INTEGRITY,
INTERNAL CONTROL
AND SECURITY IN
INFORMATION
SYSTEMS

CONNECTING GOVERNANCE
AND TECHNOLOGY



INTEGRITY, INTERNAL CONTROL AND
SECURITY IN INFORMATION SYSTEMS



IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for societies
working in information processing, IFIP's aim is two-fold: to support information
processing within its member countries and to encourage technology transfer to developing
nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical organization which
encourages and assists in the development, exploitation and application of information
technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications. IFIP's
events range from an international congress to local seminars, but the most important are:

o The IFIP World Computer Congress, held every second year;
o open conferences;
o working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working group
and attendance is small and by invitation only. Their purpose is to create an atmosphere
conducive to innovation and development. Refereeing is less rigorous and papers are
subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings, while
the results of the working conferences are often published as collections of selected and
edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies preferring
a less committed involvement may apply for associate or corresponding membership.
Associate members enjoy the same benefits as full members, but without voting rights.
Corresponding members are not represented in IFIP bodies. Affiliated membership is open
to non-national societies, and individual and honorary membership schemes are also offered.



INTEGRITY,
INTERNAL CONTROL
AND SECURITY IN
INFORMATION
SYSTEMS

Connecting Governance
and Technology

IFIP TC11 / WGT11.5 Fourth Working Conference on
Integrity and Internal Control in Information Systems
November 15-16, 2001, Brussels, Belgium

Edited by

Michael Gertz
University of California, Davis
USA

Erik Guldentops
University of Antwerp Management School
Belgium

Leon Strous
De Nederlandsche Bank NV
The Netherlands

v
A

SPRINGER SCIENCE+BUSINESS MEDIA, LLC



ISBN 978-1-4757-5537-4 ISBN 978-0-387-35583-2 (eBook)
DOI 10.1007/978-0-387-35583-2

Library of Congress Cataloging-in-Publication Data

A C.IP. Catalogue record for this book is available from the Library of Congress.

Copyright © 2002 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 2002

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, mechanical, photo-copying,
recording, or otherwise, without the prior written permission of the publisher,
Springer Science+Business Media, LLC.

Printed on acid-free paper.



CONTENTS

Preface

Acknowledgements

Part one. Refereed papers

L.

A cautionary note regarding the data integrity capacity
of certain secure systems
Cynthia E. Irvine and Timothy E. Levin

Developing secure software
A survey and classification of common software vulnerabilities
Frank Piessens, Bart de Decker and Bart de Win

Establishing accounting principles as invariants of financial systems
Naftaly H. Minsky

Integrity and internal control in modern banking systems
Jim Jones

. Diversity as a defense strategy in information systems

Does evidence from previous events support such an approach?
Charles Bain, Donald Faatz, Amgad Fayad and Douglas Williams

Part two. Invited papers

6.

Data quality: developments and directions
Bhavani Thuraisingham and Eric Hughes

. Developments in electronic payment systems security

EMYV and CEPS
Mike Ward

Part three. Tutorial “COBIT and IT Governance”

8.

Governing information technology through CoBIT
Erik Guldentops

vii

27

41

57

77

95

97

103

113

115



vi Integrity, Internal Control and Security in Information Systems

9. Implementation of the COBIT-3 maturity model in 161
Royal Philips Electronics
Alfred C.E. van Gils
Part four. Vendor white papers 175
10. Business process security 177
Managing the new security challenge with X-Tra Secure
BartJan Wattel

11. The information integrity imperative 187
Madhavan K. Nayar

Part five. Panel session 195

12. The way forward 197
Leon Strous

Index of contributors 201

Index of keywords 203



PREFACE

IT Governance is finally getting the Board’s and top management’s attention. The
value that IT needs to return and the associated risks that need to be managed, have
become so important in many industries that enterprise survival depends on it.
Information integrity is a significant part of the IT Governance challenge. Among
other things, this conference will explore how Information Integrity contributes to
the overall control and governance frameworks that enterprises need to put in place
for IT to deliver business value and for corporate officers to be comfortable about
the IT risks the enterprise faces.

The goals for this international working conference are to find answers to the

following questions:

e what precisely do business managers need in order to have confidence in the
integrity of their information systems and their data;

e what is the status quo of research and development in this area;

o where are the gaps between business needs on the one hand and research /
development on the other; what needs to be done to bridge these gaps.

The contributions have been divided in the following sections:

e Refereed papers. These are papers that have been selected through a blind
refereeing process by an international programme committee.

e Invited papers. Well known experts present practice and research papers upon
invitation by the programme committee.

e Tutorial. Two papers describe the background, status quo and future
development of CobiT as well as a case of an implementation of CobiT.

e Vendor white papers. Vendors of solutions (software) for integrity problems
present the background and philosophy of their products.

e  Panel discussion.

We want to recommend this book to security specialists, IT auditors and researchers
who want to learn more about the business concerns related to integrity. Those same
security specialists, IT auditors and researchers will also value this book for the
papers presenting research into new techniques and methods for obtaining the
desired level of integrity.

It is the hope of the conference organizers, sponsors and authors that these
proceedings will inspire readers to join the organizers for the next conference on
integrity and internal control in information systems. You are invited to take the
opportunity to contribute to next year’s debate with colleagues and submit a paper or



viii Integrity, Internal Control and Security in Information Systems

attend the working conference. Check the websites given below regularly for the
latest information.

We thank all those who have helped to develop these proceedings and the
conference. First of all, we thank all the authors who submitted papers as well as the
keynote and invited speakers, and those who presented papers and participated in the
panel. We especially would like to thank mrs. Claudine Gheur for her invaluable
support in helping the conference chairs in organizing this conference. Finally, we
would like to thank all conference participants, IFIP and the sponsors and supporters
of this conference.

November 2001
Michael Gertz

Erik Guldentops
Leon Strous

Websites:

IFIP TC-11 Working group 11.5
http://www.ise.gmu.edu/~csis/faculty/Tc11 5.html

IFIP TC-11
http://www.ifip.tu-graz.ac.at/TC11

IFIP
http://www.ifip.or.at



ACKNOWLEDGEMENTS

Conference chairs:
Michael Gertz, University of California, Davis, USA
Erik Guldentops, University of Antwerp Management School, Belgium
Leon Strous, De Nederlandsche Bank, The Netherlands

Programme Committee:
Co-Chairs:
Michael Gertz, University of California, Davis, USA
Erik Guldentops, University of Antwerp Management School, Belgium
Members/reviewers:
Jacques Beaufays, Eurocontrol, Belgium
Henny Claessens, University of Maastricht, The Netherlands
Bart de Decker, Katholieke Universiteit Leuven, Belgium
Eric Gheur, Galaxia, Belgium
Paul Herremans, Janssen Pharmaceutica, Belgium
Sushil Jajodia, George Mason University, USA
Udo Lipeck, University of Hannover, Germany
Madhavan Nayar, Unitech Systems, USA
Frank Piessens, Katholieke Universiteit Leuven, Belgium
Leon Strous, De Nederlandsche Bank, The Netherlands

Organizing Committee
Leon Strous, De Nederlandsche Bank, The Netherlands
Henny Claessens, University of Maastricht, The Netherlands
Claudine Gheur, Galaxia, Belgium

Organized by:
IFIP TC-11 Working Group 11.5



X Integrity, Internal Control and Security in Information Systems

Sponsored by:
PricewaterhouseCoopers Belgium (http://www.pwcglobal.com/be)
ThunderStore (http://www.thunderstore.com)
Unitech Systems http://www.unitechsys.com
Supported by:

BCS and its specialist groups
(British Computer Society and its specialist groups)
BELCLIV - CLUSIB
(Belgische Club voor Informatieveiligheid - Club de la Sécurité Informatique
Belge)
IBN - BIN
(Institut Belge de Normalisation / Belgisch Instituut voor Normalisatie)
ICAEW
(Institute of Chartered Accountants in England and Wales)
ISACA BeLux Chapter
(Information Systems Audit and Control Association, Belgium / Luxemburg
Chapter)
ISACA NL Chapter
(Information Systems Audit and Control Association, Netherlands Chapter)
ISACA UK Chapter
(Information Systems Audit and Control Association, UK Chapter)
NGI
(Nederlands Genootschap voor Informatica (Dutch computer society))
NOREA
(Nederlandse Orde van Register Edp-Auditors)
SAI
(Studiecentrum voor Automatische Informatieverwerking (Belgian computer
society))



PART ONE. REFEREED PAPERS




A CAUTIONARY NOTE REGARDING
THE DATA INTEGRITY CAPACITY
OF CERTAIN SECURE SYSTEMS

Cynthia E. Irvine
Naval Postgraduate School

irvine@cs.nps.navy.mil

Timothy E. Levin
Naval Postgraduate School
levin@cs.nps.navy.mil

Abstract

The need to provide standard commercial-grade productivity applica-
tions as the general purpose user interface to high-assurance data pro-
cessing environments is compelling, and has resulted in proposals for
several different types of “trusted” systems. We characterize some of
these systems as a class of architecture. We discuss the general integrity
property that systems can only be trusted to manage modifiable data
whose integrity is at or below that of their interface components. One
effect of this property is that in terms of integrity these hybrid-security
systems are only applicable to processing environments where the in-
tegrity of data is consistent with that of low-assurance software. Sev-
eral examples are provided of hybrid-security systems subject to these
limitations.

Keywords: integrity, confidentiality, integrity capacity, secure system, multi-level

1.

security

Introduction

Data integrity is defined as “the property that data has not been
exposed to accidental or malicious alteration or destruction.” [29] A
common interpretation is that high integrity information can be relied
upon as the basis for critical decisions. However, the protection of
high-integrity data in commercial systems has been both problematic
to achieve and often misunderstood.



4 Integrity, Internal Control and Security in Information Systems

High Assurance Systems are designed to ensure the enforcement of
policies to protect the confidentiality and integrity of information. To
date, high-assurance systems have been expensive to produce and often
lack support for, or compatibility with, standardized user-level applica-
tions. Hybrid security systems are intended to provide some desired func-
tionality with high assurance of correct policy enforcement by utilizing a
combination of high-assurance policy-enforcement components and low-
assurance user interface and application components, thus addressing
both the expense and compatibility problems typical of high-assurance
systems.

In an era when users demand the productivity enhancements afforded
by commercial software application suites, hybrid security architectures
are of particular interest. Extensive study has demonstrated that hy-
brid security architectures using commercial user interface components
can correctly enforce intended confidentiality policies, e.g. [25]. Less
attention has been directed toward the effect of commercial user inter-
face software on the integrity of data managed through those interfaces.
Concerns include the integrity of the data modified using these commer-
cial interfaces and then stored by high assurance components, as well as
the integrity of data read from high assurance repositories and displayed
to users.

While some developers have indicated that this problem is something
“we have always known about,” the problem may not be fully appreci-
ated by the consumers of these systems. Our premise is that builders
and buyers of systems designed to provide high assurance enforcement
of security policies should be aware of the impact of component and ar-
chitectural choices on the integrity of data that users intend to protect.
Although the problem is exacerbated in systems designed to implement
mandatory integrity models, such as represented by the Biba model [8],
it is also significant in systems intended to support confidentiality poli-
cies. The former systems have explicit integrity requirements, whereas
the latter may have implicit integrity expectations.

1.1 Contributions of this Paper

There is a large body of existing literature regarding integrity en-
forcement, requirements, and models; most of these address access con-
trol and related integrity issues, but do not address integrity capacity
problems of system composition.

The National Research Council report on “Trust in Cyberspace” [31]
identifies the construction of trustworthy systems from untrustworthy
components as a “holy grail” for developers of trustworthy systems. And



Data Integrity Capacity of Secure Systems )

a National Computer Security Center guideline[30] that addresses both
integrity and confidentiality issues, states that “the ability to run un-
trusted applications on top of TCBs ! without undue loss of security
is one of the major tenets of trusted computer systems.” One of the
primary results of our paper is to clarify the limitations of a significant
class of these approaches with respect to integrity.

In this paper we examine integrity capabilities of component-based
systems and provide a rigorous definition of system integrity capacity.
This definition can form a basis for reasoning about systems with respect
to their suitability for integrity policy enforcement. We also provide
examples of several contemporary research-level security systems that
exhibit the integrity capacity problem.

Finally, we provide a general conclusion regarding the integrity limi-
tations of hybrid-security system composition: namely, system compo-
sition is problematic with respect to maintenance of high integrity data
when utilizing commercial-grade products for user interfaces and appli-
cations.

1.2 Organization

The remainder of this paper is organized as follows. Section 2 pro-
vides a brief discussion of some related efforts involving security and
integrity. We review concepts associated with confidentiality, integrity,
and assurance in Section 3. Integrity considerations regarding system
components and abstract subjects are discussed in Section 4. Section
5 presents the notion of “system integrity capacity,” and Section 6 pro-
vides a derivation of this capacity for hybrid security systems, several of
which are described. Our conclusions, in Section 7, complete the body
of the paper. A discussion of malicious artifacts in commercial systems
is included in Appendix 7.

2. Related Work

The architectural integrity issues we discuss have been addressed only
indirectly in the literature. For example, the Seaview papers ([13], etc.)
make it clear that the reference monitor will enforce integrity constraints
on its subjects, such as the relational database management component;
however, they do not explain that the use of a Bl-level 2 RDBMS com-

1Trusted Computing Base[28]
2The terms used in this paper to reflect the evaluation class of systems and components are
taken from [28] (e.g., B1 and B2) and [2] (e.g., EALS).



6 Integrity, Internal Control and Security in Information Systems

ponent as the interface to users will limit the integrity range of data that
the system can support.

The key issue addressed in our paper is how a system manages mod-
ifiable data. The Biba integrity model includes the restriction that a
subject may modify an object only if the subject’s integrity label “dom-
inates” the object’s integrity label. This and related characteristics of
the “strict” integrity model are discussed extensively in the literature,
starting with [8].

“Program integrity” [39] is related to strict Biba integrity, encompass-
ing all of the restrictions of Biba integrity except for those related to the
reading of files, while retaining restrictions for the execution of files.
Strict integrity treats execution as a form of reading, whereas program
integrity treats them separately [36]. Program integrity is of interest be-
cause it can be enforced with simple ring-bracket mechanisms [37], and
results in “dominance” or “protection” domains, which can be used to
enforce the relationships between the components, subjects and objects
discussed in Section 4.

Lipner [24] applies Biba integrity to a real-world business scenario,
working through the consistent application of hypothetical integrity la-
bels in the context of a Biba mechanism to protect commercial data from
unauthorized modification. This presentation does not address system
level integrity problems resulting from the utilization of components with
various integrity /assurance levels.

In contrast to low water-mark models, e.g. as discussed in [8], which
address changes to the integrity level of a subject as it accesses objects
with various integrity levels, we examine how the integrity value of data
is affected as it is passed through data-modifying components with het-
erogeneous integrity properties.

Boebert and Kain [9] recognize the asymmetry of confidentiality and
integrity, and remark on the vulnerability of information to corruption
when only program integrity is enforced. Their work focussed on the use
of domain and type enforcement to construct “assured pipelines” where
the integrity level of data is changed as it moves through the pipeline.
It does not discuss how software could present intrinsic limitations on
the integrity of data to be processed.

Clark and Wilson [11] present a model for the protection of data
integrity in commercial systems. In that model, components that modify
data or handle user input must be “certified.” However, their model does
not address the relative integrity of the components and the data, nor
does it address the resulting limits to the integrity of data that could be
processed by such a system.



Data Integrity Capacity of Secure Systems 7

With respect to the problem of how to determine integrity labels for
objects, Amoroso [4] relates evaluation assurance to software integrity,
describing a broad range of (integrity) classes for articulating software
trust. Karger suggests that a representation of literal evaluation levels
could be used for integrity labels[19)].

3. Background

This section sets the context for the presentation of system integrity
capacity and attendant problems. Several concepts are examined in re-
lation to integrity, including confidentiality, data versus code, assurance
and trust, and multilevel security and the Biba model.

3.1 Integrity and Confidentiality

A given piece of information will have a confidentiality value as well as
a separate integrity value . That is, there will be separately measurable
effects (e.g., harm to the information owner) from the leakage vs. the
corruption of the information. This is the case whether or not the data
has been explicitly labeled with confidentiality and integrity designations
(as is done in a multilevel-secure system). These labels may indicate
both the degree with which we intend to protect the data as well as our
assessment of the data’s intrinsic value or sensitivity. The labels may
or may not correspond to the actual integrity or confidentiality value
of the data (in general, multilevel security models address the security
values of the data; whereas the security labels are an implementation
issue).

Integrity is, in many ways, the “dual” of confidentiality. Both integrity
and confidentiality policies can be represented with labels that represent
equivalence classes whose relationships form a lattice [41, 14]. Access
control policy decisions can be based on the relative position of labels
within a given lattice. Increasing the confidentiality “level” given to a
subject (e.g., user) generally ezpands the set of objects that the subject
may view; but an increase in integrity may contract the set of objects
that a subject may view. Such semantic “inversions,” and the sometimes
non-symmetric nature of integrity and confidentiality properties (e.g.,
see [9]) can make their differences difficult to reason about. As a result,
the analysis of integrity may be overlooked or avoided during the system
design or acquisition process, in favor of more familiar confidentiality
analyses.



8 Integrity, Internal Control and Security in Information Systems

3.2 Integrity of Data and Code

Integrity values are associated with erecutable software (e.g., pro-
grams, object code, code modules, components) as well as with passive
data. In both cases, the integrity value relates to how well the data or
program corresponds to its uncorrupted/unmodified original value (e.g.,
manufactured, installed, or shipped image). For programs, integrity
also describes how well a program’s behavior corresponds to its intended
behavior (e.g., documented functionality or design documentation), in-
cluding the notion that the code does not provide functionality beyond
that which was intended (e.g., contain hidden behavioral artifacts). So,
“integrity” means that the code has been unaltered, or is faithful to its
origin, in both of these ways.

3.3 Assurance and Trust

Integrity of code is also closely related to “assurance” and “trust.”
Products that have been through security evaluations [28][2] receive an
assurance-level designation. A methodical, high-assurance development
process may produce code with fewer flaws, and consequently, behavior
that is closer to that which is intended, than a low-assurance develop-
ment process. Suitable security mechanisms and practices must also be
in place to ensure the ability of the system to protect itself and pro-
vide continued system integrity during operation. This reliable code is
sometimes called, or labeled, “high integrity;” it is also referred to as,
“high assurance” code. Based on this designation, the product may be
deemed suitable for handling data within a certain confidentiality or in-
tegrity range. Systems or components with demonstrated capabilities
for security policy enforcement are sometimes called “trusted.”

3.4 Multilevel Security

Multilevel systems partition data into equivalence classes that are
identified by security labels. Data of different sensitivities is stored in
different equivalence classes, such that (the data in) some equivalence
classes are “more sensitive than,” “more reliable than,” or “dominate”
(the data in) other equivalence classes. The dominance relation forms a
lattice with respect to the labels/classes, assuming the existence of la-
bels for universal greatest lower bound, GLB, and universal least upper
bound, LUB. A reference validation mechanism (RVM, see “multilevel
management component” in Figures 1, 2 and 3), mediates access to ob-
jects, controlling object creation, storage, access and I/0, thereby pre-
venting policy-violating data “leakage” across equivalence classes. For



Data Integrity Capacity of Secure Systems 9

confidentiality policy enforcement, a subject’s (e.g., program or com-
ponent’s) ability to write-down or read-up is prevented with respect to
the dominance relationship on confidentiality labels; for Biba-model in-
tegrity, read-down and write-up are prevented with respect to the dom-
inance relationship on integrity labels. Most multilevel systems today
are designed to enforce confidentiality constraints; some of these are also
designed to constrain flow between integrity equivalence classes.

4. Integrity of Components and Subjects

The purpose of this section is to examine how integrity is interpreted
with respect to the fundamental building blocks of secure systems.

The abstract architecture we are interested in is one of distributed
storage, processing, and interconnection “components.” A component is
a functional system-level building block made up of software, firmware,
hardware or any combination of these. Multiple components may reside
on a single computer, but for simplicity’s sake, we will assume that a
single component does not encompass multiple remotely-coupled com-
puters. Examples of components are shown in Section 6, and include
a relational database management system, a security kernel, a client
user application, an application server, and a graphical user interface
program.

A component can include multiple code modules. The modules may
be linked within a process, statically by a compiler/linker, or may have
a more dynamic, runtime, linkage. A component can also encompass
multiple processes, interconnected through message-passing, remote in-
vocation, or other mechanisms.

Subjects are a modeling abstraction for reasoning about the security
behavior of active computer elements such as programs and processes. A
primary criteria for identifying a set of active computer elements together
as a subject is that each subject has identifiable security attributes (e.g.,
identity and security level) that are distinct from other subjects. If
the security attributes change over time, the elements are sometimes
modeled as a different subject.

A component may manifest one or more subjects at a time. Each
subject may encompass one or more of the component’s modules, for
example when they are linked within the same process. In a monolithic
architecture, subjects may be identified with separate rings, or privilege
levels, of a process [28], especially if the program has different security
characteristics in the different rings. Typical systems support confiden-
tiality and integrity labels for abstract subjects that are distinct from the
labels on related components and modules (an alternative design would



10 Integrity, Internal Control and Security in Information Systems

be to derive the subject label directly from the fixed component label).
For example, the assignment of a subject label may be a mapping from
the user’s current “session level” to the subject representing the user.
There are semantic limitations on this assignment with respect to the
integrity level of the related modules and components.

4.1 Relation of Component and Subject
Integrity

First we consider confidentiality. A subject may be associated with a
particular confidentiality equivalence class for enforcement of mandatory
access control. The mandatory confidentiality policy is not concerned
with what happens between subjects and objects that are in the same
confidentiality equivalence class: all reads and writes are allowed. The
confidentiality policy is only concerned with what happens when a sub-
ject attempts to access an object in another equivalence class. We can
interpret the subject reading data from a (source) equivalence class as
moving data from that source into the subject’s (destination) equiva-
lence class, and writing to a (destination) equivalence class as moving
data from the subject’s (source) equivalence class to the destination
equivalence class. The confidentiality policy says that when data is
moved, the confidentiality label of the destination must always domi-
nate the confidentiality of the source (again, data cannot move down in
confidentiality).

In contrast, while the integrity policy, too, is concerned with move-
ment of data across equivalence classes (the integrity label of the source
must dominate the integrity of the destination), this policy is also con-
cerned with the correctness of modifications, such that even if the subject
is in the same equivalence class as the destination object, the modifica-
tion must be that which has been requested: the allowed (e.g., intra-
equivalence-class) modifications must be the correct, intended, modifi-
cations. The tacit assumption in integrity-enforcing systems is that the
subject performs the correct modification (only) to its level of integrity
(or assurance, if you will). Since an abstract subject’s behavior is defined
by its code, for coherent enforcement of integrity, the level of integrity
assigned to the subject must be no higher than the integrity value of its
code.

Components may not always receive an explicit security label, even
in a system with labeled modules and other objects. Components may
be composed of modules with different security labels. It is conceiv-
able that a given component could be composed of both high-integrity
and low-integrity modules, such that subjects with different integrity are



Data Integrity Capacity of Secure Systems 11

supported by only modules of that same integrity. This would conform
to the requirement stated above that a subject’s integrity should be no
greater than the integrity of its code. However, most commercial compo-
nents are not constructed this way. The simplifying assumption for this
analysis is that modules within a given component are homogeneous with
respect to their integrity, and the integrity of a component is the same
as the integrity of its constituent modules. Thus, we can can generalize
the stated requirement to be that the level of integrity assigned to an
abstract subject must be no greater than the integrity of the component
that manifests the subject.

Combining this component-subject integrity relationship with the subject-
object integrity relationship required for data modification (as per the
Biba model, above), we arrive at a transitive relationship between the
integrity of components and the objects which they access:

Given the sets of Components, Subjects, and Objects, where each sub-
ject in Subjects is an element of one component:

V ¢ € Components , s € Subjects , o € Objects :
current_access(s,0,modify) and s € ¢ =
integrity(c) > integrity(s) > integrity(o)

Systems that enforce integrity policies are generally intended to au-
tomatically ensure the correct relationship between the integrity level
of subjects and the integrity level of accessed objects. However, the
enforcement of the relationship between a subject’s integrity and its
component’s integrity may be less clear. Some systems may be able
to enforce the relationship between the integrity of subjects and their
related modules. For example, this could be enforced by Biba-like la-
bels on executables or other program integrity mechanisms such as rings
[38] and ring brackets [1] which can also be represented as attributes
on system elements. If these relationships are not enforced during run-
time, then the correct relationships may need to be maintained by social
convention/procedure.

The relationship between the integrity of a component’s subjects and
the integrity of the non-software portion of the component is also en-
forced via social convention (again, component integrity must dominate
the subject integrity).

4.2 Component Integrity Labels

This leaves the question of correct integrity labeling of components
(and modules). Confidentiality and integrity labels of passive data ob-
jects can be correctly assigned based on the data owner’s perception of



12 Integrity, Internal Control and Security in Information Systems

the object’s sensitivity (e.g., harm caused by unauthorized disclosure or
modification).

For active objects (viz, code rather than data) integrity labels, as
well as confidentiality labels, are usually assigned by the system or net-
work security designer to maximize system security and functionality
while being consistent with the principle of least privilege [35]. Best
judgment may play a large role in this assignment. For example, if
a monolithically-compiled software component is made of up diversely-
assured internal modules, it may be the responsibility of a designer,
integrator or configuration manager, as stipulated by social convention
or procedures, to assign an appropriate integrity level to the executable
component. However, the pedigree of the code establishes a real-world
limit to the integrity label that can be associated with a component.
Intuitively, code that has unknown integrity characteristics, e.g., it is
found on the street, should not be accorded a high-integrity label.

The “Yellow Book”[27] is an example of a scheme for determining
confidentiality ranges based on the evaluation or assurance level of the
components involved, where higher assurance components are allowed to
be associated with greater confidentiality ranges. However, there is no
“Yellow Book” for integrity to show what integrity label should be al-
lowed or inferred for a code component based on its evaluation/assurance
level, although some schemes have been suggested[4, 19].

4.3 Commercial Application Component
Integrity

Commercial application components are of particular interest with re-
spect to correct integrity labeling in hybrid security architecture systems
(see Section 6). We define commercial application components to have
been either unevaluated with respect to security policy enforcement, or
evaluated below Class B2/EAL53. In the security and evaluation com-
munity, components evaluated below B2/EAL5 have historically been
considered to be “low assurance” (see, for example, [22]). This is so for
several reasons [28, 2]:

m Weak developmental assurance, for example to ensure that un-
intended malicious artifacts (e.g., Trojan horses and trap doors)
are not inserted during manufacture. There is no or very little
requirement for system configuration management. There is no
requirement for configuration management of development tools.

3As there have been few, if any, commercial applications evaluated at B2 or higher, we
consider this to be a conservative, non-exclusionary, definition.



Data Integrity Capacity of Secure Systems 13

s Little or no code analysis, and no examination of code for malicious
artifacts after manufacture (i.e., during evaluation). There is no
requirement for code correspondence * to the system specification
or for justification of non-policy-enforcing modules. There is no re-
quirement for internal structure (e.g., modularity or minimization)
which would enable the meaningful analysis of code functionality.

»  Weak assurance that malicious artifacts are not inserted after man-
ufacture. For example, there is no requirement for trusted distri-
bution procedures: no assurance that the system delivered to the
end customer is in fact the intended or specified system.

Recall that the semantics of a code integrity label includes an indi-
cation of how its behavior corresponds to an intended (e.g., specified)
behavior. The fact that there is little assurance that code that has been
evaluated below B2/EAL5 functions (only) the way it is supposed to,
indicates that there must be a corresponding limit to the value of an
integrity label associated with such code (see Appendix 7). We will call
this integrity limit, nominally, “low assurance,” and assert that compo-
nents evaluated below B2/EALS should be labeled at this, or some lower
level. Similarly, code that has not been evaluated at all would be at-
tributed with a (nominal) “no assurance” integrity label. The names of
these two labels or the precise evaluation class names are not significant;
rather, it is significant to the maintenance of data integrity in hybrid se-
curity systems that site security managers/administrators, data owners,
and other security policy stake-holders understand the integrity value of
their systems’ components and of the data entrusted to these systems.

5. Security System Data Capacities

In this section, the notion of system integrity capacity will be intro-
duced. This term relates to the ability of a system to handle high-
integrity data.

The network architecture of a multilevel system can help to ensure
that the actions of other components are constrained by its RVM, for
example, through limiting the interconnections or data paths allowed
between components. In the architectures discussed in this paper, the
separation of data is maintained by either: (1) partitioning the data (and
processing elements) into distinct physical equivalence classes and using
the RVM to ensure that the security level of the user session matches

4Mapping of each specified function to the code that implements it, and accounting for
unmapped code.



14 Integrity, Internal Control and Security in Information Systems

the security level of the class with which it is connected (e.g., Figure 2),
or (2) using the RVM to logically partition the different data equiva-
lence classes and to match the user session level to only the appropriate
domain(s) (see Figures 1 and 3).

Our central question is, “for what range of user data 5 can we trust
such a multilevel system, or any system, to maintain data separation?”
Clearly, we would not want to trust a very weak system to protect/separate
very highly sensitive information. While our focus is on integrity-related
issues, for comparison we will examine cases of both confidentiality and
integrity.

5.1 Confidentiality Capacity

For confidentiality, a multilevel system can be trusted to manage data
to the confidentiality range of its RVM. We call this the system confiden-
tiality capacity. For example, if the system’s RVM component is assigned
or is otherwise deemed capable of managing a range from Unclassified
to Secret, we can say the system as a whole is trusted to handle data in
that range. This is because the RVM will constrain the actions of the
other components to not leak data across equivalence classes, regardless
of the level of trust we have in those other components (given a coherent
network architecture). To state confidentiality capacity more formally,
consider a system, C, comprising a set of components, {c}, and let RV M
be a component in C that enforces the confidentiality policy on other
components. Then,

c_capacity(C) = c_capacity(RV M)

5.2 Integrity Capacity

For integrity, on the other hand, a system can be trusted to manage
modifiable data (only) to the integrity limit of its interface components,
where interface components include the various graphical user interfaces
and data management applications through which users’ data must pass.
This is the “system integrity capacity.”

System integrity capacity is different from (i.e., not the “dual” of)
system confidentiality capacity because we assume that a component
will handle modification of objects correctly, only to its level of in-
tegrity/assurance. For confidentiality, even if a non-RVM component
were infected with malicious code, it could not exfiltrate the informa-
tion across the equivalence-class boundary, because the RVM component
won’t let that happen. However, for integrity, once the component has

5The ability of a system to protect and maintain system data is not addressed in this paper.



Data Integrity Capacity of Secure Systems 15

approval for modify access, the RVM is powerless to ensure that the
correct, and only the correct, modifications are made. Therefore, the
assurance level of the individual (viz, non-RVM) component has bear-
ing on its assigned integrity label, but is not necessarily relevant to its
assigned confidentiality label.

The input and output mechanisms of a computer system limit the
quantity and quality of information that flows through the system, just
as the in- and out-flow of water and electricity are limited in hydraulic
and electrical systems by their interface devices.

For computers, the I/O mechanisms and related applications, by def-
inition, handle all data entering and leaving the system. Where those
mechanisms and applications are configured to be able to modify data,
they can potentially effect the integrity of the data entering and leaving
the system. The nature of this effect is as follows.

Definitions

c the universal set of components {c1, ¢z, *,cn}
O : the universal set of objects {01,02," -+ ,0m}
INTEGRITY : a lattice of integrity levels:
{integrity,, integrity,, - - - ,integrity,}
modify : a relation that defines the fact that a component
¢ € C has been used to to modify an object o € O

SYS : asystem comprised of a set of components ¢ € C

Axiom 1

A modified datum is either unchanged in integrity, or takes on an in-
herent integrity value dominated by the integrity of the data-modifying
component.

VeceSYS, 0€0: modify(c,o) = integrity(c) > integrity(o)

For example, if a “certified” datum is modified by an “untrusted” code
component, the modified datum becomes at best “untrusted,” assuming
that “certified” dominates “untrusted.” If an “untrusted” datum is mod-
ified by a “certified” component, the datum becomes at best “certified,”
indicating it might have been upgraded in integrity.

For a high-assurance integrity-enforcing system, subjects, including
the applications that manage user I/O, will be limited by the RVM from
modifying protected objects that are above the subject’s integrity level.
However, if the application is responsible for passing data from one of
those objects to, for example, an output device like the computer screen,
then the application can simply modify the data in passing without
modifying the source object.



16 Integrity, Internal Control and Security in Information Systems

Similarly, even if a component does not modify the data directly, it
may request that the modification be done by another component, for
example, where a user interface component requests from another (e.g.,
remote) component that an object be created on behalf of the user.
Since the requesting component might request the wrong modification,
we consider it to be a “data-modifying” component. So a system’s “data-
modifying” components are those components that are able to modify
or control the modification of user data. In general, all interface com-
ponents and other components on the “path” between the user who
requests a data access and the ultimate data source (for data reads) or
destination (for data writes) are “data-modifying” components, unless
they can be guaranteed to not modify, create or delete user data objects
or control such operations®.

Therefore, even for systems that enforce integrity policies, a computer
system can only be trusted to manage modifiable data whose integrity
is at or below that of its user interface and application components.
This is true even if the data is either (1) integrity-upgraded internally
by various components, (2) “hand installed” into high integrity internal
objects, or (3) imported from specialized high integrity sensing devices,
since to be useful, the data will once again be “handled” by the standard
interface and application components for access by users. We will note
that, theoretically, manual procedures, such as visual inspection of data
items retrieved from a hybrid security system, could be used to ensure
that processing corruption has not occured, however, this is not generally
feasible in commercial or production environments.

As a group, then, the interface components and associated applica-
tions determine the integrity limit of the data that a system can handle
(t_capacity). The interface components are a subset of SYS, indicated
SYSinter face; and the highest integrity data obtainable from a system
SYS is by way of the user interface component with the highest integrity
(viz, the least upper bound of the integrity of all interface components).

i-capacity(SYS) = ce}J‘IE,B, (integrity(c))

This gives a “best case” analysis for the integrity that we might expect
a system to handle. For example, a high integrity interface application,
were it to be available, dependent upon a low integrity database, would
not normally improve the integrity of data returned from the database to

8The “control” part of this definition makes it broader than the Bell and LaPadula[7] concept
of “current access,” which indicates only objects with direct access to data.



Data Integrity Capacity of Secure Systems 17

the user, although this expression of system integrity capacity would in-
dicate that the data accessed through the high integrity interface might
be of high integrity. The general case is that the i_capacity expression
must allow for such upgrades. However, not all systems are designed for
data integrity upgrades. A more conservative axiom regarding modifica-
tion, which does not consider upgrading, results in an i_capacity based
on the lowest integrity of the components in each path.

Axiom 2

A modified datum takes on an inherent integrity value that is the great-
est lower bound of the data and the data-modifying component.

VeeC, o€ 0:modify(c,o) =
integrity(o') = GLB(integrity(c), integrity(o))

We now define an individual data transfer within the system, a path
through the system, and the integrity of such a path.

trans: A relation on C x C that defines an individual transfer of data
between components. Data is passed directly from the origin component,
c;, to the terminus component, c;:

¢i-trans_c;

path: A sequence of trans relations such that for every pair of consec-
utive relations (c;_trans_c;, ¢j_trans_cy), the terminus of the first and
the origin of the second coincide[34]. For example, this is a path with
n relations: < cg-trans;_ci, ¢i-transs_ca,- -, cp_1-trans,_c, >

The integrity of a path is the greatest lower bound of the components
in the path:

GLB
integrity(path) = integrity(c)
¢ € path
Given these definitions, we provide the alternative, more conservative,
expression for {_capacity.

Let m(SYS) be the set of all paths in SYS whose origin or terminus
is in SYSinter face, then:

LUB

i_capacity(SYS) = path € T(SYS)

(integrity(path))



18 Integrity, Internal Control and Security in Information Systems

6. Hybrid Security Systems

The systems we are concerned with are those that combine low-assurance
commercial components and specialized (e.g., high-assurance) multilevel
components specifically to enforce mandatory security policies while us-
ing commercial user-level interfaces and applications. These systems, as
a class, are composed of the following components:

m commercial terminals or workstations

= commercial user interfaces, applications and application servers
= Storage devices containing multiple levels of data

s Multilevel-management components

s TCB Extensions

m commercial network interconnections

The interested reader is referred to [17] for a detailed description of
these components. Of particular note, however, is the description of ap-
plications. In the generic “hybrid security” architecture defined in [17],
applications interface with the user and participate in the management
of all user data. Specifically, the application components have the abil-
ity to modify data on behalf of the user (which is to say that read-only
systems are not of interest). The general functionality of commercial
applications such as word processing, spread sheet, slide presentation,
time management, and database tools indicate that, to be useful, they
are intended to modify, as well as read, data.

To illustrate the relevance of our concerns for the handling of high in-
tegrity data in hybrid security systems, we describe here several systems
from the security literature that exhibit dependence on the integrity of
commercial components.

A non-distributed version of the model architecture is shown in Fig-
ure 1. In this layout, the component interconnections consist of process-
internal communications. The lowest layer (viz, “ring”) of the process
is a multilevel kernel or operating system, with an application (e.g.,
multilevel-aware RDBMS) and user interface in higher layers. A sepa-
rate process is created for each security level. An example of this version
of the architecture is that of the Seaview project [15, 25], and “Purple
Penelope” [33] (the latter includes a degenerate case of a RVM). A vari-
ation on this theme is the trusted Virtual Machine Monitor (VMM)
architecture, in which a separate version of the OS, in addition to the
application and user interface, is created at each security level{20, 26, 6],
and multilevel management occurs below that in the VMM layer.



Data Integrity Capacity of Secure Systems 19

Figure 1. Single Process Architecture (Network Connections are degenerate.)

A simple distributed instantiation is shown in Figure 2. Here, there
are logically separate single-level workstations connected by a switch to
data management subsystems at different (single) levels. Software asso-
ciated with the switch ensures that the current level of the workstation
matches the level of data subsystem indicated by the switch setting. An
example of this version of the architecture is that of the Starlight project
[5] (Starlight may allow low confidentiality information to flow through
the switch to high sessions, providing “read-down” capability).

The third instantiation of the model architecture is shown in Fig-
ure 3. In this layout, there are logically separate single-level terminals
(multiplexed onto one physical terminal by purging of state between
session-level changes) connected via TCB extensions to multilevel-aware
application server(s) running on the multilevel (TCB) component. An
example of this version of the architecture is that of the Naval Postgrad-
uate School’s Monterey Secure Architecture (MYSEA) system, based on
(18].

6.1 Integrity Capacity of Hybrid Security
Systems

Based on the preceding discussion, the system integrity capacity of
hybrid security systems can be summarized as follows:



20 Integrity, Internal Control and Security in Information Systems

Figure 2. Switch-Based Architecture

Figure 3.  Distributed Multilevel Server Architecture

» A system’s integrity capacity is the LUB of the integrity of its
interface/application components.

» All interface/application components in hybrid security systems
are commercial

= Commercial interface/application components are of “no assur-
ance” or “low assurance” integrity.



Data Integrity Capacity of Secure Systems 21

» Therefore, the system integrity capacity of a hybrid security system
is generally no higher than “no assurance” or “low assurance.”

An implication of this conclusion is that hybrid security architecture
systems are not suitable for automated information processing environ-
ments in which there are expectations or requirements to maintain data
integrity above the nominal “no assurance” or “low assurance” level. An-
other implication is that composition of trusted systems utilizing only
commercial products as interface components is problematic with respect
to integrity.

7. Conclusion and Discussion

We have shown that the integrity of a computer system’s interface
components limits the data “integrity capacity” of the system. This
is in contrast to the “confidentiality capacity” of a system, which is
determined by characteristics of the system’s policy-enforcement com-
ponent(s), but is not dependent on the interface components.

We have discussed why commercial components should not be at-
tributed with integrity properties above a certain “low-assurance” level,
and that hybrid security systems should not be trusted with data whose
integrity is above that level. An implication from this conclusion is
that hybrid security systems are not suitable in computing environments
where there is an expectation of maintaining data integrity above this
basic, low-assurance level.

Situations where corrupted data could have significant consequences
are:

= A legal setting where the “truth” of data might be questioned

» Handling of high integrity intelligence data for critical decision
making

» The production of high assurance system components

= Systems where human life might be affected by improper execution
of code

= High reliability embedded systems

We have concentrated on issues of integrity in multilevel secure sys-
tems, however, the distinctions we have made are germane to other sys-
tems where weak integrity components are utilized and stronger data
integrity is expected.

One might say, “what difference does it make if a component has too
high of an integrity label, and its real integrity value is low? These



22 Integrity, Internal Control and Security in Information Systems

commercial software vendors can be generally trusted, since it is in their
best interest to ship a product that does not corrupt data.” This atti-
tude reflects a common misunderstanding of data integrity enforcement.
Certainly, most security analysts and engineers would agree that high-
assurance policy-enforcement components are needed to safeguard the
confidentiality of highly sensitive multilevel data; then, why would there
be any lesser concern for the ability of a system to protect the integrity
of highly sensitive data? From a more technical viewpoint, if a system’s
objects do not have data sensitivity (confidentiality and integrity) labels
that match the objects’ real sensitivity values, then the system does
not correspond to its model, and its behavior may be undefined. Also,
refer to Appendix 7, for a review of common “Subversive Artifacts in
Commercial Software.”

The result presented in this paper places a limit on what is achievable
in system integrity architectures. Such a finding can help to refine the
direction for constructive efforts and does not preclude the construction
of useful systems any more than other negative results, e.g. [16, 21],
have in the past.

One might also ask if high integrity is ever achievable. The answer is
yes, but not with the type of commodity application components avail-
able today (viz, where commodity implies weak integrity of software
functionality). Systems that could provide high integrity today are (1)
a system composed entirely of high-assurance components, or (2) a sys-
tem that protects high integrity data from modification by all but high-
assurance components. Examples of the first are systems intended to
perform safety-critical functions such as avionics and certain medical
systems[23]. An example of the second is a client-server system com-
posed of high-assurance client (e.g., web browser) and server components
that encrypt their communication such that it is protected from modifi-
cation during transit through low assurance network components (e.g.,
via a Virtual-Private-Network-style connection). As noted previously,
such systems carry the expense of custom high-assurance development.

Appendix: Subversive Artifacts in Commercial Soft-
ware

There is clear evidence that subversion of commercial software through hidden
entry points (trap doors) and disguised functions (Trojan horses) is more common
than generally perceived. Entire web sites [3] are devoted to describing clandestine
code which may be activated using undocumented keystrokes in standard commercial
applications. Sometimes this code merely displays a list of the software developers’
names. Other times the effects are extremely elaborate as in the case of a flight
simulator embedded in versions of the Microsoft Excel Spreadsheet software. That
these “Easter Eggs” are merely the benign legacy of the programming team is perhaps



Data Integrity Capacity of Secure Systems 23

a reflection of the general good intentions of the programmers. Malicious insertions,
such as long-term time bombs, are just as easily possible.

An indication of the serious nature of the problem was provided in April 2000 when
news reports created a mild hysteria surrounding the possibility of a trapdoor in the
code of a widely used web server[32]. Subsequent investigations revealed that instead
of a trapdoor, the code contained nasty remarks about corporate competitors and
well as violations of company coding standards[12]. The fact remains, however, that
when rumors of the trapdoor were initially published, few believed that artifices of
this type were possible in such a popular software product. However, millions of users
do not eliminate the problem of low integrity. Another example of the vulnerability of
commercial source code occured in October 2000, when it was revealed that outsiders
had access to the development environment of a major software vendor for some
period of time[10)].

In his Turing Prize Lecture, Ken Thompson described a trapdoor in an early
version of the Unix operating system [40]. The cleverness of the artifice was evident
in that the artifice was said to have been inserted into the operating system executable
code by the compiler, which had been modified so that recompilations of the compiler
itself would insert the trapdoor implantation mechanism into its executable while
leaving no evidence of the trapdoor in the source code for either the operating system
or the the compiler. The presence of this sort of trap door is speculative in any
compiler and must be addressed through life-cycle assurance of tools chosen for high
assurance system development.

References

[1] Gemini Trusted Network Processor (GTNP). In Information Systems Secu-
rity Products and Service Catalog Supplement, Report No.CSC-PB-92/001. April
1992. 4-SUP-3a.3.

ISO/IEC 15408 - Common Criteria for Information Technology Security Evalu-

ation. Technical Report CCIB-98-026, May 1998.

[3] The Easter Egg Archive. http://www.eeggs.com/, last modified 19 May 2000.

[4] E. Amoroso, J. Watson, T. Nguyen, P. Lapiska, J. Weiss, and T. Star. Toward
an approach to measuring software trust. In Proceedings 1991 IEEE Symposium
on Security and Privacy, pages 198-218, Oakland, CA, 1991. IEEE Computer
Society Press.

[5] M. Anderson, C. North, J. Griffin, R. Milner, J. Yesberg, and K. Yiu. Starlight:
Interactive Link. In Proceedings 12th Computer Security Applications Confer-
ence, San Diego, CA, December 1996.

[6] S. Balmer and C. Irvine. Analysis of Terminal Server Architectures for Thin
Clinents in a High Assurance Network. In Proceedings of the 28rd National In-
formation Systems Security Conference, pages 192-202, Baltimore, MD, October
2000.

[7] D. E. Bell and L. LaPadula. Secure Computer Systems: Mathematical Foun-
dations and Model. Technical Report M74-244, MITRE Corp., Bedford, MA,
1973.

[8] K. J. Biba. Integrity Considerations for Secure Computer Systems. Technical
Report ESD-TR-76-372, MITRE Corp., 1977.

[9] W. Boebert and R. Kain. A practical alternative to hierarchical integrity poli-
cies. In Proceedings 8th DoD/NBS Computer Security Conference, pages 18-27,
Gaithersburg, MD, September 1985.

[2

—



24

(10]

(11]

(12]

(13]

(14]

[15]

(16]

17)

(18]

(19]

(20]

(21]

22]

(23]
(24]

[25]

(26]

Integrity, Internal Control and Security in Information Systems

T. Bridis, R. Bickman, and G. Fields. Microsoft Said Hack-
ers Failed to See Codes for Its Most Popular Products.
http://interactive.wsj.com/archive/retrieve.cgi?id=SB972663334793858544.djm,
October 2000.

D. Clark and D. R. Wilson. A Comparison of Commercial and Military Computer
Security Policies. In Proceedings 1987 IEEE Symposium on Security and Privacy,
pages 184-194, Oakland, CA, April 1987. IEEE Computer Society Press.

R. Cooper. Re: Security experts discover rogue code in Microsoft software.
http://catless.ncl.ac.uk/Risks/20.88.html#subjll, May 2000.

D. Denning, T. F. Lunt, R. R. Schell, W. Shockley, and M. Heckman. The seaview
security model. In Proceedings 1988 IEEE Symposium on Security and Privacy,
pages 218-233, Oakland, CA, April 1988. IEEE Computer Society Press.

D. E. Denning. Secure Information Flow in Computer Systems. PhD thesis,
Purdue Univeristy, West Lafayette, IN, May 1975.

D. E. Denning, T. F. Lunt, R. R. Schell, W. Shockley, and M. Heckman. Security
policy and interpretation for a class al multilevel secure relational database
system. In Proceedings 1988 IEEE Symposium on Security and Privacy, Oakland,
CA, April 1988. IEEE Computer Society Press.

M. Harrison, W. Ruzzo, and J. Ullman. Protection in Operating Systems. Com-
munications of the A.C.M., 19(8):461-471, 1976.

C. Irvine and T. Levin. Data integrity limitations in highly secure systems.
In Proceedings of the International Systems Security Engineering Conference,
Orlando, FL, March 2001.

C. E. Irvine, J. P. Anderson, D. Robb, and J. Hackerson. High Assurance Multi-
level Services for Off-The-Shelf Workstation Applications. In Proceedings of the
20th National Information Systems Security Conference, pages 421-431, Crystal
City, VA, October 1998.

P. Karger, V. Austel, and D. Toll. A new mandatory security policy combin-
ing secrecy and integrity. Technical Report RC 21717(97406), IBM Research
Division, Yorktown Heights, NY, March 2000.

P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn. A VMM
Security Kernel for the VAX Architecture. In Proceedings 1990 IEEE Symposium
on Research in Security and Privacy, pages 2-19. IEEE Computer Society Press,
1990.

B. Lampson. A Note on the Confinement Problem. Communications of the
A.C.M., 16(10):613-615, 1973.

T. M. P. Lee. A Note on Compartmented Mode: To B2 or not B2? In Proceedings
of the 15th National Computer Security Conference, pages 448-458, Baltimore,
MD, October 1992.

N. G. Levenson. Safeware- System safety and Computers. Addison-Wesley, 1995.
S. B. Lipner. Non-Discretionary Controls for Commercial Applications . In Pro-
ceedings 1982 IEEE Symposium on Security and Privacy, pages 2-20, Oakland,
1982. IEEE Computer Society Press.

T. F. Lunt, R. R. Schell, W. Shockley, M. Heckman, and D. Warren. A Near-
Term Design for the SeaView Multilevel Database System. In Proceedings 1988
IEEE Symposium on Security and Privacy, pages 234-244, Oakland, 1988. IEEE
Computer Society Press.

R. Meushaw and D. Simard. Nettop. Tech Trend Notes, 9(4):3-10, Fall 2000.



Data Integrity Capacity of Secure Systems 25

(27)

(28]
(29]
(30]
(31]
(32]

(33]

(34]
(3]

(36]

(37)

(38]

(39]

[40]

[41]

National Computer Security Center. Computer Security Requirements, Guidance
for Applying the Department of Defense Trusted Computer System Evaluation
Criteria in Specific Environments, CSC-STD-003-85, June 1985.

National Computer Security Center. Department of Defense Trusted Computer
System Evaluation Criteria, DoD 5200.28-STD, December 1985.

National Computer Security Center. Trusted Network Interpretation of the
Trusted Computer System Evaluation Criteria, NCSC-TG-005, July 1987.
National Computer Security Center. A Gutde to Understanding Covert Channel
Analysis of Trusted Systems, NCSC-TG-030, November 1993.

National Research Council. Trust in Cyberspace, Washington, DC, 1999. National
Academy Press.

Newsscan.com. Security experts discover rogue code in Microsoft software.
http://catless.ncl.ac.uk/Risks/20.87.html#subj8, April 2000.

B. Pomeroy and S. Weisman. Private Desktops and Shared Store. In Proceedings
14th Computer Security Applications Conference, pages 190-200, Phoenix, AZ,
December 1998.

F. P. Preparata and R. T. Yeh. Introduction to Discrete Structures. Addison-
Wesley Publishing, Co., Reading, MA, 1973.

J. H. Saltzer and M. D. Schroeder. The Protection of Information in Computer
Systems. Proceedings of the IEEE, 63(9):1278-1308, 1975.

R. Schell and D. Denning. Integrity in trusted database systems. In Proceedings
9th DoD/NBS Computer Security Conference, Gaithersburg, MD, September
1986.

M. D. Schroeder, D. D. Clark, and J. H. Saltzer. The Multics Kernel Design
Project. Proceedings of Sizth A.C.M. Symposium on Operating System Princi-
ples, pages 43-56, November 1977.

M. D. Schroeder and J. H. Saltzer. A Hardware Architecture for Implementing
Protection Rings. Comm. A.C.M., 15(3):157-170, 1972.

L. J. Shirley and R. R. Schell. Mechanism Sufficiency Validation by Assignment.
In Proceedings 1981 IEEE Symposium on Security and Privacy, pages 26-32,
Oakland, 1981. IEEE Computer Society Press.

K. Thompson. Reflections on Trusting Trust . Communications of the A.C.M.,
27(8):761-763, 1984.

K. B. Walter, W. F. Ogden, W. C. Rounds, F. T. Bradshaw, S. R. Ames, and
D. G. Shumway. Primitive Models for Computer Security. In Case Western
Reserve University Report, ESD-TR-74-117, January 1974. Electronic Systems
Division, Air Force Systems Command.



DEVELOPING SECURE SOFTWARE

A survey and classification of common software vul-
nerabilities

Frank Piessens

Dept. of Computer Science

Katholieke Universiteit Leuven, Belgium
Frank.Piessens@cs.kuleuven.ac.be

Bart De Decker

Dept. of Computer Science

Katholieke Universiteit Leuven, Belgium
Bart.DeDecker@cs.kuleuven.ac.be

Bart De Win

Dept. of Computer Science

Katholieke Universiteit Leuven, Belgium
Bart.DeWin@cs.kuleuven.ac.be

Abstract More and more software is deployed in an environment with wide area
network connectivity, in particular with connectivity to the Internet.
Software developers are not always aware of the security implications of
this connectivity, and hence the software they produce contains a large
number of vulnerabilities exploitable by attackers.

Statistics show that a limited number of types of vulnerabilities ac-
count for the majority of successful attacks on the Internet. Hence, we
believe that it is very useful for a software developer to have a deep
understanding of these kinds of vulnerabilities, in order to avoid them
in new software. In this paper, we present a survey and classification of
the most commonly exploited software vulnerabilities.

Keywords: security, software vulnerabilities, software engineering



28 Integrity, Internal Control and Security in Information Systems

1. Introduction

At the root of almost every security incident on the Internet are one or
more software vulnerabilities, i.e. security-related bugs in the software
that can be exploited by an attacker to perform actions he should not
be able to perform.

Experience shows that a majority of these software vulnerabilities
can be traced back to a relatively small number of causes: software
developers are making the same mistakes over and over again. Looking
for instance at the list of the ten most exploited software vulnerabilities
(see: [11]), one can see that many of these vulnerabilities are actually
buffer overflow problems.

Hence, we believe that it is useful to try to survey and classify the
most frequently occuring types of vulnerabilities. This paper identifies
a number of categories of software vulnerabilities, and gives extensive
examples of each of these categories. A software engineer familiar with
these categories of problems is less likely to fall prey to these same prob-
lems again in his own software.

The structure of this paper is as follows: in the next section, we
present a structured classification of software vulnerabilities. In sec-
tion 3, we present a number of easily remembered guidelines a software
developer can keep in mind to steer clear of most of the identified cat-
egories of problems. We conclude by discussing related work and sum-
marizing our results.

2. An illustrated survey of software
vulnerabilities
2.1 Insufficiently defensive input checking

A developer regularly makes (often implicit, and at first sight very
reasonable) assumptions about the input to his programs. An attacker
can invalidate these assumptions to his gain. It is important to realize
that input should be interpreted in a broad way: input could be given
to a program through files, network connections, environment variables,
interaction with a user etc...If method calls in a program can cross
protection domains (as is the case for instance in Java), even method
parameters should be considered as non-trustworthy input that needs
careful checking.

Examples of this category include: buffer overflows and weak CGI
scripts.



Developing Secure Software 29

2.1.1 Buffer overflows.  One of the most successful attacks is
certainly a buffer overflow in a server process. What happens is illus-
trated in figure 1. For every function call, the parameters, the return
address!, and the local variables of the function are put on top of the
stack, the so-called current stack frame. In figure 1.a, the normal situa-
tion is sketched. The return address points to the correct instruction. If
the function is not carefully programmed and does not take into account
the actual sizes of the variables, then a buffer overflow might happen.
For instance, many servers expect input from client processes, such as
a name, a path, an email-address, etc. Often, the server has allocated
a buffer for this input in the current stack frame. The buffer is usually
oversized and is certainly large enough to accommodate all ‘reasonable’
input. However, if an attacker sends input that is much larger than ex-
pected, and if the server does not take appropriate precautions (e.g. it
copies the input until a zero-byte is found), then part of the stack frame
is overwritten (see also figure 1.b): the return address is modified and
points to code that has been sent as part of the input! Hence, the at-
tacker can make the server execute whatever code he wants to. Usually,
the code that is sent as input will make the server spawn a new process
that runs the command interpreter (the shell). That way, the attacker
gets inside the system without a login procedure. Often, he has supe-
ruser privileges, since the command interpreter inherits the privileges of
the attacked server.

The last decade, many server programs have been found to be vulner-
able to this kind of attack (the finger daemon, bind daemon, ...). Often,
these servers used a getstring function that did not limit the length of
the string to be read. However, newer attacks do not use ‘oversized’
input, but cause buffer overflow by other means. For instance, inputs
with special characters (wildcards, ...) are sometimes expanded (global-
ized) by the server, leading to buffer overflow. Also, incomplete inputs
may divert (temporarily) the flow of control inside the server; after this
diversion, assumptions about the sizes of the variables may no longer be
true.

2.1.2 Weak CGI scripts. CGI, an acronym for Common Gate-
way Interface, is a mechanism for extending the webserver. Instead of
sending a webpage in response to a client request, the server starts a
new process which will handle the request. Typically the subprocess
runs a script (e.g. Perl, Tcl, ...). These languages offer pattern-matching

1The return address is the address of the instruction that must be executed after the function
call.



30 Integrity, Internal Control and Security in Information Systems

Stack

(a) Before buffer overflow (b) After buffer overflow

Figure 1. Buffer overflow attack

and many other features, that are useful in this context. However, the
expressions are even more powerful than those supported by command
interpreters (shells). Since the user inputs are passed to the script, insuf-
ficient checking of these inputs may lead to disaster. Figure 2 illustrates
the CGI-mechanism. Often, CGI scripts are used to process ‘forms’ in-
cluded in certain web pages. The users completes the input fields and
submits the form to the server. The server spawns a new process that
runs the script, and passes the user inputs either through environment
variables, or via standard input. Assume that one of the inputs is an



Developing Secure Software 31

email-address, that will be used to send a confirmation message to the
user, and that the Perl script contains the following lines of code:

$emailaddress = ...; # fetch the email address

system("echo \"Your form has been processed\" | mail $emailaddress");

If the email address is not checked by the script, then a user has the
ability to have the script execute whatever command the user wants. In
this case, if the user gave as email address: |user@dot.com; rm -rf / |
then, eventually the following commands will be executed:

[ echo "Your form has been processed" | mail user@dot.com; rm -rf / |

that is, the acknowledgement is sent to the user, and the file system
may be wiped out if the web server is running with superuser privileges!
Instead of this denial of service attack, the malicious user could also try
to add an extra line to the password file and thus create for him an
entrance gate to the system.

Figure 2. CGI Scripts

2.2 Reuse of software in more hostile
environments

Software written for use in a relatively friendly environment (like a
mainframe or an intranet) is often reused later in a more hostile en-



32 Integrity, Internal Control and Security in Information Systems

vironment (like the Internet). Because the software developer made
certain assumptions about the environment in which his program would
be running, this change in environment can lead to major security holes.
Typical examples include programs using password authentication, and
document processing software reused as content viewers on the Internet.

2.2.1 Password authentication.  Under the assumption that
passwords are well chosen, and well guarded by their owners, password
authentication is relatively secure in an environment where the com-
munication between the user typing in the password and the computer
verifying the password can not be eavesdropped on by attackers. Typ-
ically, for a terminal connected to a mainframe by a dedicated line, a
password mechanism is sufficiently secure.

However, in a context where the password is communicated over the
Internet, password authentication is extremely weak: eavesdropping on
connections is commonplace on the Internet, and once a password has
been seen by somebody else, the security of the mechanism is completely
broken. Still, many popular programs like telnet and ftp rely on this
mechanism to authenticate connections over the Internet.

2.2.2 Document processing software reused as Internet con-
tent viewer. If word processing software is used to create, edit and
view documents authored by the owner of the software, or a small set
of trusted colleagues, then the security requirements of this software are
relatively low. If the software contains buffer overflow problems, it might
crash occasionally, but it does not represent a major security problem.

This situation changes completely if the same word processing soft-
ware is reused as a viewer for Internet content. The same buffer overflow
problem can now be maliciously exploited: an attacker places a carefully
constructed document on the Web, and tries to lure victims into viewing
this document. By exploiting the buffer overflow problem, the attacker
can do anything he wants on the victims computer.

Since it is difficult to predict in advance in which contexts your soft-
ware will be used, it is good practice to strive for secure software de-
velopment even for software that will initially only be used in a friendly
environment.

2.3 Trading off security for convenience or
functionality

It is well-known that there is a trade-off between security and con-
venience (i.e. functionality or user-friendliness of the software). Most



Developing Secure Software 33

security measures tend to add some user-annoyance, and often very pow-
erful and convenient features are easy to abuse. Software developers,
tending to think of functionality in the first place, usually emphasize
convenience over security. This problem is often an attitude problem:
software developers tend to spend a lot of time thinking about how to
make things possible. From a security point of view it is as important
to spend time thinking about how to make certain things impossible.
Examples of vulnerabilities in this category include: executable at-
tachments and powerful scripting languages for applications.

2.3.1 Executable attachments. Many browsers maintain a
table which is used to determine how the browser should handle MIME
types when it encounters MIME parts in a HTML document, be it an
email message, a newsgroup posting, a web page, or a local file. Some
of these entries may cause the browser to open the MIME part without
giving the end user the opportunity to decide whether the MIME part
should be opened. Hence, an intruder may construct malicious content
that, when viewed in the browser (or any program that uses the browser’s
HTML rendering engine), can execute arbitrary code. It is not necessary
to run an attachment; simply viewing the document in a vulnerable
program is sufficient to execute arbitrary code.

2.3.2 Powerful scripting in applications. = More and more
applications include an interpreter for a scripting language, which can
be used to support ‘dynamic’ content. Examples are word processors,
spreadsheets, web browsers, etc. The problem with these scripting lan-
guages is that they are very powerful, and often allow access to local
system resources, such as the file system. Although a technique, called
sandboxing, can shield off the local system, dynamic content can still
mislead the user, and possibly capture confidential information, such as
credit card numbers, passwords, etc.

The following attack against web browsers that support JavaScript has
been described by Felten, Balfanz, Dean and Wallach ([5]). See also fig-
ure 3. An unsuspecting user is lured to the attacker’s website?. The web
document shown to the user is ‘booby-trapped’: it contains a JavaScript
program, which disables the normal functioning of the browser’s buttons
(by covering the browser with an invisible window), and all URLs are
rewritten in order to direct requests to the attacker’s site. From now

2This is probably the easiest part of the attack. It suffices to offer something for free, to
attract many possible victims.



34 Integrity, Internal Control and Security in Information Systems

on, the browser is actually captured by the attacker. There is no way to
escape. Every URL in the document is of the form:

http://www.attacker.com/http://www.real.com/page.html

Hence, the request is sent to www.attacker.com, which will forward
to request to www.real.com. The web document that is returned by
that server is then rewritten by the attacker’s website, i.e. all URLs
are rewritten and a JavaScript program is added to the document. The
modified document is finally sent to browser. Note that the JavaScript
program can hide these modifications to the user: if the browser is asked
to show the ‘HTML source’ of the document, the script will remove the
malicious code and show the original URLs. Since all requests are sent
to the attacker’s website, including input fields of forms, the site may
acquire and abuse confidential information.

GET http://www-r€al.com/page.html (b)

(d) GE html
modify page.html &

www.attacker.com

(e)
modified pdge.html (i C)h

p tml

user’s browser www.real.com

Figure 3. A webspoofing attack

2.4 Relying on non-secure abstractions

Many abstractions offered by a programming language or by an oper-
ating system are “complexity-hiding” abstractions more than “tamper-
proof” abstractions. Software developers often (implicitly or explicitly)
assume that these abstractions are tamper-proof anyway, leading to se-
curity breaches. Examples include: buffer overflows (see section 2.1.1),
type confusion problems in Java, attacks against smartcards, considering
TCP/IP connections as reliable communication channels, unanticipated
object reuse,etc. .. We discuss two examples in more detail.



Developing Secure Software 35

24.1 Type confusion in Java. To allow untrusted code lim-
ited access to objects, it seems reasonable to use object oriented access
specifiers (like private or protected) on methods or fields that should
not be accessible to the untrusted code. The programmer relies on the
information hiding aspects of the object oriented language he is working
in to achieve a security related goal.

However, it is important to realize that access specifiers are by no
means “tamper-proof” in most object oriented languages. For example,
in C++, untrusted code can scan the entire memory range in use by a
process by casting integers to pointers, and hence untrusted code can
also access the private fields of any object. In other words, the OO
abstractions offered by C++ are not secure, or C++ is not memory safe
or type safe.

The designers of Java tried to make the Java Virtual Machine memory
safe and type safe by disallowing pointers, and by checking casts even at
runtime. But for many versions of the JVM, bugs in the implementation
of the VM have led to breaches in memory and type safety. For example,
the well-known classloader-attack (see: [8]), breaks the type safety of all
JVM'’s upto version 1.1.8.

Even in the absence of type safety problems, untrusted code may try
to access private fields of an object by serializing the object, and reading
the resulting file as a byte array.

2.4.2 Unanticipated resource reuse. The problem here is
that the software developer disposes of some object or resource (e.g.
deletes a file), and assumes that by disposing of the object, its informa-
tion content becomes inaccessible. In many cases the object will only
be “logically” deleted, and the actual content is still retrievable by an
attacker.

2.5 Insecure defaults and difficult configuration

The default configuration of general purpose software is often not se-
cure to guarantee that the majority of customers is able to use it without
experiencing too many restrictions. Especially for operating systems,
this is common practice. Clearly, the users impression about the sys-
tem is important and security restrictions might annoy him. However,
this should not be a reason to lower the level of security or it should be
explicitly and very well documented. And even in this case, system ad-
ministrators typically do not take the time to read this documentation.
They tend to make a default install, and if that works leave it at that.
Hence, if the default configuration is an insecure one, many installations
will be in an insecure state.



36 Integrity, Internal Control and Security in Information Systems

As an example, Microsoft Windows NT 4.0 is a reasonably secure
operating system as proven by the ITSEC E3/F-C2 label it received
after independent evaluation. However, a default install of the system
disables many of the security features. Several documents (see: [4, 2])
provide checklists of tasks an administrator should perform to enable
important security features and as such augment the overall security
level of the system. However, it is highly questionable how many users
will follow all the guidelines described in these checklist documents.

As another point of attention, configuration procedures are sometimes
complex and error-prone. For example, securing Windows NT requires
changing certain keys in the registry by editing them by hand. Complex
configuration procedures must be avoided, since they lead to configura-
tion errors, and a configuration error often introduces a security problem.

2.6 Unanticipated (ab-)use of services and
feature interaction

Highly successful services are often used (and abused) in ways never
imagined by the designers of the service. Hence, the designers failed to
provide safeguards for these abuses.

A typical example is e-mail. The Internet e-mail system, based on
SMTP, was designed to provide a simple electronic messaging service for
a relatively limited group of people. The unforeseen success of TCP/IP
and the Internet has made SMTP a standard for a worldwide electronic
mail system. Since sending e-mail is typically much cheaper than send-
ing paper mail, advertisers have been abusing the e-mail system since
many years, sending out advertisements to millions of addressees at once.
Because the designers did not anticipate the enormous success of their
protocol, they did not think of safeguards for protecting against such
spam e-mail.

A special case of unanticipated abuse is feature interaction. As more
and more features are added to a software product, they start interacting
in unforeseen and insecure ways. An example is the telephone network,
where the introduction of new services, like call-forwarding, conference
calls and ringback have led to numerous security breaches ([1]).

2.7 Non-atomic check and use

A typical scenario in a security relevant part of a program is: check if
some condition is ok, and if it is, perform some action. Often attacks are
based on invalidating the condition between the check and the action.

A typical example is a so-called race condition. For example, a pro-
gram checks to see if a certain filename in the temporary directory is



Developing Secure Software 37

available (i.e. no file with that name exists already), and if it does not
exist, it opens a file with that name and starts writing information to
it. An attacker can try to create a link with that specific name to a file
he wants to alter between the check of existence and the actual opening
of the file. As a consequence, the attacker causes the program to inad-
vertently add information to an existing file, where the program tried to
enforce that it was really opening a new file.

A second, very simple example is simply typing commands at an unat-
tended terminal: the operating system only checks the identity of the
user at login-time, and from that moment on assumes that all commands
from that terminal come from the authenticated user. A similar problem
occurs with session hijacking of telnet sessions over the Internet.

2.8  Programming bugs

Finally, ordinary programming bugs, i.e. flawed algorithmic logic in
security sensitive software, are much harder to detect during testing than
bugs in the functionality of the software. Security related bugs only show
up in the presence of malicious adversaries and hence can not be detected
using automatic testing procedures. Moreover, the inherent complexity
of cryptographic algorithms and other security related code makes it
very hard to understand all relevant details and unfortunately wrong
assumptions or small programming errors often introduce big security
holes. Several famous examples of this problem exist. First, a weakness
in the random generator of Netscape 1.1 where random numbers where
based on the current time (which is not random at all !), made it possible
to break the keys used in secure connections within seconds (see: [9]).
Another example is known as the Java DNS bug. Here (see: (3, 6]),
an error in the algorithm used to check whether two hosts are equal
provided applets with the opportunity to connect to every computer on
the Internet, which was not conforming to the rules of the restricted
applet execution environment.

3. Security guidelines for developers

Many of the example software security weaknesses discussed in the
previous section could have been avoided if the designers and implemen-
tors of the software had been more security-conscious during their design
and programming. We feel it is very important for a software engineer
to keep a number of security-related design guidelines in the back of his
head at all times during the development of a software system. Every
design or implementation decision should be verified against these “se-
curity rules of thumb”. A good set of such guidelines is given below.



38

Integrity, Internal Control and Security in Information Systems

It is interesting to note that these guidelines still overlap significantly
with the guidelines given in the 25 year old classic paper by Saltzer and
Schroeder ([10]).

1

Defensive programming. Treat any input your software gets from
outside as potentially hostile.

Secure defaults. While it may be a good idea to make security-
related parts of your program configurable, you should realize that
many users will use the default configuration without thinking too
much about it. Hence, the default configuration should be secure.

Also, many security checks can be implemented in two ways: deny
by default and allow access in selected cases, or allow by default
and deny access in selected cases. It should be clear that the first
approach is preferable.

Use secure languages where possible. From a security point of view,
a garbage-collected language (like Java) is to be preferred over a
language relying on manual memory management (like C or C++).
In particular, a type safe language significantly reduces the number
of potential security weaknesses in software.

Security-oriented testing. Software engineers should realize that
testing for security is fundamentally different from testing func-
tionality. Testing for security is a creative form of testing, where
the testers have to come up with possible attack scenarios.

Economy of mechanism. Security mechanisms should be as simple
as possible (but not any simpler than that). A simple mechanism
is easy to understand, easy to verify, and easy to apply.

Need to know principle. If it is possible to give different parts of
your software different privileges (as is possible in Java for exam-
ple), make sure that you give each part the minimal amount of
privileges necessary. This leads to better containment of security
breaches.

As another instance of this rule: make sure your software can run
with the minimal amount of privileges from the OS it is running
on. Software written for Windows 9X for example, typically as-
sumes having full access to the entire file system, making it difficult
to port this software to the more secure NT family of operating
systems.

No security decisions by end users. End users typically have little
or no expertise in security, and asking them to do security relevant



Developing Secure Software 39

configuration easily leads to configuration errors. Also, attackers
might try to convince end users to change their configuration to a
nonsecure state through social engineering techniques.

4. Related Work

An influential paper surveying and categorizing software vulnerabili-
ties is the paper by Landwehr et al. ([7]). However, this paper is largely
focused on system software vulnerabilities, whereas our paper mainly
targets application software. A number of books ([1, 6]) give many ex-
amples of vulnerabilities, but without an attempt at classification. Also
many websites publish lists of software vulnerabilities of varying quality.
A column by McGraw and Viega on the IBM DeveloperWorks website is
of very high quality ([12]). Finally, our security guidelines were heavily
influenced by the seminal paper by Saltzer and Schroeder ([10]).

5. Conclusion

A classification of the most common software vulnerabilities (with
many examples) was presented. This classification shows that many
software vulnerabilities can be avoided by keeping in mind a number
of simple security-related guidelines during design and development of
software.

References

[1] Anderson, Ross (2001) Security Engineering. A Guide to Building Dependable
Distributed Systems. Wiley and Sons publishers.

[2] Paul F. Bartock et al., Guide to Securing Microsoft Windows NT Networks,
National Security Agency

[3] DNS based attack on Java, http://www.cs.princeton.edu/sip/news/dns-spoof.html

[4] Micheal Espinola Jr (Santeria Systems), The Hardening of Microsoft Windows
NT, http://wuw.networkcommand.com/docs/HardNT40rell .pdf

[5] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach, “Web Spoof-
ing: An Internet Con Game”, 20th National Information Systems Security Con-
ference (Baltimore, Maryland), October, 1997.

[6] Gollmann, Dieter (2000) Computer Security. Wiley and Sons publishers.

[7] CE Landwehr, AR Bull, JP McDermott, WS Choi, “A Taxonomy of Computer
Program Security Flaws, with Examples”, ACM Computing Surveys 26, no. 3
(Sep 1994).

(8] Sheng Liang, Gilad Bracha, “Dynamic Class Loading in the Java Virtual Ma-
chine”, Proceedings of the Conference on Object-oriented programming, systems,
languages, and applications (OOPSLA’98), pp. 36 — 44.

[9] Netscape (In)Security Problems, http://www.demailly.com/ dl/netscapesec/



40 Integrity, Internal Control and Security in Information Systems

[10] Jerome H. Saltzer and Michael D. Schroeder. “The protection of Information in
Computer Systems”, in Proceedings of the IEEE, vol. 63 no. 9 (Mar 1975), pp.
1287-1308.

[11) SANS  Institute, The ten  most  critical  security  threats,
http://wwv.sans.org/topten.htm

[12] http://www.ibm.com/developerworks/security/



ESTABLISHING ACCOUNTING PRINCIPLES
AS INVARIANTS OF FINANCIAL SYSTEMS

Naftaly H. Minsky*
minsky@cs.rutgers.edu
Department of Computer Science
Rutgers University

New Brunswick, NJ, 08903 USA

Abstract  An enterprise that uses evolving software is susceptible to destructive
and even disastrous effects caused either by inadvertent errors, or by
malicious attacks by the programmers employed to maintain this soft-
ware. It is my thesis that these perils of evolving software can often be
tamed by ensuring that suitable overarching principles are maintained
as invariants of the evolution of a given software system. In particular,
it would be invaluable to ensure that a financial system satisfies the
accounting principle of double-entry bookkeeping, throughout its evo-
lutionary lifetime. We define a concept of evolution-invariant, discuss
its usefulness, and show how the above mentioned accounting principles
can be established as such invariants.

Keywords: perils of software evolution, evolution-invariants, law-governed interac-
tion, accounting principles.

1. Introduction

The inevitable process of software evolution carries serious perils—
particularly when the software is embedded in some critical enterprise,
such as a power plant or a financial establishment, and when the soft-
ware evolves in its operational context. The perils of such an evolution
are due to the ease of making changes in software, combined with the
ability of even a small change to cause large changes in system’s behav-
ior. An enterprise that uses an evolving software is thus susceptible to
destructive, and even disastrous effects caused either by inadvertent er-

*Work supported in part by NSF grants No. CCR-9710575 and No. CCR-98-03698



42 Integrity, Internal Control and Security in Information Systems

rors, or by malicious attacks by the programmers employed to maintain
this software.

These dangers are becoming progressively more difficult to manage as
the software technology is undergoing a transition from monolithic sys-
tems, constructed according to a single overall design and managed by
a single organization, into conglomerates of semi-autonomous, heteroge-
neous and independently designed subsystems, constructed with little,
if any, knowledge of each other, and often managed and maintained by
different organizations. Such software conglomerates, a rarity just few
years ago, are becoming more common due to several factors, including:
the increased use of COTS, the use of services available via the internet,
and the need to support inherently conglomerate institutions, such as
large global corporations.

It is my thesis that the perils of software evolution can often be
tamed—although not eradicated— by ensuring that some broad prin-
ciples of a given system be established as invariants of its evolution. For
example, it could be useful to partition a system into a set of divisions,
constructing permanent—i.e., evolution-invariant— “firewalls” between
them, which will limit the effect that one division can have on the oth-
ers.

Consider, in particular, a computerized financial enterprise. It has
been argued by McKeeman in a paper entitled “Mechanizing Banker’
Morality” (McKeeman, 1975), that certain broad principles are so crit-
ical to the safety and reliability of such enterprises, that they should
not be entrusted to the evolving software running them, but that they
should be “embedded so deeply into the computer, that their violation is
improbable to a degree approaching impossibility”. The critical principles
cited by McKeeman are:

Principle 1 (double entry bookkeeping) Money always flows from
one account to another, but cannot appear from nowhere, or disappear
into thin air.

Principle 2 (auditing) Financial activities can be monitored by au-
ditors, without any ezplicit cooperation with (or the knowledge of) the
system being ezamined, or its programmers.

It is self evident that for software system to have a property that is
invariant of its own evolution, the software must be subject to some
higher authority, which ensures this particular property. There are two
common mechanisms for establishing such an authority over software,
which are very effective, but of a limited range of applicability.

The first such mechanism is the hardware (or firmware) of a computer.
Perhaps the most important case of an hardware-induced invariant is



Establishing Accounting Principles as Invariants of Financial Systems 43

the distinction between master mode and user mode, which is the basis
for the permanent firewall erected in most modern operating system
between the kernel and all user code. Hardware enforcement is also
what McKeeman had in mind for mechanizing his “bankers’ morality.”

The second common mechanism for establishing software invariants
is the programming language in which a system is written. Examples of
useful language-induced invariants abound. They include such things as
scope rules, strong typing, and encapsulation. Another case of language
induced invariant is the inability of Java applets to access the file system
of the host machine.

But computer hardware and programming languages, as mechanisms
for establishing invariants in software, have several limitations: First,
only very few types of invariants can be built into a given machine, or
even into a programming language. Second, an invariant built into the
very fabric of a machine or a language tends to be rigid, and not easily
adaptable to an application at hand. Finally, these mechanisms are not
effective for conglomerate distributed systems, which may be written in
a variety of different languages, and may run on a variety of different
machines.

In this paper we employ more flexible and general means for establish-
ing invariants of evolving systems. We start, in Section 2, by introducing
an abstract concept of evolving systems that can have explicitly defined
invariants. We then outline two concrete models for implementing this
concept, one for monolithic software, and another for conglomerates.
In Section 3 we describe a mechanism, called law-governed interaction
(LGI), that can be used for establishing invariants of conglomerate sys-
tems. In Section 4 we show how LGI can be used to establish McK-
eeman’s accounting principles as invariants of the evolution of financial
systems. We conclude in Section 5.

2. On the Nature of Evolving Systems

Let us delineate first the type of evolution we have in mind here. It
is not the common phenomenon of Darwinian-like evolution of software,
where certain systems, such as text-editors, evolve through the indepen-
dent creation of many variations of existing editors, and through “nat-
ural selection” between these variations in the market place. We limit
the discussion in this paper to software embedded in some long-term
enterprise—such as a medical establishment, or a financial enterprise—
which evolves in its operational contest. In other words, we are dealing
here with a time-sequence of systems {.S;}, operating more or less in the
same context!, where each S; is a variant of its predecessor.



44 Integrity, Internal Control and Security in Information Systems

One often views such a sequence as a single long-lived system, im-
plicitly expecting it to behave in some predictable fashion—that is, to
exhibit some invariants. But currently, there is no technical justification
for this view, since there is generally nothing definite that can be stated
about the structure or behavior of the future stages of such a sequence
of systems. This is true even if the enterprise served by a sequence
{S;} has an explicit policy P concerning its structure and behavior over
time, and even if the enterprise employs good managerial practices and
programming tools (like those discussed in (Duby et al., 1992; Murphy
et al., 1995; Sefica et al., 1996)) for implementing this policy. Because
such informal managerial practices are far from infallible, and the state
of art of software development provides for no formal means for ensuring
that any given policy is satisfied by an evolving sequence {S;}.

To fill this gap, we must (as pointed out in the introduction) subject
the time-sequence of systems {S;} to some kind of “higher authority,”
that enforces a given policy P. This would provide a degree of pre-
dictability to {S;}, which would then deserve to be viewed as a single
long-lived evolving-system—to be called an e-system, for short, and be
denoted by S. Such concept is defined below.

Definition 1 An e-system S is a triple (S,L,E) , where

1 S is the system, at a given moment in time. (That is, at time t,
S is one of the stages S; of the evolving system-sequence.)

2 L, called the law of S, is an explicit collection of rules about the
structure of the system S, about its process of evolution, and about
the evolution of the law itself.

3 & is a mechanism that enforces the law.

Now, if a certain property of an e-system S is entailed by its law £, then
this property is an invariant of the evolution of this system, as long as
the law itself is not changed. The evolution of the law is, therefore, a
critical aspect of an e-system, and needs to be carefully regulated.

So far, we have formulated, and implemented experimentally, two
concrete models for this abstract concept of e-systems: one for mono-
lithic systems, and the other for conglomerates. They use different en-
forcement techniques, support different types of laws, and have different
strengths and weaknesses. We now discuss briefly both these models,
but then focus on the latter one.

To deal with evolving monolithic systems, we introduced the concept
of Law-Governed Architecture (LGA) (Minsky, 1996; Minsky, 1997). An
e-system under LGA? must be constructed and maintained within a soft-
ware development environment that plays the role of £ in the definition



Establishing Accounting Principles as Invariants of Financial Systems 45

above. This environment, whose current experimental implementation
is called Darwin-E, maintains the law £ of an e-system, and its code
S; and it enforces the law over the structure of S, over the evolution
of S, and over the evolution of the law itself. The enforcement of the
law over the structure of S is done mostly statically, incurring no run-
time overhead. As currently formulated, LGA can be applied only to
object-oriented systems, and the current implementation of Darwin-E
is for systems written in Eiffel only. One of the disadvantages of LGA
is that it requires total commitment to it, and does not lend itself to
incremental deployment. This is not the case for our second mechanism.

By its very nature, a conglomerate system cannot be subjected to
a single overarching regime that regulates its structure and evolution.
First, because its sub-systems might be developed and maintained by dif-
ferent organizations; and second, because different components of such
a system might be written in several different programming languages,
and some of them may be COTS, whose source code may be unavailable.
We opt, therefore, for two relaxations of the type of regime provided by
LGA. First, we attempt to regulate only the interactions between com-
ponents of a system, treating the components themselves as black boxes.
Second, recognizing that single conglomerate system may involve many
different, and sometimes unrelated, activities, we attempt to regulate
different activities separately, under different laws. These two relax-
ations gave rise to the concept of law-governed interaction (LGI) (Min-
sky, 1991; Ao et al., 2001), briefly presented in the following section.
In Section 4 we will show how LGI can be used to establish some of
McKeeman’s accounting principles as evolution-invariants of a financial
system.

3. The Concept of Law-Governed Interaction
(LGI)

Broadly speaking, LGI is a message-exchange mechanism that allows
an open group of distributed agents to engage in a mode of interaction
governed by an explicitly specified policy, called the law of the group.
The messages thus exchanged under a given law £ are called £-messages,
and the group of agents interacting via £-messages is called a community
C, or, more specifically, an £-community C.

By the phrase “open group” we mean (a) that the membership of this
group (or, community) can change dynamically, and can be very large;
and (b) that the members of a given community can be heterogeneous.
In fact, we make here no assumptions about the structure and behav-
ior of the agents® that are members of a given community Cz, which



46 Integrity, Internal Control and Security in Information Systems

might be software processes, written in an arbitrary languages, or hu-
man beings. All such members are treated as black boxes by LGI, which
deals only with the interaction between them via L-messages, making
sure it conforms to the law of the community. (Note that members of a
community are not prohibited from non-LGI communication across the
Internet, or from participation in other LGI-communities.)

For each agent x in a given community C¢, LGI maintains, what is
called, the control-state CS, of this agent. These control-states, which
can change dynamically, subject to law L, enable the law to make dis-
tinctions between agents, and to be sensitive to dynamic changes in their
state. The semantics of control-states for a given community is defined
by its law, could represent such things as the role of an agent in this
community, and privileges and tokens it carries. For example, under law
AC to be introduced in Section 4 the term role(bank) in the control-
state of an agent denotes that this agent has been certified as a bank,
and thus would be able to provide other agents with money.

We now elaborate on several aspects of LGI, focusing on (a) its con-
cept of law, (b) its mechanism for law enforcement, and (c) its treatment
of digital certificates. Due to lack of space, we do not discuss here sev-
eral important aspects of LGI, including the interoperability between
communities, the concept of enforced obligation, and the treatment of
ezceptions. Nor do we discuss here the expressive power of LGI, its
implementation, and its efficiency. For these issues, and for a more com-
plete presentation of the rest of LGI, the reader is referred to (Minsky
and Ungureanu, 2000; Ungureanu and Minsky, 2000; Ao et al., 2000).

3.1 The Concept of Law

Generally speaking, the law of a community C is defined over a certain
types of events occuring at members of C, mandating the effect that any
such event should have—this mandate is called the ruling of the law
for a given event. The events subject to laws, called regulated events,
include (among others): the sending and the arrival of an £-message; the
coming due of an obligation previously imposed on a given object; and
the submission of a digital certificate (more about the latter two kinds
of events, later). The operations that can be included in the ruling of
the law for a given regulated event are called primitive operations. They
include, operations on the control-state of the agent where the event
occured (called, the “home agent”); operations on messages, such as
forward and deliver; and the imposition of an obligation on the home
agent.



Establishing Accounting Principles as Invariants of Financial Systems 47

Thus, a law £ can regulate the exchange of messages between members
of an £-community, based on the control-state of the participants; and
it can mandate various side effects of the message-exchange, such as
modification of the control states of the sender and/or receiver of a
message, and the emission of extra messages, for monitoring purposes,
say.

On The Local Nature of Laws:.  Although the law £ of a commu-
nity C is global in that it governs the interaction between all members
of C, it is enforceable locally at each member of C. This is due to the
inherent locality of LGI laws, as follows:

= An LGI law £ only regulates local events at individual agents,

s the ruling of £ for an event e at agent x depends only on e and
the local control-state CS; of x.

» The ruling of £ at x can mandate only local operations to be carried
out at x, such as an update of CS;, the forwarding of a message
from x to some other agent, and the imposition of an obligation
on x.

The fact that the same law is enforced at all agents of a community gives
LGI its necessary global scope, establishing a common set of ground rules
for all members of C and providing them with the ability to trust each
other, in spite of the heterogeneity of the community. And the locality
of law enforcement enables LGI to scale with community size.

On the Structure and Formulation of Laws:.  Abstractly speak-
ing, the law of a community is a function that returns a ruling for any
possible regulated event that might occur at any one of its members.
The ruling returned by the law is a possibly empty sequence of primi-
tive operations, which is to be carried out locally at the location of the
event from which the ruling was derived (called the home of the event).
(By default, an empty ruling implies that the event in question has no
consequences—such an event is effectively ignored.)

Concretely, the law is defined by means of a Prolog-like program? L
which, when presented with a goal e, representing a regulated-event at
a given agent x, is evaluated in the context of the control-state of this
agent, producing the list of primitive-operations representing the ruling
of the law for this event. In addition to the standard types of Prolog
goals, the body of a rule may contain two distinguished types of goals
that have special roles to play in the interpretation of the law. These are
the sensor-goals, which allow the law to “sense” the control-state of the



48 Integrity, Internal Control and Security in Information Systems

home agent, and the do-goals that contribute to the ruling of the law. A
sensor-goal has the form t@CS, where t is any Prolog term. It attempts
to unify t with each term in the control-state of the home agent. A
do-goal has the form do(p), where p is one of the above mentioned
primitive-operations. It appends the term p to the ruling of the law.

3.2 The Law-Enforcement Mechanism

We start with an observation about the term “enforcement,” as used
here: We do not propose to coerce any agent to exchange L£-messages
under any given law L. The role of enforcement here is merely to ensure
that any exchange of L-messages, once undertaken, conforms to law
L. More specifically, our enforcement mechanism is designed to ensure
the following properties: (a) the sending and receiving of L£-messages
conforms to law £; and (b) a message received under law £ has been
sent under the same law (i.e., it is not possible to forge £-messages).

Since we do not compel anybody to operate under any particular law,
or to use LGI, for that matter, how can we be sure that all movement
of funds would be carried out under law AC designed for them? The
answer is that an agent may be effectively compelled to exchange L-
messages, if he needs to use services provided only under this law, or to
interact with agents operating under it. For instance, if a certain server
requires payments for its services only via .AC-messages—which, as we
shall see, enforces our accounting principles— then anybody needing
its services would be effectively compelled to operate under law .AC.
Conversely, if agents in the given enterprise use .AC-messages for their
financial transactions, then servers would be compelled to accept such
messages, if they are to be used.

Distributed Law-Enforcement:.  Broadly speaking, the law £ of
community C is enforced by a set of trusted agents called controllers,
that mediate the exchange of £-messages between members of C. Ev-
ery member x of C has a controller 7 assigned to it (7 here stands for
“trusted agent”) which maintains the control-state CS, of its client x.
And all these controllers, which are logically placed between the mem-
bers of C and the communications medium (as illustrated in Figure 1)
carry the same law L. Every exchange between a pair of agents x and y
is thus mediated by their controllers 7, and 7y, so that this enforcement
is inherently decentralized. Although several agents can share a single
controller, if such sharing is desired. (The efficiency of this mechanism,
and its scalability, are discussed in (Minsky and Ungureanu, 2000).)
Controllers are generic, and can interpret and enforce any well formed
law. A controller operates as an independent process, and it may be



Establishing Accounting Principles as Invariants of Financial Systems 49

Figure 1.  Enforcement of the law.

placed on any machine, anywhere in the network. We have implemented
a controller-service, which maintains a set of active controllers. To be
effective in a widely distributed enterprise, this set of controllers need
to be well dispersed geographically, so that it would be possible to find
controllers that are reasonably close to their prospective clients.

On the basis for trust between members of a community:.
For a members of an £-community to trust its interlocutors to observe
the same law, one needs the following assurances: (a) that the exchange
of L-messages is mediated by controllers interpreting the same law L;
and (b) that all these controllers are correctly implemented. If these two
conditions are satisfied, then it follows that if y receives an L-message
from some x, this message must have been sent as an £-message; in other
words, that £-messages cannot be forged.

To ensure that a message forwarded by a controller 7, under law £
would be handled by another controller 7, operating under the same law,
Tz appends a one-way hash (Schneier, 1996) H of law £ to the message
it forwards to 7. 7, would accept this as a valid £-message under £ if
and only if H is identical to the hash of its own law.

With respect to the correctness of the controllers, if an agent is not
concerned with malicious violations, then it can trust a controller pro-
vided by our controller-naming service, or a controller provided by the
operating system — just like we often trust various standard services on
the Internet, such as TCP/IP protocols. When malicious violations are
a concern, however, the validity of controllers and of the host on which
they operate needs to be certified. In this case, the controller-naming
service needs to operate as a certification authority for controllers. Fur-
thermore, messages sent across the network must be digitally signed by



o0 Integrity, Internal Control and Security in Information Systems

the sending controller, and the signature must be verified by the receiv-
ing controller, allowing the two controllers to trust each other.

3.3 The Treatment of Certificates under LGI

Under LGI, all agents are made equal at the time they join an L-
community. This is because the control-state of all new members is
identical—and control-states provide the only means for a law to make
distinctions between agents. We now explain how an agent can acquire
extra privileges, thus becoming more equal than others (with apologies

to George Orwell), by submitting appropriate certificates.

The submission by an agent z, operating under law L, of a certificate
Cert to its controller, has the following effect: An attempt is made
to confirm that Cert is a valid certificate, duly signed by an authority
that is acceptable to law L, i.e., an authority that is represented by one
of the authority-clauses in the preamble to the law (See Figure 2

for an example). If this attempt is successful®, then a certified-event is
triggered. This event, which is one of the regulated-events under LGI, has
as its argument the following representation of the submitted certificate:

[issuer(I), subject(S), attributes(A)].

Here I and S are internal representations of the public-keys of the CA
that issued this certificate, and of its subject, respectively; and A is
what is being certified about the subject. Structurally, A is a list of
attribute(value) terms. For example, the attributes of a certificate
might be [role(bank)], asserting that the subject in question is allowed
to function as a bank in this community. Additional components of the
attributes field include the expiration time of the certificate, the URL of
the server that maintains CRLs for this type of certificates, a certificate
id (used to identify it in CRLs), etc. (Currently we support SPKI format
of certificates (Ellison, 1999)).

What happens when the certified event is triggered depends, of
course, on the law. In the case of law AC of Figure 2, for example, the
term role(bank) is set in the control-state of the agent that presents
this certificate.

4. Establishing Accounting Principles as Laws of
a Financial Enterprise

Consider now a conglomerate financial enterprise, viewed as collection
of distributed agents interacting via messages. We do not presume any
knowledge of, or control over, the internals of these agents, but we wish
to ensure that all messages that carry money between agents comply
with the principles of double entry bookkeeping and of auditing. This is
done via law AC (for “accounting”) displayed in in Figure 2. The law is



Establishing Accounting Principles as Invariants of Financial Systems 51

composed of a preamble, and a set of rules. Each rule is followed by a
comment (in italic), which, together with the explanation below, should
be understandable even for a reader not well versed in the LGI language
of laws (which is based on Prolog). We start our discussion of this law
with some preliminary observation about its effect, to be justified later.

Each agent operating under law AC would have a term cash(c) in its
control-state, which represents the amount of cash currently held by this
agent (initially zero, for all agents). Money can be moved from one agent
to another by means of AC-messages that contain the term cash(c)—
they are called cash-carrying messages, and they conform to the principle
of double entry accounting. Also, the movement of large amount of
cash (thousand dollars or more, in this case) is being monitored, in
conformance to the auditing principle. The source of money in this
system are agents authorized as banks, by the CA called “admin.” Such
agents would have the term role(bank) in their control-state.

The preamble to this law has several clauses: The first is an authority
clause, which define a certification authorities acceptable to this com-
munity, to be used for the certification of banks. Each authority clause
provides the public-key of a certification authority, and assign it a local
name-“admin”. Second, an initialCS clause that defines the initial
control-state of all agents in this community, which consists of the term
cash(0) in this case. Finally, there is a alias clause assigning the local
name “monitor” to the address auditTrail@enterprise.com, presum-
ably of the audit-trail server used by this enterprise. We now examine
the rules of this law in detail, showing their various effects.

The Flow of Cash:. Rules R2 and R3 of this law regulate the
exchange of cash-carrying messages between agents. By Rule R2, if
a non-bank agent x sends such a message, it will be forwarded to its
destination only if x itself holds sufficient amount of cash, and only
after the cash of x is reduced by c. By Rule R3, when such a message
arrives at its destination y, it causes the cash of y to increase by c. The
message itself is then delivered to y itself..

Thus, cash flows between non-bank agents in the system via cash-
carrying messages in full compliance with the principle of double-entry
bookkeeping. Note that this law is silent on the structure of cash-
carrying messages (except that they need to have a cash-term) and on
their effect on anything but the cash balance of the sender and the re-
ceiver. So a cash carrying message might be a payment for a previous
service, a cash-carrying order, or just a grant of money to the receiver
of the message. The specific form and effect of such messages is left to
the agents themselves.



52

Integrity, Internal Control and Security in Information Systems

R1

R2

R3

R4

Preamble:

authority(admin,publicKey).
initialCS([cash(0)]).
alias(monitor, “auditorTrail@enterprise.com”).

certified([issuer(admin),subject (Self) ,attributes(A)]) :-
role(bank)@A, do(+role(bank)).

Claiming the role of a bank, via certificate issued by the designated CA called
admin.

sent (X,M,Y) :-
cash(C1)@M, C1>0, cash(C)eCS,
(C>C1 | role(bank)eCs),
do(dcr(cash(C)),C1),
do(forward),
audit (sent,X,M,Y).

An If a message carrying C1 dollars (in a “cash” field) is sent by an agent
X with C dollars in its own cash account, this message is forwarded if X has
enough cash on hand (i.e., C>C1) or if X is a bank. In either case, the cash of
X is decremented by C1 and the message is forwarded. Finally, the audit-rule
is invoked.

arrived(X,M,Y) :-
cash(C1) @M,
do(incr(cash(C)),C1),
do(deliver),
audit (arrived,X,M,Y).

A message carrying C1 dollars (in a “cash” field) that arrives at an agent Y
causes the cash possessed by Y to be incremented by C1. This message is
then delivered, and the audit-rule is invoked.

audit (Event,X,M,Y) :-
Event=arrived,
cash(C1)@M, C1>1000,
do(forward(X, [Event,Time,X,M,Y], monitor).

The arrival of any message that carries more than 100 dollars is recorded, by
sending to monitor all relevant information.

Figure 2. The Accounting-Law AC



Establishing Accounting Principles as Invariants of Financial Systems 53

The Role of Banks:.  To play the role of a bank under this law,
an agent needs to present a certificate signed by by the CA we call here
“admin,” with the term role(bank) in its attributes. By Rule R1, the
presentation of such a certificate would add the term role (bank) to the
control-state of the presenter, which we will call simply “banks” from
now on.

The function of banks under this law is to provide agents with cash
(without banks in this system there would be no cash to move around,
because all agents start with zero balance), and to accepts deposits of
cash from agents. By Rule R2, a bank is able to inject arbitrary amount
of cash into the system simply by sending it in a cash-carrying message
to some agent y, even if its own cash-balance is negative.

Presumably, such a grant of cash to an agent y would generally be
made in response to some kind of withdrawal request from y, and only
if y has some kind of account with this bank, with sufficient balance.
But such considerations are orthogonal to the principle of double-entry
bookkeeping, and are, therefore, intentionally not covered by this law.
Note also that agents may deposit some of their cash in a bank, via some
kind of cash-carrying message to it. Thus, the balance of cash in a bank
is always the sum of deposits in, minus the sum of withdrawals; and it
could be negative.

Auditing:.  The audit rule (R4) is invoked by every sent or arrived
events (as specified by Rules R2 and R3). This rule causes the time-
stamped record of this event to be forwarded to a distinguished agent
monitor—thus recording it—provided that the conditions specified in
this rule are satisfied. The specific condition for recording an event built
into Rule R4, are such that only the arrival of messages that carry at
least $1000 is being monitored. But it is obviously possible to write
audit rules that monitors different subsets of event, and that forwards
records of such events to different monitors.

Thus, as required by the principle of auditing, somebody who can
change the law AC can specify the type of events to be audited, and
to actually carry it out, without the cooperation or knowledge of the
system being audited or its programmers.

Discussion:. It is quite remarkable that it is so easy to formulate
our two accounting principle by a law that consists of merely four rules.
Particularly that this is not just a specification of these principles, but
their implementation—because the law is actually enforced under LGI.
But this formulation of these principles is oversimplified, particularly
as it does not take into account possible faults of the system, such as



54 Integrity, Internal Control and Security in Information Systems

communication failures. It is possible to make this law fault tolerant, to
a significant extend, but it takes at least twice as many rules to do so,
and it is beyond the scope of this paper.

5. Conclusion

The propensity of software for rapid evolution, poses serious dangers
to the integrity of any enterprise it is embedded in. We have argued
in this paper that these dangers can be tamed by ensuring that some
of the architectural principles of a given system are enforced, and thus
established as evolution-invariants of the system.

We have used a financial enterprise as an example, showing how two
important accounting principles can be established as invariants. And
we believe that there are many other accounting principles, and business
rules (Ehnebuske et al., 1997), that can be treated similarly.

Notes

1. We say “more or less,” because the operational context of such along-lived sequence
of systems is itself likely to change, even if relatively slowly.

2. In previous publications about LGA we used the term “project” for what is called here
an “e-system”.

3. Given the popular usages of the term “agent,” it is important to point out that we do
not imply by it either “intelligence” nor mobility, although neither of these is being ruled out
by this model.

4. Note, however, that Prolog is incidental to this model, and can, in principle, be replaced
by a different, possibly weaker, language; a restricted version of Prolog is being used here.

5. If the the certificate is found invalid then an ezception-event is triggered.

References

Ao, X., Minsky, N., Nguyen, T., and Ungureanu, V. (2000). Law-governed communi-
ties over the internet. In Proc. of Fourth International Conference on Coordination
Models and Languages; Limassol, Cyprus; LNCS 1906, pages 133-147.

Ao, X., Minsky, N., and Ungureanu, V. (2001). Formal treatment of certificate revo-
cation under communal access control. In Proc. of the 2001 IEEE Symposium on
Security and Privacy, May 2001, Oakland California (to be published).

Duby, C. K., Meyers, S., and Reiss, S. P. (1992). CCEL: A metalanguage for C++.
In USENIX C++ Conference.

Ehnebuske, D., McKee, B., Rouvellou, I., and Simmonds, I. (1997). Business objects
and business rules. In OOPSLA’97: Business Object Workshop.

Ellison, C. (1999). The nature of a usable pki. Computer Networks, (31):823-830.

McKeeman, W. (1975). Mechanizing bankers' morality. Computer Languages, 1:73-
82.

Minsky, N. (1991). The imposition of protocols over open distributed systems. IEEE
Transactions on Software Engineering.

Minsky, N. (1996). Law-governed regularities in object systems; part 1: An abstract
model. Theory and Practice of Object Systems (TAPOS), 2(1).



Establishing Accounting Principles as Invariants of Financial Systems 95

Minsky, N. (1997). Toward continuously auditable systems. In Proceedings of the First
Conference on Integrity and Internal Control in Information Systems. IFIP.

Minsky, N. and Ungureanu, V. (2000). Law-governed interaction: a coordination and
control mechanism for heterogeneous distributed systems. TOSEM, ACM Trans-
actions on Software Engineering and Methodology, 9(3):273-305.

Murphy, G., Notkin, D., and Sullivan, K. (1995). Software reflection models: Bridging
the gap between source and high level models. In Proceedings of the Third ACM
Symposium on the Foundation of Software Engineering.

Schneier, B. (1996). Applied Cryptography. John Wiley and Sons.

Sefica, M., Sane, A., and Campbell, R. (1996). Monitoring complience of a software
system with its high-level design model. In Proceedings of the 18th International
Conference on Software Engineering (ICSE).

Ungureanu, V. and Minsky, N. (2000). Establishing business rules for inter-enterprise
electronic commerce. In Proc. of the 14th International Symposium on DIStributed
Computing (DISC 2000); Toledo, Spain; LNCS 1914, pages 179-193.



Integrity and Internal Control in Modern Banking
Systems

Jim Jones

Havenlogic Systems Ltd.

7 Oakcroft Close, West Byfleet, Surrey

UK, KT14 6JQ

Tel.: +44-1932-355716, e-mail: jim-jones @ havenlogic fsnet.co.uk

Abstract: This paper examines the nature of controls traditionally applied in the Banking
industry to batch transactions. It then looks at the reasons why batch systems
introduce the notion of Risk into financial systems and why modern systems
are moving towards real-time in order to overcome this Risk. By analysing
real-time banking systems, including those driven by the advent of the
Internet, the paper identifies the need for an entirely new family of controls
and proposes an architecture of Parallel, Autonomous Audit as a framework in
which this might be developed.

Key words:  Batch controls; real-time controls; distributed transactions; Parallel,
Autonomous Audit

1. INTRODUCTION

“You may not like your bank but you do trust them”

This comment constituted the principal theme of the SIBOS banking
conference in San Francisco in October 2000 where the major banks of the
world started to come to grips with the risks inherent in using the Internet as
a banking medium.

The business of banking has always focussed very heavily on the need
for Controls. Double Entry book-keeping itself is a form of control; hash



58 Integrity, Internal Control and Security in Information Systems

totals and batch totals are forms of control; transaction reconciliations are
forms of control.

Despite this focus, transactions continue to go missing or end up at the
wrong destination and in the worst case, banks continue to go bankrupt.
Therefore, there still remains a need to enhance controls for the systems we
have been familiar with for many years. However, it is clear that we are also
being faced by a new generation of banking system and, if our traditional
controls are not adequate for the old systems then it must be questioned to
what extent they are appropriate for the new systems.

In this paper, it is proposed that these ‘traditional’ forms of control are no
longer adequate for the new generation of banking systems which can be
categorised as real-time, distributed transaction systems. We will explore the
architecture of a number of these systems, including Real-Time Gross
Settlement (RTGS), Continuous Linked settlement (CLS), Straight-Through
Processing (STP) as well as Internet banking. We will try to establish what
makes these systems different, what new challenges they pose for control
regimes and some ideas for ways in which these new risks may be
addressed.

2. TRADITIONAL BANKING SYSTEMS

Since banking was systematised by the Florentine bankers in the 15"
century, the business of banking can be crystallised as ‘the buying and
selling of money’. A customer establishes a legal relationship with a bank
via one or more bank accounts; in order to come into operation, these bank
accounts need to be funded (hence money is paid into them) and they operate
by means of the input and output of funds. In some cases, the transfer of
funds is an end in itself; for example, if you go to an automated teller
machine (ATM) to draw cash from your own bank account, the transfer of
funds is purely a financial one. In other cases, however, the movement of
funds is used to support some other type of business transaction (often
referred to as an ‘underlying transaction’) such as the sale of purchase of
stocks and shares or the repayment of a mortgage or the receipt of interest on
a savings account.

These systems are transaction-orientated and are collectively referred to
as Payment Systems. Indeed, there is a view that Payments are not restricted
to banks but extend to other financial organisations, such as Credit Card
companies (such as Visa), Building Societies, Mutual Funds etc.



Integrity and Internal Control in Modern Banking Systems 59

In traditional systems, the processing of Payments was viewed as a
routine task conducted in the back office of a bank. Transactions were
submitted on paper (cheques being but one example) and each transaction
was hand-written into a large Ledger book. This manual process took some
time to perform, especially as any checks on the validity of the transaction,
such as credit checking, were also manual. However, the banks were not
unhappy about this situation, since they were able to make use of this money
(a float) for several days and earn interest on it until the transaction was
finalised or settled and they relinquished the money.

From the mid-1960s onwards, the introduction of computer systems
began to impact some of these fundamental assumptions about the way
Banking should work. For example, it was found that computers worked best
by processing a group of transactions together as a batch or file, which
meant that, instead of each transaction being handled individually as in the
manual system, transactions were accumulated until a large enough set was
available for computer processing. Although the computer processed these
batches of transactions far quicker than a human being could, nevertheless,
there was still a considerable period of time in which a transaction simply
waited to be processed.

Batch computer systems found it easy to adopt traditional banking
controls. Batches were totalled at various stages of processing and the totals
checked to ensure that a transaction had not been corrupted, either
accidentally or (in some cases) intentionally. At the end of the processing
period — usually a day — a summary or statement would be printed and
reconciled back to the initial transactions.

The prime characteristic of these systems was that, even though it might
still take several days to complete the processing of a transaction (in the UK,
today, it still takes three working days for most payments), the interim
checks and balances enabled errors to be picked up and corrected, long
before the transaction was finalised and certainly long before the customer
could become aware that a problem had occurred. As a result, banks were
perceived to handle the overwhelming proportion of their transactions
correctly and customers felt comfortable that they did so.

3. THE AGE OF INNOCENCE VANISHES !

In the 1970s, the major banks started to realise that all was not well with
their systems. Customers were beginning to demand quicker responses,



60 Integrity, Internal Control and Security in Information Systems

based on the fact that banks were spending lots of money on computers, and
the systems began to creak. In addition, there was a sudden realisation that
Payments were not merely an administrative function in the back office but,
if handled incorrectly, would have severe impacts on the bank’s ability to
fulfill its obligations. In simple terms, if a bank tried to pay out all its
obligations before it received any incoming money, it would lack the
liquidity or available cash to do so and would stop functioning.

It therefore became clear that there is not only a relationship between
incoming and outgoing payments but also a complex relationship between
the timings of them. In 1930, the major banks of the world established the
Bank of International Settlement (BIS) in Basle, Switzerland, to research the
impacts of various flows of Payments and recommend best practices to
safeguard these. Throughout the 1980s and 1990s, the BIS published a series
of recommendations to the Banking industry. In cases where the commercial
banks were slow to implement these recommendations, the Central Bank in a
country would intervene and impose a much more onerous solution,
typically requiring the commercial bank to submit large amounts of
collateral to guarantee that transactions would complete. Of course, such
collateral could not be invested and the banks lost interest. Hence, the
commercial banks were incentivised to implement BIS recommendations.

4. REAL-TIME GROSS SETTLEMENT (RTGS) -
THE FIRST NEW SYSTEM

Even though computers had reduced the time needed to process a
Payment, it still took at least one working day before a transaction was
finalised. During this period, therwas a risk that something could go
wrong. It might be that the customer who had asked for the transaction went
bankrupt; it might be that the bank itself lacked liquidity and went bankrupt.

Therefore BIS established a two-tier classification of Payments — High-
Value and Low-Value. Although each country is free to determine the
boundary between these two types, in practice, most countries come to
similar conclusions. In the USA, the Federal Reserve classifies a payment
over US$ 1 million as a High-Value payment; in the UK, the Bank of
England classifies a payment over UK£ 1 million as High-Value.

In an RTGS, the paying customer (usually a Corporation or a
Government department or, in fact, a bank) issues an instruction to his bank
to make a high value payment on a certain day. Usually, high value



Integrity and Internal Control in Modern Banking Systems 61

payments are not triggered on impulse; they are scheduled several days or
even weeks in advance. Therefore, on receipt of the instruction, the bank
stores it in some form of data warehouse and, during this storage period, the
customer is free to cancel his instruction

On the due date, the bank extracts the instruction, checks that the
customer still has funds to cover the payment and, if all is correct, sends the
instruction to the national bank of its country for immediate finalisation
(usually called Settlement). As soon as the instruction is settled, the
beneficiary’s bank is notified and for practical purposes the funds are
available to the beneficiary.

The hypothesis is that a High-Value payment is too important to be left in
limbo for a day before it is finalised and the BIS therefore recommended that
it should be processed by computer in real-time. The idea was that even if
‘real-time’ in reality meant 15 minutes, this was substantially better than 8 or
10 hours or worse.

The corollary of this idea, however, was that batch controls were
inadequate to safeguard such transactions. In a real-time system, clearly
there is no concept of batch controls and so, this weapon was lost. Likewise,
if it took from 9.15 in the morning to 9.30 to process a High-Value payment,
it was of little use finding out at 5.00 in the evening that it had been
processed incorrectly — the money was gone and it was difficult, if not
impossible, to get it back.

What was needed was a set of controls, which would monitor each
individual transaction, and alert the bank to any error in processing before
the transaction was completed.

3. DISTRIBUTED PAYMENTS

In 1974, the Banking industry was rocked by the bankruptcy of Bankhaus
Herstatt in Germany.

This bank was processing foreign exchange transactions and a situation
arose where it was buying Japanese Yen and selling US dollars. Due to the
time differences around the world, it paid out to buy the Yen early in the day
while the Tokyo market was awake but had to wait for the US market later in
the day before receiving the incoming payment. Unfortunately, when the US
market awoke, there were no dollars and Bankhaus Herstatt could not sustain
the loss and was declared bankrupt.



62 Integrity, Internal Control and Security in Information Systems

This risk — the risk arising from different trading hours around the world
became known as Herstatt Risk and the BIS set out to address the problem.
This led to a set of recommendations in 1995 and ultimately to the
development of a system to solve the problem, known as Continuous Linked
Settlement (CLS).

You can look upon CLS as a two-sided RTGS, described earlier.
Imagine a typical high value foreign exchange transaction: a major US motor
manufacturer wishes to pay for a new factory in Switzerland. So, it sends an
instruction to its bank — please transfer the equivalent of US$ 500 million in
Swiss francs into our account in Zurich at 10.00 next Wednesday.

The bank therefore has to sell US dollars and buy Swiss francs which it
does through it foreign exchange trading department. The usual way in
which this is done is for the trader to find another bank which wants to
convert Swiss francs to US dollars for its customer and the two banks
basically agree an exchange of value.

Again, the transactions are scheduled well in advance and so each bank
sends its half of the transaction, in this case, to a data warehouse at CLS
bank. On the due date, CLS Bank looks at both halves of the transactions
and if they match, it settles the two transactions simultaneously. If either side
of the transaction is missing, settlement does not occur and the half of the
transaction which was correct is returned, with no money being lost. The
same thing happens if both sides of the transaction are present but do not
agree in value.

In this way, the CLS system overcomes the Herstatt problem by insisting
that both sides of the transaction are available simultaneously.

CLS provides a number of control features, not all of which will be
described in this paper. Some controls are the traditional end of day controls,
which are the ultimate check that everything has been processed correctly.
Other controls relate to the real-time aspects of the system, the mechanics of
which have been described above.

However, the study of ‘how foreign exchange transactions work’ has led
to the identification of another issue, the importance if which is just
beginning to be realised.

The architecture of the CLS system is illustrated below.



Integrity and Internal Control in Modern Banking Systems 63

CLS Bank

N

Settlement Settlement
Bank Bank
Correspondent Correspondent
Bank Bank
User User
Bank Bank
Corporate Corporate
Customer Customer

Figure 1. CLS System Architecture

What we can see is that, from the time the transaction is initiated by the
customer to the time that the money arrives in the recipient’s bank account,
the transaction passes through a number of separate organisations, usually
banks, on its route to its destination. Each bank is legally only responsible
for the transaction for part of its life and there is no single organisation,
which has the overall authority and mandate to monitor the integrity of the
transaction for the whole of its life cycle.

The question therefore arises — who is supposed to do what if a
transaction goes wrong ?



64 Integrity, Internal Control and Security in Information Systems

Clearly, any error should be picked up at the end of the day when CLS
Bank issues its statements for the participants to carry out their
reconciliations. If a participating bank identifies an error, it first has to check
its own systems to see if it is the culprit, but if it can find nothing wrong,
then it has to pass the problem to the next bank in the chain for it to carry out
an investigation and so on. If nobody will admit to having caused the
problem and they all point fingers at each other, the resolution could take
several days. However, as has been pointed out earlier with RTGS, the actual
money is long gone and is difficult to recover. If one of the major banks
participating in this system considers a typical transaction to be US$ 500
million, the misprocessing of a single transaction is a serious event not only
for the bank involved but also the other banks who could be affected by a
knock-on or systemic effect.

Finally, as far as the customer is concerned, he neither knows nor cares
how many banks are involved in the processing chain. He requires his own
bank to fix the problem, regardless of whether they caused it or not.

6. DISTRIBUTED PAYMENTS - ANOTHER
EXAMPLE

CLS is by no means the only new Banking system to adhere to the
architecture described above and to suffer from the same risks. Within the
Securities market, there exists a similar problem. As shown below, in the
buying and selling of Securities, there are a number of organisations
involved. Some of them still have manual systems and those that are
automated have incompatible systems.

Historically, this has meant that once one system has processed a
transaction, it prints out the results and passes the paper record to the next
organisation in the chain, which re-enters the details, obviously with the risk
of making an error.

To address this, the organisations involved in Securities processing are in
the act of launching initiatives to eliminate these manual steps into what is
becoming known as Straight-Through Processing (STP). The key idea here
is that all the computers will speak a common ‘Securities language’ with
common message formats, so that transactions can be passed automatically
from one system to the next without manual intervention.



Integrity and Internal Control in Modern Banking Systems 65

Depository

N

Sub- Sub-
Depository Depository
Back Office Back Office
Broker / Broker /
Dealer Dealer
Corporate Corporate
Customer Customer

Figure 2. STP System Architecture

Taking a typical transaction, if you instruct your investment broker to
buy some shares in a company for you, he looks around to find another
broker whose customer wants to sell those shares and when he finds one, the
two brokers agree a deal. Today, each broker handwrites on a piece of paper
the details of what he thinks he has agreed over the telephone and a
messenger takes this piece of paper into the back office.

In the back office, the details are keyed into a computer system and
transmitted to the other broker’s computer system. Even at this early stage,
there is room for error. Handwritten notes are transcribed incorrectly; pieces
of paper become detached and fall on the floor or they simply lie on
someone’s desk unnoticed.



66 Integrity, Internal Control and Security in Information Systems

Once past this stage, the transaction moves from the back office to a
custodian (which is usually a bank which holds the customer’s share
certificate) up to a Depository where the transfer of ownership is registered
and then all the way down the other side of the pyramid.

The other problem with this type of system is one shared with CLS. None
of the organisations in the chain is responsible for the transaction for the
whole of its life cycle which means that there is no clear allocation of
responsibilities for fixing anything which goes wrong.

One possible solution to this problem is to have a neutral ‘referee’ sitting
outside the system but monitoring the transaction as it passes from one
organisation to the next and it has been suggested that SWIFT might play
this role. The basis for this is that SWIFT has defined a set of standard
message formats which handle securities transactions, SWIFT provides the
network which links together the banks which process the corresponding
payments and SWIFT has ambitions to use the same network to link together
securities firms on a worldwide basis.

It is encouraging to see that this type of control issue (which we look
upon as decentralised control) is being addressed but the SWIFT solution is,
at best, a partial one. Firstly, many of the larger securities firms have already
implemented their own version of STP with their own networks and it could
be disruptive to replace this with SWIFT. Secondly, SWIFT can only
monitor what goes into an organisation and what comes out of the other side.
As such, SWIFT may identify which organisation is causing a problem but
cannot tell which system within the organisation is at fault. This paper
explores below an alternative approach towards handling decentralised
control at a more detailed level.

The elimination of error-prone manual processes is clearly a good thing
but, by itself, does not eliminate all the new problems we have identified to
date:

e As processing is automated and moves nearer to real-time, traditional
end of day controls no longer pick up errors early enough

e In a system made up of autonomous organisations, there is no overall
control of a transaction from beginning to end

e Even worse, a Securities transaction is one which we have earlier
classified as an underlying transaction; in other words, it involves the
buying and selling of equities and the transfer of ownership. However,
this transaction is usually accompanied by some form of payment, which
is going along in parallel but separately. If the two transactions are not



Integrity and Internal Control in Modern Bar’~ng Systems 67

synchronized, there exists the possibility that either you have received
the equities but have not paid for them or, possibly worse, you have paid
for them but you are not yet the legal owner !

Hence, you have two systems, each with its own risks, trying to work
together, without creating additional risk (this risk is sometimes referred to
as Delivery versus Payment)

Hence, this type of system incarnates all of the risks described above and
needs to address them all.

7. DISTRIBUTED PAYMENTS - A FINAL
EXAMPLE

In the introduction to this paper, we referred to the issue of Internet
banking, which caused so much stir at Sibos.

Internet banking is in its infancy and means different things to different
banks. At one extreme, the Internet is simply another wire to connect the
customer to his bank. The types of transactions, which are carried out, are
the same as before and can be controlled in the same way. However, some
major banks have ambitions to use the Internet to provide new services. One
of these — the concept of acting as an Exchange - is illustrated in figure 3.

The banks observe that the Internet is allowing new organisations to set
up so-called Exchanges to bring together Buyers and Sellers in a variety of
ways. One typical example is to organise electronic auctions in which the
Buyer hopefully ends up with a lower price. Another is the electronic
organisation of Tendering — publishing Invitations to Tender (ITTs),
establishing bidding consortia, managing the bidding process and managing
the contracting process.

Why should the banks want to get involved in this type of business
process ? Two reasons are commonly quoted:

o In the life cycle of a total business transaction, the payment (i.e. the part
the bank has traditionally handled) is only a small part. If the exchange
decides to offer payment services, the bank is cut out of the business
completely —it is disintermediated.

e  Whoever runs an exchange function learns a huge amount about both the
Buyers and Sellers and is therefore well equipped to offer additional
services. Banks have always suffered from a lack of understanding of



68 Integrity, Internal Control and Security in Information Systems

their customers’ habits. Whereas a retail store knows all about the food
you buy and the clothes you wear, as a simple by-product of your
purchases, and can predict what you are likely to buy in the future, a
bank has to explicitly ask for this information and such requests often
meet with resistance.

There are many risks involved with a bank going into these areas of its
customers business and a bank has to weigh up very carefully what new
legal liabilities it will incur with each new service it offers. For example, if it
sets up an auction for a buyer and selects a seller, what is its legal liability if
the seller disappears with the money but without delivering the goods.

It is not possible in this paper to evaluate all of the risks involved in this
new and evolving type of trading, but we can see that all of the risks
described earlier apply to this area:
¢ Transactions are moving to real-time
¢ A number of organisations (NOT all of them banks) are involved in the

chain
e There is an underlying transaction — usually a purchase — which has to
be synchronised with the Payment.

However, in addition, it is useful to highlight an additional risk (which
does occur in some of the earlier scenarios but which we have chosen to hold
off describing up to now). This is the risk associated with a long transaction.



Integrity and Internal Control in Modern Banking Systems

e-market Infrastructure

69

Collaboration & Community

Design Sourcing Operations Sales &
Service
Business Process Flow Decision Support

Aggregation & Discovery
Fixed/Contr | [RFP/RFQ | |Auctions | |Exchange
Price
Search & Match
Buyers Content Sellers
Ts & Cs | | Catalogue | [Markt Info | |User Profilg
Transaction
Order
Buyer Management | | Invoicing | | Payment Rfx Supplie
yste Syste
Commerce Engine
Administration
Usage Membership
Tracking | | Audit Services Exceptions

L —_B2B Intecrator — Enterprise

Manager

Trust & Access

Business Flow|
Manager

InfoDelivery
Manager

Interaction Manager (BFP Gateway)

Solution Manager

Figure 3. Electronic Exchange Architecture

Al

Middleware/Systems Management
lication Framework for e-business

e ADDlICation FTamework for e-business ____ |




70 Integrity, Internal Control and Security in Information Systems
8. LONG TRANSACTIONS

We have seen that banking transactions now can be processed in a few
minutes up to one working day and other parts of the financial industry, such
as Securities, is working towards the same position. Nevertheless, there is a
type of transaction which is intrinsically different; this is a transaction which
is intended to last more than one processing day.

A typical example in a bank or broker is a Futures transaction where the
two parties agree to conduct a transaction at some future date. The
transaction is recorded immediately but may not be completed for up to one
year — and, in fact, may never be completed but cancelled after a year.

In the case of Internet banking, especially in the sector known as
Business to Business, if the object of a bid is a major capital item, then
payment is typically staged over a period of time and is triggered by certain
conditions, such as the completion of a stage of the work or a partial
delivery.

The common point is that a transaction, once recorded, lasts for a
considerable duration. Of course, such transactions have always occurred
and they occur in many industries other than Finance. Howeyver, the size of
the transaction and therefore the size of the payment involved and its impact
on the bank if it is not handled correctly, means that it is not enough simply
to record a transaction on a magnetic medium and recall it on the due date: it
is necessary to monitor it all the time it is dormant to ensure that if anyone
(either within the bank or from the customer) tries to access and change that
transaction, they have the appropriate authorisations.

9. SUMMARY OF THE NEW REQUIREMENTS

In the new generation of Banking systems, we have seen that there is a
set of new risks, which requires a new set of solutions:
e A need to monitor a real-time transaction during its life cycle
® A need to establish a control regime where ownership of a transaction is
distributed over a number of autonomous organisations
A need to ensure that such systems are properly synchronised
A need to monitor long transactions



Integrity and Internal Control in Modern Banking Systems 71
10 TOWARDS A SOLUTIONS ARCHITECTURE

For each of the four categories of new risk listed in section 9, an
individual solution either already exists or can be conceived.

10.1 Real-time transactions

There is a need of a software monitor which also runs in real-time and
maintains a set of business rules which define key moments in the life of the
transaction which need to be reported on and checked - with a
corresponding real-time warning or other action

10.2 Distributed control

There are two types of solutions here, which could be used independently
or together. Collectively, they may be referred to as Transaction-Orientated
Life Cycle Audit Trails (TOLCATS) because they are founded on the idea of
detaching an audit trail from a computer system and, instead, attaching it to a
transaction.

The first is to take the concept of double entry book-keeping and apply it
to a transaction. This could mean that you initiate a transaction on its route
through the transaction chain and then you send off a duplicate of this
transaction around either the same or an alternative network and you match
up the two versions of the transaction at certain intermediate points in order
to highlight a problem as early as possible in the cycle.

It might be objected that this doubles the processing required. However,
if we recall that this type of processing applies only to High-Value payments
(of which there are comparatively few each day), then this could be
considered as an acceptable insurance. A more powerful objection might be
— what do you do if both transactions do not arrive at a checkpoint at the
same time ? Do you wait (and, if so, how long) for the second version which
may never arrive ? And, if the two versions do not match, which one do you
take to be correct ?

A second approach is to have the financial transaction carry its own
control information, as a snail carries its house on its back. On reaching an
interim destination, the transaction unpacks the control information, checks
itself and if correct, carries on to the next point. This technology already



72 Integrity, Internal Control and Security in Information Systems

exists on the Internet and is relatively platform independent. If you are
browsing the web and suddenly a special offer appears on your PC screen
which you had not asked for, in effect what has happened is that some
organisation has downloaded some software onto your PC and set it running
to display the offer. In current jargon, such software downloads are known
as Non-Persisting Cookies !!

In the sort of chained transaction life cycle we have described above in
CLS and STP, the issue is that you can only have a central monitoring
system if everyone in the chain agrees to play and lay their systems open to
the monitoring station. If only one participant decides against this (possibly
because it involves purchasing hardware and software from some vendor it
does not otherwise deal with), then the centralised approach breaks down.

A TOLCAT approach therefore appears to be the only feasible alternative
in which the control information is implemented in a cookie, which
accompanies the transaction. Obviously, the cookie has to be implemented in
such a way that it is not trapped as an error by a firewall and to this extent,
all participants in the chain have to agree to this.

If, however, someone objects to the idea of a piece of software loading
itself into his computer and executing itself, then the community has to
accept that it will not be possible to monitor the transaction as closely as
they think necessary.

If we look at the practicalities, quite apart from the Internet cookie
described above which nobody violently objects to, already one software
house is using this technique to monitor Electronic Bill Presentment and
Payment — a financial system similar to those described above which we did
not have space to analyse. Moreover, System Management tools such as
IBM’s Tivoli series use the same techniques to check that remote computers
are working properly, whether they belong to the one organisation or not.

It may therefore be hoped that this technique will achieve de facto
acceptance in Banking and Finance scenarios.

10.3  Synchronisation of systems

Synchronising a Securities trading system with a payments system is
usually done by both organisations in collaboration. However, such is the
critical nature of the synchronisation and the consequences if it fails that it
appears justified implementing an autonomous control to check if it has been



Integrity and Internal Control in Modern Banking Systems 73

correctly effected. Software is needed to sit on top of the interface to detect
errors and arbitrate over whose software caused the problem

104 Long transactions

Here there is a need to monitor a transaction as though it were a piece of
static data, such as a name and address and to maintain an audit trail of who
accessed it under what authorisation during its extended life cycle.

11. CONCLUSIONS

From the four focus areas discussed above (RTGS, CLS, STP, Internet or
e-banking), we can see that these systems are compelling us to look at
controls in a number of new ways

e We have to take account of real-time transactions and the fact that
traditional batch or end of period controls cannot report errors in these
quickly enough.

e We have to take account of the fact that financial transactions have a life
cycle which extends well beyond the boundaries of any single
participant.

e We have to take account of the fact that transactions can no longer be
seen as transient events which simply update master file information.
They have an extended duration and need to be protected just as
carefully as any other persistent data.

These characteristics lead us to conclude that they cannot be addressed
solely by tinkering with existing controls. A radical new approach is
required and this new approach requires a new control architecture. This
architecture has several dimensions, as illustrated in figure 4.

Firstly, we stress that the architecture needs to be autonomous. This
means that the control functions are independent of the applications. In
handling high value payments, it is essential, in order to reduce the
possibility of fraud, that the controls are managed by an entity which is
independent of the application developers. It is clearly wrong to allow
developers to develop their own controls.



74 Integrity, Internal Control and Security in Information Systems

Parallel Autonomous Audit

«—End to End Integrity — "

Applications

Figure 4. Parallel Autonomous Architecture

Additionally, in real-time systems, since we assume that the new controls
will be developed in software, it is logical to suppose that control software
may also have bugs. If such control software is in-line with the application
code, it becomes part of the problem; whereas, if it is separate, then it can be
turned off in the case of problems without affecting the on-going operation.

Secondly, the controls need to run parallel to the transactions they are
controlling. If the transactions are occurring in real-time, the controls have to



Integrity and Internal Control in Modern Banking Systems 75

monitor them in real-time. If an error is detected, it needs to be reported in
real-time so that the appropriate correction can take place, while limiting the
propagation of the error.

Thirdly, the control regime needs to take account of the total life cycle of
the transaction:
o Inspace — as it travels through a variety of autonomous organisations
e In time ~ for the duration of its existence, no matter how many years this
may represent.

This paper therefore proposes a radically new paradigm for Controls in
the Banking and Finance Industry. However, it is true to say that the factors
which influence this and the solutions proposed may be applied to many
other industries. One could think of airline scheduling, process control in
steel mills, car assembly lines, drug prescriptions and a host of others.

12. REFERENCES

Valdez S (1993): An Introduction to Western Financial Markets
Macmillan Press

Marshall C (2001): Measuring and Managing Operational Risks in
Financial Institutions John Wiley & Sons (Asia) Pte Ltd

Bank For International Settlements (1989): Report on Netting Schemes
G10 Committee on Payment and Settlement Systems

Bank For International Settlements (1990): Report on Interbank Netting
Schemes (Lamfalussy Report) G10 Committee on Payment and Settlement
Systems

Bank For International Settlements (1992): Report on Delivery versus
Payment in Securities Settlement Systems (DVP Report) G10 Committee on
Payment and Settlement Systems

Bank For International Settlements (1993): Report on Central Bank
Payment AND Settlement Services with Respect to Cross-Border and Multi-
Currency Transactions (Noel Report) G10 Committee on Payment and
Settlement Systems



76 Integrity, Internal Control and Security in Information Systems

Governors of the Central Banks of the European Union (1994): Minimum
Common Features for Domestic Payment Systems (Padoa-Schioppa Report)

Bank For International Settlements (1995): Report on Cross-Border
Securities Settlements G10 Committee on Payment and Settlement Systems

Bank For International Settlements (1996): Report on Settlement Risk in
Foreign Exchange Transactions (Allsop Report) G10 Committee on Payment
and Settlement Systems

Bank For International Settlements (1997): Report on Real-Time Gross
Settlement Systems G10 Committee on Payment and Settlement Systems



Diversity as a Defense Strategy in Information

Systems
Does Evidence from Previous Events Support Such an Approach?

Charles Bain, Donald Faatz, Amgad Fayad, Douglas Williams
The MITRE Corporation 7515 Colshire Drive McLean Va 22102 USA

Abstract: One of the challenges facing computer systems is resisting attack and
compromise in a networked environment. Today’s computing environment is
fairly homogeneous, due to a relatively small number of operating systems and
application functions running on the vast majority of computers. This
environment allows attackers to focus their efforts on the few types of systems
deployed. Once an exploit is found, the exploit is effective against a very
large number of systems running the same software. The large number of
attack methods available on hacker Web sites demonstrates the ease with
which attackers can exploit this homogeneous environment. This paper
examines several widespread computer attacks to understand the effect of
diversity on maintaining the integrity, and hence survivability, of information
systems.

Key words:  Security, survivability, diversity, intrusion and fault tolerance

1. INTRODUCTION

One of the challenges facing computer systems is resisting attack and
compromise in a networked environment. Today’s computing environment
is fairly homogeneous, due to a relatively small number of operating systems
(e.g., variants of UNIX or Microsoft Windows) and application functions
(e.g., networking based on TCP/IP) running on the vast majority of
computers. This environment allows attackers to focus their efforts on the
few types of systems deployed. Once an exploit is found, the exploit is
effective against a very large number of systems running the same software.
The large number of attack methods available on hacker Web sites



78 Integrity, Internal Control and Security in Information Systems

demonstrates the ease with which attackers can exploit this homogeneous
environment.

Most systems run similar software and/or support common services. If
systems were different, they might have an additional defense against
attacker exploits: a vulnerability discovered in one system might not be
effective in other systems if the systems are different in ways that avoid the
vulnerability. Additionally, this diversity would increase the effort required
to compromise systems, since each system would be a unique environment
for an attacker to work against. This increase in effort could reduce the
number of exploits discovered (because of the additional effort required) and
perhaps decrease the attractiveness of exploiting systems.

Diversity as a defense is illustrated in attacks on systems. A typical
attack exploits a system and a specific vulnerability: different systems are
not (directly) affected. An attack effective against Microsoft Outlook does
not affect UNIX mail applications. However, different computer systems
support common services, such as the TCP/IP networking protocol used for
Internet access, or common applications, such as the Netscape or Internet
Explorer web browsers. Thus, the advantages gained through diversity are
offset by systems with a common point of failure.

This paper examines several widespread computer attacks to understand
the effect of diversity on the survivability of attacked systems. The
described attacks are:

e the Morris worm, which spread by exploiting vulnerabilities in TCP/IP
capabilities
e the Melissa virus, which infected using the macro capabilities of a

Microsoft Word attachment to e-mail
o the LoveLetter worm, which infected using a Visual Basic script

attached to e-mail
e the Denial of Service attacks against high-profile web sites from a

network of compromised “slave” systems

The attack methods and effectiveness are described. In the conclusion of
the paper, the role of diversity in the survival of systems is discussed.



Diversity as a Defense Strategy in Information Systems 79

2. THE MORRIS WORM

2.1 Introduction

On Wednesday, November 2, 1988, at 5:01:59 P.M. E.S.T. a worm was
released on the Internet [20]. It was brought under control and eliminated
from most machines 48-72 hours later [19, 26]. This self-propagating worm
easily spread by exploitation of well-known vulnerabilities that had not been
closed in the victim systems.

2.2 Technical Summary

The Morris Worm used four main methods for spreading:

o fingerd gets() buffer overflow: Only 4.3BSD VAX machines suffered
from this attack [19]. SunOS did not suffer, causing a core dump, only
because of different required offset on the stack [18, 21, 26]. Ultrix, for
example, was not vulnerable [8].

e Sendmail DEBUG option: Mostly Berkeley derived Unixes, but also
other varieties of Unix [25, 26]. SunOS binary releases had this mode
[8]. DEBUG was enabled as the default for 4.2BSD, 4.3BSD and
derived SunOS, while the commercial release of Ultrix did not have
DEBUG enabled as a default [8].

e Trusted logins using .rhosts and /etc/hosts.equiv with rexec and rsh: This
affected networking code based on BSD extensions [25]. These are
inherently insecure functions.

e Passwords where /etc/passwd file was not shadowed.

Once security was breached, a bootstrap program was sent to the
compromised machine, which was compiled after its transfer. This program
was then executed and proceeded to copy over two object files (plus the
bootstrap source code), one for the VAX BSD and one for the Sun-3 SunOS.
The bootstrap program linked the appropriate file against the C library to
produce an executable worm. Hence, the worm "supported" only a BSD
UNIX and derived operating systems in use at the time of release. There
were unused provisions in the worm code to transfer an additional 17 files
[17], indicating additional targets may have been planned.

It was estimated that approximately 75 percent of the computers then
attached to the Internet used some version of Unix [27], but the worm only
affected code that included 4.2 or 4.3 BSD derivatives like SunOS [21].
Furthermore, the worm only propagated over TCP/IP and not UUCP, X.25,



80 Integrity, Internal Control and Security in Information Systems

DECNET, or BITNET [21]. The worm did not infect System V systems
unless they had been modified to use Berkeley network programs like
sendmail, fingerd and rexec [21].

2.3 Extent of Infection

In November 1988 it was estimated that there were approximately 60,000
computers worldwide on the Internet [13, 25], composed of over 500
unclassified national, regional and local networks [27]. The NSF estimated
that there were over half a million Internet users [27] at the time.

There are no official estimates of the number of computers attacked, in
part because no one organization is responsible for obtaining such
information. The actual number of systems infected is impossible to
determine, but it's worthwhile to examine the frequently quoted figures.

The first estimate came on Thursday, November 3, 1988, when in the late
evening MIT held a press conference stating that they had suffered an
estimated 10% infection rate of the 2,000 hosts belonging to MIT. The
infection rate was a guess at the time and was given when the Internet was
still under attack. The press extrapolated this percentage to the entire Internet
and concluded that 6,000 machines, [20, 27] of the 60,000 estimated to
comprise the Internet at that time, were infected.

However, not all sites have the same proportion of vulnerable machines
as MIT. A Harvard University researcher who queried users over the Internet
contends that a more accurate estimate would be between 1,000 and 3,000,
or 2% to 5% of the computers infected [27]. Other estimates at the time
ranged from 2,000 to 6,000 (3% to 10%), but when the situation stabilized,
consensus among published papers centered around 2,000 to 4,000 (3% to
1%) [4, 5, 16, 25].

24 Remarks

One of the problems with the available information is that the extent of
infection of vulnerable machines is unknown. If this information were
available, it would be possible to map this proportion into the total number
of Internet hosts to yield an estimate of infection that would have occurred if
the Internet had been homogeneous.

Security is a tradeoff, a measurement of the resolve of the attacker and
defender to commit resources to gain an advantage. In a homogeneous



Diversity as a Defense Strategy in Information Systems 81

computing environment, less expenditure of resources will be required to
defend the system. Similarly, a lesser commitment of resource is required to
attack the system as Shoch and Hupp found when developing their worm
[22]. In a heterogeneous system, the reverse is true for both the defender and
attacker. Hence, the issue is whether the defender or the attacker has the
resolve to commit greater resources to the problem.

In the worm example, at the time of release, the attacker had only
committed resources to permit the attack of a subset of BSD based systems.
However, 17 additional operating systems may have been considered as
targets [23]. It is arguable that if the worm author had committed the
resources to the attack, the Internet would truly have been brought down.

3. THE MELISSA VIRUS

The Melissa virus (W97M.Melissa.A) was released into the Internet in
March 1999. Melissa is a Microsoft Word Macro virus which uses electronic
mail (e-mail) to spread itself to additional systems; however, it carries no
malicious payload.

31 Technical Summary

The Melissa Virus spreads by attaching an infected Word document to an
e-mail message. Recipients who open the attached document in Word
experience two side effects:

e  Word documents created after the infection are also infected with the
virus.

e E-mail addresses from their address book are used to further spread the
virus.

Melissa also reduced the level of security warnings displayed to Word
users and modified the Windows Registry to indicate its presence so future
re-infections would have no additional affects.

3.2 Extent of Infection

It is difficult to assess the overall extent of the infection. None of the
sources located to date could say with any certainty how many systems were
infected. Computerworld [17] reported that 80 percent of the 150
organizations that contacted Network Associates for assistance were
infected. This article also reports that a single customer had 60,000 desktop



82 Integrity, Internal Control and Security in Information Systems

systems infected and over 500,000 e-mail copies in circulation within the
company.

The Risks Digest [28] (comp.risks) noted that Microsoft blocked all
outgoing e-mail to guard against propagation of the virus outside the
company.

In its FAQ, [24] the Software Engineering Institute's (SEI's) Computer
Emergency Response Team (CERT) noted first-hand reports from 300+
organizations that had been infected. Across these organizations, over
100,000 computers were infected. This infection spread rapidly. From first
reported infection to over 100,000 infections took less than three days.

33 Remarks

Melissa, like the Internet worm, targeted very specific software. In the
Melissa case, Microsoft Word versions 8 or 9 were the only software that
could be infected. Systems that did not use this software could not be
infected. Note, however, that Word version 8 was available for both the
Microsoft Windows operating system and the Apple MacOS operating
system so both systems could be infected.

Melissa used only the Microsoft Outlook e-mail client to propagate itself
to other systems. Users of Microsoft Outlook Express, Netscape Mail,
Eudora, or other e-mail clients could themselves be infected if they used MS
Word, but would not automatically spread the virus. Of course, having been
infected, any Word files e-mailed manually would spread the infection.

Further, while users of e-mail clients other than MS Outlook did not
automatically propagate the virus, they were frequently victims of colleagues
and acquaintances who did use Outlook and were flooded with e-mail sent
by Melissa infections on other systems.

4. THE LOVELETTER WORM

The LoveLetter worm (VBS.LoveLetter.A) was released to the Internet
in May 2000. LoveLetter is a Microsoft Visual Basic script (VBScript)
worm that is delivered to victims as an e-mail attachment.



Diversity as a Defense Strategy in Information Systems 83
4.1 Technical Summary

The LoveLetter worm takes advantage of the Windows Scripting Host
(WSH) capability of Microsoft Outlook. When a victim clicks on an e-mail
script attachment in Outlook, Outlook invokes WSH to execute the
VBScript, which infects the victim’s system. Other VBS-enabled e-mail
clients can also execute the worm script. The worm is restricted to Microsoft
environments because the Visual Basic programming language is only
available from Microsoft.

The worm performs the following actions:

e Copies of the VBScript program are stored in several folders on the C:
drive. The copies ensure that the worm is restarted after a re-boot.

e The Windows registry is modified so that the worm script file is invoked
each time the system is restarted. This ensures that the worm is always
running.

e The Windows Registry is modified to remove keys that disable password
caching and that hide shared passwords.

o The Windows Registry is modified so that starting Microsoft Internet
Explorer causes the download of a password-stealing Trojan program.
This program sends stolen passwords to an e-mail address at system
startup and at certain other times. The Windows Registry is modified to
ensure that this Trojan runs at each re-boot of the system.

e A copy of the e-mail and infected script is sent to every entry in the
Microsoft Outlook address book. Recipients who open the e-mail
attachment become infected, thus spreading the virus. Additionally, the
volume of e-mail causes a significant increase in e-mail activity,
impacting e-mail servers.

e A copy of the virus, encapsulated inside an HTML file, is sent to users
who join IRC chat groups used by the victim.

e Files with certain file extensions are deleted, and a copy of the worm is
stored using the name of the deleted file combined with a new extension
.vbs. If a user clicks on this new (but familiar-looking) file name, the
worm is re-executed.

The worm avoids casual detection by taking advantage of common
Microsoft conventions:
¢ Installation of Microsoft Internet Explorer also installs WSH by default.
This also links WSH to Outlook, such that clicking on an e-mail
attachment automatically launches WSH to execute the script. While
many users had installed Microsoft Internet Explorer, few realized that
this installation gave Outlook the capability to execute scripts via WSH.



84 Integrity, Internal Control and Security in Information Systems

e A common Windows default is to suppress the display of file extensions.
The e-mail attachment is named LOVE-LETTER-FOR-YOU.TXT.vbs.
If file extensions are suppressed, the user sees a file name of LOVE-
LETTER-FOR-YOU.TXT. Users may assume that the attachment is a
text file with no associated application, and assume that it is “safe” to
open the attachment. However, rather than displaying a text file, the
VBScript file is executed and the victim is infected. The virus also
replaces certain files on the user’s hard drive with similarly named
versions of the virus. Thus clicking on files with certain extensions
(jpeg or .mp3, for example) will re-launch the virus.

Copies of the virus and associated files are stored with “Windows-like”
file names: MSKernal32.vbs, Win32DLL.vbs, and WIN-BUGSFIX.EXE. It
is difficult for an average user to recognize whether a “Windows-sounding”
file name is legitimate or not.

4.2 Extent of Infection

It is difficult to assess the overall extent of this infection. Symantec
reports the worm “has wide-spread distribution, infecting millions of
computers.” [12] Such numbers are, at best, merely guesses. With many
organizations reluctant or unwilling to provide accurate numbers of systems
infected, the extent of such widespread infections will never be accurately
known.

The worm causes much damage when a system is infected:
o Files are destroyed

e Passwords are stolen

e E-mail servers are clogged by copies of the worm

Additionally, it takes time to recover from infection of a host. Even
uninfected users typically had to spend time dealing with the worm, either
deleting the e-mail sent by infected hosts or updating anti-virus software to
prevent infection.

Variants of the LoveLetter worm were easily created and re-introduced.
Early variants had a different subject for the e-mail or different text in the e-
mail body. (One version purported to be from Symantec Anti-Virus
Research Center containing a file to protect against the worm: the file was
the worm itself.) Other versions changed the processing of the worm. As of
August 2000, there were 29 reported variants of the LoveLetter worm [12],
and detection systems continue to report interception of the worm.



Diversity as a Defense Strategy in Information Systems 85

4.3 Remarks

The LoveLetter worm is written to exploit both the human “weak-link”
and vulnerabilities in the Windows environment. It illustrates how easily a
homogeneous environment can be exploited. The worm is written in a
Microsoft-specific language, is launched (with a user action) from any e-
mail application which supports Microsoft WSH, installs itself on the system
using the Microsoft Registry, and spreads itself using the Microsoft
Windows Address Book facility. With Microsoft products installed on the
vast majority of end-user systems, it is easy to exploit Microsoft
vulnerabilities (and normal capabilities) to have a significant impact on
users.

However, running a non-Microsoft environment (and thus avoiding

Microsoft-only programs) is not free of impact:

e The ILOVEYOU worm flooded e-mail systems. This impacted many
servers, as they crashed or were taken offline for repair / protection.
This impacted all e-mail users, whether running the Outlook client or
not.

o The script was written in VBScript, an ActiveX scripting language.
ActiveX can host many scripting languages, including Perl and TCL/TK.
Scripts written in these languages have the potential to run on systems
other than Microsoft. Using those languages, it would be easy to write a
script that could be destructive in additional environments. One variant
of the LoveLetter worm is a version written as a generic UNIX shell
script.

Other mail clients, such as Netscape Communicator and Eudora, can
launch VBScript attachments to e-mail on a Windows platform via WSH.
Thus, even different e-mail applications are exposed to vulnerabilities in
common facilities.

5. DISTRIBUTED DENIAL OF SERVICE ATTACKS

During February 2000, several high-profile Internet sites were crippled
by Distributed Denial of Service (DDoS) attacks. During a 3-day period,
Yahoo, Buy.com, eBay, CNN, Amazon.com, ZDNet, and others were
flooded with network traffic, either crashing servers or rendering them
inaccessible to users. A 16-year old youth is accused of launching the
attacks from his home.



86 Integrity, Internal Control and Security in Information Systems
51 Technical Summary

The DDoS attacks were launched from a network of compromised
systems running the attack software. Using this hierarchical network of
“slave” and “master” systems, a single attacker is able to mount a massive
attack against a victim on a scale that overwhelms it. With a large number
of attacking machines, an attacker does not need to exploit vulnerabilities in
the victim: the victim can be overwhelmed with an extremely large flood of
valid transactions.

The tool used to execute the February DDoS attacks is reported to be the
Tribal Flood Network (TFN), which runs on UNIX systems. To install TFN,
the UNIX host must first be compromised by exploiting a vulnerability.
Once compromised, the host is modified to install both the TFN tool and a
“root kit,” which helps prevent the detection of tools such as TFN. This
compromised host becomes a “slave” or “master” in the attack network
hierarchy, and is ready to be used in a DDoS attack.

When an attack is launched, the attacker selects a victim, generally by
specifying an IP address. The master systems each direct several slave
systems to begin the actual attack. Several attack methods are available,
using different methods to flood the victim. The TFN tool can attack with
either a UDP flood, a TCP SYN flood, an ICMP flood, or a smurf attack [3].

5.2 Extent of Infection

There are two groups of systems affected by DDoS attacks: victims and
compromised hosts.

Victims are selected by the attacker. Therefore, the attacker decides the
extent of an attack. If the attack is directed against a server, other systems
are affected indirectly, as they cannot access the server’s services. For these
DDoS attacks, all victims are attached to the Internet, and are important sites
on the Web. Every system connected to the Internet is a potential victim of a
DDoS attack, so the potential extent of impact is enormous.

Compromised hosts are used as slave or master hosts by the attacker.
The TFN tool used in the attacks runs on UNIX systems, primarily Sun
Solaris and Linux. Recently, some DDoS programs have been ported to the
Windows environment, but UNIX machines are most often used for DDoS
attacks. In order to mount a strong attack, a network of compromised hosts
is created. These networks are often large. The February DDoS attack



Diversity as a Defense Strategy in Information Systems 87

network is reported to consist of at least 50 computers. In a report on the
trinoo DDoS tool [23], some attack networks consisted of 227, 888, and
10549 compromised hosts.

It appears to be easy to create a network of compromised systems.
Attackers can scan systems connected to the Internet, obtaining information
about the operating system level in use. With this information, the attacker
selects a tool that can compromise the system. Many of these tools are
collected into toolkits and are readily available on the Web. These toolkits
effectively “automate” the process of finding and compromising systems.

The I-CAT Metabase [10] has been collecting profile statistics about
vulnerabilities reported by CVE. These vulnerabilities are categorized by
the targeted operating system. For 1999, 286 new vulnerabilities showed the
following distribution of target systems:
¢ UNKX 51%

e  Windows 95 family 23%
e  Windows NT family 37%

For the year 2000, the distribution of vulnerabilities is similar. There is a
continuous stream of new vulnerabilities found and available for
compromising the systems in use today.

53 Remarks

DDoS attacks overwhelm the victim by sending far more IP transactions
at one time than it can handle. Although other attack methods may crash the
victim by exploiting flaws in the software, it is equally effective to
overwhelm the victim with a massive amount of legitimate traffic, leaving
the victim unable to process other requests.

There are few effective methods for dealing with these attacks. If the
victim is disconnected from the network in order to protect it, the attacker
has succeeded in removing the victim from normal service. In some cases,
the attack network traffic can be re-directed by changes in up-stream
components such as routers, but it takes time to determine the source of the
attack and implement the configuration changes.

The same TCP/IP connectivity that enables the Web has become a
common point of vulnerability for attackers to exploit. Even entirely
different systems are vulnerable to attacks on the common components.
Each implementation of the common facility has potential vulnerabilities



88 Integrity, Internal Control and Security in Information Systems

that can be explored with a common set of approaches and tools.
Additionally, entirely different implementations of a common facility will
fail when the attack exploits the normal functions of the common facility.

6. DISCUSSION

At best, the attacks presented here are "anecdotal" evidence that diversity
improves survivability. This is because many of the attacks are targeted for
one system: the non-targeted systems are not affected. The available data on
incidents is not complete enough to form the basis of a conclusion. However,
there is no evidence in any of the examples presented that suggests diversity
reduces survivability.

DesWarte et al. [6] describe many different examples of the use of
diversity in industrial software engineering and in business practices. For
example:

e Airbus A-300/600 digital fly-by-wire system is run by two classes of
computers with different microprocessors designed independently and
provided by different vendors.

e Boeing uses two different compilers to compile separate instances of the
fly-by-wire software on the 777 aircraft.

e Separation of duties, a common business practice to prevent/deter fraud
is a form of diversity.

e Software testing uses multiple approaches (e.g., code reviews, functional
tests, code coverage testing) because each approach is likely to find
different types of problems. Therefore, collectively these approaches
produce higher software quality.

Essentially, they argue that diversity must be good since it is used in
many different ways to provide security and reliability.

Most of the Morris worm's chroniclers took no position on the issue of
the advantages or disadvantages of a homogeneous versus heterogeneous
networking environment with respect to information system survivability.
However, Eichen and Rochlis did make the point at the time that [8]:
"Diversity is good. Though the virus picked on the most widespread
operating system used on the Internet and on the two most popular machine
types, most of the machines on the network were never in danger. A wider
variety of implementations are probably good, not bad. There is a direct
analogy with biological genetic diversity to be made.”



Diversity as a Defense Strategy in Information Systems 89

The examples do support a need to better understand the role diversity
plays in survivability and defense. For example, it was noted that the Morris
Worm could only propagate over TCP/IP connections. Potentially
vulnerable systems (those running BSD 4.2 or 4.3 UNIX derivatives) were
not affected if they were connected via UUCP or X.25. In the more recent
Melissa case, network connection protocol was not considered because all
systems used TCP/IP. Connection protocol diversity has been draatically
reduced in recent years with the arrival of TCP/IP for virtually all commonly
used hardware and software.

Along these lines, the recent denial of service attacks against Yahoo and
other sites suggest that use of a single common communication protocol
makes everyone vulnerable to the same attacks. Hence, diversity, like other
protection mechanisms is likely to require layering or "Diversity in Depth"
to provide good protection. Diverse service implementations that rely on a
common communication mechanism will not survive attacks on the shared
mechanism. This is another example of common mode failures interfering
with planned diversity. In other words, a homogeneous information system
consists of a logical single point of failure.

Another question that needs consideration is the level of diversity
required to derive significant benefit. In the examples presented, the level of
diversity was relatively low, a few different implementations to perhaps tens
of implementations in the case of UNIX variants. Is this enough to "raise the
bar" for a determined adversary or is diversity on a large scale necessary (as
in hundreds or thousands of variants)? For example, automatic software
mutation as described in Michael et al. [15] can make each running copy of a
program unique. Other approaches to building diverse computer systems [9]
could be effective for attack techniques known today (e.g., the buffer
overflow) and suggest other methods for protecting system data (e.g.,
unique, changeable signatures for files.)

However, it is unknown at this time whether these methods are effective
or practical in creating an environment of diversity. Some research indicates
that it may be difficult to “create” diversity by modification of software:

e The authors in Michael et al. encountered several problems with the
software mutation approach. They report “... doubts as to whether
source-code mutation is a viable way to create software diversity.”
Additionally, their work with abstract interpretation of a program
resulted in too many constraints to be processed by the system. This
lead them to believe that only random constraints (i.e., a subset of the



90 Integrity, Internal Control and Security in Information Systems

total number of constraints) could be effectively monitored to detect
software modification [15].

e In an e-mail note to the BUGTRAQ list, Crispin Cowan of the Oregon
Graduate Institute states “... we investigated the approach of using
diversity to resist attack, and found it to be VERY limited in
effectiveness” [1]. This was because the things that must be preserved
(for a program to work properly) and those that must be changed (to
ward off an attack) are largely unknown. Their research efforts turned to
“restrictions,” which essentially wrap additional checking around critical
components [2].

One thing that seems obvious from both the Morris worm and Melissa
discussions is that the authors could have made these attacks capable of
handling more systems. In the Melissa case, using the Mail Applications
Programming Interface (MAPI) instead of spawning Outlook would likely
have enabled Netscape and Eudora e-mail clients to spread the infection
automatically. The Morris worm had capabilities that were not used that
could have supported additional UNIX platforms. Additionally, attack kits
combine several attack tools and provide easy selection of the tool which can
exploit the target system vulnerabilities. Hence, a determined adversary
might easily defeat small-scale diversity.

It may also be the case that extensive diversity creates additional areas of
exploitation. Where implementations are different, the possibility exists for
new errors caused by these differences. These errors could potentially be
exploited r attack, resultinF in vulnerabilities that did not exist in the
homogeneous environment .

7. CONCLUSION

The attacks studied here illustrate that diversity in computer systems
appears to be desirable: the specific systems / facilities not targeted do
survive an attack. In an environment with different implementations of
services, this diversity helps create forms of redundancy: some
implementations continue to operate when others have failed. This creates a
greater level of system availability and reliability, and as a result there is an
improved confidence in the integrity of the information system.

! This opportunity to exploit inconsistencies among multiple implementations was suggested
by Julie Bouchard of Sandia National Labs during planning for the DARPA Information
Assurance program's RT 0001 exercise.



Diversity as a Defense Strategy in Information Systems 91

However, the computer industry is moving toward a more homogeneous
environment. There has been a steady consolidation of operating systems
and applications, despite a tremendous growth in the number of users.
Additionally, there is increased popularity in common services based on
standards (e.g., TCP/IP) or open (i.e., shared) software (e.g., Linux). This
homogeneous environment remains highly vulnerable to attack.

It also appears that diversity may be difficult to “create” in a
homogeneous environment. Several researchers have reported complex
problems in attempting to modify software to introduce immunity to certain
attacks. The large number of attacks discovered each year implies that new
“diversity” methods will constantly need to be created for effective defense.
It remains to be seen whether practical methods will be created to provide
sufficient diversity to help defend against attacks.

8. BIBLIOGRAPHY

1. Cowan, Crispin, e-mail subject "Diversity (was: IIS Remote Exploit
(injection code)),” BUGTRAQ mailing list, June 16, 1999,

2. Cowan, Crispin and Pu, Calton, “Death, Taxes, and Imperfect Software:
Surviving the Inevitable,”
http://www.cse.ogi.edu/DISC/projects/immunix/publications.html;
presented New Security Paradigms Workshop 1998.

3. Criscuolo, Paul J., “Distributed Denial of Service,” CIAC-2319,
Department of Energy Computer Incident Advisory Capability, February
14, 2000.

4. Denning, Dorothy, Information Warfare and Security, Addison-Wesley,
Reading, 1999.

5. Denning, Peter J., "The Internet Worm," in Peter J. Denning, ed.,
Computers Under Attack: Intruders, Worms, and Viruses, ACM Press,
N.Y., 1990.

6. DesWarte, Kanoun, and Laprie, "Diversity against Accidental and
Deliberate Faults," Computer Security, Dependability, & Assurance:
From Needs to Solutions, IEEE Press, 1998.

7. Dittrich, David, “The DoS Project’s “trinoo” distributed denial of service
attack tool," University of Washington;
http://staff. washington.edu/dittrich/misc/trinoo.analysis.

8. Eichin, Mark W. and Rochlis, Jon A., "With Microscope and Tweezers:
An Analysis of the Internet Virus of November 1988," Massachusetts
Institute of Technology, Cambridge, 1988.



92 Integrity, Internal Control and Security in Information Systems

9. Forrest, Spephanie, Somayaji, Anil, and Ackley, David H., “Building
Diverse Computer Systems,” Proceedings of the 6™ Workshop on Hot
Topics in Operating Systems, IEEE Computer Society Press, Los
Alamitos, CA., pp. 67-72 (1997).

10. http://csrc.nist.gov/icat/

11. http://www.attrition.org/mirror/attrition/stats.html

12. http://www.symantec.com/avcenter/venc/data/vbs.loveletter.a.html

13.Kahney, Leander and Polly Sprenger , "Melissa, Spawned by Spam,"
Wired News,
http://www.wired.com/news/news/technology/story/18819.html

14.Lottor, Mark, "Internet Growth (1981-1991)," RFC 1296, Network
Working Group, January 1992.

15.Michael, C.C., Aron Bartle, John Viega, Alexandre Hulot, Natasha
Jarymowyzc, J. R. Mills, Brian Sohr, Brad Arkin, "Two Systems for
Automatic Software Diversification," DISCEX, 2000.

16.Montz, Lynn B., "The Worm Case: From Indictment to Verdict," in Peter
J. Denning, ed., Computers Under Attack: Intruders, Worms, and
Viruses, ACM Press, N.Y., 1990.

17.Ohlson, Kathleen, "Melissa: The Day After," Computerworld Online
News, 30 March 1999.

18.Page, Bob, "A Report on the Internet Worm," Computer Science
Department, University of Lowell, November 7, 1988.

19.Reynolds, Joyce K., "The Helminthiasis of the Internet," RFC 1135,
Network Working Group, December 1989.

20.Rochlis, Jon A. and Eichin, Mark W., "With Microscope and Tweezers:
The Worm from MIT’s Perspective," in Peter J. Denning, ed., Computers
Under Attack: Intruders, Worms, and Viruses, ACM Press, N.Y., 1990.

21.Seely, Don, "A Tour of the Worm," Department of Computer Science,
University of Utah, n.d.

22.Shoch, John F. and Hupp, Jon A., "The 'Worm' Programs - Early
Experience with a Distributed Computation,” in Peter J. Denning, ed.,
Computers Under Attack: Intruders, Worms, and Viruses, ACM Press,
N.Y., 1990.

23.Slade, Rob, "Melissa Macro Virus," The Risks Digest Vol 20, Issue 26, 1
April 1999.

24.Software Engineering Institute (SEI) Computer Emergency Response
Team (CERT), "Melissa FAQ,"
http://www.cert.org/tech tips/Melissa FAQ.html

25.Spafford, Eugene H., "The Internet Worm Incident," Technical Report
CSD-TR-933, Department of Computer Sciences, Purdue University,
West Lafayette, September 19, 1991.




Diversity as a Defense Strategy in Information Systems 93

26.Spafford, Eugene H., "The Internet Worm Program: An Analysis,"
Purdue Technical Report CSD-TR-823, Department of Computer
Sciences, Purdue University, West Lafayette, November 29, 1988,
revised December 8, 1988.

27.United States General Accounting Office, "Computer Security: Virus
Highlights Need for Improved Internet Management," GAO/IMTEC-89-
57, United States General Accounting Office, June 1989.

28.Woods, Lloyd, The Risks Digest Vol 20, Issue 26, 1 April 1999.



PART TWO. INVITED PAPERS




Data Quality: Developments and Directions

Bhavani Thuraisingham* and Eric Hughes
The MITRE Corporation, Bedford MA, USA
* On Leave at the National Science Foundation, Arlington VA, USA

Abstract: This paper first examines various issues on data quality and provides an
overview of current research in the area. Then it focuses on research at the
MITRE Corporation to use annotations to manage data quality. Next some of
the emerging directions in data quality including managing quality for the
semantic web and the relationships between data quality and data mining will
be discussed. Finally some of the directions f