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Preface

Patent Information Retrieval is an economically important activity. Today’s econ-
omy is becoming increasingly knowledge-based and intellectual property in the
form of patents plays a vital role in this growth. Between 1998 and 2008, the number
of patent applications filed worldwide grew by more than 50 percent. The number
of granted patents worldwide continues to increase, albeit at a slower rate than at
its peak in 2006 (18%), when some 727,000 patents were granted. The substantial
increase in patents granted is due, in part, to efforts by patent offices to reduce back-
logs as well as the significant growth in the number of patents granted by China and,
to a lesser extent in the more recent years, by the Republic of Korea. According to
these statistics, the total number of patents in force worldwide at the end of 2008
was approximately 6.7 million (WIPO report 2010). A prior art search might have
to cover as many as 70 million patents. By combining data from Ocean Tomo’s In-
tangible Asset Market Value Survey, and Standard and Poor’s 1200 Index we can
estimate that the global value of patents exceeds US$10 trillion in 2009.

A patent is a bargain between the inventor and the state. The inventor must teach
the community how to make the product, and use the techniques he/she has invented
in return for a limited monopoly which gives him a set time to exploit his invention
and realise its value. Patents are used for many reasons, e.g. to protect inventions,
to create value and to monitor competitive activities in a field. Much knowledge
is distilled through patents, which is never published elsewhere. Thus patents form
an important knowledge resource—e.g. much technical information represented in
patents is not represented in scientific literature—and are at the same time important
legal documents.

Despite the overall increase in patent applications and grants, a situation of eco-
nomic downturn, such as the one the world has experienced in 2008, leads to a
reduction in patent applications and grants (as indicated by preliminary figures pub-
lished by WIPO for 2009). This is, to some extent, explained by the high costs
involved in applying for a patent, particularly for small enterprises. The costs of the
pre-application process, the long duration of the application process and the corre-
sponding uncertainty in the long-term economy in such periods of economic down-
turn need to be addressed by changing the way we search the patent and non-patent
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vi Preface

literature. Both the Intellectual Property (IP) professionals and the Information Re-
trieval (IR) scientists can see this book as a challenge: for the former, in terms of
adapting to new tools; for the latter, in terms of creating better tools for an obviously
difficult task; for both, in terms of engaging in exchange and cooperation.

In the past 10 or 15 years, general information retrieval and Web search engines
have made tremendous advances. And still, we see a huge gap between the technolo-
gies which, on the one hand, were emerging from research labs and in use by major
internet search engines, in e-commerce, and in enterprise search systems, and, on
the other, the systems in day-to-day use by the patent search communities.

It has been estimated that since 1991, when the US Federal National Insti-
tute of Standards and Technology (NIST) began its Text Retrieval Conference
(TREC) evaluation campaign, the available information retrieval and search sys-
tems have improved 40% or more in their ability to find relevant documents. And
yet the technologies underlying the patent search system were largely unaffected by
these changes. Patent searchers generally use the same technology as in the 1980s.
Boolean specification of searches and set-based retrieval are the norm rather than
the ranked retrieval systems used by Google and the like. Tools in some areas have
moved on significantly: some providers have semantic analysis tools, others effec-
tive visualisation mechanisms for patent documents. And yet there has not been the
kind of revolution in patent search which Google had represented for Web search.

In the past few years, the Information Retrieval Facility (a not-for-profit research
institution based in Vienna, Austria) has organised a series of events to bring to-
gether leading researchers in IR with those who practice and use patent search, to
establish the interdisciplinary dialogue between the IR and the IP communities and
to create a discursive as well as empirical space for sustainable discussion and in-
novation.

In the first Information Retrieval Facility Symposium in Vienna in 2007
(www.irfs.at), a distinguished audience of information retrieval scientists and patent
search specialists started to explore the reasons for the knowledge gap. It turned
out that academic researchers were often unaware of the specialised needs of the
patent searchers: for example, they needed a degree of transparency quite unlike
the casual Web searchers, upon which the academics mainly focussed. The patent
searchers were often unaware of the advances made in other areas, and how they had
been achieved. There were difficulties in finding (and using) a common, compre-
hensible vocabulary. In the course of that first Symposium, and through subsequent
IRF symposia and other joint activities, such as the CLEF-IP and TREC-CHEM
tracks, the PaIR and Aspire workshops, major progress has been made in develop-
ing a common understanding, and even an agenda between search researchers and
technologists and the patent search community.

This book is part of the development of that joint understanding. Its origins lie in
the idea of producing post-proceedings for the first IRF Symposium. That idea was
not fully followed up, in part because of pressure to produce more practical, action-
oriented work, and in part because many of the participants felt their approaches
were at too early a stage for formal publication. In the course of the following years
it became apparent there really was a demand to produce a volume which was acces-
sible to both the patent search community and to the information retrieval research

http://www.irfs.at


Preface vii

community; to provide a collected and organized introduction to the work and views
of the two sides of the emerging patent search research and innovation community;
and to provide a coherent and organised view of what has been achieved and, per-
haps even more significantly, of what remains to be achieved.

We have already noted the need for transparency (or at least defensibility) of
search processes from the patent search community. We hope this book will allow
the IR researchers to better understand why such transparency is needed, and what it
means in practise. Furthermore, it is our hope that this book will also be a valuable
resource for IP professionals in learning about current approaches of IR in the patent
domain. It has often been difficult to reconcile the focus on useful technological
innovation from the IP community, with the demands for scientific rigour and to
proceed on the basis of sound empirical evidence, which is such an important feature
of IR (in contrast to some other areas of computer science).

Moreover, patent search is an inherently multilingual and multinational topic:
the novelty of a patent may be dismissed by finding a document describing the same
idea in any language anywhere in the world. Patents are complex legal documents,
even less accessible than the scientific literature. These are just some of the charac-
teristics of the patent system, which make it an important challenge for the search,
information retrieval and information access communities.

The book has had a lengthy and difficult gestation: the list of authors has been
revised many times as a result of changes in institutional, occupational and private
circumstances. Although we, the editors, do feel we have succeeded in producing
a volume which will provide important perspectives of the issues affecting patent
search research and innovation at the time of writing, as well as a useful, brief in-
troduction to the outlook and literature of the community accessible to its members,
regardless of their background, we would have liked to cover several topics not rep-
resented here.

In particular it was disappointing we could not include a chapter on NTCIR, the
first of the evaluation campaigns to focus seriously on patents. Also, a chapter on
the use of Latent Semantic Indexing for the patent domain had been planned, which
ultimately could not appear in this book.

Several of the chapters have been written jointly by intellectual property and
information retrieval experts. Members of both communities with a background op-
posite to the primary author have reviewed all the chapters. It has not always been
easy to reconcile their differing viewpoints: we must thank them for taking the time
to resolve their differences and for taking the opportunity to exchange their knowl-
edge across fields and disciplinary mind-sets and to engage in a mutual discourse
that will hopefully foster the understanding in the future.

Finally, we would like to thank the IRF for making this publication possible,
the publisher, Springer; and in particular Ralf Gerstner, for the patience with which
he accepted the numerous delays, as well as the external reviewers who read each
chapter and provided the authors with valuable advice.

The editors are very grateful to the following persons, who agreed to review the
manuscripts: Stephen Adams, Linda Andersson, Geetha Basappa, John M. Barnard,
Shariq Bashir, Helmut Berger, Katrien Beuls, Ted Briscoe, Ben Carterette, Paul
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Clough, Bruce Croft, Szabolcs Csepregi, Barrou Diallo, Karl A. Froeschl, Norbert
Fuhr, Eric Gaussier, Julio Gonzalo, Allan Hanbury, Christopher G. Harris, Ilkka
Havukkala, Bruce Hedin, Cornelis H.A. Koster, Mounia Lalmas, Patrice Lopez,
Teresa Loughbrough, Marie-Francine Moens, Henning Müller, Iadh Ounis, Florina
Piroi, Keith van Rijsbergen, Patrick Ruch, Philip Tetlow, Henk Thomas, Ingo Thon,
Steve Tomlinson, Anthony Trippe, Suzan Verberne, Ellen M. Voorhees, Peter Wil-
lett, Christa Womser-Hacker.
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Chapter 1
Introduction to Patent Searching

Practical Experience and Requirements
for Searching the Patent Space

Doreen Alberts, Cynthia Barcelon Yang, Denise Fobare-DePonio,
Ken Koubek, Suzanne Robins, Matthew Rodgers, Edlyn Simmons,
and Dominic DeMarco

Abstract This chapter introduces patent searching in a way that should be ac-
cessible and useful to both researchers in information retrieval and other areas of
computer science and professionals seeking to broaden their knowledge of patent
searching. It gives an overview of the process of patent searching, including the
different forms of patent searching. It goes on to describe the differences among
different domains of patent search (engineering, chemicals, gene sequences and so
on) and the tools currently used by searchers in the each domain. It concludes with
an overview of open issues.
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4 D. Alberts et al.

1.1 Introduction

Patents are legal documents issued by a government that grants a set of rights of
exclusivity and protection to the owner of an invention. The right of exclusivity al-
lows the patent owner to exclude others from making, using, selling, offering for
sale, or importing the patented invention during the patent term, typically 20 years
from the earliest filing date, and in the country or countries where patent protection
exists. This temporary “monopoly” provides the patentee with a competitive advan-
tage. Patent owners can also derive value from their inventions by licensing them
to others who have the entrepreneurial capacity and innovative ability to develop,
manufacture and market their inventions. In exchange for this right of exclusivity,
the patentee is obligated to disclose to the public details of the invention, and re-
lated technical or scientific background information and state-of-the-art basis for
the invention. Thus, patents typically contain more details and are more exhaus-
tive than scientific papers. According to a United States Patent & Trademark Office
(USPTO) study [1] published in the “Eighth Technology Assessment and Forecast
Report”, patents provide a significant amount of unique and valuable technological
information that is largely not available elsewhere.

First, it is important to consider the typical patent life cycle and become familiar
with a few terms. Patents are granted by patenting authorities or central offices that
are usually part of the national governments in hundreds of countries around the
world. The process by which patenting authorities and inventors negotiate toward
the terms of a patent is called patent examination and is also referred to as patent
prosecution. Patent examiners, who are employed by a national or regional patenting
authority, conduct patent examination. During examination, the patent examiner will
search for prior art, or public disclosures of the features of the invention, that were
available prior to the filing of the patent application. The examiner may also initially
reject the patent application based on the similarity of the prior art uncovered during
the search or provided by the inventor. An inventor may represent him- or herself
to prosecute the patent application. Alternatively, the inventor may hire a patent
attorney or patent agent, generically referred to as patent practitioners, to prosecute
the application on the inventor’s behalf.

After a patent application undergoes examination and is deemed to satisfy the
requirements for a patent set forth by the governing laws of the patenting authority,
the patent may be used to enforce the right to exclude others from making, using,
selling, and distributing the patented invention. After a patent is granted, the patent
owner is usually required to pay maintenance fees to the granting patenting authority
at certain intervals for the patent to remain enforceable. At this stage, and provided
that all maintenance fees are paid, the patent is considered “in-force”, “active” or
“live”. The patent may be asserted in a lawsuit against parties who are allegedly
making, using, selling, or distributing the invention within the jurisdiction or country
of the patenting authority that granted the patent, or the patent may be licensed for
use by another party in exchange for a licensing fee. The patent may be enforced
for the duration of its patent term—the limited period of time granted for the patent.
Once the patent expires, the invention then belongs to the public or is “in the public
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domain” and can be made, used, sold, or distributed by anyone. A company that is
aggressive in enforcing their patents may frequently seek licensing agreements or
file suit against others who are allegedly practicing the invention protected by their
patents, and likewise may frequently engage in patent litigation.

There are many business and legal decisions that may need to be made throughout
the patent life cycle. Even prior to having an invention, a company or individual
may have the need to evaluate what has already been patented in their industry in
order to know what areas of their industry to focus their innovating energy and
resources. A company may already be involved in research and development for a
technology or product and may need to know how they should design around the
boundaries already protected by other in-force patents. When approaching a large
product rollout, a company may need to conduct one last check to be sure that the
features of the product can be made, used, sold, or distributed without infringing
upon other in-force patents. The business decisions relating to product rollouts or
product designs can have major financial implications. Prior to filing or even drafting
a patent application, an inventor and their patent practitioner may want to gauge
the success which the hypothetical patent application may have when it is sent to
be examined by a patenting authority. In the preceding stages of either protecting
a company’s patent portfolio or in seeking licensing agreements, the company may
seek evidence of the company’s already patented technology being made, used, sold,
or distributed by others. In the event that a company is sued by another for patent
infringement the defendant may attempt to find prior art that precedes the plaintiff’s
patents to demonstrate that the patents are invalid and unenforceable.

All of these business and legal needs bring us to the focus of this chapter and
this book—they all require patent searching. While the term “patent searching” can
mean “the act of searching patent information” or “searching for patents”, the phrase
is more commonly used to describe searching and filtering a body of information
in light of and guided by an intellectual-property related determination. This is the
definition you should carry forward with you as you read this book. The business
and legal needs above represent a variety of intellectual-property determinations, or
drivers that render the need for patent searching.

The body of information invoked in our definition of patent searching can com-
prise any collection of published information, whether patents, peer-review papers,
press releases, conference proceedings, industry standards definitions, product liter-
ature, product packaging, textbooks, drawings, diagrams, or anything that can ad-
equately describe the subject matter at hand. The body of literature to be searched
may change in scope and volume depending on the need for the patent search.

With more than one million patents applied for worldwide each year, the amount
of information available to researchers and the opportunity to derive business value
and market innovative new products from detailed inventions is huge. However,
patent documents present several peculiarities and challenges to effective searching,
analysis and management:

• They are written by patentees, who typically use their own lexicon in describing
their inventive details.
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• They often include different data types, typically drawings, mathematical formu-
las, biosequence listings, or chemical structures which require specific techniques
for effective search and analysis.

• In addition to the standard metadata (e.g., title, abstract, publication date, ap-
plicants, inventors), patent offices typically assign some classification coding to
assist in managing their examination workload and in searching patents, but these
classification codes are not consistently applied or harmonized across different
patenting offices.

This chapter describes the practical experiences in and requirements for effec-
tive searching, analysis, monitoring, and overall management of patent information,
from the perspective of professional patent information users. It is not meant to be
exhaustive, but rather to provide an overview of the key aspects and requirements for
effective patent information search and analysis. The subject matter is subdivided
into three general areas:

• Overview and requirements of different types and sources of information, types
of searches, depending on the purpose of the retrieval, such as patentability or
potential infringement.

• Description and requirements based on information management approaches,
such as metadata or bibliographic data indexing, taxonomy, controlled vocabu-
lary, value-added indexing and classification schemes.

• Considerations in and requirements for searching specialized invention technolo-
gies, such as chemical structures, biosequences, or device/engineering drawings.

The ultimate purpose is that this practical view along with the description of key
requirements for effective retrieval of patent information would contribute toward
advancement of emerging retrieval technologies to support the user in patent search,
analysis and information management processes.

1.2 Information Types

For the purposes of patent searching and our discussions in this book, searchable
information can be thought of in a few major buckets. Bear in mind that “searchable”
more accurately means “accessible”, whether by actually searching an electronic
database or by manually retrieving and reviewing technical journals in a library.
We can group the basic buckets of searchable information by the extent to which
each one is readily searchable (see Table 1.1). For convenience, we can call this
“searchability”. The basic buckets are:

• Patent literature
• Technical journal-grade literature
• Everything else (press releases, conference proceedings, industry standards def-

initions, product literature, product packaging, text books, drawings, diagrams,
etc.)
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Table 1.1 Searchability governed by the level of organization of the literature

Overall level of
organization

Level of format
uniformity

Accessibility Level of
consolidation

Searchability

Patent literature High High High High

Technical journal-grade
literature

Academic journal-grade
literature/dissertations

Medium Medium Medium Low

Industry journal-grade
literature

Low Low Low Low

Everything else

Market information Medium Medium Medium Medium

Financial information Medium Medium Medium Medium

Legal Medium Medium Medium Medium

Press releases/news Low Medium Medium Low

Product literature/manuals Low Very Low Very Low Very Low

Patent literature refers to both granted patents and published patent applications.
Both are available for searching at many of the world’s patenting authorities. Tech-
nical journal-grade literature refers to organized papers written with a focus on a
specific topic and usually published by a well-known periodic industry journal. Ev-
erything else refers to the catch-all bucket of any other type of disclosure of technical
information that could exist. The types of searchable information have been broken
down into these categories simply due to the distinct levels of organization that can
be seen in each one.

The “searchability” of each bucket is governed by the level of organization of
the literature in each bucket, the level of format uniformity between individual doc-
uments, the accessibility of the literature in each bucket, and how consolidated the
various avenues to search the literature in each bucket have become.

Patent literature is one of the most highly concentrated collections of technical
information available in the world. It enjoys a high level of organization due to the
various patent classification systems used globally. In addition many patents are
marked as being member of patent families linking patents for the same invention
but accepted in different jurisdictions or countries.1 The level of format uniformity
between individual documents is extremely consistent compared to other types of
literature. Even comparing two patent documents that originated from two different
patenting authorities, the format and arrangement is highly similar between docu-
ments. For example patents always contain extensive bibliographic information, a
title, and abstract, a set of claims specifying the claimed scope of the invention, and
background information. This enables electronic patent data to be arranged in quite
a number of discrete data fields that can be searched individually or strategically

1See: http://www.epo.org/patents/patent-information/about/families.html (Accessed 15 Dec 2010).

http://www.epo.org/patents/patent-information/about/families.html
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together. Patent data are both very accessible and consolidated since much of them
is either freely available via portals provided by patenting authorities or by commer-
cially available search engines that serve as “meta” search engines enabling the user
to search globally through one interface. Commercial search engines have brought
a high level of consolidation to patent data and much of them can be accessed using
very few separate channels.

Technical journal-grade literature has benefited from some organization and
some uniformity. Some very common value-add collections like Ei Compendex by
Elsevier leverage classification and theme-based organizational schemes. The level
of uniformity between documents is mostly consistent, however, the data fields that
journal-grade literature documents have in common are many fewer than patent doc-
uments. This yields fewer and less sophisticated options to search the data. Journal-
grade literature is graded as moderately accessible since, while a large amount of lit-
erature has been aggregated in collections like Compendex, a world of un-digitized
and un-abstracted literature still exists in manual, paper collections. Journal-grade
literature suffers significantly from the fact that literature aggregators like Elsevier
and Dialog that supply journal title collections in “files” limit the transparency the
user has in knowing what is actually being searched and what the overlap is between
data files and collections from other providers. A searcher’s efficiency drops signifi-
cantly when the exact scope of the information being searched is unknown. For this
reason, the level of consolidation of journal-grade literature is low since an effective
search requires a far greater number of unique access points than patent literature to
be effective.

All other forms of literature are scattered across all reaches of resources and
locations. Collections such as press releases and conference proceedings are con-
solidated individually, but under most circumstances need to be searched separately
from all other sources. Product literature and product catalogs are perhaps the least
searchable of all valuable literature resources.

1.3 Information Sources

What sources to search is dictated by what type of search is required, the legal and
financial implications of the search, how much time to complete it and how much
one is willing to pay to get the information needed. The sayings “You get what
you pay for” and “Buyer beware” are important to keep in mind when choosing
sources. Fee-based sources are not always complete just as free sources are not al-
ways erroneous and incomplete. It depends on the searcher’s comfort level. Search-
ing both types of sources would give a sense of how complete the search is. But
how does one know if he/she has done as thorough a search as one can? One cri-
terion is when the same answers are retrieved from different sources, regardless of
cost.

The following are issues patent searchers generally consider when reviewing
whether to use services that are fee based, or services that are free at the point
of use.
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• Patenting authorities offer free searching; however, coverage is limited to the au-
thority’s specific country or jurisdiction only. When looking for legal and prose-
cution history, these sites are invaluable.

• Fee-based search services tend to cover multiple databases and are more compre-
hensive.

• Customizations, such as linking to other sources are available from fee-based
services.

• Precision searching, as well as advanced search and analysis features tend to be
available more often from fee-based sources.

• Fee-based sources tend to have reliable servers.
• Users of fee-based sources have input in the product updates and development

with respect to timeliness, comprehensiveness and user interface.

Also note that sources differ in:

• Quality, comprehensiveness and types of content
• Time coverage
• Indexing
• Timeliness
• Ability to search a number of databases at the same time and remove duplicates

to get unique answers
• Cost
• Post search analysis features

Finding relevant information has been compared to finding a needle in the
haystack. No one can argue that there is not enough information out there. It is
important to be able to search the whole document in addition to indexed fields,
which is an issue in some services. Further the freshness and coverage of the data
need to be considered.

1.4 Patent Search Types

This section discusses attributes of state-of-the-art, patentability, validity, freedom to
operate, and due diligence searches. Common elements that need to be identified for
all of these searches are: the purpose, time coverage, and the most relevant sources
to search.

Before proceeding further, it is important to state upfront the basic assumptions
and principles of the patent searching process: No search is 100% complete. For
patentability type of searches (see Table 1.2), the goal is to conduct a better search
than the Patent examiner. For other patent search types, the goal is to be as complete
as the resources and time allow.

When conducting a patent search, three factors will affect the results: cost, qual-
ity, and time:

Cost

• Fee-based sources vs. free sources
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• Complexity of the search
• Technical expertise and proficiency of the searcher

Quality

• Technical expertise and proficiency of the searcher (whether employed in-house
or outsourced)

• Database content and integrity, indexing quality

Time

• Searching is an iterative process; allocating enough time to discuss the search
request with the requestor is important.

• Exhaustive search and analysis—the chance of missing a relevant publication is
less for a 20 hour search vs. a 2-hour search.

A brief introduction to the major search types is worthwhile to understand gener-
ally when the major collections of information should be searched. Table 1.2 below
summarizes the main search types, their purposes, and literature collections that
are appropriate (but not always practical to search) for each one. As you gain ex-
posure to the field, you will see that the names associated with some search types
can be either interchangeable or distinctly different depending on whom you con-
sult. For example: state-of-the-art searches and evidence-of-use searches are closely
related, as are pre-filing-patentability and patentability-or-novelty searches. Some-
times these terms are used interchangeably. Also bear in mind that the table below is
a summary. There are many caveats associated with the criteria of applicable infor-
mation for each search type that depend upon the governing laws of each patenting
authority. There are also arguably many additional search types. These are only the
most common.

1.4.1 State of the Art Patent Search (Evidence of Use Search)

The purpose of the State of the Art search is to gain comprehensive overview of
a product or technology. Ideally this search is done before any R&D investment is
made. In some companies, results from this search impact the selection and fund-
ing of a new project. This search is also useful when looking for a technology to
license. This comprehensive search typically includes patent and non-patent liter-
ature sources. The interview process is critical in order to develop the appropriate
search strategy, which tends to be broad. The data set retrieved can be large. The
searcher needs to have a good understanding of what the requestor is looking for to
enable quick review of the answers for relevancy. Another way to digest the result
is to sort references using “patent” as document type. It is fairly easy to rank by
assignees, inventors and patent classification codes. From the tabular list, one will
be able to identify competitors, technology experts and technology fields. When the
patent search results are analyzed using graphics and charts to visualize results, this
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Table 1.2 Types of patent searches

Search type Purpose Applicable information

State of the art search To sample each major facet of a
broad technology within a
recent period. To gain
comprehensive overview of a
product or technology before
any R&D investment is made or
when looking for a technology
to license.

All information published
prior to today. Includes broad
coverage of information and
timeframe. Both patent and
non-patent literature sources
are included.

Evidence of use search To identify literature supporting
evidence that a product
encompassed by the claims of
an active subject patent is being
made, used, sold, or distributed
within the jurisdiction or
country of origin of the patent.

Any literature published
prior to the appropriate date
associated with the subject
patent.

Pre-filing patentability
search

To identify prior art pertaining
to both the core inventive
concept and all sub-features for
the purposes of drafting a patent
application in light of the
identified prior art.

Anything published prior to
today.

Patentability or novelty
search

To identify prior art pertaining
to the core inventive concept of
an invention that may preclude
the invention from being
patentable.

All information published
prior to today.

Clearance or freedom to
operate search

To identify any enforceable,
granted patents claiming the
subject matter of a product that
is intended to be made, used, or
sold, in a target jurisdiction or
country.

Enforceable patents and
published patent applications
originating from only the
target jurisdiction or country.

Validity or invalidity search To identify prior art that
describes the technology recited
by the claims of a granted,
target patent that would render
the patent unpatentable as of the
date it was applied for.

All information published
prior to the appropriate date
associated with the target
patent.

Patent portfolio search,
patent landscape search

The needs for landscape
searches vary wildly and are
typically business driven, to
assess gaps of patent protection
in an industry or comparing
patent portfolios between two
or more competitors.

Depends on purpose and
extent of search: typically
global patents and published
patent applications and
business data.
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type of report is called a patent landscape analysis [2]. It is a graphical representa-
tion of how patent publications are related. There are a number of products [3] that
specialize in patent landscape analysis, each with its own strengths and weaknesses.
Using these tools, more elegant analysis is possible. For example, by looking at the
level of patenting activity by classification codes over time one may get an insight
on the maturity of the field as well as patenting trends identifying technology decay
and rise. Just like any type of data analysis, the conclusion is only as good as the data
set used. It is advisable to be cautious in drawing conclusions derived from patent
landscape analysis. To be comprehensive, multiple sources should be searched. This
introduces additional issues to consider in merging the results: (1) standardization
of data fields to integrate the appropriate values from similar data fields; (2) dupli-
cate removal and (3) one record per patent family representation to avoid skewing
the analysis results.

1.4.2 Patentability (Novelty)

The purpose of a patentability search is to find all relevant prior art that may impact
the likelihood of getting a patent granted. Issues such as novelty, non-obviousness
and utility criteria need to be addressed. This type of search is typically conducted
before writing the patent application, as the search results may change the scope of
the claim or if needed lead to a ‘draft-around’. Since the coverage should include
“everything made available to the public, in writing, by public use, or otherwise” [4],
it is not enough just to rely on patent publications, books and refereed journal arti-
cles. Other atypical sources need to be searched as well: press releases, brochures,
white paper, websites, conference materials, theses and dissertations, technical dis-
closures and defensive filings. For a typical patentability search, the searcher uses
the following techniques:

• Keyword search
• Classification code (IPC, ECLA, F-terms) search
• Forward and backward citation of relevant documents
• Inventor or Author search of relevant documents
• Patent assignee search
• Chemical structure, sequence or mechanical drawing search, depending on nature

of the request. Detailed descriptions of these specialized data types can be found
in Sect. 1.7 and in Chap. 17 by Holliday and Willett in this book

1.4.3 Freedom to Operate (Infringement, Right-to-Use, Clearance)

The purpose of a freedom-to-operate search is to make sure that one does not in-
fringe upon another’s patent that is still in-force. The focus of this search is on any
granted patent that covers the invention and patent applications that may be granted
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on the same invention. For patent applications, the search should include data from
file wrapper and prosecution history. This type of search is country specific, so local
agencies should be consulted to confirm the status of the patent. In addition, close
attention to the patent claims is prudent since they may change from country to
country. Although results may technically be limited to the last 20 years, it is wise to
limit results to the last 25 years [5]. When conducting a freedom-to-operate search,
the scope of the claim is the key. It is best not to limit the search to patents on the
product itself, but also look at the processes needed to manufacture it, including ev-
erything from raw materials to packaging designs. For a typical freedom-to-operate
search, the following attributes are also searched:

• Ownership/Patent assignee
• Patent family
• File history
• Legal status (e.g., patent term extension)
• Maintenance fee payments

1.4.4 Validity (Invalidity, Enforcement Readiness)

The purpose of a validity search is to determine if a patent already granted for an
invention is valid. It is also a measure of the strength of a patent. All sources men-
tioned in the patentability search (Sect. 1.4.2) are searched. However, the timeframe
of the search can be limited to those results published before the filing date and a
number of years after the filing date. As a rule of thumb, five years after the filing
date is a good start, however, this is subjective, so it would be wise to consult legal
counsel. The immediate availability of information can be troublesome when iden-
tifying publication dates. Publishers like ACS and Springer offer ASAP and Online
First articles, respectively. These are edited submissions that are published online
ahead of print. Another potential problem is tracking Internet page changes and the
time stamp for any modification on the webpage. A bigger issue is if the webpage
has been removed altogether.

For patent publications, the focus is on the validity of each claim and not neces-
sarily the general purpose of the patent. Keep in mind that if the search is based on
a patent application, the claims may change from the time the application is submit-
ted to the time the patent is granted. If the search covers patents in more than one
country, the claims may be different from country to country. When starting with a
specific patent, in addition to the sources mentioned in the patentability search, the
searcher also needs to consider:

• Non-Latin language publications
• File history (found in, e.g., US Patent Application Information Retrieval (PAIR),

European Patent Office (EPO) Register and non-published patent office files)
• Examiner search history
• Documents cited by examiner and inventors
• Examiner’s reason for allowance
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1.4.5 Patent Portfolio Analysis (Due Diligence, Patent Landscape
Search)

The purpose of a due diligence search is to assess if a company’s patents are robust
enough to exclude competitors and market the invention with the least probability
of an infringement lawsuit. A due diligence search can be useful for companies
looking to buy or partner with a company, and for companies who are looking to
sell patents. A thorough due diligence search is expensive and will require a lot of
time searching for and analyzing data. The question is not how much it will cost to
do a due diligence search but “What is the cost of not doing a complete due diligence
search?” A due diligence search is a Validity search plus freedom-to-operate search
plus an analysis of the company’s patent portfolio. The purpose of the deal and the
results/findings from the due diligence search may guide investors in assigning a
fair price to the desired product or technology. The buyer should not be the only
party conducting a due diligence search. It is a good strategic move for the seller to
conduct due diligence on its product or technology to ensure that the asking price is
competitive.

1.5 Practical Considerations in the Searching Process

No matter what type of search is requested, it is important for the patent searcher to
really understand why the search is being requested. As mentioned earlier, searching
is an iterative process [6]. Sometimes the requestor is not asking the correct ques-
tion, so the interview process is critical. The searcher’s knowledge of information
resources that are available and past searches can be useful in defining the scope
of the search. A searcher needs to be proficient in searching different information
sources [7, 8] as well as possess technical or scientific background specific for the
subject matter at hand. For example, having a degree in science is an advantage in
pharmaceutical industry, but even with that, some level of specialization may be re-
quired. “You can teach a chemist how to conduct a structure search in less time than
it takes to teach a non-chemist” [9].

The remainder of this introductory chapter will focus on the nuances and search-
ing strategies associated with patent literature. As discussed, patent literature is
highly organized, highly consolidated, and has very high consistency between doc-
uments. The major benefits that these characteristics bring to the “searchability” of
patent literature are that a highly systematic methodology can be used. Searchers of
patent literature have a number of valuable tools at their disposal: Citation Search-
ing, Bibliographic Data Searching, Classification Searching, Full-Text Searching.

Before the influx of web-based applications and search tools, a searcher only
needed to be proficient in using command lines to search STN, Dialog and Questel
Orbit databases. This is not the case anymore. Stand-alone products are getting more
and more popular and a searcher has to learn how to search each product well.
Internet searching opens a whole new world of information. Occasional users and
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accidental searchers prefer the Internet. When they are asked why, the most popular
answer is “I always get an answer when I search the Internet”. The answer set might
be full of false hits but they prefer that to getting no answer. But then how many
of us have found an important document serendipitously on the Internet? Since it
is free, the Internet should be searched first to gauge how much information is out
there. Some results may be full-text documents, which may provide the searcher
with better keywords to use.

Selection of search tools will depend on:

• Types of subject matter inventions
– Chemical Structures
– Biosequence data
– Device/Mechanical/Electrical drawings

Section 1.7 describes in more detail these subject matter inventions, and
requirements for searching these specialized invention technologies.

• Search techniques desired or most appropriate
– Boolean logic
– Natural Language Processing or Semantic technologies
– Similarity
– Proximity
– Linking to full-text documents, external and internal depositories
– Left and right word truncation
– Case sensitivity when searching for acronyms
– Keyword and synonym selection
– Search term weighing
– Search guidance on the fly
– Controlled vocabulary or value-added indexing
– Chemical structure based on textual description
– Foreign words and characters such as Greek alphabet; and mathematical sym-

bols
– Search limits by sentence, section, etc.
– Multi-language search query or translation to English from non-Latin lan-

guages (e.g. Japanese Chinese, Korean)
• Post search analysis features

– Relevancy ranking
– Sorting features
– Subject relatedness
– Citation Mapping (Citing and Cited)
– Concept Mapping

• Alerting features by
– Keywords
– Structures (biologics and small molecules)
– Legal status
– Classification codes
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1.6 Information Retrieval Approaches to Patent Searching

This section describes the various methods for patent information retrieval that have
traditionally been employed to achieve high recall and precision: full-text searching,
bibliographic data indexing, use of taxonomy/controlled vocabulary and classifica-
tion schemes and value-added indexing.

1.6.1 Classification Searching

Classification codes [10, 11] are created and maintained by each patenting authority
for the purposes of organizing patent and applications according to their technical
application, structural features, intended use, or the resulting product produced by
a process. The major classification systems in use worldwide include the Interna-
tional Patent Classification (IPC) system, the European Classification (ECLA) sys-
tem, the United States patent classification (USPC) system, and the Japanese File
Index and F-Term (FI/F-Term) classification system. Many other patenting author-
ities maintain their own classification systems, however, these four are the systems
predominantly used when publishing and classifying patent data. The US and Japan
are singled out because the patent examiners in these countries rely heavily on their
own classification codes to classify patents. Examiners in these countries classify
their patent documents in IPC and sometimes ECLA classification areas as a sec-
ondary measure and not as precise as their native classification areas. Due to the
staggering volume of patent data produced by these countries, a global classifica-
tion search is not complete without a search specifically within the US and Japanese
classification systems in addition to IPC and ECLA.

1.6.1.1 International Patent Classification (IPC)

The International Patent Classification (IPC) [12] system was established under the
1971 treaty, and has replaced national classifications or supplements them over the
years since. The schedule of classes under the IPC is a true taxonomy, dividing all
areas of technology into eight sections (A–H), the sections subdivided by notations
for class, subclass, group, and subgroup. The classification system was originally
updated at 5-year intervals, retaining the existing hierarchy. With the eighth edition
of the IPC, a reclassification system was established so that all patents in a database
use the same version. One of the IPC codes assigned to the athletic shoe in Fig. 1.1
has the following definition:
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SECTION A—HUMAN NECESSITIES
A43 FOOTWEAR
A43B characteristic features of footwear; parts of footwear
A43B 13/00 Soles; Sole and heel units
A43B 13/14 · characterized by the constructive form

Fig. 1.1 First page of US 7,594,345 B2, assigned to Nike, Inc., published 29 September 2009
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1.6.1.2 United States National Classification

The United States has continued to use its national system as the primary classi-
fication for patents [13]. The system consists of 3-digit class definitions, arranged
numerically without any attempt to relate the numerical class code to its place in
the sequence, creating new classes as new technologies emerge. Each class code is
followed by a hierarchy of numerical subclasses, for example, class 36/129 for the
athletic shoe in Fig. 1.1:

CLASS 36 BOOTS, SHOES, AND LEGGINS
83 BOOTS AND SHOES
113 · Occupational or athletic shoe (e.g., roof climbing, gardening, etc.)
114 ·· Athletic shoe or attachment therefore
129 · · · For track

1.6.1.3 European Patent Classification (ECLA)

The European Patent Office created a more precise variant of the IPC, assigning it
to all of the patents in the Examiner search files [14]. ECLA codes do not appear
on printed patents, but they are added to some databases. The ECLA code assigned
to the athletic shoe in Fig. 1.1 has the definition shown below, a narrower definition
than the IPC code shown above:

SECTION A—HUMAN NECESSITIES
A43 FOOTWEAR
A43B characteristic features of footwear; parts of footwear
A43B 13/00 Soles; Sole and heel units
A43B 13/22 · soles made slip-preventing or wear-resisting, e.g., by

impregnation or spreading a wear-resisting layer
A43B 13/22B ·· Profiled soles
A43B 13/22B2 · · · the profile being made in the foot facing surface

1.6.1.4 Japanese File Index Classification

FI terms are a system of refinements to the IPC, applied by the Japanese Patent Of-
fice (JPO) to Japanese patent documents [15]. The JPO also applies supplementary
indexing terms, called F-terms, in addition to IPC and FI classifications, to assist in
searching Japanese patent documents.
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1.6.2 Full-Text Searching

Another significant benefit of patent data, in contrast to journal-grade literature is
the wide availability of full document text among the major patenting authorities
[16, 17]. Other forms of organized literature are often only abstracted. While for a
number of years the bulk of full-text patent data were confined to the major seven
patenting authorities (Europe, World Intellectual Property Organization, Germany,
France, Great Britain, US, and Japan), many more patenting authorities are begin-
ning to make their full-text patent data available. As well, several of the commercial
data aggregators are translating the patent information from dozens of less con-
ventional patenting authorities and making the data available within their search
systems along side the major seven.

The text of patents differs in significant ways from the text of other forms of
scholarly publications. The objective of patents is to obtain the patent owner’s right
to exclude others from practicing an invention described in the Claims section of the
patent specification, and the patent laws and regulations of the country or patenting
authority in which the patent application is filed largely control the language and
formatting of the text. Customary phrases and sentence structure known as “paten-
tese” are used in patent documents and are seldom used in other types of documents.
There is no editorial process comparable to peer review before patent documents are
published. The specification of a patent application is usually published 18 months
after the first filing of an application covering the claimed invention, without any
changes from the document filed by the applicant. The patent application undergoes
examination to determine whether the claims define a patentable invention. Defi-
ciencies in meeting the legal requirements for a patentable invention will prevent
grant of patent rights and the publication of a granted patent, but pre-grant publica-
tion occurs whether the specification is well written or not.

The technical disclosure of a patent specification is provided in an Abstract,
Claims, and the main body of the specification, which is often divided into sections:

• The background of the invention: a summary of the problem to be solved, ways it
has been handled in the past and relevant prior publications.

• A brief summary of the invention: a short description of the invention being
claimed, often a restatement of the Claims.

• A detailed description of the invention: a full description of all aspects of the
invention, with definitions of the terms used and specific examples of ways in
which the invention may be carried out. The description may be a few paragraphs
or thousands of pages long. It may refer to defined terms and images in drawing
pages or to chemical structures.

Because the patent Claims define the owner’s right to exclude others from prac-
ticing an invention, patentees attempt to define their inventions in the broadest lan-
guage possible. To expand the scope of a patent, the claims and accompanying dis-
closure often use generic language in place of simple terms. Shoes will be described
as “footwear,” house paint as “exterior finish,” pills as “unitary dosage forms,” and
computer as “a system having a storage for storing data, an output device to display
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information, a terminal for entering information, and a component that modifies the
input data and controls flow of data between different parts”. Any terminology that
defines the invention unambiguously is acceptable, and new technologies often re-
quire new terminology. Patent attorneys and agents often create new terminology to
describe their clients’ inventions under the rule that “the patentee is his own lexi-
cographer”. A full-text search must include any and all terms and phrases that may
have been used to describe the technology of interest.

Patent claims are listed in the form of single sentences, with the leading phrase,
“I claim,” implied or preceding the numbered list of claims. The precise wording
and punctuation of the claims is essential to the understanding of the scope of le-
gal protection, as is the meaning of each term defined in the specification. Claims
may be “independent”, where all limitations of the claim are stated, or “dependent,”
where limitations are carried over from an earlier claim. The entire text of indepen-
dent claims is implied, but not stated in their dependent claims, so attempting to
search the claim text using proximity operators often misses important references.
An example of an independent claim and one of its dependent claims of the exem-
plary patent shown in Fig. 1.1 is shown below. Note that Claim 3 must be read as
including the entire description given in Claim 1, with the added feature that the
sole of the shoe is comprised of a polyamide. The word “comprising” is understood
as meaning “including, but not limited to”.

I claim:
1. An article of athletic footwear comprising an upper for receiving the foot
of a wearer and a sole structure attached to the upper, the sole structure hav-
ing a heel portion, the sole structure including a rigid or semi-rigid ground-
contacting surface, wherein a plurality of distinct ribs is located longitudinally
in the heel portion and each of the distinct ribs extends in a substantially par-
allel direction, wherein the heel portion is cup-shaped so that the back portion
of the heel portion extends upwards from a bottom portion of the ground-
contacting surface and wraps around the backside of the heel, wherein at least
a portion of the plurality of ribs curve around the back portion of the heel
portion; wherein the plurality of ribs comprises a slippery material.
3. The article of footwear of claim 1 wherein the ground-contacting surface
comprises a polyamide.
(Sample independent and dependent claim language: US 7,594,345 B2, as-
signed to Nike, Inc., published 29 September 2009. Article of footwear having
sole with ribbed structure.)

Patent documents are written in the language of the patent issuing authority, and
a multinational database will contain documents written in many languages and al-
phabets. In addition to countries that specify a single language, for example English
in the United States and Japanese in Japan, there are some countries and interna-
tional patenting authorities that allow the applicant to file a patent specification in
one of several languages: the Patent Cooperation Treaty (PCT) allows applicants to
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file applications in any of 10 languages as of 2010, including Japanese, Chinese,
Korean, Russian and Arabic, as well as languages written in the Latin alphabet.
Databases of PCT applications provide English-language abstracts, and many other
databases also add English-language abstracts to the native language text records or
substitute an English-language abstract for the patent text, but a search in English
misses potentially relevant documents in other languages. The growing availability
of machine translations helps to overcome the language barrier in databases that
provide them, but the grammar and choice of words given by a machine translation
engine often differ from those intended by the patentee.

Patents cover all technologies and even methods of doing business, and each
area of technology has its own terminology in every language, often giving words a
different meaning from their ordinary dictionary definition. The English word “fur-
nish”, for example, is used in the papermaking industry to indicate the materials
of which paper is made. Unless a search is limited to the technological context of
the subject matter being searched, the results will not be sufficiently precise. Bet-
ter precision can be achieved by searching text terms in combination with patent
classification codes or other indications of context.

Searching full-text patent data requires a careful strategy and being constantly
mindful of how a technology can be described from a scientist’s or engineer’s per-
spective versus how a technology can be described in the language of patent prac-
titioners. The following key measures must be taken when leveraging the full-text
data available in patent literature.

• Exhaustive usage of synonyms
• Effective use of Boolean operators, proximity operators, and truncation operators
• Appropriate clustering of concepts into discrete search queries
• Combining saved search queries appropriately
• Appropriate usage of broad-to-narrow and narrow-to-broad search query progres-

sion
• Iterative modification of previously stored search queries in light of newly ac-

quired phrases and terminology

What are the pros and cons of full-text searching?

• Pros:
– Easy to perform, no search training required
– Allows for serendipity in searching

• Cons:
– Optical character resolution (OCR) errors for those patents from countries/time

ranges that are not created from original digital records
– High recall, therefore relevancy ranking is needed
– When searching for numbers—numeric versus text
– Less precision: no control on which portion of the document the keyword ap-

pears as long as it is present in any part of the document
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1.6.3 Citation Searching

Patents originating from the vast majority of patenting authorities are issued with
a list of other documents that were cited during the prosecution of the patent ap-
plication either by the patent examiner or the patent practitioner or inventor. Since
the migration of patent information into electronic form, a patent searcher not only
has immediate access to documents cited by patents but also immediate access to
documents that cite each patent. The processes of searching both of these sets of
documents are referred to as “backward citation searching” and “forward citation
searching”. Backward referring to the documents a patent cites, and forward refer-
ring to the documents citing the patent under review. Citation searching is a patent
searcher’s most powerful tool in quickly generating a highly concentrated collec-
tion of relevant search results at the beginning of a search. Search engine providers
are making citation searching easier and easier. A common search strategy in be-
ginning a search is to conduct a highly targeted search of only very relevant patent
documents and then citation searching the most closely related documents for oth-
ers of interest. Searchers can “follow their nose” through multiple generations of
patent citations both forward and backward to rapidly collect highly relevant docu-
ments [18].

1.6.4 Bibliographic Data Indexing & Searching

The first page of a patent document includes bibliographic data relating to the filing
details and ownership of the patent and includes additional data fields relating to the
handling of the application within the patent office. References cited by the patent
examiner may appear either on the cover page of the patent or in a search report
appended to the patent publication. Databases index these metadata fields to facili-
tate searching. Bibliographic information is the focus of due diligence searching and
some technical and competitive intelligence studies. Even in full text searches, com-
bining keywords with bibliographic data, especially patent classification codes, can
increase precision and limit search results to a desired range of filing or publication
dates.

• Title Patent documents are required to have a descriptive title. Although patent
regulations state that the title should reflect the claims, most original titles are
relatively short and only hint at the novel features of the patent. Commercial
databases may provide enhanced titles; in the case of the Derwent World Patents
Index the title is an English-language mini-abstract of the patent.

• Patentee (Applicant, Assignee) The patentee is the owner of the patent rights,
either the company or institution that sponsored the research leading to the patent
or the individual inventor or inventors. Patent databases normally index the patent
owner or assignee named on the patent document at the time of publication. Some
databases apply standardized or normalized versions of the patentee name as an
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aid to searching or apply company coding that attempts to track corporate divi-
sions and ownership changes over time. Some databases supplement records with
the name of organizations to which patent rights were reassigned after publica-
tion, obtaining the data from other patent office databases.

• Inventor The inventor or joint inventors are named on a patent document. Unlike
the authors of journal articles, only individuals who contributed to the conception
of the invention should be included.

• Patent publication number The serial number assigned by a patent office to the
patent publication.

• Publication date The date on which the patent issuing authority published either
the patent document or an announcement of the patent document in an official
gazette. The publication date of most granted patents is the date when exclusive
rights begin.

• Application number The serial number assigned to a patent application when it
is filed at the patent office.

• Application date The date on which the patent application corresponding to the
published document was filed at the patent office.

• Designated states Patent Cooperation Treaty applications and regional patent-
ing authorities list the names or ISO country codes of the states for which the
application of the patent is effective.

• Priority applications The Paris Convention for the Protection of Industrial Prop-
erty, the World Trade Organization and other treaties allow patent applicants to
file applications on a single invention in member countries within a year of a first
patent filing by claiming priority based on the application filed in the first coun-
try. The application numbers of the applications claimed for priority are shown as
priority application numbers in the records on the later patent applications.

• Patent family members Patents based on the same priority applications form
a patent family of patent publications from multiple countries covering aspects
of the same invention. Some databases combine all family members in a sin-
gle record and apply indexing to a single patent document, known as “the basic
patent.”

• Priority dates The filing dates of the applications claimed for priority.
• Patent classification codes The national and/or international classification codes

assigned to the patent at the time of publication are printed on the patent specifi-
cation at the time of publication. Some patent databases enhance the classification
data by adding classification codes assigned by patent offices during post publi-
cation reclassification procedures.

• Cited references Patent examiners perform a search of the prior art to determine
whether patent claims are new and inventive as defined by the patent law. Prior
publications that teach or suggest aspects of the claimed invention are provided to
the applicant for discussion and possible amendment of the application, and are
listed on the patent document if it is eventually published. In addition to the cited
references, some patent databases obtain information about later citations of the
patent and add the citing patents to the record.

• Additional search fields Patent offices print the names of the patent applicant’s
legal representative and the patent examiner on the patent document, and these
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are included in the records of some, but not all, patent databases. Changes in the
legal status of a patent or published application are included in some databases,
in many cases obtaining the data from the European Patent Office’s INPADOC
legal status file.

1.6.4.1 Important Preliminary Considerations of Searching Bibliographic
Data

Searching bibliographic data includes the ability to research prolific corporate enti-
ties and inventors who are known to have patented frequently in a given technology.
However, searching for companies and inventors is not quite as simple as typing in
the company or inventor name into a field. A number of precautions need to be taken
into account when searching for specific names:

• Patent ownership can change frequently. A search for a company name may yield
only older patents originally assigned to the company and not newer patents re-
assigned to them after issuance.

• Company subsidiaries change frequently. Individual business units are bought
and sold regularly. Further, searching only for a parent company name may not
necessarily capture all company subsidiaries.

• Company suffixes (e.g., Co., Inc.) vary wildly and must be accounted for.
• Inventor names are commonly spelled in a wide variety of fashions, with and

without suffixes, with or without initials, or completely misspelled altogether.
• Patents are very often not printed with assignment data upon issuance such that

the owner files assignment data after printing.
• Correspondence address information can sometimes be used to approximate the

ownership of patents.

What are the pros and cons of bibliometric data & abstract searching?

• Pros:
– Errors in documents can be detected during database creation
– Keyword synonyms and thesaurus available
– Specific data fields like classification codes can be searched

• Cons:
– Indexing errors can be introduced during database creation
– Keywords that appear in non-indexed fields will not be searchable
– Time lag from published date to database entry

1.6.5 Taxonomy, Controlled Vocabulary and Other Value-Added
Indexing

In the days before full text searching was available, patent searchers were forced to
rely on patent classification and controlled indexing systems for both manual and
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online searches. The codes or terms were normally arranged hierarchically, permit-
ting the searcher to use the narrowest appropriate term or the term at the latest po-
sition of a taxonomy, allowing the searcher to assemble a collection of documents,
which would be reviewed for relevance, fully expecting that the limited number of
indexing concepts would yield a great many irrelevant documents.

Patent classification systems were created for manual searching of printed patent
collections. Patent offices designed numeric or alphanumeric schemes that assigned
codes to all known technologies and marked each patent with one or more of the
appropriate class codes. Class codes were updated periodically, creating a taxon-
omy by subdividing the classes to create collections of patents that were small
enough that a searcher could review them. The schedules of class definitions formed
a controlled vocabulary of generic terminology for each category of technology, and
knowledgeable indexers and patent search specialists were able to select the nearest
class definition for an invention of interest. Using the proper class code, one would
be able to limit a search for a shoe sole such as the one in Fig. 1.1 without knowing
whether the patentee called it a shoe sole, a ground-contacting surface, une semelle
or eine Schuhsohle, and without retrieving patents on fishing gear.

Subject-based databases, such as Chemical Abstracts, and commercial patent
databases, such as IFI CLAIMS, created systems of controlled indexing terms, ap-
plying the terms to indexing records in place of the actual terminology used by
the patentee. The controlled indexing terms are collected in thesauri or vocabulary
listings, which may be organized into a taxonomy in which broader, narrower or
related terms are listed for each of the controlled indexing terms. A searcher can use
the controlled terms from the thesaurus without having to create an exhaustive list
of synonyms.

Chemical formulas lend themselves particularly well to controlled indexing, as
there are a finite number of elements, and the empirical formulas of molecules dis-
closed in a document can be organized in a standardized alphanumeric fashion, for
example the Hill system created for the Chemical Abstracts Formula Index. The
molecular structures of chemical substances can also be indexed into systematic hi-
erarchical systems, substituting a controlled indexing name or Registry Number for
whatever name is used by the author or patentee in a document.

1.6.5.1 Chemical Substance Registries

A more precise system for retrieving information about chemical substances than
a molecular formula or substance name is a registry system that gives a unique
identifier to each indexed substance. An indexer reads a patent or other publication,
recognizes each substance from a name or chemical structure drawing, and assigns
an existing registry number or creates a new one, allowing searchers to find all
references to that substance in the database by searching for the chemical structure
or name in a registry database and then using the registry numbers to search in the
corresponding bibliographic database.

The largest chemical substance registry is the Chemical Abstracts Service (CAS)
Registry [19], which covers both patents and non-patent literature from around the
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world. It assigns a registry number to each unique substance exemplified in a pub-
lication or claimed in a patent. The Derwent Chemistry Resource (DCR) covers
compounds claimed or exemplified in international patents indexed in the Derwent
World Patents Index (DWPI) [20]. The IFI CLAIMS Compound Vocabulary [21]
has compounds mentioned in five or more United States patent publications. Be-
cause their indexing policies and database coverage differ, the number of com-
pounds listed in the various registries and the number of patents associated with
them are very different.

For example the non-steroidal anti-inflammatory drug diclofenac and its salts,
has 299 registry numbers in the CAS Registry file, 24 registry numbers in the Der-
went Chemistry Resource, and three registry numbers in the IFI Compound Vocab-
ulary. Figure 1.3 illustrates the CAS Registry record for the acid form of diclofenac
with its chemical structure diagram, a list of names that have appeared in the lit-
erature and the number of bibliographic records in the database indexed to this
registry number. Searching the registry number 15307-86-5 in the Chemical Ab-
stracts databases on STN (see Fig. 1.2) will retrieve all documents that disclose the
acid form of diclofenac, regardless of the name used by the author of the original
document, but it will not retrieve documents that disclose only the sodium salt of
diclofenac, the active ingredient in Voltaren Gel.

1.6.5.2 Derwent Multipunch and Manual Codes

The Derwent World Patents Index was designed during the 1960’s to facilitate in-
house searching of English-language abstracts of chemical patents. The abstracts
were printed on two types of card, IBM cards for sorting by use of a code represented
by the positions of holes punched in the card, and Manual Code cards for searching
by hand in file drawers.

The multipunch code was originally represented by 720 card positions, each po-
sition dedicated to a specific type of bibliographic data, chemical structure fragment,
or other technical feature of an indexed patent. All of the codes relating to inven-
tive features of the indexed patent were punched, and the searcher reviewed the
abstracts of patents with all of the appropriate codes directly on the cards after they
had passed through the sorter. After digital computers replaced card sorters the code
was reformatted into alphanumeric symbols, and the code continues to be used. The
chemical fragmentation section of the code is discussed in Sect. 1.7 below.

The Manual Code is a patent classification system, organizing technologies into
a hierarchy that takes both structure and function into account. When it was used
as a manual search tool, a searcher would identify a single code that best matched
the inventive feature he or she wished to search and would visually scan through all
of the abstracts in that section of the file drawer. Since the transition to computer-
ized searching, Manual Codes have become a valuable tool for limiting retrieval in
searches based on full text and keyword searches, specifying a required feature and
eliminating all records covering features occurring higher in the hierarchy.
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Fig. 1.2 Chemical Abstracts Service Registry Database (CAS): structure record for diclofenac

Fig. 1.3 15307-86-5 in the Chemical Abstracts databases on STN

1.7 Specialized Invention Technologies: Considerations &
Requirements

While keywords and text terms are commonly employed in searching patents, cer-
tain subject matter inventions claimed in patents warrant specialized techniques for
precise and high recall retrieval of relevant art. These include:
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Fig. 1.4 Different chemical
structural representations of
ethanol

• Chemical structures
• Biosequences and biotechnology topics
• Device/Engineering drawings

This section describes considerations and requirements for effective retrieval of
these specialized invention technologies.

1.7.1 Chemical Structure Searching

Searching for chemical compounds poses many challenges. There is wide variability
in nomenclature, the search may be directed to a species or a genus that encompasses
many possible species, and the chemical compound(s) of interest may be disclosed
in a Markush structure.

Even exact compounds can be difficult to search and a professional searcher does
not rely on chemical nomenclature for comprehensive retrieval. For example, some-
thing as simple as ethanol can be described as: ethanol, ethyl alcohol, grain alcohol,
pure alcohol, hydroxyethane, drinking alcohol, ethyl hydrate and absolute alcohol.

Ethanol could be also depicted structurally, instead of mentioned by name, as
shown in Fig. 1.4.

Exact compounds can also be described generically. For example, ethanol is a
“hydroxy alkane”. Structurally, ethanol is also one of the compounds encompassed
by either of the following two generics, as depicted in Fig. 1.5.

A search request may be a generic query, as shown in Fig. 1.5, that defines many
possible compounds, in which case the goal is to retrieve records that relate to any
of the compounds defined by the genus. This is called a Markush search [22]. The
term “Markush” originated from the generic claims filed by Dr. Eugene A. Markush,
which was granted as US 1,506,316 in 1924. A. Markush is essentially a way to
claim many compounds in a single patent claim and the term is used to describe

Fig. 1.5 Examples of genus representations of ethanol
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Fig. 1.6 An example of a Markush Claim from US 7,659,407

Fig. 1.7 A typical chemical
structure query

any generic structure that encompasses multiple species. An example of a Markush
claim is shown in Fig. 1.6.

A typical patentability search request might be “find patents, patent applications,
and literature references that claim or disclose compounds defined by the following
generic” (as shown in Fig. 1.7), in which case the patent (US 7,659,407) above
should be retrieved with the correct search query and appropriately indexed retrieval
system.

Chemical structures represent molecules composed of atoms linked together by
chemical bonds. There are groupings that occur in many molecules—rings of atoms,
patterns of atoms and bonds that chemists refer to as “functional groups.” Database
producers created indexing systems that fragment the molecules into their compo-
nent rings and functional groups and assign an alphanumeric code to each of the re-
sulting substructures. Indexers evaluate each chemical structure in a patent, and add
all of the applicable codes to the database record. Some systems have been able to
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Fig. 1.8 Generic chemical
structure search query for
Diclofenac

partially automate this process. These fragmentation codes allow a searcher to look
for either specific molecules or Markush structures with alternative substructures,
using Boolean logic rather than resource-intensive structure searching algorithms.
Because Markush structures often contain a great many alternative fragments, the
systems include codes for fragments that are either required or optional in embod-
iments of the structure and a set of negation codes for fragments that can never be
present in an embodiment.

There are different types of systems [23] available for searching chemical struc-
tures in the patent and non-patent published literature. Topological search systems
are used to match graphical structures created by a searcher with specific compounds
or Markush structures contained in a database. An indexer adds chemical structure
indexing to the search system based on the indexer’s understanding of the patent or
literature document. Special software is used by the searcher to create the structure
query. Chemical fragmentation code search systems, such as Derwent fragmentation
codes and IFI Claims chemical vocabulary codes, match alphanumeric codes from
strategies created by a searcher with codes added to a database record by indexers.

As computing systems advanced, connection tables were created that index how
these atoms and groups of atoms are interlinked together to allow for more precise
retrieval. For example, graphical searches in several structure searchable databases
hosted by STN can be an Exact Search (EXA), which is used to retrieve substances
that exactly match the query, a Family Search (FAM), which is used to retrieve
substances that exactly match the query plus multicomponent substances such as
salts, a Closed Substructure Search (CSS), which will retrieve substances that match
the query without substitution allowed, or a Substructure Search (SSS), which will
retrieve substances that match the query with any substitution allowed. To conduct
a search using a structure query a searcher first creates the chemical structure query
using software, such as STN Express.

1.7.1.1 Diclofenac Chemical Structure Search Strategy

An example is described here for conducting a chemical structure-based search of
Diclofenac as a gel formulation in a freedom-to-operate assessment. There are two
concepts to consider, the compound Diclofenac and gel formulation. Figure 1.8
exemplifies the chemical structure search strategy on how one might conduct a
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freedom-to-operate search for Diclofenac. The second concept, gel formulations,
could be searched using full-text searching, classification schemes, and other value-
added indexing described earlier in Sect. 1.6.

The compound Diclofenac (2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid)
is marketed under several tradenames, such as Voltaren and Caltaflam. Tradenames,
chemical names, and synonyms would need to be identified and incorporated into
the search. There are many ways to identify these names, such as reading the com-
pound records found in Chemical Abstracts Registry File, Derwent World Patent
Index, IFI Claims, Medline, Embase, and other free Internet sources. The com-
pound registry numbers of Diclofenac applied by the database indexers would also
be searched. An initial keyword search for Diclofenac in various databases could
help identify some of the value-added indexing and classification available.

Searching for the exact compound alone is not sufficient for a freedom-to-operate
search since the search must also retrieve patents with broad claims that encompass
Diclofenac, so a generic search query is needed. An example of a generic query that
encompasses Diclofenac is shown below in Fig. 1.8.

This generic query can be executed using the STN International system as de-
picted in Fig. 1.9.

This query could be searched in any of the Structure Searchable databases [24]
hosted on STN such as Registry, Derwent DCR, Beilstein, and Marpat. Care must be
taken when creating a search query since designations of bond types, match level, el-
ement count and connectivity can greatly alter the results. The above query searched
as a substructure search (SSS) on STN would allow for substitution everywhere ex-
cept at node 16, require the two rings to be isolated, and allow for retrieval of records
in the Marpat database with broad claim language such as “aryl” for the phenyl rings
and “electron withdrawing group” for the halogens.

A searchable query for the above genus can also be executed using the Markush
DARC system, as shown in Fig. 1.10.

The above query searched in Questel’s Merged Markush System (MMS) [25]
would allow for substitution everywhere except at node 14, require the two rings to
be isolated, and allow for retrieval of records that relate to compounds defined by
the above generic either specifically or generically.

Chemical fragmentation code strategies should encompass the specific com-
pound, as well as a generic representation. Figure 1.11 outlines a Derwent chemical
fragmentation code strategy for Diclofenac to be searched in the World Patent Index
(DWPI) database [26]. Figure 1.12 illustrates the IFICDB [27] chemical fragmenta-
tion code search for Diclofenac. The list of negation codes has been shortened due
to space limitation.

Results from each of the above structure and chemical fragmentation code
searches would be combined with the strategy for gel formulations, limited to
patents or published patent applications, limited by country as requested, and then
limited by date to capture patents that are still in force.

The above sample search strategy is not meant to be exhaustive, but rather to
illustrate some of the common approaches taken when conducting a freedom-to-
operate search that includes a chemical compound. Each type of search and each
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Fig. 1.9 STN Express generic (genus) structure query for Diclofenac

type of search system provides value. It is up to the searcher to determine, which
type of searches, and which search systems to use for any given search. Whenever
possible multiple databases and systems should be used since each system provides
unique features, different coverage, and different indexing policies. It is also not
uncommon for a chemical search to retrieve a wide range of records depending on
the databases and systems used. For example, 50 patent family and literature records
might be retrieved from searching a structure query in various databases while 1000
or more patent family records might be retrieved using fragmentation codes. The
professional searcher must understand the details of how each of the systems works
in order to explain and analyze these results properly.

In spite of recent advances in chemical structure searching there are still many
areas that could be improved. For example, it would be useful for analysis purposes
to be able to search and retrieve records with compounds of interest that are specif-
ically claimed versus compounds that are only disclosed in the specifications, or to
search and retrieve records with compounds of interest that are only claimed gener-
ically. It should be noted also that the indexing conducted by database producers is
applied to the basic member of a family and not to each subsequent family mem-
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Fig. 1.10 Questel’s MMS Markush DARC structure query for Diclofenac

ber added to a database record. Claim coverage can change from one document to
another so it would be helpful to have every family member indexed. And finally,
chemical concentrations or percentages are currently not indexed and often the nov-
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Fig. 1.11 Derwent chemical fragmentation code strategy in WPI for Diclofenac

Fig. 1.12 IFICDB chemical fragmentation code strategy for Diclofenac

elty of an invention is not a particular compound but rather its concentration in a
formulation.

In conclusion, some minimum requirements for an effective chemical structure
retrieval system are nomenclature searching that includes generic descriptions, the
ability to search by chemical structure, and Markush searching. To be effective the
database must also provide details of its indexing policies and any changes over
time.

1.7.2 Biosequences/Biotechnology Searching

As with other domain searches for patent and scientific literature, a professional
patent searcher in biotechnology must be able to perform comprehensive text
word searches, utilize controlled vocabulary terminology, classification schemes,
sequence code match techniques and algorithms for finding biosequence homology
(similarity attributed to descent from a common ancestor [28]).

One of the difficulties for a biotechnology patent searcher is locating and com-
piling comprehensive data from many sources. Such information can be provided
in different (non-) textual formats (articles, biological sequences, patent documents,
tables summarizing and comparing biological data, images of biological samples,
graphics representing experiments, etc.) and scattered among many types of publi-
cations and databases or published directly through the Internet [29].

1.7.2.1 Nomenclature Challenge

Similar to chemical substance nomenclature, locating gene or protein name is a
challenge due to various nomenclature systems, aliases and sources needed to be
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consulted. Genes can have several names, synonyms and redundant gene symbols.
As an example, the human gene GBJ2 has several names and aliases/synonyms:

Gene Symbol: GBJ2
Gene Name: gap junction protein, beta 2, 26kDa
Previous gene symbols: DFNB1, DFNA3
Previous gene names: gap junction protein, beta 2, 26kD; connexin 26, gap
junction protein, beta 2, 26kDa
Gene aliases: CX26, NSRD1

Professional searchers must give consideration if they need to include genetic
alleles (phenotypic gene variation for example, green vs. blue eyes), if the request
is for a specific species’ gene (mouse vs. human gene) and mutated gene names.
The names of protein and peptides have similar nomenclature issues. Protein recep-
tors and their ligands can have similar names that can result in false hit retrieval.
Recombinant proteins will also have different names and designated abbreviations.
Determining a comprehensive search hedge (a collection of search terms) of nu-
cleic or protein names is important for intellectual-property searches necessary to
compliment a comprehensive biosequence search.

1.7.2.2 Biosequence Searching Considerations

Patent sequence information found in both commercial and public databases is not
comprehensive [30]. A sequence of interest may or may not be disclosed in patent
documents, necessitating the need for additional text word searches in combination
with a biosequence search. Database inclusion of the sequences from a patent doc-
ument is determined by the producer’s indexing policies. A professional searcher
will need to be aware of each system’s indexing policies and limitations:

• Does the search system have a biosequence length limitation? Nucleic sequences
are often long.

• Are all the sequences found in a patent publication indexed or are only the claimed
sequences included in the database?

• What year did the publisher start including biosequences in their database?
• How are short biosequences indexed? Are the short sequences (<9 nucleic or

amino acid units) included in the database as a sequence or is it necessary to
search the biomolecule as a chemical structure?

• Mega sequence (containing many different sequences or a single extremely long
sequence) patent documents may or may not be indexed in databases.

Biosequences are searched as either Sequence Code Match (SCM) or as a ho-
mology search. In code match searches, the search system aligns the query search
sequence codes against a database of sequences by the code of each nucleic/amino
acid unit. For example:
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Fig. 1.13 Code match search. Chemical Abstract Services, Blast sequence search result retrieved
from the CAS Registry and Chemical Abstract Plus performed on December 17, 2010

Table 1.3 Types of biosequence searches

Search type Nucleic sequence Amino acid sequence

Exact sequence X X

Subsequence X X

Family exact or family subsequence – X

Motif or pattern sequence X X

On the STN system, biosequences can be searched as an exact sequence search,
matching the same code motifs and length. However, deoxyribonucleic acid (DNA)
and proteins can tolerate changes in molecular structure without necessarily mani-
festing any biological significant consequences [31]. Other sequence search options
should be utilized for both nucleic and amino acid molecules in order to introduce
variability and retrieve biological functional similar molecules. SCM allows subse-
quence search for the query sequence embedded in a larger nucleic or amino acid
sequence. Amino acid sequences can also be searched as sequence family search.
A family exact or family subsequence search will match the exact amino acid code
or a functionally similar amino acid code. An example of a family group is the
hydrophilic basic amino acids: arginine, histidine and lysine. Additional variabil-
ity is introduced in the search query by utilizing additional characters in the search
string to represent uncommon or ambiguous amino acids or nucleic acids. Pattern
search variability includes a defined set of nucleic/amino acids that can replace a se-
lect motif, allow a range of nucleic/amino acid residues in unknown region (gaps),
negation of defined nucleic/amino acids, or allow the professional searcher to desig-
nate a number or a range of nucleic/amino acids or gaps to repeat within the larger
sequence [32]. Biosequence search types are listed in Table 1.3.

Homology biosequence searches are utilized to discover nucleic and amino acid
sequences that are biologically related or have a similar sequence composition. Sev-
eral algorithms exist with different sensitivity levels and processing speed, two that
professional searchers use are FASTA and Basic Local Alignment Search Tool
(BLAST) available in both commercial and publically available web databases.
Both algorithms work based upon the calculation of homology between a query se-
quence and retrieved sequences; hence, both tools retrieve homologous sequences,
which might be biologically related to the query sequence [33]. However, se-
quence patent claims are often written as fragments of specific sequences, which
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are based on % identity and/or length of certain amino acid regions [34]. Genome-
Quest’s GenePAST/Fragment search is based on GenomeQuest proprietary algo-
rithm, which is defined as “The GenePAST percent identity” that finds the best fit
between the query sequence and the subject sequence, and expresses the alignment
as an exact percentage [35].

1.7.2.3 GBJ2 Biosequence Search Strategy

An example is described here on a sequence freedom-to-operate assessment based
upon the genetic sequence of gap juncture protein beta 2 (GBJ2) and the protein for
therapeutic use. GBJ2 may have a genetic component in hereditary deafness. The
search can be accomplished by utilizing nucleotide sequence and amino acid ho-
mologous sequence searches. The professional searcher should consider additional
search types, such as full-text, classification and value-added indexing searches for
comprehension. There are publically available gene and protein database to assist
the searcher in locating the gene and protein biosequences, names and synonyms, if
necessary. Databases on National Center of Biotechnology Information, European
Bioinformatics Institute, DNA Data Bank of Japan, The Jackson Laboratory, and
other web-based sites are helpful in locating data and information on genes and
proteins for search preparation.

Execution of biosequence homology searches would ideally be completed on
publically available web sites and commercial databases. However, in many indus-
trial companies, transmitting sequence data over the Internet is prohibited, so com-
mercial databases are searched. Prior to the search, the professional will need to de-
termine the relevant percent identity of similarity and the sequence length that is ap-
propriate. BLAST and FASTA algorithms were designed for biological researchers
and their needs, not for patent searchers and should be considered when analyzing
the retrieval. If the biosequence is less than 30 residues in length, BLAST options
need to be adjusted to retrieve the best hits, along with other sequence search strate-
gies.

Homology sequence search is not comprehensive for a freedom-to-operate re-
quest. The search may need to cover genetic variants, chemically modified se-
quences, mutations and claims that discuss similar biological function but without a
disclosed sequence. As with other patent searching, the biosequence search should
include keyword or text-based, enhanced indexing, full-text and classification strate-
gies. The above strategy is not meant to represent a comprehensive search but rather
to illustrate factors to consider in constructing a search strategy.

Biosequence searching has improved in comprehensiveness of available data.
However, there is a demand to include more sequence data from the whole patent
document. It is not unusual to find the sequence of interest in a patent diagram.
Comprehensive sequence data from every patent family member, not just the ba-
sic patent, are desirable from all database producers. USGENE includes sequence
information from all the US patent family members and has increased patent biose-
quence data availability generated from the US Patent Office. Finally searchers and
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patent analysts require additional similarity algorithms, which have the capability to
search biosequences and deliver similarity scores in alignment with how claims are
crafted.

In conclusion, biosequence databases contain incomplete information, and neces-
sitates searching biosequences found in patent and scientific literature in both com-
mercial and, if allowed, publicly available sources and systems. Complementing
biosequence search with text-based search strategies is important for comprehen-
sive retrieval and intellectual-property analysis. In addition, a professional searcher
needs to have an understanding and working knowledge of the indexing policies and
limitations of each database.

1.7.3 Searching Device/Engineering Drawings

The retrieval of patent information within the disciplines of engineering, and more
specifically the mechanical/electrical fields of engineering, is a case study in the
application of the “No Free Lunch” theory [36]. The application of this premise to
patent information retrieval is very clearly visible in the methodologies a profes-
sional patent searcher uses in locating art of relevance. From an initial keyword-
based search limited to abstracts to full classification searches to multi-generational
citation analysis to combining focused keywords with classification ranges, all of the
algorithms used by a searcher are performed to search and retrieve more efficiently.

What is most overwhelming to an outsider used to the relative ease of locat-
ing information based upon words is the volume of references that are traditionally
reviewed by a patent searcher within the engineering disciplines. For a single, rel-
atively simple project, a mechanical patent searcher may manually review upwards
of 5,000 patent documents to locate a mere 10 of particular relevance (manual re-
view denotes a physical eyeballing of all figures, not a title-based review of the
document). And why is this? Because traditional search engines and the algorithms
employed are very inefficient in the engineering arts, which are heavily dependent
upon drawings to clearly convey a concept [37].

While a physical picture may clearly show a car bumper, the text of a patent may
describe a safety device for the protection of people or objects, said safety device
utilizing multiple materials, said multiple materials comprising a rigid material and
one or more less rigid materials, said rigid material selected from plastics and foam,
said less rigid materials selected from plastics and foam. The picture may be rec-
ognized by a patent searcher in less than 3/10th of a second as external to motor
vehicle, while the text could be parsed dozens of times for some hint as to whether
they intended a bumper, an internal padded vehicle component, a helmet, or even
shin guards for a soccer player.

The single biggest issue that causes this inefficiency and must always be noted
with regard to search and retrieval of engineering drawings is that while “a picture
may speak a thousand words”, it also does so in such a direct and succinct manner. In
contrast, the mundane and simple can easily be transformed into the obtuse and un-
clear by a quality wordsmith or lexicographer (typically the patent attorney/agent).
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Therefore, to avoid the dependency upon words, a searcher of patent information
in the mechanical/electrical engineering disciplines learns to rely upon additional
tools or algorithms for the location of relevant documents combined with rapid vet-
ting via image analysis. These other algorithms are classification schemes described
in Sect. 1.6.1, classification limited by keywords, and citation analysis. Then, us-
ing a circular flow path to emphasize the iterative process of searching, multiple
iterations will be performed to locate the documents of relevance.

An additional important means for removing the dependency upon words within
the mechanical and electrical engineering disciplines is the formulation of specific
search strategies. Most inventions or improvements lend themselves to a formulaic
combination of features: (A) Specific field of technology and (B) Problem to be
solved and (C) Solution to be applied.

An ideal reference will encompass A, B, and C. Of almost equal relevance will
be the subcombinations of A, B and C (A and B, A and C, B and C). This is particu-
larly true when setting up a search strategy or field of search. For example, when C
(solution to be applied) is best represented by a picture or figure, a search strategy
must be set up to search for all documents with A (technology field) and B (problem
to be solved). Those with C will inherently be included and only by manual review
will C be recognized and identified.

Going further down the thought pattern, often multiple features (B and C for
example) are poorly defined by anything other than a picture. Then a professional
searcher must manually review all references within A (the field of technology) and
examine the figures to identify those of interest to B and/or C. This is also the ideal
time to apply our first mentioned means (Classification, Classification limited by
keywords, and Citations) to avoid the dependency upon words and these are further
detailed below:

How Is Classification Used Using the example above regarding a car bumper,
the US classification schedule has a class (293) labeled “Vehicle Fenders”. With
this Class 293, a range of subclasses in an outline format running from 102 to 155
is labeled “Buffer or Bumper Type”. What this means is that all patents classified
in Class 293/Subclass 102 to Class 293/Subclass 155 are primarily focused upon
Vehicle Fenders and specifically on Buffer or Bumpers (approximately 7,000 doc-
uments). And more specifically, subclass 120 depends from the broad subclass 102
and is titled “Composite bumper” which very closely reads upon the plastic and
foam combination of rigid and less rigid materials. Thus, a review of the documents
in Class 293/Subclass 120 will put over 700 documents of high relevance in front of
a professional patent searcher without using a single keyword limitation.

How Is Classification Limited by Keywords Used Again using the bumper sam-
ple, the International Patent Classification (IPC) for Bumpers, which corresponds to
the above-mentioned US Classification Range 293/102-155 is B60R19/02-19/50.
More specifically, subclasses 19/03 reads on composite bumpers, 19/18 reads on
impact absorbing, and 19/22 expressly reads upon a “bumper containing cellular
material, e.g. solid foam”. While subclass 19/22 should probably be reviewed in
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its entirety, the other two subclasses (19/03 and 19/18) will not be as relevant to
the inventive concept. Instead those two subclasses are searched using the Boolean
operator “AND” along with the term “foam” to garner a higher precision search [Ex-
ample: (B60R19/03 OR B60R19/18) AND “foam”]. This allows the classification
scheme to weed out the soccer shin guards and helmets, which may use the same
terms as this bumper invention.

How Is Citation Analysis Used When a patent of relevance is located, it does
not stand on an island by itself. Like the vast majority of advances in science and
development, a patent is a baby step forward. By reviewing the art cited within the
prosecution history of the patent (back citing), one can see the baby steps that pre-
ceded a particular improvement. Likewise, by reviewing all patents prosecuted after
the patent of relevance (forward citing), one can see the baby steps that proceeded
from a particular improvement. Performing this operation in a sideways manner (a
forward cite followed by a back cite, or a backward cited followed by a forward
cite), one can locate parallel art to the patent of relevance.

How Are Iterations Used An initial keyword-based search should be performed
to learn about proper classification areas. Classification areas must be reviewed to
learn new terms within the art. Forward and backward citation must be performed
to learn both new terms within the art and new classification areas. Broad classifi-
cations combined with keywords must be performed to locate art that may not have
been properly placed in a subclass. Further keyword searching should be performed
to locate art outside the proper classification areas entirely.

It is important to note that all algorithms must be tried. Only after doing so will
the most efficient algorithm be identified (similar to the identification of mathemat-
ical benchmarks by Wolpert and Macready [36]). At that point, additional resources
may be assigned to the more efficient algorithms. Additionally, algorithms outside
the basics identified above may be pursued depending upon the technology and na-
ture of the information to be retrieved. These could encompass inventor searches,
assignee searches (owner of the patent) and geographic searches (for example, look-
ing for pachinko machines should probably focus on Japan).

With these basic algorithms for identifying relevant documents summarized, it
must be noted with large and bold letters that image retrieval is the key. While
one may start with general algorithms and carefully make algorithms more efficient
through iterations, one can only identify the information of relevance through the
use of rapid image retrieval.

A simplified example of the search process that would take a professional patent
searcher 6 to 8 hours (this is using an engine with no image retrieval delays—for
example, a Patent Office in-house system) is shown in Table 1.4.

1.8 Conclusion

Patent search, analysis and monitoring are business-critical, yet very time-consuming
tasks that are performed primarily by manual means. A proper search methodology
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Table 1.4 An example of the search process for device/engineering drawings

Step Action References manually reviewed

1 Simple keyword search limited to titles or abstracts 300

2 Class/Subclasses combined with focused keywords 700

3 Forward and Backward citations searches 500

4 Medium complexity keyword search 1000

5 Class/Subclasses combined with looser keywords 300

6 Class/Subclasses in their entirety 500

7 Highly complex keyword search 500

8 Additional Forward and Backward citation searches 500

9 Class/Subclass ranges combined with focused keywords 500

10 Final Forward and Backward citation searches 200

Total = 5000

will include usage of the major search mechanisms outlined above, will be well
planned in advance, will exhaustively leverage the information collections appro-
priate for the search, and will use a constantly iterative approach. In this chapter, we
have attempted to describe the practical experiences in and requirements for effec-
tive searching, analysis, monitoring, and overall management of patent information,
from the perspective of patent information professionals. While databases and tools
have long been supporting this process, advanced technologies are emerging to ad-
dress age-old issues such as database quality as well as tackle new challenges [38].
These new challenges include:

• traditionally neglected issue of multilingualism and increasing volume of patent
applications;

• wider variety of users from different backgrounds with various interests ranging
from scientific and legal to business;

• expansion of patent information use to explore new technical and business oppor-
tunities in addition to the traditional IP protection approaches.

We hope that this chapter has contributed toward understanding of the current
searching practices, systems and tools that would help in the further development
of emerging retrieval technologies to assist the user in patent search, analysis and
information management processes.

While new technology tools may greatly advance the patent search, analysis &
monitoring processes, it is important to be reminded that tools simply assist and
cannot replace the human mind. A good patent searcher is knowledgeable not only
about the intricacies of different types of patent searching, but also the changing
requirements of international patent laws, technical innovations and current devel-
opments in the different types of information sources available. The central role of
the patent searcher continues to be essential in balancing the search requirements
for recall and precision and for insightful analysis of the results.
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The chapters following will investigate many of the topics addressed in this in-
troduction in addition to many more to provide a comprehensive cross section of the
many challenges patent information retrieval faces today.
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Chapter 2
An Introduction to Contemporary Search
Technology

Veronika Stefanov and John I. Tait

Abstract This chapter is the counterpart of the preceding chapter. It gives an
overview of some of the most important terms and concepts used in Search Tech-
nology and Information Retrieval today. We hope it can be useful to readers who are
not researchers in these areas. After a short dip into the history of the field, we start
with a high level overview of the different types of search, and the gap between user
requirements and how search systems can be evaluated, finally narrowing it down
to the main evaluation methodology used today. This is followed by a step by step
guide to the architectural components of a generic full text document search system
and its design implications. We then describe how the underlying models define to a
large extent what the system can and cannot do. This chapter concludes with a short
introduction to semantic search and an outlook to the challenges in patent IR, the
main subject of this book.

2.1 Search Technologies and Information Retrieval

We have called this chapter “Introduction to Contemporary Search Technology”
rather than, for example “Introduction to Information Retrieval” because the subject
of Information Retrieval as a whole is very broad and much of it is of little or no
interest to those involved with practical patent search.

Information Retrieval might be defined as the science and technology of search-
ing for and accessing information in documents, or in parts of documents. This
definition by Manning et al. [21] can be useful to see the core, as well as the whole
area:

Information Retrieval is finding material (usually documents) of an unstructured nature
(usually text) that satisfies an information need from within large collections (usually stored
on computers).
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It is a classic scientific endeavour, with both theoretical and experimental (or
perhaps better: empirical) branches, and a well established scientific paradigm sub-
scribed to by many in the field, whether in academia or the industry. The scientific
aspect has always (since the 1940s or 1950s) been closely related to a practical en-
gineering aspect, which seeks to deliver operational systems. This has very wide
use and implications through, for example, well-known internet search engines like
Google and Microsoft’s Bing.

In other areas, there is a well recognised terminological distinction between the
science and technology aspects: for example between physics and mechanical or
electrical engineering. As is all too often the case in computing, unfortunately In-
formation Retrieval is a portmanteau term for both the scientific and engineering
aspects. Since the practical patent searcher mainly needs an understanding of the
technological or engineering aspects, we have chosen the narrower term “search
technology” for this introductory chapter.

This is not say the practical patent searcher might not find the science of In-
formation Retrieval useful: in particular over the years many empirical studies in IR
have presented surprising results about which technologies are the most effective for
search. These results help practitioners reflect on, and improve their practice. Infor-
mation Retrieval owes its origins to 19th Century Library Science (see e.g. Schret-
tinger [31]), but was inspired and transformed by the development of computerised
“mechanised” information systems after World War II, and perhaps especially by
Vanevar Bush’s prescient Memex article [8]. The first use we can find of the name
Information Retrieval is by Mooers in 1950 [22] who was, incidentally an early and
vocal critic of the use of Boolean Logic (as opposed to ranking) in search technol-
ogy systems [23]. Boolean retrieval, despite this, remains the mainstay of practical
patent search.

It is worth noting that the early systems would invariably be described today as
searching metadata: typically, the data they searched were author, title, some index
terms or keywords, and perhaps an abstract: it was only in the 1960s or even 1970s it
became common place to analyse and index (and therefore make searchable) the full
text of the document. As noted above, Information Retrieval has a strong theoretical
tradition. But in practice the field is principally driven by experimental work. Prime
amongst this was the work by Cleverdon and others at the Cranfield Institute of
Technology in England in the 1960s [10, 11], which continues to be influential (see
also Chap. 3 in this volume).

It is worth noting that patent search has been an application of interest from the
earliest days of information retrieval, although in the early literature it is sometimes
difficult to distinguish between computerised Information Retrieval and the use of
older, mechanical sorting and selection devices, like card sorters.

A complete survey of search technology, let alone Information Retrieval as a
whole, goes beyond the scope of this chapter (or the whole volume). There are a
wide range of text book introductions to the subject ([9, 21], etc.), although generally
they nowadays focus on web search.

By way of introduction to the rest of the chapter, a couple of points are worth
making, which might surprise patent searchers.
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First it is the accepted wisdom of the Information Retrieval research community,
based on a significant body of experimental evidence accumulated over many years,
that ranked retrieval systems are more effective than Boolean or other structured
query systems. Systems experiments almost always show the familiar set-based
Boolean retrieval systems are less effective than systems which present the searcher
with lists of potentially relevant documents ordered with the most likely to be rel-
evant first, then the next most to be relevant, on so on towards progressively less
relevant documents. We will return to this later in the chapter.

Second, a recent insight has been that retrieval from very large (web scale,
petabyte scale) collections of documents may be different in kind from retrieval
from smaller scale collections. The reasons for this remain unknown at the present
time, but may be the result of the pervasive nature of phenomena matching Zipf’s
Law (see [3] and Chap. 12 of this volume for more).

As noted above, experimental work is the hallmark of IR research. Therefore,
rather than diving in to the technology, in the next section of this chapter we give a
brief introduction to IR evaluation.

2.2 Finding a Search Technology that Works for You

There are many ways of looking at the variety of IR systems: from an information
theory perspective, a historical perspective, a systems engineering perspective, an IR
researcher’s or a librarian’s perspective. We begin with the final purpose for which
such systems are designed: searching and finding what you are looking for.

Which techniques and tools are useful greatly varies with the type of search task.
Searching can take many different forms. One way of structuring them could be the
following types [24, 28]:

known-item search The user is searching for an information object which is al-
ready known to them; also known as direct search.

exploratory search The user is seeking to learn about a topic but does not know in
advance what may be important.

browsing The goal is unclear, the user is not sure whether or how the requirements
can be met.

exhaustive search The user is trying to learn everything about a particular topic.

Only the first type, known-item search, is more or less supported by classic search
engines and classic search engine evaluation. The information need is well defined
and can be expressed by the user (subject terms are known, maybe also the author,
document type, creation date, etc.), and the correct answer may be found with no or
very few iterations.

In an exploratory search, the user cannot provide an exact query at the beginning,
and so will be confronted with a large amount of potentially interesting results. The
approach will be very iterative, with the user needing to review the results of every
step to refine the query, gradually learning about the topic. Additional functionality
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such as aggregation and visualisation of search results, as well as automated query
rewriting, can support the user.

Browsing can take advantage of links inherent to the document collection, such
as weblinks or citations. If users have a fairly good idea of what they are looking for,
following link pathways allows them to refine their perception of their information
need.

Exhaustive search enjoys only very limited support from any existing IR system.
The requirements on both the users (in terms of background knowledge) and the
system performance are high. Nevertheless, exhaustive searching is an everyday
requirement in many domains (law, patents, medicine, intelligence).

2.2.1 Can You Choose the Best IR System?

How can you choose an IR system for your tasks? How do you test and compare?
The first thing most people probably do is to give a system some test queries and
look at the results. But how can you judge whether these documents are the best
matches in the whole collection? The unfortunate answer is that the only way to
really know, would be to look at all documents in the whole collection and check.
For any meaningful IR situation this is not feasible (if the collection is small and
you know all the documents in it, you do not need a retrieval system. . . ).

One way of looking at it could be to assume that if many people use many sys-
tems over a long time, certain trends might become apparent. They might stop using
less useful systems and switch to the systems that save them time and effort, mean-
ing that users actually vote by their usage.1 But is the most widely used system also
the best? How do users choose?

Professional users have to choose from tools they might buy, and this can be done
with trial licenses or calls for bids to system vendors. They also often do not have
a real choice (lack of information, prohibitive switching costs from vendor lock-
in, licensing, knowledge/training investment, etc.). As criteria for selecting patent
search tools for example, the data coverage, document delivery, import and export
functions as well as the company behind the tool are equally important, if not more
than the pure retrieval effectiveness [15].

For some systems, it is possible to infer user happiness/searcher trust/usefulness
metrics (see also Chap. 20) from secondary values. Ad revenues, e-commerce
deals or measures of returning users can be meaningful for web-based applications,
whereas enterprise search solutions try to measure productivity gains.

Compared to researchers, professional users know their use cases intimately.
They can focus on just their own needs and ignore all other issues, which in turn
allows them to select tools for their work.

1This seems to have happened in the late 1990s between Web search engines. Those that viewed
web sites as plain text documents were replaced by search engines that used the links between sites
to choose those that were most likely more useful to more people. The quality of the search results
using link analysis was so much better that people switched.
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2.2.2 User Knows Best: User-Centred Evaluation

The overall test of a system is the usefulness to its users. User-centred evaluations
can and are being done, but they are expensive and difficult to do correctly for a
number of reasons [17]:

1. a large, representative sample of actual users is needed
2. each system must be equally well developed and must have a user interface
3. each participant must be equally well trained on each system
4. the learning effect must be controlled for

Because of these issues, real user-centred evaluation is rare, which has led to
a certain unfortunate lack of communication and feedback between IR researchers
and those who might potentially use their search systems. Some specific ways for-
ward for patent search are explored in Trippe and Ruthven’s chapter in this volume
(Chap. 6).

2.2.3 Laboratory Tests: The Cranfield Model

Already in the early days of computer-based IR, researchers devised testing methods
that can be likened to laboratory tests. They ignore a large amount of the “noise”
and ambiguities of real use cases, and allow for empirical, reproducible tests that
yield quantitative results on large amounts of data. The so-called Cranfield tests lead
to the main evaluation methodology still used today. The second part of this book
discusses evaluation methodologies within the Cranfield paradigm in more detail.

For such an evaluation, the following items are needed:

• a suitable collection of documents
• some (representative) queries on this collection
• and for every query, a list of documents (ideally a complete list) that are relevant

(the relevance judgements)

Given this information, automated tests can be run that compare the actual results
to the target results and quantify the differences.

The first requirement, a suitable collection of documents, which has to be large
enough to make the statistical results meaningful, can already be difficult to achieve.
But the second and especially the third requirement are the real hurdles to large scale
testing.

How are the relevance judgements produced? The gold standard is manually
judged results, for which a large number of highly skilled and motivated judges is
needed. Ideally, all relevant documents are collected beforehand for all test queries.
Apart from the fact that for many queries there simply is no “right” answer, research
has also shown that human judges tend to disagree in what they find relevant [30].

Additionally, new test queries have to be found for every competition to ensure
fair conditions as well as to avoid over-optimisation of the systems to the training
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set. It is not surprising that many approaches have been developed over that last
decades that are able to create relevance judgements automatically from the collec-
tion and the queries. These values are tainted with uncertainty, but are still useful
for many types of evaluation, which otherwise could not be performed at all. Chap-
ters 4 and 5 describe how in the area of patent information retrieval evaluation, the
citations contained in the documents can be used to obtain usable relevance judge-
ments.

2.2.3.1 Evaluation Conferences

The Cranfield paradigm forms the basis for a number of longstanding evaluation
conferences, where the organisers provide the data, queries and relevance judge-
ments. The efforts of TREC,2 CLEF,3 NTCIR,4 and FIRE,5 have improved the situa-
tion of IR evaluation greatly by providing researchers not only with urgently needed
data and frameworks, but also with a community and comparable research [25].
Within this volume one can find more about activities focused on patent search in
Chaps. 3, 4, and 5. It remains to be seen how recent complementary efforts such as
PatOlympics6 can foster the interaction between creators of retrieval systems and
information professionals.

2.2.4 Quantifying the Difference: IR Measures

Assuming that the three evaluation requirements above have been taken care of,
and that the experiments have been conducted, how should the difference between
the actual results and the target results be analysed? It helps to know the goals of
the system to be able to select substantive values. The Cranfield tests established
desirable characteristics of an IR system—precision and recall—which are at the
heart of every IR evaluation.

2.2.4.1 Precision and Recall

Precision looks at how many “wrong” documents were caught together with the
right ones, while recall looks at how many “right” documents were missed. Both

2Text REtrieval Conference (TREC), http://trec.nist.gov/.
3Cross-Language Evaluation Forum (CLEF), http://www.clef-campaign.org/.
4NII Test Collection for IR Systems (NTCIR) Project, http://research.nii.ac.jp/ntcir/index-en.html.
5Forum for Information Retrieval Evaluation (FIRE), http://www.isical.ac.in/~clia/.
6PatOlympics Interactive Patent Retrieval Competition, http://www.ir-facility.org/events/irf-
symposium/irf-symposium-2011/patolympics.

http://trec.nist.gov/
http://www.clef-campaign.org/
http://research.nii.ac.jp/ntcir/index-en.html
http://www.isical.ac.in/~clia/
http://www.ir-facility.org/events/irf-symposium/irf-symposium-2011/patolympics
http://www.ir-facility.org/events/irf-symposium/irf-symposium-2011/patolympics
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Table 2.1 Precision is 0.6,
Recall is 0.5

Relevant documents Retrieved documents

A A

B B

C E

D

Fig. 2.1 Illustrating
Table 2.1: Precision compares
the overlap to the whole dark
area, recall compares the
overlap to the whole white
area

are numbers between 0 and 1 (often expressed as percentages), where 1 is best.

Precision = number of relevant items retrieved

number of items retrieved
, (2.1)

Recall = number of relevant items retrieved

number of relevant items
. (2.2)

A precision of 0.8 means that for every four correct documents in the result list
there is one mistaken one that is not relevant to the query. A recall of 0.8 on the
other hand tells you that the result list contains only 80% of all the documents that
should have been retrieved.

You can view them as measures of false positives7 and false negatives.8 They
only make sense together, as it is trivial to increase just one of them,9 and as illus-
trated in Fig. 2.1 they are usually contradictory.

For most systems, it is generally unknown which levels of recall and precision
they can achieve. For commercial search tools, no published evaluations exist. And
for the academic systems that are submitted to evaluation conferences, the results
must be taken with caution. It lies in the nature of the Cranfield paradigm that the
absolute values of the evaluation measures are not meaningful by themselves. They
can only be used to compare different runs on the same test setup. Unfortunately this
also means that the results obtained at an evaluation conference in one year cannot

7Also known as type I error or α error.
8Also known as type II error or β error.
9How do you reach a “perfect” recall of 1.0? Putthewholecollectionintheresultset.

How do you achieve a very high precision? Limittheresultsettojustafewdocuments.
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Fig. 2.2 Results by query (raw data from the TREC-CHEM 2009 prior art task)

be directly compared to the previous year, although all the major evaluation cam-
paigns have maximising reproducibility as a goal [5, 6]. See Chap. 6 for a critique
of the recall/precision model.

2.2.4.2 Beyond Precision and Recall

Recall and precision work on sets and have no notion of ranking [32]. Since ranked
result lists are a common feature of search systems and the quality of the ranking
greatly influences the quality of the result for the users, derived measures had to
be found. A commonly used measure is the mean average precision (MAP). The
precision value is different, depending on how far down the result list you look.
Average precision is the average of all precision values at the point where each
relevant document is placed in the ranked list. MAP is the mean of the average
precisions for a group of queries, since the values can depend heavily on the queries.
In fact, as can be seen in Fig. 2.2,10 the raw data obtained in large scale experiments
are, in most cases, difficult to interpret.

Additionally, since many use-cases favour recall over precision or vice versa,
metrics matching these requirements can be used. For a stronger focus on precision,
metrics that only look at a smaller amount of documents at the top of the list are
useful, whereas for recall-oriented cases, it can help to measure the precision at a
given level of recall, which would indicate how many wrong documents the user
will encounter before the desired recall is reached. Chapter 3 of this book contains
examples of more advanced measures.

Interested readers taking a look at the proceedings of IR conferences and eval-
uation workshops will find advanced charts and tables comparing these measures
[20, 27]. It is usually not intuitively understandable what the results “mean” for ev-
ery day search tasks. Compared to the types of tasks outlined above, the Cranfield

10http://www.ir-facility.org/research/evaluation/trec-chem-10.

http://www.ir-facility.org/research/evaluation/trec-chem-10
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type evaluations do not represent iterative or complex searches. It is possible to
evaluate individual supporting methodologies, such as for example query rewriting
methods, by comparing the results of the original query to the modified one, but any-
thing that resembles users extracting information from one result and applying it to
the next query while using information from a third source cannot be represented in
this model, although there have been recent attempts to overcome this problem [7].

2.2.5 System Characteristics

Apart from the result list, other characteristics of an IR system can be measured in
a straightforward way [21], as for example:

• latency of showing results (as function of index size) in seconds from submitting
a query

• collection size and how is it distributed over topics in megabytes or documents
• timeliness of the data in the collection): what is the latest date at which the index

is guaranteed to match the current version of a document

For users, the query interface and query languages are very important, but their
features cannot be captured so easily:

• expressiveness of the query language (languages can only be “measured” in term
of feature checklists)

• performance (speed) of complex queries (as opposed to retrieval latency due to
index size)

2.3 System Components and Architecture

If you wanted to build your own IR system, how would you do it? As different as
they might appear on the outside, most systems follow a similar overall architecture.

Contrary to how it is displayed in movies and on TV, or how simple desktop file
search tools work even now, IR systems do not start to scan all documents when you
submit a query. Instead, most of the work is performed before, at index time (“of-
fline”), and only some tasks are performed live at query time (“online”). Depending
on the use case, it makes sense to do more or less offline. Such design decisions
make or break a successful IR system.

In general, a system will have the following components:

1. Indexing
2. Querying
3. Result presentation

The following gives an overview of the main steps, the purpose and the chal-
lenges of each part, as summarised in Fig. 2.3.
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Fig. 2.3 Overview of the
components of a search
system, cf. [2, 21]

2.3.1 Indexing

Indexing means preparing a second, separate representation of the documents, op-
timised for retrieval.11 If we assume that the user will be searching with terms as
queries, and will want to get all the documents that contain these terms, it would be
useful to have a list of the terms and for each term a list of the documents where
it occurs. This simple list is the so-called inverted index, also known as postings
list. It is the most basic index. The bi-directional mapping between terms and doc-
uments is known as term-document matrix. Such a representation loses the order of
the terms in the document, so if the users are to be able to search for multi-words
or phrases, or use positions of the terms with wildcards, the index will have to store
this information as well [2].

The index can only give the information that is stored in it, so if the result presen-
tation should contain a snippet of the document with a highlighted search term, this
has to be taken into account and the necessary data stored in the index. For ranked
result lists, the information needed for weighting of terms and documents also has
to be included in the index somehow. See Sect. 2.4.2.3 of this chapter for examples.

11Before indexing, it is necessary to get the documents (with web crawlers, fetchers, etc.), which
can be a challenge in itself.
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2.3.1.1 What Is a Term?

Indexing based on the terms in a document collection requires a working defini-
tion of “term”. Tokenisation is the process of splitting text into individual words or
terms. The straightforward approach of splitting at spaces and punctuation marks
can lead to problems with numbers, URLs or acronyms, so more advanced rules
with exceptions, word lists, and thesauri can greatly improve the performance of
the final system. Tokenisation is also language specific and benefits from linguistic
knowledge: in many Asian languages no spaces are used to separate words, which
requires advanced methods of word segmentation, but also German or Dutch com-
pound nouns require a compound splitter.

For languages with inflection, stemming is often the next step. Stemming re-
moves suffixes from the terms, reducing them to their core or stem. This process is
also language specific, and while it loses a significant amount of information con-
tained in the endings (distinctions between plural and singular, verb and noun, past
and present), it makes querying easier, as the user does not have to enumerate all
possibly matching variations in the query string.

Terms that occur in practically all documents and many sentences, such as “of”,
“the” or “and”, called stop words, can be removed from the index, as they do not
add any discriminative information that could improve the results, while making up
a large portion of the size of the index. When it comes to phrase search, the missing
stop words have to be taken into account, either by removing them from the phrase
to be searched, or by making sure that the index used for the search still has them.

Further processing of the word list might include checking and treating spelling,
OCR or transcription errors [18].

2.3.1.2 Fulltext, Metadata and Other Information

A lot of content is actually of a semi-structured nature. It contains unstructured parts
such as text or images, which have to be prepared to become searchable, as well as
structured content such as dates and other document metadata, which lend them-
selves much more easily to searching (e.g. “all PDF documents created between
February 7th and 10th”). If these values should be searchable together, this integra-
tion must also be prepared at the indexing step. The same is true for any additional
enhanced search methods, such as semantic information extraction of events and re-
lationships. In fact, it is not uncommon to create separate indices for these different
types of data and query them all in parallel at query time.

2.3.1.3 System Characteristics and Engineering Decisions

Other important distinguishing features of indexers are the indexing speed (in doc-
uments or Kilobytes per second), the resulting index size (compared to the original
documents), and whether the index can be easily updated when there are changes in
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the collection, or whether it has to be completely recreated. Querying speed depends
on how easily the index can be accessed, and that depends on the physical instanti-
ation of the index: it can be a single large file, a collection of files, a database, and
stored on one machine or distributed.

2.3.2 Querying

The querying component consists of a query parser and whatever tools are nec-
essary to match the user’s query to what is contained in the index. A free text
query is treated similarly to the documents in the indexing step: it gets tokenised
and stemmed. “Did you mean . . . ” suggestions can be created by performing a
spellcheck on the query or by comparing it to a list of frequent queries.

Users are generally not able to construct perfect queries. They might get close
for known-item searches, but for all other types of search, they simply cannot know
beforehand. The search system can support them with automated query rewriting.
Users often come across concepts that can be expressed in many different ways,
where they cannot know which one will lead them to the desired results. On the
other hand, many words have more than one meaning, which is clarified by the
context of a sentence or paragraph, but remains ambiguous when used in a query.

A thesaurus can be used to improve the situation by automatically adding syn-
onyms to the query. But since the terms in the original query lack context, this will
typically lead to much less precise queries, as terms from unrelated domains are
added to the query.

Since not even the most advanced algorithms will know more about the domain
context of the query than the user, another method is to perform an initial search and
then ask the user directly for feedback to the retrieved documents. The user marks
a few of the top retrieved documents as (non-)relevant, which makes it possible to
automatically modify the query in a way that finds more relevant documents, much
the same way in which users would modify their queries to include and exclude
items after seeing the first results. This type of relevance feedback has been used
since the 1960s and is known to be effective [26, 32].

Sometimes user feedback is not available, so in the 1990s, pseudo-feedback was
invented. It assumes that the top documents retrieved initially are close enough to
the intended result, so that related terms can be taken from these documents to create
a second, improved query. The modified query contains related terms and synonyms
to the original query terms. The result of the second query is presented to the user.
This approach is also known to be effective, in particular for short queries [32].

After the documents have been retrieved, if the result list is to be ranked, the
retrieved documents have to be scored by whichever model the IR system uses (see
Sect. 2.4.2 of this chapter for ranking models). If the result list is constructed from
different sources, they have to be merged into one uniform result with one overall
ranking before being presented to the user.

Machine learning has been successfully applied to ranking: The systems learn
a ranking function based on a ranked training data set [19]. In the early 2000s,
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such techniques became dominant at commercial search engine providers, whose
expertise is visible in the results of challenges such as the recent “Learning to rank
challenge”.12

2.3.3 Result Presentation

The linear result list is a very common and simple presentation mode. It can be
sorted and filtered by the available metadata of the documents (e.g. date, size, file
type). If the underlying model does not support ranking, sorting the documents
chronologically, for example, can be very useful.

The requirements for the presentation of results depend heavily on the domain.
Web search engines have evolved to provide snippets from the pages as well as
summaries, direct links to parts of the pages found, maps, or images, as this saves
searcher’s time. Patent or legal searches value depth of knowledge more than time
and will not be satisfied with snippets or summaries alone but will want easy access
to the full document, with highlighting of query terms or other indications of why
this document is in the result list.

Result snippets and summaries can be static (independent of the query) or dy-
namic. The static ones can be created and stored at indexing time, whereas creating
dynamic summaries at query time may require access to the full document or elab-
orate calculations and can be a costly operation. They can help to explain why the
document was retrieved for the particular query.

There are many quite sophisticated summarisation approaches in the area of Nat-
ural Language Processing. A simple method is to show the search term surrounded
by the words that precede and follow it in the text, which is called keyword-in-
context, or KWIC. The context can be a fixed window or adjusted to sentence bound-
aries with linguistic methods [21, Sect. 8.7].

For document collections with metadata that can be seen as a network, such as
academic publications, a visualisation of the network graph can be useful (for ex-
ample, MS academic search uses people who have published together), whereas
geographic metadata can be visualised on maps13 (see Chap. 11).

Other options include word clouds that show words occurring together (in a doc-
ument, in a group of documents, in the search results), and words that occur more
often larger14 than less frequent ones.

For browsing or explorative searches, faceted search can be very useful to get an
overview over a large result set. Facets are attributes of the documents, either given
as metadata or computed on the fly with clustering or classification algorithms. They
are well known from the user interfaces of online stores (where you can filter the

12Yahoo! Labs Learning to Rank Challenge http://learningtorankchallenge.yahoo.com/.
13For example, Freepatentsonline shows inventors’ addresses on a map at http://www.
freepatentsonline.com/maps.
14http://www.wordle.net, http://deeperweb.com.

http://learningtorankchallenge.yahoo.com/
http://www.freepatentsonline.com/maps
http://www.freepatentsonline.com/maps
http://www.wordle.net
http://deeperweb.com
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thousands of available shoes by colour, size, manufacturer, material, etc.) and act as
a kind of drill-down into “regions” of the result set. They are a convenient alternative
to complex search forms with multiple fields because they can be used on demand
after the query returns, and only until the result set is small enough for browsing.

2.4 IR Models

The ways users can express their information needs as queries and how the queries
are used to find the desired documents depends on the model built into the system.
Indexes, query parsers and ranking components work based on assumptions of what
documents and queries are. In the past, larger increases in the performance of IR
systems of the past have been related to paradigm changes in IR models used.

2.4.1 Boolean IR

The boolean model is the simplest IR model. It is clear and precise: A document
either matches or it does not match the query. The user is in control and has trans-
parency over what is retrieved. The search terms are linked with boolean opera-
tors: AND, OR and NOT. Using AND greatly increases precision and lowers recall,
whereas OR quickly lowers precision and increases recall.

Boolean systems are generally good for expert users with clear understanding
of their needs and the collection, as it requires a lot of skill to come up with a
manageable number of hits. In the basic version of the boolean model, all terms are
weighted equally, so it can be quite challenging to find the sweet spot between a
huge result set with too many documents and an (almost) empty result set.

In extended versions, term proximity operators and wildcards can be used.
Boolean operations are set operations on a set of documents, which implies that
the results cannot be ranked. In practise, using some of the document metadata to
display the documents in an order, for example, chronologically, can work very well
for many applications.

Boolean systems have dominated commercial tools for decades. In the 1990s,
Turtle [33] first showed that free text queries performed better than expert boolean
queries on a legal document collection.

2.4.2 Ranked IR

If you can find a way to display the best fitting documents at the top of the list, this
solves the Boolean systems’ problem with the result set size. Almost all contempo-
rary search technologies are based on ranked retrieval, and it is the accepted wisdom
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Fig. 2.4 A vector in
3-dimensional space:
(2,3,−1)

amongst the IR community that ranked retrieval is almost always more effective than
Boolean Retrieval.

Ranked retrieval needs a scoring formula that can provide a numeric value of
how likely a document is useful to the searcher, of how well it matches the query.
This property makes it possible to “narrow” or “broaden” a search.

2.4.2.1 Vector Space Model

A vector is a geometric object representing a direction.15 It resembles a list of nu-
meric values, one per dimension. The three-dimensional vector (2,3,−1) repre-
sents the direction “two steps to the right along the x-axis, three steps ahead along
the y-axis, and one step down along the z-axis” (Fig. 2.4). Any list of numbers,
no matter how long, can be viewed as a vector. The corresponding space has as
many dimensions as there are values in the vector, which might be unimaginable to
humans, but mathematically it works just the same.

The vector space model uses vectors to represent documents and queries. The
dimensions of the vectors should correspond to the distinguishing features of the
documents, so if terms are what will be used for querying, then the vectors will have
as many dimensions as there are unique terms in the collection. A document’s vector
will contain a non-zero value at the slot of a term if the term occurs in the document,
and zero if not [29]. These very large vectors are also very sparse, meaning that most

15Actually, a direction and a length, but the length is irrelevant for our purposes.
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of their values are zero, a property which can be exploited in the implementation to
improve the data model.

Models in which word order is fundamentally disregarded are known as “bag of
words” models, and so the vector space model is a “bag of words” model. Note that
this does not preclude using word order in queries: it is more an issue of efficiency.

In order to use such as system to score a document’s relevance to a query, the
query is treated as a small document, and a vector is created for it at query time. The
similarity between the query and a document is then assumed to correspond to some
property of the angle—typically the cosine—between their vectors. This approach
is very useful for ranking the search results because it can represent a continuous
degree of similarity. The cosine for example is 1 for equal documents and 0 for
documents that have no terms in common.

This technique works for all kinds of data that can be represented as vectors
(images, music, network graphs, molecule structures), and is useful also for classi-
fication and clustering. Classification is inherently similar to retrieval, as it can be
seen as classifying documents into the two classes relevant and not relevant. But be-
cause there are many more irrelevant documents than relevant ones, the distribution
is very skewed, and using unmodified classification techniques directly for retrieval
might run into problems [21].

As mentioned in the section about querying above, using the terms occurring
in the documents directly for searching results in noise and ambiguities caused by
synonyms16 and polysems.17 Latent Semantic Indexing (LSI) [13] is a strategy that
uses matrix computation methods to resolve some of the problems caused by syn-
onyms. A (computationally expensive) multi-step process on the term-document
matrix finds a much smaller approximation to the original matrix that replaces the
terms with “concepts”, grouping terms with similar semantics [14]. The method was
patented in 1988 (US Patent 4,839,853 [12]). Latent Semantic Indexing is a statis-
tical approach to detecting semantic information in unstructured text. Section 2.5
below focusses more on explicit semantic methods.

2.4.2.2 Probabilistic models

Probabilistic methods are based on the idea that it is possible to estimate the proba-
bility of a term appearing in a relevant document if you have some known relevant
and non-relevant documents. Probabilistic IR is somewhat similar to the approach
taken with the vector space model, in that they are generally based on the bag of
words approach, but it is resting on the sound foundation of probability theory.
Probabilistic methods have been investigated in IR since the 1970s and won new
support with probabilistic methods in computational linguistics in the 1990s, but
never achieved the performance expected or hoped from them [21]. In the result list,

16Several words for one meaning.
17One word with several meanings.
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the documents can be ranked by their probability of being relevant to the query:

Probability(document is relevant to the query|document, query). (2.3)

2.4.2.3 Term Weighting: tf.idf

For the above models to work, some numbers have to be inserted. Which values
should be used for the non-zero values in the term vectors? Zeros and ones, or how
often the term occurs in the document? Should they be normalised in any way?

Typically, tf.idf or one of many values derived from it are used. Tf.idf, the ratio
of term frequency to document frequency, reflects the searcher trying to find terms
that are rare overall (discriminative) but frequent in the requested document. It is the
“magic number” of Information Retrieval.

term frequency

document frequency
= tf

df
= tf.idf. (2.4)

The document frequency (df) of a term is the number of documents in the collec-
tion in which the term occurs. Each term has one df for the whole collection. The
term frequency (tf) of a term is the number of times a term occurs in a document.
A term therefore has one tf per document in the collection.

If a term is rare throughout the whole collection, its df and tf are small and the
tf.idf for all documents is similar. If it is rare overall but frequent in a single docu-
ment, its df is still small, but the tf for that document is large, making the tf.idf larger
for that term in that particular document. Work has continued to provide improved
formulae within this framework, most notable of which is BM25F [34].

All similarity depends on the keywords, so this approach is sensitive to vocabu-
lary differences and the preprocessing of the documents (see Sects. 2.3.1 and 2.3.2
of this chapter). It assumes that the frequencies are independent, and disregards the
order of the terms in the documents. It can be extended with phrase search, wild-
cards and (quasi-) boolean operators though.

Such search engines are independent of the type of data, as long as they can
be accessed to be indexed (i.e., somehow turned into numbers). Many open-source
search engines exist that are based on this approach; the most widely used is Apache
Lucene.18

2.5 Semantic Search

Semantic technology is the subject of many hopes, as it may allow search systems
to take (some of) the meaning of the words into account, as opposed to “just count-
ing” them. If applicable to the domain and done successfully, it can be expected to

18http://lucene.apache.org.

http://lucene.apache.org
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improve recall while keeping precision at least constant if not also increasing it [21].
The requirements consist of a suitable information representation and the ability to
perform natural language processing.

In the patent search community “Semantic Search” is often taken to include La-
tent Semantic Indexing and related techniques. Generally within the IR community,
and more so in the Semantic Web, Knowledge Management and Computational
Linguistics community, it is generally considered a variant and extension of vector
space models: hence its treatment in this chapter.

Knowledge bases (ontologies, thesauri, and taxonomies) represent concepts and
relationships—usually within a subject area—that a community can agree on. They
are used to classify, structure, define or represent, and have the additional value of
aiding cross-language interoperability, and are often created for company-specific
data. They can be used in semantic search for query expansion, searching by con-
cepts instead of terms, as well as broadening or narrowing search.

Controlled vocabulary/Glossary A list of terms and definitions. Used to reduce
the variability of terminology use.

Taxonomy A knowledge hierarchy where items are connected to each other by
parent-child, part-of or instance-of relationships. Classification hierarchies like the
International Patent Classification (IPC) are a kind of taxonomy.

Thesaurus A network of terms connected by hierarchical, equivalence or associa-
tive relationships. Synonym dictionaries used by patent searchers are a kind of
thesaurus.

Ontology A taxonomy with multiple, precisely defined links between the items that
represents knowledge as a set of concepts and their relationships. Different kinds of
ontologies are suitable for different purposes (reasoning on the data, fuzzy search,
etc.).

Information Extraction is the identification of facts from unstructured text, so
that knowledge bases can be built with little or no human effort. It depends in part
on Named Entity Recognition which uses lists of known multi-words (as found in
dictionaries, thesauri, ontologies, taxonomies) to recognise entities such as places,
organisations, persons and events in text documents [32]. Relation extraction finds
the relationships between entities (e.g. person [works at] organisation). These feats
can be accomplished with pattern-based, with statistical, or with hybrid methods.
State of the Art systems have some ability to deal with previously unseen terms,
and Named Entity Recognition has proved itself ready for deployment in industrial
settings, like business intelligence. Given the prevalence in patents of complex and
newly coined and variant technical terminology, company names and so named en-
tity recognition is likely to have an important place in future patent search systems.

2.6 Outlook

To summarise the preceding sections of this chapter, the key characteristics of In-
formation Retrieval are:
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• Unstructured information, mostly semi-structured data
• No right answers (except for known-item search)
• Separation of indexing and query time processing; offline (crawl/index time) vs.

online (query time) processing
• Strong empirical method, reproducibility and evaluation required

What this means for applications such as patent search is the subject of the rest
of this book. As outlined in [4], there are indications that iterative search is coming
into focus, as newer methodologies such as faceted search or clustering features are
becoming more common.

A lot remains to be done. A survey conducted in 2010 [1, 16] compared the
features offered by open-source IR systems (from the more academic to industry-
strength systems) to the features that are important to patent searchers. While op-
tions of the query languages (that depend on the underlying IR models and their
extensions) such as wildcards, field operators or proximity search are well-covered,
requirements related to the iterative and explorative nature of the search process
(which would require greater changes to the whole system) were found to be not
covered at all. Functionalities such as combining multiple queries or results, key-
word highlighting in the results or grouping the documents by non-explicit meta-
data like patent families are missing and have to be implemented outside of the core
applications.
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Part II
Evaluating Patent Retrieval

As was noted in the previous chapter, Information Retrieval as a scientific subject is
characterized by a strongly empirical approach, backed up by a rigorous approach
to experimental methodology.

A key question for anyone selecting systems to search patents is whether one
system or another is better for the purpose of interest. A core value of Information
Retrieval as an academic subject is that “improvements” in systems must be rigor-
ously tested, to determine whether they actually deliver better results than previous
systems. This has led to the development of well thought through empirical methods
in information retrieval, which have influenced commercial practice of well-known
search companies, like Google, as well as academic practice in formal international
evaluation campaigns like NTCIR, TREC and CLEF.

This part will begin by introducing the basis of IR experimental methodologies.
It will then go on to discuss some recent IR evaluation campaigns focused on patent
search and conclude with what needs to be to done to make these campaigns more
relevant to the needs of real patent searchers.

In this part there are four chapters. The first, by Carterette and Voorhees, gives
an overview of the whole subject of information retrieval evaluation and experiment
including an introduction of key terminology, the standard approaches to evaluation
(and its shortcomings) and some pointers to further reading for those interested.
The next two chapters cover two major activities (TREC-CHEM and CLEF-IP) to
evaluate patent search oriented retrieval systems, which have taken place in the last
few years. The last chapter in this part, by Trippe and Ruthven, explores the needs
for a framework that would allow formal, fair and repeatable evaluation frameworks
to be developed which better reflected the needs and priorities of practical patent
searchers than current research evaluation frameworks.

TREC-CHEM and CLEF-IP build significantly on two earlier related activities:
a workshop at the SIGIR conference in 2000 and the various NTCIR activities on
patent related tasks (see the references within these chapters for further details). It
had been hoped to have a chapter reviewing the NTCIR patent related activity in
this volume, but that proved impossible in the end.

An important assumption in IR evaluation is that we are trying to measure the ef-
fectiveness of the search system (indexer, query processor etc.) INDEPENDENTLY
of the data being searched. In practice, for most operational trials (as Trippe and
Ruthven call them) of commercial patent search services, one cannot distinguish
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the issues in the quality of the search system from issues in the quality of the under-
lying data feeds. This issue, which goes beyond the scope of this volume, perhaps
deserves more thought in the patent search community. On the one hand, the IR
scientists need to adapt their evaluation measures and methods, or to create new
ones, for the issues specific to this domain. On the other hand, professional patent
searchers, as well as commercial vendors, must make their processes more easily
subjected to an objective, scientific evaluation.



Chapter 3
Overview of Information Retrieval Evaluation

Ben Carterette and Ellen M. Voorhees

Abstract An important property of information retrieval (IR) system performance
is its effectiveness at finding and ranking relevant documents in response to a user
query. Research and development in IR requires rapid evaluation of effectiveness
in order to test new approaches. This chapter covers the test collections required to
evaluate effectiveness as well as traditional and newer measures of effectiveness.

3.1 Introduction

Information retrieval systems help users complete search tasks, quite often involving
finding a handful of relevant documents among thousands and thousands of pages
of text with little structural organization. This is a hard problem: because of the
vagaries of natural language and the difficulty of understanding the user’s ultimate
goal, there is always a good chance that a system given a keyword query will return
documents that are not relevant to the user, or that it will fail to find some of the
most relevant documents that exist in the collection. Furthermore, users cannot form
objective assessments of a system’s performance just by working with that system;
there are simply too many different factors that influence a user’s experience—its
user interface, its response time, the user’s prior knowledge, etc.—that have nothing
to do with the relevance of the results. At the same time, developers of retrieval
systems must be able to objectively understand the effects of many different internal
factors on the relevance of the end results, as there may be hundreds of features and
design decisions that go into building a large search system.

Evaluation and experimentation allow developers and researchers to measure and
compare aspects of system performance under different conditions as objectively as
possible. While many of the properties that affect user experience are important and
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measurable (including general interface usability, query response time, and other
efficiency issues), the factor that most determines how useful a system is to its users
is its effectiveness—the overall relevance of results it retrieves in response to a user
query. This chapter provides an overview of the process of measuring effectiveness:
the data required, the means by which it is collected, and the calculation of the
measurements themselves.

Broadly speaking, there are two classes of evaluation: user-based, in which actual
users interact with a system in a controlled setting, and system-based, in which users
are essentially simulated by an unchanging set of information needs. User-based
evaluations are very valuable, but impractical for many of the day-to-day needs in
development and research. Determining the right controls can be quite challenging,
and bringing in users and training and monitoring them is time-consuming. It is
likely not possible for individual users to distinguish between small effects due to
one of many system design decisions, though these effects can become important
when scaling up to thousands of users.

System-based evaluations are also called “batch” evaluations, because they in-
volve submitting to a system a batch of pre-fabricated queries derived from a fixed
representative set of information needs, then measuring the relevance of the ranked
results with no human intervention at any step in the process (apart from setting the
batch process running). Because there is no human component, many batch evalua-
tions can be done very quickly, allowing a rapid development cycle. With a careful
enough measurement process, the developer can identify very fine differences in
effectiveness that may not be noticeable to individual users. This approach has its
weaknesses, most notably that it “hides” a lot of information about queries and doc-
uments that would be noticed by real users. Nevertheless, it is so valuable that it is
the standard approached used for system design and testing.

This chapter focuses on system-based evaluations, as they are currently the pri-
mary means by which researchers and developers understand system effectiveness.
The Text REtrieval Conference (TREC), organized by researchers at NIST since
1992, performs system-based evaluations [11, 21], as do similar evaluation venues
such as NTCIR (NII Test Collections for Information Retrieval, organized by the
National Institute of Informatics in Japan), CLEF (the Cross-Language Evaluation
Forum organized by the Istituto di Scienza e Tecnologie dell’Informazione), FIRE
(the Forum for Information Retrieval Evaluation organized by the Information Re-
trieval Society of India), and INEX (the INitiative for the Evaluation of XML Re-
trieval). Readers interested in user-based evaluations are encouraged to read about
the evolution of the TREC Interactive Tracks [10] in TREC: Experimentation and
Evaluation in Information Retrieval [21] and the special issue of the journal Infor-
mation Processing & Management on interactive information retrieval [4].

3.1.1 The Cranfield Tests

The original system-based evaluations were the Cranfield tests done in the 1950s
and 1960s by Cyril Cleverdon, a librarian and computer scientist in the College of
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Aeronautics at Cranfield, UK. Cleverdon identified two broad types of “devices”
that affect effectiveness in different ways; he called those that increased the pro-
portion of relevant documents among those retrieved “precision devices” and those
that increased the proportion of all relevant documents found “recall devices” [8].
Precision and recall devices could be combined in different ways to vary system
behavior in response to user queries; the challenge was measuring the effect of any
given combination.

Cleverdon’s idea was simple: rather than run a user study from scratch, he found
a group of users who had already accomplished a task using some search system,
then worked backwards to figure out what steps might lead to the same result. The
users were authors of research papers in aeronautics engineering; Cleverdon asked
them to describe the research question that inspired the work. He then asked the
researchers to rate each of their cited references on a scale of 1–5 for relevance to
the research question. Together, the research questions and ratings provided data
by which he could simulate a user study: the research questions formed a set of
information needs similar to those of the library’s patrons, and the judgments of
relevance indicate which articles would be better to retrieve.

This methodology was later adopted by Gerard Salton of Cornell for the
evaluation of the highly influential automatic text indexing and search system
SMART [15]. As a result, it is now called the “Cranfield paradigm” and has be-
come the de facto approach to effectiveness evaluation.

3.2 Test Collections

An information retrieval experiment begins with a retrieval task, something that
users want to do with an IR system. Examples of tasks include ad hoc retrieval (a
user wants to find all relevant documents for an arbitrary query), filtering (a user
wants to filter the relevant documents from an incoming stream [14]), known-item
retrieval (a user wants to find something that they know exists [3]), novel-item re-
trieval (a user wants to find new relevant documents [12]), and diversity retrieval
(different users have different needs for the same query and the system must satisfy
them all [7]). The rest of the experimental environment flows from the task.

A test collection encapsulates the experimental environment. A test collection is
meant to model users with information needs that are particular instances or exam-
ples of the task [18, 19]. These information needs are generally treated as if they do
not change over time; if they are representative of the needs of users of the system
in general, then showing that a system can perform well on them suggests that a
system will perform well.

Test collections have three components:

1. a corpus of documents to search;
2. a set of user information needs;
3. judgments of the relevance of information needs to documents in the corpus.
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The corpus is the largest part of the test collection, but usually the easiest to obtain,
as the existence of a large set of documents to be searched is the raison d’être
for a retrieval system. Some examples are the newswire corpora assembled for the
early TREC conferences, consisting of about one million full-text news articles (the
TIPSTER corpora); the 25 million web pages crawled from the .gov domain (the
GOV2 corpus); one billion web pages crawled from the general web (ClueWeb09);
and the 1.2 million patents from the chemical domain.

3.2.1 User Information Needs

The ability of the system to satisfy users’ information needs is what we want to
measure, so these needs must be carefully constructed not only to reflect the types
of things users will do with the system, but also to be able to capture subtle dif-
ferences in performance between different systems. If the needs are easily satisfied,
all systems will appear to be roughly equally good; if the needs are difficult to sat-
isfy, all systems will seem quite poor. Additionally, the information need must be
precisely defined so that it is clear to assessors what it means for a document to be
relevant to that need. Thus, while it may be simple to take a sample of keyword or
Boolean queries from a log, that is usually not sufficient for a test collection. The
queries must be fleshed out into full descriptions of the information need, or alter-
natively the information needs can be developed with certain goals in mind, then the
queries derived from that need.

The fully fleshed information need is called a topic. Topics usually comprise a
keyword query that will be submitted to the retrieval system, a longer description
of the information need written in full sentences, and a narrative of what specific
types of information should and should not be considered relevant. An example
topic developed for the TREC ad hoc task in 1999 is shown in Fig. 3.1.

The number of topics that need to be part of a test collection depends on a host
of factors, some of which are quite technical. As a rule of thumb, 50–150 different
topics has traditionally been considered sufficient.

3.2.2 Relevance Judgments

The relevance judgments tell us which documents are relevant to each of the infor-
mation needs. As described above, since it is people that will be using the docu-
ments, relevance is something that must be determined by people. The system itself
can only try to predict relevance; an evaluation determines how good the system is
at predicting what will be relevant, and an experiment tells us whether one system
is better at it than another.

Once the topics have been finalized, human assessors can start judging docu-
ments for relevance. Ideally the person that formulated the topic is also the assessor
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<top>

<number>425</number>
<title> counterfeiting money </title>

<description>
What counterfeiting of money is being done in modern times?
</description>

<narrative>
Relevant documents must cite actual instances of counterfeiting.
Anti-counterfeiting measures by themselves are not relevant.
</narrative>

</top>

Fig. 3.1 An example topic from the TREC-8 ad hoc retrieval task

judging documents for that topic, although that is not always possible (and some-
times it is useful to have more than one assessor judge the same documents). Asses-
sors read documents, compare them to the topic definition, and say whether they are
relevant or not (or possibly how relevant they are).

Exhaustively judging relevance—that is, judging every single document in the
corpus to every single topic—is the only way to guarantee that all relevant doc-
uments are known. This is often impossible due to time and budget constraints,
however. One assessor judging a million documents at a relatively quick rate of 10
per minute would take over ten months of 40-hour weeks to complete just one topic.

Focusing judgment effort on a small portion of the complete corpus can usually
provide enough of the relevant documents for most evaluation and experimentation
purposes. One simple approach is the pooling method: each topic in the collection is
submitted to a variety of different retrieval systems, and the top N ranked documents
from all of those systems are pooled for judging [17]. Pooling can be expected to
miss some relevant documents [22], but it limits judging to those documents that are
least likely to be nonrelevant.

Forming a pool that captures enough relevant documents to be useful requires
going to sufficient depth in a set of systems with enough variability to find a diverse
set of possibly relevant documents. This means that an adequate pool size depends
on the total size of the corpus: as corpora have grown from thousands of documents
to millions, pool sizes have grown with them [5]. This, of course, means that pooling
eventually becomes too costly itself.

A variety of other methods for deciding which documents to judge have been
proposed. Some of these include interactive searching and judging, in which asses-
sors are given a “live” search system with which they interact [9]; statistical sam-
pling, in which documents are sampled from the pool according to a sampling prior
probability distribution [2]; adaptive algorithmic approaches, in which an algorithm
picks documents to be judged based on dynamic criteria [6, 9]; and citation analy-
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sis, in which cited references are assumed to have some degree of relevance [13]. In
particular, the statistical sampling approach was specifically designed to produce a
good estimate of the number of relevant documents R in a given pool. Inspired by
methods used in polling, it works by defining a sampling distribution over the pool,
choosing a subset to judge according to that distribution, then weighting individual
relevant documents inversely by their probability of being sampled.

Assessors can actually disagree quite a bit about which documents are relevant.
One large-scale experiment suggested that if two assessors judge the same set of
documents for the same information need, the relevant documents they find will
only overlap by about 40% on average [20]. While this may seem to invalidate
the entire idea of evaluating with human judgments, the same work suggests that
these differences do not actually affect our ability to compare systems and determine
which are the most effective on average. It may be the case that some documents are
“obviously relevant”, and that these are the most important for evaluating systems.

3.3 Evaluation Measures

Once a test collection has been finalized, at any time someone may submit a query
derived from one of its topics to a retrieval system, obtain the ranked list of retrieved
documents, and measure the system’s effectiveness using the relevance judgments
for that topic. The IR literature is awash with different evaluation measures meant
to measure different aspects of retrieval performance; we will focus on a few of the
most widely used.

3.3.1 Precision and Recall

Two of the most basic and most important aspects of effectiveness center on the
number of relevant documents retrieved:

1. Of the retrieved documents, how many are relevant?
2. Of all relevant documents in the collection, how many are found in the retrieved

set?

When cast as proportions, these are, respectively, called precision and recall.
As an example, suppose we submit the query “counterfeiting money” from the

example topic in Fig. 3.1. The system retrieves 10 documents from a corpus of one
million; looking at our relevance judgments, we find that these 10 have been judged
as follows: rel, rel, rel, rel, rel, rel, nonrel, nonrel, rel, rel. There are 162 known
relevant documents in the corpus. The precision of these results is 8/10 = 0.8 and
the recall is 8/162 ≈ 0.05.

Precision and recall are quite coarse. Suppose instead of retrieving 10 documents,
our system retrieved 50. If 20 of those are relevant, precision and recall are 20/50 =
0.4 and 20/162 ≈ 0.12, respectively. Though these proportions tell us something
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about system performance, there is a lot that they do not tell us: How were those
relevant documents ranked? Did they appear at positions 1–20, or at positions 30–
50, or distributed haphazardly throughout? How many documents will a user have
to look at before finding the first relevant document? How much effort in terms of
reading documents from the top 50 can the user be expected to put in to find all 20
of those relevant documents?

One solution is to look at precisions and recalls over a series of different rank
cutoffs. Rather than look at the entire retrieved set (which will likely be quite large,
possibly the entire collection), we pick a rank cutoff, say rank 10, and calculate
precision and recall among only the top 10 ranked documents. High precision in
the top 10 (precision@10) indicates that a user can expect to see a lot of relevant
documents near the top, even if the precision of the entire retrieved set is low. High
recall in the top 10 (recall@10) indicates that there are not many relevant documents
remaining to be found after the user has seen the top 10. Trends in precision and
recall become apparent over a series of rank cutoffs.

In general, we define precision and recall at rank cutoff k as

precision@k = # documents retrieved and relevant up to rank k

k
,

recall@k = # documents retrieved and relevant up to rank k

# documents relevant
.

We note here that if the judgments are not exhaustive, it is possible that the num-
ber of relevant documents used to compute recall is an underestimate of the true
number. There is also the chance that some of the documents ranked in the top k

will not have been judged. It is convenient to assume those unjudged documents are
not relevant; though it may introduce some measurement error, experiments suggest
that error is not harmful to the overall evaluation [22].

3.3.1.1 Precision-Recall Curve

Plotting recall and precision over a series of rank cutoffs produces the precision-
recall curve. Using raw values of precision and recall at every possible rank cutoff
produces a jagged curve like the one shown in Fig. 3.2. This is because recall can
never decrease with rank cutoff, while precision increases with every increase in
recall and decreases while recall stays constant.

To produce a smoother curve we use a technique called interpolation. Interpo-
lated precision is defined by a value of recall rather than by a rank cutoff; specifi-
cally, for a given recall level r , interpolated precision at r is defined to be the max-
imum measured precision at any rank cutoff k at which recall is no less than r . We
formulate this as

i-precision@r = max
k s.t. recall@k≥r

precision@k.
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Fig. 3.2 An example of
precision-recall curve. There
are 162 total relevant
documents, so recall
increases in increments of
1/162 ≈ 0.006. Precision
initially trends steadily
downward as recall increases
from 0 to about 0.25, then
holds steady as recall
increases from 0.25 to about
0.7, after which it begins to
fall again

Fig. 3.3 Interpolating
precision at recall points
r = 0.0,0.1,0.2 (detail of
Fig. 3.2). First we locate
point r on the x-axis (vertical
dashed lines), then find the
maximum value of precision
after that point (horizontal
dashed lines). That value is
the interpolated precision at
r , illustrated with the solid
points

If r is greater than any recall the system actually achieves, then the interpolated
precision is defined to be zero.

Note that r may not even be an achievable value of recall. In our example Fig. 3.2,
there are 162 total relevant documents, which means recall increases by increments
of 1/162 ≈ 0.006. A recall value of 0.1 is not possible—recall can be 16/162 ≈
0.099 or 17/162 ≈ 0.105, but not exactly 0.1—yet we can interpolate precision at
recall 0.1 nonetheless.

Interpolation is illustrated in Fig. 3.3. Essentially we locate recall point r on the
x-axis, then find the highest peak of precision that occurs at or after that point. The
precision value of that peak becomes the interpolated precision at r .

Precision is usually interpolated over a set of recall values, then plotted against
recall to form a smooth curve such as that shown in Fig. 3.4(a). The 11-point
precision-recall curve is the interpolated curve calculated at the 11 recall values
{0.0,0.1,0.2, . . . ,1.0}. Smoother curves can be obtained with a finer recall scale;
the 101-point curve uses increments of 0.01 (Fig. 3.4(b)).
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Fig. 3.4 The 11-point and
101-point interpolated
precision-recall curves
computed from Fig. 3.2. The
trends in precision are now
very clear to the eye

3.3.1.2 Trade-offs Between Precision and Recall

Interpolated precision has the property that it never increases as recall increases.
This is because it is defined as the maximum of all precision values after a particular
recall point; if r1 < r2 and i-precision@r1 and at r2 are the maximums of all preci-
sions when recall is greater than r1 or r2, respectively, it follows that i-precision@r2
cannot be greater than i-precision@r1.

This has important implications for the design and use of retrieval systems, in
that it asks developers and users to choose between higher recall or higher preci-
sion. When precision is higher, users will see more relevant documents among the
ones they look at, but they will see fewer of the relevant documents that could be
found in the collection. When recall is higher, users will have to wade through more
nonrelevant documents to find the ones they are looking for, but they will find a
larger proportion of all the relevant documents that exist in the collection.

One can ask questions such as “how many relevant documents am I willing to
miss out on if it means I save time spent looking at nonrelevant documents?” or
“how many nonrelevant documents am I willing to look at to ensure that I find as
many of the relevant documents in the collection as possible?” The answers to one of
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these questions leads to a point on the precision-recall curve. For instance, using the
system illustrated in Fig. 3.3, a user that wants 80% of the documents they look at to
be relevant must be willing to accept that they will miss out on 90% of the relevant
documents that exist. A user that wants to find 80% of the relevant documents must
be willing to accept that 75% of the documents they look at will not be relevant.
A developer trying to serve the former user should focus on shifting the left part
of the curve up, even if it means a steep drop-off in precision after a certain point
(thereby shifting the right part of the curve down). A developer trying to serve the
latter user should focus on shifting the right part of the curve up, even if it means
losing precision at the lowest recall levels (thereby shifting the left part of the curve
down).

3.3.1.3 F -Measure

It is sometimes useful to look at a single value that summarizes both precision and
recall at a certain point. The so-called F-measure is the harmonic mean of precision
and recall, so defined because the two measures expressed as proportions have the
same numerator but different denominators.

F@k = 1

1/precision@k + 1/recall@k
= 2 · precision@k · recall@k

precision@k + recall@k
.

If either precision or recall is zero, F is defined to be zero as well. F is useful
because it allows weighting recall relative to precision in terms of importance. F is
frequently defined with a weighting parameter β as

Fβ@k = (1 + β2) · precision@k · recall@k

β2 · precision@k + recall@k
.

If recall is more important, β can be set higher; if precision is more important, β can
be set lower. β = 2 weights recall twice as high as precision, while β = 1/2 weights
precision twice as high as recall.

Like precision and recall, F can be computed over a series of rank cutoffs. F typ-
ically shows an initial increase with rank that gradually levels off and subsequently
begins decreasing. Finding the maximum value of F over a series of rank cutoff
values k can indicate an optimal “operating point” at which the tradeoff between
precision and recall is best. Figure 3.5 shows F1/2,F1,F2 curves for our example
above; the curves suggest an operating point around 70% recall, at which a user
would find about 60% of the documents to be nonrelevant.

3.3.1.4 Average Precision

Another question we might ask relates to the expected precision at any level of
recall, i.e. if we just pick a random point on the curve (corresponding to a rank
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Fig. 3.5 Plotting Fβ against recall produces a curve showing how the harmonic mean of precision
and recall changes as recall increases. If precision is weighted higher than recall (F0.5 curve), the
optimal operating point is around recall 0.2. If recall is weighted higher than precision (F2 curve),
or if precision and recall are equally weighted, the optimal operating point is around recall 0.7

cutoff in the retrieved results), what is the expected proportion of documents that
will be relevant? This can be formulated mathematically in various ways, all of
which correspond to the total area under a precision-recall curve. Computing the
area under the interpolated precision-recall curve results in average interpolated
precision (AiP) and is equivalent to taking the average of the interpolated precisions
calculated over the set of recall points S.

AiP = 1

|S|
∑

r∈S

i-precision@r.

The 11-point curve in Fig. 3.4(a) has AiP = 0.4367.
Computing the area under the uninterpolated precision-recall curve is just called

average precision (AP); this is equivalent to taking the average of the precisions
calculated at every rank at which a relevant document d appears.

AP = 1

R

∑

d s.t. d relevant

precision@rank(d),

where R is the total number of relevant documents in the collection. Note that the
sum is calculated over all relevant documents, even those that were not retrieved.
The precision at an unretrieved document is simply assumed to be zero.

In Fig. 3.2, each increase in the precision-recall curve corresponds to the appear-
ance of a relevant document. The system starts with six relevant documents in a
row, so precisions at ranks 1–6 are 1. The next two documents are nonrelevant, but
the ninth is relevant. Our computation of average precision would therefore start by
summing the six precisions from ranks 1–6 and the precision at rank 9. Continuing
in this way over the whole curve, we compute AP to be 0.4253.

Although average interpolated precision was the original means to summarize a
curve, it has since been supplanted by AP. Both measures are generally good single-
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value summary of the complete precision-recall curve. Since AP is reliable for mak-
ing fine-grained distinctions between systems, it has become the de facto standard
for evaluation. However, because it cannot say whether differences occur near the
top or at the bottom of the precision-recall curve, it is usually best to consider it in
conjunction with other measures and the full curve.

3.3.1.5 R-Precision and the Break-Even Point

Another useful summary of the precision-recall curve is the break-even point, the
point on the curve at which precision and recall are equal. This point corresponds to
a rank cutoff value of R, the total number of relevant documents, and R-precision is
the name we give to the values of precision and recall at that point. This is the only
point on the curve at which it is theoretically possible for both precision and recall
to be 100%, and therefore this measure gives a good sense of how far the system is
from being perfect.

In practice R-precision and average precision correlate very highly with each
other. Like AP, R-precision can be understood as an approximation to the area under
the precision-recall curve [1].

3.3.1.6 Averaging Precision and Recall Over Topics

The performance of a system on a single topic does not necessarily tell us much
about overall system performance: that topic may be “easy” or “hard” in the sense
that any system could be expected to do equally well, or it may be unusually easy
or hard for a particular system. In either case, a single performance measure gives
a distorted sense of system effectiveness. For this reason, the measures above are
usually calculated over a set of topics, then averaged to produce a single measure
of effectiveness. When averaging a measure over a set of topics, we often attach
“mean” to the measure name—e.g., “mean precision@k”, “mean interpolated pre-
cision@r”, “mean R-precision”, and “mean average precision” or more succinctly
MAP.

Even when evaluating over a set of topics, systems may exhibit differences in
measured effectiveness that cannot reliably be ascribed to differences in design de-
cisions. This is partly due to the potential for random effects in a relatively small
sample of topics; some of them may simply be easier for one system to handle
than the other. Whether a measured difference is “real” or not is the question that
statistical hypothesis tests attempt to answer. A hypothesis test is a procedure that
produces a p-value describing the probability of observing a particular set of effec-
tiveness measurements if there is no actual difference between the systems. If the
p-value is low (usually less than 0.05), we conclude that the systems are not equally
effective.

One of the most common statistical tests is Student’s t-test, which involves com-
puting a test statistic t from the mean and variance of the differences between two
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systems’ measured effectiveness on each topic in a sample of size n. For instance,
if AP1i ,AP2i , respectively, indicate the average precisions of systems numbered 1
and 2 on topic i, then:

μ̂ = 1

n

n∑

i=1

(AP1i − AP2i ), σ̂ 2 = 1

n − 1

n∑

i=1

(
(AP1i − AP2i ) − μ̂

)2
,

t = μ̂√
σ̂ 2/n

.

A value of t maps to a p-value which can be found by consulting a t distribution
table. At t = 0, the p-value is 0.5, indicating no significant difference between sys-
tems; as |t | increases, the corresponding p-value goes to zero. Smucker et al. present
a fuller description of the t-test and other common tests along with a comparison of
their outcomes [16].

3.3.2 Modeling User Effort

One factor of system performance that precision- and recall-based measures do not
directly address is the amount of effort a user can be expected to put in while in-
teracting with the system. There are various families of measures that attempt to
address this; the most commonly used are the discounted cumulative gain (DCG)
family and the rank-biased precision family. These are families because they depend
on a particular model of a user interacting with a ranked list, and different measures
arise from defining that model in different ways.

First, one very simple measure along these lines is the reciprocal of the rank at
which the first relevant document appears. For example, if the first relevant docu-
ment appears at rank 2, the reciprocal rank is 1/2. If it is at rank 3, the reciprocal
rank is 1/3. The user this measure models has a very strong preference for a rel-
evant document at rank 1 regardless of what the precision-recall curve looks like
after that; if there is no relevant document at rank 1, they prefer one at rank 2 but
less strongly. When averaged over queries, this measure is called “mean reciprocal
rank” (MRR).

3.3.2.1 Discounted Cumulative Gain Family

Discounted cumulative gain (DCG) is defined by a gain function and a discount
function. The gain function reflects the value of a particular relevant document to
a user, allowing DCG to take advantage of grades of relevance. For instance, rele-
vance judgments may be made on a three-point scale (not relevant, relevant, highly
relevant) or a five-point scale (poor, fair, good, excellent, perfect); DCG’s gain func-
tion can take advantage of these grades by mapping them to numeric values to reflect
their utility to a user. Traditional precision and recall can only use binary judgments.
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Two typical gain functions are the linear and exponential functions. Linear gain
simply assigns incrementally increasing values to each relevance grade, e.g. nonrel-
evant → 0, relevant → 1, highly relevant → 2. Exponential gain multiplicatively
increases values, e.g. poor → 0, fair → 1, good → 3, excellent → 7, perfect → 15.
By tuning the gain function, a developer can model users that have varying degrees
of preference for different grades of relevance.

The discount function reflects the patience a user has for proceeding down the
ranked list. Discounts are assigned to ranks such that discounts never increase with
rank. The discount function is usually logarithmic.

Once a gain function g and a discount function d have been defined, we can
define the discounted gain at any rank as the ratio of the gain of the document at that
rank to the discount of that rank:

discounted gain@k = g(relk)

d(k)
.

DCG@k is then defined as the sum of the discounted gains from ranks 1 to k:

DCG@k =
k∑

i=1

g(reli )

d(i)
.

With a linear gain and logarithmic discount, this would be

DCG@k =
k∑

i=1

reli

log2(i + 1)
.

The range of DCG depends heavily on the relevant documents known for the
topic. If there are many highly relevant documents, DCG can be quite high. With
a five-point relevance scale, exponential gain, and logarithmic discount, DCG@10
could have a maximum value as high as 68 (if there are 10 “perfect” documents) or
a maximum value of only 1 (if there is only one relevant document and it is merely
“fair”). This makes averaging DCG over queries somewhat problematic in that the
best possible performance varies by topic.

To address this, we can normalize DCG by the maximum achievable DCG (the
ideal DCG) at the same rank. Ideal DCG is easily found by calculating the DCG
of a ranked list that places all the highest-graded documents above all the second-
highest-graded documents and so on. Normalized DCG at rank k (nDCG@k) is then
computed by dividing DCG@k by the ideal DCG@k. nDCG always ranges between
0 and 1 (except when there are no known relevant documents), and is therefore more
appropriate for averaging over queries.

3.3.2.2 Rank-Biased Precision Family

Rank-biased precision (RBP) models a user starting from the top of the ranked list
and deciding whether or not to go on to the next document. The user model con-
sists of a “persistence parameter” p, defined as the probability that a user goes on to
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view the next document. Using this parameter, we can compute the probability that
a user will view exactly the first k documents as pk−1(1 − p), i.e. the probability
that a user moves from first to second, times the probability of moving from second
to third, and so on down to the kth ranked document, finally multiplying by (1 − p)

as the probability that the user does not move on to the k + 1st ranked document.
Multiplying the probability of viewing the first k documents by the proportion rel-
evant in those k provides a user-based view of precision; averaging over all k in
effect gives an expectation of the performance a user with a particular value of p

will experience.
If reli is the relevance of document i in the ranking, RBP can be expressed as

RBP = (1 − p)

n∑

i=1

relip
i−1.

RBP effectively uses geometric discounting, with each rank given a weight of p

times the previous. If, for example, p is set to 0.8, rank 1 has weight 0.80 = 1,
rank 2 has weight 0.81 = 0.8, rank 3 has weight 0.82 = 0.64, and so on. As the rank
increases, the weight decreases, getting closer and closer to zero. In this case, at rank
21 the weight is 0.820 ≈ 0.01, which is sufficiently low that documents at that rank
have virtually no effect on the final value of the measure. RBP’s discounting is much
stricter than DCG’s for typical choices of p and discount function; for comparison,
the rank at which DCG’s logarithmic discount would be 0.01 is on the order of 1030.

3.4 Conclusion

Effectiveness evaluation is an important aspect of research and design of informa-
tion retrieval systems. Much research has been done on the topic, and more con-
tinues to appear every year. The issue of cost-effective relevance judging and eval-
uation remains important. Interest in devising user models for evaluations that go
beyond individual, independent document relevance has recently increased; ongo-
ing work in novelty and diversity is investigating the tradeoff between the relevance
of documents and the redundancy of relevant information within the documents,
while work on query sessions looks at effectiveness over a sequence of user interac-
tions with a system. Such problems require new types of test collections, new types
of relevance judgments, and new evaluation measures, representing new frontiers in
effectiveness measurement research.
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Chapter 4
Evaluating Information Retrieval
in the Intellectual Property Domain:
The CLEF–IP Campaign

Florina Piroi and Veronika Zenz

Abstract The CLEF–IP track ran for the first time within the CLEF 2009 campaign.
The purpose of the track was twofold: (a) to encourage and facilitate research in
the area of patent retrieval by providing a large clean data set for experimentation;
(b) to create a large test collection of patents in the three main European languages
for the evaluation of cross-lingual information access. The track focused on the task
of prior art search, to which a second task was added in 2010, the patent classi-
fication task. The participating teams deployed a variety of Information Retrieval
techniques, adapted or custom-made, to tackle with this specific domain and tasks.
This chapter reports on activities undertaken to provide a set of topics for the two
tasks, to extract the relevance assessments for the provided topics, and on evaluating
the effectiveness of the employed retrieval methods.

4.1 Introduction

The Cross Language Evaluation Forum CLEF [2] originally arose from work on
Cross Lingual Information Retrieval in the US National Institute of Standards and
Technology Text Retrieval Conference TREC [15] but has been run separately since
2000. Every year, a number of tasks on both cross-lingual information retrieval
(CLIR) and monolingual information retrieval in non-English languages have been
run. In 2008 the Information Retrieval Facility (IRF) and Matrixware Information
Services GmbH obtained the agreement to run a track which allowed groups to as-
sess their systems on a large collection of patent documents containing a mixture of
English, French and German documents derived from European Patent Office data.
This became known as the CLEF–IP track, which investigates IR techniques in the
Intellectual Property (IP) domain.
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One main requirement for a patent to be granted is that the invention it describes
be novel: that is, there should be no earlier patent or other publication describing the
invention. The novelty breaking document can be published anywhere in any lan-
guage. Hence when a person undertakes a search, for example to determine whether
an idea is potentially patentable, or to try to prove a patent should not have been
granted (a so-called opposition search), the search is inherently cross-lingual.

Although there is important previous academic research work on patent retrieval
(see for example the ACM SIGIR 2000 Workshop [9] or more recently the NTCIR

workshop series [4]), there was little work involving non-English European Lan-
guages and participation by European groups was low. CLEF–IP grew out of desire
to promote such European research work and also to encourage academic use of a
large clean collection of patents being made available to researchers.

This chapter presents the first two CLEF–IP evaluation campaigns, which ran in
2009 [13], as a track of the Cross Language Evaluation Forum CLEF, and in 2010
[11], as a benchmarking activity of the Conference on Multilingual and Multimodal
Information Access Evaluation 2010 [1]. Although it would be unreasonable to pre-
tend the work is beyond criticism it does represent a significant step forward for
both IR community and patent searchers.

4.2 The CLEF–IP Collection

4.2.1 On Patents and Patent Documents

The CLEF–IP collection contains patents, physically stored as a collection of patent
documents. A patent document may be an application document, a search report,
or a granted patent document. We describe in the following some of the key terms
and steps in a patent’s life-cycle. Most of the notions we explain in this section have
been defined or commented on in the introductory chapter of this book. We restate
their meaning in this subsection mainly for keeping the chapter self-contained and
to make these legal notions more understandable to the track’s participants, who are
part of the IR research community.1

A patent is a set of exclusive legal rights for the use and exploitation of an inven-
tion in exchange for its public disclosure. The exclusive rights are given by a gov-
erning authority and are limited in time. The requirements for granting patents vary
widely among patent offices, but a common first step is to file a patent application
request with a patent office. For this, the applicant must supply a written specifica-
tion of the invention—also called an application document—where the background
of the invention, a description of the invention, and a set of claims which define the
scope of protection, should the patent be granted, are given. The application date,
or filing date of a patent refers to the date when the patent application was filed.

1It is our direct experience that these explanations helped IR researchers the most in understanding
the relationships between the different kinds of patent documents constituting a patent.
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It is important to note that various parts of a patent application use different types
of language, and are usually written by different persons. The invention abstract
and description sections use a natural language and are written principally by the
inventor, while the claims section use a legal type of language following certain
legal rules and is written by patent attorneys.

In order to be granted, a patent application is examined by professionals who
will analyze wether it meets certain patentability criteria and wether the application
complies with the relevant patent law. The most important patentability criteria are
novelty, inventiveness, and practicality. Of relevance to the CLEF–IP benchmarking
activity is the novelty criteria. A patent application satisfies the novelty requirement
if no earlier patent or other kind of publication, regardless of the publication lan-
guage, describing (parts of) the invention can be found in a reasonable amount of
time. Such a search for novelty–relevant documents is called a prior art search. Re-
sults of a prior art search are recorded in a search report, and are a basis for further
communication with the applicant which may result in modifications of the patent
specifications before the patent is granted. The relevant documents listed in a search
report of a patent are referred to as patent citations. Usually, the search report and
the application document are published within 18 months from the application date.

When a patent application is found to meet all the necessary legal and patentabil-
ity requirements, a decision to grant the patent is made and, after further fees and
procedural steps, the granted patent is published. An important procedural step at the
EPO is that a translation of the claims in all three official EPO languages (English,
German, French) is provided [3].

Patent documents generated at the different stages of the patent’s life-cycle are
identified by a country code (denoting the patent office analyzing/granting the
patent), a unique numeric identifier, and by a kind code together with a version
number.2 In the case of EPO the “A” in the kind code denote a patent document
published in the application phase (application document, search report, additional
search report, etc.), the “B” kind code marks a granted patent document.3

It is possible to file a patent application at more than one patent office. When
the same invention is granted a patent by different patent offices, the two patents
are said to belong to the same patent family. (The notion of patent family is a more
extensive one than stated here, we direct the reader to Chap. 1 in this book for a
more comprehensive description.)

An important tool in organizing the large amount of patent data which patent
offices regulate is the classification system. A patent classification system ‘sorts’
the patents according to the technical area they belong to, and it is a basis for a
quick investigation of the state of the art in a field.4 There are several patent classi-
fication systems—most of them built hierarchically—the most used ones being the

2For EP patents, documents at different stages have the same numeric identifier. For other patent
offices this is not always the case. For example, the patent document US-6689545-B2 represents a
US granted patent with its application document publication number US-2003011722-A1.
3For a complete list of kind codes used by various patent offices see http://tinyurl.com/EPO-
kindcodes.
4See http://www.wipo.int/classifications/ipc/en/.

http://tinyurl.com/EPO-kindcodes
http://tinyurl.com/EPO-kindcodes
http://www.wipo.int/classifications/ipc/en/
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International Patent Classification system (IPC), which is used by more than 100
patent offices. Other classification systems are the European Classification System
(ECLA), the US Classification System, the Japanese F-term classification system.
Finally, we mention that a patent may be tagged with more than one classification
codes.

4.2.2 Documents in the Data Collection

CLEF–IP is a large scale evaluation campaign, both in terms of the number of topics
and in terms of the size of the document collection. The collection corpus contains
patent documents published by the EPO: 1.9 million patent documents with publi-
cation dates between years 1985 and 2000 in the 2009 campaign, and 2.6 million
patent documents with publication dates up to year 2002 in the 2010 campaign.

The patent documents are provided as XML files conforming to one same Doc-
ument Type Definition (DTD) and are part of the MAREC data corpus [16].5 All
documents in the CLEF–IP collection contain the following main XML fields: bibli-
ographic data (containing the invention title, filing and priority dates, classification
codes, inventor names, etc.), abstract, description, and claims. Not all documents
actually have content in these fields. This happens because certain EPO patent ap-
plications are internationally filed under the Patent Cooperation Treaty (PCT6) in
which case, the EPO does not republish the whole patent application, but only a
bibliographic entry which refers to the original application.

So far, the campaign involved only the textual content of patents. For the next
evaluation cycles we aim to also incorporate images into the evaluation setup.

The collection corpus was delivered to the participants “as is”, without merg-
ing the documents related to the same patent into one document. Each patent is
identified by a unique patent number—a string starting with “EP” and followed
by 7 digits. Corresponding to each patent is a directory containing the patent doc-
uments related to that patent. The layout is nnnnnn/nn/nn/nn/*.xml, with
n standing for a digit. For example, to patent EP 0981201 corresponds the di-
rectory 000000/98/12/01 which contains the following files: EP-0981201-
A2.xml, EP-0981201-A3.xml, and EP-0981201-B1.xml.

All patents in the collection have content in one of the three official EPO lan-
guages English, German and French. Depending on the stage a patent is in—
application phase, granting phase—the patent document will contain text sections
only in one language (applications) or in all three of them (grants). For example, an
application document may contain the abstract and claims in German only, while
the granted patent document contains additionally the claims also in English and

5Although the MAREC collection was created after the first CLEF–IP campaign was set up in 2009,
the documents in the CLEF–IP’09 corpus are included in the MAREC collection, and use the same
DTD.
6http://www.wipo.int/pct/en/.

http://www.wipo.int/pct/en/
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French. In the XML file, this is reflected in the multiple occurrence of the claims
field, with different language attributes, and textual content in the corresponding
language. The distribution of patents over languages is uneven, with a dominance
of English documents. In the first campaign year 69% of the patent documents in
the collection have their main language tagged as English, 23% German and 7%
French. The language distribution is similar for the collection distributed in second
campaign year as well.

4.2.3 Tasks and Topics

In both of the 2009 and 2010 CLEF–IP evaluation campaigns the focus has been
set on finding prior art for a given patent. Participants to the campaign were asked
to return all patents in the collection which constituted prior art for the given topic
patents. Participants could choose among four different topic sets of sizes ranging
from 500 to 10,000 in 2009, and two topic sets of sizes 500 and 2,000 in 2010.
The language used for retrieving documents was not restricted to any of the three
official EPO languages. In the first CLEF–IP campaign three further topic sets (one
for English, one for German and one for French) dedicated to cross-lingual search
were also proposed. Topics in these additional sets had content only in the respective
EPO language.

In addition to the prior art task (PAC), the second CLEF–IP campaign proposed a
second kind of task: patent classification (CLS). Participants to this task were asked
to classify the given patent documents according to the IPC system, up to the sub-
class level (recall that the IPC system is a hierarchically built classification system,
the levels being sections, classes, subclasses, main groups, subgroups). The set of
topics in the classification task contained 2,000 patent documents different from the
ones used in the prior art task. Since a patent can be tagged with more than one
IPC code, the Classification task organized in 2010 is clearly a multi-classification
problem.

Topics for the proposed tasks were selected out of a topic pool which contained
a different part of the MAREC data corpus from the corpus made available to the
participants. The split of the set of EP patents available in MAREC into data corpus
and topic pool was done as suggested in [5]. The topic pool used in 2009 contained
over 0.7 million patent documents, published between years 2001 and 2006. In 2010
the topic pool contained 0.8 million patent documents published between years 2002
and 2009.

Several restrictions were applied when selecting the topics for the various tasks.
The most important one is that the documents selected as potential topics must have
content in the various XML fields of their digital representation, especially in the
claims field. In addition to this restriction, for the prior art tasks, we also required
that the potential topic documents have recorded at least 3 citations in their search re-
ports. In 2009, out of the topic pool documents fulfilling the selection requirements,
a number of 10,000 topics for the prior art task were composed from the granted
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patent document (kind B1) to which the missing XML fields were added from the
other available patent documents for the respective patent. In 2010, out of the patent
documents in the topic pool that fulfilled these conditions we selected a number
of 2,000 application documents (kind A) for the prior art task. Another 2,000 ap-
plication documents were selected for the patent classification task, the number of
citations restriction being, however, omitted, as it is not relevant for a classification
task based on textual content only. The citation information was removed from the
documents that were released as PAC topics. In the same spirit, the classification
information was removed from the released CLS topics.

Participants that did not have computing power to process all the proposed topics
were allowed to submit retrieval results for subsets of the largest topic set made
available. In 2009 three such subsets were available, with 500, 1,000, and 5,000
topics. In 2010 only one such subset was made available, with 500 topics.

The drastic decrease in the number of topics released (10,000 vs. 2,000) is moti-
vated by our experiments with the submitted data in 2009. That is, the order of the
systems did not change when running evaluations on smaller sets compared to the
largest set [13].

4.2.4 Relevance Assessments

A common challenge in IR evaluation is the creation of ground truth data against
which to evaluate retrieval systems. The common procedure of pooling and manual
assessment is labor-intensive, and, as a further difficulty, voluntary assessors are
difficult to find, especially when expert knowledge is required as is the case of the
patent field. Researchers in the field of patents and prior art search, however, are
in the lucky position of already having partial ground truth at hand. These are the
patent citations that are recorded in the search reports attached to patents. As these
search reports are publicly available—and also part of the MAREC data collection—
we were able to automatize the extraction of relevance judgements for the track’s
topics.

A general method for generating relevance assessments from patent citations is
described in [5]. This idea had already been exploited at the NTCIR workshop se-
ries [9]. Further discussions within the 1st IRF Symposium in 2007 led to a clearer
formalization of the method.

For both the 2009 and 2010 CLEF–IP campaigns we used an extended list of
citations that includes not only patents recorded in the patent’s search reports, but
also those in the search reports of the family members of the topic patent, as well as
the family members of the cited patents. By means of patent families we were able
to increase the number of citations by a factor of seven. Figure 4.1 illustrates the
process of gathering direct and extended citations.

In the process of gathering citations, patents from ∼70 different patent offices
(including USPTO, JPO, etc.) were considered. Out of the resulting lists of citations
all non-EPO patents were discarded as they were not present in the target data set
and thus not relevant to our track.
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Fig. 4.1 Patent citation extension used in CLEF–IP

In using the citations in the published search reports, it is important to know the
following.

• Citations have different degrees of relevancy: some patent offices (e.g. USPTO)
require applicants to disclose all known relevant publications when applying for
a patent. This often leads to applicants listing a large number of prior art patents,
not necessarily all highly relevant. Where a patent citation comes from can be
spotted easily by the label attached to the citations: APP as coming from the
patent applicant, SEA, EXA as coming from patent examiners, OPP as a citation
found during an opposition procedure, etc. Patent experts advise to chose topic
patents with less than 30 citations coming from the applicant.

• Citation language may differ from the patent application’s own publication lan-
guage: During a novelty kind of examination, especially in the European Union,
patent experts must and usually do inspect prior art documents in other (Euro-
pean) languages than the language of the application document. When relevant,
these documents are stored into the search report of the patent application.

• The citation lists are incomplete: the nature of the search is such that it often stops
when it finds one or only a few documents that are highly relevant for the patent.
The Guidelines for examination in the EPO [6] prescribe that if an examination
search results in several documents of equal relevance, the search report should
normally contain no more than one of them. This means that we have incomplete
recall bases, which must be taken into account when interpreting the evaluation
results presented here.

Obtaining the assessments for the Classification task required less effort than ob-
taining those for the Prior Art task. We have used the IPC codes recorded in the
bibliographic data fields of the patent documents, which were extracted automati-
cally from the documents chosen as Classification topics.
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4.3 Submissions

For all CLEF–IP tasks, a submission (or run) consisted of a single text file with at
most 1,000 answers per topic. The format of the submissions followed the standard
format used for the TREC submissions, which is a list of tuples containing at least
the topic identifier, the retrieved answer, the rank of the retrieved answer, and the
score given by the retrieval system to the retrieved answer. Table 4.1 shows a list of
participating groups and number of runs submitted. The numbers in the parentheses
represent the number of runs submitted to the optional language tasks available in
the 2009 campaign (English, German, French). In the first campaign year, the runs
ranged over all topic sizes, and it was often the case that a participant submitting a
run for the largest set, submitted the same run for the other, smaller, topic sets, by
restricting the set of topics in the largest run to the ones in the smaller topic sets.
This accounts for the large number of submissions in 2009. Considering this fact,
the actual number of unique runs with regard to the retrieval method involved is on
a par with the number of runs submitted to the prior art task in 2010.

4.3.1 Submission Systems

Evaluation campaigns have used a range of track management systems ranging from
simple file uploading systems to full-fledged, web-based systems. Almost all, how-
ever, are custom tailored for the type of campaign and tasks proposed by the track
organizers.

Similarly, the submission system used in CLEF–IP 2009 was custom-built on the
open source document management system Alfresco7 and the web interface Do-
casu.8 The system provided an easy-to-use web front-end, which allowed partici-
pants to upload and download files. The system offered version control as well as a
number of syntactical correctness tests triggered by file submission. The validation
tests showed the participants a detailed description of the problematic content of
their submissions, most format errors being, therefore, detected automatically and
corrected by the participants themselves. Further errors, like finding duplicates in
the list of retrieved documents, were done manually after the submission closure.
Lack of resources in 2010 stopped us from updating the submission system to be
re-used, therefore participants sent us their runs using an ftp server we temporarily
made available to them. All validations and checks were done manually after sub-
mission closure. Still, the number of corrections that needed to be carried out on the
run files was low.

7http://www.alfresco.com/.
8http://docasu.sourceforge.net/.

http://www.alfresco.com/
http://docasu.sourceforge.net/
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Table 4.1 List of participants and number of runs submitted.

Institution 2009 2010

ID PAC Runs ID PAC Runs CLS Runs

BiTeM, Service of Medical
Informatics, Geneva University
Hospitals

CH hcuge 4 (3) bitem 7 2

Glasgow Univ.–IR Group Keith UK clefip–ug 5

Geneva University, Centre
Universitaire d’Informatique
SimpleShift

CH clefip–unige 5 ssft 8

Centrum Wiskunde &
Informatica–Interactive Information
Access Spinque

NL cwi 4 spq 1 1

Dublin City Univ., School of
Computing

IE clefip-dcu 3 dcu 3

Hildesheim University, Information
Science

DE Hildesheim 1 hild 4

Humboldt Univ., Dept. of German
Language and Linguistics and
INRIA

DE
FR

humb 4 (3) humb 1 1

LCI–Institut National des Sciences
Appliquées de Lyon

FR insa 5

Industrial Property Documentation
Department, JSI Jouve

FR jve 3

Technical Univ. Valencia, Natural
Language Engineering

ES NLEL 1

Radboud University Nijmegen NL clefip-run 2 (1) run 2 2

Technical Univ. Darmstadt, Dept. of
CS, Ubiquitous Knowledge
Processing Lab

DE TUD 16 (12)

Al. I. Cuza University of
Iaşi–Natural Language Processing

RO UAIC 1 (1) uaic 1

Information Retrieval Group,
Universitas Indonesia

ID ui 3

UNED–E.T.S.I. Informatica, Dpto.
Lenguajes y Sistemas Informaticos

ES uned 8

Univ. Neuchatel–Computer Science CH UniNE 8

Santiago de Compostela Univ.,
Dept. Electronica y Computacion

ES uscom 8

University of Tampere–Info Studies
& Interactive Media and Swedish
Institute of Computer Science

FI
SE

UTASICS 8

Total: 70 (20) 25 27
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4.3.2 Short Summary of the Submissions

CLEF–IP presented several challenges to the campaign participants:

• a new retrieval domain (patents) and task (prior art);
• a relatively large-sized collection;
• the language used in patents: documents in the collection contain not only natural

style English, German or French text but also patent-specific language, which, in
the case of patent claims, has a complex syntactic structure [14];

• topic representations: in most tracks a topic consists of few selected query words
or a specific question; In CLEF–IP a topic consists of a whole patent document.

Therefore, to have an overview of the techniques used at CLEF–IP, we looked at
how participants approached indexing of the target data, how queries were generated
and retrieval results ranked, how the different language content was exploited, as
well as how the patent-specific (meta)data were utilized. Details about the retrieval
methods and systems participants have used to answer the CLEF–IP challenges are
given in Tables 4.2, 4.3, and 4.4. We give here only a summary of these systems and
methods, and direct the reader to the CLEF 2009 post proceedings [10] and CLEF

2010 working notes, available on-line on the conference website [1].
The big majority of the participants in both of the CLEF–IP tracks have used

off-the-shelf retrieval engines like Indri/Lemur or Terrier (in the PAC task), and
k-NN, SVM or Winnow-like classifiers (in the CLS task), choosing to tune these
systems in the hope to obtain good results. This includes selecting certain file parts
to index, building separate indices per language, or boosting query terms extracted
from certain parts of the topic files. Submissions to the Classification task were
obtained either using text classifiers only, or by text-retrieval systems (as in the
PAC task) giving the IPC codes as results, or by combining classification and text
retrieval.

Given that each patent document could contain fields in up to three languages,
some participants chose to build separate indices per language, while others gener-
ated one mixed-language index or used text fields only in one language discarding
information given in the other languages. The granularity of the index varied too,
as some participants chose to concatenate all text fields into one index, while oth-
ers indexed different fields separately. In addition several special indices like phrase
or passage indices, concept indices and IPC indices were used. Table 4.2 in the
Appendix details which fields were used in creating the indices for the PAC task
(columns 2–6), and the systems that were used to create the indices (column 7),
as well as other notes of importance to the index creation phase (column 8). Ta-
ble 4.4 details which document fields were used for training and as input to the
classifiers (column 2), if any pre–processing was done (column 3), and which clas-
sification/ranking methods were put to use.

As CLEF–IP topics are whole patent documents (with thousands of words), many
participants found it necessary to apply some kind of term selection in order to
limit the number of terms in the query. Methods for term selection based on term
weighting are shown in column 7 of Table 4.3. Columns 2–6 mark which XML fields
of the patent documents in the collection were used by the query term selection
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methods. The bibliographic data that was exploited the most is the IPC information
which was used either as post-processing filter or as part of the query. The patent
citation information stored in the document set of the collection was exploited less
in the first year, with more groups using this metadata in the second CLEF–IP year.
Other very patent-specific information, like priority, applicant, inventor information
was only rarely used.

Concerning cross-linguality, not all participants focused on the multilingual na-
ture of the CLEF–IP document collection. In most cases they used only data in one
specific language or implemented several monolingual retrieval systems and merged
their results. In 2009 only few participating groups made use of machine translation
(see column 10 of Table 4.3 in the Appendix). When certain fields in the topic doc-
uments were missing for one of the three EPO languages, one group used Google
Translate to obtain query terms in the missing language. They report that using the
Google translation engine actually deteriorated their results. The best performing
group used cross-lingual concept tagging on the documents in the collection in or-
der to create a multilingual terminological database which was used then to create
multilingual queries. The situation did not change in 2010, where Google Trans-
late was still the tool of choice to invoke in machine translation, but most of the
participants chose to ignore the multi-lingual attributes of the collection.

4.4 Measurements and Results

To evaluate the retrieval efficiency of the submitted experiments to the CLEF–IP

tasks we have chosen the most commonly used metrics in IR effectiveness evalua-
tion. For the prior art tasks these included Precision and Recall at various cut-offs,
MAP and NDCG [7], in the first year, to which we have additionally computed the
PRES score [8] in the second year. The measures for the classification task included
Precision, Recall, F1 at various cut-offs and MAP.

In the track’s first year—where only the prior art task was organized—the mea-
sures were computed with SOIRE [3], and double-checked against trec-eval9

the latter being commonly used in the TREC evaluation campaigns. At that time,
there was no available implementation of the NDCG measure, so we used an own
implementation that was not using a cumulated gain factor as described in [7]. In the
second year we have used trec_eval version 9.0 for all the measures, with the ex-
ception of PRES where we used the implementation provided by the score’s authors.

MAP, Recall@100 and Precision@100 for the small set of topics of the two
campaigns are shown in Figs. 4.2 and 4.3. The score results for the NDCG and of
the (experimental) PRES measure for the prior art runs submitted in 2010 are shown
in Fig. 4.4. Figure 4.5 shows a plot of the computed measures for the classification
task in the CLEF–IP 2010 campaign. Detailed reports on the evaluation activities
done during the campaigns presented in this chapter can be found in the technical
reports [13, 14] and [12].

9trec-eval version 8.0 http://trec.nist.gov/trec_eval.

http://trec.nist.gov/trec_eval
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Fig. 4.2 MAP measure values for the prior art tasks

Fig. 4.3 Precision and Recall measure values at cutoff 100, prior art tasks

4.5 Closing Words

At the end of the first two CLEF–IP evaluation campaigns, it is clear to us that
successful information retrieval in the patent domain involves at least well-thought
adjustments to the currently used retrieval and text mining systems. Even so, re-
trieval results do not come very close to the expectations of patent experts. One
reason for this is that transferring the know-how an IP professional has to the IR

research community is not a highway as barrier free as we would like.
The CLEF–IP campaigns here described are focused on text-oriented information

retrieval. Other than that, there are further aspects of the patent domain information
retrieval that can and should be investigated. One such aspect is the extraction of
the knowledge and ideas conveyed by patent images. Another important aspect of



4 Evaluating IR in the IP Domain 99

Fig. 4.4 NDCG and PRES

measure values for CLEF–IP

2010, prior art task

patent retrieval, which was not yet addressed by the CLEF–IP campaign, is that
information search is session based: the final list of relevant documents is the result
of several search queries, possibly built on each other. Both these research directions
need sustained support from the IP community.

Nevertheless, along with the TREC–CHEM campaign (described in the following
chapter) and the patent oriented campaigns organized in the frame of the NTCIR

project [9], the CLEF–IP campaigns actively contribute to raising the IR’s commu-
nity interest in exploring a body of knowledge that has such a high impact in the
economic world.

Acknowledgements We thank Matrixware Information Systems GmbH for making available
the patent corpus for this track, and for co-organizing the first evaluation campaign. We also thank
Judy Hickey and Henk Tomas for sharing their know-how on prior art searches and patent life-
cycles with us.

Fig. 4.5 Evaluation results for the classification task in 2010
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Chapter 5
Evaluation of Chemical Information Retrieval
Tools

Mihai Lupu, Jimmy Huang, and Jianhan Zhu

Abstract It has been noted before in this book that patent retrieval is different
from, and more complicated than “standard” information retrieval. Evaluation of
patent retrieval engines has also been shown to require specific attention. In this
chapter, we continue making this point, but emphasize the efforts undertaken in a
specific domain, namely chemistry. We approached this issue from two different
perspectives. First, there is the issue of scalability. Largely similar to the CLEF-IP
efforts, it targets the problem of having to handle a large number of documents and,
potentially, a large number of queries. Second, there are the issues generated by the
specific characteristics of chemistry documents. We describe here how we manually
created a set of topics to reflect the kind of requests for information that a patent
searcher, or a general researcher, might have. The results of the first year’s track are
presented as well, together with directions and desiderata for the next years.

5.1 Introduction

The interest in domain-specific information retrieval, and therefore in IR evaluation,
is certainly not new. Particularly in the bio-domain there has been considerable in-
terest and support from governmental, supra-governmental and private actors. The
TREC Genomics track [4] started in 2002 and ran for 4 years. It aimed at tackling the
problem of the rapidly increasing bibliome or literature of biology, as a result of new
experimental methods in the biomedicine field, which generate far larger amounts
of data than ever before (e.g. microarrays or sequencing technology). A year later, in
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2003, the BioCreative [5] challenge started the work on a community-wide effort for
evaluating text mining and information extraction systems applied to the biological
domain. Both of these campaigns have played and essential role in demonstrating
the interest and the need to have dedicated IR tools, and therefore evaluations, for
specific areas of research.

The TREC Chemical IR Evaluation campaign (TREC-CHEM) follows partially
on the footsteps of these two previous campaigns. However, it takes a more holistic
view and attempts to promote a merger of very domain-specific methods of chemical
retrieval (i.e. structure search) and general text mining and information retrieval
methods.

Objectives

The objectives of TREC-CHEM are:

1. to provide a reference corpus for the special domain of chemistry, covering a
wide scientific area both in terms of sub-domains and publication venues

2. to promote comprehensive and scalable approaches to chemistry information re-
trieval, which combine structure search and text-based IR methods

3. to introduce academic and industry researchers to a new category of scientific
articles: patent documents.

In the next sections we will describe how we approached these objectives. We
start with a large section describing the test collection, including the documents,
the topics and the procedures of obtaining the relevance judgments (Sect. 5.2). Sec-
tion 5.3 provides a summary of the participants’ methods and their results in the
2009 campaign. We conclude with observations and future directions in Sect. 5.4.

5.2 Test Collection

The nature itself of experimental evaluation campaigns give paramount importance
to the test collection. From the first book [7], up to the latest articles [13], the issue
has been a problematic one. In general, we have followed a traditional approach,
based on the existing experimentation standards described in the above references,
but also in the preceding chapters. With the aim of the campaign being the eval-
uation of holistic IR methods in the chemical domain, we did not, at least in the
first two years, target specifically any form of structure search or chemical reaction
search. Therefore, the test collection did not contain annotated documents, informa-
tion extraction topics, or relevant objects other than full documents. Each of them is
described in what follows.
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5.2.1 Documents

The first objective of the campaign is to provide a large corpus of chemistry-related
documents. To do this, we benefited from the support of the Royal Society of Chem-
istry (RSC), who provided articles from over 30 journals spanning a period from
1997 to 2006. We expanded this collection of scientific articles in the 2010 collec-
tion by adding other Open Access publications, many from PubMed Central [12],
but also from other publishers, such as IUCR Journals,1 Hindawi Publishers,2 Ox-
ford University Press3 and Molecular Diversity Preservation International.4

In addition to this, both the 2009 and the 2010 corpora contain over 1 million full
text patent documents from the EPO and USPTO in 2009, plus the WIPO in 2010.

5.2.1.1 Patent Documents

Both in 2009 and 2010, the collection of patent documents used consisted of XML

files created by Matrixware Information Services GmbH. Regardless of the original
source of the patent data, all XML files followed the same DTD,5 which made things
particularly convenient for the participants. In terms of chemistry-specific issues,
these DTDs did contain <chemistry> tags, but these were not consistently used
throughout the collection and therefore could not be relied upon. Furthermore, a
lot of chemistry-specific information was present in attachments to the documents,
which were not available in the 2009 corpus, but were made available in the 2010
one. Attachments take many forms, but the most common ones were TIF images as
well as MOL and CDX structure information files.

In terms of covering the different areas of chemistry, Fig. 5.1 shows the number
of patent documents which have at least one of their IPC classes in the class listed
on the horizontal axis. As expected, the most pro-eminent classes are A61 (mainly
A61K—Preparations for medical, dental, or toilet purposes), C07—Organic chem-
istry, C08—Organic macromolecular compounds, C12—Biochemistry, beer, spir-
its, wine, vinegar, microbiology, enzymology, mutation or genetic engineering.

5.2.1.2 Scientific Articles

In 2009, the scientific journals provided by the RSC, 31 of them, covered more or
less equally the different areas of chemistry. With the introduction, in 2010, of the

1http://journals.iucr.org/.
2http://www.hindawi.com/.
3http://ukcatalogue.oup.com/.
4http://www.mdpi.org/.
5The MAREC DTDs are publicly available together with the MAREC data, conditioned on the
signing of a license agreement.

http://journals.iucr.org/
http://www.hindawi.com/
http://ukcatalogue.oup.com/
http://www.mdpi.org/
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Fig. 5.1 Distribution of IPC classes across the TREC CHEM 2009 and 2010 collections

large corpus from PubMed Central Open Access journals, there is some bias toward
biomedical and life sciences journal literature. We tried to compensate for this by
including publications from individual publishers, but PMC is still outweighing the
others two-fold (approximately 120 000 articles from PMC versus approx 60 000
from individual publishers, including RSC). However, the focus on the biomedical
and life sciences part of chemistry is something that we have observed in patents, as
well as in the topics provided by experts. Ultimately, it reflects a general interest of
our society in this area of research. Therefore, we considered that the advantages of
including this set of articles will compensate for the possible disadvantages.

5.2.2 Topics

If the corpus of the test collection is the foundation on top of which the entire cam-
paign is built, the topics are the seeds that give the track its direction. They are the
means to achieve the second objective of the campaign: promoting comprehensive
and scalable approaches to chemistry information retrieval, combining structure and
text-based IR methods.

In designing the topics for the 2009 and, later, for the 2010 campaigns, we con-
sidered the following goals and constraints:
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Goals Constraints

• cover a wide area of chemistry sub-
domains in order to discover partic-
ular problems in different such sub-
domains

• address potential participants from
both text retrieval research groups and
chemo-informatics groups

• consider the scalability of the methods
proposed

• make the evaluation resilient to ab-
normalities that may be present in the
topic set

• be specific enough to attract interest
from specialists, who generally work
in one of the sub-domains of chemistry

• give the text part of the retrieval pro-
cess sufficient weight to make it inter-
esting for most IR groups, but without
making the chemo-informatics groups
lose interest

• generate a Gold Standard for all topics

To reconcile these goals and constraints, we split the campaign into two tasks. We
called them, more or less arbitrarily, the “Prior Art” (PA) task and the “Technology
Survey” (TS) task. The first is designed to work with a large number of topics (1000)
in order to get some statistical significance of the results, while the second one is
designed to work with considerably fewer topics (we had 18 in 2009 and 30 in
2010), but to provide a better understanding of what exactly works and what does
not work in each system. The next two sections describe them both.

5.2.2.1 Patents as Topics

The “Prior Art” task attempts to reproduce the list of citations that accompany a
patent application or a granted patent. In this sense, they do not necessarily have to
invalidate the claims listed in the patent application. In this case, a topic is simply a
request to produce references to patents which may be considered by an expert for
further analysis. An example of such a topic follows:

<topic>
<num>PA-3</num>
<title>4-Tetrazolyl-4-phenylpiperidine derivatives for

treating pain</title>
<narr>Find all patents in the collection that would

potentially invalidate patent application
EP-1803718-A1 </narr>

<file>EP-1803718-A1.xml</file>
</topic>

Figure 5.2 shows the distribution of the IPC classes across the 1000 PA topics in
the 2009 and 2010 collections. As expected, since the topics were extracted from the
corpus randomly (subject to constraints), the distribution shown in Fig. 5.2 matches
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Fig. 5.2 Distribution of IPC classes across the TREC CHEM 2009 and 2010 PA topics

the distribution in Fig. 5.1. We also observe that in 2010 the set of topics is more
focused on the more prevalent classes (A61, C07, C08, C09). This, however, is not
the result of a decision to favor these classes, but more likely a consequence of the
random selection.

We should note that, as the reader may have already observed, the sum of the
values of the columns in both Fig. 5.1 and 5.2 is greater than the total number of
documents, and, respectively, the total number of topics. This is due to the fact that
a patent can be classified in more than one IPC class and it is in fact rather common
that a patent in A61K (medical, dental, toiletries) may also have a classification in
Section C (Chemistry).

In retrieving prior art candidates for the given patent documents, the participating
research groups are free to use any part of the patent and any method to extract the
most relevant keywords or to train their system using whatever means necessary.
The only restriction imposed on the participating systems is not to use the citations
of the topic patent documents directly in their results. In Sect. 5.2.3.1 we shall see
exactly why.

5.2.2.2 Manual Topics

While the PA, “automated”, topics provide a way to test the IR systems on a large
scale and to obtain some statistical significance of the results by testing the systems
over a large number of topics, it is easy to fall into the traps of over-averaging results:
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we average over the measure values at different cut-offs, over different topics, over
different sets of topics or different runs, and in the end, it is easy to lose track of
what is actually going on. This is why we introduced the “Technology Survey” (TS)
topics: to let the systems be tested and inspected manually, by experts in the field,
for topics that are as close as possible to their line of work.

A TS topic is a general request for information, formulated as naturally as possi-
ble. Here are two examples:

<topic>
<number>TS-2</number>
<kind>pharmaceuticals</kind>
<title>Dipetidyl peptidase-IV inhibitors</title>
<narrative>
We are a new pharmaceutical company that is interested in
entering the area of Dipetidyl peptidase-IV inhibitors.
This is a relatively new therapeutic area for the treatment
of type-2 diabetes but we know that there are compounds
already generated by several pharmaceutical companies
(including a marketed drug from Merck called Januvia) for
this indication. We are interested in discovering the
compounds that have been identified so far for inhibiting
this enzyme and which companies they are associated with.
It would also be useful to determine if there is more than
one chemical class of compounds that is used to inhibit
this enzyme or if several classes have been identified.
</narrative>
<expert>Anthony Trippe</expert>
</topic>

<topic>
<number>TS-5</number>
<kind>organic, high molecular weight</kind>
<title>
(Pregna-4,17-diene-3,16-dione or Guggulsterone
or RN:95975-55-6)
</title>
<narrative>
Documents on (Pregna-4,17-diene-3,16-dione or Guggulsterone
or RN:95975-55-6)---particularly on preparation
</narrative>
<expert>anonymous2</expert>
</topic>

As can be seen, each topic consists of three main parts: title, kind and narrative,
as well as two ‘organizational’ tags: number and expert. The narrative describes, in
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Table 5.1 Details possibly present in a 2010 TS topic

Tag Description Example

Chemicals one or more chemical compounds Dehydroepiandrosterone

Reactions a chemical reaction carbon-carbon coupling

Administration in the case of pharmaceuticals, how is the com-
pound administered

oral

Condition a disease or other medical condition tooth decay

Target particularly in the case of pharmaceuticals, the
component that the chemical affects

D-alanine-D-alanine ligase

a language as natural as possible, a request for information. We advised the creators
of the topics to start with “We are a group of researchers doing. . . ” to make sure
that the reader understands that this is a fairly generic requests for information. The
title and kind are there to summarize the content of the narrative and to provide
some context. However, particularly the kind tag, they were not really used by the
participants.

In 2010 we changed this structure slightly, in an attempt to provide more clues to
the searcher as to what exactly is being searched for. Here is an example of a 2010
TS topic:

<topic>
<number>TS-25</number>
<title>Methylene phosphonic acid as flame retardant</title>
<narrative>
We are looking for patents on the use of methylene
phosphonic acid as a flame retardant.
</narrative>
<details>
<chemicals>Methylene phosphonic acid</chemicals>
</details>
<relevance>
A document will be considered RELEVANT if it refers
to the use of ANY Phosphonates or phosphonic acids
specifically as a flame retardant
A document will be considered HIGHLY RELEVANT when it is
RELEVANT and it is specifically methylene phosphonic acid
used.
</relevance>
</topic>

We discarded the kind tag and introduced instead a details tag, which may con-
tain a number of different sub-tags: chemicals, reactions, administration, condition,
target. Table 5.1 describes these detail tags.
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Fig. 5.3 Example of the chemical compound referenced in the 2010 TS-46 topic. This compound
is provided to the participants both as an image, and as a structure file (MOL file)

In addition to these topics, in 2010 we also introduced two topics to nudge the
participants toward a more structure-based search. The text of these topics is quite
simple at this time, asking the users to provide documents that refer to a chemical
whose formula is provided both as an image, as well as a MOL file. Figure 5.3 shows
the chemical compound referenced by topic TS-46, listed below:

<topic>
<number>TS-46</number>
<title>Structure search 1</title>
<narrative>
We are looking for patents or scientific articles on
methods of preparation of the compound described in
TS-46.mol and TS-46.png
</narrative>
<details>
</details>
<relevance>
A document will be considered RELEVANT if it describes
methods of preparation of the given compound. It shall not
be considered relevant if it describes derivates of this
compound.

There are no HIGHLY RELEVANT documents.
</relevance>
</topic>

There is arguably a lot of space for improving the definition of such topics, but
the aim until now has been to introduce this kind of problem to the participants
and allow them to familiarize themselves with this problem. The search methods
for such searches are very different from the kind of text searches that most of our
participants are used to, and we encourage them, starting with 2010, to combine
text-based search and structure-based search. At the same time, such topics aim to
bring the topics closer to real life practice and to attract the research groups who are
proficient in structure search only. Ultimately, a collaboration of these two kinds of
groups is highly desirable.
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5.2.3 Relevance Judgments

The last, but equally important part of an evaluation test collection, are the relevance
judgments: the function that, given any pair consisting of a request for information
and a document, would return a relevance value. This part of a test collection is,
intuitively, extremely important. At the same time, it has been observed before [15]
that, while inconsistencies are always present, a sufficiently large number of topics
would generally be able to consistently identify the best performing systems and
where inversions in the rankings of the systems occur, it is only for pairs of systems
that, across a series of experiments, return similar results.

For chemistry, the difficulty of creating relevance judgments lies mainly in the
fact that assessors must be qualified professionals. Apart from this, one could argue
both ways with regards to the difficulty or easiness of creating relevance assess-
ments: on one hand some topic could be hard to evaluate because generic com-
pounds may introduce ambiguities. On the other hand, the exact science nature of
the field would arguably induce more precise relevance judgments than it is the case
in ‘general’ IR.

All the other problems of creating relevance judgments presented in previous
chapters are of course still valid in this domain: impossibly large sets of results, and
incompleteness of relevance judgments.

In what follows we will present the relevance judgments for the two tasks of the
TREC-CHEM track.

5.2.3.1 Citation Based Relevance Judgments

The Prior Art task, which concerns itself only with patent data, has relevance judg-
ments based on citations in the topic patents, created in the same way as described
in the CLEF-IP Chapter above, and therefore we will not go again into details here.
Instead, Fig. 5.4 shows some statistics regarding the number of citations per topic,
which are considerably different from those of the CLEF-IP track, mainly due to the
presence of US patents in our test collection.

5.2.3.2 Manual Relevance Judgments

For the Technology Survey (TS) task, the relevance judgments were much more
difficult to create. As mentioned in Sect. 5.2.2.2, the aim of this task is to simulate
as accurately as possible a real life request for information. If that is to be achieved,
bypassing manual judgments is impossible. We therefore set forth to create these
relevance judgments, with the help of the experts that created the topics and of
chemistry graduate students.

In 2009, the procedure to obtain relevance judgments involved a standard pooling
technique followed by a stratified sampling to select a manageable set of documents
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Fig. 5.4 Statistics for the 2009 PA qrels sets

to evaluate manually (on average, 300 documents per topic). The sampling tech-
nique also determined the measures we could compute, namely MAP and NDCG,
following the method introduced by Yilmaz et al. [16]. In total, for the 18 topics
available in 2009, a total of 5518 documents have been manually inspected, out of
which, in the end, 941 (17.06%) were found to be highly relevant, 844 (16.30%)
relevant, 37 (0.67%) were undecided, 1 not judged and the rest, 3694 (66.96%) not
relevant to their respective topic.

These 5518 documents were first viewed in parallel by two students. Then, their
results were merged and given to the expert that creating the topic for a final re-
view. In the process, the inconsistencies observed between the two students fell
into expected values: 1083 (19.63%) were conflicting decisions (i.e. one student
indicated a document as ‘relevant’ or ‘highly relevant’ while the other as ‘non rele-
vant’), meaning that the rest, over 80% agreed at least in principle (i.e. ‘relevant’ vs.
‘highly relevant’) or were undecided (i.e. at least one student marking a document
as ‘unsure’ or leaving it as ‘unjudged’).

However, despite the hundreds of hours of work put in by the students, some
experts ultimately decided not to use their suggestions and completely re-did the
evaluations. We found this to be an unacceptable waste of resources, and for the
2010 campaign we have modified the evaluation interface to allow the student eval-
uator to interact anonymously with the expert via an exchange of messages. We shall
monitor and report on the efficiency of this new method.

5.3 Participants and Results

Finally, in this section we will look at the results of the first year, the only ones
available at the time of writing of this chapter. We begin with a description of these
results, and continue, in Sect. 5.3.2 with a list of very brief descriptions of the par-
ticipants’ systems, to give us an overview of the approaches used in the first year.
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Fig. 5.5 (Color online) MAP for PA topics. Each bar represents the Mean Average Precision of
one run (one set of results submitted by a participant). Each color represents a different research
group

5.3.1 Summary of Results

There are many ways to cut the data that were available to us at the end of the 2009
track. 1000 PA topics could be analyzed according to many metrics, grouped by
IPC class, number of citations, length of the document, source of the patent, kind of
patent document, etc. We shall not go into many details here, but instead we refer the
reader to the report of the 2009 track [8], as well as to other papers describing these
results [9, 10]. We computed six metrics: Mean Average Precision (MAP), Normal-
ized Discounted Cumulative Gain (NDCG), Binary Preference (bpref), precision at
30 (P@30), recall at 100 (R@100), and Mean Reciprocal Rank (MRR). The best
performing system was consistent across all measures, while the worst performing
system varied. In 2009, the best performing system managed to retrieve, on average,
eight relevant documents in the top 30 results, while ranking 34% of all the relevant
documents in the top 100. A summary of the results, for one of the metrics used
(MAP) is shown in Fig. 5.5 for all the systems that submitted the results for at least
100 of the 1000 PA topics.

Interestingly, the system that performed best in the PA task did not also perform
best in the TS task. That is most likely because in the PA task one could take ad-
vantage of features of the patent domain (existing classification, citation networks,
priority dates, etc.) which were not available in the collection consisting of scientific
articles. Therefore, the systems that took a more generic approach tended to perform
better in the TS task. This is visible in Figure 5.6, where the results for one of the
two metrics used in the TS task is shown. To note that the metrics used in this task
are inferred versions of the MAP and NDCG methods, since relevance judgments
are not complete.
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Fig. 5.6 “Spectrogram” of TS results according to the extended inferred AP. Each bar is a stack of
results for each run: the results of each topic are cumulated to form the bar. This is more informative
than an average, as it allows the reader to observe differences within a run between different topics

5.3.2 Participants

In this section we briefly describe the systems used by the participants to the 2009
track. This helps us get an overview of what works and what does not work, based
on their results. References are given to each of their reports.

Univ. of Applied Sciences Geneva—BiTeM This was the best performing sys-
tem for the PA task in the 2009 campaign. The method that proved most successful,
and which eventually gave this team the edge, was the use of a learning algorithm
that was trained on all the citations available in the patent collection [2]. Despite the
fact that citations are also used for the final evaluation, we considered the method
valid because it used publicly available data from historic patent collections to train
a system to learn associations of terms and documents. The team also used domain-
specific entity recognition and IPC filtering, but observed only marginal improve-
ments (albeit consistent improvements). The fact that their biggest improvement
came from exploiting citation analysis, led to relatively poor results in the TS task,
where what might have been learned from the patent corpus did not apply to the sci-
entific articles. Based on existing observations that the language of the two kinds of
documents is different, we can safely assume that the model learned only for patents
lead to poor results when applied to the scientific articles.

Carnegie Mellon University The CMU team built their retrieval engine on top
of their Lemur/Indri toolkit [18]. They only participated in the PA task, where they
observed that, using the structured retrieval support provided by Lemur/Indri, using
terms from the entire body of the patent document improved results when compared
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to using terms only from the title and claims. However, the group did not use any
chemistry-specific tools.

Dalian University of Technology The IR Group at the Dalian University of Tech-
nology also used the Lemur/Indri toolkit, but participated in both the PA and TS
tasks [6]. For the PA task they obtained significantly lower results than the CMU
group. However, for the TS task they obtained some of the best results. In both cases,
they also did not use any chemistry-specific methods, but rather generic methods,
including language modeling and pseudo-relevance feedback.

Iowa University The Iowa team [11] used another open source IR engine, namely
Lucene. They submitted results only for the PA task, for which they used a combi-
nation of different fields in the patent (title, abstract, description or claims) and IPC
filtering. One of their submissions performed comparably to the CMU system for
some of the metrics, but in another set of results they assumed patent numbers to be
reflective of a temporal sequence, which is in general not the case, and therefore ob-
tained very low results. Again, no chemistry-specific information extraction method
was used.

Milwaukee School of Engineering Jay Urbain and Ophir Frider [14] proposed a
very interesting distributed system that attempts to index all chemical information
found in the patents and scientific articles, and submitted results for both the PA and
TS tasks. They used a dimensional index of PubChem terminology for synonym
identification, which ultimately achieved good result. However, their official runs
contained some errors and were consequently scored very low. This is, however,
one of the systems to follow in the upcoming years.

Purdue University The system used by the group at Purdue University [1] is par-
ticularly interesting because, like the CMU and the Dalian group mentioned above,
they have used the Indri search engine, but unlike them, they have also used a
chemistry-specific method (i.e. synonyms from PubChem). For the PA task this sys-
tem performed comparably to the CMU system, and much better than the Dalian
system. For the TS task, they performed very slightly worse than Dalian according
to one measure (MAP) and better than them according to another measure (NDCG).
Given that NDCG favors relevant documents being retrieved early in the ranked list
provided by the search system, we would be justified in saying that using chemi-
cal information helps achieve better results. However, as also demonstrated by the
Geneva group, this improvement, at least for the topics defined in the 2009 track is
marginal.

Fraunhofer SCAI The SCAI group had some of the best results for the TS task
and some of the worst in the PA task [3]. Their method used entity recognition
algorithms and automated generation of noun phrases, but also, for the TS task, they
submitted results of manually created queries.6 In some sense, this is the opposing

6To note that we refer to as a ‘topic’ what we give the participants, and as a ‘query’ what they
actually put into their system to obtain results.
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system to the one used by the Geneva group: a non-patent specific system performed
better on the TS than on the PA task, as opposed to one that takes heavily into
consideration the patent corpus and therefore performs better in the PA than in the
TS task.

York University The York University group [17], who were also co-organizers
of the track, participated with a system that tackled two important issues: chemical
synonyms and abbreviations. For the PA task, their emphasis was on the extraction
of queries from the patent topics (i.e. automated selection of important keywords).
When compared to the other results submitted for this task, it would suggest that
such a pre-processing step may not in fact be necessary. However, for the TS task,
it was very interesting to observe that their use of PubChem data produced a signif-
icant improvement in the scores.

5.4 Observations and Future Directions

Comparing the different systems that provided results in the 2009 track, and the
results they obtained, we can conclude that using chemistry-specific methods does
help, but only marginally when the generic method is already very good. We ob-
served such a marginal increase by looking at the results of the University of Applied
Sciences, Geneva group, and also by comparing the results of the Purdue group to
that of the Dalian group. However, when the generic method does not perform very
well, the improvement given by the chemistry-specific methods is significant (we
can observe this in the TS runs of the York University group).

The two tasks, though similar in their focus on chemistry, are more different
than the organizer had initially thought. Generic text-analysis methods perform well
in the PA task and, arguably, using highly specialized methods in this case is not
expected to provide great improvements due to, first, the wide area of chemistry
covered by the topic set and the patent collection and, second, the verbosity of the
patent documents that are used as topics.

For the TS task, however, we have seen improvements and we expect even more
from domain-specific methods, particularly as we move toward topics involving
structure search in 2010 and beyond.

After the experience of the first year, and going into the second year of the cam-
paign, the organizers have a better understanding of how many different ways of
thinking about “Chemistry search” exist. The difference between text mining and
structure search, both equally valuable in our opinion, is so great that we can hardly
point to any group that can do both. As we continue this effort, we should encourage
participants to form multi-party teams, to bring together the experience necessary to
ultimately provide the most useful tools to practitioners.

At the same time, we encourage practitioners to, first, have patience with us,
as this is a basic research effort that will take years to migrate to commercializa-
tion and, second, to continuously support such efforts by providing topics (sam-
ples of requests for information similar to those they have in their professional life)
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and relevance judgments. We acknowledge the wide-spread use of proprietary cu-
rated databases. Our efforts to make these available for research purposes have not
been successful, and therefore we aim to, in cooperation with practitioners, create
tasks which direct research groups toward problems not yet solved by commercial
providers, in order to generate new and useful tools.
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Chapter 6
Evaluating Real Patent Retrieval Effectiveness

Anthony Trippe and Ian Ruthven

Abstract In this chapter we consider the nature of Information Retrieval evalua-
tion for patent searching. We outline the challenges involved in conducting patent
searches and the commercial risks inherent in patent searching. We highlight some
of the main challenges of reconciling how we evaluate retrieval systems in the labo-
ratory and the needs of patent searchers, concluding with suggestions for the devel-
opment of more informative evaluation procedures for patent searching.

6.1 Introduction

Patent searching is a highly interactive and complex process, often requiring mul-
tiple searches, diverse search strategies and careful search management [1]. There
are different end-user requirements for different types of patent search and simple
performance-based measures of retrieval system functions are often inadequate in
expressing the degree to which an Information Retrieval (IR) system might help
conduct a successful search.

A particular characteristic of patent searching is the importance of the risk to
which a company is exposed if a patent search is poorly conducted. Inadequate tools
increase the likelihood of a poor search and increase the level of risk if a company
proceeds on the basis of the search.

The claim from most IR evaluations is that measures of recall and precision, im-
plicitly, calculate which system(s) are more likely to reduce this risk by performing
more effective retrievals. Therefore, it is argued, we can be more confident about
performing a good search with a system that has performed well in system trials. In
this chapter we argue that this argument is naïve when considering real operational
use.
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Specifically we consider why recall and precision may give misleading interpre-
tations on system performance, why we need to distinguish the characteristics of
different types of patent search and where IR performance variability arises. A core
theme in the chapter is the notion of risk: what risks are involved in patent searches,
how these connect to measurements of recall and precision and how measurements
of recall and precision may misinform rather than enlighten us as to system perfor-
mance. We conclude with a discussion on how we might increase our confidence in
IR system performance as measured in operational environments.

6.2 Types of Patent Search

Patent searches go by a variety of different names. Listing the most popular ones
you hear terms like: State-of-the-Art, Prior Art, Patentability, Validity, Invalidity,
Clearance, Freedom-to-Operate, Novelty and Landscape (see Chap. 1 in this vol-
ume). While there may be a large number of terms used to describe patent searches
in essence they boil down to four major categories upon which we shall concentrate
in this chapter: State-of-the-Art, Freedom-to-operate, Patentability and Validity.

Patent searchers traditionally use these types of descriptions to talk about the
searches they perform for various clients whether they are from the legal department
or the corporate strategy group. Before formally defining these types of search, it
might be useful to think of these various types of searches in terms of the amount of
risk they represent to the enterprise. Later we shall compare them to one another on
precision and recall scales.

6.2.1 Patent Searches and Risk

We define risk as the amount of money that has already been invested in an inno-
vation by an organization pursuing a technological solution to a problem. As the
amount of money invested by the enterprise increases the importance of making
good decisions about whether to continue funding the innovation and pushing it to-
ward commercialization also increases. With additional funding comes additional
risk since the amount of money required to move from one step to the next in taking
an innovation to market gets almost exponentially larger.

The pharmaceutical industry provides a perfect example of this concept of in-
creased investment and risk. Early stage projects are expensive in terms of the time
spent by the scientific teams in creating new drug entities and having those tested.
These are sunk costs and are part of starting a pharmaceutical company in the first
place. As new drug entities are discovered, however, decisions need to be made on
whether they will be brought forward into what is first called a pre-clinical phase
and then a succession of three human clinical trials. Each subsequent stage in this
process becomes more expensive than the next as more people are involved in the
trials, additional dosing schemes are employed and longer time periods are involved.
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As a company approaches a phase III clinical trial the amount of money that will
be invested is counted in the hundreds of millions of dollars and pale in compari-
son to the money that was spent generating a new drug entity and entering it into
pre-clinical trials.

Since there is increased risk from substantially increased investment as a new
drug entity moves from one stage to the next in the drug discovery process compa-
nies have adopted a mantra referred to as “failing faster”. The idea being that if they
can find mechanisms for discovering earlier in the process that a new drug entity is
going to fail then the company can save themselves a tremendous amount of money
by learning as quickly as possible that this is the likely outcome. They cut down on
later risk by identifying failure points earlier in the process before larger investments
are made.

Analogies can be made to the world of patent searching from this example and
many companies follow a similar mantra that if they can discover potential legal im-
pediments to future production earlier in the process then they will save themselves
money by changing course based on this knowledge. We can analyze the four major
types of patent search by the risk involved.

State-of-the-Art This type of search is conducted in order to determine the pre-
vailing technical knowledge in a particular subject area. A practitioner might be
entering a new technical area and is interested in learning about the work that has
already been done in this space. It is not uncommon for users to be interested in
non-patent as well as patent documents in this case since the end goal is to have
a thorough understanding of what the current knowledge is in a technical area of
interest. People interested in technical or competitive intelligence will also be inter-
ested in these types of searches and when they begin to analyze the details of the
results they get they will sometimes refer to these as landscaping studies. The sort of
details a user can glean from these results are shifts in technology over time, interest
in technology sub-categories by company and who the subject matter experts in the
field might be. State-of-the-Art searches are typically done at the very beginning of
projects before any investment has been made and investigators are trying to deter-
mine if an innovation is worth pursuing for a number of reasons. The risk associated
with these searches is low and this will have an impact, as we will see later on the
corresponding need for precision and recall.

Patentability This type of search is usually done in the legal context of determin-
ing if a new invention is eligible for patent protection and determining how broadly
the claims for the new invention can be written. This type of searches can cover both
patent and non-patent literature and are typically looking for references that were
published before the filing date of the invention in question. In the United States in-
ventors have up to a year from first public disclosure of an invention to file a patent
so some searchers will go back an additional year with their searching to make sure
they have found the best references. This is the type of search that will be done by
an examiner to determine if they should allow a patent application to be granted.

Even though an examiner will do this search it is important for the applicants
to also conduct one since they will often have the time and resources to be more
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thorough than the examiner can be. It is also important since knowing the boundaries
of the known references will help the attorneys drafting the claims to ask for the
broadest coverage possible. Without knowing the scope of the known references it
is difficult for the attorney to know how broadly they can write the claims and still
expect the examiner to grant a patent.

Patentability searches are done once an inventor has an idea and they have either
reduced it to practice or they have a pretty good idea on how they are going to reduce
the idea to practice during the preparation of the patent application. Investment has
increased since the inventor has spent time discovering the idea and may have used
additional time and money reducing it to practice. The total money spent, most of
which is fixed costs, is still fairly low and thus the risk involved in this situation
while higher than the stage when the State-of-the-Art search was done is still low.

Freedom-to-Operate Possibly the most specific type of patent search this partic-
ular one is country specific and only applies to in-force granted patents and their
claims. A company will ask for a legal opinion on whether a product they are plan-
ning on shipping will infringe any existing patents before they launch. There is
nothing offensive about this type of search since the interested party is not going to
assert patents against anyone else they are simply looking to make sure that they are
not going to be infringing someone else’s patents. A searcher in this case needs to
identify the critical components of the product in question and search country spe-
cific claims of in-force patents to see if any of them cover the product components in
question. In most cases a great deal of money has gone into a product launch or can
be involved with a successful product which is generating a great deal of revenue so
it is important for companies to know that they will be reasonably safe from future
litigation before they make an even larger investment.

Some companies do Freedom-to-Operate searches reasonably early in the pro-
duction cycle and follow-up with them frequently to make sure the situation hasn’t
changed as they get closer and closer to market. These companies are following the
“fail faster” philosophy that was mentioned earlier since they recognize that it is
better to know about potential legal issues before they make larger investments and
involver higher risks. Other companies wait until the trucks are about to leave the
warehouses and then conduct a Freedom-to-Operate search as a last item of their
checklist before they go to market. At this point a great deal of time, money and
effort has gone into the innovation and the amount of investment and risk is pretty
high. On more than one occasion companies have trucks filled with product that
has been left in a warehouse because a last minute Freedom-to-Operate search has
come back with an In-Force patent that could be used against the company later.
Regardless of when these searches are applied the risk is much higher than at the
Patentability stage and should be considered medium to high.

Validity Validity search comprise the largest and most comprehensive of all patent
searches. These searches are almost always associated with large sums of money and
critical business decisions and as such need to be as comprehensive as possible. This
search shares similar characteristics to the Patentability search but is normally far
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more comprehensive since there is typically much more at stake when this sort of
search is being initiated.

The object of the search is to identify prior art references which will allow a
granted patent to be made invalid during a re-examination before the particular
patent office of interest or during a court proceeding. Sometimes company will also
initiate validity challenges for patents that they are thinking of acquiring especially
if they believe these patents will later be used in some type of litigation or another.
On the flip side of this a company who is provided with a cease and desist notice
will often want to make the patents in question go away by finding invalidating prior
art and then entering into re-examination. The prior art references in question can
come from the patent or non-patent literature, must be available in the public do-
main and have to have been published prior to the priority filing date of the patent
in question. In the United States there is a one-year grace period on patents filings
so some searchers will look back an additional year when they search so they can
be sure to avoid this type of situation.

Validity searches are conducted when an organization has received a cease and
desist order or are about to spend a significant some of money on a purchase of
one sort or another and due diligence needs to be performed in order to justify the
transaction. Investment in this case either in the form of production costs and lost
sales or in money to be spent on an acquisition are very high and the corresponding
risk to the groups making the investment are also extremely high. Since large sums
of money are involved and the risk involved is so high companies are willing to
increase the resources made available to conduct these types of searches.

Summarizing the searches on our risk continuum we have State-of-the-Art, fol-
lowed by Patentability; then Freedom-to-Operate, and finally Validity.

The amount of risk involved will have an impact on the resources that are made
available to do the searching and in turn this will have an impact on the precision
and recall that will be expected in these searches. While risk is not the sole qualifier
for precision and recall, there are cases where you have high risk but you do not need
high recall per se, it is still useful to keep it in mind as we look at the requirements
for these searches.

6.2.2 Risk and Recall

Looking at recall and thinking about a continuum we come across an example where
higher risk does not require higher recall. In the case of our highest risk search,
Validity, we also find that total recall is not necessarily required. In this type of
search it is only necessary to find one reference which predates the filing of the
patent application in question that describes the invention. In practice most searchers
will not stop when they find a single reference and will seek to be as comprehensive
as possible but strictly speaking it is not a requirement. Since there is a high risk
searchers will often seek higher recall to make sure there are contingencies in place
and not rely on a single reference. These considerations put Validity on the low to
medium scale with regards to recall.



130 A. Trippe and I. Ruthven

With Patentability the recall question will depend on who is doing the searching.
In the case of an examiner the recall will be the lowest of all the searches we are dis-
cussing since they will stop once they find a single reference which will enable them
to disallow a claim. They can also take two references and combine them to disallow
a claim so they will stop if they find that combination. Patentability searches done
by corporate searchers, however, are usually higher in recall since they are helping
assist the attorney in deciding how broadly they can write their claims based on how
much prior art is out there and how closely (we will do precision next) it matches
the invention to be patented. Since the risk is still reasonably low, however, they
will not attempt to achieve higher recall since they will reach a point of diminishing
returns and making an investment to achieve it would not be economical.

State-of-the-Art searches involve low risk but you would like to achieve a reason-
ably high recall since the inventor is exploring an unknown area and they will spend
time landscaping the area to increase their understanding. Economically speaking
recall is sacrificed due to the small investment being made at this point and the bar
for diminishing returns is pushed even lower since the expectation is that more com-
prehensive searching will be done once an actual invention has been discovered and
when a product cycle starts.

For recall the top search is Freedom-to-Operate where a single missed patent can
come back and be used for a cease and desist action. It is very important to find
any and all patents that cover the elements of product to be brought forward to an
attorney so they can make a determination as to whether the product will infringe on
the patent in question. In order to conduct business not just one patent can be found
that an invention may infringe upon but all of them need to be located in order to
ensure that the company will not face future legal issues. These searches are referred
to as Freedom-to-Operate for this exact reason.

So, looking again at our continuum and comparing recall this time we have Valid-
ity and Patentability at the lower end of the scale, State-of-the-Art in the middle and
Freedom-to-Operate at the high end. Recall does not correlate with risk necessarily
in this comparison with the possible exception of Freedom-to-Operate searches.

6.2.3 Risk and Precision

Precision maps almost completely to our assessment of risk. State-of-the-Art
searches are sometimes called “quick and dirty” since there is not much time in-
vested in doing them and the results often have a large number of false positives
contained in them. Also by its very nature this search is exploratory and as such a
high degree of precision is not required.

Patentability searches are typically more precise but by their nature are used to
explore the boundaries of the prior art so that broader claims can be written to cover
more aspects of an invention if warranted so precision is important to cut down
on the records that will need to be looked at but not essential. A number of false
positives are expected and are part of the process.
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Freedom-to-Operate and Validity searches both require a high degree of precision
since very specific documents are required in each of these cases. With Freedom-to-
Operate the aspects of the produce must be covered in the claims of In-Force patents
from the countries of interest. The product must also use all elements of the claimed
invention in order to infringe. Finding patents that meet this criterion is a tall order
and requires high precision. Similarly, in a Validity search a precise search of the
patent and non-patent literature is required to locate references which describe the
exact invention covered in a later patent claim either by itself or in combination with
another reference.

On the precision continuum we have State-of-the-Art at the low end, followed by
Patentability and finally Freedom-to-Operate and Validity.

Looking at each search by its characteristics we can say State-of-the-Art is low
risk with low precision and medium recall. Patentability is low risk with low recall
and precision. Freedom-to-Operate is high risk requiring both high recall and preci-
sion and Validity having the highest risk and requiring high precision but able to get
by with lower recall.

Looking at searches in this fashion it is apparent that Freedom-to-Operate
searches offer the most difficult challenge for IR researchers. The risks involved
are also very high so the expectations will be large and the reluctance to move away
from established methods will be severe. Validity is also a difficult task since the
risks are so high and the precision requirements so large. State-of-the-Art is where
most systems work currently and don’t necessarily provide much reward for the ef-
fort since they are low risk and are conducted with little in the way of investment.
Patentability seems to be the sweet spot for IR research since it offers a reasonable
challenge with a good opportunity for return since it is conducted during a stage
where resources will be spent to address the issue.

Having outlined the challenges to the patent searcher in conducting a success-
ful search we now discuss some of the challenges IR researchers face in defining
appropriate evaluation measures.

6.3 Limitations of IR Evaluation

As in other domains, the evaluation of the retrieval components of patent search
systems focuses primarily on laboratory-style evaluation and these evaluations are
heavily shaped by the classical models of IR laboratory evaluation. As noted in
Carterette and Voorhees (Chap. 3 in this volume), early influential laboratory eval-
uations included studies such as the Cranfield I and II experiments, SMART evalu-
ation, and the in-depth evaluation and failure analysis of the Medlars search service
[2] using small document collections. The experience gained from these studies has
been incorporated into the creation of modern test collections where collection size
has grown considerably since these early studies. The most widely used test collec-
tions come from the Text Retrieval Evaluation Conference (TREC) initiative [3], the
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Cross Language Evaluation Forum (CLEF),1 which are discussed in separate chap-
ters in this volume and NTCIR.2 The oft-stated value of test collection evaluations
are the tightly controlled nature of the evaluation, the statistical rigor with which the
evaluation test results can be analyzed and the repeatable nature of the evaluation
tests.

The value of IP systems in operational use, however, is influenced by more than
the quality of the retrieval system itself and, as has been repeatedly demonstrated
in operational tests in other domains, the contextual factors surrounding the use of
a system (such as organizational concerns, training and experience of the searcher
and time available to search) can strongly influence the end results of a search [4,
5]. This gap between real-life practice and laboratory rigor raises three important
questions, which we shall examine in the remainder of this section.

1. Are laboratory evaluation measures misleading? Recall and precision are the
standard measures for evaluating IR system performance. Although there are
many ways in which we can use recall and precision to obtain evaluation mea-
sures there are arguments for why they are poor measurements for end-user eval-
uations unless they are contextualized by other information. In Sect. 6.3.1 we
examine some of these arguments and why they raise concerns for determining
the confidence we can place in laboratory evaluation performance figures.

2. Are the results of laboratory evaluations sufficiently good at predicting real-life
performance? That is, can the results obtained from a laboratory test of an IR
system inform us of the potential value of a system in operational environments?
In Sect. 6.3.2 we survey some recent work, which indicates a weak correlation
between the performance evaluations of systems without user involvement and
evaluations of systems operated by end-users.

3. Are laboratory evaluations sufficient? Real-life evaluations incorporate factors
that are usually eliminated from laboratory evaluations, such as the expertise of
the searchers themselves. In Sect. 6.3.3 we examine some of these factors and
outline their importance in reliably measuring system effectiveness.

6.3.1 The Potentially Misleading Effects of Recall and Precision

Patent search evaluation, similar to other retrieval problems, focuses primarily on
recall and precision as measures of system effectiveness. These are long-held mea-
sures of retrieval quality and their tight hold on evaluation comes from their intuitive
nature: how much of the useful information has my search retrieved (recall) and how
much of the information that I have retrieved is useful (precision)? There is also a
useful probabilistic interpretation of recall and precision: recall estimating the prob-
ability that a relevant document will be retrieved in response to a query and precision
estimating the probability that a retrieved document will be relevant [6].

1http://clef.iei.pi.cnr.it.
2http://research.nii.ac.jp/ntcir.

http://clef.iei.pi.cnr.it
http://research.nii.ac.jp/ntcir
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Most test collections are constructed using a generally accepted model referred
to as the Cranfield model deriving from the Cranfield II tests [7]. A test collection
that adheres to the Cranfield model will consist of a set of searchable objects, a set
of information requests (or occasionally statements of information problems) and a
list of which objects in the collection should be considered relevant for each infor-
mation request. To ensure fair comparison between systems a number of important
assumptions are made. These include the following assumptions.

1. The topics are independent of each other.
2. All objects are assessed for relevance.
3. The judgments are representative of the target user population.
4. Each object is equally important in satisfying the user’s information need.
5. The gathering of relevance assessment is independent of any evaluation that will

use the assessments.
6. The relevance of one information object is independent of the relevance of any

other object.

These assumptions are intended to ensure a fair and accurate comparison between
estimates of system performance. The status of these assumptions has shifted over
the decades of evaluation research since the original Cranfield model. Assumption 1
is generally adhered to in order to increase the diversity of the test. Assumption 3
is an attempt to ensure external validity of the experiment, i.e. that the results can
be generalized to requests beyond those investigated within the test. The level to
which this assumption matches most test collections is seriously under-investigated.
Assumption 5 attempts to control the internal validity of the study: the assessments
used to evaluate the system are not created by the people who designed the study
and therefore, it is hoped, that bias will not be introduced into the collection. As-
sumption 4 is a simplification of real search behavior and many new test collections
have graded relevance assessments to allow for more detailed measures of system
effectiveness. However, the grades of relevance used often simply reflect amount of
relevant material contained within objects rather than quality of relevant material.
Assumption 6 is present in most test collections3 although it is patently false—a
system that retrieves duplicates or near-duplicate documents in favor of new and
different relevant documents would not be seen as a better system by most users.

Assumption 2 is the assumption that has gathered most attention within the IR
evaluation literature, particularly with the rise in test collection size. The early test
collections contained small numbers of documents—the Cranfield collection con-
tained only 1400 documents—and it was feasible for exhaustive relevance judg-
ments to be made on the collection. For most collections this is not feasible: it has
been estimated that it would take more than nine months to judge an average size
TREC collection for a single topic [7]. Not only is this expensive both in terms of
time and resources, but over a protracted time period the criteria an assessor will
use to judge a document for relevance could change, resulting in inconsistencies in

3With the possible exception of INEX which does consider the relative relevance of sub-document
units which may have overlapping content.
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the relevance assessments and therefore in the evaluation results. Indeed, Swanson
[8] expressed this as one of his postulates of impotence—statements of what IR
cannot achieve—namely, that it is never possible to verify if all relevant documents
have been discovered for a request, as one can never examine all documents without
unlimited resources while using a strict and static set of criteria for judging rele-
vance. This is, of course, a real challenge for searches such as Freedom-to-Operate
searches where the retrieval of all relevant documents is exactly what is required.

The reason that Assumption 2 has gathered so much attention is that exhaus-
tive relevance assessment offers some guarantee that all relevant items have been
identified, even if they do not linguistically match the user’s query. That is, exhaus-
tive assessments allow the identification of documents that conceptually match the
query even if they don’t match the user’s choice of keywords.4 Such assessments
also allow for deep failure analyses of searches to ascertain why some search topics
are more difficult for retrieval systems than others [9]. Such analyses are necessary,
particularly with the current trend toward heavy averaging and aggregation of test
results over large numbers of topics and collections. Several authors have argued
against such approaches, particularly on the grounds that such tests are attempting
to prove system hypotheses rather than disproving them. That is, experimenters are
trying to prove a system works well rather than attempting to uncover when it will
perform poorly. Such tests do not “provide deep insights unless there is some degree
of risk in the predictions” [10].

The current model for test collection—the pooling approach—is dependent on
queries to create document assessment pools and pooling compensates for exhaus-
tive assessment by the inclusion of diverse systems and manual searching (see
Sect. 3.2.2 of Carterette and Voorhees, this volume). The hope is that, if we take
sufficient care in sampling the documents to be assessed for relevance, we do not
need to exhaustively assess the whole collection. The system-centered evaluation
approach, therefore, argues that if we are sufficiently careful in selecting which doc-
uments are assessed, and we evaluate on sufficiently large numbers of information
requests, then we do not need to assess all documents in a collection.

The nature of test collection construction and, the consequences of Assumption 2,
are also important if we consider searching in operational environments. Test col-
lection test results inform us of how well one system performs against another over
a set of requests. Many studies have shown the performance of any system across a
set of requests is highly variable: systems will perform well for some requests and
poorly for another. What IR tests cannot predict is how well a system will perform
for a given request. This means, in operational environments, that the searcher must
decide how well the system is performing for any given request. In many search
situations such variability might not matter, in patent searching it is more difficult
to accept that some requests will be handled well and others not.

Blair and Maron [6] in one of most famous IR evaluation studies demonstrated
that even experienced searchers can radically underestimate the proportion of rel-
evant material obtained from an interactive search and that the quality of the

4Exhaustive query assessments also mean that we can assess the quality of the original query itself.
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searcher’s queries can affect the perception of system performance. Although we
can form intuitions about whether a system is returning relevant material we cannot
assess, simply based on the retrieved results, how much relevant material has been
returned or how much remains to be retrieved. Blair and Maron in [6], and later [10],
proposed four main reasons for the findings from their study:

1. Users often cannot predict which words are good at retrieving relevant material.
In spite of detailed knowledge about the material with which they were involved,
the searchers in their study could not identify useful search terms to retrieve
important subsections of the database. However, they could consistently recog-
nize useful information when it was presented to them. Common problems with
querying included lack of knowledge of synonyms used in the unretrieved rele-
vant material, poor handling of spelling mistakes relating to important terms, and
other oft-seen dilemmas in creating search requests.

2. The large size of the document collection meant that attempts to control
precision—and hence make the results sets manageable—reduced the recall of
searches. However, this resulting in the elimination of important relevant mate-
rial from the search results.

3. Searchers can mistake document retrieval for data retrieval. That is they describe
the data they want to retrieve rather than the content of the documents they want
to retrieve.

4. Overestimations of recall in laboratory tests give a false sense of security. In
[10] Blair pointed out that poor laboratory tests can artificially inflate recall esti-
mates. As noted above, test collection creators compensate for lack of exhaustive
assessment by increasing the diversity of systems used to supply documents for
assessments. The hope is that such diversity will lead to representative relevant
documents being found. If the diversity is weak then the recall figures can be
artificially inflated because the relevant documents may be easier to find. Knowl-
edge that one is using a good system can also give the searcher the perception
that they are finding more of the relevant documents than they actually are.

What Blair showed was that, even by submitting variations of query terms ad-
justed through trial and error, as in a typical search session, the likelihood of a
searcher finding a substantial proportion of relevant documents can be low, a find-
ing that has been verified across a number of studies [10]. An explanation for this
limitation is that the intellectual content of a document is difficult to represent au-
tomatically: a document can be about a topic without ever mentioning key terms or
phrases that a user may expect to appear. In addition, the query terms chosen by the
user may not discriminate between relevant and non-relevant documents, especially
as the collection size grows [11]. A user searching for documents on a new subject
may not select terms that are representative of the subject they are searching and that
discriminate such documents from the non-relevant documents which share similar
vocabulary. Consequently, not all potentially relevant documents will be retrieved
through keyword matching techniques alone.

In a real search situation, a search can only estimate what is hidden (the unre-
trieved relevant documents) by what they have already found and by the quality of
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their attempts to find these documents. In [12] Blair argues that the latter is diffi-
cult to measure and searchers are often forced into intuitive reasoning about search
strategies. One particular process, known as ‘anchoring’ is of particular interest in
searching. Anchoring is a psychological process in which people estimate unknown
values (the quality of queries in our case) by starting from an initial value which
“may be suggested by a formulation of the problem”. If a particular query is seen
as good, either because it retrieves relevant documents or the searcher believes it to
consist of good indexing terms, then they will retain, and modify the query, rather
than attempt new queries, ones which may be better at retrieving different types of
relevant material.

Blair and Maron’s final point is also an important one for real search situations
where the effort involved in conducting a search must be balanced against the cost
of conducting a search: finding a number of relevant documents is not a sole indi-
cator of good retrieval performance, as the proportion of relevant documents missed
is not known unless it is quantified through other means. Swanson refers to this
as the “fallacy of abundance”—discovering a (substantial) number of documents
about a request creates an illusion that little remains hidden [8]. Good precision, in
particular, can give the false impression that the system has good recall.

There are two issues relevant for patent retrieval. Firstly, the degree to which
recall and precision as measured in laboratory tests are actually informative of the
likely performance in real situations. In the most challenging patent searches sim-
ple measures of recall and precision may have little predictive power because what
reduces company risk is not simply the ability to find relevant material but to have
performed a comprehensive search. Very few system evaluations tackle the issue of
how dependent system performance is on the initial request or how variable is the
system’s performance. Therefore, the end-user’s own expertise and judgment plays
a large role in the system’s overall performance. Secondly, and a consequence of the
above discussion, we need to investigate the end-user’s abilities to make judgments
about recall and precision in operational environments. Blair and Maron’s studies
indicated potential pit-falls about making such decisions in real-life settings, partic-
ularly when cost and time must be balanced against effort. As we will discuss in
Sect. 6.4, there are ways in which we can estimate the skill of the person operating
the system.

6.3.2 Predicting Performance from Laboratory Tests

One of the core claims for test collections, as noted for example in Sanderson and
Zobel [13], is that the relative performance of systems from a test collection evalu-
ation tells us something about how the systems will perform in operational settings.
This is trivially true in extreme cases; a system that continually retrieves the wrong
documents in a controlled test collection evaluation is unlikely to perform well in an
operational setting. The test collection approach, typically but not always, concen-
trates on single retrieval runs. Some authors, such as Spärck Jones [14], have argued
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that this is not an issue; systems that perform well on one retrieval run will per-
form well in most retrieval situations and performance on single retrieval runs give
us an indication of how well a system will perform iteratively. However, single-run
evaluation limits our ability to evaluate the effect of known aspects of how humans
assess relevance, in particular dynamic effects such as the development of relevance
criteria across a search [15] or the effect of the order of assessment [16].

However, the general claim that single-run retrievals are good estimates of overall
system performance has not been convincingly demonstrated so far, partly due to
the few comparisons in operational settings and, partly due to the impact that user
adaptation and interfaces have on the level of retrieval effectiveness of a complete
system. What has been investigated is the degree to which laboratory tests and user
tests align. This is not the same as tests in operational environments, where many
contextual factors will intervene.

Hersh et al. [17], who were one of the first authors to try direct comparisons
between test collection and interactive experiments, show that results from a test
collection do not necessarily follow to the interactive case because the interactive
aspects of a system can interfere with the results. Their investigation also raises the
question of what are meaningful differences between retrieval results: how much
better does one system have to be over another in a test collection evaluation for
us to be convinced that it is indeed a better system and are these differences ones
that are observable to users of the systems? Since Hersh and Turpin’s paper there
have been a large number of attempts to shed light on the second question. The evi-
dence is distinctly mixed. Kelly et al. [18] for example, showed that end-users could
distinguish detect differences in retrieval performance but within tightly controlled
environments where the users were forced to interact in specific ways. Hersh and
Turpin’s later results and Smith and Kantor’s very robust study indicated, however,
that users can compensate for the performance of poor systems [19] and, to a degree,
undo the effect of good systems by raising their threshold for relevance [20].

Harter, [21], for example, criticized the standard test collection model of evalua-
tion because it ignored the variation in why relevance assessments are made for spe-
cific information requests. Relevance assessments in operational settings are heavily
contextualized by the situation in which the assessments were made, and this context
includes the person making the assessment.

Spärck Jones, in a later paper, also mentioned the importance of context and notes
(of TREC in particular) “context is not embraced, but reluctantly and minimally ac-
knowledged, like an awkward and difficult child. This applies even where explicit
attempts have been made to include users (real or surrogate)” [22]. Limited attempts
to incorporate context within test collection environments have been attempted, no-
tably in the TREC Hard and CiQA tracks, but these have typically related to the
contextual information within the query rather than contextual factors which might
affect operational use of a system.
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6.3.3 Are Laboratory Evaluations Sufficient?

Few evaluation measures, and not those typically associated with test collections
would take into account other factors that are important to users such as the validity
of information, the ability of a searcher to understand the information retrieved, the
source of the information or the searcher’s prior knowledge about a search topic
[23]. Many studies (such as [24, 25]) have shown that even for expert searchers
their confidence or prior knowledge in a search topic can affect their assessments of
a document’s relevance: they will mark different documents as relevant, and differ-
ent numbers of documents, independently of how those documents were retrieved.
Voorhees, in a tightly controlled study, estimated the difference in opinion between
assessors as around 35%; Ruthven et al. [24, 25] indicated that differences also
occur with individual assessors depending on their prior relationship to the search
topic. Further, as noted above in Sect. 6.3.1, a searcher’s behavior can strengthen
the performance of a poor system or weaken the performance of a good system.

The question then arises as to what degree measures such as recall and precision
obtained from laboratory studies actually help predict how good a patent search
might be? If relevance assessments change depending on who is doing the assess-
ment, then how much confidence can we have in evaluation measures based on
relevance: if a different patent searcher conducted the same search would we have
different results? In operational environments, especially for searches with high risk,
patent searchers can interact with each other to minimize the possible negative ef-
fects of individual variation in relevance judgments and search strategies.

However, as noted in Sect. 6.3.1, this places the emphasis for success onto the
searcher and away from the system. A good set of evaluation measures would rec-
ognize and reward systems that offer support for end-users in making challenging
search decisions. The patent searches outlined in Sect. 6.2 are not simple searches;
they are active processes where the end-user must engage in a process of sense-
making—understanding and interacting within information in complex ways to
make a decision or recommendation. What makes a good IR system for this type
of search behavior is the ability of the system to make better sense of the search
results and have more confidence in the accuracy of the outcome. This cannot be
measured simply by performance evaluation but requires evaluating the process of
searching. So how can we estimate the value of an IR system in helping successfully
conduct a patent search?

In Sect. 6.4 we try to address this final question, building on the discussion in the
previous sections, by outlining how we can gauge levels of trust in various parts of
the IR process.

6.4 Evaluating Real Patent Retrieval Effectiveness

Any evaluation measure, implicitly or explicitly, carries a definition of success. This
definition of what it means to succeed in an evaluation carries with it, in turn, the
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definition of what we see as the task of IR systems. In this chapter we argue that the
role of IR systems is to reduce overall risk; partly this is associated with measures
of recall and precision (although simple measures may be too blunt) but the highly
intellectual and interactive role of the patent search system (as a whole) needs to be
incorporated into the evaluation.

One way of viewing IR evaluation is as a series of evaluation layers, each with
distinct methodologies, metrics and questions. Lower evaluation levels comprise
highly constrained, specific investigations on single system features; higher lev-
els contain broader multi-faceted investigations on the searcher and system. At
the lower levels, for example, evaluations are typically on the algorithmic prop-
erties of system components and are run as performance tests conducted without
human involvement. Higher levels will examine the interactive nature of the system
to consider the degree to which the whole system supports an end-user’s information
search. Appropriate metrics here will include both measures of the search products
and the process of searching [26]. Product metrics, those that measure the end re-
sults of searching, may include aspects such as the number of relevant documents
found, search satisfaction or time taken to complete a search. Process measures, on
the other hand, consider how these products arose within a search and could include
factors such as the ease of completing a search, the user understanding of the inter-
face functionality, their increase in confidence in using the system and use of system
features.

As noted in Sect. 6.3, there are major differences between algorithmic evalua-
tions and operational trials.

1. The effectiveness of a real patent search is dependent on use of multiple systems
and the searchers’ ability to use them. Sections 6.3.2 and 6.3.3 outlined some of
the reasons why IR evaluations may not give us good predictions of how well a
system performs in operational tests.

2. IR evaluation is based on generalizations. As noted in Sect. 6.3.1 IR evaluations
tell us which systems are better for an average request. However, their perfor-
mance across topics is very variable.

3. Individual estimates of recall and precision are affected by individual variation
in how a searcher assesses relevance and what is returned by the system. It is far
easier to reason about what is returned by a system than to reason about what is
not returned.

Patent searching is a complex form of searching and one that involves multiple
searches, collaboration with other people and heavy use of instinct and experience.
So what types of evaluation are useful in understanding the success of an IR system
for different types of patent searching? Arguably the success of any IR system is
how well it supports the user in an information task and measuring this will involve
a number of different measures some of which will be product based and some will
be process based. However, as noted in Sect. 6.3, the ultimate purpose of IR tools
within the IP process is to reduce risk by helping end-users discover the required
information or, alternatively, be reassured that certain information does not exist.
Current laboratory evaluation measures do not help assess the degree to which an IR
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system has helped reduce this risk. Due to the variability in IR system performance,
a user cannot guarantee any minimum level of performance for an individual search
request. Nor can system designers assert, concretely, what level of confidence they
should have in individual system components reducing risk because, as noted in
Sect. 6.3, risk and recall/precision are not linearly related.

What we can try to develop are evaluation approaches that help estimate the
confidence we should have in different system components. That is, how might we
estimate what levels of trust we can have in parts of the retrieval process? If we have
low levels of trust, then the end-user needs to do additional work to compensate for
lack of system performance.

6.4.1 Product Based Measures for Evaluating Real Retrieval
Effectiveness

Product measures are common in IR. Recall and precision can be used flexibly to
give different estimates of system performance and different estimates are useful
for different purposes. For a State-of-the-Art search reasonable recall is required,
low precision perhaps tolerated but debatably diversity of results is more important.
Systems that artificially boost recall at the expense of missing important sections of
the recall base could give the false impression that higher recall has been achieved.
Systems may also be rewarded for retrieving some types of documents over oth-
ers. In landscaping studies it may be more useful for a searcher to have overview
documents than narrowly focused documents. Calculating recall and precision over
different document sets could be useful here.

For Validity searches very precise results are required. Unlike State-of-the-Art
searches where we know there is material to be found but not sure what form it
may take, in Validity searches the question is whether the material is there to be
found. In such a case a useful evaluation metric may be final user confidence in
the results of their search. A system that has a very high degree of topic variability
(some queries are very successful, others very unsuccessful) offers little confidence
in the performance on a new search. In such a situation the searcher may have to
expend more resources, time and cognitive, to complete the searcher but with little
guidance from the system as to how effective the search has been.

Product based metrics often focus on different systems with the same request;
what they often fail to do is determine the variability of different requests on the
same system. A useful product based metric, particularly in light of the discussion
in Sect. 6.3.1, is how variable is system performance to the query formulation. High
variation, particularly for best match systems, offers little confidence in the overall
system performance and, again, increases the effort the searcher must expend on the
search.
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6.4.2 Process Based Measure for Evaluating Real Retrieval
Effectiveness

Process based measures are useful for identifying the factors that lead to success and
involve analyzing the stages that lead to the end products of a search. In particular,
for complex tasks where searchers may spend long periods of time on each search,
process metrics are useful for identifying which search decisions are critical and
which decisions need different types of system support.

Process measures are often difficult to develop and are subject to variation within
the user population. However, process models can be used to (a) understand the pro-
cesses of searching and (b) analyze success factors within each stage. An example
of the latter is the University of Tampere’s Query Performance Analyser [27], a tool
for assessing how good a searcher is at the task of creating search requests. Such
tools can help identify the relative contribution of the person conducting the search
but also the contribution of the system to a successful outcome. Such knowledge
could increase our confidence in the results of a search (in the case of high user
and system abilities) or estimate what level of doubt we should retain after conduct-
ing a search. Understanding the process of searching within a professional domain
like patent searching can also uncover the major sources of variation within patent
searches and move toward correcting the sources of variation. Many disciplines use
such process models to increase confidence in the overall process of completing
tasks.

For high risk tasks, such as Freedom-to-Operate, which requires both high recall
and high precision, we could ask how individual searchers balance these require-
ments by the choice of search strategies and whether some strategies are more ef-
fective than others. Thus we can hope to move toward a more formal evaluation
strategy for patent searching.

6.5 Conclusion

This chapter considers evaluating real retrieval effectiveness; retrieval effectiveness
within an operational setting rather than in a controlled laboratory setting common
to most IR evaluations. Deciding what to measure in evaluation is a crucial decision.
It is worth reiterating the general point that any evaluation approach tends to distort
what it tries to evaluate. Evaluation as an activity highlights some aspects of the phe-
nomenon being studied and ignores others. As Hersh and Turpin [20] demonstrated,
employing simple relevance metrics in user evaluations can give misleading results
because simple metrics may ignore the factors that influence decisions. In this chap-
ter we have argued that retrieval system evaluation needs to provide a richer and
more realistic account of the role of systems in reducing risk.

Each domain has its own challenges and presents new challenges to IR. IR re-
searchers typically look at precision and recall simultaneously and measure their
methods by how techniques stack up against both elements. When it comes to patent
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searching it might be more productive to separate these functions so that they can
be maximized independently. It has been demonstrated that risk, precision and re-
call do not follow the same linear path when discussing the various types of patent
searches. Since this is the case it might be more productive to begin with creating
methods that produce high recall exclusive of precision. Once this is accomplished
the results can be ranked using different methods to improve precision and manage
the way the results are shared with the searcher. It will likely be the case that differ-
ent methods will be used to provide higher recall than those that can be employed
to share records with higher precision. Instead of expecting a single method to do
both it would be useful to the patent searching community if the process was done
stepwise to maximize the value to the user.

It is received wisdom in the IR community that the variation between search re-
quests is the greatest source of variation in retrieval system performance and such
variation is greater than the variation between end-users. However, such claims are
based on relatively artificial settings and we still have relatively little empirical evi-
dence on what components of a retrieval system are actually useful and the relative
contributions of searcher and search system to overall success in patent searching.

We have, albeit briefly, suggested some evaluation directions that may help iden-
tify fruitful research directions in patent search evaluation. There are considerable
challenges, particularly around issues of confidentiality, to be tackled, but if we are
to move toward better evaluation procedures, then we need to be able to ask basic
questions about the processes and decisions involved in operational patent environ-
ments.
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Part III
High Recall Search

One of the problems of patent search is that a single relevant missed patent or other
document can invalidate an otherwise sound patent. This is why patent searchers of-
ten say that they require 100% recall (the highest level possible): that is, they require
the search system to guarantee to return absolutely all relevant documents, no matter
where (USPTO, web, film archives), in what form (XML, PDF, paper), or language
(English, French, German, Indonesian, Welsh). In practise, no real system delivers
100% recall all the time, and often searchers actually do not want 100% recall—they
will get too many, redundant relevant documents. What they really want is a balance
between precision (the proportion of relevant to irrelevant documents in the results
list) and recall, which gives a strong guarantee that highly relevant documents are
returned high in the results list. If no highly relevant documents are returned, there
is a high probability that there really are no relevant documents.

As we have seen in the introductory chapters, a patent search task always in-
volves a phrasing such as ‘find all documents which. . . ’. From the evaluation part,
we know that technically, this is easily done: returning to the user the entire collec-
tion being searched on will inevitably also contain all relevant documents within that
collection. The patent search task, in addition to the explicit requirement of finding
all relevant documents, has a series of implicit requirements: ‘find only the rele-
vant documents’ and ‘find them in a reasonable time span’. Therefore, when we talk
about High Recall search, we must always keep in mind that at the same time we are
talking about High Precision search. However, what exactly ‘high’ means in either
of those contexts is still ambiguous. Perhaps a better term would be ‘satisfactory for
the task at hand’, but that would not be very marketable.

The challenge for patent information retrieval here is to find mechanisms that will
give patent searchers search result sets which they can effectively use for the task
at hand. Furthermore, to find means for some cases, like patentability or invalidity
searches, that allow the “golden nugget” of the novelty breaking document to be
found quickly and easily, while giving the searcher a high degree of confidence that
nothing relevant has been missed, if no golden nugget can be found.

The part starts with a very fundamental question, asked by Bache: ‘Can we really
find all the relevant documents?’. The problem is very fundamental: given an index-
ing system, is it possible that some documents become inaccessible because of the
way the system works? Or, more generally, how fair is a system in its representation
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of the documents indexed and how does this fairness impact the expected success
rate of our queries?

The part continues in Chap. 8 with Tomlinson and Hedin taking a look at efforts
done to understand high recall in a similar domain: e-discovery. Based on the TREC
Legal Track, we see that contemporary search technologies can outperform Boolean
models, but also learn of the many pitfalls of evaluating systems expected to return
a large number of documents. The authors discuss ways to estimate recall, precision
and the F1 measure based on a manageable amount of human evaluation, and point
out the extreme effects that human assessment error can have on these estimations.

The next chapter by Azzam and colleagues is of a more technical nature and
principally addresses scalability issues—how we take promising techniques for im-
proving recall, which work well on small collections as were used in the past, and
adapt them to operate on today and tomorrow’s terabyte and petabyte collections.
They also cover methods to improve the precision of the search, which is also a
focus of Parapatics and Dittenbach in the following chapter, in which they look at
methods to improve the processing of claims, and especially dealing with the com-
plexity of their language, which often compromises the effectiveness of traditional
bag-of-words IR techniques.

Finally, the part concludes by addressing the question of what we do after we
retrieve a large set of potentially relevant documents. In that sense, Koch presents a
system to move away from the list of documents towards a more intuitive graphical
display, which can operate with very large sets of documents.



Chapter 7
Measuring and Improving Access to the Corpus

Richard Bache

Abstract Retrievability is a measure of access that quantifies how easily docu-
ments can be found using a retrieval system. Such a measure is of particular interest
within the patent domain, because if a retrieval system makes some patents hard to
find, then patent searchers will have a difficult time retrieving these patents. This
may mean that a patent searcher could miss important and relevant patents because
of the retrieval system. In this chapter, we describe measures of retrievability and
how they can be applied to measure the overall access to a collection given a re-
trieval system. We then identify three features of best-match retrieval models that
are hypothesised to lead to an improvement in access to all documents in the collec-
tion: sensitivity to term frequency, length normalization and convexity. Since patent
searchers tend to favour Boolean models over best-match models, hybrid retrieval
models are proposed that incorporate these features while preserving the desirable
aspects of the traditional Boolean model. An empirical study conducted on four
large patent corpora demonstrates that these hybrid models provide better access to
the corpus of patents than the traditional Boolean model.

7.1 Introduction

A key feature of patent searches is that they are recall-dominated—there is a signif-
icant cost associated with failing to retrieve relevant documents [13]. This contrasts
with many everyday search tasks such as an Internet search where the proportion
of retrieved documents considered relevant to the user (precision) is considered the
most important aspect of effectiveness of the information retrieval (IR) system in
question. Although precision can be measured quite easily, by performing relevance
judgements on the retrieved items, recall cannot be measured practically for all but
the smallest of corpora. Recall measurement requires performing relevance judge-
ments on every document and this is not feasible for the size of corpora used in
patent search.
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An alternative approach has been to measure the degree of access that an IR sys-
tems affords over a given (typically large) corpus. A recently proposed measure of
access, retrievability [3–5, 9], is therefore an attribute of particular interest in the
patent domain. Essentially, the retrievability of a document is the ease with which
that document can be retrieved; document retrievability depends upon the patent
collection and the IR system used. A document with low retrievability is likely to be
very difficult, if not impossible to find, while a document with high retrievability is
likely to be much easier to find. For a given corpus, different IR systems will yield
different levels of retrievability across the population of documents. It is therefore
important to select an IR system that ensures that all documents are as accessible as
possible. This is particularly the case in patent retrieval; because if patent searchers
employ IR systems that limit their ability to retrieve particular documents in the col-
lection, this could mean missing relevant documents. Early work using retrievability
has provided interesting insights into the problem of documents accessibility [3]. In
[5] it was shown that different best-match retrieval systems provided substantially
different levels of retrievability across a document collection, while in [8, 9] it was
shown that pseudo-relevance feedback can skew the retrievability of documents (i.e.
some documents become much more retrievable than others). With such variations
in access to documents arising due to the retrieval system, it is important to quantify
and understand its influence on the retrieval of documents.

In this chapter, we consider the influence of different retrieval systems on large
patent corpora, and determine the retrievability of patents when using such sys-
tems. The overall access to the patent corpora is determined to provide an indica-
tion of how accessible the population of documents is for each given system. Since
patent search is often conducted using traditional Boolean systems (i.e. exact-match
retrieval models), we shall examine these types of retrieval models, and compare
them against best-match retrieval models. Best-match models have been favoured
in the IR research community because they have been shown to deliver excellent
retrieval performance. However, within the patent domain, searchers prefer exact-
match models because of custom and tradition, the precise interpretation of Boolean
queries, and the legal and regulatory requirements that are often imposed. To im-
prove the access of exact-match models, while preserving these required features,
we also consider a series of hybrid retrieval models. These models accept a Boolean
query and provide a crisp cut-off between retrieved and non-retrieved documents,
as the traditional Boolean model already does, but they incorporate a number of fea-
tures of best-match models that improve the access to the collection. An empirical
study using the MAREC patent test collection builds on a previous pilot study [7]
and provides evidence that these features often improve access (i.e. they make ac-
cess to individual documents more equal). It is shown that when these features are
incorporated within the hybrid models this leads to improved access over the tradi-
tional Boolean model.

The rest of the chapter is organized as follows. In Sect. 7.2, we summarize the
reasons why users in the patent domain prefer Boolean queries and, by implication,
models which accept queries in this form. Section 7.3 formally defines the concept
of retrievability and describes how it can be measured. Such measurement requires a
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large number of representative queries, so in Sect. 7.4, we consider both the quality
and quantity of queries. Section 7.5 identifies and explains the three features that
were hypothesized to increase access. In Sect. 7.6 we give formal definitions of the
variants of Tf-Idf and BM25 used for this study and then define the hybrid models.
Then, Sect. 7.7 presents the results of the empirical study we conducted to analyze
these models on a number of different patent corpora. Finally, Sect. 7.8 concludes
with a summary of findings.

7.2 Patent Searching

A patent searcher typically requires accessing large corpora, consisting of millions
of documents, in order to perform a variety of search tasks [13]. By considering
some of the most common search tasks, we can see that the ability to access every
potentially relevant document is key to the likely success of each task:

Novelty Search given a patent application, the search task is to ensure that the
claims made for the new invention have not been previously patented or docu-
mented.

Validity/Invalidity Search The search task is to investigate existing patents to de-
termine whether their claims are enforceable, or to determine whether any other
patents violate an existing or currently held patent.

Freedom to Operate A search is instigated to determine if a proposed course of ac-
tion violates an existing patent.

To accomplish these tasks, patent searchers often prefer exact-match models where
the query is submitted in a Boolean form using the AND, OR and NOT operators
[6, 10]. In response to such a query, a system employing an exact-match model, will
return all the documents for which the query is true. Since the documents returned
are not ranked they are usually presented by some ordering criterion such as date.

The approach taken by patent searchers contrasts with many other areas of IR
research where queries are submitted as unstructured lists of words and best-match
models are used to rank the documents. Such best-match models have the advantage
that they can take into account not only the presence or absence of a query term in
the document, but also its frequency. It is perhaps for this reason that best-match
models have found favour within the IR community as these often result in signifi-
cantly better retrieval performance (in terms of precision and recall). Nevertheless,
the Boolean exact-match model remains popular in the patent domain and this is
partly due to the nature of the searches that take place [14, 22]. The usage of the
exact-match models stems from the following reasons:

Custom and Practice Practitioners have been trained and are used to formulating
Boolean queries. The habit of always performing such queries may make them
less likely to change, especially if there current practice is effective in finding the
required documents.
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Extra Information Content For a given number of query terms, the addition of
Boolean operators and brackets adds more information to the queries. Thus very
precise queries can be formulated which have a clear interpretation.1

Demonstrating Due Diligence The fact that there is a crisp cut-off means that a
patent searcher does not have to make an arbitrary decision where to stop exam-
ining the documents. This protects him/her against the accusation that ‘if they had
only looked a little further they would have found the document in question.’

Model Intuitiveness Extending a query using either the AND or NOT operator will
retrieve fewer documents. This contrasts with best-match models where adding
an extra query term will retrieve the same number or more documents. Patent
searchers carefully fashion a query specifically to reduce the number of retrieved
documents to make the exhaustive viewing of each document feasible. However,
the NOT operator is known to be problematic since it may lead to the exclusion of
a document which was relevant but addressed other topics as well.

Therefore any new model for patent search need to provide the same functionality of
exact-match models, or at least handle AND and OR operators, but preferably also
the NOT operator. Also, it must provide a crisp cut-off between the retrieved and
non-retrieved. In this work, we examine hybrid models which combine features of
exact-match models with features that improve the access within best-match mod-
els, in an attempt to obtain the best of both worlds (i.e. exact-match models with
improved access).

7.3 Retrievability

The accessibility of information in a collection given a retrieval system has been
considered from two points of view, the system side i.e. retrievability [5] and the
user side findability [15]. Retrievability measures provide an indication of how eas-
ily a document could be retrieved using a given IR system, while findability mea-
sures provide an indication of how easily a document can be found by a user with
the IR system. Here we consider the access based measure of retrievability (see [5]
for more details and [2, 7–9] for examples of its usage in practice).

7.3.1 Definition of Retrievability

The general formula for the retrievability measure of a single document given in [5]
(with modified notation) is

R(d) =
∑

q∈Q

p(q) · f (
δ(q, d), θ

)
, (7.1)

1Paradoxically the output of such a model is either 1 or 0 and this contains less information than
the real number yielded by best-match models.
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where Q is the set of all possible queries, p(q) denotes the probability of query q

being used, f (δ(q, d), θ) is the utility function (note that a high value is good) with
θ as a parameter and δ(q, d) a measure of the cost involved in accessing d given
q (i.e. going down the through the ranked list of documents incurs a cost). It is not
possible to create an exhaustive list of queries, so a subset Q′ ⊂ Q is created to form
an estimate. Since this subset is usually generated artificially and the queries are not
based on any actual information need, we are not able to assign a likelihood to each
query other than by assuming p(q) = 1

|Q′| is the same for all queries. This then
becomes multiplication by a constant. Since we are only interested in this measure
relative to other documents, it can be ignored. Thus to provide an estimate R̂(d) of
document retrievability we write:

R̂(d) =
∑

q∈Q′
f

(
δ(q, d), θ

)
. (7.2)

To represent the diversity of possible queries that a user could submit, any empirical
study will require a very large sample of such queries. It is for this reason that the
queries are generated automatically (see Sect. 7.4 for details).

7.3.2 Utility Functions

It is assumed that when presented with an ordered list of retrieved documents, the
user will start at the top and work their way down. Therefore within IR, the mea-
sure of distance δ(q, d) is the rank of the document. Given that a patent searcher
will choose how many documents to examine, we shall use a cumulative measure of
retrievability where the utility function gives a score of 1 to the top τ ranked docu-
ments, and 0 otherwise. In our experiments we shall take measurements of retriev-
ability at five cut-offs, where τ = 10,20,50,100 and 200. Note that, on average, a
patent searcher examines around 100–200 documents per query [14, 22].

7.3.3 A Measure of Collection Access

Once we have estimated the retrievability of all the documents in a collection, we
wish to calculate some overall measure of access for the collection given the IR
system and corpora. Since the retrieval of one document at a particular rank means
that another document cannot be retrieved at the same rank, then documents com-
pete to be retrieved, i.e. if one document appears in the top ten retrieved items then,
by definition it will displace another document. Indeed, documents become less re-
trievable precisely because others become more retrievable. What is of interest here
is the distribution of retrievability over the population of documents and whether
the retrieval system provides a similar amount of retrievability to each document in
the collection (or provide a degree of equality to all documents). For example, we
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can imagine that we have a retrieval system which only retrieves one particular doc-
ument regardless of the query. This document would have a very high retrievability
score, but all the other documents would have 0 retrievability. Since we would like
to ensure that patent searchers can access all documents as easily as possible, then
making all documents as equally retrievable as possible would improve access to
all parts of the collection. Essentially, we would like the retrieval system to afford
all documents with similar retrievability. However, due to the characteristics of the
documents this might not always be possible—though the aim is to strive for equal-
ity.

In economics, there is a standard method of measuring wealth and income dis-
tributions to determine the level of equality. Here, we apply this method to the
measures of document retrievability. The Lorenz curve [12] provides a graphical
representation of the distribution of individual retrievability scores. The documents
are ordered by increasing value of their respective score and then the cumulative
score is calculated. This is plotted against the cumulative number of documents.
Figure 7.1 gives an example; note that both axes have been normalized. The unbro-
ken line shows complete equality—i.e. all documents are equally retrievable. The
heavy, dashed line shows total inequality, only one document is ever retrieved no
matter what the query was. The dotted line shows the case where the retrievability
scores are uniformly distributed—these data are simulated randomly here.

The Gini [12] coefficient gives a score from 0 to 1 indicating the degree of in-
equality. It is calculated as the area between the 45° unbroken line and the Lorenz
curve divided by the total area underneath the 45° line. A score of 0 implies total
equality; for total inequality, where only one document is ever retrieved, the coeffi-
cient approaches 1. In Fig. 7.1, the Gini coefficient for the unbroken line is 0. For
the heavy, dashed line it is close to 1 and for lighter dashed line is 0.329. If we as-
sume that the documents have been placed in order of non-decreasing retrievability
according to some estimated measure R̂(di) and that there are N documents in the
collection we can define more formally the Gini coefficient as

1 − 2

N − 1

(
N −

∑N
i=1 i · R̂(di)∑N

i=1 R̂(di)

)

for discrete data, where the documents are indexed by non-decreasing order of R̂.

7.3.4 The Retrievability Experiment

Having described the retrievability and access measures, we now summarize the
steps undertaken to perform the retrievability analysis, which follows the methodol-
ogy described in [5].

1. For each corpus of patent documents, we indexed the collection and removed
stop words.

2. A large number of queries were automatically generated from the index (see the
next section for the method of query generation).
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Fig. 7.1 An example of a
Lorenz curve

3. For each IR model, each query was used to retrieve documents from the corpus.
In Sect. 7.6 we describe the best-match, exact-match and hybrid models used in
this study. The results from all queries were stored.

4. For each set of results for each retrieval model, the retrievability measurements
were calculated for each document.

5. Given the retrievability scores for all documents the overall access measure was
calculated (i.e. Gini coefficient) for each model. Here, we attribute a model with
a lower Gini coefficient as providing better access to the collection.

The retrieval experiments and query generation was performed using the Lemur
Toolkit 4.10 [21].

7.4 Query Generation

To obtain a reasonably accurate estimate of the retrievability scores a sufficiently
large number of queries is required. This means that manual generation of queries
is not practical and instead some algorithm is required. In this paper, we adopt the
approach previously taken in [5], where a series of one-word and two-word queries
were automatically generated given the documents in the collection. However, here,
only two-word queries were chosen since one-word queries cannot show the effect
of Boolean operators. Although the queries used in patent search are often longer
than two words, we choose two-word queries because this means there will be just
one Boolean operator and it thus affords a comparison between the use of AND
and OR within the various IR models. Also, using only two-word queries makes the
computation and estimation of the retrievability scores tractable.

Any set of generated queries must relate to the corpus under analysis (i.e. the
queries need to contain terms that are in the documents). It is for this reason that
query generation method extracts queries using the corpus index. The collocation
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Table 7.1 Examples of
queries automatically
generated by the collocation
method

diaminopy rimidin

indexobjekte datenbestandes

leandro chemdbs

dimethanesulphonate myleran

laktat malat

moxon schweda

menziesii mirb

finegold angelopoulou

oxalkylen mischpolymerisate

phenanthrenequinone phenylpropanedione

method used in previous studies [5] identifies common phrases in the text, and as-
sumes that they are likely candidates for queries. A collocation is a pair of words
which occur together more often than would be expected by chance. Queries were
derived from collocations found in the document collection since they would tend to
relate to some concept which simulates some user information need. The procedure
for generating the queries has four distinct stages.

1. The set of all bigrams (pairs of consecutive words) are extracted from the index
of the collection.

2. Those bigrams that occur less than a specified number of times are removed.
3. The adjusted point-wise mutual information measure (APWMI) [16] is calcu-

lated for each bigram and this is used to sort them in descending order.
4. The first 200 000 of this list of bigrams are disregarded since they contained a

lot of stock phrases that were independent of the technical/topical content (e.g.
diagram shows). The next n queries were then used for the experiment.

These steps are now explained in more detail.
For the purpose of indexing, only those parts of the patent dealing with technical

details were used. Thus the sections which listed names and addresses as well as the
copyright notice were omitted since these would give rise to common collocations
which would not represent plausible queries. Stopwords and punctuation were also
removed, as were terms that contained digits or had fewer than two letters. The text
was case lowered but stemming was not applied. For each document, each consecu-
tive pair of remaining words was considered as a bigram. Then, each distinct bigram
was recorded and the number of occurrences counted. Only those bigrams which oc-
curred at least 10 times were then considered. It is worth noting here that since the
IR models under investigation are assumed to have the same indexer with only the
matching function varying, a common set of queries was used for all models. Ta-
ble 7.1 gives an example of 10 consecutive queries, which have been automatically
generated.
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7.4.1 How Many Queries?

A question arises as to how many queries should be used for the estimation of re-
trievability. Too few queries will give an inaccurate result, and in particular will
mean that the estimated Gini coefficient will be much higher than the true estimate.
Thus, we need to ensure that we use enough queries to obtain a reasonably accu-
rate estimate of the Gini coefficient, even though it will not be exact. And while
the estimate will not completely accurate it is asymptotically consistent, meaning
that inaccuracy of the measurement will tend to decrease as the number of queries
increases. Of course, there is a practical limit on the number of queries that can
be used since each query requires a retrieval operation. Here we have used up to
1 million queries depending on the collection. In order to facilitate the comparison
of models across different corpora, it is important that the document to query ratio
(DQR) is held constant so that the estimates of the Gini coefficients will not be out
of proportion, i.e. if more queries are used on one corpus than another, then its Gini
coefficients will be closer to the exact values, which means that it is not possible
to compare across corpora. For comparisons to be meaningful, the DQR should be
kept constant so that the number of queries used is kept proportional to the number
of documents in each corpus. Essentially, if corpus A is twice as large as corpus B,
then it should have twice the number of queries.

7.5 Features for Improving Access

In previous work [7], we conducted a pilot study to determine the differences in
retrievability over a number of popular IR models (best-match and exact-match
models), and to ascertain to what extent documents were un-retrievable given these
models. It soon emerged that there were marked differences in the retrievability of
documents between the best-match and exact-match models. This led to the hypoth-
esis that there were certain features of the best-match models, not shared with the
exact-match models that increased access to the corpus by making the retrievability
of documents more equal.

Three features of the best-match models were identified as potentially affecting
retrievability. It should be noted that these features are also likely to improve effec-
tiveness, but such an investigation is beyond the scope of this chapter. However, it
was with effectiveness in mind that Fang et al. [11] identified a set of constraints
that an IR model, ought to adhere to. The chosen features closely relate to some of
these constraints. The three features identified were:

1. Sensitivity to Term Frequency,
2. Length Normalization,
3. Convexity.

Each is now considered in turn.
Whereas the traditional Boolean model considers only if a term is present or

absent, best-match models such as BM25 and Tf-Idf take into account the number
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of occurrences. A higher frequency of a given query term will make the document
more relevant. This is codified in the Term Frequency Constraint (TFC1) in [11].
It is also common to take account of how frequently the term appears in the entire
collection so that very commonly used vocabulary score less that the rarer words.
This is consistent with their Term Discrimination Constraint (TDC) [11].

One consequence of incorporating term frequency into a model is that it will
tend to score longer documents higher than shorter documents. Although we can
argue that, all other things being equal, a longer document is more likely to be
relevant since it will contain more information, there is a tendency to over-score
longer documents. Thus many models incorporate some length normalization so
that shorter documents are not unduly penalized. This is consistent with the Length
Normalization Constraint (LNC1) [11].

Fang et al. [11] also attempt to define a ‘desirable characteristic’ of a retrieval
model whereby the combination of two distinct query terms in the document will
score higher than just occurrences of one or the other. We formalize this concept
as convexity and provide the following definition. Let q be a query with two terms
w1,w2. Let d1 and d2 be documents which yield precisely the same ranking score
for the query q . Assume that d1 contains two occurrences of w1 and none of w2.
Assume also that d2 is identical to d1 except that the two occurrences of w1 are
replaced with w2. Now, let us assume a third document d3 which is identical to d1

except that only one occurrence of w1 is replaced with w2 so that it now contains
one of each query term. An IR model will have convexity if, and only if, it always
ranks d3 (strictly) higher than d1 and d2.

One key feature of the traditional Boolean model is that it provides a crisp cut-off
since each document will be assigned a score of 0 or 1. Adding sensitivity to term
frequency means that the scoring of any document cannot have just two values. Nev-
ertheless, a crisp cut-off would be possible if there were some attainable minimum
score, say 0, representing the Boolean condition being false, and a positive value to
represent that it is true.

7.6 Retrieval Models

For the purposes of our empirical study, we considered an exact-match retrieval
model (i.e. the traditional Boolean model), two well established best-match models
(i.e. Tf-Idf and BM25) and a number of hybrid models, which can accept a Boolean
query but take into account some or all of the features introduced above. In an initial
study [7], we considered several other hybrid models, but here we perform this larger
study on a subset of the best performing retrieval models (i.e. those models that
improved access). An IR system consists of an index and a matching model. Since
we use the same index throughout the empirical study, the only variation between
systems is the matching model.
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7.6.1 Traditional Boolean Models

Given that the simulated queries consist of two terms, both of which are consid-
ered desirable in any retrieved document, they may only be combined in two ways,
namely with an AND and an OR. As a true exact-match model there is no order-
ing imposed on the retrieved documents, so two possible methods of sorting the
retrieved documents were chosen:

1. Chronological order—earliest document first,
2. Reverse Chronological order—latest document first.

We note here that Boolean AND will possess convexity since it clearly gives a higher
ranking when both terms are present.

7.6.2 Tf-Idf

This is really a family of retrieval models where the acronym stands for Term
Frequency–Inverse Document Frequency [19]. We shall use the notation c(w,d)

to represent the counting function which yields the number of occurrences of word
w in document d . The document frequency df (w) is the number of documents in
the collection which contain at least one occurrence of w. There are several formu-
lations for inverse document frequency (Idf). The one chosen here prevents the Idf
from ever becoming 0, even if a term is present in every document. We have

Idf (w) = log

(
N + 1

df (w)

)
, (7.3)

where N is the number of documents in the collection and, in the following, q is
the query. The ranking function multiplies the occurrence of each query term in the
document by the Idf measure:

∑

w∈q∩d

idf (w) · c(w,d). (7.4)

This we will refer to as standard Tf-Idf and note that it is sensitive to term fre-
quency but possesses neither the convexity property nor length normalization. It is,
however, possible to address length bias by using pivoted normalization and define
normalized Tf-Idf as

∑

w∈q∩d

Idf (w) · c(w,d)

(1 − b) + b · |d|
avdl

, (7.5)

where |d| is the size of the document and avdl is the average document length. We
set the parameter b to 0.75 to be the same as the BM25 model below.

If we consider retrieving all the documents whose matching score is greater
than 0, we can see that this has the same effect as the Boolean OR since if any
of the terms are present the ranking function will have a positive value. However,
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the retrieved documents will nevertheless be sorted according to the frequencies
of the query terms. If more query terms are present or these terms are rarer in the
collection, it will score a document higher.

7.6.3 Okapi BM25

This is also a family of matching models and is often referred to as either Okapi
or BM25. The original formulation [20] is based on a probabilistic model. How-
ever, various ad hoc changes have been advocated such as that proposed by Fang
et al. [11]. It is also common to ignore the query factor of the original formulation
(this can be achieved by allowing one of the parameters to approach infinity). The
formulation used is:

∑

w∈q∩d

idf (w) · (k1) · c(w,d)

k1 · ((1 − b) + b · |d|
avdl

) + c(w,d)
. (7.6)

Two parameters in the model are set to the following value b = 0.75 and k1 = 1.2
as is standard practice. As with Tf-Idf, BM25 has the intrinsic OR property and
also takes account of term frequency. Because each additional occurrence of the
same term makes a diminishing contribution to the overall score, this function also
exhibits convexity. This model has been shown to perform well in TREC evaluations
and, in particular, to outperform Tf-Idf.

7.6.4 Filtered Term-Frequency Models

The idea of constructing a best-match model which accepts a Boolean query is not
new. Salton et al. [18] attempted this some years ago. However, their proposed
model does not give a crisp cut-of,f which we argued for in Sect. 7.2, and thus
we seek other solutions. One reason we have proposed for using a Boolean query
is that the use of the AND operator can actually prevent some documents being re-
trieved. We propose one approach to add conjunctivity to the two term-frequency
models described above. A second approach, the harmonic model [7] was found to
yield almost identical results, and so it is not included here. Thus we use a Boolean
expression to filter the results of best-match function. That is, where the Boolean
expression is true, the document is scored according to a best-match model such as
Tf-Idf and BM25. Where the condition is false, the document is scored at 0. It is
worth noting here that both BM25 and Tf-Idf will yield 0 if and only if no query
terms appear in the document. This is not true for all best-match models and so this
approach is only applicable to certain best-match models.

We assume that there is some Boolean query consisting of a set of query terms
with the operators AND and OR. The words are extracted and used to calculate a
term-frequency model except that if the Boolean expression is false, the matching
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Table 7.2 Models used in experiment

No Convexity Convexity

Term Presence Chronological OR Chronological AND

Reverse Chronological OR Reverse Chronological Boolean Filter

Term Frequency Standard Tf-Idf Standard Tf-Idf with Boolean Filter

Term Frequency

Normalized Tf-Idf

BM25

with Length BM25 with Boolean Filter

Normalization Normalized Tf-Idf with Boolean Filter

value is set to 0. If the Boolean expression contains only the OR operator, the match-
ing value will be 0 when the Boolean expression is false anyhow. The filter only cuts
when there are AND operators. This approach has been used before by Arampatzis
et al. [1] on legal queries. The approach can be generalized to Boolean expressions
containing the NOT. Terms that are required to be absent are kept within the Boolean
expression and if they were present it would set the matching value to 0. However,
such terms would not form part of the list of terms used to calculate the Tf-Idf
or BM25 function. There is one theoretical drawback with the filtering approach,
which is that the filter introduces a discontinuity in the matching function.

We note here that when used with an AND operator, the filtered models will
exhibit convexity, whereas the OR operator will not, except for BM25, where con-
vexity is present in both cases.

7.6.5 Summary of Models

Since the generated queries used have two terms each, we can consider there to be
either an AND or OR operator between them. We note as stated above that applying
a Boolean filter makes no difference for an OR operator. Only when AND is used is
the result changed.

Table 7.2 summarizes the ten models used according to the presence or absence
of the three features. Note that the models that are insensitive to term frequency are
all exact match. We expect retrievability to improve towards the bottom of the table.

7.7 Results

We calculated the Gini coefficients of retrievability for each IR model given each
corpora from the four patent offices (European, US, Japanese and World) which
together make up the MAREC collection [17]. This allowed both comparison of
the models, revealing the ones which can give greater access and also comparison
between corpora. For this latter purpose, the number of generated queries has been
chosen to keep the document to query ratio constant.
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Table 7.3 Summary statistics for MAREC collection and generated queries

Corpus Number of
Documents

Number of
Queries

Document to Query
ration (DQR)

European (EP) 3,508,686 415,054 8.454

Japanese (JP) 8,453,560 1,000,000 8.454

United States (US) 5,639,471 667,112 8.454

World (WO) 1,784,980 211,151 8.454

Corpus Number of
Terms

Number of
Unique Terms

Mean Document
Length

European (EP) 4,936,283,816 11,412,080 1,406.88

Japanese (JP) 735,047,852 802,875 86.95

United States (US) 16,107,226,982 11,281,670 2,856.16

World (WO) 4,288,769,761 15,767,937 2,402.70

Summary statistics relating to the patents contained in the corpora are shown in
Table 7.3 along with the number of queries used. The European and World patent
documents were in English, French and German, with many documents containing
more than one language. Other corpora were in English only. It should be noted that
whereas some documents were the full version of the patent, others, specifically
in the Japanese corpus, were short summaries or abstracts. The patent documents
contained in the four corpora were semi-structured (in XML format) meaning that
it was possible to extract automatically certain sections for indexing and not others.

The index used for retrieval was the same as the one used to generate queries;
that is it contained only the technical sections of each patent document. Although
it would have been more realistic to have used the entire document, an initial study
performed on the World collection showed that the results were very similar. Thus
to save the computing time and storage space of creating separate indices, a single
index was used for each corpus. Three languages were used in the whole MAREC
collection: English, French and German. Some documents had a mixture of lan-
guages. Thus a combined three-language stop word list was used. Stemming was
not applied. We now address comparison both of the models and the corpora.

7.7.1 Comparison of Models

Table 7.4 gives Gini coefficients for the four corpora for all ten models and five
retrievability measures for different values of τ . For the first two corpora (EP, JP)
the results are very similar to those in the pilot study [7].

1. The term-frequency sensitive models outperform corresponding models that cap-
ture only term presence. Specifically, standard Tf-Idf shows greater retrievability
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Table 7.4 Gini coefficients for all scoring functions

Model OR Relation AND Relation

Number of Top
Documents Retrieved (τ )

10 20 50 100 200 10 20 50 100 200

European (EP)

BM25 0.815 0.778 0.742 0.722 0.705 0.821 0.788 0.762 0.751 0.746

Tf-Idf Std. 0.965 0.947 0.916 0.889 0.861 0.916 0.892 0.861 0.842 0.828

Tf-Idf Norm. 0.946 0.919 0.876 0.840 0.806 0.876 0.846 0.817 0.802 0.792

Boolean Ch. 0.998 0.996 0.990 0.984 0.974 0.973 0.956 0.924 0.898 0.873

Boolean Rev. 0.998 0.996 0.991 0.984 0.975 0.974 0.957 0.925 0.899 0.874

Japanese (JP)

BM25 0.712 0.609 0.487 0.423 0.384 0.709 0.601 0.462 0.374 0.305

Tf-Idf Std. 0.990 0.983 0.966 0.945 0.912 0.817 0.725 0.586 0.488 0.408

Tf-Idf Norm. 0.988 0.981 0.964 0.941 0.906 0.805 0.705 0.556 0.452 0.368

Boolean Ch. 1.000 1.000 0.999 0.998 0.996 0.963 0.933 0.863 0.788 0.696

Boolean Rev. 1.000 1.000 0.999 0.998 0.996 0.962 0.931 0.863 0.789 0.699

United States (US)

BM25 0.873 0.842 0.804 0.779 0.755 0.886 0.864 0.840 0.826 0.814

Tf-Idf Std. 0.968 0.952 0.923 0.896 0.867 0.936 0.919 0.897 0.882 0.867

Tf-Idf Norm. 0.955 0.932 0.891 0.854 0.817 0.910 0.891 0.869 0.855 0.841

Boolean Ch. 0.996 0.993 0.986 0.979 0.969 0.970 0.953 0.927 0.907 0.886

Boolean Rev. 0.996 0.994 0.988 0.981 0.972 0.973 0.957 0.933 0.913 0.893

World (WO)

BM25 0.846 0.812 0.770 0.746 0.734 0.890 0.888 0.892 0.897 0.901

Tf-Idf Std. 0.911 0.880 0.843 0.821 0.806 0.909 0.899 0.897 0.899 0.902

Tf-Idf Norm. 0.886 0.849 0.805 0.780 0.764 0.897 0.892 0.893 0.897 0.901

Boolean Ch. 0.979 0.966 0.938 0.905 0.865 0.909 0.898 0.896 0.898 0.902

Boolean Rev. 0.989 0.981 0.958 0.928 0.886 0.920 0.905 0.899 0.900 0.902

than Boolean OR. Also Tf-Idf with an AND filter outperforms the Boolean AND
model.

2. Models with length normalization (BM25 and Normalized Tf-Idf) outperform
standard Tf-Idf which is not normalized.

3. Models with convexity outperform the corresponding models without. In partic-
ular, standard BM25 outperforms standard Tf-Idf which implies that convexity
is important when the OR operator is used; it is always present when we use the
AND operator.

Thus when each of the model features is present, it gives a more equitable re-
trievability. For the US corpus, points 1 and 2 are also demonstrated but the
story for point 3 is more ambiguous. For smaller numbers of documents retrieved
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Table 7.5 Mean occurrence
of bigrams used in query set Corpus Mean Occurrence

European (EP) 250.23

Japanese (JP) 117.19

United States US 185.99

World (WO) 21.96

(τ = 10,20,50) the AND operator gives better retrievability than OR, except for
BM25 where the OR version has convexity anyway. However, as the number of
documents retrieved increases 100 or 200, we observe that for the two Tf-Idf vari-
ants sometimes the OR outperforms AND.

For the WO corpus, points 1, 2 and 3 are true for the OR operator only. For the
AND operator, the results are curious for two reasons. Firstly, the Gini measure does
not increase as τ increases; indeed it sometimes falls. Secondly, the Gini measures
appear very similar for all models, which is a pattern not shown elsewhere. A further
investigation shows that this can be attributed to the queries being somewhat differ-
ent. Table 7.5 shows the mean occurrences of each bigram corresponding to a query
in each entire corpus. For the WO corpus the bigrams are far less frequent and one
therefore would expect them to be found in far fewer documents. Of course, each of
the terms in any bigram could appear separately in any document but the fact these
bigrams were selected by having a high APWMI measure implies that occurrences
of the terms separately will also be rare. Thus for many of the queries in the WO cor-
pus, there will be few documents which contain both terms and so few documents
will be retrieved for each of these queries. This is confirmed in Table 7.6, which
shows the mean number of times each document is retrieved. Note that this statistic
is the same for each of the five matching functions. This raises the question as to
whether the WO corpus has radically different properties from the other corpora or
whether the collocation method has failed to find plausible queries. However, we
leave this for future work.

Table 7.7 shows the frequency with which documents are retrieved. We note
that where the Gini coefficient is very high, it corresponds to a large number of
documents never being retrieved. One explanation of lack of retrievability consistent
with this observation is that some documents are regularly pushed down the ranking

Table 7.6 Mean frequency of retrieval for all scoring functions

Corpus OR Relation AND Relation

Number of Top
Documents Retrieved (τ )

10 20 50 100 200 10 20 50 100 200

European (EP) 1.181 2.357 5.863 11.640 23.011 1.140 2.224 5.238 9.580 16.789

Japanese (JP) 1.183 2.366 5.913 11.823 23.634 1.179 2.337 5.648 10.745 19.835

United States (US) 1.171 2.319 5.663 11.078 21.589 1.108 2.094 4.563 7.783 12.692

World (WO) 1.178 2.349 5.830 11.501 22.184 0.914 1.447 2.048 2.367 2.568
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Table 7.7 Percentage of documents retrieved n times for each corpora using τ = 50

Model OR Relation AND Relation

How Often Retrieved

0 1 2–9 10–99 ≥100 0 1 2–9 10–99 ≥100

European (EP)

BM25 36.68 13.67 31.13 18.33 0.18 40.45 13.75 29.73 15.88 0.20

Tf-Idf Std. 67.43 7.28 14.40 9.91 0.97 54.88 10.53 22.66 11.29 0.64

Tf-Idf Norm. 61.80 7.57 16.61 13.25 0.77 49.96 10.64 25.10 13.89 0.41

Boolean Ch. 85.53 6.03 5.84 2.08 0.52 62.54 12.89 16.65 7.01 0.91

Boolean Rev. 85.65 5.97 5.85 2.04 0.50 62.88 12.75 16.49 6.97 0.91

Japanese (JP)

BM25 10.78 10.79 58.19 20.23 0.00 9.71 10.69 60.89 18.71 0.00

Tf-Idf Std. 78.66 6.77 8.97 4.12 1.47 19.30 13.39 47.34 19.98 0.00

Tf-Idf Norm. 77.22 7.34 9.67 4.28 1.49 16.12 13.21 50.82 19.86 0.00

Boolean Ch. 96.93 1.17 1.13 0.52 0.24 52.18 17.23 22.39 7.64 0.56

Boolean Rev. 96.93 1.16 1.13 0.53 0.25 46.86 17.20 25.25 9.66 1.02

United States (US)

BM25 41.66 15.05 28.83 14.07 0.39 48.27 16.30 24.55 10.50 0.38

Tf-Idf Std. 68.38 7.27 14.23 9.24 0.89 58.26 13.68 19.69 7.71 0.64

Tf-Idf Norm. 65.61 7.94 16.23 9.74 0.47 53.68 14.64 21.93 9.21 0.54

Boolean Ch. 83.08 6.17 7.52 2.69 0.54 65.39 11.59 15.81 6.49 0.71

Boolean Rev. 84.05 5.94 6.97 2.52 0.51 66.59 11.44 15.13 6.13 0.71

World (WO)

BM25 41.43 12.92 27.46 17.97 0.22 68.66 10.74 15.86 4.59 0.14

Tf-Idf Std. 54.02 9.52 21.30 14.56 0.60 69.32 10.62 15.42 4.47 0.16

Tf-Idf Norm. 48.70 10.55 23.52 16.89 0.34 68.87 10.69 15.74 4.56 0.15

Boolean Ch. 71.42 7.46 12.29 7.59 1.24 69.21 10.62 15.50 4.51 0.16

Boolean Rev. 74.55 7.83 10.94 5.54 1.13 69.47 10.75 15.27 4.34 0.17

by others, which also match the query. This would explain the very high numbers
of non-retrieved documents when using the Boolean model where earlier or later
documents always come before them and are thus more frequently retrieved.

7.7.2 Comparison of Corpora

Considering Table 7.4 again, we can see a marked difference between the corpora in
terms of access. Not only do the Gini measures show different values for the same
model, but also some models perform better on some collections than others. The
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JP collection has potentially the greatest access if models with convexity are used,
yet the worst level of access when using the Boolean OR. It should be noted that
the JP collection has much smaller documents than the other three, since it consists
mainly of short patent summaries, whereas the other corpora contain a mixture of
summaries and full patents.

7.8 Conclusion

From the retrievability analysis that we have conducted, it appears that the hybrid
models offer patent searchers the best of both worlds. On the one hand they accept a
Boolean query and provide a crisp cut-off, thus fulfilling the requirements explained
in Sect. 7.2. On the other hand, they provide improved access to the documents
within the collection over the traditional Boolean model. This is because the hybrid
models included the three features: term-frequency sensitivity, length normalization
and convexity, which have been shown to improve access across the collection. Our
analysis also shows that different models provide greater access depending on the
collection, and so the choice of model is dependent on the corpora. This research
provides an interesting starting point for the analysis and profiling of collections,
such as patent corpora, and determining how easily the documents can be found
given a particular system. In the case of patent searching, it is very important that the
tools that patent searchers employ enable to them to access all parts of the collection
as easily as possible. If parts of the collection are not easily accessible, then this
could lead to missing relevant documents, and doing so could be quite costly.

The idea of measuring access to a corpus is a relatively new one, when compared
to precision and recall which have been around since the 1960s. Our measure of ac-
cess, retrievability is just one of many such measures that could be derived to assess
this attribute. We have compared a selection of IR models and identified those fea-
tures of the IR system that can improve access. But this is by no means an exhaustive
evaluation. What we have presented here is a feasible and well-defined framework
for measuring access and it is for others in the patent domain and elsewhere to take
these ideas further.
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Chapter 8
Measuring Effectiveness in the TREC Legal
Track

Stephen Tomlinson and Bruce Hedin

Abstract In this chapter, we report our experiences from attempting to measure
the effectiveness of large e-Discovery result sets in the TREC Legal Track cam-
paigns of 2007–2009. For effectiveness measures, we have focused on recall, pre-
cision and F1. We state the estimators that we have used for these measures, and
we outline both the rank-based and set-based approaches to sampling that we have
taken. We share our experiences with the sampling error in the resulting estimates
for the absolute performance on individual topics, relative performance on individ-
ual topics, mean performance across topics, and relative performance across topics.
Finally, we discuss our experiences with assessor error, which we have found has
often had a larger impact than sampling error.

8.1 Introduction

In this chapter, we report our experiences with measuring the effectiveness of ap-
proaches to electronic discovery search in the legal domain, which has many chal-
lenges in common with evaluating patent search. In particular, high recall is de-
manded in both of these domains, but the relevant documents may be a tiny fraction
of the collection, making it difficult for sampling-based approaches to estimate the
measures accurately.

Our experience comes from our involvement with the Legal Track of the Text
Retrieval Conference (TREC), which started in 2006 [3], with the goal of creating
standard tests for electronic discovery (e-Discovery) requests. Recall is a primary
concern in e-Discovery, as there is a legal obligation to return, to an extent com-
mensurate with a reasonable good-faith effort, all evidence relevant to the request.
Precision is also important, however, in order to reduce cost and prevent the unnec-
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Table 8.1 Overview of the referenced TREC Legal Track tasks

Task |D| Topics Type max |S| Runs Judged estRel(D)high

2007 Ad Hoc 6,910,192 43 rank 25,000 68 488–1000 77,467

2008 Ad Hoc 6,910,192 26 rank 100,000 64 493–900 658,399

2009 Batch 6,910,192 10 rank 1,500,000 10 1250–2500 1,046,833

2008 Interactive 6,910,192 3 set 6,910,192 5 2500–6500 786,862

2009 Interactive 569,034 7 set 569,034 4 2729–3975 26,839

essary release of information. Effective e-Discovery continues to be a challenging
problem [2, 10].

The TREC Legal Track continued in 2007 [16], 2008 [11] and 2009 [8], each year
running between one and three tasks. In this chapter, we refer to just five of these
tasks, listed in Table 8.1, for which we were the lead coordinators for the task design,
focusing particularly on the details of the sampling and measure estimation. Herein,
we briefly summarize the details of these tasks that are necessary to understand
the measurement approaches. More details on the TREC Legal Track are readily
available in the online track overview papers [3, 8, 11, 16].

For each task, there was a document set D to search, either the IIT CDIP (Illinois
Institute of Technology Complex Document Information Processing) collection [9],
which consisted of 6,910,192 documents released by seven US tobacco companies,
or the TREC 2009 Enron collection [8], which consisted of 569,034 e-mail messages
(with attachments) from the mailboxes of approximately 150 employees of Enron
Corporation. One can see which collection was used for each task based on the size
of the collection (|D|) listed in Table 8.1.

For each task, there was a set of test topics (approximately 50 new ones each year,
though the final number was typically lower because some topics were not assessed
in time for the track’s deadline that year). Each topic consisted of a multi-paragraph
background complaint and a one-sentence request for documents to produce; for
example, for topic #74, the (fictitious) complaint alleged infringement of a patent
of a product for ventilating smoke, and the one-sentence request was “All scientific
studies expressly referencing health effects tied to indoor air quality.” The number
of test topics for a task ranged from three to 43; the final number for each task
(excluding those discarded because of incomplete assessment) is in the “Topics”
column of Table 8.1.

We refer to three of the five tasks (2007 Ad Hoc, 2008 Ad Hoc, 2009 Batch) as
rank-based tasks, as per the “Type” column of Table 8.1. In these tasks, the test sys-
tems were typically automated systems, and they were required to specify a ranking
of the documents for each topic based on the system’s opinion of their probability
of relevance to the request. (In the “Ad Hoc” tasks, the topics were new ones that the
systems were seeing for the first time, whereas in the “Batch” task, the topics were
re-used from previous years and the systems could use past judgments of relevant
and non-relevant documents to train batch filtering techniques.) Furthermore, for
various bandwidth reasons, the rank-based tasks had a maximum submission depth
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(e.g., 100,000 documents per topic in the 2008 Ad Hoc task) as listed in the “max
|S|” column of Table 8.1, which we hoped would provide sufficient coverage of the
relevant documents.

We refer to the other two of the five tasks (2008 Interactive and 2009 Interactive)
as set-based tasks (as per the “Type” column of Table 8.1). In these tasks, the test
submissions were typically produced by an interactive (human-in-the-loop) process,
and for each topic included just the documents that were considered relevant to the
request, without specifying a ranking of the documents. In part because there were
fewer test topics, there was no limit on the submission size (besides |D|, the size of
the collection itself).

The remaining columns of Table 8.1 are as follows. The “Runs” column speci-
fies the largest number of submissions received for any topic of the task; note that
for the set-based (Interactive) tasks, participants were not required to submit results
for every topic, unlike for the rank-based tasks. The “Judged” column specifies the
smallest and largest number of documents judged for any topic of the task. And
the “estRel(D)high” column specifies the largest estimated number of relevant doc-
uments for any topic of the task (based on the methodology discussed in Sect. 8.3
below).

We see that the number of relevant documents for a topic (sometimes more than
1 million) could far exceed the number of documents that we could judge for a topic
(at most a few thousand). In the following sections, we describe the approaches
we took to estimating the effectiveness measures and reflect upon how well the
approaches met the various task goals. We also attempt to identify what evaluation
challenges remain.

8.2 Effectiveness Measures

To gauge the effectiveness of a result set for a test topic, we focused on the well-
known recall, precision and F1 measures [17].

If we had complete knowledge of which documents were relevant and non-
relevant for a topic, we could calculate the recall, precision and F1 of a result set by
using the following definitions:

D The set of documents in the collection.
S The subset of D whose effectiveness we wish to measure.
Rel(S) The set of relevant documents in S.
Non(S) The set of non-relevant documents in S.
Recall(S) The recall of S:

Recall(S) = |Rel(S)|
|Rel(D)| . (8.1)

Prec(S) The precision of S:

Prec(S) = |Rel(S)|
|Rel(S)| + |Non(S)| . (8.2)
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F1(S) The F1 of S:

F1(S) = 2 ∗ Prec(S) ∗ Recall(S)

Prec(S) + Recall(S)
. (8.3)

Note: F1(S) is 0 if either Prec(S) or Recall(S) is 0.

For ranked result sets, we can likewise gauge effectiveness at any particular cutoff
depth K (remembering to pad the set with non-relevant documents if the set con-
tained fewer than K documents in order to not overstate Precision@K or F1@K).
Also, in our 2008 and 2009 rank-based tasks, we required our submissions to spec-
ify the depth K for each topic at which the system believed the F1 measure would
be maximized, allowing both set-based and rank-based evaluation.

8.3 Estimators

In practice, we did not have the resources to judge all of the documents for each topic
(almost 7 million documents for most of our tasks). The traditional TREC approach
is simply to judge a pool of the top-ranked documents from various systems [7],
but it was apparent from sampling experiments in 2006 [3, 13] that, for most of
our topics, the number of relevant documents far exceeded the number that could
be judged. Other TREC tracks had also been encountering issues with traditional
TREC pooling [4].

In 2007, we started to use a deeper sampling approach to estimate the measures.
It was based in part on the approach used to estimate “inferred average precision”
(infAP) [22] in the TREC 2006 Terabyte Track [5]. Our main extension was to sam-
ple different parts of the collection with different probabilities (we defer our dis-
cussion of the sampling approaches to Sect. 8.4). Other researchers independently
made a similar extension [1].

The estimators we have used for recall, precision and F1 are defined by

d A document in D.
p(d) The inclusion probability of d .

i.e., the probability of selecting document d for judging.
JudgedRel(S) The set of documents in S which were judged relevant.
JudgedNon(S) The set of documents in S which were judged non-relevant.
estRel(S) The estimated number of relevant documents in S:

estRel(S) =
∑

d∈JudgedRel(S)

1

p(d)
. (8.4)

Note: estRel(S) is 0 if |JudgedRel(S)| = 0.
estNon(S) The estimated number of non-relevant documents in S:

estNon(S) =
∑

d∈JudgedNon(S)

1

p(d)
. (8.5)

Note: estNon(S) is 0 if |JudgedNon(S)| = 0.
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estRecall(S) The estimated recall of S:

estRecall(S) = estRel(S)

estRel(D)
. (8.6)

estPrec(S) The estimated precision of S:

estPrec(S) = estRel(S)

estRel(S) + estNon(S)
. (8.7)

Note: estPrec(S) is undefined if (estRel(S) + estNon(S)) = 0.
estF1(S) The estimated F1 of S:

estF1(S) = 2 ∗ estPrec(S) ∗ estRecall(S)

estPrec(S) + estRecall(S)
. (8.8)

Note: estF1(S) is 0 if either estPrec(S) or estRecall(S) is 0.

The estRel(S) and estNon(S) formulas for estimating the number of relevant and
non-relevant documents (respectively) use the Horvitz–Thompson estimator, which
is unbiased [12]. (We do not claim, however, that our estimators for recall, precision
and F1 are mathematically unbiased, because they involve ratios of estimators.)

We also have looked at alternative estimators that correct for obvious overesti-
mates; for example, if estRel(S) is greater than |S| − |JudgedNon(S)|, then it must
be an overestimate, and so reducing the estimate to |S| − |JudgedNon(S)| must re-
duce the error. We actually have used such alternative estimators in our rank-based
tasks, and the formulas are stated in the 2007 track overview [16]. However, these
alternative estimators bias the estimates low on average because only overestimates
are improved; underestimates are left unchanged. In our experience, the alternative
estimators have made little material difference, so we just present the simpler esti-
mators in this chapter.

Another aspect to be accounted for that we have encountered in running our eval-
uations concerns what we have termed “gray” documents, which are documents that
were drawn by sampling for assessment, but on which the assessor could not ren-
der a relevance judgment. This could occur for any of a number of reasons, such as
a technical issue prevented a legible display of the document image, or the docu-
ment was longer than 300 pages (which was more than we required an assessor to
review for one document), or the document was in a language other than English.
When reporting results, we have reported for each submission S an estimate of what
percentage of S was gray documents; typically this percentage has been less than
2%, though we have seen as high as 13% from an approach that favored long doc-
uments [16]. The estimators we have given here for recall and precision essentially
behave as if the gray documents had been omitted from both the full collection D

and the result set S.

8.4 Sampling Approaches

This section describes how we sampled the collection, i.e., chose the p(d) values,
in the various tasks.
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As pointed out in related work on estimation approaches [1], the choice of p(d)

does not affect the expected values of the estimators, but it can affect the variance
and hence the accuracy of the estimates. Generally, we have chosen the p(d) values
based on the submissions received (as described below) in hopes of minimizing the
estimation error for the submissions. Future result sets can also be scored using the
estimators, i.e., our test collections are reusable in principle, though the error bar
for non-participating runs may be higher as the p(d) values may not be as suitable
for them. We have not to date attempted a “system omission” study [23] for our test
collections (i.e., a study in which we simulate how the estimated scores would have
changed if one of the participating systems had not been included) which could be
indicative of how reusable the collections may be in practice.

8.4.1 Rank-Based Sampling

As a concrete example of rank-based sampling, this section focuses on the 2008 Ad
Hoc task.

As shown in Table 8.1, the rank-based 2008 Ad Hoc task had 26 test topics.
Although the collection contained almost 7 million documents, for space and band-
width reasons we only allowed participants to submit their top-ranked 100,000 doc-
uments for each topic, hoping that would be enough to include all of the relevant
documents. The 10 participating groups submitted a total of 64 experimental runs.

For each topic, we created a pool P from all of the submitted documents. For
each d ∈ P , we defined hiRank(d) to be the highest rank (where 1 is highest, 2 is
2nd highest, etc.) at which any of the 64 systems ranked the document. Then we set
p(d) as follows:

If (hiRank(d) ≤ 5) Then p(d) = 1.0 (8.9)

Else p(d) = min

(
1.0,

((
5

100000

)
+

(
C

hiRank (d)

)))
(8.10)

The value C was chosen so that the sum of the p(d) values (for all d ∈ P ) was the
number of documents that could be judged (typically 500 documents were judged
for each topic).

This p(d) formula was intended to support (almost) equally accurate estimates
regardless of the chosen depth K . One can see that at any depth K > 5, the smallest
p(d) involved would be at least C/K , the same as if doing simple random sampling
of at least C documents from the set of K documents. Unfortunately, for our 26 test
topics, the C values turned out to range from just 1.7 to 4.4, which was lower than
we had hoped. We discuss the implications for sampling error further in Sect. 8.5.

For documents d that were not in the pool, p(d) was 0. (Actually, we did draw
a small random sample from the documents outside of the pool for separate anal-
ysis, which we discuss later in Sect. 8.6, but we did not use these for estimation
because this sampling was deemed too coarse to be sufficiently accurate.) Hence
our estimators actually were just estimating recall from the pool P . For estimating
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recall, this approach essentially follows the traditional TREC approach of assum-
ing all unpooled documents are non-relevant. For estimation of precision and F1,
however, for future result sets that might contain documents outside of the pool, our
estimators behave not as if the unpooled documents were non-relevant, but as if the
unpooled documents had been omitted from the result set.

8.4.2 Set-Based Sampling

As a concrete example of set-based sampling, this section focuses on the 2008 In-
teractive task.

As shown in Table 8.1, the set-based 2008 Interactive task had three test top-
ics. Participants submitted just the set of documents that they considered relevant
for a topic, without ranking the documents. There was no limit on the size of the
submission set for a topic (other than the number of documents in the collection,
6,910,912). At most five submissions were received for any topic.

To assign the p(d) values, the full collection D was stratified. To use topic #103
as a concrete example, which received five submissions (one of which was actually
a composite submission formed by pooling the results of 64 Ad Hoc submissions for
the topic), 32 strata (from 25) were created as follows. The first stratum consisted of
documents included in all five submissions (the “All-R” stratum, or “RRRRR”). The
next stratum consisted of documents included in submissions 1–4 but not submis-
sion 5 (the “RRRRN” stratum). The next stratum consisted of documents included
in submissions 1–3 and 5 but not submission 4 (the “RRRNR” stratum). And so on.
The final stratum (stratum #32) included all of the documents that were not in any
submission (the “All-N” stratum, or “NNNNN”).

Within a particular stratum Ss , ns documents were chosen to be judged (using
simple random sampling without replacement). Typically ns was chosen propor-
tionally to |Ss | (the number of documents in the stratum), except that larger strata,
particularly the “All-N” stratum, were sampled somewhat less densely than their
full-population size would dictate, in order to ensure that we were able also to sam-
ple a sufficient number of documents from the smaller strata. For the purposes of the
estimator formulas, for d ∈ Ss , p(d) was ns/|Ss |. As a concrete example, for topic
#103, there were 6,500 judgments, and most strata had p(d) close to 0.008 (1 in
125), but the “All-N” stratum, which was 83% of the collection, was only assigned
25% of the samples (ns = 1,625), hence its documents’ p(d) was just 0.00028 (ap-
proximately 1 in 3,500).

The 2008 Interactive task also introduced the practice of assigning multiple as-
sessors to a topic. The documents to judge were allocated randomly to the available
assessors; typically each assessor was responsible for a bin of 500 documents. If
a bin was not completely assessed by the track’s assessment deadline, it was dis-
carded, and the ns and hence p(d) values of affected strata were reduced accord-
ingly before the judgments were released.
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Table 8.2 Confidence intervals of some 2008 interactive task submissions

|Judged(D)| |S| estRecall(S) estPrec(S) estF1(S)

6,500 608,807 0.624 (0.579, 0.668) 0.810 (0.795, 0.824) 0.705 (0.676, 0.734)

4,500 546,126 0.314 (0.266, 0.362) 0.328 (0.301, 0.355) 0.321 (0.293, 0.349)

2,500 689,548 0.345 (0.111, 0.580) 0.023 (0.014, 0.032) 0.043 (0.026, 0.060)

8.5 Sampling Error Analysis

In this section, we discuss our experiences with sampling error, i.e., the limitations
on accuracy resulting from judging just a sample of a population instead of the
full population. In Sects. 8.5.1 and 8.5.2, the sampling error arises from not having
judged every document for a topic. In Sects. 8.5.3 and 8.5.4, the sampling error
arises from having a limited number of test topics.

8.5.1 Absolute Performance on One Topic

For the stratified sampling approach described in Sect. 8.4.2, we have developed
confidence interval formulas for estRecall(S), estPrec(S) and estF1(S); these run
several pages and are available in the 2008 track overview [11]. The formulas were
developed in part by consulting textbook approaches [12]. Recent work suggests that
these confidence intervals may be wider than they need to be and we are considering
revisions to them [20]. However, we believe the formulas referred to here are still
serviceable, if conservative, in their current state.

We should emphasize that all of the confidence intervals in this chapter are just
accounting for the uncertainty arising from sampling error. We are not in this chap-
ter attempting to construct confidence intervals that account for any other type of
uncertainty, such as the uncertainty of whether the assessor was correct in his or
her judgment of the relevance or non-relevance of each sampled document. (We
investigate the impact of assessor errors separately in Sect. 8.6.)

Here, we just review some examples of the confidence intervals to give an idea
of what widths were attained. Table 8.2 shows example confidence intervals for one
submission for each topic of the 2008 Interactive task, in descending order by the
number of judgments for the topic: 6,500 judgments for topic #103, 4,500 judgments
for topic #102, and 2,500 judgments for topic #104. For example, the first row shows
that, for a submission S of 608,807 documents, the estimated recall was 0.624, with
95% confidence interval of (0.579, 0.668).

Of course, examples cannot show the full picture, and it would be incorrect to
suggest that the only factor in confidence interval size is the number of judgments.
The overall yield of a topic (i.e., |Rel(D)|/|D|), for example, can also have a signif-
icant impact on the width of confidence intervals, with higher-yielding topics gener-
ally enabling narrower confidence intervals. Of all the strata, the one that poses the
greatest sampling challenge is the All-N stratum (the stratum containing documents
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no team identified as relevant). It is a challenge because the density of relevant ma-
terial in this stratum is generally very low, making it hard to obtain, via sampling,
precise estimates of the true density in the stratum; and this challenge generally be-
comes more acute as the overall yield of a topic gets lower. As a result, the lower the
yield of a topic, the greater the sampling error contributed from the All-N stratum,
and so the greater the width of the confidence intervals associated with our estimates
of the full-population yield and of recall. (Note that, for the topics reported in Ta-
ble 8.2, the estimated yield (i.e., estRel(D)/|D|) of the topic with 6,500 judgments
was 0.114 of the full collection; the estimated yield for the topic with 4,500 judg-
ments was 0.081; and the estimated yield for the topic with 2,500 judgments was
0.007.)

Nevertheless, from these examples, we can at least say that there are circum-
stances in which, with 4,500 judgments, we can obtain confidence intervals for re-
call less than 0.10 wide, and circumstances in which, with 2,500 judgments, we can
obtain confidence intervals for recall that are more than 0.46 wide.

While we have not listed examples here from the same topic, the confidence in-
tervals for the submissions were often narrow enough to not overlap the confidence
intervals of any of the other submissions. For example, for the five submissions for
topic #103, none of the confidence intervals for recall had any overlap of each other.

For the rank-based approach described in Sect. 8.4.1, for which typically there
were just 500 judgments per topic, we have not to date computed confidence in-
tervals for individual topic estimates, but it seems apparent from the low C values
mentioned in Sect. 8.4.1 that the sampling error would be large in some cases. Large
sampling error on individual topics does not imply that the test data are not useful,
however, as discussed in the following sections.

8.5.2 Relative Performance on One Topic

While one of our goals was to provide reasonable estimates of the absolute values of
the metrics, for comparing particular experimental approaches it can suffice to just
estimate the difference in scores of the approaches. Sometimes the difference can
be estimated much more accurately than the confidence intervals for the absolute
values may suggest.

For example, suppose set S1 is estimated to have a recall of 0.62 with confidence
interval (0.58, 0.66), and set S2 is estimated to have a recall of 0.64 with confidence
interval (0.60, 0.68). One might conclude that the recall of S1 and S2 are not statis-
tically distinguishable because their confidence intervals overlap. However, if one
noticed that S2 was a superset of S1 and that there were relevant documents in S2
that were not in S1, then one would know that the recall of S2 must be greater than
that of S1 despite the overlap in the confidence intervals.

Strict subsets and supersets can arise in practice when comparing sets that result
from Boolean queries. In particular, the Ad Hoc tasks of the TREC Legal Track
included a reference Boolean negotiation for each test topic in which typically the
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requesting party would argue for broadening the query and the responding party
would argue for narrowing the query.

In general, one can also analyze differences of sets that overlap without one con-
taining the other. (To date, however, we have not attempted to develop confidence
interval formulas for such differences in scores, leaving this as future work.)

8.5.3 Mean Performance Across Topics

Sometimes there is interest in the average performance of an approach. For example,
in the 2008 Ad Hoc task, for each of the 26 test topics, there was (as just mentioned)
a reference Boolean negotiation, and the Boolean query initially proposed by the
responding party was found to average just 4% recall, while the Boolean counter-
proposal by the requesting party was found to average 43% recall, and the resulting
consensus query was found to average 33% recall. These average scores give us a
feel for the typical negotiation in that it seems that the respondent’s initial proposal
was typically a very narrow query compared to the requester’s rejoinder or resulting
consensus.

One can compute approximate 95% confidence intervals for means by adding
plus or minus twice the square root of the variance (assuming that there are at least
25 or so topics, and that the topics are independent). For example, the approximate
confidence interval for the 33% average recall of the consensus negotiated query
over the 26 test topics of the 2008 Ad Hoc task was (21%, 45%). The noisier the
individual topic estimates, the higher the variance will tend to be, increasing the
width of the confidence interval. Increasing the number of test topics will usually
reduce the width of the interval.

Given a fixed assessment budget, there is a tradeoff between how many topics
can be assessed and how many judgments can be made per topic. In our case, for
the Interactive tasks, it would not have been practical to create a lot of topics because
few participants would have time to perform an intensive interactive approach for all
of them, so we focused on making the evaluation for the small number of topics as
accurate as possible. For our Ad Hoc tasks of 2007 and 2008, in which the partici-
pating systems were typically automated, we followed the traditional TREC practice
of creating enough topics to support averaging, albeit at the expense of accuracy on
individual topics. In the 2009 Batch task, we reduced the number of topics, and
while the primary reason was the bandwidth limitations of dealing with the increase
in the allowed result set size, we also hoped that this tradeoff point would allow
better failure analysis on individual topics (as discussed further in the next section).
The “Million Query Track” at TREC [1] has explored the other extreme, creating
more than a thousand test queries but judging only forty or so documents for each,
in hopes of more accurate estimation of average performance.
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8.5.4 Relative Performance Across Topics

Just as one can compute approximate confidence intervals for mean scores, one can
compute approximate confidence intervals for the mean difference in score between
two approaches. (The method given in the previous section, when applied to dif-
ferences, is approximately the same as the popular paired t-test, which tends to be
fairly accurate even if the differences are not normally distributed because of the
Central Limit Theorem.) When zero is not in the confidence interval, the difference
in the mean score is considered to be “statistically significant.”

For the 2007 Ad Hoc task (of 43 test topics), one study [14] compared 14 pairs of
experimental approaches, thresholding relevance-ranked sets at depth B (the num-
ber of matches of the reference Boolean query); it found that three of the 14 dif-
ferences in estimated recall, and seven of the 14 differences in estimated precision,
were statistically significant. For the 2008 Ad Hoc task (of 26 test topics), a fol-
lowup study [15] compared 15 pairs of experimental approaches; it found that three
of the 15 differences in estimated recall@B , and three of the 15 differences in F1,
were statistically significant. These results indicate that the test collections for these
tasks do sometimes support the discerning of statistically significant differences.

What is often more insightful than comparing mean scores across topics is to look
at how often one approach substantially outscores another. Analyzing the largest
differences can often lead to a better understanding of when one approach will out-
perform another. Such an investigation can also be interpreted as conducting “failure
analysis” for the lower-scoring approach.

For example, in the 2007 Ad Hoc task, a study [14] compared the performance
of the reference Boolean query to a relevance-ranked vector of the same keywords,
thresholding the relevance-ranked retrieval set at the number of matches of the ref-
erence Boolean query. The Boolean query was found to have the higher estimated
recall for 26 of the test topics, while the vector query scored higher on just 16 of
the topics, and there was one tie. Why was the Boolean query often more success-
ful? The largest difference was on topic #58, regarding “health problems caused by
[high-phosphate fertilizers]”, for which the estimated recall of the Boolean query
was 94% while for the vector query it was just 8%. Despite the potentially large
sampling errors, it seemed clear from looking at some of the hundreds of judgments
for the topic that the Boolean query was more successful for this topic because it
required a term beginning with “phosphat” to be in the document, whereas the vec-
tor approach favored a lot of non-relevant documents that did not mention the key
“phosphat” concept as it was only one of 21 terms in the vector form of the query.
Finding good examples of when approaches differ may lead to a better understand-
ing of when to use one approach or the other, or to the development of generally
better approaches.
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8.6 Assessor Error Analysis

In this section, we discuss our experiences with assessor error, which has proven to
be a serious issue to address in order to accurately estimate recall, arguably even
more important than sampling error.

The Interactive tasks of 2008 and 2009 included an adjudication phase in which
the participants could appeal any judgment by the first-line assessor to the “Topic
Authority” for the topic (whose judgment the initial assessor was attempting to repli-
cate); the Topic Authority then rendered a final relevance judgment on all documents
so appealed. For nine of the 10 test topics (all three from 2008, and six of seven from
2009), the estimated number of relevant documents (estRel(D)) was lower after the
adjudication phase, indicating that the initial assessors typically generated a lot of
false positives. For example, for topic #103 in 2008, estRel(D) was 914,528 before
adjudication and 786,862 after adjudication, a drop of 127,666 in a collection of
6,910,192 documents, suggesting that the false positive rate was approximately 2%
of the collection.

We also have found evidence of a false positive rate in the Ad Hoc tasks of
2007 and 2008, even though they did not have an appeal process. As mentioned in
Sect. 8.4.1, for these tasks we drew a random sample from the documents that no
system submitted. Of these, we found that approximately 1% were judged relevant.
When we personally reviewed some of these relevant judgments, almost all of them
looked non-relevant to us (and we think the original assessors would agree with us
in retrospect, though we regret that we did not reserve time with them to ask about
particular judgments). This result suggests that there was a false positive rate of
approximately 1% for unsubmitted documents.

A standout example of the impact of a small false positive rate was observed in
topic #51 of the 2009 Batch task. For this task, there was a set of training judgments
from a previous use of the topic, for which estRel(D) was 95. But with the new
judgments for the topic in 2009, estRel(D) was 26,404. Most of the difference in
these estimates came from just three relevant judgments in 2009, whose weights
were approximately 8,000 each (from 1/p(d)) as no system retrieved them in their
top-700,000 results. Our own review of these three documents suggests that they
were false positives. We suspect that the original estimate of 95 was reasonably
accurate, i.e., that relevant documents were just 0.001% of the collection for this
topic. Hence a false positive rate of even 0.1% would lead to a huge overestimate of
the number of relevant documents, and hence the recall of good result sets would be
dramatically underestimated.

In the 2009 Interactive task, we found dramatic changes in the scoring of the
result sets after the appeals. (The appeals typically corrected both false positives and
false negatives.) In particular, for four of the seven topics, a participant’s (estimated)
F1 score increased by more than 0.50 after the appeals; for example, on topic #201,
the F1 of submission W increased from 0.07 to 0.84 after the appeals, and on topic
#204, the F1 of submission H increased from 0.17 to 0.80 after the appeals.

Furthermore, the appeals in the 2009 Interactive task did not just change the
absolute scores. For four of the seven topics, there were changes in the rankings of
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the result sets (based on F1) after the appeals. One dramatic example of a re-ranking
was on topic #205, for which the (estimated) F1 of submission C was higher than
that of submission E before appeals (0.46 vs. 0.25), but lower after appeals (0.43
vs. 0.61), with both differences being statistically significant based on the lack of
overlap in the confidence intervals.

While past studies have typically found only minor differences in system rank-
ings from assessor differences [19], an exception has been noted in the past for
manual runs involving relevance feedback [7, 18]. Of course, many of the Interac-
tive task submissions were constructed with human assessing as part of the process,
so our finding of the appeals affecting Interactive submission rankings appears to
be consistent with past findings. (We note that a recent simulation-based study sug-
gested more generally that false positives tend to cause larger differences in system
rankings than false negatives [6].)

It seems clear from our experience, whether from the perspective of absolute
scores or relative scores, that when a small number of judgments can substantially
impact the scores, an evaluation needs to build into its process a way to deal with
assessor error. Our experience with allowing the participants to appeal seems to
have been reasonably successful for several of the test topics, but we have also
seen topics with relatively few appeals which we suspect was not because those
topics had a lower error rate but because appealing requires a lot of effort that not
all participants are willing to undertake. In future evaluations, we are considering
modifying the appeal process, perhaps to estimate the impact of appeals based on
sampling, including automatically appealing a sample of all of the judgments, as
suggested by a recent study [21].

8.7 Conclusion and Future Work

Our aim in this chapter was to summarize our approaches, look back upon how well
the various task goals were achieved, and identify what challenges remain. In the
set-based tasks, we found that our resulting confidence intervals for recall, preci-
sion and F1 were at least sometimes sufficient to distinguish differences between
experimental approaches. In the rank-based tasks, we found that the estimation ap-
proaches were at least sometimes sufficient to identify statistically significant mean
differences and conduct failure analysis. How to sample more efficiently and how
best to quantify the estimated scores, including differences in scores, remain as chal-
lenges, particularly so in the case of low-yielding topics (which may be the typical
circumstance in patent information retrieval). We also have found a lot of evidence
that assessor error is an issue that cannot be ignored. How to best reduce these errors,
or how to account for them in the confidence intervals, again remain as challenges.

Acknowledgements We thank Doug Oard, William Webber, Jason Baron and the two anony-
mous reviewers for their helpful remarks on drafts of this chapter. Also, we would like to thank
Jason Baron, Doug Oard, Ian Soboroff and Ellen Voorhees for their support and advice in under-
taking the various challenges of measuring effectiveness in the TREC Legal Track, and also all of
the track contributors and participants without whom the track would not have been possible.



180 S. Tomlinson and B. Hedin

References

1. Allan J, Carterette B, Dachev B et al (2008) Million query track 2007 overview. In: Proceed-
ings of TREC 2007. http://trec.nist.gov/pubs/trec16/papers/1MQ.OVERVIEW16.pdf

2. Baron JR (ed) (2007) The Sedona conference® best practices commentary on the use of search
and information retrieval methods in e-discovery. Sedona Conf J VIII:189–223

3. Baron JR, Lewis DD, Oard DW (2007) TREC-2006 legal track overview. In: Proceedings of
TREC 2006. http://trec.nist.gov/pubs/trec15/papers/LEGAL06.OVERVIEW.pdf

4. Buckley C, Dimmick D, Soboroff I, Voorhees E (2006) Bias and the limits of pooling. In:
SIGIR 2006, pp 619–620

5. Büttcher S, Clarke CLA, Soboroff I (2007) The TREC 2006 terabyte track. In: Proceedings of
TREC 2006. http://trec.nist.gov/pubs/trec15/papers/TERA06.OVERVIEW.pdf

6. Carterette B, Soboroff I (2010) The effect of assessor errors on IR system evaluation. In:
SIGIR 2010, pp 539–546

7. Harman DK (2005) The TREC test collections. In: TREC: Experiment and evaluation in in-
formation retrieval, pp 21–52

8. Hedin B, Tomlinson S, Baron JR, Oard DW (2010) Overview of the TREC 2009 legal track.
In: Proceedings of TREC 2009. http://trec-legal.umiacs.umd.edu/LegalOverview09.pdf

9. Lewis D, Agam G, Argamon S et al (2006) Building a test collection for complex document
information processing. In: SIGIR 2006, pp 665–666

10. Oard DW, Baron JR, Hedin B et al (2010) Evaluation of information retrieval for e-discovery.
Artif Intell Law

11. Oard DW, Hedin B, Tomlinson S, Baron JR (2009) Overview of the TREC 2008 legal track. In:
Proceedings of TREC 2008. http://trec.nist.gov/pubs/trec17/papers/LEGAL.OVERVIEW08.
pdf

12. Thompson SK (2002) Sampling, 2nd edn. Wiley, New York
13. Tomlinson S (2007) Experiments with the negotiated boolean queries of the TREC 2006 le-

gal discovery track. In: Proceedings of TREC 2006. http://trec.nist.gov/pubs/trec15/papers/
opentext.legal.final.pdf

14. Tomlinson S (2008) Experiments with the negotiated boolean queries of the TREC 2007 le-
gal discovery track. In: Proceedings of TREC 2007. http://trec.nist.gov/pubs/trec16/papers/
open-text.legal.final.pdf

15. Tomlinson S (2009) Experiments with the negotiated boolean queries of the TREC 2008 legal
track. In: Proceedings of TREC 2008. http://trec.nist.gov/pubs/trec17/papers/open-text.legal.
rev.pdf

16. Tomlinson S, Oard DW, Baron JR, Thompson P (2008) Overview of the TREC 2007 le-
gal track. In: Proceedings of TREC 2007. http://trec.nist.gov/pubs/trec16/papers/LEGAL.
OVERVIEW16.pdf

17. van Rijsbergen CJ (1979) Information retrieval, 2nd edn. Butterworths, London. http://www.
dcs.gla.ac.uk/Keith/Preface.html

18. Voorhees EM (2000) Variations in relevance judgments and the measurement of retrieval ef-
fectiveness. Inf Process Manag 36(5):697–716

19. Voorhees EM, Harman D (1997) Overview of the fifth text retrieval conference (TREC-5). In:
Proceedings of TREC-5. http://trec.nist.gov/pubs/trec5/papers/overview.ps.gz

20. Webber W (2010) Accurate recall confidence intervals for stratified sampling. Manuscript
21. Webber W, Oard DW, Scholer F, Hedin B (2010) Assessor error in stratified evaluation. In:

CIKM 2010, pp 539–548
22. Yilmaz E, Aslam JA (2006) Estimating average precision with incomplete and imperfect judg-

ments. In: CIKM 2006, pp 102–111
23. Zobel J (1998) How reliable are the results of large-scale information retrieval experiments.

In: SIGIR 1998, pp 307–314

http://trec.nist.gov/pubs/trec16/papers/1MQ.OVERVIEW16.pdf
http://trec.nist.gov/pubs/trec15/papers/LEGAL06.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec15/papers/TERA06.OVERVIEW.pdf
http://trec-legal.umiacs.umd.edu/LegalOverview09.pdf
http://trec.nist.gov/pubs/trec17/papers/LEGAL.OVERVIEW08.pdf
http://trec.nist.gov/pubs/trec17/papers/LEGAL.OVERVIEW08.pdf
http://trec.nist.gov/pubs/trec15/papers/opentext.legal.final.pdf
http://trec.nist.gov/pubs/trec15/papers/opentext.legal.final.pdf
http://trec.nist.gov/pubs/trec16/papers/open-text.legal.final.pdf
http://trec.nist.gov/pubs/trec16/papers/open-text.legal.final.pdf
http://trec.nist.gov/pubs/trec17/papers/open-text.legal.rev.pdf
http://trec.nist.gov/pubs/trec17/papers/open-text.legal.rev.pdf
http://trec.nist.gov/pubs/trec16/papers/LEGAL.OVERVIEW16.pdf
http://trec.nist.gov/pubs/trec16/papers/LEGAL.OVERVIEW16.pdf
http://www.dcs.gla.ac.uk/Keith/Preface.html
http://www.dcs.gla.ac.uk/Keith/Preface.html
http://trec.nist.gov/pubs/trec5/papers/overview.ps.gz


Chapter 9
Large-Scale Logical Retrieval: Technology
for Semantic Modelling of Patent Search

Hany Azzam, Iraklis A. Klampanos, and Thomas Roelleke

Abstract Patent retrieval has emerged as an important application of information
retrieval (IR). It is considered to be a complex search task because patent search
requires an extended chain of reasoning beyond basic document retrieval. As logic-
based IR is capable of modelling both document retrieval and decision-making, it
can be seen as a suitable framework for modelling patent data and search strategies.
In particular, we demonstrate logic-based modelling for semantic data in patent doc-
uments and retrieval strategies which are tailored to patent search and exploit more
than just the text in the documents. Given the expressiveness of logic-based IR,
however, there is an attendant compromise on issues of scalability and quality. To
address these trade-offs we suggest how a parallelised architecture can ensure that
logical IR scales in spite of its expressiveness.

9.1 Introduction

Patent retrieval has recently emerged as an important application of information
retrieval (IR) and related research disciplines [13]. It differs from other IR appli-
cations, such as the Web, in many ways. A typical intellectual property (IP) pro-
fessional searcher is an expert user in specialised software, which typically runs
against a relational database of patents. The queries issued are usually very long
and are often expressed in Boolean logic. The patents themselves are typically long
and typographically sound. However, parts are occasionally written with the inten-
tion not to be found or read; such instances directly contradict principal assumptions
of IR. Most importantly, patent documents contain a large number of semantic data
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such as entities (e.g. inventors and assignees) and relationships (e.g. worksFor and
inventedBy). This data can be found implicitly within the text or explicated using,
for example, markup languages such as XML. Naturally, such data can be used to
return answers tailored to the searcher’s need (e.g. an inventor’s claims) rather than
full patent documents. More generally, using this data leads to “semantic-aware”
retrieval methods (retrieval strategies) and queries that exploit far more than just the
text.

To make use of the semantics in patent documents and to deal effectively with
the inherent properties of patent searching, an alternative way to model informa-
tion needs and patent data is required. To this end, we propose a probabilistic and
logic-based framework that combines databases and information retrieval (DB+IR).
Adopting such a framework allows us to describe novel information tasks as well as
traditional IR models in probabilistic Datalog or probabilistic SQL (PSQL). How-
ever, this modelling flexibility comes at a price with regard to efficiency and scal-
ability. The underlying data structures that support logic-based retrieval against a
DB+IR description of the information practically scale up to only a few thousand
patent documents [4]. We address this scalability issue through distribution and par-
allelisation.

This chapter contributes a useful and flexible logic-based approach for modelling
patent data and retrieval strategies that are tailored to semantic-aware patent search.
Moreover, it proposes a parallel three-tier architecture to ensure that the logic-based
approach remains scalable. Overall, this chapter demonstrates how the expressive-
ness and the processing of logic-based retrieval scales with respect to task complex-
ity and enables knowledge engineers to solve complex search tasks, while remaining
in control of the recording, repeating and adaptation of search strategies.

The remainder of this chapter is organised as follows: Section 9.2 motivates
logical retrieval and presents the background. Section 9.3 contributes the logical
modelling of patent search, of which we address two dimensions: the modelling of
data and the modelling of strategies (retrieval scenario). Then, Section 9.4 gives
an overview of how logical retrieval can be utilised for the descriptive modelling
of distributed IR (DIR). This leads to an architecture scalable with respect to data
volume and processing time requirements. Section 9.5 concludes the discussion and
outlines the future work.

9.2 Motivation and Background

9.2.1 Logic-Based Retrieval

By “logic-based retrieval”, we refer to an approach that applies a logic-based tech-
nology to retrieval tasks. Inherent to logic-based technology is the use of structured
languages, such as probabilistic flavours of SQL and Datalog, to represent knowl-
edge or information and queries. Due to the expressiveness of such languages, logic-
based technology has a higher expressive power than the bag-of-words approach of
traditional free-text-oriented IR.
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Moreover, logic-based retrieval inherently supports reasoning about words and
documents as well as about other modelled entities, depending on the application at
hand. Logical languages allow for the expression of strategic and analytical queries,
for instance, “Find the patents of Kraft and Cadbury and compare their most impor-
tant patents. From these deduce the most dominant inventors in the food provision
market.”, etc.

The application of logical retrieval to large-scale, partly poorly structured data,
is challenging for a number of reasons. First, because of its expressiveness, log-
ical retrieval demands an algebraic evaluation that is significantly more complex
than fetching document IDs from the posting list of an inverted file. Additionally,
the modelling of selection, ranking, and fusion strategies in a logical language is
also challenging. However, the transparent, high-level abstraction of logic-based
approaches is precisely what satisfies complex search requirements as they occur, in
this context, in the area of patent searching.

Specifically in the case of patent searching, the properties of logical retrieval
successfully meet the application requirements in the sense that patent searching is
a complex retrieval task that requires reasoning about objects. Furthermore, it also
requires modelling IR in such a way that users (IP professional searchers) can under-
stand and modify the ranking and the reasoning processes. From personal commu-
nication with IP professionals, we understand that being in a position to understand
and modify the underlying information description and retrieval mechanisms is es-
sential for generating the trust needed in order to move on from Boolean retrieval.
In other words, they require a sense of being fully in control of the retrieval and
related processes. Due to their transparency and power of abstraction, logic-based
approaches satisfy this requirement.

9.2.2 Probabilistic Datalog

Probabilistic Datalog (PDatalog) [2, 8] is a language for probabilistic reasoning,
where deterministic Datalog has its roots in deductive databases. PDatalog was ex-
tended in [9, 14] improving its expressiveness and scalability for modelling IR mod-
els (ranking functions). Other logic-based languages that attach probabilities to log-
ical formulae include PHA [6], PRISM [10] and MLNs [7]. In this chapter we use
PDatalog in order to demonstrate the modelling of source selection and result fusion
and, as a consequence, the modelling of retrieval strategies to support complex re-
trieval tasks, such as patent search. Figure 9.1 demonstrates an extract of PDatalog
syntax.

Specific to the PDatalog shown here (based on [9]), as apposed to the PData-
log introduced in [3], is the specification of probability aggregation and estimation
assumptions in goals and subgoals. We refer to the assumption between a predi-
cate name and an argument list as an aggregation assumption. For example, for
disjoint events, the sum of probabilities is the resulting tuple probability. The as-
sumptions DISJOINT and SUM are synonyms. Alternatively, a subgoal may be
specified with an estimation assumption. For example, for disjoint events, the sub-
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pdRule ::= head ’:-’ body
pdDef ::= head ’:=’ body
head ::= goal
body ::= subgoalList
subgoalList ::= subgoal {’&’ subgoalList}

goal ::= tradGoal | aggGoal | estGoal
tradGoal ::= NAME ’(’ argList ’)’
aggGoal ::= NAME aggAssumption ’(’ argList ’)’ |
estGoal ::= NAME ’(’ argList ’)’ ’|’ {estAssumption} evidenceKey
subgoal ::= goal

argList ::= arg {’,’ argList}
varList ::= var {’,’ varList}
var ::= VARIABLE
arg ::= VARIABLE | constant
constant ::= STRING | NAME | NUMBER
evidenceKey ::= ’(’ varList ’)’

tradAssumption ::= ’DISJOINT’ | ’INDEPENDENT’ | ’SUBSUMED’
logAssumption ::= ’SUM_LOG’ | ’MAX_LOG’
complexAssumption ::= ’DF’ | ’MAX_IDF’ | ’TF’ | ’MAX_ITF’ | ...
aggAssumption ::= tradAssumption | ’SUM’ | ’MAX’ | ...
estAssumption ::= tradAssumption | logAssumption | complexAssumption

Fig. 9.1 PDatalog Syntax: Expressions between curly brackets, ‘{’ and ‘}’, are optional; a rule
consists of a head and a body; a head is a goal, and a body is a subgoal list

goal “index(Term, Doc) | DISJOINT(Doc)” expresses the conditional probability
P(Term|Doc), derived from the statistics in the relation “index”. Complex assump-
tions, such as DF (for document frequency) or MAX_IDF (for maximum inverse
document frequency), can be specified to describe probabilistic parameters com-
monly used in information retrieval in a convenient way. For further details see [9].

A PDatalog rule is evaluated such that the head is true if and only if the body
is true. For example, the following rules demonstrate a common term matching
strategy in IR. Queries are represented in the relation “qterm(T , Q)” (where T is a
term and Q is a query ID), and the collection is represented in the relation “term(T ,
D)” (where D is a document ID). If T occurs in Q, and T can be found in D, then
D is retrieved for Q.

1 coord_match(D, Q, T) :− qterm(T, Q) & term(T, D);
2 coord_retrieve SUM(D, Q) :− coord_match(D, Q, T);

In subsequent sections we demonstrate how such an approach can be used to
model patent search and the DIR processes. We maintain that modelling such tasks
in a modular and transparent way gives IP professionals, as well as to other ex-
pert users in general, flexibility and tractability of search sessions and predictable
retrieval effectiveness.
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9.2.3 Logical Modelling of Semantic Data

This section reviews the modelling layers that are used to build complex representa-
tions of patent documents and the underlying textual, structural and semantic data.
These modelling layers are built upon object-oriented and relational modelling con-
cepts. The first of these layers is illustrated next.

9.2.3.1 The Probabilistic Object-Oriented Content Model

The Probabilistic Object-Oriented Content Model (POOCM) joins

• concepts of probability theory,
• concepts of object-oriented modelling (OOM), and
• concepts of content modelling (CM).

Probability theory comprises a range of concepts such as probability estimation and
aggregation. OOM is based on relationships between objects and classes. CM is
traditionally concerned with the keyword-based “index” of objects.

The combination leads to an approach to modelling where conventional concepts
(monadic predicates in OOM) become concepts-in-a-context (dyadic predicates),
and conventional roles (dyadic predicates in OOM) become roles-in-a-context.
Moreover, there is a new type of predicate, referred to as “terms”. In a conventional
model, these are zero-arity predicates; in the POOCM, they are monadic predicates
(the context is the parameter). The following example illustrates the nature of the
POOCM:

1 0.5 machine(doc_6296192); #term predicate
2 0.7 inventor(hecht_david, doc_6296192); #classification predicate
3 0.4 worksFor(hecht_david, xerox_corp, doc_6296192); #relationship predicate
4 pubdate(doc_6296192, 20011002, patent_database); #attribute predicate

To implement the POOCM, we utilise an object-relational approach. Alterna-
tively, one could imagine a POOCM-native approach, but for the focus of this chap-
ter, we pursue the object-relational route, which is illustrated next.

9.2.3.2 The Probabilistic Object Relational Content Modelling (PORCM)

The Probabilistic Object-Relational Content Model (PORCM) is the base for im-
plementing the POOCM. Additionally, it is the data model used to represent patent
data. The PORCM combines:

• concepts of probability theory,
• concepts of object-relational modelling (ORM), and
• concepts of content modelling (CM).
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Fig. 9.2 The probabilistic
object-relational content
model

Schema

relship(RelshipName, Subject, Object, Context)
attribute(AttrName, Object, Value, Context)
classification(ClassName, Object, Context)
term(Term, Context)

is_a(SubClass, SuperClass, Context)

Object-relational modelling (see [11] and [12]) utilises relations to represent the
concepts of OOM. In principle, the PORCM can be viewed as the relational im-
plementation of the POOCM. Therefore, object-oriented concepts (i.e. relationships
between objects, classification of objects) are modelled in a relational schema and a
relation “term” and one attribute (“context”) are added to support content-oriented
modelling. The resulting schema is illustrated in Fig. 9.2.

In this schema each relation represents a component of the POOCM. Specif-
ically, there are relations for subject-object and object-value relationships. One
could view constant values (strings, numbers, names) as objects, or model object-
object and object-value relationships in different relations. We chose the latter op-
tion. The relation “attribute(Name, Object, Value, Context)” is for object-value
associations, and the relation “relship(Name, Subject, Object, Context)” is used
for subject-object associations. For object-class associations we use the relation
“classification(ClassName, Object, Context)”.

There is also a relation for generalisation. Generalisation (class hierarchy) is a re-
lationship between classes. Similar to the way relationships and attributes are kept
separate, generalisation is modelled in a relation such as “is_a(SubClass, Super-
Class, Context)”. Since class hierarchy can also be modelled via rules, it is a mod-
elling choice whether to instantiate class relations or to model generalisation using
rules. In this chapter we opt for the latter.

Having introduced the POOCM and its relational implementation (the PORCM),
we now discuss how such logic-based modelling can be scaled.

9.3 Logical Modelling of Patent Search

The logical modelling of patent search builds upon

1. the logical modelling of semantic data, and
2. the logical modelling of retrieval strategies.

The logical modelling of semantic data and ranking strategies has the following
main benefit:

Strategies can be recorded, exchanged, repeated and refined.

The descriptive and logic-based modelling approach as opposed to black-box search
systems provides patent searches with a transparent technology. This technology can
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1 <XML>
2 <PATENTS>
3 <DOC id="6296192">
4 <PAT−NO>6296192</PAT−NO>
5 <APP−NO>465990</APP−NO>
6 <APP−DATE>19991216</APP−DATE>
7 <PAT−TYPE>1</PAT−TYPE>
8 ...
9 <PUB−DATE>20011002</PUB−DATE>

10 <PRI−IPC>G06K 19/06</PRI−IPC>
11 <PRI−USPC>235494</PRI−USPC>
12 <INVENTOR id="hecht_david">Hecht; David L.</INVENTOR>
13 <ASSIGNEE id="xerox_corp">Xerox Corporation</ASSIGNEE>
14 <TITLE>Machine−readable record with a two−dimensional lattice ....</TITLE>
15 <ABST>A machine−readable record is provided for ....</ABST>
16 <SPEC>DETAILED DESCRIPTION OF THE ILLUSTRATED ... </SPEC>
17 <CLAIM>What is claimed: 1. A machine−readable record for ...
18 2. The record of claim 1 wherein said first and second directions are
19 lines orthogonal to each other.
20 3. The record of claim 1 wherein said first and second sequences are ...
21 4. The record of claim 1 wherein said synchronizing code comprises
22 glyphs having ....
23 </CLAIM>
24 </DOC>
25 </PATENTS>
26 </XML>

Fig. 9.3 An XML-based representation of a patent document

help the searchers to maintain high standards for compliance (issuing repeatable
strategies/searches and understanding how and why was the result obtained) when
performing patent-related search tasks.

Furthermore, the logical modelling of retrieval strategies separates in a clear
manner what we are looking for, in which context and with which task in mind,
from other components (modules), such as the ranking strategy. For example, the
ranking strategy (e.g. TF-IDF, BM25, LM) can be easily exchanged while other
components, such as the post-processing of the results, remains the same.

9.3.1 Representing Patent Documents Using the PORCM

Figure 9.3 demonstrates an example of a patent document represented in eXtensible
Markup Language (XML). The example, in particular, consists of XML elements,
which can be classified into two broad categories based on the nature of the encap-
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sulated content: logical elements, such as section, image and title, which define the
structure of the document; and semantic elements (semantic structures), such as in-
ventor and assignee that label the contents of a text. The latter are analogous to a
database schema that represents the important semantics of the data rather than its
structural layout.

Figure 9.4 shows how the PORCM models the aforementioned XML represen-
tation (for the purpose of this chapter we assume that there is an XML parser that
extracts the shown relations). The term-based relations (“term” and “term_doc”)
model term-oriented representations, which are common in traditional IR. The
“term” relation stores the parsed text and the context where the text was found.
The context is a general concept that refers to documents, sections, databases and
any other object with a content. In this figure, the context is expressed in XPath.1

The relation “term_doc” is derived from the “term” relation. This relation maintains
only the root context (the document) of each term-element pair, which propagates
the content knowledge found in the children context to the root context.

The classification, relationship and attribute relations represent object-class,
subject-object and object-value associations, respectively. Note that from the figure
we can identify two types of objects: structural objects, such as the title and claim
elements where the XPath expressions are used as the objects’ IDs; and semantic
objects, which are identified using semantic IDs, such as “hecht_david”. From a
conceptual point of view, classifications, relationships and attributes of all objects
are maintained together (i.e. all classifications in one relation, all relationships in one
relation and all attributes in one relation). From a pragmatic, engineering-oriented
point of view, it makes often sense to keep structural elements and semantic objects
separated. This separation helps to efficiently reason across both types of objects.
For example, there is no need to model relationships between structural objects.
Additionally, for XPath-like object IDs, the classification may be inferred from the
object Id, and hence, the classification of structured objects does not need to be
materialised. This reduces disc usage and minimises the number of indices to be
maintained.

The following example illustrates how we can discern structural from semantic
object IDs and structural from semantic relations using the PORCM and PDatalog.

1 # Structural predicates derived from basic predicates:
2 inventorElement(XPath, Context) :−
3 classification(inventor, XPath, Context);
4 id(XPath, Value, Context) :−
5 attribute(id, XPath, Value, Context);

7 # Semantic classifications derived from structural and basic predicates:
8 inventorEntity(Id, Context) :−
9 inventorElement(XPath, Context) & id(XPath, Id, Context);

1http://www.w3.org/TR/xpath.

http://www.w3.org/TR/xpath
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term
Term Context

... ...
19991216 6296192/app-date[1]
... ...
hecht 6296192/inventor[1]
david 6296192/inventor[1]
xerox 6296192/assignee[1]
corporation 6296192/assignee[1]
... ...
machine 6296192/title[1]
readable 6296192/title[1]
record 6296192/title[1]
... ...

(a) Term proposition in the ele-
ment contexts

term_doc
Term Context

19991216 6296192
... ...
hecht 6296192
david 6296192
xerox 6296192
corporation 6296192
... ...
machine 6296192
readable 6296192
record 6296192
... ...

(b) Term proposition in the
root contexts

classification
ClassName Object Context

... ... ...
inventor 6296192/inventor[1] 6296192
assignee 6296192/assignee[1] 6296192
title 6296192/title[1] 6296192
... ... ...
claim 6296192/claim[1] 6296192
... ... ...

(c) Classification proposition

relationship
RelName Subject Object Context

worksFor hecht_david xerox_corp patent_db
inventedBy 6296192 hecht_david patent_db
... ... ... ...

(d) Relationship proposition

attribute
AttrName Object Value Context

id 6296192/inventor[1] “hecht_david” 6296192
id 6296192/assignee[1] “xerox_corp” 6296192
... ... ... ...

(e) Attribute proposition

Fig. 9.4 A PORCM-based representation of a patent document
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The first two rules derive structural predicates from the basic PORCM layer,
and the structural object IDs are made explicit. The rules, in particular, “lift” the
attributes to become relation names, resulting in basic classifications and attributes
becoming structural classifications and attributes.

The third rule extracts a semantic object (a name entity) by combining struc-
tural information about elements of type “inventor” and their attributes. This type of
modelling of entities, in particular, is prevalent in Entity-Relationship-graphs, such
as RDF, where URIs are used to denote objects. In the derived entity, the “Id”, thus,
denotes a unique identifier that corresponds to the attribute value “hecht_david” in
Fig. 9.4.

This example, therefore, highlights the different types of layers that can be de-
rived from the PORCM, namely basic, structural and semantic. These layers help
to achieve textual and (semi-)structured data independence, which is analogous to
the notion of “data independence” from the classic ANSI SPARC standard. Any
data (e.g. XML, RDF, RSS) can be represented in the application-independent the
PORCM, after which patent-specific relations are derived.

Another advantage is that a precise and tidy schema design helps to achieve re-
usable and transferrable implementations. For example, indexing and processing
strategies developed for one type of patent retrieval application (experiments) be-
come transferrable, provided that the structural and semantic layers are derived as
previously shown.

Lastly, explicitly stating how the basic and the semantic layers are related impacts
the modelling of probability estimations and aggregations required by retrieval mod-
els for patent search. The predicates in the basic PORCM can be used to construct
an evidence space for term-based (e.g. TF-IDF, LM) retrieval models and for basic
semantic models (e.g. attribute-based LM). In the derived structural and semantic
layers, however, more complex and tailored (patent-specific) models can be con-
structed. For example, an LM-based ranking of inventors according to their experi-
ence can be easily constructed using an evidence space based on the classifications
in the semantic layer of PORCM. We discuss next the components for modelling re-
trieval strategies for patent search and, more generally, probability estimations and
aggregations leveraged by the aforementioned three schema layers.

9.3.2 Retrieval Scenario

This section presents a retrieval scenario that illustrates how logical modelling can
be used to model patent-specific retrieval strategies. Let us consider that after an
initial search for patents about semiconductors (the initial search being a basic
search session), the task is to explore the patents of experienced inventors who
filed the most relevant patents about semiconductors. Logical retrieval supports the
required reasoning process as follows: (1) initial ranking strategies (TF-IDF, LM,
BM25, boolean, coord-match) that retrieve patents about semiconductors; (2) post-
processing of retrieved results to find structural elements and named entities (e.g. in-
ventors); (3) and modelling of predicates, such as experienced inventor. Next we
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illustrate how this reasoning process (retrieval strategy) can be expressed in PData-
log.

9.3.2.1 Initial Ranking Strategy Using TF-IDF

We chose TF-IDF as the initial ranking strategy. The strategy is parameterised with
three external relations: “qterm”, “pidf”, and “tf_d”. The relation “qterm(Term,
Query)” contains the query terms, which in this case are the terms “semi” and “con-
ductors”. The relation “tf_ d(Term, Context)” contains term-document pairs with
tuple probabilities P(t |d), which are proportional to term frequency, and “pidf(T)”
(probabilistic IDF) contains terms where the tuple probabilities are proportional to
the IDF-values of the respective terms. These probabilities have been estimated us-
ing the “DISJOINT” and “MAX_IDF” operators, respectively (see Sect. 9.2). The
probabilistic assumption, “SUM”, specifies how the probabilities (weights) of the
non-distinct tuples are to be aggregated.

1 # TF−IDF

3 # IDF−based query term weighting:
4 qterm_pidf(Term, Query) :− qterm(Term, Query) & pidf(Term);

6 # Normalisation:
7 w_qterm(Term, Query) :− qterm_pidf(Term, Query) | (Query);

9 # Match over terms:
10 match(Context, Query, Term) :− w_qterm(Term, Query) & tf_d(Term, Context);

12 # Retrieval (aggregation of evidence from match):
13 retrieve SUM(Context, Query) :− match(Context, Query, Term);

9.3.2.2 Post-processing of Retrieved Results

The retrieval strategy extracts the inventors of the retrieved patent documents. Ad-
ditionally, it derives the semantic IDs of the inventors from the structural inventor
elements and the basic predicates. Below we demonstrate how this post-processing
step is implemented.

1 # TF−IDF ranking of patents about semiconductors
2 retrievedPatents(Context, Query) :− retrieve(Context, Query);

4 # Structural predicates derived from basic predicates
5 inventorElement(XPath, Context) :− classification(inventor, XPath, Context);
6 id(XPath, Value, Context) :− attribute(id, XPath, Value, Context);

8 # Select the inventor elements that occur in the retrieved patents
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9 inventorsOfRetrieved(XPath, Context) :−
10 retrievedPatents(Context, Query) & inventorElement(XPath, Context);

12 # Semantic classifications derived from structural and basic predicates:
13 inventorEntity(Id, Context) :−
14 inventorsOfRetrieved(XPath, Context) & id(XPath, Id, Context);

Note that the ranking strategy (TF-IDF) can be easily replaced with another
strategy such as BM25 or LM without affecting the implementation of the post-
processing step. This modularity is one of the main features of a logical modelling
approach.

9.3.2.3 Modelling of Experienced Inventor

Using logical modelling we can also model “vague” (probabilistic) predicates such
as “experience” and “popularity”. The example below demonstrates how this mod-
elling is performed.

1 # Retrieve only the experienced inventors
2 experiencedInventors SUM (Id) :− inventorEntity(Id, Context) | DISJOINT();

Using the “inventorEntity”, which consists of a non-distinct list of inventors’ IDs
and their contexts (patents), we perform a frequency-based estimate to find out the
experienced inventors. The intuition behind this estimate is that the more patents
has a particular inventor, the more experienced he/she is. Note that the experienced
inventors are mainly in the “semiconductors” domains since “inventorEntity” is de-
rived from the retrieved inventors. A more general approach would be to model
“experience” using an external knowledge base containing the inventors and the
number of their inventions/patents.

9.3.2.4 Exploring the Patents of the Experienced Inventors

We can find the patents of experienced inventors in “semiconductors” using the list
of experienced inventors. We join the “experiencedInventors” with a “patendDB”
(a database of patents and their inventors), which results in a list of patents about
“semiconductors” that were issued by experienced inventors.

1 #Retrieve patents of experienced inventors
2 patentsOfExperiencedInventors (Context):−
3 experiencedInventors (Id) & patentDB(Id, Context);

Given the trade-off between expressiveness and scalability, we demonstrate how
a parallelised architecture can ensure that the logical modelling approach scales.
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9.4 Parallelising the Workload

The transparency and the power of abstraction offered by the logic-based modelling
of semantic patent searching is costly with regard to both space and processing re-
quirements. A way to alleviate this problem without sacrificing the expressiveness
and transparency of logic-based DB+IR is through distribution or parallelisation,
depending on the deployment infrastructure at hand. Logic-based DB+IR itself al-
lows for expressing Distributed Information Retrieval (DIR, [1]) components, such
as resource description, resource selection and fusion of results in a unified and
transparent way. The technology developed as part of the Large-Scale Logical Re-
trieval (LSLR) project [4, 5] can form the basis upon which logic-based semantic
searching is offered.

For an example of how the process of source selection can be expressed within
the logic-based framework, consider the following rules, expressed in PDatalog.
Here, “Src” corresponds to an individual knowledge base (KB). Worth-noting is the
parallel between “Src” below and “Context” in the modelling of TF-IDF ranking of
the previous section.

1 # Generate representation of sources:
2 df_src(Term, Src) :− tf_src(Term, Doc, Src);

4 # Match over terms:
5 match(Src, Query, Term) :− w_qterm(Term, Query) & df_src(Term, Src);

7 # Selection (aggregate evidence from match):
8 select_src SUM(Src, Query) :− match(Src, Query, Term);

The example also demonstrates how the same framework that is used to model the
retrieval strategies is also utilised to model source selection. This emphasises the
flexibility and openness of the logic-based approach.

The overall LSLR architecture can be seen in Fig. 9.5. In this architecture, each
LSLR-worker processes each query by first ranking the knowledge bases with re-
gard to how appropriate they are to answer it. It then forwards the query to the top-k
KBs. During this phase, and because of our transparent logic-based approach, the
set of selected KBs are essentially treated as a single collection, therefore doing
away with the need to explicitly merge the results. Here, the more KBs selected,
the more time an LSLR-worker needs to reply to a query. Each LSLR-worker can
handle multiple KBs depending on the semantics we want to be able to process at
run-time.

On the level of the LSLR-HySpirit-Master, when a query is received, it is for-
warded to all connected LSLR-HySpirit-Workers. Even though the LSLR-Master
is in a position to set out retrieval and selection strategies for individual LSLR-
HySpirit-Workers to follow, it is effectively unaware of their overall content. There-
fore, given a query, all LSLR-HySpirit-Workers will be working in parallel, while
restricting individually that is their searching to a subset of their KBs.

Strategies that utilise the partial KBs on the local nodes in order to provide source
selection and results’ fusion can be provided in a consistent and transparent way
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Fig. 9.5 An overview of the LSLR architecture

syntactically similar to patent searching. The exact design of LSLR and the logical
modelling of distributed and parallel IR processes is not within the focus of this
chapter. More details can be found in [4, 5].

9.5 Conclusions and Future Work

The transparency and power of abstraction that logic-based modelling offers makes
it a suitable framework for a wide variety of search applications. Sophisticated, non-
ad-hoc search tasks involving expert users, such as patent searching, can greatly
benefit from its adoption. DB+IR systems implement the principles of logic-based
retrieval through the use of structured probabilistic languages, such as probabilistic
Datalog, which is used in this chapter. For these target application domains, the use
of such languages allows for modular, transparent and tractable designs which are
decoupled from the underlying data or information models employed. In particular,
such languages can be leveraged to model the semantic data found in patent doc-
uments, resulting in more sophisticated retrieval methods (retrieval strategies) and
queries. However, the scalability of such modelling techniques—with regard to data
volume and processing times—becomes a significant challenge due to the increase
in computational complexity of high-level abstraction and expressiveness.

In this chapter, we primarily examined the “scalable” expressiveness of logical
retrieval by modelling data and strategies (uncertain reasoning) that can potentially
solve complex (semantic) retrieval tasks. We also discussed the usage of distribu-
tion and parallelisation. After introducing the basics of probabilistic Datalog, we
modelled distributed IR techniques such as source selection and fusion, and so
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demonstrated that our approach is both modular and expressive. Attending to the
requirements of semantic-aware patent search, we proposed a three-tier distributed
architecture that is able to adapt to different levels of hardware resource provision
by maximising concurrency.

Probabilistic logical modelling can be viewed as a “protocol language” that al-
lows web services to transfer and exchange query representations and retrieval
strategies. Future work includes service selection and traffic balancing as well as
the creation of further content distributions, parallelisation strategies and resource
selection algorithms.
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Chapter 10
Patent Claim Decomposition for Improved
Information Extraction

Peter Parapatics and Michael Dittenbach

Abstract In several application domains research in natural language processing
and information extraction has spawned valuable tools that support humans in struc-
turing, aggregating and managing large amounts of information available as text.
Patent claims, although subject to a number of rigid constraints and therefore forced
into foreseeable structures, are written in a language even good parsing algorithms
tend to fail miserably at. This is primarily caused by long and complex sentences that
are a concatenation of a multitude of descriptive elements. We present an approach
to split patent claims into several parts in order to improve parsing performance for
further automatic processing.

10.1 Introduction

The claims in a patent can be seen as its essence, because they legally define the
scope of the invention while the description and drawings have a supporting role to
make the invention described more comprehensible. Both, the European1 as well as
the US definition2 of patent claims put emphasis on conciseness and clarity. This
and further official guidelines on claim formulation have several implications on
the language used. In this work, we investigate how the structure of the claims-
specific language can be used to split them into several components and rearrange
them in order to improve the performance of natural language processing tools such
as dependency parsers and to improve readability. To this end, we use the English
language parts of a set of European patent documents from the International Patent

1http://www.epo.org/patents/law/legal-texts/html/epc/2000/e/ar84.html.
2http://www.gpoaccess.gov/uscode/browse.html.
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Classification (IPC) category A61C (Dentistry; Oral or Dental Hygiene). The goal of
this research is the development of a method to automatically decompose the often
long and winding sentences into smaller parts, identifying their constituents and
relations and putting them into a machine-processable structure for further analysis
and visualization.

10.2 Patent Claim Structure

In general, rules for examining, and thus also for drafting a patent are quite simi-
lar internationally, but there are variations from patent office to patent office. The
characteristics described in this paper are based on the Guidelines for Examination
in the European Patent Office (EPO) as of April 2009, Part C, Chap. III [2] and the
Manual of Patent Examining Procedure of the United States Patent and Trademark
Office (USPTO) [4]. The EPO as well as the USPTO require every patent document
to contain one or more claims. The claims section is the only part of a patent con-
ferring protection to the patent holder. The description and drawings should help
the examiner to understand and interpret the claim but do not provide any protec-
tion themselves. Due to the importance of the claims there are very precise syntactic
and semantic rules that have to be followed when drafting patent claims. A patent
contains one or more independent claims that define the scope of the invention
[2, Sect. 3.4]. Additionally, a patent may contain dependent claims which impose
further limitations and restrictions on other dependent or independent claims. Each
claim has to be written in a single sentence.

Independent claims should start with a part which describes already existing prior
art knowledge and is used to indicate the general technical class of the invention. It
describes the elements or steps of the invention that are conventional or known.
These are then refined in a part describing the aspects or steps of the invention
which are considered new or improved and which the patent holder wants to pro-
tect. These two parts are connected with specific key phrases which vary between the
USPTO and EPO. Moreover, the terminology for naming the parts differs slightly.
The USPTO refers to the part describing prior art as preamble [4, Chap. 608.01(i)].
The key phrase is called transitional phrase and the main part of the claim is referred
to as the claim body. In the transitional phrase, keywords such as “comprises”, “in-
cluding” or “composed of” are used. The EPO suggests the same claim structure
but does not name the separate parts [2, Sect. 2.2]. It refers to this structure as the
two-part form (not counting the transitional phrase) with the first part corresponding
to the preamble and the second part to the claim body. The two parts are linked with
either the phrase “characterized by” or “characterized in that”.

Independent claims do not necessarily have to be defined in the two-part form.
The EPO [2, Sect. 2.3] considers the two-part form inappropriate for claims which
describe:

• the combination of known integers of equal status, the inventive step lying solely
in the combination;
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• the modification of, as distinct from addition to, a known chemical process e.g.
by omitting one substance or substituting one substance for another;

• or a complex system of functionally inter-related parts, the inventive step con-
cerning changes in several of these or in their inter-relationships.

An example claim for the third rule is the following claim taken from a patent
document in the dentistry domain: “A dental restoration comprising an outer shader
layer, an intermediate layer which is substantially hue and chroma free and translu-
cent and an opaque substructure which has a specific chroma on the Munsell scale
and a specific Munsell hue.”

A dependent claim can refer to independent as well as other dependent claims
and are used to refine and describe additional details or parts of the invention. It
has to incorporate all features from the claim it refers to and must not broaden the
previous claim. The EPO suggests the following structure for dependent claims:
The first part of the claim contains a reference to all claims it depends on, followed
by the refinement or the definition of parts of the invention. The two-part form,
where the two parts are linked with “characterized in that” or “characterized by”, is
not required for dependent claims but is nevertheless very common. Other common
link phrases between the two parts are “wherein” and “comprising” such as in the
claims “The orthodontic bracket of claim 1 wherein said bracket is [. . . ]” or “An
apparatus usable for carrying out the method according to claim 1 or 2, comprising
[. . . ]”

The USPTO explicitly defines rules for the order of claims in the patent [4,
Chap. 608.01(n)]. In the EPO guidelines the order is stated implicitly. Dependent
claims have to be ordered from the least restrictive to the most restrictive. This is
important from a machine processing point of view, in the sense that concepts or
terms which are refined in a dependent claim have already been introduced in a
preceding claim in the document.

Claims have a different form depending the type of invention they describe. It can
be differentiated between claims to physical entities (product, apparatus) and claims
to activities (process, use) [2, Sect. 3]. Product and apparatus claims normally have
the following form: “An X, comprising a Y and a Z”. Method claims have a very
similar form but instead of describing parts of a physical entity a sequence of steps
are described. “A method for X comprising (the steps of) heating Y and cooling Z”.
A use claim is usually written in the following form: “The use of X for the Z of Y”.

Several common grammatical structures can be found in patent claims. One that
is commonly used in claims is an enumeration of several parts of prior art improve-
ments or steps of a method. These enumerations occur in various syntactic forms
like: “An M comprising an X, a Y and a Z” or “An M comprising: (a) an X, (b) a Y
and (c) a Z”.

Since a claim should be as concise as possible (cf. [2, Sect. 4]), each term used
in the claim must have a definite and unambiguous meaning. New concepts are
introduced with an indefinite article (“a” or “an”). Subsequent uses of the same
element are preceded by “the” or by “said”.
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10.3 Related Work

Research is done in various fields of patent processing.
In [7] the authors aim to quantify three challenges in patent claim parsing: claim

length, claim vocabulary and claim structure. Their experiments show that the av-
erage sentence length of claims is longer compared to general English sentences
even if the claims are split on semicolons and not only on full stops. This results in
more structural ambiguities in parses of long noun phrases. While the vocabulary is
similar to normal English texts the authors show that the distribution of words does
differ. The biggest challenge for syntactic parsing poses the sentence structure as
claims consist of sequences of noun phrases rather than clauses.

The authors of [3] propose a technique for claim similarity analysis which could
be used for building patent processing tools to support patent analysts. They com-
pute a similarity score between two claims based on simple lexical matching and
knowledge based semantic matching. The syntactic similarity measure is based on
the number of nouns that occur in both claims. For semantic similarity a score is
computed by comparing each noun from the first claim to all nouns from the second
claim using WordNet [1]. The highest score is recorded. The final semantic similar-
ity score for two claims is then calculated by summing up the semantic similarity
score for each noun.

A complex and domain-specific NLP-based approach is used in [5]. It is claimed
that the use of broad coverage statistical parsers like the Stanford Natural Language
Parser3 is not appropriate for the patent domain. Since they are trained on gen-
eral language documents, the accuracy of these parsers suffers when used for pars-
ing patent claims. The proposed parsing method relies on supertagging and uses
a domain-specific shallow lexicon for annotating each lexeme with morphological,
syntactic and semantic information. Semantic information consists of an ontological
concept defining the word membership in a certain semantic class (Object, Process,
etc.). In the supertagging procedure each word is annotated with several matching
supertags. In the following disambiguation procedure, hand crafted rules are used to
eliminate incorrect supertags. The central part of the method is the predicate lexicon
which is used to create a predicate-argument structure by annotating each predicate
with syntactic and semantic information. A grammar is used to fill each argument of
a predicate with a matching chunked phrase (e.g.: NP, NP and NP) from the claim
based on the syntactic and semantic information in the supertag.

In [8] patent claims are compared by computing a similarity measure for concep-
tual graphs extracted from the claims using a natural language parser. A conceptual
graph G is a set of (C, R, U, lab) where C are the concept vertices, R the relation
vertices, U a set of edges for each relation. A label from the set lab is assigned to
every vertex in the graph. A specific domain ontology is used for the concept and
relation vertices in the conceptual graph. The conceptual graphs are extracted from
dependency relations created with the Stanford Parser. The developed method is in-
tended to be used for infringement searches and in particular for tasks such as patent
clustering, patent comparison and patent summarization.

3http://nlp.stanford.edu/software/lex-parser.shtml.

http://nlp.stanford.edu/software/lex-parser.shtml
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Table 10.1 Data sets: characteristics

Data Set Claim type Nr. claims Nr. words Avg. claim length

Analyzed Set Ind. claims 159 20,321 127.81

Dep. claims 862 28,794 33.40

Evaluation Set Ind. claims 13,628 1,803,341 132.33

Dep. claims 73,706 2,415,533 32.77

The authors of [6] focus on structural analysis of Japanese patent claims in order
to create parsing methods for specific claim characteristics. They show that Japanese
patent claims are very similar to European and US claims in the sense that a single
sentence out of multiple sentences using specific keywords and relations. Six com-
mon relations (Procedure, Component, Elaboration, Feature, Precondition, Compo-
sition) are described which can be found in Japanese patents. These relations can be
identified by cue phrases, for which a lexical analyzer is used in order to decompose
a patent claim into several parts.

10.4 Data Set

For creating and evaluating our method, which will be described in the next sec-
tion, two data sets from the IPC category A61C (Dentistry, Oral or Dental Hygiene)
were used. A data set of 86 randomly selected patents was manually analyzed for
creating the decomposition rules (Analyzed Set) and a larger set of 5,000 patents
was used for evaluation (Evaluation Set). The Analyzed Set only consists of patents
filed at the EPO while the Evaluation Set consists of 774 European patents and
4,226 US patents. The patents were sampled from the Matrixware Research Col-
lection (MAREC) data set.4 Table 10.1 shows the characteristics of the two data
sets. The figures show that independent claims are more than three times as long as
dependent claims.

Table 10.2 shows the success rate (coverage) of the Stanford parser applied to
the claims. A successful parse in this context does not refer to the correctness of the
parse tree but only indicates that the parser was able to produce a result. The cover-
age provides a good indication for the complexity of a text. The higher complexity
of independent claims is therefore underlined by the high number of unsuccessful
parses of independent claims as compared to dependent claims. It can be seen that
the average number of successful parses is significantly higher for dependent claims
than for independent claims. Additionally, the success rate of the parser decreases
significantly when reducing the maximum amount of memory (JVM max. heap
size). This is an important parameter, because of the memory requirements for con-
structing the large parse trees for the relatively long independent claims. An infor-

4http://ir-facility.org.

http://ir-facility.org
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Table 10.2 Stanford parser success rate

Data Set Claim type JVM max.
heap size

Successful
parses

Failed
parses

% of successful
parses

Analyzed Set Ind. claims 1000 MB 132 27 83.01%

500 MB 89 70 55.97%

Dep. claims 1000 MB 859 3 99.65%

500 MB 848 14 98.38%

Evaluation Set Ind. claims 1000 MB 10,671 2,957 78.30%

500 MB 7,482 6,146 54.90%

Dep. claims 1000 MB 73,427 279 99.62%

500 MB 72,769 937 98.73%

mal evaluation of the parse trees indicates that the quality of the results is very low
for the long and complex claim sentences.

10.5 Method

10.5.1 Preprocessing

Before a patent document is decomposed, a number of data preprocessing and clean-
ing steps are executed to normalize the claim text. In patent claims, references to
images are enclosed in parentheses. Their representation can include numbers as
well as letters and range from simple forms such as “(21)” or “(12b)” to more com-
plex constructs like “(21b; 23; 25c)”. For our purpose, these image links are not
processed and pose problems for the extraction rules. The following regular expres-
sion is used for finding and removing image links (but retaining mathematical and
chemical formulas):

(\(\s*[0-9][0-9a-z,;\s]*\))

In some claims, elements of an invention are enumerated in a form such as “a.”
or “b.”. Since a period (“.”) occurring in this context is interpreted as a sentence
delimiter by GATE’s sentence-splitter these constructs lead to erroneous decompo-
sition of claims and are therefore removed.

In many documents the actual claim text is preceded by its claim number. Since
this information is already implicitly given via the order of the claims in the patent
document it is removed.

The term “characterized” is an important element that needs to be identified. The
British spelling variant is replaced by the American one.

In the last preprocessing step all occurrences of the word “said” are replaced
with the definite article “the”. This is a simple but effective way of improving the
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Table 10.3 Claim Types
Data Set Claim type Number of claims

Analyzed Set Physical Entity Claims 114

Method Claims 41

Use Claims 4

Evaluation Set Physical Entity Claims 10,310

Method Claims 3,315

Use Claims 3

performance of natural language parsers even before decomposing the claims. Nat-
ural language parsers trained on general language texts interpret the word “said” as
a verb. In claims, however, it is always used for referring to an already introduced
concept.

10.5.2 Claim Type and Category Identification

A simple heuristic is used to determine whether a claim is dependent or independent.
The drafting guidelines for dependent claims suggest that it should consist of two
parts. The first part contains a reference to the claim or claims which are refined writ-
ten in a form such as “The dental handpiece of claim 1” or “The orthodontic bracket
of any one of claims 1 to 7”. All claims containing either the word “[Cc]laim” or
“[Cc]laims” are classified as dependent claims, all others as independent claims.

Independent claims can be categorized into: physical entity claims, method
claims, use claims. This distinction is important, because the types differ slightly
and require distinct analysis patterns. A heuristic based on keyword matching is
used for this purpose. Since the developed method is based on linguistic patterns
found in claims and does not deal with any legal aspects, the defined categories may
differ from the categories commonly used in the patent domain.

The examination of the Analyzed Set has shown that claims containing the key-
word “method” or “process” within the first 100 characters can be classified as
method claims and all claims which start with the phrase “The use” are classified as
use claims. Thus, simple string matching can be used.

No such simple heuristics are available for identifying physical entity claims.
Physical entity claims usually start with the claimed invention rather than with
claim-specific keywords. Claims that can neither be classified as use claims nor
as method claims are classified as physical entity claims.

Table 10.3 shows the frequency of each claim category in the two data sets. The
figures show that the number of physical entity claims is about three times higher
than the number of method claims and it can also be seen that almost no use claims
are present in the data sets.
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10.5.3 Claim Decomposition

Our process of decomposing claims consists of three main phases: pattern identifi-
cation, pattern extraction, post processing and merging the extracted parts into a tree
structure. Some patterns can be identified through simple lexical matching of key-
words. If this is possible, patterns are identified using Java regular expressions. Most
patterns, however, are more complex and thus require deeper linguistic analysis of
the claim. Therefore, the claims are analyzed with GATE5 an open source natural
language processing framework. Each claim is tokenized and a sentence-splitter is
applied. Depending on the requirements of the extraction rules, Parts-Of-Speech
tagging and Noun Phrase Chunking is done.

Based on the annotations created by the rules (JAPE grammars) the claims
can be decomposed. For this purpose the textual content of each annotated pat-
tern is extracted from GATE’s internal flat document representation into a GATE-
independent hierarchical tree data structure. For each extracted part a number of
post processing steps are executed to remove unnecessary characters such as white
spaces, punctuation symbols and words from the extracted parts.

The decomposed claims are stored in a tree structure. Each node in the tree con-
tains an extracted part of the claim. The edges represent the relation type to the
parent. Each node contains the text of the extracted part and, to be able to traverse
the tree, a reference to its parent relation and a list of child relations. Each relation
contains an enumerated type indicating the type of the relation and an optional string
containing a label for the relation.

10.5.4 Independent Claim Decomposition

Due to space considerations, we focus more on the decomposition of independent
claims in this article, since they are longer and more complex than dependent claims
and thus more interesting. Due to large structural differences of claims from differ-
ent categories only a very limited number of rules which are applicable to all claim
types is available. The major part of the developed rules is specific to one of the
claim categories. In the following section the extraction rules for physical entity
claim are described.

10.5.4.1 General Patterns

Before a claim is decomposed using the claim category-specific rules the following
two patterns are extracted.

5http://gate.ac.uk/.

http://gate.ac.uk/
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Claim-Subject A claim-subject is extracted and used as the root node of the tree
structure. The claim-subject is that part of the claim to which all other claim parts are
directly or indirectly related to. For method and use claims the identification of the
subject is rather trivial. In method claims all other extracted parts can be attached
to the initial keyphrase “A method” or “A process”. For use claims they can be
attached to the phrase “The use”. While the claim-subject for these two categories
can be extracted using a simple string matching approach, this is usually not the
case for physical entity claims. In physical entity claims the root of the sentence is
the invention itself. This is illustrated in Example 1. Therefore each claim sentence
is analyzed with GATE and the first noun phrase is extracted as claim-subject.

Example 1 (EP1444966-A1)
Claim-Subject

︷ ︸︸ ︷
A dental head unit capable of measuring a root canal length of a patient

Characterized-Pattern If a claim is drafted in the two-part form as suggested
by the EPO, the keyphrases “characterized in that” and “characterized by” can be
used to split the claim into the preamble and the claim body. This pattern can be
exploited without linguistic analysis. Regular expressions are used to split the claim
text where either of the keyphrases mentioned above occurs. The characterized-
part (claim body) is attached to the root of the tree structure with a CHARAC-
TERIZED relation. For physical entity claims the characterized-part is further an-
alyzed with the rules described in Subsection “Characterized-Part Decomposition”
of Sect. 10.5.4.2. The preamble itself is not attached to the tree structure. It is de-
composed using the category-specific rules described in the following sections. If a
claim does not contain a Characterized-Pattern, the entire claim text is decomposed
using these claim category-specific rules.

10.5.4.2 Physical Entity Claims

The focus in this method was set on the analysis of physical entity claims. Due to
the comparatively large number of physical entity claims in the Analyzed Set, it was
possible to identify a larger number of patterns.

Composition-Pattern The pattern which occurs most frequently in physical en-
tity claims is the Composition-Pattern since an invention is usually described by
enumerating all elements it is composed of. Thus the complexity of claims can
be significantly reduced by correctly extracting these elements. The Composition-
Pattern is introduced by one of the keywords “comprising”, “comprises” or “includ-
ing” and is composed of several composition-parts. Each of these composition-parts
describes an element of the invention and therefore starts with the introduction of
a new concept. The parts can be identified by looking for singular or plural noun
phrases preceded by the indefinite article “a” or “an” such as shown in Example 2.
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Example 2 (EP0063891-B2)
Claim-Subject

︷ ︸︸ ︷
An ejector holder [. . . ] , the holder comprising︸ ︷︷ ︸

Composition-Start

Composition-Part
︷ ︸︸ ︷
an elongate barrel [. . . ], a plunger [. . . ],︸ ︷︷ ︸

Composition-Part

[. . . ]

Composition-Part
︷ ︸︸ ︷
and a lever [. . . ].

The JAPE grammar used for extracting Composition-Patterns first annotates the
start of a Composition-Pattern by looking for the keywords mentioned above. It then
identifies and annotates the composition-parts the Composition-Pattern is composed
of by looking for singular or plural noun phrases preceded by the indefinite article
“a” or “an”. The grammar takes into account several different linguistic patterns in
order to identify nested Composition-Patterns. Each extracted part is attached to the
CLAIM-SUBJECT with a COMPOSITION relation.

Nested-Sentence-Pattern Since each claim has to be written in one sentence,
certain grammatical structures are used for chaining separate sentences to create
one single sentence. A very common structure used for this purpose is the Nested-
Sentence-Pattern where an already introduced concept is refined. Example 3 shows
the typical structure of a Nested-Sentence-Pattern.

Example 3 (EP0028529-B2)
Claim-Subject

︷ ︸︸ ︷
A scaler tip having an operative end︸ ︷︷ ︸

Description

Nested-Sentence-Part
︷ ︸︸ ︷
, the operative end terminating in a curved free end

Nested-Sentence-Part
︷ ︸︸ ︷
, the operative end having a non-abrasive working portion

There are several, very similar, keyphrases which introduce a nested sentence.
The phrases “, the CONCEPT” or “; the CONCEPT” where CONCEPT represents
an already introduced concept are used frequently. In the original claims the word
“said” is often used instead of the article “the”. However, since all occurrences of
the term “said” are replaced by the word “the” during the preprocessing steps only
the keyword “the” has to be taken into account. A nested sentence ends when ei-
ther another Nested-Sentence-Pattern is found or the sentence ends. The extracted
sentences are attached to the claim-subject node with a NESTED-SENTENCE re-
lation.
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Description-Pattern All words between the claim-subject and the first pattern
found in the claim (Nested-Sentence or Composition-Pattern), are extracted as
description-part. The description usually indicates the purpose of the invention (see
Example 4). In some cases, however, it describes elements that an invention con-
tains.

Example 4 (EP0415508-A2)
Claim-Subject

︷ ︸︸ ︷
An apparatus to continuously harden light curing resins︸ ︷︷ ︸

Description

, comprising [. . . ]

A JAPE grammar is used to annotate all words after the claim-subject until either
a Nested-Sentence-Pattern or a Composition-Pattern is found or the claim sentence
ends. The annotated part is extracted and appended to the claim-subject node in the
data structure with a DESCRIPTION relation.

10.5.4.3 Characterized-Part Decomposition

If the claim is drafted in the two-part form as suggested by the EPO, the
characterized-part extracted with the Characterized-Pattern rule can be decomposed
further into smaller parts. The annotation and extraction process first looks for ex-
tractable enumerations of elements. To this end, the Composition-Pattern rules are
used in a slightly modified version. The extracted parts are attached to the node
containing the characterized-part with a COMPOSITION relation.

Parts of an invention specified in the characterized-part are not necessarily enu-
merated using a Composition-Pattern. In some cases the parts are simply separated
by semicolons. Therefore, if no Composition-Pattern is found, the characterized-part
is simply split by semicolons. If this results in more than one part, each of these parts
is added to the node containing the characterized-part with a CHARACTERIZED-
COMPOSITION relation.

10.5.4.4 Composition-Part Decomposition

Extracted composition-parts can be further decomposed by splitting them into a part
containing the element of the invention and a second part containing a description
of the element. This is illustrated in Example 5.

Example 5 (EP1484028-A2)

[. . . ]

Element-Part
︷ ︸︸ ︷
a chuck assembly

Description-Part
︷ ︸︸ ︷
secured to the rotor shaft

[. . . ]

Element-Part
︷ ︸︸ ︷
a positioning template

Description-Part
︷ ︸︸ ︷
for guiding the positioning and bonding [. . . ]
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A JAPE grammar is used to identify the end of the element-part by looking for
specific linguistic patterns like verbs in gerund form possibly preceded by an ad-
verb (“a neck section extending proximally from the head section [. . . ]”) or verbs
in past tense, possibly preceded by an adverb (“a brush part detachably attached
to one end of the drive shaft”). The element-part remains in the already existing
composition-part node. The extracted description is added to it with a COMP-
PART-DESCRIPTION relation. The description-part itself can be decomposed into
even smaller units by extracting nested sentences. This is done using the Nested-
Sentence-Pattern rule.

10.5.5 Dependent Claim Analysis and Decomposition

Dependent claims consist of two parts. The first part provides a reference to the
claim(s) it refines while the second part describes the refinement itself. The analy-
sis of dependent claims consists of two tasks. In the first step the reference-part is
analyzed to extract the references to refined claims. References to previous claims
are provided in various forms like as a single number, an enumeration of numbers,
a range of numbers and sometimes as written text. For each of these cases several
rather similar patterns have to be taken into account. The most important ones are
single numbers and ranges of numbers preceded by the word claim such as in “The
locator of claim 1 wherein [. . . ]” or “An article as claimed in any of claims 12 to 14,
wherein [. . . ]”. The annotated references are extracted and evaluated. Each claim
object in the internal data structure is assigned a list of dependent claims based on
the extracted claim reference numbers. These references can than be used to assign
each dependent claim to all the claims it refines.

In the second phase the claim is split into a reference and a refinement-part.
For dependent physical entity claims the refinement-part is decomposed with rules
similar to those used for decomposing independent claims.

First the claim is split into two parts, the reference-part and the refinement-part.
A JAPE grammar is used to identify the end of the reference-part according to sev-
eral linguistic patterns. In the most commonly used pattern the reference-part ends
with one of the phrases “, wherein”, “, characterized in that” or “characterized by”
such as in “Hinge member as claimed in claim 1, wherein the head means is circular
[. . . ]”.

Then, as for independent claims, a claim-subject is extracted as the root node of
the tree data structure. For this purpose the first noun chunk in the refinement-part
is extracted, if it is an already introduced concept. This means that it either starts
with the word “the” or “each”. Example 6 provides a better understanding of the
claim-subject extraction rule. If no valid claim-subject can be found, the label of
the root element of the tree structure is left empty. The refinement-part is added
to the claim-subject node with a REFINEMENT relation, the reference-part with a
REFERENCE relation.
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Example 6 (EP0171002-B1)
Reference

︷ ︸︸ ︷
The locator of claim 1 wherein

Refinement
︷ ︸︸ ︷
the stimulus voltage︸ ︷︷ ︸

Claim-Subject

has a single frequency

Finally the refinement-parts extracted from dependent physical entity claims are
decomposed further by extracting Composition as well as Nested-Sentence-Patterns.
The rules for extracting Nested-Sentence-Patterns are the same ones which are
used in the decomposition of independent physical entity claims. The Composition-
Patterns are extracted with the same rules used for decomposing characterized-parts
from physical entity claims (see Sect. 10.5.4.2).

10.5.6 Merging of Dependent and Independent Claims

After the claims have been analyzed and decomposed, a coreference resolution al-
gorithm is applied for merging each independent physical entity claim with its direct
and indirect dependent claims. For this purpose the refinement-parts extracted from
dependent claims are attached directly to the node in the tree data structure where the
refined element was introduced. For attaching refinements from dependent claims
to the correct node in the tree structure of the independent claim, the noun phrase
introducing the refined element has to be found. For this purpose, the fact that a new
element is usually introduced with a phrase such as “a CONCEPT” and later referred
to as “the CONCEPT” can be exploited. For each claim a concept index containing
New-Concepts and Ref-Concepts is created. The merging algorithm is illustrated in
Example 7, showing the decomposition of an independent and a dependent claim
and how the dependent claim can be merged into the tree data structure of the inde-
pendent claim. The refinement-part “the base member consists essentially of [. . . ]”
from the dependent claims is directly attached to the composition-part “a base mem-
ber”, introducing the refined element in the independent claim.

Example 7 (Claims Before Merging)
Independent claim:
An oral appliance for placing in a mouth of a user, the appliance comprising: a base member having
a generally U-shaped form corresponding to the outline of a jaw of a user, [. . . ]

Subject: An oral appliance
Relation: DESCRIPTION

->for placing in a mouth of a user
Relation: COMPOSITION

->a base member
Relation: COMP_PART_DESCRIPTION

->having a generally U-shaped form
corresponding
to the outline of a jaw
of a user [...]
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Dependent claim:
An oral appliance according to any one of claims 1 to 3, wherein the base member consists essen-
tially of a rigid plastics material which is polyethylene.

Subject: the base member
Relation: REFERENCE

->An oral appliance according to any one
of claims 1 to 3

Relation: REFINEMENT
->the base member consists essentially

of a rigid [...]

Merged claims:
Subject: An oral appliance

Relation: DESCRIPTION
->for placing in a mouth of a user

Relation: COMPOSITION
->a base member

Relation: COMP_PART_DESCRIPTION
->having a generally U-shaped form

corresponding
to the outline of a jaw
of a user [...]

Relation: REFINEMENT
->the base member consists

essentially of a rigid [...]

Reattachment of Claim Parts In some cases nested sentences or characterized-
parts extracted from independent claims are not attached to the node where the el-
ement they refine was introduced. Thus a similar procedure as for attaching the
refinement-parts extracted from dependent claims is used for reattaching these parts.
The first Ref-Concept found in the nested sentence or characterized-part is used to
find nodes in the tree structure where the parts may be attached to. For this pur-
pose a similarity measure is computed for the selected Ref-Concept and each New-
Concept in the concept index of the independent claim. The part is reattached to the
node with the best matching New-Concept provided that the Levenshtein similarity
value for the two concepts is larger than 0.7. Otherwise the part remains attached to
its original parent.

10.6 Evaluation

10.6.1 Independent Claim Decomposition

In this section it is evaluated how the method developed in this work reduces the
length and complexity of independent claims. To this end the average length of the
original independent claims is compared with the average length of parts extracted
from these claims. The coverage of the Stanford Parser is used as a measure for
complexity reduction. In order to provide an estimation of the quality of the rule
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Table 10.4 Length reduction: independent claims

Data set # Parts Avg. claim length Avg. part length

Analyzed Set 1,012 127.81 18.95

Evaluation Set 100,291 132.33 16.95

Table 10.5 Length reduction comparison for claim categories

Data set Claim category # Parts Avg. part length

Analyzed Set Physical Entity claims 859 15.90

Method and Use claims 153 36.06

Evaluation Set Physical Entity claims 85,757 15.16

Method and Use claims 14,534 27.54

sets 15 physical entity claims selected from 15 different patents and 10 method
claims selected from 10 different patents, were manually analyzed and checked for
correctness. Due to their small number in both data sets use claims were excluded
from the evaluation. Since no gold standard is available, this evaluation was done
by manually classifying the claims as “correct/mostly correct”, “partly correct” and
“incorrect/insufficiently decomposed”.

Table 10.4 shows the number of extracted parts and the average number of words
per part for the Analyzed Set and the Evaluation Set and compares them to the aver-
age claim length of the unparsed claims. The application of the extraction algorithm
shows very promising results in terms of length reduction of independent claims.
For the Analyzed Set the average part length is reduced by about 85% compared
to the original claim length. For the Evaluation Set a reduction of about 87% is
achieved. The results incorporate all extracted claim parts except the claim-subject
since it normally consists of only about three words and would therefore distort the
average number of words per part and the average number of successful parses.

The good performance on the Evaluation set indicates that the rules are generic
enough to achieve a high reduction of complexity for all patents from the IPC cat-
egory A61C. It also indicates that the decomposition algorithm cannot only be ap-
plied to European patents but can also handle the structurally slightly different US
patents.

Table 10.5 compares the average length of parts extracted from physical entity
claims with the average length of parts extracted from claims belonging to the other
two categories for both data sets. The figures show that the average length of physi-
cal entity claim parts is less than half of the average length of method and use claim
parts. This reflects the fact that the decomposition rule set for physical entity claims
is much larger than the one for method claims and shows the positive results of
decomposing extracted claim parts into smaller sub-parts.

The achieved complexity reduction can be estimated from the number of suc-
cessful parses using the Stanford Parser. Table 10.6 shows the success rate of the
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Table 10.6 Stanford parser success rate: extracted parts

Data set JVM max.
heap size

Successful
parses

Failed
parses

% of successful
parses

Improvement

Analyzed Set 1000 MB 1,010 2 99.80% 16.79%

500 MB 1,003 9 99.11% 43.14%

Evaluation Set 1000 MB 100,140 151 99.85% 21.55%

500 MB 99,793 498 99.50% 44.60%

Table 10.7 Quality
estimation: physical entity
claims

Count Percentage

Correct 9 60.00%

Partially correct 2 13.33%

Incorrect 4 26.67%

Table 10.8 Quality
estimation: method claims Count Percentage

Correct 4 40.00%

Partially correct 2 20.00%

Incorrect 4 40.00%

parser applied to the parts extracted from the Analyzed Set and the Evaluation Set
with the same JVM heap size settings used for parsing the original non-decomposed
claims. The last column shows the improvement compared to applying the parser to
the original claims. The comparison shows that the coverage of the Stanford Parser
is significantly higher on the extracted parts than on the original claims with the
improvement being even slightly higher on the Evaluation Set.

The overall quality estimation of the decomposition rules for physical entity
claims is very promising in terms of accuracy and coverage. Most of the evalu-
ated claims are either decomposed correctly or with minor errors. Only very few
claims were found which are classified as physical entity claims but are structurally
too different to be handled properly by the rules. The evaluation results are shown in
Table 10.7. From the 15 analyzed claims nine are decomposed correctly or almost
correctly, two are considered partially correct and four are classified as incorrect or
insufficiently decomposed.

Table 10.8 shows the evaluation results for the 10 analyzed method claims. The
figures show that four claims are decomposed correctly, two are partially correct and
four are insufficiently or incorrectly decomposed. The detailed evaluation shows that
the performance of the developed decomposition rules varies greatly depending on
the structure of the claims. Method claims which consist of an enumeration of steps,
wherein each step starts with a verb in gerund form, are decomposed correctly. Some
claims on the other hand also provide a description of materials or apparatuses used
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Table 10.9 Resolved claim references

Total Number Percentage

Analyzed Set Attached claim references 81 96.43%

Missing claim references 3 3.57%

Total number of dependent claims 84 100%

Evaluation Set Attached claim references 77 100%

Missing claim references 0 0%

Total number of dependent claims 77 100%

for carrying out the method or enumerate steps in a form that cannot be handled
correctly by the rules.

10.6.2 Claim Merging

From each of the data sets, 10 patents containing a physical entity claim were ran-
domly selected and evaluated manually in terms of correct attachments, incorrect
attachments and the number of parts for which no attachment was found. For the
parts which could not be attached, it is differentiated between parts for which no
claim-subject was found and those part which could not be attached although a
claim-subject was identified by the rules. For the dependent claims, for which no
subject could be found, it is analyzed whether the claim-subject does not exist or it
was not identified by the decomposition rules.

Table 10.9 shows the performance of the rules used for resolving references from
dependent claims. The row “Attached claim references” shows for how many de-
pendent claims the reference to their parent was correctly resolved while the row
“Missing claim references” shows how many claims could not be attached to the
claim they refine. The figures show that for all independent claims selected from
the Evaluation set the dependent claims were attached successfully. In the Ana-
lyzed Set the claim reference was not successfully extracted for two dependent
claims.

Table 10.10 provides an overview of the performance of the claim merging
process for the Analyzed Set and the Evaluation Set. The row “Correct attach-
ments” shows how many parts were attached correctly to the part they refine
and the row “Incorrect attachments” shows how many parts were attached erro-
neously.

In the row “No claim-subject/correct” it can be seen how many dependent claims
did not have an extractable claim-subject. The row “No claim-subject/incorrect”
shows for how many dependent claims a claim-subject existed but was not found
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Table 10.10 Attachments

Total Number Percentage

Analyzed Set Correct attachments 33 40.74%

Incorrect attachments 5 6.17%

No attachment found 24 29.63%

No claim-subject/correct 9 11.11%

No claim-subject/incorrect 10 12.35%

Attached claim references 81 100%

Evaluation Set Correct attachments 36 46.75%

Incorrect attachments 1 1.30%

No attachment found 32 41.56%

No claim-subject/correct 2 2.60%

No claim-subject/incorrect 6 7.79%

Attached claim references 77 100%

by the rules. The figures show that the number of correct attachments is relatively
high while there are almost no incorrect attachments. The figures also show that the
percentage of parts for which no attachment was found is relatively high in both
data sets. One reason is that a Ref-Concept in a dependent claim can be provided
in a shorter form than the original New-Concept as for example a concept may be
introduced as “spaced-apart arms” in an independent claim and referenced with “the
arms” in the dependent claim.

Another reason is that some dependent-claim-subjects are not extracted correctly
due to erroneous POS-tagging. This affects especially the term “means”. This occurs
for phrases such as “The impression tray according to claim 1 in which the light-
reflecting means comprises a thin layer of reflective metal.”. In this case the term
“the light-reflecting” is extracted as the claim-subject instead of the term “the light-
reflecting means”. A possible solution would be to create a specific rule for the term
“means” in a similar way as is followed for extracting composition-parts.

The third reason is that the extracted claim-subject is not always the concept
which is refined. This is shown in the phrase “The impression tray according to
claim 5 in which the edges of the cover sheet are sealed to [. . . ]” where the
term “the edges” is extracted as claim-subject instead of the words “the cover
sheet”.

This problem is also reflected in the number of dependent claims for which erro-
neously no claim-subject was found. Most of those claims follow a structure where
the concept to which the part should be attached is written at the end of the sentence
such as in the claim “A teeth straightening bracket according to claim 1 character-
ized in that engaging fingers [. . . ] are disposed except for the both longitudinal ends
of the wire support”.
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10.7 Conclusions and Future Work

We have shown that the automatic analysis of patent claims using natural language
parsers can be dramatically improved by decomposing them first into smaller units
using a set of rules and heuristics. This research is a first step toward developing
sophisticated methods and tools to facilitate the work of patent information profes-
sionals by automatically analyzing, structuring and visualizing patent claims.

The developed method shows that rule-based decomposition of patent claims
is feasible due to the particular language used for drafting patents. The evaluation
shows promising results in terms of reduction of length and complexity of inde-
pendent claims and shows that the decomposition method eases the application and
raises the performance of existing information retrieval and information extraction
tools. A quality estimation for the correctness of the extracted parts shows good
results for physical entity claims where a high percentage of evaluated claims is
decomposed either correctly or with minor errors. While the decomposition rules
seem to be detailed enough for physical entity claims, additional work has to be
done for method claims as the extracted parts remain very often long and complex.
Further analysis has also to be done for dependent method claims for which cur-
rently no decomposition rules exist. The procedure for merging dependent and in-
dependent claims has to be extended and adapted for method claims. Particularities
of dependent method claims will have to be taken into account, as refinements may
be provided in different forms than in dependent physical entity claims. Regard-
ing the claim merging procedure for physical entity claims it should be evaluated
how the quality of the results changes when different string similarity measures and
thresholds are used. It should also be evaluated how the results change when other
terms are used for attaching the claim when no attachment can be found for the
dependent-claim-subject.

The evaluation on a large data set has shown that the rules created from the
analysis of a small data set containing only European patents are generic enough for
the IPC category A61C and that they can also be applied to US patents. Since the
rule set does not use any domain-specific keywords it is very likely that the rules can
also be applied to patents from other IPC categories. To test this hypothesis further
evaluation needs to be done on a data set containing patents from a wider range
of IPC categories in order to see how the performance of the rules depends on the
domain of the invention.

An important aspect regarding evaluation is to seek intensive cooperation with
researchers from the intellectual property domain for developing gold standards and
precise criteria for measuring the quality and the correctness of the extracted claim
parts.

To our best knowledge this work is the first approach of decomposing English-
language patent claims and can therefore be seen as a starting point for additional
work in various fields of patent information retrieval. Besides the visualization of
decomposed claims for improving readability as done in this work, the method can
be used for tasks such as document retrieval or computing structure-based similar-
ity measures. It can therefore be a contribution to the development of information
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retrieval methods especially tailored to the patent domain needed by various parties
such as patent offices, patent attorneys and inventors.
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Chapter 11
From Static Textual Display of Patents
to Graphical Interactions

Steffen Koch and Harald Bosch

Abstract Increasingly, visualisation is becoming a crucial part of patent search
and analysis tools. Due to the benefits for accessing and presenting large amounts
of data quickly, it is highly relevant for common tasks in the intellectual property
domain. Graphical representations become an even more powerful instrument by
adding interactive methods allowing for the user-guided-change of perspectives and
the exploration of the presented information. A close integration of interactive visu-
alisation into search and analysis cycles can leverage seamless search and analysis
environments, as proposed for similar tasks in the relatively new research field of
visual analytics. This chapter proposes such a visual analytics approach for the intel-
lectual property domain. One possible way to accomplish this integration is shown
on the basis of the research software prototype PatViz. The chapter contains a dis-
cussion of the benefits as well as the difficulties arising through the realisation of
such a system as well as an outlook on how the methods can be exploited for col-
laboration tasks.

Today, the amount of generated digital data is increasing rapidly and a large part of
these data is textual information. While the means to search for and within text doc-
uments have matured for some areas, such as web search, the fields of text mining
and high quality text analysis still pose a variety of problems. On the one hand, these
are intrinsic problems of natural language processing (NLP), information extraction
and information retrieval. On the other hand, human users have to formulate their
information need during search tasks, they have to interpret the results of search and
text analysis and they must be able to assess the quality of these results. The latter
are mainly perceptional and cognitive aspects.

The above-mentioned research fields, such as information retrieval, etc., already
provide (semi-)automatic methods and techniques, which relieve users of the bur-
den to read or skim through all available textual information. However, contextual
information that is required in order to judge a search result’s quality or to provide
the necessary background for formulating and refining a user’s information need is
typically provided in textual form. Reading text takes time, especially when high
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quality text analysis is of relevance. Many patent analysis tasks do require this type
of high quality analysis.

From the authors’ point of view, there ultimately is still no alternative to reading
a patent document, when it comes to understanding all its technical and legal details,
even considering the impressive progress in natural language processing and simi-
lar fields within recent years. However, interactive visualisation orchestrated in an
intelligent manner presents a good opportunity for shortening analytic cycles dur-
ing patent analysis, thus helping patent searchers in building trust in their queries
faster, performing analytic steps more quickly, and leverage mining techniques that
are not very common in patent analysis tasks, since they are difficult to understand
and control without the provision of visual feedback.

To achieve these goals, a much closer integration of retrieval and NLP tools with
visualisation has to be accomplished as well as their seamless embedding into the
patent analysis process itself. Such integration can only be achieved by combining
visualisations with mechanisms allowing for interactive connection to search and
analysis services. The research area of Information Visualization (cf. [1, 2] and [3])
provides a multitude of techniques and methods to explore, present and understand
abstract information. This also encompasses a broad variety of techniques for doc-
ument and text analysis.

In recent years, a new research field called ‘visual analytics’ has been established.
An overall goal is to address situations where users have to deal with huge amounts
of data and where fully automated solutions are not applicable, since the analysis
requires human insight, judgement and the ability to make complex decisions. For
certain tasks, the combination of automatic analysis techniques and visualisation
techniques can help to bridge this analytical gap by including human analysts di-
rectly in such a process. Interaction plays a vital role in making this combination
beneficial to analysts, since it creates the glue needed for steering the exploration
and analysis of its outcome. Hence, visual analytics encourages a more holistic view
of the problem space or task at hand. As mentioned above, general scenarios that
profit from visual analytics approaches are comparable with the situation for patent
analysis tasks.

This chapter highlights the fundamental aims of visual analytics and argues how
they can be applied to and exploited for patent analysis. This encompasses the dis-
cussion of a variety of aspects, such as patent visualisation and interaction tech-
niques, users and tasks, integration into a patent analysis processes—logically as
well as from a technical point of view—and an outlook on different devices and
platforms suitable for “visual patent analysis”. In order to provide an overview of
current and future research for possible solutions and corresponding design require-
ments, one particular example from a current research prototype is included.

11.1 Visual Patent Analysis

In 2005, Thomas and Cook published ‘The Research and Development Agenda
for Visual Analytics’ [4]. Even though their focus is on the prevention of terror-
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ist threats, recovery from natural disasters and other emergency situations, the gen-
eral approach they propose for visual analytics can be adopted to a large variety of
civil application and business use cases, as Keim et al. describe in ‘Mastering the
information age—solving problems with visual analytics’ [5]. Accordingly, many
works in visual analytics research deal with document analysis in a broader sense,
because intelligence data often come in written form, and textual business news are
important in financial analysis tasks, for example. This trend is clearly reflected in
those research papers published on the ‘IEEE Symposium on Visual Analytics Sys-
tems and Technologies’,1 which apply the approach to fraud detection in the finance
sector [6] or investigative analysis [7].

As all visualisation research disciplines, visual analytics exploits the exceptional
characteristics of human visual perception. More information is perceived through
this channel than through all other human senses taken together. Due to the broad
bandwidth of the human optical apparatus, visual information as provided in form
of images can be processed in a highly parallel manner. This holds true for special
visual properties such as shapes and edges. Unfortunately, the situation is different
when it comes to reading written text. Evidence suggests that additional parts of
the human brain are involved here, in comparison to those responsible for visual
interpretation. As a consequence, parallel perception, at least of considerably large
amounts, of contiguous textual information is hardly possible [8].

However, spoken and written natural language is the most ubiquitous information
and natural language supplies us with the world’s most developed symbol system.
Providers of patent analysis tools must therefore decide carefully for which task and
how visualisation can be successfully exploited for patent analysts. As mentioned
above, images can support users in perceiving rather large amounts of informa-
tion in parallel, but they are not a suitable substitution for textual information. In
cases where the understanding of facts can be transported more quickly or where
additional insight can be drawn from visualisation, its application is justifiable and
useful. Nevertheless, textual information and images are often used in combination,
for example, in form of labels, since they are important, particularly in a textual
domain, such as IP, to provide users with the necessary context, particularly in a
textual domain, such as intellectual property. Interactive visual means can bridge
the gap between obtaining a high level overview and detailed information, at least
to certain degree. The closer one moves towards a very detailed view, ending at the
textual content itself, the more difficult it becomes to aggregate and summarize the
textual meaning visually. However, even on levels very close to textual representa-
tion, visual hints, such as highlighting named entities and semantic relations, can
help users to gain insights into the reasons why a specific document made it into
the result set. Subsequently these hints can be used to restrict or widen a query for
further iterations if it does not meet a user’s expectation. Techniques for visualis-
ing textual information in digital libraries and knowledge domains are described in
Börner et al. [9, 10].

1In 2010, the former ‘IEEE Symposium for Visual Analytics System and Techniques’ is a full
conference collocated with the ‘IEEE Conference on Visualization’ and the ‘IEEE Conference on
Information Visualization’, all three being part of the enclosing VisWeek event.
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The key for integrating visualisation into analytic processes is interaction. In-
teraction enables users to drill down on interesting aspects identified in a visual
representation, for example by providing zooming, panning and filtering, in order
to access the details they are looking for. This very common approach has been
aptly expressed by Shneiderman’s [11] information seeking mantra: ‘Overview first,
zoom and filter, then details on demand’.

The research discipline of information visualisation is concerned with finding
meaningful interactive visual representations for abstract information. Closely re-
lated is the field of human–computer interaction (HCI), where the research effort
focuses on cognition and perception as well as on how users can be supported
in their tasks with computers. Hereby, hardware and software issues are covered.
Hence, interaction with visualisation and graphical user interfaces is, of course, a
part of this wider area of interaction research.2

Visual analytics is a research discipline that spans the fields of visualisation,
human–computer interaction, data mining and machine learning (including clus-
tering and information retrieval, which have been discussed in previous chapters of
this book). This is completed with the investigation of suitable models capable of
dealing with large amounts of potentially heterogeneous, ambiguous and uncertain
data. Visual analytics can therefore be regarded as a branch of scientific research that
deals with challenges arising from the vast amounts of digital information produced
by today’s society. Concepts developed in this field therefore have the potential to
be exploited successfully in patent analysis.

11.1.1 Supporting Analytic Tasks by Exploiting Interactive
Visualisation

There exists a variety of commercially available software systems for patent search
and analysis. Since these have been presented in other works,3 this section neither
intends to provide a comprehensive overview of current patent software nor an eval-
uation of them with respect to interactive visual capabilities and their integration
into analytic cycles.

Instead, this section takes an academic perspective on this topic. It attempts to
provide an outlook on how interactive visualisation could be exploited in order to
support users in fulfilling their tasks. It also emphasises that most patent-related

2Very well-known are conferences such as the ACM SIGCHI. Additionally, a variety of scientific
journals, for example, the ACM Transactions on Computer-Human Interaction, constitute further
important resources for this area of research. The mentioned textbook [2] focuses especially on
interacting with visually displayed information, while [12] provides a broader view on interaction
techniques.
3Trippe describes a set of common tasks for patent search and analysis in [13], and provides an
overview of commercial tools to tackle them [14]. A more recent survey can be found in Yang et
al. [15]. Moehrle et al. [16] also contribute a current outline of commercial systems and relate them
to a taxonomy based on a business process model.
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tasks are performed in an iterative manner. Searches typically do not end after for-
mulating the first query. Rather the query will be modified several times after exam-
ining the characteristics of the corresponding result set until the patent searcher is
confident that the remaining set fulfils the requirements regarding recall and preci-
sion. The same is true for more abstract tasks, such as developing patent strategies or
analysing those of competitors: hypotheses will be developed and checked against
information retrieved from patent repositories. According to the findings, hypothe-
ses will be modified and (in-)validated; again the initial query formulation may be
subject to modification. These working patterns are comparable to tasks that are per-
formed by analysts in intelligence [17]. A separation of retrieval and analysis stage,
as well as its reflection in the user interface, can be counterproductive. Therefore,
the direct support of these iterative patterns in an integrated and extensible manner,
utilising interactive visualisation within each of them, seems a promising approach
for the patent domain.

Most of the currently available tools for patent search and analysis exploit visu-
alisation for the generation of reports. This is a valuable means for presenting anal-
ysis results, also to non-specialists, as well as for building a common understanding
within collaborative tasks. Some of the tools go further by providing users with
the means for interactive exploration of citation graphs, patent families and other
‘patent network’ information, typically using node-link representations or matrix-
like views. Others encompass the visualisation of clustering results, aggregation of
bibliographical data from patent sets, etc. In terms of supporting the overall analy-
sis process, most of the currently available systems offer support for the subsequent
tasks of search, result set presentation and access to the patent details. In general,
an increase in using information visualisation techniques within patent analysis and
search tools can be observed in recent years. While all of these usages are valid on
their own, there is, however, still a lack of integrating them into larger analytic cy-
cles that do not only address a very specific situation, but offer the possibilities to
transport insights4 gained from multiple visual perspectives and reuse them directly
in subsequent tasks.

In order to exemplify usage of visualisation during patent analysis as well as its
seamless integration into analytic processes, a rather abstract view on the different
stages of patent analysis is provided in the following paragraph. Based on this ab-
stract view, possible solutions demonstrating visual support for analytic loops are
presented in form of the patent analysis interface PatViz5 [19]. PatViz has been
developed as a research prototype during the European project PatExpert6 [20] in
context of the framework program 6. Since 2008 the German Science Foundation

4Chen et al. suggest a theoretical framework for the management [18] of (visual) insights that could
be used as the basis for insight transport.
5The PatViz visualization system is used here as an example for the following reasons: both authors
have been involved in its development and are therefore familiar with its architecture. Furthermore,
it has been developed as an academic prototype with the ideas in mind that are presented here.
6http://www.patexpert.org.

http://www.patexpert.org
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Fig. 11.1 The abstract patent
analysis process with its three
stages

(DFG) as part of the priority programme ‘Scalable Visual Analytics’ has funded its
further development.7

Many patent tasks involve searching for patents, the analysis of retrieved result
sets and the detailed inspection of patent documents themselves. Typically this re-
quires iterative adaptation of the query, driven by insights gained from intermediate
patent result sets and the inspection of the documents contained therein. This ab-
stract process is not only executed during prior art search, but similarly in cases
where the analysis goals are shifted to searching for infringing patents, and in order
to monitor competitors or to observe certain fields of application and technologies.
Figure 11.1 illustrates the abstract process of patent analysis and the paths users
may take through it. While the boxes/nodes describe the different stages, the paths
depicted by arrows symbolise interactive tasks and analytic feedback loops.

7http://www.visualanalytics.de.

http://www.visualanalytics.de
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Fig. 11.2 Navigation within
one stage of the abstract
patent analysis process.
(A) denotes interaction paths
in one view. (B) indicates
interaction paths across views

11.1.2 Visual Analysis on Single Views

At small scale such feedback loops are already useful on a single perspective (see
(A) in Fig. 11.2). This holds true for all three analysis stages, including query for-
mulation, the views aiming at result set exploration as well as the detail views.
A typical example from patent analysis is the exploration and filtering of a list or
table-based result set, showing the titles and other information of patents that have
been retrieved according to a previously executed search request. Tools that provide
such list-based interfaces usually allow for the sequential exploration of the table
via scrolling and paging mechanisms, enabling users to judge how reasonable the
results are according to their needs. Combined with facilities for sorting and filtering
the results with regard to bibliographical data and the possibility to inspect single
patents in detail, such a view is a powerful means to explore search results. It already
covers a considerable part of what is stated in Shneiderman’s mantra [11]. However,
problems arise if the result set under analysis exceeds a certain size, since it takes
time to scroll through the result list and skim through the titles, respectively, in order
to judge the relevance of the results. Furthermore, if sorting is used, this allows only
for inspecting the result set regarding one feature, most often not multiple features.

Solutions offering visualisation can provide different perspectives on such a re-
sult set, thereby taking advantage of the users’ perceptional skills. This does not
mean that tools as the one described in the previous paragraph should be replaced,
but it can be of great advantage if other views offering different analytic possibil-
ities are provided additionally. Depending on the aspect analysts are focusing on,
different kinds of visualisation can be useful. If, for example, the scope of interest is
countries where a certain patent or patent set is in force, presenting a map that shows
these countries, plus the number of valid patents, comprises a straightforward way
to transport this insight to users. Offering a variety of these visual perspectives in
parallel increases the possibilities for further analysis as will be discussed in the
following section. Linking different perspectives, such as the selection of a patent
sub set in one of the views and its reflection in the others, increases analytic pos-
sibilities further, making them more powerful than the sum of the single views in
terms of analytical possibilities. Cross verification of separate features in the patent
set can help to obtain a quick overview without posing the need to investigate the
presented information in a sequential manner over and over again. To some extent,
such schemes can already be provided by single visualisations, such as bar charts,
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Fig. 11.3 Multiple coordinated views of a patent search result in PatViz. The currently selected
aspect (P.R. China) is marked. Related aspects of the underlying patent document model are high-
lighted accordingly

scatter plots and parallel coordinates [21] capable of displaying two or more aspects
within a single view. However, the adequacy of a visualisation technique depends
on the type of data to be shown as well as on the task to be accomplished with its
help. Accordingly, not all graphical perspectives are well suited to display arbitrary
types of information and different methods have to be employed for showing geo-
spatial, temporal, hierarchical, network-based, etc. data. A well-balanced task and
data aligned selection of visual tools is therefore indispensible [11].

11.1.3 Using Multiple Interactive Views

Multiple coordinated views are an appropriate technique to support larger analytic
cycles by integrating different perspectives of the same problem space. This corre-
sponds to the analytic cycle depicted in Fig. 11.2. An overview of multiple coordi-
nated views can be found in Roberts [22]. Figure 11.3 shows such an example from
the research prototype PatViz. Here, users are enabled to activate and use a set of dif-
ferent perspectives on the same patent result set. Each of the views allows for a dif-
ferent set of interactions, which are adapted to the information presented, still trying
to support uniform interaction gestures such as zooming and panning/scrolling, in
order to lower the burden of learning how to use the views in an interactive manner.
Additional mechanisms, e.g., brushing and linking, create the glue to draw further
benefit from inspecting several views on the same workspace. Hereby, the selection
of an aspect in one view is immediately reflected in the others through highlighting
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Fig. 11.4 The combination of aspects from different views in the selection management com-
ponent. The top nodes in the graph depict the selected aspects. Their respective patent sets are
represented by the nodes in the middle. The node labelled with the symbol for disjunction (bottom
left) depicts an intersection operation resulting in another patent document set (bottom right)

(see Fig. 11.3). Accordingly, it is obvious to see how the selected patent documents
are distributed considering other patent-related aspects. However, a variety of prob-
lems arise from introducing brushing and linking for such scenarios, aside from
the issue of uniform interaction access. One such problem is how to define suitable
semantics for selection in each of the views.

In a simple bar chart as shown in Fig. 11.4, which displays the applicants of a
patent set under inspection and the number of applications, it is already difficult to
agree on such semantics and to decide on an adequate interaction mechanism like
pressing a key, clicking a mouse button or applying a mouse gesture. Given that
a mouse click is used to perform selection operations on the applicants bar chart:
what does it mean if a user clicks on a bar indicating that applicant X holds seven
patent application within the investigated patent set? Does it reflect the selection of
applicant X, or the selection of the patent documents which fulfil the property of
having X as an applicant? Another interpretation could also be the selection of all
applicants having exactly/more than/less than seven patent applications or again the
respective patent documents. While typically some of the alternatives seem to be
intuitively more reasonable than others, this example shows clearly that selection
semantics have to be defined, not only for the discussed view, but also for all of
them. Furthermore, this decision also influences the model that has to be created
for dealing with patent documents and their properties within the visualisation and
interaction module.

In PatViz the patent document was chosen as the primary object of interaction for
consistency reasons regarding user interaction, as well as for building the model.
This means that all selections translate to constraining properties of the current
patent document set. In the case of the applicant bar chart, clicking on a node there-
fore results in the selection of all patent documents with the respective applicant.
Nevertheless, operations such as the selection of patent documents by applicants
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with a specific amount of applications in the set can be realised by sorting appli-
cants according to their number of patents within the set and by enabling users to
select several bars at once. In PatViz this kind of multi selection, however, is re-
stricted to take place within one of the views in the multiple coordinated views and
is interpreted as a union of constraints by default. The very same model is used
for all the different views available for patent set inspection, which are shown in
Fig. 11.3. These comprise perspectives for analysing result sets according to their
distribution in classification systems, including facilities for examination of patent
co-classification, the already mentioned map indicating where patents of current set
are in force, a timeline view, a graph view showing document relations according to
user-selectable patent properties, a tag cloud highlighting the most frequent terms
in the set under inspection, and others.

In situations where different selections from multiple views should be combined
in order to explore the filtering and widening effects on the patent set under analysis,
the proposed approach is not feasible anymore. One possibility to allow for multi
selection from multiple views is to define implicit inter-perspective Boolean opera-
tions, for example, combining the selections from different views by set operations.
However, additional mechanisms are needed to support arbitrary and user-defined
combinations of such selections. In PatViz this additional feature comes in form of
a graph-based selection management tool. A selection can be easily transferred to
this tool by drag and drop operations or by using the selection management’s con-
text menu. Besides facilities for combining selection by Boolean operations, the tool
also enables users to filter according to properties of the patent subsets, to explore
different combinations representing users’ hypotheses in parallel, and to highlight
arbitrary subsets within the graph in all views available for result set exploration.
When selections are transferred to the tool, not only the set of selected patents is
handled, but also the selection semantics is stored and preserved. This is an impor-
tant aspect when it comes to iterative query improvement which will be discussed
later in this chapter.

The tool for selection management again increases the analytical possibilities
for patent analysis to an extent which exceeds the expressiveness of most available
patent tools providing visual analysis. The techniques described in this section relate
to the arrows depicted in Fig. 11.4. A similar technique for the exploration and
filtering of multi-dimensional data sets has been proposed in [23]. Approaches using
different visual representations are described in [24, 25].

With Polaris,8 Stolte et al. [26] proposed a system that is not restricted to a single
object of analysis and provides more analytical freedom with respect to relational
analysis. It thereby combines visual information exploration, interactive analysis
features and visual query mechanism intelligently. However, this approach cannot
be applied in a straightforward manner any more, if different retrieval systems that
do not follow a relational paradigm—for example, text retrieval systems or semantic
repositories—have to be addressed by a visual frontend.

8The technology described in Polaris has been successfully commercialised by Tableau Software:
http://www.tableausoftware.com/.

http://www.tableausoftware.com/
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11.1.4 Visual Support for Multiple Retrieval Facilities

Most available tools for patent search9 provide query facilities either in a form-
based way or offer formal textual query languages. Normally, in both cases Boolean
operators can be used for specifying and combining multiple constraints on textual
content and bibliographic information. Typically, form-based approaches realise the
Boolean definitions explicitly within fields, for example, by letting users search for
a certain combination of keywords within a specified part of a patent document,
but also implicitly by combining the fields within a form with either AND or OR
operations. The forms reflect the design of patent documents, thereby providing
additional hints to users regarding information they are requesting. Textual query
languages normally provide a greater degree of freedom with respect to the way
the single building blocks of a query can be defined. This freedom, however, comes
at the cost of implicit clues about which parts of the document are addressed by a
query, since there is no order of the statements required that reflects the layout of
patent documents. Nevertheless, formalised query languages are the first choice for
experienced users: having learned the query syntax and given the knowledge how to
use them efficiently, queries can be stated in a much more straightforward fashion,
in addition to the fact that they are more powerful.

During the development of PatViz several different search back-ends have been
created by partners within the PatExpert consortium. These had to be supported
by the visual front-end and they encompass: keyword search (text retrieval sys-
tem), metadata search (bibliographic data and metadata accessible within a rela-
tional database), image similarity search and semantic search.

In order to integrate these different retrieval facilities, the Boolean paradigm for
integrating them into one single query interface has been chosen in PatViz. Since
Boolean search facilities are very common in patent search, combining multiple
back-ends using such a strategy was a feasible solution. However, a problem arises
from the fact that such search systems are addressed very differently in terms of
the query mechanisms and languages they offer. As a consequence, different query
languages have to be combined and, even worse, all of them have to be learned
by analysts if they want to exploit the full expressiveness of the resulting system.
In order to diminish these negative effects, a visual representation for building the
query has been proposed as part of the PatViz prototype, allowing for both textual
as well as visual query creation. The latter combines visual metaphors and textual
artefacts and presents them in a way similar to the well-known ‘syntax diagrams’
[28]. Boolean AND operations are thereby represented as sequences, while OR op-
erations are mapped to branches in the visual view. A comparable approach to the
one described here has been suggested by [29]. Again, a multiple coordinated view
on the two query representations has been established as is shown in Fig. 11.5. At

9Marti Hearst’s book, ‘Search user interfaces’ [27] gives an elaborate overview of strategies and
current state of the art in searching within digital repositories. Especially Chaps. 3 and 10 are
highly relevant in the context of this section.
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Fig. 11.5 Linked textual and visual query representations. The textual representation highlights
the block on which the mouse is situated in the visual representation with a grey background

first glance there might be no obvious difference between creating a complex tex-
tual interface and representing the same complexity with visual metaphors, which,
of course, also have to be learned. However, building queries visually has a num-
ber of benefits, which can help users in learning how to set up complex queries
in the described environment. One advantage is the provision of a better overview
and higher clarity of the single parts of the query and its overall construction by
representing Boolean operators graphically. Especially large and complex Boolean
constructions can be understood more easily, since operator scopes are much more
apparent. A visual query representation is already useful when addressing just a
single search facility. Another benefit is that only valid queries can be built by inter-
active visual construction. Constraints that are possibly unknown to first-time users
can thereby be chosen based on the options provided in context menus. Further-
more, the visual query tool provides features for scope highlighting in both query
representations and the possibility to move or delete whole query blocks by direct
interaction if they are found to be placed wrongly within the complete query. Ad-
ditionally, the coordinated views of the queries can be exploited for learning the
textual query language, since all changes made in the visual part are reflected in the
textual part.

In order to accomplish the combination of different search back-ends and their
integration using the Boolean paradigm, a hierarchical query parser/generator con-
cept has been developed. The hierarchical parser facilitates the integration of new
retrieval back-ends and their corresponding query languages, simply by specifying
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the formal grammar of the query language, resulting in the generation of the re-
quired parsing facility. The graphical metaphors, apart from representing Boolean
combination, however, still have to be defined programmatically at the moment,
since developing mechanisms for dynamic description of arbitrary visual represen-
tations poses a great challenge.

11.1.5 Closing the Loop for Iterative Patent Analysis

Having described the analytic loops within all stages of the abstract patent analy-
sis cycle, the loops between the different stages have not yet been addressed. Some
of these inter-stage transitions are normally triggered by very common user inter-
actions and the resulting views are displayed accordingly. This is the case for the
presentation of results set views as a consequence of sending a correct query to
some retrieval back-end or by loading a pre-existing patent portfolio. The same ap-
plies to showing detail views if one patent or a specific aspect of a patent is clicked,
e.g., in a tabular view listing all patents of a result set. These paths are supported by
all patent search and analysis tools. Unfortunately, support for reintegrating findings
of result set analysis and inspection of patent details for either iterative refinement
of the search or the analysis, is rare in such tools. Yet, particularly the reusing of
insights gained from one step of patent analysis, including those obtained from vi-
sual representations, drive the iterative processes that are typical for patent analysis
tasks. In order to accomplish interactive insight integration, the definition of appro-
priate selection semantics and an adequate model are important prerequisites as will
be argued in the following paragraphs. Visualisation and interactive techniques can
leverage this insight transport elegantly. The approach taken in the development of
PatViz will again be used as an example to describe possible solutions for accom-
plishing this reintegration.

PatViz provides different ways to integrate important findings gained through the
exploration of the patent result set perspectives and detail views. The first option is
the direct selection of a specific finding from one of the views and either to drag
it to the current visual query representation or to integrate it in the query using the
available context menus. While the mentioned mouse gestures and visual require-
ments for the interaction methods can be implemented in a straightforward manner,
it is not possible to guess automatically a user’s underlying intention, e.g., which
aspect should be constrained or widened. To some extent this problem can be re-
solved by applying the selection semantics in the same manner as discussed in the
paragraph on the usage of multiple views. Thereby, the defined semantics implicitly
determine the constraints that are transported into the query to be extended. An ex-
ample is the selection of a term from a tag cloud view dragged into the visual query
representation and combined with the existing query.

This already indicates the next issue, namely the realisation of a multi search
back-end approach as implemented in PatViz. Here the definition of selection se-
mantics is obviously not sufficient since the information via which back-end service
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Fig. 11.6 Iterative query refinement through analysis of patent result sets

the data can be retrieved is missing. A view such as the tag cloud showing the patent
set’s most important terms as well as the patent text fields represented in a detail
view are related to key word retrieval. Similarly the details dragged from the world
map view or the applicant bar chart can only be attached to a new or existing query
part addressing the relational back-end where bibliographic information is available
from. Interesting semantic relations or images identified in the corresponding detail
views can be attached to query parts, addressing semantic search or image similar-
ity search accordingly. Every view must therefore also provide information about
which visual aspect can be retrieved from which back-end. In most cases this is a
one-to-one relationship where each view is associated with one back-end service.
The information on whether the query should be widened or restricted by insight in-
tegration can, however, only be supplied by the users themselves. While it is possible
to indicate during interaction—by dragging a term or other constraint to a specific
location in the query to be modified, or by choosing from context menu whether it
should be attached via an AND or an OR—it is very difficult to realise this for all
Boolean operators and search back-end specific modifiers. In PatViz, for instance,
an operator such as Boolean NOT has therefore to be added explicitly by the user
in a second step. While the selection semantics determine the initial constraint of
the visual insight being moved to the query, these can, of course, still be changed
afterwards according to a user’s intention by manipulating the query visualisation
directly.

The described interactive transport mechanism also works for multi-selections.
The provided selection management tool enables users to transport insights for
query refinement found through complex and combinatorial analysis (see Fig. 11.6).
An important requirement that must be met by systems allowing for iterative insight
integration is that filtering complexity does not exceed the expressiveness of query
back-ends, regardless of whether multiple back-ends are employed or not.
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11.2 Exploiting Interactive Visualisation for Collaboration

Collaborative visual analysis, including related topics such as result presentation,
teaching analytic tasks, analytic accountability and many more, is also a distin-
guished research topic in visual analytics. Interesting works such as [30] and [31]
have been proposed in recent years. Since collaborative approaches are useful within
a variety of patent analysis tasks, this section presents some of these collaboration
aspects.

The described approach taken in PatViz also addresses some aspects of collab-
orative patent analysis. Every analysis cycle is recorded in order to enable analysts
to access previous findings and to perform undo steps if a hypothesis turns out to be
not successful regarding the aims of an analytic task. This feature can be exploited
in collaborative scenarios, since single improvements of the query are easily trace-
able for other analysts. Moreover, the described selection management tool offers
implicit provenance information for each cycle, because the graph is stored together
with all corresponding visual perspectives. If the selection management tool is used
for the analysis, single steps, such as the selection of certain information from the
views as well as their combination leading to potential reintegration into subsequent
queries, can be easily followed.

The queries stored in each iteration encode the (intermediate) results of a whole
analytic step in a formal manner. Furthermore, the visual query builder enables users
to create, save and reuse parameterisable queries. A parameterised query is set up as
a template query. Variables can be applied in those parts that should be configurable
and have fixed positions once the query is saved. Upon loading the query, users are
prompted to provide a valid input value for each parameter. This mechanism allows
for the creation of forms that represent a good starting point for an initial query
targeting a special patent search task or that at least support users with templates
and basic strategies for common search objectives.

Depending on the scenario in which collaboration tasks should be accomplished,
a variety of different collaboration strategies, software and hardware set ups are
interesting. Typically, dimensions such as synchronous/asynchronous collaboration
and distribution/collocation working set ups are differentiated here. PatViz supports
asynchronous and distributed cooperation tasks, since it was developed using stan-
dardised communication means, such as web services and platform-independent
visualisation techniques. The usage of high-resolution displays and multi monitor
set ups [32] is of advantage for single users, because it allows for the efficient ex-
ploitation of many different visual perspectives in parallel. Similar set ups are com-
mon in stock trading applications, business intelligence, etc. PatViz, however, can
be adapted to support collaboration among different persons working together in
the same location. Figure 11.7 shows the PatViz user interface running on a high-
resolution screen where several persons can inspect, analyse, discuss and present
patent information collaboratively. This approach is quite common in strategic com-
mand centres, emergency response centrals and other highly collaborative scenarios.
In collaborative visual analysis, high-resolution displays provide the further advan-
tage of showing a high number of visual primitives in parallel. This diminishes the
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Fig. 11.7 The PatViz desktop on a large back projection display during a collaborative analysis
session

need for extensive information aggregation and offers the possibility to show large
amounts of information at once. Such approaches have been researched for fields
such as telecommunication and computer network analysis [33]. However, interac-
tion with large displays, especially when working collaboratively, poses a variety of
challenges regarding interaction [34].

11.3 Discussion and Outlook

In this chapter several aspects of interaction and visualisation in the context of
patent analysis have been discussed and possible solutions have been suggested us-
ing PatViz as an example. It should be mentioned that integrating interaction in
visual perspectives for analysing patent information introduces a number of issues:
from the selection of interaction gestures and suitable metaphors, layouts, and pre-
sentation forms of visualisation to the choice of suitable selection semantics, to fore-
seeing the integration of a variety of different views and their meaningful linking to
the integration of retrieval services. Clearly, the complexity increases from a techni-
cal as well as from a logical point of view in comparison to classic, mainly textual or
table-based user interfaces. Another important aspect to be emphasised are the users
and their ability to understand graphically presented information and to learn how to
interact with it in order to benefit from the available analytic paths. The interaction
methods suggested in this section are often implicit, since no obvious interaction
elements such as buttons or menus are provided, and not all of the visual means are
self-explanatory without previous learning. Evaluation of the PatViz system showed
that analysts are not used to interacting with graphical perspectives in order to fulfil
their tasks and training is needed before they can use the system efficiently. How-
ever, all of them acknowledged the benefit of the analytical power and flexibility
these techniques provide. Considering the time and effort it takes to become a spe-
cialist in patent retrieval and taking into account the community of experts, who
built their patent analysis competence using available tools, existing systems should
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not be replaced by interactive visual methods; however, they should be evolved by
integrating interactive visualisation to support analytic loops on different levels.

Visual analytics methods are a very powerful means for patent analysis, since
visual feedback can help to perceive and assess search results more quickly, thereby
increasing users’ trust in the validity of their searches and findings during analysis.
This is also of special importance for tuning queries to provide higher recall faster,
since classic approaches require browsing the information sequentially, which is
costly in terms of time. In this case, comparing subsequent results is a promising
possibility to observe the effects of modified queries in less time. What has been
presented in this chapter is only a first step in this direction. Many other improve-
ments can be realised employing interactive visualisation. For example, the usage of
non-Boolean retrieval can be leveraged, thus making it easier to compare and judge
the results of several search approaches in parallel. Visual analytics can also enable
non-specialist users to exploit clustering methods, machine learning techniques and
natural language processing tasks more successfully. Here, visual perspectives can
support users by displaying the outcome of such (semi)automated approaches, while
interaction methods can be supplied to give feedback in order to recluster, retrain or
parameterise them. Applying such strategies can relieve the users of the burden to
understand the complexities of these automatic methods by letting them manipulate
the underlying mechanisms simply through interacting with visualisations. Promis-
ing works in this direction have been published in [35] and [36].

In the development of systems and tools for interactive patent analysis, the main
goal is not the invention of new sophisticated visualisations; rather the well-known
and established methods have to be combined in an intelligent and seamless manner.
The research field of visual analytics develops methods, which achieve the transition
from static textual displays to graphical interactions for patent analysis. From the
authors’ point of view, it can therefore be beneficial to trace the developments in
visual analytics closely in order to integrate them in future analysis tools tailored to
the patent domain.
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Part IV
Classification

As noted in the introductory chapter by Alberts and colleagues, almost all patent
documents are classified according to the International Patent Classification (IPC)
and possibly also one or two other classification schemes, like the United States
Patent Classification (USPC) or the European Patent Classification (ECLA). These
classification systems are hierarchical, detailed and extensive. For example, the IPC
has over 60,000 subgroups (the finest level of classification) arranged in eight sec-
tions, corresponding to major areas of technology.

This wide availability of classification has many implications for the operation of
the patent system. Many professional patent searchers make extensive use of clas-
sification codes to restrict and narrow their searches. The patent offices put very
significant effort into ensuring that patents are classified in a comprehensive but
accurate way: they are very interested in means of automating the task or assist-
ing examiners with the classification process. Technical opportunities arise for IR
and Machine Translation researchers and technologists, for example to utilise the
classification of a patent when attempting to automatically acquire new vocabulary.

The challenge here is two fold: First, search technologists must find ways to as-
sist the patent applicants and the patent offices to classify their documents. Second,
they must find ways to leverage the classification of patent documents to improve
the automated parts of search systems, going beyond merely restricting result sets
to particular patent classes. For example this might include recognising in the auto-
matic indexing cycle that the same term means different things in different areas of
technology.

This part is comprised of three chapters about patent classification. Benzineb and
Guyot start the part with a chapter on the issues, utility and state-of-the-art of Au-
tomated Patent Classification tools. Then, Koster and colleagues go into uncharted
territory and introduce a new way to look at documents, beyond the usual bag-of-
words model, and apply it to identify the ‘aboutness’ of a document, and relate that
to the classification of a patent. The final chapter, by Harris and colleagues, focuses
on the use of patent classification data in a highly automated patent prior art search
system, and formally show what was perhaps known, but never proven: that using
classification in the search process helps, and that different classification systems
have different utilities in the search process.



Chapter 12
Automated Patent Classification

Karim Benzineb and Jacques Guyot

Abstract Patent classifications are built to set up some order in the growing num-
ber and diversity of inventions, and to facilitate patent information searches. The
need to automate classification tasks appeared when the growth in the number of
patent applications and of classification categories accelerated in a dramatic way.
Automated patent classification systems use various elements of patents’ content,
which they sort out to find the information most typical of each category. Several
algorithms from the field of Artificial Intelligence may be used to perform this task,
each of them having its own strengths and weaknesses. Their accuracy is generally
evaluated by statistical means. Automated patent classification systems may be used
for various purposes, from keeping a classification well organized and consistent, to
facilitating some specialized tasks such as prior art search. However, many chal-
lenges remain in the years to come to build systems which are more accurate and
allow classifying documents in more languages.
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12.1 Introduction

An efficient way to facilitate the retrieval of objects is to arrange them beforehand
according to an order, which makes sense for most of the people who will do the
searching. A good illustration is the way books are organized on the shelves of a
library: they are generally grouped by subject, so that the searcher is easily oriented
toward the relevant area. A side advantage of this method is that reaching to any
specific book automatically provides you with more information on the same topic.

Such is the purpose of classification. The more information you have to man-
age, the more structured and detailed your classification should be to allow for easy
navigation and precise search.

This chapter is meant to explain how classification supports patent management
and retrieval, why it is useful to automate it, and how this may be done. Automated
patent classification (hereafter APC) has several objectives, which are defined in
Sect. 12.2 below. Two of the most widely used patent classifications, namely IPC
and ECLA, are reviewed in Sect. 12.3. The structure and content of patent col-
lections used to build automated classification systems are described in Sect. 12.4.
Selected algorithms and tools on which classification software is often developed
are explained in Sect. 12.5. Various evaluation approaches of APC are suggested in
Sect. 12.6, Use Cases are presented in Sect. 12.7, and the main challenges of APC
in the close future are discussed in Sect. 12.8.

12.2 Definition and Objectives of Automated Patent
Classification

12.2.1 Definition

Automated patent classification may be defined as the process by which a computer
suggests or assigns one or several classification codes to a patent on the basis of the
patent’s content. This definition implies that several conditions must be satisfied:

• a taxonomy, i.e. a patent classification in which each category is clearly defined
and has a unique code, must previously exist;

• a full collection of patents previously classified by humans under that classifica-
tion must be available to train and test the system;

• the content of the patent to be classified (text and possibly pictures, graphs, etc.)
must be in electronic format so as to allow for computer processing.

Although these consequences appear to be trivial, they place a heavy constraint
on the very possibility to build an automated classifier because one of the most
difficult parts is generally to find or build a training set of patents, which is large
and well distributed enough.
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12.2.2 Objectives

The overall objective of patent classification is to assign one or several category
codes to a patent, which is not categorized yet in a given patent classification sys-
tem. The objective of automating the process is to make it much faster and more
systematic than the human process, thus saving time and costs.

• Faster: Human examiners must read the whole patent text, than browse the clas-
sification categories which seem most relevant to them, and finally make one or
several choices. The whole process can take up to several hours, while a computer
performs the same task in a matter of milliseconds.

• More systematic: Human classification may be subjective because it is based on
an individual examiner’s judgment (which in turn depends on his/her education,
experience and mindset) and because it is entrusted to a large number of examin-
ers (up to several thousands in some Patent Offices).

Automated classification systems tend to make the same choices under the same
conditions; this leads to more harmonized results. Beyond this immediate objective,
APC has in fact a deeper purpose, which is twofold: it has an organizational mission
and it must facilitate search tasks.

12.2.2.1 Organization

The essential process of classification is tagging, i.e. assigning a code to an element,
which must be classified. In the case of patent classifications, the number of codes
to choose among may be extremely high: The International Patent Classification
(IPC) has over 60,000 categories and the European Patent Classification (ECLA)
has about 129,000.

Besides, the number of patent applications to classify is also very large and it
keeps growing: according to statistics from the World Intellectual Property Orga-
nization (WIPO), over 1,850,000 patents applications were filed in 2007, up from
about 926,000 in 1985.

APC’s organizational mission is to assign to those patent applications a classifi-
cation code in order to preserve the consistency of an order which was defined by
human experts. It puts patents “where they belong”. This can be done for new in-
coming patents, but also backwards on previously categorized patents in order to re-
arrange them when the classification was modified (this is called “re-classification”).

As a side product of this role, APC also allows building so-called “pre-
classification” systems: In a large patent organization, an APC system can read
an entering patent application and route it to the relevant team of experts who will
be in charge of making a decision about its final categorization.
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12.2.2.2 Search for Prior Art, Novelty, etc.

A major function of APC is to support patent search. Typical goals of a patent search
include prior art (patentability), novelty, validity (legal status), freedom to operate,
infringement search, etc.

A major issue in patent search is the size of the search space: There are about 40
million patents in WIPO’s Master Classification Database (MCD), and this does not
represent all of the world’s patents in all languages.

The objective of APC in terms of search support is twofold.

• Reducing the search space: By proposing one or several classification codes for
a patent application, APC allows to focus the search on the most relevant patent
categories, thus excluding most of the patent search space.

• Allowing for search on the basis of similarity: Since the vast majority of patents
were classified manually by human examiners, some patents may not be catego-
rized under the expected codes. In order to extend a search to other categories
(e.g. for prior art search), APC allows comparing the content of the patent ap-
plication with the content of each patent in the training set. It may thus retrieve
patents which were not classified in the same category as the patent application,
but whose content is very similar to it.

It should be underlined here that APC systems are not only used by patent prac-
titioners such as inventors and patent attorneys. Many organizations use them for
other purposes such as technological watch, economic intelligence, etc.

12.2.3 Historical Factors

Classifying patents became necessary because of a fast growth in both the number
of patents and the number of patent fields.

Logically, the need to automate patent classification resulted from the same fac-
tors when they reached a higher scale. In particular, the fast growing number of
patent applications mentioned above was a driving factor of research on automated
tools.

Additional factors also played a role, in particular the fast-increasing number
of human examiners, which was (and still is) leading to classification consistency
issues. Besides, the hyper-specialization of patent categories made it impossible to
entrust the classification job to “universal experts”; it called for a specialization of
the examiners themselves, which in turn provoked a diversification of the classifying
methods, criteria—and results.

This situation is further complicated by the fact that some patents are of horizon-
tal nature, i.e. they can or should be classified in several categories. For example, a
tobacco humidifier can be linked to industrial processes, to storing processes and to
agricultural products. Multi-category classification made it even more complex to
categorize and to retrieve similar patents, and called for some mechanical help.
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12.3 A Few Words about Patent Classifications

Patent classifications, or taxonomies, generally come in the form of a hierarchy of
categories: the top level includes very broad categories of inventions, so the number
of top categories is very small. The second level includes more narrow categories,
the third level even more precise categories, and so on. Thus as we go down the
taxonomy levels, the number of categories grows dramatically.

Two patent taxonomies are briefly considered below: the International Patent
Classification (IPC), which is built and maintained by the World Intellectual Prop-
erty Organization (WIPO), and the European Patent Classification (ECLA), which
is built and maintained by the European Patent Office (EPO). Both of them are
available online on the respective organization’s website.

12.3.1 IPC

The IPC (Edition20090101) is divided into a Core and an Advanced Level; the Core
Level goes from Section down to Main Group, with some technical sub-groups. The
Advanced Level contains all the sub-groups of the IPC. According to WIPO, “the
core level is intended for general information purposes, for example, dissemination
of information, and for searching smaller, national patent collections. (. . . ) The ad-
vanced level is intended for searching larger, international patent collections.”

At the Advanced Level, the IPC has the following tree structure: eight Sections,
129 Classes, 639 Sub-Classes, 7,352 Main Groups and 61,847 Sub-groups.

The sections (top categories) are the following: Section A—Human Neces-
sities; Section B—Performing Operations; Transporting; Section C—Chemistry;
Metallurgy; Section D—Textiles; Paper; Section E—Fixed Constructions; Sec-
tion F—Mechanical Engineering; Lighting; Heating; Weapons; Blasting; Section
G—Physics; Section H—Electricity.

This top level illustrates the essential challenge of any patent taxonomy: it has
to describe the world, and it must be able to include objects and ideas, which, by
definition, were never thought of before. Thus it has to be as general and open as
possible. For that reason it does not make much sense to classify patents at the
Section level. Even the Class and Sub-Class levels are often considered too wide to
be useful for professionals (examiners, patent attorneys, etc.). Therefore automated
classification systems are generally required to categorize patents at least at the Main
Group level. This means any such system should at least be able to manage over
7,000 categories; it also means the system must support a large number of patent
examples for the training phase (see Sect. 12.5), since each category must have at
least a few example documents for the system to correctly identify it.

At first glance, this enormous quantity of data makes the field of patent classifica-
tion particularly fit for computerized statistical processing. However, history, while
bringing about the reasons for automating patent classification, also produced com-
plicating factors, which actually hamper the efficiency of computerized processing.
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These factors are essentially linked to exceptions to the general classification rules:
many patent categories contain one or several notes, which indicate that specific
types of inventions should actually be classified somewhere else. For example, the
category A23 in the IPC has the following title: “Foods or foodstuffs; their treat-
ment, not covered by other classes”. This initially requires knowing which treat-
ments are “covered by other classes”. But additionally, category A23 includes the
following notes:

“Note(s)
Attention is drawn to the following places:
C08B: Polysaccharides, derivatives thereof
C11: Animal or vegetable oils, fats, fatty substances or waxes
C12: Biochemistry, beer, spirits, wine, vinegar
C13: Sugar industry.
Processes using enzymes or micro-organisms in order to: liberate, separate or
purify a pre-existing compound or composition, or to treat textiles or clean
solid surfaces of materials are further classified in Sub-Class C12S.”

The very human nature of a patent taxonomy and of its evolution therefore makes
it very difficult to define systematic classification rules and build them into a model;
categories are best described by the documents they contain. This is why example-
based training technologies tend to be favored to build automated patent classifiers.

12.3.2 ECLA

The ECLA taxonomy is worth mentioning in addition to the IPC because it is a kind
of extension of the IPC: It is identical to the IPC down to Main Group level, but
it is more detailed at Sub-Group level, where it contains 129,200 categories, thus
allowing for a finer-grain classification.

While the IPC seems to be more oriented toward the publication of patents,
ECLA is rather more focused on supporting patent information search in the context
of a patent application. It is extensively used, for example, by the EPO examiners in
their daily work. ECLA is also used to classify the PCT’s minimum documentation
and other patent-related documents, including utility models.

According to the EPO, 26.2 million documents had an ECLA class in 2005.
Combined with the 129,200 categories, this gives a broad idea of the “classification
space” which must be managed by any automated classifier.
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12.4 Patent Collections

12.4.1 Structure of a Patent

The structure of a patent is important because the precision of an APC system di-
rectly depends on the quality of the training data, which in turn means that the con-
tent to be provided as training material must be carefully chosen. Although there are
many ways of representing the structure of a patent (with more or less information
details), the content of most patents is organized in the following way.

• The bibliographic data: the patent ID number, the names of the inventor and the
applicant, the title of the patent, and the abstract.

• The claims, in which the applicant explains what the invention is made of and
which application fields the patent is sought for.

• The full text, which contains the complete description of the patent.

Other fields may be found, such as the agent’s name, priority data, publication
and filing languages, etc. It is also frequent, for example in the fields of chemistry or
mechanics, to find graphics or other types of illustrations. The fields are generally
represented in an XML structure, which may look like this:

<record cy=“WO” an=“SE0001823” pn=“WO012189020010329”
dnum=“0121890” kind=“A1”> [Unique patent number, which can include
the date]

<ipcs ed=“7” mc=“D21H01120”> [This is the IPC classification number]
<ipc ic=“D21H01725”></ipc>
</ipcs>

<ins> [Inventors]
<in>LINDSTRÖM, Tom</in>
<in>GLAD-NORDMARK, Gunborg</in>
<in>RISINGER, Gunnel</in>
<in>LAINE, Janne</in>
</ins>

<pas> [Patent Applicant]
<pa>STFI</pa>
</pas>

<tis> [Title]
<ti xml:lang=“EN”>METHOD FOR MODIFYING CELLULOSE-BASED
FIBER MATERIAL
</ti>
</tis>
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<abs> [Abstract]
<ab xml:lang=“EN”>A method for modifying cellulose fibers, which are
treated for at least 5 minutes with an aqueous solution of CMC or CMC-
derivative (. . . )
</ab>
</abs>

<cls> [Claims]
<cl xml:lang=“EN”> Claims
1. Method for modifying cellulose fibers, characterized in that the cellulose
fibers
are treated for at least 5 minutes with an aqueous electrolyte-containing solu-
tion (. . . )
</cl>
</cls>

<txts> [Full Text Description]
<txt xml:lang=“EN”>
Method for modifying cellulose-based fiber material
This invention concerns the technical field of paper manufacture, in particular
chemical (. . . )
</txt>
</txts>
</record>

Our experience showed that most of the time, only a part of this content should
be used to feed an automated classifier. First, some data have a higher classifying
power: it may be the case, for example, of the inventor’s name, because inventors
tend to invent in a specific field. The applicant’s name is also important because it
is often a company with a specific area of expertise (although large companies may
apply for inventions in various fields). Second, a field such as the Claims may be
of little interest for training purposes because it was deliberately written in a vague
style so as to cover the widest possible application area. Words in the Claims section
tend to be ambiguous and do not help the classifier to make a decision (our experi-
ence showed for example that a classifier often has a higher accuracy when trained
on the Abstract than on the Claims section). Third, most automated classifiers (and
in any case the classifiers based on the algorithms described in Sect. 12.5 below)
are exclusively based on text and cannot make use of any graphic information. This
means for example that some categories such as Chemistry or Mechanics, whose
descriptions heavily rely on diagrams, are not so well classified by text-only tools.
Finally, text-based learning machines can get saturated beyond a given number of
words: adding more and more words in each example actually ends up creating noise
and confusing the machine, which drives the classification precision down. In fact,
we found that it is generally more efficient to train an APC system on a large number
of small examples for each category than on a small number of large documents.
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Therefore the fields which tend to be preferred (through empirical findings) as
training material for APC are essentially the bibliography fields, namely the in-
ventor, applicant, title and abstract. However, it was observed that adding some in-
formation from the full text description does improve the classification precision,
provided that the full text is truncated (our experience suggested the limit of 350 or
400 different indexed words) so as to avoid the saturation issue.

12.4.2 The Distribution Issues

Creating a classification inherently creates distribution imbalances. In the case of
patent classifications, those imbalances are essentially found in the distribution of
example documents (patents) across the categories, and in the distribution of words
within a patent.

12.4.2.1 Distribution of Example Documents: The Pareto Principle

Building a patent collection with regards to a classification amounts to separating
patents according to external criteria: patents are not grouped because of intrinsic
properties (such as the number of words they would share, for example) but because
they address a topic which was defined externally by human experts, with regards
to their own “knowledge of the world”.

When groups of objects are separated according to external criteria, they tend
to show a Pareto-like distribution across the categories, i.e. over a large volume of
categories and documents, about 80% of all the documents are classified in about
20% of the categories. This creates a structural issue for any artificial intelligence
system, which is based on example-based learning. Most automated patent classi-
fiers belong to this family of tools: they need to be trained on typical examples of
each category to be able to correctly identify those categories later on.

If some categories are poorly documented, i.e. they have little or no typical
patents to feed the computer with, they are very unlikely to be ever predicted by
the system because it will never be able to identify a patent typical of such a cat-
egory. A distribution reflecting the Pareto Principle means that although 20% of
the categories will be well documented, the remaining 80% will share only 20% of
the total training set. Inevitably, many of those categories will “disappear” in the
training process. Solutions to this issue are considered in Sect. 12.5 below, but this
remains one of the core problems of any automated classification system.

12.4.2.2 Distribution of Words in a Patent: Zipf’s Law

APC systems depend heavily on the words, which are contained in a patent. Neural
network applications, for example, give a weight to each word with regards to each
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category, depending on whether it appears more frequently in one category than in
the other ones. The presence, in the text of a patent, of a large number of words
which are heavily weighted in favor of a given category drives the application to
assign that category code to the patent.

Since the weighting is roughly performed according to the number of times a
given word appears in the examples of a category, the system would work better
if most of the words appeared frequently in the training documents: it would be
easier for the computer to compare their respective occurrences in each category.
The problem is that the number of very frequent words is very small, and most
words occur in fact rather rarely. This situation is described by Zipf’s law, which is
well explained on Wikipedia: “The frequency of any word is inversely proportional
to its rank in the frequency table”. In other words, “the most frequent word occurs
approximately twice as often as the second most frequent word, which occurs twice
as often as the fourth most frequent word, etc.”1

Zipf’s law tells us that most of the words encountered by the APC system will
actually not occur very frequently, so the system will have to work on rather rare
words. Moreover, the combination of Pareto’s Law and Zipf’s Law suggests keeping
in the index words, which only occur a small number of times (e.g. four or five times)
because they could be representative of a class, which is poorly documented.

12.4.3 The Language Issues

Automated classification systems are met with two major issues when trained on
patents: one is linked to natural language in general, and the other one to the partic-
ular tongue used in the patent.

12.4.3.1 Natural Language Issues

The ambiguity of natural languages is a well-documented problem, which has a
major impact on information retrieval in general, and on automated classification in
particular. We will focus here on the issues specifically linked to classification.

Most APC systems use example-based training, i.e. they “read” the content of the
various texts provided as typical examples of a given category in order to correctly
identify that category. The system is not able to distinguish the various meanings
of ambiguous words (polysemy). As a result, it will consider that it is always the
same word, which reduces the quantity of information available to identify specific
categories.

Another issue with natural languages is linked to semantics: the fact that a word
like “not” or “without”, which may reverse the meaning of a sentence, is probably

1http://en.wikipedia.org/wiki/Zipf’s_law. Accessed 23 Dec 2010.

http://en.wikipedia.org/wiki/Zipf's_law
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going to be ignored because it is frequent and thus the invention may be classified
in a category of things it does not do.

A different kind of problems is also met with the various peculiarities of human
languages, such as the so-called “collocations” or “compound words”, i.e. expres-
sions which are composed of more than one word and whose collective meaning is
different from the added meaning of each individual word. For example, an “elec-
tric plug” is very different from a “spark plug”. Automated classifiers, when used
without any linguistic processing, index each word separately and thus lose this
collective meaning.

There are many other difficulties linked to linguistics, such as inflections, agglu-
tination (some languages like German stick together various words to build a new
entity), or segmentation (choosing the correct number of ideograms which constitute
a word in Asian languages), etc.

The issues described above call for linguistic processing, but this may be a costly
improvement because it is different for each language (so a linguistic system must
be built for each working language) and it may slow down the program’s execution.

There are other language issues, however, which may not be solved by linguistic
tools, but more probably by statistic processing. The most important one is proba-
bly the growing vocabulary extent in each category: new applicants file new patent
applications over time, and each of them uses his/her own vocabulary to describe
the invention. The underlying issue here is linked to the compositional nature of
human language: by combining different words (synonyms) it is possible to say the
same thing in many different ways. Thus the number of words typical to a given
category grows over time, and a growing number of those words tend to be found in
a growing number of categories.

Overall, it should be stressed that technologies such as neural networks (see
Sect. 12.5) and others allow one to represent the global context of a patent, which is
an efficient solution to get rid of the ambiguity issue in natural languages. An iso-
lated word may have several meanings, but its frequent association with other non-
ambiguous words helps a computer to differentiate the various uses of that word.
Additionally, in the specific case of neural networks, if a word is so ambiguous that
it may be found often and in very diverse situations, the weight of this word will be-
come so low that the word will eventually be discarded for classification purposes.

12.4.3.2 The Corpus Language Issue

APC systems are trained on previously classified examples to recognize patterns of
words, which are typical of a given category. However, a system which is trained on
English may only classify new patents in English.

Classification (as well as information retrieval) in foreign languages, and more
particularly in Asian languages (above all Chinese, Japanese and Korean), are ser-
vices which tend to be increasingly required by patent applicants, patent attorneys
and many other patent professionals and organizations. However, it is still difficult to
find large training sets in these languages, mostly for one or several of the following
reasons:
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• only a small number of patents were filed in the language considered, both at the
national and international levels (some countries have a small number of inventors
and they are specialized in a small number of fields);

• a number of patents are available but they did not originally exist in electronic
form, so only an image scan is available. In this situation the patents may only
be used if a good Optical Character Recognition (OCR) software exists for the
language considered;

• large training sets were compiled by a private or public organization, but they are
kept private or they are sold at a cost which is prohibitive;

• patents are available in a reasonable quantity and in electronic form but they are
not classified under international classifications such as the IPC or ECLA so there
is a problem to build the initial training set (this is known as the “bootstrap”
problem).

For those countries whose number of filed patent applications is quickly growing,
training corpuses will soon be available. For the other ones, should an automated
patent classifier be necessary, various solutions may be considered, in particular
machine translation.

12.4.3.3 The Time Issue

Patent classifications obviously evolve over time: new categories are added while
old ones may become deprecated, and some categories may be merged together
or broken down in finer ones. However, time also has a direct effect on the lan-
guage used in the patents. First, the vocabulary of any given category may change
over time; this is in particular the case in the field of computer science, where new
technologies and standards frequently drive a terminological evolution. Second, the
creation of new categories may increase polysemy, as some existing words (like
“cookie”) are being re-used in new contexts (“Internet cookie”). Finally, the very
definition of a category may evolve over time; this issue is known as the “topic
drift”. This may happen for example when a traditional field (such as printing) is
slowly being changed by the introduction of new technologies (in this case, IT): the
application or result of the new patents is still directly linked to printing, but the
domain itself becomes much wider.

12.5 State-of-the-Art Technologies

Many algorithms may be used for the purpose of automated classification. Most of
them come from the world of artificial intelligence (AI) and have been known for
several decades (sometimes more); they were revived over the past decade because
the spectacular progression in CPU and RAM capacities allowed one to perform
more and more calculations in a decreasing time and at a decreasing cost. A general
review of most technologies used in the field of APC can be found in [1].
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We will focus here on three algorithms, which are among the most frequently
used in the field of automated classification, namely Neural Networks (NN), Sup-
port Vector Machine (SVM) and the k Nearest Neighbors (kNN). Other technologies
such as Bayesian algorithms, the Rocchio method or Decision rules are also inter-
esting in specific cases, but a complete review of existing technologies and their
merits is out of the scope of this chapter.

12.5.1 Neural Networks

A neural network is a network of individual values, each value representing the
weight of a given word with regards to a given category, i.e. it tells how well the
word (called a “feature”) represents the category. Initially the system reads all the
documents provided as “good examples” of each category. It compares all the words
of all the training documents for all the categories: words which are found too often
are given a low weight, because they have a low “classifying power”. Conversely,
words which seem to be very typical of a given category are given a higher weight
because they are strong discriminators. After the training phase, when the classifier
is required to classify a new patent, the patent’s content is turned into a set of words
and weights, which are then compared to those in the neural network; the system
chooses the category for which the weights are maximized.

Neural networks are currently among the best-performing patent classifiers for
several reasons:

• they scale up extremely well, i.e. they support a large classification space (defined
as the number of features time the number of categories);

• they can be combined, so in a tree hierarchy such as the IPC or ECLA, a large
number (over a thousand) of neural networks may be built and connected at each
level, thus allowing users to ask for a direct classification at any level of the tree;

• after the training phase, the resulting neural networks can be saved for later query-
ing, so the system can reply extremely quickly to users;

• neural networks are trained on strings of characters, so they can be used to classify
any type of symbols (e.g. any language, but they can also be used to classify DNA
strings, etc.).

12.5.2 SVM

The Support Vector Machine, like the Neural Networks, is a system which has to
be trained beforehand, but unlike the NN, it does not assign weights to words; the
words are considered as dimensions of a space, and each example of a category
is considered as a point is this space. SVM tries to find the plane surface, which
separates two categories with a gap as wide as possible.
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SVM is interesting to use because it is very accurate: in fact its capacity to build
separations between categories is higher than that of the NN. Besides, and unlike
the NN, it has no internal configuration parameters, so it is easier to use. However,
it does not seem to be widely used to classify patents at the lowest levels of large
classifications such as the IPC or ECLA, probably because it only supports a small
combination of words and categories, and it is very slow to train.

12.5.3 kNN

The k Nearest Neighbor algorithm compares a document to be classified to a number
of other, previously classified documents (k stands for the number of documents to
be compared). Similarities between documents are computed by comparing word
distributions. The category of the new document is calculated with regards to the
categories of the neighboring documents by weighting their contributions according
to their distance; thus it is also a geometric measure.

Unlike the NN and SVM algorithms, the kNN does not have to be trained before
being used: all the calculations are performed when a document is submitted to the
system. For this reason, it is generally not used to predict categories within large
classifications such as the IPC or ECLA, because it is considered too slow to reply.

On the other hand, it is very useful for prior art search because it can systemat-
ically compare the patent application with the existing patents, retrieve the closest
ones and show them to the user.

12.6 Evaluating Automated Patent Classification

The accuracy of an APC system is calculated over a test set which was held out from
the training set, so the classifier has to categorize patents it has never seen before.

In a neural network system, for example, the classifier is initially trained over
patents which were previously classified by human experts. Then a test set is sub-
mitted to the classifier, which predicts one or several categories for each test patent.
Finally those predicted categories are compared to the correct classes (which are
also known since the test set was also previously classified by humans) and an ac-
curacy score is automatically calculated.

12.6.1 Standard Evaluation Methods: Precision, Recall, F1

In the general field of information retrieval, accuracy scores are often calculated
according to one or several of the following three standard methods: a precision
score, a recall score and a so-called “F1” score, which is an average of precision
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Fig. 12.1 Top prediction

and recall. Those methods are also valid to assess the accuracy of an automated
patent classifier.

According to Wikipedia, “Precision can be seen as a measure of exactness or
fidelity, whereas Recall is a measure of completeness.”2 More specifically, in the
field of patent classification, for a given patent submitted to the automated classifier:

• Precision is the number of categories correctly predicted by the classifier divided
by the total number of predicted categories;

• Recall is the number of categories correctly predicted by the classifier divided
by the total number of existing correct categories (i.e. the number of categories
which should have been retrieved).

As for the F1 score (also called F-score or F-measure), it is a weighted average
(more precisely the harmonic mean) of precision and recall:

F1 = 2 • precision • recall

precision + recall
.

Several variations of the F1 score can be used to place more emphasis on pre-
cision or on recall. Choosing the most relevant measure directly depends on the
intended use of the search engine or the classifier: sometimes only precision or re-
call may be looked at. For example, a patent classifier which assigns one or several
correct category codes to an incoming patent application may be considered good
enough, although it may not have assigned all the correct categories. In such a case,
only the precision score may be taken into account.

12.6.2 Customized Use of Accuracy Measures

Whether the type of measure is precision, recall or F1, there are still various ways
of calculating it. The most common way is to determine whether the top category
predicted by the classifier corresponds to the first real category of the patent. This is
all the more useful when the classification includes a main category (called “MC”
in Fig. 12.1) and several secondary categories:

2http://en.wikipedia.org/wiki/Precision_and_recall. Accessed 23 Dec 2010.

http://en.wikipedia.org/wiki/Precision_and_recall
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Fig. 12.2 Three Guesses
measure

Fig. 12.3 All Categories
method

This accuracy assessment makes sense for fully automated solutions, for ex-
ample when an APC system receives electronic patent application files and routes
them to the most relevant team of human examiners (this application is called “pre-
classification”). In this case only the best choice is kept because the system must
only route the file to a single team, so the accuracy score should reflect this con-
straint.

However, other methods of calculating the accuracy may be chosen, for example
when the APC system is used by a human expert as a classification assistant. In
this case, more than one guess may be accepted by the user, since he/she will make
the final decision. On the other hand, in the example of the pre-classification task
described above, only one good answer is possible, because only one team is the
most relevant to classify the patent. In this situation we can use for instance a “Three
Guesses” measure as shown in Fig. 12.2.

In this measure, if the most relevant category appears in one of the top three
predictions, the patent is considered to be correctly classified.

Other types of applications can be considered (see Sect. 12.7 below); for exam-
ple, patents can generally be attributed to multiple categories, so a human examiner
who would use the APC as a classification assistant may be willing to accept any
good suggestion, even if it is not the main category or if there is no main category
(which is the case under ECLA). In this situation the accuracy measure would be
calculated according to an “All Categories” method as illustrated in Fig. 12.3.

This last method of calculating the accuracy produces of course the highest
scores, since it is more flexible as to what constitutes a correct prediction. It is for
example the method used by WIPO to assess IPCCAT’s precision, because IPCCAT
is a classification assistant. Its typical precision scores for English patents are about
90% at Class level, 85% at Sub-Class level and 75% at Main Group level.
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It should be mentioned that the methods proposed above address the situation
where the APC system provides so-called “unsupervised” predictions, i.e. it has no
human help such as limiting the classification space to a given section, or refining
to a finer category after validating a coarser one. More interactive systems, where
the APC system can be guided by a human user, may provide for more accurate
predictions, especially at the more detailed levels.

12.7 Use Cases

There is a wide range of possible applications for APC systems. The ones that
are suggested below have been actually implemented (interactive classification and
prior art search) or are being considered (pre-classification and re-classification) in
particular by international organizations.

12.7.1 Pre-classification

Pre-classification, as mentioned earlier, is the task of automating the distribution
of incoming patent applications among the various possible groups of examiners.
Large patent offices have organized their teams of examiners according to fields of
expertise. When a new patent application reaches the patent office, it must be routed
to the most relevant group of experts. This can be automated with an APC system.

Such an application has generally an excellent accuracy performance because
the number of groups of experts is generally less than 100 (i.e. much less than the
number of patent classification categories, for example). However, since the system
operates without any human supervision, it is generally required to compute a con-
fidence score for each decision, and the automated routing is only allowed when the
confidence score is above a pre-defined threshold.

12.7.2 Interactive Classification

APC systems can be used as classification assistants for human examiners in an in-
teractive manner: the examiner submits a patent application, the APC system makes
one or several predictions at a given level of the classification, and then the examiner
can decide to:

• ask for a refined prediction down to a finer-grain level of the classification (for
instance at Main Group level after an initial prediction at Sub-Class level);

• ask for another prediction directly at the finer-grain level (e.g. a prediction directly
at Main Group level, instead of going first to Sub-Class level—it is important
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to understand that in the case of neural network systems, the APC’s prediction
will not be the same when predicting directly at the lower level and when going
through an intermediate level because the APC does not use the same neural
networks);

• force a prediction under a given category, for instance by defining that he/she
wants only predictions under the A01B Sub-Class.

The World Intellectual Property Organization (WIPO) proposes such an interac-
tive APC tool on its website; the tool is called IPCCAT and it is freely available to
the public.

12.7.3 Re-classification

In large patent classifications such as the IPC or ECLA, some categories grow over
time up to the point where they contain too many patents of various content. In that
case they must be broken down into several more detailed categories (at the same
level). Conversely, some categories may end up with very few or no patents, either
because they are too narrow or specialized, or because they were defined through a
rather theoretical process.

Thus patent classifications must be re-organized from time to time; for instance,
the current version of the IPC is the ninth one, and new versions might be published
from now on at least on an annual basis.

Re-classification is the process by which patent categories are grouped together
in larger ones, or broken down in smaller ones, as well as the subsequent process of
re-tagging the patents which were classified under the modified categories. This last
process, in particular, may be extremely time-consuming and costly to implement.

APC systems can support the re-classification process by

• suggesting new (larger or smaller) categories, in particular through the use of
clustering technologies (algorithms such as K-Mean, etc.);

• automatically re-tagging the patents according to the new patent categories.

The major issue in re-tagging patents is to build a training corpus, since there is
no existing set of patents with the correct new categories to train the APC system.
When the number of modified categories is not too important, the solution is gen-
erally to feed manually the new categories with typical examples; most often, 10 or
20 examples may be sufficient for the system to correctly identify the new category
and automatically re-classify the rest of the patent collection.

12.7.4 Prior Art Search

APC systems are extremely useful to assist patent examiners in their prior art search.
From a collection of several million patents, an algorithm like the kNN can retrieve,
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in a matter of a few seconds, the ten patents which are closest to a submitted patent
application. As underlined earlier, this tool is all the more interesting because it
does not depend on classification codes: it browses the entire patent collection to
find similar documents.

The IPCCAT application mentioned above, which is hosted on WIPO’s website,
provides for such a prior art search tool.

12.7.4.1 Non-Patent Documents

It should be mentioned here that the classification and prior art search tools de-
scribed above can be applied to all kinds of documents, not only patents. Technical
literature, for instance, is a good playground: patent attorneys are eager to find the
literature, which relates to a patent application, and a tool such as the kNN can be
very efficient in this context.

Automated classification systems also have a bright future in the field of web
mining: the search for novelty, for example, requires one to browse large volumes
of documents on the Web. Classifying them automatically and finding the closest
documents to a patent application may save considerable time and work.

12.8 Main Issues

12.8.1 Accuracy

Improving the accuracy of APC systems is the essential challenge today. Although
these systems tend to be currently used as classification assistants, the ultimate goal
for researchers in the field is to provide fully unsupervised systems, for instance to
build pre-classification tools or to classify large volumes of patents in batch mode.

Several research tracks are being considered to improve the accuracy of APC
systems.

• More training data: Adding training examples is one of the most immediate so-
lutions. This process should essentially target the categories where samples are
scarce. If no additional examples are available for a given category, it can be con-
sidered to make several copies of the available documents; this technique is called
“oversampling”. It allows at least a poorly represented category to “exist” in the
system’s classification space. Another approach is to find non-patent documents
(such as technical literature) strictly related to the category’s topic in order to add
words, which are typical of that topic. The underlying problem here is not that
patent collections, classified by human experts, are not available, but that they are
not readily available, i.e. they are generally privately owned and not available on
commercial terms, or at relatively high prices.
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• Better training data: The patents provided as training examples must be accu-
rately classified under the most recent version of the classification. They must
also be recent: old patents may belong to categories, which no longer exist (if
they were not re-classified) and thus may blur the information provided by other
examples. Two techniques may be used in particular to improve the quality of the
training set: the first is using a time-window which will be moved over time so as
to keep only patents which were granted over the last, say, 15 years. Thus every
year the latest patents are added, the oldest ones are removed, and the system is
re-trained. The second one is to use a so-called “validity file”: this file defines all
the categories, which are valid in the latest version of the classification. Before
using a training set, all the categories assigned to its patent examples are com-
pared to the validity file, and the examples whose categories are no longer valid
are removed. This eliminates noise in the training set.

• Building a “Committee of Experts”: It was described above that not all sections
of a patent are used to train the classifier. The situation is in fact somewhat more
complex: some categories (such as, for instance, chemistry or electronics) may be
best described by specific sections (such as the title or the inventor and applicant
names), while other categories could be better characterized by other sections
(such as the abstract). This is partly because some inventors or applicants are
very specialized, and some fields use very specific words while others (e.g. for
more general or conceptual inventions) are described with a broader vocabulary
and thus need more information to be specified. One possible solution is to build a
so-called “Committee of Experts”: one technology (for example neural networks)
is used to create a large number of classifiers, each of them being built on differ-
ent patent sections and being tested against all the classification categories. Then
another technology (in this example, it would be an SVM machine) is used to
assess which classifier is more fit to which category. Let us imagine that the best
classifier for a given category of electronic devices is the one based on the inven-
tor’s and applicant’s names, while for some agricultural devices it is the one using
the abstract and first 350 words of the full text description. When a patent appli-
cation is submitted, all the neural networks will be required to make predictions,
but the SVM machine will favor the answer of the one which it found best fit to
the specific context of that application.

• Using linguistic processing: In order to gain classification accuracy, the general
need is to add information to help the APC system to draw clearer separations
between each category.

Linguistics can help. An important step may be to disambiguate the vocabulary
by using so-called word sense disambiguation. This may be done by using the con-
text of the word in combination with a semantic network (a so-called ontology) to
help the system discriminate between several possible senses of a word.

The use of collocations and compound words also help to discriminate between
concepts. A special program looks at the co-occurrence of all the words in all the
training examples, and if some words occur together very frequently they are au-
tomatically considered a single entity. In the example given above, “spark plug”
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would be processed as one term. In recent experiments, using collocations allowed
an NN-based APC to improve its precision score by up to 5%.

If there are too many words, an efficient solution to reduce the number of words
is to use stemming: only the radical part of the word is index, which allows one to
group several words with a common beginning but different endings due to plural
or feminine forms, conjugated verbs, etc. The efficiency of stemming depends on
the algorithm chosen: in the case of neural networks, stemming actually proved
counter-productive because it tended to blur the concepts behind the words.

Another technique called n-gram processing is useful for some languages with
specific issues.

• German, for example, is an agglutinative language, i.e. it can stick together sev-
eral words when they are used together. This creates a “new word” for the indexer,
so it may be important to find back the compounding words in order to limit the
size of the index and get more examples of the words considered.

• Chinese and other languages which use ideograms (symbols) instead of letters are
difficult to segment into words: 2, 3, 4 or more ideograms can compose a word,
so specific rules may be used to solve this issue.

N -gram processing is a technique by which the first n letters (2, 3, 4 or more)
which are read by the indexer are built into a word, then the following 2, 3, 4 letters,
starting from the second character, are built into another word, and so on. The system
stops when a blank space is met. A 2-letter n-gram rule is called a bi-gram, a 3-
letter rule is a 3-gram, etc. This technique allows us to keep the words which were
found both independently, and within a larger string, thus enriching the information
provided by the training examples.

All the techniques proposed above can be used in combination in order to max-
imize the chances to classify more accurately. For example, it may be a good idea
to test various linguistic processing techniques and to add the best-performing ones
when building a Committee of Experts.

12.8.2 Scalability

Most APC tools currently classify patents down to Main Group level with a reason-
able accuracy level. A common request from users is now to classify at Sub-group
level, which means an increase in the number of possible categories by about a fac-
tor 10. It also implies to work with much larger training sets since examples are
needed for each individual category.

A tool such as the kNN has intrinsic scalability issues, which tend to be more
often studied in the field of search engines because its scalability depends on the
size of the corpus (not of the classification). As mentioned earlier, from the point of
view of APC it is too slow because it has no training phase so it cannot be prepared
in advance.
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As for the scalability of SVM, as far as we know, this issue is not solved yet be-
cause what would be needed is a highly efficient and robust implementation of a par-
allelized architecture—which does not seem to have been implemented so far. Some
interesting research work is being done in this field, in particular by implementing
SVM on Graphical Processing Units (GPUs), which have hundreds of processors.

For systems based on neural networks, the size of the neural networks to be built
is the product of the number of words and of categories. The problem is not linked
to the calculation power because it is possible to use many processors simultane-
ously for the training phase. However, to be efficient, the neural networks must be
stored in RAM memory. Thus the main limit to NN systems currently lies with the
RAM capacity. For example, in order to build an APC system over 70,000 cate-
gories and 3 million words the system would need about 256 Gb of RAM. This type
of architecture is in fact available but it is still costly.

12.9 Conclusion

Artificial intelligence is still largely perceived as a “magical” resource and expecta-
tions tend to be excessive with regards to its real capacities and to the services it can
provide. It is not possible for AI systems to classify with regards to any sort of clas-
sification; the classification needs to make some sort of sense to the APC system,
i.e. the system must be able to draw clear limits between the categories.

Additionally, classifying on words has intrinsic limits: it is not always possible to
define or represent categories with words. For example, it would probably be very
difficult to describe with patent examples the category of inventions, which are easy
or difficult to implement, or the category of inventions, which are profitable, or not.

The good news is that, so far, most categories of the IPC or ECLA are well
represented and recognized, with the notable exception of the chemistry field, for
which specific tools making use of graphics have now been developed.

Clearly today, the main challenge is to improve the accuracy of APC systems at
the lowest levels of patent classifications. This will essentially be achieved by adding
information, but not just any information because this can be counterproductive.
Another promising approach will be to specialize the APC systems according to the
various patent fields, for instance by choosing the most appropriate technologies for
each particular family of topics. Besides, in addition to more powerful technolo-
gies and equipment, APC systems will also require larger and better data sets to be
trained, tested and improved.

When all these conditions are gathered, APC applications can indeed become
very effective and useful tools, both as assistants to human experts and as inde-
pendent tools, and both for pure organizational tasks and for information retrieval
purposes. For that reason their use is most probably going to expand fast in the
future.
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Chapter 13
Phrase-Based Document Categorization

Cornelis H.A. Koster, Jean G. Beney, Suzan Verberne, and Merijn Vogel

Abstract This chapter takes a fresh look at an old idea in Information Retrieval:
the use of linguistically extracted phrases as terms in the automatic categorization
of documents, and in particular the pre-classification of patent applications. In In-
formation Retrieval, until now there was found little or no evidence that document
categorization benefits from the application of linguistic techniques. Classification
algorithms using the most cleverly designed linguistic representations typically did
not perform better than those using simply the bag-of-words representation. We
have investigated the use of dependency triples as terms in document categoriza-
tion, according to a dependency model based on the notion of aboutness and using
normalizing transformations to enhance recall. We describe a number of large-scale
experiments with different document representations, test collections and even lan-
guages, presenting evidence that adding such triples to the words in a bag-of-terms
document representation may lead to a statistically significant increase in the accu-
racy of document categorization.

13.1 Introduction

The document representation most widely used today in Information Retrieval (IR)
is still the bag-of-words model, both in traditional query-based retrieval and in au-
tomatic document categorization.1 In this document representation, the order of the

1The terms Categorization and Classification are used interchangeably.
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words in a document plays no role at all, whereas our intuition tells us that important
information about the category of a document must be available in certain groups
of words found in the document. It is as if we are trying to determine the function
of a ruined building (church? castle? monastery? dwelling? shop? railway station?)
by dismantling it into bricks and then looking exclusively at the frequency distri-
bution of the individual types of bricks, by disregarding any coherent substructures
but simply taking them apart into individual bricks (the bag-of-bricks model). In-
tuitively it seems obvious that larger units (combinations of words into meaningful
phrases) could serve as better terms for the categorization, yet there is surprisingly
little evidence corroborating this intuition.

In this paper we describe a successful attempt to improve the accuracy of classifi-
cation algorithms for patent documents by using, besides words, dependency triples
(see Sect. 13.2) as features in the document representation.

13.1.1 Previous Work

The use of linguistically derived phrases as indexing terms has a long history in
IR (for an overview see [26]). Many different kinds of linguistic phrases have been
tried, with at most a modest success [4]. The predominant feeling about the value of
NLP to IR, as voiced in [26], is that only ‘shallow’ linguistic techniques like the use
of stop lists and lemmatization are of any use to IR; the rest is a question of using
the right statistical techniques.

In the literature on document classification two forms of linguistic phrases are
distinguished:

• statistical phrases, chunks or collocations: sequences of k non-stop words occur-
ring consecutively [7], stemmed and ordered bigrams of words [6], even colloca-
tions taken from a specially prepared domain terminology [3];

• syntactic phrases, identified by shallow parsing [1, 18], template matching, finite
state techniques [11] or by “deep” parsing [10, 14, 23, 27].

In spite of all these efforts, over the years no classification experiment using syn-
tactic phrases has shown a marked improvement over the use of single keywords,
at least for English. Only [23] recently reported a positive effect in classifying the
Reuters-21578 collection. In the case of statistical phrases, the experience is only a
little bit more positive [6, 18].

In this paper, we show that the use of syntactic phrases can significantly improve
the accuracy of patent classification when each document is represented by a bag
of words and dependency triples, generated according to a new aboutness-based
dependency model, using deep parsing and transduction.

In the remainder of this section we describe the IR notion of aboutness. We pro-
pose an indirect way to measure aboutness and formulate the aboutness hypothesis.
In section two of this chapter we will describe the use of dependency triples as
terms for IR, introducing and motivating a dependency model based on the notion
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of aboutness and discussing the syntactic normalization of phrases, which is crucial
for achieving recall.

In section three we describe the software and data resources used in our experi-
ments: the test corpora, parsers and classification engines used. In section four and
five we describe our experiments to test the effect of using dependency triples ac-
cording to this model in the classification of patent documents, investigating the
plausibility of the aboutness hypothesis and presenting the experimental results. Fi-
nally, we formulate our conclusions.

13.1.2 The Notion of Aboutness

The notion of aboutness is highly central to Information Retrieval: the user of a
retrieval system expects the system, in response to a query, to supply a list of docu-
ments which are about that query.
A model-theoretic basis for the notion of aboutness was described in [5]:

An information carrier i will be said to be about information carrier j if the information
borne by j holds in i

The rather abstract notion of “information carrier” can denote a single term, but also
a composition of terms into a structured query or a document. Practical retrieval
systems using words as terms are in fact based on a surprisingly simple-minded
notion of aboutness:

If the word x occurs in the document then the document is about x.

This notion may appear highly naive, but it leads directly to the vector-space model
when a measure for the similarity between the query and the document is introduced,
based on the aboutness of words, the term frequency and document frequency.

For phrase-based retrieval, we need a notion of aboutness appropriate for phrases,
which in its simplest form can be defined in the same way:

If the phrase x occurs in the document then the document is about x.

But the problem with all these definitions is that they are not concrete enough to
compare the aboutness of different document representations.

Although intuitively it seems obvious that linguistic phrases provide a more in-
formative document representation than keywords, the above formulation is not
helpful in deciding what phrases from a document to choose and how to represent
them.

13.1.3 Measuring Aboutness

In fact we cannot measure aboutness directly for lack of a well-defined measure, but
we can compare the accuracy (precision and recall) achieved in the categorization
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of a given set of documents using different document representations: the repre-
sentation that leads to the highest accuracy must best capture the aboutness of the
documents.

Text Categorization provides a good vehicle for the study of document represen-
tations, because many suitable test sets are available and accuracy can be measured
objectively. Categorization does not suffer from the problem of measuring recall,
unlike query-based search. Classification algorithms with a firm statistical basis al-
low objective and repeatable experiments, which can easily be replicated by others.

Successful classification algorithms are purely based on the frequency distribu-
tion of the content words (non stop-words) occurring in the different categories
(forming the “language models”), and therefore on aboutness, instead of being based
on any deep semantic analysis and reasoning. Statistics is a good and cheap alterna-
tive for the Semantics which is as yet unattainable.

13.1.4 The Aboutness Hypothesis

According to Information Retrieval folklore, the best classification terms are the
content words: the words from the open categories, in particular nouns and adjec-
tives. The words from the closed categories are just stop words. In a classification
experiment reported in [2], it was indeed found that nouns, verbs and to a lesser
degree adjectives and adverbs are the only lexical words that contribute measurably
to the aboutness of a text.

These observations lead us to the following aboutness hypothesis:

• of all the words in a text, the words from the open categories (nouns, verbs, ad-
jectives, adverbs) carry most of the aboutness;

• of all possible dependency triples (words from the text joined by a syntactic re-
lator), the triples containing only words from the open categories will carry most
of the aboutness;

• we expect a better classification result when using triples as terms in addition to
words than when using words alone.

We are going to investigate the elements of this hypothesis in one of the hardest
document classification tasks: the classification of patent documents.

13.2 Dependency Graphs and Dependency Triples

By a dependency graph for a phrase we mean an acyclic graph (a tree with possibly
additional confluent arcs) whose nodes are marked with words from that phrase
and whose arcs are marked with directed relations. We are particularly interested in
syntactic relations, those that can reliably be found by parsing.

As an example, we assign the following dependency graph to the sentence ‘In
humans, PGs prevent the mucosal damage caused by aspirin and ethanol’:
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A dependency graph represents the main structure of a sentence in an abstract way,
much more compactly than a constituent tree (parse tree), in terms of certain syntac-
tic relations between words of the sentence. It represents the compositional structure
of the sentence, over which semantic relations can be constructed relatively easily.
In that sense it is close to a semantic representation.

By a dependency triple we mean a triple [word, relation, word], which forms part
of a dependency graph, from which it can be obtained by unnesting the graph to the
triples contained in it. Triples are a syntactic way of representing phrases, closely
related to the Head/Modifier pairs often used in IR (e.g. [10]).

13.2.1 The Aboutness-Based Dependency Model

The following table shows an example triple for each of the most important depen-
dency relations:

subject relation [device,SUBJ,comprise]
object relation [cause,OBJ,lesion]
predicate relation [aspirin,PRED,NSAID]
attribute relation (adj.) [damage,ATTR,mucosal]
attribute relation (noun) [breaker,ATTR,crust]
prepos relation (noun) [coating,PREPof,albumin]
prepos relation (verb) [charge,PREPinto,container]
prepos relation (adj.) [related,PREPto,serotonin]
modifier relation (verb) [extending,MOD,angularly]
modifier relation (adj.) [efficient,MOD,highly]

Notice that in each of those relations both the head and the modifier are content
words. In this respect, the aboutness-based dependency model is quite different
from traditional linguistically-motivated dependency models that describe depen-
dency relations between all words in the sentence, including punctuation, such as
Minipar [20] and Link Grammar [25]; it is closer to the collapsed version of the
Stanford Dependency Parser [9] output. Furthermore, the subject is taken as the
head of a clause rather than the verb. This has some advantages: it allows one head
to be the subject of several verbal clauses, and makes it easy to express certain rais-
ing constructions.



268 C.H.A. Koster et al.

13.2.2 Factoids

The above dependency relations express only the factual content of the sentence,
without further frills like time and modality of the verbs, topicalization, the argu-
mentation structure (as expressed by conjunctions) and the linear word order, which
are lost in this graph representation. Aboutness-based dependency graphs are well-
suited to represent factoids, simple sentences expressing a (purported) fact. A typical
factoid pattern is ‘who did what to whom with what’.

From the above example sentence, the following factoids can be derived:

• Aspirin causes mucosal damage
• ethanol causes mucosal damage
• PG’s prevent [that] damage in humans.

13.2.3 Normalization

In writing a text, people avoid literal repetition: they will go out of their way to
choose another word, another turn of phrase, using anaphora, synonymy, hyper-
nymy, periphrasis, metaphor and hyperbole in order to avoid the literal repetition
of something they have said or written before. From a literary standpoint this is
wonderful, but it gives complications in IR: we have to compensate for this human
penchant for variety.

Rather than using literal phrases taken from the text as terms, we therefore reduce
each phrase to a normal form which expresses only the bare bones of its aboutness.
We eliminate all dispensable ornaments and undo such morphological, syntactic and
semantic variation as we can, while conserving the aboutness.

The syntactic normalization is in our case expressed in the grammar underlying
our parser, using a mechanism for describing compositional transduction: every con-
struct in the grammar is described along with its transduction to the output format
(dependency graphs with content words as heads and modifiers).

• All elements which do not contribute to the aboutness of the text are elided during
transduction: articles and determiners, quantifiers, auxiliary verbs, conjunctions—
which is much like applying a stop list;

• embedded constructions such as relative clauses and participial constructions, like
the one in the example sentence, are expanded into additional basic sentences (and
therefore SUBJ and OBJ relations);

• a preposition linking two content words is treated as a parameter to the PREP
relation, bringing the content words cw1 and cw2 together into one triple [cw1,
PREPpreposition,cw2], rather than producing triples like

[content-word-1, PREP,preposition]
[preposition,PREP’,content-word-2]

in which the preposition (a non-content word) occurs as a head or modifier;
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• for the same reason, in triples involving a copula, the copula is elided: ‘the car is
red’ leads to the triple [car,ATTR,red], just like ‘a red car’;

• one of the most effective normalizing transformations is de-passivation: trans-
forming a passive sentence into an active sentence with the same aboutness. By
this transformation, the sentence renal damage caused by Aspirin is considered
equivalent to Aspirin causes renal damage.

Morphological normalization by lemmatization is applied to the nouns and main
verbs occurring in the resulting triples. As an example, the triples

[model,SUBJ,stand] [stand,PREPat,window]

can be obtained from ‘the model stood at the window’, ‘a model standing at the
window’ and from ‘two models were standing at the window’. However the phrase ‘a
standing order’ leads to a triple [order,ATTR,standing] because in this case
‘standing’ is not a main verb.

By these normalizing transformations, we try to improve the recall while surren-
dering little or no precision.

13.2.4 Bag of Triples and Bag of Words

In any language, there are many more triples (pairs of words with a relator be-
tween them) than words. When these are used as terms in a bag-of-triples model,
the classification algorithm must be able to cope with very high numbers of features,
demanding sophisticated Term Selection. But for the same reason, the feature space
is very sparse. Triples may be high-precision terms, but they threaten to have a very
low recall: a triple is never more frequent than the lowest frequency of the words of
which it is composed. Low-frequency triples abound.

In classifying documents on e.g. gastric ulcers, it is therefore not immediately
clear whether a triple like [ulcer,ATTR,gastric] is a more accurate search
term than the co-occurrence of the words ‘ulcer’ and ‘gastric’. It will probably have
a higher precision but also certainly a lower recall. Compared to the literal string
‘gastric ulcer’ the triple will have the same precision but a slightly higher recall,
since it catches also phrases like ‘most of the ulcers appeared gastric’. Does the gain
in precision compensate for the loss in recall? We need experimentation in order to
find out whether triples work.

13.3 Resources Used

In this section we describe the resources used in the experiments: the corpora, the
classification system and the parser. The next section describes the experiments that
were carried out and their results.
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13.3.1 The CLEF-IP Corpora

The Intellectual Property Evaluation Campaign (CLEF-IP)2 is an ongoing bench-
marking activity on evaluating retrieval techniques in the patent domain. CLEF-IP
has two main goals:

• to create a large test collection of multi-lingual European patents
• to evaluate retrieval techniques in the patent domain

In 2010, CLEF-IP uses a collection of some 2,000,000 patent documents with text
in English, German, and French, part of which was used in our experiments. In the
remainder, we shall designate this corpus by the name CLIP10. The total number of
files in the CLIP10 corpus is 2,680,604, in three different languages. We classified
only the abstracts, focusing on the two languages for which we have a parser, and
taking only those documents for which an IPC-R classification is available. We used
two sub-corpora:

• CLIP10-EN: abstracts taken from all files in English having one or more IPC-R
classifications

• CLIP10-FR: the same for French

We considered only those classes and subclasses for which at least one document
was available. Some statistics about these sub-corpora:

CLIP10-EN CLIP10-FR

nbm of documents 532,274 55,876
avg nmb of words per document 119.5 121.2
nmb of classes 121 118
nmb of subclasses 629 617
avg nmb of classes/doc 2.13 1.32
min/max nmb of classes/doc 1/14 1/7
avg nmb of subclasses/doc 2.72 1.42
min/max nmb of subclasses/doc 2/19 1/7

13.3.2 The English Parser AEGIR

The experiment on CLIP10-EN made use of a new hybrid dependency parser for
technical English, which combines a rule-based core grammar (Accurate English
Grammar for IR) and a large lexicon of technical terms with various disambiguation
mechanisms. The experiments described here were its first large-scale test. AEGIR

2See www.ir-facility.org/research/evaluation/clef-ip-10.

http://www.ir-facility.org/research/evaluation/clef-ip-10
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is a further development of the EP4IR parser (English Phrases for Information Re-
trieval) [16]. In those experiments involving words, the words in the documents
were case-normalized but not lemmatized; punctuation was removed.

The words occurring in the triples were case-normalized, and cautiously lem-
matized: nouns were brought into their singular form, and main verbs brought into
their infinitive form. When not used as main verb (e.g. “related”), participles were
not lemmatized. Verb particles were attached to the verb lemma (e.g. “turn_back”).

The parser was running on a relatively small parallel computer (four CPU’s with
four cores each) with a very large main memory (128 Gigabytes).

13.3.3 The French Parser FR4IR

The French documents were parsed with the French parser FR4IR developed by
Jean Beney at the INSA de Lyon. A description of the FR4IP parser can be found
at www.agfl.cs.ru.nl/FR4IR where there is also a demonstration version. The parser
is not at present in the public domain, but for scientific purposes a copy of the
parser can be obtained from jean.beney@insa-lyon.fr. It is still very much under
development.

The preprocessing of the French documents was similar to that for English. All
experiments with French documents were performed on the Large Data Collider
(LDC) of the Information Retrieval Facility (www.ir-facility.org).

13.3.4 The LCS Classification Engine

The Linguistic Classification System (LCS) used in these experiments [15] was de-
veloped at the University of Nijmegen during the IST projects DORO (Esprit 22716,
1997 to 1999) and PEKING (IST-2000-25338, 2000 to 2002) for the experimenta-
tion with different document representations. In the current TM4IP project3 it was
re-implemented in Java. For most of the experiments we used the Balanced Win-
now algorithm [8, 21, 22], a child of the Perceptron, which is very efficient and
highly robust against large but sparse feature sets. Some of the experiments were
also performed using the Support Vector Machine algorithm (SVM light [12]).

As is the case for other classification engines, the performance of the classifiers
depends on certain tuning parameters. In the experiments with Winnow in this sec-
tion the parameters were chosen based on some small tuning experiments on training
data:

Promotion parameters: α = 1.02, β = 0.98
Thick threshold parameters: θ− = 0.5, θ+ = 2.0
Number of Winnow iterations = 10

3www.phasar.cs.ru.nl.

http://www.agfl.cs.ru.nl/FR4IR
mailto:jean.beney@insa-lyon.fr
http://www.ir-facility.org
http://www.phasar.cs.ru.nl
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Global term selection: DF > 1, TF > 2
Local term selection: Simplified ChiSquare, max 10,000 terms/category.

For SVM, we used C = 2; we only experimented with the linear kernel.
In combining triples and words, both were simply considered as literal terms (the

two term lists were concatenated). We did not try to give them different weights.
Since patents may have multiple IPC-R labels, we perform a multiclassification.

After training classifiers for each category, the test documents were given a score by
each classifier and each test document that scored better than a certain threshold for
a certain category was assigned to that category.

The Winnow algorithm has a natural threshold 1 for each category. Each test
document was assigned to at least one category (the one with the highest score)
and at most five categories for which its score was greater than 1. Micro-averaged
Precision, Recall and F1 were then computed in the usual way by comparing these
categories with the ones for which the document is labeled.

This procedure reflects a pre-classification situation: each incoming document
must be sent to precisely the right examiners.

For other measures (Recall or Precision at k documents, etc.) for all categories a
full ranking of all test documents is produced.

13.4 Experimental Results

In the following experiments we have investigated the aboutness hypothesis, using
document classification:

• what is the relative contribution of the open word classes?
• which dependency relations contribute most to the aboutness?
• is classification on words plus triples more accurate than classification on words

alone?

Our main experiment concerns the comparison of three document representations:
words alone, triples alone and words plus triples. As the measure of accuracy we
used the Micro-averaged F1, assuming a loss function attaching equal weight to pre-
cision and recall, which is representative for applications in patent pre-classification.

13.4.1 Experimental Setup

The experiments in this section were each performed 10 times (10-fold cross-
evaluation). In each experiment on unseen documents the documents were split at
random into a train set (80%) and a test set (20%). After training on all train and test
sets, we determined the micro-averaged value and standard deviation of the preci-
sion, recall and F1.

For the experiments with seen data we trained on a random subset of 80% of
the documents and used a quarter of these train documents as test set. As usual, the
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terms ‘seen’ and ‘unseen’ refer to testing the accuracy of the classifier on the train
set used and on the held-out test sets, respectively.

In the tables, a number in brackets indicates the standard deviation. The rightmost
column shows for each representation the improvement with respect to the baseline.

We ran these experiments with both the Winnow and SVM classifiers, in order
to compare the effect of triples for those algorithms. Winnow and SVM are both
known to cope well with large numbers of terms (in this case triples).

13.4.2 Winnow—Results for English

13.4.2.1 Testing on Seen Data

Algorithm P R F1 improvement

Testing on seen documents

Winnow CLIP10-EN/classes

words alone 83.36 (0.08) 72.05 (0.23) 77.30 (0.10) baseline

triples alone 88.61 (0.09) 73.82 (0.19) 80.54 (0.15) +3.24

words+triples 89.65 (0.08) 80.41 (0.06) 84.78 (0.07) +7.48

Winnow CLIP10-EN/subclasses

words alone 83.93 (0.04) 65.15 (0.21) 73.36 (0.13) baseline

triples alone 90.80 (0.02) 69.51 (0.05) 78.74 (0.03) +5.38

words+triples 91.64 (0.04) 76.48 (0.05) 83.38 (0.04) +10.02

The accuracy (F1) on seen documents has in all cases improved over that of words
alone, both for triples alone and for words plus triples. This improvement may be at-
tributed to the fact that there are so many more different triples than different words:

different terms after term selection

words 115,604 74,025

triples 7,639,799 1,177,134

words+triples 8,671,497 1,526,353

Using so many terms, it becomes easier to construct a class profile which models
the differences between the classes. But these good results on seen data are not
important for practical applications, since they do not carry over to unseen data.
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13.4.2.2 Testing on Unseen Data

On unseen data, the picture is indeed somewhat different.

Algorithm P R F1 improvement

Testing on unseen documents

Winnow CLIP10-EN/classes

words alone 76.33 (0.14) 66.35 (0.13) 70.99 (0.07) baseline

triples alone 74.26 (0.08) 58.71 (0.09) 65.57 (0.07) −5.42

words+triples 78.25 (0.07) 69.06 (0.09) 73.37 (0.06) +2.37

Winnow CLIP10-EN/subclasses

words alone 72.78 (0.13) 55.96 (0.16) 63.27 (0.07) baseline

triples alone 71.80 (0.09) 48.64 (0.11) 57.99 (0.09) −5.28

words+triples 75.72 (0.10) 59.31 (0.13) 66.52 (0.08) +3.25

The results on unseen data are representative for the intended application (pre-
classification of patent applications). The base line (words) may look disappointing,
but it is quite hard to improve upon it. Attempts using lemmatization, stop lists etc.
(not reported here) have consistently given no significant improvement.

As is to be expected, the classification on the 121 main classes is (by about 7
points) better than that on 629 subclasses. But in both cases the difference (of 2.37
or 3.25 percent points) between the base line of words and the triples plus words is
many times the standard deviations. Therefore the difference is statistically highly
significant—this is our main result.

Note that an accuracy below the base line is achieved when (unwisely) using only
triples as terms. Both precision and recall are much lower for triples-only than for
words, and so is the F1. Experts [10, 18] agree that linguistic terms should be added
to the word terms, not used instead. Still, there is some progress: in our previous
experiments [14] with Head/Modifier pairs we found the accuracy using only pairs
to be much lower; probably the quality of the linguistic document representation
and the parser has in the mean time improved, but not enough to “beat” the baseline
(but see Sect. 13.4.5).

13.4.3 SVM—Results for English

For performance reasons, we ran the experiments with SVM on classes with four-
fold instead of ten-fold cross-evaluation, and the experiment on subclasses only
once, without cross-evaluation (one experiment classifying subclasses using words
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and triples took 22 hours with SVM, compared to 2 hours with Winnow), but since
the standard deviations appear to be quite low, we felt that performing a ten-fold
cross-evaluation was not necessary.

Algorithm P R F1 improvement

Testing on seen documents

SVM CLIP10-EN/classes

words alone 90.32 (0.07) 72.31 (0.10) 80.32 (0.09) baseline

triples alone 94.80 (0.07) 84.73 (0.04) 89.48 (0.05) +9.16

words+triples 94.93 (0.03) 77.71 (0.05) 85.46 (0.04) +5.14

SVM CLIP10-EN/subclasses

words alone 92.30 68.84 78.86 baseline

triples alone 96.66 87.75 91.9 +13.04

words+triples 98.71 91.23 94.82 +15.96

Testing on unseen documents

SVM CLIP10-EN/classes

words alone 81.09 (0.12) 62.23 (0.14) 70.42 (0.14) base line

triples alone 78.34 (0.09) 58.35 (0.11) 66.88 (0.10) −3.53

words+triples 84.54 (0.01) 63.05 (0.04) 72.23 (0.02) +1.81

SVM CLIP10-EN/subclasses

words alone 78.22 52.88 63.10 base line

triples alone 77.86 51.17 61.76 −1.34

words+triples 82.29 59.18 68.84 +5.74

The improvement in accuracy on seen documents was even larger for SVM than for
Winnow. On unseen documents, a similar improvement when adding triples was
found as was the case for Winnow, somewhat smaller for classes but larger for
subclasses.

13.4.4 Results for French

Again we trained on 80% of the documents and tested on 20%, with 10-fold cross-
evaluation. We did not measure the accuracy on seen documents and used only
Winnow. The results on unseen documents were as follows.
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Algorithm P R F1 improvement

Testing on unseen documents

Winnow CLIP10-FR/classes

words alone 69.94 (0.21) 66.95 (0.24) 68.41 (0.19) baseline

triples alone 54.41 (0.23) 46.28 (0.30) 50.02 (0.26) −18.40

words+triples 72.84 (0.23) 67.50 (0.22) 70.07 (0.20) +1.66

Winnow CLIP10-FR/subclasses

words alone 65.83 (0.20) 55.47 (0.22) 60.21 (0.18) baseline

triples alone 46.45 (0.47) 35.74 (0.32) 40.27 (0.27) −19.96

words+triples 68.67 (0.30) 56.01 (0.30) 61.70 (0.28) +1.49

The baseline (words) is much lower on these French documents than for the
CLIP10-EN documents because there are much fewer train documents (see also
following section). The results for triples-only are quite bad, but again the addition
of triples to the words does improve the classification result.

13.4.5 The Number of Train Documents

In this section we investigate the effect of the number of documents trained on the
accuracy obtained. The following graph is a learning curve, obtained by testing on
a 10% test set and training on increasing numbers of train documents, for the three
different document representations and for two different measures of accuracy. The
experiment was performed using Winnow on CLIP10-EN (classes) with 10-fold
cross-validation.

13.4.5.1 The Effect for the Large Classes

In the first experiment, as in the experiments reported earlier, the micro-averaged F1
is reported (averaging over all <document, class> pairs.

Adding triples to words always gives an improvement and the improvement
grows with the number of documents trained. Initially, the classification power of
triples alone is lower than that of words, but it grows faster. It appears that, with
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100,000 more train documents, the triples alone could achieve a better classification
than the words alone, but we could not verify this.

The improvement given by words + triples over words alone (the gain) grows
about linearly with the number of train documents. This is good news for patent
classification, where millions of train documents are available.

13.4.5.2 The Effect for Smaller Classes

The micro-average is dominated by the large classes, those with many documents.
Therefore the previous graph does not show whether the effect for smaller classes is
also positive. We therefore also show a graph of the macro-averaged accuracy (aver-
aged over the classes) which assigns equal weight to all classes. In this experiment,
5-fold cross-validation was used.

The macro-averaged F1 is lower than the micro-averaged F1 (it is dominated by
the smaller classes, which have (much) fewer train documents) but the gain in using
triples is now larger (except for very small numbers of train documents). It appears
from this experiment that triples may work even better for the smaller classes than
for the large classes.
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13.5 The Aboutness of Words and Triples

In this section we report on a number of experiments to shed light on the behavior
of triples as classification terms. Because here we are more interested in insight than
in representiveness, we use a smaller subset of CLIP10-EN, consisting of only the
documents in class A61 of the IPC-R, a total of 73869 documents in 13 subclasses,
varying in size from 208 to 38396 documents. We trained Winnow classifiers for its
13 subclasses on those documents (80% train, 20% test), and used the classification
for the subclass A61B in those experiments in this section which concern a single
class profile.

For these experiments with much fewer documents we used the default values for
the Winnow parameters (α = 1.1, β = 0.9, θ− = 0.5, θ+ = 2.0, number of iterations
= 3, DF > 1, no local term selection).

13.5.1 The Aboutness of Word Categories

In [2], the contribution to the accuracy by one category of words was measured
by classifying a given corpus using only words from that category as terms. The
category of words was determined using the Brill tagger. Of course this tagging was
not very precise, because the tagger takes only local context into account.
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We have repeated this experiment on CLIP10-EN class A61, using the AEGIR
parser as a tagger: during the parsing, the parser will disambiguate the Part-Of-
Speech (PoS) of every ambiguous word in the sentence. Both the Brill tagger and
the parser can (and will) make errors, but in our approach we can be sure that each
occurrence of a word obtains a Part-of-Speech which is appropriate in its syntactic
context.

The following graphs show the results of the classification of A61 (80/20 split,
10-fold cross-evaluation). In each case we measured the accuracy (F1) for the clas-
sification of the subclass A61B, either using only the words with a certain PoS or
excluding them. We use the letters A, N, V and X to stand for the open word cate-
gories: adjective, noun, verb and adverb.

As was to be expected, the one-POS-only experiments show that the nouns have by
far the highest aboutness, followed by the adjectives and the verbs. Adverbs have
very little aboutness.

The leave-one-out results show less variation. The only word category that should
not be left out are the nouns, the others make little or no difference. The accuracy
when using all words is slightly better than when taking only those words that be-
long to one of the open categories (A+N+V+X), probably indicating some non-
content words (e.g. numbers) that carry some aboutness.

13.5.2 The Aboutness of Relations

By a relation we here mean the set of all triples having a specific relator (e.g. ATTR
or SUBJ). We want to measure for each relation what is its contribution to the accu-
racy of a classification.
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We experimented again on the CLIP10-ENA61 corpus, this time representing
each document by a bag of dependency triples, but either using only the triples of
some relation or leaving out all triples belonging to that relation. The results for the
subclass A61B are shown in the following graphs:

The ATTR relation by itself has the largest aboutness, because it represents the
internal structure of the noun phrase and most of the terminologically important
terms are noun phrases. Then follow the PREP, OBJ and SUBJ relations (which
may be because they have a noun as head or modifier). The MOD relation, which
has a verb as head, makes the smallest contribution to accuracy, but it is also the
least frequent.

The leave-one-out experiments all give a very similar result. Only leaving out the
ATTR relations leads to a marked drop in accuracy with respect to using all triples.
Intuitively it is clear that the relations are not very independent terms, since the head
of one triple is very often the modifier of another, or vice versa.

We also investigated the question whether the triple representation (with explicit
relators) is better than the older Head/Modifier representation (obtained here by
simply dropping the relator); the second graph from the left (marked hmpairs) shows
a slightly higher recall and accuracy for Head/Modifier pairs.

13.5.3 Words and Triples as Terms

It appears that the use of triples as terms may lead to a better classification result,
but many more of them are needed. Therefore we have compared the effectiveness
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of words and triples in dependence on the number of terms used, in a Term Selec-
tion setting: we performed the same experiment (classifying A61 subclasses with
Winnow with words alone, triples alone and words plus triples) while selecting for
each subclass only the top n = 2k terms using the simple Chi-square Term Selection
(TS) criterium [24].

We show two graphs; the first is the resulting TS curve (F1 against number of
terms) for the three representations, and the second shows in more detail the TS
curve for words. The variance is so small that we did not show it in the graphs.
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The TS curve shows that the triples do not start contributing to the accuracy (F1)
until more than 10,000 terms are used; for fewer terms, using only words gives
slightly better results. At the highest number of terms (beyond the end of the curve
for words), triples plus words gives about 5 points improvement, while the F1 for
triples alone equals that for words alone.

In the second graph, concerning words alone, we show also precision and recall.
For low numbers of terms, precision exceeds recall, but between 2000 and 10,000
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terms the two curves cross, and above 10,000 terms recall is larger than precision
(but remember that this represents an average over 13 subclasses). Next, we look at
the TS curves for the two other representations.

Using words plus triples, the cross-over point between precision and recall is now
much higher than for words (between 40,000 and 100,000 terms). The graph shows
that, when adding triples to words as terms, no term selection should be applied,
because that may diminish the benefit.

For triples alone, precision is larger than recall in all cases, but it is possible (and
looks likely) that a cross-over will occur for many more terms.

13.5.4 The Penetration of Triples

Another measure for the effectiveness of linguistic classification terms which has
been used in literature [6] is the penetration of such terms in the class profile: in
our case, the percentage of triples among the top n terms when classifying on both
words and triples. We have measured it by classifying the subclasses of A61 (once)
and then measuring the percentage of triples among the terms in the profile of A61B,
in power of two buckets.

Among the 10 top terms are no triples, but after that more and more triples appear.
After about 1000 terms the triples have a high penetration, but their presence does
not improve the classification until very many triples are used. Inspection of the
profile shows that, for fewer terms, the triples mostly replace words with more or
less the same aboutness (as was found in [6]).
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13.5.5 Discussion

The experiments described here were performed for the comparison of different
document representations: words and words plus triples. For practical patent classi-
fication, of course many other considerations are important.

In classifying two different corpora of patent abstracts in two languages and with
two different classification algorithms, a statistically significant increase in accuracy
was found when adding triples to the word features (“bag of words and triples”).
Further experiments are needed to see whether the same improvements are found
when classifying other sections of the patents (e.g. the Claims) or non-patent docu-
ments.

In a previous article [13], we have described a similar series of experiments on
patent abstracts and also on full-text documents, in which the results were very
similar. For those experiments we used the EP4IR parser and LCS on the EPO2
corpus [17]. The presently used CLEF-IP corpus has the advantage of being publicly
available, which makes it easier for others to duplicate our experiments.

It is interesting to note that all parsers used in the experiment are still under
development. It appears likely that when the parsers reach more accuracy on the
very complicated documents from the patent world, the effect of using triples may
increase further.

The abundance of different triples each having only a low frequency still appears
to be the main reason why the classification on triples alone gives disappointing
results. We are now investigating whether this problem can be overcome by using
some form of term clustering along the lines of [19].

The results on the aboutness of word categories and relations require further
analysis, but it is definitely plausible that the aboutness hypothesis is well founded.
Certainly not busted, we claim.

13.6 Conclusions

We have formulated the aboutness hypothesis, stating essentially that the open word
categories are the carriers of aboutness, and introduced an aboutness-based depen-
dency model, which differs from the more descriptive dependency models preferred
in linguistics in that the heads and modifiers of the dependency graph involve only
words from the open categories.

Dependency triples following this aboutness model are derived by syntactic pars-
ing of the documents, followed by a transduction to dependency graphs and unnest-
ing of the graphs to triples.

We have performed an experimental investigation on patent abstracts in English
and French from CLEF-IP 2010. Our experiments showed that using aboutness-
based dependency triples as additional features in document classification did lead
to a statistically significant increase in classification accuracy, for larger as well for
smaller classes. This improvement was found for different document collections in
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different languages and for different classification algorithms. The larger the number
of train examples, the larger the improvement was found to be.

In a classification setting, we have compared the aboutness of different categories
of words and dependency triples. We also compared the behavior of words and
triples using term selection and measured their penetration. All these experiments
yielded rich evidence for the aboutness hypothesis, but this evidence still has to be
analyzed theoretically and explained more deeply.

The two parsers and the LCS classification system used in the experiments are
available from the authors for research purposes.
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Chapter 14
Using Classification Code Hierarchies for Patent
Prior Art Searches

Christopher G. Harris, Robert Arens, and Padmini Srinivasan

Abstract Searches in patent collections to determine if a given patent applica-
tion has related prior art patents is non-trivial and often requires extensive man-
power. When time is constrained, an automatically generated, ranked list of prior
art patents associated with a given patent application decreases search costs and im-
proves search efficiency. One may view the discovery of this prior art patent set as a
problem of finding patents ‘related’ to the patent application. To accomplish this, we
examine whether semantic relations between patent classification codes can aid in
the recognition of related prior art patents. We explore similarity measures for hier-
archically ordered patent classes and subclasses for this purpose. Next, we examine
various patent feature-weighting schemes to achieve the best similarities between
our patent applications and related prior art patents. Finally, we provide a method
and demonstrate that patent prior art searches can successfully be used as an aid in
patent ranking.

14.1 Introduction

14.1.1 Patent Searches

One of the primary responsibilities of a patent examiner is to perform a patentabil-
ity test to check for novelty and non-obviousness/innovativeness of patent appli-
cations. To perform this task, a patent application is examined against a list of all
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patents with an earlier priority date, called prior art patents, for the possibility that
the claims on a target and prior art patent overlap.1 If the overlap is significant,
it can lead to the rejection of the given patent application. Patent applications are
evaluated using knowledge in any previous publication (such as in a published jour-
nal article) predating the patent application’s priority date as described in Chap. 1
of this book; however, in this research where the purpose is to explore the value
of patent hierarchies, we will limit our investigation of prior art to patents. Two
types of patent searches are normally performed in patent examinations: ‘novelty’
or ‘non-obviousness/inventiveness’ searches, which help determine if an invention
is novel prior to investing the time and effort to apply for a patent and ‘clearance’ or
‘validity searches’, which are done after a patent is issued to determine if a patent
application can be invalidated by any prior patent or other work. We focus on the
former of these two in this chapter.

Patents are classified into two different patent types: design and utility. Both types
use the same classification systems. The key difference between design and utility
patents is that a design patent protects “the ornamental design, configuration, im-
proved decorative appearance, or shape” of an invention [32]. This patent is appro-
priate when the basic product already exists in the marketplace and is not being
improved upon in function but only in style. A utility patent protects any new inven-
tion or functional improvements on existing inventions. This can be to a product,
a machine, a process, or even a composition of matter. In the experiments we have
conducted here, 97% of our dataset involves utility patents and 3% involve design
patents.

Often patent prior art searches involve obtaining a list of patents and other pub-
lications and then manually refining the list, a process that is both laborious and
prone to errors of omission. Moreover, the resources available for patent searches
are frequently constrained by limitations of time or manpower; hence the need for
an automatically generated ranked list of patents most likely to discover prior art for
a given patent application. Therefore, our goal is to investigate methods that can pro-
vide an investigator with an ordered list of prior art patents identified from a patent
collection. All of our methods here involve classification hierarchies. In particular
we examine four hypotheses that explore the value of several different aspects of
these classification hierarchies, which are explained further in Sect. 14.3.

14.1.2 Using Classification Codes versus Keywords in Patent
Searches

The use of a standardized set classification codes for describing patents ensures that
the most comprehensive preliminary information is available for a patent search

1In IR terms, patent applications and prior art patents would respectively be referred to as query
and its appropriate time-sliced dataset. From these we provide a ranking of prior art patents that
have claims which may overlap on the claims of the patent application.
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[36]. Moreover, a proper classification search (a search using classification codes)
allows a patent researcher to bypass many key problems associated with keyword
searching, including [20]:

• Vague or inconsistent terminology—frequently, the titles and abstracts of patents
are too broad for a keyword search, so coming up with a full set of keywords is
challenging.

• Different meanings in different fields—keyword terms may describe a wide va-
riety of different concepts, such as the use of “mousetrap” to describe a specific
type of logic circuit.

• Synonyms—may be simple synonyms, such as using ‘water closet’ to describe a
toilet or using ‘a rodent extermination device’ to describe a mousetrap.

• Foreign Spellings—A given language could have different spellings to describe a
single term, such as sulfur/sulphur, or aluminum/aluminium.

• Obsolescence—Given the permanency of the patent collection, certain terms such
as “LP”, “hi-fi”, and “water closet” may not longer be the way to describe what a
patent covers.

• Spelling errors and variations—Patents are not immune to spelling errors or re-
gional variations in terms, adding to the complexity of keyword searches.

• Acronyms and abbreviations—some terms use standard—or non-standard—
acronyms to describe a given patent, whereas others spell out some or all the
terms. The same is true about abbreviations in patent descriptions, claims titles
and abstracts.

A patent search using classification codes is particularly critical when looking
for design patents, as they pose a unique challenge with limited text, so searches
using classification codes provide the most efficient way to search both types of
patents. Moreover, a search on utility patents should include design patents as well,
since many inventions incorporate both types of patents. As rich in information as
classification codes are, little research has been done to examine similarity between
codes in a classification hierarchy. Our motivation is to examine this aspect of the
classification code structure and see if there are methods, which can be used to make
searches on classification codes more effective.

14.1.3 Patent Classification Systems

Patent-issuing bodies such as the European Patent Office (EPO), the World In-
tellectual Property Office (WIPO), and the United States Patent and Trade Office
(USPTO) manually classify each patent application into one or more of many clas-
sifications based on the patent’s intended use. The European Patent Office also
classifies patents using its own European Classification (ECLA) system, and this
is performed by patent experts for European patents, as well as foreign patents.
Sub-classifications serve as a more granular categorization of a particular class. The
USPTO, for example, classifies each patent into at least one of approximately 470
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classes and 163,000 subclasses. Likewise, the WIPO claims over 71,000 separate
classifications down to the subgroup level [5]. The ECLA contains over 133,000
entries. Over 100 patent issuing bodies use the IPC, making it the most widely used
patent classification system. The EPO and other European national patent issuing
bodies also use the ECLA, in addition to the IPC. The USPTO uses the USPC pri-
marily, but US-issued patents reference the IPC system as well.

In an effort to make patent documents accessible for a variety of uses, nearly all
patent-issuing bodies have some form of classification of patent utility. This classi-
fication allows patent documents to be easily retrieved and identified [36].

For any patent-issuing office to ensure an invention is genuinely novel, it is es-
sential to not only search the patents published by their own office but also those
published by patent-issuing offices in other countries. Thus, there is an essential
need for a single international classification system to make a search for prior art
across the collections of numerous international patent offices more efficient.

In Sect. 14.3, we investigate the similarity between classification codes in a
hierarchy—we examine the relationship between the similarity of codes in the clas-
sification code hierarchy and the similarity of the patents containing those codes.
This may aid in the discovery of prior art in patents.

14.1.3.1 USPC Classification

The United States Patent Classification (USPC) system is used by the United States
Patent and Trademark Office (USPTO), although it was announced in October 2010
that a joint patent classification system between the USPTO and EPO, based on the
ECLA was forthcoming [7]. Each of the 163,000 entries consists of a Class and a
Subclass. Patent classes and subclasses are organized into a fairly deep hierarchy,
although a patent’s classification can be represented with a few levels (top-level class
and most-distinct subclass). There may be as many as 14 distinct subclass levels for
a given class. Below in Fig. 14.1 is an example illustrating how the USPC system is
utilized in a particular patent.

• The highest hierarchical level in the USPC is the Class. For example, Class 204
is associated with patents that demonstrate “Chemistry: Electrical and Wave En-
ergy”, such as for the method of generating and producing ozone.

• Its subclass 157.5 “Oxygen containing product produced” is actually three levels
deep in the USPC subclass structure under Class 204. From the definition pro-
vided by USPC [31] we see that:

• Subclass 157.5 is a child of subclass 157.4: “Process of preparing desired inor-
ganic material”

Fig. 14.1 An example of a
USPC classification in a
patent document
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• Subclass 157.4 is a child of subclass 157.15 “Processes of treating materials by
wave energy”

• Subclass 157.15 is a child of the Class 204 definition.

Thus we see that USPC classification codes may appear in rather succinct format
in the patent document.

Complicating USPC classifications further is the dynamic nature of how the clas-
sification scheme itself evolves. Earlier investigation by Larkey [18] found that a
single USPC subclass can have up to 2,000 patents. However, the USPTO attempts
to limit the patents in a single subclass to no more than 200 by creating additional
subclasses. Periodic reviews of the classification system by the USPTO often re-
sult in the restructuring of many subclasses by further dividing, merging, or elimi-
nating subclasses. Additionally, new inventions may require an entirely new set of
classes and subclasses to be introduced to accurately describe the invention’s in-
tended use [8].

14.1.3.2 IPC Classification

In 1971, twenty-three countries signed the Strasbourg Agreement, a number that has
now grown to 61 signatory countries [35]. This Agreement established the Interna-
tional Patent Classification (IPC) under the World Intellectual Property Organiza-
tion (WIPO), which divides technology into eight discrete Sections. The goal of this
Agreement was to overcome the difficulties caused by using diverse national patent
classification systems. The resulting classification system was designed to be appli-
cable to both patent and utility model documents. This IPC taxonomy, now in its
eighth version, is updated every five years2 and now consists of over 71,000 codes.
Each code is described by a “classification symbol” called an IPC code. A patent
is generally assigned to one or more IPC codes that indicate the related technical
field or fields the patent covers. These codes are arranged in a hierarchical, tree-
like structure with five distinct components [36]. An example of one such IPC code
follows in Fig. 14.2 below.

Fig. 14.2 An example of an
IPC classification

2The ninth version of the IPC is due to be released on January 1, 2011.
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• The highest hierarchical level contains the eight sections of the IPC corresponding
to very broad technical fields, labeled A through H. For example, Section C deals
with “Chemistry and Metallurgy”.

• Sections are subdivided into classes. The eighth edition of the IPC contains 120
classes. Class C07, for example, deals with “Organic Chemistry”.

• Classes are further subdivided into more than 600 subclasses. Subclass C07C, for
example, deals with “Acyclic or Carbocyclic Compounds”.

• Subclasses are then further divided into main groups and subgroups.
• Main group symbols end with “/00”. Ten percent of all IPC groups are main

groups. For example, main group C07C 35/00 deals with “Compounds having at
least one hydroxy or O-metal group bound to a carbon atom of a ring other than
a six-membered aromatic ring”.

• The hierarchy of the subgroups under main groups is designated by dots preced-
ing the titles of the entries. For example, under C07C class 35, we have several
hierarchical subclasses, to three subclass levels.
– C07C 35/02 is the subclass consisting of “Monocyclic compounds”
– C07C 35/08 is indented to a second level and so is under C07C 35/02

“Monocyclic compounds” and are “Monocyclic compounds containing a six-
membered ring”

– C07C 35/12 is indented to a third level and so is under both C07C 35/02
and C07C 35/08 and includes those “Monocyclic compounds containing a six-
membered ring” that consist of “Menthol”.

In our example above, C07C 35/12 represents the IPC classification for the pro-
duction of Menthol.

• In some versions of the IPC, a series of numbers will follow the subgroup, reflect-
ing the enactment date of the IPC version. ‘20060101’ following the Subgroup
indicates a date of January 1, 2006, which is the date that the eighth version of
the IPC took effect.

14.1.4 Differences Between Major Patent Classification Systems

14.1.4.1 Difference Between the IPC and USPC

With more than 163,000 subdivisions, and 460 classes, each subclass of the USPC
has a far tighter focus compared with the IPC, which contains less than half as many
unique classification codes. Also, the more granular USPC was designed for patent
searches whereas the IPC was designed for harmonization between different patent-
issuing bodies. Hence, in terms of depth of classification, the USPC usually gives
more precise information on the invention’s true purpose. Also the IPC classifies an
invention according to its “function” whereas the USPC not only classifies based
on the function but also on the industry, anticipated use, intended effect, outcome,
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Table 14.1 IPC/USPC
terminology equivalents IPC USPC

Section Discipline

Class Category of Classes

Subclass Class

Group Subclass

Subgroup Indented Subclass

and structure. Because of this narrow focus, the USPC can be more challenging to
search. However, a search across the broader categorization of the IPC code may
return a wider variety of patents—including many unrelated ones—in a crowded
invention field. Table 14.1 illustrates some of the categorization terminology used
with the IPC and its USPC equivalent.

Though the USPTO has developed a concordance between its USPC system and
the IPC, the provided concordance tables are not always accurate nor complete since
the various classification systems are different and not all revised at the same fre-
quency. Other difficulties with the concordance tables include the different underly-
ing philosophies of the two systems and that a complete one-to-one relationship has
not been attained.

In the printed versions, both the IPC and USPC systems hierarchically indent de-
pendent titles with ‘dot’ notation, where the number of dots preceding the subgroup
indicates the depth in the subgroup hierarchy. With the USPC system, the first oc-
curring subclass of two subclasses at the same level is always superior. On the other
hand, the IPC system does not have a single standard superiority rule as is found in
the USPC system. The IPC system utilizes either general placement rules for supe-
riority when no rules are stated in the notes or text of an IPC subclass schedule or
its class, or one or more of several particular placement rules that are clearly stated
in the notes or text of an IPC subclass’ schedule or its class.

14.1.4.2 Differences Between the IPC and ECLA

The ECLA system, created and used by the EPO, is often used for searching patents
issued by European patent-issuing offices. More than 28 million documents can
be searched using ECLA symbols, sometimes dating back to 1836 (depending on
the country of origin) making it more versatile than the IPC. Additionally, since
ECLA contains nearly 133,000 entries—nearly twice as many entries as in the IPC,
a higher relative precision in the scope definition for a specific entry can be expected
using ECLA symbols instead of with IPC symbols. Additionally, the ECLA is up-
dated monthly, compared with annual updates for the IPC, allowing for classification
codes to better match the evolution of technology.

However, not all documents are available which contain the ECLA classification
system. On the other hand, the IPC documentation is the largest available classified
collection of patent documents—more than 37 million documents are classified with
IPC symbols. One limitation with the IPC system is that it does not cover documents
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published prior to 1968. One should note that the classification groupings used in
the ECLA system is identical to that used in the IPC system, but with increased level
of granularity [6].

14.2 Related Work Using Classification Hierarchies

Due to the increase in costs of intellectual property litigation and advancements in
text mining, a number of techniques have been introduced to examine patent sim-
ilarity. Initially, much work focused on the categorization of patents into similar
groupings. Chakrabarati et al. [3] performed some small-scale tests using Bayesian
classification methods and demonstrated that categorization of patents could be im-
proved by using the classifications of cited patents. Larkey [18] was able to improve
the precision of patent searches using the k-Nearest Neighbor approach, but was un-
able to improve patent categorization. Fall et al. [9] showed how different measures,
when indexed against different sections of a patent’s corpus can improve results
against the IPC system; however, these methods focus more on the examination of
appropriate query search terms.

More recently, attention has been focused on evaluating relevance of prior art
patents for a given patent application. NTCIR (National Institute of Informatics,
Japan) has run several workshops in information retrieval that focused on searches
on Japanese patents [10, 23, 24], but the focus was primarily on evaluating patent
search terms to determine relevance. One of the tasks of the 2009 and 2010 TREC
Chemical Patent tracks sponsored by the NIST (National Institute of Science and
Technology) requests participants to provide a ranked list of prior art patents that
are most closely related to a given set of patent applications [29]. The effectiveness
of the use of IPC classification system in patent retrieval has had mixed results. In
TREC-Chem’09, the BiTeM Group discovered that the use of the IPC code actually
hindered search quality on chemistry-related patents [12] but did the IPC code did
not do so on a broader set of patents from the CLEF-IP 2009 dataset [11]. Earlier
research using the IPC at NTCIR found success in its use in comparing patent ap-
plications and prior art patents [15, 16]. Also at TREC-Chem’09, the Purdue team
found that the IPC aided their ability to retrieve prior art patents for a given patent
application [2].

Research in linguistics has focused on evaluating the distance between nodes of
hierarchical structures. Shahbaba and Neal [26] have used Bayesian form of multi-
nomial logit (MNL) to improve classification of terms, but this technique requires
prior knowledge of correlations between nodes, which is expensive to calculate.
WordNet is a lexical database of the English language that has been studied exten-
sively since its introduction in 1985 [1, 22]. It contains groupings of English words
into groups of synonyms called synsets. WordNet’s purpose is to permit examina-
tion of the semantic relations between these synonym groupings. In Sect. 14.3, we
develop a WordNet-type structure to examine the semantic relations between clas-
sifications. Leacock and Chodorow [19] and Rada [25] have focused on semantic
relatedness of WordNet ontologies. In the experiments conducted in this chapter,
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we borrow from ontological similarity techniques and extend them to patent classi-
fication hierarchies.

Our goal is to examine the usefulness of classification hierarchies within the
domain of patent classification code searches. We have designed several methods
that we believe will improve search recall and precision, and in the next section,
will discuss four hypotheses to examine these methods.

14.3 Experimental Design

In this section, we describe how we establish our baseline and develop several hy-
potheses for examining the role of classification hierarchies in patents. We then
discuss our methodologies for conducting our experiments.

14.3.1 Data

Our goal is to explore how the hierarchy of IPC codes can be used to produce
a ranked list of potentially invalidating patents for a given patent application. We
chose to constrain the patents we used in this study to a single domain (chemistry).
To accomplish this, we focus on those classes determined by CAS (Chemical Ab-
stract Service) to be related to chemistry [4], but our methodology is also applicable
to other domains.

First we created a machine-readable version of the IPC classification, ensuring
that each code is represented by its complete hierarchical path. This effort was re-
quired as the code’s full path was not explicitly available in the patent document. We
also separated the first part of the IPC hierarchy, containing the Section, Class, and
Subclass, from the second part containing the Group and Subgroup. This separation
allows us to apply weights to each of them separately and determine their relative
influence on the resulting ranked document list. This information is then inserted
into the XML version of the patent document.

The distribution of IPC codes in our dataset is skewed right, with a majority of
IPC codes tied to only a few patents, but with some IPC codes having as many as
106 associated patents. The total number of IPC codes in our dataset considered
is 26,014, and the mean number of patents listing a given IPC code is 55, while
the median number is 18. The IPC codes that are referred to in fewer than 10 and
50 patents take about 38% and 65%, of all IPC codes available in our collection,
respectively.

14.3.2 Baseline Retrieval and Ranking

We first retrieved a ranked set of up to 1,000 prior art patent documents for each of
the 100 patent applications from the PA-Small task of TREC-Chem’09 [29], using



296 C.G. Harris et al.

the methods discussed for TREC-Chem Run 1 in [21]. The retrieval methods used
to produce these ranked sets did not consider classification codes; instead they rely
on text searches against the patent’s title, abstract, claims, and description fields. In
total we obtain a set of 74,603 distinct retrieved patents for the 100 patent appli-
cations. Of these retrieved patents, 18,806, or 25%, are patents that were issued by
the EPO and the remaining 55,797 patents were issued by the USPTO. We establish
these or ranked sets of retrieved patents as our baseline to explore the four different
hypotheses. Of these retrieved prior art patents in the baseline, 2,870 were judged as
patents relevant to the corresponding patent application. Our procedure is to re-rank
these retrieved patents using our new methods to determine if our methods could
be improved solely by examination of the IPC classification system alone. The In-
dri-based strategy we applied is identical to the one used in [14]. If we are able to
significantly improve the ranking of the retrieved patents based on the classifica-
tion hierarchy alone, we believe that our methods can make a difference to patent
retrieval.

14.3.3 Hypotheses

14.3.3.1 Examination of Classification Hierarchies

Our first hypothesis is that the use of the information contained in classification
hierarchies can aid a patent examiner in finding patents similar to a given patent
application. Also we believe that a prior art patent’s classification codes need not to
be exact matches to those contained in the patent application. However, the closer
the classification codes from the patent application and a given prior art patent are
in proximity with one another in the classification code hierarchy, the more similar
the two patents are. Our reasoning is that the classification hierarchy was implicitly
designed with this concept of proximity in mind, and this can be useful in retrieving
similar patents even if they use different codes.

14.3.3.2 Examination of the Weighting of Class and Group

Our second hypothesis is the importance of the second component of the IPC
code—Group and Subgroup—is more valuable that the first component—Section,
Class and Subclass—of the IPC code in the discovery of prior art patents (see
Sect. 14.1.3.2 for a description of the IPC format). Moreover, we wish to determine
the ideal ratio between these two components of the IPC to provide the best-ranked
patent result set. As mentioned earlier, the first component contains more general
information whereas the second component of the IPC code is more specific.

Thus a match, either exact or approximate, on the less-specific first component of
the IPC, i.e., the Section, Class, and Subclass, between two patent documents is less
likely to be meaningful than a match at the more specific component containing the
Group and Subgroup levels. We study this intuition by exploring differing weights
on these two different parts of this hierarchy.
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14.3.3.3 Examination of Primary Classification Codes vs. All Classification
Codes

Our third hypothesis is that there is a significant difference between the ranked list
of prior art patent documents returned using the primary IPC classification code
alone, compared with the use of all IPC classification codes in the prior art patent
documents being considered.

14.3.3.4 Examination of Primary Classification Codes vs. Our Baseline

Next, we examine the position of the IPC code within a patent. WIPO, in their 38th
Session, released an “Order of Recording of Classification Symbols”. In this Or-
der, they state “Classification symbols representing invention information, of which
that symbol which most adequately represents the invention should be listed first”
[33]. A follow-up report released in their 39th Session in 2007 indicated that 32 of
34 patent issuing bodies surveyed were following this approach [34]. But, to our
knowledge, no study has examined the effectiveness of this approach using the IPC.
Thus, our fourth hypothesis is that the use of the primary, or first-listed, classifica-
tion code for the two patents will produce a significant difference in the ranked list
of patent documents relative to those returned in our baseline.

14.3.4 Methodology

For the experiments we conducted on classification hierarchies in this chapter, we
focused our examination on the IPC. Our choice of the IPC is two-fold; first, the IPC
is the most widely used, being used by over 100 patent-issuing bodies to classify
their patents. Second, with the IPC, the Group and Subgroup are far more specific
(whereas the Category, Class and Subclass are more general); this allows us to see
how each affect the nature of searches based on the classification code and allows
us to determine the effects of classification hierarchies.

We conducted the experiments presented below using the XML-formatted
TREC-Chem’09 dataset [29]. After explicitly deriving and inserting a new XML
field representing the hierarchical path to each classification code assigned to the
document, we used Indri [27] to index, retrieve, and rank our documents. Although
patent documents contain a number of fields applicable for searches, our focus here
is to examine the classification hierarchy’s utility in this process, so we focus on
different aspects the use of classification codes in searches. For example, the IPC
code C07C 35/12, shown in Sect. 14.3.2, would be represented in XML as

<ipc-path>
<class-path> C07C </class-path>
<group-path> 35:00:35:02:35:08:35:12 </group-path>
</ipc-path>
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These XML tags are then added for each IPC code appearing in our patent col-
lection. Documents are then compared for similarity based on their IPC code fields;
we use Indri for this—the reader is directed to [14] for an explanation of Indri’s role
in a similar experiment. Preliminary examination of Indri’s techniques of evaluating
hierarchical structures such as classification codes demonstrate that two codes that
are more closely related (such as a child, parent, or sibling) patent in the hierarchy,
rank more highly than those which are more distantly related.

14.4 Results

14.4.1 Measures

Mean Average Precision (MAP) In our experiments, we obtain a ranked se-
quence of patents from Indri, and therefore it is desirable to consider the order in
which the returned patents are presented. Average precision emphasizes ranking
relevant documents higher. It is the average of precisions computed at the point of
each of the relevant documents in a ranked sequence of results matching our patent
application. See [30] for additional information on MAP.

Recall Score for the Top 100 Ranked Patents in Our Retrieval List (Re-
call@100) Our interest in this metric is based on our understanding that it is rarely
practical to examine more than 100 patents for a given patent application. Moreover,
MAP and nDCG consider both Recall and Precision, but arguably recall is the more
important metric in patent examinations.

Normalized Discounted Cumulative Gain (nDCG) This measure uses a graded
relevance scale of documents and measures the usefulness (gain) of a given docu-
ment as determined by its position in the entire list of retrieved results. Like MAP,
this gain is cumulative—however, as we move down our list of results, the gain ob-
tained by finding a relevant document is discounted further. See [17] for additional
information on nDCG and [28] for additional discussion on how nDCG and MAP
apply in different retrieval situations.

14.4.2 Examination of Classification Hierarchies

For our first hypothesis, we examined if the application of the classification hierar-
chy provides a more meaningful set of results than if the classification hierarchy is
not considered. The results based on our 100 patent application queries show that
the classification hierarchy does have an impact. The resulting MAP, Recall@100,
and nDCG scores increased by 29%, 37% and 27% respectively. The large increase
in recall for the first 100 ranked prior art patents demonstrates how the re-ranking
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Table 14.2 Results from our
use of the classification
hierarchy to re-rank patents

Metric Baseline Using Classification
Hierarchy

Num Patents Returned 93676 93676

Num Rel Patents Ret 1118 1121

MAP 0.0485 0.0626*

Recall@100 0.1888 0.2585*

nDCG 0.2245 0.2844*

method does have a significant effect. Table 14.2 shows the results from this test.
An asterisk (*) next to the number indicates a significantly improvement over our
baseline at a p < 0.05 level of significance.

We discovered a slight increase in the number of patents judged as relevant
(from 1,118 to 1,121), even though we are only employing a re-ranking function
on a closed domain of patents. Three patents included in the original ranking for
other patent applications were examined by our function and determined to be rel-
evant to an additional patent application. This is likely because the three additional
patents, after our re-ranking approach was applied, had surpassed a cutoff threshold
and were then included for a search on one of the other patent applications. This
demonstrates—albeit in a small way—that the use of distances in the classification
hierarchy can potentially broaden our ability to retrieve relevant patents in a prior
art search.

14.4.3 Examination of the Weighting of Class and Group

For our second hypothesis, we seek to determine which part of the IPC system—the
first, more general part (denoted as the “Class” portion of the IPC) or the second
more specific part that includes the group and subgroup (denoted as the “Group”
portion of the IPC), affect our metrics more. To accomplish this, we applied a range
of different weight ratios between the two parts, ranging from 1:100 to 100:1, and
examined the resultant metrics. A subset of the weight ratios and their results appear
in Table 14.3.

Table 14.3 Results of different weights applied to parts of the IPC classification

Metric Class:Group Class:Group Class:Group Class:Group Class:Group

1:1 1:2 1:100 2:1 100:1

Rel. Patents Ret 1121 1121 1119 1121 1120

MAP 0.0626 0.0623 0.0615 0.0627 0.0619

Recall@100 0.2585 0.2564 0.2487 0.2592 0.2511

nDCG 0.2844 0.2823 0.2791 0.2849 0.2831
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Table 14.4 Comparison of the optimal weighting between the two parts of the IPC classification
and our baseline

Metric Baseline Using Class:Group
Ratio of 1.6:1

Improvement over
Baseline

Num Patents Returned 93676 93676 –

Num Rel Patents Ret 1118 1121 0.3%

MAP 0.0485 0.0629* 29.7%

Recall@100 0.1888 0.2595* 37.4%

nDCG 0.2245 0.2852* 27.0%

Fig. 14.3 The effect of the Class:Group ratio on MAP

Through further experimentation with the weighting of these two parts of the
IPC classification code, we did not discover any significant difference using the
weighted methods; in other words, using weights that provided the best result did
not significantly differ from the non-weighted ratio (reported in Table 14.2) at the
p < 0.05 level of significance The improvement over our baseline was significant,
however: the best score is generated from a ratio between Class:Group of 1.6:1,
giving us a 27% improvement, for example, in nDCG. In Table 14.4, we compare
the metrics for the best result with that of our baseline result. An asterisk (*) next to
the number indicates a significant improvement over the baseline at a p < 0.05.

Figures 14.3, 14.4 and 14.5 illustrate the effect of the ratio on our MAP, Re-
call@100, and nDCG results respectively. In Fig. 14.3, MAP peaks where the
Class:Group ratio is 1.6:1, thus indicating that when the weight ratio between the
first section of the IPC (containing Section, Class and Subclass) is 1.6 times the
weight of the second section (containing Group and Subgroup), MAP is maximized.
Figure 14.4 shows that recall@100 also peaks near the point where both parts of the
IPC code are considered equally as well, although this peak is not pronounced rela-
tive to the other weighting combinations we have considered.
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Fig. 14.4 The effect of the Class:Group ratio on Recall@100

Fig. 14.5 The effect of the Class:Group ratio on nDCG

14.4.4 Examination of Primary Classification Codes

In our third hypothesis, we examined whether the use of this primary IPC code for
each of our patent documents would show a similar improvement as we found in our
first hypothesis, where we used all IPC codes. In our fourth hypothesis, we examined
whether the primary IPC code alone would provide a significant improvement over
our baseline. We found that the use of the primary IPC code significantly improved
performance over the baseline, but the use of the primary IPC code alone lags be-
hind the performance obtained using all IPC codes in patent documents. Table 14.5
illustrates the results we obtained for the use of the primary classification code and
its performance against the baseline. An asterisk (*) next to the number indicates a
significant improvement over the baseline at a p < 0.05 level of significance; a plus
sign (+) indicates a significant improvement over the use of the primary IPC code
alone at a p < 0.05 level of significance.

From Table 14.5, we observe that the primary classification code provides an
increase over the baseline results, but this increase is not as large as when all classi-
fication codes are used. With n classification codes in the patent application and m
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Table 14.5 Results from considering the primary IPC classification alone versus considering the
full set of IPC classifications to re-rank patents

Metric Baseline Using Primary IPC
Classification Code Only

Using All IPC
Classification Codes

Num Patents Returned 93676 93676 93676

Num Rel Patents Ret 1118 1118 1121

MAP 0.0485 0.0589* 0.0626*+
Recall@100 0.1888 0.2137* 0.2585*+
nDCG 0.2245 0.2516* 0.2844*+

classification codes in a prior art patent, there are n×m possible similarity scores to
consider for each target-prior art patent combination. When evaluating primary clas-
sification codes only, there is only one possible combination of codes to consider for
each target-prior art patent combination. Since we are ranking only the maximum
similarity score for each target-prior art patent combination, having a larger number
of classification code pairings to consider and rank ensures that using all codes will
do as well or better than using the primary classification code alone. This result also
concurs with the results from a far more limited USPC dataset we had discovered in
previous research [13].

In summary, we began with baseline sets of up to 1,000 patent documents for
each of our 100 patent applications and then re-ranked these sets using the methods
involving the IPC code hierarchy as explained above. Results indicate that patents
with more closely related classification codes also are more similar. One limitation
of our work is that the initial retrieval set for the 100 queries were already con-
strained to those results retrieved by our baseline strategy. It is possible that several
relevant documents were missed by these methods. Our re-ranking efforts are not
designed to improve recall and thus inherit the same limitations. Another likely im-
provement is to examine the ECLA classification system instead of the IPC or, better
yet, to use a weighted balance of IPC, USPC and ECLA codes instead of relying on
IPC codes alone, thus taking advantage of the strengths of each classification sys-
tem.

14.5 Conclusion

We have described the purpose of classification hierarchies and explained three ma-
jor classification systems used in evaluating prior art in patents. We then examined
the role of classification code hierarchies in a patent dataset and explored four hy-
potheses. The test of our first hypothesis demonstrated that the classification code
hierarchy can be utilized to significantly improve the ranking of retrieved prior art
patents. The test of our second hypothesis showed that both parts of the IPC classifi-
cation code system are important to patent retrieval, although the categorical portion
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containing the Section, Class and Subclass are slightly more important to exploit-
ing a classification hierarchy than the hierarchical portion containing the Group
and Subgroup. The test of our third and fourth hypotheses demonstrated that the
use of all classification codes for a given patent application and all matching prior
art patents provides significantly better results than using the primary classification
code alone; however, the use of the primary classification code by itself can still
significantly improve results over our baseline.

The designs of the experiments in this chapter have demonstrated that classifica-
tion code hierarchies can be used as a boosting measure to re-rank patents selected
using keyword searches or based on other criteria. By ranking the most relevant
patents at the top of the list, a patent examiner can see those patents more likely to
infringe on a given patent application.
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Part V
Semantic Search

The term ‘semantic search’ is used to describe search that goes beyond simple
matching of query and document keywords. In practice, as noted previously in
Chap. 2, the term semantic search in patent retrieval is applied to two different forms
of enhanced search. First are techniques that rely on compression or clustering of
the underlying term/document matrix, like Latent Semantic Analysis and related
techniques. These might be called techniques that rely on emergent properties of
the data. Second are techniques which use ontologies, thesauri or other taxonomic
classifications to augment the process of identifying and indexing potential search
terms extracted from the documents.

In a sense, all searching of patents is semantic, since all patents are categorized by
the taxonomic IPC codes if nothing else, and these codes are often used as part of the
search by patent searchers. Furthermore, in practice, there is no solid line between
the two forms of semantic search, since many in the second, ontologically based
group, acquire the ontology data at least in part via machine learning techniques
related to the first (emergent) techniques.

This section will discuss the use of semantic search in patent retrieval. Be-
cause there is little work to report in practical experience with patent data (al-
though progress is being made, for example the Frauenhofer SCAI group at TREC-
CHEM—see Chap. 5 in this volume), the related area of scientific paper search,
where semantic search is much more developed, will be reported as well. Of course,
scientific paper search is an integral part of many forms of patent search.

We have entitled this part ‘Semantic Search’, and while that is a useful and rea-
sonable title for the part, the five chapters represent only one of the two meanings
for semantic search in common use in the patent search community. The chapters
in this part are all about combining some form of generally statistical analysis of
incoming documents, with other external, generally hand crafted, forms of knowl-
edge or data (e.g. ontologies, thesauri or classification schemes like the IPC). We
had hoped to include at least one chapter on the use of purely emergent semantics,
for example, Latent Semantic Analysis (LSA). However this proved impossible.

The key challenge for patent information retrieval is to move semantic search
from the feasibility study stage of technology to the stage of proven improvement
of effectiveness of search. In other words, moving from showing whether or not
in principle it is possible to use external knowledge sources (of whatever kind) in
search systems to actually delivering better results to professional patent searchers.
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One of the issues at the time of writing (2011) is that the use of automated and
semi-automated ontology acquisition and maintenance tools, often making use of
statistical machine learning, for example, has made the distinction between the two
forms of semantics far less clear cut than it was a few years ago.

The chapter by Cunningham and colleagues, which begins this part, focusses on
the use of deeper analysis of patent documents to facilitate more effective index-
ing for search. Briscoe and colleagues describe a new approach to analysing and
searching scientific papers, which are the key non-patent resource for all forms of
search that need to go beyond patent data. The domain of chemical structure infor-
mation, an especially important form of knowledge in the patent world, is covered
by Holliday and Willett with an overview of the challenges presented by this field
and a summary of the approaches to these challenges. Pesenhofer and colleagues
describe new methods to use the free-to-access Wikipedia Science Ontology and
Linked Open Data to add additional terms to patents in order to address what is
sometimes called the vocabulary problem: that searchers often miss relevant docu-
ments because the document does not use the same words as the searcher to describe
the topic. Finally Nanba and colleagues also focus on the vocabulary problem, and
review a new approach to it based on the differences between patent and scientific
documents.



Chapter 15
Information Extraction and Semantic
Annotation for Multi-Paradigm Information
Management

Hamish Cunningham, Valentin Tablan, Ian Roberts, Mark A. Greenwood,
and Niraj Aswani

Why ‘multiparadigm’? Why ‘information management’, instead of the more familiar
‘information retrieval’ or ‘search’? Is our terminology, as suggested by one of our reviewers,
‘PR drivel’?! At one level, perhaps, our title does indeed reflect the increasing penetration of
short-termist market-oriented motivations into science and engineering (itself a part of the wider
subjection of all areas of public life to corporate profit—see for example [3]). The work reported
here was funded in part by a company with a close eye on its commercial potential, and we were
concerned to describe that potential in our publications. There are also, however, two substantive
points which we wanted to make, which are worth explaining in a little more detail. First, we
believe that Mímir is distinctive in combining three types of indexing under one roof—hence
multiparadigm—full text/boolean; conceptual/semantic; annotation (graph) structure. It is not the
case that this combination is either commonplace or straightforward, and we are hopeful that the
work will be influential as a result. Second, the technology suite into which Mímir fits is not just
about indexing (or information retrieval as commonly defined)—hence information
management—including as it does both GATE Teamware, a workflow-based distributed
collaborative manual annotation and annotation management platform, and OWLIM, a semantic
repository which is increasingly used for curated data sets as well as indices (examples in the UK
include the BBC, the Press Association and the National Archive). We feel, therefore, that Mímir
is an appropriate name for this enterprise.
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Abstract This chapter describes the development of GATE Mímir, a new tool for
indexing documents according to multiple paradigms: full text, conceptual model,
and annotation structures. We also present a usage example for patent searchers cov-
ering measurements and high-level structural information which was automatically
extracted from a large patent corpus.

15.1 Introduction

Dear Reader,
The gentle tinkling noise that you can hear in the background is the sound of

genre expectations shattering. This is not an ‘intellectual property’ paper (indeed I1

am uncertain that such a thing really exists—how could intellect be property?). As
Glyn Moody2 points out, Turing’s results imply the atomicity of the digital revo-
lution, and consequently it seems likely that the electronic genie is now so far out
of the ‘rights’ bottle that all bit stream representations of our human achievements
will follow into the realm of openness and cooperative enterprise sooner or later.
Nor is this an information retrieval paper, at least not in the well-behaved sense of
positing a hypothesis about model performance within a particular set of parameters
and then testing and drawing some familiar variant of an ROC curve to show how
well our hypothesis applies in the context of some particular data set.

We will break the expectations of patent searchers by paying little attention to
the particular needs of that community (although the work we report was initially
applied to patents and is likely to have benefits there), and perform similar violence
to the expectations of IR researchers by making a fairly rudimentary evaluation.
Now that only the curious are still reading, I can appeal to you as a kindred spirit.3

Join me in a short history of some technological developments that my colleagues
and I have had the pleasure of making over the last few years. I promise not to tell
anyone about your paradigm-shifting deviance if you’ll extend the same courtesy to
me.

The paper covers work on two areas. First, the integration of standard information
retrieval techniques with semantic annotation and information extraction work in
order to deliver search capabilities that may be more flexible and interactive than
previously. Second, on scalability via distributed processing and efficient indexing.
It is structured as follows:

• we begin in Sect. 15.2 with some context and terminology relating to both the
characteristics of patent searching and the text mining technology from which
Mímir has developed

• in Sect. 15.3 we present the design and implementation of Mímir

1In the interests of protecting the innocent the first author lays claim to the introduction.
2http://opendotdotdot.blogspot.com/.
3I used to hope that as time passed I would become older and wiser, but it seems that in fact I just
become odder and wider.

http://opendotdotdot.blogspot.com/
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• Sections 15.4 and 15.5 go on to describe the semantic annotation of patent docu-
ments with general categories such as bibliographic references or sectioning and
specific data on measurements that appear in the texts

• Section 15.6 gives an extended example of the type of multi-paradigm search
process that is possible as a result of pushing the annotations described in 15.4
and 15.5 into a Mímir index server

• Section 15.7 wraps up with discussion of the main achievements described within
this chapter

15.2 Background

15.2.1 Semantic Annotation

Semantic annotation is the process of attaching metadata tags and/or ontology
classes to text segments, as an enabler for knowledge access and retrieval tools.
Automatic annotation is carried out by employing Information Extraction (IE) [4]
techniques, which recognise automatically instances of a given set of events, enti-
ties or relationships. From an algorithmic perspective, IE approaches fall in to two
broad categories: manually engineered ones (frequently based on pattern-matching
like rules, see e.g. [13]) and machine learning ones (see e.g. [2, 12]). Rule-based
approaches are more suitable where a carefully engineered, high precision system
is needed and there are not sufficient training data for a machine learning approach
to be successful. From an operational perspective, IE tools can be deployed in both
fully and semi-automatic applications (where users can inspect and, if needed, cor-
rect the automatically created metadata). In general, fully automatic methods are
preferred when the volume of data is too large to make human post-annotation prac-
ticable, as is the case with patents.

15.2.2 Patents

Patents are an important vehicle for the expression of corporate strife, and this im-
portance is increasing in the current intensification of international competition.
When researching new product ideas or filing new patents, inventors and patent
attorneys need to retrieve all relevant pre-existing know-how and/or exploit and en-
force patents in their technological domain. This process may be hindered, however,
by a lack of rich metadata, which if present, would allow powerful concept-based
searches to complement the traditional keyword-based approaches.

Patent searchers require high recall methods, capable of operating robustly on
large volumes of data. Much early IE research was carried out on smaller datasets
from narrower domains, often news articles [2, 9, 14]. A challenge addressed more
recently is in scaling up these methods to deal with the diversity and volume of
patent data.
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Applications of IE to patent annotations are quite scarce, mostly focusing on
optical character recognition (OCR) and text classification, whilst only briefly dis-
cussing the importance and challenges of identifying references to figures and
claims in patents. In this area, [11] carried out a small feasibility study using the
Xerox language processing tools. The PatExpert project [15] has developed some
content extraction components based upon deeper linguistic analysis than the ap-
proach proposed here.

15.2.3 ANNIE and ANNIC

In 2007 we began work on adapting an IE and semantic annotation system to
patent data. This system (ANNIE, A Nearly-New IE pipeline) is part of GATE
(http://gate.ac.uk/ [6, 7]), which also includes a diverse set of development tools
for language processing R&D. One such tool is ANNIC (ANNotations In Context),
which predates the work described here [1]. ANNIC was designed to support the de-
velopment of finite state transduction patterns in GATE’s JAPE language.4 ANNIC
is used to search corpora that have been both annotated with GATE and indexed us-
ing Lucene.5 Users make searches based in a query language very similar to JAPE
and are presented with a results summary similar in form to KWIC (Key-Words In
Context) tools: the portions of text that match the query form a column down the
centre of the screen and are preceded and followed by the proximate text on either
side.

ANNIC was designed as a development tool, not as an end-user tool, and is
tightly integrated within GATE Developer (a specialist tool for R&D workers), and
is inefficient beyond the range of a few hundred documents. We had no intention of
proposing the tool as appropriate for patent searchers, but by chance we used it to
demonstrate some of the IE work to a patent search expert group. The feedback from
this group was very positive, and we were commissioned to produce a version of
ANNIC that would scale to a one terabyte plain text database of patent documents—
hence Mímir, to whose design we now turn.

15.3 GATE Mímir—A Multiparadigm Index

Mímir6 is a multi-paradigm information management index and repository which
can be used to index and search over text, annotations, semantic schemas (ontolo-
gies), and semantic metadata (instance data). It allows queries that arbitrarily mix
full-text, structural, linguistic and semantic queries, and that can scale to gigabytes
of text.

4JAPE is a regular expression based language for matching annotations—see http://gate.
ac.uk/userguide/chap:jape.
5http://lucene.apache.org/java/.
6Old Norse “The rememberer, the wise one”.

http://gate.ac.uk/
http://gate.ac.uk/userguide/chap:jape
http://gate.ac.uk/userguide/chap:jape
http://lucene.apache.org/java/
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15.3.1 What Is in a Mímir Index?

A typical semantic annotation project deals with large quantities of data of differing
kinds. Mímir provides a framework for implementing indexing and search function-
ality across all these data types. The data types currently supported within a Mímir
index are listed below in the order of increasing information density.

Text All documents have a textual content.7 Support for full text search represents
the most basic indexing functionality and it is required in most (if not all) cases.
Even when semantic annotation is used to abstract away from the actual textual
data, the original content still needs to be accessible so that it can be used to provide
textual query fragments in the case of more complex conceptual queries.

Mímir uses inverted indexes8 for indexing the document content (including ad-
ditional linguistic information, such as part-of-speech or morphological roots), and
for associating instances of annotations with the positions in the input text where
they occur. The inverted index implementation used by Mímir is based on MG4J.9

Annotations The first step in abstracting away from plain text document con-
tent is the production of annotations. Annotations are metadata associated with text
snippets in the documents. Typically an annotation is described by:

• the document it belongs to;
• the start and end offsets of the referred text snippet;
• the annotation type (a textual label or an URI);
• an arbitrary set of <feature, value> pairs.

An annotation index supports a more generic search paradigm. Depending upon
the type of annotations available, the user can search across different dimensions.
For example, if we suppose that all words in the indexed documents are annotated
according to their part of speech, then one could search for sequences of type {De-
terminer}{Adjective}{Noun}, which would match phrases like The red
car or The new method, etc. When the annotations are semantically richer, this new
search paradigm gains more representational power. If, for example, the documents
are annotated with occurrences of Person, Location, Organization en-
tities, then searches like {Person}, CEO of {Organization}, based
in {Location} become possible.

7Although the focus is currently on indexing text documents, specifically patents, it would be
perfectly feasible to associate annotations and KB data with multimedia documents, where offsets
may refer to time spans in videos or areas of an image etc.
8Inverted Indexes are data structures traditionally used in Information Retrieval to support indexing
of text.
9http://mg4j.dsi.unimi.it/.

http://mg4j.dsi.unimi.it/
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Knowledge Base Data Knowledge Base (KB) data consist of an ontology pop-
ulated with instances. The ontology represents the data schema and comprises a
hierarchy of class types, and a hierarchy of properties that are applicable between
instances of classes. The instance data represent facts that are known to the system
and are typically, or at least partially, derived from the semantic annotation of docu-
ments. KB data are used to reach a higher level of abstraction over the information in
the documents and enables conceptual queries such as measurement ranges. A KB
is required for answering such queries as they may often involve converting from
one measurement unit into another, and reasoning about scalar values.

A KB that is pre-populated with appropriate world knowledge can perform other
generalisations that are natural to humans users, such as being able to identify Vi-
enna as a valid answer to queries relating to Austria, Europe or the Northern Hemi-
sphere.

Mímir uses a KB to store some of the information relating to annotations. The
links between annotations, the textual data, and the KB information are created by
the inclusion into the text indexes of a set of specially-created URIs that are asso-
ciated with the annotation data. Furthermore, URIs of entities from the KB can be
stored as annotation features.

KBs are typically represented as a collection of triples that are kept in highly-
specialised and optimised triple stores; using standards such as RDF or one of the
versions of OWL.10 The implementation used by Mímir is based on ORDI and
OWLIM.11

15.3.2 Searching Mímir Indexes

From a user’s point of view, Mímir is a tool for searching a collection of semantically
annotated documents. It provides facilities for searching over different views of the
document text, for example one can search the document’s words, the part-of-speech
of those words, or their morphological roots. As well as searching the document
text, Mímir also supports searches over the documents’ semantic annotations; where
queries are based on annotation types and restrictions over the values of annotation
features. These different search paradigms can be combined freely into complex
queries, with support for sequences, repetitions, and Boolean operators.

A search session entails the formulation of a query, running the query with the
Mímir query engine, and then consuming the results.

There are two different methods for constructing Mímir queries:

Query Language: A simple language has been defined that allows the formulation
of Mímir queries using plain text.

10See http://www.w3.org/RDF/ and http://www.w3.org/TR/owl-features/.
11See http://www.ontotext.com/ordi/ and http://www.ontotext.com/owlim/.

http://www.w3.org/RDF/
http://www.w3.org/TR/owl-features/
http://www.ontotext.com/ordi/
http://www.ontotext.com/owlim/
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Java API: The Mímir Java API defines a set of classes that represent query nodes.
Each class corresponds to a type of query that Mímir supports. Individual nodes,
representing sub-queries, are combined to form a query tree which embodies a
more complex query. The node for the root of the query tree can then be used to
execute the query through the Mímir query engine. This format is always used
internally by Mimir to represent queries; queries sent in textual form (using the
query language) are first converted to a tree of query nodes, and then executed.

There are three different methods for searching with Mímir:

Web Interface: When run as a web application, Mímir exposes a GWT- (Google
Web Toolkit) based web interface that can be used from any browser. This is the
simplest (and most user-friendly) way to access the search functionality of Mímir.

Java API: When Mímir is embedded into another Java application the Mímir search
API can be used to construct queries, execute them, and process the results.

Web Service: When Mímir is run as a web application, a RESTful web service is
published that allows the formulation of queries (using the query language), the
execution of queries, and the retrieval of results.

Whilst this plethora of query building and search facilities makes Mímir ex-
tremely flexible it is unlikely that most patent searchers will need to venture fur-
ther than entering queries into the web interface (or some other user interface built
on top of one of the other search APIs). Given this reasoning, the rest of this sec-
tion will focus on constructing queries using the plain text query language. For the
adventurous, full details of the Java API and Web Service interface can be found
in [10].

15.3.2.1 Constructing a Query

Mímir queries consist of one or more sub-queries linked by operators. The rest of
this sections details the different query types and the operators that can be used to
combine them to form more complex queries.

String Queries: The simplest form of query is a query term. This will match all
occurrences of the query term in the indexed documents.
If the Mímir index being interrogated includes multiple string indexes, then the
particular index to be searched can be specified by prefixing the query term with
the index name and a colon, for example the query ‘root:be’12 will match all mor-
phological forms of the verb to be. If the name of the string index is omitted, then
the first configured index is used. By convention (reflected in the default Mímir
configuration) the first string index is used to store the terms text, so the default
behaviour is to search over the document text, as expected.

12This assumes that an index named root exists, and was used to store the morphological root of
the words.
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Table 15.1 Escaping
reserved constructs in the
Mímir query language

Reserved input Escaped form

{, } \{, \}

(, ) \(, \)

[, ] \[, \]

: \:

+ \+

| \|

& \&

? \?

\ \\

. \.

” \”

= \=

IN “IN”

OVER “OVER”

OR “OR”

AND “AND”

Some words are part of the query language definition so they cannot be used di-
rectly as query terms. If that is desired, then these constructs must be escaped as
shown in Table 15.1.

Annotations Queries: If annotations were indexed then Mímir allows searching for
annotation-based patterns. An annotation is a piece of metadata associated with a
text segment. When indexed in Mímir, annotations are defined by:

• type: a string value
• start and end offsets: two numeric values that link the annotation with the text

segment they refer to
• features: a set of named values. Each indexed feature must have one of the fol-

lowing types:
– nominal: when the permitted values are strings from a limited set
– numeric: floating-point numbers representable in double precision
– text: arbitrary string values
– URI: URIs are used to create links to resources (such as classes or entities) in

semantic knowledge bases

When searching for annotations, the user needs to describe their request by pro-
viding an annotation type and, optionally, one or more feature constraints. An an-
notation query takes the following form: {Type feature1=value1 fea-
ture2=value2 ...}.
While the example above uses equality for the feature constraints, other operators
are also available. Here is the full list:
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Equality: Represented by the sign = matches annotations which have the given
value for the specified feature. The equality operator is applicable to features of
any type.

Comparison Operators: Represented by one of the following symbols: <, <=,
>, >=, with the usual meaning. These operators can apply to features of type
nominal, numeric, or text.

Regular Expressions: Can be specified using the syntax REGEX(pattern,
flags), where the pattern represents the regular expression sought, and the
flags are optional, and can be used to change the way matching is performed.
See http://www.w3.org/TR/xpath-functions/#regex-syntax for a full specification
of the regular expression support. The REGEX operator can only be used for nom-
inal, and text features.

Some example annotation queries are:
{PatentDocument date > 20070000}this searches for all patent docu-
ments published from 2007 onwards.13

{Reference type = figure}—retrieves all references to figures within
the index.

Sequence Queries and Gaps: As sequence is the default operator in Mímir, there is
no graphical sign for it: simply writing a set of queries one after another will cause
a search for sequences of hits, one from each sub-query. For example, the query
“the energy level” is actually a sequence query where the first sub-query
searches for the word “the”, the second for “energy”, and the last for “level”. This
would match occurrences of the exact phrase ‘the energy level’ in the indexed doc-
uments. Note that this is different from the standard behaviour of search engines,
the majority of which would simply match documents in which all three query
terms occur, in whichever order. This type of searching is also supported in Mímir,
through the AND operator which is discussed later in this section.
It is sometimes useful to include gaps in a sequence query, that is, to allow arbitrary
text fragments (of specified length) to occur in-between the hits from some of the
sub-queries. This can be done by using the gap markers “[n]”, or “[m..n]”.
These will match a sequence of length n, or with a length of between m and n of
arbitrary tokens.
For example the query “the [2] root:time” will match phrases like “the
best of times” or “the worst of times”, whereas the query “the [2..10]
root:time” would also match “the best use of one’s time” (where the gap con-
sists of six tokens—five words and an apostrophe).
AND Operator: The ‘AND’ (also ‘&‘) operator can be used to specify queries that

should match document segments that include at least one hit from each of the
sub-queries. The results returned will always be the shortest document segments
that satisfy the query.
OR Operator: OR queries are used to search hits that match one of a set of alternative

query expressions. This is indicated by using the ‘OR’ (also‘|’) operator between

13In general dates are encoded as yyyymmdd. This encoding allows dates to be treated as numbers,
enabling a wide variety of search restrictions.

http://www.w3.org/TR/xpath-functions/#regex-syntax
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the sub-queries. A query of the form Query1 | Query2 will return hits that
match either sub-query Query1 or sub-query Query2.
IN and OVER Operators: The operators IN and OVER are used to search for hits of

a query that contain, or are contained in the hits of another query. For example:

Query1 IN Query2 will match all the hits of Query1 that are contained in a hit
of Query2.

Query1 OVER Query2 will match all hits of Query1 that contain (are overlap-
ping) a hit of Query2.

Repetition Operator: The + operator can be used to match text segments that com-
prise a sequence of hits from the same sub-query. The length of the sequence is
specified through a number (representing the maximum number of repetitions) or
through two numeric values (representing the minimum and maximum number of
repetitions). For example:

“to+3” will match one, two, or three repeated occurrences of the word to. The
returned hits will be of the form “to”, “to to”, or “to to to”).

“{Measurement}+2..5” will match sequences of two, three, four, or five ad-
jacent Measurement annotations.

Grouping: In the case of complex queries that include multiple sub-queries, paren-
theses ‘(’, ‘)’ can be used to group a set of sub-clauses together.

15.4 The Patent Annotation Task

The experiments in this paper are based upon three different kinds of patents taken
from the MAREC collection14: American (USPTO), Japanese (JP) and European
(EPO). The reason for choosing multiple data sources is because the three patent
types differ in terms of the metadata, formatting, quality, and legal language used.
These differences ensure that the approaches we develop can be applied to a wide
range of documents, and hopefully to unseen document types with little loss in per-
formance.

The semantic annotation process adds new metadata to the patents (in the form
of XML tags). These new metadata fall into two broad categories; wide and deep
annotation types. Wide annotations are intended to cover metadata types that apply
to patents in general, and do not depend on the specific subject area of the patent
(as identified, for example, by its IPC code). Examples of such metadata include
document sections and references to cited literature, examples, figures, claims, and
other patents. Deep annotations are specific to one or more subject areas and are of
interest to specialised patent searchers. The experiments reported here focus upon
automatic annotation of measurements (as they are very important for patent pro-
fessionals) whilst also being very hard to find using keyword search. This is due to
the diverse ways in which they can be expressed via natural language.

14http://ir-facility.net/prototypes/marec/.

http://ir-facility.net/prototypes/marec/
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The benefits from the automatic metadata enrichment process are three-fold.
Firstly, information extraction (IE) is capable of dealing with variable language pat-
terns and format irregularities much better than text-based regular expressions. For
example, references to other patents can be very diverse: U.S. Patent 4,524,128, Ko-
rean laid open utility model application No. 1999-007692. Secondly, once the addi-
tional metadata have been added to the patent, IE tools can also carry out data nor-
malisation. Again, taking an example from references to figures or similarly claims,
expressions such as “Figures 1–3” or “Claims 5–10” imply references not just to the
explicitly mentioned figure/claim numbers but also to all those in between. Lastly,
by using text mining techniques we are able to extract a significantly wider range
of useful information, than could be obtained via keyword search, and provide it as
additional XML tags in the patent documents.

The rest of this section details the metadata we currently extract from patents and
highlights some of the problems and how these have been overcome.

15.4.1 Section Annotations

Patent documents are typically quite long, contain multiple required sections, and
use highly formalised legal and technical terminology (with the notable exception of
literature references and measurements). Different aspects of the patent application
are typically presented in a pre-defined set of sections and subsections (e.g. prior
art, patent claims, technical problem addressed and effect). Both USPTO and EPO
documents have at least three main parts, the first page containing bibliographical
data and abstract, the descriptions part, and the claims part.

Automatic section recognition is based upon identifying typical section titles and
using them to automatically partition the text. Pre-existing section markup is used, if
available. For instance, Bibliographic Data, Abstract and Claims sections tend to be
already annotated in patent documents so we use them directly. There are, however,
around 20 different sections within most patents15 and so most sections still need to
be detected automatically.

15.4.2 Reference Annotations

Reference annotations are used for parts of text that refer to either objects in the
current document (e.g. figures, tables, etc.) or to other documents (e.g. scientific
papers).

A reference annotation consists of two parts; a header indicating the type of ref-
erence, and one or more identifiers which typically consist of a mixture of numbers

15The number of sections within a patent can vary widely from one patent office to another and
even, over time, within the same office. Most of the patents we examined during the reported work
do, however, contain around twenty sections.
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and letters. For example, in Figure 1 and 2 the header is Figure and the identifiers
are 1 and 2. In U.S. Pat. No. 3,765,999 the header is U.S. Pat. and the identifier is
No. 3,765,999.

Conjunctive phrases mentioning references to two or more objects of the same
reference type are tagged initially as one reference annotation, including the con-
junction and all punctuation. For example, Figures 1 and 2; Claims 1–3; Tables 1 to
10 are first annotated as one Reference each, of type Figure, Claim and Table respec-
tively. The normalisation step then separates these into their constituent references;
including all implied references (e.g., to Claim 2).

From an IE perspective, some types of references are much simpler to identify
than others. For instance, there is little variability in the way patents refer to fig-
ures, tables, claims, equations, and examples. References to other patents tend to be
slightly more challenging, as they often include the inventors’ names, patent date,
or even title—in addition to a simple header and identifier. The hardest of all are
the references to external sources, such as published papers (see e.g., Hudson &
Hay, Practical Immunology (Blackwell Scientific Publications, Oxford, UK, 1980),
Chap. 8), which tend to be quite long and typically contain many abbreviations
and idiosyncratic formatting. We have also observed significant differences between
American and European patents in this respect and had to adapt our IE tools to deal
with this accordingly.

15.4.3 Measurement Annotations

Most measurements comprise a scalar value followed by a unit, e.g. 2 × 10−7 Torr.
Furthermore, two scalar values with or without a unit can be contained in an inter-
val. Sometimes there are also accompanying words, such as “less than” or “be-
tween” which are important for professional searchers and, therefore, need also
to be marked by the IE tools, e.g., “less than about 0.0015 mm”, “2 × 105 to
2 × 107 cpm/ml”. Lastly, we also deal with relative measurements, such as per-
centages and ratios.

The main challenge involved in recognising measurements in patents comes from
the large number of measurement units in existence (e.g., units used in physics
patents are very different to those used in engineering ones). Another challenge
is that some units have single letter abbreviations. These can introduce ambiguities
and therefore require a wider context to be considered in order to determine whether
a specific sequence of numbers followed by a letter is indeed a measurement. One
frequently encountered example of such ambiguities are temperatures, e.g., “1C”
where we need to distinguish correct temperature mentions from other cases, such
as references to figures, examples, tables, etc. (as in “see Figure 1C”).
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Table 15.2 The SAMIE components listed in runtime order (items in bold were developed specif-
ically for SAMIE, other components were customised as needed)

Processing resource Description

Cleanup Remove annotations from previous application runs

Import Relevant Markup Makes relevant markup from the original document available to the
rest of the pipeline

Roman Numerals Annotates Roman numerals which are used for detecting references

Numbers in Words Recognises numbers written as words and converts them to actual
values

Tokeniser Pattern matcher for detection of words and other lexical items

Sentence splitter Regular expression-based detection of sentence boundaries

POS tagger Addition of part of speech (grammatical categories) to tokens

Gazetteer (case sensitive) Lookup of known domain terms

Gazetteer (case insensitive) Lookup of known domain terms, with case insensitive matching

Numbers Find and annotate all remaining numbers

References Transducer Find and annotate all the references within the documents

Measurement Tagger Find and annotate all the measurements within the documents

15.5 Automatic Patent Annotation

Our approach to the large scale semantic annotation of patent documents is embod-
ied in an information extraction system called SAMIE. This section discusses both
SAMIE and the processing infrastructure we have developed to support large scale
IE tasks.

15.5.1 SAMIE Architecture

SAMIE is provided as a GATE Application Pipeline consisting of a number of inde-
pendent modules. The modules which make up the application are shown in runtime
order in Table 15.2. The pipeline works as follows:

NLP Infrastructure: A basic set of NLP components were used to perform a shallow
analysis of the input documents; adding simple linguistic features, such as part-of-
speech, to the document. These features are added as annotations on the document.

JAPE Grammars: Numbers in the documents were mostly identified using the JAPE
pattern matching language [5]. Every number which was recognised was aug-
mented by the addition of a ‘value’ feature holding a double representation of the
number. JAPE grammars were also employed to detect and annotate sections and
references as described in Sects. 15.4.1 and 15.4.2.

Measurement Tagger: The measurement tagger is a complicated mix of JAPE rules
and Java code that can recognise valid combinations of known units and reduce
the units to a form in which they consist only of SI units. This reduction to SI



320 H. Cunningham et al.

units then allows measurements of the same dimension (i.e. length) expressed in
different ways (e.g. metres, inches, feet . . . ) to be indexed, compared against each
other and retrieved no matter the unit expressed by the user. The measurement
tagger relies on the previous number annotations to remove spurious matches (i.e.
a measurement nearly always starts with a number).

To enable complex measurement-based queries we have extended the Mímir
query language so that Measurement annotations support a special synthetic fea-
ture, named spec which can be used to specify in natural language a measurement
value, or a range of values to search for

The values used by the spec feature can take one of two forms:

number unit: This will match scalar measurements that have the exact specified
value,16 and interval measurements that contain the specified value. For example,
‘23 cm’ or ‘3 inches’.

number to number unit: This will match scalar measurements that fall within the
specified interval, and interval measurement that overlap with the specified range.
For example, ‘2.5 to 15 amperes’. would match all of the following values: ‘3000
mA’, ‘0 to 5 A’, ‘7 to 100 Amperes’, etc.

In either case unit normalisation is performed, so a query expressed in metres
can match annotations expressed in inches, or millimetres, etc. For example, all the
following represent the same query:

{Measurement spec = “3 to 5 metres”}
{Measurement spec = “300 to 500 cm”}
{Measurement spec = “3000 to 5000 mm”}
{Measurement spec = “118 to 197 inches”}17

An evaluation of SAMIE [10] has found that the accuracy of the annotations
detailed in this sections is comparable to that of human annotators tasked with pro-
ducing the same metadata. This evaluation gives us the confidence to apply SAMIE
to the task of large scale automatic annotation of patents.

15.5.2 Large Scale Annotation with GATE Cloud

One of the main challenges faced in this project is the sheer scale of the task. Patent
databases typically contain tens of millions of patents, and hundreds of thousands of
new ones are produced each year. Worldwide, millions of new patent applications
are submitted yearly.18 Any application aimed at the IP domain requires a good
scalability profile if it is to maintain any credibility.

16Within the precision allowed by floating-point arithmetic of double precision.
17This query is approximately equal to the others as the two values have been rounded to the
nearest whole numbers.
18Detailed statistics are available from the World Intellectual Property Organization at
http://www.wipo.int/ipstats/.

http://www.wipo.int/ipstats/
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Fig. 15.1 Overall architecture of GATE Cloud platform

To answer our need for scalability, we have developed GATE Cloud19—a plat-
form for parallel semantic annotation of text documents. GATE Cloud is designed
as a parallel version of the execution engine found in GATE [7]. It takes a language
processing pipeline created using the GATE Developer environment (in this case,
the SAMIE application detailed in the previous section), and executes it using a set
of parallel threads. The job control is effected through document batches, which are
XML files describing outstanding tasks.

A high-level view of the architecture of GATE Cloud is presented in Fig. 15.1.
The main elements in the diagram are detailed below:

Batch Spec: A batch is a unit of work that needs to be performed. It comprises a
list of IDs for the documents that need to be processed, a pointer to the prototype
of the processing pipeline that should be used, and configuration data specifying
input/output options.

Input Output Manager: The I/O manager reads the batch files, parses them, and ex-
tracts the IDs for the documents that need to be processed. Its main role is to han-
dle the import/export operations for the patent documents. Internally, GATE Cloud
uses GATE Document objects as defined by the GATE Java API; the I/O Man-
ager’s job is to create the initial GATE document object for each new document,
and to handle the saving of the results at the end of the process. This is also where
the integration with various document stores (such as on-disk GATE datastores, or
custom patent databases) is handled.

19http://gatecloud.net.

http://gatecloud.net
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Jobs Queue: Each document to be processed represents a job. These are represented
as document IDs and are stored in the jobs queue. The queue is accessed in parallel
by all the execution threads whenever they become available for work.

Worker Threads: A worker thread is a copy of the processing pipeline that manages
its own execution thread. Its execution comprises a loop in which it gets the ID
for the next available document, it reads the document through the I/O Manager,
it executes the processing pipeline over the document, and, finally, it exports the
results, again using the facilities provided by he I/O Manager. The number of par-
allel worker threads is a configuration option for each instance of GATE Cloud,
and it depends on the hardware characteristics of the host.

Batch Report: The execution of each batch is reflected in a batch report file in XML
format. This includes, for each document, whether the execution was successful or
some error occurred, and some simple statistics regarding the number of anno-
tations of each type that were produced. Furthermore, once the batch execution
completes, details are included regarding the total number of document processed,
how many encountered errors, and the total execution time for the whole batch.

In order to determine the most suitable hardware configuration for running GATE
Cloud, we have performed a series of experiments. The main parameters we were
trying to estimate were memory requirements, and CPU load, i.e. how many worker
threads should be allocated given the number of available CPU cores. Finding
the optimal memory allocation is important because low values lead to excessive
amounts of CPU time being used for garbage collection, while large values are
wasteful. The number of worker threads for a given CPU configuration also needs to
be optimised to increase CPU utilisation, while avoiding excessive context switch-
ing and locking due to access to shared resources (such as the disk, or network
interfaces).

The optimal values will vary depending on the type of documents being pro-
cessed, and the requirements of the actual processing pipeline used. For each new
deployment of GATE Cloud, these parameters should be estimated experimentally.
In our particular case, the highest throughput was obtained when each worker thread
had 2 GB of RAM allocated, and the number of threads was 1.5 times the number
of CPU cores. In this configuration, the execution speed was over 1000 documents
per hour and per CPU core.

GATE Cloud is designed for parallel execution and it aims at 100% utilisation
of a multi-core and/or multi-CPU computer. When combined with an engine for
distributed execution of jobs,20 GATE Cloud can be deployed on large computer
farms, or commodity compute clouds. This results in a highly scalable solution for
semantic annotation of documents.

GATE Cloud is also intended to run for extended periods of time; conceivably it
could even be deployed as a continuously running process. This places some strin-
gent requirements with regard to the robustness of the process, which have influ-
enced the design and implementation. Any errors and exceptions that may occur

20Such as the Sun Grid Engine (http://gridengine.sunsource.net/.) or Hadoop (http://hadoop.
apache.org/).

http://gridengine.sunsource.net/
http://hadoop.apache.org/
http://hadoop.apache.org/
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during processing are trapped and reported, without crashing the entire process. If
the GATE Cloud process does crash, for whatever reason (e.g. hardware failure,
or power cut), the process can be restarted using exactly the same mechanism as
was used to launch it originally. GATE Cloud will automatically identify the pre-
vious incomplete run, will parse the partial execution report file to find which doc-
uments were already processed successfully, and will resume execution from the
point where the previous run stopped.

15.6 Multi-Paradigm Patent Search

Whilst some may find the technical details of Mímir interesting, most patent
searchers simply wish to know if it will help them to do their job. This section
aims to answer that question by showing an example search session over a corpus
of 100,000 patents.

The scenario for this example search session involves finding inventions, and
their inventors, that make use of transistors.

As with any search engine a good place to start is a keyword-based search.
transistor
This returns 75,208 hits in the example index—that is the word ‘transistor’ ap-

pears 75,208 times within the 100,000 patents. The main problem with this query
is that because it matches words, rather than sequences of characters, it does not
include any mention of the word ‘transistors’. We could rectify this in one of two
ways. In this case, where there are only two variations of the word, we could issue
the query transistor OR transistors. The problem with this query is that
when you have words with more variations, or multiple words where you need to
match different tenses, the queries can quickly become unwieldy. A better approach
is to use one of the other Mímir string indexes to search on the root form of the
word.
root:transistor
This query now returns 99,742 results. This is a lot of results to search through,

and it is likely that most of the results refer to inventions in which transistors only
play a minor role. One way to refine the search would be to concentrate on those
results which occur within an abstract as this is suggestive of transistors playing an
important role in the patent.
root:transistor IN {Abstract}
Our refined query now returns just 3,053 instances of ‘transistor’ or ‘transistors’

from within the index, but this does not equate to 3,053 different patents.
We can invert the previous query so, that instead of returning all mentions of

transitors within abstracts, it instead returns the abstracts which mention transistors.
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{Abstract} OVER root:transistor
The results show that there 1,088 such abstracts within the index. Given the way

patents are written they often include multiple abstracts in different languages.21 We
can restrict our query to only focus on abstracts in a given language using the lang
feature. For example we could focus on just the 369 abstracts written in French.
{Abstract lang=FR} OVER root:transistor
Given that we are using the English spelling of transistor (and the index was

created using an English part-of-speech tagger) it would, however, make more sense
to focus upon just those abstracts written in English.
{Abstract lang=EN} OVER root:transistor
This query returns 713 abstracts from the 100,000 patent index. Whilst this

maybe a small enough number for a team of patent searchers to handle it is likely
that refining the search further could be beneficial. One option would be to restrict
the search based upon the date of a patent. For example, we could limit the search
to only those patents published from 2007 onwards.22

({Abstract lang=EN} OVER root:transistor)
IN {PatentDocument date > 20070000}

This reduces the number of retrieved abstracts to just 321. We can also place
an end date on the search in a similar fashion. Restricting the search to just those
patents published during 2007 gives us the following query.
({Abstract lang=EN} OVER root:transistor)

IN {PatentDocument date > 20070000 date < 20080000}
This query retrieves 251 English language abstracts. Whilst this is a useful query

(and a reasonable number of results to manually read through), it might be more
helpful to start from the title of the inventions rather than the abstracts.23

{InventionTitle lang=EN}
IN ({PatentDocument date > 20070000 date < 20080000}
OVER ({Abstract lang=EN} OVER root:transistor))

As a final example, maybe the aim of this whole search session was to find in-
ventors that you could invite to join an expert pool focusing on transistor-based
inventions. We can easily modify the query to retrieve the inventor’s instead of the
inventions.
{Inventor}

IN ({PatentDocument date > 20070000 date < 20080000}
OVER ({Abstract lang=EN} OVER root:transistor))

The results from this query shows that there are 2,066 inventors related to the
251 inventions.

21Whilst this is true for the patents in the MAREC collection, which we used when building this
example index, it may not be true for all patents. In fact the structure of patents varies widely which
is one reason why effectively searching large patent corpora by hand is difficult.
22As previously mentioned, dates are usually encoded as numbers in the form yyyymmdd. As such
20070000 is not actually a valid day but does fall between the last day of 2006 and the first day of
2007.
23As with abstracts the titles of the inventions are also listed in multiple languages and so a restric-
tion to English is included in the query.
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The proceeding examples are of course just a small glimpse into the types of
knowledge that can be easily discovered using Mímir. The index used for this ex-
ample is publicly accessible24 and we encourage interested readers to try Mímir for
themselves.

15.7 Discussion and Conclusions

Quoting [8]:

Information retrieval (IR) technology has proliferated in rough proportion to the expansion
of knowledge and information as a central factor in economic success. How should end-
users choose between them? Three main dimensions condition the choice:

• Volume. The GYM big three web search engines (Google, Yahoo!, Microsoft) deliver
sub-second responses to hundreds of millions of queries daily over hundreds of terabytes
of data. At the other end of the scale desktop search systems can rely on substantial
compute resources relative to a small data set.

• Value. The retrieval of high-value content (typically within corporate intranets or behind
pay-for-use turnstiles) is often mission-critical for the business that owns the content. For
example the BBC allocates a skilled staff member for eight hours per broadcast hour to
index their most important content.

• Cost. Semantic indexing, conceptual search, linked data and so on share with controlled-
vocabulary and metadata systems a higher cost of implementation and maintenance than
systems based on counting keywords and hyperlinks.

To process web-scale volumes GYM use a combination of one of the oldest and simplest
retrieval data structures (an inverted file that relates search terms to documents) and a rank-
ing algorithm whose most important component is derived from the link structure of the
web. These techniques work much better than was initially expected, profiting from the vast
number of human relevance decisions that are encapsulated in hyperlinks. Problems remain
of course: first, there are still many data in which links are not present, and second the fa-
miliar problems of ambiguity (index term synonymy and query term polysemy) can lead to
retrieval of irrelevant information and/or failure to retrieve relevant information.
High-value (or low-volume) content retrieval systems address these problems with a vari-
ety of semantics-based approaches that attempt to perform conceptual indexing and logical
querying. For example, the BBC system cited above indexes using a thesaurus of 100,000
terms that generalise over anticipated search terms. Similarly in the Life Sciences publica-
tion databases increasingly use rich terminological resources to support conceptual naviga-
tion (MeSH, the Gene Ontology, Snomed, the unified UMLS system, etc.).
An important research theme in recent years has been to ask to what degree can we have
our cake and eat it? In other words, how far can the low-volume/high-value methods be
extended?

We believe that Mímir makes a contribution to this theme by demonstrating
the possibility of scaling up annotation structure indices and combining annotation
structure search with full text methods and with conceptual search based on RDF or
OWL.25

24http://demos.gate.ac.uk/mimir/patents/gus/search.
25http://www.ontotext.com/owlim/.

http://demos.gate.ac.uk/mimir/patents/gus/search
http://www.ontotext.com/owlim/
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When we began developing Mímir we assumed that we would be able to find an
appropriate technology base in a related field such as XML indexing, or database
management systems. To this end we convened a workshop in May 2008 on Persist-
ing, Indexing and Querying Multi-Paradigm Text Models (at the IRF in Vienna).26

A number of researchers working on IR, XML and DBMS were kind enough to
participate.27 It became clear at that point that there was no off-the-shelf solution
to our problem (to cut a long story short XML-based techniques were too tree-
oriented, and difficult to adapt to the graph structures in which we store annotation
data, whereas DBMS techniques are similarly oriented on relational models). Luck-
ily we identified a viable indexing mechanism in the form of MG4J from Sebastiano
Vigna,28 and this forms the core of annotation index management in Mímir.

In this paper we presented the results applied to a use case in patent processing.
We also briefly introduced GATE Cloud, our approach to scalability for large anno-
tation tasks. GATE Cloud allows us to take a GATE application and deploy it across
machines in a cloud environment allowing the number of documents we can process
to be limited only by the machine power available to us.

Together Mímir and GATE Cloud allow us to deliver applications that appear
useful in a wide variety of multi-paradigm search contexts.
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Chapter 16
Intelligent Information Access from Scientific
Papers

Ted Briscoe, Karl Harrison, Andrew Naish, Andy Parker, Marek Rei,
Advaith Siddharthan, David Sinclair, Mark Slater, and Rebecca Watson

Abstract We describe a novel search engine for scientific literature. The system
allows for sentence-level search starting from portable document format (PDF) files,
and integrates text and image search, thus, for example, facilitating the retrieval of
information present in tables and figures using both image and caption content. In
addition, the system allows the user to generate in an intuitive manner complex
queries for search terms that are related through particular grammatical (and thus
implicitly semantic) relations. Grid processing techniques are used to parallelise the
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analysis of large numbers of scientific papers. We are currently conducting user
evaluations, but here we report some preliminary evaluation and comparison with
Google Scholar, demonstrating the potential utility of the novel features. Finally, we
discuss future work and the potential and complementarity of the system for patent
search.

16.1 Introduction

Scientific, technological, engineering and medical (STEM) research is entering the
so-called 4th Paradigm of “data-intensive scientific discovery” in which advanced
data mining and pattern discovery techniques need to be applied to vast datasets
in order to drive further discoveries [13]. A key component of this process is effi-
cient search and exploitation of the huge repository of information that only exists
in textual or visual form within the “bibliome”, which itself continues to grow ex-
ponentially.

Today’s computationally driven research methods have outgrown traditional
methods of searching for scientific data creating a significant, widespread and un-
fulfilled need for advanced search and information extraction. Our system fully in-
tegrates text and content-based image processing in order to create a unique solution
to fine-grained search and information extraction for scientific papers. In this paper,
we describe the current version of our system demonstrator focussing on its search
capabilities.

We have developed a prototype search and information extraction system, which
is currently undergoing usability testing with the curation team for FlyBase, a
$1 m/year NIH-funded curated database covering the functional genomics of the
fruit fly. To provide a scalable solution capable, in principle, of analysing the en-
tire STEM bibliome of around 20 m electronic journal and conference papers, we
have developed a distributable and robust system that can be used with a grid of
computers running distributed job management software.

This system has been deployed and tested using a subset of the resources pro-
vided by the UK Grid for Particle Physics [3], part of the worldwide grid assembled
for the analysis of the petabyte-scale data volumes to be recorded each year by ex-
periments at the Large Hadron Collider in Geneva. To build the current demonstrator
we processed around 15k papers requiring about 8k hours of CPU time in about 3
days with up to 100 jobs running in parallel. A distributed spider for finding and
collecting open access portable document format (PDF) versions of papers has also
been developed. This has been run concurrently on over 2k cores, and has been used
to retrieve over 1m subject-specific papers from a variety of STEM fields to date.
However, the demonstrator, as discussed below, indexes about 10k papers on the
functional genomics of the fruit fly.
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16.2 Functionality

Our search and extraction engine is the first to integrate a full structural analysis
of a scientific paper in PDF identifying headings, sections, captions and associated
figures, citations and references with a sentence-by-sentence grammatical analysis
of the text and direct content-based visual search over figures. Combining these
capabilities allows us to transform paper search from keyword-based paper retrieval,
where the end result is a set of putatively relevant PDF files which need to be read, to
information search and extraction, based on the ability to interactively specify a rich
variety of linguistic patterns which return sentences in specific document locales
and which combine text with image-based constraints—for instance:

all sentences in figure captions which contain any gene name as the theme of express where
the figure is a picture of an eye

The system allows the user to build up such complex queries quickly though an
intuitive process of query refinement.

Figures often convey information crucial to the understanding of the content of
a paper and are typically not available to search. Our search engine integrates text
search to the figure and caption level with the ability to re-rank search returns on the
basis of visual similarity to a chosen archetype (ambiguities in textual relevance are
often resolved by visual appearance). Figure 16.1 provides a compact overview of
the search functionality supported by the demonstrator.

Interactively, constructing and running such complex queries takes a few seconds
in our intuitive user interface, and allows the user to quickly browse and then aggre-
gate information across the entire collection of papers indexed by the system. For
instance, saving the search result from the example above would yield a computer-
readable list of gene names involved in eye development in less than a second on a
standard 64-bit machine indexing around 10k papers. With existing web portals and
keyword-based selection of PDF files (for example, Google Scholar, ScienceDirect,
Zotero or Mendeley), a query like this would typically take many hours to execute,
requiring each PDF file returned to be opened and read in a PDF viewer, and cut and
paste to extract relevant gene names.

The only other current solution would require expensive customisation of a text
mining/information extraction system by IT professionals using licensed software
(such as that provided by Ariadne Genomics, Temis or Linguamatics). This option
is only available to a tiny minority of researchers working for large well-funded
corporations.

16.3 Summary of Technology

16.3.1 PDF to SciXML

PDF was developed to represent a document in a manner designed to facilitate
printing. In short, it provides information on font and position for textual and
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graphical units. To enable information retrieval and extraction, we need to con-

vert this ubiquitous typographic representation into a logical one that reflects the

structure of scientific documents ([10]). We use an XML schema called SciXML

([14]) that we extend to include images. We linearise the textual elements in the

PDF, representing these as <div> elements in XML and classify these divisions as

{Title|Author|Affiliation|Abstract|
Footnote|Caption| Heading|Citation|References|Text} in a constraint satisfac-

tion framework.

In addition, we identify all graphics in the PDF, including lines and images. We

then identify tables by looking for specific patterns of text and lines. A bounding

box is identified for a table and an image is generated that overlays the text on the

lines. Similarly we overlay text onto images that have been identified and define

bounding boxes for figures. This representation allows us to retrieve figures and

tables that consist of text and graphics. Once bounding boxes for tables or figures

have been identified, we identify a one-one association between captions and boxes

that minimises the total distance between captions and their associated figures or

tables. The image is then referenced from the caption using a “SRC” attribute; for

example, in (abbreviated for space constraints):

Note how informative the caption is, and the value of being able to search this

caption in conjunction with the corresponding image (also shown above).
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16.3.2 Natural Language Processing

Every sentence or smaller textual unit, including those in abstracts, titles and cap-
tions, is run through our named-entity recogniser (NER) and syntactic parser. The
output of these systems is then indexed, enabling more precise search.

16.3.2.1 Named Entity Recognition

NER in the biomedical domain was implemented as described in [15]. Gene Men-
tion tagging was performed using a Conditional Random Fields model (using the
MALLET toolkit [11]) and syntactic parsing (using RASP [2], using features de-
rived from grammatical relations to augment part-of-speech (PoS) tagging. We also
use a probabilistic model for resolution of non-pronominal anaphora in biomedical
texts. The model focuses on biomedical entities and seeks to find the antecedents
of anaphoric expressions, both coreferent and associative ones, and also to iden-
tify discourse-new expressions [5], and we deploy a reference parsing and citation
linking module during the processing pipeline. The combination of these modules
allows us to identify and distinguish mentions of author names, gene names, and
gene products or components such as protein names, DNA sequence references,
and so forth.

Both the NER and anaphora resolution modules of our processing pipeline are
domain-specific. However, both are weakly supervised and rely on extant ontolo-
gies or domain information, such as the gene names recorded in FlyBase, to gener-
ate training data and/or dictionaries. Therefore, these components are extensible to
further scientific subfields for which similar ontologies and resources can be found.

16.3.2.2 Parsing

The RASP (Robust Accurate Statistical Parsing [2]) toolkit is used for sentence
boundary detection, tokenisation, PoS tagging, morphological analysis and finding
grammatical relations (GR) between words in the text. GRs are triplets consisting of
a relation-type and two arguments and also encode morphology, word position and
part-of-speech; for example, parsing “John likes Mary.” gives us a subject relation
and a direct object relation:

(|ncsubj| |like+s:2_VVZ| |John:1_NP1|)
(|dobj| |like+s:2_VVZ| |Mary:3_NP1|)
Representing a parse as a set of flat triplets allows us to index on grammatical

relations [1], thus enabling more complex relational queries than is standard in sci-
entific search engines.

The RASP system is relatively domain-independent compared to alternative sta-
tistical parsers. Lexical information is only used within the PoS tagger which also
integrates a sophisticated unknown word handling module. The parser operates on
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PoS tag sequences and ranks alternative parses using structural information drawn
from balanced training data. Nevertheless to improve handling of the large propor-
tion of unknown words, we use the predictions of the NER module to retag names
with the correct PoS tag in cases where the tagger chooses an alternative, and we
save the top five highest-ranked parses for indexing to improve recall in cases where
the preferred parse is not correct.

16.3.3 Image Processing

We build a low-dimensional feature vector to summarise the content of each ex-
tracted image. Colour and intensity histograms are encoded in a short bit string
which describes the image globally; this is concatenated with a description of the
image derived from a wavelet decomposition [9] that captures finer-scale edge in-
formation. Efficient similar image search is achieved by projecting these feature
vectors onto a small number of randomly generated hyperplanes and using the signs
of the projections as a key for locality-sensitive hashing [6].

Thus our current image similarity search is based on unsupervised clustering
with some tuning of feature weights to achieve useful results in this domain. In
the near future we will add supervised classifiers capable of recognising common
subclasses of image occurring in papers, such as graphs, plots, photographs, etc.,
based on training data derived automatically via captions unambiguously identifying
the accompanying image type.

16.3.4 Indexing and Search

We use Lucene [7] for indexing and retrieving sentences and images. Lucene is an
open source indexing and information retrieval library that has been shown to scale
up efficiently and handle large numbers of queries. We index using fields derived
from word-lemmas, grammatical relations and named entities. At the same time,
these complex representations are hidden from the user, who, as a first step, per-
forms a simple keyword search; for example express Vnd. This returns all sentences
that contain the words express and Vnd (search is on lemmatised words, so morpho-
logical variants of express will be retrieved). Different colours represent different
types of biological entities and processes (green represents a gene), and blue words
show the entered search terms in the result sentences an example sentence retrieved
for the above query follows:

It is possible that like ac, sc and l’sc, vnd is expressed initially in cell clusters and then
restricted to single cells.

Next, the user can select specific words in the returned sentences to indirectly
specify a relation. Clicking on a word will select it, indicated by underlining of the
word. In the example above, the words vnd and expressed have been selected by
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the user. This creates a new query that returns sentences where vnd is the subject of
express and the clause is in passive voice. This retrieval is based on a sophisticated
grammatical analysis of the text, and can retrieve sentences where the words in the
relation are far apart; an example of a sentence retrieved for the refined query is
shown below:

First, vnd might be spatially regulated in a manner similar to ac and sc and selectively
expressed in these clusters.

Once a user is confident that a ground pattern of this type is retrieving relations
of interest appropriately, it is possible to ‘wildcard’ an argument of a predicate or
abstract from a specific member of a semantic class, such as the gene Vnd to the
entire class, in this case of genes. Figure 16.1 (step 3) shows a screenshot of the
interface supporting this functionality

The current demonstrator offers two further functionalities. The user can browse
the MeSH (Medical Subject Headings) ontology and retrieve papers relevant to a
MeSH term. Also, for both search and MeSH browsing, retrieved papers are plotted
on a world map; this is done by converting the affiliation of the first author into
geospatial coordinates. The user can then directly access papers from a particular
research group indexed with a specific MeSH term.

16.4 Evaluation

The demonstrator is currently undergoing user trials with members of the FlyBase
curation team. They are faced with an increasing number of papers that they have
identified as potentially curatable and downloaded on the basis of keyword search.
The process of deciding whether a paper should be fully curated (approximately a
person/day of effort), lightly curated recording, for example, genes mentioned, or
ignored is itself time consuming and currently done by uploading a PDF to a viewer
and/or printing it, and then reading it.

The system potentially speeds up this process by allowing a collection of papers
to be searched at the sentence level for key phrases that indicate relevant informa-
tion. For example, predicates such as characteriz/se with gene names as objects of-
ten indicate new information about a gene, whilst assignment of a mnemonic name
to a sequenced gene, denoted by a numerical identifier prefixed with CG, is a good
clue that a paper contains the first significant investigation of that gene. The ability
to define patterns in the interface that find such characterisation or naming events
from the text, means that, in principle, fully curatable papers can be identified much
more quickly.

Although it is too early to report on these usability experiments, we have con-
ducted preliminary exploration of some common types of searches using intrinsic
evaluation methods common in Information Retrieval, such as the (Mean) Average
Precision measure. This is appropriate when we are evaluating a system that ranks
sentences according to a given query where we want to measure the degree to which



16 Intelligent Information Access from Scientific Papers 337

relevant sentences are ranked higher than irrelevant sentences and all relevant sen-
tences appear in the ranking. A single query version of average precision is defined
by

∑N
r=1(Prec(r) × TP?(r))

TruePositives + FalseNegatives
, (16.1)

where N is the number of sentences returned by the system, r is the rank of the
sentence, and TP? returns one (zero) if the r th sentence is (not) a true positive and
Prec(ision) is defined as

TruePositives

TruePositives + FalsePositives
(16.2)

so a score of one entails perfect recall and ranking [16].
We start by considering a relatively simple goal like “find all sentences which

discuss Adh expression in fruit flies” where Adh is a gene name and we are inter-
ested in expression events with Adh as theme. As illustrated in Sect. 16.3.4, keyword
search can be refined to enforce the appropriate semantic relation between the gene
name and some form of the predicate express, and near synonyms such as overex-
press if desired. The goal then is to retrieve sentences containing phrases like (a),
(b) or (c) below, but not (d).

(a) . . . express Adh. . .
(b) . . . expression of Adh. . .
(c) Adh is one of the most highly expressed genes. . .
(d) Adf-1 is an activator of Adh that was subsequently shown to control expression

of several Drosophila genes. . .

Our system allows the user to achieve this by constructing a (disjunctive) set of
queries which define various appropriate grammatical patterns, Note that standard
IR and search engine refinements like string search or operators like NEAR can-
not achieve the same effect. The former achieving high precision but low recall, the
latter achieving a better approximate ranking, but not directly enforcing grammati-
cal/semantic constraints.

To achieve this goal using Google Scholar (or any other document-level search
system, such as those offered by the major scientific publishers, academic associa-
tions, etc.) a sophisticated user might construct the following query:

(Adh OR alcohol dehydrogenase OR CG32954) NEAR (expression OR express OR over-
express) AND Drosophila

This yielded about 15k papers together with header and text snippets (in July 2010).
Using the headers and snippets, the user now has to decide whether to save a PDF
for further investigation or not. The information available before downloading and
opening the paper in a PDF viewer is sometimes adequate to accept or reject a paper,
but also often unclear. For example, the snippet in (a) below clearly shows this
paper contains a relevant sentence; that in (b) strongly suggests the paper contains
no relevant sentence, but that in (c) is unclear because the first snippet has been
truncated after the so the critical information is missing.
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(a) Identification of cisregulatory elements required for larval expression of the
Drosophila melanc-gaster alcohol dehydrogenase gene. . . .

(b) Hypomorphic and hypermorphic mutations affecting the expression of Hair-
less. . . . The genetics of a small autosomal region of Drosophila melanogaster,
including the structural gene for alcohol dehydrogenase.

(c) The Molecular Evolution of the Alcohol Dehydrogenase and Alcohol Dehy-
drogenase-related Genes in the . . . The DNA sequences of the A&z genes of
three members of the Drosophila melanogaster species . . .

Furthermore, the ranking of papers given by Google Scholar does not ensure that
clearly relevant snippets occur before unclear or irrelevant ones, as ranking appears
to be based on a combination of the frequency of keyword occurrences through the
paper and on keyword density within snippets. For example, (b) above occurs before
(c), whilst the 50th page of results still contains three (out of ten) papers with clearly
relevant snippets, and the 99th page one clearly relevant snippet. Indeed, after the
first few pages where most snippets are clearly relevant, the ranking ‘flattens’ so that
most pages sampled throughout the set returned contain one or two clearly relevant
snippets.

We estimate that a comprehensive search of papers with relevant snippets would
involve downloading and viewing about 1K papers, though even then there would be
little hope of achieving full recall, given the indeterminacy of a significant number
of headers and snippets. For each paper downloaded, a PDF viewer’s Find feature
can be used to quickly move to potentially relevant sentences. We sampled 10 pa-
pers with relevant snippets and found that in general express was the more restrictive
keyword. On average, we found about 100 matching sentences of which about 10
exhibited the relevant relationship, whilst it took about 10 minutes per paper to iden-
tify these sentences. A conservative estimate of the time taken to identify the entire
set of relevant sentences in papers clearly identified as relevant by Google Scholar
would be about one month. The average precision of this approach—assuming that
relevant sentences within papers are uniformly distributed, factoring in snippet iden-
tification, but assuming full recall via clearly relevant snippets—would be about 0.1
over the first 30 or so papers and about 0.001 over the full set. In a sense this analysis
is unfair as Google Scholar is designed to be a paper retrieval system. Nevertheless,
it is probably the best generally available tool for the task today, as the snippet in-
formation surpasses anything provided by other scientific paper search sites, such
as Elsevier’s ScienceDirect, and its coverage of the literature is unrivalled.

To estimate performance in our demonstrator we used the Lucene command-line
query language back-end to retrieve all sentences which contained a form of express
or one of its near synonyms and Adh or one of its synonyms. We then manually clas-
sified this set of sentences into those which were relevant or not, and used this gold
standard to compute average precision scores for four variant queries. Query 1 sim-
ply used the ranking obtained searching for Adh and express in the same sentence,
query 2 required some path of grammatical relations linking these two keywords,
query 3 added synonyms for each keyword, and query 4 enforced some path of
grammatical relations between each set of synonyms and scored the sentences for
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Table 16.1 Average
Precision for Adh as theme of
express

Query 1 2 3 4

0.735 0.758 0.855 0.933

Table 16.2 Average
Precision for CG naming
events

Query 1 2 3 4 5

0.116 0.461 0.552 0.512 0.562

ranking according to the length of this path to favour shorter paths. The average pre-
cision for each of these queries is given in Table 16.1. Gains in precision of several
orders of magnitude are made over using Google Scholar and a PDF viewer, simply
by supporting (Boolean) keyword search over sentences and returning these rather
than PDFs. However, grammatical constraints also yield a significant improvement
in the overall ranking obtained, effectively ensuring that, for the first two pages of
results returned, all sentences are relevant.

So far, we have only considered searches involving ground terms, but the sys-
tem allows search via patterns over semantic/named entity classes or partially wild-
carded terms. As mentioned above, curators would like to find papers that contain
naming events involving CG prefixed identifiers, as these are a useful clue that a
paper should be fully curated with respect to the named gene. We used the Lucene
query language to find sentences containing variants of the predicate name (X Y) and
synonyms like call (X Y), refer (to X as Y), etc along with any lemma matching CG*
and then manually classified the resulting set to identify relevant sentences contain-
ing a naming event between the CG identifier and a gene name. We then used this
gold standard to compute average precision for five variant queries. Query 1 sim-
ply searched for sentences containing CG* and a variant of name, query 2 added
synonyms of name as above, query 3 disjunctively specified a set of known patterns
that picked out grammatical constructions likely to specify a naming relation, like
‘CGID referred to as GENE’ or ‘CGID (GENE)’, query 4 allowed any path of gram-
matical relations between the CG identifier and a naming predicate scored by length,
and query 5 combined the specific grammatical patterns (query 3) and the general
path constraint (query 4). The average precision for each of these queries is given
in Table 16.2. In the case of this more complex relational query between classes
of terms, overall performance is poorer but the differential advantage of enforcing
grammatical constraints is also much greater in this case than a simple requirement
for co-occurrence of terms within a sentence.

The current user interface doesn’t support the general path constraint on gram-
matical relations. Therefore, curators need to disjunctively specify a range of gram-
matical patterns and collate the results of each of these manually. We plan to re-
design the system to support automatic expansion of queries to add semantically
equivalent grammatical patterns and to enforce the path constraint by default in re-
fined searches specifying any grammatical constraint. For instance, returning to the
example in Sect. 16.3.4, a user who selects express and Vnd in a sentence where
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Vnd is the subject of the passive verb group is expressed would automatically be
shown further sentences in which Vnd is object of an active or nominalised form of
the verb, such as expressed Vnd or expression of Vnd, and sentences in which any
path of grammatical relations between a form of express and Vnd is found, such as
expression of ac and sc often with Vnd, would be returned, albeit with lower ranking.

The ranking of search results yielded by complex queries with multiple con-
straints on images and text is sometimes unintuitive, as are the results of similarity-
based image search. We are adding classification to the image search, exploiting
caption information to gather labelled training data, so that results hopefully will
be less arbitrary than those sometimes achieved by unsupervised clustering. We are
moving to a faceted, Boolean model of query constraint integration, so that scor-
ing and ranking of results will play a less central role in “navigation” towards a
satisfactory query formulation.

Nevertheless, even using the current interface it is possible to identify sets of
papers, using queries of this type, for full curation with satisfactory recall and good
enough precision. This process takes less than an hour rather than the weeks required
to achieve similar ends using other widely available scientific paper search systems.

16.5 Related Work

The current system draws insights from existing work in information retrieval, infor-
mation extraction, and biomedical text mining. For instance, other researchers have
recognised that document retrieval via images and figures, or their direct retrieval,
is useful with scientific papers [4], though we are not aware of any work which inte-
grates the search of images and text via an interface that supports iterated refinement
of multimodal search facets used to jointly rank retrieved text and images. Work in
information extraction from biomedical text has demonstrated the value of syntactic
parsing and named entity recognition, for example, for the extraction of protein-
protein interactions [12]. However, typically such information extraction systems
need significant customisation for each such subtask. In information retrieval, work
on the TREC Genomics tasks and datasets has demonstrated the value of, for in-
stance, novel query expansion [17] and ranking [8] techniques. However, this body
of work is focussed on document / passage retrieval and classification, and it is not
clear that the insights gained or techniques developed are directly applicable to the
more generic search and information extraction scenario considered here.

16.6 Conclusions and Further Work

To our knowledge, this is the first time that content-based image and advanced
text processing have been fully integrated to provide fine-grained and multimodally
faceted search over scientific papers. Our preliminary experiments suggest that the
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resulting system has the potential to greatly improve search and information ex-
traction with complex documents. In order to develop the system in a scalable and
relatively domain-independent fashion, we have utilised the grid and distributed
processing to spider and annotate papers, and weakly supervised machine learning
methods or domain-independent modules in the annotation process. Our annotation
pipeline is the first developed which is able to preprocess a PDF, identify the in-
ternal structure, and represent the result in a manner which supports application of
state-of-the-art image and text processing techniques.

Nevertheless, there is much work to be done before all of the our aims are
achieved. Firstly, we need to demonstrate that the weakly supervised NER and
anaphora resolution modules can be ported effectively to new (sub-)domains or that
they can be replaced without serious loss of search performance by unsupervised
techniques. Secondly, we need to evaluate the user interface with a wider group of
potential users and to explore and develop its effectiveness for other fields, such as
computer science, which differ from genetics in terms of the likely focus of searches.
Thirdly, we need to extend system functionality and the interface to support infor-
mation extraction. This will require the ability to save and reapply complex queries
once they have been developed incrementally and interactively to a point where
the user is satisfied with their performance. Where these (relational) queries match
classes of terms, it would also be useful to be able to save the lists of ground terms
that match in a computable-readable format and also to re-use such lists during the
formulation of further queries.

The system is potentially relevant to patent search professionals for several rea-
sons. Firstly, we believe that the techniques we have developed for search and in-
formation extraction from scientific papers are broadly applicable to any collection
of relatively complex documents containing technical terminology, images, and in-
ternal structure, such as patents. In addition, our current demonstrator also supports
access to papers via the MeSH ontology, and this could be straightforwardly ex-
tended to support access to patents via any of the ontologies developed to support
patent search. Secondly, there are many similarities between patent and scientific
paper search which demarcate both from general web search. Both often involve
fine-grained and comprehensive search for information rather than keyword-based
access to a document or page ranked by popularity or frequency of keywords. And
both are conducted by professionals willing to develop ‘advanced search’ exper-
tise whose search sessions typically last hours rather than minutes. Finally, patent
searchers are frequently interested in prior art, and prior art can potentially be found
in the scientific bibliome. In the longer run, combined search over both patents and
scientific papers using the same interface and search tools would be very valuable.
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Chapter 17
Representation and Searching
of Chemical-Structure Information in Patents

John D. Holliday and Peter Willett

Abstract This chapter describes the techniques that are used to represent and to
search for molecular structures in chemical patents. There are two types of struc-
tures: specific structures that describe individual molecules; and generic structures
that describe sets of structurally related molecules. Methods for representing and
searching specific structures have been well established for many years, and the
techniques are also applicable, albeit with substantial modification, to the process-
ing of generic structures.

17.1 Introduction

Patents are a key information resource for all types of industry, but this is partic-
ularly the case in the pharmaceutical and agrochemical industries. The main focus
of these industries is to identify novel chemical molecules that exhibit useful bio-
logical activities, e.g., reducing an individual’s cholesterol level or killing the insect
pest of a crop [1, 5]. Chemical patents hence need to contain not just the textual
information that one would find in any type of patent, but also information about the
chemical molecules of interest. These can, of course, be described by their chemi-
cal names or images, but these provide only limited searching facilities that are not
sufficient to meet the requirements of modern industrial research and development.
Instead, specialised types of representation and search algorithm have had to be
developed to provide efficient and effective access to the structural information con-
tained in patents. These techniques are an important component of what has come
to be called chemoinformatics [34], i.e., “the application of informatics methods to
solve chemical problems” [15].

Two types of molecular information are encountered in chemical patents.
A patent may be based on just a single specific molecule, in which case the tech-
niques that have been developed in chemoinformatics over many years may be
applied, as discussed below. However, the majority of chemical patents discuss not
single molecules, but entire classes of structurally related molecules, with these
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classes being described by a generic, or Markush, structure. A single generic struc-
ture can represent many thousands, or even a potentially infinite number, of indi-
vidual molecules, and the representational and searching techniques required are
accordingly far more complex than those commonly encountered in chemoinfor-
matics systems. In this paper, we provide an overview of the techniques that are
used to handle both specific and generic chemical structures. The reader is referred
to the standard texts by Leach and Gillet [23] and by Gasteiger and Engel [16] for
further details of the techniques described below; these books also provide excellent
introductions to the many aspects of chemoinformatics that are not, as yet, of direct
relevance to the processing of chemical patent information.

17.2 Searching Specific Chemical Structures

17.2.1 Representation of Chemical Structures

If one wishes to carry out computer-based searches of a chemical database then the
molecules of interest must be encoded for searching, and we commence by describ-
ing the three main ways in which one can provide a full description of a chemical
structure in machine-readable form: these are systematic nomenclature, linear nota-
tions, and connection tables. Before describing these, the reader should note that we
consider here (and in the remainder of this chapter) only the processing of 2D chem-
ical molecules, i.e., the planar chemical-structure diagrams that are conventionally
used to represent molecules in the scientific literature and that are exemplified by
the structure diagram shown in Fig. 17.1. More sophisticated techniques are required
for the representation and searching of 3D chemical molecules, i.e., where one has
geometric coordinate information for all of a molecule’s constituent atoms [25].

Chemical compounds have had names associated with them ever since the days of
the alchemists, but it was many years before it was realised that there was a need for
systematic naming conventions to ensure that every specific molecule would have its
own name. This name should be unique, in the sense that there should be only one
possible name for a molecule, and unambiguous, in the sense that it should describe
that molecule and no other; moreover, it was soon realised that the name should de-
scribe the various substructural components comprising the molecule, whereas com-
mon, non-systematic names will normally say little or nothing about a molecule’s
components. For example, 2-acetoxybenzoic acid is the systematic, explicit repre-
sentation for the structure shown in Fig. 17.1, which is also, and most commonly,
called aspirin.

Two systematic nomenclatures are in widespread use, these being the ones de-
veloped by the International Union of Pure and Applied Chemistry (IUPAC)1 and
by Chemical Abstracts Service (CAS).2 IUPAC is an association of 60 national

1IUPAC at http://www.iupac.org.
2CAS at http://www.cas.org.

http://www.iupac.org
http://www.cas.org
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chemical societies, seeking to establish standards in nomenclature and physiochem-
ical data measurement, while CAS is a division of the American Chemical Society
and the world’s largest provider of chemical information, indexing articles from
more than 10,000 journals and patents from 60 national patent agencies. System-
atic names continue to be widely used in the chemical literature, but are of less
importance in chemoinformatics systems, since they are normally converted au-
tomatically into one of the two other types of standard representation, i.e., linear
notations or connection tables. A linear notation is a string of alphanumeric char-
acters that provides a complete, albeit in some cases implicit, description of the
molecule’s topology. A canonicalisation procedure is normally invoked to ensure
that there is a unique notation for each molecule. The first notation to be widely
used was the Wiswesser Line Notation, which formed the basis for most industrial
chemoinformatics systems in the 1960s and 1970s. Two notations are of importance
in present-day systems: the SMILES (for Simplified Molecular Input Line Entry
Specification) notation developed by Daylight Chemical Information Systems Inc.
[33] and the International Chemical Identifier (or InChI), the development of which
is being overseen by IUPAC. SMILES was developed for use in in-house industrial
chemoinformatics systems (as is the case with much chemoinformatics software),
while InChI, conversely, has been developed as an open-source, non-proprietary no-
tation. The SMILES and the InChI for aspirin are included in Fig. 17.1.

Notations provide a compact molecular representation, and are thus widely used
for compound exchange and archival purposes. However, most chemoinformatics
applications will require their conversion to a connection table representation of
molecular structure. A connection table is a data structure that lists the atoms within
a molecule and the bonds that link those atoms together (in many cases, only heavy
atoms are included since the presence of hydrogen atoms can be deduced auto-
matically). The table provides a complete and explicit description of a molecule’s
topology, i.e., the way that it is connected together, whereas this information is nor-
mally only implicit in a linear notation. There are many ways in which the atoms
and bonds can be encoded, with typical connection table formats being exempli-
fied by those developed by MDL Information Systems Inc. (now Accelrys Inc.) [7].
A sample connection table for aspirin is shown in Fig. 17.1 where, for example, the
first line shows that atom number 1 (Oxygen) is connected by a double bond (D) to
atom number 2.

A connection table is an example of a graph, a mathematical construct that de-
scribes a set of objects, called nodes or vertices, and the relationships, called edges
or arcs, that exist between pairs of these objects [9, 37]. This means that chemoin-
formatics has been able to draw on the many algorithms that have been developed
previously for the processing of graphs. Of particular importance in the present con-
text are the graph isomorphism algorithms that are used to determine whether two
graphs are identical and the subgraph isomorphism algorithms that are used to de-
termine whether one graph is contained within another, larger graph [16, 23].
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Fig. 17.1 Structure, name, InChI, SMILES and connection table for aspirin

17.2.2 Searching for Specific Molecules

An important search capability is structure searching: the inspection of a database
to retrieve the information associated with a particular molecule (e.g., if a chemist
needed to know the molecule’s boiling point or to identify a synthesis for it) or to
confirm the molecule’s presence or absence in a database (e.g., if a chemist wanted
to check whether a newly synthesised molecule was completely novel).

Structure searching in files of systematic nomenclature or linear notations is ef-
fected using conventional computer science techniques for single-key searching.
These are typically based on hash coding, where an alphanumeric string (in this
context, a systematic name or a canonicalised notation), is converted algorithmi-
cally to an integer identifier that acts as a key to the molecule’s location on disk
storage. A similar idea underlies the searching of connection table records; how-
ever, whereas names and notations are linear strings that can be converted into a
canonical form very easily; this is not the case with connection tables and additional
processing is required if hashing is to be used to enable fast structure searching.
The generation of a canonical connection table requires the nodes of the chemical
graph to be numbered, and there are up to N ! possible sets of numberings for an
N -node graph. Following initial work by Gluck [18], Morgan [26] described an al-
gorithm to impose a unique ordering on the nodes in a graph, and hence to generate
a canonical connection table that can then be used for structure searching. With sub-
sequent development [14, 38], the resulting procedure, which is known to this day
as the Morgan algorithm, forms the basis for all CAS databases and for many other
chemoinformatics systems.
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Hashing is an approximate procedure, in that different records can yield the same
hashed key, a phenomenon that computer scientists refer to as a collision. In nomen-
clature and notation systems, collisions are avoided by means of a subsequent, and
extremely simple, string comparison that confirms the equivalence of the query
molecule and the molecule that is stored in the database that is being searched. In
connection table systems, a graph isomorphism algorithm is used to confirm that a
true match has been achieved, this involving an exhaustive, tree-search procedure in
which nodes and edges from the graph describing the query molecule are mapped to
nodes and edges of the graph describing a potentially matching database molecule.
The mapping is extended till all the nodes have been mapped, in which case a match
has been identified; or until nodes are found that cannot be mapped, in which case
the mapping backtracks to a previous, successful sub-mapping and a different map-
ping is attempted. A mis-match is confirmed if no match has been obtained and if
there are no further mappings available for testing. It will be realised that the map-
ping procedure has a time complexity that is a factorial function of the numbers of
graph nodes involved in the comparison, and that the procedure can thus be very de-
manding of computational resources. Fortunately, various heuristics are available to
expedite the identification of matches, and the use of the Morgan algorithm means
that very few mis-matches need to be probed, making the overall procedure rapid in
operation despite the complexity of the processing that is necessary.

17.2.3 Searching for Chemical Substructures

Probably the single most important facility in a chemoinformatics system is the
ability to carry out a substructure search, i.e., the ability to identify all of those
molecules in a database that contain a user-defined query substructure. For exam-
ple, in a search for molecules with antibiotic behaviour, a user might wish to re-
trieve all of the molecules that contain a penicillin or cephalosporin ring system.
Substructure searching is effected by checking the graph describing the query sub-
structure for inclusion in the graphs describing each of the database molecules. This
is an example of subgraph isomorphism: it involves an atom-by-atom and bond-by-
bond mapping procedure that is analogous to, but more complex than, that used for
a graph isomorphism search. A substructure search guarantees the retrieval of all
molecules matching the search criterion: unfortunately, although it is completely ef-
fective, subgraph isomorphism is extremely inefficient since it belongs to the class of
NP-complete computational problems for which no efficient algorithms are known
to exist [2, 23].

Operational substructure searching is practicable for three reasons. First, the fact
that chemical graphs are both simple (they contain relatively few nodes, most of
which are of very low connectivity) and information-rich (as one can differentiate
atoms and bonds by their element and bond-types, respectively). These factors serve
to reduce the numbers of atom-to-atom and bond-to-bond mappings that need to
be considered by a subgraph isomorphism algorithm. Second, a lot of effort has
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Fig. 17.2 Query substructure and some example hits in a search for a pyridine ring

gone into the development of algorithms that can handle chemical graphs, as against
graphs in general, very efficiently, with the elegant matching techniques described
by Sussenguth [30] and by Ullmann [31] lying at the heart of current substructure
searching systems. Third, and most importantly, the subgraph isomorphism search is
preceded by an initial screening search in which each database structure is checked
for the presence of features, called screens, that are present in the query substructure.
For example, using the penicillin example mentioned above, any database structure
can be eliminated from further consideration if it does not contain the fused four-
membered and five-membered rings that comprise the penicillin nucleus.

A screen is a substructural feature, called a fragment, the presence of which is
necessary, but not sufficient, for a molecule to contain the query substructure. The
features that are used as screens are typically small, atom-, bond- or ring-centred
fragment substructures that are algorithmically generated from a connection table
when a molecule is added to the database that is to be searched. A common exam-
ple of a screen is the augmented atom fragment, which consists of an atom, and
those atoms that are bonded directly to the chosen central atom. A representation
of the molecule’s structure can then be obtained by generating an augmented atom
fragment centred on each atom in the molecule in turn. This information is en-
coded for rapid searching in a fixed-length bit-string, called a fingerprint, whose en-
coded fragments hence provide a summary representation of a molecule’s structure
in just the same way as a few selected keywords provide a summary representation
of the full text of a document. The fingerprint representing the query can then be
matched against corresponding fingerprints representing each of the molecules in
the database that is to be searched. Only a very small subset of a database will nor-
mally contain all of the screens that have been assigned to a query substructure, and
only this subset then needs to undergo the time-consuming subgraph isomorphism
search.

Examples of substructure searching and of fingerprint generation are shown in
Figs.17.2 and 17.3, respectively.

17.2.4 Similarity Searching

Substructure searching provides an invaluable tool for accessing databases of chem-
ical structures; however, it does require that the searcher is able to provide a precise
definition of the substructure that is required, and this may not be possible in the
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Fig. 17.3 Example of
augmented atoms and a
fingerprint

early stages of a drug-discovery project, where all that is known is the identity of
one or more active molecules, e.g., an existing drug from a competitor company.
In such circumstances, an alternative type of searching mechanism is appropriate,
called similarity searching [11, 35]. Here, the searcher submits an entire molecule,
which is normally called the reference structure, and the system then ranks the
database in order of decreasing similarity with the reference structure, so that the
molecules returned first to the searcher are those that are most closely related to it
in structural terms. The underlying rationale for similarity searching is the Similar
Property Principle [21], which states that molecules that have similar structures will
have similar properties. Hence, if the reference structure has some interesting prop-
erty, such as reducing a person’s susceptibility to angina, then structurally similar
molecules are also likely to exhibit this characteristic.

There are many different ways, in which inter-molecular structural similarity can
be quantified, with the most common similarity measures being based on the com-
parison of molecular fingerprints to identify the numbers of fragments common to
a pair of molecules. This provides a very simple, but surprisingly, effective way
of identifying structural relationships, as exemplified by the molecules shown in
Fig. 17.4. However, we shall not discuss similarity searching any further here, since
similarity-based approaches have not, to date, been considered in much detail for
searching the generic structures that form the principal focus of this chapter. This
may, of course, change in the future as techniques for searching chemical patents
become more widely used and as more sophisticated searching methods become
necessary for effective database access. For example, Fliri et al. [12, 13] have re-
cently described the use of fingerprint-based similarity methods to search sets of
molecules randomly enumerated from Markush structures (see Sect. 17.3.4).

17.3 Searching Generic Chemical Structures

17.3.1 Markush Structure Representation

In order to ensure complete coverage of the scope of invention, and hence protect
the inventor’s property rights, patent documents tend to extend beyond the realm of
specific description but, instead, describe the invention using broader terms. Those
features, which reflect the novelty of the invention, are described in full and unam-
biguous terms, whilst other features, although fundamental to the invention, may be
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Fig. 17.4 Example of output from a similarity search

optional or alternative in nature. An example of the latter feature might be a new
refrigerator for which the internal light might be described using a vague term such
as “device for illuminating the interior”. The same is true of chemical patents in
which features of the compound, that are fundamental to its novelty of operation are
described using specific terms, and those for which alternatives may be substituted
are described generically. The result of this treatment is a single description, which
can represent a potentially vast number of specific molecules, many (or even most)
of which will have never been synthesised or tested.

The logical and linguistic terminology that exists in the chemical patent literature
has been described in detail by Dethlefsen et al. [8], leading to a classification of the
structural variations that exist. These authors identified four types of structural varia-
tion, which are exemplified in Fig. 17.5. Substituent variation involves the (possibly
optional) set of alternative components, which may be attached at a fixed point of
substitution (e.g., R1 in the figure); position variation involves the alternative posi-
tions of attachment between two components of the molecule (e.g., R2). Frequency
variation involves the repetition of a component either within a linear sequence or as
an attachment to a ring system (e.g., n, indicating the presence of between one and
two occurrences of the –O–CH2– substructure); and homology variation involves
the use of terminology which is itself generic in nature and which defines the com-
ponent as being a member of a family of related chemical substituents (e.g., R4 in
the figure indicating an alkyl group member containing one, two or three carbon
atoms).

Figure 17.5 illustrates a relatively simple generic structure, but repeated nesting
of alternative components within parent components is a common feature in chem-
ical patents, leading to a complex and often confusing structure. Enumeration of all
of these the specific molecules is rarely an option due to storage requirements and
computational costs. Therefore, an alternative method of computer representation is
required. The basic structure adopted by current commercial systems [5] is a logical
tree in which the invariant core of the structure, the graphical component in Fig. 17.5
for example, becomes the root. The various optional and alternative components be-
come the branches of the tree, and the logical and connectional relationships are
maintained within the representation [4], as exemplified in Fig. 17.6.
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Fig. 17.5 Examples of
structure variation in generic
chemical structures

Fig. 17.6 Tree representation
of a generic structure

The logical tree encodes all of the linkages, potential or actual, within the set of
molecules covered by a Markush structure, and it can hence be regarded as a form
of connection table, albeit one that is far more complex that that used to describe a
single specific molecule.

17.3.2 Representational Transparency

The representation of the components themselves in the tree depends on whether
they are specific or generic in nature, the latter being an instance of homology vari-
ation. Specific components can be represented by a connection table, or even a line
notation, whereas components relating to a chemical family, or homologous series,
require alternative means. In the latter case, the representation is usually a single
node which may be labelled according to the family group, and which is usually
qualified by further attributes such as the number of carbon atoms or number of
rings present. In the Markush DARC system, which originated from a collabora-
tion between Derwent Publications and the French Patent Office INPI, (now called
the Merged Markush Service, MMS, and produced by Thomson Reuters) these are
termed “Superatoms”, whilst the MARPAT system produced by CAS uses “Hierar-
chical Generic Groups”.

Whichever method is employed, there remains the problem of transparency be-
tween the two types of representation, i.e., the lack of a common representation
across components. During a search operation, whether for a structure or for a sub-
structure, the aim is to identify mappings between the components of the query
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Fig. 17.7 Reduced graph
representation of the generic
structure of Fig. 17.6
(optional connections are
indicated by a dotted line)

structure and those of the database structure. This operation is complicated by the
requirement to map features which are specific in one representation with those
which may be generic in others, a one-to-many mapping, or even features which are
generic in both. In order to overcome this transparency problem, a common repre-
sentation is usually sought so that the mapping becomes like-for-like. The enumer-
ation of all possible specific members of the homologous series is again usually not
an option, so a more appropriate step is the aggregation of specific components into
their respective generic nodes. In the Sheffield Generic Structures Project [24], sev-
eral aggregation methods were investigated, leading to a transparent representation
called a reduced graph [17]. Figure 17.7 illustrates an example of such a graph in
which aggregation is based on the ring (R) or non-ring nature of the features, and on
further subdividing the non-ring features into those that are all carbon (C) and those
that are non-carbon (Z).

Since we now have a common representation, one-to-one mapping can be carried
out between the query and database structure. The final, and now less complex, stage
is to map the constituent features of the matching query node and the database node.
These are still likely to contain generic and/or specific components, but the operation
is now more localised and much simpler and can be implemented using a modified
version of Ullmann’s subgraph isomorphism algorithm [19, 31].

17.3.3 Fragmentation Codes and Screening

Early structure-based retrieval systems operated almost exclusively on the basis of
fragmentation codes in which the structural components were described using a se-
ries of fragment descriptors that were analogous in principle to the fragments used
for screening substructure searches of databases of specific molecules. The most
notable fragmentation codes were the Derwent Chemical Code used by Derwent
Publications Ltd. [28], the DuPont/IFI code [22] and the GREMAS code from In-
ternational Documentation in Chemistry [29]. The GREMAS system was highly
effective and it was later possible to generate the codes automatically from the struc-
ture representation [27].

As with specific structure searching, graph-based generic systems, such as
MARPAT and Markush DARC, also require an initial fragment-based screening
stage in order to reduce the number of compounds being sent to more computer in-
tensive search strategies. In addition to the standard screens used at CAS for search-
ing specific molecules, the MARPAT system uses generic group screens in which
the components are reduced to their Hierarchical Generic Groups. The Markush
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DARC system also extended their existing specific search screens with the addition
of Fuzzy FRELs (where a FREL is a circular fragment that can be considered as
a larger version of the augmented atom discussed previously); some of these fuzzy
FRELs were defined in terms of Superatoms and others reflected specific local vari-
ations. In the system developed at Sheffield, the approach was to generate specific
fragment descriptors from the generic components [20]. Two types of screen were
developed: those from the invariant components of the molecule, i.e. those alterna-
tives which are common to all molecules covered by the generic; and those which
would be optional depending on the individual specific molecules being considered
at any point. In Fig. 17.5, for instance, a screen denoting a halogen would be com-
mon to all molecules, with a logical “bubble-up” of all screens from the branches of
the tree to its root maintaining the logical relationships between screens [10].

17.3.4 Recent Developments

More recently, there has been renewed interest in Markush structures; in part due to
increased computer power, which was not available when the current systems first
evolved. One area of interest is the application of Oracle relational database systems
for storing and searching Markush structures [3, 6]. Many of the new developments
do not, however, deal with all types of structure variation, and rely on the same
philosophy of extending current systems for handling specific chemical structures.

Two other areas of interest are the automatic extraction of structural informa-
tion from the patent documents [32, 36, 39] and enumeration of specific compounds
from the Markush structure. Chemical patent documents contain structures for the
specific claim as well as a selection of examples. Although these usually represent a
very small proportion of the possibly infinite number of compounds represented by
the Markush structure, they are clearly a rich source of information and are indexed
accordingly. A further source of structural information comes from the translation
of nomenclatural terms identified in the document, as in the SureChem database and
search system.3 Full enumeration of all represented compounds is not possible for
most structures due to the combinatorial complexity. However, as noted previously,
sets of randomly enumerated specifics have been used for similarity searching, en-
abling rapid patent analysis and virtual library creation [12, 13].

17.4 Conclusions

The structures of chemical molecules are an important component of the infor-
mation contained in chemical patents. Individual molecules can be searched using

3http://www.surechem.org.

http://www.surechem.org
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well-established techniques from chemoinformatics, and substantial enhancements
to these techniques have allowed them to be used for the representation and search-
ing of the generic chemical structures in patents, which can describe very large
numbers of structurally related molecules. In this chapter, we have summarised the
techniques that are currently available for structure and substructure searching of
both specific and generic structures. There are, however, many problems that remain
to be addressed. Most importantly, the very generic descriptions that are sometimes
used in patents mean that very large hit-lists can result even in response to quite spe-
cific structural queries: it is hence likely that there will be much interest in the future
in the use of similarity-based procedures to rank search-outputs so that attention can
be focussed on just the top-ranked structures and patents.
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Chapter 18
Offering New Insights by Harmonizing Patents,
Taxonomies and Linked Data

Andreas Pesenhofer, Helmut Berger, and Michael Dittenbach

Abstract Patent classification schemes such as the International Patent Classifi-
cation maintained by the World Intellectual Property Organization are of vital im-
portance for patent searchers, because they usually act as an entry point for the
search process. We present methods for augmenting patents by assigning them to
classes of a different classification scheme, i.e. a science taxonomy derived from
the Wikipedia Science Portal. For each scientific discipline contained in the portal,
descriptive keywords are extracted from the linked Web pages. These keywords are
used to identify relevant patents and associate them to the appropriate scientific dis-
ciplines. Additional to that we augment the patents with data sets from the Linking
Open Data (LOD) project. The ontology and the data sets of the LOD cloud are part
of the Patent Taxonomy Integration and Interaction Framework, which is a flexible
approach allowing for the integration of different patent ontologies enabling a wide
range of interaction methods.

18.1 Introduction

Finding all patents relevant to a particular invention in the vast amount of documents
available in the many existing patent databases is a difficult task. Moreover, miss-
ing just a single relevant patent, and thus violating intellectual property (IP) rights
of others, can be very expensive for a company when introducing a new product
on the market that uses an already patented technology. Thus, professional patent
searchers are forced to read (or at least skim through) all retrieved documents, be-
cause the relevant one could be at the bottom of the search result list. This clearly
contrasts Web users posing ad-hoc queries to Web search engines who hardly ever
look further than at the ten top-ranked results. Patent classification systems such as
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the International Patent Classification (IPC) maintained by the World Intellectual
Property (WIPO) are important structural instruments for organizing patents into
taxonomies of technology domains. These taxonomies allow searchers to constrain
search queries to particular technological fields in order to reduce the amount of
documents to be read.

However, these classification schemes have been built by experts for experts.
A more general taxonomy would make it easier for non-expert users of patent
information systems to access and navigate through the information space. Such
non-experts might not be familiar with the definitions of the section, classes and
subclasses, groups and subgroups contained in the IPC, but usually they are fa-
miliar with the subject matter of the invention or an idea itself, i.e. the scientific
background. To this end, we have created such a taxonomy, the Wikipedia Sci-
ence Ontology (WikiSCION), based on the Wikipedia Science Portal, which is a
well-maintained starting point for a top-down discovery of Science as topic of in-
terest and its many subtopics. Note that a taxonomy is a restricted ontology with
a well defined hierarchy and a single root node. The Wikipedia can be seen as a
source of knowledge crafted, shaped and maintained by a large community agree-
ing on a language that is supposed to be easier to comprehend by non-experts.
We have developed a method for automatically assigning patent documents to
the classes of this taxonomy, and thus enriching the patents with additional meta-
information.

In particular, we use the information contained in the Wikipedia pages dedicated
to the various scientific disciplines to extract relevant keywords. These keywords
are then used to associate patents relevant to the scientific disciplines. The Linked
Data principals are used for enriching the patents with the links to the Wikipedia
Science Ontology. We have selected data sets being part of the Linked Open Data
(LOD)1 cloud for adding additional metadata to the patents. The WikiSCION is part
of the Patent Taxonomy Integration and Interaction Framework (PTI2), which is a
flexible approach allowing for the integration of different ontologies and data sets
of the LOD cloud enabling a wide range of interaction methods.

The remainder of this chapter, being an extended version of [5], is structured
as follows. In Sect. 18.2, we outline selected related work. Section 18.3 describes
the PTI2 framework with special focus on the Wikipedia Science Ontology and the
integration of LOD. Then, we exemplify our method by describing the Web-based
user interface in Sect. 18.4 followed by several conclusions in Sect. 18.5.

18.2 Related Work

The International Patent Classification is a standard taxonomy developed and ad-
ministered by the World Intellectual Property Organization for classifying patents

1http://linkeddata.org/.

http://linkeddata.org/
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and patent applications. IPC describes a wide range of topics covering human in-
ventions and relies on a diverse technical and scientific vocabulary. A large part of
IPC is concerned with chemistry, mechanics, and electronics. Thus, the IPC is a
complex, hierarchical taxonomy that has been maintained and refined for more than
30 years (cf. [3]).

Yu et al. [11] performed a task-based ontology evaluation using existing mea-
sures proposed in literature for a real world application—the Wikipedia and its cat-
egories. In their studies they model the task of the browsing of an information space
using a given category structure that originates from the English-language version of
Wikipedia and its associated articles. They found out that tangledness, which helps
to understand how intersected the category structure is, may be desirable in ontolo-
gies and category structures for browsing in general knowledge application areas
like Wikipedia. This was especially significant in tasks that required specific infor-
mation. They also studied a method for generating a category structure but generally
found that it was not comparable to the Wikipedia version.

Sah and Hall [7] developed a semantic portal, referred to as SEMPort. It provides
personalized views, semantic navigation, ontology-based search and three different
kinds of semantic hyperlinks. The portal offers a Web interface for distributed con-
tent editing and provision of ontologies in real-time. The system was tested on the
Course Module Web Page of the School of Electronics and Computer Science in
Southampton where the different browsing needs of the users (students and teach-
ers) were modeled. The first outcome was that, the system alleviates problems asso-
ciated with navigation through personalized views, semantic hyperlinks, semantic
navigation and ontology-based search, detailed user studies have not been carried
out yet.

The goal of PATExpert [9], an advanced patent processing service, is to push
forward the adoption of the semantic paradigm for patent processing and to provide
a user technique allowing for more powerful access to the content of textual patent
documents. They introduce a content representation scheme for patent documenta-
tion and sketch the design of techniques that facilitate the integration of this scheme
into the patent processing cycle. Two types of techniques are discussed. Techniques
of the first type facilitate the access to the content of patent documentation pro-
vided in a textual format—be it by the human reader or by the machine—in that
they rephrase and summarize the documentation and map it onto a formal semantic
representation. Techniques of the second type operate on the content representation.

An evaluation of the cooperation and quality in Wikipedia was carried out
by Wilkinson and Huberman [10]. They have shown that high-quality articles in
Wikipedia are distinguished from the rest by a larger number of edits and distinct
editors, by their article visibility, popularity, and age. Furthermore, they demon-
strated more intense patterns of cooperation in the high-quality articles than in other
articles. These findings are in contrast to observations of cooperative efforts in other
domains where result quality does not necessarily increase with the number of col-
laborators. The article growth follows a very simple overall pattern on average. This
pattern implies that a small number of articles, corresponding to topics of high rele-
vance, accrete a disproportionately large number of edits, while the vast majority of
articles show far less activity.
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Zirn et al. [12] evaluated an automatic method for differentiating between in-
stances and classes in a large-scale taxonomy induced from the Wikipedia category
network. The method exploits characteristics of the category names and the structure
of the network. Their approach is a first attempt to perform an automated distinction
in a large-scale resource.

During the last years the Semantic Web which provides a common framework
allowing data to be shared and reused across application, enterprise, and commu-
nity boundaries has gained on interest. The basic idea of linked data was outlined
by Tim Berners-Lee [1], who defined four rules for the web of data constructed with
documents on the web. The goal of the W3C SWEO Linking Open Data community
project is to extend the Web with a data commons by publishing various open data
sets as RDF on the Web and by setting RDF links between data items from different
data sources [13]. The Resource Description Framework (RDF) allows to describe
resources (in particular Web resources) in the form of subject-predicate-object ex-
pressions, which is the base data structure in the Semantic Web. In November 2009,
the LOD project counted more than 13.1 billion RDF triples, where a triple is a piece
of information that consists of a subject, predicate, and object to express a particular
subject’s property or relationship to another subject. In addition the LOD project
interlinked around 142 million RDF links. These links enable the user to navigate
from a data item within one data source to related data items within other sources
using a Semantic Web browser. RDF links can also be followed by the crawlers of
Semantic Web search engines, which may provide sophisticated search and query
capabilities over crawled data. The query results are structured data and not just
links to HTML pages, which can be used within other applications. The number
of open data sets is rapidly growing, at time of writing e.g. Wikipedia, Wikibooks,
Geonames, MusicBrainz, WordNet, the DBLP bibliography and the US government
portal data.gov are among many other data sets available.

A survey of current research efforts in representing biomedical knowledge in Se-
mantic Web languages is given by Sougata Mukherjea [4]. He describes in detail
the Semantic Web languages and discusses current efforts to represent biomedical
knowledge in these languages. Here the Gene Ontology and the Unified Medical
Language System (UMLS) served as source of information. As a possible applica-
tion that uses the biomedical Semantic Web he gives the example of using patents,
their inventors and assignees as well as all UMLS biomedical concepts as resources.
This allows him to formulate a query that finds all inventor and assignee pairs who
have a patent which has a term belonging to one specific UMLS class. He concludes
that it is a challenge to develop a biomedical Semantic Web that stores most, if not
all, of the biomedical knowledge and that another major problem is scalability.

18.3 Patent Taxonomy Integration and Interaction Framework

The conceptual design of the Patent Taxonomy Integration and Interaction Frame-
work is depicted in Fig. 18.1. In this approach, the Wikipedia, more precisely the
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Fig. 18.1 Conceptual design of the patent taxonomy integration and interaction framework

<!ELEMENT class ( name | own_slot_value | superclass |
template_facet_value | template_slot | type )* >
<!ELEMENT facet_reference ( #PCDATA ) >
<!ELEMENT knowledge_base ( class+, slot+, simple_instance+ ) >
<!ATTLIST knowledge_base xsi:schemaLocation CDATA #REQUIRED >
<!ELEMENT name ( #PCDATA ) >
<!ELEMENT own_slot_value ( slot_reference, value+ ) >
<!ELEMENT simple_instance ( name, type, own_slot_value+ ) >
<!ELEMENT slot ( name, type+, own_slot_value ) >
<!ELEMENT slot_reference ( #PCDATA ) >
<!ELEMENT superclass ( #PCDATA ) >
<!ELEMENT template_facet_value ( slot_reference, facet_reference,
value+ ) >
<!ELEMENT template_slot ( #PCDATA ) >
<!ELEMENT type ( #PCDATA ) >
<!ELEMENT value ( #PCDATA ) >
<!ATTLIST value value_type ( class | string ) #REQUIRED >

Fig. 18.2 Scheme of WikiSCION

science disciplines, are the starting point for deriving the Wikipedia Science Ontol-
ogy. WikiSCION is a structured representation of 1,113 science disciplines, which
has been compiled by a human expert. The scheme underlying the ontology is in-
spired by the ACM Computer Classification System and is depicted in Fig. 18.2.
In the template_slot our specific properties has_WikiURL, has_Terms,
has_Acronym, has_Synonym, label, seeAlso and comment were mod-
eled.
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After the science relationships have been captured in the ontology, an automatic
enrichment process for adding significant keywords describing the science disci-
plines has been carried out. To this end, those keywords were extracted from the
respective Wikipedia page, which were not present on any other page and associated
with the corresponding discipline. On average, 31 keywords were associated to each
discipline. Additionally, a large set of US Patent and Trademark Office (USPTO)
patent documents has been preprocessed and an index has been generated. This
index was used to align the patent documents with the science disciplines. More
specifically, the similarity between the keywords describing the science discipline
and the words found in the patents was calculated. A threshold value was used to
identify the most relevant documents, i.e. if the similarity score is above a certain
value, it is regarded as being relevant, otherwise it is ignored.

The Linked Data Cloud was used as a second data source. We focused on data
of DBpedia,2 a community effort to extract structured information from Wikipedia
and to make this information available on the Web, and linked this data to our
patent corpus. Finally, the PTI2 framework offers a Web interface for browsing the
Wikipedia Science Ontology and a RDF representation of the patents with links to
the Wikipedia Science Ontology and links to resources of the LOD cloud.

The following sections give a detailed description of the elements and processing
steps needed in order to develop a prototype of PTI2.

18.3.1 The Wikipedia Science Ontology

The Wiki concept, invented by Ward Cunningham in 1995, is based on the princi-
ples of freely added information and associations by any user. Content generation in
Wikis follows the concepts of a more or less global brainstorming in computer sci-
ence known as “Distributed Asynchronous Collaboration” (cf. [2]). Precup et al. [6]
describe distributed asynchronous collaboration as collaboration between geograph-
ically distributed people, offering asynchronous access to explicit knowledge and
information that is produced by means of technologies such as fax, phone or e-mail.
The conceptual formulation creating a human-centered, intuitive navigation struc-
ture of science for a patent ontology was the reason for choosing a collaboratively
grown, large and free text corpus, the Wikipedia, which covers all encyclopedic
topics and is the result of global human brainstorming.

We decided to start with the definitions found in the Wikipedia Science Por-
tal, since Wikipedia Portals show more editorial accuracy and critical engagement
than other parts of Wikipedia. At the time of writing, Wikipedia offers 548 Portals,
whereof 119 are featured portals3 with general quality standards.

2http://dbpedia.org/.
3http://en.wikipedia.org/wiki/Wikipedia:What_is_a_featured_portal.

http://dbpedia.org/
http://en.wikipedia.org/wiki/Wikipedia:What_is_a_featured_portal
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The Wikipedia Science Ontology is the backbone of our system. It is intended to
represent all science disciplines found in the Wikipedia Science Portal. The genera-
tion was done by reading continuous text in order to build a mono-hierarchic taxon-
omy. Note that in the context of collaboratively edited content in Wikipedia, issues
such as uncontrolled terminology, “fluid” content (permanently changing versions),
inconsistency in content, reliability of content and authors became evident.

The following procedure was carried out in order to create the initial version of
the Wikipedia Science Ontology.

• Identification of the top-level concept Science
• Definition of a starting point for reading: To ensure the traceability of this task,

the main page of the Wikipedia Science Portal4 was selected as the starting point.
• Capturing the first mono-hierarchic structure of WikiSCION: The initial mono-

hierarchic taxonomy is generated by association distinct numbers with each sci-
ence discipline. As an example consider Microbiology5 and its sub-disciplines.
They were identified by manually extracting them from the content of the page.
Eleven sub-disciplines were identified:

2.1.2.3 Microbiology
2.1.2.3.1 Microbial physiology
2.1.2.3.2 Microbial genetics
2.1.2.3.3 Medical microbiology
2.1.2.3.4 Veterinary microbiology
2.1.2.3.5 Environmental microbiology
2.1.2.3.6 Evolutionary microbiology
2.1.2.3.7 Industrial microbiology
2.1.2.3.8 Aeromicrobiology
2.1.2.3.9 Food microbiology
2.1.2.3.10 Pharmaceutical microbiology
2.1.2.3.11 Oral microbiology

• Consistency analysis and refinement: When developing knowledge bases con-
taining controlled vocabulary and semantic relationships it is obligatory to follow
a consistent terminology defined by a strict rule set. Such knowledge bases are
generated and maintained over decades in joint efforts of thousand of librarians
following standardized rules for term definition and building relationships. The
Anglo-American Standard is the Library of Congress Subject Headings (LCSH),
which is an international standard reference database. The German counterpart is
the Schlagwortnormdatei (SWK). These knowledge bases consist of norm terms
and their relations defined by a human indexer. However, building a standard out
of a heterogeneous text corpus is a complicated task. One of the reasons for this
are contradictory statements found on Wikipedia pages [8].

4http://en.wikipedia.org/wiki/Portal:Science.
5http://en.wikipedia.org/wiki/Microbiology.

http://en.wikipedia.org/wiki/Portal:Science
http://en.wikipedia.org/wiki/Microbiology
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Fig. 18.3 First and second level of the science ontology in Protégé

The approach for systematic compilation of scientific disciplines as outlined
above was applied on large scale to the Wikipedia Science Portal. The ontology
was created using Protege and stored in OWL representation (see Fig. 18.3).
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18.3.2 Ontology Enrichment

This section describes the automatic enrichment of the manually created ontology
by (1) deriving a Wikipedia page from the label property, (2) checking if the page
exist and finally (3) computing the specific terms for all leaf nodes of the ontology.

18.3.2.1 Derivation of the Link

In the creation phased of the ontology for each class a property named label
was added. This property corresponds to the title of the Wikipedia page. For
some classes the property has_WikiURL was entered during the manual cre-
ation of the ontology. This property specifies the Uniform Resource Locator (URL)
of the corresponding Wikipedia page. For those classes where no WikiURL ex-
isted, it was automatically generated using a predefined rule set. For example, the
string Spina_bifida was created for the label value spina bifida, and was then
appended to the Wikipedia base URL (http://en.wikipedia.org/wiki), resulting in
http://en.wikipedia.org/wiki/Spina_bifida.

18.3.2.2 Checking the Existence of the Page

In the next step, it was verified whether the created Wikipedia URL exists
(cf. Fig. 18.4) or not. If a page did not exist, the property has_WikiURL was
removed. This was the case for 121 of 915 pages.

18.3.2.3 Extraction of Descriptive Terms

In the current implementation we limit the calculation of descriptive terms to the
leaf nodes of the ontology, i.e. nodes without subclasses. For content indexing, only
the text between the HTML division tag with the id content was used. The pages
were downloaded and indexed separately using Lucene,6 i.e. one index per leaf node
of the ontology was generated. Then, a term list for each leaf index was generated.
For a particular ontology class, only those terms were taken into account that, first,
consist only of lower-case characters, and second, only occur in a single leaf index.
The terms were stored in the has_Terms property of the this class.

An example of extracted terms for the class Spina bifida is given in Appendix.
Please note that the terms spina and bifida are not included in the list when a docu-
ment frequency of 1 is used.

6http://lucene.apache.org/.

http://en.wikipedia.org/wiki
http://en.wikipedia.org/wiki/Spina_bifida
http://lucene.apache.org/
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Fig. 18.4 Wikipedia page for Spina bifida

18.3.3 Patent Linking

Our corpus consists of 1,330,841 patent applications published by the USPTO be-
tween 2001 and 2006. The documents are stored in XML format and were indexed
using Lucene allowing for keyword-based searching. We used the standard tokeniza-
tion method, which converts all characters to lower case and removes stop words.

For each leaf node of the WikiSCION, a query string was created using the
terms of the has_Terms property connected by the Boolean operator OR. With
this query, the patent index was searched. The returned documents were ranked by
relevance and associated with the leaf node of the ontology by storing the informa-
tion in the has_Patents property.

Parts of the patents are now available as a separate resource described in RDF.
This RDF description is enriched with the links to the WikiSCION ontology.

18.3.4 Patent Enrichment with Linked Data

The patents do not contain any annotations that follow the principals of the Seman-
tic Web. Therefore, we downloaded the geographic coordinates and the raw infobox
properties data set of DBpedia. The unique subjects were extracted and also tok-
enized in order to separate all terms by a blank. This list was then used to formulate
the queries that were run against the Lucene index of the patent corpus. In case of
a match, the patent and the corresponding data resource were liked by adding the
RDF triples to the resource description of the patent. This enrichment process was
carried out for both data sets from DBpedia.
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Fig. 18.5 User interface for navigating throughout the WikiSCION

18.4 User Interface

We have developed a first Web-based user interface for browsing the WikiSCION.
This interface is split into three parts: (i) a high-level view on the ontology in the
top-left corner, (ii) the taxonomy of sciences in the lower-left corner, and (iii) the
associated patent on the right-hand side. As an example the view on the concept
Spina bifida is depicted in Fig. 18.5.

Wikipedia gives the following definition for Spina bifida7:

Spina bifida (Latin: “split spine”) is a developmental birth defect involving the neural tube:
incomplete closure of the embryonic neural tube results in an incompletely formed spinal
cord. [. . . ] Most affected individuals will require braces, crutches, walkers or wheelchairs
to maximize their mobility. The higher the level of the spina bifida defect the more severe
the paralysis. [. . . ]

When navigating to the class Spina bifida, which is a sub-class of Medical Ge-
netics, the following patent is part of the result set: “Pedaling aid for handicapped
musician”. This patent describes a pedaling aid combined with an acoustic piano,
and assists a physically handicapped person in performing a piece of music on the
acoustic piano (Patent no.: US20060112809). Note that the term Spina bifida does
not occur in the document, but the user is pointed to the relevant scientific context.
Interestingly, this particular patent is solely associated with the class Spina bifida in
the Science Ontology.

The second patent entitled “Tray supporting device for a wheelchair” also de-
scribes an invention that is relevant for handicapped people. We want to note that a

7http://en.wikipedia.org/wiki/Spina_bifida.

http://en.wikipedia.org/wiki/Spina_bifida
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Fig. 18.6 RDF data for an enriched patent

Fig. 18.7 Origin of the patent

first manual inspection showed promising results, however, we plan to conduct an
in-depth evaluation in the future.
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Fig. 18.8 Facts of Yamaha

The visualizations of the patents described in RDF have links to the WikiSCION
and to resources from the Linking Open Data (LOD) cloud which is are shown in
Fig. 18.6 to Fig. 18.8. These figures show the OpenLink Data Explorer,8 which is a
Firefox browser extension for viewing RDF data.

The rendered RDF content is depicted in Fig. 18.6 showing the metadata for
the patent with the title “Pedaling aid for handicapped musician” together with the
enriched RDF links to the city of the inventors and to the company which is the
assignee of the patent. Figure 18.7 shows how the geographic location of the patent
can be used in combination with a map API for displaying the described point of
interest. When a user clicks on the “Yamaha Corporation” link and then chooses the
describe link in the popup window the browser loads the data on the fly from the
Linked Open Data cloud. The result is illustrated in Fig. 18.8 where the company
data of Yamaha are highlighted.

18.5 Conclusions and Future Work

In this chapter we introduced a novel taxonomy for patent documents: The
Wikipedia Science Ontology. This ontology is part of the Patent Taxonomy Inte-
gration and Interaction (PTI2) framework that allows for automatic association of

8http://ode.openlinksw.com/.

http://ode.openlinksw.com/
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patent documents with a taxonomy reflecting the “wisdom of crowds”. With PTI2
we are developing an instrument to map the language of IP experts onto the lan-
guage used in Wikipedia. The interested user of Wikipedia may use PTI2 to retrieve
patents relevant to particular Wikipedia pages which complements the manually
selected references currently available on these pages.

The current implementation of PTI2 is a first prototype with a number of lim-
itations. These limitations are subject to future research and, after conducting an
in-depth evaluation of the system, we will focus on improved strategies for select-
ing relevant terms for science disciplines and patent documents. Another important
topic is the identification of ranking and classification techniques in order to derive
the degree of relevance of a patent for a particular scientific discipline. Moreover,
we will investigate which paradigms of user interaction are most feasible in the
project context. The usage of Linked Open Data for the enrichment of own data
sources with external data seems to be very promising. Eventually, the PTI2 frame-
work should become a flexible framework allowing for the integration of different
patent ontologies. Consequently a wide variety of interaction methods is enabled
ranging from full-text search over concept-based retrieval to hierarchical browsing
of patent documents within a single unified interface.

Appendix: Specific Terms for Spina bifida

The following list of terms was automatically generated for the class Spina bifida
using a document frequency of one:

abe, amniocentesis, anticonvulsant, arbel, armas, asbah, avrahami, azor, bergh-
out, birthmark, blaine, blankets, blues, blurb, bobby, calegory, capra, cerebellum,
childbearing, clayden, cordero, cystica, dekel, dimple, drapeau, dursun, dysmor-
phic, enveloping, erection, fortification, fotheringham, fridman, gros, guinness, gui-
tarist, gwozdz, haemophilia, handicapped, hank, hazneci, hockey, incompletely, in-
trauterine, iwamoto, izci, jick, kalyon, kibar, kirillova, lipoma, lissauer, lucy, lum-
bosacral, mcdearmid, melendez, mellencamp, menachem, meningeal, meningocele,
merello, mildest, milunsky, moms, mulinare, multivitamins, muraszko, musician,
myelomeningocele, myeloschisis, nonimmigrants, numbness, occulta, olympian,
ozgul, paralympian, periconceptional, phac, presacral, protrudes, pseudomeningo-
cele, punk, racer, reba, recruits, retroperitoneum, roentgenographic, sacrococcyx,
sascha, saxophonist, sbaa, schappell, skateboarder, songwriter, stillbirths, tanni,
taskaynatan, torban, tsukimura, unfused, valproic, wakano, wallingford, website-
moms, wheelchair, worsening, yoder
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Chapter 19
Automatic Translation of Scholarly Terms
into Patent Terms

Hidetsugu Nanba, Hideaki Kamaya, Toshiyuki Takezawa, Manabu Okumura,
Akihiro Shinmori, and Hidekazu Tanigawa

Abstract For a researcher in a field with high industrial relevance, retrieving re-
search papers and patents has become an important aspect of assessing the scope
of the field. However, retrieving patents using keywords is a laborious task for re-
searchers, because the terms used in patents (patent terms) are often more abstract
than those used in research papers (scholarly terms) or in ordinary language, to try to
widen the scope of the claims. We propose a method for translating scholarly terms
into patent terms (e.g. translating “word processor” into “document editing device”
or “document writing support system”). To translate scholarly terms into patent
terms, we propose two methods: the “citation-based method” and the “thesaurus-
based method”. We also propose a method combining these two with the existing
“Mase’s method”. To confirm the effectiveness of our methods, we conducted some
examinations, and found that the combined method performed the best in terms of
recall, precision, and ε, which is an extensional measure of Mean Reciprocal Rank
(MRR) widely used for the evaluation of question-answering systems.
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19.1 Introduction

We propose a method for translating scholarly terms1 into patent terms.2 For ex-
ample, our method translates a scholarly term “floppy disc” into patent terms, such
as “magnetic recording device” or “removable recording media”. This translation
technology can support users when retrieving both research papers and patents.

For a researcher in a field with high industrial relevance, retrieving research pa-
pers and patents has become an important aspect of assessing the scope of the field.
Examples of such fields are bioscience, medical science, computer science, and
materials science. In fact, the development of an information retrieval system for
research papers and patents for academic researchers is central to the Intellectual
Property Strategic Programs for 20093 of the Intellectual Property Strategy Head-
quarters in the Cabinet Office, Japan. In addition, research paper searches and patent
searches are required by examiners in government patent offices, and by the intel-
lectual property divisions of private companies. An example is the execution of an
invalidity search among existing patents or research papers that could invalidate a
rival company’s patents or patents under application in a Patent Office. However,
the terms used in patents are often more abstract or creative than those used in re-
search papers or in ordinary language [1], to try to widen the scope of the claims.
Therefore, a technology for translating scholarly terms into patent terms is required.

This technology is also useful in the following situation. When inventors or
patent agents write patents, they are often confused about which patent terms they
should use, because there may be several choices of patent terms for a scholarly
term. For example, the scholarly term “floppy disc” can be expressed as “removable
recording medium”, if the inventors or patent attorneys focus on the floppy disc’s
feature of removability. On the other hand, “floppy disc” can also be expressed as
“magnetic recording medium”, if they focus on the feature of recording information
using magnetic force. In such a situation, if it can generate a list of candidate patent
terms for a given scholarly term, this technology would support the inventors and
the patent attorneys while writing patents.

The remainder of this paper is organised as follows. Section 19.2 explains the
behaviour of our system. Section 19.3 describes some related work. Section 19.4
proposes our method for translating scholarly terms into patent terms. Section 19.5
discusses how we investigated the effectiveness of our method by conducting some
examinations, and discusses our experimental results. Finally, we provide our con-
clusions in Sect. 19.6.

1Generally, technical terms are defined as terms used in a particular research field. Based on this
definition, “floppy disc” or “word processor” are not technical terms, because they are commonly
used. In this paper, we define “scholarly terms” as terms used in research papers, even though they
may also be used more generally, such as “floppy disc” or “word processor”.
2We define the task of “translation of scholarly terms into patent terms” as “to output all useful
patent terms for patent retrieval”. In many cases, patent terms are hypernyms or synonyms of a
given scholarly term, and include a part of scholarly terms.
3http://www.kantei.go.jp/jp/singi/titeki2/keikaku2009_e.pdf. Cited 30 June 2010.

http://www.kantei.go.jp/jp/singi/titeki2/keikaku2009_e.pdf
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19.2 System Behaviour

In this section, we describe our system that can retrieve both research papers and
patents using the function of automatic translation of scholarly terms into patent
terms. In Fig. 19.1, search forms on the left and right sides are for research pa-
pers and for patents, respectively. In the following, we explain a search procedure
for users, who are unfamiliar with patent searches. The procedure consists of the
following three steps.

• (Step 1) Input a scholarly term in the “Title” field (shown as (1) in Fig. 19.1) in a
search form for research papers.4

• (Step 2) Click the “related patent terms” button (shown as (2)), then some can-
didate patent terms, such as “storage medium”, “recording medium”, and “disc
recording medium”, are shown in a pop-up window (shown as (3)).

• (Step 3) Select appropriate candidates by checking the related boxes, then they
are automatically inserted into the “Title of Invention” field (shown as (4)) in a
search form for patents.

If users do not have enough knowledge or skills for a patent search, it is difficult
for them to conceive of appropriate patent terms. However it is possible for them to
select appropriate patent terms from a list of candidates. We propose a method that
translates scholarly terms into patent terms, and experimentally confirm its effec-
tiveness.

19.3 Related Work

An invalidity search task was performed in the Patent Retrieval Task of the Fourth
[3], the Fifth [4], and the Sixth [5] NII Test Collection for Information Retrieval
(NTCIR) workshops. The goal of this task was to retrieve patents that could inval-
idate existing claims. Five groups with 21 systems participated in the Japanese re-
trieval subtask in the Sixth NTCIR, and the systems were evaluated using the Mean
Average Precision (MAP). The best system obtained a MAP of 0.0815 [12]. The
system analysed the structure of queries, and weighted terms in particular essential
parts of the queries, using several weighted methods, such as the inverse document
frequency (idf) without a term frequency (tf) method. In contrast to this task, we
aimed to construct a system retrieving not only patents but also research papers that
could invalidate existing claims.

There has been much research in the field of cross-genre information access,
such as that discussed in the technical survey task of the Patent Retrieval Task of the
Third NTCIR workshop [9]. This task aimed to retrieve patents relevant to a given
newspaper article. In this task, Itoh et al. focused on “Term Distillation” [8]. The
distribution of the frequency of the occurrence of words was considered to be differ-
ent between heterogeneous databases. Therefore, unimportant words were assigned

4In this case, the scholarly term “floppy disc” was already inserted in the “title” field.
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Fig. 19.1 System snapshot

high scores when using tf*idf to weight words. Term Distillation is a technique that
can prevent such cases by filtering out words that can be assigned incorrect weights.
This idea was also used to link news articles and blog entries [7]. However, some
patent terms, such as “magnetic recording device”, appear only in a patent database,
and “Term Distillation” cannot be applied in such cases.

There are another several research projects related to cross-genre information
access [10, 15, 16]. TREC Chemical IR Track aimed for cross-genre information
retrieval using research papers and patents in the chemical field.

The Patent Mining Task in the Seventh and the Eighth NTCIR workshop [15, 16]
aimed to create technical trend maps from a set of research papers and patents. The
following two subtasks were conducted in this task.

1. Subtask of research papers classification: Classification of research papers into
the International Patent Classification (IPC) system.

2. Subtask of technical trend map creation: Extraction of expressions of elemental
technologies and their effects from research papers and patents.



19 Automatic Translation of Scholarly Terms into Patent Terms 377

However, there were no participant groups that translate scholarly terms into
patent terms.

As another approach for cross-genre information access, Nanba et al. proposed a
method to integrate a research paper database and a patent database by analysing
citation relations between research papers and patents [14]. For the integration,
they extracted bibliographic information of cited literatures in “prior art” fields
in Japanese patent applications. Using this integrated database, users can retrieve
patents that relate to a particular research paper by tracing citation relations be-
tween research papers and patents. However, the number of cited papers among
patent applications is not enough to retrieve related papers or patents, even though
the number of opportunities for citing papers in patents or for citing patents in pa-
pers has been increasing recently. We therefore have studied automatic translation
of scholarly terms into patent terms.

Chen et al. also addressed the vocabulary mismatch problem [2]. Different terms
in different domains having the same concept prevent us from conducting cross-
domain retrieval. For the problem, they firstly created different thesauri from re-
search papers in two biological sub domains and then associated pairs of terms in
them. Although we could not examine their method due to the unavailability of a
large-scale Japanese research paper database, it is worth to consider as one of our
future works.

19.4 Automatic Translation of Scholarly Terms into Patent
Terms

We propose three translation methods: the “citation-based method”, the “thesaurus-
based method”, and “Mase’s method”. We describe these methods in the following
subsections. We then describe a method that combines the three methods.

19.4.1 Translation Using Citation Relationships Between Research
Papers and Patents

A research paper and a patent that have citation relationships with each other, gen-
erally tend to be in the same research field. Using this idea, translation of a scholarly
term can be realised by using the following procedure.

1. Input a scholarly term.
2. Retrieve research papers that contain the given scholarly term in their titles.
3. Collect patents that have citation relationships with the papers retrieved in Step 2.
4. Extract patent terms from patents collected in Step 3, and output them in order

of frequency.

We call this the “citation-based method”. To extract patent terms from patents
that were collected in Step 3, we focused on the patent claims, which are considered
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Fig. 19.2 A sample Japanese claim extracted from a patent (publication number = 10-184868)

the most important part of each patent. A patent claim is the precise legal definition
of the invention, identifying the specific elements of the invention for which the
inventor is claiming rights and seeking protection.

In most claims, noun phrases before (concerning) and after
(characterised by) indicate topic terms in patents [17]. Fig-

ure 19.2 is an example of a Japanese sample claim. In this figure, the underlined
terms (shift lever device), (shift lever), and

(shift lock unit) are extracted as topic terms.

19.4.2 Translation Using an Automatically Constructed Thesaurus

To enlarge the scope of the patent, hypernyms of scholarly terms are often used
in patents. We therefore propose a method using a thesaurus in addition to the
citation-based method. We used a hypernym/hyponym thesaurus, which Nanba [13]
automatically constructed using a pattern (C, such as A (or |
and) B) [6]. The thesaurus contains 7,031,159 hypernym/hyponym relations, which
were extracted from Japanese patents published in the 10 years from 1993 to 2002.
This thesaurus also give the frequencies of each hypernym/hyponym relation in
patents.

Using this thesaurus, we realise translation of a scholarly term by extracting hy-
pernyms of the given scholarly term from the thesaurus,5 and by outputting them in
order of frequency. We call this the “thesaurus-based method”.

5For example, when a scholarly term “floppy disc” is given, the thesaurus-based method output its
hypernyms, such as “removable recording medium”, as patent terms.
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19.4.3 Translation Using Mase’s Method

In patent applications, inventors may explicitly describe related terms by using
parentheses, as in “floppy disc (magnetic recording medium)”. The term preceding
the parentheses and the term in parentheses have a broader/narrower relationship.
Mase et al. [11] extracted related term from the text in the “description of symbols”
fields of Japanese patents. They experimentally confirmed that these terms are ef-
fective for query expansion of patent retrieval. This method can also be used in our
work.

Using Mase’s method, we realise translation of a scholarly term by extracting
related terms of a given scholarly term from the “description of symbols” fields, and
by outputting them in order of frequency.

19.4.4 Translation Combining the Three Methods

We propose a method combining the above three methods in the following two steps.

19.4.4.1 (Step 1) Combining Mase’s Method with the Other Two Methods

Using Mase’s method, we extracted a total of 679,931 pairs of related terms. We
translated some scholarly terms into patent terms and found that Mase’s method
could output correct patent terms at high rates. However, the number of terms ob-
tained by Mase’s method is very small and in the worst case, no terms were output.6

Therefore, we improve the citation-based and the thesaurus-based methods using
Mase’s method Consider an example in which Mase’s method obtained two patent
terms “magnetic recording device” and “removable storage device” for a given
scholarly term “floppy disc”. From these results, “floppy disc” can be inferred to
be a term related to a “device”, because the last word of both patent terms is “de-
vice”. If there is another patent term for “floppy disc”, the last word of the term is
probably “device”. Therefore, we improve both the citation-based and the thesaurus-
based methods by giving a higher priority using Mase’s method. The procedure is
as follows.

1. Normalise the scores (frequencies) of each candidate term in a list given by the
citation-based method (or the thesaurus-based method) to a value between 0 and
1 by dividing each score by the score of the term ranked 1.

2. Extract the last word of each candidate term obtained by Mase’s method. In this
step, we also extract the frequencies of each term in “description of symbols”
fields.7

6We will report this experimental result later.
7When Mase’s method outputs three candidate terms “magnetic recording device” (freq. 10), “re-
movable storage device” (freq. 5), and “information recording medium” (freq. 3), the three words
“device” (freq. 10), “device” (freq. 5), and “medium” (freq. 3) are extracted from the terms.
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3. Sum the scores (frequencies) for each last word obtained in Step 2, and normalise
them to a value between 0 and 1 by dividing each score by the score of the word
at rank 1.8

4. When the last word of a candidate term by the citation-based method (or the
thesaurus-based method) and one of the words obtained in Step 3 match, give
the scores of their words to each term, and output in order of score.9

19.4.4.2 (Step 2) Combining the Citation-Based Method
and the Thesaurus-Based Method

The terms output by both the citation-based and the thesaurus-based methods, which
were improved by Mase’s method, seem to be correct patent terms. We therefore
combine both methods using the following equation.

Score of a candidate patent term by the combined method

= λ ∗ Score by the citation-based method

+ (1 − λ) ∗ Score by the thesaurus-based method

Here, λ is a parameter that adjusts the effects of the citation-based and the
thesaurus-based methods. We will describe how to determine this parameter in
Sect. 19.5.1.

19.5 Experiments

To confirm the effectiveness of our methods, we conducted some examinations. We
describe the experimental conditions in Sect. 19.5.1, report the experimental results
in Sect. 19.5.2, and discuss the results in Sect. 19.5.3.

19.5.1 Experimental Conditions

19.5.1.1 Documents

We used Japanese patent applications published in the 10 years from 1993 to 2002.
We also used about 85,000 bibliographic records of cited papers in patents, which
were automatically created using Nanba’s method [14].

We created the correct data set using the following procedure.

8For the example in Step 2, “device” (score 15) and “medium” (score 3) are obtained. Then, the
scores of the words are normalised by dividing by 15, which is the score for “device”, resulting in
“device” (score 1) and “medium” (score 0.2).
9For example, if the citation-based method obtained a term “recording medium” (score 0.5), a score
0.2×m for “medium” is added to 0.5. Here, m is a parameter that indicates the influence of Mase’s
method on the citation-based method. We will describe how to determine m in Sect. 19.5.1.
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1. Extract all noun phrases from the 85,000 bibliographic records of cited papers in
patents, and rank them in order of frequency.

2. Manually select scholarly terms from the noun phrases.
3. Output candidate terms using all our methods and baseline methods, which we

will describe later.
4. Manually identify correct patent terms in all candidates obtained in Step 3.

For the identification of correct terms in Step 4, we used the following four cri-
teria.

• If candidate terms are components of a given scholarly term, we identified the
candidates as incorrect. For example, a patent term “document editing system” is
correct for the scholarly term “word processor”, while the term “display system”
is incorrect, because a display system is a component of a word processor.

• When the frequency of a candidate term in a patent database was very low, we
identified the term as incorrect, because it is not a common expression in patents,
and is therefore not useful for patent searches.

• When a candidate term is too abstract in comparison with a scholarly term, we
identified it as incorrect. For example, the candidate “magnetic recording device”
is correct for a scholarly term “floppy disc”, while “information storage system”
is incorrect, because the term is too abstract and has many hyponyms.

• When a patent term is spelled in several different ways, such as “disc recording
medium” or “disk recording medium”, we identified them as correct.

Finally, we obtained 47 scholarly terms (input) with 2.8 patent terms (output) on
average for each scholarly term. We show some of these in Table 19.1.

We investigated whether these 47 terms were not skewed to particular fields. We
retrieved patents by an online patent retrieval system “Kantan Tokkyo Kensaku”10

using these terms as keywords. Then, we extracted categories (IPC codes at the
subclass level) having the largest number of retrieved patents for each keyword. The
results are shown in Table 19.2. Taking account of class imbalance of IPC taxonomy
and skew of the distribution of IPC relevant to academic fields, it is considered that
the results in Table 19.2 are within the allowable range.

19.5.1.2 Evaluation Measure

As an evaluation measure, we used ε, which is an expansion of MRR, a standard
evaluation measure for evaluating question-answering systems. The evaluation score
will be close to 1 when many correct terms are given high ranks.

ε =
∑

i∈R
1
i∑

j∈{1,2,...,n} 1
j

.

10http://kantan.nexp.jp/.

http://kantan.nexp.jp/
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Table 19.1 Data for evaluation (example)

Scholarly term (input) Patent term (output)

DRAM semiconductor memory, dynamic memory, dynamic
random access memory

memory cell semiconductor memory device

word processor document processing device, document information
processing device, document editing system,
document writing support system

TV camera photographic device, image shooting apparatus,
image pickup apparatus

Here, n indicates the number of correct patent terms for a given scholarly term,
R indicates a set of ranks of correct terms in a system output, i is the rank of a
correct term in a system output. In addition to the ε measure, we also used recall
and precision.

Recall = The number of correctly extracted patent terms

The number of correct patent terms
,

Precision = The number of correctly extracted patent terms

The number of candidate terms extracted by a system
.

We evaluated only the top 20 terms in each system output.

19.5.1.3 Alternatives

We conducted experiments using the following nine methods. Abbreviations for
each method are shown in parentheses.

Our methods

(1) Citation-based method (Cite)
(2) (1) + improvement by Mase’s method (Cite(M))
(3) Thesaurus-based method (Thes)
(4) (3) + improvement by Mase’s method (Thes(M))
(5) (2) + (4) combined method (Cite(M) + Thes(M))

Baseline methods

(6) Mase’s method (Mase)
(7) Term co-occurrence-based method (GETA)
(8) Synonyms extraction method (Syn)
(9) Japan Science and Technology thesaurus-based method (JST)

Methods (1), (3), (5), and (6) correspond to those mentioned in Sects. 19.4.1,
19.4.2, 19.4.3, and 19.4.4, respectively. Methods (2) and (4) are improved by Mase’s
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Table 19.2 Distribution of data for evaluation

IPC Frequency Explanation of IPC

H01L 8 semiconductor devices, electric solid state devices

C12N 7 micro-organisms or enzymes

G11B 7 information storage based on relative movement
between record carrier and transducer

G06F 6 optical computing devices

A63F 2 card, board, or roulette games, indoor games using small
moving playing bodies

G09G 2 arrangements or circuits for control of indicating devices

G02B 2 optical elements, systems, or apparatus

B41M 1 printing duplicating, marking, or copying processes,
colour printing

A61B 1 diagnosis, surgery, identification

G03F 1 photomechanical production of textured or patterned
surfaces

H01M 1 processes or means for the direct conversion of chemical
energy into electrical energy

C09D 1 coating compositions, filling pastes, chemical paint or
ink removers, inks correcting fluids

H05K 1 printed circuits, casings or constructional details of
electric apparatus

G01N 1 investigating or analysing materials by determining their
chemical or physical properties

G06Q 1 data processing systems or methods

H04N 1 pictorial communication

H03H 1 impedance network, resonators

H01S 1 devices using stimulated emission

G03B 1 apparatus or arrangements for taking photographs or for
projecting or viewing them

B41J 1 typewriters, selective printing mechanisms, correction of
typographical errors

method as described in Sect. 19.4.3. We will explain the procedures for parameter
tuning later.

As one baseline method, we employed the word co-occurrence method (7). In
this method, terms co-occurred frequency with a given scholarly term are extracted
as candidates using the IR engine GETA.11

As another baseline method, we used an automatically constructed synonym dic-
tionary [13]. Nanba constructed a thesaurus using a pattern

11http://geta.ex.nii.ac.jp/.

http://geta.ex.nii.ac.jp/
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(C, such as A (or | and) B). In the expressions, there are several cases in which
parentheses were used. Following is an example that matches the pattern.

A flexible inner tube 21 containing synthetic resin, such as PTFE (polytetrafluoroethylene),
is inserted through an outer tube.

From the expression, Nanba extracted “polytetrafluoroethylene” as a synonym of
“PTFE”. He obtained 50,161 pairs of synonyms, and confirmed that the synonyms
were useful for query expansion in patent retrieval. We used this synonym dictionary
as a baseline method (8).

As the other baseline method, we used a free online thesaurus (JST thesaurus),12

which was provided by the Japan Science and Technology Agency (JST). Using the
JST thesaurus, we translate scholarly terms into patent terms, in the same way as
the thesaurus-based method, which we mentioned in Sect. 19.4.2.

19.5.1.4 Parameters in Methods (2), (4), and (5)

We conducted a pilot study to determine a value for parameter m, which indicates
the influence of Mase’s method for both the citation-based and the thesaurus-based
methods, and a value of λ, which adjusts the relative contributions of the citation-
based and the thesaurus-based methods. We prepared a data set that consists of 25
scholarly terms and their correct patent terms, and used it for the pilot study. The
pilot study was conducted in two steps. In the first step, we changed values of m

from 0 to 1 at 0.1 intervals, and calculated ε scores of the citation-based method
(2) and the thesaurus-based method (4). We found the highest ε scores, when m for
method (2) was 0.8, and m for method (4) was 0.2 (Fig. 19.3). In the second step,
we optimised the λ score by changing it from 0 to 1 at 0.1 intervals, and calculating
the ε scores for each step. We obtained the highest ε score, when λ was 0.3. We
used this score for the combined method (9).

19.5.2 Experimental Results

The ε scores for each method are shown in Table 19.3. We further investigated
our methods (2), (4), (5) and baseline methods (6) and (8), all of which obtained
better scores among all methods compared. The results are shown in Table 19.4. In
the table, we also show recall, precision, and ε scores for an ideal system. Here,
precision scores for the ideal system were less than 1, because the average number
of correct patent terms for each scholarly term is 2.8. Therefore, the scores for the
ideal system are an upper bound.

In Table 19.3, we see that the ε score for method (2) is larger by 0.037 points
than that by for method (1), which indicates that Mase’s method was effective in

12http://jdream2.jst.go.jp/html/thesaurus99/thesaurus_index99.htm.

http://jdream2.jst.go.jp/html/thesaurus99/thesaurus_index99.htm
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Fig. 19.3 Determination of a
value for parameter m

improving the citation-based method. On the other hand, Mase’s method did not
improve the thesaurus-based method, because the difference in ε scores for meth-
ods (3) and (4) is only 0.009. However, the performance by the thesaurus-based
method was good enough, and there was little room to improve the thesaurus-based
method by Mase’s method. The combined method (5) obtained the best ε score
of all methods. This method also obtained best recall and precision scores in Ta-
ble 19.4.

In Table 19.3, the ε score for the JST thesaurus-based method (9) was smaller
than those for the thesaurus-based methods (3) and (4), although the JST thesaurus
was manually created, while the thesaurus used in methods (3) and (4) was cre-
ated automatically. This result was caused by the number of terms in the JST the-
saurus. The original JST thesaurus contains about 400,000 scholarly terms, but the
freely available online version contains only 10% of the original. As a result, there
were many cases in which no terms were extracted by the method (9). If we had
been able to use the original one, the performance of method (9) would be bet-
ter.

Table 19.3 Evaluation using ε

Our method Baseline

(1)
Cite

(2)
Cite(M)

(3)
Thes

(4)
Thes(M)

(5)
Cite(M)+Thes(M)

(6)
Mase

(7)
GETA

(8)
Syn

(9)
JST

0.136 0.173 0.231 0.240 0.298 0.107 0.011 0.058 0.050
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Table 19.4 Evaluation using ε, Recall, and Precision

Method Measure top 5 top 10 top 15 top 20

Our method (2)
Cite(M)

ε 0.151 0.165 0.170 0.173

Recall 0.169 0.242 0.275 0.311

Precision 0.115 0.073 0.056 0.047

(4)
Thes(M)

ε 0.213 0.235 0.239 0.240

Recall 0.274 0.362 0.393 0.399

Prec. 0.145 0.104 0.078 0.061

(5)
Cite(M)+Thes(M)

ε 0.261 0.286 0.292 0.298

Recall 0.309 0.421 0.459 0.533

Precision 0.170 0.121 0.092 0.076

Base-line (6)
Mase

ε 0.083 0.097 0.106 0.107

Recall 0.108 0.172 0.246 0.264

Precision 0.072 0.061 0.055 0.045

(8)
Syn

ε 0.054 0.055 0.057 0.058

Recall 0.080 0.087 0.101 0.104

Precision 0.053 0.038 0.037 0.035

Upper bound ε 1.000 1.000 1.000 1.000

Recall 1.000 1.000 1.000 1.000

Precision 0.587 0.294 0.196 0.147

19.5.3 Discussion

19.5.3.1 Comparison of the Citation-Based Method (2), the Thesaurus-Based
Method (4), and the Combined Method (5)

In Table 19.3, we see that the combined method’s (5) ε score was improved to
0.298 from the thesaurus-based method’s (4) score of 0.240. Furthermore, method
(5) had a significantly improved recall score in comparison with method (4) from
0.399 to 0.533. To investigate the reasons for significant improvement of the recall
score by method (5), we counted the number of cases for which method (5) was
better an method (4) in recall, precision, and ε. We show the results in Table 19.5.
In the table, for example, “C+T(5) < Thes(4)” in the first column indicates “the
score for method (5) is smaller than that for method (4)”, and the numbers of such
cases for recall, precision, and ε are shown in the second, third, and fourth columns,
respectively. The results showed that the number of cases in which the combined
method (5) impaired both recall and precision scores compared with method (4) is
two (4.3%), while the number of cases of improvement is 13 (27.6%). In the same
way, we also compared method (5) and the citation-based method (2). These results
also showed that method (5) could significantly improve method (2) (Table 19.5).
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Table 19.5 Comparison of system outputs by the citation-based method (2), the thesaurus-based
method (4), and the combined method (5)

Recall Precision ε

C+T(5) < Thes(4) 2 2 14

C+T(5) > Thes(4) 13 13 17

C+T(5) = Thes(4) 31 31 16

C+T(5) < Cite(2) 3 4 9

C+T(5) > Cite(2) 23 23 25

C+T(5) = Cite(2) 21 20 13

Table 19.6 The proportion of cases for which each system could not correctly convert scholarly
terms within the top 20

Our methods Baseline methods

(2) Cite(M) (4) Thes(M) (5) Cite(M)+Thes(M) (6) Mase (8) Syn

48.9% (23/47) 40.4% (19/47) 25.5% (12/47) 55.3% (26/47) 74.5% (35/47)

From these experimental results, we can conclude that our combined method (5) is
valid.

19.5.3.2 Recall Scores of Each Method

In the results in Table 19.5, we found many cases for which both recall and precision
scores for the methods (2) and (4) were the same as those for method (5). We inves-
tigated these cases, and found that there were no correct patent terms within the top
20 of the system output. In such cases, the system could not support users in real
situations of patent searches. We therefore counted the number of such cases. The
results are shown in Table 19.6. From the results, we see that method (2) could not
extract correct patent terms within the top 20, and the baseline methods could not
extract terms for more than half of the cases. On the other hand, the number of cases
for which method (5) could not output correct patent terms within the top 20 was
only 12 (25.5%), so method (5) is useful in 3/4 of all cases. Five of these 12 were
“asparagine acid”, “trehalose”, “carboxyl group”, “lithium niobate”, “dimethyl sul-
foxide”, “novolac resin”, all of which were in the chemical domain. Although there
are not enough cases to be sure, the results indicate that the performance of our
methods might vary with the research field.

19.6 Conclusions

In this paper, we have proposed three methods: the citation-based method, the
thesaurus-based method, and the method combining these two methods. To con-
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firm the effectiveness of our methods, we conducted some examinations. We found
that the combined method performed the best in terms of recall, precision, and ε,
which is an extensional measure of Mean Reciprocal Rank (MRR) widely used
for the evaluation of question-answering systems. In 25.5% of cases, the combined
method could not extract correct patent terms within the top 20, which is a smaller
proportion than that found for other methods.
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Chapter 20
Future Patent Search

John I. Tait and Barou Diallo

Abstract In this chapter we make some prediction for patent search in about ten
year’s time—in 2021. We base these predictions on both the contents of the earlier
part of the book, and on some data and trends not well represented in the book (for
one reason or another). We consider primarily incorporating knowledge of different
sorts of patent search into the patent search process; utilising knowledge of the sub-
ject domain of the search into the patent search system; utilising multiple sources
of data within the search system; the need to address the requirement to deal with
multiple languages in patent search; and the need to provide effective visualisation
of the results of patent searches. We conclude the real need is to find ways to support
search independent of language or location.

20.1 Introduction

In this chapter we will try to move from the reviews of current professional practice
in patent search and of recent relevant scientific research to try to foresee how the
field will develop in the medium-term future. In particular we will try to see how
changes in available technology will impact the tools available to patent profession-
als; and the issues and pressures, which will inhibit or accelerate these changes.

One of the characteristics of patent search by professional searchers outside the
patent offices is that it is usually driven by briefs from strategic level business man-
agers or by patent attorneys, and it aims to produce a report summarising the facts
about a particular area (for example whether a particular device may infringe one
or more existent patents, or the likelihood that one could in principle produce a new
substance of a particular type which neither infringes existing patents, nor has been
previously published, and therefore may be legitimately patented). Present day sys-
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tems rely on the searcher bringing together the data from several of sources (for ex-
ample patent databases, academic journal collections and legal information sources)
in a coherent whole in an essentially unsupported manner: future systems will ex-
plicitly provide support.

Perhaps the biggest challenge here is integrating the search systems with cor-
porate and enterprise information systems (whether science and technology sup-
port or business systems), especially given the move of patent search from being
an in-house operation to being outsourced. Generalised outsourcing operations are
unlikely to a have access to the quality of information in-house operations would
have. Further they are unlikely to be given access to the full range of confidential
information available in house.

Of course this focusses on patent search from technology user point of view,
whether it be the inventor, companies seeking freedom to operate, or strategic busi-
ness managers. Another important group of users of patent search systems is the
patent offices themselves. Necessarily a patent examiner in a patent office has dif-
ferent needs from a commercial searcher, and future integrated systems, which bet-
ter reflect searchers needs, and workflows will inevitably therefore be different to
some degree. More automated, information-rich, and task aware patent search sys-
tems can help patent offices achieve a particular implicit goal of the patent offices:
to improve both the volume of applications dealt with by an examiner, whilst simul-
taneously improving the quality of the granted patents. This is certainly an effective
way to address THE key challenge facing patent offices: reducing the time between
application and grant or rejection whilst improving the quality and in particular the
defensibility of the granted patents.

The IP community see the principal issues to be the backlog of unexamined ap-
plications and the costs associated with the granting process. But there is little real
benefit in rapidly obtaining a patent which cannot be enforced in court, or which pro-
motes lengthy and complex litigation. This will not be in the interests of inventors,
patent holders, or intending technology exploiters. Better technological support for
the search process can allow quality to be improved whilst reducing time-to-grant
and human effort in review.

Further, many patents currently granted are of suspect validity because of the
weakness of current practices in searching non-English patent data (disproportion-
ately growing as a proportion of the whole, especially in Asia). This leaves aside
the rarity of searching of non-English non-patent public data for evidence of lack of
novelty.

Having the possibility to obtain information is not equivalent to reviewing and
understanding the underlying information. As discussed elsewhere in this volume,
the reasons for performing a patent search are multiple. The most obvious is to
determine whether or not an applicant can get a patent or if its invention has already
been patented. Other reasons might include:

• Getting an idea of how an application and patent is drafted to help in the prepara-
tion of a new application

• Learning more about a new technical field
• For competitive market information and tracking
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20.2 Patent Search in 2021

In ten years time we would expect to see patent search systems with a number of
characteristics not present in today’s search systems.

• First, there will be a reflection of the different sorts of patent search task, their
differing characteristics and integrated tools which reflect the domain: chemi-
cal versus mechanical versus telecoms and so on, and event-driven legal status
searches versus document content driven searches.

• Second, systems will provide access to both patent and non-patent literature in a
single integrated environment. There will also be a firm separation between data
and the systems used to access it—so that several data sources (we avoid the term
databases) can be accessed by the searcher within a single search and analysis
environment.

• Third, the tools will be inherently multi-lingual—allowing the English speaking
patent searcher to deal with Chinese data more or less as easily as with English
data, for example.

• Fourth, complex visualisations will be provided to support not only specialist
tasks like technology landscape mapping, but also to help the searcher focus their
attention and effort on the most productive parts of the inevitably large results
sets in some forms of search.

• Fifth, multiple forms of query and document sorting will be available: for exam-
ple pile sorting metaphors as well as simple keyword and Boolean search.

• Sixth, there will be support for collaborative working both groups working in
a single location (via for example complex interactive visualisations) and at a
distance with advanced support for interaction through video, whiteboards, and
multiply-viewed screens, all of which are available now within applications, but
NOT integrated and adapted to the patent search task.

We will touch on all these issues in the rest of chapter, going into more depth
for some and greater depth in others, largely driven by the clarity we feel can be
brought to the issues at the time of writing. The six issues interrelate to each other
in a rather complex way, so we will use them as overarching themes, rather than as
a rigid framework with which to structure the discussion.

20.3 Current State of the Art

In 1999 Larkey [1] produced a paper on what was seen at the time as being a state of
the art in patent search technology, and since then many efforts have been made to
help patent practitioners making use of patent data to perform their job. They have
moved from a digitalised set of patent files to suites of toolboxes allowing them to
mine into the data and find information. Only ten years ago, it was all about search-
ing. Nowadays, it is about finding, and finding (ideally) only the relevant documents,
which would allow professionals to analyse content and take final decisions. Many
commercial providers [2] have gathered and organised subsets of patent collection
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and offered computerised access to large companies and administrations. In particu-
lar, software suites available from Thompson (i.e. Derwent, Delphion, Micropatent),
Questel Orbit, Lexis Nexis, Univentio or Patent Café are popular in the community
of patent searchers. The whole list of software producers specialised in patents is
available from the PIUG.1 Dou [3] and Hunt, Nguyen and Rodgers [4] provided an
exhaustive analysis of their use. Nevertheless, as explained in Simmons’ article [5]
the value of data is to be correlated to its quality, which is itself correlated to the
power of the computer (-tools) to exploit them.

As well as commercial offerings, there are also many advanced search engines,
which have been developed and offered at the disposal of the general public and
companies, including:

• EPO Esp@cenet
• USPTO Patent Full-Text and Full-Page Image Databases
• Intellectual Property digital library of WIPO
• SIPO Patent Search and Translation
• KIPRIS search service
• Google Patent Search

For most patent searchers a mixture of high-quality data sources from the com-
mercial publishing sector and free-of-charge data generally mounted under rela-
tively unsophisticated search engines represents the current state of the art in terms
of day-to-day practice.

An important distinction needs to be made between invalidity (or validity)
searches, and topic or subject-matter searches, like State-of-the-Art or Freedom-
to-Operate (see Chap. 1 of this volume).

Invalidity search describes a search triggered by a particular patent application
or granted patent against all prior art in a field. It is not limited to a traditional
database retrieval exercise but extends to all form of documentation or disclosure
potentially invalidating the claims of the patent application (patentability, novelty
factors). Subject-matter searches concern searching of a topic in a particular doc-
ument collection, and frequently start with the patent literature although they may
involve the use of non-patent literature at a later stage.

The two kinds of searches exhibit slightly different characteristics. For instance,
Fujita et al. [6] have proven that the length of patent document affects relevance
in invalidity searches (verbosity hypothesis), whereas it does not in topic searches
(scope hypothesis). This work has shown that the verbosity factor (the length) pro-
vides a stronger protection for the patent in the view of rights claimed, and is more
likely to be relevant to a particular search, since rights claimed are likely to have
a broader scope. If documents are considered as being relevant to a topic, then the
issue is to demonstrate that they are similar to each other (similar characteristics).
This refers to the “cluster hypothesis” described by van Rijsbergen [7]. In a nutshell,
a set of documents being relevant to a query should display some kind of similarity.
Current retrieval strategies are based on that assumption, which can be tested [8].

1See: http://www.piug.org/vendors.php.

http://www.piug.org/vendors.php
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Practically, the cluster hypothesis (at least in its simpler forms) is never fully the
case and previous experiments have shown that, for example, cluster-based searches
were not effective. One reason may be the vocabulary mismatch problem [9]. The
consequence of a weak cluster hypothesis is the possible endangering the relevance
feedback mechanisms [10] as in that case, relevant documents might be more simi-
lar to non-relevant documents. Remember, relevance feedback assumes that relevant
documents have in common some terms (which are not included in the query), and
that these terms distinguish the relevant documents from the rest of the collection.
Similar should mean relevant, if the cluster hypothesis is correct.

Earlier studies have revealed some other facts about the patent space [11–13].
Because the set of documents exposed to a patent searcher is usually too large to be
analysed on an individual basis, professionals have developed strategies to both ex-
trapolate a meta-understanding of the underlying data (through multiple successive
queries for example) and reduce logically the size of the corpus under investiga-
tion. Experience shows that practical risk minimisation exercises do work, in the
case of database exploration/walking, if focussed into a precisely defined techni-
cal domain. Patent engineers and examiners, working on a daily basis over large
set of documents learn some “meta-information” about the collection, which may
be translated into searching strategies. They can then use their meta-information to
make better informed judgements about the value of continuing (or resuming) their
search at a particular point, as opposed to turning their attention to a more promising
avenue of search. Searching similar documents in a corpus is an iterative process,
where relevant documents are a priori accessible, thus enabling patent searchers
to converge towards their target. Azzopardi [14] has observed that accessibility to
the whole collection of data through a search engine is by no means guaranteed
by current technology. He demonstrated that a residual set of data is consistently
not “visible” to searchers, independently from the query language and the system.
That means yet another hypothesis to be tested in the case of patents, where such
a bias could be challenging. Patent searchers are even more concerned with this
problem of findability than general searchers, because of their regular use of several
databases concurrently. Nevertheless, the overall Boolean search process is guided
by a set of logical operators allowing them to apply some sort of intuitive reasoning
coupled to a firm knowledge of the querying language. A new paradigm would in-
volve not only new searching tools, but new relations towards the machine’s output
as well.

Making the machine attempt reasoning instead of the user is a revolution to come.
What are required are mechanisms to allow the patent searcher to make judgements
about the reliability of the search system: we call this searcher trust. In the end,
searcher trust in a system is all about being able to analyse, understand and confront
output results in a logical systematic way. Achieving such trust would require ex-
planations of the internal processing mechanism leading the displayed results to be
accessible and comprehensible to the searcher.

Further as reflected in the previous chapters of this book, patent search has be-
come an active area of research in recent years. More broadly analysis and process-
ing of patents has become a research field per se, and has been recognised as such
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by major stakeholders: the community of users [15], the patent offices performing
internal research [16], the software developers and the academics [17]. As early as
2000, the ACM SIGIR conference addressed the subject in a special workshop on
patent retrieval.2

Subsequently (as reported elsewhere in this book) international research cam-
paigns have taken place every few years to benchmark the effectiveness of the latest
prototypes against agreed quantitative measures [18]. The NTCIR [19, 20] evalu-
ation campaigns in Japan, as an example, was the first to clearly address the issue
of patent analysis and search as a research challenge. Other evaluation campaigns
focussed on patent-related issues have been run as part of TREC3 or CLEF.4

These activities have led to the public availability of (admittedly limited) sets
of patent data, standardised queries, and assessments of the relevance of retrieved
documents.

Stimulated by the Information Retrieval Facility (IRF), since 2008, the ACM
Conference on Information and Knowledge Management has included a series of
workshops on Patent Information Retrieval (PaIR).5 These workshops have allowed
academic searchers to exchange patent-related research results outside the context
of formal evaluations, and have also improved the knowledge of scientific work
amongst patent professionals.

The lack of such standardised test collections was probably a major reason for
the gap between the SIGIR 2000 workshop and the first PAIR workshop in 2008.
Other, more cultural reasons include low levels of European and North American
participation in the Japanese-led NTCIR activity, lack of awareness of the economic
importance of patent search amongst government research funders, and structural
issues, like the USPTO being unable to fund relevant research directly from its bud-
get.

20.4 Reflecting Different Sorts of Patent Search

In the first chapter of this book Alberts and colleagues laid out a classification of
patent search tasks. Although there are many ways of classifying these tasks, for a
technical information retrieval point of view, there are two main dimensions, which
can usefully be followed.

First is the range of information to be covered by the search: essentially all in-
formation available; all information proven to be publicly available prior to a given
date for a patentability search, or limited to enforceable patents and patent applica-
tions for a given jurisdiction and date when conducting freedom-to-operate search.

2See: http://www.sigir.org/forum/S2000/Patent_report.pdf.
3See: http://trec.nist.gov.
4See: http://clef.iei.pi.cnr.it.
5See: http://pair.ir-facility.org/.

http://www.sigir.org/forum/S2000/Patent_report.pdf
http://trec.nist.gov
http://clef.iei.pi.cnr.it
http://pair.ir-facility.org/
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Second is the scope of documents, which need to be retrieved. Patent search is
often characterised as a high recall search task, but practical experience of working
with patent search professionals on formal evaluations of search system effective-
ness (see the chapters on NB, TREC CHEM, and CLEF IP elsewhere in this volume)
indicate this is not strictly the case. What searchers really need are the most relevant
documents up to some limit, which depends on the exact task at hand (time avail-
able, type of search, audience for the report etc.), confidence that these really are
the most relevant documents; but if fewer than the set limit can be found confidence
that highly relevant documents have not been missed.

In current patent search professional practice this is achieved by using multiple
search systems with different interfaces and different document collections, with
the inevitable cognitive load on the searchers and potential for error switching be-
tween systems this entails. One of the few tools, which attempts a more integrated
approach is the in-house EPOQUE suite used by the European Patent Office [21].

An ideal future search system will have a single integrated interface which can
access multiple collections in a uniform manner, allowing the searcher to specify
the numbers of documents they wish to review in detail, and to engage in a simple
but (sufficiently) reliable dialogue to give them confidence that they are reviewing
the best available documents.

20.5 Domain-Specific Intelligence

The current and efficient way of representing knowledge is to distinguish between
the description of content elements and their instantiation in terms of references to
concrete objects. Those concrete objects could be patent material such as the docu-
ments themselves or a sub-part of a patent file (such as the abstract or the claims).
The description of content elements is then captured by the so-called ontologies.
Ontologies of different levels of abstraction and different types can be used (as de-
scribed in Wanner et al. [22]):

• A common sense knowledge (core) ontology
• A number of domain-specific ontologies
• A number of patent material specific ontologies that mediate between the highly

abstract core ontology and the concrete patent ontologies
• The linguistic ontologies

Such a system can be built up upon an ontology architecture such as the one
developed by the IEEE Standard Upper Ontology Working Group (SUMO). A se-
ries of ontologies can be defined on the basis of the specific features of a patent
document:

• The figures’ ontology
• The patent document structure ontology
• The patent bibliography ontology (metadata for the associated to the description

of the invention: inventor, date of filing, date of publication, IPC class, etc.)
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Of course, technical field specific ontologies have to be added to the search
system to allow specialists storing and retrieving specific knowledge (such as in
Markush formulae in chemistry or components in electronics) to improve the ef-
fectiveness of searches in these fields. Those ontologies can be supplemented by
linguistic data extracted from professional thesauri available in the concerned field.

Considerable success has been had recently in using a variety of data driven
techniques like Maximum Entropy Markov Models [23] and especially Conditional
Random Fields [24, 25] to handle chemical names in building and maintaining such
thesauri and ontologies and it therefore seems likely these techniques will be ex-
tended to other fields over the next ten years or even less.

Automatic and semi-automatic building and maintenance of ontologies and the-
sauri is a pre-requisite for the development and adoption of genuinely semantic
search systems6 which are starting to prove they may be effective in contrast to
Boolean or more statistical indexing and retrieval systems [26, 27]. However such
semantic systems are likely to prove of most value initially in domains where quan-
tities of available technical text (including patents) are small and there are large
quantities of available formally codified information about the domain.

In summary then, over the next ten years we are likely to see the adoption of var-
ious sorts of technology which augment existing general text search with formally
represented information about the nature of the patent search task, the structure of
the patent documents themselves, and topical content or domain of the patents or
other technical documents being searched.

20.6 Multiple Data Sources

As noted above the ideal patent search system would provide a single environment
where many sources of data could be searched in a uniform manner. In particular,
many forms of patent search require access to the approved patents and pending
patent applications from many different patent offices, the academic literature, and
ideally any form of public information with a verifiable date.

Of course, this goes way beyond the scope of searches generally conducted at
the present time on a day-to-day basis by any patent searcher round the world. In
many cases, documents cited in procedures are published in the same country as
the case being searched. This does not necessarily reflect a geographical bias in the
retrieval, but is commonly due to the fact that the examiners at patent offices prefer
to deal with documents in familiar languages and so will often cite a local family

6It is unfortunate that in the patent search community the term “semantic search” has come to
mean two quite different things: on the one hand techniques which rely on opaque semantics emer-
gent from the data like Latent Semantic Analysis [28], Random Indexing [29] and various related
techniques which are now quite widely used in patent search and on the other hand techniques
which use additional, often completely or partially or completely hand crafted, resources reflecting
human understanding of the texts or domains under consideration [30]. Here we mean the latter.
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member when available [31]. However, this also underlines the fact that access to
the detailed meaning of documents written in foreign languages is still difficult.

On the other hand, facilitating good practice has to be a good thing. The barriers
to improvement are now more legal and commercial than technical. Few commer-
cial providers wish to see their existing and new collections available outside their
pay walls. However a countervailing force is the Open Science movement and the
pressure arising from the US National Institute for Health and others to provide free
at the point of use access to at least scientific literature.

It would be possible to write a book on this topic alone, but let us confine our-
selves to a small number of points concerning actions needed to improve the situa-
tions:

1. There need to be pay mechanisms and models developed which allow the own-
ers and originators of information (including existing publishers) to derive fair
rewards from their activities;

2. There needs to be activity to provide improved standardisation of document
searching to facilitate automatic indexing and analysis;

3. The search systems and document stores need to be separated to save searchers
from having to master new software and interfaces when accessing new sources
of information.

Discussions between patent offices and the existing commercial providers have
hitherto focussed mainly on the information content of so-called ‘value-added’ data
sources and any terms for making them available, rather than developments in re-
trieval technology [32]. The US-based Coalition for Patent and Trademark Infor-
mation Dissemination specifically noted that development of new software was not
seen as part of the role of the public sector [33].

20.7 Multi-linguality

In the early part of this chapter we noted multi-lingualism as a required property
of future patent search systems. This is because patent search, of whatever sort, is
primarily concerned with the underlying concept of an invention, rather than the
language in which it is described. Therefore the patent searcher conducting an in-
validity search (for example), wishes to determine whether the idea in a patent has
been described in any language, in a patent filed at any patent office or indeed in an
academic paper in any language (or indeed any other public information), provided
of course the document predates the patent whose invalidity we are seeking to show.

Since much patent litigation covers the precise boundaries of the coverage of a
patent the different ways the patent (especially the claims) are expressed in different
languages is clearly critical; in other words, so-called equivalent family members
may not be a strict word-for-word translation, but differ according to how each na-
tional office has granted their version of the application.

Patents then provide a very distinctive sort of challenge in multi-lingual docu-
ment processing (including machine translation). The need has been clearly estab-
lished by the wide-spread use of rough-draft statistical translation tools like Google
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Translate, despite the fact that these systems do not use models of the domain of
invention, patent specific document structure, nor are they integrated in the complex
workflows of a patent search office.

As well a research challenge, the patent area provides a challenge and an op-
portunity for the application of a number of advanced computing technologies. In
particular the fact that many patents exist in families with members in different lan-
guages, and often with manual translations of at least abstracts in several languages,
means that they provide a useful resource for machine learning of various sorts. In
particular they can allow the acquisition of statistical translation models specific to
the technical vocabulary of a domain (although often the data are rather sparse) and
they allow acquisition of the technical vocabulary, potentially with other domain
models and language resources like terminologies and ontologies.

Turning to one specific aspect of patent process, there is a considerable body
of existing work on multi-lingual patent classification. Even patents describe some
solutions of this problem [34]. A number of patent offices and other organisations
have investigated and implemented systems of automated categorisation and clas-
sification of patent documents using natural language processing and analysis [35].
For instance, WIPO has also developed an online categorisation assistance tool for
the International Patent Classification (IPC) system.7 It is mainly designed to help
classifying patents at IPC subclass level, but it also allows the retrieval of simi-
lar documents from its database of patent applications [36, 37]. Since that work,
many tentative efforts have taken place in order to allow programs categorising au-
tomatically patents for limiting this labour-intensive task [38]. Li [39] adopted, for
example, a kernel-based approach and design kernel functions to capture content
information and various citation-related information in patents. Kim and Choi [40]
proposed a k-NN (k-Nearest Neighbour) approach for classifying Japanese patent
documents automatically, focussing on their characteristics: claims, purposes, ef-
fects, embodiments of the invention, instead of only considering the whole full text
document. Such an experiment could achieve a 74% improvement of categorisation
performance over a baseline system that does not use the structural information of
patents. Trappey et al. [41] took another approach and start the classification process
by extracting key phrases from the document. This first step is performed by means
of automatic text processing to determine the significance of key phrases according
to their frequency in text. Correlation analysis is applied to compute the similari-
ties between key phrases, to restrict the number of independent key phrases in the
classifier.

It has been shown that machine learning can help in classifying if appropriate
data are available for training. Bel et al. [42] have studied two different cases:

1. Bilingual documents are available for training and testing, so that a classifier can
learn in two languages simultaneously

2. The classifier learns from language A and then translates the most important
terms from language B into A to categorise documents written in language B

7See: http://www.wipo.int/ipccat/ipc.html.

http://www.wipo.int/ipccat/ipc.html
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This study based on a Winnow learning algorithm and Rocchio classifier has
been applied on a Spanish-English collection and the study has proven that the com-
bination of technique is successful for intrinsic multi-lingual corpora. Many other
experiments took place with other languages such as in Czech-English [43] or even
other algorithms. For instance, Rigutini et al. [44] employed MT to translate En-
glish documents into Italian and classified them by using a Naïve-Bayes approach.
Definitely, language is not a barrier for machine learning, just another obstacle for
which MT techniques are already effective.

The critical point here is that the feasibility of various forms of advanced multi-
lingual patent processing has been demonstrated in research prototypes. These pro-
totypes represent solutions which show that various sections of the patent commu-
nity are willing to accept less than 100% effective solutions: therefore we are likely
to see the adoption of various of these (generally machine-learning based) tech-
nologies in patent systems released for general use over the next few years. Their
quality will steadily improve over the next ten years, not least because steadily in-
creasing globalisation of the patent system, including enforcement. Globalisation
of enforcement will promote multi-lingual invalidity searching which will mean a
steady increase of searching in the non-English (and perhaps non-Chinese) patent
bases, although English may well remain a dominant language perhaps joined by
Chinese in the future.

Of course, increased use and effectiveness of automatic and semi-automatic
multi-lingual tools can never supplant the use of human translation: especially, for
patents domain translations produced by legal or technical experts with relevant ex-
pertise and for particular purposes, like litigation.

20.8 Visualisation and Co-operation

Work in patents (and in fact other forms of complex technical information, like gene
sequencing data) cannot be adequately represented by simple arrangements of text.
On the one hand it is too complex and multi-dimensional to allow this. On the other
hand the needs of patent searchers are too complex, subtle and variable to allow
one-size-fits all standardised solutions even in areas like presentation of ranked lists
of results.

It is important to recognise there are essentially two forms of graphical visuali-
sation of data which are needed by patent professionals:

1. Visualisation of content potentially at the individual document level: content like
diagrams, engineering drawings, chemical structures, gene sequences and related
text

2. Visualisation of the structure of large information spaces and results to allow the
searcher to effectively overview the space and navigate to relevant areas

Obviously there are a number of current applications, which allow various sorts
of graphical views of patent data spaces. Considering the problem of large infor-
mation spaces and results sets, currently searchers often use series of pure textual
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Boolean searches (with operators such as “and,” “or,” “not,”) to obtain an overview
of the space. Boolean searches are advantageous for experienced searchers who
have a clear understanding of the query, as well as the limitations of the database.
However, Boolean searches can be difficult for the uninitiated and inappropriate to
multiple growing databases. On top of that, learning to master a Boolean search is
time consuming, basically consisting of trial and error, which, in a current competi-
tive environment, is not scalable. The goal to achieve is more user-friendly systems
to help the researcher to obtain information quickly without a learning phase. De-
veloping methods to access, analyse, and report on patent information in a quicker
manner is a challenge shared by both patent offices and patent professionals. More
and more forums (such as the IRF Symposium or the European Patent Office Patent
Information Conference) aim at gathering the needs and offering the chance to soft-
ware developers to register the large variety of requirements.

A patent processing system should be more active in assisting the searchers in
their repetitive tasks. It could provide suggestions, take the initiative of rewriting
the search queries and perform new subsequent searches based on its own under-
standing.

There is also a growing body of other relevant research. For example, in case
of unsupervised neural network clustering, Huang et al. [45] have proposed a SOM
(Self-Organising Map) dedicated to patent structures. These authors distinguish be-
tween explicit structures (subject, abstract, paragraphs) and implicit structures. Im-
plicit structures refer to writing styles such as “comprising” in the claims (compo-
sition style) or “as claimed in” (pre-condition style). This structure analysis occurs
as a pre-processing before the SOM and allows a higher robustness to language
ambiguities, especially in Chinese language. This clustering is not the first imple-
mentation of a SOM for patent documents (see for example [46]), nevertheless the
application of clustering is targeting much higher expectations. Indeed, the goal is
to compare (cluster) patents showing similar claim contents and to help the patent
examiner take critical decisions on the acceptability of a patent application. But
note that such a technique, even if perfected, could only assist the general patent
searcher in those types of search where the claim language is an important aspect
of the target e.g. Freedom-To-Operate searching, and would be less helpful in some
aspects of patentability searching where disclosures in the body of the specification
are equally or more important. By using a clustering method conflicting patents can
be detected, clustered and ranked according to the degree of similarity. On top of
that, a graphical representation is a natural way of displaying SOMs. Topic maps
are well-know derivatives.

In the past, several initiatives took place to develop visualisation techniques
[47, 48]. Mapping tools [49] enabling the display of multiples patent records, but no
direct interaction with the end-users has been foreseen. Until recently, probably due
to a lack of computer resources (and thus interactivity), many attempts failed. Sup-
ported by the need in specific industries or services, such as pharmaceutical research
or trend analysis, new developments have nevertheless been proposed [50, 51]. In
parallel, a lot of effort has been devoted to text mining techniques, whereas there
seems to be a shortage of research on the ability of current technologies to cluster
patent data in meaningful and consistent ways.
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Text mining techniques are designed to extract non-trivial pieces of knowledge
(also called patterns). It is expected that a greater synergy between text mining,
knowledge discovery and visualisation is going to improve patent processing meth-
ods. Fattori et al. [52] found relevant techniques for the purpose of exploring the
patent domain. Visual Data Mining (VDM) for patents would help the end-user
building a mental model of a particular dataset and allow him to understand the
global structure in addition to the local trends in complex sets. It places the end-
user in a position of a cognitive agent navigating in a visual information space and
building his own internal cognitive map. In a nutshell, the computer runs heavy
processing over millions of records whereas, simultaneously, the user models the
virtual document space into its own world. It is desirable that the user establishes a
connection between his representation and the system by avoiding the unnecessary
underlying complexity.

Tools for VTM (Visual Text Mining) have been proposed in the past [53], but
not yet in the context of Industrial Property. Only recently, Yang et al. proposed
text-mining approaches in conjunction to independent visual tools to find patent
documents [54, 55]. Related attempts have been published in the past, including
Topic maps,8 but mostly concentrated on unstructured corpora such as web content.
Patent documents are composed of both structural aspects and a free-style content,
which makes the clustering followed by the rendering much less challenging be-
cause dependent to the variety of users’ expectations (ranging from regular listings
to discovery experiences). Results can thus be evaluated more systematically on
users’ criteria.

Harper and Kelly [56], for example, have show a pile sorting metaphor to be
effective in a slightly more complex than average information access task. It would
certainly be worth exploring the implications of this result for patent search.

From an internal computer representation to a user-friendly rendering, a series
of steps should be put in place. One of them relates to space projection. Multi-
dimensional spaces have to be represented on a 2D screen in order to be displayed.
The visual representation of the space should nevertheless be compatible with the
internal cognitive representation of the user. This poses both a projection issue and a
user-interface issue. The projection issue finds its practical solutions through many
geometrical techniques [57, 58]. The user-interface problem is addressed through
an interactive way of handling subsets of databases and requires computing power
capable of scaling with the amount of data. It is essential that methods adequately
reflect the content-based neighbourhood relations between documents, according to
their similarity. Projections have to be accurate in order to allow the end-user to
effectively analyse the space.

Another area where there have been significant advances in visualisation has been
in the area of gene sequencing, which of course is of great importance in the patent
world (see Havukkala [59] for some examples).

In recent years there have been significant advances in the technologies for vir-
tual meetings, going well beyond the very degraded forms of interaction one gets

8ISO/IEC 13250:1999.
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with simple video conferencing systems. See for example Yu and Nakamaru [60] or
Nijholt, Zwiers, and Perciva [61].

Therefore in the next ten years we will see the wide-spread adoption of large
format screens, highly interactive complex visualisations, with an ability to reor-
ganise the data on the fly according to the current needs of the searcher. These vi-
sualisations will actively support co-operative and team working between different
professionals whether co-located or working at different locations.

This will be driven a combination of needing to control the costs of patent work,
especially in very high value areas like prosecution, more globalised working (at the
same time as trying to reduce travel) as well as technical opportunities and reducing
cost of technology.

20.9 Towards Integrated Search Solutions

Nowadays, patent professionals are used to many software components allowing a
quick overview of the retrieved patents. A good example of such tools is given by
Pattools,9 which performs most of the basic requirements:

• A patent navigator, to display the document content
• An independent claim comparison module, to assess differences between docu-

ments claims
• A claim-tree generator to visualise dependencies in claims
• A patent-link generator with family trees

Other online sites such as Toolpat10 allow access to major global patent databases
for prosecution purposes, although it might be argued these are more appropriate
for direct use by patent attorneys, rather than professional patent searchers. Another
good example of an integrated search environment is SurfIP.11

Typically, directly addressing patent searchers needs raise real research prob-
lems, such as the need to set up meta-search engines capable of performing searches
in all (or some specified) separate search systems and document collections in par-
allel and then merging the results intelligently before presenting the results back
to the user. Another issue is the data fusion aspect implementing the “intelligent”
merging of results mentioned above.

However, what is really required is a separation of the tools for the indexing,
search, access and analysis of the patent and other data (especially academic litera-
ture) from the data itself. This will greatly facilitate the rapid adoption in the patent
community of new software developed elsewhere. Integrating these tools goes be-
yond this: but it will allow the patent community to effectively take part in de-
velopments like the open Linked Data initiative12 and the Semantic Web Services

9See: http://www.pattools.com/index.html.
10See: http://www.toolpat.com.
11See: http://www.surfip.com/.
12See: http://linkeddata.org/.

http://www.pattools.com/index.html
http://www.toolpat.com
http://www.surfip.com/
http://linkeddata.org/
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initiative13 which will provide the basis of integrated software systems in the future,
although there is the danger that the specialised needs of patent searchers may be
subsumed under the needs of larger communities and thereof not fully addressed.

20.10 Report Generation Support

Now all this advanced technological stuff is all very well, but for the foreseeable
future most sophisticated patent searches will result in a paper report (or may be
an electronic form like PDF which is essentially 2-D paper which can easily be
transmitted and viewed electronically).

Therefore it is important, for the practical patent searcher, that the results of all
these advanced information access process can be converted into report form.

We are not going to analyse and review how this is done: this brief section is
more of a warning and reminder to technology developers and researchers, but see
[62] for a longer discussion of some related issues.

20.11 Conclusions

In 1982, Salton started his article describing the SMART retrieval system with the
following sentence: “The need to construct complex Boolean queries in order to
obtain the benefit of the existing retrieval operations constitutes a substantial burden
for the users”. Since the pioneering work of Salton [63] and K. Spark-Jones [64]
in the early 70’s considerable progress has been made to make the content of text
depositories more easily available to users. Nevertheless, progress has been slow
and after more than three decades, many professional users are still facing crucial
difficulties in extracting valuable information from datasets. Patent professionals are
among them. The issue is no longer to secure a valid search in textual information
but instead, to find the relevant piece of information (whatever the data type) and to
display it into a framework ready for decision-making.

We have pointed out that a series of different sorts of progress in various scien-
tific fields is needed to address the challenge of processing patent data. Both basic
IR technologies and advanced linguistic paradigms are proven to be useful for cop-
ing with the multi-lingual nature of patents. Moreover, the continuous exponential
growth of patent documents available in the world, raise scalability issues far from
being solved. Expectations are at the level of a global economy where language data
are at the centre of a full dematerialisation of knowledge. The industrial need to re-
fer to a strong intellectual property portfolio push the trend of enhancing computer
tools specialised in processing patents documents. Thanks to coordinated research

13See: http://www.swsi.org/.

http://www.swsi.org/
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efforts such as those of the IRF, involving both professionals and the scientific com-
munity, users can finally expect consolidated software suite reaching the level they
deserve.

As demonstrated in its time by the pioneering EU project PatExpert [22], emerg-
ing technologies addressing these challenges are successful in finding practical re-
search solutions. In the context of managing patent digital data, PatExpert has shown
that many concurrent professional issues appeared in the field of Industrial Prop-
erty (IP). The current chapter focusses on some prospective themes, which the IP
community will face in the coming years. As such, and since more and more patent-
related projects are initiated, making use of industrial property corpora has become
a full subject for academic research and applied research. Expected impacts appear
at several orthogonal levels: economical, societal, legal and technical. Although it
is not possible to dissociate the legal aspects from the technical one on the user
side of the project, it is clear that addressing the Information Technology (IT) side
of the issues can solve many practical aspects. For instance, the academic field of
Information Retrieval (IR), which has a long history in developing algorithms and
methods for exploiting the content of large corpora, has shown interest in focussing
its activities on IP. It is now facing a series of use cases potentially showing a great
economical impact, thanks to the importance of Internet-based solutions. In parallel,
the IP community is morphing from a focus on a librarian-style document manage-
ment setup to online, to on-the-fly, live and interactive methods.

We predict that in ten years this will drive real changes in the patent search busi-
ness, leading to the wide-spread adoption of tools which support a truly globalised
intellectual property market, and therefore supported shared search-independent of
language or location.
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