τ)
= σX [r(τ)− ρ] + (1 − σX)

ṖU(τ)

PU(τ)
. (A15.47)

Equation (A15.47) coincides with the expression in (Q15.17). We must now
verify that (Q15.18) is the correct expression for the true cost-of-living index.
We do so by solving stage 2 of the optimization procedure.

In stage 2, the household maximizes subfelicity, U, subject to the constraint
X = C + W(1 − L), with X given. The Lagrangian expression is:

L ≡
[
εCC(τ)(σCL−1)/σCL + (1 − εC)[1 − L(τ)](σCL−1)/σCL

]σCL/(σCL−1)

+ λ [X − C − W(1 − L)] , (A15.48)

where λ is the Lagrange multiplier. The first-order conditions are the con-
straint as well as ∂L /∂C = ∂L /∂(1 − L) = 0. It follows from the latter two
conditions that:

[·]σCL/(σCL−1)−1εCC(σCL−1)/σCL−1 = λ, (A15.49)

[·]σCL/(σCL−1)−1(1 − εC)(1 − L)(σCL−1)/σCL−1 = λW, (A15.50)

where [·] is the term in square brackets in equation (Q15.15). By dividing
(A15.50) by (A15.49) we obtain the expression for the marginal rate of sub-
stitution between leisure and consumption:

(1 − εC)(1 − L)−1/σCL

εCC−1/σCL
= W. (A15.51)

We can use (A15.51) and the constraint to express C and 1 − L in terms of X,
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W, and the parameters. We show a few steps here:(
εCW

1 − εC

)σCL

(1 − L) + W(1 − L) = X ⇒

W(1 − L)
[
1 + ε

σCL
C (1 − εC)−σCL WσCL−1

]
= X ⇒

(1 − εC)−σCL WσCL−1W(1 − L)
[
ε

σCL
C + (1 − εC)σCL W1−σCL

]
= X ⇒

W(1 − L) = (1 − cX)X,

where 1− cX is the full consumption share of spending on leisure. It is defined
as:

1 − cX =
(1 − εC)σCL W1−σCL[

ε
σCL
C + (1 − εC)σCL W1−σCL

] .

Similarly, we can write C = cXX, where cX is defined as:

cX =
ε

σCL
C[

ε
σCL
C + (1 − εC)σCL W1−σCL

] .

We can now relate U and X and derive the expression for PU . We find:

U =
[
εCC(σCL−1)/σCL + (1 − εC)(1 − L)(σCL−1)/σCL

]σCL/(σCL−1)

=

[
εC (cXX)(σCL−1)/σCL + (1 − εC)

(
(1 − cX)X

W

)(σCL−1)/σCL
]σCL/(σCL−1)

= X

[
εCc

(σCL−1)/σCL
X + (1 − εC)

(
1 − cX

W

)(σCL−1)/σCL
]σCL/(σCL−1)

.

(A15.52)

By using the expressions for cX and 1 − cX, the complicated term in square
brackets on the right-hand side of (A15.52) can be simplified:

[
·
]

= εC

[
ε

σCL
C

ε
σCL
C + (1 − εC)σCL W1−σCL

](σCL−1)/σCL

+ (1 − εC)

[
(1 − εC)σCL W1−σCL[

ε
σCL
C + (1 − εC)σCL W1−σCL

] 1

W

](σCL−1)/σCL

=
ε

σCL
C + (1 − εC)σCL W1−σCL[

ε
σCL
C + (1 − εC)σCL W1−σCL

](σCL−1)/σCL

=
[
ε

σCL
C + (1 − εC)σCL W1−σCL

]1/σCL
. (A15.53)

By using (A15.53) in (A15.52) we obtain:

U =
X[

ε
σCL
C + (1 − εC)σCL W1−σCL

]1−σCL
=

X

PU
,
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where PU is thus:

PU ≡
[
ε

σCL
C + (1 − εC)σCL W1−σCL

]1−σCL
. (A15.54)

This expression coincides with the second line in (Q15.18). To obtain the first
line in (Q15.18) we can let σCL → 1 in (A15.54). This limit can again be deter-
mined by using L’Hôpital’s rule.

(c) Firm behaviour is still characterized by the usual rental expressions stated in
(15.14). By using equation (Q15.16), we find that the marginal product of la-
bour can be written as follows:

∂F

∂L
=

[
εLL(σKL−1)/σKL + (1 − εL)K(σKL−1)/σKL

]σKL/(σKL−1)−1
εLL−1/σKL

=
[
Y(σKL−1)/σKL

]1/(σKL−1)
εLL−1/σKL

= εL

(
Y

L

)1/σKL

. (A15.55)

Similarly, we can write the marginal product of capital as:

∂F

∂K
=

[
εLL(σKL−1)/σKL + (1 − εL)K(σKL−1)/σKL

]σKL/(σKL−1)−1
(1 − εL)K−1/σKL

=
[
Y(σKL−1)/σKL

]1/(σKL−1)
(1 − εL)K−1/σKL

= (1 − εL)

(
Y

K

)1/σKL

. (A15.56)

Intuitively, σKL measures how easy it is to substitute the production factors for
each other. By using (A15.55)–(A15.56) in (15.14) we find the demand functions
for capital and labour:

K

Y
=

(
r + δ

1 − εL

)−σKL

,
L

Y
=

(
W

1 − εL

)−σKL

.

If σKL is very high then the demand functions are very sensitive to changes
in factor prices, i.e. they are very flat. This is because substitution is very
easy in that case. Conversely, if σKL is close to zero, then the demand func-
tions are rather insensitive to changes in factors prices, i.e. they are very steep.
Intuitively, this is because substitution is very difficult in that case and the pro-
duction function features nearly constant input coefficients, i.e. it is close to a
Leontief production function (and the isoquants are close to L-shaped).

(d) The great ratios are determined as follows. In the steady state we have Ẋ = 0,
K̇ = 0 (and ṖU = 0) so that it follows from (Q15.17) that r = ρ and from

(15.13) that I = δK. Since r + δ = (1 − εL) (Y/K)1/σKL it follows that Y/K
is constant. Hence, I/Y and (by the CRTS production function) K/L are also
constant. Since FL depends on the K/L ratio, it and the real wage are both
constants. By (A15.51) we find that C/(1 − L) is also constant.
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(e) The long-run multiplier can be computed by noting that the supply side of the
model fixes the great ratios. Equations (15.17)–(15.18) are all still valid so the
multiplier remains as given in (15.19). The intertemporal substitution elasticity
does not affect the great ratios at all because these are fixed by the supply side
of the model. It does, however, affect the transition path towards the steady
state.

Question 5: Government spending shocks in the unit-elastic model

(a) The Lagrangian expression is:

LH
t ≡ Et

∞

∑
τ=t

(
1

1 + ρ

)τ−t[
εC ln (Cτ + αGτ) − (1 − εC)Lτ (A15.57)

−λτ

[
Kτ+1 − wτ + Tτ − (RK

τ + 1 − δ)Kτ + Cτ + wτ(1 − Lτ)
]]

,

where λτ is the Lagrange multiplier for the budget identity in period τ. The
first-order conditions for this problem (for τ = t, t + 1, t + 2, ...) are:

∂LH
t

∂Cτ
=

(
1

1 + ρ

)τ−t

Et

[
εC

Cτ + αGτ
− λτ

]
= 0,

∂LH
t

∂[1 − Lτ ]
=

(
1

1 + ρ

)τ−t

Et [− (1 − εC) − λτwτ ] = 0,

∂LH
t

∂Kτ+1
=

(
1

1 + ρ

)τ−t

Et

[
−λτ +

RK
τ+1 + 1 − δ

1 + ρ
λτ+1

]
= 0.

For the planning period (τ = t) these first-order conditions can be combined
to obtain one static and one dynamic equation (plus a definition):

wt

Ct + αGτ
=

1 − εC

εC
, (A15.58)

εC

Ct + αGτ
= Et

[
1 + rt+1

1 + ρ
· εC

Ct+1 + αGτ

]
, (A15.59)

rt+1 ≡ RK
t+1 − δ. (A15.60)

The rest of the model is as follows. Technology is deterministic so:

Yτ = F(Kτ , Lτ) ≡ LεL
τ K1−εL

τ , 0 < εL < 1, (A15.61)

wτ = FL(Kτ , Lτ) ≡ εL
Yτ

Lτ
, (A15.62)

RK
τ = rτ + δ = FK(Kτ , Lτ) ≡ (1 − εL)

Yτ

Kτ
, (A15.63)

and we know that:

Yτ = Cτ + Iτ + Gτ , (A15.64)

Kτ+1 = Iτ + (1 − δ)Kτ , = Tτ . (A15.65)
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(b) Loglinearization of (A15.61)-(A15.65) is explained in detail in the text. To log-
linearize (A15.58)-(A15.59) we first define the auxiliary variable,

Bτ ≡ Ct + αGτ , (A15.66)

so that (A15.58) can be written as:

wt =
1 − εC

εC
Bτ .

This implies that:

w̃t = B̃t. (A15.67)

Similarly, (A15.59) can be written as:

εC

Bt
= Et

[
1 + rt+1

1 + ρ
· εC

Bt+1

]
.

Following the steps leading to (15.71) in the book we thus find:

0 = Et

[
ρ

1 + ρ
r̃t+1 + B̃t − B̃t+1

]
. (A15.68)

We also note that:

B̃τ = θCC̃τ + (1 − θC) G̃τ , (A15.69)

where θC ≡ C∗/B∗. Finally, we deduce from (Q15.21) that:

G̃t = ρGG̃t−1 + εG
t , (A15.70)

so that (A15.68) can be written as:

θC

[
EtC̃t+1 − C̃t

]
= (1 − ρG) (1 − θC) G̃t +

ρ

1 + ρ
Etr̃t+1

In summary, Table 15.4 in the book changes to:

K̃t+1 − K̃t = δ
[
Ĩt − K̃t

]
(AT4.1)

θC

[
EtC̃t+1 − C̃t

]
= (1 − ρG) (1 − θC) G̃t +

ρ

1 + ρ
Etr̃t+1 (AT4.2)

G̃t = T̃t (AT4.3)

w̃t = Ỹt − L̃t (AT4.4)

ρr̃t = (ρ + δ)
[
Ỹt − K̃t

]
(AT4.5)

Ỹt = ωCC̃t + ωI Ĩt + ωGG̃t (AT4.6)

w̃t = θCC̃t + (1 − θC) G̃t (AT4.7)

Ỹt = εLL̃t + (1 − εL)K̃t (AT4.8)
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(c) To solve for the impulse-response function of the model, we can follow the
procedure explained in the text (see from equation (15.72) onward). We show
some of the key steps. From (AT4.4), (AT4.7), and (AT4.8) we find:

L̃t = K̃t − θCC̃t + (1 − θC) G̃t

1 − εL
, (A15.71)

Ỹt = K̃t − εL

[
θCC̃t + (1 − θC) G̃t

]
1 − εL

. (A15.72)

Using (A15.72) in (AT4.5) we find:

ρ

ρ + δ
r̃t = − εL

[
θCC̃t + (1 − θC) G̃t

]
1 − εL

, (A15.73)

i.e. the interest rate does not depend on the capital stock! In combination with
(AT4.2) this means that we can solve for the path of C̃τ without knowing the
path for K̃τ . Indeed, by using (A15.73) in (AT4.2) we obtain the following ex-
pectational difference equation:

θC

[
1 +

ρ + δ

1 + ρ

εL

1 − εL

]
· EtC̃t+1 = θCC̃t +

[
(1 − ρG) − ρG

ρ + δ

1 + ρ

εL

1 − εL

]
(1 − θC) · G̃t,

or:

EtC̃t+1 = ξCC̃t + ξGG̃t, (A15.74)

with:

ξC ≡
[

1 +
ρ + δ

1 + ρ

εL

1 − εL

]−1

, 0 < πC < 1, (A15.75)

ξG ≡ 1 − θC

θC

(1 − ρG) − ρ+δ
1+ρ

εLρG
1−εL

1 + ρ+δ
1+ρ

εL
1−εL

. (A15.76)

Several things are worth noting:

• Since 0 < ξC < 1, equation (A15.74) is a stable expectational difference
equation that can be solved easily. It converges provided ρG/ξC < 1,
i.e. ξC > ρG (this can be seen by iterating (A15.74) forward in time). Us-
ing the trial solution C̃t = π0 + π1G̃t we find EtC̃t+1 = π0 + π1ρGG̃t.
Substituting into (A15.74) we find the implied solution C̃t = (π0/ξC) +
[(π1ρG − ξG) /ξC]G̃. It follows that π0 = 0 and π1 = −ξG/ (ξC − ρG).
Hence:

C̃t = − ξG

ξC − ρG
· G̃t, (with ξC > ρG), (A15.77)

is the rational expectation solution for consumption.
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• From the stability condition (ρG < ξC) we find:

ρG <
1

1 + ρ+δ
1+ρ

εL
1−εL

⇔
[

1 +
ρ + δ

1 + ρ

εL

1 − εL

]
ρG < 1 ⇔

0 < (1 − ρG) − ρG
ρ + δ

1 + ρ

εL

1 − εL
≡ ξG.

Since ξG positive, it follows from (A15.77) that private consumption moves
in the opposite direction to public consumption.

Question 6: No wealth effect in labour supply

(a) The current-value Hamiltonian is:

HC ≡ ln

(
C (τ) − γL

1 + θL
L (τ)1+θL

)
+ λ (τ) [r (τ) A (τ) + W (τ) L (τ)− T (τ)− C (τ)] .

The control variables are C and L, the state variable is A, and the co-state vari-
able is λ. The main first-order conditions are:

∂HC

∂C
=

1

C (τ) − γL
1+θL

L (τ)1+θL
− λ (τ) = 0,

∂HC

∂L
=

γLL (τ)θL

C (τ) − γL
1+θL

L (τ)1+θL
+ λ (τ) W (τ) = 0,

−∂HC

∂A
= −r (τ) λ (τ) = λ̇ (τ) − ρλ (τ) .

We define subfelicity as:

X (τ) ≡ C (τ) − γL

1 + θL
L (τ)1+θL , (A15.78)

and write the first-order conditions as:

γLL (τ)θL = W (τ) , (A15.79)

Ẋ (τ)

X (τ)
= r (τ) − ρ. (A15.80)

We can now write the budget identity as:

Ȧ (τ) = r (τ) A (τ) + YF (τ)− T (τ) − X (τ) , (A15.81)

where YF is full income:

YF (τ) ≡ W (τ) L (τ) − γL

1 + θL
L (τ)1+θL

= γLL (τ)1+θL − γL

1 + θL
L (τ)1+θL

=
θL

1 + θL
γL

(
W (τ)

γL

)(1+θL)/θL

. (A15.82)
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Once we know the solution for X (τ) and W (τ) we can recover the solution
for C (τ) by noting that in the optimum:

C (τ) = X (τ) +
γL

1 + θL
L (τ)1+θL

= X (τ) +
γL

1 + θL

(
W (τ)

γL

)(1+θL)/θL

= X (τ) +
1

θL
YF (τ) . (A15.83)

(b) The model of Table 15.1 is thus:

K̇ (t) = I (t)− δK (t) (AT1.1)

Ẋ (t)

X (t)
= r (t)− ρ (AT1.2)

G (t) = T (t) (AT1.3)

W (t) = εL
Y (t)

L (t)
(AT1.4)

r (t) + δ = (1 − εL)
Y (t)

K (t)
(AT1.5)

Y (t) = X (t) +
1

θL
YF (t) + I (t) + G (t) (AT1.6)

W (t) = γLL (t)θL (AT1.7)

Y (t) = Z0L (t)εL K (t)1−εL (AT1.8)

where we need the definition for YF (t) to close the model.

To deduce the phase diagram we first compute quasi-reduced form expressions

for factor prices r (t) and W (t). We know that W (t) = εL
Y(t)
L(t)

(labour demand)

so that labour market clearing implies:

W (t) = εLZ0L (t)εL−1 K (t)1−εL = γLL (t)θL ⇒
L (t)1−εL+θL = (εLZ0/γL) K (t)1−εL ⇒

L (t) = (εLZ0/γL)1/(1−εL+θL) K (t)(1−εL)/(1−εL+θL) . (A15.84)

Hence, W (t) is:

W (t) = γL (εLZ0/γL)θL/(1−εL+θL) K (t)θL(1−εL)/(1−εL+θL)

≡ ηwK (t)θL(1−εL)/(1−εL+θL) . (A15.85)
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Full income is thus equal to:

YF (t) =
θL

1 + θL
γL

(
W (τ)

γL

)(1+θL)/θL

=
θL

1 + θL
γL

(
(εLZ0/γL)θL/(1−εL+θL) K (t)θL(1−εL)/(1−εL+θL)

)(1+θL)/θL

=
θL

1 + θL
γL (εLZ0/γL)(1+θL)/(1−εL+θL) K (t)(1+θL)(1−εL)/(1−εL+θL)

= η f K (t)(1+θL)(1−εL)/(1−εL+θL) (A15.86)

Similarly, Y (t) can be written as:

Y (t) = Z0L (t)εL K (t)1−εL

= Z0

[
(εLZ0/γL)1/(1−εL+θL) K (t)(1−εL)/(1−εL+θL)

]εL
K (t)1−εL

= Z0 (εLZ0/γL)εL/(1−εL+θL) K (t)(1−εL)(1+θL)/(1−εL+θL)

≡ ηyK (t)(1−εL)(1+θL)/(1−εL+θL) (A15.87)

and r (t) is given by:

r (t) + δ = (1 − εL)
Y (t)

K (t)

= (1 − εL) Z0 (εLZ0/γL)εL/(1−εL+θL) K (t)−εLθL/(1−εL+θL)

≡ ηrK (t)−εLθL/(1−εL+θL) (A15.88)

The dynamic model is thus given by:

K̇ (t) = Y (t)− X (t)− 1

θL
YF (t) − G (t)− δK (t)

=

(
ηy −

η f

θL

)
K (t)(1−εL)(1+θL)/(1−εL+θL) − X (t) − G (t)− δK (t) (A15.89)

Ẋ (t)

X (t)
= r (t) − ρ

= ηrK (t)−εLθL/(1−εL+θL) − (ρ + δ) (A15.90)

Despite the fact that labour supply is endogenous, the model looks a lot like the
standard Ramsey model with exogenous labour supply. The phase diagram is
qualitatively the same as Figure 13.9 in the book (but with X rather than C on
the vertical axis). See Figure A15.1.

(c) The changes occur in equations (T2.2), (T2.6) and (T2.7) from Table 15.2 in the
book. For book equation (T2.2) we find:

dẊ (t) = (r − ρ) dX (t) + Xdr (t)

dẊ (t)

X
= r

dr (t)

r
˙̃X(t) = ρr̃ (t) (A15.91)
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Figure A15.1: Phase diagram: No wealth effect in labour supply

For book equation (T2.6) we obtain:

dY (t) = dX (t) +
1

θL
dYF (t) + dI (t) + dG (t)

dY (t)

Y
=

X

Y

dX (t)

X
+

1

θL

YF

Y

dYF (t)

YF
+

I

Y

dI (t)

I
+

G

Y

dG (t)

G

Ỹ (t) = ωXX̃ (t) +
ωF

θL
ỸF (t) + ωI Ĩ (t) + ωGG̃ (t) , (A15.92)

where ωX ≡ X/Y and ωF ≡ YF/Y. Of course, YF is proportional to Y so we
can write:

YF (t) = η f K (t)(1+θL)(1−εL)/(1−εL+θL)

=
η f

ηy
Y (t) , (A15.93)

so that ỸF (t) = Ỹ (t) and we can write (T2.6) as:[
1 − ωF

θL

]
Ỹ (t) = ωXX̃ (t) + ωI Ĩ (t) + ωGG̃ (t) . (A15.94)

Finally, for book equation (T2.7) we get:

dW (t) = θLγLLθL−1dL (t)

dW (t)

W
=

θLγLLθL−1dL (t)

γLLθL

W̃ (t) = θLL̃ (t) . (A15.95)
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Figure A15.2: Fiscal policy in the absence of a wealth effect in labour supply

(d) We know that in the long run we have r = ρ (i.e. r̃ (∞) = 0) so that:

Ỹ (∞) = K̃ (∞) = 0.

We also have K̇ (∞) = 0 so that:

Ĩ (∞) = K̃ (∞) .

Using these results in (T2.6) we get:

ωXX̃ (∞) = −ωGG̃

X

Y

dX (∞)

X
= −G

Y

dG

G
dX (∞)

dG
= −1 (A15.96)

The remaining multipliers are easy:

dY (∞)

dG
=

dI (∞)

dG
=

dK (∞)

dG
=

dL (∞)

dG
=

dW (∞)

dG
= 0

dC (∞)

dG
= −1

See Figure A15.2 for an illustration.
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Chapter 16

Overlapping generations in
continuous time

Question 1: Short questions

(a) Explain how the virtual absence of annuity markets could explain why most
countries have significant public pension systems.

(b) Explain the role of the annuities market in the Blanchard - Yaari model. Demon-
strate that the insurance firms in the Blanchard - Yaari model make zero pure
profits due to the assumption of actuarial fairness.

(c) Assume (realistically) that household mortality is increasing in the age of the
household. What would happen to the annuity rate of interest in that case?
Explain.

(d) Explain why, according to standard theory, people facing an uncertain lifetime
place a positive value on annuities. In reality, however, annuity markets are
quite thin. Can you think of some some reasons why this may be so?

(e) Use the standard Blanchard - Yaari model to investigate the effect of a drop
in the birth-death parameter β. For simplicity, assume away the existence of a
government (B(t) = G(t) = T(t) = 0). Explain the intuition behind the effects.

(f) “In a small open economy, the world interest rate must equal the pure rate of
time preference. Otherwise, the model is not internally consistent.” True, false,
or uncertain? Evaluate this statement.

Question 2: The Buiter model

[Based on Buiter (1988)] In the standard Blanchard - Yaari model (reported in Table
16.1 in the book), the crude birth rate and the mortality rate are equal to each other so
that the population is constant in size. Buiter has generalized the Blanchard - Yaari
model by distinguishing separate parameters for the birth rate, β, and the mortality
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rate, µ. In the absence of a government, the Buiter model takes the following form:

ċ(t)

c(t)
= r(t)− ρ − β(ρ + µ) · k(t)

c(t)
, (Q16.1)

k̇(t) = y(t) − c(t)− (δ + β − µ)k(t), (Q16.2)

r(t) + δ = ε
y(t)

k(t)
, (Q16.3)

w(t) = (1 − ε)y(t), (Q16.4)

y(t) = Z0k(t)ε, 0 < ε < 1. (Q16.5)

Consumption, capital, and output are measured in per capita terms, i.e. c(t) is per
capita consumption, k(t) is capital per worker (the capital intensity), and y(t) is per
capita output. The population growth rate, defined as nL ≡ β − µ, is assumed to be
positive, and δ is the positive depreciation rate of capital.

(a) Explain intuitively why the birth rate features in the generational turnover
(GT) term in the aggregate “Euler equation”? And why does the mortality
rate feature in the GT term?

(b) Derive the phase diagram for the Buiter model. Show that the model is saddle-
point stable. Which is the predetermined variable? And which is the jumping
variable?

(c) Show the effects of an unanticipated and permanent productivity improve-
ment.

(d) Show that, depending on the parameters, dynamic inefficiency cannot be ruled
out in the Buiter model. Derive a condition under which oversaving occurs and
show that the model is nevertheless well-defined (saddle-point stable, steady-
state c(t) and k(t) both positive, etcetera).

(e) Under Ricardian Equivalence, the basic unit of analysis is the altruistically-
linked dynastic family. We usually call this dynastic family the representative
agent (RA). Provided no new dynastic families emerge, Ricardian equivalence
holds. That is what Robert Barro taught the profession. Show under which
parameter setting the Buiter model formally reduces to the RA model with a
growing population. Explain. (You may want to use the concepts of population
growth on the intensive and the extensive margin.)

Question 3: Endogenous growth

[Based on Saint-Paul (1992)] In this question we extend the Blanchard - Yaari mo-
del to allow for endogenous growth. Assume that the private production function,
F(K, L), is given by:

Y(t) = F(K(t), L(t)) ≡ Z(t)L(t)εL K(t)1−εL , (Q16.6)

where Z(t) is the level of general technology (taken as given by individual firms).
There is an external effect which ensures that general technology is positively af-
fected by the aggregate capital stock:

Z(t) = AK(t)εL . (Q16.7)
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The rest of the model is unchanged, i.e. the expressions in Table 16.1 are all still
appropriate. Assume for simplicity that government consumption is zero (G(t) = 0).

(a) Derive the marginal productivity conditions for labour and capital. Show that
the real interest rate is constant.

(b) Assume that the government maintains a constant tax rate on labour income,
so that T(t) = tLW(t), where W(t) is the real wage rate. Assume furthermore
that the government also maintains a constant ratio between debt (B(t)) and
aggregate output (Y(t)) which we denote by ζ (i.e. B(t) = ζY(t)). Derive the
growth rate of the economy.

(c) Is the rate of economic growth affected by the birth-death rate, β? If so, explain
the economic intuition behind this dependence.

(d) Show that a decrease in ζ increases the rate of growth in the economy. Explain
the economic intuition behind the result.

Question 4: The Blanchard - Yaari model without insurance

[Based on Buiter (1990, ch. 7)] In this question we modify the standard Blanchard
model by assuming that there are no markets for insuring against the risks associ-
ated with an unexpected death. In this case the household will generally make “acci-
dental bequests” which may be positive or negative. It is assumed that the estate of
a household who has died accrues to the government. The government reimburses
the revenue of this scheme to surviving agents in an age-independent lump-sum
fashion. Surviving agents take these lump-sum transfers as given.

(a) Solve the optimization problem for individual households. Explain carefully
what the household’s budget identity looks like and state the NPG condition
that you use.

(b) Derive the aggregate consumption rule and the aggregate consumption Euler
equation for this model.

(c) Show that the validity of the Ricardian equivalence theorem hinges on the birth
rate and not on the existence of life insurance possibilities per se. Explain the
intuition behind this result.

Question 5: Technological change

[Based on Buiter (1988)] In this question we modify the standard Blanchard model
by assuming that: (i) the probability of death, µ, is not necessarily equal to the birth
rate, which we denote by β ≥ 0; (ii) there is Harrod-neutral technological change
at an exogenously given rate nA ≥ 0. The expected lifetime utility function of a
representative household of vintage v in period t is:

EΛ(v, t) =
∫ ∞

t
ln c̄(v, τ)e(ρ+µ)(t−τ)dτ, (Q16.8)
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where c̄(v, τ) is consumption and ρ is the pure rate of time preference. We assume
that ρ > nL, where nL is the growth rate of the population. The budget identity of
the household is:

˙̄a(v, τ) = [r(τ) + µ] ā(v, τ) + w̄(τ)− z̄(τ)− c̄(v, τ), (Q16.9)

where r(τ) is the interest rate, w̄(τ) is the wage rate, z̄(τ) is the lump-sum tax, ā(v, τ)
are real financial assets, and ˙̄a(v, τ) ≡ dā(v, τ)/dτ. The solvency condition is:

lim
τ→∞

e−RA(t,τ) ā(v, τ) = 0, RA(t, τ) ≡
∫ τ

t
[r(s) + µ] ds. (Q16.10)

The population at time t is denoted by L(t) and the population at time t = 0
is normalized to unity (L(0) = 1). With a positive birth rate (β > 0), the cohort
born at time v is related to the total population in existence at that time according to
L(v, v) = βL(v).

(a) Solve the optimization problem for individual households.

(b) The growth rate of the total population is given by nL. Prove that the size of
cohort v at time t ≥ v is equal to:

L(v, t) =




βeβve−µt if β > 0

e−µt if β = 0, v = 0

0 if β = 0, v > 0

Prove furthermore that nL = β − µ. Explain the intuition behind the expres-
sions.

(c) Derive the aggregate consumption rule, the aggregate consumption Euler equa-
tion, and the differential equation for aggregate human wealth for this model.
Denote the aggregate variables by C(t), A(t), W(t), Z(t), and H(t), etcetera.

(d) The aggregate production function is given by Y(t) = K(t)αN(t)1−α, where
Y(t) is aggregate output, K(t) is the capital stock, and N(t) ≡ AL(t)L(t) is the
labour input measured in efficiency units. The index of Harrod-neutral tech-
nical change grows exponentially at rate nA, i.e. ȦL(t)/AL(t) = nA > 0. The
capital stock depreciates at a constant rate δ and firms are perfectly compet-
itive. Derive the marginal productivity conditions for labour and capital and
express them in terms of the intensive-form production function, y(t) = k(t)α,
where y(t) ≡ Y(t)/N(t) and k(t) ≡ K(t)/N(t).

(e) Assume that the government budget identity is given by Ḃ(τ) = r(τ)B(τ) +
G(τ) − Z(τ), where B(τ) is government debt and G(τ) is government con-
sumption. Write the model derived thus far in terms of efficiency unit of labour
and state the system of differential equations characterizing the economy. Use
the notation c(t) ≡ C(t)/N(t), a(t) ≡ A(t)/N(t), b(t) ≡ B(t)/N(t) etcetera.

(f) Show that the Ricardian equivalence theorem is valid when the birth rate is
zero (β = 0) even if the probability of death is positive (µ > 0 so that lifetimes
are uncertain) or there is positive technological change (nA > 0). Explain the
intuition behind this result.
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(g) Assume that government consumption, G(t), is financed by means of lump-
sum taxes, Z(t), and that there is no government debt. Compute the effects on
growth in consumption, output, wages, and the capital stock, of a balanced-
budget increase in government consumption expressed in terms of efficiency
units of labour. Illustrate your answer with the aid of a phase diagram and
draw the impulse-response functions.

Question 6: Mandatory retirement

[Based on Nielsen (1994)] In this question we study the effects of social security in
a Blanchard - Yaari model of a small open economy with mandatory retirement.
The economy under consideration is small in world financial markets and faces a
constant interest rate r∗. There is no capital and the production function is:

Y(τ) = ZL(τ), (Q16.11)

where Y is output, Z is an index of productivity (exogenous), and L is employment.
Households are as in section 16.4.5 of the book but there is a system of mandatory
retirement which prohibits agents older than π to work. Instead such retired agents
receive an untaxed pension, P, from the government. The pension system is financed
by means of age-independent lump-sum taxes, T, levied on working generations.
The income at time τ of a generation born at time v ≤ τ is thus:

I(v, τ) =

{
W(τ)− T(τ) for τ − v < π

P for τ − v ≥ π
(Q16.12)

We abstract from government consumption and government debt. The country is
populated by patient agents so that ρ < r∗.

(a) Solve the household optimization problem. Explain why human wealth is age-
dependent in this case.

(b) Derive the government budget constraint. Show what happens to the lump-
sum tax if the retirement age is increased but the pension payment is held con-
stant.

(c) Derive the aggregate consumption rule, the aggregate consumption Euler equa-
tion, and the differential equation for aggregate financial wealth for the model.
Explain the intuition behind the terms involving the pension system.

(d) Derive the impact, transitional, and long-run effects on consumption and net
foreign assets of an increase in the pension payment. Illustrate with the aid of
a phase diagram and explain the intuition.

(e) Derive the impact, transitional, and long-run effects on consumption and net
foreign assets of an increase in the mandatory retirement age. Illustrate with
the aid of a phase diagram and explain the intuition.
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Question 7: Public infrastructure

[Partially based on Mourmouras and Lee (1999)] Consider the following Blanchard -
Yaari model with productive public infrastructure. Individual households have the
utility function (16.29) and face the lifetime budget constraint (16.30). The produc-
tion function (16.45) is replaced by:

Y(t) = Z0K(t)1−εL [KG(t)L(t)]εL , (Q16.13)

where Z0 is a time-invariant index of general technology and KG(t) is the quantity
of productive government services (measured as a flow). There is a general output
tax, tY, so the objective function of the firm is given by:

V(t) =
∫ ∞

t
[(1 − tY) Y(τ)− W(τ)L(τ)− I(τ)] e−R(t,τ)dτ. (Q16.14)

The tax receipts are used to finance government services, i.e. tYY(t) = KG(t). There
is no government debt and lump-sum taxes are zero. Labour supply is exogenous
and normalized to unity (L (τ) = 1).

(a) Derive the first-order conditions for the (representative and competitive) firm’s
optimization problem. Show that factor payments exhaust after-tax revenues.

(b) Show that the marginal product of capital is uniquely related to Z0 and tY only.
Derive an expression for the marginal product of labour.

(c) Prove that there is no transitional dynamics in the model.

(d) Show that the model exhibits endogenous growth. Compute the growth rate
and show that it depends negatively on the birth-death rate β. Give the intu-
ition for this result.

(e) Characterize the maximum growth rate in this economy. Show that the growth
maximizing tax rate does not depend on the birth-death rate. Provide the in-
tuition behind this result. Is the maximum growth rate independent of the
birth/death rate?

Heijdra and Meijdam (2002) consider the more realistic scenario in which KG(t)
is the stock of public infrastructure (rather than the flow of services) which must
be built up gradually with the aid of public investment, IG(t). The accumulation
identity for public capital is:

K̇G(t) = IG(t) − δGKG(t), (Q16.15)

where δG is the constant rate of depreciation of public capital. The government
budget constraint is now tYY(t) = IG(t).

(f) � Write down the dynamic system characterizing the macroeconomy. Rewrite
the model in stationary format and characterize the steady-state growth rate.
Explain intuitively why you expect the modified model to displays nontrivial
transitional dynamics. Compute the asymptotic growth rate as a function of
tY.
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Answers

Question 1: Short questions

(a) A public pension system can be seen as a kind of annuity system. Agents
pay into the scheme during their youth and middle age, and receive a pension
when they are retired. In the absence of a public pension system and an annuity
system, it is possible for agents experiencing lifetime uncertainty to run out of
saved assets (if they live much longer than they expected). This problem does
not exist when there is a public pension system: one gets the pension as long
as one is alive. Of course, the pension scheme should be viable, i.e. it should
not run out of money.

(b) The annuity market allows the household to insure against the unpleasant as-
pects of lifetime uncertainty. They don not need buffer stocks of assets anymore
(to adhere to the constraint Pr {A (T) ≥ 0} = 1). This constraint is automatic-
ally satisfied with annuities.

(c) Provided age is observable, the annuity rate would increase also. If the probab-
ility of death increases the insurance company will demand a higher premium
(or pay a higher benefit). Assumption: actuarially fair insurance.

(d) This property was pointed out by Yaari (1965) in his famous paper. In the ab-
sence of annuities the agent must hold buffer stock assets to make sure that
he/she meets the non-negativity constraint on wealth with probability 1 at
each and every moment in time (Pr {A (T) ≥ 0} = 1). These assets detract
from consumption and thus are costly from a utility perspective. With annu-
ities such buffer stocks are not needed. Consumption can be higher, the yield
on the assets is higher (because the annuity rate exceeds the rate of interest),
and utility is higher. The agent will fully insure. The annuities need not be
actuarially fair. Provided rA exceeds r, it is advantageous to hold wealth in the
form of annuities.

Various (not totally convincing) reasons exist to explain the annuity puzzle:

• Annuities may not be actuarially fair, due to resource costs of life insur-
ance companies.

• Annuities may not be actuarially fair, due to adverse selection (only people
who know they are very healthy will buy annuities; health status is not
observable by insurance companies).

• Public pensions may implicitly force agents to annuitize more of their
wealth than they would like to.

(e) The model is given in the book:

Ċ(t) = [r(t)− ρ]C(t)− β(ρ + β)K(t),

K̇(t) = F (K(t), 1) − C(t)− δK(t),

r(t) = FK (K(t), 1) − δ.

The phase diagram is given in Figure 16.7. The Ċ = 0 line is:

C(t) = β(ρ + β)
K(t)

FK (K(t), 1) − (ρ + δ)
.
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A decrease in β thus rotates the Ċ = 0 line in a clockwise direction:

∂C(t)

∂β
= (ρ + 2β)

K(t)

FK (K(t), 1) − (ρ + δ)
> 0.

The new equilibrium is associated with a higher capital stock and a higher con-
sumption level. Because people live longer lives they save more (individually
and in aggregate). The generational turnover term becomes less important for
each level of the capital stock. (Recall that for β = 0 we recover the RA model,
in which the GT term is zero.)

(f) This statement is correct for the representative-agent model but not for the
overlapping-generations model. Section 16.4.5 in the book explains in detail
why this is the case. Briefly put, with overlapping generations the generational
turnover effect ensures that there is no zero-root in the dynamic model, even if
the rate of time preference happens to coincide with the world interest rate.

Question 2: The Buiter model

(a) The key difference between the Blanchard model (of Table 16.1 in the book)
and the Buiter model is the demographic part. Blanchard assumes that the
birth rate is equal to the death rate so that the population is constant and we
can work directly in levels of output, consumption, and capital etcetera. In
the Buiter model the birth rate is allowed to differ from the death rate, so the
population can grow.

Buiter’s framework makes a distinction between the probability of death µ (≥
0) and the birth rate β (≥ 0). Denote the population size at time t by L(t). In
the absence of international migration, the growth rate of the population, nL,
is equal to the difference between the birth and death rates:

L̇(t)

L(t)
= β − µ ≡ nL.

By solving this expression subject to the initial condition L(0) = L0, we find
the path for the aggregate population:

L(t) = L0enLt. (A16.1)

Like Blanchard, Buiter assumes that the size of a newborn generation is pro-
portional to the current population:

L(v, v) = βL(v), (A16.2)

where L (v, v) is the size of the cohort born at time v. Since the death rate is
constant and cohorts are assumed to be large, the size of each generation falls
exponentially according to:

L(v, t) = e−µ(t−v)L(v, v), t ≥ v. (A16.3)

By substituting (A16.1) and (A16.2) into (A16.3) we finally obtain:

L(v, t) = βeµ(v−t)L(v) = βeµ(v−t)L (t) enL(v−t)

= βe−β(t−v)L (t) . (A16.4)
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The relative size of cohorts is thus given by l (v, t) ≡ L (v, t) /L (t) = βe−β(t−v).
It falls at an exponential rate equal to the birth rate. The mortality rate does
not feature because both the numerator and the denominator fall at the same
exponential rate (due to age-independent mortality).

An attractive feature of the Buiter formulation is that it nests two influential
OLG models as special cases. Indeed, by setting β = µ the Blanchard (1985)
model is obtained and by setting µ = 0 the Weil (1989) model is obtained.

In the Blanchard model studied in section 16.3, individual consumption is
given by:

C (v, t) = (ρ + µ) [A (v, t) + H (t)] , (A16.5)

whilst the Euler equation is given by:

Ċ (v, t)

C (v, t)
= r (t) − ρ. (A16.6)

Economy-wide average per capita consumption is now defined as:

c (t) =
∫ t

−∞
l (v, t) C (v, t) dv. (A16.7)

To derive the “aggregate Euler equation”, we differentiate the expression for
c (t) in (A16.7) with respect to time to calculate ċ(t):

ċ (t) ≡ l (t, t) C (t, t) +
∫ t

−∞
l (v, t) Ċ (v, t) dv +

∫ t

−∞
l̇ (v, t) C (v, t) dv

= ηC (t, t) +
∫ t

−∞
l (v, t) Ċ (v, t) dv − β

∫ t

−∞
l (v, t) C (v, t) dv

=
∫ t

−∞
l (v, t) [r (t)− ρ] C (v, t) dv − β · [c (t) − C (t, t)]

= [r (t) − ρ] c (v, t) − β · [c (t)− C (t, t)] , (A16.8)

where we have used the fact that l̇ (v, t) /l (v, t) = −β. Since C (t, t) = (ρ + µ)
H (t) (as A (t, t) = 0) and c (t) = (ρ + µ) [a (t) + H (t)] we can rewrite (A16.8)
to obtain (Q16.1). In this economy there is no debt, so a (t) = k (t).

We are now in a position to answer the questions:

• The birth rate β features in the GT term because the turnover of genera-
tions hinges on the fact that new generations are born (not because mem-
bers of these generations face a finite life).

• The mortality rate µ features in the GT term because the propensity to
consume out of total wealth depends on it. Mortality leads to higher dis-
counting of future felicity and raises the effective rate of time preference
and the propensity to consume, ρ + µ.

(b) By substituting (Q16.3) and (Q16.5) into (Q16.1) and (Q16.2) we find the system
of differential equations for c and k.

ċ (t) =
[
εZ0k (t)ε−1 − δ − ρ

]
c (t) − β(ρ + µ)k (t) , (A16.9)

k̇ (t) = Z0k (t)ε − c (t)− (δ + β − µ) k (t) . (A16.10)
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Figure A16.1: Phase diagram for the Buiter model

This model is saddle-point stable, with c (t) acting as the jumping variable and
k (t) as the predetermined variable.

The derivation of the phase diagram proceeds along the lines shown in the
book, although it is easier here because we are employing a simple, Cobb-
Douglas production function. The k̇ (t) = 0 lines is given by:

c (t) = Z0k (t)ε − (δ + nL) k (t) , (A16.11)

which is inverse-U shaped and features zero consumption at k = 0 and k =
kMAX, with:

kMAX ≡
(

Z0

δ + nL

)1/(1−ε)

. (A16.12)

Net investment is positive (negative) for points below (above) the k̇ (t) = 0 line.
See the horizontal arrows in Figure A16.1. The k̇ (t) = 0 reaches a maximum
for at the golden rule capital stock, kGR, where the the interest rate equals the

rate of population growth, i.e. rGR ≡ εZ0

(
kGR

)ε−1 − δ = nL.

The ċ (t) = 0 line can be written as:

c (t) =
β(ρ + µ)k (t)

εZ0k (t)ε−1 − (δ + ρ)
, (A16.13)

which is upward sloping, features zero consumption at k = 0, and has a ver-
tical asymptote at k̄ = kra:

k̄ ≡
(

εZ0

δ + ρ

)1/(1−ε)

. (A16.14)
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Figure A16.2: A technology improvement in the Buiter model

For points to the right (left) of the ċ (t) = 0 line, the GT is relatively strong
(weak) and consumption falls (rises) over time. See the vertical arrows in Fig-
ure A16.1.

The arrow configuration confirms that the model is saddle-point stable and
that the saddle path is upward sloping. On this count, the Buiter model thus
looks very similar to the Blanchard model studied in the book.

(c) An unanticipated and permanent productivity shock is captured by a once-off
increase in Z0. The k̇ (t) = 0 line (A16.11) shifts up, whilst the ċ (t) = 0 line
(A16.13) rotates in a clockwise direction. See Figure A16.2. Long-run per capita
consumption and the capital stock both increase as the economy moves from E0

to E1. At impact per capita consumption rises as the wage path is permanently
higher than before the shock. (We have not drawn the saddle path to avoid
cluttering the diagram.)

(d) With dynamic inefficiency we mean a situation where the steady-state interest
rate is less than the population growth rate, i.e. rBY

< nL. In Figure A16.1 the
steady-state equilibrium is at point E0, which lies to the left of the golden-rule
point, i.e. kBY

< kGR. But it turns out that the kBY point can also be located
to the right of the golden rule point. We present a simple example in Figure
A16.3.

As was pointed out above, the ċ (t) = 0 locus (A16.13) features a vertical
asymptote at k̄. As we show in the figure, the ċ (t) = 0 has two branches,
only one of which is in the economically feasible region (with c (t) ≥ 0). The
example assumes that the parameters are such that k̄ is equal to kMAX. Using
(A16.12) and (A16.14) we find that this is the case if:

ρ = εnL − δ (1 − ε) .
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Figure A16.3: Dynamic inefficiency in the Buiter model

The equilibrium is at point E0 which lies to the right of the golden-rule point.
At that point, 0 < ρ < rBY

< nL. The equilibrium is saddle-point stable.

Of course, this example is quite extreme. But for any case where k̄ lies suffi-
ciently to the right of the golden-rule point, the overlapping generations equi-
librium exist and will feature dynamic inconsistency.

This property of the Buiter model is due to the arrival of new disconnected
generations (non-zero β), not to the fact that lives are finite (non-zero µ). See
Weil (1989) and section 13.7.3 of the book on this.

(e) We can capture the growing dynastic family by setting:

• β = 0: no new, disconnected, generations arrive into the economy. Popu-
lation growth on the extensive margin is zero. The GT term is absent.

• µ = −nL < 0: the death rate of dynasty member is negative. This, of
course, means that the size of the dynasty grows over time. Population
growth is entirely on the intensive margin.

If we plug these parameter settings into the model, we obtain the RA model
with population growth:

ċ (t)

c (t)
= r (t)− ρ,

k̇ (t) = y (t)− c (t) − (δ + nL) k (t) .
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Question 3: Endogenous growth

(a) The representative firm faces the technology (Q16.6) and hires capital and la-
bour according to the usual marginal productivity conditions:

[FK ≡] (1 − εL)Z(t)L(t)εL K(t)−εL = r + δ, (A16.15)

[FL ≡] εLZ(t)L(t)εL−1K(t)1−εL = W. (A16.16)

But all firms hire according to (A16.15)–(A16.16). By substituting (Q16.7), nor-
malizing the number of firms by unity, and setting L = 1 we find from (A16.15)–
(A16.16):

r + δ = (1 − εL)AK(t)εL L(t)εL K(t)−εL = (1 − εL)A, (A16.17)

W = εL AK(t)εL L(t)εL−1K(t)1−εL = εL AK. (A16.18)

The aggregate production function is linear in capital:

Y = AK. (A16.19)

Since δ, εL, and A are all constants, it follows from (A16.17) that the interest
rate is constant also.

(b) We denote the (common) growth rate by γ∗. We must have that:

γ∗ =
K̇

K
=

Ċ

C
=

Ẏ

Y
=

Ḃ

B
=

Ẇ

W
. (A16.20)

We can now rewrite the equations in Table 16.1 of the book as follows:

Ċ

C
= [r − ρ] − β(ρ + β)

[
K

C
+

B

C

]
, (A16.21)

K̇

K
=

AK

K
− C

K
− δK

K
, (A16.22)

Ḃ

B
=

rB

B
− T

Y

Y

B
, (A16.23)

r = (1 − εL)A − δ, (A16.24)

W = εL AK, (A16.25)

where we have incorporated the assumption G = 0. But ζ ≡ B/Y so that
B/C = ζAK/C. Furthermore, T/Y = tLW/Y = εLtL. We can thus summarize
the model by the following expressions:

γ∗ = (1 − εL)A − (ρ + δ) − β(ρ + β)(1 + ζA)κ, (A16.26)

γ∗ = A − δ − 1

κ
, (A16.27)

γ∗ = (1 − εL)A − δ − εLtL

ζ
. (A16.28)

where κ ≡ K/C. The model is recursive in (γ∗, κ) and tL. Equations (A16.26)–
(A16.27) determine the growth rate γ∗ and the capital-consumption ratio, κ, as
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a function of the parameters; equation (A16.28) then residually determines the
tax rate required to balance the budget.

By using (A16.27) in (A16.26) we find the following expression in κ:

A − δ − 1

κ
= (1 − εL)A − (ρ + δ) − β(ρ + β)(1 + ζA)κ ⇔

1

κ
= (ρ + εL A) + β(ρ + β)(1 + ζA)κ ⇔

0 = β(ρ + β)(1 + ζA)κ2 + (ρ + εL A)κ − 1. (A16.29)

The quadratic function has a unique economically sensible (i.e. positive) solu-
tion for κ which equals:

κ∗ =
ρ + εL A

2β(ρ + β)(1 + ζA)

[√
1 +

4β(ρ + β)(1 + ζA)

(ρ + εL A)2
− 1

]
. (A16.30)

(c) To find the effect of the birth rate on the growth rate it is easiest to first de-
termine the effect on κ∗. By differentiating (A16.29) with respect to κ and β we
find:

0 = (1 + ζA)
[
2β(ρ + β)κdκ + (ρ + 2β)κ2dβ

]
+ (ρ + εL A)dκ ⇔

dκ∗

dβ
= − (1 + ζA)(ρ + 2β) (κ∗)2

2κ∗(1 + ζA)β(ρ + β) + (ρ + εL A)
< 0. (A16.31)

The quadratic function determining κ∗ shifts upward and the economically
sensible solution falls as a result. In view of (A16.27) we find that the growth
rate changes according to:

dγ∗

dβ
=

1

(κ∗)2

dκ∗

dβ
< 0. (A16.32)

A lower birth rate leads to an increase in consumption relative to the capital
stock which in turn causes a reduction in the rate of economic growth.

(d) Again we approach this problem via the effect on κ∗. By differentiating (A16.29)
with respect to κ and ζ we find:

dκ∗

dζ
= − βA(ρ + β) (κ∗)2

2κ∗(1 + ζA)β(ρ + β) + (ρ + εL A)
< 0. (A16.33)

A reduction in ζ thus leads to an increase in κ∗. In view of (A16.27) we find that
the effect on the growth rate is:

dγ∗

dζ
=

1

(κ∗)2

dκ∗

dζ
< 0. (A16.34)

A reduction in the debt-output ratio increases the rate of economic growth.
The increase in κ∗ implies that the C/K ratio falls, i.e. households increase the
propensity to save out of capital.
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Question 4: The Blanchard - Yaari model without insurance

(a) The lifetime utility function is still as given in (16.29) because the household
still faces a non-zero probability of death. There is no life-insurance scheme,
however, so the budget identity of the household changes from (16.30) to:

Ȧ(v, τ) = r(τ)A(v, τ) + W(τ) + Z(τ)− T(τ) − C(v, τ), (A16.35)

where all variables have the same meaning as in the text and where Z(τ) are
the (age-independent) transfers received from the government. Because there
is no annuity market, financial assets attract only the market rate of interest,
i.e. r(τ) and not the annuity rate, r(τ) + β, features on the right-hand side of
(A16.35). The NPG condition for the household is in this case:

lim
τ→∞

e−R(t,τ)A(v, τ) = 0, R(t, τ) ≡
∫ τ

t
r(s)ds. (A16.36)

Following the same steps as in the book, we find that:

A(v, t) + H(t) =
∫ ∞

t
C(v, τ)e−R(t,τ)dτ, (A16.37)

H(t) ≡
∫ ∞

t
[W(τ) + Z(τ)− T(τ)] e−R(t,τ)dτ. (A16.38)

The key thing to note is that the market interest rate is used for discounting in
(A16.36)–(A16.38).

The household maximizes (16.29) subject to (A16.37), taking as given its ini-
tial total wealth, A(v, t) + H(t). The (interesting) first-order conditions are
∂EΛ(v, t)/∂C(v, τ) = 0 (for τ ∈ [t, ∞)) or:

1

C(v, τ)
· e(ρ+β)(t−τ) = λ(t)e−R(t,τ), (A16.39)

where λ(t) is the Lagrange multiplier of the lifetime budget constraint (A16.37).
Note that for t = τ, (A16.39) says that C(v, t) = 1/λ(t). Retracing the steps in
the book (below (16.35)) we find that consumption in the planning period is:

C(v, t) = (ρ + β) [A(v, t) + H(t)] . (A16.40)

For future use, we differentiate (A16.39) with respect to τ to derive the con-
sumption Euler equation:

Ċ(v, τ) = C(v, τ)

[
∂R(t, τ)

∂τ
− (ρ + β)

]
⇔

Ċ(v, τ)

C(v, τ)
= r(τ)− (ρ + β). (A16.41)

Because there are no annuity markets, the Euler equation for individual gener-
ations differs from the one that obtains when such markets do exist (compare
(A16.41) and (16.36)).
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(b) Using the aggregation scheme exemplified in (16.38) we find that (A16.35) and
(A16.40) are aggregated to:

Ȧ(τ) = (r(τ)− β) A(τ) + W(τ) + Z(τ)− T(τ) − C(τ), (A16.42)

C(t) = (ρ + β) [A(t) + H(t)] . (A16.43)

At each moment in time a cross section of the population dies. Since their assets
accrue to the government, the revenue from the estates equals βA(τ) so that
the transfers equal Z(τ) = βA(τ). Using this result in (A16.42) we find that
the aggregate asset accumulation is simplified to:

Ȧ(τ) = r(τ)A(τ) + W(τ)− T(τ) − C(τ). (A16.44)

The key thing to note is that this expression is identical to the one that obtains
when annuity markets exist (compare (A16.44) and (16.41)). For the aggregate
asset accumulation equation it does not matter whether the assets of the dead
are redistributed via the insurance companies or via government transfers.

The aggregate consumption Euler equation is derived by differentiating (16.38)
with respect to time t:

Ċ(t) = βC(t, t)− βC(t) + β
∫ t

−∞
Ċ(v, t)eβ(v−t)dv

= β(ρ + β)H(t)− β(ρ + β) [A(t) + H(t)] + [r(t)− (ρ + β)] C(t)

Ċ(t)

C(t)
= [r(t)− (ρ + β)] − β(ρ + β)

K(t) + B(t)

C(t)
, (A16.45)

where we have used the individual Euler equation (A16.41) to get from the first
to the second line and noted that A(t) = K(t) + B(t).

(c) Next we establish that Ricardian equivalence holds if and only if β = 0. The
absence of annuities markets per se does not affect the validity of the theorem.
The government budget constraint is still given by (16.49). The transfers do
not feature in that expression because they are covered by the revenue from
the estates of the dead and not by lump-sum taxes. By integrating (A16.44)

and imposing the terminal condition limτ→∞ A(τ)e−R(t,τ) = 0 we find:

A(t) =
∫ ∞

t
[C(τ) + T(τ)− W(τ)] e−R(t,τ)dτ. (A16.46)

By substituting the GBC (16.49) into (A16.46) and noting that A(t) = K(t) +
B(t) we find:

K(t) =
∫ ∞

t
[C(τ) + G(τ)− W(τ)] e−R(t,τ)dτ. (A16.47)

It follows from (A16.45) and (A16.47) that there is only debt neutrality if and
only if β = 0. Only in that case is the aggregate Euler equation independent
of B(t). Buiter (1990, ch. 7) presents a more general (discrete-time) model in
which birth and death rates differ and proves that it is the non-zero birth rate
that destroys Ricardian equivalence.
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Question 5: Technological change

(a) Repeating the steps leading to (16.38) in the book we find easily that consump-
tion is proportional to total wealth:

c̄(v, t) = (ρ + µ)
[
ā(v, t) + h̄(t)

]
, (A16.48)

where human wealth is defined as:

h̄(t) =
∫ ∞

t
[w̄(τ) − z̄(τ)] e−RA(t,τ)dτ. (A16.49)

Human wealth does not feature the generations index because wages, taxes,
and the annuity interest rate are all age-independent. It is also straightforward
to show that the consumption Euler equation has the usual form:

˙̄c(v, t)

c̄(v, t)
= r(t)− ρ, (A16.50)

where ˙̄c(v, t) ≡ dc̄(v, t)/dt. For future reference we note that human wealth
satisfies the following differential equation:

˙̄h(t) = [r(t) + µ] h̄(t)− [w̄(t)− z̄(t)] , (A16.51)

where ˙̄h(t) ≡ dh̄(t)/dt.

(b) The second result is easy to prove by looking at the inflow into the population
(births) and the outflow out of the population (deaths). If the birth rate is zero
(β = 0) then the population falls exponentially at the rate of deaths, i.e. nL =
−µ. If there is a positive birth rate (β > 0) then L̇(t) = βL(t) − µL(t) so that
nL ≡ L̇(t)/L(t) = β − µ.

The first result is obtained as follows. If the birth rate is zero then there is
only one cohort (the one in place at time t = 0) so L(v, t) = 0 for v �= 0
and L(v, t) = L(t) = e−µt for v = 0. With a positive birth rate we know

that L(v, v) = βL(v) and L(v, t) = L(v, v)eµ(v−t). Furthermore, by definition

L(v) = L(t)enL(v−t). By combining these results we find:

L(v, t) = βL(t)enL(v−t)eµ(v−t). (A16.52)

But L(t) = L(0)enLt = enLt (since L(0) = 1) and nL = β − µ so (A16.52) can be
simplified to:

L(v, t) = βenLtenL(v−t)eµ(v−t)

= βe(β−µ)veµ(v−t)

= βeβve−µt. (A16.53)

(c) We define the aggregate variables as follows:

X(t) ≡
∫ t

−∞
L(v, t)x̄(v, t)dv

=

{
βe−µt

∫ t
−∞

x̄(v, t)eβvdv for β > 0

x̄(v, t)e−µt for β = 0 and v = 0
(A16.54)
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Using this definition in (A16.48) we find the aggregate consumption rule:

C(t) = (ρ + µ) [A(t) + H(t)] , (A16.55)

where C(t), A(t), and H(t) are, respectively, aggregate consumption, aggreg-
ate financial wealth, and aggregate human wealth. Aggregate human wealth
is related to individual wealth (A16.49) according to:

H(t) ≡ βe−µt
∫ t

−∞
h̄(t)eβvdv

= βh̄(t)e−µt

[
eβv

β

]t

−∞

= h̄(t)enLt, (A16.56)

where we recall that nL = β − µ.

The aggregate consumption Euler equation is derived as follows. We note that
(for β > 0) C(t) is defined as:

C(t) ≡ βe−µt
∫ t

−∞
c̄(v, t)eβvdv. (A16.57)

By differentiating (A16.57) with respect to time we obtain:

Ċ(t) = −µβe−µt
∫ t

−∞
c̄(v, t)eβvdv + βe−µt

[
c̄(t, t)eβt +

∫ t

−∞

˙̄c(v, t)eβvdv

]

= −µC(t) + βc̄(t, t)enLt + βe−µt
∫ t

−∞
[r(t)− ρ] c̄(v, t)eβvdv

= [r(t)− ρ] C(t) +
(

βc̄(t, t)enLt − µC(t)
)

. (A16.58)

The term in round brackets on the right-hand side of (A16.58) is a generational
turnover term. We know that c̄(t, t) = (ρ + µ)h̄(t) (since ā(t, t) = 0). By us-
ing this result and (A16.55)–(A16.56) we can rewrite the generational turnover
term as follows:

βc̄(t, t)enLt − µC(t) = β(ρ + µ)H(t)− µ(ρ + µ) [A(t) + H(t)]

= (ρ + µ) [(β − µ)H(t)− µA(t)]

= (ρ + µ) [(β − µ)(A(t) + H(t))− βA(t)]

= (β − µ)C(t)− β(ρ + µ)A(t). (A16.59)

By using (A16.59) in (A16.58) and noting that nL = β − µ we find:

Ċ(t) = [r(t) + nL − ρ] C(t)− β(ρ + µ)A(t). (A16.60)

Equation (A16.60) is compatible with equation (16.43) in the book, but is gen-
eralized for population growth and separate birth and death rates.

The differential equation for human wealth is obtain as follows. By differenti-
ating (A16.56) with respect to time we find:

Ḣ(t) = nLh̄(t)enLt + ˙̄h(t)enLt

= nLH(t) + [r(t) + µ] h̄(t)enLt − [w̄(t)− z̄(t)] enLt

= [r(t) + nL + µ] H(t)− [W(t)− Z(t)] , (A16.61)
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where we have used (A16.51) in going from the first to the second line.

Finally, the differential equation for aggregate financial wealth is obtained as
follows. We note that:

A(t) ≡ βe−µt
∫ t

−∞
ā(v, t)eβvdv. (A16.62)

By differentiating (A16.62) with respect to time, we find:

Ȧ(t) = −µβe−µt
∫ t

−∞
ā(v, t)eβvdv + βe−µt

[
ā(t, t)eβt +

∫ t

−∞

˙̄a(v, t)eβvdv

]

= −µA(t) + βe−µt
∫ t

−∞

[
[r(t) + µ] ā(v, t) + w̄(t) − z̄(t) − c̄(v, t)

]
eβvdv

= r(t)A(t) + W(t)− Z(t)− C(t), (A16.63)

where we have used equation (Q16.9) (and noted the fact that ā(t, t) = 0) in
going from the first to the second line.

(d) The derivation is similar to the one leading to (16.64)–(16.65) in the book. The
objective function of the representative firm is:

V(t) =
∫ ∞

t
[F (K(τ), AL(τ)L(τ))− w̄(τ)L(τ)− I(τ)] e−R(t,τ)dτ, (A16.64)

where the discount factor, R(t, τ), and gross investment, I(τ), are defined as:

R(t, τ) =
∫ τ

t
r(s)ds, (A16.65)

I(τ) = K̇(τ) + δK(τ). (A16.66)

The firm chooses paths for capital, labour, and investment such that V(t) is
maximized. The current-value Hamiltonian for this optimization problem is:

H ≡ F (K(τ), AL(τ)L(τ))− w̄(τ)L(τ)− I(τ) + µ(τ) [I(τ) − δK(τ)] , (A16.67)

where λ(τ) is the co-state variable, K(τ) is the state variable, and L(τ) and I(τ)
are the control variables. The first-order conditions are:

∂H
∂L(τ)

= AL(τ)FN (K(τ), N(τ))− w̄(τ) = 0, (A16.68)

∂H
∂I(τ)

= −1 + λ(τ) = 0, (A16.69)

λ̇(τ)− r(τ)λ(τ) = − ∂H
∂K(τ)

= −FK (K(τ), N(τ)) + δλ(τ). (A16.70)

It follows from (A16.69) that λ(τ) = 1 so that λ̇(τ) = 0. Using these results in
(A16.70) we find the usual rental rate expression for capital:

r(τ) + δ = FK (K(τ), N(τ)) . (A16.71)

Similarly, (A16.68) can be used to derive the marginal productivity condition
for labour:

w̄(τ)

AL(τ)
= FN (K(τ), N(τ)) . (A16.72)
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For the Cobb-Douglas production function, (A16.71)–(A16.72) simplify to:

r(τ) + δ = αk(τ)α−1,
w̄(τ)

AL(τ)
= (1 − α)k(τ)α, (A16.73)

where k(τ) ≡ K(τ)/N(τ) is capital expressed in efficiency units of labour.
For a constant k, (A16.73) shows that the interest rate is constant but the wage
rate grows at the rate of Harrod-neutral technological change (i.e. ˙̄w/w̄ =
ȦL/AL = nA in the steady state).

(e) We use the definitions a(t) ≡ A(t)/N(t), b(t) ≡ B(t)/N(t), c(t) ≡ C(t)/N(t),
g(t) ≡ G(t)/N(t), h(t) ≡ H(t)/N(t), w(t) ≡ W(t)/N(t), and z(t) ≡ Z(t)
/N(t). Using these expressions, (A16.60), (A16.61), and (A16.63) can be rewrit-
ten as:

ċ(t) = [r(t)− nA − ρ] c(t)− β(ρ + µ)a(t), (A16.74)

ḣ(t) = [r(t) + µ − nA] h(t)− [w(t) − z(t)] , (A16.75)

ȧ(t) = [r(t)− nA − nL] a(t) + w(t) − z(t) − c(t), (A16.76)

where we use the relationship Ẋ/N = ẋ + (nA + nL)x for each of these vari-
ables. The government budget identity can be rewritten as:

ḃ(t) = [r(t)− nA − nL] b(t) + g(t) − z(t). (A16.77)

Since W(t) ≡ w̄(t)enLt = w̄(t)L(t) and w̄(t) = (1 − α)AL(t)k(t)α we find that:

w(t) = (1 − α)k(t)α. (A16.78)

Equilibrium on the goods market and on the capital market implies:

y(t) = c(t) + i(t) + g(t), (A16.79)

k̇(t) = i(t)− (δ + nL + nA)k(t), (A16.80)

a(t) = k(t) + b(t). (A16.81)

The full model consists of the first expression in (A16.73) and (A16.74)–(A16.81).
The NPG condition for the government is:

lim
τ→∞

b(τ) exp

[
−

∫ τ

t
[r(s)− nA − nL] ds

]
= 0. (A16.82)

By integrating (A16.77) forward in time and imposing (A16.82) we find the
budget constraint of the solvent government:

b(t) =
∫ ∞

t
[z(τ) − g(τ)] exp

[
−

∫ τ

t
[r(s)− nA − nL] ds

]
dτ. (A16.83)

To the extent that there exists a positive government debt at time t (b(t) >

0), the solvent government must cover it in present-value terms by the future
primary surpluses (positive right-hand side of (A16.83)).
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(f) We can investigate the validity of Ricardian equivalence by noting that (A16.75)
can be integrated forward in time:

h(t) =
∫ ∞

t
[w(τ) − z(τ)] exp

[
−

∫ τ

t
[r(s) + µ − nA] ds

]
, (A16.84)

where we have used the boundary condition (Buiter, 1988, p. 284):

lim
τ→∞

h(τ) exp

[
−

∫ τ

t
[r(s) + µ − nA] ds

]
= 0. (A16.85)

According to (A16.84), human wealth is the present value of after-tax wages,
using the annuity rate of interest, corrected for productivity growth, for dis-
counting. Ceteris paribus the paths for r(τ), w(τ), and z(τ), the probability
of death has a negative effect on human wealth and productivity growth has
a positive effect on human wealth. The key thing to note is that the birth rate
does not affect human wealth directly because there is no operative bequest
motive in this model (See Buiter, 1988, p. 284).

To investigate Ricardian equivalence we recall that consumption is propor-
tional to total wealth, i.e. c(t) = (ρ + µ) [a(t) + h(t)]. By using (A16.81) and
(A16.83) we find:

a(t) + h(t) = k(t) +
∫ ∞

t
[w(τ) − g(τ)] exp

[
−

∫ τ

t
[r(s) + µ − nA] ds

]

+

(
b(t)−

∫ ∞

t
[z(τ)− g(τ)] exp

[
−

∫ τ

t
[r(s) + µ − nA] ds

])
.

(A16.86)

We compare the term in round brackets on the right-hand side of (A16.86) with
the government budget constraint (A16.83). Ricardian equivalence holds if and
only if the term in round brackets is zero, i.e. if and only if r(s) + µ − nA co-
incides with r(s) − nA − nL for all s. This amounts to the requirement that
µ + nL = 0 or, equivalently, that β = 0. The birth rate must be zero for Ricard-
ian equivalence to hold.

(g) Under the balanced-budget assumption, the model can be condensed to two
differential equations in k and c:

ċ(t) = [r(t)− nA − ρ] c(t)− β(ρ + µ)k(t), (A16.87)

k̇(t) = k(t)α − c(t)− g − (δ + nL + nA)k(t). (A16.88)

Equation (A16.87) is obtained by using (A16.71) and (A16.74) and noting that
b(t) = 0. Equation (A16.88) is obtained by using (A16.79)–(A16.80) and noting
that y(t) = k(t)α. The phase diagram of the model, presented in Figure A16.4,
looks rather like the one for the standard Blanchard model (see Figure 16.7
in the book). For points to the left (right) of the ċ = 0 line, capital is scarce
(abundant) and the interest rate is higher (lower) than ρ + nA. Since the golden-
rule capital stock is such that rGR = nL + nA and consumption equilibrium
implies an interest rate of rBY = ρ + nA it follows from the assumption ρ > nL

that rBY
> rGR, i.e. kBY

< kGR. The equilibrium at E0 is dynamically efficient.
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Figure A16.4: Growth and overlapping generations

An unanticipated and permanent increase in government consumption leads
to a downward shift in the k̇ = 0 line. At impact the capital stock is prede-
termined and consumption jumps down because of the higher taxes. During
transition, both consumption and the capital stock fall gradually towards their
lower equilibrium values (see Figure 16.8 in the book for an illustration of the
adjustment path described verbally here.) The impulse response functions are
given in Figure A16.5. The paths for consumption and capital follow directly
from the phase diagram. The path for the interest rate follows readily from the
fact that r = f ′(k) − δ = αkα−1 − δ. It is the mirror image of the path of the
capital stock. The path for the wage rate follows from the factor price frontier
which implies an inverse relationship between the interest rate and the wage
rate. Indeed, for the Cobb-Douglas technology the factor price frontier is:

(
r(t) + δ

α

)α ( w(t)

1 − α

)1−α

= 1. (A16.89)

Question 6: Mandatory retirement

(a) The budget identity of the household is:

Ȧ(v, τ) = (r∗ + β) A(v, τ) + I(v, τ)− C(v, τ), (A16.90)

and the NPG condition is:

lim
τ→∞

A(v, τ)e−RA(t,τ)dτ, RA(t, τ) =
∫ τ

t
[r∗(s) + β] ds. (A16.91)
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Figure A16.5: Fiscal policy
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Figure A16.6: Mandatory retirement scheme

In this question the interest rate stays constant so RA = (r∗ + β)(τ − t). Using
(A16.90)–(A16.91) we find the household budget identity:

A(v, t) + H(v, t) =
∫ ∞

t
C(v, τ)e−RA(t,τ)dτ, (A16.92)

where human wealth is age-dependent because income is age-dependent:

H(v, t) ≡
∫ ∞

t
I(v, τ)e−RA(t,τ)dτ. (A16.93)

Following the same steps as in the book (see the discussion leading to (16.37))
we find the consumption rule and the Euler equation:

C(v, t) = (ρ + β) [A(v, t) + H(v, t)] , (A16.94)

Ċ(v, t)

C(v, t)
= r∗(t)− ρ. (A16.95)

At time t, the age of a generation is defined as the difference between t and that
generation’s birth date, v. It follows that for working-age generations we have
t − v < π whereas for retired generations we have t − v ≥ π. See Figure A16.6
for an illustration. At time t, a generation born at time v0 has already worked
t − v0 periods and faces v0 + π − t periods to retirement. Human wealth for
the retired generations is thus:

H(v, t)|t−v≥π ≡
∫ ∞

t
P(τ)e−RA(t,τ)dτ (A16.96)

=
P

r∗ + β
, (A16.97)

where we have used the fact that both P and r∗ are time-invariant in the fi-
nal step. For retired generations, human wealth is the perpetuity value of the
pension payment, using the annuity interest rate for discounting.



CHAPTER 16: OVERLAPPING GENERATIONS IN CONTINUOUS TIME 419

For working-age generations, human wealth is:

H(v, t)|0≤t−v<π ≡
∫ v+π

t
[W(τ)− T(τ)] e−RA(t,τ)dτ

+
∫ ∞

v+π
P(τ)e−RA(t,τ)dτ

=
W − T

r∗ + β

[
1 − e−(r∗+β)(π+v−t)

]
+

P

r∗ + β
e−(r∗+β)(π+v−t), (A16.98)

where (A16.98) is valid if W, T, P and r∗ are time-invariant. In (A16.98), π +
v − t is the remaining period until retirement. If π + v − t = 0 then, of course,
(A16.98) and (A16.97) coincide.

(b) Each generation supplies one unit of labour during its working age so L(v, t)
is:

L(v, t) =

{
1 for t − v < π

0 for t − v ≥ π
(A16.99)

Aggregate labour supply is thus:

L(t) =
∫ t

t−π
βeβ(v−t)dv = 1 − e−βπ . (A16.100)

Note that if π → ∞ then L(t) → 1 and we are back in the standard Blanchard -
Yaari model. Since the total population equals unity, it follows from (A16.100)
that the retired population equals 1 − L(t) = e−βπ . The government budget
constraint (in the absence of debt) is thus:[

1 − e−βπ
]

T = e−βπP. (A16.101)

If the retirement age is increased and the pension payment is held constant
then we find from (A16.101) that:[

1 − e−βπ
]

dT + βTe−βπdπ = −βe−βπPdπ ⇔
dT

dπ
= − βe−βπ (P + T)

1 − e−βπ
< 0. (A16.102)

The tax falls for two reasons. First, the working-age population increases so a
given revenue is obtained by smaller lump-sum taxes per working household.
Second, the retired population decreases so less revenue is needed.

(c) Aggregate consumption is defined in the usual fashion:

C(t) ≡ β
∫ t

−∞
eβ(v−t)C(v, t)dv. (A16.103)

By differentiating (A16.103) with respect to t we obtain:

Ċ(t) = β [C(t, t)− C(t)] + β
∫ t

−∞
Ċ(v, t)eβ(v−t)dv

= β(ρ + β) [H(t, t)− H(t)− A(t)] + [r∗ − ρ] C(t), (A16.104)
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where we have used the fact that C(t, t) = (ρ + β)H(t, t) (since A(t, t) = 0)
and C(t) = (ρ + β) [A(t) + H(t)]. Rewriting (A16.104) somewhat we find the
aggregate consumption “Euler equation”:

Ċ(t)

C(t)
= r∗ − ρ − β(ρ + β)

[
A(t) + H(t)− H(t, t)

C(t)

]
, (A16.105)

where the term in square brackets is the generational turnover term. It dif-
fers from the one appearing in the standard Blanchard - Yaari model because
human wealth is age-dependent.

Next we work on the term H(t)− H(t, t). We know from (A16.98) that human
wealth of a newborn at time t is:

H(t, t) =
W − T

r∗ + β

[
1 − e−(r∗+β)π

]
+

P

r∗ + β
e−(r∗+β)π

=
W − T − P

r∗ + β

[
1 − e−(r∗+β)π

]
+

P

r∗ + β
, (A16.106)

where Nielsen (1994, p. 53) calls W −T− P the social security system’s “wedge”
parameter. Total human wealth can be computed as follows:

H(t) ≡ β
∫ t

−∞
H(v, t)eβ(v−t)dv

= β
∫ t

t−π
[H(v, t)]0≤t−v<π eβ(v−t)dv + β

∫ t−π

−∞
[H(v, t)]t−v≥π eβ(v−t)dv.

(A16.107)

By using (A16.97) and (A16.98) in (A16.107) we find:

H(t) = β
∫ t

t−π

W − T − P

r∗ + β

[
1 − e−(r∗+β)(π+v−t)

]
eβ(v−t)dv

+ β
∫ t

−∞

P

r∗ + β
eβ(v−t)dv

= β
W − T − P

r∗ + β

∫ t

t−π

[
1 − e−(r∗+β)(π+v−t)

]
eβ(v−t)dv +

P

r∗ + β
.

(A16.108)

The integral on the right-hand side of (A16.108) is equal to:

· · · =
∫ t

t−π
eβ(v−t)dv − e−βπ

∫ t

t−π
e−r∗(π+v−t)dv

=

[
eβ(v−t)

β

]t

t−π

− e−βπ

[
e−r∗(π+v−t)

−r∗

]t

t−π

=
1 − e−βπ

β
− e−βπ

r∗
[
1 − e−r∗π

]
. (A16.109)

By using (A16.109) in (A16.108) we find:

H(t) =
W − T − P

r∗ + β

[
1 − e−βπ − βe−βπ

r∗
[
1 − e−r∗π

]]
+

P

r∗ + β
. (A16.110)
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By deducting (A16.110) from (A16.106) we find:

H(t, t)− H(t) =
W − T − P

r∗ + β

[
−e−(r∗+β)π + e−βπ +

βe−βπ

r∗
[
1 − e−r∗π

]]

=
W − T − P

r∗
e−βπ

[
1 − e−r∗π

]
. (A16.111)

Finally, by substituting (A16.111) in (A16.105) we find the ultimate expression
for the aggregate consumption Euler equation:

Ċ(t) = (r∗ − ρ) C(t)− β(ρ + β)

[
A(t)− W − T − P

r∗
e−βπ

[
1 − e−r∗π

]]
.

(A16.112)

Next we derive the differential equation for aggregate financial wealth which,
in the absence of capital and bonds, coincides with the nation’s current account
(i.e. A(τ) = AF(τ) for all τ, where AF is net foreign assets). Aggregate finan-
cial wealth is defined as:

A(t) ≡ β
∫ t

−∞
eβ(v−t)A(v, t)dv. (A16.113)

By differentiating (A16.113) with respect to t we obtain:

Ȧ(t) = β [A(t, t)− A(t)] + β
∫ t

−∞
Ȧ(v, t)eβ(v−t)dv

= −βA(t) + β
∫ t

−∞
[(r∗ + β) A(v, t) + I(v, t)− C(v, t)] eβ(v−t)dv

= rA(t) + β
∫ t

−∞
I(v, t)eβ(v−t)dv − C(t). (A16.114)

In view of (Q16.12) we can compute the integral on the right-hand side of
(A16.114):

β
∫ t

−∞
I(v, t)eβ(v−t)dv = β

∫ t

t−π
[W − T] eβ(v−t)dv + β

∫ t−π

−∞
Peβ(v−t)dv

= (W − T)
[
eβ(v−t)

]t

t−π
+ P

[
eβ(v−t)

]t−π

−∞

= (W − T)
[
1 − e−βπ

]
+ Pe−βπ

= W
[
1 − e−βπ

]
−
[

T
(

1 − e−βπ
)
− Pe−βπ

]
= W

[
1 − e−βπ

]
, (A16.115)

where we have used the government budget constraint (A16.101) in getting to
the final line. By using (A16.115) in (A16.114) we find the differential equation
for financial wealth:

Ȧ(t) = rA(t) + W
[
1 − e−βπ

]
− C(t). (A16.116)



422 EXERCISE & SOLUTIONS MANUAL

By using the government budget constraint (A16.101) we find that T + P =
P/

(
1 − e−βπ

)
so that (A16.112) can be rewritten in terms of the pension pay-

ment only:

Ċ(t) = (r∗ − ρ) C(t) (A16.117)

− β(ρ + β)


A(t)−

(
W

[
1 − e−βπ

]
− P

) e−βπ
[
1 − e−r∗π

]
r∗
[
1 − e−βπ

]

 .

(d) The economy is fully characterized by the dynamics of C and A as stated in
(A16.116)–(A16.117). In view of the technology (Q16.11), the wage rate is equal
to the (exogenous) productivity parameter, i.e. W = Z. In Figure A16.7 we
present the phase diagram for the case of a patient country (with r∗ > ρ). The
Ċ = 0 equation is obtained from (A16.117):

C(t) =
β(ρ + β)

r∗ − ρ


A(t)−

(
W

[
1 − e−βπ

]
− P

) e−βπ
[
1 − e−r∗π

]
r∗
[
1 − e−βπ

]

 . (A16.118)

The line slopes upward and, under the assumption that W
[
1 − e−βπ

]
> P,

cuts the horizontal axis for a positive level of financial assets. For points above
(below) the Ċ = 0 line, consumption increases (decreases) over time–see the
vertical arrows. The Ȧ = 0 line is obtained from (A16.116):

C(t) = rA(t) + W
[
1 − e−βπ

]
. (A16.119)

This line also slopes up but cuts the horizontal axis for a negative level of fin-
ancial assets. For points to the right (left) of the Ȧ = 0 line, financial assets are
increased (decreased) over time–see the horizontal arrows. Provided the Ȧ = 0
line is flatter than the Ċ = 0 line, the two lines intersect once (at E0) and the

equilibrium is saddle-point stable. The stability condition is thus r∗ <
β(ρ+β)

r∗−ρ
or:

r∗(r∗ − ρ) − β(ρ + β) < 0 ⇔
r∗ [r∗ + β − (ρ + β)] − β(ρ + β) < 0 ⇔

r∗(r∗ + β)− (r∗ + β)(ρ + β) < 0 ⇔
(r∗ + β) [r∗ − (ρ + β)] < 0 ⇔

r∗ < ρ + β. (A16.120)

Hence, the model is saddle-point stable provided r∗ is less than ρ + β.

An increase in the pension payment shifts the Ċ = 0 line up and leaves the
Ȧ = 0 line unaffected. In terms of Figure A16.8, the steady-state equilibrium
shifts from E0 to E1, consumption and financial wealth decrease in the long run.
The intuition behind this result is as follows. The increase in P is advantageous
to existing generations at the time of the shock, more so the older they are (the
retired generations receive a pure windfall gain as they do not have to pay taxes
any more). Consumption increases at impact and over time households start
to run down financial assets. In the long run, both consumption and assets are
lower than before the shock. Newborn generations are worse off as a result of
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Figure A16.7: Phase diagram of a patient country

the shock. Indeed, by using the result T + P = P/
(
1 − e−βπ

)
in (A16.106) we

find:

H(t, t) =
W

r∗ + β

[
1 − e−(r∗+β)π

]
− T + P

r∗ + β

[
1 − e−(r∗+β)π

]
+

P

r∗ + β

=
W

r∗ + β

[
1 − e−(r∗+β)π

]
− P

r∗ + β
· 1 − e−(r∗+β)π

1 − e−βπ
+

P

r∗ + β

=
W

r∗ + β

[
1 − e−(r∗+β)π

]
− P

r∗ + β
· e−βπ − e−(r∗+β)π

1 − e−βπ
, (A16.121)

where second term on the right-hand side of (A16.121) is positive, i.e. dH(t, t)/
dP < 0, because r∗ > 0 (the equilibrium is dynamically efficient) and the work-
ing period is finite (π � ∞). Hence, the policy shock redistributes resources
away from the future newborns and towards the currently existing genera-
tions.

(e) An increase in the mandatory retirement age affects both the Ċ = 0 and Ȧ = 0
loci. Starting with the Ȧ = 0 line, it is easy to show that it shifts up. We define
W̄ ≡ W[1 − e−βπ ] and find:

dW̄

dπ
= βWe−βπ

> 0. (A16.122)

The upward shift has been illustrated in Figure A16.9. The effect on the Ċ = 0
line is much more complicated. First we rewrite the Ċ = 0 line in short-hand
notation as follows:

C(t) =
β(ρ + β)

r∗ − ρ
A(t) − β(ρ + β)

r∗(r∗ − ρ)
(W̄ − P) φ(π), (A16.123)



424 EXERCISE & SOLUTIONS MANUAL

A(t)

E0

C(t)
A(t)=0
.

[C(t)=0]0

.

SP1

!

!

!

E1

A

[C(t)=0]1

.

Figure A16.8: An increase in the pension payment

where φ(π) is defined as follows:

φ(π) ≡
e−βπ

[
1 − e−r∗π

]
1 − e−βπ

. (A16.124)

The derivative of φ(π) is:

φ′(π) ≡
[
1 − e−βπ

] de−βπ
[
1−e−r∗π

]
dπ − e−βπ

[
1 − e−r∗π

]
d[1−e−βπ]

dπ[
1 − e−βπ

]2

=
e−βπ

[
r∗e−r∗π

(
1 − e−βπ

)− β
(

1 − e−r∗π
)]

[
1 − e−βπ

]2
� 0. (A16.125)

It is thus ambiguous which way the Ċ = 0 line shifts. The increase in W̄ causes
a downward shift but this shift may be offset if (W̄ − P) φ′(π) > 0. Following
Nielsen (1994, p.56) we simply assume that Ċ = 0 line shifts up. In Figure
A16.9, the equilibrium shifts from E0 to E1. The transition path consists of an
impact jump from E0 to A followed by a gradual move from A to E1.

Question 7: Public infrastructure

(a) The Hamiltonian is given by:

H ≡ (1 − tY) Y − WL − I + λ [I − δK] , (A16.126)

where we suppress the time index for convenience. The control variables are
L and I, the state variable is K, and the co-state variable is λ. The first-order
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Figure A16.9: Increase in the mandatory retirement age

conditions are: ∂H /∂L = ∂H /∂I = 0 and λ̇ − rλ = −∂H /∂K. We obtain:

(1 − tY)
∂Y

∂L
= W, (A16.127)

λ = 1, (A16.128)

λ̇ − rλ = − (1 − tY)
∂Y

∂K
+ δλ. (A16.129)

Combining these results we get the following marginal productivity conditions
for capital and labour:

(1 − tY)
∂Y

∂L
= W, (A16.130)

(1 − tY)
∂Y

∂K
= r + δ. (A16.131)

The production function is linearly homogenous in K and L so we have:

(1 − tY) Y = (1 − tY)

[
∂Y

∂L
L +

∂Y

∂K
K

]

= (1 − tY)

[
WL

1 − tY
+

(r + δ) K

1 − tY

]
= WL + (r + δ) K. (A16.132)

It follows from (A16.132) that factor payments fully exhaust after-tax revenue.

(b) By using equation (Q16.13) and noting the government budget constraint, tYY =
KG, and the full employment condition for labour, L = 1, we obtain for the
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marginal product of capital:

∂Y

∂K
= (1 − εL) Z0

(
KG

K

)εL

= (1 − εL) Z0

(
tY

Y

K

)εL

. (A16.133)

We can also write ∂Y/∂K as:

∂Y

∂K
= (1 − εL)

Y

K
. (A16.134)

By equating the two expressions (A16.133) and (A16.134) we can solve for Y/K:

Y

K
= Z

1/(1−εL)
0 t

εL/(1−εL)
Y ⇔ Y = AK, (A16.135)

A ≡ Z
1/(1−εL)
0 t

εL/(1−εL)
Y . (A16.136)

Output is proportional to the capital stock and the factor of proportionality, A,
depends only on Z0 and tY.

The marginal product of labour is:

∂Y

∂L
= εLZ0K

(
KG

K

)εL

= εLZ0K

(
tY

Y

K

)εL

= εL AK, (A16.137)

where we have used (A16.135)–(A16.136) in the final step.

(c) The full model is given by:

Ċ (t) = [r − ρ] C (t) − β (ρ + β) K (t) , (A16.138)

K̇ (t) = (1 − tY) Y (t) − C (t) − δK (t) , (A16.139)

r = (1 − tY) (1 − εL) A − δ, (A16.140)

Y (t) = AK (t) . (A16.141)

Equation (A16.138) in the aggregate Euler equation, (A16.139) is the goods
market clearing condition, (A16.140) is (A16.131) combined with (A16.135),
and (A16.141) is (A16.135). We define θ (t) ≡ C (t) /K (t) and note that θ̇ (t) /
θ (t) ≡ Ċ (t) /C (t) − K̇ (t) /K (t). We can now rewrite the transformed model
as:

θ̇ (t)

θ (t)
= (1 − tY) (1 − εL) A − (ρ + δ) − β (ρ + β)

θ (t)
− K̇ (t)

K (t)
, (A16.142)

K̇ (t)

K (t)
= (1 − tY) A − δ − θ (t) . (A16.143)

By substituting (A16.143) into (A16.142) we obtain a differential equation in
θ (t):

θ̇ (t)

θ (t)
= −εL (1 − tY) A − ρ + θ (t)− β (ρ + β)

θ (t)
. (A16.144)
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Equation (A16.142) is an unstable differential equation, the only economically
sensible solution of which is the steady state. It follows that θ (t) jumps to its
constant equilibrium level, θ∗. The growth rate in capital, consumption, and
output also features no transitional dynamics–see equation (A16.143).

(d) By combining (A16.143)–(A16.144) and setting γY ≡ K̇(t)/K(t) we find the
expression characterizing the growth rate:

[(1 − tY) A − (δ + γY)] (r − γY − ρ) = β (ρ + β) . (A16.145)

In the representative-agent model, β = 0 and (since (1 − tY) A − (δ + γY) r >

0) the growth rate is given by γY = r − ρ. Since r = (1 − tY) (1 − εL) A − δ we
find that:

(γY)β=0 = (1 − tY) (1 − εL) Z
1/(1−εL)
0 t

εL/(1−εL)
Y − (ρ + δ) . (A16.146)

This is just the expression found for the Barro model discussed in Chapter 14.

For the overlapping-generations model, γY is the solution to (A16.145). To
derive dγY/dβ we totally differentiate (A16.145) and find:

−
[
[(1 − tY) A − (δ + γY)] + (r − γY − ρ)

]dγY

dβ
= ρ + 2β. (A16.147)

Since the term in square brackets on the left-hand side is positive we conclude
that dγY/dβ < 0. The higher the birth/death rate, the lower is the rate of
growth. It follows from (A16.144) that dc/dβ = − (1/A) dγY/dβ > 0. Hence,
the higher the birth/death rate, the higher is the proportion of output that is
consumed. Growth is lower because there is less room for capital accumula-
tion.

(e) By defining x ≡ (1 − tY) A and noting that r = (1 − εL) x − δ, we can rewrite
(A16.145) as follows:[

x − (δ + γY)
][

(1 − εL) x − (δ + ρ + γY)
]

= β (ρ + β) . (A16.148)

Equation (A16.148) in an implicit function relating γY to x (and the constant
parameters). It is not difficult to show that:

dγY

dx
=

[x − (δ + γY)] (1 − εL) + (1 − εL) x − (δ + ρ + γY)

[x − (δ + γY)] + (1 − εL) x − (δ + ρ + γY)
> 0, (A16.149)

where we have used the fact that x− (δ + γY) > 0 and (1 − εL) x− (δ + ρ + γY)
> 0. It follows from (A16.149) that the growth rate is maximized if x is max-
imized. This conclusion is independent of the value of β. Since x ≡ (1 − tY) A

and A ≡ Z
1/(1−εL)
0 t

εL/(1−εL)
Y we find that γY is maximized if (1 − tY) t

εL/(1−εL)
Y

is maximized, i.e. if tY = εL (just as in the Barro model). The corresponding
maximum growth rate is of course lower, the higher is the birth/death rate (see
part (d) of this question).
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(f) The model is now:

Ċ (t) = [r (t)− ρ] C (t) − β (ρ + β) K (t) , (A16.150)

Y (t) = C (t) + I (t) + IG (t) , (A16.151)

K̇ (t) = I (t) − δK (t) , (A16.152)

K̇G (t) = IG (t)− δGKG (t) , (A16.153)

IG (t) = tYY (t) (A16.154)

r (t) = (1 − tY) (1 − εL) Z0

(
KG (t)

K (t)

)εL

, (A16.155)

Y (t) = Z0K (t) ·
(

KG (t)

K (t)

)εL

− δ. (A16.156)

As in section 14.2.2.2.1, we rewrite the model in stationary format by defining:

κ (t) ≡ K (t)

KG (t)
, θ (t) ≡ C (t)

K (t)
. (A16.157)

In the steady state, κ (t) = κ∗ and θ (t) = θ∗, and we rewrite the model as:

γ∗ = (r∗ − ρ) − β (ρ + β)

θ∗
, (A16.158)

γ∗ = (1 − tY) Z0 (κ∗)−εL − θ∗ − δ, (A16.159)

γ∗ = tYZ0 (κ∗)1−εL − δG, (A16.160)

r∗ = (1 − tY) (1 − εL) Z0 (κ∗)−εL − δ, (A16.161)

where γ∗ is the common growth rate of C (t), K (t), KG (t), I (t), Y (t), and
IG (t) along the balanced growth path.

Apart from the generational turnover term in (A16.158), this model is the same
as the one studied in section 14.2.2.2.1. We can derive the government cap-
ital accumulation (GCA) line by solving (A16.161) for κ∗ and substituting the
resulting expression into (A16.160):

γ∗ = tYZ0 ·
(

(1 − tY) (1 − εL) Z0

r∗ + δ

)(1−εL)/εL

− δG. (A16.162)

In the top panel of Figure A16.10, the GCA line represents a downward sloping
relationship between the growth rate, γ∗, and the interest rate, r∗.

By using (A16.161) in (A16.159) we find that:

θ∗ = Φ (r∗, γ∗) ≡ r∗ + δ

1 − εL
− γ∗ − δ. (A16.163)

Using this expression in (A16.158) we find the modified Euler equation (MEE):

γ∗ = (r∗ − ρ) − β (ρ + β)

Φ (r∗, γ∗)
. (A16.164)

This is an implicit relationship between γ∗ and r∗. Together with (A16.162) it
determines the steady-state equilibrium. Differentiating (A16.158) with respect
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Figure A16.10: Steady-state growth and interest rates

to γ∗ and r∗ and re-arranging we find the slope of the MEE locus:

dγ∗

dr∗
=

1 + β(ρ+β)

(θ∗)2(1−εL)

1 + β(ρ+β)

(θ∗)2

> 1. (A16.165)

In Figure A16.10, the dashed EE line is the Euler equation for the representative
agent model, i.e. β = 0 and γ∗ = r∗ − ρ. The MEE line lies to the right of EE
and approaches it asymptotically.

The growth rate for the overlapping generations model is γ∗
0 and the interest

rate is r∗0. Growth is lower with overlapping generations than in the represent-
ative agent model.

In principle we can use the approach explained in section 14.2.2.2.2 in the book
to formally study the transitional dynamics of the revised model. Intuitively,
however, it is clear why there is non-trivial transitional dynamics. Both K
and KG are stocks, so their ratio, κ, will also be a sluggish variable. That is
the case in the representative-agent version of the model and thus also in the
overlapping-generations model.
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Chapter 17

Overlapping generations in
discrete time

Question 1: Short questions

(a) “In a dynamically inefficient economy it is Pareto-improving to move from a
PAYG to a fully-funded pension system.” True or false? Explain with the aid
of a figure.

(b) Consider an economy with a defined-contribution PAYG pension system and
assume that there is a new baby boom. Show what happens to the economy at
impact, over time, and in the long run as a result of this baby boom. Explain
the intuition.

(c) “PAYG pensions are Pareto efficient.” True or false? Explain.

Question 2: Capital fundamentalism in an OLG model

[Based on Jones and Manuelli (1992)] In this question we consider a capital - funda-
mentalist growth model in which agents have finite lives. We show that intergener-
ational redistribution of resources from the old to the young is needed to jump-start
the growth process. We use a simplified version of the Diamond - Samuelson model
considered in section 17.1 of the book. The representative young household has the
following lifetime utility function:

ΛY
t ≡ ln CY

t +
1

1 + ρ
ln CO

t+1, (Q17.1)

where ΛY
t is lifetime utility, CY

t is consumption during youth, CO
t+1 is consumption

during old age, and ρ is the pure rate of time preference. The household faces the
usual budget identities:

CY
t + St = Wt, (Q17.2)

CO
t+1 = (1 + rt+1)St, (Q17.3)

where St is saving, Wt is the wage rate, and rt+1 is the interest rate. There is no popu-
lation growth and the size of each generation is normalized to unity (Lt = Lt−1 = 1).
Households only work during youth.
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The representative firm hires labour Lt (from the young) and capital Kt (from the
old) in order to maximize profit:

Πt ≡ F(Kt, Lt) − WtLt − RK
t Kt, (Q17.4)

where F(·) is a linear homogeneous production function, and RK
t is the rental rate

on capital. It is assumed that the production function features a constant elasticity of
substitution:

F(Kt, Lt) ≡ A
[
αK

(σ−1)/σ
t + (1 − α)L

(σ−1)/σ
t

]σ/(σ−1)
, 0 < α < 1, (Q17.5)

where A is some index of general productivity. It is assumed that capital and labour
can be substituted quite easily, i.e. σ > 1.

(a) Use a simple arbitrage argument to explain why the rental rate on capital is
equal to RK

t = rt + δ.

(b) Solve the optimization problems for the representative (old and young) house-
holds and the representative firm. Show that profits are zero and that saving is
proportional to the wage rate. Derive the expression linking St and Kt+1.

(c) Derive an expression for Wt/Kt. Use your expression to show that:

lim
Kt→0

Wt

Kt
= ∞ and lim

Kt→∞

Wt

Kt
= 0.

Define the growth rate of capital (per worker) by γK
t ≡ (Kt+1 − Kt)/Kt and

show that it goes to zero in the long run. Illustrate your answer with the aid of
a diagram with Kt on the vertical axis and Kt+1/Kt on the horizontal axis.

(d) Why is there no endogenous growth in this model despite the fact that capital
and labour can be easily substituted?

Assume that the government introduces an output tax, τ, so that the profit function is
now Πt ≡ (1 − τ)F(Kt, Lt)− WtLt − RK

t Kt. Assume that the tax revenue, τF(Kt, Lt),
is rebated to young households in the form of lump-sum transfers. Hence, these
transfers are given by TY

t = τF(Kt, Lt).

(e) � Solve the extended model and prove that the long-run growth rate in the
capital stock is given by:

γK
t = max

0,γ∗ , γ∗ ≡ τA

2 + ρ
ασ/(σ−1) − 1. (Q17.6)

Explain intuitively why endogenous growth becomes feasible if a sufficient
amount of income is distributed to the young.

Question 3: Welfare effects of debt

Consider the basic Diamond - Samuelson model studied in section 17.1 of the book
and assume that the felicity function is logarithmic:

ΛY
t ≡ ln CY

t +
1

1 + ρ
ln CO

t+1, (Q17.7)



CHAPTER 17: OVERLAPPING GENERATIONS IN DISCRETE TIME 433

where ΛY
t is lifetime utility, CY

t is consumption during youth, CO
t+1 is consumption

during old age, and ρ is the pure rate of time preference. The technology is Cobb-

Douglas and yt = k1−εL
t where yt ≡ Yt/Lt and kt ≡ Kt/Lt.

(a) Introduce government consumption, government debt and lump-sum taxes
levied on young and old generations into the model. Denote these variables
by Gt, Bt, TY

t , and TO
t respectively. Define per capita debt and government

consumption as, respectively, bt ≡ Bt/Lt and gt ≡ Gt/Lt. Derive and interpret
the government budget identity.

(b) Solve the household optimization problem. Establish the link between house-
hold saving and the future capital stock. Show that one of bt, TY

t , and TO
t is

redundant to finance a given path for government consumption.

(c) Determine the macroeconomic effects of a once-off increase in government con-
sumption, g, which is financed by means of lump-sum taxes on the young. Ab-
stract from government debt (i.e. bt = bt+1 = 0). Derive the stability condition
and explain the intuition behind your results.

(d) Redo part (c) but now assume that financing is by means of lump-sum taxes
on the old. Comment on the key differences with the earlier case.

(e) Assume that the government is somehow unable to levy taxes on the old (so
that TO

t = 0 for all t) and that it maintains a constant amount of debt per
member of the young generation (i.e. bt = b for all t). Show that a once-off
increase in b leads to crowding out of capital in the long run in a dynamically
efficient economy.

Question 4: Lifetime uncertainty in a two-period model

Consider a two-period setting. An agent faces lifetime uncertainty in the sense that
he/she may die after the first period. The probability of death is given by π, with
0 < π < 1. The expected utility of the agent is thus:

E (Λ) = U (C1) +
π

1 + ρ
U (C2) , (Q17.8)

where Ct is consumption in period t, U (Ct) is the felicity function (satisfying U′′ (Ct)
< 0 < U′ (Ct)), and ρ > 0 captures impatience. The household faces the following
budget identities:

C1 + A = W1, (Q17.9)

C2 = W2 + (1 + r) A, (Q17.10)

where Wt is exogenous wage income in period t, A is assets, and r is the interest rate.
If A < 0 the agent is borrowing.

(a) Compute the optimum consumption-saving plans of an agent whose prefer-
ences are such that he/she plans to save during the first period of life. Illustrate
your solution with the usual diagram (see Chapter 5) with C2 on the vertical
axis and C1 on the horizontal axis.
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(b) Redo part (a) for an agent who would like to borrow in the first period of life.
Is that possible? What is the optimum this agent reaches?

(c) Introduce actuarial notes (as in Yaari (1965)) that yield rA if the agent survives
into the second period, and zero if the agent dies. Derive an expression for the
actuarially fair value of rA.

(d) Show that both initial savers (part (a)) and frustrated borrowers (part (b)) will
make use of these actuarial notes. Illustrate your answer in the diagrams and
explain. Show that this result also holds if the notes are not actuarially fair,
provided rA

> r.

Question 5: Pensions in the Diamond-Samuelson model

Consider the Diamond - Samuelson model discussed in section 17.1 of the book.
Change the lifetime utility function (17.1) to:

ΛY
t ≡ U(CY

t , CO
t+1), (Q17.11)

and assume that indifference curves bulge toward the origin (in a graph with CY
t on

the horizontal axis and CO
t+1 on the vertical axis). There exists a pension system so

that the agent’s budget equations are given by:

CY
t + St = Wt − T, (Q17.12)

CO
t+1 = (1 + rt+1)St + Zt+1, (Q17.13)

Lt = (1 + nt) Lt−1, (Q17.14)

Lt−1Zt = LtT, (Q17.15)

where T is the (exogenous) pension contribution paid during youth, and nt is the
population growth rate in period t (nt > 0).

(a) What kind of pension system have we assumed in this model? Funded or
PAYG? Defined-benefit or defined-contribution?

(b) Derive the comparative static effects on the optimal choices of CY
t , CO

t+1, and St

of an increase in the pension contribution (dT > 0). Assume that rt > nt for all
t. Explain the intuition behind your results with the aid of a diagram with CY

t
on the horizontal axis and CO

t+1 on the vertical axis.

(c) Prove that St = (1 + nt+1) kt+1, where kt ≡ Kt/Lt.

(d) Close the model with the usual expressions (17.15)-(17.16). Assume that (i)
U(CY

t , CO
t+1) is homothetic, (ii) the production function is Cobb-Douglas, yt =

kα
t with 0 < α < 1, and (iii) the economy under consideration features a single

stable steady state. Compute the (local) stability condition that we implicitly
assume to hold in this economy.

Question 6: Consumption taxation and redistribution

This question deals with consumption taxation. Consider the basic Diamond - Sa-
muelson model of section 17.1 in the book. There is a (potentially time-varying)
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consumption tax which is denoted by tCt. The revenue of this tax is recycled in a
lump-sum fashion to existing household, i.e. the government budget constraint in
period t is:

tCtCt = LtZ
Y
t + Lt−1ZO

t , (Q17.16)

where Ct is total consumption, ZY
t is the lump-sum transfer to each young house-

hold, and ZO
t is the lump-sum transfer to each old household. The budget identities

(17.2)-(17.3) are changed to:

CY
t + St = wt + ZY

t , (Q17.17)

CO
t+1 = (1 + rt+1)St + ZO

t+1. (Q17.18)

(a) Derive the optimizing behaviour of young and old households. Show how
the savings equation is affected by the consumption taxes and the lump-sum
transfers.

(b) Assume that the substitution elasticities in the utility and production functions
are both equal to unity (unit-elastic model). Derive the savings function.

(c) Assume that the entire revenue is given to the young, i.e. ZO
t = 0 in (Q17.16).

Derive the fundamental difference equation for the capital-labour ratio.

(d) Now redo part (b) under the assumption that the old receive the entire tax
revenue, i.e. ZY

t = 0 in (Q17.16). Comment on any differences that may exist
between the two scenarios.
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Answers

Question 1: Short questions

(a) False. It is optimal to expand the PAYG system. It constitutes a chain letter.
There is too much capital already and an expansion of the system constitutes
a move in the direction of the golden rule point. Figure 17.4 shows the adjust-
ment path. The economy is initially at k = k0. Without the PAYG scheme the
economy would have converged to point B. When the PAYG scheme is intro-
duced, the economy follows the path from C toward the new equilibrium at E0.
The difference between points A and C is due to the fact that the current young
save less than they would have done in the absence of the PAYG scheme.

(b) This is the opposite of the case drawn in Figure 17.6. A baby boom can be
modeled as an increase in the birth rate, n. In the long run the capital stock
falls. There are more asset-less young people and fewer asset-rich old people.
The dependency ratio, 1/ (1 + n), falls as a result of the baby boom.

(c) This statement is correct in a dynamically efficient economy (with r > n) if
there are no other distortions that can be reduced by sizing down the PAYG
system. In the text we state that an allocation of resources in the economy is
called Pareto-optimal (or Pareto-efficient) if there is no other feasible alloca-
tion which (i) makes no individual in the economy worse off and (ii) makes at
least one individual strictly better off than he or she was. Similarly, a policy is
called Pareto-improving vis-à-vis the initial situation if it improves welfare for at
least one agent and leaves all other agents equally well off as in the status quo.
The steady-state generation are better off with a smaller PAYG system but the
correct old cannot be compensated (there is no loose change lying around).

Question 2: Capital fundamentalism in an OLG model

(a) The easiest way to derive the expression for the rental rate on capital is to mo-
del explicitly the investment process. If an investor purchases Kt units of cap-
ital in period t then he will obtain future rental payments, RK

t+1, plus the un-
depreciated part of the capital stock, (1− δ)Kt. Hence, the profit from investing
is:

ΠI
t ≡ −Kt +

RK
t+1Kt + (1 − δ)Kt

1 + rt+1
, (A17.1)

where future revenues are discounted at the real interest rate, rt+1. The invest-
ment profit is maximized by choice of Kt and the first-order condition (for an
interior solution, with Kt > 0) is:

dΠI
t

dKt
= −1 +

RK
t+1 + (1 − δ)

1 + rt+1
= 0, (A17.2)

from which we derive that rt+1 = RK
t+1 − δ.

(b) The household’s consolidated budget restriction is obtained by combining equa-
tions (Q17.2)–(Q17.3):

Wt = CY
t +

CO
t+1

1 + rt+1
. (A17.3)
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The young household chooses CY
t and CO

t+1 (and, implicitly, St) in order to max-

imize ΛY
t (given in (Q17.1)). The Lagrangian expression for this optimization

problem is:

L ≡ ln CY
t +

1

1 + ρ
ln CO

t+1 + λ

[
Wt − CY

t − CO
t+1

1 + rt+1

]
,

where λ is the Lagrange multiplier. The first-order conditions are the constraint
and ∂L/∂CY

t = ∂L/∂CO
t+1 = 0:

1

CY
t

= λ, (A17.4)

1

1 + ρ

1

CO
t+1

=
λ

1 + rt+1
. (A17.5)

By combining (A17.4)–(A17.5) we find the consumption Euler equation:

CO
t+1

CY
t

=
1 + rt+1

1 + ρ
. (A17.6)

According to (A17.6), if rt+1 exceeds (falls short of) ρ, then future consumption
will be higher (lower) than current consumption. By substituting (A17.6) into
the lifetime budget constraint (A17.3) we can find the solutions for CY

t and
CO

t+1. For CY
t we find:

CY
t +

CO
t+1

1 + rt+1
= Wt ⇔

CY
t +

CY
t

1 + ρ
= Wt ⇔

CY
t =

1 + ρ

2 + ρ
Wt. (A17.7)

By using (A17.7) in, respectively, (A17.6) and (Q17.2) we find the expressions
for CO

t+1 and St:

CO
t+1 =

1 + rt+1

1 + ρ
CY

t =
1 + rt+1

2 + ρ
Wt, (A17.8)

St = Wt − CY
t =

Wt

2 + ρ
. (A17.9)

We observe that saving is proportional to wage the income of the young.

The representative firm hires capital and labour from the households. After-tax
profit is defined as:

Πt ≡ (1 − τ) F (Kt, Lt) − WtLt − RK
t Kt, (A17.10)

where τ is an output tax used in part (e) of this question. Profit maximization
yields the usual first-order conditions:

∂Πt

∂Lt
= 0 : (1 − τ)FL(Kt, Lt) = Wt, (A17.11)

∂Πt

∂Kt
= 0 : (1 − τ)FK(Kt, Lt) = RK

t . (A17.12)
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Since technology features CRTS, excess profits are zero (Πt = 0).

To derive the link between saving by the young and the future capital stock,
we need to do some bookkeeping. The economy-wide resource constraint is:

Yt + (1 − δ)Kt = Kt+1 + Ct, (A17.13)

where Ct is total consumption (by young and old). The young consume CY
t =

Wt − S (Wt) (where S(·) is given in (A17.9) above) and the old consume CO
t =

(rt + δ) Kt + (1 − δ)Kt. Since we abstract from population growth, total con-
sumption is:

Ct ≡ CY
t + CO

t

= Wt − S (Wt) + (rt + δ) Kt + (1 − δ)Kt. (A17.14)

With a zero output tax (τ = 0) we have that F(Kt, Lt) = Wt + (rt + δ) Kt so that
(A17.14) simplifies to:

Yt + (1 − δ)Kt = Ct + S (Wt) . (A17.15)

Finally, by equating (A17.13) and (A17.15) we find the desired expression link-
ing S(Wt) and Kt+1:

Kt+1 = S(Wt). (A17.16)

(c) According to (A17.11), the wage rate equals the marginal product of capital
(recall that τ = 0 here). By using (Q17.5) we find:

FL(Kt, Lt) = A
[
αK

(σ−1)/σ
t + (1 − α)L

(σ−1)/σ
t

]σ/(σ−1)−1
(1 − α)L−1/σ

t

= (1 − α)A
[
αK

(σ−1)/σ
t + 1 − α

]1/(σ−1)
, (A17.17)

where we have substituted Lt = 1 in the second line. By using (A17.17) and
noting that Wt = FL(Kt, 1) we find:

Wt

Kt
= (1 − α)A

[
αK

(σ−1)/σ
t + 1 − α

]1/(σ−1)

Kt
. (A17.18)

We use (A17.18) to derive the various limits. For the lower limit we find:

lim
Kt→0

Wt

Kt
= (1 − α)A

limKt→0

[
αK

(σ−1)/σ
t + 1 − α

]1/(σ−1)

limKt→0 Kt
= ∞. (A17.19)

The upper limit is most easily computed by first rewriting (A17.18) somewhat:

Wt

Kt
= (1 − α)A

[
α + (1 − α) K

(1−σ)/σ
t

]1/(σ−1)
K1/σ

t

Kt
. (A17.20)

By letting Kt → ∞ in (A17.20) we find that:

lim
Kt→∞

Wt

Kt
= (1 − α)Aα1/(σ−1) lim

Kt→∞
K

(1−σ)/σ
t = 0, (A17.21)
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Kt
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Wt / Kt
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Kt+1/Kt

Kt+1/Kt =(1/(2+D))Wt /Kt

K*

Figure A17.1: Hampered endogenous growth in the OLG model

where we have used the fact that limKt→∞ K
(1−σ)/σ
t = 0 as σ > 1. It follows

that, for σ > 1, the ratio between wages and the capital stock goes to zero as
the capital stock gets large.

In Figure A17.1 we illustrate the dynamic properties of the model. On the
vertical axis we measure Wt/Kt and Kt+1/Kt and on the horizontal axis Kt. The
horizontal line depicts steady states, for which Kt+1/Kt = 1. The downward
sloping line is the graphical representation of (A17.16) (with equation (A17.9)
inserted):

Kt+1

Kt
=

1

2 + ρ

Wt

Kt
. (A17.22)

In view of (A17.19) and (A17.21), this line is vertical near the origin and ap-
proaches the horizontal axis as the capital stock gets large. It follows that the
model possesses a unique steady state at E0 and that growth vanishes in the
long run, i.e. γK

∞ = 0.

(d) Despite the fact that this is a “capital-fundamentalist” model, with easy substi-
tution between capital and labour, there is no long-run growth. Intuitively this
is because the savings rate is too low. Saving depends on wages of the young
(see (A17.9)) but as Kt gets large the Wt/Kt ratio (and thus also the St/Kt ratio)
gets smaller and smaller. This excludes the possibility of endogenous growth
as there exists an upper limit on the amount of capital than can be sustained
by the savings plans of the young.

(e) The budget identity (Q17.2) is changed to:

CY
t + St = Wt + TY

t , (A17.23)

so that (A17.3) becomes:

Wt + TY
t = CY

t +
CO

t+1

1 + rt+1
. (A17.24)
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By using (A17.6) and (A17.24) we find that consumption during youth in-
creases as a result of the transfers:

CY
t =

1 + ρ

2 + ρ

[
Wt + TY

t

]
. (A17.25)

By using (A17.25) in (A17.23) we find that the savings equation is given by:

St =
1

2 + ρ

[
Wt + TY

t

]
. (A17.26)

Hence, saving also increases as a result of the transfers. This is obvious, as the
household wants to use some of the transfers to support a higher consumption
level during old age.

The government budget identity is given by:

τYt = TY
t . (A17.27)

For the representative firms the expressions in (A17.11)–(A17.12) are all still
valid. The resource constraint is also still as presented in (A17.13). Total con-
sumption, Ct, is now:

Ct ≡ CY
t + CO

t

= Wt + TY
t − S

(
Wt + TY

t

)
+ (rt + δ) Kt + (1 − δ)Kt. (A17.28)

We find from (A17.10)–(A17.12) that:

(1 − τ)Yt = Wt + (rt + δ) Kt. (A17.29)

By using (A17.27) and (A17.29) in (A17.28) we find equation (A17.15) again. It
follows that Kt+1 = S(Wt + τYt) or, by using (A17.26), that:

Kt+1

Kt
=

1

2 + ρ

[
Wt

Kt
+

τYt

Kt

]
. (A17.30)

Equation (A17.30) is the fundamental difference equation for the capital stock.

In order to illustrate the possibility of endogenous growth we must first figure
out what happens to Yt/Kt as Kt gets large. We derive from (Q17.5):

Yt

Kt
=

A

Kt

[
αK

(σ−1)/σ
t + (1 − α)L

(σ−1)/σ
t

]σ/(σ−1)

= A
[
K

(1−σ)/σ
t

(
αK

(σ−1)/σ
t + (1 − α)L

(σ−1)/σ
t

)]σ/(σ−1)

= A
[
α + (1 − α)K

(1−σ)/σ
t

]σ/(σ−1)
, (A17.31)

where we have substituted Lt = 1 in getting to the final expression. It follows
from (A17.31) that:

lim
Kt→∞

Yt

Kt
= Aασ/(σ−1)

> 0. (A17.32)
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Figure A17.2: Endogenous growth with transfers to the young

By taking limit on both sides of (A17.30) and noting (A17.21) and (A17.32) we
find that:

lim
Kt→∞

Kt+1

Kt
=

1

2 + ρ

[
lim

Kt→∞

Wt

Kt
+ τ lim

Kt→∞

Yt

Kt

]
=

τ

2 + ρ
Aασ/(σ−1). (A17.33)

There are now two possibilities:

• If the right-hand side of (A17.33) is less than unity, then there is still no
endogenous growth. The economy reaches a unique steady state, just as
in Figure A17.1.

• If the right-hand side of (A17.33) is larger than unity, then there is endo-
genous growth as Kt+1/Kt is bounded away from the steady-state line.

These two possibilities have been summarized mathematically in (Q17.6). Fig-
ure A17.2 illustrates the endogenous growth case. The endogenous growth
rate is increasing in the output tax, τ. Intuitively, the output tax redistributes
resources from the old (who dissave) to the young (who save). This enables the
young to sustain the level of saving required for perpetual growth.

Question 3: Welfare effects of debt

(a) The government budget identity is:

Gt + (1 + rt)Bt = LtT
Y
t + Lt−1TO

t + Bt+1, (A17.34)

where Bt is the total stock of government debt at the beginning of period
t (which is in the hands of the old). The left-hand side of (A17.34) repres-
ents total spending on government consumption plus interest payment and



442 EXERCISE & SOLUTIONS MANUAL

debt redemption. The right-hand side represents total government revenue,
consisting of tax revenues plus bond sales (to the young). By noting that
Lt = (1 + n)Lt−1, gt ≡ Gt/Lt and bt ≡ Bt/Lt we can rewrite (A17.34) in per
capita terms as follows:

Gt

Lt
+ (1 + rt)

Bt

Lt
= TY

t +
Lt−1

Lt
TO

t +
Lt+1

Lt

Bt+1

Lt+1
⇔

gt + (1 + rt)bt = TY
t +

TO
t

1 + n
+ (1 + n)bt+1. (A17.35)

(b) Instead of (17.2)–(17.3), the household faces the following budget identities:

CY
t + St = Wt − TY

t , (A17.36)

CO
t+1 = (1 + rt+1)St − TO

t+1. (A17.37)

By eliminating St from (A17.36)–(A17.37) we find the consolidated lifetime
budget constraint:

Ŵt ≡ Wt − TY
t − TO

t+1

1 + rt+1
= CY

t +
CO

t+1

1 + rt+1
, (A17.38)

where Ŵt thus represents after-tax human wealth of the young household.

In view of (17.5) in the textbook and (Q17.7) we find that the consumption
Euler equation is:

CO
t+1

CY
t

=
1 + rt+1

1 + ρ
. (A17.39)

By combining (A17.38) and (A17.39) we find the solutions for CY
t and CO

t+1:

CY
t =

1 + ρ

2 + ρ
Ŵt, (A17.40)

CO
t+1 =

1 + rt+1

2 + ρ
Ŵt. (A17.41)

Finally, by substituting (A17.40) into (A17.36) we find the saving function:

St =
1

2 + ρ
[Wt − TY

t ] +
1 + ρ

2 + ρ

TO
t+1

1 + rt+1
. (A17.42)

Ceteris paribus, saving depends negatively on taxes during youth and posit-
ively on taxes during old age.

To establish the link between saving and capital formation we must do some
bookkeeping. The resource constraint is:

Yt + (1 − δ)Kt = Kt+1 + Ct + Gt, (A17.43)

where Ct is total consumption. Consumption by the two demographic groups
is given by:

Lt−1CO
t = (rt + δ) Kt + (1 − δ)Kt + (1 + rt) Bt − Lt−1TO

t , (A17.44)

LtC
Y
t = Lt

[
Wt − TY

t − S(·)
]

, (A17.45)
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where S(·) is the saving function defined in (A17.42) above. According to
(A17.44), the old consume their assets (inclusive of interest payments) minus
the taxes they face. By using (A17.44)–(A17.45) and noting that Yt = (rt + δ) Kt +
Wt we find that total consumption can be written as:

Ct ≡ Lt−1CO
t + LtC

Y
t

= Yt + (1 − δ)Kt +
[
(1 + rt) Bt − Lt−1TO

t − LtT
Y
t

]
− LtS(·)

= Yt + (1 − δ)Kt + Bt+1 − Gt − LtS(·), (A17.46)

where we have used the government budget identity (A17.34) in getting to the
final expression. By comparing (A17.43) and (A17.46) we find the link between
household saving and capital formation:

Kt+1 + Ct + Gt = Ct + Gt − Bt+1 + LtS(·) ⇔
LtS(·) = Bt+1 + Kt+1. (A17.47)

Equation (A17.47) coincides with (17.62) in the text. Total saving by the young
(left-hand side) equals next period’s stock of assets, consisting of physical cap-
ital and government debt (right-hand side). In per capita terms, equation
(A17.47) can be rewritten as:

S(·) = (1 + n) [bt+1 + kt+1] , (A17.48)

where kt ≡ Kt/Lt is the capital labour ratio. To demonstrate the redundancy of
one of bt, TY

t , and TO
t we define following so-called effective taxes (Ihori, 1996,

p. 201):

T̂Y
t ≡ TY

t + (1 + n)bt+1, T̂O
t ≡ TO

t − (1 + rt)(1 + n)bt. (A17.49)

By using these definitions in (A17.35) we find that the government budget
identity can be rewritten as:

gt =
[

TY
t + (1 + n)bt+1

]
+

1

1 + n

[
TO

t − (1 + n)(1 + rt)bt

]
= T̂Y

t +
T̂O

t

1 + n
. (A17.50)

Similarly, by using (A17.36), (A17.48)–(A17.49) we find:

Wt − TY
t − CY

t = (1 + n) [bt+1 + kt+1] ⇔
CY

t = Wt − T̂Y
t − (1 + n)kt+1. (A17.51)

Equation (A17.44) can be rewritten by using (A17.49) as:

CO
t = (1 + rt) (1 + n) [bt + kt] − TO

t

= (1 + rt) (1 + n)kt − T̂O
t . (A17.52)

Since Wt and rt only depend on kt (see (17.15)–(17.16) in the book), the eco-
nomy is fully characterized by equations (A17.39) and (A17.50)–(A17.52). The
key thing to note is that only the effective taxes appear in these equations, not the
separate components bt, TY

t , and TO
t . It follows that one of these three compon-

ents making up the effective taxes is redundant.
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(c) The fundamental difference equation for this case is obtained by using (A17.42)
and (A17.48) and noting that TO

t = TO and bt+1 = bt = 0 for all t:

kt+1 =
1

(1 + n)(2 + ρ)

[
W(kt) − TY

t +
1 + ρ

1 + r(kt+1)
TO

]
, (A17.53)

where for the Cobb-Douglas technology Wt = W(kt) ≡ εLk1−εL
t and rt =

r(kt) ≡ (1 − εL)k−εL
t . By differentiating (A17.53) with respect to kt+1, kt and

TY
t we find:

∆dkt+1 = W ′(kt)dkt − dTY
t , (A17.54)

where ∆ is defined as follows:

∆ ≡ (1 + n)(1 + ρ) +
(1 + ρ) TO

(1 + r)2
r′(kt+1). (A17.55)

If TO ≤ 0 it follows automatically that ∆ > 0 (since r′(·) < 0) but if TO
> 0 the

sign of ∆ is ambiguous. We assume that ∆ > 0. Since W ′(kt) > 0, the stability
condition for the model is then:

0 <
W ′(kt)

∆
< 1 ⇔ 0 <

dkt+1

dkt
< 1. (A17.56)

In the sequel we assume that (A17.56) is satisfied. By using (A17.35) and noting
that bt+1 = bt = 0 and TO

t = TO we find that the tax on the young changes

according to dTY
t = dg. By using this result in (A17.54) we find the impact and

long-run multipliers:

∂kt+1

∂g
= − 1

∆
< 0,

dk∞

dg
= − 1

∆ − W ′(k∞)
< 0. (A17.57)

At impact, the capital stock is predetermined (dkt = 0) and the increase in
government consumption crowds out investment (∂kt+1/∂g < 0). In the long
run the capital stock is crowded out even further because the future wage rate
declines and the future interest rate increases (both these effects depress future
saving).

(d) The fundamental difference equation for this case is obtained by using (A17.42)
and (A17.48) and noting that TY

t = TY and bt+1 = bt = 0 for all t:

kt+1 =
1

(1 + n)(2 + ρ)

[
W(kt) − TY +

1 + ρ

1 + r(kt+1)
TO

t+1

]
. (A17.58)

The government budget constraint simplifies for this case to:

TO
t = (1 + n)

(
gt − TY

)
. (A17.59)

By substituting (A17.59) into (A17.58) we find:

kt+1 =
1

(1 + n)(2 + ρ)

[
W(kt) − TY +

(1 + ρ)(1 + n)

1 + r(kt+1)

(
gt+1 − TY

)]
. (A17.60)
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The stability condition is still given by (A17.56) and the impact and long-run
multipliers are:

∂kt+1

∂g
=

1

(1 + r) ∆
> 0,

dk∞

dg
=

(1 + ρ)(1 + n)

(1 + r) [∆ − W ′(k∞)]
> 0. (A17.61)

At impact there is a positive effect on capital formation because the young an-
ticipate higher future taxes and save more as a result (see also (A17.42) above).
In the long run two things happen. First, the wage rises because there is more
capital per worker. Second, the interest rate falls (due to capital formation) and
the present value of taxes during old age (TO

t+1/(1 + rt+1)) rises. Both effects
explain that the long-run effect is larger than the short-run effect on capital.

The lesson we learn from parts (c)–(d) is that the effect on the capital stock of an
increase in public consumption depends very much on the financing method
employed by the policy maker. If the young must finance this fiscal policy
then capital formation is harmed. The opposite holds if the old must pay for
the additional public consumption.

(e) Since the government does not possess a full set of age-specific taxes, there is
no redundant tax parameter any more. Indeed, in view of (A17.49) and the
assumption that TO

t = 0 for all t it follows that changing b must change both

T̂Y
t and T̂O

t . In this setting government debt has real effects. By using (A17.35)
we find that the government budget identity simplifies to:

g + (1 + rt)b = TY
t + (1 + n)b, (A17.62)

so that the change in taxes on the young satisfies:

dTY
t = (rt − n) db > 0, (A17.63)

where the sign follows from the assumption that the economy is dynamically
efficient (so that rt > n). The fundamental difference equation for the capital
stock is obtained by using (A17.42) and (A17.48):

kt+1 =
1

(1 + n)(2 + ρ)

[
W(kt) − TY

t

]
− b. (A17.64)

The stability condition for the model is still as in (A17.56) (with TO = 0 im-
posed). The impact effect on capital of an increase in b is:

∂kt+1

∂b
= − 1

(1 + n)(2 + ρ)

dTY
t

db
− 1

= −
[

1 +
rt − n

(1 + n)(2 + ρ)

]
< −1, (A17.65)

where we have used (A17.63) to get from the first to the second line. The in-
crease in debt crowds out capital formation because the tax on the young has
risen. The long-run effect on the capital stock is:

dk∞

db
= − r − n + (1 + n)(1 + ρ)

(1 + n)(1 + ρ) − W ′(k∞)
< 0. (A17.66)
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Figure A17.3: A happy mortal saver

Question 4: Lifetime uncertainty in a two-period model

(a) Since A > 0 the time-of-death borrowing constraint is not operative. We can
combine (Q17.8)-(Q17.9) to obtain the ex ante lifetime budget constraint:

C1 +
C2

1 + r
= W1 +

W2

1 + r
. (A17.67)

The agent maximizes (Q17.8) subject to (A17.67). The Lagrangian is:

L ≡ U (C1) +
π

1 + ρ
U (C2) + λ ·

[
W1 +

W2

1 + r
− C1 − C2

1 + r

]
,

and the first-order necessary conditions are:

U′ (C1) = λ,

π

1 + ρ
U′ (C2) =

λ

1 + r
.

Combining we obtain the Euler equation:

U′ (C2)

U′ (C1)
=

1 + ρ

π (1 + r)
. (A17.68)

The optimum is illustrated in Figure A17.3. The income endowment point is
at EY whilst the optimal consumption point is at EC. The horizontal difference
between W1 and C∗

1 is optimal saving, A∗, in the first period. (The vertical
difference between C∗

2 and W2 equals (1 + r) A∗.)
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Figure A17.4: A frustrated mortal borrower

(b) Borrowing in the first period is not possible because the agent may die (and
not pay back the loan). Hence, the constraint A ≥ 0 is binding. The best the
agent can do is to consume at the endowment point. The constrained optimum
is illustrated in Figure A17.4. The agent would like to consume at point EC but
that is unattainable. Consumption takes place at point EY.

(c) The life-insurance company breaks even if:

1 + r = π ·
(

1 + rA
)

+ (1 − π) · 0,

which implies that the annuity rate is:

1 + rA =
1 + r

π
> 1 + r.

(d) Initial savers like annuities because rA
> r, i.e. they get a higher return on

their savings. Initially frustrated borrowers also like them because they can
now borrow at a finite rate rA, whereas they could not borrow at all before
(i.e. they faced an infinite borrowing rate). Both types are better off as a result
because the choice set is increased for both types. All agents face the following
lifetime budget constraint:

C1 +
C2

1 + r
= W1 +

W2

1 + rA
.

The Euler equation for both types is thus:

U′ (C2)

U′ (C1)
=

1 + ρ

π (1 + rA)
=

1 + ρ

1 + r
.
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(The probability of death drops out just as for the Blanchard - Yaari model
studied in Chapter 16.)

The effects of the actuarial notes on the optimal choices can be illustrated easily.
Because rA

> r the budget constraint rotates in a clockwise fashion around the
income endowment points in the two figures. Choice sets are enlarged for both
types. This hold as long as rA

> r, so also for less-than-actuarially-fair notes.

Question 5: Pensions in the Diamond-Samuelson model

(a) • This is a PAYG system. The young pay for the pensions of the old.

• Since T is exogenous (and held constant), this is a DC system. If nt were
to change, then Zt+1 would adjust.

(b) From (Q17.14) and (Q17.15) we can deduce that:

Zt+1 =
Lt+1

Lt
T = (1 + nt+1) T.

By substituting this result into (Q17.13) we find:

CO
t+1 = (1 + rt+1)St + (1 + nt+1) T. (A17.69)

We can combine (A17.69) with (Q17.12) to eliminate St:

CY
t +

CO
t+1

1 + rt+1
− 1 + nt+1

1 + rt+1
T = Wt − T,

CY
t +

CO
t+1

1 + rt+1
= Wt +

1 + nt+1

1 + rt+1
T − T,

CY
t +

CO
t+1

1 + rt+1
= Wt − rt+1 − nt+1

1 + rt+1
T ≡ Ω.

Since rt+1 > nt+1, the pension plan makes agents poorer than they would be
without such a plan.

The optimization problem features the following Lagrangian:

L ≡ U(CY
t , CO

t+1) + λ ·
[

CY
t +

CO
t+1

1 + rt+1
− Ω

]
.

The FONCs are:

∂U(CY
t , CO

t+1)

∂CY
t

= λ,

∂U(CY
t , CO

t+1)

∂CO
t+1

=
λ

1 + rt+1
.
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Figure A17.5: Optimal consumption with age-dependent taxes and transfers

plus the lifetime budget constraint. After eliminating λ we obtain the Euler
equation:

∂U(CY
t , CO

t+1)

∂CO
t+1

=

∂U(CY
t ,CO

t+1)

∂CY
t

1 + rt+1
,

1 + rt+1 =

∂U(CY
t ,CO

t+1)

∂CY
t

∂U(CY
t ,CO

t+1)

∂CO
t+1

.

In terms of Figure A17.5, the optimum consumption point is at point EC (the
income endowment point is at EY).

The comparative static effects are obtained from the following system:

CY
t +

CO
t+1

1 + rt+1
= Wt − rt+1 − nt+1

1 + rt+1
T,

∂U(CY
t , CO

t+1)

∂CY
t

− (1 + rt+1)
∂U(CY

t , CO
t+1)

∂CO
t+1

= 0.

By totally differentiating with respect to CY
t , CO

t+1, and T (holding constant Wt

and rt+1) we thus find:

dCY
t +

dCO
t+1

1 + rt+1
= − rt+1 − nt+1

1 + rt+1
dT,

U11dCY
t + U12dCO

t+1 − (1 + rt+1)
[
U21dCY

t + U22dCO
t+1

]
= 0.
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This can be written in matrix format as:

∆ ·
[

dCY
t

dCO
t+1

]
=

[ −1
0

]
· rt+1 − nt+1

1 + rt+1
dT,

where ∆ is given by:

∆ ≡
[

1 1
1+rt+1

U11 − (1 + rt+1) U21 U12 − (1 + rt+1) U22

]

We obtain by Cramer’s Rule:

dCY
t

dT
=

1

|∆| ·
∣∣∣∣∣ −1 1

1+rt+1

0 U12 − (1 + rt+1) U22

∣∣∣∣∣ · rt+1 − nt+1

1 + rt+1
,

=
−U12 + (1 + rt+1) U22

|∆| · rt+1 − nt+1

1 + rt+1
,

dCO
t+1

dT
=

1

|∆| ·
∣∣∣∣ 1 −1

U11 − (1 + rt+1) U21 0

∣∣∣∣ · rt+1 − nt+1

1 + rt+1
,

=
U11 − (1 + rt+1) U21

|∆| · rt+1 − nt+1

1 + rt+1
.

The effect on saving effect is obtained from (A17.69):

dCO
t+1 = (1 + rt+1)dSt + (1 + nt+1) dT,

(1 + rt+1)
dSt

dT
=

dCO
t+1

dT
− (1 + nt+1) .

Since rt > nt we find that the increase in T would lead to an inward shift of the
lifetime budget constraint in Figure A17.5 (not drawn). The new budget line is
parallel to the old one because we are keeping rt+1 constant in this experiment.
What happens to optimal consumption and saving depends on the shape of
preferences.

(c) The resource constraint is given by:

Yt + (1 − δ)Kt = Ct + Kt+1. (A17.70)

Total consumption is defined as:

Ct ≡ Lt−1CO
t + LtC

Y
t ,

whereas consumption by the cohort is given by:

Lt−1CO
t = (rt + δ)Kt + (1 − δ)Kt,

LtC
Y
t = wtLt − StLt.

It follows that:

Ct = (rt + δ)Kt + (1 − δ)Kt + wtLt − StLt,

= Yt + (1 − δ)Kt − StLt. (A17.71)
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By comparing (A17.70) and (A17.71) we get:

StLt = Kt+1.

Dividing by Lt and noting (Q17.14) we obtain:

St =
Kt+1

Lt+1
· Lt+1

Lt
= (1 + nt+1) kt+1.

(d) The marginal productivity conditions are:

Wt = (1 − α) kα
t ,

rt + δ = αkα−1
t .

We assume that U(CY
t , CO

t+1) is homothetic. This implies that we can write:

U(CY
t , CO

t+1) = G
(

H(CY
t , CO

t+1)
)

,

with G′ (·) > 0 and H (·) homogeneous of degree one. We know:

H = H1CY
t + H2CO

t+1,

0 = H11CY
t + H12CO

t+1,

0 = H21CY
t + H22CO

t+1,

H21 = H12,

σ ≡ H1 · H2

H · H12
.

The system can now be written as:

CY
t +

CO
t+1

1 + rt+1
= Wt − rt+1 − nt+1

1 + rt+1
T, (A17.72)

H1(CY
t , CO

t+1) − (1 + rt+1) H2(CY
t , CO

t+1) = 0. (A17.73)

The first line can be written as:

CY
t

Ω

dCY
t

CY
t

+
CO

t+1

(1 + rt+1) Ω

dCO
t+1

CO
t+1

= − rt+1 − nt+1

1 + rt+1

dT

Ω
,

ω1
dCY

t

CY
t

+ (1 − ω1)
dCO

t+1

CO
t+1

= − rt+1 − nt+1

1 + rt+1

dT

Ω
.

Differentiating the second line we find:

H11dCY
t + H12dCO

t+1 − (1 + rt+1)
[

H21dCY
t + H22dCO

t+1

]
= 0,

[H11 − (1 + rt+1) H21] dCY
t + [H12 − (1 + rt+1) H22] dCO

t+1 = 0,

−H1

σ

dCY
t

CY
t

+
H1

σ

dCO
t+1

CO
t+1

= 0,

dCY
t

CY
t

=
dCO

t+1

CO
t+1

.
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(This last result is obvious because we leave rt+1 unchanged so the Euler equa-
tion for the homothetic case defines a constant ratio between CO

t+1 and CY
t .)

For the homothetic case, the system is thus:

[
ω1 1 − ω1

−1 1

]
·




dCY
t

CY
t

dCO
t+1

CO
t+1


 =

[ −1
0

]
· rt+1 − nt+1

1 + rt+1

dT

Ω
,

Matrix inversion in child’s play and we easily find:


dCY
t

CY
t

dCO
t+1

CO
t+1


 =

[
1 − (1 − ω1)
1 ω1

] [ −1
0

]
· rt+1 − nt+1

1 + rt+1

dT

Ω
,

= −
[

1
1

]
· rt+1 − nt+1

1 + rt+1

dT

Ω
.

The saving effect is:

dSt

dT
= −

(
1 +

dCY
t

dT

)

To investigate local stability we write:

S (Wt, rt+1, T) = (1 + nt+1) kt+1,

S
(
(1 − α) kα

t , αkα−1
t+1 − δ, T

)
= (1 + nt+1) kt+1. (A17.74)

Differentiating (A17.74) gives:

SWα (1 − α) kα−1
t dkt + Srα (1 − α) kα−1

t+1 dkt+1 = (1 + nt+1) dkt+1.

By gathering terms (and evaluating around the steady state, kt+1 = kt = k∗):

dkt+1

dkt
=

−SWα (1 − α) (k∗)α−1

Srα (1 − α) (k∗)α−1 − (1 + nt+1)
.

The stability condition is that |dkt+1/dkt| < 1. (Of course, we can deduce the
partial derivatives Sr ≡ ∂S/∂rt+1 and SW ≡ ∂S/∂Wt from the system (A17.72)-
(A17.73) above. (But that is left an exercise to the very keen student.)

Question 6: Consumption taxation and redistribution

(a) To shorten the notation we define TCt ≡ 1 + tCt, TCt+1 ≡ 1 + tCt+1, and Rt+1 ≡
1 + rt+1. The utility function is:

ΛY
t ≡ U(CY

t ) +
1

1 + ρ
U(CO

t+1), (A17.75)

and the budget identities are:

TCtC
Y
t + St = Wt + ZY

t ,

TCt+1CO
t+1 = Rt+1St + ZO

t+1.
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The consolidated budget constraint is obtained as follows:

St = Wt + ZY
t − TCtC

Y
t =

TCt+1CO
t+1 − ZO

t+1

Rt+1
.

Hence:

TCtC
Y
t +

TCt+1CO
t+1

Rt+1
= Wt + ZY

t +
ZO

t+1

Rt+1
. (A17.76)

The young agent chooses CY
t and CO

t+1 in order to maximize (A17.75) subject to
(A17.76). The Lagrangian is:

L ≡ U(CY
t ) +

1

1 + ρ
U(CO

t+1) + λ ·
[

Wt + ZY
t +

ZO
t+1

Rt+1
− TCtC

Y
t − TCt+1CO

t+1

Rt+1

]
,

whilst the first-order conditions are:

U′(CY
t ) = λTCt,

1

1 + ρ
U′(CO

t+1) = λ
TCt+1

Rt+1

Combining we obtain the Euler equation:

U′(CO
t+1)

U′(CY
t )

=
1 + ρ

Rt+1

TCt+1

TCt
. (A17.77)

We observe that the optimal choices for CY
t and CO

t+1 depend on Wt, rt+1, ZY
t ,

ZO
t+1, tCt,and tCt+1. The savings function is defined as follows:

St = Wt + ZY
t − TCtC

Y
t

≡ S
(

Wt, rt+1, ZY
t , ZO

t+1, tCt, tCt+1

)
. (A17.78)

To find the comparative static effects for St with respect to taces and transfers,
the following direct approach can be used. Write the utility function in terms
of St:

ΛY
t ≡ U

(
Wt + ZY

t − St

TCt

)
+

1

1 + ρ
U

(
Rt+1St + ZO

t+1

TCt+1

)
,

and note that the first- and second-order conditions are:

Γ (St, ·) ≡ −U′ (CY
t

)
TCt

+
Rt+1U′ (CO

t+1

)
(1 + ρ) TCt+1

= 0,

∂Γ (St, ·)
∂St

=
U′′ (CY

t

)
T2

Ct

+
R2

t+1U′′ (CO
t+1

)
(1 + ρ) T2

Ct+1

< 0.
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The effect of lump-sum transfers is:

∂St

∂ZY
t

=
∂Γ (St, ·) /∂ZY

t

|∂Γ (St, ·) /∂St| =
−U′′ (CY

t

)
T2

Ct |∂Γ (St, ·) /∂St|
> 0,

∂St

∂ZO
t+1

=
∂Γ (St, ·) /∂ZO

t+1

|∂Γ (St, ·) /∂St| =
Rt+1U′′ (CO

t+1

)
(1 + ρ) T2

Ct+1 |∂Γ (St, ·) /∂St|
< 0

The effect of the consumption taxes is:

∂St

∂TCt
=

∂Γ (St, ·) /∂TCt

|∂Γ (St, ·) /∂St| =
TCtU

′ (CY
t

)
+ U′′ (CY

t

) [
Wt + ZY

t − St

]
T3

Ct |∂Γ (St, ·) /∂St|
� 0,

∂St

∂TCt+1
=

∂Γ (St, ·) /∂TCt+1

|∂Γ (St, ·) /∂St|

=
−Rt+1

(1 + ρ) T3
Ct+1

TCt+1U′ (CO
t+1

)
+ U′′ (CO

t+1

) [
Rt+1St + ZO

t+1

]
T2

Ct |∂Γ (St, ·) /∂St|
� 0,

There are offsetting income and substitution effects.

(b) For the logarithmic case the Euler equation is:

TCtC
Y
t = (1 + ρ)

TCt+1CO
t+1

Rt+1
(A17.79)

Substituting into the budget constraint (A17.76) we find:

TCtC
Y
t +

TCt+1CO
t+1

Rt+1
= Wt + ZY

t +
ZO

t+1

Rt+1
,(

1 +
1

1 + ρ

)
TCtC

Y
t = Wt + ZY

t +
ZO

t+1

Rt+1
,

or:

TCtC
Y
t =

1 + ρ

2 + ρ
·
[

Wt + ZY
t +

ZO
t+1

Rt+1

]
, (A17.80)

TCt+1CO
t+1

Rt+1
=

1

2 + ρ
·
[

Wt + ZY
t +

ZO
t+1

Rt+1

]
. (A17.81)

The savings function is:

St = Wt + ZY
t − TCtC

Y
t

= Wt + ZY
t − 1 + ρ

2 + ρ
·
[

Wt + ZY
t +

ZO
t+1

Rt+1

]

=
1

2 + ρ
·
[
Wt + ZY

t

]
− 1 + ρ

2 + ρ
· ZO

t+1

Rt+1
. (A17.82)

Some key points about this savings function:
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• Consumption tax has no effect on saving (offsetting income and substitu-
tion effects).

• Transfers during youth increase saving.

• Transfers during old-age decrease saving.

(c) We must first do some bookkeeping. We know the resource constraint:

Yt + (1 − δ) Kt = Kt+1 + Ct, (A17.83)

with

Ct ≡ LtC
Y
t + Lt−1CO

t .

We also know that:

Lt−1CO
t TCt = (rt + δ) Kt + (1 − δ) Kt + Lt−1ZO

t ,

LtC
Y
t TCt = WtLt + LtZ

Y
t − LtSt,

Yt = (rt + δ) Kt + WtLt.

Hence:

Ct (1 + tCt) = Yt + (1 − δ) Kt + LtZ
Y
t + Lt−1ZO

t − LtSt,

Ct = Yt + (1 − δ) Kt − LtSt.

Hence, as in the model without taxes, we still have that:

LtSt = Kt+1 ⇔ St = (1 + n) kt+1, (A17.84)

where n is the population growth rate.

For the scenario here we have ZO
t = 0 (for all t) and ZY

t is:

ZY
t = tCtct, (A17.85)

where ct ≡ Ct/Lt. From (A17.83) we deduce that ct can be written as:

ct = yt + (1 − δ) kt − (1 + n) kt+1. (A17.86)

Using (A17.84)-(A17.85) in (A17.82) and noting that ZO
t = 0 (for all t) we find:

St =
1

2 + ρ
· [Wt + tCt (yt + (1 − δ) kt − St)]

=
1

2 + ρ + tCt
· [Wt + tCt (yt + (1 − δ) kt)] . (A17.87)

Since yt ≡ k1−εL
t and Wt ≡ εLk1−εL

t we find that the fundamental difference
equation for the capital-labour ratio is:

(1 + n) kt+1 = St =
1

2 + ρ + tCt

[
εLk1−εL

t + tCt

(
k1−εL

t + (1 − δ) kt

)]
. (A17.88)
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(d) If the old get the revenue matters are different. For this scenario we have ZY
t =

0 for all t and ZO
t is equal to:

ZO
t+1 = tCt+1

Ct+1

Lt
= (1 + n) tCt+1ct+1. (A17.89)

The other relevant equations are:

ct+1 = yt+1 + (1 − δ) kt+1 − (1 + n) kt+2, (A17.90)

St =
1

2 + ρ
· Wt − 1 + ρ

2 + ρ
· ZO

t+1

Rt+1
. (A17.91)

Combining results we find that the fundamental difference equation can be
written as:

(1 + n) kt+1 = St =
1

2 + ρ
· εLk1−εL

t

−tCt+1 · 1 + ρ

2 + ρ
· 1 + n

1 + rt+1
·
[
k1−εL

t+1 + (1 − δ) kt+1 − (1 + n) kt+2

]
(A17.92)

Comparing (A17.88) and (A17.92) we find that the former is a first-order dif-
ference equation whilst the latter is a second-order difference equation (which
is much harder to analyze analytically).
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