


Fundamentals of  
Structural Analysis

Fifth Edition

Kenneth M. Leet
Professor Emeritus, Northeastern University

Chia-Ming Uang
Professor, University of California, San Diego

Joel T. Lanning
Assistant Professor, California State University, Fullerton

Anne M. Gilbert, PE, SECB
Structural Engineer Consultant

lee98004_fm_i_xx.indd   1 27/12/16   10:53 am



FUNDAMENTALS OF STRUCTURAL ANALYSIS, FIFTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2018 by McGraw-Hill Education. 
All rights reserved. Printed in the United States of America. Previous edition © 2011, 2008, and 2005. No part of this 
publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without 
the prior written consent of McGraw-Hill Education, including, but not limited to, in any network or other electronic storage or 
transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper. 

1 2 3 4 5 6 7 8 9 LCR 21 20 19 18 17

ISBN 978-0-07-339800-6
MHID 0-07-339800-4

Chief Product Officer, SVP Products & Markets: G. Scott Virkler
Vice President, General Manager, Products & Markets: Marty Lange
Vice President, Content Design & Delivery: Betsy Whalen
Managing Director: Thomas Timp
Global Brand Manager: Thomas M. Scaife, Ph.D.
Director, Product Development: Rose Koos
Product Developer: Jolynn Kilburg
Marketing Manager: Shannon O’Donnell
Director, Content Design & Delivery: Linda Avenarius
Program Manager: Lora Neyens
Content Project Managers: Jane Mohr, Rachael Hillebrand, and Sandra Schnee
Buyer: Laura M. Fuller
Design: Studio Montage, St. Louis, MO
Content Licensing Specialist: Melisa Seegmiller
Cover Image: Lou Lu, M.D., Ph.D. Self-anchored suspension main span of the eastern span replacement 
of the San Francisco-Oakland Bay Bridge in California.
Compositor: MPS Limited
Printer: LSC Communications

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Leet, Kenneth, author. | Uang, Chia-Ming, author. | Lanning, Joel  
 author. | Gilbert, Anne M., author.
 Fundamentals of structural analysis / Kenneth M. Leet, Professor Emeritus,  
 Northeastern University, Chia-Ming Uang, Professor, University of California,  
 San Diego, Joel T. Lanning, Assistant Professor, California State University,  
 Fullerton, Anne M. Gilbert, Adjunct Assistant Professor, Yale University.
 Fifth edition. | New York, NY : McGraw-Hill Education, [2018] |
 Includes index.
 LCCN 2016051733 | ISBN 9780073398006 (alk. paper)
 LCSH: Structural analysis (Engineering)
 LCC TA645 .L34 2018 | DDC 624.1/71—dc23 LC record available  
 at https://lccn.loc.gov/2016051733

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate 
an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy of the 
information presented at these sites.

mheducation.com/highered

lee98004_fm_i_xx.indd   2 27/12/16   10:53 am



For Kenneth M. Leet

lee98004_fm_i_xx.indd   3 27/12/16   10:53 am



lee98004_fm_i_xx.indd   4 27/12/16   10:53 am

This page intentionally left blank



v

A B O U T  T H E  AU T H O R S

Kenneth Leet is a late Professor of structural engineering at Northeastern 
University. He received his Ph.D. in structural engineering from the 
Massachusetts Institute of Technology. As a professor of civil engineering 
at Northeastern University, he taught graduate and undergraduate courses 
in reinforced concrete design, structural analysis, foundations, plates and 
shells, and capstone courses on comprehensive engineering projects for 
over 30 years. Professor Leet was given an Excellence in Teaching award at 
Northeastern University in 1992. He was also a faculty member for ten years 
at Drexel University in Philadelphia.

In addition to being the author of the first edition of this book on struc-
tural analysis, originally published by Macmillan in 1988, he is the author of 
Fundamentals of Reinforced Concrete, published by McGraw-Hill.

Chia-Ming Uang is a Professor of structural engineering at the University 
of California, San Diego (UCSD). He received a B.S. degree in civil engi-
neering from National Taiwan University and M.S. and Ph.D. degrees in civil 
engineering from the University of California, Berkeley. 

Uang also coauthores the text Ductile Design of Steel Structures for 
McGraw-Hill. He received the UCSD Academic Senate Distinguished 
Teaching Award in 2004. He is also the recipient of the ASCE Raymond C. 
Reese Research Prize in 2001, the ASCE Moisseiff Award in 2004 and 2014, 
the AISC Special Achievement Award in 2007, and the T.R. Higgins Lec-
tureship Award in 2015.

Joel T. Lanning is an Assistant Professor of structural engineering at 
California State University, Fullerton and is a registered Civil Engineer in 
California. He received a B.S. degree in civil engineering from the Ohio 
State University and M.S. and Ph.D. degrees in structural engineering from 
the University of California, San Diego. Professor Lanning is also involved 
with developing tools and content for McGraw-Hill SmartBook and Connect 
online products.

Anne M. Gilbert, PE, SECB, is a senior structural engineer at Rivermoor 
Engineering, LLC, Scituate, MA, and an architectural designer. She is a 
registered Structural Engineer in CT, ME and MA, and received a B.A. in 

lee98004_fm_i_xx.indd   5 27/12/16   10:53 am



architecture at the University of North Carolina, a B.S.C.E. from Northeast-
ern University, and a M.S.C.E. from the University of Connecticut. Over 
the past 30 years, Gilbert specialized in structural design of institutional, 
commercial and residential buildings. Gilbert was an Assistant Professor 
(Adjunct) at Yale University, School of Architecture, and for over eight years 
taught structural engineering courses.

vi  About the Authors

lee98004_fm_i_xx.indd   6 27/12/16   10:53 am



vii

TA B L E  O F  C O N T E N T S

Preface xiii

Chapter 1 Introduction 3
 1.1 Overview of the Text 3
 1.2 The Design Process: Relationship 

of Analysis to Design 4
 1.3 Strength and Serviceability 6
 1.4 Historical Development  

of Structural Systems 7
 1.5 Basic Structural Elements 10
 1.6 Assembling Basic Elements to Form  

a Stable Structural System 19
 1.7 Analyzing by Computer 22
 1.8 Preparation of Computations 23
 Summary 24

Chapter 2 Design Loads and Structural Framing 27
 2.1 Building and Design Code 27
 2.2 Loads 28
 2.3 Dead Loads and Gravity Framing 29
 2.4 Live Loads  36
 2.5 Snow Loads 42
 2.6 Lateral Load-Resisting Systems 43
 2.7 Natural Hazards 45
 2.8 Wind Loads  46
 2.9 Earthquake Loads 59
 2.10 Tsunami Loads 64
 2.11 Other Loads 70
 2.12 Load Combinations 71
 Summary 72

Chapter 3 Statics of Structures—Reactions 81
 3.1 Introduction 81
 3.2 Forces 82
 3.3 Supports 89

lee98004_fm_i_xx.indd   7 27/12/16   10:53 am



viii  Table of Contents

 3.4 Idealizing Structures 93
 3.5 Free-Body Diagrams 94
 3.6 Equations of Static Equilibrium 96
 3.7 Equations of Condition 102
 3.8 Influence of Reactions on Stability  

and Determinacy of Structures 105
 3.9 Classifying Structures 113
 3.10 Comparison between Determinate  

and Indeterminate Structures 116
 Summary 119

Chapter 4 Trusses 131
 4.1 Introduction 131
 4.2 Types of Trusses 134
 4.3 Analysis of Trusses 135
 4.4 Method of Joints 136
 4.5 Zero Bars 140
 4.6 Method of Sections 142
 4.7 Determinacy and Stability 150
 4.8 Computer Analysis of Trusses 156
 Summary 159

Chapter 5 Beams and Frames 175
 5.1 Introduction 175
 5.2 Scope of Chapter 180
 5.3 Equations for Shear and Moment 181
 5.4 Shear and Moment Curves 188
 5.5 Principle of Superposition 206
 5.6 Sketching the Deflected Shape  

of a Beam or Frame 210
 5.7 Degree of Indeterminacy 215
 5.8 Approximate Indeterminate  

Structural Analysis 218
 Summary 219

Chapter 6 Cables and Arches  235
 6.1 Cables 235
 6.2 Characteristics of Cables 236
 6.3 Variation of Cable Force 237
 6.4 Analysis of a Cable Supporting  

Concentrated Gravity Loads 238
 6.5 General Cable Theorem 240
 6.6 Arches  245
 6.7 Types of Arches 245
 6.8 Three-Hinged Arches 247

lee98004_fm_i_xx.indd   8 27/12/16   10:53 am



Table of Contents  ix

 6.9 Funicular Shape of an Arch 249
 6.10 Funicular Shape for an Arch That  

Supports a Uniformly Distributed Load 252
 Summary 256

Chapter 7 Deflections of Beams and Frames 267
 7.1 Introduction 267
 7.2 Double Integration Method 268
 7.3 Moment-Area Method 275
 7.4 Elastic Load Method 293
 7.5 Conjugate Beam Method 297
 7.6 Design Aids for Beams 305
 Summary 307

Chapter 8  Work-Energy Methods  
for Computing Deflections 319

 8.1 Introduction 319
 8.2 Work 320
 8.3 Strain Energy 322
 8.4 Deflections by the Work-Energy 

Method (Real Work) 325
 8.5 Virtual Work: Trusses 326
 8.6 Virtual Work: Beams and Frames 343
 8.7 Finite Summation 355
 8.8 Bernoulli’s Principle of Virtual  

Displacements 357
 8.9 Maxwell-Betti Law of Reciprocal  

Deflections 360
 Summary 364

Chapter 9  Analysis of Indeterminate  
Structures by the Flexibility Method 377

 9.1 Introduction 377
 9.2 Concept of a Redundant 378
 9.3 Fundamentals of the Flexibility  

Method 379
 9.4 Alternative View of the Flexibility  

Method (Closing a Gap) 382
 9.5 Analysis Using Internal Releases 392
 9.6 Support Settlements, Temperature  

Change, and Fabrication Errors 399
 9.7 Analysis of Structures with Several  

Degrees of Indeterminacy 404
 9.8 Beam on Elastic Supports 411
 Summary 414

lee98004_fm_i_xx.indd   9 27/12/16   10:53 am



Chapter 10  Analysis of Indeterminate Beams  
and Frames by the Slope-Deflection  
Method 423

 10.1 Introduction 423
 10.2 Illustration of the Slope-Deflection Method 424
 10.3 Derivation of the Slope-Deflection  

Equation 425
 10.4 Analysis of Structures by the  

Slope-Deflection Method 431
 10.5 Analysis of Structures That Are Free  

to Sidesway 447
 10.6 Kinematic Indeterminacy 457
 Summary 458

Chapter 11  Analysis of Indeterminate Beams  
and Frames by the Moment Distribution 467

 11.1 Introduction 467
 11.2 Development of the Moment  

Distribution Method 468
 11.3 Summary of the Moment Distribution  

Method with No Joint Translation 473
 11.4 Analysis of Beams by Moment  

Distribution 474
 11.5 Modification of Member Stiffness 482
 11.6 Analysis of Frames That Are Free  

to Sidesway 497
 11.7 Analysis of an Unbraced Frame for  

General Loading 503
 11.8 Analysis of Multistory Frames 508
 11.9 Nonprismatic Members 509
 Summary  520

Chapter 12 Influence Lines for Moving Loads 529
 12.1 Introduction 529
 12.2 Influence Lines 529
 12.3 Construction of Influence Line for  

Determinate Beams 530
 12.4 Müller–Breslau Principle for  

Determinate Beams 538
 12.5 Use of Influence Lines 541
 12.6 Influence Lines for Determinate  

Girders Supporting Floor Systems 544
 12.7 Influence Lines for Determinate Trusses 550
 12.8 Live Loads for Highway and  

Railroad Bridges 555
 12.9 Increase–Decrease Method 558
 12.10 Moment Envelope and Absolute  

Maximum Live Load Moment 562

x  Table of Contents

lee98004_fm_i_xx.indd   10 27/12/16   10:53 am



 12.11 Shear Envelope 567
 12.12 Influence Lines for Indeterminate  

Structures: Introduction 568
 12.13 Construction of Influence Lines Using  

Moment Distribution 569
 12.14 Proof of Müller–Breslau Principle 573
 12.15 Qualitative Influence Lines for  

Indeterminate Beams and Frames 578
 12.16 Live Load Patterns to Maximize Member  

Forces in Multistory Buildings 584
 12.17 Influence Lines for Indeterminate Trusses 588
 Summary 591

Chapter 13  Approximate Analysis  
of Indeterminate Structures 605

 13.1 Introduction 605
 13.2 Continuous Beams for Gravity Load 607
 13.3 One-bay Rigid Frames for Vertical Load 613
 13.4 Trusses with Single Diagonals 617
 13.5 Estimating Deflections of Trusses 623
 13.6 Trusses with Double Diagonals 625
 13.7 Multistory Rigid Frames  

for Gravity Load 628
 13.8 Single-story Rigid Frames  

for Lateral Load 637
 13.9 Multistory Rigid Frames for Lateral Load:  

Portal Method 640
 13.10 Multistory Rigid Frames for Lateral Load:  

Cantilever Method 648
 Summary 653

Chapter 14  Introduction to the General  
Stiffness Method 661

 14.1 Introduction 661
 14.2 Comparison between Flexibility  

and Stiffness Methods 662
 14.3 Analysis of an Indeterminate Structure  

by the General Stiffness Method 666
 Summary 679

Chapter 15  Matrix Analysis of Trusses by  
the Direct Stiffness Method 685

 15.1 Introduction 685
 15.2 Member and Structure Stiffness Matrices 690
 15.3 Construction of a Member Stiffness  

Matrix for an Individual Truss Bar 691
 15.4 Assembly of the Structure Stiffness Matrix 692

Table of Contents  xi

lee98004_fm_i_xx.indd   11 27/12/16   10:53 am



 15.5 Solution of the Direct Stiffness Method 695
 15.6 Member Stiffness Matrix of an Inclined  

Truss Bar 699
 15.7 Coordinate Transformation of a Member  

Stiffness Matrix 711
 Summary 712

Chapter 16  Matrix Analysis of Beams and Frames  
by the Direct Stiffness Method 717

 16.1 Introduction 717
 16.2 Structure Stiffness Matrix 719
 16.3 The 2 × 2 Rotational Stiffness Matrix  

for a Flexural Member 720
 16.4 The 4 × 4 Member Stiffness Matrix  

in Local Coordinates 731
 16.5 The 6 × 6 Member Stiffness Matrix 

in Local Coordinates 741
 16.6 The 6 × 6 Member Stiffness Matrix in 

Global Coordinates 750
 16.7 Assembly of a Structure Stiffness  

Matrix—Direct Stiffness Method 752
 Summary 755

Appendix A 759
Answers to Odd-Numbered Problems 763
Index  769

xii  Table of Contents

lee98004_fm_i_xx.indd   12 27/12/16   10:53 am



xiii

P R E FAC E

This text introduces engineering and architectural students to the basic 
techniques required for analyzing the majority of structures and the ele-
ments of which most structures are composed, including beams, frames, 
trusses, arches, and cables. Although the authors assume that readers 
have completed basic courses in statics and strength of materials, we 
briefly review the basic techniques from these courses the first time we 
mention them. To clarify the discussion, we use many carefully chosen 
examples to illustrate the various analytic techniques introduced, and 
whenever possible, we select examples confronting engineers in real-life 
professional practice. 

Features of This Text 

1. Major reorganization. The number of chapters has been reduced 
from 18 in the previous editions to 16 for a more concise presentation 
of the materials. This is done by combining the cable and arch 
chapters into one as well as presenting the influence lines for both 
determinate and indeterminate structures in one chapter to avoid 
repeating information.

2. Expanded treatment of design loads. Chapter 2 is devoted to a 
discussion of loads based on the most recent ANSI/ASCE 7 Standard. 
This includes dead and live loads, snow, earthquake, and wind loads, 
and, new to this edition (and the ASCE Standard), tsunami loading. 
Further, a discussion on natural hazards and the ASCE Standard’s 
probabalistic approach to natural hazard design loads is added. The 
presentation aims to provide students with a basic understanding of 
how design loads are determined for practical design of multistory 
buildings, bridges, and other structures.

3. New homework problems. A substantial number of the problems 
are new or revised for this edition (in both metric and U.S. Cus-
tomary System units), and many are typical of analysis problems 
encountered in practice. The many choices enable the instructor 
to select problems suited for a particular class or for a particular 
emphasis. 

4. Computer problems and applications. Computer problems, 
some new to this edition, provide readers with a deeper under-
standing of the structural behavior of trusses, frames, arches, 
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and other structural systems. These carefully tailored problems 
illustrate significant aspects of structural behavior that, in the 
past, experienced designers needed many years of practice to 
understand and to analyze correctly. The computer problems are 
identified with a computer screen icon and begin in Chapter 4 of 
the text. The computer problems can be solved using the Educa-
tional Version of the commercial software RISA-2D that is avail-
able to users at the textbook website. However, any software that 
produces shear, moment, and axial load diagrams, and deflected 
shapes can be used to solve the problems. An overview on the use 
of the RISA-2D software and an author-written tutorial are also 
available at the textbook website. 

5. Problem solutions have been carefully checked for accuracy. The 
authors have carried out multiple checks on the problem solutions 
but would appreciate hearing from users about any ambiguities or 
errors. Corrections can be sent to Professor Chia-Ming Uang (cmu@
ucsd.edu). 

6. Textbook web site. A text-specific website is available to users. The 
site offers an array of tools, including lecture slides, an image bank 
of the text’s art, helpful web links, and the RISA-2D educational 
software.

Contents and Sequence of Chapters 

We present the topics in this book in a carefully planned sequence to 
facilitate the student’s study of analysis. In addition, we tailor the expla-
nations to the level of students at an early stage in their engineering 
education. These explanations are based on the authors’ many years of 
experience teaching analysis. In this edition, we have streamlined the 
presentation by restructuring the book from 18 to 16 chapters while still 
keeping all the important materials.

Chapter 1 provides a historical overview of structural engineering 
(from earliest post and lintel structures to today’s high-rises and 
cable-stayed bridges) and a brief explanation of the interrelation-
ship between analysis and design. We also describe the essential 
characteristics of basic structures, detailing both their advantages 
and their disadvantages. 

Chapter 2 on loads is described above in Features of This Text. 
Chapters 3, 4, and 5 cover the basic techniques required to determine 

by statics bar forces in determinate trusses, and shear and moment 
in determinate beams and frames. Methods to identify if the struc-
ture is determinate are also presented.

Chapter 6 interrelates the behavior of arches and cables, and covers 
their special characteristics (of acting largely in direct stress and 
using materials efficiently). 
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Chapters 7 and 8 provide methods used to compute the deflections of 
structures. One direct application is to use it to analyze indeterminate 
structures by the method of consistent deformations in Chapter 9. 

Chapters 9, 10, and 11 introduce three classical methods for analyz-
ing indeterminate structures. The method of consistent deforma-
tions in Chapter 9 is classified as a flexibility method, while the 
slope-deflection and moment distribution methods in the other two 
chapters are classified as the stiffness method.

Chapter 12 introduces the concept of influence lines and covers 
methods for positioning live load that can vary in space on deter-
minate and indeterminate structures to maximize the internal 
force at a specific section of a beam, frame, or bars of a truss. 
Engineers use this important concept to design bridges or other 
structures subject to moving loads or to live loads whose position 
on the structure can change. 

Chapter 13 gives approximate methods of analysis, used to esti-
mate the value of forces at selected points in highly indeter-
minate structures. With approximate methods, designers can 
perform preliminary member sizing, verify the accuracy of 
computer studies analysis results, or check the results of more 
traditional, lengthy hand analyses described in earlier chapters. 

Chapters 14, 15, and 16 introduce matrix methods of analysis. 
Chapter 14 extends the general direct stiffness method to a 
variety of simple structures. The matrix formulation of the stiffness 
method, which is the basis of modern structural analysis software, 
is applied to the analysis of trusses (Chapter 15) and to the analysis 
of beams and frames (Chapter 16).
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Skyway construction of the San  
Francisco-Oakland Bay Bridge

Segmental bridge construction was used for the mile-long viaduct, or Skyway, of the new 
San Francisco-Oakland Bay Bridge (see the book cover).  The Skyway’s decks comprise 
452 precast concrete segments, which were transported by barge to the site and were 
lifted into place by winches. In balanced cantilever construction, as shown in this photo, 
the superstructure is erected by cantilevering out from opposite sides of the pier to main-
tain a relatively balanced system. As such, controlling deflection during the construction 
stage is very important for segmental bridge construction.

© Noah Berger/Bloomberg via Getty Images
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3

1Introduction

Overview of the Text
1.1

As an engineer or architect involved with the design of buildings, bridges, 
and other structures, you will be required to make many technical decisions 
about structural systems. These decisions include (1) selecting an effi cient, 
economical, and attractive structural form; (2) evaluating its safety, that is, 
its strength and stiffness; and (3) planning its erection under temporary con-
struction loads.

To design a structure, you will learn to carry out a structural analysis 
that establishes the internal forces and deflections at all points produced by 
the design loads. Designers determine the internal forces in key members in 
order to size both members and the connections between members. And de-
signers evaluate deflections to ensure a serviceable structure—one that does 
not deflect or vibrate excessively under load so that its function is impaired.

Analyzing Basic Structural Elements

During previous courses in statics and strength of materials, you developed 
some background in structural analysis when you computed the bar forces in 
trusses and constructed shear and moment curves for beams. You will now 
broaden your background in structural analysis by applying, in a  systematic 
way, a variety of techniques for determining the forces in and the deflections 
of a number of basic structural elements: beams, trusses, frames, arches, and 
cables. These elements represent the basic components used to form more 
complex structural systems.

Moreover, as you work analysis problems and examine the distribution 
of forces in various types of structures, you will understand more about how 
structures are stressed and deformed by load. And you will gradually develop 
a clear sense of which structural configuration is optimal for a particular de-
sign situation.

Further, as you develop an almost intuitive sense of how a structure be-
haves, you will learn to estimate with a few simple computations the approxi-
mate values of forces at the most critical sections of the structure. This ability 

C H A P T E R
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4  Chapter 1 ■ Introduction

will serve you well, enabling you (1) to verify the accuracy of the results of 
a computer analysis of large, complex structures and (2) to estimate the pre-
liminary design forces needed to size individual components of multimember 
structures during the early design phase when the tentative configuration and 
proportions of the structure are being established.

Analyzing Two-Dimensional Structures

As you may have observed while watching the erection of a multistory 
building frame, when the structure is fully exposed to view, its structure is 
a complex three-dimensional system composed of beams, columns, slabs, 
walls, and diagonal bracing. Although load applied at a particular point in 
a three-dimensional structure will stress all adjacent members, most of the 
load is typically transmitted through certain key members directly to other 
supporting members or into the foundation.

Once the behavior and function of the various components of most three-
dimensional structures are understood, the designer can typically simplify the 
analysis of the actual structure by subdividing it into smaller two-dimensional 
subsystems that act as beams, trusses, or frames. This pro     cedure also significantly 
reduces the complexity of the analysis be cause two-dimensional structures are 
much easier and faster to analyze than three-dimensional structures. Since with 
few exceptions (e.g.,  geodesic domes constructed of light tubular bars) design-
ers typically analyze a series of simple two-dimensional structures—even when 
they are design ing the most complex three-dimensional structures—we will de-
vote a large portion of this book to the analysis of two-dimensional or planar 
structures, those that carry forces lying in the plane of the structure.

Once you clearly understand the basic topics covered in this text, you will 
have acquired the fundamental techniques required to analyze most buildings, 
bridges, and structural systems typically encountered in professional practice. 
Of course, before you can design and analyze with confidence, you will require 
some months of actual design experience in an engineering office to gain fur-
ther understanding of the total design process from a practitioner’s perspective.

For those of you who plan to specialize in structures, mastery of the top-
ics in this book will provide you with the basic structural principles required 
in more advanced analysis courses—those covering, for example, matrix 
methods or plates and shells. Further, because design and anal ysis are closely 
interrelated, you will use again many of the analy tical procedures in this text 
for more specialized courses in steel, reinforced concrete, and bridge design.

The Design Process: Relationship 
of Analysis to Design

1.2

The design of any structure—whether it is the framework for a space vehicle, 
a high-rise building, a suspension bridge, an offshore oil drilling platform, 
a tunnel, or whatever—is typically carried out in alternating steps of design 
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1.2 ■ The Design Process: Relationship of Analysis to Design  5

and analysis. Each step supplies new information that permits the designer to 
proceed to the next phase. The process continues until the analysis indicates 
that no changes in member sizes are required. The specific steps of the proce-
dure are described below.

Conceptual Design

A project begins with a specific need of a client. For example, a developer 
may authorize an engineering or architectural firm to prepare plans for a 
sports complex to house a regulation football field, as well as seating 60,000 
people, parking for 4000 cars, and space for essential facilities. In another 
case, a city may retain an engineer to design a bridge to span a 2000-ft-wide 
river and to carry a certain hourly volume of traffic.

The designer begins by considering all possible layouts and struc-
tural systems that might satisfy the requirements of the project. Often, archi-
tects and engineers consult as a team at this stage to establish layouts that lend 
themselves to efficient structural systems in addition to meeting the archi-
tectural (functional and aesthetic) requirements of the project. The designer 
next prepares sketches of an architectural nature showing the main structural 
elements of each design, although details of the structural system at this point 
are often sketchy.

Preliminary Design

In the preliminary design phase, the engineer selects from the conceptual 
design several of the structural systems that appear most promising, and sizes 
their main components. This preliminary proportioning of structural mem-
bers requires an understanding of structural behavior and a knowledge of 
the loading conditions (dead, live, wind, and so forth) that will most likely 
affect the design. At this point, the experienced designer may make a few 
rough computations to estimate the proportions of each structure at its criti-
cal sections.

Analysis of Preliminary Designs

At this next stage, the precise loads the structure will carry are not known 
because the exact size of members and the architectural details of the design 
are not finalized. Using estimated values of load, the engineer carries out an 
analysis of the several structural systems under consideration to determine 
the forces at critical sections and the deflections at any point that influence 
the serviceability of the structure.

The true weight of the members cannot be calculated until the structure 
is sized exactly, and certain architectural details will be influenced, in turn, 
by the structure. For example, the size and weight of mechanical equipment 
cannot be determined until the volume of the building is es tablished, which 
in turn depends on the structural system. The designer, however, knows from 
past experience with similar structures how to estimate values for load that 
are fairly close approximations of final values.
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6  Chapter 1 ■ Introduction

Redesign of the Structures

Using the results of the analysis of preliminary designs, the designer recom-
putes the proportions of the main elements of all structures. Al though each 
analysis is based on estimated values of load, the forces established at this 
stage are probably indicative of what a particular structure must carry, so that 
proportions are unlikely to change significantly even after the details of the 
final design are established.

Evaluation of Preliminary Designs

The various preliminary designs are next compared with regard to cost, avail-
ability of materials, appearance, maintenance, time for construction, and 
other pertinent considerations. The structure best satisfying the client’s es-
tablished criteria is selected for further refinement in the final design phase.

Final Design and Analysis Phases

In the final phase, the engineer makes any minor adjustments to the selected 
structure that will improve its economy or appearance. Now the designer 
carefully estimates dead loads and considers specific positions of the live load 
that will maximize stresses at specific sections. As part of the final analysis, 
the strength and stiffness of the structure are evaluated for all significant loads 
and combinations of load, dead and live, including wind, snow, earthquake, 
temperature change, and settlements. If the results of the final design confirm 
that the proportions of the structure are adequate to carry the design forces, 
the design is complete. On the other hand, if the final design reveals certain 
deficiencies (e.g., certain members are overstressed, the structure is unable to 
resist lateral wind loads efficiently, members are excessively flexible, or costs 
are over budget), the designer will either have to modify the configuration of 
the structure or consider an alternate structural system.

Steel, reinforced concrete, wood, and metals, such as aluminum, are all 
analyzed in the same manner. The different properties of materials are taken 
into account during the design process. When members are sized, designers re-
fer to design codes, which take into account each material’s special properties.

This text is concerned primarily with the analysis of structures as detailed 
above. Design is covered in separate courses in most engineering programs; 
however, since the two topics are so closely interrelated, we will necessarily 
touch upon some design issues.

Strength and Serviceability
1.3

The designer must proportion structures so that they will neither fail nor 
deform excessively under any possible loading conditions. Members are al-
ways designed with a capacity for load significantly greater than that required 
to support anticipated service loads (the real loads or the loads specified 
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1.4 ■ Historical Development of Structural Systems  7

by design code). This additional capacity also provides a factor of safety 
against accidental overload. 

Although structures must be designed with an adequate factor of safety to 
reduce the probability of failure to an acceptable level, the engineer must also 
ensure that the structure has sufficient stiffness to function usefully under all 
loading conditions. For example, floor beams under service loads must not sag 
excessively or vibrate under live load. Excessively large deflections of beams 
may produce cracking of masonry walls and plaster ceilings, or may damage 
equipment that becomes misaligned. High-rise buildings must not sway ex-
cessively under wind loads (or the building may cause motion sickness in the 
inhabitants of upper floors). Excessive movements of a building not only are 
disturbing to the occupants, who become concerned about the safety of the 
structure, but also may lead to cracking of exterior curtain walls and windows. 
Photo 1.1 shows an office building whose facade was constructed of large floor-
to-ceiling glass panels. Shortly after the high-rise building was completed, 
larger than anticipated wind loads caused many glass panels to crack and fall 
out. The falling glass constituted an obvious danger to pedestrians in the street 
below. After a thorough investigation and further testing, all the original glass 
panels were removed. To correct the design deficiencies, the structure of the 
building was stiffened, and the facade was reconstructed with thicker, tempered 
glass panels. The dark areas in Photo 1.1 show the temporary plywood panels 
used to enclose the building during the period in which the original glass pan-
els were removed and replaced by the more durable, tempered glass. Similarly, 
for seismic design of multistory buildings the designer also needs to ensure 
that the relative lateral deflection between two adjacent floors is not excessive.

Photo 1.1: Wind damage. Shortly after 
thermopane windows were installed in this 
high-rise office building, they began failing 
and falling out, scattering broken glass on 
passers-by beneath.

Before the building could be occupied, the 
structural frame had to be stiffened and all 
the original glass panels had to be replaced 
by thicker, tempered glass—costly proce-
dures that delayed the opening of the building 
for several years. 

Historical Development  
of Structural Systems

1.4

To give you some historical perspective on structural engineering, we will 
briefly trace the evolution of structural systems from those trial-and-error 
designs used by the ancient Egyptians and Greeks to the highly sophis ticated 
configurations used today. The evolution of structural forms is closely related 
to the materials available, the state of construction technology, the designer’s 
knowledge of structural behavior (and much later, analysis), and the skill of 
the construction worker.

For their great engineering feats, the early Egyptian builders used stone 
quarried from sites along the Nile to construct temples and pyramids. Since 
the tensile strength of stone, a brittle material, is low and highly variable (be-
cause of a multitude of internal cracks and voids), beam spans in temples had 
to be short (Figure 1.1) to prevent bending failures. Since this post-and-lintel 
system—massive stone beams balanced on relatively thick stone columns—
has only a limited capacity for horizontal or eccentric vertical loads, build-
ings had to be relatively low. For stability, columns had to be thick—a slender 
column will topple more easily than a stocky column.

Figure 1.1: Early post-and-lintel construction 
as seen in an Egyptian temple.

© Kenneth Leet
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8  Chapter 1 ■ Introduction

The Greeks, greatly interested in refining the aesthetic appearance of 
the stone column, used the same type of post-and-lintel construction in the 
Parthenon (about 400 b.c.), a temple considered one of the most elegant exam-
ples of stone construction of all time (Figure 1.2). Even up to the early twentieth 
century, long after post-and-lintel construction was superseded by steel and re-
inforced concrete frames, architects continued to impose the facade of the clas-
sic Greek temple on the entrance of public buildings. The classic tradition of 
the ancient Greeks was influential for centuries after their civilization declined.

Gifted as builders, Roman engineers made extensive use of the arch, 
often employing it in multiple tiers in coliseums, aqueducts, and bridges 
(Photo 1.2). The curved shape of the arch allows a departure from rectangu-
lar lines and permits much longer clear spans than are possible with masonry 
post-and-lintel construction. The stability of the masonry arch requires that 
(1) its entire cross section be stressed in compression under all loading con-
ditions, and (2) abutments or end walls have suf ficient strength to resist the 
large diagonal thrust at the base of the arch. The Romans, largely by trial and 
error, also developed a method of enclosing an interior space by a masonry 
dome, as seen in the Pantheon still standing in Rome.

During the Gothic period of great cathedral buildings (Chartres and 
Notre Dame in France, for example), the arch was refined by trimming away 
excess material, and its shape became far more elongated. The vaulted roof, 
a three-dimensional form of the arch, also appeared in the construction of 
cathedral roofs. Arch-like masonry elements, termed flying buttresses, were 
used together with piers (thick masonry columns) or walls to carry the thrust 
of vaulted roofs to the ground (Figure 1.3). Engineering in this period was 

Figure 1.2: Front of Parthenon, where col-
umns were tapered and fluted for decoration.

Photo 1.2: Romans pioneered in the use of arches for bridges, buildings, and aqueducts. 
Pont-du-Gard. Roman aqueduct built in 19 b.c. to carry water across the Gardon Valley to 
Nimes. Spans of the first- and second-level arches are 53 to 80 ft. (Near Remoulins, France.)
© Apply Pictures/Alamy
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highly empirical based on what master masons learned and passed on to their 
apprentices; these skills were passed down through the generations.

Although magnificent cathedrals and palaces were constructed for many 
centuries in Europe by master builders, no significant change occurred in 
construction technology until cast iron was produced in commercial quanti-
ties in the mid-eighteenth century. The introduction of cast iron made it pos-
sible for engineers to design buildings with shallow but strong beams, and 
columns with compact cross sections, permitting the design of lighter struc-
tures with longer open spans and larger window areas. The massive bearing 
walls required for masonry construction were no longer needed. Later, steels 
with high tensile and compressive strengths permitted the construction of 
taller structures and eventually led to the skyscraper of today.

In the late nineteenth century, the French engineer Eiffel constructed 
many long-span steel bridges in addition to his innovative Eiffel Tower, the 
internationally known landmark in Paris (Photo 1.3). With the devel opment 
of high-strength steel cables, engineers were able to construct long-span sus-
pension bridges. The Verrazano Bridge at the entrance of New York harbor—
one of the longest bridges in the world—spans 4260 ft between towers.

The addition of steel reinforcement to concrete enabled engineers to 
convert unreinforced concrete (a brittle, stonelike material) into tough, duc-
tile structural members. Reinforced concrete, which takes the shape of the 
temporary forms into which it is poured, allows a large variety of forms to 
be constructed. Since reinforced concrete structures are monolithic, meaning 
they act as one continuous unit, they are highly indeterminate.

Reinforced concrete is also used to precast individual structural com-
ponents like beams, slabs, and wall panels. Both precast and monolithic 

roof truss

flying buttress

stone vault

clerestory

massive
stone
column

aislenaveaisle

masonry
pier

Figure 1.3: Simplified cross section showing 
the main structural elements of Gothic con-
struction. Exterior masonry arches, called 
flying buttresses, were used to stabilize the 
arched stone vault over the nave. The out-
ward thrust of the arched vault is transmitted 
through the flying buttresses to deep ma-
sonry piers on the exterior of the building. 
 Typically the piers broaden toward the base 
of the building. For the structure to be stable, 
the masonry must be stressed in compression 
throughout. Arrows show the flow of forces.
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Photo 1.3: The Eiffel Tower, constructed of 
wrought iron in 1889, dominates the sky-
line of Paris in this early photograph. The 
tower, the forerunner of the modern steel 
frame building, rises to a height of 984 ft 
(300 m) from a 330-ft (100.6-m) square 
base. The broad base and the tapering shaft 
provide an efficient structural form to resist 
the large overturning forces of the wind. At 
the top of the tower where the wind forces 
are the greatest, the width of the building is 
smallest.
© Aaron Roeth Photography
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reinforced concrete systems are, nowadays, commonly prestressed. This con-
struction method is used to overcome concrete’s lack of tensile strength by 
including high-strength steel cables, or tendons, inside the structural mem-
bers (Figure 1.4). After the concrete is cured, the tendons are tensioned and 
each end is fixed to the outside, creating a compressive stress on the concrete. 
This initial compressive stress is strategically located along the cross sec-
tion and along the beam by the placement of the tendons. In Figure 1.4b the 
tendon is located on the bottom of the cross section to counteract the tensile 
bending stress caused by the uniform gravity loading (shown in Figure 1.4c). 
Afterward, the beam deflection is greatly reduced (Figure 1.4c). Prestressing 
allows engineers to design very thin slabs and long-span beams for building 
and bridge applications.

Until improved methods of indeterminate analysis enabled designers 
to predict the internal forces in reinforced concrete construction, design re-
mained semi-empirical; that is, simplified computations were based on ob-
served behavior and testing as well as on the principles of mechanics. With 
the introduction in the early 1930s of moment distribution by Hardy Cross, 
engineers acquired a relatively simple technique to analyze continuous struc-
tures. As designers became familiar with moment distribution, they were 
able to analyze indeterminate frames, and the use of reinforced concrete as a 
building material increased rapidly.

The introduction of welding in the late nineteenth century facilitated the 
joining of steel members—welding eliminated heavy plates and angles re-
quired by earlier riveting methods—and simplified the construction of rigid-
jointed steel frames.

In recent years, the computer and research in materials science have pro-
duced major changes in the engineer’s ability to construct special-purpose 
structures, such as space vehicles. The introduction of the computer and the 
subsequent development of the direct stiffness method for beams, plates, and 
shell elements permitted designers to analyze many complex structures rap-
idly and accurately. Structures that even in the 1950s took teams of engineers 
months to analyze can now be analyzed more accurately in minutes by one 
designer using a computer.

Basic Structural Elements
1.5

All structural systems are composed of a number of basic structural ele-
ments—beams, columns, hangers, trusses, and so forth. In this section we 
describe the main characteristics of these basic elements so that you will 
understand how to use them most effectively.

Hangers, Suspension Cables— 
Axially Loaded Members in Tension

Since all cross sections of axially loaded members are uniformly stressed, the 
material is used at optimum efficiency. The capacity of tension  members is 
a direct function of the tensile strength of the material. When members are 

reinforcing bars

prestressing tendon
under tension

tendon reaction
plate

uniformly distributed
gravity load

camber

(c)

(b)

(a)

Figure 1.4: (a) Reinforced concrete beams 
utilize steel reinforcing bars to carry tensile 
bending stress, but small cracks will still oc-
cur; (b) a prestress concrete beam is provided 
with an axial compressive load using a ten-
sioned steel cable, or tendon, before gravity 
loads are applied. Depending on the location 
of the tendon along the cross section, a cam-
ber, or initial upward beam deflection, may be 
introduced; (c) upon loading, the prestressed 
beam still undergoes tensile bending stress, but 
the prestressing compressive load counteracts 
it. Meanwhile, the beam experiences a reduced 
net downward deflection due to the cambering.
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constructed of high-strength materials, such as alloyed steels, even members 
with small cross sections have the capacity to support large loads (Figure 1.5).

As a negative feature, members with small cross sections are very flexible 
and tend to vibrate easily under moving loads. To reduce this tendency to vi-
brate, most building codes specify that certain types of tension members have 
a minimum amount of flexural stiffness by placing an upper limit on their 
slenderness ratio l∕r, where l is the length of member and r is the radius of 
gyration. By definition r =   √ 

___
 I∕A   , where I equals the moment of inertia and 

A equals the area of the cross section. 

Columns—Axially Loaded Members in Compression

Columns also carry load in direct stress very efficiently. The capacity of a 
compression member is a function of its slenderness ratio l∕r. If l∕r is large, 
the member is slender and will fail by buckling at a low stress level—often 
with little warning. If l∕r is small, the member is stocky and its capacity for 
axial load is high. The capacity of an axially loaded column also depends on 
the restraint at its ends. For example, a slender cantilever column—fixed at 
one end and free at the other—will support a load that is one-fourth as large 
as that of an identical column with two pinned ends (Figure 1.6b, c).

In fact, columns supporting pure axial load occur only in idealized situ-
ations. In actual practice, the initial slight crookedness of columns or an ec-
centricity of the applied load creates bending moments that must be taken 
into account by the designer. Also in reinforced concrete or welded build-
ing frames where beams and columns are connected by rigid joints, columns 
carry both axial load and bending moment. These members are called beam-
columns (Figure 1.6d ).

Beams—Members Carrying Bending Moment and Shear

Beams are flexural members that are loaded perpendicular to their longitu-
dinal axis (Figure 1.7a). As the transverse load is applied, a beam bends and 
deflects into a shallow curve. At a typical section of a beam, internal forces of 
shear V and moment M develop (Figure 1.7b). Except in short, heavily loaded 
beams, the shear stresses τ produced by V are relatively small, but the longi-
tudinal bending stresses produced by M are large. If the beam behaves elasti-
cally, the bending stresses on a cross section (compression on the top and 
tension on the bottom) vary linearly from a horizontal axis passing through 
the centroid of the cross section. The bending stresses are directly propor-
tional to the moment, and vary in magnitude along the axis of the beam.

Shallow beams are relatively inefficient in carrying load because the arm 
between the forces C and T that make up the internal couple is small. To in-
crease the length of the arm, material is often removed from the center of the 
cross section and concentrated at the top and bottom surfaces, producing an 
I-shaped section (Figure 1.7c and d).

Planar Trusses—All Members Axially Loaded

A truss is a structural system composed of slender bars whose ends are as-
sumed to be connected by frictionless pin joints. If pin-jointed trusses are 

hangers

TT

W

Figure 1.5: Chemical storage tank supported 
by tension hangers carrying force T.

Figure 1.6: (a) Axially loaded column;  
(b) cantilever column with buckling load Pc;  
(c) pin-supported column with buckling load 
4Pc; (d ) beam-column.

F

F

(a) (b) (c) (d)

Pc
P

M

4Pc
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12  Chapter 1 ■ Introduction

loaded at the joints only, direct or axial stress develops in all bars. Thus the 
ma terial is used at optimum efficiency. Typically, truss bars are assembled in a 
triangular pattern—the simplest stable geometric configuration (Figure 1.8a). 
In the nineteenth century, trusses were often named after the designers who 
established a particular configuration of bars (Figure 1.8b).

Figure 1.7: (a) Beam deflects into a shal-
low curve; (b) internal forces (shear V and 
moment M); (c) I-shaped steel section;  
(d ) glue-laminated wood I-beam.
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Figure 1.8: (a) Assembly of triangular ele-
ments to form a truss; (b) two common types 
of trusses named after the original designer.
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The behavior of a truss is similar to that of a beam in which the solid 
beam web (which transmits the shear) is replaced by a series of vertical and 
diagonal bars. By eliminating the solid web, the designer can reduce the 
deadweight of the structure significantly. Since trusses are much lighter than 
beams of the same capacity, trusses are easier to erect. Although most truss 
joints are formed by welding or bolting the ends of the bars to a connection 
(or gusset) plate (Figure 1.9a), an analysis of the truss based on the assump-
tion of pinned joints produces an acceptable result.

Although trusses are very stiff in their own plane, they are very flex-
ible when loaded perpendicular to their plane. For this reason, the compres-
sion chords of trusses must be stabilized by cross-bracing (Figure 1.9b). 

Figure 1.9: (a) Bolted joint detail; (b) truss 
bridge showing cross-bracing needed to sta-
bilize the two main trusses.

(a)

(b)
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For example, in buildings, the roof or floor systems attached to the joints of the 
upper chord serve as lateral supports to prevent lateral buckling of this member.

Arches—Curved Members Stressed Mainly  
in Direct Compression

Arches typically are stressed in compression under their dead load. Because of 
their efficient use of material, arches have been constructed with spans of more 
than 2000 ft. To be in pure compression, an efficient state of stress, the arch 
must be shaped so that the resultant of the internal forces on each section passes 
through the centroid. For a given span and rise, only one shape of arch exists 
in which direct stress will occur for a particular load pattern. For other loading 
conditions, bending moments develop that can produce large deflections in 
slender arches. The selection of the appropriate arch shape by the early build-
ers in the Roman and Gothic periods represented a rather sophisticated under-
standing of structural behavior. (Since historical records report many failures 
of masonry arches, obviously not all builders understood arch action.)

Because the base of the arch intersects the end supports (called abutments) 
at an acute angle, the internal force at that point exerts a horizontal as well 
as a vertical thrust on the abutments. When spans are large, loads are heavy, 
and the slope of the arch is shallow, the horizontal component of the thrust is 
large. Unless natural rocks exist to resist the horizontal thrust (Figure 1.10a), 
either massive abutments must be constructed (Figure 1.10b), or the ends 
of the arch must be tied together by a tension member (Figure 1.10c), or the 
abutment must be supported on piles (Figure 1.10d).

Cables—Flexible Members Stressed in Tension 

Cables are very flexible members composed of a group of high-strength steel 
wires twisted together mechanically. By drawing alloyed steel bars through 
dies—a process that aligns the molecules of  the metal—manufacturers are 
able to produce wire with a tensile strength reaching as high as 270,000 psi. 
Since cables have no bending stiffness, they can only carry direct tensile 
stress (they would obviously buckle under the smallest compressive force). 
Because of their high tensile strength and efficient manner of transmitting 
load (by direct stress), cable structures have the strength to support the large 
loads of long-span structures more economically than most other structural 
elements. For example, when distances to be spanned exceed 2000 ft, design-
ers usually select suspension or cable-stayed bridges (Photo 1.4). Cables can 
be used in the construction of roofs as well as guyed towers.

Under its own deadweight (a uniform load acting along the arc of the cable), 
the cable takes the shape of a catenary (Figure 1.11a). If the cable carries a load 
distributed uniformly over the horizontal projection of its span, it will assume the 
shape of a parabola (Figure 1.11b). When the sag (the vertical distance between 
the cable chord and the cable at midspan) is small (Figure 1.11a), the cable shape 
produced by its dead load may be closely approximated by a parabola.

Because of a lack of bending stiffness, cables undergo large changes in 
shape when concentrated loads are applied. The lack of bending stiffness 

abutment abutment
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roadway

(b)

(a)

rock rock
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H H
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(d )
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Figure 1.10: (a) Fixed-end arch carries road-
way over a canyon where rock walls provide 
a natural support for arch thrust T; (b) large 
abutments provided to resist arch thrust;  
(c) tension tie added at  base to carry hori-
zontal thrust, foundations designed only for 
vertical reaction R; (d ) foundation placed on 
piles, batter piles used to transfer horizontal 
component of thrust into ground.
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Figure 1.11: (a) Cable in the shape of a cat-
enary under dead load; (b) parabolic cable 
produced by a uniform load; (c) free-body 
diagram of a section of cable carrying a uni-
form vertical load; equilibrium in horizontal 
direction shows that the horizontal compo-
nent of cable tension H is constant.

Photo 1.4: (a) Golden Gate Bridge (San 
Francisco Bay Area). Opened in 1937, the 
main span of 4200 ft was the longest single 
span at that time and retained this distinction 
for 29 years. Principal designer was Joseph 
Strauss who had previously collaborated 
with Ammann on the George Washington 
Bridge in New York City; (b) Rhine River 
Bridge at Flehe, near Dusseldorf, Germany. 
Single-tower design. The single line of ca-
bles is connected to the center of the deck, 
and there are three traffic lanes on each side. 
This arrangement depends on the torsional 
stiffness of the deck structure for overall 
stability.

(b)

(a)

(a) © Thinkstock/Getty Images; (b) Courtesy of the 
Godden Collection, NISEE, University of California, 
Berkeley
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16  Chapter 1 ■ Introduction

also makes it very easy for small disturbing forces (e.g., wind) to induce 
oscillations (flutter) into cable-supported roofs and bridges. To utilize ca-
bles effectively as structural members, engineers have devised a variety of 
techniques to minimize deformations and vibrations produced by live loads. 
Techniques to stiffen cables include (1) pretensioning, (2)  using tie-down 
cables, and (3) adding extra dead load (Figure 1.12).

As part of the cable system, supports must be designed to resist the cable 
end reactions. Where solid rock is available, cables can be anchored economi-
cally by grouting the anchorage into rock (Figure 1.13). If rock is not avail-
able, heavy foundations must be constructed to anchor the cables. In the case 
of suspension bridges, large towers are required to support the cable, much as 
a clothes pole props up a clothesline.

Rigid Frames—Members Stressed by Moment  
and Axial Load

Rigid frames are also commonly called moment frames in structural de-
sign. Examples of rigid frames (structures with rigid joints) are shown in 
Figure 1.14a and b. Members of a rigid frame, which typically carry moment 
and axial load, are called beam-columns. For a joint to be rigid, the angle be-
tween the members framing into a joint needs to remain essentially unchanged 
when the members are loaded. Rigid joints in reinforced concrete structures are 

tensioned
cables

pylons

concrete
blocks

foundation

tower

tie-down
cables

T
T

T
T

clamps

(a) (b)

(c)

T

T T 

T

cable

supported
roof

Figure 1.12: Techniques to stiffen cables: 
(a) guyed tower with pretensioned cables 
stressed to approximately 50 percent of 
their ultimate tensile strength; (b) three- 
dimensional net of cables; tie-down cables 
stabilize the upward-sloping cables; (c) cable 
roof paved with concrete blocks to hold 
down cable to eliminate vibrations. Cables 
are supported by massive pylons (columns) 
at each end.

Figure 1.13: Detail of a cable anchorage into 
rock.

T 

clamp

eye-bar

cable

grout

rock
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1.5 ■ Basic Structural Elements  17

simple to construct because of the monolithic nature of poured concrete. How-
ever, rigid joints fabricated from steel beams with wide flanges (Figure 1.7c) 
often require stiffening plates to transfer the large forces in the flanges between 
members framing into the joint (Figure 1.14c). Although joints can be formed by 
bolting, welding greatly simplifies the fabrication of rigid joints in steel frames.

Plates or Slabs—Load Carried by Bending

Plates are planar elements whose depth (or thickness) is small compared to 
their length and width. They are typically used as floors in buildings and 
bridges or as walls for storage tanks. The behavior of a plate depends on 
the position of supports along the boundaries. If rectangular plates are sup-
ported on two opposite edges, they bend in single curvature (Figure 1.15a). 
If supports are continuous around the boundaries, double curvature bending 
occurs and the deflection is less.

Since slabs are flexible owing to their small depth, the distance they 
can span without sagging excessively is relatively small. (For example, 
typical reinforced concrete slabs can span approximately 12 to 16 ft.) If 
spans are large, slabs are typically supported on beams or stiffened by add-
ing ribs (Figure 1.15b). Alternatively, concrete slabs can be prestressed.

If the connection between a slab and the supporting beam is properly de-
signed, the two elements act together (a condition called composite action) to 
form a T-beam (Figure 1.15c). When the slab acts as the flange of a rectangu-
lar beam, the stiffness of the beam will increase by a factor of approximately 2.

By corrugating plates, the designer can create a series of deep beams 
(called folded plates) that can span long distances. At Logan Airport in 

(a)

stiffeners

(c)

(b)

(d )

Figure 1.14: Rigid-jointed structures: (a) one-
story rigid frame; (b) Vierendeel truss, loads 
transmitted both by direct stress and bending; 
(c) details of a welded joint at the corner of 
a steel rigid frame; (d ) reinforcing detail for 
corner of concrete frame in (b).
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18  Chapter 1 ■ Introduction

Boston, a prestressed concrete folded plate of the type shown in Figure 1.15d 
spans 270 ft to act as the roof of a hanger.

Thin Shells (Curved Surface Elements)— 
Stresses Acting Primarily in Plane of Element

Thin shells are three-dimensional curved surfaces. Although their thickness is 
often small (several inches is common in the case of a reinforced concrete shell), 
they can span large distances because of the inherent strength and stiffness of 
the curved shape. Spherical domes, which are commonly used to cover sports 
arenas and storage tanks, are one of the most common types of shells built.

Under uniformly distributed loads, shells develop in-plane stresses (called 
membrane stresses) that efficiently support the external load (Figure 1.16). In 
addition to the membrane stresses, which are typically small in magnitude, 
shear stresses perpendicular to the plane of the shell, bending moments, and 
torsional moments also develop. If the shell has boundaries that can equili-
brate the membrane stresses at all points (Figure 1.17a and b), the majority of 
the load will be carried by the membrane stresses. But if the shell boundaries 
cannot provide reactions for the membrane stresses (Figure 1.17 c and d), the 
region of the shell near the boundaries will deform. Since these deformations 
create shear normal to the surface of the shell as well as moments, the shell 
must be thickened or an edge member supplied. Rings can also be used to pro-
vide reactions for the membrane stresses (Figure 1.17e). Figure 1.17f shows 
a cylindrical shell with edge beams to carry the member stresses. In most 
shells, boundary shear and moments drop rapidly with distance from the edge.

(a)

(c)

flange
shear

connector

stem

(b)

(d)

slab

slab
beam

(typical)

steel beam

single
curvature bending

double
curvature bending

Figure 1.15: (a) Influence of boundaries on curvature; (b) beam and slab system; (c) slab 
and beams act as a unit: on left, concrete slab cast with stem to form a T-beam; right, shear 
connector joins concrete slab to steel beam, producing a composite beam; (d ) a folded 
plate roof.

Ty

Ty

Tx

Tx

W
VV

V
V

Figure 1.16: Membrane stresses acting on a 
small shell element.
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1.6 ■ Assembling Basic Elements to Form a Stable Structural System  19

The ability of thin shells to span large unobstructed areas has always ex-
cited great interest among engineers and architects. However, the great ex-
pense of forming the shell, the acoustical problems, the difficulty of producing 
a watertight roof, and problems of buckling at low stresses have restricted their 
use. In addition, thin shells are not able to carry heavy concentrated loads with-
out the addition of ribs or other types of stiffeners.

Figure 1.17: Commonly constructed types of shells: (a) spherical dome supported contin-
uously. Boundary condition for membrane action is provided; (b) modified dome with 
closely spaced supports. Due to openings, the membrane con dition is disturbed some-
what at the boundaries. Shell must be thickened or edge beams supplied at openings;  
(c) hyperbolic paraboloid. Straight-line generators form this shell. Edge members are 
needed to supply the reaction for the membrane stresses; (d ) dome with widely spaced 
supports. Membrane forces cannot develop at the boundaries. Edge beams and thickening 
of shell are required around the perimeter; (e) dome with a compression ring at the top and 
a tension ring at the bottom. These rings provide reactions for membrane stresses. Columns 
must carry only vertical load; ( f ) cylindrical shell.

(a) (b) (c)

edge
beams

section A-A

A
A

snap-through buckling:
this mode of failure is prevented by adding
stiffening ribs or thickening shell

(e)(d) ( f )

compression
ring tension

ring

edge
beam

One-Story Building

To illustrate how the designer combines the basic structural elements (de-
scribed in Section 1.5) into a stable structural system, we will discuss in 

Assembling Basic Elements to Form  
a Stable Structural System

1.6
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20  Chapter 1 ■ Introduction

detail the behavior of a simple structure, considering the one-story, boxlike 
structure in Figure 1.18a. This building, representing a small storage facility, 
consists of structural steel frames covered with light-gage corregated metal 
panels. Although the exterior masonry or windows and wall panels of the 
building, connected to the structural frame, increase the stiffness of the struc-
ture, this interaction is typically neglected.

In Figure 1.18b, we show one of the steel frames located just inside the 
end wall (labeled ABCD in Figure 1.18a) of the building. Here the metal 
roof deck is supported on beam CD that spans between two round hollow 
structural section or pipe columns located at the corners of the building. As 
shown in Figure 1.18c, the ends of the beam are connected to the tops of the 
columns by bolts that pass through the bottom flange of the beam and a cap 
plate welded to the top of the column. Since this type of connection cannot 
transmit moment effectively between the end of the beam and the top of the 
column, the designer assumes that this type of a connection acts as a hinge.

Because these bolted joints are not rigid, additional light members (of-
ten round bars or steel angle members) are run diagonally between adjacent 

(a) (c)(b)

(d) (e) ( f )

buckles

tension

V V

P

P
–P

–V

PA

0
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V
F = 0

w

A

D C

D C

B

2
wL

2
wL

2
wL

2
wL

L

L

w

Position of braced frames in building
(Fig.1.17b), shown by dashed lines.
All other structural members omitted.

A B

CD

A B

CD

roofing
insulation

roof deck

beam

cap
plate

pipe
column

end view

detail A

front view

roof deck
see detail A

beam

column
base
plate

anchor
bolt

diagonal
bracing

C

BA

D

Figure 1.18: (a) Three-dimensional view of 
building (arrow indicates direction in which 
roof deck spans); (b) details of cross-braced 
frame with bolted joints; (c) details of beam-
to-column connections; (d) idealized model 
of structural system transmitting gravity 
loads from roof; (e) model of beam CD;  
(f) idealized model of truss system for 
transmitting lateral load acting to the 
right. Diagonal member DB buckles and is 
ineffective.
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columns in the plane of the frame, serving to stabilize the structure further. 
Without this diagonal bracing (Figure 1.18b), the resistance of the frame to 
lateral loads would be small, and the structure would lack lateral stiffness. 
Designers insert similar cross-bracing in the other three walls—and some-
times in the plane of the roof.

The frame is connected to the foundation by bolts that pass through a 
light steel baseplate, welded to the bottom of the column. The bottom ends of 
the bolts, called anchor bolts, are embedded in concrete piers located directly 
under the column. Typically, designers assume that a simple bolted connec-
tion of this type acts as a pin support; that is, the connection prevents the base 
of the column from displacing vertically and horizontally, but it does not have 
sufficient stiffness to prevent rotation. (Students often wrongly assume that 
a flat baseplate bolted to a concrete pier produces a fixed-end condition, but 
they are not taking into account the large loss of rotational restraint induced 
by even small flexural deformations of the plate.)

Although the bolted connection does have the capacity to provided a small 
but uncertain amount of rotational restraint to the base of the column, the de-
signer usually treats it conservatively as a frictionless pin. However, it is usually 
unnecessary to achieve a fixed support at the column base to increase stiffness; 
doing so is expensive to construct as it requires the use of a heavy and stiffened 
baseplate and the foundation must be massive. The required lateral stiffness of 
the building can be provided by properly sizing the diagonal members.

Design of Frame for Gravity Load. To analyze this small frame for gravity 
load, the designer assumes the weight of the roof and any vertical live load 
(e.g., snow or ice) are carried by the roof deck (acting as a series of small 
parallel beams) to the frame shown in Figure 1.18d. This frame is idealized 
by the designer as a beam connected by a pinned joint to the columns. The de-
signer neglects the diagonal bracing—assumed to be inactive when vertical 
load acts. Since no moments are assumed to develop at the ends of the beam, 
the designer analyzes the beam as a simply supported member with a uniform 
load (Figure 1.18e). Because the reactions of the beam are applied directly 
over the centerlines of the columns, the designer assumes that the column car-
ries only direct stress and behaves as an axially loaded compression member.

Design for Lateral Load. The designer next checks for lateral loads. If a 
lateral load P (produced by wind or earthquake, for example) is applied to 
the top of the roof (Figure 1.18f ), the designer can assume that one of the 
diagonals acting together with the roof beam and columns forms a truss. If 
the diagonals are light flexible members, only the diagonal running from A 
to C, which stretches and develops tensile stresses as the frame displaces to 
the right, is assumed to be effective. The opposite diagonal BD is assumed to 
buckle because it is slender and placed in compression by the lateral move-
ment of the frame. If the wind reverses direction, the other diagonal BD 
would become effective, and diagonal AC would buckle. Such frame is called 
tension-only braced frame. If more stocky diagonal members are used, then 
one diagonal member will be designed as a tension member and the other 
member will be designed as a compression member that considers buckling.

1.6 ■ Assembling Basic Elements to Form a Stable Structural System  21

lee98004_ch01_001-025.indd   21 23/12/16   3:14 pm



22  Chapter 1 ■ Introduction

Load Path. As we have illustrated in this simple problem, under certain 
types of loads, certain members come into play to transmit the loads into the 
supports. As long as the designer understands how to select a logical path for 
these loads, the analysis can be greatly simplified by eliminating members 
that are not effective. In selecting and laying out a structural system, there-
fore, it is essential that the designer clearly identifies the load paths to make 
sure that not only gravity loads but also lateral loads can be properly transmit-
ted from the superstructure to the foundation.

Analyzing by Computer
1.7

Until the late 1950s, the analysis of certain types of indeterminate structures 
was a long, tedious procedure. The analysis of a structure with many joints 
and members (a space truss, for example) might require many months of 
computations by a team of experienced structural engineers. Moreover, since 
a number of simplifying assumptions about structural behavior were often 
required, the accuracy of the final results was uncertain. Today computer 
programs are available that can analyze most structures rapidly and accu-
rately. Some exceptions still exist. If the structure is an unusual shape and 
complex—a thick-walled nuclear containment vessel or the hull of a subma-
rine—the computer analysis can still be complicated and time-consuming.

Most computer programs for analyzing structures are written to produce 
a first-order analysis; that is, they assume (1) linear-elastic behavior, (2) that 
member forces are unaffected by the deformations (change in geometry) of 
the structure, and (3) that no reduction in flexural stiffness is produced in 
columns by compression forces.

The classical methods of analysis covered in this book produce a first-
order analysis, suitable for the majority of structures, such as trusses, con-
tinuous beams, and frames, encountered in engineering practice. When a 
first-order analysis is used, structural design codes provide simplified proce-
dures needed to adjust required member forces that may be underestimated.

While more complicated to use, second-order programs that do account 
for inelastic behavior, changes in geometry, and other effects influencing the 
magnitude of forces in members are more precise and produce a more ac-
curate analysis. For example, long slender arches under moving loads can 
undergo changes in geometry that increase bending moments signi ficantly. 
For structures of this type, a second-order analysis is essential.

Although computer structural analysis is routinely used in design office 
nowadays, the computer output and the resulting building design are as good 
as the assumptions made in the computer model and the accuracy of the in-
put data. A structure with an ill-defined load path is not likely to perform 
well, especially under overloads. This is also true when the structure lacks 
redundancy. In 1977, the failure of the large three-dimensional space truss 
(Chapters 15 and 16 opening photos) supporting the 300-ft by 360-ft roof 
of the Hartford Civic Center Arena is an example of a structural design in 
which the designers relied on an incomplete computer analysis and failed to 
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1.8 ■ Preparation of Computations  23

produce a safe structure. Among the factors contributing to this disaster were 
inaccurate data (the designer underestimated the deadweight of the roof by 
1.5 million lb) and the inability of the computer program to predict the buck-
ling load of the compression members in the truss. In other words, the pre-
sumption existed in the program that the structure was stable—an assumption 
in the majority of early computer programs used for analyzing structures. 
Shortly after a winter storm deposited a heavy load of rain-soaked snow and 
ice on the roof, the buckling of certain slender compression members in the 
roof truss precipitated a sudden collapse of the entire roof. Fortunately, the 
failure occurred several hours after a crowd of 5000 sports fans attending 
a basketball game had left the building. Had the failure taken place several 
hours sooner (when the building was occupied), hundreds of people would 
have been killed. Although no loss of life occurred, the facility was unusable 
for a considerable period, and large sums of money were required to clear the 
wreckage, to redesign the building, and to reconstruct the arena.

As the powers of computers and structural analysis software have in-
creased tremendously over the past few decades, designers nowadays have the 
luxury to design very complicated structures that were not possible before. 
With the help of these “black box” tools, however, designers are also faced 
with an ever greater challenge and responsibility to properly prepare their 
models, interpret, and, more importantly, judge the accuracy of the computer 
analysis results and use them to anticipate all potential failure modes. An 
essential part of establishing such knowledge and “engineering intuition” is 
to study classical methods of structural analysis, which are the main focus of 
this textbook.

Preparation of Computations
1.8

Preparation of a set of clear, complete computations for each analysis is an 
important responsibility of the engineer. A well-organized set of computa-
tions not only will reduce the possibility of computational error, but also will 
provide essential information if the strength of an existing structure must be 
investigated at some future time. For example, the owner of a building may 
wish to determine if one or more additional floors can be added to an exist-
ing structure without overstressing the structural frame and foundations. If 
the original computations are complete and the engineer can determine the 
design loads, the design strengths, and the assumptions upon which the origi-
nal analysis and design were based, evaluation of the modified structure’s 
strength is facilitated.

Occasionally, a structure fails (in the worst case, lives are lost) or proves 
unsatisfactory in service (e.g., floors sag or vibrate, walls crack). In these 
situations, the original computations will be examined closely by all parties 
to establish the liability of the designer. A sloppy or incomplete set of com-
putations can damage an engineer’s reputation.

Therefore, in solving the homework problems in this book, students 
should consider each assignment as an opportunity to improve the skills 
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required to produce computations of professional quality. With this objective 
in mind, the following suggestions are offered:

1. State the objective of the analysis in a short sentence.
2. Prepare a clear sketch of the structure, showing all loads and dimensions. 

Use a sharp pencil and a straightedge to draw lines. Figures and numbers 
that are neat and clear have a more professional appearance.

3. Include all steps of your computations. Computations cannot easily be 
checked by another engineer unless all steps are shown. Provide a word 
or two stating what is being done, as needed for clarification.

4. Check the results of your computations by making a static check  
(i.e., writing additional equilibrium equations).

5. If the structure is complex, check the computations by making an 
approximate analysis (Chapter 13).

6. Verify that the direction of the deflections is consistent with the direction 
of the applied forces. If a structure is analyzed by a computer, the 
deformed shape of the structure can be easily obtained.

Summary

 • To begin our study of structural analysis, we reviewed the relationship 
between planning, design, and analysis. In this interrelated process, the 
structural engineer first establishes one or more initial configurations of 
possible structural forms while considering the appropriate load paths, 
estimates deadweights, selects critical design loads, and analyzes the 
structure. Once the structure is analyzed, major members are resized. If 
the results of the design confirm that the initial assumptions were cor-
rect, the design is complete. If there are large differences between the 
initial and final proportions, the design is modified, and the analysis and 
sizing repeated. This process continues until final results confirm that 
the proportions of the structure require no modifications.

 • The characteristics of common structural elements that comprise typi-
cal buildings and bridges are reviewed. These include beams, trusses, 
arches, frames with rigid joints, cables, and shells.

 • Although most structures are three-dimensional, the designer who 
develops an understanding of structural behavior can often divide the 
structure into a series of simpler planar structures for analysis. The de-
signer is able to select a simplified and idealized model that accurately 
represents the essentials of the real structure. 

 • Since most structures are analyzed by computer, structural engineers 
must develop an understanding of structural behavior so they  
can, with a few simple computations, verify that the results of the com-
puter analysis are reasonable. Structural failures not only involve high 
costs, but also may result in injury to the public or loss of life.
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Whole Building as Debris in the Tsunami Following 
the 2011 Tohoku Earthquake in Japan

The 2011 Tohoku Earthquake (magnitude 9.0) and subsequent tsunami caused wide-
spread damage and casualties throughout the north-eastern coast of Japan. Lateral and 
buoyant forces of waves and flood waters, acting together, uplifted this entire building 
including its foundation, and carried it away. Note the footers and the ground on the right 
are intact, indicating the structure did not simply overturn. This and other recent tsunamis 
have highlighted the need for designers to consider combined effects of lateral and verti-
cal loads imparted to structures due to these powerful waves.

© Taichiro Okazaki
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2Design Loads and 
Structural Framing

Building and Design Code
2.1

A code is a set of technical specifications and standards that control major 
details of analysis, design, and construction of buildings, equipment, and 
bridges. The purpose of codes is to produce safe, economical structures so that 
the public will be protected from poor or inadequate design and construction.

Two types of codes exist. One type, called a structural code, is writ-
ten by engineers and other specialists who are concerned with the design of 
a particular class of structure (e.g., buildings, highway bridges, or nuclear 
power plants) or who are interested in the proper use of a specific material 
(steel, reinforced concrete, aluminum, or wood). Typically, structural codes 
specify design loads, allowable stresses for various types of members, design 
assumptions, and requirements for materials. Examples of structural codes 
frequently used by structural engineers include the following:

1. LRFD Bridge Design Specifications by the American Association of 
State Highway and Transportation Officials (AASHTO) cover the design 
and analysis of highway bridges.

C H A P T E R

Chapter Objectives
 ● Learn the importance of codes for the determination of the governing design loads as they relate 

to life safety and serviceability and apply to a building’s structural framing system.

 ● Understand that code prescribed loads generate minimum design forces, which are either applied 
statically or dynamically in the analysis of the building’s structural systems.

 ● Become familiar with dead and live loads, calculate floor material’s self weight, select live loads 
based on a building’s occupancy use, and learn tributary area method for calculating forces on beams, 
girders, or columns.

 ● Understand the effects of natural hazards including wind, earthquakes, and tsunamis on building 
structures and determine the design loads for these hazards.
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2. Manual for Railway Engineering by the American Railway Engineering 
and Maintenance of Way Association (AREMA) covers the design and 
analysis of railroad bridges. 

3. Building Code Requirements for Structural Concrete (ACI 318) by the 
American Concrete Institute (ACI) cover the analysis and design of 
concrete structures. 

4. Specification for Structural Steel Buildings by the American Institute 
of Steel Construction (AISC) covers the analysis and design of steel 
structures.

5. National Design Specification for Wood Construction by the American 
Forest & Paper Association (AFPA) covers the analysis and design of 
wood structures. 

The second type of code, called a building code, is established to cover 
construction in a given region (often a city or a state). A building code con-
tains provisions pertaining to architectural, structural, mechanical, and elec-
trical requirements. The objective of a building code is also to protect the 
public by accounting for the influence of local conditions on construction. 
Those provisions of particular concern to the structural designer cover such 
topics as soil conditions (bearing pressures), live loads, wind pressures, snow 
and ice loads, and earthquake forces. Today many building codes adopt the 
provisions of the ASCE/SEI 7-16 Standard, Minimum Design Loads and 
Associated Criteria for Buildings and Other Structures, published by the 
American Society of Civil Engineers (ASCE) or the more recent Interna-
tional Building Code by the International Code Council.

As new systems evolve, as new materials become available, or as 
repeated failures of accepted systems occur, the contents of codes are 
reviewed and updated. In recent years the large volume of research on struc-
tural behavior and materials has resulted in frequent changes to both types 
of codes.

Most codes make provision for the designer to depart from prescribed 
standards if the designer can show by tests or analytical studies that such 
changes produce a safe design. 

Building codes exist for the 
purpose of protecting public 
health, safety, and welfare in 
the construction and occupancy 
of buildings and structures, and 
do so by sets of rules specify-
ing the minimum loads and 
requirements. Their improve-
ment unfortunately sometimes 
follows lessons from disasters. 
For instance, the 1666 London 
Fire destroyed over 80 percent 
of the city’s homes and gave 
way to the first thorough build-
ing code. In the United States, it 
was not until after the destruc-
tive 1906 San Francisco and 
1933 Long Beach Earth quakes 
that California set in motion The 
Field and Riley Acts which en-
forced the country’s first earth-
quake resistant construction 
practices. Even today, recent di-
sastrous tsunamis in Indonesia 
and Japan have highlighted 
the need for consideration of 
tsunami wave and flooding 
loads. Engineers and scientists, 
however, are continuously 
working to develop building 
codes ahead of potential future 
problems. 

Loads
2.2

Structures must be proportioned so that they will not fail or deform  excessively 
under load. Therefore, an engineer must take great care to anticipate the prob-
able loads a structure must carry. Although the design loads specified by the 
codes are generally satisfactory for most buildings, the designer must also 
decide if these loads apply to the specific structure under con sideration. For 
example, if the shape of a building is unusual (and induces increased wind 
speeds), wind forces may deviate significantly from the minimum prescribed 
by a building code. In such cases, the designer should conduct wind tun-
nel tests on models to establish the appropriate design forces. The designer 
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2.3 ■ Dead Loads and Gravity Framing  29

should also try to foresee if the function of a structure (and consequently the 
loads it must carry) will change in the future. For example, if the possibility 
exists that heavier equipment may be introduced into an area that is originally 
designed for a smaller load, the designer may decide to increase the design 
loads specified by the code. Designers typically differentiate between two 
types of gravity load: live load and dead load. 

Dead Loads and Gravity Framing
2.3

The load associated with the weight of the structure and its permanent com-
ponents (floors, ceilings, ducts, and so forth) is called the dead load. When 
designing a structure, the member dead loads must first be estimated since 
member sizes are initially unknown, yet must still be accounted for in the 
total load carried by the structure. After members are sized and architectural 
details finalized, the dead load can be computed more accurately. If the com-
puted value of dead load is approximately equal to (or slightly less than) the 
 initial estimate of its value, the analysis is finished. But if a large difference 
exists between the estimated and computed values of dead load, the designer 
should revise the computations, using the improved value of deadweight.

In most buildings the space directly under each floor is occupied by a 
variety of utility lines and supports for fixtures including air ducts, water and 
sewage pipes, electrical conduit, and lighting fixtures. Rather than attempt to 
account for the actual weight and position of each item, designers typically 
add an additional 10 to 15 lb/ft2 (0.479 to 0.718 kN/m2) to the weight of the 
floor system to ensure that the strength of the floor, columns, and other struc-
tural members will be adequate. 

Distribution of Dead Load to Framed Floor Systems 

Many floor systems consist of a reinforced concrete slab supported on a rect-
angular grid of beams. The supporting beams reduce the span of the slab 
and permit the designer to reduce the depth and weight of the floor system. 
The distribution of dead loads to a floor beam depends on the geometric 
configuration of the beams forming the grid. To develop an insight into how 
load from a particular region of a slab is transferred to supporting beams, we 
will examine the three cases shown in Figure 2.1. In the first case, the edge 
beams support a square slab loaded with a uniform area load, q, which has 
units of force per area (Figure 2.1a). From symmetry we can infer that each of 
the four beams along the outside edges of the slab carries the same triangular 
line load, with units of force per length. In fact, if a slab with the same area 
of uniformly distributed reinforcement in the x and y directions were loaded 
to failure by a uniform load, large cracks would open along the main diagonals, 
confirming that each beam supports the load on a triangular area. The area of 
slab that is supported by a particular beam is termed as the beam’s tributary 
area. Later in this chapter we will extend the application of the tributary area 
of the beams (and columns) to other gravity loads.
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Figure 2.1: Concept of tributary area: 
(a) square slab, all edge beams support a 
triangular area; (b) two edge beams divide 
load equally; (c) load on a 1-ft width of slab 
in (b); (d ) tributary areas for beams B1 and 
B2 shown shaded, all diagonal lines slope 
at 45°; (e) top figure shows actual load on 
beam B2 and bottom figure shows simpli-
fied load distribution; ( f ) top figure shows 
actual load on beam B1 and bottom figure 
shows simplified load distribution.
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In the second case, we consider a rectangular slab, again loaded with 
a uniform area load q, supported on opposite sides by two parallel beams 
(Figure 2.1b). In this case, if we imagine a 1-ft-wide strip of slab that acts 
as a beam spanning a distance Ls between two edge beams (Figure 2.1b), we 
can see that the load on the slab divides equally between the supporting edge 
beams; that is, each foot of each edge beam, B1, carries a uniformly distrib-
uted line load, w = qLs/2 (Figure 2.1c), and the tributary area for each beam 
is a rectangular area that extends out from the beam a distance Ls/2 to the 
centerline of the slab.

For the third case, shown in Figure 2.1d, a slab, carrying a uniformly dis-
tributed area load q, is supported on a rectangular grid of beams. The tributary 
area for both an interior and an exterior beam is shown shaded in Figure 2.1d. 
Each interior beam B2 (Figure 2.1d ) carries a trapezoidal load. The edge beam 
B1, which is loaded at the third points by the reactions from the two interior 
beams, also carries smaller amounts of load from three triangular areas of slab 
(Figure 2.1f ). If the ratio of the long to short side of a panel is approximately 
2 or more, the actual load distributions on beam B2 can be simplified by as-
suming conservatively that the total load per foot, w = qL1/3, is uniformly dis-
tributed over the entire length (Figure 2.1e), producing the reaction R΄B2. In the 
case of beam B1, we can simplify the analysis by assuming the reaction R΄B2 
from the uniformly loaded B2 beams is applied as a concentrated load at the 
third points (Figure 2.1f ).

Table 2.1a lists the unit weights of a number of commonly used 
 construction materials, and Table 2.1b contains the weights of building com-
ponents that are frequently specified in building construction. We will make 
use of these tables in examples and problems. 

Examples 2.1 and 2.2 introduce computations for dead load. 

A three-ply asphalt felt and gravel roof over 2-in.-thick insulation board 
is supported by 18-in-deep precast reinforced concrete beams with 3-ft- 
wide flanges (Figure 2.2). If the insulation weighs 3 lb/ft2 and the asphalt 
roofing weighs 5  1 __ 2   lb/ft2, determine the total dead load, per foot of length, 
each beam must support.

Solution 
Weight of beam is as follows:

Flange   4 __ 
12

    ft ×   36 __ 
12

    ft × 1 ft × 150   lb/ft   3  = 150 lb/ft

Stem   10 __ 
12

    ft ×   14 __ 
12

    ft × 1 ft × 150   lb/ft   3  = 145 lb/ft

Insulation 3 lb/ft2 × 3 ft × 1 ft = 9 lb/ft

Roofing 5  1 __ 2   lb/ft2 × 3 ft × 1 ft = 16.5 lb/ft

 Total =  320.5 lb/ft,  
round to 0.321 kip/ft

E X A M P L E  2 . 1

Figure 2.2: Cross section of reinforced 
concrete beams.

36ʺ 36ʺ

10ʺ
average

three-ply felt
with gravel topping
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14ʺ

4ʺ
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32  Chapter 2 ■ Design Loads and Structural Framing

E X A M P L E  2 . 2 The steel framing plan of a small building is shown in Figure 2.3a. The 
floor consists of a 5-in.-thick reinforced concrete slab supported on steel 
beams (see section 1-1 in Figure 2.3b). Beams are connected to each other 
and to the corner columns by clip angles; see Figure 2.3c. The clip angles 
are assumed to provide the equivalent of a pin support for the beams; that 
is, they can transmit vertical load but no moment. An acoustical board 
ceiling, which weighs 1.5 lb/ft2, is suspended from the concrete slab by 
closely spaced supports, and it can be treated as an additional uniform load 
on the slab. To account for the weight of ducts, piping, conduit, and so 
forth, located between the slab and ceiling (and supported by hangers from 
the slab), an additional dead load allowance of 20 lb/ft2 is assumed. The 
designer initially estimates the weight of beams B1 at 30 lb/ft and the 24-ft 
girders B2 on column lines 1 and 2 at 50 lb/ft. Establish the magnitude of 
the dead load distribution on beam B1 and girder B2. 

Solution
We will assume that all load between panel centerlines on either side of 
beam B1 (the tributary area) is supported by beam B1 (see the shaded 
area in Figure 2.3a). In other words, as previously discussed, to compute 
the dead load applied by the slab to the beam, we treat the slab as a series 
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Figure 2.3: Determination of dead load for beam and girder.
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Tributary Areas of Columns 

To determine the gravity loads transmitted into a column from a floor slab, 
the designer can either (1) determine the reactions of the beams framing into 
the column or (2) multiply the tributary area of the floor surrounding the col-
umn by the magnitude of the load per unit area acting on the floor. The tribu-
tary area of a column is defined as the area surrounding the column that is 
bounded by the panel centerlines. Use of tributary areas is the more common 
procedure of the two methods for computing column loads. In Figure 2.4 the 
tributary areas are shaded for corner column A1, interior column B2, and 
exterior column C1. Exterior columns located on the perimeter of a building 
also support the exterior walls as well as floor loads. 

As you can see by comparing tributary areas for the floor system in 
Figure 2.4, when column spacing is approximately the same length in both di-
rections, interior columns support approximately four times more floor dead 
load than corner columns. When we use the tributary areas to establish col-
umn loads, we do not consider the position of floor beams, but we do include 
an allowance for their weight. 

Use of tributary areas is the more common procedure of the two methods 
for computing columns loads because designers also need the tributary areas to 
compute live loads, given that design codes specify that the percentage of live 
load transmitted to a column is an inverse function of the tributary areas; that is, 
as the tributary areas, increase, the live load reduction increases. For columns 
supporting large areas, this reduction can reach a maximum of 40 to 50 percent. 
We will cover the ASCE7 standard for live load reduction in Section 2.4.

of closely spaced, 1-ft-wide, simply supported beams, spanning between 
the steel beams on column lines A and B, and between B and C (see the 
cross-hatched area in Figure 2.3a). One-half of the load, qL/2, will go to 
each supporting beam (Figure 2.3d), and the total slab reaction applied per 
foot of steel beam equals qL = 8q (Figure 2.3e).
 Total dead load applied per foot to beam B1:

Weight of slab 1 ft × 1 ft ×   5 __ 
12

    ft × 8 ft × 150   lb/ft   3  = 500 lb/ft

Weight of ceiling 1.5 lb/ft2 × 8 ft = 12 lb/ft

Weight of ducts, etc. 20 lb/ft2 × 8 ft = 160 lb/ft

Estimated weight of beam = 30 lb/ft

 Total =  702 lb/ft,  
round to 
0.71 kip/ft

Sketches of each beam with its applied loads are shown in Figure 2.3e and f. 
The reactions (8.875 kips) from the B1 beams are applied as concentrated 
loads to the third points of girder B2 on column line 2 (Figure 2.3f ). The 
uniform load of 0.05 kip/ft is the estimated weight of girder B2.

2.3 ■ Dead Loads and Gravity Framing  33
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TABLE 2.1 Typical Design Dead Loads

(a) Material Weights
Substance Weight, lb/ft3 (kN/m3)

Steel
Aluminum
Reinforced concrete:
 Normal weight
 Light weight
Brick
Wood
 Southern pine
 Douglas fir
 Plywood

490 (77.0)
165 (25.9)

150 (23.6)
90–120 (14.1–18.9)

120 (18.9)

  37 (5.8)
  34 (5.3)
  36 (5.7)

(b) Building Component Weights
Component Weight, lb/ft2 (kN/m2)

Ceilings
 Gypsum plaster on suspended metal lath
  Acoustical fiber tile on metal lath and channel
  ceiling

Floors
 Reinforced concrete slab per inch of thickness
  Normal weight
  Lightweight

Roofs
 Three-ply felt tar and gravel
 2-in. insulation

Walls and partitions
 Gypsum board (1-in. thick)
 Brick (per inch of thickness)
 Hollow concrete masonry unit (12-in. thick)
  Heavy aggregate
  Light aggregate
 Hollow clay tile (6-in. thick)
2 × 4 studs at 16 in. on cent    er,   1 __ 2  -in. gypsum wall
 on both sides

  10 (0.48)

  5 (0.24)

12  1 __ 2   (0.60)
7.5–10 (0.36–0.48)

 5  1 __ 2   (0.26)
  3 (0.14)

   4(0.19)
 10 (0.48)

 85 (4.06)
 55 (2.63)
 30 (1.44)

  8 (0.38)
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Figure 2.4: Tributary area of columns A1, 
B2, and C1 shown shaded.
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Using the tributary area method, compute the floor dead loads sup-
ported by columns A1 and B2 in Figure 2.4. The floor system consists of 
a 6-in.-thick reinforced concrete slab weighing 75 lb/ft2. Allow 15 lb/ft2 
for the weight of floor beams, utilities, and a ceiling suspended from the 
floor. The precast exterior wall supported by the perimeter beams weighs 
600 lb/ft.

Solution
Total floor dead load is

D = 75 + 15 = 90 lb/ft2 = 0.09 kip/ft2

Dead load to column A1 is as follows:

 Tributary area  At = 9 × 10 = 90 ft2

 Floor dead load  AtD = 90 × 0.09 kip/ft2 = 8.1 kips

  Weight of exterior wall =  
weight/ft (length) = (0.6 kip/ft)(10 + 9) = 11.4 kips

 Total = 19.5 kips

Dead load to column B2 is as follows:

 Tributary area = 18 × 21 = 378 ft2

 Total dead load = 378 ft2 × 0.09 kip/ft2 = 34.02 kips

E X A M P L E  2 . 3
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36  Chapter 2 ■ Design Loads and Structural Framing

Live Loads 
2.4

Buildings

Loads that can be moved on or off a structure are classified as live loads. Live 
loads include the weight of people, furniture, machinery, and other equip-
ment. Live loads can vary over time especially if the function of the building 
changes. The live loads specified by codes for various types of buildings rep-
resent a conservative estimate of the maximum load likely to be produced by 
the intended use and occupancy of the building. In each region of the coun-
try, building codes typically specify the design live load. Currently, many 
state and city building codes base the magnitude of live loads and design 
procedures on the ASCE standard, which has evolved over time by relating 
the magnitude of the design load to the  successful perfor mance of actual 
buildings. When sizing members, designers must also consider short-term 
construction live loads, particularly if these loads are large. In the past a num-
ber of building failures have occurred during construction when large piles 
of heavy construction material were concentrated in a small area of a floor or 
roof of a partially erected building, when the capacity of members, not fully 
bolted or braced, is below their potential load capacity. 

The ASCE standard typically specifies a minimum value of uniformly 
distributed live load for various types of buildings (a portion of the ASCE 
minimum live load table is shown in Table 2.2). If certain structures, such as 

TABLE 2.2  Typical Design Floor Live Loads, Lo

 Occupancy Use Live Load, lb/ft2 (kN/m2)

Assembly areas and theaters
 Fixed seats (fastened to floor)
 Lobbies
 Stage floors
Libraries
 Reading rooms
 Stack rooms
Office buildings
 Lobbies
 Offices
Residential (one- and two-family)
 Habitable attics and sleeping areas
 Uninhabitable attics with storage
 All other areas (except balconies)
Schools
 Classrooms
 Corridors above the first floor
 First-floor corridors

60 (2.87)
100 (4.79)
150 (7.18)

60 (2.87)
150 (7.18)

100 (4.79)
50 (2.40)

30 (1.44)
20 (0.96)
40 (1.92)

40 (1.92)
80 (3.83)

100 (4.79)

Source: A portion of the ASCE minimum live load.
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parking garages, are also subjected to large concentrated loads, the standard 
may require that forces in members be investigated for both uniform and con-
centrated loads, and that the design be based on the loading condition that 
creates the greatest stresses. For example, the ASCE standard specifies that, 
in the case of parking garages for passengers vehicles, members be designed 
to carry either the forces produced by a uniformly distributed live load of 
40 lb/ft2 or a concentrated load of 3000 lb acting over an area of 4.5 in. by 
4.5 in.—whichever is larger.

The ASCE standard specifies wall partitions to be live loads. Normally 
designers try to position beams directly under heavy masonry walls to carry 
their weight directly into supports. If an owner requires flexibility to move 
walls or partitions periodically in order to reconfigure office or laboratory 
space, the designer can add an appropriate allowance to the floor live load. 
If partitions are light (such as stud walls with   1 __ 2   -in. gypsum board each side), 
a minimum additional uniform floor live load of 15 lb/ft2 (0.479 kN/m2) is 
required. Similarly, in a factory or a laboratory that houses heavy test equip-
ment, the allowance may be three or four times larger.

The ASCE standard specifies the minimum design live load on roofs as 
a uniformly distributed 20 psf on ordinary flat, pitched, and curved roofs. 
However, roof design live loads must also include mechanical equipment, ar-
chitectural features, as well as potential live loads that can occur during con-
struction, maintenance, and the life of the structure.

Live Load Reduction 

Recognizing that a member supporting a large tributary area is less likely 
to be loaded at all points by the maximum value of live load than a member 
supporting a smaller floor area, building codes permit live load reductions 
for members that have a large tributary area. For this situation, the ASCE 
standard permits a reduction of the design floor live loads Lo, as listed in 
Table 2.2, by the following equation when the influence area KLLAT is larger 
than 400 ft2 (37.2 m2). However, the reduced live load must not be less than 
50 percent of Lo for members supporting one floor or a section of a single 
floor, nor less than 40 percent of Lo for members supporting two or more 
floors: 

 L =  L  o   (
0.25 +   15 _____ 

 √ 
_____

  K  LL    A  T    
  
)

    U.S. customary units (2.1a)

 L =  L  o   (
0.25 +   4.57 _____ 

 √ 
_____

  K  LL    A  T    
  
)

    SI units (2.1b)

where Lo = design live load listed in Table 2.2
 L = reduced value of live load
 AT = tributary area, ft2 (m2)
 KLL =  live load element factor, equal to 4 for interior columns and 

exterior columns without cantilever slabs and 2 for interior 
beams and edge beams without cantilever slabs
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38  Chapter 2 ■ Design Loads and Structural Framing

The minimum uniformly distributed roof live loads are permitted to be 
reduced by ASCE standard as follows:

 Lr = LoR1R2 (2.2)

where Lo = design roof live load
  Lr =   reduced roof live load, with minimum of 12 psf ≤ Lr ≤ 20 psf  

(0.58 m2 ≤ Lr ≤ 0.96 m2 in SI units) for ordinary flat, pitched,  
and curved roofs

  R1 =  1 for AT ≤ 200 ft2 (18.58 m2); and R1 = 0.6 for AT ≥ 600 ft2 
(55.74 m2); R1 = 1.2 − 0.001AT (R1 = 1.2 − 0.011AT in SI 
units) for 200 ft2 < AT < 600 ft2 (18.58 m2 < AT < 55.74m2)

  R2 =  1.0 for flat roofs F ≤ 4; R2 = 1.2 − 0.05F for 4 < F < 12; 
and R2 = 0.6 for F ≥ 12; where F = number of inches of 
rise per foot of roof slope for pitched roofs in SI: F = 0.12 × 
slope, with slope expressed in percentage)

For a column or beam supporting more than one floor, the term AT represents 
the sum of the tributary areas from all floors. 

Note that the ASCE standard limits the amount of live load reduction for 
special occupancies. Reduction in live load is not permitted for public assem-
bly areas or when the live load is high (>100 psf).

E X A M P L E  2 . 4 For the three-story building shown in Figure 2.5a and b, calculate the de-
sign live load supported by (1) floor beam A, (2) girder B, and (3) the 
interior column C located at grid 2-B in the first story. Assume a 50 lb/ft2 
design live load, Lo, on all floors including the roof.

Solution
(1) Floor beam A 

Span = 20 ft    tributary area AT = 8(20) = 160 ft2    KLL = 2 

Determine if live loads can be reduced: 

KLLAT = 2AT = 2(160) = 320 ft2 < 400 ft2

therefore, no live load reduction is permitted. 
 Compute the uniform live load per foot to beam:

w = 50(8) = 400 lb/ft = 0.4 kip/ft 

See Figure 2.5d for loads and reactions. 

(2) Girder B 

Girder B is loaded at each third point by the reactions of two floor beams. 
Its tributary area extends outward 10 ft from its longitudinal axis to the 
midpoint of the panels on each side of the girder (see shaded area in 
Figure 2.5a); therefore AT = 20(16) = 320 ft2.

KLLAT = 2(320) = 640 ft2

(b) Elevation

(a) Plan

A

C B

A

A

B

C

20ʹ

1 2 3

20ʹ

3 @ 8ʹ = 24ʹ3 @ 8ʹ = 24ʹ

8ʹ 16ʹ

10ʹ

1 2 3

24ʹ

10ʹ

10ʹ

12ʹ
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R = 32.3 kips
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10ʹ

Figure 2.5: Live load reduction (continues).
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Since KLLAT = 640 ft2 > 400 ft2, a live load reduction is permitted. Use 
Equation 2.1a.

L =  L  o   (
0.25 +   15 _____ 

 √ 
_____

  K  LL    A  T    
  
)

  = 50 (0.25 +   15 ___ 
 √ 

____
 640  
  )  = 50 (0.843)  = 42.1  lb/ft   2 

Since 42.1 lb/ft2 > 0.5(50) = 25 lb/ft2 (the lower limit), still use w = 42.1 lb/ft2.

Load at third point = 2  [  42.1 _____ 
1000

  (8)(10)]   = 6.736 kips

The resulting design loads are shown in Figure 2.5e.

(3) Column C in the first story

The shaded area in Figure. 2.5c shows the tributary area of 
the interior column for each floor. Compute the tributary area 
for roof:

AT = 20(24) = 480 ft2

The reduction for roof live load using Equation 2.2 is 

R1 = 1.2 − 0.001AT = 0.72 

 R2 = 1.0

and the reduced roof live load is 

Lroof = LoR1R2 = 50(0.72)(1.0) = 36.0 psf

Compute the tributary area for the remaining two floors:

2AT = 2(480) = 960 ft2

and
 KLLAT = 4(960) = 3840 ft2 > 400 ft2

Therefore, reduce live load for two floors using Equation 2.1a  
(but not less than 0.4Lo) is

Lfloor = Lo  
(

0.25 +   15 _______ 
 √ 

_____
 KLLAT  
  
)

   = 50 lb/ft2   (0.25 +   15 ______ 
 √ 

_____
 3840  
  )  

 = 24.6 lb/ft2

 Since 24.6 lb/ft2 > 0.4 × 50 lb/ft2 = 20 lb/ft2 (the lower  
limit), use L = 24.6 lb/ft2.
 Load to column = AT(Lroof) + 2AT(Lfloor) = 480(36.0) +  
960(24.6) = 40,896 lb = 40.9 kips. Figure 2.5: Continued

wL = 0.4 kip/ft

R = 4 kips R = 4 kips

L = 20ʹ

(d) Beam A

R = 6.736 kips

6.736 kips 6.736 kips

R = 6.736 kips

L = 24ʹ

8ʹ 8ʹ

(e) Beam B

(c) Tributary area to column C shown shaded

12ʹ12ʹ

10ʹ

10ʹ

C

panel CLpanel CL

panel CL

panel CL

AT = 480 ft2
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40  Chapter 2 ■ Design Loads and Structural Framing

Impact 

Normally the values of live loads specified by building codes are treated as 
static loads because the majority of loads (desks, bookcases, filing cabinets, 
and so forth) are stationary. If loads are applied rapidly, they create additional 
impact forces. When a moving body (e.g., an elevator coming to a sudden 
stop) loads a structure, the structure deforms and absorbs the kinetic energy 
of the moving object. As an alternative to a dynamic analysis, moving loads 
are often treated as static forces and increased empirically by an impact fac-
tor. The magnitude of the impact factor I for a number of common structural 
supports is listed in Table 2.3. 

TABLE 2.3 Live Load Impact Factor 

Loading Case Impact Factor, I (percent)

Supports of elevators and elevator machinery
Supports of light machinery, shaft or motor-driven
Supports of reciprocating machinery or power-driven units
Hangers supporting floors and balconies
Cab-operated traveling crane support girders and their connections

100
20
50
33
25

Bridges

Highway bridge designs are governed by the AASHTO LRFD Bridge Design 
Specifications, which require that the engineer consider vehicular live load. 
The highway loading adopted in 1993, called HL-93, consists of a combina-
tion of the three-axle Design Truck (Figure 2.7a), or two-axel Design Tan-
dem (Figure 2.7b), and the Design Lane Load (Figure 2.7c). The designer 
must consider the combination of these loads in various locations along the 
bridge span (see Section 12.8 and Figure 12.25).

E X A M P L E  2 . 5 Determine the magnitude of the concentrated force for which the beam in 
Figure 2.6 supporting an elevator must be designed. The elevator, which 
weighs 3000 lb, can carry a maximum of six people with an average weight 
of 160 lb.

Solution
Read in Table 2.3 that an impact factor, I of 100 (percent) applies to all 
elevator loads. Therefore, the weight of the elevator and its passengers 
must be doubled. 
 Total load = D + L = 3000 + 6 × 160 = 3960 lb 
 Design load = (D + L)2 = 3960 × 2 = 7920 lb

cable
support
beam

elevator

W

Figure 2.6: Beam supporting an elevator.
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Since moving traffic, particularly when roadway surfaces are uneven, 
bounces up and down, producing impact forces, truck loads must be in-
creased by a factor taken as 1+IM, where IM is the AASHTO Dynamic 
Allowance Factor (Table 12.1) which depends on the bridge component be-
ing designed and the type of failure being considered. The resulting factor 
applied to the Design Truck loading ranges from 1.15 to 1.75.

Railroad bridge design uses the Cooper E80 loading (Figure 2.8) con-
tained in the AREMA Manual for Railway Engineering. This loading con-
sists of two locomotives followed by a uniform load representing the weight 
of freight cars. The AREMA manual also provides an equation for impact. 
Since the AASHTO and Cooper loadings require the use of influence lines 
to establish the position of wheels to maximize forces at various positions in 
a bridge member, design examples illustrating the use of wheel loads will be 
deferred to Chapter 12.

(a)

(c)

uniform load
640 lb per
linear foot

of lane load curb

W = Combined weight on the first two axles, which is the same as for the corresponding Design Truck
V = Variable spacing—14 ft to 30 ft inclusive. Spacing to be used is that which produces maximum stresses.

Traffic direction Transverse direction

6ʹ- 0ʺ
2ʹ- 0ʺ 2ʹ- 0ʺ

curb

10ʹ- 0ʺ
clearance and

load lane width

6ʹ- 0ʺ

6ʹ- 0ʺ

10ʹ- 0ʺ

(b)

8000 lb 32,000 lb

0.4 W

32,000 lb
V14ʹ- 0ʺ

0.1 W

0.
2 

W

0.
8 

W

0.
8 

W
0.4 W

0.25 W 0.25 W

0.25 W 0.25 W

0.4 W0.1 W 0.4 W

4ʹ- 0ʺ

Figure 2.7: AASHTO HL-93 design live 
loads: (a) design truck load; (b) design tan-
dem load; (c) design lane load.
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42  Chapter 2 ■ Design Loads and Structural Framing

8ʹaxle spacing

rail

5ʹ

first locomotive second locomotive

5ʹ 5ʹ 5ʹ9ʹ 6ʹ 5ʹ 5ʹ9ʹ 6ʹ
8 kips/ft

5ʹ 5ʹ5ʹ 5ʹ 5ʹ8ʹ 8ʹ
40E80 loads 80 80 80 5252 52 52 5252 52 5280 80 8040 80

Figure 2.8: AREMA E80 railroad loadings.

Snow Loads
2.5

Snow load on roofs needs to be considered in cold regions. The design snow 
load on a flat roof (with slope ≤ 5°, 1 in/ft = 4.76°) is given by the ASCE 
standard as follows:

  pf = 0.7CeCt Is pg (2.3)

where pg =  ground snow load
 Ce =  exposure factor (0.7 in windy area and 1.2 in sheltered areas 

with little wind)
 Ct =  thermal factor (1.2 in unheated buildings and 1.0 in heated 

buildings, except greenhouses)
 Is =  importance factor is based on the snow Risk Category as-

signed to the structure, which is based on occupancy and 
how essential a given structure is to the community in the 
event of a failure

   There are four categories of building occupancies. 
Category I represents occupancies with low hazard to hu-
man life, such as agricultural or minor storage facilities. 
Category II represents occupancies not included in cat-
egories I, III, and IV, such as typical office and residential 
buildings. Category III represents building types that would 
be a substantial hazard to human life, such as buildings with 
public assembly spaces for 300 or more people, elementary 
schools, power stations, and telecommunications facilities. 
Category IV represents essential facilities, such as hospitals, 
emergency, fire, and police facilities. For calculating snow 
loads, Is is 0.8, 1.0, 1.1, and 1.2 for the respective categories 
I, II, III, and IV.

Ground snow loads, pg, are given by ASCE standard or governed by local 
building codes for site-specific locations.

The design snow load on a sloped roof, ps, defined as roof slopes greater 
than 5°, is given by ASCE standard as follows:

  ps = Cs pf (2.4)
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where  Cs =  roof slope factor, which reduces from 1.0 as the roof slope 
increases

 Pf = flat roof snow load (from Equation 2.3)

The roof slope factor, Cs, depends on the slope of the roof, the thermal factor, 
Ct, and whether the roof surface consists of an unobstructed slippery surface 
or non-slippery with or without obstructions. For example, asphalt shingles 
are considered to have a non-slippery surface, and therefore will hold the 
snow on the roof. Additionally the shape of the roof contributes to the design 
snow load.

Other snow load conditions that need to be considered in design of roofs 
include snow drift, partial loading, unbalanced snow load, sliding snow, rain-
on-snow surcharge, and ponding instability that can occur due to rain-on-
snow or snow meltwater.

Lateral Load-Resisting Systems
2.6

Structural Bracing Systems for Wind  
and Earthquake Forces

The floors of buildings are typically supported on columns. Under dead 
and live loads that act vertically downward (also called gravity load), col-
umns are loaded primarily by axial compression forces. Because columns 
carry axial load efficiently in direct stress, they have relatively small cross 
sections—a desirable condition since owners want to maximize usable floor 
space.

When lateral loads, such as wind or the inertia forces generated by an 
earthquake, act on a building, lateral displacements occur. These displace-
ments are zero at the base of the building and increase with height. Since 
slender columns have relatively small cross sections, their bending stiffness 
is small. As a result, in a building with columns as the only supporting ele-
ments, large lateral displacements can occur. These lateral displacements can 
crack partition walls, damage utility lines, and produce motion sickness in 
occupants (particularly in the upper floors of multistory buildings where they 
have the greatest effect).

To limit lateral displacements, structural designers often insert, at 
appropriate locations within the building, structural walls of reinforced 
masonry or reinforced concrete. These shear walls act in-plane as deep 
cantilever beam-columns with large bending stiffnesses several orders of 
magnitude greater than those of all the columns combined. Because of their 
large stiffness, shear walls often are assumed to carry all transverse loads 
from wind or earthquake into the foundation. Since the lateral loads act 
normal to the longitudinal axis of the wall, just as the shear acts in a beam, 
they are called shear walls (Figure 2.9a). In fact, these walls must also be re-
inforced for bending along both vertical edges since they can bend in either 
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44  Chapter 2 ■ Design Loads and Structural Framing

direction. Figure 2.9b shows the shear and moment diagrams for a typical 
shear wall.

Loads are transmitted to the walls by continuous floor slabs that act as 
rigid plates, termed diaphragm action (Figure 2.9a). In the case of wind, the 
floor slabs receive the load from air pressure acting on the exterior walls. In the 
case of earthquake, the combined mass of the floors and attached construction 
determines the magnitude of the inertia forces transmitted to the shear walls as 
the building flexes from the ground motion.

Shear walls may be located in the interior of buildings or in the exterior 
walls (Figure 2.9c). Since only the in-plane flexural stiffness of the wall is 
significant, walls are required in both directions. In Figure 2.9c two shear 
walls, labeled W1, are used to resist wind loads acting in the east-west direc-
tion on the shorter side of the building; four shear walls, labeled W2, are used 
to resist wind load, in the north-south direction, acting on the longer side of 
the building.

In buildings constructed of structural steel, as an alternative to construct-
ing shear walls, the designer can add X-shaped or V-shaped cross-bracing 
between columns to form deep wind trusses, which are very stiff in the plane 
of the truss (Figure 2.9d and Photo 2.1). 

Figure 2.9: Structural systems to resist lateral loads from wind or earthquake. 
(a) Reinforced  concrete shear wall carries all lateral wind loads; (b) shear and moment dia-
grams for shear wall produced by the sum of wind loads on the windward and leeward sides 
of the building in (a); (c) plan of building showing position of shear walls and columns; 
(d ) cross-bracing between steel columns; forms a truss to carry lateral wind loads into the 
foundations.

(a)

(c)

W1

W1

W2 W2W2W2

(b)

shear wall

Shear Diagram

elevation elevation

Moment Diagram

FF5

N

S

EW

FF4

FF3

FF2

FF1

(d)

FF5

FF4

FF3

FF2

FF1
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Photo 2.1: The diagonal-bracing, together 
with the attached columns and horizon-
tal floor beams in the plane of the bracing, 
forms a deep continuous, vertical truss that 
extends the full height of the building (from 
foundation to roof) and produces a stiff, 
lightweight structural element for transmit-
ting lateral wind and earthquake forces into 
the foundation.

Natural Hazards

Extreme winds, large earthquakes, and tsunamis are among several natural 
phenomena which generate lateral loading capable of damaging structures 
and even result in loss of life. They are complicated incidents that tend to oc-
cur quite regularly, however not in a way that can be precisely predicted. The 
ASCE 7 standard treats these occurrences in probabilistic manners developed 
from climatology, geology, and seismology studies of historical records and 
modern events.

Natural Hazard Risk

A structure’s risk to natural hazard involves not only the chances of being 
exposed to a hazard but also its potential of suffering damage, or collapse, 
and the resulting threat to life safety of the occupants and the function of the 
structure. The ASCE standard recognizes that it is not typically economical 
to design and build structures capable of sustaining the worst possible natu-
ral hazard, and the most severe event may not be likely to occur during the 
expected lifespan of the structure (usually 50 years). Instead, the most severe 
event is used to generate loads which are scaled down to correspond to an ac-
ceptable probability of causing structural failure. These are the design-loads, 
but they do have a chance of being exceeded, termed percent chance of ex-
ceedance. However, this chance is only about 10 percent during the lifespan 
of the structure, which has been judged as an accepted level of risk. 

The ASCE standard accounts for the occupancy and intended function 
of a structure by assigning an importance factor and various risk categories, 

2.7

© Chia-Ming Uang
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46  Chapter 2 ■ Design Loads and Structural Framing

respectively. For example, a hospital or other emergency response facility is 
expected to be operational immediately after a large earthquake, while an 
office building is not. Larger importance factors and higher risk categories 
result in increased design loads, and other tighter restrictions to the structural 
design parameters like acceptable lateral deflections or required protection 
of critical areas.

Wind Loads 
2.8

Introduction

As we have all observed from the damage produced by a hurricane or tor-
nado, high winds exert large forces. These forces can tear off tree limbs, carry 
away roofs, and break windows. Since the speed and direction of wind are 
continually changing, the exact pressure or suction applied by winds to struc-
tures is difficult to determine. Nevertheless, by recognizing that wind is like 
a fluid, it is possible to understand many aspects of its behavior and to arrive 
at reasonable design loads. 

The magnitude of wind pressures on a structure depends on the wind 
velocity, the shape and stiffness of the structure, the roughness and profile of 
the surrounding ground, the influence of adjacent structures, and elevation 
above sea level. When wind strikes an object in its path, the kinetic energy of 
the moving air particles is converted to a pressure qs, which is given by 

  qs =    mV 2 ____ 
2
    (2.5)

where m represents the mass density of the air and V equals the wind velocity. 
Thus the pressure of the wind varies with the density of the air—a function of 
temperature and elevation—and with the square of the wind velocity. 

The friction between the ground surface and the wind strongly influences 
the wind velocity. For example, winds blowing over large, open, paved areas 
(e.g., runways of an airport) or water surfaces are not slowed as much as 
winds blowing over rougher, rural, suburban, or forest-covered areas where 
the friction is greater. Also near the ground surface, the friction between 
the air and ground reduces the velocity, whereas at higher elevations above 
the ground, friction has little influence and wind velocities are much higher. 
Figure 2.10a shows the approximate variation of wind velocity with height 
above the ground surface. This information is supplied by anemometers— 
devices that measure wind speeds. 

Wind pressure also depends on the shape of the surface that the wind 
strikes. Pressures are smallest when the body has a streamlined cross section 
and greatest for blunt or concave cross sections that do not allow the wind to 
pass smoothly around (Figure 2.11). The influence of shape on wind pressure 
is accounted for by drag factors that are tabulated in certain building codes. 

As an alternative to computing wind pressures from wind veloci-
ties, some building codes specify an equivalent horizontal wind pressure. 

elevation
above
ground

elevation
above
ground

increasing
wind velocity

wind pressure

0

0

(a)

(b)

Figure 2.10: (a) Variation of wind velocity 
with distance above ground surface; (b) vari-
ation of wind pressure specified by typical 
building codes for windward side of building.
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This pressure increases with height above the ground surface (Figure 2.10b). 
The force exerted by the wind is assumed to be equal to the product of the 
wind pressure and the surface area of a building or other structure. 

When wind passes over a sloping roof (Figure 2.12a), it must increase 
its velocity to maintain continuity of the flowing air. As the wind velocity 
increases, the pressure on the roof reduces (Bernoulli’s principle). This re-
duction in pressure exerts an uplift—much like the wind flowing over the 
wing of an airplane—that can carry away a poorly anchored roof. A similar 
negative pressure occurs on both sides of a building parallel to the wind di-
rection and to a smaller extent on the leeward side (see sides AB and side BB 
in Figure 2.12b) as the wind speeds up to pass around the building.

Vortex Shedding. As wind moving at constant velocity passes over objects 
in its path, the air particles are impeded by surface friction. Under certain 
conditions (critical velocity of wind and shape of surface) small masses of 
restrained air periodically break off and flow away (Figure 2.13). This pro-
cess is called vortex shedding. As the air mass moves away, its velocity causes 
a change in pressure on the discharge surface. If the period (time interval) 
of the vortices leaving the surface is close to that of the natural period of 

Figure 2.11: Influence of shape on drag fac-
tor: (a) curved profile permits air to pass 
around body easily (drag factor is small); 
(b) wind trapped by flanges increases pres-
sure on web of girder (drag factor is large).

(a)

(b)

path of
air particle

(a)

(b)

leeward
face

airflow
lines

wind

uplift pressure

(2)

(1)

L

A B

A B

B

windward
face

θ

Figure 2.12: (a) Uplift pressure on a sloping roof; the wind 
speed along path 2 is greater than that along path 1 because 
of the greater length of path. Increased velocity reduces pres-
sure on top of roof, creating a pressure differential between 
inside and outside of building. The uplift is a function of the 
roof angle θ. (b) Increased velocity creates negative pressure 
(suction) on sides and leeward face; direct pressure on wind-
ward face AA.

wind
direction

vortex

vortex

direction
of

oscillation

Figure 2.13: Vortices discharging from a 
steel girder. As vortex speeds off, a reduction 
in pressure occurs, causing girder to move 
vertically.
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48  Chapter 2 ■ Design Loads and Structural Framing

the structure, oscillations in the structure will be induced by the pressure 
variations. With time these oscillations will increase and shake a structure 
vigorously. The Tacoma Narrows Bridge failure shown in Photo 2.2 is a dra-
matic example of the damage that vortex shedding can wreak. Tall chimneys 
and suspended pipelines are other structures that are susceptible to wind-
induced vibrations. To prevent damage to vibration-sensitive structures by 
vortex shedding, spoilers (Figure 2.14), which cause the vortices to leave in 
a random pattern, or dampers, which absorb energy, may be attached to the 
discharge surface. As an alternative solution, the natural period of the struc-
ture may be modified so that it is out of the range that is sensitive to vortex 
shedding. The natural period is usually modified by increasing the stiffness 
of the structural system. 

For several decades after the Tacoma Narrows Bridge failure, design-
ers added stiffening trusses to the sides of suspension bridge roadways to 
minimize bending of the decks (Photo 4.1). Currently designers use stiff 
aerodynamically shaped box sections that resist wind-induced deflections 
effectively.

Equations to Predict Design Wind Pressures 

Our primary objective in establishing the wind pressures on a building is to 
determine the forces that must be used to size the structural members that 
make up the wind bracing system, discussed in Section 2.6. In this section we 
will discuss procedures for establishing wind pressures using a simplified for-
mat based on the provisions of the most recent edition of the ASCE standard. 

(a)

pipe

spoiler

spoiler

hanger

cable

(b)

pipe

hanger

cable

Figure 2.14: Spoilers welded to a suspender 
pipe to change the period of vortices: (a) tri-
angular plate used as a spoiler; (b) spiral rod 
welded to pipe used as spoiler.

Photo 2.2: Failure of the Tacoma Narrows 
Bridge showing the first section of the road-
way as it crashes into Puget Sound. The 
breakup of the narrow, flexible bridge was 
produced by large oscillation induced by 
the wind.
© AP Images
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If the mass density of air at 59°F (15°C) and at sea level pressure of 29.92 in. 
of mercury (101.3 kPa) is substituted into Equation 2.5, the equation for the 
static wind pressure qs becomes
 qs = 0.00256V2 U.S. customary units (2.6a)
 qs = 0.613V2 SI units (2.6b)
where qs = static wind pressure, lb/ft2 (N/m2)
 V =  basic wind speed, mph (m/s)
   Basic wind speeds, used to establish the design wind force 

for particular locations in the continental United States, are 
plotted on maps in the ASCE Standard. These wind veloci-
ties are measured by anemometers located 33 ft (10 m) 
above grade in open terrain. Wind speeds are mapped for 
buildings in Risk Categories I, through IV. Wind speeds 
increase with risk factor which accounts for an increasing 
probability that a building will be damaged.

The static wind pressure qs given by Equation 2.6a or b is next modified in 
Equation 2.7 by four empirical factors to establish the magnitude of the veloc-
ity wind pressure qz at various elevations above ground level.
 qz = 0.00256V2KzKztKdKe U.S. customary units (2.7a)
 qz = 0.613V2KzKztKdKe SI units (2.7b)
Or using Equation 2.6a, we can replace the first two terms of Equation 2.7 by 
qs to give
  qz = qsKzKztKdKe (2.8)
where qz = velocity wind pressure at height z above ground level
 Kz =  velocity pressure exposure coefficient, which accounts for both 

the influence of height above grade and exposure conditions
   Three exposure categories (B through D) considered are 

as follows:
   B:  Urban and suburban, or wooded areas with low structures
   C:  Open terrain with scattered obstructions generally less 

than 30 ft (9.1 m) high
   D:  Flat, unobstructed areas exposed to wind flowing over 

open water for a distance of at least 5000 ft (1.524 km) or 
20 times the building height, whichever is greater

    Values of Kz are tabulated in Table 2.4 and shown graphi-
cally in Figure 2.15a.

 Kzt =  topographic factor, which equals 1 if building is located on 
level ground; for buildings located on elevated sites (top of 
hills), Kzt increases to account for greater wind speed

 Kd =  wind directionality factor, which accounts for the reduced 
probability of maximum winds coming from any given direc-
tion and for the reduced probability of the maximum pressure 
developing for any given wind direction (Table 2.5)

 Ke =  ground elevation factor, which accounts for the variation in 
air density with elevation above sea-level 

   Values of Ke are tabulated in Table 2.6 and shown graphi-
cally in Figure 2.15b.
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50  Chapter 2 ■ Design Loads and Structural Framing

Photo 2.3: The connection of this roof was unable to resist the large uplift 
due to heavy winds. The left side roof was carried away entirely, while the 
right side began to peel off the top of the structure. Much like uplift, the 
outward pressure on the side walls has torn off the siding. The ASCE design 
wind pressure expression indicates the pressure direction so engineers can 
apply the resulting forces on building roofs and wall cladding in order to 
properly design their connections.

The final step for establishing the design wind pressure p is to modify qz, 
given by Equation 2.7a or b, by two additional factors, G and Cp:

  p = qzGCp (2.9)

where p = design wind pressure on a particular face of the building
 G =  gust factor, which equals 0.85 for rigid structures; that is, the 

natural period is less than 1 second. For flexible structures 
with a natural period greater than 1 second, a series of equa-
tions for G are available in the ASCE standard.

 Cp =  external pressure coefficient, which establishes how a 
fraction of the wind pressure (given by Equation 2.7a or b) 
is to be distributed to each of the four sides of the building 
(Table 2.7). For the wind applied normal to the wall on the 
windward side of the building Cp = 0.8. On the leeward side, 
Cp = −0.2 to −0.5. The minus sign indicates a pressure act-
ing outward from the face of the building. The magnitude 
of Cp is a function of the ratio of length L in the windward 
direction to length B in the direction normal to the wind. 
The main wind bracing system must be sized for the sum of 
the wind forces on the windward and leeward sides of the 
building. Finally, on the sides of the building perpendicular 

© Aaron Roeth Photography
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TABLE 2.4 Velocity Pressure Exposure Coefficient Kz 

Height z above  
Ground Level Exposure

ft m B C D

0–15
 20
 25
 30
 40
 50
 60
 70
 80
 90
100
120
140
160
180

0–4.6
 6.1
 7.6
 9.1
12.2
15.2
18

21.3
24.4
27.4
30.5
36.6
42.7
48.8
54.9

0.57 (0.70)*
0.62 (0.70)
0.66 (0.70)
0.70
0.76
0.81
0.85
0.89
0.93
0.96
0.99
1.04
1.09
1.13
1.17

0.85
0.90
0.94
0.98
1.04
1.09
1.13
1.17
1.21
1.24
1.26
1.31
1.36
1.39
1.43

1.03
1.08
1.12
1.16
1.22
1.27
1.31
1.34
1.38
1.40
1.43
1.48
1.52
1.55
1.58

*For low-rise buildings with mean roof height not exceeding 60 ft (18 m) and least horizontal 
dimension.

TABLE 2.5 Wind Directionality Factor Kd 

Structural Type Kd

Buildings
 Main wind force-resisting system
 Components and cladding
Chimneys, tanks, and similar structures
 Square
 Hexagonal
 Octagonal or round
Trussed towers
 Triangular, square, rectangular
 All other cross sections

0.85
0.85

0.90
0.95
1.0

0.85
0.95

TABLE 2.6 Ground 
Elevation Factor, Ke

Ground Elevation 
above Sea Level Ke

ft m

   0
1000
2000
3000
4000
5000
6000

    0
  305
  610
  914
1219
1524
1829

1.00
0.96
0.93
0.90
0.86
0.83
0.80

to the direction of the wind, where negative pressure also 
occurs, Cp = −0.7.

The wind pressure increases with height only on the windward side of a build-
ing where wind pressure acts inward on the walls. On the other three sides 
the magnitude of the negative wind pressure, acting outward, is con stant with 
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52  Chapter 2 ■ Design Loads and Structural Framing

height, and the value of Kz is based on the mean roof height h. A typical dis-
tribution of wind pressure on a multistory building is shown in Figure 2.16. 
Example 2.6 illustrates the procedure to evaluate the wind pressure on the 
four sides of a building 100 ft high.

Since wind can act in any direction, designers must also consider addi-
tional possibilities of wind loading a building at various angles. For high-rise 
buildings in a city—particularly those with an unusual shape—wind tunnel 
studies using small-scale models are often employed to determine maxi-
mum wind pressures. For these studies, adjacent high-rise buildings, which 
influence the direction of airflow, must be included. Models are typically con-
structed on a small platform that can be inserted into a wind tunnel and ro-
tated to determine the orientation of the wind that produces the largest values 
of positive and negative pressure.

Figure 2.15: (a) Variation of Kz; (b) variation 
of Ke.
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TABLE 2.7  External Pressure Coefficient Cp 

L

qz GCp

qh GCp

qh GCp

qh GCp

wind

PLAN

B

Wall Pressure Coefficients Cp

Surface L/B Cp Use with

Windward wall
Leeward wall

Side wall

All values
0–1
2

≥4
All values

   0.8
−0.5
−0.3
−0.2
−0.7

qz

qh

qh 

Notes:
1.  Plus and minus signs signify pressures acting toward and away from the surfaces, respectively.
2.  Notations: B is the horizontal dimension of the building, in feet (meters) measured normal to 

wind direction, and L is the horizontal dimension of the building in feet (meters), measured 
parallel to wind direction.

B
L

wind

Figure 2.16: Typical wind load distribution 
on a multistory building.

Determine the wind pressure distribution on the four sides of an eight-
story hotel located on relatively flat ground approximately 2500 ft above 
sea level; the Risk Category II basic wind speed is 100 mph. Consider 
the case of a strong wind acting directly on face AB of the building in 
Figure 2.17a. Assume the building is classified as stiff because its natural 
period is less than 1 s; therefore, the gust factor G equals 0.85. The build-
ing is located in an urban area, so exposure B applies. Since the building 
is located on level ground, Kzt = 1.

Solution

STEP 1 Compute the static wind pressure using Equation 2.6a:

qs = 0.00256V2 = 0.00256(100)2 = 25.60 lb/ft2

STEP 2 Compute the magnitude of wind pressure on the wind-
ward side at the top of the building, 100 ft above grade, using 
Equation 2.7a. 

Kz = 0.99    (Figure 2.15a or Table 2.4)

E X A M P L E  2 . 6

[continues on next page]
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54  Chapter 2 ■ Design Loads and Structural Framing

 Kzt = 1       (level ground)

 Kd = 0.85    (Table 2.5)

 Ke = 0.91    (Table 2.6 or Figure 2.15b)

 Substituting the above values into Equation 2.8 to determine 
the design wind pressure at 100 ft above grade gives 

 qz = qsKzKztKdKe

 = 25.60(0.99)(1)(0.85)(0.91) = 19.6 lb/ft2

 Note: To compute wind pressures at other elevations on the 
windward side, the only factor that changes in the above 
equation is Kz, tabulated in Table 2.4. For example, at an 
elevation of 50 ft, Kz = 0.81 and qz = 16.04 lb/ft2. 

STEP 3 Determine the design wind pressure on the windward face 
AB, using Equation 2.9.

 Gust factor G = 0.85, read Cp = 0.8 (from Table 2.7). 
Substituting into Equation 2.9 produces

p = qzGCp = 19.6(0.85)(0.8) = 13.3 lb/ft2

(a) (b)

L = 60ʹ

A

B

C

D

A

B

C

D

E

F

G

100ʹ

13.3 lb/ft2

11.66 lb/ft2 8.33 lb/ft2

11.66 lb/ft2

11.3 lb/ft2

leeward
face

windward
face

B = 60ʹ

wind =
130 mph

Figure 2.17: Variation of wind pressure on 
sides of buildings.

Example 2.6 continues . . .
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Simplified Procedure: Wind Loads for Low-Rise Buildings

In addition to the procedure just discussed for computing wind loads, the 
ASCE standard provides a simplified procedure to establish wind pres-
sures on enclosed or partially enclosed low-rise buildings of regular shape 
whose mean roof height h exceeds neither 60 ft (18.2 m) nor the building’s 
least horizontal dimension and to which the following conditions apply.

1. Floor and roof slabs (diaphragms) must be designed to act as rigid plates 
and connect to the main wind force-resisting system, which may include 
shear walls, moment frames, or braced frames.

2. The building has an approximately symmetric cross section, and the roof 
slope θ does not exceed 45°.

3. The building is classified as rigid; that is, its natural frequency is 
greater than 1 Hz. (Most low-rise buildings with wind force-resisting 
systems, such as shear walls, moment frames, or braced frames, fall in 
this category.) 

4. The building is not torsionally sensitive.

For such regular rectangular structures, the procedure to establish the design 
pressures follows:

1. Determine the wind velocity at the building site, using the wind maps in 
the ASCE Standard.

2. Establish the design wind pressure ps acting on the walls and roof:

  ps = λKz t ps30 (2.10)

where ps30 is the simplified design wind pressure for exposure B (Table 2.8), 
with h = 30 ft. For exposure C or D and for h other than 30 ft, the ASCE stan-
dard supplies an adjustment factor λ, tabulated in Table 2.9.

STEP 4 Determine the wind pressure on the leeward side:

 Cp = −0.5    (Table 2.7)    and    G = 0.85

 p = qzGCp = 19.6(0.85)(−0.5) = −8.33 lb/ft2

STEP 5 Compute the wind pressure on the two sides perpendicular 
to the wind: 

 Cp = −0.7    G = 0.85

 p = qzGCp = 19.6(0.85)(−0.7) = −11.66 lb/ft2

The distribution of wind pressures is shown in Figure 2.17b.
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The distribution of ps on the walls and roof for wind load in both the 
transverse and longitudinal directions is shown in Figure 2.18. Each line 
in Table 2.8 lists the values of the uniform wind pressure for eight areas of 
a building’s walls and roof.

•   Plus and minus signs signify pressures acting toward and away from 
projected surfaces.

•   Pressures for additional wind speeds are given in the ASCE Standard.

These areas, shown in Figure 2.18, are labeled A to H. Table 2.8 con-
tains values of ps30 for buildings subjected to 90-mph winds; the com-
plete Standard provides data for winds varying from 90 to 200 mph.

The value of a, which defines the extent of regions of greatest wind 
pressure (see areas A, B, E, and F on the walls and roof in Figure 2.18), is 
evaluated as 10 percent of the smaller horizontal dimension of the build-
ing or 0.4h, whichever is smaller (h is the mean height), but not less than 
either 4 percent of the least horizontal dimension or 3 ft (0.9 m). Notice 
that the wind pressures are largest near the corners of walls and the edges 
of roofs. The ASCE standard also specifies a minimum wind load with 16 
psf of ps acting on zones A and C, 8 psf on Zones B and D while all other 
zones are not loaded. 

Example 2.7 illustrates the use of the simplified procedure to establish 
the design wind pressures for the wind analysis of a 45-ft-high rectangular 
building.

TABLE 2.8  Simplified Design Wind Pressure pS30 (lb/ft2)  
(Exposure B at h = 30 ft and Kzt = 1.0) 

Basic Wind 
Speed 
(mph)

Roof  
Angle  

(degrees)

Zones
Horizontal Pressures Vertical Pressures

A B C D E F G H

90

0 to 5° 12.8 −6.7  8.5 −4.0 −15.4  −8.8 −10.7 −6.8
10° 14.5 −6.0  9.6 −3.5 −15.4  −9.4 −10.7 −7.2
15° 16.1 −5.4 10.7 −3.0 −15.4 −10.1 −10.7 −7.7
20° 17.8 −4.7 11.9 −2.6 −15.4 −10.7 −10.7 −8.1
25° 16.1

—
  2.6
—

11.7
—

   2.7
—

 −7.2
 −2.7

 −9.8
 −5.3

 −5.2
 −0.7

−7.8
−3.4

30° to 45° 14.4
14.4

  9.9
  9.9

11.5
11.5

  7.9
  7.9

   1.1
   5.6

 −8.8
 −4.3

   0.4
   4.8

−7.5
−3.1

TABLE 2.9  Adjustment 
Factor λ for 
Building 
Height and 
Exposure 

Mean roof 
height h (ft)

Exposure
B C D

15
20
25
30
35
40
45
50
55
60

1.00
1.00
1.00
1.00
1.05
1.09
1.12
1.16
1.19
1.22

1.21
1.29
1.35
1.40
1.45
1.49
1.53
1.56
1.59
1.62

1.47
1.55
1.61
1.66
1.70
1.74
1.78
1.81
1.84
1.87

From ASCE Standard.
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Figure 2.18: Distribution of design wind pressures for the simplified method. See 
Table 2.8 for the magnitude of the pressures in areas A through H. h = 30 ft. 
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The mapped wind velocity acting on the 45-ft-high, three-story build-
ing in Figure 2.19a is 90 mph. If exposure condition C applies, de-
termine the wind force transmitted to the building’s foundations by 
each of the two large reinforced concrete shear walls that make up the 
main wind-resisting system. The walls located at the midpoint of each 
side of the building have identical proportions. The topographic factor, 
Kzt = 1.0.

Solution
Compute the wind load transmitted from the wall on the windward side to the 
roof and each floor slab. Assume each 1-ft-wide vertical strip of wall acts as a 
simply supported beam spanning 10 ft between floor slabs; therefore, one-half 
of the wind load on the wall between floors is carried to the slabs above and  
below by the fictitious beam (Figure 2.19b).

STEP 1 Since the roof is flat, θ = 0. For the simplified design wind 
pressures ps30, read the top line in Table 2.8.

 Region A: ps30 = 12.8 lb/ft2

 Region C: ps30 = 8.5 lb/ft2

 Note: There is no need to compute the values of ps for zones 
B and D because the building does not have a sloped roof.

E X A M P L E  2 . 7

[continues on next page]
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58  Chapter 2 ■ Design Loads and Structural Framing

STEP 2 Adjust ps30 for exposure C and a mean height of h = 45 ft. 
Read in Table 2.9 that adjustment factor λ = 1.53. Compute 
the wind pressure ps = λKztps30.

 Region A: ps = 1.53(1)(12.8) = 19.584 round to 19.6 lb/ft2

 Region C: ps = 1.53(1)(8.5) = 13.005 round to 13 lb/ft2 

STEP 3 Compute the resultant wind forces transmitted from the exte-
rior walls to the edge of the roof and floor slabs. 

 Load per foot, w, to roof slab (Figure 2.19b)

 Region A: w =    15 __ 
2
   ×   19.6 ____ 

1000
   = 0.147 kip/ft

 Region C: w =    15 __ 
2
   ×   13 ____ 

1000
   = 0.0975 kip/ft

 Load per foot, w, to second- and third-floor slabs

 Region A: w = 15 ×   19.6 ____ 
1000

   = 0.294 kip/ft

 Region C: w = 15 ×   13 ____ 
1000

   = 0.195 kip/ft

(a)

roof

3rd
floor
2nd
floor

15ʹ

15ʹ

15ʹ

40ʹ

34ʹ

2a = 6ʹ

A
B

CF

shear wall

30ʹ

V1

shear wall

N
W

S
E

Ps = 13 lb/ft2

Ps = 19.6 lb/ft2

E

D
V2

18.8ʹ

34ʹ

40ʹ

2a = 6ʹ

R = 4.2 kips
w = 0.147 kip/ft

w =
0.0975 kip/ft

E

D
A

Roof
F

(b)

18.8ʹ
R = 8.4 kips

w = 0.294 kip/ft
w =

0.195 kip/ft

3rd floor

18.8ʹ
R = 8.4 kips

w = 0.294 kip/ft
w =

0.195 kip/ft

2nd floor

Figure 2.19: Horizontal wind pressure 
analysis by the simplified method. (a) Wind 
pressure distribution and details of the 
loaded structure; (b)  wind forces applied 
by the exterior walls to the edge of the roof 
and floor slabs; (c) plan view of the resul-
tant wind force and the reactions of the shear 
walls; (d) free body of the shear wall located 
in plane ABDF showing the wind forces ap-
plied by the floor slabs and the reactions on 
base (continues).

Example 2.7 continues . . .
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STEP 4 Compute the resultants of the distributed wind loads.
 Roof slab:

R1 = 0.147 × 6 + 0.0975 × 34 = 4.197  round to 4.2 kips

 Second and third floors: 

R2 = 0.294 × 6 + 0.195 × 34 = 8.394  round to 8.4 kips

 Total horizontal wind force = 4.2 + 8.4 + 8.4 = 21 kips
STEP 5 Locate the position of the resultant. Sum moments about a 

vertical axis through points A and F (Figure 2.19c).
 At the level of the first floor slab

  R   ̄  x    = ∑F ⋅ x
  4.197   ̄  x    = 0.882(3) + 3.315(6 + 34/2)
     ̄  x    = 18.797 ft  round to 18.8 ft

 Since the variation of the pressure distribution is identical at 
all floor levels on the back of the wall, the resultant of all forces 
acting on the ends of the roof and floor slabs is located a dis-
tance of 18.8 ft from the edge of the building (Figure 2.19b).

STEP 6 Compute the shear force at the base of the shear walls. Sum 
the moments of all forces about a vertical axis passing through  
point A at the corner of the building (Figure 2.19c).

             ∑MA = 21 × 18.8 − V2(40)  and  V2 = 9.87 kips Ans.
 Compute V1:    V2 + V1 = 21 kips    
         V1 = 21 − 9.87 = 11.13 kips     Ans.

 Note: A complete analysis for wind requires that the designer 
consider the vertical pressures in zones E to H acting on the 
roof. These pressures are carried by a separate structural sys-
tem, composed of the roof slabs and beams, to the columns 
as well as to the shear walls. In the case of a flat roof, the 
wind flowing over the roof produces upward pressures (up-
lift) that reduce the axial compression in the columns.

18.8ʹ

D C

A B

(c)

R = 21 kips

V1 = 11.13 kips

V2 = 9.87 kips

30ʹ

40ʹ

V1 = 11.13 kips

(d )

4.45 kips

4.45 kips

2.23 kips
15ʹ

15ʹ

15ʹ

M1 = 300.6 kip • ft

Figure 2.19: Continued

Earthquake Loads
2.9

Earthquakes occur in many regions of the world. In certain locations where the 
intensity of the ground shaking is small, the designer does not have to con-
sider seismic effects. In other locations—particularly in regions near an active 
geological fault (a fracture line in the rock structure), such as the San Andreas 
fault that runs along the western coast of California—large ground motions 

2.9 ■ Earthquake Loads  59
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Δ

(b)(a)

base
V = ΣFi

F5

F4

F3

F2

F1

Figure 2.20: (a) Displacement of floors as 
building sways; (b) equivalent lateral forces 
produced by motion of floors.

Photo 2.4: (a) The 1995 Kobe Earthquake (Magnitude 6.9) caused a section of the elevated Hanshin Expressway to topple. The proximity 
of the epicenter in the highly populated urban cities caused significant casualties and economic losses. Observations of earthquake damage 
in countries like the United States and Japan show a high correlation between damage and construction era. Unless they are retrofitted, 
bridges built before 1970 are more vulnerable to earthquake damage. (b) Collapse of apartment buildings: The 1999 Chi-Chi earthquake 
(magnitude 7.7) in Taiwan caused the upper floors of the apartment buildings to topple over as a unit due to the formation of a soft-story 
at the ground level.

(b)(a)

(a) © Frieder Seible; (b) © Chia-Ming Uang

frequently occur that can damage or destroy buildings and bridges in large 
areas of cities (Photo 2.4a and b). For example, San Francisco was devastated 
by an earthquake in 1906, before building and bridge codes contained seismic 
provisions. 

The ground motions created by major earthquake forces cause build-
ings to sway back and forth. Assuming the building is fixed at its base, the 
displacement of floors will vary from zero at the base to a maximum at the 
roof (Figure 2.20a). As the floors move laterally, the lateral bracing system 
is stressed as it acts to resist the lateral displacement of the floors. The forces 
associated with this motion, inertia forces, are a function of both the weight 
of the floors and attached equipment and partitions as well as the stiffness 
of the structure. The sum of the lateral inertia forces acting on all floors and 
transmitted to the foundations is termed the base shear and is denoted by V 
(Figure 2.20b). In most buildings in which the weight of floors is similar in 
magnitude, the distribution of the inertia forces is similar to that created by 
wind, as discussed in Section 2.8.

Although there are several analytical procedures to determine the mag-
nitude of the base shear for which buildings must be designed, we will only 
consider the equivalent lateral force procedure, described in the ASCE stan-
dard. Using this procedure, we compute the magnitude of the base shear as 

  V =   
 S  D1  W ______ 

T (R/Ie) 
   (2.10a)

but not to exceed

   V  max   =   
 S  DS  W ____ 
R/Ie

   (2.10b)
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and not less than

  Vmin = 0.044SDSIeW (2.10c)

where W =  total dead load of building and its permanent equipment 
and partitions.

 T =  fundamental natural period of building, which can be com-
puted by the following empirical equation:

  T = Cthn
x (2.11)

 hn =  the building height in feet (meters, above the base).
 Ct =  0.028 (or 0.068 in SI units), and x = 0.8 for steel rigid frames 

(moment frames), Ct = 0.016 (0.044 SI) and x = 0.9 for rein-
forced concrete rigid frames, and Ct = 0.02 (0.055 SI) and 
x = 0.75 for most other systems (for example, systems with 
braced frames or structural walls). 

 SD1 =  a factor computed using seismic maps that shows intensity 
of design earthquake for structures with T = 1 s. Table 2.10 
gives the values for several locations.

 SDS =  a factor computed using seismic maps that shows intensity  
of design earthquake at particular locations for structures with 
T = 0.2 s. Table 2.10 gives the values for several locations.

 R =  response modification factor, which represents the 
ductility capacity of a structural system to resist 
seismic forces. This factor, which varies from 8 to 
1.25, is tabulated in Table 2.11 for several com-
mon structural systems. The highest values are 
assigned to ductile systems; the lowest values, to 
brittle systems. Since R occurs in the denominator 
of Equations 2.10a and b, a structural system with 
a large value of R will permit a large reduction in 
the seismic force the structural system must be de-
signed to support.

    The natural period of a building (the time re-
quired for a building to go through one complete 
cycle of motion) is a function of the lateral stiff-
ness and the mass of the structure. Since the base 
shear V is inversely proportional to the magnitude 

TABLE 2.10  Representative 
Values of SDS  
and SD1 at 
Selected Cities 

City   SDS   SD1

Los Angeles, California
Salt Lake City, Utah
Memphis, Tennessee
New York, New York

1.3
1.0

 0.68
 0.19

 0.47
0.5

 0.23
 0.04

Note: Values of SDS and SD1 are based on the assumption that foun-
dations are supported on rock of moderate strength. These values 
increase for weaker soils with lower bearing capacity.

TABLE 2.11  Values of R for Several Common 
Lateral Bracing Structural Systems 

Description of Structural System R

Ductile (or Special) steel or concrete frame with rigid joints
Ordinary reinforced concrete shear walls
Ordinary reinforced masonry shear wall

8
4
2
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of the natural period, it reduces as the lateral stiffness of 
the structural bracing system increases. Of course, if the 
stiffness of the lateral bracing system is too small, lateral 
displacements may become excessive, producing damage to 
windows, exterior walls, and other nonstructural elements.

 Ie =  importance factor is described in Section 2.5. For calcu-
lating earthquake loads, Ie is 1.0, 1.0, 1.25 and 1.5 for the 
respective categories I, II, III, and IV.

Note: The upper limit given by Equation 2.10b is required because  
Equation 2.10a produces values of base shear that are too conservative for 
very stiff structures that have short natural periods. The ASCE standard also 
sets a lower limit (Equation 2.10c) to ensure that the building is designed for 
a minimum seismic force.

Distribution of Seismic Base Shear V to Each Floor Level

The distribution of the seismic base shear V to each floor is computed using 
Equation 2.12.

  Fx =    
wx  h  x  k  ______ 

  ∑ 
i=1

  
n
  wi h  i  k  

   V (2.12)

where Fx = the lateral seismic force at level x
 wi and wx = deadweight of floor at levels i and x
 hi and hx = height from base to floors at levels i and x
 k =  1 for T ≤ 0.5 s, 2 for T ≥ 2.5 s. For structures with 

a period between 0.5 and 2.5 s, k is determined by 
linear interpolation between T equal to 1 and 2 as

  k = 1 +   T − 0.5 _____ 
2
   (2.13)

See Figure 2.21 for graphical representation of Equation 2.13.

k = 1 + T – 0.5
2

0

0.5

1.0
1.2
1.5

2.0

0.890.50 1.5 2.5 3.02.0
T (seconds)

k

Figure 2.21: Interpolate for k value.

E X A M P L E  2 . 8 Determine the design seismic forces acting at each floor of the six-story 
office building in Figure 2.22. The structure of the building consists of 
steel moment frames (all joints are rigid) that have an R value of 8. The 
75-ft-tall building is located in a high seismic region with SD1 = 0.4g and 
SD1 = 1.0g for a building supported on rock, where g is the gravitational 
acceleration. The deadweight of each floor is 700 kips.

Solution
Compute the fundamental period, using Equation 2.11:

T = Cthn
x = 0.028(75)0.8 = 0.89 s
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Assuming that the floor deadweight contains an allowance for the weight of 
columns, beams, partitions, ceiling, etc., the total weight W of the building is 
W = 700(6) = 4200 kips.
 The occupancy importance factor Ie is 1 for office buildings. Compute 
the base shear V using Equations 2.10a and c:

 V =    
SD1 _______ 

T(R/Ie)
    W =     0.4 _______ 0.89(8/1)   (4200) = 236 kips (2.10a)

but not more than 

 Vmax =    
SDS ___ 
R/I

    W =    1.0 ___ 
8/1

   (4200) = 525 kips (2.10b)

and not less than 

 Vmin = 0.044SDSIW = 0.044 × 1.0 × 1 × 4200 = 184.8 kips (2.10c)

Therefore, use V = 236 kips.
Computations of the lateral seismic force at each floor level are sum-

marized in Table 2.12. To illustrate these computations, we compute the 
load at the third floor. Since T = 0.89 s lies between 0.5 and 2.5 s, we must 
interpolate using Equation 2.13 to compute the k value (Figure 2.21):

k = 1 +    T – 0.5 _____ 2    = 1 +    0.89 – 0.5 _______ 2    = 1.2

 F3rd floor =    w3 h  3  k  _______ 
  ∑ 
i = 1

  
n
   wi h  i  k  

   V    =    36,537 _______ 415,262   (236) = 20.8 kips

15
ʹ 2nd floor

20 40 60
force (kips)

80

3rd floor

4th floor

he
ig

ht
 (f

t)

5th floor

6th floor

roof

10.1

20.8

32.3

44.6

57.4

70.8

5 
@

 1
2ʹ

 =
 6

0ʹ

(a)

(b)

Figure 2.22: (a) Six-story building; (b) lat-
eral load profile.
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TABLE 2.12  Computation of Seismic Lateral Forces 

Floor
Weight  
wi (kips)

Floor  
Height  
hi (ft) wi  h  i  

k  

   
wx h  x  

k 
 ______ 

 ∑ 
i = 1

  
6
  wi h  i  

k  
   

Fx (kips)

Roof
6th
5th
4th
3rd
2nd

700
700
700
700
700
700

75
63
51
39
27
15

124,501
100,997
78,376
56,804
36,537
18,047

0.300
0.243
0.189
0.137
0.088
0.043

70.8
57.4
44.6
32.3
20.8
10.1

   W =    ∑ 
i = 1

  
6
  wi   = 4200       ∑ 

i = 1
  

6
  wi h  i  k    = 415,262   V =    ∑ 

i = 1
  

6
  Fi   = 236
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Tsunami Loads

Introduction 

Unlike normal waves caused by winds and tides, tsunamis are a series of 
waves in a large body of water, typically an ocean, caused by direct dis-
placement of the water. This displacement is often due to an earthquake 
either through sudden upward motion of the sea floor or resulting landslides 
into or under the water (submarine landslides) triggered by the shaking. 
In coastal regions susceptible to offshore earthquakes, these large power-
ful waves can travel inland far beyond the typical tide level, carrying with 
them loose debris, vehicles, boats, and even whole poorly anchored struc-
tures (see Chapter 2 opening page). The devastating tsunamis in Sumatra, 
Indonesia in 2004 and along the Northern Pacific Coast of Japan in 2011 
killed over 250,000 people while resulting in massive economic losses. The 
Pacific coasts of the United States and Alaska together with Hawaii are in 
direct risk of tsunami waves with potential to harm millions of residents and 
tourists, several major airports, and many major shipping ports. It was not 
until 2016 that a procedure for determining tsunami loading is adopted by 
the ASCE standard.

Although the chaotic mix of fast-moving and very tall waves presents a 
complex loading scenario, primary parameters for determining tsunami de-
sign loads are the predicted height and flow velocity of water at the location 
of the structure during the tsunami, called the maximum inundation height, 
hmax, and maximum tsunami flow velocity, umax, respectively. The calculation 
depends on topography of the shoreline and sea floor (known as bathym-
etry), the height of offshore tsunami wave, HT, and the inland extent and 
elevation of flooding, called the inundation limit distance, xR, and run-up 
elevation, R (Figure 2.23). The ASCE standard provides mapped values of 

2.10

On March 11, 2011 the 
Magnitude 9.0 Tohoku, Japan 
Earthquake thrust the seafloor 
up by 20 to 26 ft (6 to 8 m) 
and caused a major tsunami. 
The 33-ft (10-m) tall seawalls 
protecting nearby Fukushima 
nuclear power plant were 
overwhelmed by a wave ap-
proximately 45-ft (14 m) high. 
Consequent flooding failed 
emergency cooling systems 
and disrupted control room 
power, events that contrib-
uted to three nuclear melt-
downs, explosions, and the 
release of radioactive materi-
als from the plant. It was the 
worst nuclear disaster since 
Chernobyl, in 1986.

Offshore
Tsunami Height, HT

Inundation Limit Distance, XrSea-Level

Depth of 33 ft
(100 m)

Inundation
Depth, hmax

Structure being analyzed

Figure 2.23: Anatomy of a tsunami wave.
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inundation limit and run-up elevation corresponding to the maximum con-
sidered tsunami, which has a 2 percent chance of exceedance in 50 years. 
Structures are required to be subjected to varying magnitudes of tsunami 
loads and other structural parameters based on their risk, as discussed in Sec-
tion 2.7. The ASCE standard assigns tsunami importance factor, Itsu, to each 
risk category (Equation 2.17). The most critical risk category IV includes 
Vertical Evacuation Refuges provided in locations with shorelines that are 
relatively flat, where people cannot quickly flee to high ground when a tsu-
nami is imminent. 

The basic tsunami loads considered by structural designers are 
hydrostatic and hydrodynamic pressures, buoyancy forces, and forces from 
debris impact. All depend on the inundation height of the structure being 
analyzed and the flow velocity. See ASCE 7 standard for the calculation of 
hmax and umax.

Wave Loading Stages

Since a tsunami consists of a set of consecutive waves, there are three sce-
narios or wave load cases to be considered when applying these forces. The 
ASCE standard provides a simple relationship between inundation height and 
flow velocity during wave inflow and outflow (Figure 2.24). Load Cases 2 
and 3 represent critical combinations of water height and flow velocity which 
occur over the period of the tsunami wave. Load Case 2 considers maximum 
flow velocity, umax, during inflow or outflow when inundation height is 2/3 
of hmax. Likewise, Load Case 3 represents the loading due to maximum in-
undation height, hmax, at which point flow velocity is 1/3 of umax. Load Case 
1 assumes an inundation height that results in maximum buoyant (uplift-
ing) forces together with the hydrodynamic load (both are discussed later 
in this section) due to the associated velocity. This way, the structure can be 
designed to be properly anchored so it is not carried away in the tsunami. 
Table 2.13 summarizes these cases, which allow designers to account for 
various tsunami loading scenarios. Example 2.9 demonstrates the tsunami 
load cases using the simplified tsunami loads (discussed next) applied to a 
two-story building.

TABLE 2.13 Tsunami Design Load Cases

Load  
Case hdes udes Loading Implications

1 h resulting 
max buoyancy

u corresponding 
to h (Figure 2.24)

Loads that tend to carry 
structures away

2 (2/3) hmax umax
Maximum lateral hydro-
dynamic forces

3 hmax (1/3) umax
Forces due to maximum 
depth of water
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Types of Tsunami Loading

Hydrostatic Loads. A depth of standing water causes horizontal and vertical 
pressures on submerged structures called hydrostatic pressure (Figure 2.25). 
The horizontal resultant of this pressure is found as:

    F  h   =   1 __ 2    γ  s   b h  des  2    (2.14)

where γs (= 70.4 lb/ft3 or 1130 kg/m3) is the specific weight density of seawater, 
which equals 64 lb/ft3 (1030 kg/m3) multiplied by a fluid density factor 1.1 to 
account for the weight of sediment and debris in tsunami wave water, b is the 
width of the submerged wall and hdes is the height of water applicable to the 
structure or wall being analyzed below the inundation height, hmax.

Hydrostatic loads can affect structures in both directions. If the inunda-
tion height overtakes a building floor height (Figure 2.26), residual water is 
expected to remain inside when tsunami waves recede. The magnitude of this 
extra gravity pressure is given as

    p  r   =  γ  s    h  r    (2.15)

where hr is the height of continuous walls of an inundated floor. Further, this 
residual water would apply an additional horizontal pressure on the wall as 
shown in Figure 2.26b.
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Load
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Figure 2.24: Relationship between inun-
dation height and flow velocity for three  
loading cases corresponding to inflow and  
outflow of tsunami waves in ASCE 7 Standard. 
Note: Load Case 1 depends on the structure 
and inundation height being analyzed.
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Structures displacing water are subjected to vertical uplift forces due to buoy-
ancy found as

    F  v   =  γ  s    V  w    (2.16)

where Vw is the volume of water displaced by the structure or object 
(Figure 2.27). This upward force is responsible for uplifting pressure tanks, 
cars, and even whole buildings, turning them into fast moving debris.

Hydrodynamic Loads. Similar to the pressure created by winds, structures 
in the flow path of water experience pressure as the flow passes around them 
(Figures 2.11 and 2.12). This hydrodynamic pressure varies with flow veloc-
ity, u. The lateral forces to be applied to the lateral-force-resisting structure at 
each level, x, can be calculated as

    F  dx   =   1 __ 2   ( ρ  s  )   I  tsu    C  d    C  cx   B ( h  des    u  des  2  )   (2.17)

horizontal
pressure

height of water, hmax 

resulting
horizontal force

on surface of width b 

γs2
1 h2

desFh =

γshmax

vertical
pressure

3
1 hdes

hdes

0

(a) (b)

Figure 2.25: (a) Vertical and horizontal hydrostatic pressures; (b) assuming a surface 
with width b the resultant horizontal hydrostatic force acts at the centroid of the triangular 
hydrostatic pressure.

hr

height of water, hmax   

(a) at maximum inundation (b) after wave recession

water infiltrating
building through

an opening
+

γshr γshr

Figure 2.26: (a) Maximum inundation fills an open space in a building with water; (b) when 
the wave recedes the floor retains a depth of water, thereby causing a hydrostatic loading.
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tank

Fv = γsVtank

Figure 2.27: A fully submerged tank would 
displace a volume of water equal to its own 
volume, causing a large upward force that 
would need to be resisted by the two vertical 
supports and the foundation.
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68  Chapter 2 ■ Design Loads and Structural Framing

where Fdx = the lateral hydrodynamic force applied at inundated level x
 ρs  =  mass density of tsunami seawater = ρsw(1.1 ) = 2.0 slug/ft3 

(1.1) ≈ 70.4 lb-s2/ft4 [1030 kg/m3]
 Itsu =  tsunami importance factor which is 1.0 for tsunami risk 

category II, and 1.25 otherwise
 Cd =  drag coefficient based on the ratio of B to hsx, and is tabu-

larized in the ASCE standard
 B = building wall width
 udes =  flow velocity corresponding to hdes
 Ccx =  closure coefficient which adjusts for the amount of inun-

dated area of the surface being considered; it can be conser-
vatively assumed to be equal to 1.0

Simplified Debris Impact Load. The debris in the waves make tsunamis 
extremely dangerous and damaging due to the impact of the floating and 
fast moving flotsam (debris in the water). The ASCE standard provides a 
simplified expression for the debris impact load. The impact can be taken as 
a magnitude of 

    F  i   = 330  C  o    I  tsu    (kips)  (2.18a)

    F  i   = 1470  C  o    I  tsu    (kN) (2.18b)

where Co (= 0.65) is the orientation coefficient to account for unlikely per-
pendicular debris strike. This simplified force assumes a dynamic amplifi-
cation factor of 1.5 applied to a 220-kip (980 kN) shipping container. The 
ASCE standard requires this force to be applied at inundation heights of 3 ft 
and above, which has been shown to be the minimum depth of water capable 
of floating these objects. Photo 2.5 is an example of both the amount of de-
bris present in tsunami waves and the local damage large debris objects can 
impart to a structure.

Photo 2.5: The column of a building was 
impacted by some large object like a boat, 
car, or shipping container.
© Taichiro Okazaki
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Determine the horizontal and vertical loads for tsunami Load Case 1 
on the two-story building shown in Figure 2.28. It is located in an area 
prone to tsunami flooding, so it has been built with an open area to 
allow water to pass under the building. However, the first story is com-
pletely enclosed, as are the first 3 ft of the second story. The maximum 
inundation height and flow velocity have been determined as 20 ft and 
12 ft/sec, respectively. Use the building geometry to find the design 
inundation height, hdes, and Figure 2.28 to find design flow velocity, 
udes, required for Load Case 1. Assume the drag coefficient Cd = 1.25 
and Csx = Itsu= 1.0.

E X A M P L E  2 . 9

hdes = 15 ft

Load Case 1

(b) Side view(a) Front view

1

2

Direction of Flow

4 ft

4 ft

3 ft

10 ft

2 ft

30 ft 20 ft

open

open

Figure 2.28: A two-story building with openings is subjected to tsunami waves.
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Solution
Since the maximum inundation height of 20 ft is above the opening 
in level 2, hdes is equal to the height of the opening. 

  h  des   = 15 ft ;      h  des   ____  h  max  
   =   15 ft ____ 20 ft   = 0.75 

Using Figure 2.24, the ratio of udes to umax is 0.90.

    u  des   ____  u  max     = 0.90 =    u  des   _______ 12 ft/sec   , so   u  des   = 10.8 ft/sec 
[continues on next page]

lee98004_ch02_026-079.indd   69 25/12/16   11:51 am



70  Chapter 2 ■ Design Loads and Structural Framing

Therefore, the height of wall exposed to hydrodynamic forces on levels 1 
and 2 are found by each floor’s tributary height, and used in Equation 2.17 
to obtain the force magnitude:

 h  trib,1   =   10 ft ____ 2   = 5 ft  and   h  trib,2   =    (10 + 3)  ft _______ 2   = 6.5 ft

    F  dx   =   1 __ 2   ( ρ  s  )   I  tsu    C  d    C  cx   B ( h  des    u  des  2  )  (2.17)

     F  d1   =   1 __ 2   (70.4    lb-s   2  ____ 
 ft   4 

  )  (1.0)  (1.25)  (1.0)  (30 ft)  (5 ft)    (10.8   ft __ s  )    
2
  = 769.8 kips

    F  d2   =   1 __ 2   (70.4    lb-s   2  ____ 
 ft   4 

  )  (1.0)  (1.25)  (1.0)  (30ft)  (6.5 ft)    (10.8   ft __ s  )    
2
  = 1000.8 kips

The vertical hydrostatic force, or buoyancy force, is found using 
Equation 2.16.
Compute the volume of displaced water:

 V  w   =  (10 ft) 30 ft (20 ft)  = 6000   ft   3 

 F  V   =  γ  s    V  w   = 70.4   lb __ 
 ft   3 

   (6000   ft   3 )  = 422.4 kips (2.16)

Example 2.9 continues . . .

Other Loads

There are a number of other loads specified in ASCE that need to be consid-
ered when appropriate. These include loads on structures built in flood zone 
areas, structures built below grade, structures that can accumulate rain or ice, 
structures subject to impact due to explosions or vehicular impact, structures 
that support reciprocating mechanical systems, structures exposed to variable 
or extreme thermal or moist conditions, among others.

Flood loads occur in flood hazard areas, such as along seacoasts 
or rivers. The flood zone areas are defined by the appropriate authority hav-
ing jurisdiction. Floods produce hydrostatic, hydrodynamic or wave loads 
on structures and can cause damage or failure due to scour and erosion of a 
structure.

Similarly, soils develop hydrostatic pressure below grade. These can 
cause lateral earth pressures on walls or uplift pressures on floor slabs and 
foundations.

Flats roofs need to be properly drained to avoid the ponding of rain 
water. The ASCE standard requires that each portion of the roof be de-
signed to support the weight of all rainwater that could accumulate on it if 
the primary drainage system for that portion were blocked. If not properly 
considered in design, rain loads may produce excessive deflec tions of roof 
beams, producing an instability problem (called ponding), causing the roof 
to collapse.

2.11

422.4 kips
Fd1 = 769.8 kips

Fd2 = 1000.8 kips

1

2
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These types of loads can have an adverse effect on structural behavior, 
strength, and stability, and must be appropriately combined with all other 
possible loads to determine the worst-case design forces acting on a given 
structure or structural member.

Load Combinations

The forces (e.g., axial force, moment, shear) produced by various combina-
tions of loads discussed need to be combined in a proper manner and in-
creased by a factor of safety (load factor) to produce the desired level of 
safety. The combined load effect, sometimes called the required factored 
strength, represents the minimum strength for which members need to be 
designed. Considering the load effect produced by the dead load D, live load 
L, roof live load Lr, wind load W, earthquake load E, and snow load S, the 
ASCE standard requires that the following load combinations be considered:

  1.4D (2.19)
  1.2D + 1.6L + 0.5(Lr or S ) (2.20)
  1.2D + 1.6(Lr or S) + (L or 0.5W ) (2.21)
  1.2D + 1.0W + L + 0.5(Lr or S ) (2.22)
  1.2D + 1.0E + L + 0.2S (2.23)
The load combination that produces the largest value of force represents the 
load for which the member must be designed.

2.12

E X A M P L E  2 . 1 0A column in a building is subject to gravity load only. Using the tributary 
area concept, the axial loads produced by the dead load, live load, and roof 
live load are
 PD = 90 kips
 PL  = 120 kips
 PLr

 = 20 kips

What is the required axial strength of the column?

Solution

 1.4PD = 1.4(90) = 126 kips (2.19)

1.2PD + 1.6PL + 0.5PLr
 = 1.2(90) + 1.6(120) + 0.5(20) = 310 kips (2.20)

1.2PD + 1.6PLr
 + 0.5PL = 1.2(90) + 1.6(20) + 0.5(120) = 200 kips (2.21)

Therefore, the required axial load is 310 kips. In this case, the load combi-
nation in Equation 2.20 governs. However, if the dead load is signi ficantly 
larger than the live loads, Equation 2.19 may govern.
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E X A M P L E  2 . 1 1 To determine the required flexural strength at one end of a beam in a con-
crete frame, the moments produced by dead, live, and wind load are:

 MD = −100 kip⋅ft

  ML = −50 kip⋅ft

 Mw = ±200 kip⋅ft

where the minus sign indicates that the beam end is subject to counter-
clockwise moment while the plus sign indicates clockwise moment. Both 
the plus and minus signs are assigned to Mw because the wind load can act 
on the building in either direction. Compute the required flexural strength for 
both positive and negative bending.

Solution
Negative bending:

 1.4MD = 1.4(−100) = −140 kip⋅ft (2.19)

   1.2MD + 1.6ML = 1.2(−100) + 1.6(−50) = −200 kip⋅ft (2.20)

 1.2MD + 1.0Mw + ML = 1.2(−100) + 1.0(−200) + (−50)  
   = −370 kip⋅ft    (governs) (2.22)

Positive bending: Load combinations from Equations 2.19 and 2.20 need 
not be considered because both produce negative moments.

 1.2MD + 1.0Mw + ML = 1.2(−100) + 1.0(+200) + (−50)  
  = +30 kip⋅ft (2.22)

Therefore, the beam needs to be designed for a positive moment of  
30 kip⋅ft and a negative moment of 370 kip⋅ft.

Summary

 • Loads that engineers must consider in the design of buildings and 
bridges include dead loads, live loads, and environmental forces—
wind, earthquake, snow, and rain. Other types of structures such as 
dams, water tanks, and foundations must resist fluid and soil pressures, 
and for these cases specialists are often consulted to evaluate these 
forces.

 • The loads that govern the design of structures are specified by national 
and local building codes. Structural codes also specify additional load-
ing provisions that apply specifically to construction materials such as 
steel, reinforced concrete, aluminum, and wood. 

 • Since it is unlikely that maximum values of live load, snow, wind, earth-
quake, and so forth will act simultaneously, codes permit a reduction 
in the values of loads when various load combinations are considered. 
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Dead load, however, is not reduced unless it provides an adverse effect, 
such as when determining uplift force on a footing.

 • To account for dynamic effects from moving vehicles, elevators, sup-
ports for reciprocating machinery, and so forth, impact factors that 
increase the live load are specified in building codes. 

 • In zones where wind or earthquake forces are small, low-rise buildings 
are initially proportioned for live and dead load, and then checked for 
wind or earthquake, or both, depending on the region; the design can 
be easily modified as needed. On the other hand, for high-rise buildings 
located in regions where large earthquakes or high winds are common, 
designers must give high priority in the preliminary design phase to 
select structural systems (for example, shear walls or braced frames) that 
resist lateral loads efficiently.

 • Wind velocities increase with height above the ground. Values of 
positive wind pressures are given by the velocity pressure exposure 
coefficient Kz tabulated in Table 2.4.

 • Negative pressures of uniform intensity develop on three sides of rect-
angular buildings that are evaluated by multiplying the magnitude of the 
positive windward pressure at the top of the building by the coefficients 
in Table 2.7.

 • The wind bracing system in each direction must be designed to carry 
the sum of the wind forces on the windward and leeward sides of the 
building. 

 • For tall buildings or for buildings with an unusual profile, wind tunnel 
studies using instrumented small-scale models often establish the mag-
nitude and distribution of wind pressures. The model must also include 
adjacent buildings, which influence the magnitude and the direction of 
the air pressure on the building being studied. 

 • The ground motions produced by earthquakes cause buildings, bridges, 
and other structures to sway. In buildings this motion creates lateral in-
ertia forces that are assumed to be concentrated at each floor. The inertia 
forces are greatest at the top of buildings where the displacements are 
greatest.

 • The magnitude of the inertia forces depends on the size of the 
earthquake, the weight of the building, the natural period of the 
building, the stiffness and ductility of the structural frame, and the 
soil type.

 • Buildings with a ductile frame (that can undergo large deformations 
without collapsing) may be designed for much smaller seismic forces 
than structures that depend on a brittle structural system (for example, 
unreinforced masonry).

 • Tsunami are a set of powerful waves that generate hydrostatic and 
hydrodynamic lateral loads on structures. Due to inundation, floors 
can take on large additional gravity loads due to retained flood water. 
Hydrostatic uplift forces affect even partially submerged water-tight 
structures, which causes tsunami waves to be full of large dangerous and 
damaging debris. This requires structures also be designed in consider-
ation of large debris impact loads.
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supported steel beams, with a tributary width of 10 ft, and 
weighs 50 psf.

The estimated uniform dead load for structural steel 
framing, fireproofing, architectural features, floor finish, 
and ceiling tiles equals 24 psf, and for mechanical duct-
ing, piping, and electrical systems equals 6 psf.

P2.1. Determine the deadweight of a 1-ft-long segment of 
the prestressed, reinforced concrete tee-beam whose cross 
section is shown in Figure P2.1. Beam is constructed with 
lightweight concrete which weighs 120 lbs/ft3.

PROBLEMS

P2.3. A wide flange steel beam shown in Figure P2.3 
supports a permanent concrete masonry wall, floor slab, 
architectural finishes, mechanical and electrical systems. 
Determine the uniform dead load in kips per linear foot 
acting on the beam.

The wall is 9.5-ft high, non-load bearing and later-
ally braced at the top to upper floor framing (not shown). 
The wall consists of 8-in. lightweight reinforced concrete 
masonry units with an average weight of 90 psf. The com-
posite concrete floor slab construction spans over simply 

P2.2. Determine the deadweight of a 1-ft-long segment 
of a typical 20-in-wide unit of a roof supported on a nomi-
nal 2 × 16 in. southern pine beam (the actual dimensions 
are    1 _ 2    in. smaller). The    3 __ 4   -in. plywood weighs 3 lb/ft2.

P2.4. Consider the floor plan shown in Figure P2.4. 
Compute the tributary areas for (a) floor beam B1, 
(b) floor beam B2, (c) girder G1, (d) girder G2, (e) corner 
column C1, and (f ) interior column C2.
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P2.5. Refer to Figure P2.4 for the floor plan. Calculate 
the tributary areas for (a) floor beam B3, (b) floor beam 
B4, (c) girder G3, (d) girder G4, (e) edge column C3, and  
(f ) corner column C4.

P2.6. The uniformly distributed live load on the floor 
plan in Figure P2.4 is 60 lb/ft2. Establish the loading for 
members (a) floor beam B1, (b) floor beam B2, (c) girder 
G1, and (d) girder G2. Consider the live load reduction if 
permitted by the ASCE standard.

P2.7. The uniformly distributed live load on the floor plan 
in Figure P2.4 is 60 lb/ft2. Establish the loading for mem-
bers (a) floor beam B3, (b) floor beam B4, (c) girder G3, 
and girder G4. Consider the live load reduction if permit-
ted by the ASCE standard.

P2.8. The building section associated with the floor plan 
in Figure P2.4 is shown in Figure P2.8. Assume a live load 
of 60 lb/ft2 on all three floors. Calculate the axial forces 
produced by the live load in column C2 in the third and 
first stories. Consider any live load reduction if permitted 
by the ASCE standard.
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C3 C1
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P2.8

P2.9. The building section associated with the floor plan 
in Figure P2.4 is shown in Figure P2.7. Assume a live load 
of 60 lb/ft2 on all three floors. Calculate the axial forces 
produced by the live load in column C3 in the third and 
first stories. Consider any live load reduction if permitted 
by the ASCE standard.

P2.10. A five-story building is shown in Figure P2.10. 
Following the ASCE standard, the wind pressure along the 

height on the windward side has been established as shown 
in Figure P2.10(c). (a) Considering the windward pressure 
in the east-west direction, use the tributary area concept 
to compute the resultant wind force at each floor level.  
(b) Compute the horizontal base shear and the overturn-
ing moment of the building.
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P2.10

P2.11. A mechanical support framing system is shown 
in Figure P2.11. The framing consists of steel floor grat-
ing over steel beams and entirely supported by four ten-
sion hangers that are connected to floor framing above 
it. It supports light machinery with an operating weight 
of 4000 lbs, centrally located. (a) Determine the impact 
factor I from the Live Load Impact Factor, Table 2.3. 
(b) Calculate the total live load acting on one hanger due 
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to the machinery and uniform live load of 40 psf around 
the machine. (c) Calculate the total dead load acting on 
one hanger. The floor framing dead load is 25 psf. Ignore 

the weight of the hangers. Lateral bracing is located on all 
four edges of the mechanical floor framing for stability 
and transfer of lateral loads.

P2.12. The dimensions of a 9-m-high warehouse are 
shown in Figure P2.12. The windward and leeward wind 
pressure profiles in the long direction of the warehouse 
are also shown. Establish the wind forces based on the 
following information: basic wind speed = 40 m/s, wind 
exposure category = C, Kd = 0.85, Kzt = 1.0, G = 0.85, 
and Cp = 0.8 for windward wall and −0.2 for leeward 
wall. Use the Kz values listed in Table 2.4. What is the  
total wind force acting in the long direction of the 
 warehouse?
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lee98004_ch02_026-079.indd   76 25/12/16   11:52 am



P2.13. The dimensions of an enclosed gabled building are 
shown in Figure P2.13a. The external pressures for the 
wind load perpendicular to the ridge of the building are 
shown in Figure P2.13b. Note that the wind pressure can 
act toward or away from the windward roof surface. For 
the particular building dimensions given, the Cp value for 
the roof based on the ASCE standard can be determined 
from Table P2.13, where plus and minus signs signify 
pressures acting toward and away from the surfaces, re-
spectively. Where two values of Cp are listed, this indi-
cates that the windward roof slope is subjected to either 

TABLE P2.13 Roof Pressure Coefficient Cp

 Windward  Leeward

Angle θ 10 15 20 25 30 35 45 ≥60 10 15 ≥20
Cp −0.9 −0.7 −0.4 −0.3 −0.2 −0.2 0.0 0.01θ* −0.5 −0.5 −0.6
   0.0 0.2 0.2 0.3 0.4

*θ defined in Figure P2.13

(b)

(a)

48ʹ

Section

80ʹ

wind

16ʹ

16ʹ

h

qhGCp

qhGCpqzGCp

qhGCp
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positive or negative pressures, and the roof structure 
should be designed for both loading conditions. The ASCE 
standard permits linear interpolation for the value of the 
inclined angle of roof θ. But interpolation should only  
be carried out between values of the same sign. Establish  
the wind pressures on the building when positive pressure 
acts on the windward roof. Use the following data: ba-
sic wind speed = 100 mi/h, wind exposure category = B,  
Kd = 0.85, Kzt = 1.0, G = 0.85, and Cp = 0.8 for windward 
wall and –0.2 for leeward wall.

P2.14. Establish the wind pressures on the building in 
Problem P2.13 when the windward roof is subjected to 
an uplift wind force. 

P2.15. (a) Determine the wind pressure distribution  
on the four sides of the 10-story hospital shown in   
Figure P2.15. The building is located near the Georgia 
coast where the wind velocity contour map in the ASCE 
Standard specifies a design wind speed of 140 mph. The 
building, located on level flat ground, is classified as stiff 
because its natural period is less than 1 s. On the windward 

80ʹ

140ʹ

160ʹ
wind

140 mph

leeward

D

C

B

E

F

G

H

A

P2.15
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78  Chapter 2 ■ Design Loads and Structural Framing

side, evaluate the magnitude of the wind pressure every 
35 ft in the vertical direction. (b)  Assuming the wind 
pressure on the windward side varies linearly between the 
35-ft intervals, determine the total wind force on the 
building in the direction of the wind. Include the negative 
pressure on the leeward side.

P2.16. Consider the five-story building shown in  
Figure P2.10. The average weights of the floor and roof 
are 90 lb/ft2 and 70 lb/ft2, respectively. The values of SDS 
and SD1 are equal to 0.9g and 0.4g, respectively. Since 
steel moment frames are used in the north-south direc-
tion to resist the seismic forces, the value of R equals 8. 
Compute the seismic base shear V. Then distribute the 
base shear along the height of the building.

P2.17. When a moment frame does not exceed 12 stories 
in height and the story height is at least 10 ft, the ASCE 
standard provides a simpler expression to compute the ap-
proximate fundamental period:

T = 0.1N

where N = number of stories. Recompute T with the 
above expression and compare it with that obtained from 
Problem P2.16. Which method produces a larger seismic 
base shear?

P2.18. (a) A two-story hospital facility shown in  
Figure P2.18 is being designed in New York with a basic 
wind speed of 90 mi/h and wind exposure D. The impor-
tance factor I is 1.15 and Kz = 1.0. Use the simplified pro-
cedure to determine the design wind load, base shear, and 
building overturning moment. (b) Use the equivalent lateral 
force procedure to determine the seismic base shear and 
overturning moment. The facility, with an average weight 
of 90 lb/ft2 for both the floor and roof, is to be designed for P2.20. A beam that is part of a rigid frame has end  

moments and mid-span moments for dead, live, and earth-
quake loads shown below. Determine the governing load 
combination for both negative and positive moments at 
the ends and mid-span of the beam. Earthquake load can 
act in either direction, generating both negative and posi-
tive moments in the beam.

the following seismic factors: SDS = 0.27g and SD1 = 0.06g; 
reinforced concrete frames with an R value of 8 are to be 
used. The importance factor I is 1.5. (c) Do wind forces or 
seismic forces govern the strength design of the building?

P2.19. In the gabled roof structure shown in Figure P2.13, 
determine the sloped roof snow load Ps. The building is 
heated and is located in a windy area in Boston. Its roof 
consists of asphalt shingles. The building is used for a 
manufacturing facility, placing it in a type II occupancy 
category. Determine the roof slope factor, Cs using the 
ASCE graph shown in Figure P2.19. If roof trusses are 
spaced at 16 ft on center, what is the uniform snow load 
along a truss?

End Moments (ft-kip) Mid-Span Moments (ft-kip)
Dead Load −180 +90
Live Load −150 +150
Earthquake ±80 0

15ʹ

15ʹ

100ʹ

10
0ʹ

P2.18

unobstructed
slippery
surfaces with
thermal resistance,
R ≥ 30°F·h·ft2/Btu
(5.3°C·m2/W) for
unventilated roofs
or R ≥ 20°F·h·ft2/Btu
(3.5°C·m2/W) for
ventilated roofs

roofs with
obstructions or
non-slippery

surfaces

Roof Slope

Cs

0

0

0.2

0.4

0.6

0.8

5°
1.0

30° 60° 90°

Roof slope factor Cs
with warm roofs and Ct ≤ 1.0

P2.19
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P2.21. Calculate the vertical hydrostatic load on the 
5100-lb empty shipping container in Figure P2.19 sub-
jected to a tsunami inundation height of 3ʹ. Assuming the 
container is water-tight, will the tsunami wave be capable 
of carrying away the container as debris?

load applied at floor level on the wall IJKL for Load 
Cases 2 and 3, due to outflow. If windows are inundated, 
calculate the expected hydrostatic loading on the adjacent 
outside walls due to water retained by the floor, or floors. 
Finally, calculate the debris impact load to be applied 
to the free-standing column CD. Assume Itsu = 1.0 and 
Cd = 1.25.

8ʹ

20ʹ

8.6ʹ

P2.21

30ʹ

16ʹ

16ʹ

16ʹ

30ʹ

3ʹ

A

B

C

D

E

F

G

H

I

J

K

L

OPEN

IN Flow

OUT Flow
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P2.22. Consider the building in Figure P2.22, which has a 
width into the page of 35 ft. Maximum inundation height, 
hmax, and flow velocity, umax, have been determined as 33 ft 
and 20 ft/sec, respectively. Calculate the hydrodynamic 
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Air Traffic Control Tower  
at San Francisco International Airport

The new torch-shaped control tower, which surges 221 ft in the air into a graceful and 
flared twist, replaces the previous 1960s-era tower, which was temporarily knocked out 
of commission during the 6.9 magnitude 1989 Loma Prieta earthquake, compromising air 
safety. The new tower is structurally designed using two major criteria: seismic resistance 
and wind stability. To ensure that air traffic controllers remain fully operational throughout 
a large-magnitude earthquake, an innovative re-centering mechanism that allows the 
tower superstructure to rock but is brought back to its original position by a vertical post-
tensioned system is introduced. Suspended tuned mass dampers are also used to limit 
sway accelerations due to high winds at its bayside location.

© John Swain Photography.  Courtesy of Walter P. Moore.
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3Statics of Structures—
Reactions

Introduction
3.1

With few exceptions, structures must be stable under all conditions of load; 
that is, they must be able to support applied loads (their own weight, an-
ticipated live loads, wind, and so forth) without changing shape, undergo-
ing large displacements, or collapsing. Since structures that are stable do not 
move perceptibly when loaded, their analysis—the determination of both 
internal and external forces (reactions)—is based in large part on the princi-
ples and techniques contained in the branch of engineering mechanics called 
statics. The subject of statics, which you have studied previously, covers force 
systems acting on rigid bodies at rest (the most common case) or moving at 
constant velocity; that is, in either case the acceleration of the body is zero.

Although the structures we will study in this book are not absolutely 
rigid because they undergo small elastic deformations when loaded, in most 
situations the deflections are so small that we can (1) treat the structure or its 
components as rigid bodies and (2) base the analysis on the initial dimensions 
of the structure.

C H A P T E R

Chapter Objectives
 ● Review statics, prepare idealized structures, and identify appropriate free-body diagrams. Utilize the 

principle of transmissibility, equations of static equilibrium, and equations of condition in the analysis 
of structures.

 ● Study support conditions and their restraints, which include the prevention or allowance of  
translational and rotational movements.

 ● Calculate reactions for beams, bent frames, multistory frames, and trusses.

 ● Classify determinate and indeterminate structures, and determine the degree of indeterminacy for the 
latter. Understand and compare determinate and indeterminate structures in terms of safety through 
redundancy and proper locations of support conditions.

 ● Determine if a structure is stable or unstable. Understand instability caused by concurrent and parallel 
force sytems.
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82  Chapter 3 ■ Statics of Structures—Reactions

We begin this chapter with a brief review of statics. In this review we 
consider the characteristics of forces, discuss the equations of static equilib-
rium for two-dimensional (planar) structures, and use the equations of static 
equilibrium to determine the reactions and internal forces in a variety of sim-
ple determinate structures such as beams, trusses, and simple frames.

We conclude this chapter with a discussion of determinacy and stability. 
By determinacy, we mean procedures to establish if the equations of statics 
alone are sufficient to permit a complete analysis of a structure. If the struc-
ture cannot be analyzed by the equations of statics, the structure is  termed  
indeterminate. To analyze an indeterminate structure, we must supply addi-
tional equations by considering the geometry of the deflected shape. Indeter-
minate structures will be discussed in later chapters.

By stability, we mean the geometric arrangement of members and sup-
ports required to produce a stable structure, that is, a structure that can resist 
load from any direction without undergoing either a radical change in shape or 
large rigid-body displacements. In this chapter, we consider the stability and 
determinacy of structures that can be treated as either a single rigid body or as 
several interconnected rigid bodies. The principles that we establish for these 
simple structures will be extended to more complex structures in later chapters.

Forces
3.2

To solve typical structural problems, we use equations involving forces or 
their components. Forces may consist of either a linear force that tends to 
produce translation or a couple that tends to produce rotation of the body on 
which it acts. Since a force has magnitude and direction, it can be represented 
by a vector. For example, Figure 3.1a shows a force F with a magnitude F 
lying in the xy plane and passing through point A.

A couple consists of a pair of equal and oppositely directed forces lying 
in the same plane (Figure 3.1b). The moment M associated with the couple 
equals the product of the force F and the perpendicular distance (or arm) 
d between forces. Since a moment is a vector, it has magnitude as well as  

Figure 3.1: Force and moment vectors:  
(a) linear force vector resolved into x and y  
components; (b) couple of magnitude Fd;  
(c) alternative representation of moment M, 
by a vector using the right-hand rule.

0 0 0

Fx

Fy

A

F
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c
a

y
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(a)

F
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d

M = Fd

y

x

z
(b)

M

M

y

x

z
(c)
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3.2 ■ Forces  83

direction. Although we often represent a moment by a curved arrow to show 
that it acts in the clockwise or counterclockwise direction (Figure 3.1c), we 
can also represent a moment by a vector—usually a  double-headed arrow—
using the right-hand rule. In the right-hand rule we curl the fingers of the 
right hand in the direction of the moment, and the direction in which the 
thumb points indicates the direction of the  vector.

We must frequently carry out computations that require either resolving 
a force into its components or combining several forces to produce a single 
resultant force. To facilitate these calculations, it is convenient to select arbi-
trarily horizontal and vertical axes—an x-y coordinate system—as the basic 
reference directions.

A force can be resolved into components by using the geometric  
relationship—similar triangles—that exists between the vector components 
and the slope of the vector. For example, to express the vertical component 
Fy of the vector F in Figure 3.1a in terms of the slope of the vector, we write,  
using similar triangles,

   
Fy

 __ a    =    F __ c

   and   F  y   =   a _ c   F 

Similarly, if we set up a proportion between the horizontal component Fx and 
F and the sides of the slope triangle noted on the vector, we can write

  F  x   =   b __ c   F 

If a force is to be resolved into components that are not parallel to an x-y 
coordinate system, the law of sines provides a simple relationship between 
length of sides and interior angles opposite the respective sides. For the tri-
angle shown in Figure 3.2, we can state the law of sines as

   a ____ 
sin A

   =   b ____ 
sin B

   =   c ____ 
sin C

   

where A is the angle opposite side a, B is the angle opposite side b, and C is 
the angle opposite side c.

Example 3.1 illustrates the use of the law of sines to compute the ortho-
gonal components of a vertical force in arbitrary directions.

A
c

B

b

C

a

Figure 3.2: Diagram to illustrate law of sines.
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84  Chapter 3 ■ Statics of Structures—Reactions

Resultant of a Planar Force System

In certain structural problems we will need to determine the magnitude and  
location of the resultant of a force system. Since the resultant is a single force 
that produces the same external effect on a body as the original force system, 
the resultant R must satisfy the following three conditions:

1. The horizontal component of the resultant Rx must equal the algebraic 
sum of the horizontal components of all forces.

  Rx = ∑Fx (3.1a)
2. The vertical component of the resultant Ry must equal the algebraic sum 

of the vertical components of all forces.

  Ry = ∑Fy (3.1b)
3. The moment Mo produced by the resultant about a reference axis through 

point o must equal the moment about point o produced by all forces and 
couples that make up the original force system.

  Mo = Rd = ∑Fi di + ∑Mi (3.1c)

      where R = resultant force =   √ 
______

  R  x  2  +  R  y  2    
 d =  perpendicular distance from line of action  

of resultant to axis about which moments  
are computed (3.1d)

 ∑Fi di = moment of all forces about reference axis
 ∑Mi = moment of all couples about reference axis

E X A M P L E  3 . 1 Using the law of sines, resolve the 75-lb vertical force FAB in  
Figure 3.3a into components directed along lines a and b.

Solution
Through point B draw a line parallel to line b, forming triangle ABC. The 
interior angles of the triangle are easily computed from the information 
given. Vectors AC and CB (Figure 3.3b) represent the required compo-
nents of force FAB. From the law of sines we can write

   sin 80° _____ 
75

   =   sin 40° _____ 
 F  AC  

   =   sin 60° _____ 
 F  CB  

   

where sin 80° = 0.985, sin 60° = 0.866, and sin 40° = 0.643. Solving for 
FAC and FCB yields

  F  AC   =   sin 40° ______ 
sin 80°

    (75)  = 48.96 lb  Ans.

  F  CB   =   sin 60° ______ 
sin 80°

    (75)  = 65.94 lb  Ans.

b
a

A

A

C

C

B

B

50°30°

50°

FAB = 75 lb

FAB = 75 lb

(a)

(b)

FAC

FCB

60°

80°

40°

Figure 3.3: Resolution of 
a vertical force into com-
ponents.
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3.2 ■ Forces  85

Solution
Since none of the forces act in the horizontal direction or have components 
in the horizontal direction,

Rx = 0
Using Equation 3.1b gives

R = Ry = ∑Fy = 20 + 20 + 10 = 50 kN

Locate the position of the resultant, using Equation 3.1c; that is, equate the 
moment produced by the original force system to the moment produced by 
the resultant R. Select a reference axis through point A (choice of A arbitrary).

Rd = ∑Fi di

 50d = 20(0) + 20(3) + 10(5)

 d = 2.2 m

Ans.

Ans.

Determine the magnitude and location of the resultant R of the three wheel 
loads shown in Figure 3.4.

E X A M P L E  3 . 2

Figure 3.4

d

A B C

3 m 2 m

20 kN 20 kN

R = 50 kN

10 kN

Resultant of a Distributed Load

In addition to concentrated loads and couples, many structures carry dis-
tributed loads. The external effect of a distributed load (the computation of 
reactions it produces, for example) is most easily handled by replacing the 
distributed loads by an equivalent resultant force. As you have learned pre-
viously in statics and mechanics of materials courses, the magnitude of the 
resultant of a distributed load equals the area under the load curve and acts 
at its centroid (see Appendix Table A.1 for values of area and location of the 
centroid for several common geometric shapes). Example 3.3 illustrates the 
use of integration to compute the magnitude and location of the resultant of a 
distributed load with a parabolic variation.
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86  Chapter 3 ■ Statics of Structures—Reactions

If the shape of a distributed load is complex, the designer can often 
simplify the computation of the magnitude and position of the resultant by  
subdividing the area into several smaller geometric areas whose properties 
are known. In most cases distributed loads are uniform or vary linearly. For  
the latter case, you can divide the area into triangular and rectangular areas 
(Example 3.7).

As an alternative procedure the designer may replace a distributed load 
that varies in a complex manner by a statically equivalent set of concen-
trated loads using the equations in Figure 3.5. To use these equations, we 
divide the distributed loads into an arbitrary number of segments of length 
h. The ends of the segments are termed the nodes. Figure 3.5 shows two  
typical segments. The nodes are labeled 1, 2, and 3. The number of seg-
ments into which the load is divided depends on the length and shape of 
the distributed load and the quantity we will compute. If the distributed 
load varies linearly between nodes, the equivalent concentrated force at 
each node is given by the equations in Figure 3.5a. The equations for forces  
labeled P1 and P3 apply at an exterior node—a segment is located on only 
one side of the node, and P2 applies to an interior node—segments are  
located on both sides of a node.

For a distributed load with a parabolic variation (either concave up 
or concave down), the equations in Figure 3.5b should be used. These equa-
tions will also give good results (within 1 or 2 percent of the exact values) for 
distributed loads whose shape is represented by a higher-order curve. If the 
length of the segments is not too large, the simpler equations in Figure 3.5a 
can also be applied to a distributed load whose ordinates lie on a curve such 
as that shown in Figure 3.5b. When they are applied in this fashion, we are in 
effect replacing the actual loading curve by a series of trapezoidal elements, 
as shown by the dashed line in Figure 3.5b. As we reduce the distance h 
between nodes (or equivalently increase the number of segments), the trap-
ezoidal approximation approaches the actual curve. Example 3.4 illustrates 
the use of the equations of Figure 3.5.

1 2

(a)

3

h h

P1

P1= h
6 (2w1 + w2)

P2= h
6 (w1 + 4w2 + w3)

P3= h
6 (2w3 + w2)

P2

w2

w1
w3

P3

1 2

(b)

3

h h

P1

P1= h
24 (7w1 + 6w2 – w3)

P2= h
12 (w1 + 10w2 + w3)

P3= h
24 (7w3 + 6w2 – w1)

P2

w2
w1

w3

P3

Figure 3.5: (a) Expressions to convert a 
trapezoidal variation of load to a set of  
statically equivalent, equally spaced, con-
centrated loads; (b)  equations to convert 
a parabolic variation of load to a stati-
cally equivalent set of concentrated loads. 
Equations are valid for concave down-
ward para bolas also, and will give a close  
approximation for higher-order curves.
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3.2 ■ Forces  87

Although the resultant of a distributed load produces the same external 
effect on a body as the original loading, the internal stresses produced by 
the resultant are not the same as those produced by the distributed load. For 
example, the resultant force can be used to compute the reactions of a beam, 
but the computations for internal forces—for example, shear and moment—
must be based on the actual loading.

Compute the magnitude and location of the resultant of the parabolic load-
ing shown in Figure 3.6. The slope of the parabola is zero at the  origin.

E X A M P L E  3 . 3

x
L

0

3
4

x = L

w
L2y = x2

y

R w

y

dx
x

Figure 3.6

Solution
Compute R by integrating the area under the parabola y = (w/L2)x2.

R =   ∫ 
 0
  

 L

    y dx =   ∫ 
 0
  

 L

        wx2
 ____ 

L2
    dx =   [   wx3

 ____ 
3L2

   ]    =    wL ___ 
3
   

Locate the position of the centroid. Using Equation 3.1c and summing  
moments about the origin gives

R   ̄  x    =   ∫ 
 0
  

 L

    y dx(x) =   ∫ 
 0
  

 L

        w __ 
L2

   x3  dx =   [   wx4
 ____ 

4L2
   ]    =    wL2

 ____ 
4
   

Substituting R = wL/3 and solving the equation above for    ̄  x    yield

   ̄  x    =    3 __ 
4
    L

L

0
Ans.

L

0

Ans.
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E X A M P L E  3 . 4 The beam in Figure 3.7a supports a distributed load whose ordinates lie on 
a parabolic curve. Replace the distributed load by a statically equivalent 
set of concentrated loads.

Solution
Divide the load into three segments where h = 5 ft. Evaluate the equivalent 
loads, using the equations in Figure 3.5b.

 P  1   =   h __ 
24

    (7 w  1   + 6 w  2   −  w  3  )  =   5 __ 
24

   [7 (4)  + 6 (6.25)  − 9]  = 11.77 kips

 P  2   =   h ___ 
 12

    ( w  1   + 10  w  2   +  w  3  )  =   5 __ 
12

    [4 + 10 (6.25)  + 9]  = 31.46 kips

 P  3   =   h ___ 
 12

    ( w  2   + 10  w  3   +  w  4  )  =   5 __ 
12

    [6.25 + 10 (9)  + 12.25]  = 45.21 kips

 P  4   =   h __ 
24

    (7  w  4   + 6  w  3   −  w  2  )  =   5 __ 
24

    [7 (12.25)  + 6 (9)  − 6.25]  = 27.81 kips

Also compute the approximate values of loads P1 and P2, using the 
equations in Figure 3.5a for a trapezoidal distribution of load.

 P  1   =   h __ 
6
    (2  w  1   +  w  2  )  =   5 __ 

6
    [2 (4)  + 6.25]  = 11.88 kips

 P  2   =   h __ 
6
    ( w  1   + 4  w  2   +  w  3  )  =   5 __ 

6
    [4 + 4 (6.25)  + 9]  = 31.67 kips

The analysis above indicates that for this case the approximate values of P1 
and P2 deviate less than 1 percent from the exact values.

5ʹ

4
6.25

w4w3w2w1

9

12.25

5ʹ 5ʹ

15ʹ10ʹ

(a)

P4P3P2P1

5ʹ 5ʹ 5ʹ10ʹ

(b)

Figure 3.7: (a) Beam with a distributed load (units of load in kips per foot); (b) beam with 
equivalent concentrated loads.
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3.3 ■ Supports  89

Principle of Transmissibility

The principle of transmissibility states that a force may be moved along its line 
of action without changing the external effect that it produces on a body. For 
example, in Figure 3.8a we can see from a consideration of equilibrium in the 
x direction that the horizontal force P applied to the beam at point A creates 
a horizontal reaction at support C equal to P. If the force at point A is moved 
along its line of action to point D at the right end of the beam (Figure 3.8b), 
the same horizontal reaction P develops at C. Although the effect of moving 
the force along its line of action produces no change in the reactions, we can 
see that the internal force in the member is affected by the position of the load. 
For example, in Figure 3.8a compression stresses develop between points A 
and C. On the other hand, if the load acts at D, the stress between points A 
and C is zero and tensile stresses are created between C and D (Figure 3.8b).

The ability of the engineer to move vectors along their line of action 
is used frequently in structural analysis to simplify computations, to solve 
problems involving vectors graphically, and to develop a better understand-
ing of behavior. For example, in Figure 3.9 the forces acting on a retaining 
wall consist of the weight W of the wall and the thrust of the soil pressure T 
on the back of the wall. These force vectors can be added on the figure by 
sliding T and W along their lines of actions until they intersect at point A. At 
that point the vectors can be combined to produce the resultant force R acting 
on the wall. The magnitude and direction of R are evaluated graphically in 
Figure 3.9b. Now—in accordance with the principle of transmissibility—the 
resultant can be moved along its line of action until it intersects the base at 
point x. If the resultant intersects the base within the middle third, it can be 
shown that compressive stresses exist over the entire base—a desirable state 
of stress because soil cannot transmit tension. On the other hand, if the resul-
tant falls outside the middle third of the base, compression will exist under 
only a portion of the base, and the stability of the wall—the possibility the 
wall will overturn or overstress the soil—must be investigated.

Figure 3.8: Principle of transmissibility.

P
B C

DA

(b)

P

P
B C

DA

(a)

P

B
3

B

B
3

B
3

W

R

A
T

x

(a)

Figure 3.9: Forces acting on a wall: (a) addi-
tion of weight W and soil pressure (thrust) T; 
(b) vector addition of W and T to produce R.

R W

T

(b)

Supports
3.3

To ensure that a structure or a structural element remains in its required posi-
tion under all loading conditions, it is attached to a foundation or con nected to 
other structural members by supports. In certain cases of light construction, 
supports are provided by nailing or bolting members to supporting walls, 
beams, or columns. Such supports are simple to construct, and little attention 
is given to design details. In other cases where large, heavily loaded struc-
tures must be supported, large complex mechanical devices that allow certain 
displacements to occur while preventing others must be designed to transmit 
large loads.

Although the devices used as supports can vary widely in shape and form, 
we can classify most supports in one of four major categories based on the  
restraints or reactions the supports exert on the structure. The most common 
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90  Chapter 3 ■ Statics of Structures—Reactions

supports, whose characteristics are summarized in Table 3.1, include the pin, 
the roller, the fixed support, and the link.

The pin support shown in Table 3.1, case (a), represents a device that 
connects a member to a fixed point by a frictionless pin. Although this sup-
port prevents displacement in any direction, it allows the end of the member to  
rotate freely. Fixed supports [see Table 3.1 case ( f )], although not common, 
occasionally exist when the end of a member is deeply embedded in a massive 
block of concrete or grouted into solid rock (Figure 3.11).

The system of supports a designer selects will influence both the forces 
that develop in a structure and the forces resisted by the supports. For example, 
in Figure 3.10a the left end of a beam is connected to a wall by a bolt that pre-
vents relative displacement between the beam and the wall while the right end 
is supported on a neoprene pad that allows the end of the beam to move later-
ally without developing any significant restraining force. If the temperature of 
the beam increases, the beam will expand. Since no longitudinal restraint de-
velops at the right end to resist the expansion, no stresses are created in either 
the beam or the walls. On the other hand, if both ends of the same beam are 
bolted to masonry walls (Figure 3.10b), an expansion of the beam produced 
by an increase in temperature will push the walls outward and possibly crack 
them. If the walls are stiff, they will exert a restraining force on the beam that 
will create compressive stresses (and possibly bending stresses if the supports 
are eccentric to the centroid of the member) in the beam. Although these ef-
fects typically have little effect on structures when spans are short or tempera-
ture changes are moderate, they can produce undesirable effects (buckle or 
overstress members) when spans are long or temperature changes are large.

(b)

FF

cracking

Figure 3.10: Influence of supports: Idea-
lized representation shown below actual con-
struction condition: (a) right end is free to  
expand laterally, no stresses created by tem-
perature change; (b) both ends are restrained, 
compressive and bending stresses develop in 
beam. Walls crack.

LΔ

(a)

neoprene pad

LD

Photo 3.1: Pin support for the 2.1-mile long steel box girder 
San Diego-Coronado Bridge.
© Chia-Ming Uang

Photo 3.2: Roller support for the San Diego-
Coronado Bridge.
© Chia-Ming Uang
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Sketch Symbol
Movements Allowed

or Prevented
Reaction
Forces

Unknowns
CreatedType

TABLE 3.1  Characteristics of Supports

(a) Pin

OR

OR

Rx

Ry

RyRy

RxRx

R

R

MR

R2

R1

MR

R

(b) Hinge

(c) Roller

(d) Rocker

(e) Elastomeric
       pad

(g) Link

( f )  Fixed end

(h) Guide

Prevented: horizontal
translation, vertical
translation
Allowed: rotation

Prevented: relative
displacement of
member ends
Allowed: both rotation
and horizontal and
vertical displacement

Prevented: vertical
translation
Allowed: horizontal
translation, rotation

Prevented: translation
in the direction of link
Allowed: translation
perpendicular to link,
rotation

Prevented: vertical
translation, rotation
Allowed: horizontal
translation

A single linear force of
unknown direction or,
equivalently, a horizontal
force and a vertical force
which are the components
of the single force of
unknown direction

Equal and oppositely
directed horizontal and
vertical forces

A single linear force
(either upward or
downward*)

Prevented: horizontal
translation, vertical
translation, rotation
Allowed: none

Horizontal and vertical
components of a linear
resultant; moment

A single linear force in
the direction of the link

A single vertical linear
force; moment

*Although the symbol for a roller support, for the sake of simplicity, shows no restraint against upward movement, it is intended that a roller can provide 
a downward reaction force if necessary.

OR

R

θ

θθθ

lee98004_ch03_080-129.indd   91 23/12/16   3:36 pm



92  Chapter 3 ■ Statics of Structures—Reactions

To produce a fixed-end condition for a steel beam or column is expensive 
and rarely done. For a steel beam a fixed-end condition can be created by  
embedding one end of the beam in a massive block of reinforced concrete 
(Figure 3.11).

To produce a fixed-end condition at the base of a steel column, the  
designer must specify a thick steel baseplate, reinforced by vertical steel stiff-
ener plates connected to the column and the baseplate (Figure 3.12). In ad-
dition, the baseplate must be anchored to the support by heavily tensioned 
anchor bolts.

On the other hand, when structural members are constructed of rein-
forced concrete, a fixed end or a pin end can be produced more easily. In the 
case of a beam, a fixed end is produced by extending reinforcing bars to a 
specified distance into a supporting element (Figure 3.13a).

For a reinforced concrete column, the designer can create a hinge at its 
base by (1) notching the bottom of the column just above the supporting wall 
or footing and (2) crossing the reinforcing bars as shown in Figure 3.13b.  
If the axial force in the column is large, to ensure that the  concrete in the  
region of the notch does not fail by crushing, additional vertical rein- 
forcing bars must be added at the centerline of the column to transfer the  
axial force.

P

reinforced
concrete
wall (primary wall
reinforcing not shown)

steel beamtiesFigure 3.11: Fixed-end beam produced by 
embedding its left end in a reinforced con-
crete wall.

elevation

plan

stiffener plates
each side anchor

bolt

steel
column

base plate

P

M

base plate

anchor
bolt, typical

stiffener
plate,

typical

steel
column

foundation

Figure 3.12: A steel column supported on 
a stiffened baseplate, which is bolted to a 
concrete foundation, producing a fixed-end 
condition at its base.

P

reinforced
concrete
wall

reinforced
concrete
beam

only beam reinforcement shown
section

(a)

Figure 3.13: (a) A reinforced 
concrete beam with a fixed end; 
(b) a re inforced concrete column 
whose low er end is detailed to 
act as a pin.

P

(b)

foundation

section detail

only column
reinforcement

shown

reinforcing
bars

column

notch
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3.4 ■ Idealizing Structures  93

Idealizing Structures
3.4

Before a structure can be analyzed, the designer must develop a simplified  
physical model of the structure and its supports as well as the applied loads. 
This model is typically represented by a simple line drawing. To illustrate this 
procedure, we will consider the structural steel rigid frame in Figure 3.14a. For 
purposes of analysis, the designer would probably represent the rigid frame by 
the simplified sketch in Figure 3.14b. In this sketch the columns and girders are 
represented by the centerlines of the actual members. Although the maximum 
load applied to the girder of the frame may be created by a deep uneven pile of 
heavy, wet snow, the designer, following code specifications, will design the 
frame for an equivalent uniform load w. As long as the equivalent load produces, 
in the members, forces of the same magnitude as the real load, the designer will 
be able to size the members with the strength required to support the real load.

In the actual structure, plates welded to the base of the columns are bolted 
to foundation walls to support the frame. Sometimes a tension rod is also run 
between the bases of the columns to carry the lateral thrust that is produced by 
the vertical load on the girder. By using the tension rod to carry the horizon-
tal forces tending to move the bases of the columns, supported on foundation 
walls, outward, the designers can size the walls and foundations for vertical load 
only, a condition that reduces the cost of the walls significantly. Although some  
rotational restraint obviously develops at the base of the columns, designers  
typically neglect it and assume that the actual supports can be represented by 
frictionless pins. This assumption is made for the following reasons:

1. The designer has no simple procedure to evaluate rotational restraint.
2. The rotational restraint is modest because of the flexural deformation of 

the plate, the elongation of the bolts, and small lateral movements of  
the wall.

3. Finally, the assumption of a pin support at the base is conservative 
(restraints of any type stiffen the structure).

L
L

h

A

B

D

C

A

wL

B

D

C

h

RR

w

snow load

tie rod

girder

baseplate

grout wall

(a) (b)

2
wL
2

Figure 3.14: (a) Welded rigid frame with 
snow load; (b) idealized frame on which 
analysis is based.
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94  Chapter 3 ■ Statics of Structures—Reactions

As an example, we will consider the behavior of the standard web 
 connection between the two steel beams in Figure 3.15a. As shown in  
Figure 3.15b, the upper flange of beam 1 is cut back so that the top flanges 
are at the same elevation. The connection between the two beams is made 
by means of a pair of angles that are bolted (or welded) to the webs of 
both beams. The forces applied to the members by the bolts are shown in  
Figure 3.15c. Since the web of beam 2 is relatively flexible, the connection 
is typically designed to transfer only vertical load between the two mem-
bers. Although the connection has a limited capacity for horizontal load, this  
capacity is not utilized because beam 1 carries primarily gravity load and  
little or no axial load. Designers typically model this type of connection as a 
pin or roller (Figure 3.15d).

beam 2

beam 1

R

(a) (b)

(c)

(d )

connection
angles

beam 1

beam 2
beam 1 beam 1

R
2
R
2

Figure 3.15: Bolted web connection ide-
alized as a pin support: (a) perspective of 
joint; (b) details of connection shown to an 
exaggerated scale: slope of beam 1 bends the 
flexible web of beam 2. The flexible joint is 
assumed to supply no rotational restraint;  
(c) vertical restraint provided by the bolted 
connection; (d) bolted web connection mod-
eled as a pin or roller support a pin or roller 
support as shown in (d ).

Free-Body Diagrams
3.5

As a first step in the analysis of a structure, the designer will typically draw 
a simplified sketch of the structure or the portion of the structure under  
consideration. This sketch, which shows the required dimensions together 
with all the external and internal forces acting on the structure, is called a  
free-body diagram. For example, Figure 3.16a shows a free-body  
diagram of a three-hinged arch that carries two concentrated loads. Since the 
reactions at supports A and C are unknown, their directions must be assumed.

The designer could also represent the arch by the sketch in Figure 3.16b. 
Although the supports are not shown (as they are in Figure 3.16a) and the 
arch is represented by a single line, the free-body diagram contains all the 
information required to analyze the arch. However, since the pin supports 
at A and C are not shown, it is not obvious to someone unfamiliar with the 
problem (and seeing the sketch for the first time) that points A and B are not 
free to displace because of the pins at those locations. In each case, designers 
must use their judgment to decide what details are required for clarity. If the 
internal forces at the center hinge at B are to be computed, either of the free 
bodies shown in Figure 3.16c could be used.
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3.5 ■ Free-Body Diagrams  95

When the direction of a force acting on a free body is unknown, the  
designer is free to assume its direction. If the direction of the force is assumed 
correctly, the analysis, using the equations of equilibrium, will produce a  
positive value of the force. On the other hand, if the analysis produces a  
negative value of an unknown force, the initial direction was assumed  
incorrectly, and the designer must reverse the direction of the force 
(see Example 3.5).

Free-body diagrams can also be used to determine the internal forces 
in structures. At the section to be studied, we imagine the structure is cut 
apart by passing an imaginary plane through the element. If the plane is 
oriented perpendicular to the longitudinal axis of the member and if the  
internal force on the cross section is resolved into components parallel and 
perpendicular to the cut, in the most general case the forces acting on the cut 
surface will consist of an axial force F, a shear V, and a moment M (in this 
book we will not consider members that carry torsion). Once F, V, and M 
are evaluated, we can use standard equations (developed in a basic strength 
of materials course) to compute the axial, shear, and bend ing stresses on the 
cross section.

For example, if we wished to determine the internal forces at section 1-1 
in the left arch segment (Figure 3.16c), we would use the free bodies shown 
in Figure 3.16d. Following Newton’s third law, “for each action there exists 

L L

B

A C
h

P1 P2

Ay Cy

Ax Cx

(a)

ba

L L

P1 P2

Ay

By By

Cy

Ax

Bx Bx

Cx

(c)

1

ba

h

L L

h

P1 P2

Ay Cy

Ax Cx

(b)

ba

1

1

1

1

1

V

V
F F

M

M

P1

Ay

By

Ax

Bx
B

(d)

a

Figure 3.16: Free-body diagrams: (a) free- 
body diagram of three-hinged arch; (b) sim-
plified free body of arch in (a); (c) free-body 
diagrams of arch segments; (d ) free-body  
diagrams to analyze internal forces at  
section 1-1.
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96  Chapter 3 ■ Statics of Structures—Reactions

an equal and opposite reaction,” we recognize that the internal forces on 
each side of the cut are equal in magnitude and oppositely directed. As-
suming that the reactions at the base of the arch and the hinge forces at B 
have been computed, the shear, moment, and axial forces can be determined 
by applying the three equations of statics to either of the free bodies in  
Figure 3.16d.

Equations of Static Equilibrium
3.6

As you learned in dynamics, a system of planar forces acting on a rigid struc-
ture (Figure 3.17) can always be reduced to two resultant forces: 

1. A linear force R passing through the center of gravity of the structure 
where R equals the vector sum of the linear forces.

2. A moment M about the center of gravity. The moment M is evaluated by 
summing the moments of all forces and couples acting on the structure 
with respect to an axis through the center of gravity and perpendicular to 
the plane of the structure.
The linear acceleration a of the center of gravity and the angular accel-

erations α of the body about the center of gravity are related to the resultant 
forces R and M by Newton’s second law, which can be stated as follows:

  R = ma (3.2a)
  M = Iα (3.2b)

where m is the mass of the body and I is the mass moment of inertia of the 
body with respect to its center of gravity.

If the body is at rest—termed a state of static equilibrium—both the 
linear acceleration a and the angular acceleration α equal zero. For this condi-
tion, Equations 3.2a and 3.2b become

  R = 0 (3.3a)
  M = 0 (3.3b)

If R is replaced by its components Rx and Ry, which can be expressed in terms 
of the components of the actual force system by Equations 3.1a and 3.1b, we 
can write the equations of static equilibrium for a planar force system as

  ∑Fx = 0 (3.4a)
  ∑Fy = 0 (3.4b)
  ∑Mz = 0 (3.4c)

Equations 3.4a and 3.4b establish that the structure is not moving in either 
the x or y direction, while Equation 3.4c ensures that the structure is not  

Although, the concept of static 
equilibrium was understood 
well over 2000 years ago, 
as evidenced in Archimedes’ 
(287–212 BC) experiments 
with equilibrium of the lever, 
it was during the height of 
scientific revolution that Sir 
Isaac Newton (1642–1727), 
developed the three physical 
laws of motion in his publica-
tion “Philosophiae Naturalis 
Principia Mathematica” (1687), 
which formed the foundation 
for classical mechanics and 
paved the way for modern 
structural analysis.
Attributable to Isaac Newton, 
Simon Stevin (1548–1620) and 
Pierre Varignon (1654–1722) 
are the synthesis of statics, 
equations of static equilibrium, 
force vector analysis, graphic 
statics, and parallelogram law 
for the addition of force vectors.
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3.6 ■ Equations of Static Equilibrium  97

rotating. Although Equation 3.4c was based on a summation of moments 
about the center of gravity of the structure because we were considering the 
angular acceleration of the body, this restriction can be removed for struc-
tures in static equilibrium. Obviously, if a structure is at rest, the resultant 
force is zero. Since the actual force system can be replaced by its resultant, 
it follows that summing moments about any axis parallel to the z-reference 
axis and normal to the plane of the structure must equal zero because the  
resultant is zero.

As you may remember from your course in statics, either or both of 
Equations 3.4a and 3.4b can also be replaced by moment equations. Several 
equally valid sets of equilibrium equations are

  ∑Fx = 0 (3.5a)
  ∑MA = 0 (3.5b)
  ∑Mz = 0 (3.5c)
or  ∑MA = 0 (3.6a)
  ∑MB = 0 (3.6b)
  ∑Mz = 0 (3.6c) 

where points A, B, and z do not lie on the same straight line.
Since the deformations that occur in real structures are generally very 

small, we typically write the equations of equilibrium in terms of the  initial  
dimensions of the structure. In the analysis of flexible columns, long-span 
arches, or other flexible structures subject to buckling, the de for mations of 
the structural elements or the structure under certain loading conditions may  
be large enough to increase the internal forces by a significant amount. In 
these situations, the equilibrium equations must be written in terms of the 
geometry of the deformed structure if the analysis is to give accurate re-
sults. Structures experiencing large deflections of this type are not covered 
in this text.

If the forces acting on a structure—including both the reactions and the 
internal forces—can be computed using any of the foregoing sets of equa-
tions of static equilibrium, the structure is said to be statically determi-
nate or, more simply, determinate. Examples 3.5 to 3.7 illustrate the use of 

≡

M1

M2

P2

P3

P4

P1

C.G. C.G. R
M

Figure 3.17: Equivalent planar force systems 
acting on a rigid body.
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98  Chapter 3 ■ Statics of Structures—Reactions

the equations of static equilibrium to compute the reactions of a determinate 
structure that can be treated as a single rigid body.

If the structure is stable but the equations of equilibrium do not provide 
sufficient equations to analyze the structure, the structure is termed indete-
rminate. To analyze indeterminate structures, we must derive additional 
equations from the geometry of the deformed structure to supplement the  
equations of equilibrium. These topics are covered in Chapters 9, 10,  
and 11.

E X A M P L E  3 . 5 Compute the reactions for the beam in Figure 3.18a.

Solution
Resolve the force at C into components and assume directions for the reac-
tions at A and B (Figure 3.18b). Ignore the depth of the beam.

Method 1.  Solve for reactions using Equations 3.4a to 3.4c. Assume a 
positive direction for forces as indicated by arrows.

 →+ ∑Fx = 0 −Ax + 6 = 0 (1)

 ↑
+
 ∑Fy = 0 Ay + By − 8 = 0 (2)

 ⟳+ ∑MA = 0 −10By + 8(15) = 0 (3)

Solving Equations 1, 2, and 3 gives

Ax = 6 kips  By = 12 kips  Ay = −4 kips Ans.

where a plus sign indicates that the assumed direction is correct and a minus 
sign establishes that the assumed direction is incorrect and the reaction 
must be reversed. See Figure 3.18c for final results.

Method 2.  Recompute reactions, using equilibrium equations that con-
tain only one unknown reaction. One possibility is

 ⟳+ ∑MA = 0 −By(10) + 8(15) = 0

 ⟳+ ∑MB = 0 Ay(10) + 8(5) = 0

 →+ ∑Fx = 0 −Ax + 6 = 0

Solving again gives Ax = 6 kips, By = 12 kips, Ay = −4 kips.

Figure 3.18

6 kips

10 kips12 kips4 kips

(c)

10ʹ 5ʹ

Ax

Ay By

6 kips

8 kips

(b)

10ʹ 5ʹ

A B C

(a)

10 kips

3

4
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Compute the reactions for the truss in Figure 3.19. E X A M P L E  3 . 6

6ʹ

6ʹ8ʹ

6ʹ

Cy

Ay

Cx

C

B

D

A

P = 18 kips

Figure 3.19

Solution
Treat the truss as a rigid body. Assume directions for reactions (Figure 3.19). 
Use equations of static equilibrium.

 ⟳+ ∑MC = 0 8(12) − Ay(14) = 0 (1)

 →+ ∑Fx = 0 18 − Cx = 0 (2)

 ↑
+
 ∑Fy = 0 −Ay + Cy = 0 (3)

Solving Equations 1, 2, and 3 gives

 Cx = 18 kips    Ay = 15.43 kips    Cy = 15.43 kips Ans.

NOTE: The reactions were computed using the initial dimensions of the 
unloaded structure. Since displacements in well-designed structures are 
small, no significant change in the magnitude of the reactions would result 
if we had used the dimensions of the deformed structure.

For example, suppose support A moves 0.5 in. to the right and joint B 
moves upward 0.25 in. when the 18-kip load is applied. The moment 
arms for Ay and the 18-kip load in Equation 1 would equal 13.96 ft and 
12.02 ft, respectively. Substituting these dimensions into Equation 1, we 
would compute Ay = 15.47 kips. As you can see, the value of Ay does not 
change enough (0.3 percent in this problem) to justify using the dimensions 
of the deformed structure, which are time-consuming to compute.
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E X A M P L E  3 . 7 The frame in Figure 3.20 carries a distributed load that varies from 4 to  
10 kN/m. Compute the reactions.

8 m

4 m6 m

C
B

A

4 kN/m

R1 x1 = 5 m

R2

Cy

Cx

Ay

20
3x2 =       m

10 kN/m

Figure 3.20

Solution
Divide the distributed load into a triangular and a rectangular distrib-
uted  load (see the dashed line). Replace the distributed loads by their 
resultant.
 R1 = 10(4) = 40 kN

  R  2   =    1 __ 
2 

   (10)  (6)  = 30 kN 

Compute Ay.

 ⟳+ ∑MC = 0

  A  y   (4)  −  R  1   (5)  −  R  2   (  20 __ 
3
  )  = 0 

 Ay = 100 kN  
Compute Cy.
 ↑

+
 ∑Fy = 0

 100 − R1 − R2 + Cy = 0
 Cy = −30 kN ↓

(minus sign indicates initial direction incorrectly assumed)
Compute Cx.

 →+ ∑Fx = 0

Cx = 0

Ans.

Ans.
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Compute the reactions for the beam in Figure 3.21a, treating member AB 
as a link.

E X A M P L E  3 . 8

Solution
First compute the forces in the link. Since link AB is pinned at A and B, no 
moments exist at these points. Assume initially that both shear V and axial 
force F are transmitted through the pins (Figure 3.21b). Using a coordinate 
system with an x axis along the longitudinal axis of the member, we write 
the following equilibrium equations:

 →+ ∑Fx = 0 0 = FA − FB (1)

 ↑
+
 ∑Fy = 0 0 = VA − VB (2)

 ⟳+ MA = 0 0 = VB(5) (3)

Solving the equations above gives

FA = FB (call FAB)  and  VA = VB = 0

These computations show that a member pinned at both ends and not 
loaded between its ends carries only axial load, that is, is a two-force  
member.
 Now compute FAB. Consider beam BC as a free body (Figure 3.21c). 
Resolve FAB into components at B and sum moments about C.

 ⟳+ ∑Mc = 0 0 = 0.8FAB(10) + 20 − 36(2)

 →+ ∑Fx = 0 0 = 0.6FAB − Cx

 ↑
+
 ∑Fy = 0 0 = 0.8FAB − 36 + Cy

Solving gives FAB = 6.5 kips, Cx = 3.9 kips, and Cy = 30.8 kips.

3ʹ 3ʹ3ʹ

5ʹ

link

pin4ʹ

9 kips/ft

4ʹ

3ʹ3ʹ 4ʹ
A

B

C

R = 36 kips

FAB

0.6FAB

0.8FAB

Cx

Cy

VA

B

A

VB

FA

FB

y x

(a) (b)

2ʹ

3
4

C
B

(c)

20 kip • ft

20 kip • ft

Figure 3.21: (a) Beam BC supported by link 
AB; (b) free body of link AB; (c) free body 
of beam BC.
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Equations of Condition
3.7

The reactions of many structures can be determined by treating the struc-
ture as a single rigid body. Other stable determinate structures, which con-
sist of several rigid elements connected by a hinge or which contain other 
devices or construction conditions that release certain internal restraints, 
require that the structure be divided into several rigid bodies in order to 
evaluate the reactions.

Consider, for example, the three-hinged arch shown in Figure 3.16a. If 
we write the equations of equilibrium for the entire structure, we will find 
that only three equations are available to solve for the four un known reac-
tion components Ax, Ay, Cx, and Cy. To obtain a solution, we must establish 
an additional equation of equilibrium without intro ducing any new vari-
ables. We can write a fourth independent equilibrium equation by consider-
ing the equilibrium of either arch segment between the hinge at B and an 
end support (Figure 3.16c). Since the hinge at B can transfer a force with 
horizontal and vertical com ponents, but has no capacity to transfer moment 
(that is, MB = 0), we can sum moments about the hinge at B to produce an 
additional equation  in terms of the support reactions and applied loads. 
This additional equation is called an equation of condition or an equation of 
construction.

If the arch were continuous (no hinge existed at B), an internal moment 
could develop at B and we could not write an additional equation without 
introducing an additional unknown—MB, the moment at B.

As an alternative approach, we could determine both the reactions at 
the supports and the forces at the center hinge by writing and solving three 
equations of equilibrium for each segment of the arch in Figure 3.16c. 
Considering both free bodies, we have six equilibrium equations available to 
solve for six unknown forces (Ax, Ay, Bx, By, Cx, and Cy). Examples 3.9 and 
3.10 illustrate the procedure to analyze structures with devices (a hinge in one 
case and a roller in the other) that release internal restraints.
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Compute the reactions for the beam in Figure 3.22a. A load of 12 kips is  
applied directly to the hinge at C.

E X A M P L E  3 . 9

Solution
The supports provide four reactions. Since three equations of equilibrium 
are available for the entire structure in Figure 3.22a and the hinge at C 
provides one condition equation, the structure is determinate. Compute Ex 
by using the free body in Figure 3.22a.

  →+ ∑Fx = 0  0 + Ex = 0

 Ex = 0

 Use the free body in Figure 3.22c to compute Ey by summing moments 
about C.

  ⟳+ ∑Mc = 0

0 = 24(5) − Ey(10)    and    Ey = 12 kips

 Consider the free body of Figure 3.22a again. Sum moments about A.

   ⟳+ ∑MA = 0      0 = −By(10) + 12(15) + 24(20) −12(25)

 By = 36 kips  
↑
+
 ∑Fy = 0    0 = Ay + By − 12 − 24 + Ey

Substituting By = 36 kips and Ey =12 kips, we compute Ay = −12 kips  
(down).

Ans.

Ans.

Ans.

Figure 3.22
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hinge 24 kips
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104  Chapter 3 ■ Statics of Structures—Reactions

E X A M P L E  3 . 1 0    Compute the reactions for the beams in Figure 3.23a.

Solution
If we treat the entire structure in Figure 3.23a as a single rigid body, 
the external supports supply five reactions: Ax, Ay, Cy, Dx, and Dy. Since 
only three equations of equilibrium are available, the reactions can-
not be established. A solution is possible because the roller at B sup-
plies two additional pieces of information (that is, MB = 0 and Bx = 0). 
By separating the structure into two free bodies (Figure 3.23b), we can 
write a total of six equilibrium equations (three for each free body) to 
determine the six unknown forces exerted by the external reactions and 
the roller at B.
 Applying the equations of equilibrium to member BD in Figure 3.23b, we 
have

 →+ ∑Fx = 0 0 = 15 − Dx (1)

 ⟳+ ∑MD = 0 0 = By(10) − 20(5) (2)

 ↑
+
 º ∑Fy = 0 0 = By − 20 + Dy (3)

Solving Equations 1, 2, and 3, we compute Dx = 15 kips, By = 10 kips, 
and Dy = 10 kips.
  With By evaluated, we can determine the balance of the reactions by 
applying the equations of equilibrium to member AC in Figure 3.23b.

 →+ ∑Fx = 0 0 = Ax (4)

 ⟳+ ∑MA = 0 0 = 10(10) −15Cy (5)

 ↑
+
 ∑Fy = 0 0 = Ay − 10 + Cy (6)

Solving Equations 4, 5, and 6, we find Ax = 0 kip. Cy = 20/3 kips, and Ay =  
10/3 kips.
 Since the roller at B cannot transfer a horizontal force between 
beams, we recognize that the 15-kip horizontal component of the load 
applied to BD must be equilibrated by the reaction Dx. Since no horizon-
tal forces act on member AC, Ax = 0.
 Static check: To verify the accuracy of the computations, we apply  
∑Fy = 0 to the entire structure in Figure 3.23a.

 Ay + Cy + Dy − 0.8(25) = 0

    10 ___ 
3
    +    20 ___ 

3
    + 10 − 20 = 0

 0 = 0   OK

Figure 3.23
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Influence of Reactions on Stability  
and Determinacy of Structures

3.8

To produce a stable structure, the designer must supply a set of supports that 
prevents the structure or any of its components from moving as a rigid body. 
The number and types of supports required to stabilize a structure depend 
on the geometric arrangement of members, on any construction conditions 
built into the structure (hinges, for example), and on the position of supports. 
The equations of equilibrium in Section 3.6 provide the theory required to  
understand the influence of reactions on (1) stability and (2) determinacy (the 
ability to compute reactions using the equations of statics). We begin this  
discussion by considering structures composed of a single rigid body, and then 
we extend the results to structures composed of several interconnected bodies.

For a set of supports to prevent motion of a structure under all possible 
loading conditions, the applied loads and the reactions supplied by the sup-
ports must satisfy the three equations of static equilibrium

  ∑Fx = 0 (3.4a)

  ∑Fy = 0 (3.4b)

  ∑Mz = 0 (3.4c)

To develop criteria for establishing the stability and the determinacy of a 
structure, we will divide this discussion into three cases that are a function of 
the number of reactions.

Case 1.  Supports Supply Less Than Three Restraints:  
R < 3 (R = number of restraints or reactions)

Since three equations of equilibrium must be satisfied for a rigid body to be 
in equilibrium, the designer must apply at least three reactions to produce a 
stable structure. If the supports supply less than three reactions, then one or 
more of the equations of equilibrium cannot be satis fied, and the structure is 
not in equilibrium. A structure not in equilibrium is unstable. For example, 
let us use the equations of equilibrium to  de ter mine the reactions of the beam 
in Figure 3.24a. The beam, supported on two rollers, carries a vertical load P 
at midspan and a horizontal force Q.

 ↑
+  ∑Fy = 0 0 = R1 + R2 − P (1)

 ⟳+  ∑MA = 0 0 =    PL ___ 
2
    − R2L (2)

 →+  ∑Fx = 0 0 = Q   inconsistent; 
unstable (3)
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106  Chapter 3 ■ Statics of Structures—Reactions

Equations 1 and 2 can be satisfied if R1 = R2 = P/2; however, Equation 3 is 
not satisfied because Q is a real force and is not equal to zero. Since equilib-
rium is not satisfied, the beam is unstable and will move to the right under 
the unbalanced force. Mathematicians would say the set of equations above is 
inconsistent or incompatible.

As a second example, we will apply the equations of equilibrium to the 
beam supported by a pin at point A in Figure 3.23b.

 →+ ∑Fx = 0 0 = R1 − 3 (4)

 ↑
+
 ∑Fy = 0 0 = R2 − 4 (5)

 ⟳+ ∑MA = 0 0 = 4(10) − 3(1) = 37 (6)

Examination of Equations 4 through 6 shows that Equations 4 and 5 can be 
satisfied if R1 = 3 kips and R2 = 4 kips; however, Equation 6 is not satisfied 
since the right side equals 37 kip⋅ft and the left side equals zero. Because the 
equation of moment equilibrium is not satisfied, the structure is unstable; that 
is, the beam will rotate about the pin at A.

As a final example, we apply the equations of equilibrium to the column 
in Figure 3.24c.

 →+ ∑Fx = 0 0 = Rx (7)

 ↑
+
 ∑Fy = 0 0 = Ry − P (8)

 ⟳+ ∑MA = 0 0 = 0 (9)

Examination of the equilibrium equations shows that if Rx = 0 and Ry = P, 
all equations are satisfied and the structure is in equilibrium. (Equation 9 is 
automatically satisfied because all forces pass through the moment  center.) Even 
though the equations of equilibrium are satisfied when the column carries a 
vertical force, we intuitively recognize that the structure is unstable. Although 
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θ

Figure 3.24: (a) Unstable, horizontal re-
straint missing; (b) unstable, free to rotate 
about A; (c) un stable, free to rotate about A; 
(d ) and (e) unbalanced moments produce 
failure; ( f ) and (g) stable structures.
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the pin support at A prevents the base of the column from displacing in any 
direction, it does not supply any rotational restraint to the column. Therefore, 
either the application of a small lateral force Q (Figure 3.24d ) or a small 
deviation of the top joint from the vertical axis passing through the pin at A 
while the vertical load P acts (Figure 3.24e) will produce an overturning mo-
ment that will cause the column to collapse by rotating about the hinge at A. 
From this example we see that to be classified as stable, a structure must have 
the capacity to resist load from any direction.

To supply restraint against rotation, thereby stabilizing the column, the 
designer could do either of the following.

1. Replace the pin at A by a fixed support that can supply a restraining mo-
ment to the base of the column (Figure 3.24f ).

2. As shown in Figure 3.24g, connect the top of the column to a stable sup-
port at C with a horizontal member BC (a member such as BC, whose 
primary function is to align the column vertically and not to carry load, 
is termed bracing, or a secondary member).

In summary, we conclude that a structure is unstable if the supports sup-
ply less than three reactions.

Case 2. Supports Supply Three Reactions: R = 3

If supports supply three reactions, it will usually be possible to satisfy the 
three equations of equilibrium (the number of unknowns equals the number of 
equations). Obviously, if the three equations of static equilibrium are satisfied, 
the structure is in equilibrium (i.e., is stable). Further, if the equations of 
equilibrium are satisfied, the values of the three reactions are uniquely deter-
mined, and we say that the structure is externally determinate. Finally, since 
three equations of equilibrium must be satisfied, it follows that a minimum of 
three restraints are required to produce a stable structure under any loading 
condition.

If a system of supports supplies three reactions that are configured in such 
a way that the equations of equilibrium cannot be satisfied, the structure is 
called geometrically unstable. For example, in Figure 3.25a,  member ABC, 
which carries a vertical load P and a horizontal force Q, is supported by a link 
and two rollers that apply three restraints to member ABC. Since all restraints 
act vertically, they offer no resistance to displacement in the horizontal direc-
tion (i.e., the reactions form a parallel force system). Writing the equation of 
equilibrium for beam ABC in the x direction, we find

 →+ ∑Fx = 0

 Q = 0       (not consistent)

Since Q is a real force and is not equal to zero, the equilibrium equation is 
not satisfied. Therefore, the structure is unstable. Under the action of force Q,  
the structure will move to the right until the link develops a horizontal compo-
nent (because of a change in geometry) to equilibrate Q (Figure 3.25b). Thus 
for it to be classified as a stable structure, we require that the applied loads be 
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108  Chapter 3 ■ Statics of Structures—Reactions

equilibrated by the original direction of the reactions in the unloaded struc-
ture. A structure that must undergo a change in geometry before its reactions 
are mobilized to balance applied loads is classified as unstable.

As a second example of an unstable structure restrained by three reac-
tions, we consider in Figure 3.25c a beam supported by a pin at A and a roller 
at B whose reaction is directed horizontally. Although equilibrium in the x and 
y directions can be satisfied by the horizontal and vertical restraints supplied 
by the supports, the restraints are not positioned to prevent rotation of the 
structure about point A. Writing the equilibrium equation for moment about 
point A gives

 ⟳+ ∑MA = 0 (3.4c)

 Pa = 0    (not consistent)

Because neither P nor a is zero, the product Pa cannot equal zero. Thus an 
equation of equilibrium is not satisfied—a sign that the structure is unstable. 
Since the lines of action of all reactions pass through the pin at A (i.e., the 
reactions are equivalent to a concurrent force system), they are not able to 
prevent rotation initially.

In summary, we conclude that for a single rigid body a minimum of three  
restraints is necessary to produce a stable structure (one that is in equilib-
rium)—subject to the restriction that the restraints not be equivalent to either 
a parallel or a concurrent force system.

We have also demonstrated that the stability of a structure may always 
be verified by analyzing the structure with the equations of equilibrium for 
various arbitrary loading conditions. If the analysis produces an inconsistent  
result, that is, the equations of equilibrium are not satisfied for any portion 
of the structure, we can conclude the structure is unstable. This procedure is  
illustrated in Example 3.11.

Case 3. Restraints Greater Than 3: R > 3

If a system of supports, which is not equivalent to either a parallel or a concur-
rent force system, supplies more than three restraints to a single rigid struc-
ture, the values of the restraints cannot be uniquely determined because the 
number of unknowns exceeds the three equilibrium equations available for 
their solution. Since one or more of the reactions cannot be determined, the 

Figure 3.25: (a) Geometrically unstable, 
reactions form a parallel force system;  
(b) equilibrium position, horizontal reaction 
develops as link elongates and changes slope; 
(c) geometrically unstable because reactions 
form a concurrent force system passing 
through the pin at A; (d) indeterminate beam.
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structure is termed indeterminate, and the degree of indeterminacy equals the 
number of restraints in excess of 3, that is,

  Degree of indeterminacy = R − 3 (3.7)

where R equals the number of reactions and 3 represents the number of equa-
tions of statics.

As an example, in Figure 3.25d a beam is supported by a pin at A and rollers 
at points B and C. Applying the three equations of equilibrium gives

 →+ ∑Fx = 0 Ax − 6 = 0

 ↑
+
 ∑Fy = 0 −8 + Ay + By + Cy = 0

 ⟳+ ∑MA = 0 −6(3) + 8(15) − 12By − 24Cy = 0

Since the four unknowns Ax, Ay, By, and Cy exist and only three equations 
are available, a complete solution (Ax can be determined from the first equa-
tion) is not possible, and we say that the structure is indeterminate to the 
first degree.

If the roller support at B were removed, we would have a stable determi-
nate structure since now the number of unknowns would equal the number of 
equilibrium equations. This observation forms the basis of a common proce-
dure for establishing the degree of indeterminacy. In this method we establish 
the degree of indeterminacy by removing restraints until a stable determinate 
structure remains. The number of restraints removed is equal to the degree of 
indeterminacy. As an example, we will establish the degree of indeterminacy 
of the beam in Figure 3.26a by removing restraints. Although a variety of 
choices are available, we first remove the rotational restraint (MA) at support A  

DAAx Dx

MA MD

Ay Dy

Ey

By

B C

E

(a)

link

A B

(b)

Figure 3.26: (a) Indeterminate structure; 
(b) base (or released) structure remaining  
after redundant supports removed.
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110  Chapter 3 ■ Statics of Structures—Reactions

but retain the horizontal and vertical restraint. This step is equivalent to  
replacing the fixed support with a pin. If we now remove the link at C and 
the fixed support at D, we have removed a total of five restraints, producing  
the stable, determinate base or released structure shown in Figure 3.26b (the  
restraints removed are referred to as redundants). Thus we conclude that the 
original structure was indeterminate to the fifth degree.

Determinacy and Stability of Structures Composed  
of Several Rigid Bodies

If a structure consists of several rigid bodies interconnected by devices (hinges, 
for example) that release C internal restraints, C additional equations of equi-
librium (also called condition equations) can be written to solve for the reac-
tions (see Section. 3.7). For structures in this category, the criteria developed 
for establishing the stability and determinacy of a single rigid structure must 
be modified as follows:

1. If R < 3 + C, the structure is unstable.
2. If R = 3 + C and if neither the reactions for the entire structure nor those 

for a component of the structure are equivalent to a parallel or a concur-
rent force system, the structure is stable and determinate.

3. If R > 3 + C and the reactions are not equivalent to a parallel or a con-
current force system, the structure is stable and indeterminate; moreover, 
the degree of indeterminacy for this condition given by Equation 3.7 
must be modified by subtracting from the number of reactions the 
number (3 + C), which represents the number of equilibrium equations 
available to solve for the reactions; that is,

  Degree of indeterminacy = R − (3 + C) (3.8)

Table 3.2 summarizes the discussion of the influence of reactions on the sta-
bility and determinacy of structures.

TABLE 3.2a  Summary of the Criteria for Stability and Determinacy  
of a Single Rigid Structure

Classification of Structure
Stable

Condition* Determinate Indeterminate Unstable

R < 3 — — Yes; three equations of equilibrium  
  cannot be satisfied for all  

possible conditions of load
R = 3 Yes, if reactions are  

 uniquely determined
— Only if reactions form a parallel or  

 concurrent force system
R > 3 — Yes; degree of  

 indeterminacy = R − 3
Only if reactions form a parallel or  
 concurrent force system

*R is the number of reactions.
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TABLE 3.2b  Summary of the Criteria for Stability and Determinacy  
of Several Interconnected Rigid Structures

Classification of Structure
Stable

Condition* Determinate Indeterminate Unstable

R < 3 + C — — Yes; equations of equilibrium can- 
  not be satisfied for all possible  

loading conditions
R = 3 + C Yes, if reactions can be  

 uniquely determined
— Only if reactions form a parallel 

 or concurrent force system
R > 3 + C — Yes, degree of indeterminacy 

 = R − (3 + C)
Only if reactions form a parallel or  
 concurrent force system

*Here R is the number of reactions; C is the number of conditions.

Investigate the stability of the structure in Figure 3.27a. Hinges at joints 
B and D.

E X A M P L E  3 . 1 1
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Figure 3.27: (a) Details of structure; (b) free 
body of member AB; (c) free body of member 
BD; (d ) free body of member DE; (e) unstable 
structure (if AB and DE treated as links, i.e., 
reactions form a concurrent force system).

[continues on next page]

Solution
A necessary condition for stability requires

R = 3 + C

Since R, the number of reactions, equals 5 and C, the number of condition 
equations, equals 2, the necessary condition is satisfied. However, because 
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the structure has so many hinges and pins, the possibility exists that the 
structure is geometrically unstable. To investigate this possibility, we will 
apply an arbitrary load to the structure to verify that the equations of equi-
librium can be satisfied for each segment. Imagine that we apply a vertical 
load of 8 kips to the center of member DE (Figure 3.27d).

STEP 1 Check the equilibrium of DE.

    →+ ΣFx = 0      Ex − Dx = 0

     Ex = Dx 

    ⟳+ ΣMD = 0    8(2) − 4Ey = 0

 Ey = 4 kips

    ↑
+
 ΣFy = 0  Dy + Ey − 8 = 0

 Dy = 4 kips

CONCLUSION. Although we were not able to determine either Dx or Ex, 
the equations of equilibrium are satisfied. Also, because the forces acting on  
the free body do not comprise either a parallel or a concurrent force sys-
tem, there is no indication at this stage that the structure is unstable.

STEP 2 Check the equilibrium of member BD (Figure 3.27c).

    ⟳+ ΣMc = 0          4Dy − 4By = 0

        By = Dy = 4 kips Ans.

    →+ ΣFx = 0              Dx − Bx = 0

        Dx = Bx

    ↑
+
 ΣFy = 0  −By + Cy − Dy = 0

 Cy = 8 kips Ans.

CONCLUSION. All equations of equilibrium are capable of being satisfied 
for member BD. Therefore, there is still no evidence of an unstable structure.

STEP 3 Check the equilibrium of member AB (Figure 3.27b).

 ⟳+ ΣMA = 0    0 = −By(6)  (inconsistent equation)

CONCLUSION. Since previous computations for member BD es-
tablished that By = 4 kips, the right side of the equilibrium equation 
equals −24 kip⋅ft—not zero. Therefore, the equilibrium equation is not 
sat isfied, indicating that the structure is unstable. A closer examination 
of member BCD (Figure 3.27e) shows that the structure is unstable be-
cause it is possible for the reactions supplied by members AB and DE 
and the roller C to form a concurrent force system. The dashed line in 
Figure 3.27a shows one possible deflected shape of the structure as an 
unstable mechanism.

Example 3.11 continues . . .
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Classifying Structures
3.9

One of the major goals of this chapter is to establish guidelines for con-
structing a stable structure. In this process we have seen that the designer 
must consider both the geometry of the structure and the number, position, 
and type of supports supplied. To conclude this section, we will examine the 
structures in Figures 3.28 and 3.29 to establish if they are stable or unstable 
with respect to external reactions. For those structures that are stable, we will 
also establish if they are determinate or indeterminate. Finally, if a structure 
is indeterminate, we will establish the degree of indeter minacy. All the struc-
tures in this section will be treated as a single rigid body that may or may not 
contain devices that release internal restraints. The effect of internal hinges 
or rollers will be taken into account by considering the number of associated 
condition equations.

In the majority of cases, to establish if a structure is determinate or inde-
terminate, we simply compare the number of external reactions to the equi-
librium equations available for the solution—that is, three equations of statics 
plus any condition equations. Next, we check for stability by veri fying that 
the reactions are not equivalent to a parallel or a concurrent force system. 
If any doubt still exists, as a final test, we apply a load to the structure and 
carry out an analysis using the equations of static equilibrium. If a solution 
is possible—indicating that the equations of equilibrium are satisfied—the 
structure is stable. Alternatively, if an inconsistency develops, we recognize 
that the structure is unstable.

In Figure 3.28a the beam is restrained by four reactions—three at the 
fixed support and one at the roller. Since only three equations of equilibrium 
are available, the structure is indeterminate to the first degree. The structure is 
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A B C D E
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A
B

(a)
hinge
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Figure 3.28: Examples of stable and un-
stable structures: (a) indeterminate to first  
degree; (b) stable and determinate; (c) inde-
terminate second degree; (d ) indeterminate 
to first degree.
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114  Chapter 3 ■ Statics of Structures—Reactions

obviously stable since the reactions are not equivalent to either a parallel or a 
concurrent force system.

The structure in Figure 3.28b is stable and determinate because the 
number of reactions equals the number of equilibrium equations. Five re-
actions are supplied—two from the pin support at A and one from each of 
the three  rollers. To solve for the reactions, three equations of equilibrium 
are available for the entire structure, and the hinges at C and D supply two 
condition equations. We can also deduce that the structure is stable by ob-
serving that member ABC—supported by a pin at A and a roller at B—is 
stable. Therefore, the hinge at C, which is attached to member  ABC, is a 
stable point in space and, like a pin support, can apply both a horizontal and 
vertical restraint to member CD. The fact that the hinge at C may undergo a 
small displacement due to the elastic deformations of the  structure does not 
affect its ability to restrain member CD. Since a third restraint is supplied 
to CD by the roller at midspan, we conclude that it is a stable element; that 
is, it is supported by three restraints that are equivalent to neither a parallel 
nor a concurrent force system. Recognizing that the hinge at D is attached to 
a stable structure, we can see that member DE is also supported in a stable 
manner, that is, two restraints from the hinge and one from the roller at E.

Figure 3.28c shows a rigid frame restrained by a fixed support at A and a 
pin at D. Since three equations of equilibrium are available but five restraints 
are applied by the supports, the structure is indeterminate to the second 
degree.

The structure in Figure 3.28d consists of two cantilever beams joined 
by a roller at B. If the system is treated as a single rigid body, the fixed sup-
ports at A and C supply a total of six restraints. Since the roller provides 
two equations of condition (the moment at B is zero and no horizontal force 
can be transmitted through joint B) and three equations of  statics are avail-
able, the structure is indeterminate to the first degree. As a second approach, 
we could establish the degree of indeterminacy by removing the roller at B, 
which supplies a single vertical reaction, to produce two stable determi-
nate cantilever beams. Since it was necessary to remove only one restraint 
to produce a determinate base structure (Figure 3.26), we verify that the 
structure is indeterminate to the first degree. A third method for establish-
ing the degree of indeterminacy would be to separate the structure into two 
free-body diagrams and to count the unknown reactions applied by the sup-
ports and the internal roller. Each free body would be acted upon by three 
reactions from the fixed supports at A or C as well as a single vertical reac-
tion from the roller at B—a total of seven reactions for the two free bodies. 
Since a total of six equations of equilibrium are available—three for each 
free body—we again conclude that the structure is indeterminate to the first  
degree.

In Figure 3.29a six external reactions are supplied by the pins at A and C 
and the rollers at D and E. Since three equations of equilibrium and two condi-
tion equations are available, the structure is indeterminate to the first degree. 
Beam BC, supported by a pin at C and a roller at B, is a stable determinate 
component of the structure; therefore, regardless of the load applied to BC, 
the vertical reaction at the roller at B can always be computed. The structure 
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is indeterminate because member ADE is restrained by four reactions—two 
from the pin at A and one each from the rollers at D and E.

The frame in Figure 3.29b is restrained by four reactions—three from 
the fixed support A and one from the roller at D. Since three equilibrium 
equations and one condition equation (Mc = 0 from the hinge at C) are avail-
able, it appears that the structure may be stable and determinate. However, 
while member ABC is definitely stable because it consists of a single 
L-shaped member connected to a fixed support at A, member CD is not 
supported in a stable manner because the vertical reaction from the roller at 
D passes through the hinge at C. Thus the reactions applied to member CD 
make up a concurrent force system, indicating that the  member is unstable. 
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Figure 3.29: (a) Indeterminate first degree; 
(b)  unstable; (c) stable and determinate; 
(d) unstable R < 3 + C; (e) unstable; (f ) stable 
and indeterminate; (g) unstable.
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For example, if we were to apply a horizontal force to member CD and then 
sum moments about the hinge at C, an inconsistent equilibrium equation 
would result.

In Figure 3.29c a truss, which may be considered a rigid body, is sup-
ported by a pin at A and a link BC. Since the reactions apply three restraints 
that are equivalent to neither a parallel nor a concurrent force system, the 
structure is externally stable and determinate as we will show in Chapter 4 
when we examine trusses in greater detail, the structure is also internally 
determinate.

In Figure 3.29d we consider a truss that is composed of two rigid bodies 
joined by a hinge at B. Considering the structure as a unit, we note that the 
supports at A and C supply three restraints. However, since four equilibrium 
equations must be satisfied (three for the structure plus a condition equation 
at B), we conclude that the structure is unstable, that is, there are more equa-
tions of equilibrium than reactions.

Treating the truss in Figure 3.29e as a single rigid body containing a 
hinge at B, we find that the pins at A and C supply four reactions. Since three 
equations of equilibrium are available for the entire structure and one condi-
tion equation is supplied by the hinge at B, the structure appears to be stable 
and determinate. However, if a vertical load P were applied to the hinge at B, 
symmetry of the entire structure requires that vertical reactions of P/2 develop 
at both supports A and C. If we now take out the truss between A and B as a 
free body and sum moments about the hinge at B, we find

 ⟳+  ΣMB = 0

    P __ 
2
   L = 0   (inconsistent)

Thus we find that the equilibrium equation ΣMB = 0 is not satisfied because 
each truss forms a concurrent force system, and we now conclude that the 
structure is unstable.

Since the pins at A and C supply four reactions to the pin-connected bars 
in Figure 3.29f, and three equations of equilibrium and one condition equation 
(at joint B) are available, the structure is stable and determinate.

In Figure 3.29g a rigid frame is supported by a link (member AB) and two 
rollers. Since all reactions applied to member BCDE act in the vertical direc-
tion (they constitute a parallel force system), member BCDE has no capacity 
to resist horizontal load, and we conclude that the structure is unstable.

Comparison between Determinate  
and Indeterminate Structures

3.10

Since determinate and indeterminate structures are used extensively, it is 
important that designers be aware of the difference in their behavior in  
order to anticipate problems that might arise during construction or later 
when the structure is in service.
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3.10 ■ Comparison between Determinate and Indeterminate Structures  117

If a determinate structure loses a support, immediate failure occurs be-
cause the structure is no longer stable. An example of the collapse of a bridge 
composed of simply supported beams during the 1964 Nigata earthquake is 
shown in Photo 3.3. As the earthquake caused the structure to sway, in each 
span the ends of the beams that were supported on rollers slipped off the piers 
and fell into the water. Had the ends of girders been continuous or connected, 
the bridge in all probability would have survived with minimum damage. In 
response to the collapse of similar, simply supported highway bridges in Cali-
fornia during earthquakes, design codes have been modified to ensure that 
bridge girders are connected at supports.

On the other hand, in an indeterminate structure alternative paths exist 
for load to be transmitted to supports. Loss of one or more supports in an 
indeterminate structure can still leave a stable structure as long as the remain-
ing supports supply three or more restraints properly arranged. Although loss 
of a support in an indeterminate structure can produce in certain members a 
significant increase in stress that can lead to large deflections or even to a par-
tial failure locally, a carefully detailed structure, which behaves in a ductile 
manner, may have sufficient strength to resist complete collapse. Even though 
a damaged, deformed structure may no longer be functional, its occupants 
will probably escape injury.

During World War II, when cities were bombed or shelled, a number of 
buildings with highly indeterminate frames remained standing even though 
primary structural members—beams and columns—were heavily damaged 
or destroyed. For example, if support C in Figure 3.30a is lost, the stable, 

A C
B

(a)

A C
B

(b)

A C
B

(c)

Figure 3.30: Alternative modes of transmit-
ting load to supports.

Photo 3.3: An example of the collapse of a 
bridge composed of simply supported beams 
during the 1964 Nigata earthquake is shown 
here.
Courtesy of the Godden Collection, NISEE, University 
of California, Berkeley
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118  Chapter 3 ■ Statics of Structures—Reactions

determinate cantilever beam shown in Figure 3.30b remains. Alternatively, 
loss of support B leaves the stable simple beam shown in Figure 3.30c.

Indeterminate structures are also stiffer than determinate structures of 
the same span because of the additional support supplied by the extra re-
straints. For example, if we compare the magnitude of the deflections of two 
beams with identical properties in Figure 3.31, we will find that the midspan 
deflection of the simply supported determinate beam is five times larger than 
that of the indeterminate fixed-end beam. Although the vertical reactions at 
the supports are the same for both beams, in the fixed-end beam, negative 
moments at the end supports resist the vertical displacements produced by 
the applied load.

Since indeterminate structures are more heavily restrained than deter-
minate structures, support settlements, creep, temperature change, and fab-
rication errors may increase the difficulty of erection during construction or 
may produce undesirable stresses during the service life of the structure. For 
example, if girder AB in Figure 3.32a is fabricated too long or increases in 
length due to a rise in temperature, the bottom end of the structure will ex-
tend beyond the support at C. In order to erect the frame the field crew, using 
jacks or other loading devices, must deform the structure until it can be con-
nected to its supports (Figure 3.32b). As a result of the erection procedure, 
the members will be stressed and reactions will develop even when no loads 
are applied to the structure.

A
B

C

Ax

Cx

Ay

Cy

Δ

(b)(a)

Figure 3.32: Consequences of fabrication error: (a) column extends beyond support be-
cause girder is too long; (b) reactions produced by forcing the bottom of the column into 
the supports.

w

MA MB

(a)

(b)

Δ=
wL
2

wL
2

5wL4

384EI

Δ= wL4

384EI

w

wL
2

wL
2

Figure 3.31: Comparison of flexibility  
between a determinate and indeterminate 
structure. Deflec tion of determinate beam in 
(a) is five times greater than indeterminate 
beam in (b). 

(a)

(b)

moment
curve

Δ

RB

RA

M = RAL

L L
RC

Figure 3.33: (a) Support B settles, creating 
re actions; (b) moment curve produced by sup-
port settlement.

Figure 3.33 shows the forces that develop in a continuous beam when 
the center support settles. Since no load acts on the beam—neglecting the 
beam’s own weight—a set of self-balancing reactions is created. If this 
were a reinforced concrete beam, the moment created by the support settle-
ment when added to those produced by the service loads could produce a 
radical change in the design moments at critical sections. Depending on 
how the beam is reinforced, the changes in moment could overstress the 
beam or produce extensive cracking at certain sections along the axis of 
the beam.
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Summary

 • Since most loaded structures are at rest and restrained against displace-
ments by their supports, their behavior is governed by the laws of statics, 
which for planar structures can be stated as follows:

ΣFx = 0

ΣFy = 0

ΣMo = 0

 • Planar structures whose reactions and internal forces can be deter-
mined by applying these three equations of statics are called determi-
nate structures. Highly restrained structures that cannot be analyzed 
by the three equations of statics are termed indeterminate structures. 
These structures require additional equations based on the geometry 
of the deflected shape. If the equations of statics cannot be satisfied 
for a structure or any part of a structure, the structure is considered 
unstable.

 • Designers use a variety of symbols to represent actual supports as 
summarized in Table 3.1. These symbols represent the primary action of 
a particular support; but to simplify analysis, neglect small secondary 
effects. For example, a pin support is assumed to apply restraint against 
displacement in any direction but to provide no rotational restraint when, 
in fact, it may supply a small degree of rotational restraint because of 
friction in the joint.

 • Because indeterminate structures have more supports or members than 
the minimum required to produce a stable determinate structure, they are 
therefore generally stiffer than determinate structures and less likely to 
collapse if a single support or member fails.

 • Analysis by computer is equally simple for both determinate and 
indeterminate structures. However, if a computer analysis produces 
illogical results, designers should consider the strong possibility that 
they are analyzing an unstable structure.
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P3.1 to P3.6. Determine the reactions of each structure in 
Figures P3.1 to P3.6.

PROBLEMS

4ʹ 4ʹ5ʹ

BA

10 kips

5 kips/ft
3

4

P3.1

4ʹ

5ʹ

5ʹ

B F

15 kip • ft 8 kips

A

D E

C

6 kips

10ʹ

5ʹ

P3.2

3 m3 m

4 m

20 kN

15 kN

D

CB

A

3
4

P3.3

B C

A

12ʹ

6ʹ

18k

9ʹ

1.2 kips/ft D

P3.4

9ʹ 10ʹ

12ʹ

B C

DA

8 kips

1 kip/ft

P3.6

P3.5

B
C

A

12ʹ

10ʹ

1 kip • ft
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P3.7. The support at A prevents rotation and horizon-
tal displacement but permits vertical displacement. The 
shear plate at B is assumed to act as a hinge. Determine 
the moment at A and the reactions at C and D.

3 m

A B C D

3 m

4 kN 2 kN·m

4 m 6 m

P3.7

60 kN·m

5 m

A B C D

40 kN

5 m 5 m 5 m 10 m

P3.8

P3.8. Determine the reactions at all supports and the 
force transmitted through the hinge at B.

P3.9 to P3.11. Determine the reactions for each struc-
ture. All dimensions are measured from the centerlines 
of members.

40ʹ

20ʹ

10ʹC

A

B

E

D
6 kips

0.4 kip/ft

P3.9

6ʹ4ʹ

9 kips/ft
5 kips/ft

20 kips 8ʹ

A

B C D Ehinge

6ʹ

P3.10

8ʹ 4ʹ4ʹ8ʹ

9 kips/ft

4ʹ

A
C

E
B D

P = 15 kips
25 kips

3
4

P3.11

P3.12. Determine all reactions. The pin joint at B can be 
treated as a hinge.

9ʹ 10ʹ

12ʹ

B C

DA

1 kip/ft

P3.12

lee98004_ch03_080-129.indd   121 23/12/16   3:36 pm
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P3.13. Determine all reactions. The pin joint at D acts 
as a hinge.

2 m

2 m

4 @ 3 m = 12 m

hinge

12 kN

18 kN

C D E

B F

GA

I H

P3.13

P3.14. Determine the reactions at all supports and the 
force transmitted through the hinge at C.

P3.15. Determine the reactions at supports A, C, and E.

6 m

4 kN/m

6 m 4 m 4 m
A B C D E

8 kN/m

40 kN

P3.15

P3.16. Determine all reactions. Joint C can be assumed 
to act as a hinge.

6 kips 6 kips 6 kips

4 @ 8ʹ = 32ʹ

6 kips

4 kips

6ʹ

A

B C D E

F
G

H
I

P3.16

P3.17. Determine all reactions. The uniform load on all 
girders extends to the centerlines of the columns.

12 m
(not to scale)

3 m

4 m

6 m

A B

H
C

G
D

F
E

w = 4 kN/m

15 kN

30 kN

30 kN

w = 6 kN/m

w = 6 kN/m

P3.17

P3.18. The bent frame BCDE in figure P3.18 is laterally 
braced by member AC, which acts like a link. Determine 
reactions at A, B, and E.

P3.18

CA D

B E

10 kips
w = 1 kip/ft

24ʹ

12.5ʹ 12.5ʹ

2ʹ

1ʹ

P3.14

6 m

2 m

4 m

hinge

4 m 8 m

ED

A B

F

C
40 kN

30 kN·m15 kN·m 2 kN/m
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P3.19 to P3.21. Determine all reactions.

6 kips/ft

hinge

A

B

C

150ʹ 150ʹ

75ʹ

P3.19

6 kN/m

12 kN

20 kN

4 m 4 m

A

C

D

4 m

3 m

3 m

P3.20

0.4 kip/ft

D
A

B

C

10 kips

16ʹ

20ʹ

10ʹ

10ʹ

P3.21

P3.22. Determine all reactions. The pin joint at E acts 
as a hinge.

P3.23. The roof truss is bolted to a reinforced masonry 
pier at A and connected to an elastomeric pad at C. The 
pad, which can apply vertical restraint in either direction 
but no horizontal restraint, can be treated as a roller. The 
support at A can be treated as a pin. Compute the reactions 
at supports A and C produced by the wind load.

360 lb/ft

36ʹ

30ʹ 15ʹ 15ʹ 30ʹ

240 lb/ft

A

B

C
elastomeric pad

P3.23

P3.22

10 kips/ft 

55 kips

B

C

A

E

6ʹ

6ʹ

12ʹ 15ʹ 12ʹ
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124  Chapter 3 ■ Statics of Structures—Reactions

P3.24. The clip angle connecting the beam’s web at A to 
the column may be assumed equivalent to a pin support. 
Assume member BD acts as an axially loaded pin-end com-
pression strut. Compute the reactions at points A and D.

3
4

1.6 kips/ft
3 kips/ft

A
C

D

B

4ʹ8ʹ

P3.24

P3.25. Compute all reactions.

A

C D

F

B E

2 kips/ft

12ʹ

5ʹ10ʹ5ʹ

P3.25

P3.26. Compute the reactions at supports A, E, and F.

F

B C

D
E

G

A

w = 10 kips/ft

3

20 kips
4

3ʹ

2ʹ

6ʹ3ʹ1ʹ4ʹ

P3.26

P3.27. The baseplates at the bottoms of the columns are 
connected to the foundations at points A and D by bolts 
and may be assumed to act as pin supports. Joint B is 
rigid. At C where the bottom flange of the girder is bolted 
to a cap plate welded to the end of the column, the joint 
can be assumed to act as a hinge (it has no significant 
capacity to transmit moment). Compute the reactions at 
A and D.

bolted joint C
A

B

C

D

w = 2.4 kips/ft

8 kips

16ʹ62ʹ

P3.27
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P3.28. Draw free-body diagrams of column AB and beam 
BC and  joint B by passing cutting planes through the 
rigid frame an infinitesimal distance above support A and 
to the right and immediately below joint B. Evaluate the 
internal forces on each free body.

6 kips

8 kips

A

w = 2 kips/ft

B C

6ʹ

5ʹ

4ʹ

1ʹ

6ʺ

12ʺ

P3.28

P3.29. The frame is composed of members connected by 
frictionless pins. Draw free-body diagrams of each mem-
ber and determine the forces applied by the pins to the 
members.

4 m

4 m
20 kN

10 kN

2 m

2 m

A

B

C

D

E

P3.29

P3.30. The truss in Figure P3.30 is composed of pin-
jointed members that carry only axial load. Determine 
the forces in members, a, b, and c by passing vertical  
section 1-1 through the center of the truss.

15 kips

15 kips

A

DCB E

F

GH

a

b

c

1

1
10ʹ12ʹ10ʹ

9ʹ

P3.30

P3.31. (a) In Figure P3.31 trusses 1 and 2 are stable 
 elements that can be treated as rigid bodies. Compute all 
reactions. (b) Draw free-body diagrams of each truss and 
evaluate the forces applied to the trusses at joints C, B, 
and D.

A

B

C

D

E

24 kips

truss 1

link

60 kips

link

2
1

truss 2

40ʹ

20ʹ

20ʹ20ʹ20ʹ20ʹ20ʹ

20ʹ

15ʹ

15ʹ

P3.31
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P3.32 and P3.33. Classify the structures in Figures P3.32 
and P3.33. Indicate if stable or unstable. If unstable, in-
dicate the reason. If the structure is stable, indicate if  
determinate or indeterminate. If indeterminate, specify 
the degree.

(a) (b) (c)

hinge

( f )(e )

(d )

hinge

hinge

link

P3.32

(a)

(d)

(b)

(e)

(c)

( f )

hinge

hinge

hinge hinge

hinge

hinge

P3.33
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P3.34. Practical application: A one-lane bridge consists 
of a 10-in.-thick, 16-ft-wide reinforced concrete slab sup-
ported on two steel girders spaced 10 ft apart. The girders 
are 62-ft long and weigh 400 lb/ft. The bridge is to be de-
signed for a uniform live load of 700 lb/ft acting over the 
entire length of the bridge. Determine the maximum reac-
tion applied to an end support due to dead, live, and im-
pact loads. The live load may be assumed to act along the 
centerline of the deck slab and divide equally between 
the two girders. Each concrete curb weighs 240 lb/ft and 
each rail 120 lb/ft. Stone concrete has a unit weight of 
150 lb/ft3. Assume an impact factor of 1.33.

A

A

girder

curb curb

CL CL

section A-A

10ʹ

60ʹ

3ʹ3ʹ

P3.34

20 kips

w = 3 kips/ft

A

B

CD

FE G

2ʹ

2ʹ

4ʹ4ʹ4ʹ
12ʹ

22ʹ

11ʹ

11ʹ

1ʹ

P3.35

P3.35. A timber member supported by three steel links 
to a concrete frame has to carry the loads shown in  
Figure P3.35. (a) Calculate the reactions at support A.  
(b) De termine the axial forces in all links. Indicate if each 
link is in compression or tension.
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P3.36. The three bay, one-story frame consists of beams 
pin connected to columns and column bases pinned to the 
foundation in Figure P3.36. The diagonal brace member 

P3.37. The multispan girder in Figure P3.37 has two 
shear plate connections that act as hinges at C and D. The  
midspan girder CD is simply supported on the cantilevered 

P3.36

brace
pinned at
each end

beam, typical

column, typical

pinned
connections,

typical

4 kips/ft

6 kips

FE

B C D

HG

A

30ʹ 30ʹ 30ʹ

16ʹ

P3.37

A B C D E F G

w = 6 kips/ft

shear plate
connections

40ʹ 8ʹ 24ʹ 8ʹ 40ʹ 5ʹ

CH is pinned at each end. Determine the reactions at A, B, 
C, and D and calculate the force in the brace.

ends of the left and right girders. Determine the forces in 
the hinges and the reactions at supports A, B, E, and F.
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Collapse of the I-35W Bridge in Minneapolis, Minnesota
The superstructure of the I-35W Mississippi River Bridge was a 1,064-ft long variable 
depth simply-supported steel deck truss. Built in 1967, the bridge had a catastrophic fail-
ure during rush hour on August 1, 2007, killing 13 people. The failure was triggered by 
the overload of an under-designed gusset connection at a joint which was not captured 
by routine inspection. Since this bridge was statically determinate, the failure of a single 
member or joint would cause complete collapse of the structure, which highlights the im-
portance of providing a redundant design with indeterminate structures.

© Mandel Ngan/AFP/Getty Images
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4

A truss is a structural element composed of a stable arrangement of slender 
interconnected bars (Figure 4.1a). The pattern of bars, which often subdivides 
the truss into triangular areas, is selected to produce an efficient, lightweight, 
load-bearing member. Although joints, typically formed by welding or bolt-
ing truss bars to gusset plates, are rigid (Figure 4.1b), the designer normally 
assumes that members are connected at joints by friction less pins, as shown 
in Figure 4.1c (Example 4.9 clarifies the effect of this assumption). Since no 
moment can be transferred through a frictionless pin joint, truss members are 
assumed to carry only axial force—either tension or compression. Because 
truss members act in direct stress, they carry load efficiently and often have 
relatively small cross sections.

As shown in Figure 4.1a, the upper and lower members, which are either 
horizontal or sloping, are called the top and bottom chords. The chords are 
connected by vertical and diagonal members.

The structural action of many trusses is similar to that of a beam. As a 
matter of fact, a truss can often be viewed as a beam in which excess mate-
rial has been removed to reduce weight. The chords of a truss correspond to  
the flanges of a beam. The forces that develop in these members make up the 
internal couple that carries the moment produced by the applied loads. 
The primary function of the vertical and diagonal members is to transfer 
vertical force (shear) to the supports at the ends of the truss. Generally, 

C H A P T E R

Trusses
Chapter Objectives

 ● Study the characteristics and behavior of trusses. Since truss members carry only axial loads, 
the configuration of the bars is key to a truss’ efficiency and use.

 ● Analyze determinate trusses by method of joints and method of sections to determine bar forces. 
Also learn to visually identify bars with zero force.

 ● Classify determinate and indeterminate truss structures, and determine the degree of indeterminacy.

 ● Determine if a truss structure is stable or unstable.

Introduction
4.1
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132  Chapter 4 ■ Trusses

on a per pound basis it costs more to fabricate a truss than to roll a steel 
beam; however, the truss will require less material because the material 
is used more efficiently. In a long-span structure, say 200 ft or more, the 
weight of the structure can represent the major portion (on the order of 75 
to 85 percent) of the design load to be carried by the structure. By using 
a truss instead of a beam, the engineer can often design a lighter, stiffer 
structure at a reduced cost.

Even when spans are short, shallow trusses called bar joists are often 
used as substitutes for beams when loads are relatively light. For short spans 
these members are often easier to erect than beams of comparable capac-
ity because of their lighter weight. Moreover, the openings between the web 
members provide large areas of unobstructed space between the floor above 
and the ceiling below the joist through which the mechanical engineer can 
run heating and air-conditioning ducts, water and waste pipes, electrical con-
duit, and other essential utilities.

In addition to varying the area of truss members, the designer can vary 
the truss depth to reduce its weight. In regions where the bending moment 
is large—at the center of a simply supported structure or at the supports in a 
continuous structure—the truss can be deepened (Figure 4.2).

The diagonals of a truss typically slope upward at an angle that ranges 
from 45° to 60°. In a long-span truss the distance between panel points should 
not exceed 15 to 20 ft (5 to 7 m) to limit the unsupported length of the com-
pression chords, which must be designed as columns. As the slenderness of 
a compression chord increases, it becomes more susceptible to buckling. The 
slenderness of tension members must be limited also to reduce vibrations pro-
duced by wind and live load.

If a truss carries equal or nearly equal loads at all panel points, the di-
rection in which the diagonals slope will determine if they carry tension or 
compression forces. Figure 4.3, for example, shows the difference in forces 
set up in the diagonals of two trusses that are identical in all respects (same 

Figure 4.2: (a) and (b) depth of truss varied 
to conform to ordinates of moment curve.

+M

(a)

(b)

–M –M

+M

Figure 4.1: (a) Details of a truss; (b) welded 
joint; (c) idealized joint, members connected 
by a frictionless pin.

lower chord
members

verticals

upper chord
members

diagonals

(a)

gusset
plate weld

(b)

(c)

CL

CL
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4.1 ■ Introduction  133

span, same loads, and so forth) except for the direction in which the diagonals 
slope (T represents tension and C indicates  compression).

Although trusses are very stiff in their own plane, they are very flexible 
out of plane and must be braced or stiffened for stability. Since trusses are often 
used in pairs or spaced side by side, it is usually possible to  connect several 
trusses together to form a rigid-box type of structure. For example, Figure 4.4 
shows a bridge constructed from two trusses. In the horizontal planes of the top 

(a)

(b)

truss

truss

transverse
beam

typical
panel

bracing

floor
slab

diagonal bracing
typical all panelstruss

truss

floor
beams

floor
beam

stringer

Figure 4.4: Truss with floor beams and secondary bracing: (a) perspective showing truss 
interconnected by transverse beams and diagonal bracing; diagonal bracing in bottom plane, 
omitted for clarity, is shown in (b); (b) bottom view showing floor beams and diagonal brac-
ing. Lighter beams and bracing are also required in the top plane to stiffen trusses laterally.

T T T T

C C C C

Figure 4.3: T represents tension and C 
com pression.

Photo 4.1: Reconstructed Tacoma Narrows 
bridge showing trusses used to stiffen the 
roadway floor system. See original bridge in 
Photo 2.2.
© Blend Images/Alamy Stock Photo
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Types of Trusses
4.2

The members of most modern trusses are arranged in triangular patterns be-
cause even when the joints are pinned, the triangular form is geometrically 
stable and will not collapse under load (Figure 4.5a). On the other hand, 
a pin-connected rectangular element, which acts like an unstable linkage 
(Figure 4.5b), will collapse under the smallest lateral load.

One method to establish a stable truss is to construct a basic triangu-
lar unit (see the shaded triangular element ABC in Figure 4.6) and then 
establish additional joints by extending bars from the joints of the first 
 triangular element. For example, we can form joint D by extending bars 
from joints B and C. Similarly, we can imagine that joint E is formed by ex-
tending bars from joints C and D. Trusses formed in this manner are called 
simple trusses.

If two or more simple trusses are connected by a pin or a pin and  
a tie, the resulting truss is termed a compound truss (Figure 4.7). Finally, 
if a truss—usually one with an unusual shape—is neither a simple nor a 

(a) (b)

Figure 4.5: Pin-jointed frames: (a) stable; (b) unstable.

A C

B D

E

Figure 4.6: Simple truss.

simple
truss

simple
truss

Figure 4.7: Compound truss is made up of 
simple trusses.

and bottom chords, the designer adds transverse members, running between 
panel points, and diagonal bracing to stiffen the structure. The upper and lower 
chord bracing together with the transverse members forms a truss in the hori-
zontal plane to transmit lateral wind load into the end supports. Engineers also 
add diagonal knee bracing in the vertical plane at the ends of the structure to 
ensure that the trusses remain perpendicular to the top and bottom planes of 
the structure.
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4.3 ■ Analysis of Trusses  135

Analysis of Trusses
4.3

A truss is completely analyzed when the magnitude and sense (tension 
or compression) of all bar forces and reactions are determined. To com-
pute the reactions of a determinate truss, we treat the entire structure as a 
rigid body and, as discussed in Section 3.6, apply the equations of static 
equilibrium together with any condition equations that may exist. The 
analysis used to evaluate the bar forces is based on the following three 
assumptions:

1. Bars are straight and carry only axial load (i.e., bar forces are directed 
along the longitudinal axis of truss members). This assumption also 
implies that we have neglected the deadweight of the bar. If the weight 
of the bar is significant, we can approximate its effect by applying one-
half of the bar weight as a concentrated load to the joints at each end of 
the bar.

2. Members are connected to joints by frictionless pins. That is, no mo-
ments can be transferred between the end of a bar and the joint to which 
it connects. (If joints are rigid and members stiff, the structure should be 
analyzed as a rigid frame.)

3. Loads are applied only at joints.

As a sign convention (after the sense of a bar force is established) we label 
a tensile force positive and a compression force negative. Alternatively, we 
can denote the sense of a force by adding after its numerical value a T to indi-
cate a tension force or a C to indicate a compression force.

If a bar is in tension, the axial forces at the ends of the bar act outward 
(Figure 4.9a) and tend to elongate the bar. The equal and opposite forces on 
the ends of the bar represent the action of the joints on the bar. Since the bar 
applies equal and opposite forces to the joints, a tension bar will apply a force 
that acts outward from the center of the joint.

(a)

(b)

Figure 4.8: Complex trusses.

compound truss, it is termed a complex truss (Figure 4.8). In current practice, 
where computers are used to analyze, these clas si fi ca tions are not of great 
significance.
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136  Chapter 4 ■ Trusses

If a bar is in compression, the axial forces at the ends of the bar act in-
ward and compress the bar (Figure 4.9b). Correspondingly, a bar in compres-
sion pushes against a joint (i.e., applies a force directed inward toward the 
center of the joint).

Bar forces may be analyzed by considering the equilibrium of a 
joint—the method of joints—or by considering the equilibrium of a sec-
tion of a truss—the method of sections. In the latter method, the section 
is produced by passing an imaginary cutting plane through the truss. The 
method of joints is discussed in Section 4.4; the method of sections is 
treated in Section 4.6.

A B

(a)

joint A

TTTT

joint B

A B

(b)

joint A

CCCC

joint B

Figure 4.9: Free-body diagrams of axially 
loaded bars and adjacent joints: (a) bar AB in 
tension; (b) bar AB in compression.

Method of Joints
4.4

To determine bar forces by the method of joints, we analyze free-body dia-
grams of joints. The free-body diagram is established by imagining that we 
cut the bars by an imaginary section just before the joint. For example, in 
Figure 4.10a to determine the bar forces in members AB and BC, we use the 
free body of joint B shown in Figure 4.10b. Since the bars carry axial force, 
the line of action of each bar force is directed along the longitudinal axis of 
the bar.

Because all forces acting at a joint pass through the pin, they constitute 
a concurrent force system. For this type of force system, only two equations 
of statics (that is, ΣFx = 0 and ΣFy = 0) are available to evaluate unknown 
bar forces. Since only two equations of equilibrium are available, we can only 
analyze joints that contain a maximum of two unknown bar forces.

The analyst can follow several procedures in the method of joints. For  
the student who has not analyzed many trusses, it may be best initially 
to  write the equilibrium equations in terms of the components of the bar 
forces. On the other hand, as one gains experience and becomes familiar with 
the method, it is possible, without formally writing out the equilibrium equa-
tions, to determine bar forces at a joint that contains only one sloping bar by 
observing the magnitude and direction of the components of the bar forces 
required to produce equilibrium in a particular direction. The latter method 
permits a more rapid analysis of a truss. We discuss both procedures in this 
section.

To determine bar forces by writing out the equilibrium equations, we 
must assume a direction for each unknown bar force (known bar forces must 
be shown in their correct sense, in force vector direction and/or numeric sign). 
The analyst is free to assume either tension or compression for any unknown 
bar force. For the student, it may be helpful to assume that all bars are in ten-
sion, showing all unknown bar forces acting outward from the center of the 
joint (this practice is consistent with internal force sign convention discussed 
in Chapter 5). Next, the forces are resolved into their X and Y (rectangular) 
components. As shown in Figure 4.10b, the force or the components of a 
force in a particular bar are subscripted with the letters used to label the joints 

A

B

C

P = 30 kips

(a)

3
4

B
FBC

P = 30 kips

(b)

FAB

3
4

XAB

YAB

Figure 4.10: (a) Truss (dashed lines show 
location of circular cutting plane used to iso-
late joint B); (b) free body of joint B.
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4.4 ■ Method of Joints  137

at each end of the bar. To complete the solution, we write and solve the two 
equations of equilibrium.

If only one unknown force acts in a particular direction, the com putations 
are most expeditiously carried out by summing forces in that direction. After 
a component is computed, the other component can be established by setting 
up a proportion between the components of the force and the slope of the bar 
(the slope of the bar and the bar force are obviously identical).

If the solution of an equilibrium equation produces a positive value of force, 
the direction initially assumed for the force was correct. On the other hand, if the 
value of force is negative, its magnitude is correct, but the direction initially as-
sumed is incorrect. Therefore, the engineer can either change the direction of the 
force while retaining only its magnitude on a new updated free-body diagram, 
or use the original diagram with incorrect force direction along with its negative 
value. For the student assuming all bars are in tension, the latter may be helpful 
in avoiding errors. If one prefers to change force directions to account for nega-
tive signs, the transfer of information between the original and updated free-body 
diagrams must be made with care. After the bar forces are established at a joint, 
the engineer proceeds to adjacent joints and repeats the preceding computation 
until all bar forces are evaluated. This procedure is illustrated in Example 4.1.

Determination of Bar Forces by Inspection

Trusses can often be analyzed rapidly by inspection of the bar forces and 
loads acting on a joint that contains one sloping bar in which the force is 
unknown. In many cases the direction of certain bar forces will be obvious 
after the resultant of the known force or forces is established. For example, 
since the applied load of 30 kips at joint B in Figure 4.10b is directed down-
ward, the y-component, YAB of the force in member AB—the only bar with 
a vertical component—must be equal to 30 kips and directed upward to sat-
isfy equilibrium in the vertical direction. If YAB is directed upward, force FAB 
must act upward and to the right, and its horizontal component XAB must be 
directed to the right. Since XAB is directed to the right, equilibrium in the  
horizontal direction requires that FBC act to the left. The value of XAB is easily 
computed from similar triangles because the slopes of the bars and the bar 
forces are identical (Section 3.2).

   XAB ____ 4    =    YAB ___ 3   
and

XAB =    4 __ 3    YAB =    4 __ 3    (30)

XAB = 40 kips Ans.

To determine the force FBC, we mentally sum forces in the x direction.

 →+ ΣFx = 0

 0 = −FBC + 40

 FBC = 40 kips Ans.
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Analyze the truss in Figure 4.11a by the method of joints. Reactions are given.

Solution
The slopes of the various members are computed and shown on the sketch. 
For example, the top chord ABC, which rises 12 ft in 16 ft, is on a slope  
of 3:4.

To begin the analysis, we must start at a joint with a maximum of two 
bars. Either joint A or C is acceptable. Since the computations are simplest 
at a joint with one sloping member, we start at A. On a free body of joint 
A (Figure 4.11b), we arbitrarily assume that bar forces FAB and FAD are 
tensile forces and show them acting outward on the joint. We next replace 
FAB by its rectangular components XAB and YAB. Writing the equilibrium 
equation in the y direction, we compute YAB.

↑
+ ∑Fy = 0

     0 = −24 + YAB    and    YAB = 24 kips Ans.

Since YAB is positive, it is a tensile force, and the assumed 
direction on the sketch is correct. Compute XAB and FAB by 
proportion, considering the slope of the bar.

   YAB ___ 3    =    XAB ____ 4    =    FAB ____ 5   

E X A M P L E  4 . 1

Figure 4.11: (a) Truss; (b) joint A; (c) joint B; 
(d) joint D; (e) summary of bar forces (units 
in kips).
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4.4 ■ Method of Joints  139

and

XAB =    4 __ 3    YAB =    4 __ 3    (24) = 32 kips

FAB =    5 __ 3    YAB =    5 __ 3    (24) = 40 kips Ans.

 Compute FAD.

 →+ ΣFx = 0

 0 = −22 + XAB + FAD

FAD = −32 + 22 = −10 kips Ans.

Since the minus sign indicates that the direction of force FAD was assumed 
incorrectly, the force in member AD is compression, not tension. However, 
in order to avoid mistakes we will continue our analysis by assuming all 
bars act in tension and retain any negative signs indicating compression 
members.

We next isolate joint B and show all forces acting on the joint 
(Figure 4.11c). Since we determined FAB = 40 kips tension from the analy-
sis of joint A, it is shown on the sketch acting outward from joint B. Super-
imp osing an x-y coordinate system on the joint and resolving FBD into rect-
angular components, we evaluate YBD by summing forces in the y direction.

 ↑
+ ΣFy = 0

YBD = 0

Since YBD = 0, it follows that FBD = 0. From the discussion to be presented 
in Section 4.5 on zero bars, this result could have been anticipated.

 Compute FBC.
 →+ ΣFx = 0

0 = FBC − 40

FBC = 40 kips tension Ans.

Analyze joint D with FBD = 0 and FDC shown with its rectangular compo-
nents (Figure 4.11d ).

→+ ΣFx = 0 0 = −(−10) + XDC  and  XDC = −10 kips

↑
+ ΣFy = 0 0 = 24 + YDC    and   YDC = −24 kips

Again, the minus signs means the direction of force FDC was assumed 
incorrectly, but clearly indicates member DC is in compression. As a check 
of the results, we observe that the components of FDC are proportional to 
the slope of the bar. Since all bar forces are known at this point, we can also 
verify that joint C is in equilibrium, as an alternative check. The results 
of the analysis are summarized in Figure 4.11e on a sketch of the truss. 
A tension force is indicated with a plus sign, a compressive force with a 
minus sign.
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Zero Bars
4.5

Trusses, such as those used in highway bridges, typically support moving loads. 
As the load moves from one point to another, forces in truss  members vary. For 
one or more positions of the load, certain bars may remain unstressed. The un-
stressed bars are termed zero bars. The de signer can often speed the analysis of 
a truss by identifying bars in which the forces are zero. In this section we discuss 
two cases in which bar forces are zero.

Case 1.  If No External Load Is Applied to a Joint That  
Consists of Two Bars, the Force in Both Bars  
Must Be Zero

To demonstrate the validity of this statement, we will first assume that forces 
F1 and F2 exist in both bars of the two-bar joint in Figure 4.12a, and then we 
demonstrate that the joint cannot be in equilibrium unless both forces equal 
zero. We begin by superimposing on the joint a rect angular coordinate system 
with an x axis oriented in the direction of force F1, and we resolve force F2 
into components X2 and Y2 that are parallel to the x and y axes of the coor-
dinate system, respectively. If we sum forces in the y direction, it is evident 
that the joint cannot be in equilibrium unless Y2 equals zero because no other 
force is available to balance Y2. If Y2 equals zero, then F2 is zero, and equilib-
rium requires that F1 also equals zero.

A second case in which a bar force must equal zero occurs when a joint 
is composed of three bars—two of which are collinear.

Case 2.  If No External Load Acts at a Joint Composed  
of Three Bars—Two of Which Are Collinear— 
the Force in the Bar That Is Not Collinear  
Is Zero

To demonstrate this conclusion, we again superimpose a rectangular coordi-
nate system on the joint with the x axis oriented along the axis of the two col-
linear bars. If we sum forces in the y direction, the equilibrium equation can 
be satisfied only if F3 equals zero because there is no other force to balance 
its y-component Y3 (Figure 4.12b).

Although a bar may have zero force under a certain loading condition, 
under other loadings the bar may carry stress. Thus the fact that the force 
in a bar is zero does not indicate that the bar is not essential and may be 
eliminated.

Figure 4.12: Conditions that produce zero 
forces in bars: (a) two bars and no external 
loads, F1 and F2 equal zero; (b) two collinear 
bars and no external loads, force in third bar 
(F3) is zero.
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x
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Y2

X2
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(b)
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F2

X3

y
x

F3
Y3
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4.5 ■ Zero Bars  141

Based on the earlier discussion in Section 4.5, label all the bars in the truss 
of Figure 4.13 that are unstressed when the 60-kip load acts.

Solution
Although the two cases discussed in this section apply to many of the bars, 
we will examine only joints A, E, I, and H. The verification of the remain-
ing zero bars is left to the student. Since joints A and E are composed of 
only two bars and no external load acts on the joints, the forces in the bars 
are zero (see Case 1).

Because no horizontal loads act on the truss, the horizontal reaction at 
I is zero. At joint I the force in bar IJ and the 180-kip reaction are collinear; 
therefore, the force in bar IH must equal zero because no other horizontal 
force acts at the joint. A similar condition exists at joint H. Since the force 
in bar IH is zero, the horizontal component of bar HJ must be zero. If a 
component of a force is zero, the force must also be zero.

E X A M P L E  4 . 2

Figure 4.13
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Method of Sections
4.6

To analyze a stable truss by the method of sections, we imagine that the truss 
is divided into two free bodies by passing an imaginary cutting plane through 
the structure. The cutting plane must, of course, pass through the bar whose 
force is to be determined. At each point where a bar is cut, the internal force in 
the bar is applied to the face of the cut as an external load. Although there is no 
restriction on the number of bars that can be cut, we often use sections that cut 
three bars since three equations of static equilibrium are available to analyze 
a free body. For example, if we wish to determine the bar forces in the chords 
and diagonal of an interior panel of the truss in Figure 4.14a, we can pass a 
vertical section through the truss, producing the free-body diagram shown in  
Figure 4.14b. As we saw in the method of joints, the engineer is free to assume 
the direction of the bar force. If a force is assumed in the correct direction, 
solution of the equilibrium equation will produce a positive value of force. Al-
ternatively, a negative value of force indicates that the direction of the force 
was assumed incorrectly.

If the force in a diagonal bar of a truss with parallel chords is to be com-
puted, we cut a free body by passing a vertical section through the diagonal 
bar to be analyzed. An equilibrium equation based on summing forces in the 
y direction will permit us to determine the vertical component of force in the 
diagonal bar.

If three bars are cut, the force in a particular bar can be determined by 
extending the forces in the other two bars along their line of action until 
they intersect. By summing moments about the axis through the point of 
intersection, we can write an equation involving the third force or one of its 
components. Example 4.3 illustrates the analysis of typical bars in a truss 
with parallel chords. Example 4.4, which covers the analysis of a determi-
nate truss with four restraints, illustrates a general approach to the analysis 
of a complicated truss using both the method of sections and the method 
of joints.

15ʹ

20ʹ 20ʹ

4 @ 15ʹ = 60ʹ

(a) (b)

A

B C D

E

FGH

40 kips 40 kips40 kips
1

30 kips

30 kips

50 kips

A

B
FBC

FHG

FHCYHC

XHC

H

40 kips

30 kips

30 kips

50 kips70 kips

1

Figure 4.14
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Using the method of sections, compute the forces or components of force 
in bars HC, HG, and BC of the truss in Figure 4.14a.

Solution
Pass section 1-1 through the truss cutting the free body shown in 
Figure 4.14b. The direction of the axial force in each member is arbitrarily 
assumed. To simplify the computations, force FHC is resolved into vertical 
and horizontal components.

Compute YHC (Figure 4.14b).

 ↑
+ ΣFy = 0

0 = 50 − 40 − YHC

YHC = 10 kips tension Ans.

From the slope relationship,

   XHC ____ 3    =    YHC ____ 4   

XHC =    3 __ 4    YHC = 7.5 kips Ans.

Compute FBC. Sum moments about an axis through H at the inter-
section of forces FHG and FHC.

 ⟳+ ΣMH = 0

0 = 30(20) + 50(15) − FBC (20) 

 FBC = 67.5 kips tension Ans.

Compute FHG.

 →+ ΣFx = 0

0 = 30 − FHG + XHC + FBC − 30

FHG = 75 kips compression Ans.

Since the solution of the equilibrium equations above produced 
positive values of force, the directions of the forces shown in Figure 4.14b 
are correct.

E X A M P L E  4 . 3
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Solution
Since the supports at A, C, and D supply four restraints to the truss in  
Figure 4.15a, and only three equations of equilibrium are available, we 
cannot determine the value of all the reactions by applying the three equa-
tions of static equilibrium to a free body of the entire structure. However, 
recognizing that only one horizontal restraint exists at support A, we can 
determine its value by summing forces in the x direction.

→+ ΣFx = 0

− Ax + 60 = 0

Ax = 60 kips Ans.

E X A M P L E  4 . 4

Figure 4.15
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Analyze the determinate truss in Figure 4.15a to determine all bar forces 
and reactions.
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Since the remaining reactions cannot be determined by the equations of stat-
ics, we must consider using the method either of joints or of sections. At this 
stage the method of joints cannot be applied because three or more unknown 
forces act at each joint. Therefore, we will pass a vertical section through the 
center panel of the truss to produce the free body shown in Figure 4.15b. We 
must use the free body to the left of the section because the free body to the 
right of the section cannot be analyzed since the reactions at C and D and 
the bar forces in members BC and FE are unknown.

Compute Ay (Figure 4.15b).

 ↑
+ ΣFy = 0

 Ay = 0 Ans.

Compute FBC. Sum moments about an axis through joint F.

⟳+ ΣMF = 0

60 (20) − FBC (15) = 0 

FBC = 80 kips (tension) Ans.

Compute FFE.

 →+ ΣFx = 0

+ 60 − 60 + FBC − FFE = 0 

 FFE = FBC = 80 kips (compression) Ans.

Now that several internal bar forces are known, we can complete the 
analysis using the method of joints. Isolate joint E (Figure 4.15c).

 →+ ΣFx = 0

80 − XED = 0 

XED = 80 kips (compression) Ans.

Since the slope of bar ED is 1:1, YED = XED = 80 kips.

 ↑
+ ΣFY = 0

FEC − YED = 0 

FEC = 80 kips (tension) Ans.

The balance of the bar forces and the reactions at C and D can be deter-
mined by the method of joints. Final results are shown on a sketch of the 
truss in Figure 4.15d.
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E X A M P L E  4 . 5 Determine the forces in bars HG and HC of the truss in Figure 4.16a by 
the method of sections.

4 @ 24ʹ = 96ʹ
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Figure 4.16: (a) Details of truss; (b) free body to compute force in bar HC; (c) free body 
to compute force in bar HG.
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Solution
First compute the force in bar HC. Pass vertical section 1-1 through the truss, 
and consider the free body to the left of the section (Figure 4.16b). The bar 
forces are applied as external loads to the ends of the bars at the cut. Since 
three equations of statics are available, all bar forces can be determined by  
the equations of statics. Let F2 represent the force in bar HC. To simplify the 
computations, we select a moment center (point a that lies at the intersection 
of the lines of action of forces F1 and F3). Force F2 is next extended along 
its line of action to point C and replaced by its rectangular components X2 
and Y2. The distance x between a and the left support is established by pro-
portion using similar triangles, that is, aHB and the slope (1:4) of force F1.

   1 ___ 18    =    4 ______ x + 24   

x = 48 ft

Sum moments of the forces about point a and solve for Y2.

 ⟳+ ΣMa = 0

0 = −60(48) + 30(72) + Y2(96)

Y2 = 7.5 kips tension Ans.

Based on the slope of bar HC, establish X2 by proportion.

   Y2 __ 3    =    X2 ___ 4   

 X2 =    4 __ 3    Y2 = 10 kips Ans.

Now compute the force F1 in bar HG. Select a moment center at the 
intersection of the lines of action of forces F2 and F3, that is, at point C 
(Figure 4.16c). Extend force F1 to point G and break into rectangular com-
ponents. Sum moments about point C.

 ⟳+ ΣMc = 0

0 = 60(48) − 30(24) − X1(24)

X1 = 90 kips compression Ans.

Establish Y1 by proportion.

   X1 ___ 4    =    Y1 __ 1   

Y1 =    X1 ___ 4    = 22.5 kips Ans.
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E X A M P L E  4 . 6 Using the method of sections, compute the forces in bars BC and JC of the  
K truss in Figure 4.17a.

20ʹ 20ʹ 20ʹ 20ʹ

30ʹ

15ʹ

15ʹ

A B C D

EFGH

I J K
FJB

G

A B

I

H

FJG

FBC

FGF

(a) (b)

24 kips 48 kips 24 kips 48 kips

1 2

48 kips

1 2

Figure 4.17: (a) K truss; (b) free body to the left of section 1-1 used to evaluate FBC; 
(c) free body used to compute FJC; (d ) bar forces.

20ʹ 20ʹ

30ʹ
FJC

F
H

G

I J

A B C

FJF

XJC

YJC

FGF

(c) (d)

24 kips 48 kips

16 kips

24 kips

12

12
16

16
+

–

36

36
48

48
+

–

60

60
80

+84

–36

+60

–12

+24

0

–64

+64

–16

+16

0

0

80
–60

+

–

48 kips 48 kips 120 kips

144 kips

144 kips
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Solution
Since any vertical section passing through the panel of a K truss cuts four 
bars, it is not possible to compute bar forces by the method of sections be-
cause the number of unknowns exceeds the number of equations of statics. 
Since no moment center exists through which three of the bar forces pass, 
not even a partial solution is possible using a standard vertical section. As we  
illustrate in this example, it is possible to analyze a K truss by using two sec-
tions in sequence, the first of which is a special section curving around an  
interior joint.

To compute the force in bar BC, we pass section 1-1 through the truss 
in Figure 4.17a. The free body to the left of the section is shown in 
Figure 4.17b. Summing moments about the bottom joint G gives

 ⟳+ ΣMG = 0

30FBC − 24(20) = 0

FBC = 16 kips tension Ans.

To compute FJC, we pass section 2-2 through the panel and consider again 
the free body to the left (Figure 4.17c). Since the force in bar BC has been 
evaluated, the three unknown bar forces can be determined by the equa-
tions of statics. Use a moment center at F. Extend the force in bar JC to 
point C and break into rectangular components.

⟳+ ΣMF = 0

0 = 16(30) + XJC (30) − 20(48) − 40(24)

XJC = 48 kips

FJC =    5 __ 
4
    XJC = 60 kips tension Ans.

NOTE. The K truss can also be analyzed by the method of joints by starting 
from an outside joint such as A or H. The results of this analysis are shown 
in Figure 4.17d. The K bracing is typically used in deep trusses to reduce 
the length of the diagonal members. As you can see from the results in  
Figure 4.17d, the shear in a panel divides equally between the  top and 
bottom diagonals. One diagonal carries compression, and the other carries 
tension.

lee98004_ch04_130-173.indd   149 23/12/16   4:33 pm



150  Chapter 4 ■ Trusses

Determinacy and Stability
4.7

Thus far the trusses we have analyzed in this chapter have all been stable de-
terminate structures; that is, we knew in advance that we could carry out a 
complete analysis using the equations of statics alone. Since indeterminate 
trusses are also used in practice, an engineer must be able to recognize a 
structure of this type because indeterminate trusses require a special type of 
analysis. As we will discuss in Chapter 9,  compatibility equations must be 
used to supplement equilibrium  equations.

If you are investigating a truss designed by another engineer, you will 
have to establish if the structure is determinate or indeterminate before 
you begin the analysis. Further, if you are responsible for establishing the 
configuration of a truss for a special situation, you must obviously be able to 
select an arrangement of bars that is stable. The purpose of this section is to 
extend to trusses the introductory discussion of stability and determinacy in 
Sections 3.8 and 3.9—topics you may wish to review before proceeding to 
the next paragraph.

If a loaded truss is in equilibrium, all members and joints of the truss must 
also be in equilibrium. If load is applied only at the joints and if all truss members 
are assumed to carry only axial load (an assumption that implies the dead load 
of members may be neglected or applied at the joints as an equivalent concen-
trated load), the forces acting on a free-body diagram of a joint will constitute a 
concurrent force system. To be in equilibrium, a concurrent force system must  
satisfy the following two equilibrium equations:

ΣFx = 0
ΣFy = 0

Since we can write two equilibrium equations for each joint in a truss, the 
total number of equilibrium equations available to solve for the unknown 
bar forces b and reactions r equals 2n (where n represents the total number 
of joints). Therefore, it must follow that if a truss is stable and determinate, 
the relationship between bars, reactions, and joints must satisfy the following  
criteria:

  r + b = 2n (4.1)

In addition, as we discussed in Section 3.8, the restraints exerted by the reac-
tions must not constitute either a parallel or a concurrent force system.

Although three equations of statics are available to compute the reactions 
of a determinate truss, these equations are not independent and they cannot be 
added to the 2n joint equations. Obviously, if all joints of a truss are in equi-
librium, the entire structure must also be in equilibrium; that is, the resultant 
of the external forces acting on the truss equals zero. If the resultant is zero, 
the equations of static equilibrium are automatically satis fied when applied to  
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4.7 ■ Determinacy and Stability  151

the entire structure and thus do not supply additional independent equilibrium 
equations.

If

 r + b > 2n

then the number of unknown forces exceed the available equations of statics 
and the truss is indeterminate. The degree of indeterminacy D equals

  D = r + b − 2n (4.2)

Finally, if

 r + b < 2n

there are insufficient bar forces and reactions to satisfy the equations of equi-
librium, and the structure is unstable.

Moreover, as we discussed in Section 3.8, you will always find that the 
analysis of an unstable structure leads to an inconsistent equilibrium equa-
tion. Therefore, if you are uncertain about the stability of a structure, analyze 
the structure for any arbitrary loading. If a solution that satisfies statics re-
sults, the structure is stable.

To illustrate the criteria for stability and determinacy for trusses intro-
duced in this section, we will classify the trusses in Figure 4.18 as stable or 
unstable. For those structures that are stable, we will establish whether they 
are determinate or indeterminate. Finally, if a structure is indeterminate, we 
will also establish the degree of indeterminacy.

Figure 4.18a

 b + r = 5 + 3 = 8    2n = 2(4) = 8

Since b + r = 2n and the reactions are not equivalent to either a concurrent 
or a parallel force system, the truss is stable and determinate.

Figure 4.18b

 b + r = 14 + 4 = 18    2n = 2(8) = 16

Since b + r exceeds 2n (18 > 16), the structure is indeterminate to the 
second degree. The structure is one degree externally indeterminate be-
cause the supports supply four restraints, and internally indeterminate to 
the first degree because an extra diagonal is supplied in the middle panel 
to transmit shear.

(a)

A B

A B

(b)

(c)

A
B DC

Figure 4.18: Classifying trusses: (a) stable 
determinate; (b) indeterminate second de-
gree; (continues).
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152  Chapter 4 ■ Trusses

Figure 4.18c

 b + r = 14 + 4 = 18    2n = 2(9) = 18

Because b + r = 2n = 18, and the supports are not equivalent to either a paral-
lel or a concurrent force system, the structure appears stable. We can confirm 
this conclusion by observing that truss ABC is obviously a stable component 
of the structure because it is a simple truss (composed of triangles) that is sup-
ported by three restraints—two supplied by the pin at A and one supplied by 
the roller at B. Since the hinge at C is attached to the stable truss on the left, 
it, too, is a stable point in space. Like a pin support, it can supply both hori-
zontal and vertical restraint to the truss on the right. Thus we can reason that 
truss CD must also be stable since it, too, is a simple truss supported by three 
restraints, that is, two supplied by the hinge at C and one by the roller at D.

Figure 4.18d Two approaches are possible to classify the structure in Fig-
ure 4.18d. In the first approach, we can treat triangular element BCE as a 
three-bar truss (b = 3) supported by three links—AB, EF, and CD (r = 3). 
Since the truss has three joints (B, C, and E), n = 3. And b + r = 6 equals  
2n = 2(3) = 6, and the structure is determinate and stable.

Alternatively, we can treat the entire structure as a six-bar truss  
(b = 6), with six joints (n = 6), supported by three pins (r = 6), b + r = 12 
equals 2n = 2(6) = 12. Again we conclude that the structure is stable and 
determinate.

Figure 4.18e

 b + r = 14 + 4 = 18    2n = 2(9) = 18

Since b + r = 2n, it appears the structure is stable and determinate;  however, 
since a rectangular panel exists between joints B, C, G, and H, we will verify 
that the structure is stable by analyzing the truss for an  arbitrary load of 4 kips 
applied vertically at joint F (Example 4.7). Since analysis by the method of 
joints produces unique values of bar force in all members, we conclude that 
the structure is both stable and determinate.

A B

E

F

DC

(d )

A B C D E

F
G

H I

(e)

Figure 4.18: Continued:  (c) determinate; (d ) determinate (e) determinate; (continues).

(a)

A B

A B

(b)

(c)

A
B DC
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Figure 4.18f

 b + r = 8 + 4 = 12    2n = 2(6) = 12

Although the bar count above satisfies the necessary condition for a sta-
ble determinate structure, the structure appears to be unstable because 
the center panel, lacking a diagonal bar, cannot transmit vertical force. To 
confirm this conclusion, we will analyze the truss, using the equations of 
statics (the analysis is carried out in Example 4.8). Since the analysis leads 
to an inconsistent equilibrium equation, we conclude that the structure 
is unstable.

Figure 4.18g

 b = 16    r = 4    n = 10

Although b + r = 2n, the small truss on the right (DEFG) is unstable because 
its supports—the link CD and the roller at E—constitute a parallel force 
system.

Figure 4.18h Truss is geometrically unstable because the reactions consti-
tute a concurrent force system; that is, the reaction supplied by the link BC 
passes through the pin at A.

Figure 4.18i

 b = 21    r = 3    n = 10

And b + r = 24, 2n = 20; therefore, truss is indeterminate to the fourth degree. 
Although the reactions can be computed for any loading, the indeterminacy is 
due to the inclusion of double diagonals in all interior panels.

Figure 4.18j

 b = 6    r = 3    n = 5

And b + r = 9, 2n = 10; the structure is unstable because there are fewer 
restraints than required by the equations of statics. To produce a stable struc-
ture, the reaction at B should be changed from a roller to a pin.

Figure 4.18k   Now b = 9, r = 3, and n = 6; also b + r = 12, 2n = 12. How-
ever, the structure is unstable because the small triangular truss ABC at the 
top is supported by three parallel links, which provide no lateral restraint.

Figure 4.18: (Continued): Classifying trusses: 
( f )  unstable; (g) unstable; (h)  unstable;  
(i) indeterminate fourth degree; ( j) unstable; 
(k) unstable.

A

( f )

B

A
B

C G F

D
E

(g)

A
B C

(h)

link

(i)

A B

A B

( j)

A B

C

(k)
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E X A M P L E  4 . 7 Verify that the truss in Figure 4.19 is stable and determinate by demon-
strating that it can be completely analyzed by the equations of statics for a 
force of 4 kips at joint F.

12ʹ 12ʹ 12ʹ 12ʹ

16ʹ

12ʹ

I H G F E

A D
B C

P = 4 kips

4 kips 4 kips 4 kips

3

4

3

4
0

0 +3 +3 0

–3 0

–4 0 0 0

–3

+ –

Figure 4.19: Analysis by method of joints to verify that truss 
is stable.

Solution
Since the structure has four reactions, we cannot start the analysis by com-
puting reactions, but instead must analyze it by the method of joints. We 
first determine the zero bars.

Since joints E and I are connected to only two bars and no external 
load acts on the joints, the forces in these bars are zero (see Case 1 of 
Section 4.5). With the remaining two bars connecting to joint D, apply-
ing the same argument would indicate that these two members are also 
zero bars. Applying Case 2 of Section 4.5 to joint G would indicate that 
bar CG is a zero bar.

Next we analyze in sequence joints F, C, G, H, A, and B. Since all  
bar forces and reactions can be determined by the equations of statics 
(results are shown on Figure 4.19), we conclude that the truss is stable 
and determinate.

Prove that the truss in Figure 4.20a is unstable by demonstrating 
that its analysis for a load of arbitrary magnitude leads to an inconsistent 
equation of equilibrium.
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E X A M P L E  4 . 8

RAY = 2 kips

RAX RDX

3 kips

A

B C

D

F E

RD = 1 kip

3 @ 10ʹ = 30ʹ

10ʹ

(a)

Figure 4.20: Check of truss stability:  
(a) details of truss; (b) free body of joint B;  
(c) free body of joint F; (d ) free body of 
support A.

FBF = 3 kips

FAB FBC
B

3 kips

(b)

XAF = 3 kips F

YAF = 3 kips

3 kips

(c)

FAF
3 kips

A

RAY = 2 kips

3 kips

3 kips
RAX FAB

FAF

(d )

Solution
Apply a load at joint B, say 3 kips, and compute the reactions, considering 
the entire structure as a free body.
 ⟳+ ∑MA = 0

  3 (10)  − 30 R  D   = 0   R  D   = 1 kip 

 ↑
+ ∑Fy = 0

  R  AY   − 3 +  R  D   = 0   R  AY   = 2 kips 

Equilibrium of joint B (Figure 4.20b) requires that FBF = 3 kips ten-
sion. Equilibrium in the x direction is possible if FAB = FBC.

We next consider joint F (Figure 4.20c). To be in equilibrium in the y 
direction, the vertical component of FAF must equal 3 kips and be dir ected 
upward, indicating that bar AF is in compression. Since the slope of bar 
AF is 1:1, its horizontal component also equals 3 kips. Equilibrium of joint 
F in the x direction requires that the force in bar FE equals 3 kips and acts 
to the left.

We now examine support A (Figure 4.20d ). The reaction RA and the 
components of force in bar AF, determined previously, are applied to the 
joint. Writing the equation of equilibrium in the y direction, we find

↑
+ ∑Fy = 0

2 − 3 ≠ 0    (inconsistent)

Since the equilibrium equation is not satisfied, the structure is not stable.
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Computer Analysis of Trusses
4.8

The preceding sections of this chapter have covered the analysis of trusses 
based on the assumptions that (1) members are connected at joints by 
frictionless pins and (2) loads are applied at joints only. When design 
loads are conservatively chosen, and deflections are not excessive, over 
the years these simplifying assumptions have generally produced satisfac-
tory designs.

Since joints in most trusses are constructed by connecting members to 
gusset plates by welds, rivet, or high-strength bolts, joints are usually rigid. 
To analyze a truss with rigid joints (a highly indeterminate structure) would 
be a lengthy computation by the classical methods of analysis. That is why, in 
the past, truss analysis has been simplified by allowing designers to assume 
pinned joints. Now that computer programs are available, we can analyze both 
determinate and indeterminate trusses as a rigid-jointed structure to provide a 
more precise analysis, and the limi tation that loads must be applied at joints is 
no longer a restriction.

Because computer programs require values of cross-sectional properties 
of members—area and moment of inertia—members must be initially sized. 
Procedures to estimate the approximate size of members are discussed in  
Chapter 13 of the text. In the case of a truss with rigid joints, the assumption of 
pin joints will permit you to compute axial forces that can be used to select the 
initial cross-sectional areas of members.

To carry out the computer analyses, we will use the educational version of 
the RISA-2D computer program that is located on the McGraw Hill’s Online 
Learning Center for this textbook. Although a tutorial is provided on the web-
site to explain, step by step, how to use the RISA-2D program, a brief over  view 
of the procedure is given below.

1. Number all joints and members.
2. After the RISA-2D program is opened, click Global at the top of the 

screen. Insert a descriptive title, your name, and the number of  
sections.

3. Click Units. Use either Standard Metric or Standard Imperial for U.S. 
Customary System units.

4. Click Modify. Set the scale of the grid so the figure of the structure lies 
within the grid.

5. Fill in tables in Data Entry Box. These include Joint Coordinates, 
Boundary Conditions, Member Properties, Joint Loads, etc. Click  
View to label members and joints. The figure on the screen permits  
you to check visually that all required information has been supplied 
correctly.

6. Click Solve to initiate the analysis.
7. Click Results to produce tables listing bar forces, joint defections, and 

support reactions. The program will also plot a deflected shape.
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Using the RISA-2D computer program, analyze the determinate truss in 
Figure 4.21 and compare the magnitude of the bar forces and joint dis-
placements, assuming (1) joints are rigid and (2) joints are pinned. Joints 
are denoted by numbers in a circle; members, by numbers in a rectangular 
box. A preliminary analysis of the truss was used to establish initial values 
of each member’s cross-sectional properties (Table 4.1). For the case of 
pinned joints, the member data are similar, but the word pinned appears in 
the columns titled End Releases. (Note, RISA-2D uses internal force sign 
convention opposite to that assumed in this book, i.e., tension is negative 
and compression is positive.)

To facilitate the connection of the members to the gusset plates, the 
truss members are often fabricated from pairs of double angles oriented 
back to back. The cross-sectional properties of these structural shapes, tabu-
lated in the AISC Manual of Steel Construction, are used in this example.

CONCLUSIONS: The results of the computer analysis shown in 
Tables 4.2 and 4.3 indicate that the magnitude of the axial forces in the 
truss bars, as well as the joint displacements, are approximately the same 
for both pinned and rigid joints. The axial forces are slightly smaller in 

E X A M P L E  4 . 9

10ʹ

200 kips
40 kips

60 kips
200 kips

1

2

4

4

3

10ʹ

6ʹ

6ʹ

8ʹ 1

2

5
3

Figure 4.21: Cantilever truss.

TABLE 4.1 Member Data for Case of Rigid Joints

Member 
Label I Joint J Joint Area (in.2)

Moment of 
Inertia (in.4)

Elastic 
Modulus (ksi)

End Releases
Length (ft)I-End J-End

1
2
3
4
5

1
2
3
4
2

2
3
4
1
4

  5.72
11.5
11.5
15.4

  5.72

14.7
77
77
75.6
14.7

29,000
29,000
29,000
29,000
29,000

    8
20.396
11.662
11.662
10.198

[continues on next page]
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most bars when rigid joints are assumed because a portion of the load is 
transmitted by shear and bending.

Since members in direct stress carry axial load efficiently, cross- 
sectional areas tend to be small when sized for axial load alone. How-
ever, the flexural stiffness of small compact cross sections is also small. 
Therefore, when joints are rigid, bending stress in truss members may 
be significant even when the magnitude of the moments is relatively 
small. If  we check stresses in member M3, which is constructed from 
two 8 × 4 × 1/2 in angles, at the section where the moment is 7.80 kip·ft, 
the  axial stress is P/A = 14.86 kips/in.2 and the bending stress Mc/I = 
6.26  kips/in.2. In this case, we conclude that bending stresses are sig-
nificant in several truss members when the analysis is carried out assum-
ing joints are rigid, and the designer must verify that the combined stress 
of 21.12 kips/in.2 does not exceed the allowable value specified by the 
AISC design specifications.

Example 4.9 continues . . .

TABLE 4.3 Comparision of Member Forces

Rigid Joint Assumption Pin Joint Assumption
Member 

Label Section*
Axial**  
(kips)

Shear 
(kips)

Moment 
(kip ⋅ ft)

Member 
Label Section*

Axial**  
(kips)

1

2

3

4

5

1
2
1
2
1
2
1
2
1
2

 −19.26
 −19.26
−150.33
−150.33
  172.43
  172.43
  232.55
  232.55
 −53.22
 −53.22

−0.36
−0.36
  0.02
  0.02
  0.87
  0.88
−0.45
−0.45
−0.24
−0.24

  0.92
−1.97
−2.81
−2.31
−2.31
  7.80
  6.19
  0.92
  0.85
−1.60

1

2

3

4

5

1
2
1
2
1
2
1
2
1
2

−20
−20
−152.97
−152.97
  174.93
  174.93
  233.24
  233.24
 −50.99
 −50.99

*Sections 1 and 2 refer to member ends.
**RISA-2D axial force convention is negative tension and positive compression.

TABLE 4.2 Comparision of Joint Displacements

Rigid Joint Assumption Pinned Joint Assumption
Joint 
Label

X Translation 
(in.)

Y Translation 
(in.)

Joint 
Label

X Translation 
(in.)

Y Translation 
(in.)

1
2
3
4

0
0
0.257
0.007

0
0.011

−0.71
−0.153

1
2
3
4

0
0
0.266
0

0
0.012

−0.738
−0.15
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Summary

 • Trusses are composed of slender bars that are assumed to carry only 
axial force. Joints in large trusses are formed by welding or bolting 
members to gusset plates. If members are relatively small and lightly 
stressed, joints are often formed by welding the ends of vertical and 
diagonal members to the top and bottom chords.

 • Although trusses are stiff in their own plane, they have little lateral 
stiffness; therefore, they must be braced against lateral displacement at 
all panel points.

 • To be stable and determinate, the following relationship must exist 
among the number of bars b, reactions r, and joints n:

b + r = 2n

 In addition, the restraints exerted by the reactions must not constitute 
either a parallel or a concurrent force system.

    If b + r < 2n, the truss is unstable. If b + r > 2n, the truss is 
indeterminate.

 • Determinate trusses can be analyzed either by the method of joints or by 
the method of sections. The method of sections is used when the force in 
one or two bars is required. The method of joints is used when all bar 
forces are required.

 • If the analysis of a truss results in an inconsistent value of forces, 
that is, one or more joints are not in equilibrium, then the truss is 
unstable.
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P4.1. Classify the trusses in Figure P4.1 as stable or un-
stable. If stable, indicate if determinate or indeterminate. 
If indeterminate, indicate the degree of indeterminacy.

pinned joint

(e)

( f )

(g)

(h)

(b)

(a)

(c)

(d)

P4.1

PROBLEMS
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 ■ Problems  161

P4.2. Classify the trusses in Figure P4.2 as stable or un-
stable. If stable, indicate if determinate or indeterminate. 
If indeterminate, indicate the degree.

P4.3 and P4.4. Determine the forces in all bars of the 
trusses. Indicate tension or compression.

20 kN

15 kN

30 kN40 kN

4 m

3 m 3 m 3 m

B C

GA
F

D E

P4.3

16 kips 12ʹ

9ʹ9ʹ 9ʹ 9ʹ

B C D E F

24 kips

24 kips 60 kips 36 kips

GA
H

P4.4

(a) (b)

(c) (d)

(e) ( f ) (g) (h)

P4.2
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P4.5 to P4.10. Determine the forces in all bars of the 
trusses. Indicate tension or compression.

5 m

5 @ 5 m = 25 m

20 kN 20 kN

A

B

J

C

I

D

H

E F

G

20 kN

10 kN

P4.5

P4.6

60 kips

15ʹ7.5ʹ22.5ʹ 15ʹ

36 kips

A

E

D

B

36 kips

C

20ʹ

C       F = 100 kips

20ʹ

15ʹ

20ʹ20ʹ

D
E

B

A

P4.7

60 kN

30 kNB

A
C

6 m

6 m6 m

P4.8

16ʹ

36 kips

8 kips
C

A B

D E
24 kips

12ʹ

12ʹ

16ʹ

P4.9

P4.10

B

24 kips

G F

A

E

C

D

24 kips

3 @ 10ʹ = 30ʹ

15ʹ
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P4.11 to P4.15. Determine the forces in all bars of the 
trusses. Indicate tension or compression.

15ʹ

10 kips

20 kips

15ʹ 15ʹ

15ʹ

A

B C

D
EF

P4.11

36 kips 24 kips

20ʹ

15ʹ 15ʹ 15ʹ 15ʹ 15ʹ

I H

D
CB

A

G F E

P4.12

10 kips

B

A
H G F

C D

E

10 kips

4 kips

4 @ 8ʹ = 32ʹ

6ʹ

10 kips

P4.13

J I

K L

GH

B
A

D E

F

60 kips

15ʹ

15ʹ

4 @ 20ʹ = 80ʹ

C

P4.14

64 kips

32 kips

16ʹ

16ʹ16ʹ16ʹ16ʹ

8ʹ
A

B C D
E

F

G

H

P4.15

P4.16. Determine the forces in all bars of the truss. Hint: 
If you have trouble computing bar forces, review K truss 
analysis in Example 4.6. 

3 m

A I

J

KL

B C D E

F

H G

3 m 3 m

3 m

3 m

60 kN

60 kN

P4.16
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164  Chapter 4 ■ Trusses

P4.17 to P4.21. Determine the forces in all bars of the 
trusses. Indicate tension or compression.

4 @ 10ʹ =  40ʹ

10ʹ

10ʹ

A

B

J

C

I

D

H
E

FG

10 kips20 kips

15 kips

P4.17

60 kips

60 kips

30 kips

20ʹ 20ʹ 20ʹ

15ʹ

15ʹ

C

G

A

B

F

E

D

P4.18

3 m

A

E

D

B C

F

3 m4 m

60 kN

3 m

4 m

3 m

P4.19

4 m 4 m

4 m

A

B F

G
H

I

C E

D

4 m

4 m

100 kN

P4.20

4 m

A B

G F

H I E

C DA

24 kN 30 kN

4 m 8 m 4 m 4 m

6 m

P4.21
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P4.22 to P4.26. Determine the forces in all truss bars. 
Indicate tension or compression.

4 @ 4 m

3 m

3 m

10 kN

6 kN

A

B

C

D

E
FGH

P4.22 10 m

30 kN

6 m

6 m

6 m

8 m

A

B

C

D

E

F

G

45 kN

60 kN

P4.23

P4.24

8 m

30 kN

6 kN

12 kN

12 kN

8 m 8 m

6 m

6 m

6 m

A

B

C

DEFG

H I J

K

L

10 k 10 k30 k

20ʹ

10ʹ

A
O P I Q H R G

FEDCB

K L M N

J

8 @ 10ʹ = 80ʹ

P4.25

8 m

6 m

6 m

6 m

30 kN

60 kN

90 kN

A

B

C

D

H

G

F

E

P4.26
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166  Chapter 4 ■ Trusses

P4.27. Determine the forces in all bars of the truss in 
Figure P4.27. If your solution is statically inconsistent, 
what conclusions can you draw about the truss? How 
might you modify the truss to improve its behavior? Also, 
analyze the truss with your computer program. Explain 
your results.

P4.28 to P4.31. Determine the forces in all bars. Indicate  
tension or compression.

D

H
G

E F

CB

A I

4 @ 6 m

40 kN

40 kN

6 m

6 m

P4.27

3 @ 4 m

2 m

2 m

12 kN 12 kN

18 kN

A

B

C

D

E
FG

P4.28

10ʹ

10ʹ

10ʹ10ʹ10ʹ

24 kips

24 kips 24 kips

A B C D

E

H

FG

P4.29

B

E

40 kips20ʹ

20ʹ

15ʹ

D

C

A

P4.30

12 kips

6 kips

6ʹ

9ʹ

12ʹ12ʹ

C

D

A B

P4.31
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P4.32 to P4.34. Determine all bar forces. Indicate tension 
or compression.

4 @ 5 m

5 m

5 m20 kN 20 kN

24 kNA

B

C

D

E
F

G

H

P4.32

G

C

B
DF

E

6 kips

12ʹ

8ʹ

8ʹ8ʹ 10ʹ10ʹ

30 kips

A

P4.33

6 @ 4 m

4 m

3 m

20 kN 40 kN 40 kN 40 kN 40 kN 40 kN 20 kN

B C D E F G

I

PO

JKL

NM

H

A

P4.34

P4.35 to P4.36. Using the method of sections, determine 
the forces in the bars listed below each figure.

10ʹ

10ʹ

40 kips 20 kips20 kips

A

B

C D E F G

H

I
J

4 @ 15ʹ = 60ʹ
AB, BD, AD, BC, and EF

P4.35

6 @ 15ʹ = 90ʹ
BL, KJ, JD, and LC

12ʹ

6ʹ

3ʹ

30 kips30 kips

A
B

L

K
J

C

90 kips

D E
G

F

H

I

P4.36

 ■ Problems  167

lee98004_ch04_130-173.indd   167 23/12/16   4:35 pm



168  Chapter 4 ■ Trusses

P4.37 and P4.39. Using the method of sections, determine 
the forces in the bars listed below each figure.

3 @ 12ʹ =  36ʹ

G F E

D

C

BA

J

IH
30 kips

18 kips

12 kips

9ʹ

9ʹ

16ʹ

EF, EI, ED, FH, and IJ

P4.37

30 kips 60 kips

20ʹ

5 @ 15ʹ
BJ, CJ, CI, HG, and DI 

A
B C D E

F

J I GH

P4.38

4 @ 4 m

3 m

3 m

A
B C D

E

F

GHIJK

L M N

12 kN 16 kN

IJ, MC, and MI

12 kN

P4.39

P4.40 to P4.42. Determine the forces in all bars of the 
trusses in Figures P4.40 to P4.42. Indicate if bar forces 
are tension or compression. Hint: Start with the method 
of sections.

3 m 3 m3 m

3 m
2 m

A

B C

D
EF

30 kN

P4.40

4 @ 20ʹ

15ʹ

15ʹ

A
B C D

E

F

L

I G

H
K

J

30 kips 60 kips 30 kips

P4.41

9ʹ

D

A

E

B

F

C

9ʹ6ʹ

12ʹ

12ʹ

6ʹ

24 kips

P4.42
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8 kN

16 kN

16 kN

2 m

A

F

G

I

H

EDCB

5 m 5 m 5 m 5 m

2 m

2 m

P4.43

18 kips

3 @ 18ʹ = 54ʹ

A

B

C

D

E F G H

12 kips

6 kips

12ʹ12ʹ

12ʹ

12ʹ

P4.44

4 @ 4 m

3 m

12 kN 6 kN 12 kN

A

B C D

E
FG

P4.45

2.4 kips

2.4 kips

2.4 kips 7.4 kips

7.2 kips

3.6 kips

1.8 kips

A

H

G

F

E

DCB

8ʹ 8ʹ 8ʹ 8ʹ

6ʹ

6ʹ

P4.46

4 @ 8ʹ = 32ʹ

6ʹ

6ʹ

6ʹ

12 kips

12 kips 12 kips

12 kips 12 kips

A

B

C

D

E

F

G

HJ

I

P4.47

P4.43 to P4.47. Determine the forces or components 
of force in all bars of the trusses in Figures P4.43 to 
P4.47. Indicate tension or compression.
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30 kips
A

F

E

D

C

B

40ʹ 40ʹ 40ʹ

30ʹ

30ʹ

P4.48

4 m 4 m 4 m

30 kN 60 kN

2 m

3 m 2 m

F

E

D

CBA

P4.49

P4.51

4 @ 4 m

20 kN

60 kN

20 kN 90°

4
3

90° 3 m

3 m

4
3

A

B

C D E

H

G

F

J I

P4.50

6 kN

12 kN

8 kN

12 kN

5 m5 m 2 m2 m2 m2 m

2 m

2 m

3 m

P4.48 to P4.51. Determine the forces or components of 
force in all bars of the trusses in Figures P4.48 to P4.51. 
Indicate tension or compression.
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P4.52

floor
beam

lower
chord

upper
chord

bracing

Section A–A 

51 kips

12ʹ

4 @ 16ʹ = 64ʹ

94 kips
A

A

A

B
C D E

HIJ

F

G

94 kips
stringer

18 kips

94 kips 51 kips
8ʺ slab

2ʺ asphalt

truss

slab

26ʹ

P4.52. A two-lane highway bridge, supported on two 
deck trusses that span 64 ft, consists of an 8-in. reinforced 
concrete slab supported on four steel stringers. The slab 
is protected by a 2-in. wearing surface of asphalt. The 
16-ft-long stringers frame into the floor beams, which in 
turn transfer the live and dead loads to the panel points  
of each truss. The truss, bolted to the left abutment at  
point A, may be treated as pin supported. The right end of 

the truss rests on an elastomeric pad at G. The elastomeric 
pad, which permits only horizontal displacement of the 
joint, can be treated as a roller. The loads shown repre-
sent the total dead and live loads. The 18-kip load is an 
additional live load that represents a heavy wheel load. 
Determine the force in the lower chord between panel 
points I and J, the force in member JB, and the reaction 
applied to the abutment at support A.

P4.53. Computer analysis of a truss. The purpose of this 
study is to show that the magnitude of the joint 
displacements as well as the magnitude of the 
forces in members may control the proportions 

of structural members. For example, building codes typi-
cally specify maximum permitted displacements to en-
sure that excessive cracking of attached construction, such 
as exterior walls and windows, does not occur (Photo 1.1 
in Section 1.3).

A preliminary design of the truss in Figure P4.53 pro-
duces the following bar areas: members 1 through 4, 5 in.2, 
and members 5 and 6, 2 in.2. Also E = 29,000 kips/in.2.

Case 1: Determine all bar forces, joint reactions, and 
joint displacements, assuming pin joints. Use the com-
puter program to plot the deflected shape.

15ʹ 15ʹ

20ʹ

45 kips 45 kips2

1

3

6 5

2

1

4

5

43

P4.53

Case 2: If the maximum horizontal displacement of  
joint 4 is not to exceed 0.25 in., determine the minimum 
required area of the diagonal truss bars, members 5 and 
6. For this case assume that the diagaonal members have 
the same areas, while all other truss members have cross-
sectional area of 5 in.2. Round the area to the nearest 
whole number.
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172  Chapter 4 ■ Trusses

P4.54. Computer study. The objective is to compare the 
behavior of a determinate and an indeterminate 
structure.
 The forces in members of determinate trusses 

are not affected by member stiffness. Therefore, there was 
no need to specify the cross-sectional properties of the bars 
of the determinate trusses we analyzed by hand computa-
tions earlier in this chapter. In a determinate structure, for a 
given set of loads, only one load path is available to transmit 
the loads into the supports, whereas in an indeterminate 
structure, multiple load paths exist (Section 3.10). In the 
case of trusses, the axial stiffness of members (a function 
of a member’s cross-sectional area) that make up each load 
path will influence the magnitude of the force in each mem-
ber of the load path. We examine this aspect of behavior by 
varying the properties of certain members of the indetermi-
nate truss shown in Figure P4.54. Use E = 29,000 kips/in.2.

Case 1: Determine the reactions and the forces in mem-
bers 4 and 5 if the area of all bars is 10 in.2.

P4.54

1

2

15ʹ

20ʹ

3

4

1 3

4

5

2

100 kips

Practical Application

P4.55. Computer analysis of a truss with rigid joints. The 
truss in Figure P4.55 is constructed of square 
steel tubes welded to form a structure with rigid 
joints. The top chord members 1, 2, 3, and 4 are  

 (a) Considering all joints as rigid, compute the  
axial forces and moments in all bars and the deflection 
at midspan when the three 24-kip design loads act at 
joints 7, 8, and 9 (ignore the 4-kip load).
 (b) If a hoist is also attached to the lower chord at 
the midpoint of the end panel on the right (labeled  
joint 6*) to raise a concentrated load of 4 kips, de-
termine the forces and moments in the lower chord  

4×4×1/4 square tubes with A = 3.37 in.2 and I = 
7.80 in.4. All other members are 3×3×1/4 square 
tubes with A = 2.44 in.2 and I = 3.02 in.4. Use E =  
29,000 kips/in.2.

*Note: If you wish to compute the forces or deflection at a particular point of a member, designate the point as a joint.

Case 2: Repeat the analysis in Case 1, this time increasing 
the area of member 4 to 20 in.2. The area of all other bars 
remains 10 in.2.

Case 3: Repeat the analysis in Case 1, increasing the area 
of member 5 to 20 in.2. The area of all other bars remains 
10 in.2.

What conclusions do you reach from the above study?

1

1

2 43

89

6

7

5
8ʹ

6ʹ
4 @ 12ʹ = 48ʹ

4
10 1413

11

9 8

24 kips 24 kips 24 kips
4 kips

7 6 5

2 3

12

P4.55

(members 5 and 6). If the maximum stress is not to  
exceed 25 kips/in.2, can the lower chord support the 4-kip 
load safely in addition to the three 24-kip loads? Compute 
the maximum stress, using the equation

σ =    F __ 
A

    +    Mc ___ 
I
   

where c = 1.5 in. (one-half the depth of the lower chord).
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Practical Application

P4.56. Analyze and compare two trusses, arched config-
urations of the Pratt Truss and the Howe Truss 
in Figures P4.56 (a) and (b), respectively. The 
trusses have the same depth, length, panel spac-

ing, loading, and supports. All joints are pinned. For each 
truss, do the following.

a) Compute all bar forces and indicate tension or 
compression for each force.

b) Determine the required cross-sectional areas for 
each bar, given an allowable tensile stress of 45 ksi, 

and an allowable compressive stress of 24 ksi. Note 
that the allowable compressive stress is lower due to  
 buckling.

c) Tabulate your results showing bar forces, cross-
sectional areas, and lengths.

d) Calculate the total weight of each truss and deter-
mine which truss has a more efficient configuration. 
Explain your results.

e) What other conclusions can you draw from the 
study?

P4.56

6 @ 15ʹ = 90ʹ
(a)

10ʹ
17ʹ 20ʹ

100 kips 100 kips 100 kips 100 kips 100 kips

6 @ 15ʹ = 90ʹ
(b)

10ʹ
17ʹ 20ʹ

100 kips 100 kips 100 kips 100 kips 100 kips
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University of California, San Diego Geisel Library
The monolithic reinforced concrete columns slope 45-degrees up each side of the Geisel 
Library at UCSD. Although they appear to be cantilevered, the columns on either side are 
tied together near the top by internal post-tensioned high-strength steel tendons.

© Chia-Ming Uang
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5Beams and Frames

Introduction
5.1

Beams

Beams are one of the most common elements found in structures. When a 
beam is loaded perpendicular to its longitudinal axis, internal forces—shear 
and moment—develop to transmit the applied loads into the supports. If the 
ends of a beam are restrained longitudinally by its supports, or if a beam is a 
component of a continuous frame, axial force may also develop. If the axial 
force is small—the typical situation for most beams—it can be neglected 
when the member is designed. In the case of reinforced concrete beams, small 
values of axial compression actually produce a modest increase (on the order 
of 5 to 10 percent) in the flexural strength of the member.

To design a beam, the engineer must construct the shear and moment 
curves to determine the location and magnitude of the maximum values of 
these forces. Except for short, heavily loaded beams whose dimensions are 
controlled by shear requirements, the proportions of the cross section are 
determined by the magnitude of the maximum moment in the span. After the  

C H A P T E R

Chapter Objectives
 ● Learn the structural characteristics of beams and frames of various configurations and support  

conditions.

 ● Review the beam theory and the relationship between load, shear, and moment using first-order 
analysis, as previously learned in statics and mechanics of materials.

 ● Solve reactions and write equations for shear and moment, construct shear and moment curves, 
and sketch the deflected shapes of loaded beams and frames.

 ● Classify determinate and indeterminate beam or frame structures, determine the degree of 
indeterminacy for the latter, and determine if a beam or frame is stable or unstable.
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176  Chapter 5 ■ Beams and Frames

section is sized at the point of maximum moment, the design is completed by 
verifying that the shear stresses at the point of maximum shear—usually adja-
cent to a support—are equal to or less than the allowable shear strength of the 
material. Finally, the deflections produced by service loads must be checked 
to ensure that the member has adequate stiffness. Limits on deflection are set 
by structural codes.

If behavior is elastic (as, for example, when members are made of steel 
or aluminum), and if allowable stress design is used, the required cross sec-
tion can be established using the basic beam equation.

  σ =   Mc ___ 
I
   (5.1)

where σ = flexural stress produced by service load moment M
 c =  distance from neutral axis to the outside fiber where the 

flexural stress σ is to be evaluated
 I =  moment of inertia of the cross section with respect to the cen-

troidal axis of the section

To select a cross section, σ in Equation 5.1 is set equal to the allowable 
flexural stress σallow, and the equation is solved for I/c, which is termed the 
section modulus and denoted by Sx.

   S  x   =   I _ c   =   M ____  σ  allow     (5.2)

Sx, a measure of a cross section’s flexural capacity, is tabulated in 
design handbooks for standard shapes of beams produced by various 
man u fac turers.

After a cross section is sized for moment, the designer checks shear 
stress at the section where the shear force V is maximum. For beams that 
behave elastically, shear stresses are computed by the equation

  τ =   
VQ

 ___ 
Ib

   (5.3)

where τ = shear stress produced by shear force V
 V = maximum shear (from shear curve)
 Q =  static moment of that part of area that lies above or below 

point where shear stress is to be computed; for a rectangular  
or an I-shaped beam, maximum shear stress occurs at 
middepth

 I =  moment of inertia of cross-sectional area about the centroid 
of section

 b =  thickness of cross section at elevation where τ is computed

When a beam has a rectangular cross section, the maximum shear stress 
occurs at middepth. For this case Equation 5.3 reduces to

Earliest demonstrations of 
beam theory were ascribed to 
Leonardo da Vinci (1452–1519) 
and later to Galileo Galilei 
(1564–1642) during the 
Renaissance Era. Beam the-
ory (e.g., Equation 5.1) was not 
formalized with accuracy until 
Jacob Bernoulli’s (1654–1705) 
work and later by Daniel 
Bernoulli (1700–1782) and 
Leonard Euler’s (1707–1783)  
development of the beam 
theory equation as well 
as by Robert Hooke’s Law 
of Elasticity (1635–1705). 
However, it required a syn-
ergy of theories to develop 
practical applications in en-
gineering design, for which 
is credited to Claude Louis 
Navier (1785–1836). In his pub-
lication Résumé des Leçons in 
1826, Navier combined elastic 
theory and beam theory and 
moved engineering design 
methods from empirical to 
practical methods for linearly 
elastic members.
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5.1 ■ Introduction  177

   τ  max   =   3V ___ 
2A

   (5.4)

where A equals the area of the cross section.
If strength design (which has largely replaced working stress design) is 

used, members are sized for factored loads. Factored loads are produced by 
multiplying service loads by load factors—numbers that are typically greater 
than 1. Using factored loads, the designer carries out an elastic analysis—
the subject of this text. The forces produced by factored loads represent the 
required strength. The member is sized so that its design strength is equal 
to the required strength. The design strength, evaluated by considering the 
state of stress associated with a particular mode of failure, is a function of the 
properties of the cross section, the stress condition at failure (e.g., steel yields 
or concrete crushes), and a reduction factor—a number less than 1.

The final step in the design of a beam is to verify that it does not deflect 
excessively (i.e., that deflections are within the limits specified by the appli-
cable design code). Beams that are excessively flexible undergo large deflec-
tions that can damage attached nonstructural construction: plaster ceilings, 
masonry walls, and rigid piping, for example, may crack.

Since most beams that span short distances, say up to 30 or 40 ft, are 
manufactured with a constant cross section, to minimize cost, they have ex-
cess flexural capacity at all sections except the one at which maximum mo-
ment occurs. If spans are long, in the range of 150 to 200 ft or more, and if 
loads are large, then deep heavy girders are required to support the design 
loads. For this situation, in which the weight of the girder may represent as 
much as 75 to 80 percent of the total load, some economy may be achieved 
by shaping the beam to conform to the ordinates of the moment curve. For 
these largest girders, the moment capacity of the cross section can be adjusted 
either by varying the depth of the beam or by changing the thickness of the 
flange (Figure 5.1). In addition, reducing the weight of the girders may result 
in smaller piers and foundations.

Beams are typically classified by the manner in which they are sup-
ported. A beam supported by a pin at one end and a roller at the other end  
is called a simply supported beam (Figure 5.2a). If the end of a simply 
supported beam extends over a support, it is referred to as a beam with 
an overhang (Figure 5.2b). A cantilever beam is fixed at one end against 
translation and rotation (Figure 5.2c). Beams that are supported by several 
intermediate supports are called continuous beams (Figure 5.2d ). If both 
ends of a beam are fixed by the supports, the beam is termed fixed ended 
(Figure 5.2e). Fixed-end beams are not commonly constructed in practice, 
but the values of end moments in them produced by various types of load 
are used extensively as the starting point in several methods of analysis for 
indeterminate structures (Table A.4 in the Appendix). In this chapter we 
discuss only determinate beams that can be analyzed by the three equations 
of  statics. Beams of this type are common in wood and bolted or riveted steel 
construction. On the other hand, continuous beams (analyzed in Chapters 9 
to 11) are commonly found in structures with rigid joints—welded steel or 
reinforced concrete frames, for example.

(a)

moment
curve

w

Figure 5.1: (a) Flange thickness varied to 
increase flexural capacity; (b) depth varied to 
modify flexural capacity.

w

(b)

moment
curve
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178  Chapter 5 ■ Beams and Frames

Frames

Frames, as discussed in Chapter 1, are structural elements composed of 
beams and columns connected by rigid joints. The angle between the beam 
and column is usually 90°. As shown in Figure 5.3a and b, frames may con-
sist of a single column and girder or, as in the case of a multistory building, 
of many columns and beams.

Frames may be divided into two categories: braced and unbraced. 
A braced frame is one in which the joints at each level are free to rotate but 
are prevented from moving laterally by attachment to a rigid element that can 
supply lateral restraint to the frame. For example, in a multistory building, 
structural frames are often attached to shear walls (stiff structural walls often 
constructed of reinforced concrete or reinforced masonry; see Figure 5.3c). In 
simple one-bay frames, light diagonal cross-bracing connected to the base of 
columns can be used to resist lateral displacement of top joints (Figure 5.3d).

An unbraced frame (Figure 5.3e) is one in which lateral resistance to 
displacement is supplied by the flexural stiffness of the beams and columns. 
In unbraced frames, joints are free to displace laterally as well as to rotate. 
Since unbraced frames tend to be relatively flexible compared to braced 
frames, under lateral load they may undergo large transverse deflections that 

Figure 5.2: Common beam types: (a) simply 
supported; (b) beam with overhang; (c) can-
tilever; (d ) two-span continuous; (e) fixed 
ended.

(a)

(b)

(c)

(d)

(e)

Beam A

Beam B

Photo. 5.1: Beam A-to-column flange con-
nection in a steel building is modeled as 
“rigid” in structural analysis and requires 
both beam flanges to be connected, by welds 
in this case, to the column to transmit mo-
ment. Beam B-to-column web connection 
is modeled as a hinged connection; the con-
struction is much cheaper as only beam web 
is connected through bolts to transfer beam 
shear to column.
© Chia-Ming Uang
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5.1 ■ Introduction  179

damage attached nonstructural elements, for example, walls, windows, and 
so forth.

Although both beams and columns of rigid frames carry axial force, 
shear, and moment, the axial force in beams is usually so small that it can 
be neglected and the beam sized for moment only. On the other hand, in 
columns, the axial force—particularly in the lower interior columns of 
multistory frames—is often large, and the moments are small. For columns 
of this type, proportions are determined primarily by the axial capacity of 
members.

If frames are flexible, additional bending moment is created by the lateral 
displacement of the member. For example, the tops of the columns in the un-
braced frame in Figure 5.3e displace a distance Δ to the right. To evaluate the 
forces in the column, we consider a free body of column AB in its deflected 
position (Figure 5.3f ). The free body is cut by passing an imaginary plane 
through the column just below joint B. The cutting plane is perpendicular to 
the longitudinal axis of the column. We can express the internal moment Mi 
acting on the cut in terms of the reactions at the base of the column and the 

(a)

(b)

∆ ∆

Ay

Ax

Q

P

A

B
C

D

L

(e)

Mi

( f )

deflected
position

∆

Ay

Ax

Q V

F

A

B
z

L

(d)

P1

P2

P3

Q

V = P1 + P2 + P3

shear
wall

(c)

Q

Figure 5.3: (a) Simple frame; (b) multistory 
continuous building frame; (c) frame braced 
by a shear wall; (d ) frame braced by diago-
nal bracing; (e)  sidesway of an unbraced 
frame; ( f ) free body of column in deflected 
position.
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180  Chapter 5 ■ Beams and Frames

geometry of the deflected shape by summing moments about a z axis through 
the centerline of the column.

 Mi = ΣMz

  Mi = Ax(L) + Ay(Δ) (5.5)

In Equation 5.5 the first term represents the moment produced by the 
applied loads, neglecting the lateral deflection of the column’s axis. This 
moment is called the primary moment and is associated with a first-order 
analysis (described in Section 1.7). The second term, Ay(Δ), which represents 
the additional moment produced by the eccentricity of the axial load, is called 
the secondary moment or the P-delta moment. The secondary moment will 
be small and can be neglected without significant error under the following 
two conditions:

1. The axial forces are small (say, less than 10 percent of the axial capacity 
of the cross section).

2. The flexural stiffness of the column is large, so that the lateral displace-
ment of the column’s longitudinal axis produced by bending is small.

In this book we will only make a first-order analysis; that is, we do 
not consider the computation of the secondary moment—a subject usually 
covered in advanced courses in structural mechanics. Since we neglect sec-
ondary moments, the analysis of frames is similar to that of beams; that is, the 
analysis is complete when we establish the shear and moment curves (also the 
axial force) based on the initial geometry of the unloaded frame.

Scope of Chapter
5.2

We begin the study of beams and frames by discussing a number of basic 
operations that will be used frequently in deflection computations and in the 
analysis of indeterminate structures. These operations include

1. Writing expressions for shear and moment at a section in terms of the 
applied loads.

2. Constructing shear and moment curves.
3. Sketching the deflected shapes of loaded beams and frames.

Since many of these procedures were introduced previously in statics 
and strength of materials courses, much of this chapter for most students is a 
review of basic topics.

In the examples in this chapter, we assume that all beams and frames are 
two-dimensional structures supporting in-plane loads that produce shear, mo-
ment, and possibly axial forces, but no torsion. For this  condition—one of 
the most common in actual practice—to exist, the in-plane loads must pass 
through the centroid of a symmetric section or through the shear center of an 
unsymmetric section (Figure 5.4).

(a) (b)

shear
center

P

P

centroid

centroid

Figure 5.4: (a) Beam loaded through cen-
troid of symmetric section; (b) unsymmetric 
section loaded through shear center.
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5.3 ■ Equations for Shear and Moment  181

Equations for Shear and Moment
5.3

We begin the study of beams by writing equations that express the shear 
V and the moment M at sections along the longitudinal axis of a beam or 
frame in terms of the applied loads and the distance from a reference ori-
gin. Although equations for shear have limited use, those for moment are 
required in deflection computations for beams and frames by both the double- 
integration method (Chapter 7) and work-energy methods (Chapter 8).

As you may remember from the study of beams in mechanics of materials 
or statics courses, shear and moment are the internal forces in a beam or frame 
produced by the applied transverse loads. The shear acts per pendicular to the 
longitudinal axis, and the moment represents the internal couple produced by 
the bending stresses. These forces are evaluated at a particular point along 
the beam’s axis by cutting the beam with an imaginary section perpendicular 
to the longitudinal axis (Figure 5.5b) and then writing equilibrium equations 
for the free body to either the left or the right of the cut. Since the shear force 
produces equilibrium in the direction normal to the longitudinal axis of the 
member, it is evaluated by summing forces perpendicular to the longitudinal 
axis; that is, for a horizontal beam, we sum forces in the vertical direction. In 
this book, shear in a horizontal member will be considered positive if it acts 
downward on the face of the free body to the left of the section (Figure 5.5c). 
 Alternately, we can define shear as positive if it tends to produce clockwise 
rotation of the free body on which it acts. Shear acting downward on the face 
of the free body to the left of the section indicates the resultant of the external 
forces acting on the same free body is up. Since the shear acting on the sec-
tion to the left represents the force applied by the free body to the right of the 
section, an equal but oppositely directed value of shear force must act upward 
on the face of the free body to the right of the section.

The internal moment M at a section is evaluated by summing moments 
of the external forces acting on the free body to either side of the section 
about an axis (perpendicular to the plane of the member) that passes through 
the centroid of the cross section. Moment will be considered positive if it pro-
duces compression stresses in the top fibers of the cross section and tension in 
the bottom fibers (Figure 5.5d). Negative moment, on the other hand, bends a 
member concave down (Figure 5.5e).

If a flexural member is vertical, the engineer is free to define the positive 
and negative sense of both the shear and moment. For the case of a single 
vertical member, one possible approach for establishing the positive direction 
for shear and moment is to rotate the computation sheet containing the sketch 
90° clockwise so that the member is horizontal, and then apply the conven-
tions shown in Figure 5.5.

For single-bay frames many analysts define moment as positive when it 
produces compression stresses on the outside surface of the member, where 
inside is defined as the region within the frame (Figure 5.6). The positive 
direction for shear is then arbitrarily defined, as shown by the arrows on 
Figure 5.6.
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182  Chapter 5 ■ Beams and Frames

Axial force on a cross section is evaluated by summing all forces perpen-
dicular to the cross section. Forces acting outward from the cross section are 
tension forces T, and are defined as positive; those directed toward the cross 
section are compression forces C, and are defined as negative (Figure 5.6). It 
may be helpful for the student to assume all unknown internal forces as act-
ing in the positive direction according to this convention. Practicing this way 
may help students avoid mistakes on force sense by eliminating uncertainty 
in vector direction. 

(a)

(c) (d)

C

T

x

L

RA Rʹ

1

(b)

x

1
M

+M +M

R

+V

+V

V

M

V

(e)

C

T

–M –M

RA

RB

Figure 5.5: Sign conventions for shear and 
moment: (a) beam cut by section 1; (b) shear 
V and moment M occur as pairs of internal 
forces; (c) positive shear: resultant R of ex-
ternal forces on free body to left of section 
acts up; (d ) positive moment; (e) negative 
moment.

M M

M M

M M

V V

V V

V V

C C
C C

T T

Figure 5.6: Internal forces acting on sec-
tions of the frame.
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5.3 ■ Equations for Shear and Moment  183

E X A M P L E  5 . 1Write the equations for the variation of shear V and moment M along the 
axis of the cantilever beam in Figure 5.7. Using the equation, compute the 
moment at section 1-1, 4 ft to the right of point B.

Solution
Determine the equation for shear V between points A and B (Figure 5.7b); 
show V and M in the positive sense. Set origin at A (0 ≤ x1 ≤ 6).

 ↑
+ ∑Fy = 0

0 = −4 − V
V = −4 kips

 Determine the equation of moment M between points A and B. Set the 
origin at A. Sum the moments about the section.

 ⟳+ ∑Mz = 0
 0 = −4x1 − M

M = −4x1 kip ⋅ ft

The minus sign indicates V and M act opposite in sense to the directions 
shown in Figure 5.7b.
 Determine the equation for shear V between points B and C 
(Figure 5.7c). Set the origin at B, 0 ≤ x2 ≤ 8.

 ↑
+ ∑Fy = 0

0 = −4 − 2x2 − V
 V = −4 − 2x2

The moment M between B and C is

  ⟳+ ∑Mz = 0

 0 = −4(6 + x2) − 2x2   (  
x2 __ 
2
  )   − M

 M = −24 − 4x2 −   x  2  2  

For M at section 1-1, 4 ft to right of B, set x2 = 4 ft.

M = −24 − 16 − 16 = −56 kip ⋅ ft

Alternatively, compute M between points B and C, using an origin at A, and 
measure distance with x3 (Figure 5.7d ), where 6 ≤ x3 ≤ 14.

  ⟳+ ∑Mz = 0

0 = −4x3 − 2(x3 − 6)   (  
x3 − 6

 ______ 
2
  )   − M

 M = −  x  3  2   + 8x3 − 36

Recompute the moment at section 1-1; set x3 = 10 ft.

M = −102 + 8(10) − 36 = −56 kip⋅ ft

x1

4 kips

MV

z

(b)

A

x1

x3

x2

w = 2 kips/ft

4ʹ

6ʹ 8ʹ

P = 4 kips

(a)

A
B

C

1

1

x26ʹ

4 kips

x2
2

M
B

R = 2x2

V

z

(c)

A

2 kips/ft

6ʹ
x3

4 kips
2

M

2(x3 – 6)

2 kips/ft

x3 – 6

x3–6

V

z

(d)

A

Figure 5.7

lee98004_ch05_174-233.indd   183 25/12/16   12:11 pm



184  Chapter 5 ■ Beams and Frames

E X A M P L E  5 . 2 For the beam in Figure 5.8 write the expressions for moment between  
points B and C, using an origin located at (a) support A, (b) support D, and 
(c) point B. Using each of the expressions above, evaluate the moment at 
section 1-1. Shear force on sections is omitted for clarity.

Solution
(a) See Figure 5.8b; summing moments about the cut gives

 ⟳+ ∑Mz = 0

0 = 37x1 − 40(x1 − 5) − M

 M = 200 − 3x1

At section 1-1, x1 = 12 ft; therefore,

M = 200 − 3(12) = 164 kip ⋅ ft

(b) See Figure 5.8c; summing moments about the cut yields

 ⟳+ ∑Mz = 0

0 = M + 28(x2 − 5) − 31x2

 M = 3x2 + 140

At section 1-1, x2 = 8 ft; therefore,

M = 3(8) + 140 = 164 kip ⋅ ft

(c) See Figure 5.8d; summing moments about the cut, we have

 ⟳+ ∑Mz = 0

37(10 + x3) − 40(5 + x3) − M = 0

 M = 170 − 3x2

At section 1-1, x3 = 2 ft; therefore,

M = 170 − 3(2) = 164 kip⋅ ft

NOTE. As this example demonstrates, the moment at a section is single-
valued and based on equilibrium requirements. The value of the moment 
does not depend on the location of the origin of the coordinate system.

5ʹ

M

z

10ʹ x1 –10

x1 – 5

x1

37 kips

(b)

R = 40 kips

A

10ʹ 5ʹ

2ʹ

5ʹ

37 kips 31 kips

28 kips

(a)

B

B

C
D

w = 4 kips/ft

A

1

M

D
C

5ʹx2 – 5

x2

31 kips

28 kips

(c)

z

M

z

10ʹ

 5 + x35

x3

37 kips
(d)

R = 40 kips

B
A

1

Figure 5.8
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5.3 ■ Equations for Shear and Moment  185

E X A M P L E  5 . 3Write the equations for shear and moment as a function of distance x along 
the axis of the beam in Figure 5.9. Select the origin at support A. Plot the 
individual terms in the equation for moment as a function of the distance x.

Solution
Pass an imaginary section through the beam at a distance x to the right of 
support A to produce the free body shown in Figure 5.9b (the shear V and the 
moment M are shown in the positive sense). To solve for V, sum forces in the  
y direction.

 ↑
+ ∑Fy = 0

   wL ___ 
2
    − wx − V = 0

 V =    wL ___ 
2
    − wx (1)

To solve for M, sum moments at the cut about a z axis passing through the  
centroid.

 ⟳+ ∑Mz = 0

0 =    wL ___ 
2
    (x) − wx   (  x __ 

2
  )   − M

 M =    wL ___ 
2
    (x) −    wx2

 ____ 
2
    (2)

where in both equations 0 ≤ x ≤ L.
A plot of the two terms in Equation 2 is shown in Figure 5.9c. The 

first term in Equation 2 (the moment produced by the vertical reaction RA 
at support A) is a linear function of x and plots as a straight line sloping 
upward to the right. The second term, which represents the moment due to 
the uniformly distributed load, is a function of x2 and plots as a parabola 
sloping downward. When a moment curve is plotted in this manner, we 
say that it is plotted by cantilever parts. In Figure 5.9d, the two curves are 
combined to give a parabolic curve whose ordinate at midspan equals the 
familiar wL2/8.

M

R = wx
x
2

L

A B

w

(a)

RB = wL
2RA = wL

2

x

A z

w
V

(b)

wL
2

M =+M

–M

wLx
2 wL2

2

wL2

2M = – –

x

wx2

2

(c)

wL2

8

(d)

Figure 5.9: (a) Uniformly loaded beam; 
(b) free body of beam segment; (c) moment 
curve plotted by “parts”; (d ) combined mo-
ment diagram, a symmetric parabola.

lee98004_ch05_174-233.indd   185 25/12/16   12:11 pm



186  Chapter 5 ■ Beams and Frames

E X A M P L E  5 . 4 (a) Write the equations for shear and moment on a vertical section 
between supports B and C for the beam in Figure 5.10a.

(b) Using the equation for shear in part (a), determine the point where the 
shear is zero (the point of maximum moment).

(c) Plot the variation of the shear and moment between B and C.

Solution
(a)  Cut the free body shown in Figure 5.10b by passing a section through 

the beam a distance x from point A at the left end. Using similar trian-
gles, express wʹ, the ordinate of the triangular load at the cut (consider 
the triangular load on the free body and on the beam), in terms of x and 
the ordinate of the load curve at support C.

   wʹ __ x    =    3 ___ 
24

     therefore  wʹ =    x __ 
8
   

  Compute the resultant of the triangular load on the free body in  
Figure 5.10b.

R =    1 __ 
2
    xwʹ =    1 __ 

2
    (x)  (  x __ 

8
  )   =    x

2
 ___ 

16
   

 Compute V by summing forces in the vertical direction.

 ↑
+ ∑Fy = 0

0 = 16 −    x
2
 ___ 

16
     − V 

  V = 16 −    x   2  __ 
16

    (1)

 Compute M by summing moments about the cut.

 ⟳+ ∑Mz = 0

 0 = 16 (x − 6)  −    x   2  __ 
16

   (  x __ 
3
  )  − M 

  M = −96 + 16x −    x   3  __ 
48

    (2)

(b) Set V = 0 and solve Equation 1 for x.

 0 = 16 −    x   2  __ 
16

    and  x = 16 ft 

(c) See Figure 5.10c for a plot of V and M.
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–2.25

–20
74.67

–4.5

shear
(kips)

moment
(kip • ft)

(c)

18ʹ

wʹ

6ʹ

24ʹ

(a)

C
B

x

w = 3 kips/ft

A

20 kips16 kips

6ʹ x – 6ʹ

x
3

x2

16

x

M

R =

V

z

(b)

16 kips

wʹ

A

Figure 5.10
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E X A M P L E  5 . 5Write the equations for moment in members AC and CD 
of the frame in Figure 5.11. Draw a free body of joint C, 
showing all forces.

Solution
Two equations are needed to express the moment in 
member AC. To compute the moment between A and B, 
use the free body in Figure 5.11b. Take the origin for x1 at 
support A. Break the vertical reaction into com ponents 
parallel and perpendicular to the longitudinal axis of the 
sloping member. Sum moments about the cut.

 ⟳+ ∑Mz = 0

 0 = 6.5x1 − M

 M = 6.5x1 (1)

where 0 ≤ x1 ≤ 3  √ 
__

 2   .
 Compute the moment between B and C, using the free body in 
Figure 5.11c. Select an origin at B. Break 20 kN force into components. 
Sum moments about the cut.

 ⟳+ ∑Mz = 0

 0 = 6.5 (3 √ 
__

 2   +  x  2  )  − 14.14  x  2   − M 

  M = 19.5 √ 
__

 2   − 7.64  x  2    (2)

where  0 ≤  x  2   ≤ 3 √ 
__

 2  . 
 Compute the moment between D and C, using the free body in 
Figure 5.11d. Select an origin at D. 

 +⟲ ∑Mz = 0

 0 = 6.8  x  3   − 4 x  3   (  
 x  3   __ 
2
  )  − M 

  M = 6.8  x  3   − 2  x  3  2   (3)

 The free body of joint C is shown in Figure 5.11e. The moment at the 
joint can be evaluated with Equation 3 by setting x3 = 4 m.

M = 6.8(4) − 2(4)2= −4.8 kN ⋅ m

Figure 5.11
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188  Chapter 5 ■ Beams and Frames

Shear and Moment Curves
5.4

To design a beam, we must establish the magnitude of the shear and 
moment (and axial load if it is significant) at all sections along the axis of 
the member. If the cross section of a beam is constant along its length, it is 
designed for the maximum values of moment and shear within the span. If 
the cross section varies, the designer must investigate additional sections 
to verify that the member’s capacity is adequate to carry the shear and 
moment.

To provide this information graphically, we construct shear and moment 
curves. These curves, which preferably should be drawn to scale, consist of 
values of shear and moment plotted as ordinates against distance along the 
axis of the beam. Although we can construct shear and moment curves by 
cutting free bodies at intervals along the axis of a beam and writing equations 
of equilibrium to establish the values of shear and moment at particular sec-
tions, it is much simpler to construct these curves from the basic relationships 
that exist between load, shear, and moment.

Relationship Between Load, Shear, and Moment

To establish the relationship between load, shear, and moment, we will con-
sider the beam segment shown in Figure 5.12a. The segment is loaded by a 
distributed load w = w(x) whose ordinates vary with distance x from an origin 
o located to the left of the segment. The load will be considered positive when 
it acts upward, as shown in Figure 5.12a.

To derive the relationship between load, shear, and moment, we will 
consider the equilibrium of the beam element shown in Figure 5.12d. The 
element, cut by passing imaginary vertical planes through the segment at 
points 1 and 2 in Figure 5.12a, is located a distance x from the origin. Since dx 
is infinitesimally small, the slight variation in the distributed load acting over 
the length of the element may be neglected. Therefore, we can assume that 
the distributed load is constant over the length of the element. Based on this 
assumption, the resultant of the distributed load is located at the midpoint of 
the element.

The curves representing the variation of the shear and the moment along 
the axis of the member are shown in Figure 5.12b and c. We will denote the 
shear and moment on the left face of the element in Figure 5.12d by V and M, 
respectively. To denote that a small change in shear and moment occurs over 
the length dx of the element, we add the differential quantities dV and dM  
to the shear V and the moment M to establish the values of shear and moment 
on the right face. All forces shown on the element act in the positive sense as 
defined in Figure 5.5c and d.

(a)

1 2A B

xo
dx

w = w(x)

(b)

dx

V

V + dV

VA

VB

∆VA–B

(c)

dx

M M + dM

MB

MA ∆MA–B

2

M M + dM

V + dV

V

w

w dx

dx

dx
(d)

o

Figure 5.12: (a) Segment of beam with a dis-
tributed load; (b) shear curve; (c) moment 
curve; (d ) infinitesimal element located be-
tween points 1 and 2.
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5.4 ■ Shear and Moment Curves  189

Considering equilibrium of forces acting in the y direction on the ele-
ment, we can write

 ↑
+ ∑Fy = 0

 0 = V + w dx −  (V + dV)  

Simplifying and solving for dV gives

  dV = w dx (5.6)

To establish the difference in shear ΔVA−B between points A and B along the 
axis of the beam in Figure 5.12a, we must integrate Equation 5.6.

  ΔVA−B = VB − VA =   ∫ 
A
  

 B

    dV =   ∫ 
A
  

 B

    w dx (5.7)

The integral on the left side of Equation 5.7 represents the change in shear 
ΔVA−B between points A and B. In the integral on the right, the quantity w dx 
can be interpreted as an infinitesimal area under the load curve. The integral 
or sum of these infinitesimal areas represents the area under the load curve 
between points A and B. Therefore, we can state Equation 5.7 as

  ΔVA−B = area under load curve between A and B (5.7a)

where an upward load produces a positive change in shear and a downward 
load a negative change, moving from left to right.

Dividing both sides of Equation 5.6 by dx produces

     dV ___ 
dx

   = w  (5.8)

Equation 5.8 states that the slope of the shear curve at a particular point 
along the axis of a member equals the ordinate of the load curve at that point.

If the load acts upward, the slope is positive (upward to the right). If the 
load acts downward, the slope is negative (downward to the right). In a region 
of the beam in which no load acts, w = 0. For this condition Equation 5.8 
indicates the slope of the shear curve is zero—indicating that the shear 
remains constant.

To establish the relationship between shear and moment, we sum mo-
ments of the forces acting on the element about an axis normal to the plane of 
the beam and passing through point o (Figure 5.12d ). Point o is located at the 
level of the centroid of the cross section

⟳+ ∑Mo = 0

 M + V dx −  (M + dM)  + w dx   dx __ 
2
   = 0 
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190  Chapter 5 ■ Beams and Frames

Since the last term w(dx)2/2 contains the product of a differential quantity 
squared, it is one order of magnitude smaller than the terms containing a 
single differential. Therefore, we drop the term. Simplifying the equation 
yields

  dM = V dx (5.9)

To establish the change in moment ΔMA−B between points A and B, we will 
integrate both sides of Equation 5.9.

  ΔMA−B = MB − MA =   ∫ 
A
  
 B

    dM =   ∫ 
A
  
 B

    V dx (5.10)

The center term in Equation 5.10 represents the difference in moment 
ΔMA−B between points A and B. Since the term V dx can be interpreted 
as an infinitesimal area under the shear curve between points 1 and 2 
(Figure 5.12b), the integral on the right, the sum of all the infinitesimal 
areas between points A and B, represents the total area under the shear 
curve between points A and B. Based on the observations above, we can 
state Equation 5.10 as

  ΔMA−B = area under shear curve between A and B (5.10a)

where a positive area under the shear curve produces a positive change 
in moment and a negative area under the shear curve produces a negative 
change; ΔMA−B is shown graphically in Figure 5.12c.

Dividing both sides of Equation 5.9 by dx gives

     dM ___ 
dx

   = V  (5.11)

Equation 5.11 states that the slope of the moment curve at any point along the 
axis of a member is the shear at that point.

If the ordinates of the shear curve are positive, the slope of the moment 
curve is positive (directed upward to the right). Similarly, if the ordinates 
of the shear curve are negative, the slope of the moment curve is negative 
(directed downward to the right).

At a section where V = 0, Equation 5.11 indicates that the slope of the 
moment curve is zero—a condition that establishes the location of a maxi-
mum value of moment. If the shear is zero at several sections in a span, the 
designer must compute the moment at each section and compare results to 
establish the absolute maximum value of moment in the span.
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Equations 5.6 to 5.11 do not account for the effect of a concentrated load 
or moment. A concentrated force produces a sharp change in the ordinate 
of a shear curve. If we consider equilibrium in the vertical direction of the 
element in Figure 5.13a, the change in shear between the two faces of the 
element equals the magnitude of the concentrated force. Similarly, the change 
in moment at a point equals the magnitude of the concentrated moment M1 
at the point (Figure 5.13b). In Figure 5.13 all forces are shown acting in the 
positive sense. Examples 5.6 to 5.8 illustrate the use of Equations 5.6 to 5.11 
to construct shear and moment curves.

To construct the shear and moment curves for a beam supporting dis-
tributed and concentrated loads, we first compute the shear and moment 
at the left end of the member. We then proceed to the right, locating the 
next point on the shear curve by adding algebraically, to the shear at the 
left, the force represented by (1) the area under the load curve between 
the two points or (2) a concentrated load. To establish a third point, load 
is added to or subtracted from the value of shear at the second point. The 
process of locating additional points is continued until the shear curve is 
completed. Typically, we evaluate the ordinates of the shear curve at each 
point where a concentrated load acts or where a distributed load begins 
or ends.

In a similar manner, points on the moment curve are established by 
adding algebraically to the moment, at a particular point, the increment 
of moment represented by the area under the shear curve between a 
second point.

Sketching Deflected Shapes of Beams

After the shear and moment curves are constructed, the designer may wish 
to draw a sketch of the beam’s deflected shape. Although we will discuss this 
topic in great detail in Section 5.6, the procedure is introduced briefly at this 
point. The deflected shape of a beam must be consistent with (1) the restraints 
imposed by the supports, and (2) the curvature produced by the moment. Pos-
itive moment bends the beam concave upward, and negative moment bends 
the beam concave downward.

The restraints imposed by various types of supports are summarized in 
Table 3.1. For example, at a fixed support, the beam’s longitudinal axis is 
restrained against rotation and deflection. At a pin support, the beam is free 
to rotate but not to deflect. Sketches of deflected shapes to an exaggerated 
vertical scale are included in Examples 5.6 to 5.8.

P

V V + P

dx

(a)

M1

M M + M1

dx

(b)

Figure 5.13: (a) Effect of a concentrated 
load on the change in shear; (b) change in  
internal moment produced by the applied 
moment M1.
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E X A M P L E  5 . 6 Draw the shear and moment curves for the simply supported beam in   
Figure 5.14.

4ʹ12ʹ

6ʹ

4ʹ

A

x

C

R = 24 kips

B

P = 13.5 kips
w = 2 kips/ft

RC = 16 kipsRA = 21.5 kips

(a)

40 kip • ft

x = 10.75ʹ
1.25ʹ

21.5

–16
(b)

(115.56)
(–1.56) (–10) shear

(kips)
–2.5 (–64)

moment
(kip • ft)

21.5 115.56 114
2.5

64
16

74

(c)

(d)

x

A

R = 2x

M
V = 0

w = 2 kips/ft

RA = 21.5 kips

(e)

Figure 5.14: (a) Beam details; (b) shear 
curve (numbers in brackets represent areas 
under shear curve); (c) moment curve; (d ) 
deflected shape; (e)  free body used to es-
tablish location of point of zero shear and 
maximum moment.

Solution
Compute reactions (use the resultant of the distributed 
load).

 ⟳+ ∑MA = 0

  24 (6)  − 40 + 13.5 (16)  − 20  R  C   = 0

   R  C   = 16 kips 

 ↑
+ ∑Fy = 0

   R  A   +  R  C   − 24 − 13.5 = 0 

   R  A   = 21.5 kips 
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Shear Curve.  The shear just to the right of support A equals the reaction 
of 21.5 kips. Since the reaction acts upward, the shear is positive. To the 
right of the support the uniformly distributed load acting downward re-
duces the shear linearly. At the end of the distributed load—12 ft to the 
right of the support—the shear equals

V@12 = 21.5 − (2)(12) = −2.5 kips

At the 13.5-kip concentrated load, the shear drops to −16 kips. Note that 
the concentrated moment at B does not locally affect the shear curve. The 
shear diagram is shown in Figure 5.14b. The maximum value of moment 
occurs where the shear equals zero. To compute the location of the point of 
zero shear, denoted by the distance x from the left support, we consider the 
forces acting on the free body in Figure 5.14e.

   ↑
+ ∑Fy = 0

  0 =  R  A   − wx  where w = 2 kips/ft 

 0 = 21.5 − 2x  and  x = 10.75 ft 

Moment Curve.  Points along the moment curve are evaluated by add-
ing to the moment, at the left end, the change in moment between se-
lected points. The change in moment between any two points is equal to 
the area under the shear curve between the two points. For this purpose, 
the shear curve is divided into two triangular and two rectangular areas. 
The values of the respective areas (in units of kip⋅ft) are given by the 
numbers in parentheses in Figure 5.14b. The moment curve drops by 
40 kip ⋅ ft at the concentrated moment as shown in Figure 5.13b. Because 
the ends of the beam are supported on a roller and a pin, supports that 
offer no rotational restraint, the moments at the ends are zero. Since the  
moment starts at zero at the left and ends at zero on the right, the algebraic sum 
of the areas under the shear curve between ends must equal zero. Because 
of rounding errors, you will find the ordinates of the moment curve do not  
always satisfy the boundary conditions exactly.

At the left end of the beam, the slope of the moment curve is equal to  
21.5 kips—the ordinate of the shear curve. The slope is positive because 
the shear is positive. As the distance to the right of support A increases, 
the ordinates of the shear curve reduce, and correspondingly the slope of 
the moment curve reduces. The maximum moment of 115.56 kip⋅ft occurs 
at the point of zero shear. To the right of the point of zero shear, the shear 
is negative, and the slope of the moment curve is downward to the right. 
The moment curve is plotted in Figure 5.14c. Since the moment is positive 
over the entire length, the member is bent concave upward, as shown by the 
dashed line in Figure 5.14d.
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E X A M P L E  5 . 7 Draw the shear and moment curves for the uniformly loaded beam in  
Figure 5.15a. Sketch the deflected shape.

Solution
Compute RB by summing moments of forces about support C. The distrib-
uted load is represented by its resultant of 144 kips.

 ⟳+ ∑MC = 0

 18  R  B   − 144 (12)  = 0   R  B   = 96 kips 

Figure 5.15: (a) Beam with uniform load; 
(b) infinitesimal element used to establish 
that V and M equal zero at the left end of the 
beam; (c) shear curve (units in kips); (d ) mo- 
ment curve (units in kip⋅ft); (e) approximate 
de flected shape (vertical deflections shown 
to exaggerated scale by dashed line).

6ʹ

x

18ʹ

12ʹ

x = 10ʹ

8ʹ

8ʹ

2ʹ

A
B

C

R = 6(24) = 144 kips

w = 6 kips/ft

96 kips = RB 48 kips = RC

(a)

(d )

(e)

point of inflection (P.I.)

(c)

60

192

–108

–48

shear
(kips)

moment
(kip • ft)

–36

A1

A1

2M =

V = w dx

dx

A
w(dx)2

w

(b)
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Compute RC.

 ↑
+ ∑Fy = 0

 96 − 144 +  R  C     R  C   = 48 kips 

Verify equilibrium; check ⟳+ ∑MB = 0.

144(6) − 48(18) = 0    OK

We begin by establishing the values of shear and moment at the 
left end of the beam. For this purpose we consider the forces on an 
infinitesimal element cut from the left end (at point A) by a vertical section 
(Figure 5.15b). Expressing the shear and moment in terms of the uniform 
load w and the length dx, we observe that as dx approaches zero, both the 
shear and the moment reduce to zero.

Shear Curve.  Because the magnitude of the load is constant over the 
entire length of the beam and directed downward, Equation 5.8 estab-
lishes that the shear curve will be a straight line with a constant slope of 
−6 kips/ft at all points (Figure 5.15c). Starting from V = 0 at point A, we 
compute the shear just to the left of support B by evaluating the area under 
the load curve between points A and B (Equation 5.7a).

VB = VA + ΔVA−B = 0 + (−6 kips/ft)(6 ft) = −36 kips

Between the left and right sides of the support at B, the reaction, acting 
upward, produces a positive 96-kip change in shear; therefore, to the right of 
support B the ordinate of the shear curve rises to +60 kips. Between points B 
and C, the change in shear (given by the area under the load curve) equals  
(−6 kips/ft)(18 ft) = −108 kips. Thus the shear drops linearly from 60 kips 
at B to −48 kips at C.

To establish the distance x to the right of point B, where the shear 
equals zero, we equate the area wx under the load curve in Figure 5.15a to 
the 60-kip shear at B.

  60 − wx = 0 

 60 − 6x = 0  x = 10 ft 

Moment Curve.  To sketch the moment curve, we will locate the points 
of maxi  mum moment, using Equation 5.10a; that is, the area under the 
shear dia gram between two points equals the change in moment between 
the points. Thus we must evaluate in sequence the alternate positive and 
negative areas (tri angles in this example) under the shear curve. We then 
use Equation 5.11 to establish the correct slope of the curve between points 
of maximum moment.

  M  B   =  M  A   + Δ M  A−B   = 0 +   1 __ 
2
    (6)  (−36)  = −108 kip ⋅ ft 

[continues on next page]
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Compute the value of the maximum positive moment between B and C. 
The maximum moment occurs 10 ft to the right of support B where V = 0.

 M  max   =  M  B   + area under V curve between x = 0 and x = 10

  = −108 +   1 __ 
2
     (60)  (10)  = +192 kip ⋅ ft

Since the slope of the moment curve is equal to the ordinate of the shear 
curve, the slope of the moment curve is zero at point A. To the right of 
point A, the slope of the moment curve becomes progressively steeper 
because the ordinates of the shear curve increase. Since the shear is 
negative between points A and B, the slope is negative (i.e., downward to 
the right). Thus to be consistent with the ordinates of the shear curve, the 
moment curve must be concave downward between points A and B.

Since the shear is positive to the right of support B, the slope of 
the moment curve reverses direction and becomes positive (slopes up-
ward to the right). Between support B and the point of maximum posi-
tive moment, the slope of the moment curve reduces progressively from 
60 kips to zero, and the moment curve is concave down. To the right of 
the point of maximum moment, the shear is negative, and the slope of 
the moment curve again changes direction and becomes progressively 
steeper in the negative sense toward support C.

Point of Inflection.  A point of inflection occurs at a point of zero moment. 
Here the curvature changes from concave up to concave down. To locate a 
point of inflection, we use the areas under the shear curve. Since the triangu-
lar area A1 of the shear diagram between support C and the point of maximum 
positive moment produces a change in moment of 192 kip⋅ft, an equal area  
under the shear curve (Figure 5.15c), extending 8 ft to the left of the point 
of maximum moment, will drop the moment to zero. Thus the point of 
inflection is located 16 ft to the left of support C or equivalently 2 ft to the 
right of support B.

Sketching the Deflected Shape.  The approximate deflected shape of 
the beam is shown in Figure 5.15e. At the left end where the moment is 
negative, the beam is bent concave downward. On the right side, where 
the moment is positive, the beam is bent concave upward. Although we 
can easily establish the curvature at all sections along the axis of the 
beam, the deflected position of certain points must be assumed. For ex-
ample, at point A the left end of the loaded beam is arbitrarily assumed 
to deflect upward above the initial undeflected position represented by 
the straight line. On the other hand, it is also possible that point A is 
located below the undeflected position of the beam’s axis if the canti-
lever is flexible. The actual elevation of point A must be established by 
computation.

Example 5.7 continues . . .

lee98004_ch05_174-233.indd   196 25/12/16   12:11 pm



5.4 ■ Shear and Moment Curves  197

E X A M P L E  5 . 8Draw the shear and moment curves for the inclined beam in Figure 5.16a.

Solution
We begin the analysis by computing the reactions in the usual manner with 
the equations of statics. Since shear and moment are produced only by loads  
acting perpendicular to the member’s longitudinal axis, all forces are de-
compose into components parallel and perpendicular to the longitudinal 
axis (Figure 5.16b). The longitudinal components produce axial com-
pression in the lower half of the member and tension in the upper half 
(Figure 5.16e). The transverse components produce the shear and moment 
curves shown in Figure 5.16c and d.

Figure 5.16: (a) Sloping beam; (b) forces and 
reactions decompose into components paral-
lel and perpendicular to the longitudinal axis;  
(c) shear curve; (d ) moment curve; (e) varia-
tion of axial load— tension is positive and 
compression is negative.

12ʹ

16ʹ

8ʹ
40 kips

RB

A

B

RA

(a)

shear
(kips)

–16
16

(c)

axial
(kips)

–12

12

(e)

moment
(kip • ft)

160

(d)

10ʹ

10ʹ

40

loads
(kips)

16

16

20

20

12

12

32 24

(b)
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E X A M P L E  5 . 9 Draw the shear and moment curves for the beam in Figure 5.17a. Sketch 
the deflected shape.

Figure 5.17: (a) Beam (reactions given); 
(b)  shear curve (kips); (c) moment curve 
(kip⋅ft); (d ) de flected shape.

1.2ʹ

4.8ʹ

27 kips

shear
(kips)

10.8 kips
20.8 kips

–43.2 kips

x

(b)

y

1.48ʹ
moment
(kip • ft)

49.68

–64.8 –54

–148
(c)

(d)

hinge point of
inflection

90°

6ʹ 6ʹ 6ʹ4ʹ

10 kips

54 kips

4ʹ

hinge

2ʹ3ʹ

A

B C
D

w = 9 kips/ft

RA = 20.8 kips RC = 70.2 kips

M = 148 kip • ft

(a)

27 kips
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Solution
We begin the analysis by computing the reaction at support C, using a free 
body of member BCD. Summing moments of the applied forces (resultants  
of the distributed load are shown by wavy arrows) about the hinge at B, 
we compute

 ⟳+ ∑MB = 0

 0 = 54 (7)  + 27 (12)  −  R  C   (10)  

   R  C   = 70.2 kips 

 After RC is computed, the balance of the reactions are computed using 
the entire structure as a free body. Even though a hinge is present, the 
structure is stable because of the restraints supplied by the supports. The 
shear and moment curves are plotted in Figure 5.17b and c. As a check of 
the accuracy of the computations, we observe the moment at the hinge is 
zero. The curvature (concave up or concave down) associated with posi-
tive and negative moments is indicated by the short curved lines above or 
below the moment curve.
 To locate the point of inflection (zero moment) to the left of support C, 
we equate the triangular area under the shear curve between the points of 
maximum and zero moment to the change in moment of 49.68 kip⋅ ft. The 
base of the triangle is denoted by x and the altitude by y in Figure 5.17b. 
Using similar triangles, we express y in terms of x.

   x _ y   =   4.8 ____ 
43.2

   

 y =   43.2x _____ 
4.8

   

Area under shear curve = ΔM = 49.68 kip⋅ ft

  (  1 __ 
2
    x)  (  43.2x _____ 

4.8
  )  = 49.68 kip ⋅ ft 

  x = 3.32 ft 

The distance of the point of inflection from support C is

4.8 − 3.32 = 1.48 ft

The sketch of the deflected shape is shown in Figure 5.17d. Since the 
fixed support at A prevents rotation, the longitudinal axis of the beam is 
horizontal at support A (i.e., makes an angle of 90° with the vertical face of 
the support). Because the moment is negative between A and B, the beam 
bends concave downward and the hinge displaces downward. Since the mo-
ment changes from positive to negative just to the left of support C, the 
curvature of member BCD reverses. Although the general shape of member 
BCD is consistent with the moment curve, the exact position of the end of 
the member at point D must be established by computation.
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E X A M P L E  5 . 1 0 Draw the shear and moment curves for beam ABC in Figure 5.18a. Also 
sketch the deflected shape. Rigid joints connect the vertical members to 
the beam. Elastomeric pad at C equivalent to a roller.

6ʹ

12ʹ8ʹ

4ʹ

5 kips

15 kips

30 kips
D

E

BA

RC
RAY

RAX

(a)

C

6ʹ5 kips

15 kips
15 kips

3 kips

30 kips

30

30

8 kips

180 kip • ft

180 kip • ft
60 kip • ft

60 kip • ft B C

C

A

(b)

B

E

D

4ʹ

15

5

5

15

(c)

(–96)–3

–8

(–24) shear
(kips)

(d)

moment
(kip • ft)–84

–180

–24

B

C

(e)

90°

90°
Figure 5.18: (a) Details of beam; (b) free 
bodies of the beam and vertical mem-
bers; (c) shear curve; (d ) moment curve; 
(e) deflected shape to an exaggerated scale.
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Solution
Compute the reaction at C; sum moments about A of all forces acting on 
Figure 5.18a.

 ⟳+ ∑MA = 0

 0 = 5 (8)  − 15 (4)  + 30 (6)  − 20  R  C   

   R  C   = 8 kips 

 ↑
+ ∑Fy = 0 = 8 − 5 + RAY

 RAY = −3 kips

 →+ ∑Fx = 0

  30 − 15 −  R  AX   = 0 

   R  AX   = 15 kips 

Figure 5.18b shows free-body diagrams of the beam and the vertical mem bers. 
The forces on the bottom of the vertical members represent forces applied  
by the beam. The verticals, in turn, exert equal and oppositely directed 
forces on the beam. The shear and moment curves are constructed next. Be-
cause the shear at a section is equal to the sum of the vertical forces to either 
side of the section, the concentrated moment and longitudinal forces do not 
contribute to the shear.

Since a pin support is located at the left end, the end moment starts 
at zero. Between points A and B the change in moment, given by the area 
under the shear curve, equals −24 kip⋅ ft. At B the counterclockwise con-
centrated moment of 60 kip⋅ft causes the moment curve to drop sharply 
to −84 kip⋅ ft. The action of a concentrated moment that produces a posi-
tive change in moment in the section just to the right of the concentrated 
moment is illustrated in Figure 5.13b. Because the moment at B is oppo-
site in sense to the moment in Figure 5.13b, it produces a negative change. 
Between B and C the change in moment is again equal to the area under the 
shear curve. The end moment in the beam at C must balance the 180 kip⋅ ft 
applied by member CD.
 Since the moment is negative over the entire length of the beam, the 
entire beam bends concave downward, as shown in Figure 5.18e. The axis 
of the beam remains a smooth curve throughout.
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E X A M P L E  5 . 1 1 Draw the shear and moment curves and sketch the deflected shape of the 
continuous beam in Figure 5.19a. The support reactions are given.

Figure 5.19: (a) Beam (reactions given); 
(b)  shear curve (kips); (c) moment curve 
(kip⋅ft); (d) de flected shape.

Solution
Because the beam is indeterminate to the second degree, the reactions must 
be determined by one of the methods of indeterminate analysis covered in 
Chapters 9 through 11. Once the reactions are established, the procedure 
to draw the shear and moment curves is identical to that used in Examples 
5.6 to 5.10. Figure 5.19d shows the deflected shape of the structure. Points 
of inflection are indicated by small black dots.

w = 3 kips/ft MC = 94.84 (kip • ft)

(a)

B

C
A

8ʹ

57.67 kips 29.23 kips

40 kips

13.1 kips

8ʹ 20ʹ

(b)

9.74ʹ
–29.23–26.9

13.1

30.77

shear 
(kips)

(c)

4.12ʹ4.63ʹ4.1ʹ

104.8

47.45

–110.4 –94.84

moment
(kip • ft)

(d)

deflected shape
P.I. P.I. P.I.
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E X A M P L E  5 . 1 2Draw the shear and moment curves for each member of the frame in 
Figure 5.20, and sketch the deflected shape.

Figure 5.20: (a) Simply supported frame;  
(b) free body of joint B; (c) free body of joint 
C; (d) shear and moment curves for the frame; 
(e) deflected shape of frame.

A
RAX
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B C
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w = 2 kips/ft

20 kips

10 kN

8ʹ

(a)

5ʹ

10ʹ
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MCB = 88.89 kip • ft

MCD = 88.89 kip • ft
11.11 kips

20 kips

8.89 kips

20 kips

11.11 kips
(c)

(b)

8.68 kips6.95 kips
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B

C

8.89 kips

88.89

88.89

shear
(kips)

shear
(kips)

8.89

100
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20

–6.95

–11.11

20 kips

8.89 kipsmoment
(kip • ft)

moment
(kip • ft)

shear
(kips)

11.11 kips

8.68 kips6.95 kips

w = 2 kips/ft

20 kips

(d)

4.45ʹ

119.78

[continues on next page]

Solution
Solving for the reactions as usual, we then recognize that shear and mo-
ment are produced only by forces perpendicular to the member longitudinal 
axis (as in Example 5.8), so RD is decompose into parallel and perpen-
dicular components (Figure 5.20d). With reactions as end forces known 
for members AB and CD, internal forces at each joint can be found by ap-
plying the equations of statics to member ends. Analysis of the free-body 

(e)
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diagram of each frame joint, shown in Figure 5.20b and c, reveals that 
each joint is in equilibrium. Notice the relationship between normal and 
shear forces for members meeting at rigid joints, like joint C. The shear 
and moment diagrams are shown in Figure 5.20d. The deflected shape is 
shown in Figure 5.20e.

Example 5.12 continues . . .

E X A M P L E  5 . 1 3 Draw the shear and moment curves for each member of the frame in  
Figure 5.21a. Also sketch the deflected shape and show the forces acting 
on a free body of joint C. Treat the connection at B as a hinge.

A B C D

E

(b)

(a)

(c)

(d)

(e)

C DA
B

E

shear
(kips)

shear
(kips)

moment
(kip • ft)

moment
(kip • ft)

C

12ʹ

5 kips/ft

8ʹ

38.7 kips

12ʹ

hinge

Bx = 30 kips

By = 3.3 kips

Ax = 30 kips

MCB = 39.6 kip • ft

MCE = 270 kip • ft

MCD = 309.6 kip • ft

3.3 kips 38.7 kips

42 kips

30 kips

30 kips

Bx = 30 kips

By = 3.3 kips

Ey = 42 kips

Ay = 3.3 kips

MA = 39.6 kip • ft

A B

–3.3

39.6

12ʹ

6ʹ

6ʹ

CB D

C
D

shear
(kips)

moment
(kip • ft)

B

E

12ʹ

hinge

30 kips

8ʹ

38.7

–3.3

30 270

–39.6

–309.6

38.7 kips

6ʹ

6ʹ

9ʹ

Figure 5.21: (a) Determinate frame; (b) shear and moment curves for frame BCDE; 
(c) shear and moment curves for cantilever AB; (d ) free body of joint C; (e) deflected 
shape of frame.
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Solution
We begin the analysis of the frame by analyzing free bodies of the structure 
on either side of the hinge at B to compute the reactions. To compute the 
vertical reaction at the roller (point E), we sum moments about B of the 
forces acting on the free body in Figure 5.21b.

  ⟳+ ∑MB = 0

 0 = 38.7 (20)  − 30 (9)  −  E  y   (12)  

   E  y   = 42 kips 

 The components of the hinge forces at B can now be determined by 
summing forces in the x and y directions.

 →+ ∑Fx = 0

  30 −  B  x   = 0   B  x   = 30 kips 

  ↑
+ ∑Fy = 0

 −  B  y   + 42 − 38.7 = 0   B  y   = 3.3 kips 

After the hinge forces at B are established, the cantilever in 
Figure 5.21c can be analyzed by the equations of statics. The results are 
shown on the sketch. With the forces known at the ends of all members, 
we draw the shear and moment curves for each member. These results are 
plotted next to each member. The curvature associated with each moment 
curve is shown by a curved line on the moment diagram.

The free body of joint C is shown in Figure 5.21d. As you can verify 
by using the equations of statics (that is, ∑Fy = 0, ∑Fx = 0, ∑M = 0), the 
joint is in equilibrium.

A sketch of the deflected shape is shown in Figure 5.21e. Since A is 
a fixed support, the longitudinal axis of the cantilever beam is horizontal 
at that point. If we recognize that neither axial forces nor the curvature 
produced by moment produces any significant change in the length of mem-
bers, then joint C is restrained against horizontal and vertical displace-
ment by members CE and ABC, which connect to supports that prevent 
displacement along the axes of these members. Joint C is free to rotate. As 
you can see, the concentrated load at D tends to rotate joint C clockwise. 
On the other hand, the distributed load of 30 kips on member CE tries 
to rotate the joint counterclockwise. Since member BCD is bent concave 
downward over its entire length, the clockwise rotation dominates.

Although the curvature of member CE is consistent with that indi-
cated by the moment diagram, the final deflected position of the roller 
at E in the horizontal direction is uncertain. Although we show that the 
roller has displaced to the left of its initial position, it is possible that it 
could also be located to the right of its undeflected position if the column 
is flexible. Techniques to compute displacements will be introduced in 
Chapters 7 and 8.
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Principle of Superposition
5.5

Many of the analytical techniques that we develop in this book are based on 
the principle of superposition. This principle states:

If a structure behaves in a linearly elastic manner, the force or dis-
placement at a particular point produced by a set of loads acting 
simultaneously can be evaluated by adding (superimposing) the 
forces or displacements at the particular point produced by each load 
of the set acting individually. In other words, the response of a linear, 
elastic structure is the same if all loads are applied simultaneously or 
if the effects of the individual loads are combined.

The principle of superposition may be illustrated by considering the 
forces and deflections produced in the cantilever beam shown in Figure 5.22. 
Figure 5.22a shows the reactions and the deflected shape produced by 
forces P1 and P2. Figures 5.22b and c show the reactions and the deflected 
shapes produced by the loads acting separately on the beam. The principle 
of superposition states that the algebraic sum of the reactions, or internal 
forces, or displacements at any particular point in Figures 5.22b and c will 
be equal to the reaction, or internal force, or displacement at the corre-
sponding point in Figure 5.22a. In other words, the following expressions  
are valid:

  R  A   =  R  A1   +  R  A2   

  M  A   =  M  A1   +  M  A2   

  Δ  C   =  Δ  C1   +  Δ  C2   

The principle of superposition does not apply to beam-columns or 
to  structures that undergo large changes in geometry when loaded. For 
 example, Figure 5.23a shows a cantilever column loaded by an axial force P. 

(a)

P1

A B

C

P2RA

= +
MA

L

∆C
(b)

P1

B

RA1

MA1
∆C1

(c)
P2RA2

MA2

∆C2

Figure 5.22
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The effect of the axial load P is to produce only direct stress in the column;  
P produces no moment. Figure 5.23b shows a horizontal force H applied to 
the top of the same column. This load produces both shear and moment.

In Figure 5.23c, the loads in Figure 5.23a and b are applied simultane-
ously to the column. If we sum moments about A to evaluate the moment at 
the base of the column in its deflected position (the top has deflected horizon-
tally a distance Δ), the moment at the base can be expressed as

 Mʹ = HL + PΔ

The first term represents the primary moment produced by the transverse 
load H. The second term, called the PΔ moment, represents moment pro-
duced by the eccentricity of the axial load P. The total moment at the base 
obviously exceeds the moment produced by summing cases a and b. Since 
the lateral displacement of the top of the column produced by the lateral load 
creates additional moment at all sections along the length of the column, the 
flexural deformations of the column in Figure 5.23c are greater than those in  
Figure 5.23b. Because the presence of axial load increases the deflection of 
the column, we see that the axial load has the effect of reducing the flexural 
stiffness of the column. If the flexural stiffness of the column is large and Δ 
is small or if P is small, the PΔ moment will be small and in most practical 
cases may be neglected.

Figure 5.24 shows a second case in which superposition is invalid. In 
Figure 5.24a a flexible cable supports two loads of magnitude P at the third 
points of the span. These loads deflect the cable into a symmetric shape. The 
sag of the cable at B is denoted by h. If the loads are applied separately, they 
produce the deflected shapes shown in Figure 5.24b and c. Although the sum 
of the vertical components of the reactions at the supports in b and c equals 
those in a, computations clearly indicate that the sum of the horizontal compo-
nents H1 and H2 does not equal H. It is also evident that the sum of the vertical 
deflections at B, h1, and h2 is much greater than the value of h in case a.

A

P

P

B

P

M = HL

(a)

∆ʹ

A

H H

P

H

L

(b)

+ ≠

Mʹ = HL + P∆

∆

A

H

L

(c)

Figure 5.23: Superposition not applicable: (a)  axial force produces direct stress;  
(b) lateral force produces moment; (c) axial force produces PΔ moment.
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208  Chapter 5 ■ Beams and Frames

The principle of superposition provides the basis for the analysis of in-
determinate structures by the flexibility method discussed in Chapter 9 as 
well as matrix methods in Chapters 14, 15, and 16. Superposition is also used 
frequently to simplify computations involving the moment curves of beams 
that carry several loads. For example, in the moment-area method (a proce-
dure to compute the slope or deflection at a point along the axis of a beam) 
we must evaluate the product of an area and the distance between the area’s 
centroid and a reference axis. If several loads are supported by the beam, the 
shape of the moment diagram may be complicated. If no simple equations are 
available to evaluate either the area under the moment diagram or the position 
of the area’s centroid, the required computation can be carried out only by 
integrating a complicated function. To avoid this time-consuming operation, 
we can analyze the beam separately for the action of each load. In this way we 
produce several moment curves with simple geometric shapes whose area and 
centroids can be evaluated and located by standard equations (see Appendix 
Table A.1). Example 5.14 illustrates the use of superposition to establish the 
reactions and moment curve of a beam loaded with both a uniform load and 
end moments.

PP

P P

h
HH B

B C

A

(a)

2P/3 P/3

P

h1

H1H1

B

(b)

(c)

2P/3P/3

P

h2
H2H2

B
C

+≠

Figure 5.24: Superposition not applicable: (a) cable with two equal loads at the third points 
of the span; (b) cable with single load at B; (c) cable with single load at C.
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5.5 ■ Principle of Superposition  209

E X A M P L E  5 . 1 4(a) Evaluate the reactions and construct the moment diagram for the beam 
in Figure 5.25a by superposition of the reactions and moment curves 
associated with the individual loads in parts (b), (c), and (d ).

(b) Calculate the moment of the area under the moment diagram between  
the left support and the center of the beam with respect to an axis 
through support A.

RA RB

A B

(a)= =

+M
moment
(kip • ft)

moment
(kip • ft)

moment
(kip • ft)

moment
(kip • ft)

–80
–160

80

20ʹ

80 kip • ft 160 kip • ftw = 4 kips/ft

4 kips 4 kips

(c)

–80 –4080 kip • ft

+ +

A2

10ʹ

40 kips 40 kips

(b)+ +

A1

200w = 4 kips/ft

8 kips 8 kips

(d)

A B

A B

A B

–160
–80160 kip • ft

A3

Figure 5.25: (a) Beam with specified loads (moment curve to right); (b) uniform 
load only applied; (c) re actions and moment curve associated with 80 kip⋅ft moment; 
(d ) re actions and moment curve produced by end moment of 160 kip⋅ft at B. [continues on next page]
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Solution
(a) To solve by superposition, also called moment curves by parts, we 

analyze the beam separately for the individual loads. (The reactions 
and moment diagrams are shown in Figure 5.25b, c, and d.) The reac-
tions and the ordinates of the moment diagram produced by all loads 
acting simultaneously (Figure 5.25a) are then established by summing 
algebraically the contribution of the individual cases.

   R  A   = 40 + 4 +  (−8)  = 36 kips 

   R  B   = 40 +  (−4)  + 8 = 44 kips 

   M  A   = 0 +  (−80)  + 0 = −80 kip ⋅ ft 

  M  center   = 200 +  (−40)  +  (−80)  = 80 kip ⋅ ft 

(b) Moment of area =    ∑ 
n=1

  
3
     An ⋅    ̄  x      (Appendix Table A.1)

=    2 __ 
3
    (10)(200)  (  5 __ 

8
   × 10)   + (−40 × 10)(5)

 +   1 __ 
2
    (−40)  (10)  (  10 __ 

3
  )  +   1 __ 

2
    (10)  (−80)  [  2 __ 

3
   (10) ]  

  = 3000 kip ⋅  ft   3  

Example 5.14 continues . . .

Sketching the Deflected Shape of a  
Beam or Frame

To ensure that structures are serviceable—that is, their function is not im-
paired because of excessive flexibility that permits large deflections or vibra-
tions under service loads—designers must be able to compute deflec tions 
at all critical points in a structure and compare them to allowable values 
specified by building codes. As a first step in this procedure, the designer 
must be able to draw an accurate sketch of the deflected shape of the beam or 
frame. Deflections in well-designed beams and frames are usually small com-
pared to the dimensions of the structure. For example, many building codes 
limit the maximum deflection of a simply supported beam under live load to 
1/360 of the span length. Therefore, if a simple beam spans 20 ft (240 in.), 
the maximum deflection at midspan due to the live load must not exceed    2 _ 3    in.

If we represent a beam spanning 20 ft by a line 2 in. long, we are reduc-
ing the dimension along the beam’s axis by a factor of 120 (or we can say 
that we are using a scale factor of    1 ___ 120    with respect to the distance along the 
beam’s axis). If we were to use the same scale to show the deflection at mid-
span, the    2 _ 3    in. displacement would have to be plotted as 0.0055 in. A distance 
of this dimension, which is about the size of a period, would not be percep-
tible to the naked eye. To produce a clear picture of the deflected shape, we 

5.6
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5.6 ■ Sketching the Deflected Shape of a Beam or Frame  211

must exaggerate the deflections by using a vertical scale 50 to 100 times 
greater than the scale applied to the longitudinal dimensions of the member. 
Since we use different horizontal and vertical scales to sketch the deflected 
shapes of beams and frames, the designer must be aware of the distortions 
that must be introduced into the sketch to ensure that the deflected shape is an 
accurate representation of the loaded structure.

An accurate sketch must satisfy the following rules:

1. The curvature must be consistent with the moment curve.
2. The deflected shape must satisfy the constraints of the boundaries.
3. The original angle (usually 90°) at a rigid joint must be preserved.
4. The length of the deformed member is the same as the original length of 

the unloaded member.
5. The horizontal projection of a beam or the vertical projection of a col-

umn is equal to the original length of the member.
6. Axial deformations, trivial compared to flexural deformations, are 

neglected.

For example, in Figure 5.26a the deflected shape of a simply supported 
beam with the service load in place is shown by the dashed line. Since the 
deflection is almost imperceptible to the naked eye, a sketch of this type would 
not be useful to a designer who was interested in computing slopes or deflections 
at a particular point along the axis of the beam. Instead, to show the deflected 
shape clearly, we will draw the distorted sketch shown in Figure 5.26b. In 
Figure 5.26b the scale used to draw the deflection δ at midspan is about 75 times 
greater than the scale used in the longitudinal direction to show the length of 
the member. When we show the length of the bent member to a distorted scale, 
the distance along the deflected axis of the member appears much greater than 
the length of the chord connecting the ends of the member. If a designer were 
inexperienced, he or she might assume that the roller at the right end of the 
beam moves to the left a distance Δ. Since the midspan deflection is very small 
(Figure 5.26a), rule 4 applies. Recognizing that there is no significant differ-
ence in length between the loaded and unloaded members, we conclude that the 
horizontal displacement of the roller at B equals zero, and we show the member 
spanning to the original position of support B.

As a second example, we draw the deflected shape of the vertical 
 cantilever beam in Figure 5.27a. The moment curve produced by the 
 horizontal load at joint B is shown in Figure 5.27b. The short curved line 
within the moment curve indicates the sense of the member’s curvature. 
In Figure 5.27c the deflected shape of the cantilever is drawn to an exag-
gerated scale in the horizontal direction. Since the base of the column is 
attached to a fixed support, the elastic curve must rise initially from the 
support at an angle of 90°. Because the vertical projection of the column 
is assumed equal to the initial length (rule 5), the vertical deflection of the 
top of the cantilever is assumed to be zero; that is, B moves horizontally to 
Bʹ. To be consistent with the curvature produced by the moment, the top 
of the cantilever must displace laterally to the right.

In Figure 5.28 we show with dashed lines the deflected shape produced by 
a single concentrated load applied at midspan to girder BD of a braced frame. In 
a braced frame all joints are restrained against lateral displacement by supports 

A B

P

(a)

Δ = 0

L

A
B

(b)

δ

Figure 5.26: (a) Deflected shape drawn to 
actual scale; (b) deflection exaggerated for 
clarity. 

M = Ph

(b)

A

(a)

h

P B

90°

(c)

deflected
shape

B Bʹ

90°

∆

Figure 5.27: (a) Deflected shape shown 
by dashed line to actual scale; (b) moment 
curve for cantilever in (a); (c) horizontal 
deflections exaggerated for clarity.
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212  Chapter 5 ■ Beams and Frames

or by members connected to immovable supports. For example, joint B does 
not move laterally because it is connected by girder BD to a pin at joint D. We 
can assume that the length of BD does not change because (1) axial deforma-
tions are trivial, and (2) no change in length is produced by bending. To plot 
the deflected shape, we show the column leaving the fixed support at A in the 
vertical direction. The curvature produced by the moment indicates the lower 
section of the column develops compressive stresses on the outside face and 
tension on the inside face. At the point where the moment reduces to zero—the 
point of inflection (P.I.)—the curvature reverses and the column curves back 
toward joint B. The applied load bends the girder downward, causing joint B to 
rotate in the clockwise direction and joint D in the counterclockwise direction. 
Since joint B is rigid, the angle between the column and the girder remains 90°.

In Figure 5.29a we show an L-shaped cantilever with a horizontal load 
applied to the top of the column at B. The moment produced by the horizon-
tal force at joint B (Figure 5.29b) bends the column to the right. Since no 
moments develop in beam BC, it remains straight. Figure 5.29c shows the 
deflected shape to an exaggerated scale. We start the sketch from the fixed 
support at A because both the slope (90°) and the deflec tion (zero) are known 
at that point. Because the angular rotation of joint B is small, the horizontal 
projection of beam BC can be assumed equal to the original length L of the 
member. Notice that both joints B and C displace the same horizontal distance 
Δ to the right. As was the case with the top of the column in Figure 5.27, joint 
B is assumed to move horizontally only. On the other hand, joint C, in addi-
tion to moving the same distance Δ to the right as joint B, moves downward 
a distance Δv = θL due to the rotation of member BC through an angle θ. As 
shown in Figure 5.29d, the clockwise rotation of joint B (which is rigid) can 
be measured from either the x or the y axis.

The lateral load at joint B of the frame in Figure 5.30a produces moment 
that creates compression on the outside faces of both column AB and girder 
BC. To begin the sketch of the deflected shape, we start at the pin at A—the 
only point on the deflected frame whose final position is known. We will arbi-
trarily assume that the bottom of column AB rises vertically from the pin sup-
port at A. Since the moment curve indicates that the column bends to the left, 

D
P

B

C

P.I.

A

MB

MB

MA

P.I.

MA

90°

90°

Figure 5.28: Deflected shape of a braced 
frame. Moment diagrams shown above and 
to the left of frame.
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joint B will move horizontally to Bʹ (Figure 5.30b). Because joint B is rigid, we 
draw the B end of member BC perpendicular to the top of the column. Since 
member BC curves concave upward, joint C will move to point Cʹ. Although 
the frame has the correct deformed shape in every respect, the position of 
joint C violates the boun dary conditions imposed by the roller at C. Since C 
is constrained to move horizontally only, it cannot displace vertically to C ̋ .

We can establish the correct position of the frame by imagining that the 
entire structure is rotated clockwise as a rigid body about the pin at A until 
joint C drops to the level of the plane (at C ̋ ) on which the roller moves. The 
path followed by C during the rotation about A is indicated by the arrow 
between Cʹ and C ̋ . As the rigid body rotation occurs, joint B moves horizon-
tally to the right to point B ̋ .

As shown in Figure 5.30c, an incorrect sketch, the B end of member AB 
cannot enter joint B with a slope that is upward and to the left because the 
90° angle could not be preserved at joint B if the upward curvature of the 
girder is also maintained. Since joint B is free to move laterally as the column 
bends, the frame is termed an unbraced frame.

In Figure 5.31a a symmetrically loaded unbraced frame carries a con-
centrated load at the midspan of girder BC. Based on the initial dimensions, 
we find that the reactions at the pin at A and the roller at D are both equal 
to P/2. Since no horizontal reactions develop at the supports, the moment in 
both columns is zero (they carry only axial load), and the columns remain 
straight. Girder BC, which acts as a simply supported beam, bends concave 

B
P

C

A

L

M = Ph

(a) (b)

h

90°

Figure 5.29: (a) Deflected shape shown to 
scale by dashed line; (b) moment diagram; 
(c) deflected shape drawn to an exaggerated 
scale; (d ) rotation of joint B.
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Figure 5.30: (a) Moment curves for frame 
ABC; (b) deformed frame in final position; 
(c) incorrect deflected shape: 90° angle at B 
not preserved.
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214  Chapter 5 ■ Beams and Frames

upward. If we sketch the deflected shape of the girder assuming that it does 
not displace laterally, the deflected shape shown by the dashed lines results. 
Since the right angles must be preserved at joints B and C, the bottom ends 
of the columns will displace outward horizontally at Aʹ and Dʹ. Although the 
deflected shape is correct, joint A cannot move because it is connected to the 
pin at A. The correct position of the frame is established by shifting the entire 
deformed frame as a rigid body to the right by an amount Δ (Figure 5.31b). 
As shown in this figure, joints B and C move horizontally only, and the length 
of the loaded girder is the same as its initial undeformed length of L.

Figure 5.32 shows a frame with a hinge at C. Since the curvature of 
member AB and the final position of joints A and B are known, we begin the 
sketch by drawing the deflected shape of member AB. Since joint B is rigid, 
the 90° angle is preserved at B, and member BC must slope downward to the 
right. Since the hinge at C provides no rotational restraint, the members must 
frame into each side of the hinge with different slopes because of the differ-
ence in curvature indicated by the moment curves.

B C

DA DʹAʹ

P

M = 0 M = 0

(a)

L

P
2

P
2

∆ ∆

Figure 5.31: (a) Deformations produced by 
load shown by dashed line; (b) position re-
quired by constraints of supports.
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Figure 5.32

Photo 5.2: Fazlur Rahman Khan developed 
the innovative bundled tube structure con-
cept for the Willis Tower, commonly known 
as Sears Tower, in Chicago. The building is 
composed of 9 (3 by 3) tubes rising up to 
different heights. This concept continues to 
influence the construction of modern super-
tall buildings.
© Hedrich-Blessing Collection/Chicago History 
Museum/Getty Images
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5.7 ■ Degree of Indeterminacy  215

Degree of Indeterminacy
5.7

In our previous discussion of stability and indeterminacy in Chapter 3, we con-
sidered a group of structures that could be treated as a single rigid body or as 
several rigid bodies with internal releases provided by hinges or rollers. We 
now want to extend our discussion to include indeterminate frames—struc-
tures composed of members that carry shear, axial load, and moment at a given 
section. The basic approaches we discussed in Chapter 3 still apply. We be-
gin our discussion by considering the rectangular frame in Figure 5.33a. This 
rigid jointed structure, fabricated from a single member, is supported by a pin 

Photo 5.3: (a) A Vierendeel “truss” where 
members are subject to flexure in addition to 
axial forces (also see Example 13.13); (b) a 
truss with members designed to resist axial 
forces only.
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Figure 5.33: (a) Stable, externally deter-
minate frame; (b) internally indeterminate 
frame to second degree; (c) free body of  
upper left corner of hinged frame; (d ) closed 
ring internally indeterminate to the third  
degree; (e) free body of upper left corner of 
closed ring (see d ).

© Chia-Ming Uang
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(b)
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support at A and a roller at B. At point D a small gap exists between the ends 
of the members which cantilever out from joints C and E. Since the supports 
supply three restraints that are neither a parallel nor a concurrent force system, 
we conclude that the structure is  stable and determinate; that is, three equations 
of statics are available to compute the three support reactions. After the reac-
tions are evaluated, internal forces—shear, axial, and moment—at any section 
can be evaluated by passing a cutting plane through the section and applying 
the equations of equilibrium to the free-body diagram on either side of the cut.

If the two ends of the cantilever were now connected by inserting a hinge 
at D (Figure 5.33b), the structure would no longer be statically determinate. 
Although the equations of statics permit us to compute the reactions for any 
loading, the internal forces within the structure cannot be determined because 
it is not possible to isolate a section of the structure as a free body that has 
only three unknown forces. For example, if we attempt to compute the internal 
forces at section 1-1 at the center of member AC in Figure 5.33b by considering 
the equilibrium of the free body that extends from section 1-1 to the hinge at D 
(Figure 5.33c), five internal forces—three at section 1-1 and two at the hinge—
must be evaluated. Since only three equations of statics are available for their so-
lution, we conclude that the structure is indeterminate to the second degree. We 
can reach this same conclusion by recognizing that if we remove the hinge at D, 
the structure reduces to the determinate frame in Figure 5.33a. In other words, 
when we connect the two ends of the structure together with a hinge, both hori-
zontal restraint and vertical restraint are added at D. These restraints, which 
provide alternative load paths, make the structure indeterminate. For example, if 
a horizontal force is applied at C to determinate frame in Figure 5.33a, the entire 
load must be transmitted through member CA to the pin at A and the roller at B. 
On the other hand, if the same force is applied to the frame in Figure 5.33b, a 
certain percentage of the force is transferred through the hinge to the right side 
of the structure to member DE and then through member EB to the pin at B.

If the two ends of the frame at D are welded to form a solid continu-
ous member (Figure 5.33d), that section will have the capacity to transmit 
moment as well as shear and axial load. The addition of flexural restraint 
at D raises the degree of indeterminacy of the frame to three. As shown in 
Figure 5.33e, a typical free body of any portion of the structure can develop 
six unknown internal forces. With only three equations of equilibrium, the 
structure is indeterminate internally to the third degree. In summary, a closed 
ring is statically indeterminate internally to the third degree. To establish 
the degree of indeterminacy of a structure composed of a number of closed 
rings (e.g., a welded steel building frame) we can remove restraints—either 
internal or external—until a stable base structure remains. The number of 
restraints removed equals the degree of indeterminacy. This procedure was 
introduced in Section 3.7; see Case 3.

To illustrate this procedure for establishing the degree of indetermi-
nacy of a rigid frame by removing restraints, we will consider the frame in 
Figure 5.34a. When evaluating the degree of indeterminacy of a structure 
the designer always has a variety of choices with regard to which restraints 
are to be removed. For example, in Figure 5.34b we can imagine the frame 
is cut just above the fixed support at B. Since this action removes three 
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5.7 ■ Degree of Indeterminacy  217

restraints Bx, By, and MB, but leaves a stable U-shaped structure connected 
to the fixed support at A, we conclude that the original structure is indeter-
minate to the third degree. As an alternative procedure, we can eliminate 
three restraints (M, V, and F ) by cutting the girder at midspan and leaving 
two stable determinate L-shaped cantilevers (Figure 5.34c). As a final ex-
ample (Figure 5.34d ), a stable determinate base structure can be established 
by removing the moment restraint at A (physically equivalent to replacing 
the fixed support by a pin support) and by removing mo ment and horizontal 
restraint at B (the fixed support is replaced by a roller).

As a second example, we will establish the degree of indeterminacy of 
the frame in Figure 5.35a by removing both internal and external restraints. 
As one of many possible procedures (Figure 5.35b), we can eliminate  two 
restraints by removing the pin at C completely. A third external restraint 
(resistance to horizontal displacement) can be removed by replacing the 
pin  at B with a roller. At this stage we have removed sufficient restraints 
to produce a structure that is externally determinate. If we now cut girders 
EF and ED, removing six additional restraints, a stable determinate structure 
remains. Since a total of nine restraints were removed, the structure is inde-
terminate to the ninth degree. Figure 5.36 shows several additional structures 
whose degree of indeterminacy has been evaluated by the same method. Stu-
dents should verify the results to check their understanding of this procedure. 

For the frame in Figure 5.36f, one method of establishing the degree of 
indeterminacy is to consider the structure in Figure 5.35a with the three pins 
at A, B, and C replaced by fixed supports. This modification would produce a 
structure similar to the one shown in Figure 5.36f except without internal hinges. 
This modification would increase the previously established ninth degree of 
indeterminacy to 12 degrees. Now, the addition of eight hinges to produce the 
structure in Figure 5.36f would remove eight internal moment restraints, pro-
ducing a stable structure that was indeterminate to the fourth degree.

A B

(a)

A B

Bx

MB

By
(b)

M MV

V
F F

(c)

BxMA MB

(d)

Figure 5.34: Establishing the degree of 
indeterminacy by removing supports un-
til a stable determinate structure remains:  
(a) a fixed-end frame; (b) the fixed support at 
B removed; (c) the girder cut; (d ) roller and 
pin used to eliminate moment and horizontal 
restraint at B and the moment at A.

A B C

DF

G H I

(a)

E

(b)

3 3

21

Figure 5.35: (a) Frame to be evaluated;  
(b) re moving restraints to produce the stati-
cally determinate structure (numbers on 
figure refer to the number of constraints re-
moved t that point).
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(a) (b)

(c)

tie

(d ) (e)

( f ) (g)

Figure 5.36: Classifying rigid frames: (a) stable and determinate, 3 reactions, 3 equations 
of statics; (b) hingeless arch, indeterminate to third degree, 6 reactions, and 3 equations of 
statics; (c) indeterminate first degree, 3 reactions and 1 unknown force in tie, 3 equations of 
statics; (d ) indeterminate sixth degree (internally); (e) stable determinate structure, 4 reactions,  
3 equations of statics, and 1 condition equation at hinge; ( f )  indeterminate fourth degree;  
(g) indeterminate sixth degree.

Approximate Indeterminate Structural Analysis

We will learn three classical methods of indeterminate structural analysis in 
Chapters 9 to 11. Although an exact analysis of an indeterminate beam or 
frame cannot be performed based on the equations of statics only, we can 
approximate with a reasonable accuracy the moment and shear curves, a 
topic covered in Chapter 13. Taking the indeterminate beam in Figure 13.2(a) 
for example, the first step is to sketch qualitatively the deflected shape. 
Figure 13.2(a) shows that two inflection points (points B and D) exist. With 
a properly sketched deflection curve, we can then guess reasonably well the 
location of these inflection points. Since the moment equals zero at an inflec-
tion point, we can image that an internal hinge exists there. This beam is stati-
cally indeterminate to the first degree. By guessing the location of either one 
of the two inflection points and treating it as an internal hinge, we gain one 

5.8
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equation of condition (Section 3.7) to make the beam determinate. See Exam-
ples 13.1 and 13.2 for the application of this very useful approximate method.

To apply the approximate method to a rigid frame like that shown in 
Figure 5.28, we first sketch the deflected shape based on the given load. 
A properly sketched deformed shape would reveal two inflection points and 
their approximate locations. Because the frame is statically indeterminate to 
the second degree, internal hinges are assumed at these two points, which give 
two equations of condition. Then the approximate moment and shear curves 
can be constructed from statics. See Example 13.4 for one example application.

Summary

 • In our discussion of beams and frames, we considered members loaded pri-
marily by forces (or components of forces) acting perpendicular to a mem-
ber’s longitudinal axis. These forces bend the member and produce internal 
forces of shear and moment on sections normal to the longitudinal axis.

 • We compute the magnitude of the moment on a section by summing 
moments of all external forces on a free body to either side of the sec-
tion. Moments of forces are computed about a horizontal axis passing 
through the centroid of the cross section. The summation must include 
any reactions acting on the free body. For horizontal members we as-
sume moments are positive when they produce curva ture that is concave 
up and negative when curvature is concave down.

 • Shear is the resultant force acting parallel to the surface of a section through 
the beam. We compute its magnitude by summing forces or components of 
forces that are parallel to the section, on either side of the cross section.

 • We established procedures to write equations for shear and moment at 
all sections along a member’s axis. These equations will be required in 
Chapter 8 to compute deflections of beams and frames by the method of 
virtual work.

 • We established four relationships among load, shear, and moment that 
facilitate the construction of shear and moment diagrams:

1. The change in shear, ΔV, between two points equals the area under 
the load curve between the two points.

2. The slope of the shear curve at a given point equals the ordinate of 
the load curve at that point.

3. The change in moment, ΔM, between two points equals the area 
under the shear curve between the two points.

4. The slope of the moment curve at a given point equals the ordinate of 
the shear curve at that point.

 • We established that points of inflection (where curvature changes from 
positive to negative) in a beam’s deflected shape occur where values of 
moment equal zero.

 • We learned to use moment diagrams to supply information required to 
draw accurate sketches of the deflected shapes of beams and frames. The 
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ability of the designer to construct accurate deflected shapes is required 
in the moment-area method covered in Chapter 7. The moment-area 
method is used to compute slopes and deflections at a selected point 
along the axis of a beam or frame.

 • Finally we established a procedure for determining if a beam or frame 
is statically determinate or indeterminate, and if indeterminate, then the 
degree of indeterminacy.

P5.1. Write the equations for shear and moment between 
points B and C as a function of distance x along the longi-
tudinal axis of the beam in Figure P5.1 for (a) origin of x 
at point A and (b) origin of x at D.

PROBLEMS

P5.2. Write the equations for shear and moment between 
points D and E. Select the origin at D.

P5.3. Write the equations for shear and moment between 
points A and B. Select the origin at A. Plot the graph of 
each force under a sketch of the beam. The rocker at A is 
equivalent to a roller.

P5.4. Write the equations for shear V and moment M be-
tween points B and C. Take the origin at point A. Evaluate 
V and M at point C using the equations.

10ʹ

8 kips
15 kips

A
DCB

w = 0.5 kip/ft

10ʹ10ʹ

25 kip • ft

P5.1

BA C D

4 kips

6ʹ

w = 3 kips/ft

5ʹ4ʹ

P5.5

B
A

C D

w = 5 kips/ft

P = 10 kips
4ʹ9ʹ4ʹ

P5.4

10ʹ3ʹ5ʹ

6ʹ

8 kips

A E
D

C

B

w = 3 kips/ft

x

P5.2

MA = 12 kN • m

A B

w = 3 kN/m

6 m

P5.3

P5.5. Write the equations for moment between points B 
and C as a function of distance x along the longitudinal 
axis of the beam in Figure P5.5 for (a) origin of x at A and 
(b) origin of x at B.

P5.6. Write the equations required to express the moment 
along the entire length of beam in Figure P5.6. Use an 
origin at point A, and then repeat computations using an 
origin at point D. Verify that both procedures give the 
same value of moment at point C.

18 kips

w = 2.4 kips/ft

A

B
C D

10ʹ6ʹ 8ʹ

P5.6
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P5.8. Write the equations for shear V and moment M  
in terms of distance x along the length of the beam in 
Figure P5.8. Take the origin at point A.

P5.7. Write the equations for shear and moment using 
the origins shown in the figure. Evaluate the shear and 
moment at C, using the equations based on the origin at 
point D.

P5.7

A
B

C

D

32 kip • ft

w = 5 kips/ft

x

10 kips

6ʹ3ʹ4ʹ
x x

P5.8

A B C

8 kips

15 kips

6ʹ10ʹ

w = 4 kips/ft

P5.9. Write the equation for moment between points B 
and C for the rigid frame in Figure P5.9.

P5.9

A

B C

D

48 kips

6 kips 6 kips

48 kips

16ʹ

10ʹ

w = 6 kips/ft

P5.11. Write the equations for shear and moment be-
tween points B and C for the rigid frame in Figure P5.11. 
Select the origin at point C.

P5.10. Write the equations for moment as a function of 
distance along the longitudinal axes for members AB and 
BC of the frame in Figure P5.10. Origins for each member 
are shown.

P5.10

60 kips

8 kip • ft

12 kips

x2

C

BA

6ʹ

7ʹ 5ʹ

x16ʹ

w = 4 kips/ft

P5.11

A

B
C

9 m

6 m

w = 4 kN/m

4 kN

x
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222  Chapter 5 ■ Beams and Frames

P5.12. Consider the beam shown in Figure P5.12. 
(a)  Write the equations for shear and moment using an 

origin at end A. 
(b) Using the equations, evaluate the moment at section 1. 
(c) Locate the point of zero shear between B and C. 
(d)  Evaluate the maximum moment between points B  

and C. 
(e)  Write the equations for shear and moment using an 

origin at C. 
( f ) Evaluate the moment at section 1.
(g)  Locate the section of maximum moment and evaluate 

Mmax. 
(h)  Write the equations for shear and moment between B 

and C using an origin at B. 
(i)  Evaluate the moment at section 1.

P5.13 and P5.14. Given the moment curve for each beam,  
(a) sketch the deflected shape and (b) determine the ap-
plied loading qualitatively.

P5.12

A
B

C

P = 8 kips 1

5ʹ

16ʹ4ʹ

w = 3 kips/ft

P5.13

A

moment

CB

P5.14

moment

A B C D

P5.15 to P5.21. For each beam, draw the shear and 
moment curves label the maximum values of shear 
and moment, locate points of inflection, and sketch the 
deflected shape.

P5.15

A D
C

B

40 kips

6ʹ 4ʹ 4ʹ10ʹ

w = 4 kips/ft

P5.16

A B C D E

12ʹ10ʹ

200 kip • ft 170 kip • ft 100 kip • ft

12ʹ 10ʹ

P = 20 kips

w = 12 kips/ft

CB DA

10ʹ 15ʹ5ʹ

hinge

P5.17

P5.18

C

BA ED

3 kips
195 kip • ft

hinge

5ʹ 5ʹ 5ʹ

12 kips

5ʹ25ʹ
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P5.24. Draw the shear and moment curves for each mem-
ber of the frame in Figure P5.24. Sketch the de flected 
shape.

P5.19

A B C D

13ʹ 13ʹ 13ʹ

w1 = 2 kips/ft
w2 = 5 kips/ft

w3 = 8 kips/ft

P5.20

A

B C D

hingerocker
support

20ʹ

w = 2 kips/ft

P = 12 kips

20ʹ4ʹ

3ʹ

P5.21

P = 12 kips

w = 5 kips/ft

B C DA

20ʹ 24ʹ6ʹ

hinge

P5.23. Draw the shear and moment curves for each member 
of the frame in Figure P5.23. Sketch the de flected shape.

P5.22. Draw the shear and moment curves for the beam 
in Figure P5.22, and sketch the deflected shape. Find the 
vertical displacement of joint D.

P5.22

150 kip • ft
30 kips15 kips/ft

B C
D

E

A

10ʹ

5ʹ

10ʹ

hinge

spring,
k = 30 kips/in.

P5.23

6 kips A

B C

E

D

3 kips/ft
3ʹ

12ʹ

18ʹ6ʹ

P5.25. Draw the shear and moment curves for each mem-
ber of the frame in Figure P5.25. Sketch the de flected 
shape hinges at B and C.

P5.26. Draw the shear and moment curves for the beam 
in Figure P5.26. Sketch the de flected shape.

P5.24

A

B

C

D

w = 2 kN/m

E
10 kN

6 m6 m

6 m

3 m3 m

P5.25

A
B

C D

w = 5 kN/m

6 m3 m3 m

4 m
30 kN • m
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P5.27. Draw the shear and moment curves for each mem-
ber of the frame in Figure P5.27. Sketch the de flected 
shape.

P5.31. Draw the shear and moment curves for each mem-
ber of the beam in Figure P5.31. Sketch the de flected 
shape. 

P5.30. Draw the shear and moment curves for each mem-
ber of the beam in Figure P5.30. Sketch the de flected 
shape. The shear connection at B acts as a hinge.

P5.29. Draw the shear and moment curves for each mem-
ber of the frame in Figure P5.29. Sketch the de flected 
shape.

P5.28. Draw the shear and moment curves for each mem-
ber of the frame in Figure P5.28. Sketch the de flected 
shape.

P5.27

15ʹ

w = 2 kips/ft

4 kips

10 kips

A

C D

8ʹ 8ʹ

B

P5.28

A
C

D

B

10 kN/m

2 kN/m

5 m 5 m

5 m

3 m

20 kN

P5.29

4ʹ

5ʹ

3ʹ

A

B

C

w = 2 kips/ft

P5.30

A B C D

3ʹ6ʹ

hinge

w = 12 kips/ft

6 kips/ft

3ʹ 2ʹ

6 kips

P5.31

A B C D
E

40 kN
5 kN/m 5 kN/m

10 m 10 m 10 m5 m

P5.26

9ʹ

w2 = 6 kips/ft
w1 = 3 kips/ft w3 = 2 kips/ft

30 kip • ft
A C

B

9ʹ9ʹ
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P5.34. Draw the shear and moment curves for the beam in 
Figure P5.34. Sketch the deflected shape.

P5.36 and P5.37. Draw the shear and moment curves for 
each indeterminate beam. Reactions are given. Label max-
imum values of shear and moment. Locate all inflection 
points, and sketch the deflected shape.

P5.35. Draw the shear and moment curves for the beam 
in Figure P5.35. Reaction at support B is given. Locate 
all points of zero shear and moment. Sketch the deflected 
shape.

P5.33. Draw the shear and moment curves for the indeter-
minate beam in Figure P5.33. Reactions at support A are 
given. Sketch the deflected shape.

P5.32. Draw the shear and moment curves for the beam in 
Figure P5.32. Sketch the de flected shape.

P5.32

A C
B

6 m 6 m

w = 9 kN/m

w = 9 kN/m

P5.33

1.69 kips

A

B C

15.19 kips 10.5 kips

4.5 kip • ft
w = 4 kips/ft

8ʹ 6ʹ

P5.34

A

E F

B C
D

3ʹ 3ʹ

3ʹ

6ʹ

w = 12 kips/ftP = 24 kips

P = 36 kips

4ʹ

2ʹ

P5.35

6ʹ 6ʹ 24ʹ6ʹ

A

RB = 85.49 kips

P = 30 kips

C
B

w = 3 kips/ft

P5.36

 RA = 28.31 kN
 RB = 28.69

 w = 6 kN • m

B
C

A

3 m8 m

43.5 kN • m

P5.37

6ʹ9ʹ
4.64 kips 17.97 kips 12.67 kips40 kips

6ʹ 9ʹ

A B C D
 w = 4 kips/ft13.93 kip • ft

30 kips
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P5.41. Draw the shear and moment curves for each mem-
ber of the rigid frame in Figure P5.41. Sketch the de-
flected shape. 

P5.42. Draw the shear and moment curves for each mem-
ber of the frame in Figure P5.42. Sketch the de flected 
shape. Joints B and D are rigid.

P5.40. (a) Draw the shear and moment curves for the 
frame in Figure P5.40. Sketch the deflected shape. 
(b) Write the equations for shear and moment in column 
AB. Take the origin at A. (c) Write the shear and moment 
equations for girder BC. Take the origin at joint B.

P5.38 and P5.39. Draw the shear and moment curves and 
sketch the deflected shape.

P5.38

RA = 9 kN RB = 105 kN RC = 105 kN

A
B C

D

RD = 9 kN

6 m

3 m
30 kN 30 kN

w = 8 kN/m
3 m

9 m 6 m

P5.39

A CB D E F
G

10ʹ 8ʹ 4ʹ 4ʹ4ʹ 10ʹ 5ʹ

P = 10 kips
w = 2 kips/ft

P5.41

A

D

B C F G

H

E

20ʹ

12ʹ

12ʹ

6ʹ 6ʹ

w = 1 kip/ft w = 1 kip/ft

P5.40

x1

x2

4 kips
12 kips

3ʹ24ʹ

10ʹ

5ʹ

w = 2.4 kips/ft

A

B C

D

E

F15ʹ

P5.42

4 kips/ft 

35 kips

B

C
D

A

E

hinge
3ʹ

6ʹ

6ʹ

10ʹ 8ʹ
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P5.46. Draw the shear and moment curves for the column 
in Figure P5.46. Sketch the deflected shape. The load P is 
equal to 55 kips, and the load is eccentric from the column 
centerline with an eccentricity of 10 in.

P5.45. Draw the shear and moment curves for each mem-
ber of the frame and draw the deflected shape. Joints B 
and C are rigid.

P5.44. Draw the shear and moment curves for each mem-
ber of the frame in Figure P5.44. Sketch the deflected 
shape. Treat the shear plate connection at B as a hinge.

P5.43. Draw the moment curves for each member of the 
frame in Figure P5.43. Sketch the deflected shape of the 
frame. Joints B and C are rigid.

P5.43

A

B

C
D

E

8ʹ 8ʹ

24 kips

12ʹ

12ʹ

w = 2 kips/ft

P5.44

w = 4 kips/ft 

45 kips

B C

A D

8ʹ

6ʹ

P5.45

A

B

D

C

20ʹ

16ʹ

w = 1 kip/ft

w = 1 kip/ft w = 1 kip/ft

P5.46

D

E

C

B

A

P/2

10ʺ

P

P

18ʹ

15ʹ

15ʹ

2ʹ
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P5.50. The hollow structural section beam ABCD in 
Figure P5.50 is supported by a roller at point D and two 
links BE and CE. Compute all reaction, draw the shear 
and moment curves for the beam, and sketch the deflected 
shape of the structure.

P5.49. Draw the shear and moment curves for all mem-
bers of the frame in Figure P5.49. Sketch the deflected 
shape.

P5.48. (a) Sketch the deflected shape of the frame in 
Figure P5.48. Reactions and moment curves are given. 
Curvature is also indicated. Joints B and D are rigid. The 
hinge is located at point C. (b) Using an origin at A, write 
the equations for shear and moment in member AB in 
terms of the applied load and the distance x.

P5.47. For the frame in Figure P5.47, draw the shear and 
moment curves for all members. Next sketch the deflected 
shape of the frame. Show all forces acting on a free-body 
diagram of joint C. 

P5.47

A

B

D

C E

20 kips

w = 5 kips/ft

4ʹ

hinge

4ʹ

4ʹ

6ʹ

6ʹ

P5.48

20 kips 32 kips

P = 12 kips

B

x

C D

9 kips27 kips

9ʹ 9ʹ

hinge6 kips/ft

6ʹ

12ʹ

A

P5.49

D
EB

C

6ʹ

6ʹ

3 kips/ft

4 kips/ft

6ʹ

6ʹ

4ʹ

P5.50

A B 1

1

C

E

D

40 kips

30 kips

16ʹ

12ʹ12ʹ 12ʹ 12ʹ

Section 1-1
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P5.53 and P5.54. Classify the structures in Figures P5.53 
and P5.54. Indicate whether stable or unstable. If stable, 
indicate whether determinate or indeterminate. If indeter-
minate, give the degree.

P5.52. The two concentrated loads, supported on the 
combined footing in Figure P5.52, produce a trapezoidal 
distribution of soil pressure. Construct the shear and 
moment curves. Label all ordinates of the curves. Sketch 
the deflected shape.

Practical Application

P5.51. The combined footing shown in Figure P5.51 
is designed as a narrow reinforced concrete beam. The 
footing has been proportioned so that the resultant of the  
column loads passes through the centroid of the footing, 
producing a uniformly distributed soil pressure on the 
base of the footing. Draw the shear and moment curves 
for the footing in the longitudinal direction. The width of 
the footing is controlled by the allowable soil pressure and 
does not affect the analysis.

P5.51

27ʹ

12ʺ 18ʺ

16ʹ2.3ʹ
grade

w = 24 kips/ft

194.4 kips 453.6 kips

P5.52

50 kips

20ʹ

6ʹ9ʹ

A B C D

5ʹ

8 kips/ft

2 kips/ft

50 kips

grade

P5.53

hinge

(a)

hinge

(b)

(c)

hinge

hinge

hinge

(e)

(d)

fixed base

( f )
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Practical Application

P5.55. The corner panel of a typical floor of a warehouse 
is shown in Figure P5.55. It consists of a 10-in.thick  
reinforced concrete slab supported on steel beams. The 
slab weighs 125 lb/ft2. The weight of light fixtures and 
utilities suspended from the bottom of the slab is esti-
mated to be 5 lb/ft2. The exterior beams B1 and B2 support 
a 14-ft-high masonry wall constructed of lightweight, hol-
low concrete block that weighs 38 lb/ft2. We assume that 
the tributary area for each beam is shown by the dashed 
lines in the Figure P5.55, and the weight of the beams 
and their fireproofing is estimated to be 80 lb/ft. Draw the 
shear and moment curves produced by the total dead load 
for beams B1 and B2.

P5.54
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hinge

(b)
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hinge
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hinge
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P5.57. Computer analysis. The columns and girder of the indeterminate rigid frame in Figure P5.57a are fabricated 
from a W18 × 130 wide flange steel section: A = 38.2 in.2 and I = 2460 in.4. The frame is to be designed 
for a uniform load of 4 kips/ft and a lateral wind load of 6 kips; use E = 29,000 kips/in.2. The weight of the 
girder is included in the 4 kips/ft uniform load.

 (a)  Compute the reactions, plot the deflected shape, and draw the shear and moment curves for the columns 
and girder, using the computer program. 

 (b)  To avoid ponding* of rainwater on the roof, the girder is to be fabricated with a camber equal to the 
deflection at midspan of the roof girder produced by the uniform load. Determine the camber Figure P5.57.

P5.56.   Computer analysis of a continuous beam. The continuous beam in Figure P5.56 is constructed from  
a W12 × 152 wide flange steel section with A = 44.7 in.2 and I = 1430 in.4. Determine the reactions, plot 
the shear and moment curves and the deflected shape. Evaluate the deflections. Neglect weight of beam.  
E = 29,000 ksi.

*Ponding refers to the pool of water that can collect on a roof when the roof drains are not adequate to carry away rain water or become clogged. 
This condition has resulted in the collapse of flat roofs. To avoid ponding, beams may be cambered upward so rain water cannot accumulate at the 
center regions of the roof. See Figure P5.57b.

P5.56

1

1 2 3

12ʹ 12ʹ

34 kips

18ʹ

w = 18 kips/ft

2

P5.57

3

4

2

1

1

40ʹ

6 kips

15ʹ

4 kips/ft

3
2

(a)

(b)
unloaded frame

camber = ?
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232  Chapter 5 ■ Beams and Frames

P5.58. Computer investigation of wind load on a building frame.
Case 1: The columns and girders of the rigid building frame in Figure P5.58 have been designed initially 
for vertical load as specified by the building code. Floor beams are connected to columns by rigid joints. As 
part of the design, the building frame must be checked for lateral deflection under the 0.8 kip/ft wind load to 

ensure that lateral displacement will not damage the exterior walls attached to the structural frame. If the code requires 
that the maximum lateral deflection at the top of the roof not exceed 0.48 in. to prevent damage to the exterior walls, 
is the building frame sufficiently stiff to satisfy this requirement?
Case 2: If the bases of the columns at point A and F are attached to the foundations by fixed supports instead of pin 
supports, how much is the lateral deflection at joint D reduced?
Case 3: If a pin-connected diagonal bar bracing with a 2 in. × 2 in. square cross section running from support A to joint 
E is added, determine the lateral deflection at joint D. Assume pin supports at joints A and F.
For the columns, I = 640 in.4 and A = 17.9 in.2; for the girders, I = 800 in.4 and A = 11.8 in.2; for the diagonal brace, 
A = 4 in.2. Use E = 29,000 ksi.

P5.58

A F

C

Case 3
only

EB

D

30ʹ

16ʹ

15ʹ

w = 0.8 kip/ft

ΔD ≤ 0.48ʺ
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The Mike O’Callaghan-Pat Tillman Memorial Bridge, 
Hoover Dam Bypass

Redirecting US Route 93 around the Hoover Dam was challenging because it required 
building a bridge across the wide and deep canyon, created by the Colorado River. 
Engineers devised a cableway system to suspend concrete forms to incrementally cast 
the segments of the arch substructure. Once the arch was completed, columns were cast 
vertically to support the deck, or roadway. When it opened in 2010 the bridge was the 
largest concrete arch in the Western Hemisphere.

© Ethan Miller/Getty Images

© Emily Exon/National Geographic Creative/Corbis
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6Cables and Arches

Cables

As we discussed in Section 1.5, cables constructed of high-strength steel 
wires are completely flexible and have a tensile strength four or five times 
greater than that of structural steel. Because of their great strength-to-weight 
ratio, designers use cables to construct long-span structures, including sus-
pension bridges and roofs over large arenas and convention halls. To use 
cable construction effectively, the designer must deal with two problems:

1. Preventing large displacements and oscillations from developing in cables 
that carry live loads whose magnitude or direction changes with time.

2. Providing an efficient means of anchoring the large tensile force  
carried by cables.

To take advantage of the cable’s high strength while minimizing its 
negative features, designers must use greater inventiveness and imagina-
tion than are required in conventional beam and column structures. For ex-
ample, Figure 6.1 shows a schematic drawing of a roof composed of cables 
connected to a center tension ring and an outer compression ring. The small 
center ring, loaded symmetrically by the cable reactions, is stressed primarily 
in direct tension while the outer ring carries mostly axial compression. By 
creating a self-balancing system composed of members in direct stress, the 

C H A P T E R

Chapter Objectives
 ● Study the characteristics, types, and behavior of cable and arch structures. 

 ● Analyze determinate cable structures and calculate support reactions by two methods, namely by 
equations of static equilibrium and by the general cable theorem, as well as determine the cable 
forces at specific points along its length.

 ● Analyze determinate three-hinged arches and trussed arches.

 ● Use the general cable theorem to establish a funicular shape of an arch for which forces are in direct 
compression along the arch, resulting in an efficient minimum weight arch design.

6.1

compression
ringcable

tension
ring

vertical
support

Figure 6.1: Cable-supported roof composed 
of three elements: cables, a center tension 
ring, and an outer compression ring.
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236  Chapter 6 ■ Cables and Arches

designer creates an efficient structural form for gravity loads that requires 
only vertical supports around its perimeter. A number of sports arenas, in-
cluding Madison Square Garden in New York City, are roofed with a cable 
system of this type.

In a typical cable analysis the designer establishes the position of the end 
supports, the magnitude of the applied loads, and the elevation of one other point 
on the cable axis (often the sag at midspan; see Figure 6.2a). Based on these pa-
rameters, the designer applies cable theory to compute the end reactions, the force 
in the cable at all other points, and the position of other points along the cable axis.

chord
A

B

(a)

= 0

L

A B
h (sag)

C
θ

θ

θ

θ
2

1

(b)

V2

V1

T2

T1

H

H 

w

Figure 6.2: Vertically loaded cables: (a)  
cable with an inclined chord—the vertical 
distance between the chord and the cable, h, 
is called the sag; (b) free body of a cable seg-
ment carrying vertical loads; although the 
resultant cable force T varies with the slope 
of the cable, ∑Fx = 0 requires that H, the hori-
zontal component of T, is constant from sec-
tion to section.

Photo 6.1: Terminal building at Dulles air-
port. Roof supported on a net of steel cables 
spanning between massive, sloping, rein-
forced concrete pylons.

Characteristics of Cables
6.2

Cables, which are made of a group of high-strength wires twisted together to 
form a strand, have an ultimate tensile strength of approximately 270 kips/in.2 
(1862 MPa). The twisting operation imparts a spiral pattern to the individual 
wires.

While the drawing of wires through dies during the manufacturing process 
raises the yield point of the steel, it also reduces its ductility. Wires can undergo an 

© Universal History Archive/UIG via Getty Images
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6.3 ■ Variation of Cable Force  237

ultimate elongation of 7 or 8 percent compared to 30 to 40 percent for structural 
steel with a moderate yield point, say, 36 kips/in.2 (248 MPa). Steel cables have a 
modulus of elasticity of approximately 26,000 kips/in.2 (179 GPa) compared to a 
modulus of 29,000 kips/in.2 (200 GPa) for structural steel bars. The lower modu-
lus of the cable is due to the uncoiling of the wire’s spiral structure under load.

Since a cable carries only direct stress, the resultant axial force T on all 
sections must act tangentially to the longitudinal axis of the cable (Figure 6.2b). 
Because a cable lacks flexural rigidity, designers must use great care when 
designing cable structures to ensure that live loads do not induce either large 
deflections or vibrations. In early prototypes, many cable-supported bridges 
and roofs developed large wind-induced displacements (flutter) that resulted 
in failure of the structure. The complete destruction of the Tacoma Narrows 
Bridge on November 7, 1940 by wind-induced oscillations is one of the most 
spectacular examples of a structural failure of a large cable-supported struc-
ture. The bridge, which spanned 5939 ft (1810 m) over Puget Sound near 
the City of Tacoma, Washington, developed vibrations that reached a maxi-
mum amplitude in the vertical direction of 28 ft (8.53 m) before the floor 
system broke up and dropped into the water below. Nowadays, cables are used 
extensively in bridge engineering. Applications include stayed cables of ca-
ble-stayed bridges (see Photo 6.2), main cable and suspenders of suspension 
bridges (see the opening photograph of Chapter 14).

Variation of Cable Force
6.3

If a cable supports vertical load only, the horizontal component H of the cable 
tension T is constant at all sections along the axis of the cable. This conclu-
sion can be demonstrated by applying the equilibrium equation ∑Fx = 0 to a 

Photo 6.2: Cable-stayed bridge over the 
Cooper River in Charelston, South Carolina.
© iStock/Getty Images Plus
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238  Chapter 6 ■ Cables and Arches

Analysis of a Cable Supporting Concentrated  
Gravity Loads

6.4

When a set of concentrated loads is applied to a cable of negligible weight, 
the cable deflects into a series of linear segments (Figure 6.3a). The resulting 
shape is called the funicular polygon. Figure 6.3b shows the forces acting at 
point B on a cable segment of infinitesimal length. Since the segment is in 
equilibrium, the vector diagram consisting of the cable forces and the applied 
load forms a closed force polygon (Figure 6.3c).

A cable supporting vertical load (e.g., Figure 6.3a) is a determinate 
member. Four equilibrium equations are available to compute the four reac-
tion components supplied by the supports. These equations include the three 
equations of static equilibrium applied to the free body of the cable and a 
condition equation, ∑Mz = 0. Since the moment at all sections of the cable is 
zero, the condition equation can be written at any  section as long as the cable 
sag (the vertical distance between the cable chord and the cable) is known. 
Typically, the designer sets the maximum sag to ensure both a required clear-
ance and an economical design.

To illustrate the computations of the support reactions and the forces at vari-
ous points along the cable axis, we will analyze the cable in Figure 6.4a. The 
cable sag at the location of the 12-kip load is set at 6 ft. In this analysis we will as-
sume that the weight of the cable is trivial (compared to the load) and neglect it.

STEP 1 Compute Dy by summing moments about support A.

 ⟳+ ∑MA = 0

   (12 kips)  (30)  +  (6 kips)  (70)  −  D  y   (100)  = 0 

   D  y   = 7.8 kips  (6.2)

STEP 2 Compute Ay.

 ↑
+
 ∑Fy = 0

 0 =  A  y   − 12 − 6 + 7.8 

   A  y   = 10.2 kips  (6.3)

Figure 6.3: Vector diagrams: (a) cable with 
two vertical loads; (b) forces acting on an 
infinitesimal segment of cable at B; (c) force 
polygon for vectors in (b).

A

B
C

D
H

Ay

H

Dy

h1

P1

P2

h2

(a)

FAB

FBC

P1

B

(b)

FAB

FBC

P1

(c)

segment of cable (Figure 6.2b). If the cable tension is expressed in terms of 
the horizontal component H and the cable slope θ,

   T =   H _____ 
cos θ

    (6.1)

At a point where the cable is horizontal (e.g., see point B in Figure 6.2a), 
θ equals zero. Since cos θ = 1, Equation 6.1 shows that T = H. The maxi-
mum value of T typically occurs at the support where the cable slope is largest.
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6.4 ■ Analysis of a Cable Supporting Concentrated Gravity Loads  239

STEP 3 Compute H; sum moments about B (Figure 6.4b).

 ⟳+ ∑MB = 0

 0 =  A  y   (30)  − H  h  B   

   h  B   H =  (10.2)  (30)   (6.4)

 Setting hB = 6 ft yields

  H = 51 kips 

 After H is computed, we can establish the cable sag at C by con-
sidering a free body of the cable just to the right of C (Figure 6.4c).

STEP 4

 ⟳+ ∑MC = 0

  −  D  y   (30)  + H  h  c   = 0 

    h  c   =   
30  D  y  

 ____ 
H

   =   30 (7.8)  ______ 
51

   = 4.6 ft  (6.5)

 To compute the force in the three cable segments, we establish 
θA, θB, and θC and then use Equation 6.1.

 Compute TAB.

  tan  θ  A   =   6 __ 
30

    and   θ  A   = 11.31° 

   T  AB   =   H _____ 
cos  θ  A  

   =   51 _____ 
0.981

   = 51.98 kips 

 Compute TBC.

 tan  θ  B   =   6 − 4.6 _____ 
40

   = 0.035  and   θ  B   = 2° 

   T  BC   =   H _____ 
cos  θ  B  

   =   51 _____ 
0.999

   = 51.03 kips 

 Compute TCD.

 tan  θ  C   =   4.6 ___ 
30

   = 0.153  and   θ  C   = 8.7° 

   T  CD   =   H _____ 
cos  θ  C  

   =   51 _____ 
0.988

   = 51.62 kips 

Since the slopes of all cable segments in Figure 6.4a are relatively 
small, the computations above show that the difference in magnitude be-
tween the horizontal component of cable tension H and the total cable 
force T is small.

TD
TA

40ʹ30ʹ
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hB = 6ʹ hC
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θ

θ

θ

H
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B

A

TAB

6ʹ

(b)

A

30ʹ

θ

30ʹ
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Dy = 7.8 kips

TCD
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D

C

(c)

A B C D

10.2 kips
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12 kips 6 kips
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40ʹ30ʹ

(d)

30ʹ

Figure 6.4: (a) Cable loaded with vertical 
forces, cable sag at B set at 6 ft; (b) free body 
of cable to left of B; (c) free body of cable 
to right of C; (d ) a simply supported beam 
with same loads and span as cable (moment 
diagram below).
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240  Chapter 6 ■ Cables and Arches

General Cable Theorem
6.5

As we carried out the computations for the analysis of the cable in Figure 6.4a, 
you may have observed that certain parts are similar to those you would 
make in analyzing a simply supported beam with a span equal to that of 
the cable and carrying the same loads applied to the cable. For example, in 
Figure 6.4c we apply the cable loads to a beam whose span equals that of the 
cable. If we sum moments about support A to compute the vertical reaction 
Dy at the right support, the moment equation is identical to Equation 6.2 
previously written to compute the vertical reaction at the right support of 
the cable. In addition, you will notice that the shape of the cable and the 
moment curve for the beam in Figure 6.4 are identical. A comparison of the 
computations between those for a cable and those for a simply supported 
beam that supports the cable loads leads to the following statement of the 
general cable theorem:

At any point on a cable supporting vertical loads, the product of the ca-
ble sag h and the horizontal component H of the cable tension equals 
the bending moment at the same point in a simply supported beam 
that carries the same loads in the same position as those on the cable. 
The span of the beam is equal to that of the cable.

The relationship above can be stated by the following equation:

   Hh  z   =  M  z    (6.6)

where H =  horizontal component of cable tension
 hz =  cable sag at point z where Mz is evaluated
 Mz =   moment at point z in a simply supported beam carrying the 

loads applied to the cable

Since H is constant at all sections, Equation 6.6 shows that the cable sag h is 
proportional to the ordinates of the moment curve.

To verify the general cable theorem given by Equation 6.6, we 
will show that at an arbitrary point z on the cable axis the product of 
the  horizontal component H of cable thrust and the cable sag hz equals  
the moment at the same point in a simply supported beam carrying the 
cable loads (Figure 6.5). We will also assume that the end supports of the 
cable are located at different elevations. The vertical distance between  
the two supports can be expressed in terms of α, the slope of the cable 
chord, and the cable span L as

  y = L tan α  (6.7)
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6.5 ■ General Cable Theorem  241

Directly below the cable we show a simply supported beam to which we ap-
ply the cable loads. The distance between loads is the same in both members. 
In both the cable and the beam, the arbitrary section at which we will evaluate 
the terms in Equation 6.6 is located at distance x to the right of the left sup-
port. We begin by expressing the vertical reaction of the cable at support A in 
terms of the vertical loads and H (Figure 6.5a).

 ⟳+ ∑MB = 0

  0 =  A  y   L − ∑ m  B   + H (L tan α)   (6.8)

where ∑mB represents the moment about support B of the vertical loads  
(P1 through P4) applied to the cable.

In Equation 6.8 the forces Ay and H are the unknowns. Considering a free 
body to the left of point z, we sum moments about point z to produce a second 
equation in terms of the unknown reactions Ay and H.

 ⟳+ ∑Mz = 0

  0 =  A  y   x + H (x tan α −  h  z  )  − ∑  m  z    (6.9)

(a)

z = x tan    – hz

x
L

chord
Ay hz
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By

P1
P2
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P4A

A B
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y = L tan α
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α
 H

H

(b)

x
L

P1

RA RB

P2 P3

z

P4

Figure 6.5
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242  Chapter 6 ■ Cables and Arches

where ∑mz represents the moment about z of the loads on a free body of the 
cable to the left of point z. Solving Equation 6.8 for Ay gives

   A  y   =   
∑ m  B   − H (L tan α) 

  ______________ 
L

    (6.10)

Substituting Ay from Equation 6.10 into Equation 6.9 and simplifying,  
we find

  H h  z   =   x __ 
L

   ∑ m  B   − ∑ m  z    (6.11)

We next evaluate Mz, the bending moment in the beam at point z (Figure 6.5b).

   M  z   =  R  A   x − ∑ m  z    (6.12)

To evaluate RA in Equation 6.12, we sum moments of the forces about the 
roller at B. Since the loads on the beam and the cable are identical, as are the 
spans of the two structures, the moment of the applied loads (P1

 through P4) 
about B also equals ∑mB.

 ⟳+ ∑MB = 0

 0 =  R  A   L − ∑ m  B   

   R  A   =   
∑ m  B  

 ____ 
L

    (6.13)

Substituting RA from Equation 6.13 into Equation 6.12 gives

   M  z   = x   
∑ m  B  

 ____ 
L

   − ∑ m  z    (6.14)

Since the right sides of Equations 6.11 and 6.14 are identical, we can equate 
the left sides, giving Hhz = Mz, and Equation 6.6 is verified. Examples 6.1 and 
6.2 further demonstrate the use of the general cable theorem.
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6.5 ■ General Cable Theorem  243

Determine the reactions at the supports produced by the 120-kip load at 
midspan (Figure 6.6) (a) using the equations of static equilibrium and (b)  
using the general cable theorem. Neglect the weight of the cable.

Solution
(a) Since supports are not on the same level, we must write two equilib-

rium equations to solve for the unknown reactions at support C. First 
consider Figure 6.6a.

 ⟳+ ∑MA = 0

  0 = 120 (50)  + 5H − 100  C  y    (1)

 Next consider Figure 6.6b.

 ⟳+ ∑MB = 0

 0 = 10.5H − 50  C  y   

  H =   50 ____ 
10.5

    C  y    (2)

 Substitute H from Equation 2 into Equation 1.

 0 = 6000 + 5 (  50 ____ 
10.5

    C  y  )  − 100  C  y   

   C  y   = 78.757 kips  

 Substituting Cy into Equation 2 yields

 H =   50 ____ 
10.5

    (78.757)  = 375 kips  

(b) Using the general cable theorem, apply Equation 6.6 at midspan where 
the cable sag hz = 8 ft and Mz = 3000 kip⋅ ft (Figure 6.6c).

   Hh  z   =  M  z   

  H (8)  = 3000 

 H = 375 kips 

 After H is evaluated, sum moments about A in Figure 6.6a to compute  
Cy = 78.757 kips.

NOTE. Although the vertical reactions at the supports for the cable in  
Figure 6.6a and the beam in Figure 6.6c are not the same, the final results 
are identical.

Ans.

Ans.

E X A M P L E  6 . 1

Figure 6.6: (a) Cable with a vertical load 
at midspan; (b) free body to the right of B;  
(c) simply supported beam with same length 
as cable. Beam supports cable load.
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244  Chapter 6 ■ Cables and Arches

E X A M P L E  6 . 2 A cable-supported roof carries a uniform load w = 0.6 kip/ft (Figure 6.7a). If 
the cable sag at midspan is set at 10 ft, what is the maximum tension in the 
cable (a) between points B and D and (b) between points A and B?

Solution
(a) Apply Equation 6.6 at midspan to analyze the cable between points B and 

D. Apply the uniform load to a simply supported beam and compute the  
moment Mz at midspan (Figure 6.7c). Since the moment curve is a pa-
rabola, the cable is also a parabola between points B and D.

  Hh =  M  z   =    wL   2  ___ 
8
   

 H (10)  =   0.6   (120)    2  _______ 
8
   

  H = 108 kips 

 The maximum cable tension in span BD occurs at the supports where 
the slope is maximum. To establish the slope at the supports, we dif-
ferentiate the equation of the cable y = 4hx2/L2 (Figure 6.7b).

 tan θ =   
dy

 __ 
dx

   =   8hx ___ 
 L   2 

   

  at x = 60 ft, tan θ = 8 (10)  (60) /  (120)    2  =   1 __ 
3
   , and θ = 18.43° : 

 cos θ = 0.949 

 Substituting into

  T =   H _____ 
cos θ

    (6.1)

 T =   108 _____ 
0.949

   = 113.8 kips  

(b) If we neglect the weight of the cable between points A and B, the cable 
can be treated as a straight member. Since the cable slope θ is 45°, the 
cable tension equals

 T =   H ____ 
cos θ

   =   108 _____ 
0.707

   = 152.76 kips  

Ans.

Ans.
Figure 6.7
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Arches
6.6

As we discussed in Section 1.5, the arch uses material efficiently because 
applied loads create mostly axial compression on all cross sections. In this 
chapter we show that for a particular set of loads, the designer can establish 
one shape of arch—the funicular shape—in which all sections are in direct 
compression (moments are zero).

Typically, dead load constitutes the major load supported by the arch. If 
a funicular shape is based on the dead load distribution, moments will be cre-
ated on cross sections by live loads whose distribution differs from that of the 
dead load. But normally in most arches, the bending stresses produced by live 
load moments are so small compared to the axial stresses that net compression 
stresses exist on all sections. Because arches use material efficiently, designers 
often use them as the main structural elements in long-span bridges (say, 400 
to 1800 ft) or buildings that require large column-free areas, for example, 
airplane hangers, field houses, or convention halls.

In the following sections we consider the behavior and analysis of three- 
hinged arches. As part of this study we apply the concept of structural 
optimization to establish the minimum weight of a simple three-hinged 
arch carrying a concentrated load. We then apply the general cable theorem 
(Section 6.5) to produce the funicular arch for an arbitrary set of concentrated 
loads. Finally, we derive the equation for the shape of a funicular arch that 
supports a uniformly distributed load.

Types of Arches
6.7

Arches are often classified by the number of hinges they contain or by the manner 
in which their bases are constructed. Figure 6.8 shows the three main types: three-
hinged, two-hinged, and fixed-ended. The three-hinged arch is statically determi-
nate; the other two types are indeterminate. The three-hinged arch is the easiest 
to analyze and construct. Since it is determinate, temperature changes, support 
settlements, and fabrication errors do not create stresses. On the other hand, be-
cause it contains three hinges, it is more flexible than the other arch types.

Fixed-ended arches are often constructed of masonry or concrete when 
the base of an arch bears on rock, massive blocks of masonry, or heavy re-
inforced concrete foundations. Indeterminate arches can be analyzed by the 
flexibility method covered in Chapter 9 or more simply and rapidly by any 
general-purpose computer program. To determine the forces and displace-
ments at arbitrary points along the axis of the arch using a computer, the 
designer treats the points as joints that are free to displace.

In long-span bridges, two main arch ribs are used to support the roadway 
beams. The roadway beams can be supported either by tension hangers from 
the arch (Figure 1.9a) or by columns that bear on the arch (Photo 6.2). Since 
the arch rib is mostly in compression, the designer must also consider the 
possibility of its buckling—particularly if it is slender (Figure 6.9a). If the 

Photo 6.3: Railroad bridge (1909) over the 
Landwasser Gorge, near Wiesen, Switzerland. 
Masonry construction. The main arch is para-
bolic, has a span of 55 m and a rise of 33 m. 
The bridge is narrow as the railway is single-
track. The arch ribs are a mere 4.8 m at the 
crown, tapering to 6 m at the supports.
Courtesy of the Godden Collection, NISEE, 
University of California, Berkeley
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Figure 6.8 Types of arches: (a) three- 
hinged arch, stable and determinate; (b) two- 
hinged arch, indeterminate to the first degree; 
(c) fixed-end arch, indeterminate to the third 
degree.

(a)

hinge

(b)

(c)

(a)

(b)

arch rib

channel
plates

steel
plates

(c)

cross section welded box section

w

buckled
shape

Figure 6.9 (a) Buckling of an unsupported 
arch; (b) trussed arch, the vertical and di-
agonal members brace the arch rib against 
buckling in the vertical plane; (c) two types 
of built-up steel cross sections used to con-
struct an arch rib.
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The Romans mastered the 
construction of arch structures 
thousands of years ago by  
empirical methods of  
proportioning, as exampled in 
Photo 1.2. However, the  
theory and analysis of ma-
sonry arches were formal-
ized much later. In particular, 
Philippe de LaHire (1640–1718) 
applied statics to geometrical 
solution of funicular polygons 
(1695), and found that semicir-
cular arches are unstable and 
rely on grout bond or friction  
between masonry or stone 
wedges to prevent sliding. 
Further important develop-
ment was made by Charles 
Coulomb (1736–1806), in 
which he established design 
equations for determining the 
limiting values of arch thrust in 
order to achieve stability.

Figure 6.10: (a) Barrel arch resembles a 
curved slab; (b) barrel arch used to support a 
compacted fill and roadway slab.

(a)

barrel arch

roadway
slab fill

(b)

rock

Three-Hinged Arches
6.8

To demonstrate certain characteristics of arches, we will consider how the bar 
forces vary as the slope θ of the bars changes in the pin-jointed arch in Figure 6.11a. 
Since the members carry axial load only, this con figuration represents the funicu-
lar shape for an arch supporting a single concentrated load at midspan.

arch is constructed of steel members, a built-up rib or a box section may be 
used to increase the bending stiffness of the cross section and to reduce the 
likelihood of buckling (Figure 6.9c). In many arches, the floor system or wind 
bracing is used to stiffen the arch against lateral buckling in the horizontal 
plane. In the case of the trussed arch shown in Figure 6.9b, the vertical and 
diagonal members brace the arch rib against buckling in the vertical plane.

Since many people find the arch form aesthetically pleasing, designers of-
ten use low arches to span small rivers or roads in parks and other public places. 
At sites where rock sidewalls exist, designers often construct short-span high-
way bridges using barrel arches (Figure 6.10). Constructed of accurately fitted 
masonry blocks or reinforced concrete, the barrel arch consists of a wide, shal-
low arch that supports a heavy, compacted fill on which the engineer places the 
roadway slab. The large weight of the fill induces sufficient compression in the 
barrel arch to neutralize any tensile bending stresses created by even the heavi-
est vehicles. Although the loads supported by the barrel arch may be large, di-
rect stresses in the arch itself are typically low—on the order of 300 to 500 psi 
because the cross-sectional area of the arch is large. A study by the senior author 
of a number of masonry barrel-arch bridges built in Philadelphia in the mid- 
nineteenth century showed that they have the capacity to support vehicles three 
to five times heavier than the standard AASHTO truck (Figure 2.7), which 
highway bridges are currently designed to support. Moreover, while many 
steel and reinforced concrete bridges built in the past 100 years are no longer 
serviceable because of corrosion produced by salts used to melt snow, many 
masonry arches, constructed of good-quality stone, show no deterioration.
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Because of symmetry, the vertical components of the reactions at sup-
ports A and C are identical in magnitude and equal to P/2. Denoting the slope 
of bars AB and CB by angle θ, we can express the bar forces FAB and FCB in 
terms of P and the slope angle θ (Figure 6.11b) as

 sin θ =   P/2 ___ 
 F  AB  

   =   P/2 ___ 
 F  CB  

   

   F  AB   =  F  CB   =   P/2 ____ 
sin θ

    (6.15)

Equation 6.15 shows that as θ increases from 0 to 90°, the force in each bar 
decreases from infinity to P/2. We can also observe that as the slope angle θ 
increases, the length of the bars—and consequently the material required—also 
increases. To establish the slope that produces the most  economical structure 
for a given span L, we will express the volume V of bar material required to 
support the load P in terms of the geometry of the structure and the compres-
sive strength of the material

  V = 2A L  B    (6.16)

where A is the area of one bar and LB is the length of a bar.
To express the required area of the bars in terms of load P, we divide the 

bar forces given by Equation 6.15 by the allowable compressive stress σallow.

  A =   P/2 _________ 
 (sin θ)   σ  allow  

    (6.17)

We will also express the bar length LB in terms of θ and the span length L as

   L  B   =   L/2 _____ 
cos θ

    (6.18)

Substituting A and LB given by Equations 6.17 and 6.18 into Equation 6.16, sim-
plifying, and using the trigonometric identity sin 2θ = 2 sin θ cos θ, we calculate

  V =   PL __________ 
2 σ  allow   sin 2θ

    (6.19)

(a) (b) (c)

P

P P
2

A
B

C

FAB

FAB

FAB

H

FCB

FCB

FAB

H H

L/2 L/2
P
2

P
2

= P/2
sin

FAB = P/2
sin θ

θ θ
θ

θ

θ

θ

Figure 6.11: (a) Three-hinged arch with 
a concentrated load; (b) vector diagram of 
forces acting on the hinge at B, forces FCB 
and FAB are equal because of symmetry;  
(c) components of force in bar AB.
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Figure 6.12: Variation of volume of mate-
rial with slope of bars in Figure 6.11a.

Funicular Shape of an Arch
6.9

The material required to construct an arch is minimized when all sections 
along the axis of the arch are in direct compression i.e., (moments are zero). 
For a particular set of concentrated loads the arch profile in direct compres-
sion is called the funicular arch. By imagining that the loads carried by the 
arch are applied to a cable, the designer can automatically generate a funicu-
lar shape for the loads. If the cable shape is turned upside down, the designer 
produces a funicular arch. Since dead loads are usually much greater than 
the live loads, a designer might use them to establish the funicular shape 
(Figure 6.13). Example 6.3 illustrates the use of the general cable theorem to 
establish a funicular shape for an arch supporting a set of concentrated verti-
cal loads. Example 6.4 illustrates the analysis of a three-hinged arch truss that 
corresponds to the funicular shape.

If V in Equation 6.19 is plotted as a function of θ (Figure 6.12), we observe 
that the minimum volume of material is associated with an angle of θ = 45°. 
Figure 6.12 also shows that very shallow arches (θ ≤ 15°) and very deep 
arches (θ ≥ 75°) require a large volume of material; on the other hand, the flat 
curvature in Figure 6.12 when θ varies between 30 and 60° indicates that the 
volume of the bars is not sensitive to the slope between these limits. There-
fore, the designer can vary the shape of the structure within this range without 
significantly affecting either its weight or its cost.

In the case of a curved arch carrying a distributed load, the engineer 
will also find that the volume of material required in the structure, within 
a certain range, is not sensitive to the depth of the arch. Of course, the cost 
of a very shallow or very deep arch will be greater than that of an arch of 
moderate depth. Finally, in establishing the shape of an arch, the designer 
will also consider the profile of the site, the location of solid bearing mate-
rial for the foundations, and the architectural and functional requirements of 
the project.

W1 W5W2 W4W3

h2 h3
h1

TBTA

BA

(a)

W1 W5
W2

h2 h3h1

TBTA

W4
W3

BA

(b)

Figure 6.13: Establishing the shape of the funicular arch: (a) loads supported by arch 
applied to a cable whose sag h3 at midspan equals the midspan height of the arch;  
(b) arch (produced by inverting the cable profile) in direct stress.

lee98004_ch06_234-265.indd   249 24/12/16   10:06 am



250  Chapter 6 ■ Cables and Arches

E X A M P L E  6 . 3 Establish the shape of the funicular arch for the set of 
loads acting on the trussed arch in Figure 6.14a. The rise 
of the arch at midspan is set at 36 ft.

Solution
We imagine that the set of loads is applied to a cable that 
spans the same distance as the arch (Figure 6.14b). The 
sag of the cable is set at 36 ft—the height of the arch at 
midspan. Since the 30-kip loads at each end of the span act 
directly at the supports, they do not affect the force or the 
shape of the cable. Applying the general cable theory, we 
imagine that the loads supported by the cable are applied 
to an imaginary simply supported beam with a span equal 
to that of the cable (Figure 6.14c). We next construct the 
shear and moment curves. According to the general cable 
theorem at every point,

  M = hz  (6.6)

where M = moment at an arbitrary point in the beam
  H = horizontal component of support reaction
 hz = cable sag at an arbitrary point

Since h = 36 ft at midspan and M = 8100 kip⋅ft, we can 
apply Equation 6.6 at that point to establish H.

 H =   M __ 
h
   =   8100 ____ 

36
   = 225 kips 

With H established we next apply Equation 6.6 at  
30 and 60 ft from the supports. Compute h1 at 30 ft.

  h  1   =   M __ 
H

   =   4500 ____ 
225

   = 20 ft 

Compute h2 at 60 ft.

  h  2   =   M __ 
H

   =   7200 ____ 
225

   = 32 ft 

 A cable profile is always a funicular structure because 
a cable can only carry direct stress. If the cable profile is 
turned upside down, a funicular arch is produced. When 
the vertical loads acting on the cable are applied to the 
arch, they produce compression forces at all sections 
equal in magnitude to the tension forces in the cable at 
the corresponding sections.

Figure 6.14: Use of cable theory to estab-
lish the funicular shape of the trussed arch.

A B
h1

h2 h3 = 36ʹ

60 kips 60 kips

30 kips30 kips

60 kips 60 kips
60 kips

6 @ 30ʹ = 180ʹ

hinge

(a)

H
A B

H
y1 y2 h3 = 36ʹ

60 kips30 kips 30 kips60 kips
60 kips 60 kips

60 kips

(b)

A B

180 kips 180 kips

6 @ 30ʹ = 180ʹ

60 kips30 kips 30 kips60 kips 60 kips 60 kips 60 kips

(c)

150
90

30

–30
–90

–150

shear
(kips)

(d)

4500
7200 8100

moment
(kip • ft)

(e)
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The three-hinged arch truss shown in Figure 6.15a has a bottom chord of 
the same funicular shape as that found in Example 6.3. To demonstrate 
one benefit of using a funicular arch shape, (a) analyze the truss assuming 
the applied loads represent the dead load of the structure, and (b) analyze 
the truss with a single concentrated live load of 90 kips applied at joint L. 
Member KJ is detailed with a slotted connection at one end so that it cannot 
transmit axial force. Assume joint D acts as a hinge.

E X A M P L E  6 . 4

A

B
C D E

F

N M L K J I H

GH H

D

FDJ
FDE

30 kips 60 kips 60 kips 60 kips 60 kips 60 kips 60 kips 60 kips 60 kips30 kips 30 kips

RGRA

6 @ 30ʹ = 180ʹ

48ʹ

(a) (b)

20ʹ
32ʹ 36ʹ

225
kips

225

0

0 0 0

00

– 150
225

–30

–60

–60
–60

–
–

90 –225
–

–30

hinge

180 kips

Figure 6.15

Solution
(a) Because the arch and its loads are symmetric, the vertical reactions at 
A and G are equal to 180 kips (one-half the applied load). Compute the 
horizontal reaction at support G.

Consider the free body of the arch to the left of the hinge at D 
(Figure 6.15b), and sum moments about D.

  ⟳+ ∑MD = 0

 0 = −60 (30)  − 60 (60)  − 30 (90)  + 180 (90)  − 36H 

  H = 225 kips 

We now analyze the truss by the method of joints 
starting at support A. Results of the analysis are 
shown on a sketch of the truss in Figure 15b. 
Since the arch rib is the funicular shape for the 
loads applied at the top chord, the only members 
that carry load—other than the rib—are the ver-
tical columns, which transmit the load down to 
the arch. The diagonals and top chords will only 
be stressed when a loading pattern is applied that 
does not conform to the funicular shape. 
 (b) Analysis results of the truss subjected 
to a single 90-kip concentrated live load are 
shown in Figure 6.16. Notice there are far 
fewer zero-force members.

90 kips

75

10.71

–10.71 –75 0

0

+37.38 +21.42

64.28 75 37.38 15.96

21.42
96.42

75

64.29
0 –112.38

50

10
34.28

–34.28 –60
20 +20

+8.51

–10 25.72
0 –14.1

30

14.95

–14.95
8.5

38.51

50–

– –

–

–

–

+

–

+
+

75
kips

75
kips

60 kips 30 kips

Figure 6.16
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Funicular Shape for an Arch That Supports  
a Uniformly Distributed Load

6.10

Many arches carry dead loads that have a uniform or nearly uniform distribu-
tion over the span of the structure. For example, the weight per unit length 
of the floor system of a bridge will typically be constant. To establish for 
a uniformly loaded arch of the funicular shape—the form required if only 
direct compression is to develop at all points along the axis of an arch—we 
will consider the symmetric three-hinged arch in Figure 6.17a. The height 
(or rise) of the arch is denoted by h. Because of symmetry, the vertical reac-
tions at supports A and C are equal to wL/2 (one-half the total load supported 
by the structure).

The horizontal thrust H at the base of the arch can be expressed in terms 
of the applied load w and the geometry of the arch by considering the free 
body to the right of the center hinge in Figure 6.17b. Summing moments 
about the center hinge at B, we find

  ⟳+ ∑MB = 0

 0 =  (  wL ___ 
2
  )     L __ 

4
   −  (  wL ___ 

2
  )     L __ 

2
   + Hh 

  H =   w  L   2  ___ 
8h

    (6.20)

To establish the equation of the axis of the arch, we superimpose a rect-
angular coordinate system, with an origin o located at B, on the arch. The 
positive sense of the vertical y axis is directed downward. We next express the 

(a) (b) (c)

hinge

L/2
wL

H H
h hA C

C

B
B

w

2

L/2 L/2

L/2 – x

wL
2

H =

wL
2

1
2

L
2

wL2

8h

w

x

y

D +

M

h – y

x axis

– x
R = w L

2 – x

1
θ

8hx
L2

8hx
L2

21 +y axis

Figure 6.17: Establishing the funicular shape 
for a uniformly loaded arch.
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moment M at an arbitrary section (point D on the arch’s axis) by considering 
the free body of the arch between D and the pin at C.

  ⟳+ ∑MD = 0

 0 =   (  L __ 
2
   − x)    

2
      w __ 

2
   −   wL ___ 

2
   (  L __ 

2
   − x)  + H (h − y)  + M 

Solving for M gives

  M =   
w  L   2  y

 ____ 
8h

   −   w  x   2  ___ 
2
    (6.21)

If the arch axis follows the funicular shape, M = 0 at all sections. Substituting 
this value for M into Equation 6.21 and solving for y establishes the following 
mathematical relationship between y and x:

  y =   4h __ 
 L   2 

    x   2   (6.22)

Equation 6.22, of course, represents the equation of a parabola. Even if the 
parabolic arch in Figure 6.17 were a fixed-ended arch, a uniformly distributed 
load—assuming no significant change in geometry from axial shortening—
would still produce direct stress at all sections because the arch conforms to 
the funicular shape for a uniform load.

From a consideration of equilibrium in the horizontal direction, we can 
see that the horizontal thrust at any section of an arch equals H, the hori-
zontal reaction at the support. In the case of a uniformly loaded parabolic 
arch, the total axial thrust T at any section, a distance x from the origin at 
B (Figure 6.17b), can be expressed in terms of H and the slope at the given 
section as

  T =   H _____ 
cos θ

    (6.23)

To evaluate cos θ, we first differentiate Equation 6.22 with respect to x to give

  tan θ =   
dy

 __ 
dx

   =   8hx ___ 
 L   2 

    (6.24)

The tangent of θ can be shown graphically by the triangle in Figure 6.17c. 
From this triangle we can compute the hypotenuse r using r2 = x2 + y2:

  r =  √ 
_________

 1 +   (  8hx ___ 
 L   2 

  )    
2

     (6.25)

From the relationship between the sides of the triangle in Figure 6.17c and 
the cosine function, we can write

  cos θ =   1 ________  

 √ 
_________

 1 +   (  8hx ___ 
 L   2 

  )    
2

   

    (6.26)

Robert Hooke (1635–1703) 
established that the shape  
of a hanging chain, when  
inverted, would generate an  
efficient funicular shape of 
an arch in direct compres-
sive stress. Antonio Gaudi 
(1852–1926) utilized Hooke’s 
theory and built funicular 
arches by scaling physical 
models that consisted of a 
network of strings with hang-
ing weights. Gaudi used this 
method in the construction of 
Colonia Güell in Santa Coloma, 
Spain. Another iconic example 
of a funicular arch is St Louis 
Gateway Arch in St Louis, 
Missouri, completed in 1967.

lee98004_ch06_234-265.indd   253 24/12/16   10:06 am



254  Chapter 6 ■ Cables and Arches

Substituting Equation 6.26 into Equation 6.23 gives

  T = H  √ 
_________

 1 +   (  8hx ___ 
 L   2 

  )    
2

     (6.27)

Equation 6.27 shows that the largest value of thrust occurs at the supports 
where x has its maximum value of L/2. If w or the span of the arch is large, the 
designer may wish to vary (taper) the cross section in direct proportion to the 
value of T so that the stress on the cross section is constant. Example 6.5 dem-
onstrates the use of the funicular shape of an arch to support a uniform load.

E X A M P L E  6 . 5 Establish the shape of the funicular arch for the uniform loading acting 
on the three-hinged arch in Figure 6.18a. To achieve economy, the arch is 
tapered along its length. Determine the minimum cross sectional area at 
three locations (x1 = 17.5 ft, x2 = 35 ft, and x3 = 52.5 ft) if the maximum 
allowable compressive stress is 2000 lbs/in.2.

w = 5 kips/ft

x1

y1

y2

y3

x

y

70ʹ

h = 42ʹ

70ʹ

x2

x3

Figure 6.18

Solution
Since this arch is uniformly loaded, the funicular shape is given by

 y =    4h ___ 
L2

     x2 (6.22)

Therefore,

y1 =    
4(42)

 _____ 
1402

    (17.5)2 = 2.6 ft

y2 =    
4(42)

 _____ 
1402

    (35)2 = 10.5 ft

y3 =    
4(42)

 _____ 
1402

    (52.5)2 = 23.6 ft
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Since the maximum allowable compressive stress is 2000 lb/in.2 and the 
funicular shape of the arch has been established Equation 6.27 can be used 
to determine the minimum cross-sectional area by

A =    T ____ σmax
    =    T _______ 

2000 psi
   

where

 T = H  √ 
___________

 1 + (   8hx ____ 
L2

  ) 
2
    (6.27)

and

 H =    wL2
 ____ 

8h
    (6.20)

So for each location, the minimum area is found.

 H =    
5(140)2

 _______ 
8(42)

    = 291.7 kips

 T1 = 291.7  √ 

___________________

  1 +  (  
8(42)(17.5)

 __________ 
1402

  ) 
2
    = 304.5 kips

 A1 =    
304.5(1000)

  ___________ 
2000

    = 152.3 in.2

 T2 = 291.7  √ 

___________________

  1 +  (  
8(42)(35)

 __________ 
1402

  ) 
2
    = 340.2 kips

 A2 =    
340.2(1000)

  ___________ 
2000

    = 170.1 in.2

T3 = 291.7  √ 

___________________

  1 +  (  
8(42)(52.5)

 __________ 
1402

  ) 
2
    = 392.4 kips

 A3 =    
392.4(1000)

  ___________ 
2000

    = 196.2 in.2

If the depth of the section is held constant, say, to 10 in., the economic 
widths will be 15.2 in, 17 in., and 19.6 in., respectively.
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Summary

 • Cables are used to construct long-span structures such as suspension and 
cable-stayed bridges, as well as roofs over large arenas (sports stadiums 
and exhibition halls) that require column-free space. Since cables are 
flexible, they can undergo large changes in geometry under moving loads. 
Therefore, designers must provide stabilizing elements to prevent exces-
sive deformations. Also the supports at the ends of cables must be capable 
of anchoring large forces. If bedrock is not present for anchoring the ends 
of suspension bridge cables, massive abutments of reinforced concrete 
may be required.

 • Because cables (due to their flexibility) have no bending stiffness, the 
moment is zero at all sections along the cable.

 • The general cable theorem establishes a simple equation to relate the 
horizontal thrust H and the cable sag h to the moment that develops in a 
fictitious, simply supported beam with the same span as the cable

Hhz = Mz

where H = horizontal component of cable tension
 hz =  sag at point z where Mz is evaluated. The sag is the 

vertical distance from the cable chord to the cable.
 Mz =  moment at point z in a simply supported beam with the 

same span as the cable and carrying the same loads as the 
cable

 • When cables are used in suspension bridges, floor systems must be very 
stiff to distribute the concentrated wheel loads of trucks to multiple sus-
penders, thereby minimizing deflections of the roadway.

 • Since a cable is in direct stress under a given loading (usually the dead 
load), the cable shape can be used to generate the funicular shape of an 
arch by turning it upside down.

 • Although short masonry arches are often used in scenic locations be-
cause of their attractive form, they also produce economical designs for 
long-span structures that (1) support large, uniformly distributed dead 
load, and (2) provide a large unobstructed space under the arch (suitable 
for convention halls or sports arenas or in the case of a bridge providing 
clearance for tall ships).

 • Arches can be shaped (termed a funicular arch) so that dead load pro-
duces only direct stress—a condition that leads to a minimum weight 
structure.

 • For a given set of loads, the funicular shape of arch can be established 
using the general cable theorem.
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Cables

P6.1. Determine the reactions at the supports, the mag-
nitude of the cable sag at joints B and E, the magnitude 
of the tension force in each segment of the cable, and the 
total length of the cable in Figure P6.1.

PROBLEMS
P6.2. The cable in Figure P6.2 supports four sim-
ply supported girders uniformly loaded with 6 kips/ft. 
(a) Determine the minimum required area of the main 
cable ABCDE if the allowable stress is 60 kips/in.2. 
(b) Determine the cable sag at point B.

P6.3. The cable in Figure P6.3 supports girder DE uni-
formly loaded with 4 kips/ft. The supporting hangers 
are closely spaced, generating a smooth curved cable. 
Determine the support reactions at A and C. If the maxi-
mum tensile force in the cable cannot exceed 600 kips, 
determine the sag hB at midspan.

A F

30 kips

30 kips 30 kips

30 kips

B E

DC

24ʹ 24ʹ

5 @ 20ʹ = 100ʹ

P6.1 

A E

B

w = 6 kips/ft

C
D30ʹ

4 @ 30ʹ = 120ʹ

P6.2

B

C

ED

w = 4 kips/ft

A

hB
cable

100ʹ 100ʹ

P6.3

P6.4. (a) Determine the reactions at supports A and E 
and the maximum tension in the cable in Figure P6.4.  
(b) Establish the cable sag at points C and D.

30 kN

15 kN

5 m 5 m2 m3 m

6 m

B

 A
C

D

E

hB = 2 m hC

hD

P6.4
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258  Chapter 6 ■ Cables and Arches

P6.5. Compute the support reactions and the maximum 
tension in the main cable in Figure P6.5. The hangers can 
be assumed to provide a simple support for the suspended 
beams.

6 @ 40ʹ = 240ʹ

20ʹ
w = 6 kips/ft80ʹ

cable

B

A

P6.5

P6.6. What value of θ is associated with the minimum 
volume of cable material required to support the 100-kip 
load in Figure P6.6? The allowable stress in the cable is 
150 kips/in.2.

100 kips

C

A B

60ʹ 60ʹ

θθ

P6.6

P6.7. The cables in Figure P6.7 have been dimensioned 
so that a 3-kip tension force develops in each vertical 
strand when the main cables are tensioned. What value 
of jacking force T must be applied at supports B and C to 
tension the system?

D C

A B

T = ?

T = ?

cable

cable

6 @ 10ʹ = 60ʹ

5ʹ

10ʹ

5ʹ

P6.7

A

B

12 m 12 m

2 m

w = 6 kN/m

4 m

P6.8

B

C

D

A

w = 1 kip/ft

post

cable

15ʹ

3ʹ

15ʹ

P6.9

P6.8. Compute the support reactions and the maximum 
tension in the cable in Figure P6.8.

P6.9. A uniformly distributed load on beam ABC in 
Figure P6.9 causes it to sag. To counteract this sag, a cable 
and post are added beneath the beam. The cable is ten-
sioned until the force in the post causes a moment equal 
in magnitude, but opposite in direction, to the moment in 
the beam. Determine the forces in the cable and the post, 
and determine the reactions at A and C.

P6.10. Compute the support reactions and the maximum 
value of w if the allowable tension force in the cable in 
Figure P6.10 is 200 kN.

A B

8 m 4 m

w

4 m 8 m

3 m

P6.10
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P6.11. The cable in Figure P6.11 is capable of carry-
ing a tensile load of 180 kips and the pin supports are 
capable of providing a horizontal reaction of 150 kips.  
Determine the shape of the cable subjected to the load-
ing shown.

A E

20 kips

30 kips 50 kips

B

DC

hC

hB
hD

20ʹ 30ʹ 50ʹ 50ʹ

P6.11

B

C E

D

P

2 m
2 m

2 kN/m

45°
3 m

A

F

4 m 4 m 4 m

P6.12

P6.12. A cable ABCD is pulled at end E by a force P 
(Figure P6.12). The cable is supported at point D by 
a rigid member DF. Compute the force P that produces a 
sag of 2 m at points B and C. The horizontal reaction at 
support F is zero. Compute the vertical reaction at F.

A E

FH
G

B D

C

30ʹ

12ʹ

6 @ 15ʹ = 90ʹ

9 kips 9 kips 9 kips 9 kips

30ʹ

P6.13

P6.13. Compute the support reactions and the maximum 
tension in the cable in Figure P6.13. The sag at midspan 
is 12 ft. Each hanger can be assumed to provide a simple 
support for the suspended beam. Determine the sag at 
points B and D.

P6.14. Determine the location of the 40-kN load such 
that sags at points B and C in Figure P6.14 are 3 m and  
2 m, respectively. Determine the maximum tension in the 
cable and the reactions at supports A and D.

40 kN

A

D

B
x

C

2 m
3 m 2 m

3 m

10 m20 m 10 m

4 m

P6.14
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260  Chapter 6 ■ Cables and Arches

Practical Application

P6.15. The cable-supported roof for a summer theater, 
shown in Figure P6.15, is composed of 24 equally spaced 
cables that span from a tension ring at the center to a com-
pression ring on the perimeter. The tension ring lies 12 ft 
below the compression ring. The roof weighs 25 lb/ft2 
based on the horizontal projection of the roof area. If the 
sag at midspan of each cable is 4 ft, determine the tensile 
force each cable applies to the compression ring. What is 
the required area of each cable if the allowable stress is 
110 kips/in.2? Determine the weight of the tension ring 
required to balance the vertical components of the cable 
forces.

40ʹ 40ʹ 40ʹ

5ʹ

40ʹ 40ʹ 40ʹ

D

A B C E F G

H

I

4ʹ

60ʹ

40ʹ

P6.16. Computer study of a cable-stayed bridge. The 
deck and tower making up the two-span, cable-stayed 
bridge in Figure P6.16 are constructed of reinforced con-
crete. The cross section of the bridge is constant with an 
area of 15 ft2 and a moment of inertia of 19 ft4. The dead 
weight of the girders is 4 kips/ft. In addition the girders 
are to be designed to support a live load of 0.6 kips/ft that 
is to be positioned to maximize the design forces in indi-
vidual members. The vertical cable tower, located at the 
center support, has a cross- sectional area of 24 ft2 and a 
moment of inertia of 128 ft4. Four cables, each with an 
area of 13 in.2 and an effective modulus of elasticity of 
26,000 kips/in.2, are used to support the deck at the third 
points of each 120 ft span. The modulus of elasticity of 
the concrete is 5000 kips/in.2. The cable reaction may be 
assumed to be applied to the underside of the roadway. 
Members have been detailed such that the support at D 
acts as a simple support for both the tower and the roadway 
girders.

(a) Analyze the structure for full live and dead loads 
on both spans, that is, establish the shear, moment, and 
axial load diagrams for the girders, the forces in the ca-
bles, and the maximum deflection of the girders.

(b) With the dead load on both spans and the live load 
on the left span ABCD, determine the shear, moment, and 
axial load diagrams for both spans, the axial force in the 
cables, and the shear, moment, and axial load in the verti-
cal cable tower. Also determine the lateral deflection of 
the cable tower.

15°compression
ring

11

Section 1-1

60ʹ 60ʹ

12ʹ

compression
ring

tension
ring

cable

P6.15

P6.16
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Arches

P6.17. For the parabolic arch in Figure P6.17, plot the 
variation of the thrust T at support A for values of h = 12, 
24, 36, 48, and 60 ft.

60ʹ

hinge h
A

T

C

B

w = 6 kips/ft

60ʹ

P6.17 

P6.18. For the arch and loading in Figure P6.18, compute 
the reactions and determine the height of each point. The 
maximum height permitted at any point along the arch, 
hzmax, is 20 m.

A B

6 @ 10 m = 60 m

hzmax

y3

30 kN

20 kN
50 kN

70 kN
90 kN

y1
y2 y4 y5

P6.18

P6.19. Determine the reactions at supports A and C of the 
three-hinged circular arch.

r = 20 m
= 45°θ

hingeA

C

B

w = 4 kN/m

P6.19

P6.20. For the arch shown in Figure P6.20, the thrust force 
exceeded the abutment’s lateral support capacity, which is 
represented by a roller at C. Load P was removed tem-
porarily and tension rod AC was added. If the maximum 
compression in members AB and BC will be 750 kips, 
what size diameter tension rod is required? (Ignore dead 
load of the arch.) The allowable tensile capacity of the rod 
is 32 ksi. Determine the reactions.

rod

B

P

turnbuckle
A C

30ʹ

80ʹ80ʹ

P6.20

P6.21. The arch shown in Figure P6.21 has a pin sup-
port at A and a roller at C. A tension rod connects A and 
C. Determine the reactions at A and C and the tension 
in rod AC.

h = 45ʹ

rod

25 kips
15 kips

B

turnbuckle

60ʹ

25ʹ

40ʹ

A
C

60ʹ

P6.21
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262  Chapter 6 ■ Cables and Arches

P6.22. For the three-hinged arch shown in Figure P6.22, 
compute the reactions at A and C. Determine the axial 
force, shear, and moment at D.

15 kips

10 kips

A

D

C

35ʹ

20ʹ

50ʹ 25ʹ 25ʹ

P6.22

P6.23. Compute the reactions at supports A and E of the 
three-hinged parabolic arch in Figure P6.23. Next com-
pute the shear, axial load, and moment at points B and D, 
located at the quarter points.

10ʹ

11.25ʹ11.25ʹ
h = 15ʹ

A E

B D
C

w = 1.5 kips/ft

10ʹ

30 kips

10ʹ10ʹ

P6.23

P6.24. The three-hinged parabolic arch in Figure P6.24 
supports 60-kip load at the quarter points. Determine the 
shear, axial load, and moment on sections an infinitesimal 
distance to the left and right of the loads. The equation for 
the arch axis is y = 4hx2/L2.

h = 20ʹ
A E

CB D

60 kips60 kips
25ʹ 25ʹ

50ʹ 50ʹ

P6.24

P6.25. Compute the support reactions for the arch in 
Figure P6.25. (Hint: You will need two moment equa-
tions: Consider the entire free body for one, and a free 
body of the portion of truss to either the left or right of 
the hinge at B.)

A

C

B

10 kN 20 kN 30 kN

18 kN

5 @ 8 m = 40 m

12 m

8 mhinge

P6.25

P6.26. Compute the horizontal reaction at A of the arch 
in Figure P6.26.

A

I H

G

CB D E F

10 kips 10 kips

hinge

40ʹ 40ʹ

30ʹ

20ʹ
Ax

P6.26
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P6.27. (a) Determine the reactions and all bar forces of 
the three-hinged, trussed arch in Figure P6.27 for the fol-
lowing cases: 
Case A: Only the 90-kN force at joint D acts. 
Case B: Both the 90-kN and 60-kN forces at joints D and 
M act. 
(b) Determine the maximum axial force in the arch in 
Case B. 

A

B

C

D

E

F

G

M L K
hinge

J I H

90 kN

60 kN

6 @ 9 m = 54 m

9 m

3 m

6 m

P6.27

P6.28. Establish the funicular arch for the system of loads 
in Figure P6.28, if the maximum allowable compressive 
force in the arch is 85 kips.

A B

6 @ 10ʹ = 60ʹ

24k24k

20k20k
20k

y1y1
y2

y3 y2

P6.28

P6.29. Determine the load P such that all the members in 
the three-hinged arch in Figure P6.29 are in pure compres-
sion. What is the value of y1?

P6.30. If the arch rib ABCDE in Figure P6.30 is to be fu-
nicular for the dead loads shown at the top joints, establish 
the elevation of the lower chord joints at B and D.

4 m 4 m 6 m 3 m

6 m

20 kN

40 kN

D

C

B

A E

P
hinge

y1

3 m

P6.29

P6.31. For the arch rib to be funicular for the dead loads 
shown, establish the elevation of the lower chord joints 
B, C, and E.

A

I H G F

E

B D

C

40 kips 35 kips 30 kips 35 kips 40 kips

4 @ 30ʹ = 120ʹ

50ʹ
h = ? h = ?

hinge

P6.30

A

B

C
D

E

F

GHIJKL

15 kN 30 kN 30 kN 30 kN 30 kN 15 kN

3 @ 8 m 2 @ 6 m

4 m

8 m

P6.31
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264  Chapter 6 ■ Cables and Arches

P6.32. Computer study of a two-hinged arch. The objec-
tive is to establish the difference in response of a 
parabolic arch to (1) uniformly distributed loads 
and (2) a single concentrated load.

 (a) The arch in Figure P6.32 supports a roadway 
consisting of simply supported beams connected to the 
arch by high-strength cables with area A = 2 in.2 and 
E = 26,000 ksi. (Each cable transmits a dead load from 
the beams of 36 kips to the arch.) Determine the reac-
tions, the axial force, shear, and moment at each joint of 

the arch, and the joint displacements. Plot the deflected 
shape. Represent the arch by a series of straight segments 
between joints. The arch has a constant cross section with 
A = 24 in.2, I = 2654 in.4, and E = 29,000 ksi.
 (b) Repeat the analysis of the arch if a single 48-kip 
vertical load acts downward at joint 18. Again, deter-
mine all the forces acting at each joint of the arch, the 
joint displacements, etc., and compare results with those 
in (a). Briefly describe the difference in behavior.

1

1

11

10 @ 36ʹ = 360ʹ

1

1

36 kips 36 kips 36 kips 36 kips 36 kips 36 kips 36 kips 36 kips 36 kips

120ʹ2 10

13141516171819 12

3 9

4 8
5 76

43.2ʹ 43.2ʹ
76.8ʹ 76.8ʹ

100.8ʹ 100.8ʹ
115.2ʹ 115.2ʹ

120ʹ
12ʺ

Section 1-1

20ʺ

10

2 9

3 8

4 7
5 6

20

P6.32

P6.33. Computer study of arch with a continuous floor 
girder. Repeat part (b) in problem P6.33 if a 
continuous girder with A = 102.5 in2 and I = 
40,087 in.4, as shown in Figure P6.33, is pro-
vided to support the floor system. For both the 

girder and the arch, determine all forces acting on the 
arch joints as well as the joint displacements. Discuss 
the results of your study of P6.32 and P6.33 with par-
ticular emphasis on the magnitude of the forces and dis-
placements produced by the 48-kip load. 

1 11

10 @ 36ʹ = 360ʹ

1

1

48 kips continuous girder

120ʹ2 10

13141516171819 12

3 9

4 8
5 76

20

P6.33
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P6.34. To reduce the vertical displacement of the roadway 
floor system of the arch (shown in P6.32, part b) 
produced by the 48-kip load at joint 18, diagonal 
cables of 2 in. in diameter are added as shown in 
Figure P6.34. For this configuration, determine 

the vertical displacement of all the floor system joints. 
Compare the results of this analysis with part b of P6.32 by 
plotting to scale the vertical deflections of all joints along 
the roadway from joints 1 to 11. Properties of the diagonal 
cables are the same as those of the vertical cables.

1 11

48 kips

2 10

13141516171819 12

3 9

4 8
5 76

20

P6.34
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AT&T Stadium in Arlington, Texas
Spanning 1290 ft between true pin connections on concrete slurry wall box foundations, 
18-ft wide, 176-ft long, and 71-ft deep, the twin steel truss arches serve as a backbone for 
the 80,000-seat AT&T Stadium. The arches soar though the interior space, supporting a 
retractable roof nearly 300-ft above the field.

Courtesy of Aerial Photography, Inc.
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267

7

When a structure is loaded, its stressed elements deform. In a truss, bars in ten-
sion elongate and bars in compression shorten. Beams bend and cables stretch. 
As these deformations occur, the structure changes shape and points on the 
structure displace. Although these deflections are normally small, as part of the 
total design, the engineer must verify that these deflections are within the limits 
specified by the governing design code to ensure that the structure is service-
able. For example, large deflections of beams can lead to cracking of nonstruc-
tural elements such as plaster ceilings, tile walls, or brittle pipes. The lateral 
displacement of buildings produced by wind forces must be limited to prevent 
cracking of walls and windows. Since the magnitude of deflections is also a 
measure of a member’s stiffness, limiting deflections also ensures that excessive 
vibrations of building floors and bridge decks are not created by moving loads.

Deflection computations are also an integral part of a number of ana-
lytical procedures for analyzing indeterminate structures, computing buckling 
loads, and determining the natural periods of vibrating members.

In this chapter we consider several methods of computing deflections 
and slopes at points along the axis of beams and frames. These methods are 
based on the differential equation of the elastic curve of a beam. This equation 
relates curvature at a point along the beam’s longitudinal axis to the bending 
moment at that point and the properties of the cross section and the material.

C H A P T E R

Deflections of Beams  
and Frames
Chapter Objectives

 ● Introduce several methods to compute deflections and slopes of elastic beams and frames.

 ● Learn the double integration method based on the basic differential equation of the elastic curve, which 
relates the curvature to M/EI along the member’s longitudinal axis.

 ● Learn the moment-area method based on the M/EI diagram between two points along the member’s 
axis. It is a geometric method requiring the deflected shape to be properly drawn.

 ● Learn the elastic load (i.e., M/EI ) and the more powerful conjugate beam methods to compute slope and 
deflection at any point along the member axis.

Introduction
7.1
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268  Chapter 7 ■ Deflections of Beams and Frames

The double integration method is a procedure to establish the equations for 
slope and deflection at points along the longitudinal axis (elastic curve) of 
a loaded beam. The equations are derived by integrating the  differential 
equation of the elastic curve twice, hence the name double integration. The 
method assumes that all deformations are produced by moment. Shear defor-
mations, which are typically less than 1 percent of the flexural deformations 
in beams of normal proportions, are not usually included. But if beams are 
deep, have thin webs, or are constructed of a material with a low modulus of 
rigidity (plywood, for example), the magnitude of the shear deformations can 
be significant and should be investigated.

To understand the principles on which the double integration method is 
based, we first review the geometry of curves. Next, we derive the differen-
tial equation of the elastic curve—the equation that relates the curvature at a 
point on the elastic curve to the moment and the flexural stiffness of the cross 
section. In the final step we integrate the differential equation of the elastic 
curve twice and then evaluate the constants of integration by considering 
the boundary conditions imposed by the supports. The first integration pro-
duces the equation for slope; the second integration establishes the equation 
for deflection. Although the method is not used extensively in practice since 
evaluating the constants of integration is time-consuming for many types of 
beams, we begin our study of deflections with this method because several 
other important procedures for computing deflections in beams and frames 
are based on the differential equation of the elastic curve.

Geometry of Shallow Curves

To establish the geometric relationships required to derive the differential 
equation of the elastic curve, we will consider the deformations of the cantile-
ver beam in Figure 7.1a. The deflected shape is represented in Figure 7.1b by 
the displaced position of the longitudinal axis (also called the elastic curve). 
As reference axes, we establish an x-y coordinate system whose origin is lo-
cated at the fixed end. For clarity, vertical distances in this figure are greatly 
exaggerated. Slopes, for example, are typically very small—on the order of a 
few tenths of a degree. If we were to show the deflected shape to scale, it would 
appear as a straight line.

To establish the geometry of a curved element, we will consider an 
infinitesimal element of length ds located a distance x from the fixed end. 
As shown in Figure 7.1c, we denote the radius of the curved segment by ρ. 
At points A and B we draw tangent lines to the curve. The infinitesimal angle 
between these tangents is denoted by dθ. Since the tangents to the curve are 
perpendicular to the radii at points A and B, it follows that the angle between 
the radii is also dθ. The slope of the curve at point A equals

  dy __ dx   = tan θ

Double Integration Method
7.2

(a)
P

(b)

y

x

x

A ds B

ds

dx

(c)

line tangent at B

line tangent at A

A

B
d

d

o

ρ

θ

θ θ

Figure 7.1 
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7.2 ■ Double Integration Method  269

If the angles are small (tan θ ≈ θ rad), the slope can be written

   dy __ dx   = θ (7.1)

From the geometry of the triangular segment ABo in Figure 7.1c, we can 
write

 ρ dθ = ds (7.2)

Dividing each side of the equation above by ds and rearranging terms give

 ψ =   dθ __ ds   =   1 __ ρ   (7.3)

where dθ/ds, representing the change in slope per unit length of distance 
along the curve, is called the curvature and denoted by the symbol ψ. Since 
slopes are small in actual beams, ds ≈ dx, and we can express the curvature 
in Equation 7.3 as

 ψ =   dθ __ dx   =   1 __ ρ   (7.4)

Differentiating both sides of Equation 7.1 with respect to x, we can 
express the curvature dθ/dx in Equation 7.4 in terms of rectangular coordi-
nates as

   dθ __ dx   =    d   2  y ___ 
d  x   2 

   (7.5)

Differential Equation of the Elastic Curve

To express the curvature of a beam at a particular point in terms of the mo-
ment acting at that point and the properties of the cross section, we will 
consider the flexural deformations of the small beam segment of length dx, 
shown with darker shading in Figure 7.2a. The two vertical lines represent-
ing the sides of the element are perpendicular to the longitudinal axis of the 
unloaded beam. As load is applied, moment is created, and the beam bends 
(Figure 7.2b); the element deforms into a trapezoid as the sides of the seg-
ment, which remain straight, rotate about a horizontal axis (the neutral axis) 
passing through the centroid of the section (Figure 7.2c).

In Figure 7.2d the deformed element is superimposed on the original 
unstressed element of length dx. The left sides are aligned so that the de-
formations are shown on the right. As shown in this figure, the longitudinal 
fibers of the segment located above the neutral axis shorten because they 
are stressed in compression. Below the neutral axis the longitudinal fibers, 
stressed in tension, lengthen. Since the change in length of the longitudinal 
fibers (flexural deformations) is zero at the neutral axis (N.A.), the strains 
and stresses at that level equal zero. The variation of longitudinal strain with 
depth is shown in Figure 7.2e. Since the strain is equal to the longitudinal 
deformations divided by the original length dx, it also varies linearly with 
distance from the neutral axis.
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270  Chapter 7 ■ Deflections of Beams and Frames

Considering triangle DFE in Figure 7.2d, we can express the change in 
length of the top fiber dl in terms of dθ and the distance c from the neutral 
axis to the top fiber as 

 dl = dθ c (7.6)

By definition, the strain ϵ at the top surface can be expressed as 

 ϵ =    dl ___ dx    (7.7)

Using Equation 7.6 to eliminate dl in Equation 7.7 gives

 ϵ =    dθ ___ dx    c (7.8)

Using Equation 7.5 to express the curvature dθ/dx in rectangular coordinates, 
we can write Equation 7.8 as

     d   2  y ___ 
d  x   2 

   =   ϵ __ c   (7.9)

dx

x

(a)

d

N.A.

(b)

M

θ
ρ

N.A.

(c)

centroid

d c

F

D

C

E

A

B

d

dl

dx

M

(d)

ρ

θ

θ

(e)

cψ

ϵ

( f )

σ

Figure 7.2: Flexural deformations of segment dx: (a) unloaded beam; (b) loaded beam and 
moment curve; (c) cross section of beam; (d ) flexural deformations of the small beam seg-
ment; (e) longitudinal strain; ( f ) flexural stresses.
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7.2 ■ Double Integration Method  271

If behavior is elastic, the flexural stress, σ, can be related to the strain ϵ 
at the top fiber by Hooke’s law, which states that

σ = Eϵ

where E = the modulus of elasticity

Solving for ϵ gives

 ϵ =    σ __ E    (7.10)

Using Equation 7.10 to eliminate ϵ in Equation 7.9 produces

     d   2  y ___ 
d  x   2 

   =   σ __ Ec   (7.11)

For elastic behavior the relationship between the flexural stress at the top 
fiber and the moment acting on the cross section is given by

 σ =    Mc ___ I    (5.1)

Substituting the value of σ given by Equation 5.1 into Equation 7.11 produces 
the basic differential equation of the elastic curve

     d   2  y ___ 
d  x   2 

   =   M __ EI   (7.12)

In Examples 7.1 and 7.2 we use Equation 7.12 to establish the equa-
tions for both the slope and the deflection of the elastic curve of a beam. 
This operation is carried out by expressing the bending moment in terms 
of the applied load and distance x along the beam’s axis, substituting the 
equation for moment in Equation 7.12, and integrating twice. The method is 
simplest to apply when the loading and support conditions permit the mo-
ment to be expressed by a single equation that is valid over the entire length 
of the member—the case for Examples 7.1 and 7.2. For beams of constant 
cross section, E and I are constant along the length of the member. If E or 
I varies, it must also be expressed as a function of x in order to carry out 
the integration of Equation 7.12. If the loads or the cross section varies in a 
complex manner along the axis of the member, the equations for moment or 
for I may be difficult to integrate. For this situation approximate procedures 
can be used to facilitate the solution (see, for example, the finite summation 
in Example 8.16).
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272  Chapter 7 ■ Deflections of Beams and Frames

E X A M P L E  7 . 1 Using the double integration method, establish the equations for slope and 
deflection for the uniformly loaded beam in Figure 7.3. Evaluate the de-
flection at midspan and the slope at support A. EI is constant.

(a)

A B
o

L
wL
2

y

+dx
+dx

+dy–dy

w

wL
2

x

A

w

x

R = wx

(b)

wL
2

M = – (wx)wLx
2

x
2

x
2

Figure 7.3: (a) Beam with deflected shape;  
(b) free-body diagram.

Solution
Establish a rectangular coordinate system with the origin at support A. 
Since the slope increases as x increases (the slope is negative at A, zero 
at midspan, and positive at B), the curvature is positive. If we consider 
a free body of the beam cut by a vertical section located a distance x 
from the origin at A (Figure 7.3b), we can write the internal moment 
at the section as

M =   wLx ____ 2   −   w  x   2  ___ 2  
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Substituting M into Equation 7.12 gives

 EI    d   2  y ___ 
d  x   2 

   =   wLx ____ 2   −   w  x   2  ___ 2   (1)

Integrating twice with respect to x yields

 EI   dy __ dx   =   wL  x   2  ____ 4   −   w  x   3  ___ 6   +  C  1   (2)

 EIy =   wL  x   3  ____ 12   −   w  x   4  ___ 24   +  C  1   x +  C  2   (3)

To evaluate the constants of integration C1 and C2, we use the bound-
ary conditions at supports A and B. At A, x = 0 and y = 0. Substituting 
these values into Equation 3, we find that C2 = 0. At B, x = L and y = 0. 
Substituting these values into Equation 3 and solving for C1 give

0 =   w  L   4  ___ 12   −   w  L   4  ___ 24   +  C  1   L

 C  1   = −   w  L   3  ___ 24  

Substituting C1 and C2 into Equations 2 and 3 and dividing both sides by 
EI yield

 θ =   dy __ dx   =   wL  x   2  ____ 4EI   −   w  x   3  ___ 6EI   −   w  L   3  ____ 24EI   (4)

 y =   wL  x   3  ____ 12EI   −   w  x   4  ____ 24EI   −   w  L   3  x ____ 24EI   (5)

Compute the deflection at midspan by substituting x = L /2 into 
Equation 5.

y =   5w  L   4  _____ 384EI   Ans.

Compute the slope at A by substituting x = 0 into Equation 4.

 θ  A   =   dy __ dx   = −   w  L   3  ____ 24EI   Ans.
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E X A M P L E  7 . 2 For the cantilever beam in Figure 7.4a, establish the equations for slope 
and deflection by the double integration method. Also determine the mag-
nitude of the slope θB and deflection ΔB at the tip of the cantilever. EI is 
constant.

Solution
Establish a rectangular coordinate system with the origin at the fixed support 
A. Positive directions for the axes are up (y axis) and to the right (x axis). 
Since the slope is negative and becomes steeper in the positive x direction, the 
curvature is negative. Passing a section through the beam a distance x from 
the origin and considering a free body to the right of the cut (Figure 7.4b), 
we can express the bending moment, shown as clockwise to correspond with 
positive internal bending moment sign convention, at the cut as

M = −P (L − x) 

Substituting M into Equation 7.12 gives

   d   2  y ___ 
d  x   2 

   =   M __ EI   =   −P (L − x)  _______ EI  

Integrating twice to establish the equations for slope and deflection yields

   dy __ dx   =   −PLx ____ EI   +   P  x   2  ___ 2EI   +  C  1   (1)

 y =   −PL  x   2  _____ 2EI   +   P  x   3  ___ 6EI   +  C  1   x +  C  2   (2)

To evaluate the constants of integration C1 and C2 in Equations 1 and 2, we 
use the boundary conditions imposed by the fixed support at A:

1. When x = 0, y = 0; then from Equation 2, C2 = 0.
2. When x = 0, dy/dx = 0; then from Equation 1, C1 = 0.

The final equations are

 θ =   dy __ dx   =   −PLx ____ EI   +   P  x   2  ___ 2EI   (3)

 y =   −PL  x   2  _____ 2EI   +   P  x   3  ___ 6EI   (4)

To establish θB and ΔB, we substitute x = L in Equations 3 and 4 to compute

 θ  B   =   −P  L   2  ____ 2EI   Ans.

 Δ  B   =   −P  L   3  ____ 3EI   Ans.

B

B

o
x

 A

L

y P

x

L – x

M

(a)

(b)

B

+dx
–dy Δ

B

P
L – x

z

θ

Figure 7.4: (a) Beam with deflected shape;  
(b) free-body diagram.
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Moment-Area Method
7.3

As we observed in the double integration method, based on Equation 7.12, 
the slope and deflection of points along the elastic curve of a beam or a frame 
are functions of the bending moment M, moment of inertia I, and modulus 
of elasticity E. In the moment-area method we will establish a procedure 
that utilizes the area of the moment diagrams [actually, the M/EI diagrams] 
to evaluate the slope or deflection at selected points along the axis of a beam 
or frame.

This method, which requires an accurate sketch of the deflected shape, 
employs two theorems. One theorem is used to calculate a change in slope 
between two points on the elastic curve. The other theorem is used to com-
pute the vertical distance (called a tangential deviation) be tween a point on 
the elastic curve and a line tangent to the elastic curve at a second point. 
These quantities are illustrated in Figure 7.5. At points A and B, tangent lines, 
which make a slope of θA and θB with the horizontal axis, are drawn to the 
elastic curve. For the coordinate system shown, the slope at A is negative 
and the slope at B is positive. The change in slope between points A and B is 
denoted by ΔθAB. The tangential deviation at point B—the vertical distance 
between point B on the elastic curve and point C on the line drawn tangent 
to the elastic curve at A—is denoted as tBA. We will use two subscripts to 
label all tangential deviations. The first subscript indicates the location of 
the tangential deviation; the second subscript specifies the point at which the 
tangent line is drawn. As you can see in Figure 7.5, tBA is not the deflection 
of point B (υB is the deflection). With some guidance you will quickly learn 
to use tangential deviations and changes in slope to compute values of slope 
and deflection at any desired point on the elastic curve. In the next section 
we develop the two moment-area theorems and illustrate their application to 
a variety of beams and frames.

Derivation of the Moment-Area Theorems

Figure 7.6b shows a portion of the elastic curve of a loaded beam. At points 
A and B tangent lines are drawn to the curve. The total angle between the 
two tangents is denoted by ΔθAB. To express ΔθAB in terms of the properties 
of the cross section and the moment produced by the applied loads, we will 
consider the increment of angle change dθ that occurs over the length ds of the 
infinitesimal segment located a distance x to the left of point B. Previously, we 
established that the curvature at a point on the elastic curve can be expressed as

    dθ __ dx   =   M __ EI   (7.12)

where E is the modulus of elasticity and I is the moment of inertia. Multiply-
ing both sides of Equation 7.12 by dx gives

 dθ =   M __ EI   dx (7.13)

x

A B

BBAt
A ABΔ

undeflected
beam

tangent
at B

tangent
at A

elastic
curve

B

C

y

θ θ θ

ν

Figure 7.5: Change in slope and tangential 
deviation between points A and B.
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276  Chapter 7 ■ Deflections of Beams and Frames

To establish the total angle change ΔθAB, we must sum up the dθ increments for 
all segments of length ds between points A and B by integration.

 ΔθAB =   ∫ 
A
  
 B
     dθ =   ∫ 

A
  
 B
        M dx _____ EI    (7.14)

We can evaluate the quantity M dx/EI in the integral of Equation 7.14 graphi-
cally by dividing the ordinates of the moment curve by EI to  produce an M/
EI curve (Figure 7.6c). If EI is constant along the beam’s axis (most common 
case), the M/EI curve has the same shape as the moment diagram. Recogniz-
ing that the quantity M dx/EI represents an infinitesimal area of height M/EI 
and length dx (see the crosshatched area in Figure 7.6c), we can interpret the 
integral in Equation 7.14 as representing the area under the M/EI diagram 
between points A and B. This relationship constitutes the first moment-area 
principle, which can be stated as

The change in slope between any two points on a smooth continuous 
elastic curve is equal to the area under the M∕EI curve between these 
points.

You will notice that the first moment-area theorem applies only to the case 
where the elastic curve is continuous and smooth between two points. If a 
hinge occurs between two points, the area under the M/EI diagram will not 
account for the difference in slope that can exist on either side of the hinge. 
Therefore, we must determine the slopes at a hinge by working with the elas-
tic curve on either side.

To establish the second moment-area theorem, which enables us to evalu-
ate a tangential deviation, we must sum the infinitesimal increments of length 
dt that make up the total tangential deviation tBA (Figure 7.6b). The magnitude 
of a typical increment dt, when contributing to the tangential deviation tBA by the 

Moment curve

(c)

(b)

tangent at A

curve

tangent at B
elastic
curve

EI = constant
A

MA MB

ABΔ

1 2

d

d tBA

MA

A B

EI
MB
EIM

EI M
EI

dtdx

x

x

dx

ds

B

w

(a)

ρ

θ
θ

θ

Figure 7.6: (a) Beam and moment curve; 
(b) elastic curve between points A and B; 
(c) M/EI curve between points A and B.
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curvature of a typical segment ds between points 1 and 2 on the elastic curve, 
can be expressed in terms of the angle between the lines tangent to the ends of 
the segment and the distance x between the segment and point B as

 dt = dθ x (7.15)

Expressing dθ in Equation 7.15 by Equation 7.13, we can write

 dt =    M dx _____ EI    x (7.16)

To evaluate tBA, we must sum all increments of dt by integrating the contribu-
tion of all the infinitesimal segments between points A and B.

 tBA =   ∫ 
A
  
 B
     dt =   ∫ 

A
  
 B
        M _____ EI    dx (7.17)

Remembering that the quantity M dx/EI represents an infinitesimal area un-
der the M/EI diagram and that x is the distance from that area to point B, we 
can interpret the integral in Equation 7.17 as the moment about point B of the 
area under the M/EI diagram between points A and B. This result constitutes 
the second moment-area theorem, which can be stated as follows:

The tangential deviation at point B on a smooth continuous elastic 
curve from the tangent line drawn to the elastic curve at a second 
point A is equal to the moment about B of the area under the M/EI 
curve between the two points.

Although it is possible to evaluate the integral in Equation 7.17 by ex-
pressing the moment M as a function of x and integrating, it is faster and 
simpler to carry out the computation graphically. In this procedure we divide 
the area of the M/EI diagram into simple geometric shapes—rectangles, tri-
angles, parabolas, and so forth. Then the moment of each area is evaluated by 
multiplying each area by the distance from its centroid to the point at which 
the tangential deviation is to be computed. For this computation, we can use 
Table A.1 in the Appendix, which tabulates properties of areas you will fre-
quently encounter.

Application of the Moment-Area Theorems

The first step in computing the slope or deflection of a point on the elastic 
curve of a member is to draw an accurate sketch of the deflected shape. As 
discussed in Section 5.6, the curvature of the elastic curve must be con-
sistent with the moment curve, and the ends of members must satisfy the 
constraints imposed by the supports. Once you have constructed a sketch 
of the deflected shape, the next step is to find a point on the elastic curve 
where the slope of a tangent to the curve is known. After this reference 
tangent is established, the slope or deflection at any other point on the 
continuous elastic curve can easily be established by using the moment-
area theorems.
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278  Chapter 7 ■ Deflections of Beams and Frames

The strategy for computing slopes and deflections by the moment-area 
method will depend on how a structure is supported and loaded. Most continu-
ous members will fall into one of the following three categories:

1. Cantilevers
2. Structures with a vertical axis of symmetry that are loaded 

symmetrically
3. Structures that contain a member whose ends do not displace in the 

direction normal to the original position of the member’s longitudinal axis

If a member is not continuous because of an internal hinge, the de flec tion 
at the hinge must be computed initially to establish the position of the endpoints 
of the member. This procedure is illustrated in Example 7.10. In the next sec-
tions we discuss the procedure for computing slopes and deflections for mem-
bers in each of the foregoing categories.

Case 1.  In a cantilever, a tangent line of known slope can be drawn to 
the elastic curve at the fixed support. For example, in Figure 7.7a the line 
tangent to the elastic curve at the fixed support is horizontal (i.e., the slope 
of the elastic curve at A is zero because the fixed support prevents the end 
of the member from rotating). The slope at a second point B on the elas-
tic curve can then be computed by adding algebraically, to the slope at A, 
the change in slope ΔθAB between the two points. This relationship can be 
stated as

 θB = θA + ΔθAB (7.18)

where θA is the slope at the fixed end (that is, θA = 0) and ΔθAB is equal to the 
area under the M/EI diagram between points A and B.
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B = 0
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Figure 7.7: Position of tangent line: 
(a) cantilever, point of tangency at fixed sup-
port; (b) and (c) symmetric members with 
symmetric loading, point of tangency at inter-
section of axis of symmetry and elastic curve; 
and (d) and (e) point of tangency at left end 
of member AB.
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Since the reference tangent is horizontal, tangential deviations—the ver-
tical distance between the tangent line and the elastic curve—are, in fact, 
displacements. Examples 7.3 to 7.5 cover the computation of slopes and 
deflections in cantilevers. Example 7.4 illustrates how to modify an M/EI 
curve for a member whose moment of inertia varies. In Example 7.5 the mo-
ment curves produced by both a uniform and a concentrated load are plotted 
separately in order to produce moment curves with a known geometry (see 
Appendix Table A.1 for the properties of these areas).

Case 2.  Figures 7.7b and c show examples of symmetric structures loaded 
symmetrically with respect to the vertical axis of symmetry at the center of 
the structure. Because of symmetry the slope of the elastic curve is zero at the 
point where the axis of symmetry intersects the elastic curve. At this point the 
tangent to the elastic curve is horizontal. For the beams in Figure 7.7b and c 
we conclude, based on the first moment-area principle, that the slope at any 
point on the elastic curve equals the area under the M/EI curve between that 
point and the axis of symmetry.

The computation of deflections for points along the axis of the beam in 
Figure 7.7c, which has an even number of spans, is similar to that of the can-
tilever in Figure 7.7a. At the point of tangency (point B), both the deflection 
and slope of the elastic curve equal zero. Since the tangent to the elastic curve 
is horizontal, deflections at any other point are equal to tangential deviations 
from the tangent line drawn to the elastic curve at support B.

When a symmetric structure consists of an odd number of spans (one, 
three, and so on), the foregoing procedure must be modified slightly. For 
example, in Figure 7.7b we observe that the tangent to the elastic curve is 
horizontal at the axis of symmetry. Computation of slopes will again be ref-
erenced from the point of tangency at C. However, the centerline of the beam 
has displaced upward a distance υC; therefore, tangential deviations from the 
reference tangents are usually not deflections. We can compute υC by noting 
that the vertical distance between the tangent line and the elastic curve at 
either support B or C is a tangential deviation that equals υC. For example, in  
Figure 7.7b υC equals tBC. After υC is computed, the deflection of any other 
point that lies above the original position of the unloaded member equals 
υC minus the tangential deviation of the point from the reference tangent. 
If a point lies below the undeflected position of the beam (e.g., the tips  
of the cantilever at A or E), the deflection is equal to the tangential deviation 
of the point minus υC. Examples 7.6 and 7.7 illustrate the computation of 
deflections in a symmetric structure.

Case 3.  The structure is not symmetric but contains a member whose 
ends do not displace in a direction normal to the member’s longitudinal axis. 
Examples of this case are shown in Figure 7.7d and e. Since the frame in 
Figure 7.7d is not symmetric and the beam in Figure 7.7e is not symmetri-
cally loaded, the point at which a tangent to the elastic curve is horizontal is 
not initially known. Therefore, we must use a sloping tangent line as a refer-
ence for computing both slopes and deflections at points along the elastic 
curve. For this case we establish the slope of the elastic curve at either end of 
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the member. At one end of the member, we draw a tangent to the curve and  
compute the tangential deviation at the opposite end. For example, in either 
Figure 7.7d or e, because deflections are small the slope of the tangent to the 
elastic curve at A can be written as

 tan θA =    tBA ___ L    (7.19)

Since tan θA ≈ θA in radians, we can write Equation 7.19 as 

θA =    tBA ___ L   

At a second point C, the slope would equal

θC = θA + ΔθAC

whereΔθAC equals the area under the M/EI curve between points A and C.
To compute the displacements of a point C located a distance x to the 

right of support A (Figure 7.7e), we first compute the vertical distance CCʹ 
between the initial position of the longitudinal axis and the reference tangent. 
Since θA is small, we can write

CCʹ = θA (x)

The difference between CCʹ and the tangential deviation tCA equals the 
deflection υC.

υC = CCʹ − tCA

Examples 7.8 to 7.12 illustrate the procedure to compute slopes and deflec-
tions in members with inclined reference tangents.

If the M/EI curve between two points on the elastic curve contains 
both positive and negative areas, the net angle change in slope between 
those points equals the algebraic sum of the areas. If an accurate sketch 
of the deflected shape is drawn, the direction of both the angle changes 
and the deflections are generally apparent, and the student does not have 
to be concerned with establishing a formal sign convention to establish 
if a slope or deflection increases or decreases. Where the moment is 
positive (Figure 7.8a), the member bends concave upward, and a tan-
gent drawn to either end of the elastic curve will lie below the curve. 
In other words, we can interpret a positive value of tangential devia-
tion as an indication that we move upward from the tangent line to the 
elastic curve. Conversely, if the tangential deviation is associated with a 
negative area under the M/EI curve, the tangent line lies above the elastic 
curve (Figure 7.8b), and we move downward vertically from the tangent 
line to reach the elastic curve.

+M
+M

–M
–M

A
B

A
B

tBA

tBA

tangent at A

tangent at A

(a)

(b)

Figure 7.8: Position of reference tangent: 
(a) positive moment; (b) negative moment.
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Compute the slope θB and the deflection υB at the tip of the cantilever beam 
in Figure 7.9a. EI is constant.

Solution
Draw the moment curve and divide all ordinates by EI (Figure 7.9b).

Compute θB by adding to the slope at A the change in slope ΔθAB 
between points A and B. Since the fixed support prevents rotation, θA = 0.

 θB = θA + ΔθAB = ΔθAB (1)

By the first moment-area theorem, ΔθAB equals the area under the triangu-
lar M/EI curve between points A and B.

 ΔθAB =   1 __ 2   (L)  (  −PL ____ EI  )  =   −PL2
 ____ 2EI   (2)

Substituting Equation 2 into Equation 1 gives

 θB = −   PL2
 ____ 2EI   Ans.

Since the tangent line at B slopes downward to the right, its slope is nega-
tive. In this case the negative ordinate of the M/EI curve gave the correct 
sign. In most problems the direction of the slope is evident from the sketch 
of the deflected shape.

Compute the deflection υB at the tip of the cantilever using the second 
moment-area theorem. The black dot in the M/EI curve denotes the cen-
troid of the area.

υB = tBA =  moment of triangular area of  
M/EI diagram about point B

υB =   1 __ 2   L  (  −PL ____ EI  )    2L __ 3   = −   PL3
 ____ 3EI    (minus sign indicates that the tangent  

line lies above elastic curve)   Ans.

E X A M P L E  7 . 3

= 0
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A A

B

= 0A

= tBAB
M = PL

(a) (b)

– PL
EI

A B
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3
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M
EI curve

υ

θ

θ
υ

Figure 7.9: (a) Beam; (b) M/EI curve.
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E X A M P L E  7 . 4 Beam with a Variable Moment of Inertia
Compute the deflection of point C at the tip of the cantilever beam 
in Figure 7.10 if E = 29,000 kips/in.2, IAB = 2I, and IBC = I, where  
I = 400 in.4.

Solution
To produce the M/EI curve, the ordinates of the moment curve are divided 
by the respective moments of inertia. Since IAB is twice as large as IBC, the 
ordinates of the M/EI curve between A and B will be one-half the size of 
those between B and C. Since the deflection at C, denoted by υC, equals tCA, 
we compute the moment of the area of the M/EI diagram about point C. For 
this computation, we divide the M/EI diagram into two rectangular areas.

υC = tCA =    100 ____ 2EI    (6) (9) +    100 ____ EI    (6) (3) =    4500 _____ EI   

υC =    4500 (1728) ___________ 29,000 (400)    = 0.67 in. Ans.

where the constant 1728 converts cubic feet to cubic inches.

A C
tCA = c

Cʹ

M = 100 kip • ft

x
M curve

diagram

100 kip • ft

B I2I

(a)

(b)

(c)

50
EI

6ʹ 6ʹ

3ʹ
9ʹ

M
EI

100
EI

υ

Figure 7.10: (a) Deflected shape; (b) mo-
ment curve; (c) M/EI curve divided into two 
rectangular areas.
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Use of Moment Curve by “Parts”
Compute the slope of the elastic curve at B and C and the deflection at C 
for the cantilever beam in Figure 7.11a; EI is constant.

Solution
To produce simple geometric shapes in which the location of the centroid 
is known, the moment curves produced by the concentrated load P and the 
uniform load w are plotted separately and divided by EI in Figure 7.11b 
and c. Appendix Table A.1 provides equations for evaluating the areas of 
common geometric shapes and the position of their  centroids.

Compute the slope at C where ΔθAC is given by the sum of the areas 
under the M/EI diagrams in Figure 7.11b and c; θA = 0 (Figure 7.11d).

 θ  C   =  θ  A   + Δ  θ  AC  

= 0 +   1 __ 2   (6)  (  −48 ____ EI  )  +   1 __ 3    (12)  (  −72 ___ EI  ) 

 θ  C   = −   432 ____ EI   rad Ans.

Compute the slope at B. The area between A and B in Figure 7.11c 
is computed by deducting the parabolic area between B and C in 
Fig ure 7.11c from the total area between A and C. Since the slope at B is 
smaller than the slope at C, the area between B and C will be treated as 
a positive quantity to reduce the negative slope at C.

 θ  B   =  θ  C   + Δ  θ  BC  

= −   432 ____ EI   +   1 __ 3   (6)  (  18 ___ EI  ) 

 θ  B   = −   396 ____ EI   rad Ans.

Compute ΔC, the deflection at C. The deflection at C equals the tan gen-
tial deviation of C from the tangent to the elastic curve at A (Figure 7.11d ).

ΔC = tCA =  moments of areas under M/EI curves between  
A and C in Figure 7.11b and c

=   1 __ 2   (6)  (  −48 ____ EI  )  (6 + 4)  +   1 __ 3   (12)  (  −72 ____ EI  )  (9) 

 Δ  c   =    −4032 _____ EI   Ans.

E X A M P L E  7 . 5

A B
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w = 1 kip/ft

C

(a)

(b)

C
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Figure 7.11: Moment curve by “parts”: 
(a) beam; (b) M/EI curve associated with P; 
(c) M/EI curve associated with uniform load 
w; (d) deflected shape.
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E X A M P L E  7 . 6 Analysis of a Symmetric Beam
For the beam in Figure 7.12a, compute the slope at B and the deflections 
at midspan and at point A. Also EI is constant.

Solution
Because both the beam and its loading are symmetric with respect 
to the vertical axis of symmetry at midspan, the slope of the elastic 
curve is zero at midspan and the tangent line at that point is hori-
zontal. Since no bending moments develop in the cantilevers (they 
are un loaded), the elastic curve is a straight line between points A 
and B and points D and E. See Appendix for geometric properties 
of a parabolic area.

Compute θB.

 θ  B   =  θ  C   + Δ θ  CB  

= 0 +   2 __ 3   (  L __ 2  )  (  w  L   2  ___ 8EI  ) 

=   w  L   3  ____ 24EI   Ans.

Compute υC. Since the tangent at C is horizontal, υC equals tBC. Using 
the second moment-area theorem, we compute the moment of the para-
bolic area between B and C about B.

υC = tBC =    2 __ 3       (  L __ 2  )    (  wL2
 ____ 8EI  )    (  5L ___ 16  )   =    5wL4

 ______ 384EI    Ans.

Compute υA. Since the cantilever AB is straight,

υA = θB      L __ 3    =    wL3
 ____ 24EI       

L ___ 3    =    wL4
 ______ 72EI    Ans.

where θB is evaluated in the first computation.

 A EB

axis of symmetry

C
w

D

(a)

L
2

L
2

L
3

L
3

(b)

wL2

8EI
5L
16x =

M
EI

B
B

A

C

(c)

straight

tangent at C

straight
A

B C
tBC υ

υ
θ

θ

Figure 7.12: (a) Symmetric beam; (b) M/EI 
curve; (c) geometry of the deflected shape.
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7.3 ■ Moment-Area Method  285

The beam in Figure 7.13a supports a concentrated load P at midspan (point 
C). Compute the deflections at points B and C. Also compute the slope at 
A. EI is constant.

Solution
Compute θA. Since the structure is symmetrically loaded, the slope of 
the line tangent to the elastic curve at midspan is zero; that is, θC = 0 
(Figure 7.13c).

 θ  A   =  θ  C   + Δ θ  AC  

where ΔθAC is equal to the area under M/EI curve between A and C.

 θ  A   = 0 +   1 __ 2   (  L __ 2  )  (  PL ___ 4EI  )  =   P  L   2  ____ 16EI   rad      Ans.

Compute υC, the deflection at midspan. Since the tangent at C is hori-
zontal, υC = tAC, where tAC equals the moment about A of the triangular 
area under the M/EI curve between A and C.

 υC =   1 __ 2   (  L __ 2  )  (  PL ___ 4EI  )  (  2 __ 3     L __ 2  )  =   P  L   3  ____ 48EI   (1)

Compute υB, the deflection at the quarter point. As shown in 
Figure 7.13c,

 υB + tBC = υC =   P  L   3  ____ 48EI   (2)

where tBC is the moment about B of the area under the M/EI curve between 
B and C. For convenience, we divide this area into a triangle and a rect-
angle. See the shaded area in Figure 7.13b.

 t  BC   =   1 __ 2   (  L __ 4  )  (  PL ___ 8EI  )  (  L __ 6  )  +   L __ 4   (  PL ___ 8EI  )  (  L __ 8  )  =   5P  L   3  _____ 768EI  

Substituting tBC into Equation 2, we compute υB.

υB =   11P  L   3  ____ 768EI   Ans.

E X A M P L E  7 . 7
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Figure 7.13: (a) Beam details; (b) M/EI 
curve; (c) deflected shape.
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E X A M P L E  7 . 8 For the beam in Figure 7.14a, compute the slope of the elastic curve at points 
A and C. Also determine the deflection at A. Assume rocker at C equivalent 
to a roller.

Solution
Since the moment curve is negative at all sections along the axis of the 
beam, it is bent concave downward (see the dashed line in Figure 7.14c). 
To compute θC, we draw a tangent to the elastic curve at point C and 
compute tBC.

 θ  C   =    t  BC   ___ 18   =   9720 ____ EI   (  1 ___ 18  )  = −   540 ____ EI   Ans.

where  tBC = areaBC ·    ̄  x    =    1 __ 2    (18)   (−   180 ____ EI  )     (  18 ___ 3  )   = −    9720 _____ EI   

(Since the tangent line slopes downward to the right, the slope θC is negative.)
Compute θA.

 θ  A   =  θ  C   + Δ θ  AC  

where ΔθAC is the area under the M/EI curve between A and C. Since the 
elastic curve is concave downward between points A and C, the slope at A 
must be opposite in sense to the slope at C; therefore, ΔθAC must be treated 
as a positive quantity.

 θ  A   = −   540 ____ EI   +   1 __ 2   (24)  (  180 ____ EI  )  =   1620 ____ EI   Ans.

Compute δA.

 δ  A   =  t  AC   − Y =   8640 ____ EI   Ans.

 t  AC   =  area  AC   ⋅    ̄  x    =   1 __ 2   (24)  (  180 ___ EI  )  (  6 + 24 ____ 3  )  =   21,600 _____ EI  

where    ̄  x    is computed based on case (a) in Appendix Table A.1, and

Y = 24θC = 24 (  540 ___ EI  )  =   12,960 _____ EI  

P = 30 kips

A

C

A

(a)

rocker

(b)

(c)

– 180
EI

10 kips40 kips

6ʹ 18ʹ

M
EI

tAC tBC
Y

B C

tangent at C

B C
A

θ

θ

δ

Figure 7.14: (a) Beam; (b) M/EI curve;  
(c) ge om etry of deflected shape.
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7.3 ■ Moment-Area Method  287

Analysis Using a Sloping Reference Tangent
For the steel beam in Figure 7.15a, compute the slope at A and C. Also 
determine the location and value of the maximum deflection. If the maxi-
mum deflection is not to exceed 0.6 in., what is the minimum required 
value of I? EI is constant and E = 29,000 kips/in.2.

Solution
Compute the slope θA at support A by drawing a line tangent to the elastic 
curve at that point. This will establish a reference line of known direction 
(Figure 7.15c).

 tan  θ  A   =   
 t  CA  

 ___ L   (1)

Since for small angles tan θA ≈ θA (rad), Equation 1 can be written

 θ  A   =   
 t  CA  

 ___ L   (2)

 t  CA   = moment of M/EI area between A and C about C

=   1 __ 2   (18)  (  96 ___ EI  )  (  18 + 6 _____ 3  )  =   6912 ____ EI  

where the expression for the moment arm is given in Table A.1 in the 
Appendix, case (a). Substituting tCA into Equation 2 gives 

 θ  A   =   −6912/EI _______ 18   = −   384 ____ EI   rad Ans.

A minus sign is added because moving in the positive x direction, the tangent 
line, directed downward, has a negative slope.

Compute θC.

 θ  C   =  θ  A   + Δ θ  AC  

where ΔθAC equals area under M/EI curve between A and C.

θC = −  384 ____ EI   +   1 __ 2   (18)  (  96 ___ EI  )  =   480 ____ EI   rad Ans.

Compute the maximum deflection. The point of maximum deflec-
tion occurs at point D where the slope of the elastic curve equals zero 

E X A M P L E  7 . 9

[continues on next page]
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Figure 7.15: (a) Beam; (b) M/EI curve;  
(c) ge om etry of deflected shape.
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288  Chapter 7 ■ Deflections of Beams and Frames

(i.e., θD = 0). To determine this point, located an unknown distance x from 
support A, we must determine the area under the M/EI curve between A 
and D that equals the slope at A. Letting y equal the ordinate of the M/EI 
curve at D (Figure 7.15b) gives

  θ  D   =  θ  A   + Δ θ  AD  

 0 = −   384 ___ EI   +   1 __ 2   xy (3)

Expressing y in terms of x by using similar triangles afg and aed 
(Figure 7.15b) yields

   96/ (EI)  ______ 12   =   y __ x  

 y =   8x __ EI   (4)

Substituting the foregoing value of y into Equation 3 and solving for x give

x = 9.8 ft

Substituting x into Equation 4 gives

y =   78.4 ____ EI  

Compute the maximum deflection υD at x = 9.8 ft

 υD = DE − tDA (5)

where the terms in Equation 5 are illustrated in Figure 7.15c.

DE =  θ  A   ⋅ x =   384 ____ EI   (9.8)  =   3763.2 ______ EI  

tDA = (areaAD)    ̄  x    =    1 __ 2    (9.8)  (  78.4 ______ EI  )   (  9.8 ___ 3  )   =    1254.9 ______ EI   

Substituting DE and tDA into Equation 5 gives

 υD =    3763.2 ______ EI    −    1254.9 ______ EI    =    2508.3 ______ EI    (6)

Compute Imin if υD is not to exceed 0.6 in.; in Equation 6 set υD = 0.6 
in. and solve for Imin.

υD =    2508.3 (1728)  ____________ 29,000Imin
    = 0.6 in. Ans.

 I  min   = 249.1  in.   4  Ans.

Example 7.9 continues . . .
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7.3 ■ Moment-Area Method  289

The beam in Figure 7.16a contains a hinge at B. Compute the deflection υB 
of the hinge, the slope of the elastic curve at support E, and the end slopes 
θBL and θBR of the beams on either side of the hinge (Figure 7.16d ). Also 
locate the point of maximum deflection in span BE. EI is constant. The 
elastomeric pad at E is equivalent to a roller.

Solution
The deflection of the hinge at B, denoted by υB, equals tBA, the tangential 
deviation of B from the tangent to the fixed support at A. Deflection tBA 
equals the moment of the area under the M/EI curve between A and B about 
B (Figure 7.16b).

υB = tBA = area ·    ̄  x    =    1 __ 2     (−   108 _____ EL  )  (9)(6) = −   2916 _____ EL  

E X A M P L E  7 . 1 0

[continues on next page]
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Figure 7.16: (a) Beam with hinge at B; 
(b) deflected shape; (c) M/EI curve; (d) de-
tail showing the difference in slope of the 
elastic curve on each side of the hinge.
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290  Chapter 7 ■ Deflections of Beams and Frames

Compute θBL, the slope of the B end of cantilever AB.

 θ  BL   =  θ  A   + Δ θ  AB  

= 0 +    1 __ 2    (9)  (   −108 _____ EI  )   =   −486 ______ EI   rad

where ΔθAB is equal to the triangular area under the M/EI curve between A 
and B and θA = 0 because the fixed support at A prevents rotation.

Compute θE, the slope of the elastic curve at E (Figure 7.16b).

 θ  E   =   υB + tBE _______ 18   =  (  2916 _____ EI   +   7776 _____ EI  )  (  1 ___ 18  )  =   594 ____ EI   rad

where tBE equals the moment of the area under the M/EI curve between B 
and E about B. This computation is simplified by dividing the trapezoidal 
area into two triangles and a rectangle (see the dashed lines in Figure 7.16c).

tBE =    1 __ 2    (6)  (  72 ___ EI  )   (4) + (6)  (  72 ___ EI  )  (9) +    1 __ 2    (6)  (  72 ___ EI  )  (14) =    7776 _____ EI    rad

Locate the point of maximum deflection in span BE. The point of max-
imum deflection, labeled point F, is located at the point in span BE where  
the tangent to the elastic curve is zero. Between F and support E, a distance 
x, the slope goes from 0 to θE. Since the change in slope is given by the area 
under the M/EI curve between these two points, we can write

  θ  E   =  θ  F   + Δ θ  EF   (1)

where θF = 0 and θE = 594/EI rad. Between points D and E the change in 
slope produced by the area under the M/EI curve equals 216/EI. Since this 
value is less than θE, the slope at D has a positive value of 

 θD = θE − ΔθED =    594 ___ EI    −    216 ___ EI    =    378 ___ EI     rad (2)

Between D and C the area under the M/EI curve equals 432/EI. Since this 
value of change in slope exceeds 378/EI, the point of zero slope must lie 
between C and D. We can now use Equation 1 to solve for distance x.

   594 ____ EI    = 0 +    1 __ 2     (  72 ___ EI  )  (6) +    72 ___ EI    (x − 6)

x = 11.25 ft Ans.

 Compute θBR.

 θ  BR   =  θ  E   − Δ θ  BE  

=    594 ____ EI    −   [  72 ___ EI   (6) +   1 __ 2   (6) (  72 ___ EI  ) (2)]  

= −    270 ___ EI    rad Ans.

Example 7.10 continues . . .
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7.3 ■ Moment-Area Method  291

Determine the deflection of the hinge at C and the rotation of joint B for 
the frame in Figure 7.17a. For all members EI is constant.

Solution
To establish the angular rotation of joint B, we consider the deflected shape 
of member AB in Figure 7.17b. (Because member BCD contains a hinge, 
its elastic curve is not continuous, and it is not possible initially to compute 
the slope at any point along its axis.)

θB =    tAB ___ 12    =    
  1 __ 2   12   72 ___ EI   (8)

 __________ 12    =    288 ____ EI    Ans.

Deflection of hinge:

Δ = 6θB + tCB

= (6)  (  288 ____ EI  )   +    1 __ 2   (6)   (  72 ____ EI  )  (4) =    2592 ____ EI    Ans.

E X A M P L E  7 . 1 1

Figure 7.17: (a) Frame and M/EI curves; (b) deflected shape.
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E X A M P L E  7 . 1 2 Compute the horizontal deflection of joint B of the frame shown in 
Figure 7.18a. EI is constant for all members. Assume elastomeric pad at 
C acts as a roller.

Solution
Begin by establishing the slope of the girder at joint B.

  θ  B   =    t  CB   ___ L   (1)

where  t  CB   =   1 __ 2   (  120 ___ EI  )  (12)  (8)  =   5760 ____ EI    and  L = 12 ft

Thus  θ  B   =   5760 ____ EI   (  1 __ 12  )  =   480 ___ EI   rad

Because joint B is rigid, the top of column AB also rotates through an 
angle θB (Figure 7.18c). Since the deflection ΔB at joint B is equal to the 
horizontal distance AD at the base of the column, we can write 

 Δ  B   = AD =  t  AB   + 12 θ  B  

=    120 ____ EI   
(6)  (9)  +   1 __ 2   (  120 ____ EI  )  (6)  (4)  +  (12)  (  480 ____ EI  ) 

=    13,680 ______ EI   Ans.

where tAB equals the moment of the M/EI diagram between A and B about 
A, and the M/EI diagram is broken into two areas.
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Figure 7.18: (a) Frame and M/EI curves; 
(b) de flected shape; (c) detail of joint B in 
deflected position.
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7.4 ■ Elastic Load Method  293

The elastic load method is a procedure for computing slopes and deflec tions 
in simply supported beams. Although the calculations in this method are iden-
tical to those of the moment-area method, the procedure appears simpler be-
cause we replace computations of tangential deviations and changes in slope 
with the more familiar procedure of constructing shear and moment curves 
for a beam. Thus the elastic load method eliminates the need (1) to draw an 
accurate sketch of the member’s deflected shape and (2) to consider which 
tangential deviations and angle changes to evaluate in order to establish the 
deflection or the slope at a specific point.

In the elastic load method, we imagine that the M/EI diagram, whose 
ordinates represent angle change per unit length, is applied to the beam 
as  a  load (the elastic load). We then compute the shear and moment 
curves.  As  we will demonstrate next, the ordinates of the shear and the 
moment curves at each point equal the slope and deflection, respectively, 
in the real beam.

To illustrate this we examine the deflected shape of a beam whose 
longitudinal axis is composed of two straight segments that intersect at 
a small angle θ. The geometry of the bent member ABCʹ is shown by the 
solid line in Figure 7.19.

If beam ABCʹ is connected to the support at A so that segment AB is 
horizontal, the right end of the beam at Cʹ will be located a distance ΔC above 
support C. In terms of the dimensions of the beam and the angle θ (see tri-
angle CʹBC), we find

  Δ  C   = θ (L − x)  (1)

The sloping line ACʹ, which connects the ends of the beam, makes an angle 
θA with a horizontal axis through A. Considering the right triangle ACCʹ, we 
can express θA in terms of ΔC as

  θ  A   =    Δ  C   __ L   (2)

Substituting Equation 1 into Equation 2 leads to

  θ  A   =   θ (L − x)  _____ L   (3)

We now rotate member ABCʹ clockwise about the pin support at A until 
chord ACʹ coincides with the horizontal line AC and point Cʹ rests on the 
roller at C. The final position of the beam is shown by the heavy dashed line 
ABʹC. As a result of the rotation, segment AB slopes downward to the right 
at an angle θA.

Elastic Load Method
7.4

A
A

L

x

B CA

Bʹ

Cʹ

L – x

ΔC

ΔB

θθ

θ

Figure 7.19: Beam with an angle change of 
θ at point B.
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To express ΔB, the vertical deflection at B, in terms of the geometry of 
the deflected member, we consider triangle ABBʹ. Assuming that angles are 
small, we can write

  Δ  B   =  θ  A   x (4)

Substituting θA given by Equation 3 into Equation 4 gives

  Δ  B   =   θ (L − x) x ______ L   (5)

Alternatively, we can compute identical values of θA and ΔB by computing 
the shear and moment produced by the angle change θ applied as an elastic 
load to the beam at point B (Figure 7.20a). Summing moments about support 
C to compute RA produces

 ⟳+ ΣMC = 0

 θ (L − x)  −  R  A   L = 0

  R  A   =   θ (L − x)  _____ L   (6)

After RA is computed, we draw the shear and moment curves in the usual 
manner (Figure 7.20b and c). Since the shear just to the right of support A 
equals RA, we observe that the shear given by Equation 6 is equal to the slope 
given by Equation 3. Further, because the shear is constant between the sup-
port and point B, the slope of the real structure must also be constant in the 
same region.

Recognizing that the moment MB at point B equals the area under the 
shear curve between A and B, we find

  Δ  B   =  M  B   =   θ (L − x) x ______ L   (7)

Comparing the value of deflections at B given by Equations 5 and 7, we ver-
ify that the moment MB produced by load θ is equal to the value of ΔB based 
on the geometry of the bent beam. We also observe that the maximum deflec-
tion occurs at the section where the shear produced by the elastic load is zero.

Sign Convention

If we treat positive values of the M/EI diagram applied to the beam as a 
distributed load acting upward and negative values of M/EI as a downward 
load, positive shear denotes a positive slope and negative shear a negative 
slope (Figure 7.21). Further, negative values of moment indicate a downward 
deflection and positive values of moment an upward deflection.

Examples 7.13 and 7.14 illustrate the use of the elastic load method to 
compute deflections of simply supported beams.

L – xx

x

L

L

RA RC

(a)

Shear (slope)
(b)

Moment (deflection)
(c)

(L – x)
L

(L – x)xMB =ΔB = L

CBA

θ

θ

θ

θ

Figure 7.20: (a) Angle change θ applied 
as a load at point B; (b) shear produced by 
load θ equals slope in real beam; (c) moment 
produced by θ equals deflection in real beam 
(Figure 7.19).

M
EI

y

y

x

+V +V V+ =

+Δ = M

x

(a)

(b)

(c)

+M +M

θ

Figure 7.21: (a) Positive elastic load; (b) posi-
tive shear and positive slope; (c) positive mo-
ment and positive (upward) deflection.
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Compute the maximum deflection and the slope at each support for the 
beam in Figure 7.22a. Note that EI is a constant.

Solution
As shown in Figure 7.22b, the M/EI diagram is applied to the beam as an 
upward load. The resultants of the triangular distributed loads between AB 
and BC, which are equal 720/EI and 360/EI, respectively, are shown by 
heavy arrows. That is,

   1 __ 2   (12)  (  120 ___ EI  )  =   720 ___ EI     and     1 __ 2   (6)  (  120 ___ EI  )  =   360 ___ EI  

Using the resultants, we compute the reactions at supports A and C. The 
shear and moment curves, drawn in the conventional manner, are plotted 
in Figure 7.22c and d. To establish the point of maximum deflection, we 
locate the point of zero shear by determining the area under the load curve 
(shown shaded) required to balance the left reaction of 480/EI.

   1 __ 2    xy =   480 ___ EI   (1)

Using similar triangles (Figure 7.22b) yields

  y _______ 120/ (EI)    =   x ___ 12  

and y =   10 __ EI    x (2)

Substituting Equation 2 into Equation 1 and solving for x give

x =  √ 
___

 96   = 9.8 ft

To evaluate the maximum deflection, we compute the moment at x = 9.8 ft 
by summing moments of the forces acting on the free body to the left of a 
section through the beam at that point (see shaded area in Figure 7.22b).

 Δ  max   = M = −   480 ____ EI   (9.8)  +   1 __ 2    xy (  x __ 3  ) 

Using Equation 2 to express y in terms of x and substituting x = 9.8 ft, we 
compute

 Δ  max   = −    3135.3 ______ EI     ↓ Ans.

The values of the end slopes, read directly from the shear curve in 
Figure 7.22c, are

 θ  A   = −    480 ____ EI      θ  C   =    600 ____ EI    Ans.

E X A M P L E  7 . 1 3

A CB

10 kips

30 kips

20 kips
(a)

12ʹ 6ʹ

y

Elastic loads
(b)

Shear (slope)
(c)

Moment (deflection)
(d)

8ʹ

720
EI

x

360
EI

120
EI

480
EI

480
EI–

3135.3
EI–

600
EI

600
EI

6ʹ 4ʹ

x = 9.8ʹ

Figure 7.22: (a) Beam; (b) beam loaded by 
M/EI diagram; (c) variation of slope; (d) de-
flected shape.
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E X A M P L E  7 . 1 4

(a)

6 m3 m100
3 kN

300 kN·m

100
3 kN

A B

I2I

C

R1 =

(c)

4 m3.5 m
1 m

0.5 m

Elastic
loads

583.33
EI

100
EI

150
EI

200
EI

75
EI R2 =

300
EI

R3 =
600
EI

391.67
EI

(d)

4.85 m
Shear (slope)

391.67
EI

583.33
EI–

MB

(e)

6 m

x = 2 m

391.67
EI

600
EI

(b)

Moment
(kN·m)

300

Figure 7.23

Solution
To establish the M/EI curve, we divide the ordinates of the moment curve 
(Figure 7.23b) by 2EI between A and B and by EI between B and C. 
The resulting M/EI diagram is applied to the beam as an upward load in 
Figure 7.23c. The maximum deflection occurs 4.85 m to the left of support 
C, where the elastic shear equals zero (Figure 7.23d).

To compute the deflection at B, we compute the moment produced at 
that point by the elastic loads using the free body shown in Figure 7.23e. 
Summing moments of the applied loads about B, we compute

 Δ  B   = MB =    600 ____ EI    (2) −    391.67 ____ EI    (6)

 Δ  B   = −    1150 ______ EI    ↓ Ans.

Compute the deflection at point B of the beam in Figure 7.23a. Also locate 
the point of maximum deflection; E is a constant, but I varies as shown 
on the figure.
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In Section 7.4 we used the elastic load method to compute slopes and deflec-
tions at points in a simply supported beam. The conjugate beam method, the 
topic of this section, permits us to extend the elastic load method to beams 
with other types of supports and boundary conditions by replacing the actual 
supports with conjugate supports to produce a conjugate beam. The effect of 
these fictitious supports is to impose boundary conditions which ensure that 
the shear and moment, produced in a beam loaded by the M/EI diagram, are 
equal to the slope and the deflection, respectively, in the real beam.

To explain the method, we consider the relationship between the shear 
and moment (produced by the elastic loads) and the deflected shape of the 
cantilever beam shown in Figure 7.24a. The M/EI curve associated with the 
concentrated load P acting on the real structure establishes the curvature at all 
points along the axis of the beam (Figure 7.24b). For example, at B, where the 
moment is zero, the curvature is zero. On the other hand, at A the curvature 
is greatest and equal to –PL /EI. Since the curvature is negative at all sections 
along the axis of the member, the beam is bent concave downward over its 
entire length, as shown by the curve labeled 1 in Figure 7.24c. Although the 
deflected shape given by curve 1 is consistent with the M/EI diagram, we rec-
ognize that it does not represent the correct deflected shape of the cantilever 
because the slope at the left end is not consistent with the boundary condi-
tions imposed by the fixed support at A; that is, the slope (and the deflection) 
at A must be zero, as shown by the curve labeled 2.

Therefore, we can reason that if the slope and deflection at A must be 
zero, the values of elastic shear and elastic moment at A must also equal zero. 
Since the only boundary condition that satisfies this requirement is a free end, 
we must imagine that the support A is removed—if no support exists, no reac-
tions can develop. By establishing the correct slope and deflection at the end 
of the member, we ensure that the member is oriented correctly.

On the other hand, since both slope and deflection can exist at the free 
end of the actual cantilever, a support that has a capacity for shear and moment 
must be provided at B. Therefore, in the conjugate beam we must introduce an 
imaginary fixed support, or conjugate fixed support, at B. Figure 7.24d shows 
the conjugate beam loaded by the M/EI diagram. The reactions at B in the 
conjugate beam produced by the elastic load [M/EI diagram] give the slope 
and deflection in the real beam.

Figure 7.25 shows the conjugate supports that correspond to a variety of 
standard supports. Two supports that we have not discussed previously—the 
interior roller and the hinge—are shown in Figure 7.25d and e. Since an interior 
roller (Figure 7.25d ) provides vertical restraint only, the deflection at the roller 
is zero but the member is free to rotate. Because the member is continuous, the 
slope is the same on each side of the joint. To satisfy these geometric require-
ments, the conjugate support must have zero capacity for moment (thus, zero 
deflection), but must permit equal values of shear to exist on each side of the 
support—hence the hinge.

Figure 7.24: (a) Deflected shape of a can-
tilever beam; (b) M/EI diagram which es-
tablishes variation of curvature; (c) curve 
1 shows a deflected shape consistent with 
M/EI diagram in (b) but not with the bound-
ary conditions at A. Curve 2 shows curve 1 
rotated clockwise as a rigid body until the 
slope at A is horizontal; (d ) conjugate beam 
with elastic load.

A
B

P

(a)

–

(b)

(c)

(d)

1

2A AΔ= = 0

L

PL
EI

A

A

B

B

– PL
EI

PL2

2EIRB =

PL3

3EIMB =

M
EI

θ

Conjugate Beam Method
7.5
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Since a hinge provides no restraint against deflection or rotation in a real 
structure (Figure 7.25e), the device introduced into the conjugate structure must 
ensure that moment as well as different values of shear on each side of the joint 
can develop. These conditions are supplied by using an interior roller in the conju-
gate structure. Moment can develop because the beam is continuous over the sup-
port, and the shear obviously can have different values on each side of the roller.

Conjugate Beam
The conjugate beam method 
was first published  by Harold 
M. Westergaard (1888–1950) 
in 1921 to compute deflec-
tions of beams, but the con-
cept is commonly accredited 
to Heinrich Müller-Breslau 
(1865) and Otto Mohr (1868). 
Westergaard made significant 
contributions in the analysis 
of reinforced concrete slab, 
concrete pavement for roads, 
buckling theory, water pres-
sure on Hoover Dam during  
earthquakes, elasticity and 
plasticity theories.

Figure 7.26 shows the conjugate structures that correspond to eight ex-
amples of real structures. If the real structure is indeterminate, the conjugate 
structure will be unstable (Figure 7.26e to h). You do not have to be concerned 
about this condition because you will find that the M/EI diagram produced 
by the forces acting on the real structure produces elastic loads that hold the 

Real support Conjugate support

(a)

(b)

Pin or roller
= 0Δ

(c)

(d)

(e)

Pin or roller
= 0M

V ≠ 0

Free end
Δ ≠ 0

Fixed end
M ≠ 0

M

V ≠ 0

Fixed end
= 0Δ
= 0

L
R

Free end
= 0
= 0

M
V

Interior support
= 0Δ

 ≠ 0L = R  ≠ 0VL =VR

Hinge
= 0M

Hinge
Δ ≠ 0

may have
different values different values
and

RL

RL may haveVL

VL

and VR

VR

Interior roller
M ≠ 0

M

VL VR

V

V

θ ≠ 0

θ ≠ 0

θ

θ
θ

θθ

θ θ

θ θ

Figure 7.25: Conjugate supports.
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In summary, to compute deflections in any type of beam by the conju-
gate beam method, we proceed as follows:

1. Establish the moment curve for the real structure.
2. Produce the M/EI curve by dividing all ordinates by EI. Variation of E or 

I may be taken into account in this step.
3. Establish the conjugate beam by replacing actual supports or hinges with 

the corresponding conjugate supports shown in Figure 7.25.
4. Apply the M/EI diagram to the conjugate structure as the load, and com-

pute the shear and moment at those points where either slope or deflec-
tion is required.

Examples 7.15 to 7.17 illustrate the conjugate beam method.

conjugate structure in equilibrium. For example, in Figure 7.27b we show the 
conjugate structure of a fixed-end beam loaded by the M/EI diagram associ-
ated with a concentrated load applied at midspan to the real beam. Applying 
the equations to the entire structure, we can verify that the conjugate structure 
is in equilibrium with respect to both a summation of forces in the vertical 
direction and a summation of moments about any point.

Actual beam Conjugate beam

(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

Figure 7.26: Examples of conjugate beams.

Figure 7.27: (a) Fixed-ended beam with 
concentrated load at midspan; (b) conjugate 
beam loaded with M/EI curve. The conju-
gate beam, which has no supports, is held in 
equilibrium by the applied loads.

PL
2

(a)

(b)

L

PL
8EI

L
4

– PL
8EI

– PL
8EI

L
4
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E X A M P L E  7 . 1 5 For the beam in Figure 7.28 use the conjugate beam method to determine 
the maximum value of deflection between supports A and C and at the tip 
of the cantilever. EI is constant.

10 kips 20 kips

30 kips

(a)

12ʹ 6ʹ 6ʹ

A B C D

(b)
18ʹ

120

Moment
(kip • ft)

6ʹ

(d)

9.8ʹ

480
EI–

600
EI

600
EI

(c)

= RA

= RD

x

y

120
EI 3600

EI

480
EI

600
EI

(e)

6ʹ
3136

EI–

3600
EI

straight

Figure 7.28: (a) Beam details; (b) moment curve; (c) conjugate beam with elastic 
loads; (d) elastic shear (slope); (e) elastic moment (deflection).

Solution
The conjugate beam with the M/EI diagram applied as an upward load is 
shown in Figure 7.28c. (Figure 7.25 for the correspondence between real 
and conjugate supports.) Compute the reaction at A by summing moments 
about the hinge.
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⟳+ ΣMhinge = 0

−18  R  A   +   720 (10)  ______ EI   +   360 (4)  _____ EI   = 0

 R  A   =   480 ____ EI  

Compute RD.

   +      ↑    Σ F  y   = 0

  720 ____ EI   +   360 ____ EI   −   480 ____ EI   −  R  D   = 0

 R  D   =   600 ____ EI  

Draw the shear and moment curves (Figure 7.28d and e). Moment at D 
(equals area under shear curve between C and D) is

 M  D   =   600 ____ EI   (6)  =   3600 ____ EI  

Locate the point of zero shear to the right of support A to establish the loca-
tion of the maximum deflection by determining the area (shown shaded) 
under the load curve required to balance RA.

   1 __ 2    xy =   480 ___ EI   (1)

From similar triangles (Figure 7.28c),

    y ___ 
  120

 __ EI  
    =   x __ 12   and y =   10 __ EI    x (2)

Substituting Equation 2 into Equation 1 and solving for x give

x =  √ 
___

 96   = 9.8 ft

Compute the maximum value of negative moment. Since the shear curve 
to the right of support A is parabolic, area =    2 _ 3    bh.

 Δ  max   =  M  max   =   2 __ 3   (9.8)  (−   480 ___ EI  )  = −   3136 ____ EI   Ans.

Compute the deflection at D.

 Δ  D   =  M  D   =   3600 ____ EI   Ans.
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E X A M P L E  7 . 1 6 Compare the magnitude of the moment required to produced a unit value of 
rotation (θA = 1 rad) at the left end of the beams in Figure 7.29a and c. Except 
for the supports at the right end—a pin versus a fixed end—the dimensions 
and properties of both beams are identical, and EI is constant. Analysis 
indicates that a clockwise moment M applied at the left end of the beam in  
Figure 7.29c produces a clockwise moment of M/2 at the fixed support.

Solution
The conjugate beam for the pin-ended beam in Figure 7.29a is shown in 
Figure 7.29b. Since the applied moment Mʹ produces a clockwise rotation 
of 1 rad at A, the reaction at the left support equals 1. Because the slope at 
A is negative, the reaction acts downward.

To compute the reaction at B, we sum moments about support A.

⟳+ ΣMA = 0

0 =  R  B   L −   M′L ____ 2EI   (  L __ 3  ) 

 R  B   =   M′L ____ 6EI  

Figure 7.29: Effect of end restraint on flex-
ural stiffness. (a) Beam loaded at A with far 
end pinned; (b) conjugate structure for beam 
in (a) loaded with M/EI; (c) beam loaded at 
A with far end fixed; (d) conjugate structure 
for beam in (c) loaded with M/EI.

A

(a)

= 1 rad

A

L

Mʹ
B

θ

M

(c)

M
2

A= 1 radθ

(b)

L
3

RA = 1

x =

Mʹ
EI

MʹL
2EI

MʹL
6EIRB =

(d)

1

M
EI

ML
2EI

ML
2EI ML

4EI
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Summing forces in the y direction, we express Mʹ in terms of the proper-
ties of the member as

   +      ↑    Σ F  y   = 0

0 = −1 +   M′L ____ 2EI   −   M′L ____ 6EI  

M′ =   3EI ___ L   Ans. (1)

The conjugate beam for the fixed-end beam in Figure 7.29c is shown 
in Figure 7.29d. The M/EI diagram for each end moment is drawn sepa-
rately. To express M in terms of the properties of the beam, we sum forces 
in the y direction.

   +      ↑    Σ F  y   = 0

0 = −1 +   ML ___ 2EI   −   1 __ 2       ML ___ 2EI  

M =   4EI ___ L   Ans. (2)

NOTE. The absolute flexural stiffness of a beam can be defined as the 
value of end moment required to rotate the end of a beam—supported 
on a roller at one end and fixed at the other end (Figure 7.29c)—through 
an angle of 1 rad. Although the choice of boundary conditions is some-
what arbitrary, this particular set of boundary conditions is convenient 
because it is similar to the end conditions of beams that are analyzed by 
moment distribution—a technique for analyzing indeterminate beams 
and frames covered in Chapter 11. The stiffer the beam, the larger the 
moment required to produce a unit rotation.

If a pin support is substituted for a fixed support as shown in Figure 7.29a,  
the flexural stiffness of the beam reduces because the roller does not 
apply a restraining moment to the end of the member. As this example 
shows by comparing the values of moment required to produce a unit 
rotation (Equations 1 and 2), the flexural stiffness of a pin-ended beam is 
three-fourths that of a fixed-end beam.

  M′ ___ M   =   3EI/L _____ 4EI/L  

M′ =   3 __ 4    M
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E X A M P L E  7 . 1 7 Determine the maximum deflection of the beam in Figure 7.30. EI is a 
 constant.

P 2P

 MA = 18P 2P
P

(a)

6ʹ 6ʹ 6ʹ 6ʹ

A B C D E

(c)

90P
EI–

45P
EI

81P
EI

(d)

756P
EI–

Figure 7.30: (a) Beam; (b) conjugate beam 
with elastic loads; (c) elastic shear (slope);  
(d ) elastic moment (deflection).

Solution
The ordinates of the moment diagram produced by the concentrated 
loads acting on the real structure in Figure 7.30a are divided by EI and 
applied as a distributed load to the conjugate beam in Figure 7.30b. We 
next divide the distributed load into triangular areas and compute the  
resultant (shown by heavy arrows) of each area.
Compute RE.

+⟲ ΣMC = 0

  36P ____ EI   (6)  +   18P ____ EI   (4)  +   18P ____ EI   (8)  +   54P ____ EI   (10)  − 12  R  E   = 0

 R  E   =   81P ____ EI  

Compute RC.

   +      ↑    Σ F  y   = 0

−   54P ____ EI   −   18P ____ EI   −   18P ____ EI   −   81P ____ EI   +   36P ____ EI   +  R  C   = 0

 R  C   =   135P _____ EI  

To establish the variation of slope and deflection along the axis of the 
beam, we construct the shear and moment diagrams for the conjugate beam 
(Figure 7.30c and d ). The maximum deflection, which occurs at point C 
(the location of the real hinge), equals 756P⧸EI. This value is established 
by evaluating the moment produced by the forces acting on the conjugate 
beam to the left of a section through C (Figure 7.30b).

(b)

4ʹ 4ʹ 6ʹ

10ʹ

18P
EI

54P
EI

18P
EI

36P
EI

81P
EIRE =135P

EIRC =

18P
EI

6P
EI

6P
EI

C
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To be designed properly, beams must have adequate stiffness as well 
as strength. Under service loads, deflections must be limited so that at-
tached nonstructural elements—partitions, pipes, plaster ceilings, and 
windows—will not be damaged or rendered inoperative by large deflec-
tions. Obviously floor beams that sag excessively or vibrate as live loads 
are applied are not satisfactory. To limit deflections under live load, most 
building codes specify a maximum value of live load deflection as a frac-
tion of the span length—a limit between 1/360 to 1/240 of the span length 
is common.

If steel beams sag excessively under dead load, they may be cambered. 
That is, they are fabricated with initial curvature by either rolling or by heat 
treatment so that the center of the beam is raised an amount equal to or 
slightly less than the dead load deflection (Figure 7.31). Example 8.12 illus-
trates a simple procedure to relate curvature to camber. To camber reinforced 
concrete beams, the center of the forms may be raised an amount to cancel 
out the dead load deflections.

In practice, designers usually make use of tables in handbooks and 
design manuals to evaluate deflections of beams for a variety of loading 
and support conditions. The Manual of Steel Construction published by the 
American Institute of Steel Construction (AISC) is an excellent source of 
information.

Table A.3 in the Appendix gives values of maximum deflections as 
well as moment diagrams for a number of support and loading conditions of 
beams. We will make use of these equations in Example 7.18.

camber

Figure 7.31: Beam fabricated with camber.

Design Aids for Beams
7.6
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E X A M P L E  7 . 1 8 A simply supported steel beam spanning 30 ft carries a uniform dead load 
of 0.4 kip/ft that includes the weight of the beam and a portion of the floor 
and ceiling supported directly on the beam (Figure 7.32). The beam is also 
loaded at its third points by two equal concentrated loads that consist of 
14.4 kips of dead load and 8.2 kips of live load. To support these loads, the 
designer selects a 16-in.-deep steel wide-flange beam with a modulus of 
elasticity E = 29,000 ksi and a moment of inertia I = 758 in.4.

(a) Specify the required camber of the beam to compensate for the 
total dead load deflection and 10 percent of the live load deflection.

(b) Verify that under live load only, the beam does not deflect more 
than 1/360 of its span length. (This provision ensures the beam will not be 
excessively flexible and vibrate when the live load acts.)

Solution
We first compute the required camber for dead load, using equations for 
deflection given by cases (a) and (c) in Appendix Table A.3.
(a) Dead load deflection produced by uniform load is

 Δ  D1   =   5w  L   4  _____ 384EI   =   5 (0.4)    (30)    4  (1728)   ______________  384 (29,000)  (758)    = 0.33 in.

Dead load deflection produced by concentrated loads is

 Δ  D2   =   Pa (3 L   2  − 4 a   2 )   __________ 24EI   =   14.4 (10)  [3  (30)    2  − 4  (10)    2 ]  (1728)    ________________________  24 (29,000)  (758)   

 Δ  D2   = 1.08 in.

Total dead load deflection,  Δ  DT   =  Δ  D1   +  Δ  D2   = 0.33 + 1.08 = 1.41 in.

Live load deflection,  Δ  L   =   Pa (3 L   2  − 4 a   2 )   __________ 24EI   =    8.2(10)[3(30)2 − 4(10)2](1728)   _______________________  24(29,000)(758)   

 Δ  L   = 0.62 in.

Required camber =  Δ  DT   + 0.1 Δ  L   = 1.41 + 0.1 (0.62)  = 1.47 in.

Since real connections are not theoretical pins and have some fixity to 
them, some designers use 80 percent of the theoretical beam deflections 
when specifying camber.

 Camber = 0.8(1.47) = 1.18 in., round to 11⁄4 in. Ans.

(b) Allowable live load deflection is

    L ___ 360   =   30 × 12 _____ 360   = 1 in. > 0.62 in. Ans.

Therefore, the beam is sufficiently stiff to meet the live load deflection 
limit.

wD = 0.4 kip/ft

PL = 8.2 kips
PD = 14.4 kips

PL = 8.2 kips
PD = 14.4 kips

10ʹ 10ʹ 10ʹ

Figure 7.32: Beam, connected to columns 
by clip angles attached to web, is analyzed as 
a simply supported determinate beam.
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 • The maximum deflections of beams and frames must be checked to 
ensure that structures are not excessively flexible. Large deflections of 
beams and frames can produce cracking of attached nonstructural ele-
ments (masonry and tile walls, windows, and so forth) as well as exces-
sive vibrations of floor and bridge decks under moving loads. Deflection 
is also needed to solve indeterminate structures by the flexibility method 
in Chapter 9.

 • The deflection of a beam or frame is a function of the bending moment 
M and the member’s flexural stiffness, which is related to a member’s 
moment of inertia I and modulus of elasticity E. Deflections due to 
shear are typically neglected unless members are very deep, shear 
stresses are high, and the shear modulus G is low.

 • To establish equations for the slope and deflection of the elastic 
curve (the deflected shape of the beam’s centerline), we begin the 
study of deflections by integrating the differential equation of the 
elastic curve

   d   2  y ___ 
d  x   2 

   =   M __ EI  

 This method becomes cumbersome when loads vary in a complex 
manner.

 • Next we consider the moment-area method, which utilizes the M/EI 
diagram to compute slopes and deflections at selected points along the 
beam’s axis. This method, described in Section 7.3, requires an accurate 
sketch of the deflected shape.

 • The elastic load method (a variation of the moment-area method),  
which can be used to compute slopes and deflections in simply sup-
ported beams, is reviewed. In this method, the M/EI diagram is applied 
as a load. The shear at any point is the slope, and the moment is the 
deflections. Points of maximum deflections occur where the shear  
is zero.

 • The conjugate beam method, a variation of the elastic load method, 
applies to members with a variety of boundary conditions. This 
method requires that actual supports be replaced by fictitious sup-
ports to impose boundary conditions that ensure that the values 
of shear and moment in the conjugate beam, loaded by the M/EI 
diagram, are equal at each point to the slope and deflection, respec-
tively, of the real beam.

 • Once equations for evaluating maximum deflections are established for 
a particular beam and loading, tables available in structural engineering 
reference books (e.g., Appendix Table A.3) supply all the important data 
required to analyze and design beams.

Summary
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Solve Problems P7.1 to P7.6 by the double integration 
method. EI is constant for all beams.

P7.1. Derive the equations for slope and deflection for 
the beam in Figure P7.1. Compare the deflection at B with 
the deflection at midspan.

P7.2. Derive the equations for slope and deflection of the 
beam shown in Figure P7.2. Assume the moment reac-
tions at each fixed end are as shown. Compute the deflec-
tions at points B and C.

P7.3. Derive the equations for slope and deflection for 
the beam in Figure P7.3. Compute the maximum deflec-
tion. Hint: Maximum deflection occurs at point of zero 
slope.

P7.4. Derive the equations for slope and deflection for 
the beam in Figure P7.4. If E = 29,000 ksi, I = 50 in.4, 
and L = 10 ft, compute the values of slope and deflection 
at x =    3 _ 4    L.

P7.5. Establish the equations for slope and deflection for 
the beam in Figure P7.5. Evaluate the magnitude of the 
slope at each support. Express answer in terms of EI.

P7.6. Derive the equations for slope and deflection for 
the beam in Figure P7.6. Determine the slope at each sup-
port and the value of the deflection at midspan. Hint: It 
has been determined that the maximum deflection occurs 
at x = 0.544L such that the slope is zero there.

PROBLEMS

L

A

M

B

M
2

P7.3

L/2 L /2

A C
M

B

P7.5

P

A B

2L/3
x

L/3

P7.6

L

A
B

w

P7.1

L/4 L/4 L/2

w

D WL2

20
A

B C

WL2

30

P7.2

A B

5 kips/ft

25 kips/ft

L

300 kip • ft

x

P7.4
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Solve Problems P7.7 to P7.12 by the moment-area 
method. Unless noted otherwise, EI is a constant for all 
members. Answers may be expressed in terms of EI un-
less otherwise noted.

P7.7. Compute the slope and deflection at points B  
and C in Figure P7.7.

P7.8. (a) Compute the slopes at A and C and the deflec-
tion at D in Figure P7.8. (b) Locate and compute the mag-
nitude of the maximum deflection.

P7.9. Compute the slopes at A and C and the deflection 
at B for the beam in Figure P7.9.

P7.10. (a) Compute the slope at A and the deflection at 
midspan in Figure P7.10. (b) If the deflection at midspan 
is not to exceed 1.2 in., what is the minimum required 
value of I? E = 29,000 kips/in.2.

P7.11. (a) Find the slope and deflection at A in Figure 
P7.11. (b) Determine the location and the magnitude of 
the maximum deflection in span BC.

P7.12. Compute the slopes of the beam in Figure P7.12 
on each side of the hinge at B, the deflection of the hinge, 
and the maximum deflection in span BC. The elastomeric 
support at C acts as a roller.

A
A B DC

6ʹ6ʹ6ʹ

P = 15 kips

P7.8

A B

2II I

C D E

15 kips 15 kips

20ʹ8ʹ 8ʹ

P7.10

4 m

CBA D E

4 m 4 m

10 kN 10 kN
80 kNm

4 m

P7.9

A
B

2II I

C
D

10 kips 10 kips

12ʹ6ʹ 6ʹ

P7.11

8 m 4 m

A CB

120 kN • m

P7.7

A B

2I I

C

45 kip • ft

9ʹ9ʹ12ʹ

P7.12
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Solve Problems P7.13 to P7.18 by the moment-area 
method. EI is constant.

P7.13. Compute the slope at support A and the deflection 
at point B. Express the answer in terms of EI.

P7.14. Determine the slopes at A and B and the deflec-
tion at C in Figure P7.14. Express answers in terms of M, 
E, I, and L.

P7.15. Determine the slope and deflection of point C in 
Figure P7.15. Hint: Draw moment curves by parts.

P7.16. The roof beam of a building is subjected to the 
loading shown in Figure P7.16. If a 3⁄8-in. deflection is per-
mitted at the cantilever end before the ceiling and roofing 
materials would be damaged, calculate the required mo-
ment of inertia for the beam. Use E = 29,000 ksi.

P7.17. Compute the slope and deflection under the  
32-kip load at B and D. Reactions are given. I = 510 in.4 
and E = 29,000 kips/in.2. Sketch the deflected shape.

P7.18. The vertical reactions at supports A and D of the 
indeterminate beam in Figure P7.18 are given. Compute 
the slope at B and the deflection at C. EI is constant.

3P P

L
4

A
B

3I 2I I

D
C

L
2

L
4

P7.13

L L
3

A
M

B C

P7.14

A B
C

3 m 2 m

9 kN/m

30 kN

P7.15

0.72 kip/ft 0.48 kip/ft

10ʹ 10ʹ

2.4 kips

B
A C 

P7.16

12ʹ

A B C D E

12ʹ 12ʹ 12ʹ
96 kip • ft

32 kips32 kips

96 kip • ft

RE = 16 kipsRC = 32 kipsRA = 16 kips

P7.17

15 kips

8ʹ

A

 RA = 8.2 kips  RD = 9.5 kips

D
B

C

8ʹ8ʹ

P7.18
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Solve Problems P7.19 to P7.23 by the moment-area 
method. EI is constant unless otherwise noted.

P7.19. What value of force P is required at C in 
Figure P7.19 if the vertical deflection at C is to be zero?

P7.20. If the vertical deflection of the beam at midspan 
(i.e., point C) is to be zero, determine the magnitude of 
force F. EI is constant. Express F in terms of P and EI.

P7.21. Compute the horizontal deflection at D and verti-
cal deflection at B in Figure P7.21. The elastomeric pad at 
C acts as a roller.

P7.22. Compute the horizontal and vertical deflections at 
C of the frame in Figure P7.22. EI is constant.

P7.23. Compute the horizontal and vertical deflections at 
C of the frame in Figure P7.23. EI is constant.

6ʹ

A B C

12 kips

P = ?
4ʹ

P7.19

20 kips

12ʹ

6ʹ

C
B

A

P7.22

L
4 F = ?

A B C D E

P P

L
4

L
4

L
4

P7.20

12 kips

elastomeric
pad

6ʹ 6ʹ

3ʹ
CA

B

D

P7.21 P7.23

20 kips

8ʹ

4ʹ

4ʹ

B

C

A
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Solve Problems P7.24 to P7.27 by the moment-area 
method. EI is constant.

P7.24. The moment of inertia of the girder in Figure P7.24 
is twice that of the column. If the vertical deflection at D is 
not to exceed 1 in. and if the horizontal deflection at C is not 
to exceed 0.5 in., what is the minimum required value of the 
moment of inertia? E = 29,000 kips/in.2. The elastomeric 
pad at B is equivalent to a roller.

P7.26. The loading acting on a column that supports 
a stair and exterior veneer is shown in Figure P7.26. 
Determine the required moment of inertia for the column 
such that the maximum lateral deflection does not exceed 
1⁄4 in., a criterion set by the veneer manufacturer. Use  
E = 29,000 kips/in.2.

P7.27. Compute the slope at A and the horizontal  
and vertical components of deflection at point D in 
Figure P7.27.

B C D

EA

12ʹ

hinge

12ʹ

12ʹ

w = 2 kips/ft

w = 2 kips/ft

P7.25

2.5ʹ

7.5

7.5

B

D

A

C

P = 25 kips
       (stair load) 

w = 1 kip/ft (wind load) 

P7.26

B C
D

A

9 kips

6 kips

6ʹ12ʹ

6ʹ

P7.27

B C D

2I2I

I

A

4 kips

6ʹ 12ʹ

9ʹ

P7.24

P7.25. Compute the vertical displacement of the hinge at 
C in Figure P7.25. EI is constant.
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Solve Problems P7.28 to P7.30 by the moment-area 
method. EI is constant.

P7.28. Compute the horizontal displacement of joint B 
in Figure P7.28. The moment diagram produced by the 
12-kip load is given. The base of the columns at points 
A and E may be treated as fixed supports. Hint: Begin 
by sketching the deflected shape, using the moment dia-
grams to establish the curvature of members. Moments in 
units of kip · ft.

P7.29. Compute the rotation at B and the vertical deflec-
tion at D. Given: E = 200 GPa, IAC = 400 = 106 mm4, and 
IBD = 800 × 106 mm4.

P7.30. The frame shown in Figure P7.30 is loaded by a 
horizontal load at B. Compute the horizontal displace-
ments at B and D. For all members E = 200 GPa and I = 
500 × 106 mm4.

Solve Problems P7.31 to P7.37 by the conjugate beam method.

P7.31. Compute the deflection at the tip of the cantilever 
beam in Figure P7.31. E is constant.

P7.32. The moment diagram of a fix-ended beam with 
an external moment of 200 kip · ft applied at midspan is 
shown in Figure P7.32. Determine the maximum vertical 
deflection and maximum slope and their locations.

A

B

C

D

100 kN

12 m

5 m

5 m

P7.30

100 kips

I
A B C3I

4ʹ 8ʹ

300 kip • ft

P7.31

15ʹ 15ʹ
A CB

200 kip • ft

100 kip • ft
50

–50

–100

P7.32

A

B

C

D

3 m

3 m

4 m

300 kN

P7.29

A

B C D

E

12 kips

58.1

58.1

66.4

44.8

44.8

19.1 32.3

15ʹ 30ʹ

15ʹ

P7.28
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314  Chapter 7 ■ Deflections of Beams and Frames

P7.33. Compute the slope and deflection at point C and 
the maximum deflection between A and B for the beam in 
Figure P7.33. The reactions are given, and EI is constant. 
The elastomeric pad at B is equivalent to a roller.

P7.34. Compute the slope at A and the deflection at C of 
the beam in Figure P7.34 due to a unit load at point C. E 
is constant.

P7.35. Determine the flexural stiffness of the beam in 
Figure P7.35 (see Example 7.16 for criteria) for (a) mo-
ment applied at A and (b) moment applied at C. E is 
constant.

P7.36. Compute the deflection and the slopes on both 
sides of the hinge at B in Figure P7.36. EI is constant.

P7.37. Compute the maximum deflection in span BC of 
the beam in Figure P7.37 and the slope on each side of 
the hinge.

P7.38. Solve Problem P7.11 by the conjugate beam method.

P7.39. Solve Problem P7.12 by the conjugate beam 
method.

P7.40. Draw the slope and deflection diagrams for the 
beam in Figure P7.40. Segment ABCD has 2I while seg-
ment DEF has I. E is constant.

P7.41. Solve Problem P7.17 by the conjugate beam 
method.

P7.42. Solve Problem P7.18 by the conjugate beam 
method.

6 kips

9 kips

3 kips

3ʹ9ʹ

A MA = 9 kip • ft B
C

P7.33

 A
B

C 
2I I

12ʹ 8ʹ

1 kip

P7.34

A B C

L
2

I 2I

L
2

P7.35

20 kN 40 kN

5 m 5 m 5 m 5 m 5 m

A
B

C

D E
F

P7.36

A B DC

5 kips

10ʹ

hinge

7ʹ 5ʹ

P7.37

P7.40

A B DC E F

4ʹ 4ʹ 8ʹ 8ʹ12ʹ

25 kips 10 kips
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P7.43. For the beam shown in Figure P7.43, use the con-
jugate beam method to compute the vertical deflec tion 
and the rotation to the left and the right of the hinge at C.  

Given: E = 200 GPa, IAC = 100 × 106 mm4, and ICF = 
50 × 106 mm4.

A D E FCB

5 m 5 m 5 m 5 m 10 m

10 kN

100 kN·m

P7.43

Practical Applications of Deflection 
Computations

P7.44. The reinforced concrete girder shown in Fig-
ure P7.44a is prestressed by a steel cable that induces a 
compression force of 450 kips with an eccentricity of 
7 in. The external effect of the prestressing is to apply 
an axial force of 450 kips and equal end moment MP = 
262.5 kip · ft at the ends of the girder (Figure P7.44b). 
The axial force causes the beam to shorten but produces 
no bending deflections. The end moments MP bend the 
beam upward (Figure P7.44c) so that the entire weight 
of the beam is supported at the ends, and the member 

acts as a simply supported beam. As the beam bends 
upward, the weight of the beam acts as a uniform load 
to produce downward deflection. Determine the ini-
tial camber of the beam at midspan immediately after 
the  cable is  tensioned. Note: Over time the initial deflec-
tion will   increase due to creep by a factor of approxi-
mately 100 to 200 percent. The deflection at midspan 
due to the two end moments equals ML2⧸(8EI). Given:  
I = 46,656 in.4, A = 432 in.2, beam weight wG = 0.45 kip/ft, 
and E = 5000 kips/in.2.

450
kips

450
kips

60ʹ

A

A section A-A

prestressed
tendon

36ʺ

initial camber

7ʺ

12ʺ

450 kips450 kips

MP = 262.5 kip • ft MP = 262.5 kip • ft

–262.5 kip • ft

wG

Beam dimensions
(a)

Forces applied to concrete by prestress
(b)

Moment diagram

Deflected shape; prestress and weight of beam act 
(c)

P7.44
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316  Chapter 7 ■ Deflections of Beams and Frames

P7.45. Because of poor foundation conditions, a 30-in.
deep steel beam with a cantilever is used to support an ex-
terior building column that carries a dead load of 600 kips 
and a live load of 150 kips (Figure P7.45). What is the 
magnitude of the initial camber that should be induced 
at point C, the tip of the cantilever, to eliminate the de-
flection produced by the total load? Neglect the beam’s 
weight. Given: I = 46,656 in.4 and E = 30,000 ksi. See 
case (e) in Appendix Table A.3 for the deflection equa-
tion. The clip angle connection at A may be treated as a 
pin and the cap plate support at B as a roller.

P7.46. The rigid jointed steel frame with a fixed base at 
support A has to carry both the dead and live loads shown 
in Figure P7.46. Both the column and the girder are con-
structed from the same size members. What is the mini-
mum required moment of inertia of the frame members if 
the vertical deflection at D produced by these loads can-
not exceed 0.5 in.? Use E = 29,000 ksi.

P7.47. Computer study of the behavior of multistory build-
ing frames. The object of this study is to examine 
the behavior of building frames fabricated with two 
common types of connections. When open interior 

spaces and future flexibility of use are prime consider-
ations, building frames can be constructed with rigid con-
nections usually fabricated by weld ing. Rigid joints (see 
Figure P7.47b) are expensive to fabricate and now cost in the 
range of $700 to $850 depending on the size of members. 
Since the ability of a welded frame to resist lateral loads 
depends on the bending stiffness of the beams and columns, 
heavy members may be required when lateral loads are 
large or when lateral deflections must be limited. Alternately, 
frames can be constructed less expensively by connecting 
the webs of beams to  columns by angles or plates, called 
shear connections, which currently cost about $80 each 
(Figure P7.47c). Also see Photo 5.1 for the rigid and shear 
connections. If shear connections are used, diagonal brac-
ing, which forms a deep vertical truss with the attached col-
umns and floor beams, is typically required to provide lat-
eral stability (unless floors can be connected to stiff shear 
walls constructed of reinforced masonry or concrete).

Properties of Members

In this study all members are constructed of steel with  
E = 29,000 kips/in.2.

All beams: I = 300 in.4 and A = 10 in.2
All columns: I = 170 in.4 and A = 12 in.2

Diagonal bracing using 3-in. square hollow structural 
tubes (Case 3 only—see dashed lines in Figure P7.47a),  
A = 3.11 in.2, I = 3.58 in.4.

Using the RISA-2D computer program, analyze the 
structural frames for gravity and wind loads in the follow-
ing three cases.

Case 1 Unbraced Frame with Rigid Connections
(a) Analyze the frame for the loads shown in Figure 

P7.47a. Determine the forces and displacements at 7 sec-
tions along the axis of each member. Use the computer 
program to plot shear and moment diagrams.

(b) Determine if the relative lateral displacement be-
tween adjacent floors exceeds 3/8 in.—a limit specified to 
prevent cracking of the exterior façade.

(c) Using the computer program, plot the deflected 
shape of the frame.

A B C

PD = 600 kips
PL = 150 kips

camber?

6ʹ18ʹ

P7.45

12ʹ

12ʹ6ʹ

wD = 1.2 kips/ft wL = 0.36 kip/ft

B C D

A

P7.46
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(d) Note the difference between the magnitudes of the 
vertical and lateral displacements of joints 4 and 9. What 
are your conclusions?

Case 2 Unbraced Frame with Shear Connections
(a) Repeat steps a, b, and c in Case 1, assuming that 

the shear connections act as hinges, that is, can transmit 
shear and axial load, but no moments.

(b) What do you conclude about the unbraced frame’s 
resistance to lateral displacements?

Case 3 Braced Frame with Shear Connections
As in case 2, all beams are connected to columns with 
shear connectors, but diagonal bracing is added to form a 

vertical truss with floor beams and columns (see dashed 
lines in Figure P7.47a).

(a) Repeat steps a, b, and c in Case 1.
(b) Compute the lateral deflections of the frame if the 

area and moment of inertia of the diagonal members are 
doubled. Compare results to the original lighter bracing in 
(a) to establish the effectiveness of heavier bracing.

(c) Make up a table comparing lateral displacements 
of joints 4 and 9 for the three cases. Discuss briefly the 
results of this study.

1 3

9

5 46

7

6

2

20ʹ 20ʹ

15ʹ

15ʹ

w = 2 kips/ft

12 kips

8 kips
8

7 8

1

5 4

10 9

2 3

w = 2 kips/ft

(b)

(a)

Structural frame
Diagonals bracing Case 3 only

(c)

connection
angle

10ʺ

10ʺ

Rigid connection Shear connection 

P7.47
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Taipei 101 in Taiwan
Taipei 101 in Taiwan was the tallest building before Burj Khalif in Dubai exceeded its height 
by more than 1000 ft in 2010. Taipei 101 is designed to resist severe earthquakes and 
 typhoons. The building’s fundamental period is about 7 seconds. A building of this height 
tends to vibrate during windy days, causing discomfort to the occupants. To reduce wind-
induced vibration, a pendulum-type, 18-ft diameter steel passive tuned mass damper weigh-
ing about 1450 kips is suspended from Floor 92 to Floor 87. The vibration energy of the 
mass is then dissipated by eight diagonally placed hydraulic viscous damping devices.

© Kevin Cheng; (inset) © John Henshall/Alamy Stock Photo
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8Work-Energy Methods 
for Computing 
Deflections

Introduction
8.1

When a structure is loaded, its stressed elements deform. As these defor-
mations occur, the structure changes shape and points on the structure 
displace. In a well-designed structure, these displacements are small. For ex-
ample, Figure 8.1a shows an unloaded cantilever beam that has been divided 
arbitrarily into four rectangular elements. When a vertical load is applied at 
point B, moment develops along the length of the member. This moment cre-
ates longitudinal tensile and compressive bending stresses that deform the 
rectangular elements into trapezoids and cause point B at the tip of the canti-
lever to displace vertically downward to B′. This displacement, ΔB, is shown 
to an exaggerated scale in Figure 8.1b.

Similarly, in the example of the truss shown in Figure 8.1c, the applied load 
P produces axial forces F1, F2, and F3 in the members. These forces cause the 

C H A P T E R

Chapter Objectives
 ● Understand the concept of energy (external work and internal strain energy).

 ● Use the principle of the conservation of energy to derive the method of real work. Study the  
limitation of this method for deflection calculation.

 ● Use the dummy load system (or Q-system) and the actual load system (or P-system) to derive  
the virtual work method for calculating deflections. Then apply this very powerful method to   
calculate deflections of trusses, beams, and frames. The method can also include the effect of  
temperature change, support settlements, and fabrication errors.

 ● Study the Bernoulli’s principle of virtual displacements.

 ● Derive the Maxwell-Betti law of reciprocal deflections.
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320  Chapter 8 ■ Work-Energy Methods for Computing Deflections

members to deform axially as shown by the dashed lines. As a result of these 
deformations, joint B of the truss displaces diagonally to B′.

Work-energy methods provide the basis for several procedures used to cal-
culate displacements. Work-energy lends itself to the computation of deflections 
because the unknown displacements can be incorporated directly into the ex-
pression for work—the product of a force and a displacement. In the typical 
deflection computation, the magnitude and direction of the design forces are 
specified, and the proportions of the members are known. Therefore, once the 
member forces are computed, the energy stored in each element of the struc-
ture can be evaluated and equated to the work done by the external forces ap-
plied to the structure. Since the principle of the conservation of energy states 
that the work done by a system of forces applied to a structure equals the strain 
energy stored in the structure, loads are assumed to be applied slowly so that 
neither kinetic nor heat energy is produced.

We will begin our study of work-energy by reviewing the work done by a 
force or moment moving through a small displacement. Then we will derive 
the equations for the energy stored in both an axially loaded bar and a beam. 
Finally, we will illustrate the work-energy method—also called the method of 
real work—by computing a component of the deflec tion of a joint of a simple 
truss. Since the method of real work has serious limitations (i.e., deflections 
can be computed only at a point where a force acts and only a single concen-
trated load can be applied to the structure), the major emphasis in this chapter 
will be placed on the method of virtual work.

Virtual work, one of the most useful, versatile methods of computing 
deflections, is applicable to many types of structural members from simple 
beams and trusses to complex plates and shells. Although virtual work can be 
applied to structures that behave either elastically or inelastically, the method 
does require that changes in geometry be small (the method could not be ap-
plied to a cable that undergoes a large change in geometry by application of 
a concentrated load). As an additional advantage, virtual work permits the 
designer to include in deflection computations the influence of support settle-
ments, temperature changes, creep, and fabrication errors.

A B

(a)

x

y

ΔB

Bʹ

A B

B

A
C

Bʹ

P

F1

F2

F3

P

(b)

(c)

δ

δ

Figure 8.1: Deformations of loaded struc-
tures: (a) beam before load is applied;  
(b) bending deformations produced by a 
load at B; (c) deformations of a truss after 
load is applied.

 Work
8.2

Work is defined as the product of a force times a displacement in the direc-
tion of the force. In deflection computations we will be concerned with the 
work done by both forces and moments. If a force F remains constant in 
magnitude as it moves from point A to point B (Figure 8.2a), the work W 
may be expressed as

   W = Fδ  (8.1)

where 𝛿 is the component of displacement in the direction of the force. Work 
is positive when the force and displacement are in the same direction and 
negative when the force acts opposite in direction to the displacement.
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8.2 ■ Work  321

When a force moves perpendicular to its line of action, as shown in 
 Figure 8.2b, the work is zero. If the magnitude and direction of a force re-
main constant as the force moves through a displacement 𝛿 that is not col-
linear with the line of action of the force, the total work can be evaluated by 
summing the work done by each component of the force moving through the 
corresponding collinear displacement components 𝛿x and 𝛿y. For example, in 
Figure 8.2c we can express the work W done by the force F as it moves from 
point A to B as

 W =  F  x    δ  x   +  F  y    δ  y   

Similarly, if a moment remains constant as it is given an angular dis-
placement θ (Figure 8.2d and e), the work done equals the product of the 
moment and the angular displacement θ:

   W = Mθ  (8.2)

The expression for work done by a couple can be derived by summing the 
work done by each force F of the couple in Figure 8.2d as it moves on a cir-
cular arc during the angular displacement θ. This work equals

W = −Fℓθ + F(ℓ + a)θ

Simplifying gives

 W = Faθ 

Since Fa = M,

 W = Mθ 

If a force varies in magnitude during a displacement and if the functional re-
lationship between the force F and the collinear displacement 𝛿 is known, the 
work can be evaluated by integration. In this procedure, shown graphically in 
Figure 8.3a, the displacement is divided into a series of small increments of 
length d𝛿. The increment of work dW associated with each infinitesimal dis-
placement d𝛿 equals F d𝛿. The total work is then evaluated by summing all 
increments:

  W =   ∫ 
 0
  

 𝛿 

    F d𝛿 (8.3)

Similarly, for a variable moment that moves through a series of infinitesimal 
angular displacements dθ, the total work is given as

  W =   ∫ 
 0
  

 𝜃

    M dθ (8.4)

When force is plotted against displacement (Figure 8.3a), the term within 
the integrals of Equation 8.3 or 8.4 may be interpreted as an infinitesimal 
area under the curve. The total work done—the sum of all the infinitesimal 

AF
B

(a) (b)

A

B

B

F

F

A

F
a

ℓ

F

Fx

Fy

y

(c)

1 1ʹ

2ʹ
2

0
(d) (e)

M

x

δ

δ

δ
δδ

θ

θ

Figure 8.2: Work done by forces and 
 moments: (a) force with a collinear dis-
placement; (b) force with a displacement 
perpendicular to line of ac tion of force; (c) a 
 noncollinear displacement; (d) a couple mov-
ing through an angular displacement θ; (e) 
alternative representation of a couple.
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322  Chapter 8 ■ Work-Energy Methods for Computing Deflections

areas—equals the total area under the curve. If a force or moment varies 
linearly with displacement, as it increases from zero to its final value of F or 
M, respectively, the work can be represented by the triangular area under the 
linear load-deflection curve (Figure 8.3b). For this condition the work can be 
expressed as

For force:  W =   F __ 
2
    δ  (8.5)

For moment:  W =   M __ 
2
    θ  (8.6)

where F and M are the maximum values of force or moment and 𝛿 and θ are 
the total linear or rotational displacement.

When a linear relationship exists between force and displacement and 
when the force increases from zero to its final value, expressions for work 
will always contain a one-half term, as shown by Equations 8.5 and 8.6. On 
the other hand, if the magnitude of a force or moment is constant during a 
displacement (Equations 8.1 and 8.2), the work plots as a rect angular area  
(Figure 8.3c) and the one-half term is absent.

Strain Energy
8.3

Truss Bars

When a bar is loaded axially, it will deform and store strain energy U. For 
example, in the bar shown in Figure 8.4a, the externally applied load P in-
duces an axial force F of equal magnitude (that is, F = P). If the bar behaves 

Figure 8.3: Force versus displacement curves: (a) increment of work dW produced by a 
variable force shown crosshatched; (b) work (shown by crosshatched area) done by a force 
or moment that varies linearly from zero to F or M; (c) work done by a force or moment 
that remains constant during a displacement.
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elastically (Hooke’s law applies), the magnitude of the strain energy U stored 
in a bar by a force that increases linearly from zero to a final value F as the 
bar undergoes a change in length ΔL equals

   U =   F __ 
2
   ΔL  (8.7)

where  ΔL =   FL ___ 
AE

    (8.8)

where L = length of bar
 A = cross-sectional area of bar
 E = modulus of elasticity
 F = final value of axial force

Substituting Equation 8.8 into Equation 8.7, we can express U in terms of the 
bar force F and the properties of the member as

   U =   F __ 
2
       FL ___ 

AE
   =    F   2  L ___ 

2AE
    (8.9)

If the magnitude of the axial force remains constant as a bar undergoes a 
change in length ΔL from some outside effect (e.g., a temperature change), 
the strain energy stored in the member equals

   U = F ΔL  (8.10)

Notice that when a force remains constant as the axial deformation of a bar 
occurs, the one-half factor does not appear in the expression for U (compare 
Equations 8.7 and 8.10).
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Figure 8.4: Strain energy stored in a bar or 
beam element: (a) deformation of an axially 
loaded bar; (b) rotational deformation of 
infini tesimal beam element by moment M; 
(c) plot of load versus deformation for ele-
ment in which load increases linearly from 
zero to a final value; (d ) load deformation 
curve for member that deforms under a con-
stant load.
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324  Chapter 8 ■ Work-Energy Methods for Computing Deflections

Energy stored in a body, like work done by a force (Figure 8.3) can be 
represented graphically. If the variation of bar force is plotted against the 
change in bar length ΔL, the area under the curve represents the strain en-
ergy U stored in the member. Figure 8.4c is the graphic representation of 
 Equation  8.7—the case in which a bar force increases line arly from zero 
to a final value F. The graphic representation of Equation 8.10—the case in 
which the bar force remains constant as the bar changes length—is shown in 
 Figure 8.4d. Similar force versus deformation curves can be plotted for beam 
elements such as the one shown in Figure 8.4b. In the case of the beam ele-
ment, we plot moment M versus  rotation dθ.

Beams

The increment of strain energy dU stored in a beam segment of infinitesimal 
length dx (Figure 8.4b) by a moment M that increases linearly from zero 
to a final value of M as the sides of the segment rotate through an angle dθ 
equals

   dU =   M __ 
2
   dθ  (8.11)

As we have shown previously, dθ may be expressed as 

   d𝜃 =   M dx _____ 
EI

    (7.13)

where E equals the modulus of elasticity and I equals the moment of inertia 
of the cross section with respect to the neutral axis.

Substituting Equation 7.13 into 8.11 gives the increment of strain energy 
stored in a beam segment of length dx as

   dU =   M __ 
2
       M dx _____ 

EI
   =    M   2  dx _____ 

2EI
    (8.12)

To evaluate the total strain energy U stored in a beam of constant EI, the 
strain energy must be summed for all infinitesimal segments by integrating 
both sides of Equation 8.12.

  U =   ∫ 
 0
  

 L

         M   2  dx _____ 
2EI

    (8.13)

To integrate the right side of Equation 8.13, M must be expressed in terms  
of the applied loads and the distance x along the span (Section 5.3). At each 
section where the load changes, a new expression for moment is required. If 
I varies along the axis of the member, it must also be expressed as a function 
of x.

If the moment M remains constant as a segment of beam undergoes a 
rotation dθ from another effect, the increment of strain energy stored in the 
element equals

   dU = M dθ  (8.14)
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When dθ in Equation 8.14 is produced by a moment of magnitude MP, we can 
use Equation 7.13 to eliminate dθ and express dU as

   dU =   
M  M  P    dx

 _______ 
EI

    (8.14a)
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Deflections by the Work-Energy 
Method (Real Work)

8.4

To establish an equation for computing the deflection of a point on a structure 
by the work-energy method, we can write according to the principle of con-
servation of energy that

   W = U  (8.15)

where W is the work done by the external force applied to the structure and U 
is the strain energy stored in the stressed members of the structure.

Equation 8.15 assumes that all work done by an external force is  converted 
to strain energy. To satisfy this requirement, a load theoretically must be 
 applied slowly so that neither kinetic nor heat energy is produced. In the de-
sign of buildings and bridges for normal design loads, we will  always assume 
that this condition is satisfied so that Equation 8.15 is valid.  Because a single 
equation permits the solution of only one unknown variable,  Equation 8.15—
the basis of the method of real work—can only be applied to structures that 
are loaded by a single force.

Work-Energy Applied to a Truss

To establish an equation that can be used to compute the deflection of a point 
on a truss due to a load P that increases linearly from zero to a final value P, we 
substitute Equations 8.5 and 8.9 into Equation 8.15 to give

     P __ 
2
    𝛿 = ∑    F   2  L ___ 

2AE
    (8.16)

where P and 𝛿 are collinear and the summation sign ∑ indicates that the en-
ergy in all bars must be summed. The use of Equation 8.16 to compute the 
horizontal displacement of joint B of the truss in Figure 8.5 is illustrated in 
Example 8.1.

As shown in Figure 8.5, joint B displaces both horizontally and vertically. 
Since the applied load of 30 kips is horizontal, we are able to compute the hori-
zontal component of displacement. However, we are not able to compute the 
vertical component of the displacement of joint B by the method of real work 
because the applied force does not act in the vertical direction. The method 
of virtual work, which we discuss next, permits us to compute a single dis-
placement component in any direction of any joint for any type of loading and 
thereby overcomes the major limitations of the method of real work.
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326  Chapter 8 ■ Work-Energy Methods for Computing Deflections

E X A M P L E  8 . 1 Using the method of real work, determine the horizontal deflection 𝛿x of  
joint B of the truss shown in Figure 8.5. For all bars, A = 2.4 in.2 and  
E = 30,000 kips/in.2. The deflected shape is shown by the dashed lines.

Solution
Since the applied force of P = 30 kips acts in the direction of the required 
displacement, the method of real work is valid and Equation 8.16 applies.

    P __ 
2
    δ  x   = ∑    F   2  L ____ 

2AE
    (8.16)

Values of bar force F are shown on the truss in Figure 8.5.

   30 __ 
2
     δ  x   =     

(50)    2  (25)  (12)   ___________  
2 (2.4)  (30,000) 

   +     
(−40)    2  (20)  (12)   ___________  
2 (2.4)  (30,000) 

   +     
(−30)    2  (15)  (12)   ___________  
2 (2.4)  (30,000) 

   

   δ  x   = 0.6 in.   Ans.

x

B

A
C

Bʹ

20ʹ

15ʹ

Aʹ
30 kips

30 kips

40 kips40 kips

–40

+50

–30

δ

Figure 8.5

Virtual Work: Trusses
8.5

Virtual Work Method

Virtual work is a procedure for computing a single component of deflec tion at 
any point on a structure. The method is applicable to many types of structures, 
from simple beams to complex plates and shells. Moreover, the method per-
mits the designer to include in deflection computations the influence of sup-
port settlements, temperature change, and fabrication errors.

To compute a component of deflection by the method of virtual work, the 
designer applies a force to the structure at the point and in the direction of the 
desired displacement. This force is often called a dummy load because like 
a ventriloquist’s dummy (or puppet), the displacement it will undergo is pro-
duced by other effects. These other effects include the real loads, temperature 
change, support settlements, and so forth. The dummy load and the reactions 
and internal forces it creates are termed a Q-system. Forces, work, displace-
ments, or energy associated with the Q-system will be subscripted with a Q. 
Although the analyst is free to assign any arbitrary value to a dummy load, 
typically we use a 1-kip or a 1-kN force to compute a linear displacement and a  
1 kip·ft or a 1 kN·m moment to determine a rotation or slope.

With the dummy load in place, the actual loads—called the P-system, are 
applied to the structure. Forces, deformations, work, and energy associated 
with the P-system will be subscripted with a P. As the structure deforms un-
der the actual loads, external virtual work WQ is done by the dummy load (or 
loads) as it moves through the real displacement of the structure. In accordance 
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8.5 ■ Virtual Work: Trusses  327

with the principle of conservation of energy, an equivalent quantity of virtual 
strain energy UQ is stored in the structure; that is,

    W  Q   =  U  Q    (8.17)

The virtual strain energy stored in the structure equals the product of the 
internal forces produced by the dummy load and the distortions (changes in 
length of axially loaded bars, for example) of the elements of the structure 
produced by the real loads (i.e., the P-system).

Analysis of Trusses by Virtual Work

To clarify the variables that appear in the expressions for work and energy 
in Equation 8.17, we will apply the method of virtual work to the one-bar 
truss in Figure 8.6a to determine the horizontal displacement 𝛿P of the roller 
at B. The bar, which carries axial load only, has a cross-sectional area A and 
modulus of elasticity E. Figure 8.6a shows the bar force FP, the elongation of 
the bar ΔLP, and the horizontal displacement 𝛿P of joint B produced by the  
P-system (the actual load). Since the bar is in tension, it elongates an amount 
ΔLP, where

   Δ  L  P   =   
 F  P   L

 ___ 
AE

    (8.8)

Assuming that the horizontal load at joint B is applied slowly (so that all work 
is converted to strain energy) and increases from zero to a final value P, we 
can use Equation 8.5 to express the real work WP done by force P as

    W  P   =   1 __ 2   P  δ  P    (8.18)

Although a vertical reaction Pυ develops at B, it does no work as the roller 
displaces because it acts normal to the displacement of joint B. A plot of the 
deflection of joint B versus the applied load P is shown in Figure 8.6b. As we 
established in Section 8.2, the triangular area WP under the load-deflection 
curve represents the real work done on the structure by load P.

As a result of the real work done by P, strain energy UP of equal mag-
nitude is stored in bar AB. Using Equation 8.7, we can express this strain 
energy as

    U  P   =   1 __ 2    F  P    Δ  L  P    (8.19)

A plot of the strain energy stored in the bar as a function of the bar force FP 
and the elongation ΔLP of the bar is shown in Figure 8.6c. In accordance with 
the conservation of energy, WP equals UP, so the shaded areas WP and UP under 
the sloping lines in Figure 8.6b and c must be equal.

We next consider the work done on the strain energy stored in the bar 
by  applying in sequence the dummy load Q followed by the real load  P. 
Figure 8.6d shows the bar force FQ, the bar deformation ΔLQ, and the  
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Figure 8.6: Graphical representation of work and energy in the method of virtual work: 
(a) P-system: forces and deformations produced by real load P; (b) graphical representation 
of real work WP done by force P as roller in (a) moves from B to B′; (c) graphical represen-
tation of real strain energy UP stored in bar AB as it elongates an amount ΔLP (UP = WP); 
(d) forces and displacements produced by dummy load Q; (e) graphical representation of 
real work WD done by dummy load Q; ( f ) graphical representation of real strain energy UD 
stored in bar AB by dummy load; (g) forces and deformations produced by forces Q and P 
acting together; (h) graphical representation of total work Wt done by Q and P; (i) graphical 
representation of total strain energy Ut stored in bar by Q and P.
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horizontal displacement 𝛿Q of joint B produced by the dummy load Q. As-
suming that the dummy load is applied slowly and increases from zero to its 
final value Q, we can express the real work WD done by the dummy load as

    W  D   =   1 __ 2   Q  δ  Q    (8.20a)

The load-deflection curve associated with the dummy load is shown in 
Figure 8.6e. The triangular area under the sloping line represents the real 
work WD done by the dummy load Q. The corresponding strain energy UD 
stored in the bar as it elongates is equal to

    U  D   =   1 __ 2    F  Q    Δ  L  Q    (8.20b)

Figure 8.6f shows the strain energy stored in the structure due to the elon-
gation of bar AB by the dummy load. In accordance with the principle of  
conservation of energy, WD must equal UD. Therefore, the crosshatched trian-
gular areas in Figure 8.6e and f are equal.

With the dummy load in place we now imagine that the real load P is ap-
plied (Figure 8.6g). Because we assume that behavior is elastic, the principle of 
superposition requires that the final deformations, bar forces, reactions, and so 
forth (but not the work or the strain energy, as we will shortly establish) equal 
the sum of those produced by Q and P acting separately (Figure 8.6a and d). 
Figure 8.6h shows the total work Wt done by forces Q and P as point B displaces 
horizontally an amount 𝛿t = 𝛿Q = 𝛿P. Figure 8.6i shows the total strain energy Ut 
stored in the structure by the action of forces Q and P.

To clarify the physical significance of virtual work and virtual strain en-
ergy, we subdivide the areas in Figure 8.6h and i that represent the total work 
and total strain energy into the following three areas:

1. Triangular areas WD and UD (shown in vertical crosshatching)
2. Triangular areas WP and UP (shown in horizontal crosshatching)
3. Two rectangular areas labeled WQ and UQ

Since WD = UD, WP = UP, and Wt = Ut by the principle of conservation of 
energy, it follows that the two rectangular areas WQ and UQ, which represent 
the external virtual work and the virtual strain energy, respectively, must be 
equal, and we can write

    W  Q   =  U  Q    (8.17)

As shown in Figure 8.6h, we can express WQ as

    W  Q   = Q  δ  p    (8.21a)

where Q equals the magnitude of the dummy load and 𝛿P the displacement or 
component of displacement in the direction of Q produced by the P-system. 
As indicated in Figure 8.6i, we can express UQ as

    U  Q   =  F  Q    Δ  L  P    (8.21b)
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330  Chapter 8 ■ Work-Energy Methods for Computing Deflections

where FQ is the bar force produced by the dummy load Q and ΔLP is the 
change in length of the bar produced by the P-system.

Substituting Equations 8.21a and 8.21b into Equation 8.17, we can write 
the virtual work equation for the one-bar truss as

   Q ⋅  δ  P   =  F  Q    Δ  L  P    (8.22)

By adding summation signs to each side of Equation 8.22, we produce 
 Equation 8.23, the general virtual work equation for the analysis of any type 
of truss.

   ∑Q  δ  P   = ∑  F  Q    Δ  L  P    (8.23)

The summation sign on the left side of Equation 8.23 indicates that in certain 
cases (Example 8.7 for example), more than one external Q force contributes 
to the virtual work. The summation sign on the right side of Equation 8.23 is 
added because most trusses contain more than one bar.

Equation 8.23 shows that both the internal and external forces are 
supplied by the Q-system and that the displacements and deformations of 
the structure are supplied by the P-system. The term virtual signifies that the 
displacements of the dummy load are produced by an outside effect (i.e., the 
P-system).

When the bar deformations are produced by load, we can use Equa-
tion 8.8 to express the bar deformations ΔLP in terms of the bar force FP and 
the properties of the members. For this case we can write Equation 8.23 as

   ∑Q  δ  P   = ∑ F  Q       
 F  P   L

 ___ 
AE

    (8.24)

We will illustrate the use of Equation 8.24 by computing the deflection 
of joint B in the simple two-bar truss shown in Example 8.2. Since the 
direction of the resultant displacement at B is unknown, we do not know 
how to orient the dummy load to compute it. Therefore, we will carry out 
the analysis in two separate computations. First, we compute the compo-
nent of displacement in the x direction, using a horizontal dummy load 
(Figure 8.7b). Then we compute the y component of displacement, using a 
vertical dummy load (Figure 8.7c). If we wish to establish the magnitude 
and direction of the actual displacement, the components can be combined 
by vector addition.
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Under the action of the 30-kip load, joint B of the truss in Figure 8.7a 
displaces to B′ (the deflected shape is shown by the dashed lines). Using 
virtual work, compute the components of displacement of joint B. For all 
bars, A = 2 in.2 and E = 30,000 kips/in.2.

Solution
To compute the horizontal displacement 𝛿x of joint B, we apply a dummy 
load of 1 kip horizontally at B. Figure 8.7b shows the reactions and bar 
forces FQ produced by the dummy load. With the dummy load in place, we 
apply the real load of 30 kips to joint B (indicated by the dashed arrow). 
The 30-kip load produces bar forces FP, which deform the truss. Although 
both the dummy and the real loading now act dependently on the structure, 
for clarity we show the forces and deformations produced by the real load, 
P = 30 kips, separately on the sketch in Figure 8.7a. With the bar forces 
established, we use Equation 8.24 to compute 𝛿x:

  ∑Q  δ  P   = ∑  F  Q       
 F  P   L

 ___ 
AE

    (8.24)

   (1 kip)  ( δ  x  )  =   5 __ 
3
       50 (20 × 12)  _________ 

2 (30,000) 
   +  (−   4 __ 

3
  )      

(−40)  (16 × 12)   __________ 
2 (30,000) 

   

   δ  x   = 0.5 in. →  Ans.

To compute the vertical displacement 𝛿y of joint B, we apply a dummy 
load of 1 kip vertically at joint B (Figure 8.7c) and then apply the real load. 
Since the value of FQ in bar AB is zero (Figure 8.7c), no energy is stored 
in that bar and we only have to evaluate the strain energy stored in bar BC. 
Using Equation 8.24, we compute

  ∑Q  δ  P   = ∑ F  Q       
 F  P   L

 ___ 
AE

     (8.24)

   (1 kip)  ( δ  y  )  =     
 (−1)  (−40)(16 × 12) 

  __________  
2 (30,000) 

    = 0.128 in.↓  Ans.

E X A M P L E  8 . 2
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Figure 8.7: (a) Real load (P-system producing bar forces FP); (b)  dummy load 
(Q-system producing FQ forces) used to compute the horizontal displacement of B. 
The dashed arrow indicates the actual load that creates the forces FP shown in (a); (c) 
dummy load (Q-system) used to compute the vertical displacement of B.
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As you can see, if a bar is unstressed in either the P-system or the Q-system, 
its contribution to the virtual strain energy stored in a truss is zero.

NOTE.  The use of a 1-kip dummy load in Figure 8.7b and c was arbitrary, 
and the same results could have been achieved by applying a dummy force 
of any value. For example, if the dummy load in Figure 8.7b were doubled 
to 2 kips, the bar forces FQ would be twice as large as those shown on the 
figure. When the forces produced by the 2-kip dummy are substituted into 
Equation 8.24, the external work—a direct function of Q—and the internal 
strain energy—a direct function of FQ—will both double. As a result, the 
computation produces the same value of deflection as that produced by the  
1-kip dummy.

Positive values of 𝛿x and 𝛿y indicate that both displacements are in the 
same direction as the dummy loads. If the solution of the virtual work equa-
tion produces a negative value of displacement, the direction of the displace-
ment is opposite in sense to the direction of the dummy load. Therefore, it is 
not necessary to guess the actual direction of the displacement being com-
puted. The direction of the dummy force may be selected arbitrarily, and the 
sign of the answer will automatically indicate the correct direction of the 
displacement. A positive sign signifies the displacement is in the direction 
of the dummy force; a negative sign indicates the displacement is opposite in 
sense to the direction of the dummy load.

To evaluate the expression for virtual strain energy (FQFPL)/(AE) on the 
right side of Equation 8.24 (particularly when a truss is composed of many 
bars), many engineers use a table to organize the computations (Table 8.1 in 
Example 8.3). Terms in column 6 of the Table 8.1 equal the product of FQ, FP, 
and L divided by A. If this product is divided by E, the strain energy stored in 
the bar is established.

The total virtual strain energy stored in the truss equals the sum of the 
terms in column 6 divided by E. The value of the sum is written at the bot-
tom of column 6. If E is a constant for all bars, it can be omitted from the 
summation and then introduced in the final step of the deflec tion computa-
tion. If the value of either FQ or FP for any bar is zero, the strain energy in 
that bar is zero, and the bar can be omitted from the summation.

If several displacement components are required, more columns for 
FQ produced by other dummy loads are added to the table. Extra col-
umns for FP are also required when deflections are computed for several 
loadings.
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Compute the horizontal displacement 𝛿x of joint B of the truss shown in  
Figure 8.8a. Given: E = 30,000 kips/in.2, area of bars AD and BC = 5 in.2; 
area of all other bars = 4 in.2.

Solution
The FP bar forces produced by the P-system are shown in Figure 8.8a,  
and the FQ bar forces and reactions produced by a dummy load of 1 kip 
directed horizontally at joint B are shown in Figure 8.8b. Table 8.1 lists 
the terms required to evaluate the strain energy UQ given by the right side 
of Equation 8.24. Since E is constant, it is factored out of the summation 
and not included in the table.

Substituting ∑FQFP L/A = 1025 into Equation 8.24 and multiplying 
the right side by 12 to convert feet to inches give

  
∑Q  δ  P   = ∑ F  Q       

 F  P   L
 ___ 

AE
   =   1 __ 

E
    ∑ F  Q       

 F  P   L
 ___ 

A
    (8.24)

 1 kip ( δ  x  )  =   1 _____ 
30,000

     (1025)  (12)  

    δ  x   = 0.41 in. →  Ans.
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Figure 8.8: (a) P-system actually loads;  
(b) Q-system.

TABLE 8.1   

Member 
(1)

FQ 

kips  
(2)

FP  

kips  
(3)

L 
 ft  
(4)

A  
in.2  

(5)

FQ FP L /A 
kip2 · ft/in.2  

(6)

AB
BC
CD

AD
BD

+1
0
0

−   5 _ 4   
0

+80
+100
−80

−100
−60

20
25
20

25
15

4
5
4

5
4

+400
0
0

+625
0

∑FQFPL /A = 1025
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334  Chapter 8 ■ Work-Energy Methods for Computing Deflections

Truss Deflections Produced by Temperature  
and Fabrication Error

As the temperature of a member varies, its length changes. An increase in 
temperature causes a member to expand; a decrease in temperature pro-
duces a contraction. In either case the change in length ΔLtemp can be ex-
pressed as

   Δ  L  temp   = α ΔT L  (8.25)

where α = coefficient of thermal expansion, in./in. per degree
 ΔT = change in temperature
 L = length of bar

To compute a component of joint deflection due to a change in tempera-
ture of a truss, first we apply a dummy load. Then we assume that the change 
in length of the bars produced by the temperature change occurs. As the bars 
change in length and the truss distorts, external virtual work is done as the 
dummy load displaces. Internally, the change in length of the truss bars re-
sults in a change in strain energy UQ equal to the product of the bar forces FQ 
(produced by the dummy load) and the deformation ΔLtemp of the bars. The 
virtual work equation for computing a joint  displacement can be established 
by substituting ΔLtemp for ΔLP in Equation 8.23.

A change in bar length ΔLfabr due to a fabrication error is handled in 
exactly the same manner as a temperature change. Example 8.4 illustrates 
the computation of a component of truss displacement for both a temperature 
change and a fabrication error.

If the bars of a truss change in length simultaneously due to load, tem-
perature change, and a fabrication error, then ΔLP in Equation 8.23 is equal to 
the sum of the various effects; that is,

 
  Δ  L  P   =   

 F  P   L
 ___ 

AE
   + α ΔT L + Δ  L  fabr    (8.26)

When ΔLP given by Equation 8.26 is substituted into Equation 8.23, the gen-
eral form of the virtual work equation for trusses becomes

 
  ∑Q  δ  P   = ∑  F  Q   (  

 F  P   L
 ___ 

AE
   + α ΔT L + Δ  L  fabr  )   (8.27)
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For the truss shown in Figure 8.9a, determine the horizontal displacement 
𝛿x of joint B for a 60°F increase in temperature and the following fabrica-
tion errors: (1) bar BC fabricated 0.8 in. too short and (2) bar AB fabricated 
0.2 in. too long. Given: α = 6.5 × 10−6 in./in. per °F.

Solution
Because the structure is determinate, no bar forces are created by either 
a temperature change or a fabrication error. If the lengths of the bars 
change, they can still be connected to the supports and joined together 
at B by a pin. For the conditions specified in this example, bar AB will 
elongate and bar BC will shorten. If we imagine that the bars in their de-
formed state are connected to the pin supports at A and C (Figure 8.9c), 
bar AB will extend beyond point B a distance ΔLAB to point c and the 
top of bar BC will be located a distance ΔLBC below joint B at point a. 
If the bars are rotated about the pins, the upper ends of each bar will 
move on the arcs of circles that intersect at B′. The deflected position 
of the truss is shown by the dashed lines. Since the initial displace-
ment of each bar is directed tangent to the circle, we can assume for 
small displacements that the bars initially move in the direction of the 
tangent lines (i.e., perpendicular to the radii). For example, as shown in 
Figure 8.9d in the region between points 1 and 2, the tangent line and 
the arc coincide closely.

Changes in length of bars due to temperature increase:

  Δ  L  temp   = α (ΔT) L  (8.25)

 Bar AB:      Δ  L  temp   = 6.5 ×  10   −6  (60) 25 × 12 = 0.117 in. 

 Bar BC:        Δ  L  temp   = 6.5 ×  10   −6  (60) 20 × 12 = 0.094 in .

To determine 𝛿x, we first apply a dummy load of 1 kip at B (Figure 8.9b) 
and then allow the specified bar deformations to take place. Using 
Equation 8.27, we compute

 ∑Q  δ  P   = ∑ F  Q   Δ  L  P   = ∑ F  Q    (Δ  L  temp   + Δ  L  fabr  )  

  (1 kip)  ( δ  x  )  =   5 __ 3    (0.117 + 0.2)  +  (−   4 __ 3  )  (0.094 − 0.8)  

   δ  x   = 1.47 in. →  Ans.

E X A M P L E  8 . 4

15ʹ

20ʹ

A

B

C

(a)

Figure 8.9: (a) Truss; (b) Q-system; (c) dis-
placement of joint B produced by changes in 
length of bars; (d) for small displacements, 
the free end initially moves perpendicular to 
the bar’s axis.

A

B

C
1 kip

Q = 1 kip

(b)

4
3–FQ =

4
3kips kips4

3

5
3FQ =

x

A

B

a

LABΔ

LBCΔ Bʹ

c

C

(c)

δ

1
tangent

arc

d

2

(d )

δ

θ

lee98004_ch08_318-375.indd   335 23/12/16   4:24 pm



336  Chapter 8 ■ Work-Energy Methods for Computing Deflections

Computation of Displacements Produced  
by Support Settlements

Structures founded on compressible soils (soft clays or loose sand, for ex-
ample) often undergo significant settlements. These settlements can produce 
rotation of members and displacement of joints. If a structure is determinate, 
no internal stresses are created by a support movement because the structure 
is free to adjust to the new position of the supports. On the other hand, dif-
ferential support settlements can induce large internal forces in indetermi-
nate structures. The magnitude of these forces is a function of the member’s 
stiffness.

Virtual work provides a simple method for evaluating both the displace-
ments and rotations produced by support movements. To compute a displace-
ment due to a support movement, a dummy load is applied at the point and 
in the direction of the desired displacement. The dummy load together with 
its reactions constitute the Q-system. As the structure is subjected to the 
specified support movements, external work is done by both the dummy load 
and those of its reactions that displace. Since a  support movement produces 
no internal distortion of members or structural elements if the structure is 
determinate, the virtual strain energy is zero.

Example 8.5 illustrates the use of virtual work to compute joint displace-
ments and rotations produced by the settlements of the supports of a simple 
truss. The same procedure is applicable to determinate beams and frames.

Inelastic Behavior

The expression for strain energy given by the right side of Equation 8.24 
is based on the assumption that all truss bars behave elastically; that is, the 
level of stress does not exceed the proportional limit σPL of the material. To 
extend virtual work to trusses that contain bars stressed beyond the propor-
tional limit into the inelastic region, we must have the stress-strain curve of 
the material. To establish the axial deformation of a bar, we compute the 
stress in the bar, use the stress to establish the strain, and then evaluate the 
change in length ΔLP using the basic relationship

  ΔLP = ϵL (8.28)

Example 8.8 illustrates the procedure to calculate the deflection of a joint in 
a truss that contains a bar stressed into the inelastic region.
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If support A of the truss in Figure 8.10a settles 0.6 in. and moves to the left 
0.2 in., determine (a) the horizontal displacement 𝛿x of joint B and (b) the 
rotation θ of bar BC.

Solution
(a)  To compute 𝛿x, apply a 1-kip dummy load horizontally at B (Figure 8.10b) 

and compute all reactions. Assume that the support movements 
 occur, evaluate the external virtual work, and equate to zero. Since no 
FP  bar forces are produced by the support movement, FP = 0 in 
Equation 8.24, yielding

 ∑Q  δ  P   = 0 

  (1 kip)  ( δ  x  )  + 1 (0.2 in.)  +   4 __ 3   (0.6 in.)  = 0 

   δ  x   = −1 in.  Ans.
The minus sign indicates 𝛿x is directed to the left.

(b)  To compute the rotation θ of member BC, we apply a dummy load of  
1 kip·ft to bar BC anywhere between its ends and compute the support  
reactions (Figure 8.10c). As the support movements shown in  
Figure 8.10a occur, virtual work is done by both the dummy load and 
the reactions at those supports that displace in the direction of the reac-
tions. In accordance with Equation 8.2, the virtual work produced by 
a unit moment MQ used as a dummy load equals MQθ. With this term 
added to WQ and with UQ = 0, the expression for virtual work equals

  W  Q   = ∑ (Q  δ  P   +  M  Q    θ  P  )  = 0 

 Expressing all terms in units of kips·in (multiply MQ by 12) gives

 1 (12)  ( θ  P  )  −   1 __ 15    (0.6)  −   1 __ 20    (0.2)  = 0 

   θ  P   = 0.00417 rad  Ans.

 To verify the computation of θ for bar BC, we can also divide 𝛿x by 20 ft.

  θ  P   =   
 δ  x   __ 
L

   =   1 in ________ 
 [20 (12) ]  in

   = 0.00417 rad 

E X A M P L E  8 . 5

Figure 8.10: (a) Deflected shape (see dashed line) produced by the movement of 
 support A (no FP forces created); (b) Q-system to compute the horizontal displacement 
of joint B; (c) Q-system to compute the rotation of bar BC.
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338  Chapter 8 ■ Work-Energy Methods for Computing Deflections

E X A M P L E  8 . 6 Determine the horizontal displacement 𝛿CX of joint C of the truss in 
 Figure 8.11a. In addition to the 48-kip load applied at joint B, bars AB 
and BC are subjected to a temperature change ΔT of +100°F [α = 6.5 × 
10−6 in./in./°F)], bars AB and CD are each constructed    3 _ 4    in. too long, and 
support A isconstructed    3 _ 5    in. below point A. For all bars A = 2 in.2 and 
E =  30,000 kips/in.2. How much should bars CD and DE each be length-
ened or shortened if the net horizontal displacement at joint C is to be zero 
after the various actions listed above occur?

Figure 8.11: (a) Truss with FP forces shown on bars (P-system); (b) bar forces FQ and 
 reactions produced by dummy load of 1 kip at joint C (Q-system).
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Solution
Apply a dummy load of 1 kip horizontally at C, as shown in Figure 8.11b, and 
compute the bar forces FQ and the reactions. With the dummy load in place, 
the 48-kip load is applied at B and the support settlement at A, and the changes 
in bar lengths due to the various effects are assumed to occur. The support 
settlement produces external virtual work; the load, temperature change, and  
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fabrication errors create virtual strain energy as bars stressed by FQ 
forces deform. The virtual strain energy will be zero in any bar in which 
FQ is zero or in which the change in length is zero. Therefore, we only 
have to evaluate the virtual strain energy in bars AB, AE, CD, and BC 
using Equation 8.27.

  ∑Q  δ  p   = ∑ F  Q   (  
 F  P   L

 ___ 
AE

   + α ΔT L + Δ  L  fabr  )   (8.27)

  (1 kip)  ( δ  CX  )  +   4 __ 
3
    kips (  3 __ 

5
  )  =    5 __ 

3
    kips [  40 (25 × 12)  _________ 

2 (30,000) 
   + 6.5 ×  10   −6  (100)  (25 × 12)  +   3 __ 

4
  ]  

  −   (1 kip)  [   
(−24)  (30 × 12)   __________ 

2 (30,000) 
  ]  +  (−    4 __ 

3
    kips)  (  3 __ 

4
  )  

  +   5 __ 3    kips  [6.5 ×  10   −6  (100)  (25 × 12) ]  

    δ  CX   = 0.577 in. to the right  Ans.

Bar AB

Bar AE Bar CD

Bar BC

Compute the change in length of bars DE and CD to produce zero horizon-
tal displacement at joint C.

   ∑Q  δ  P   = ∑ F  Q    Δ  L  P    (8.23)

  1 kip (−0.577 in.)  = −   4 __ 3    (Δ  L  P  ) 2 

  Δ  L  P   = 0.22 in.   Ans.

Since ΔL is positive, bars should be lengthened.
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E X A M P L E  8 . 7 (a)  Determine the relative movement between joints B and E, along the 
diagonal line between them, produced by the 60-kip load at joint F 
(Figure 8.12a). Area of bars AF, FE, and ED = 1.5 in.2, area of all 
other bars = 2 in.2, and E = 30,000 kips/in.2.

(b)  Determine the vertical deflection of joint F produced by the 60-kip 
load.

(c)  If the initial elevation of joint F in the unstressed truss is to be 1.2 in. 
above a horizontal line connecting supports A and D, determine the 
amount each bar of the bottom chord should be shortened.

Solution
(a)  To determine the relative displacement between joints B and E, we use 

a dummy load consisting of two 1-kip collinear forces at joints B and 
E, as shown in Figure 8.12b. Since E is a constant for all bars, it can 
be factored out of the summation on the right side of Equation 8.24,  
producing

  ∑Q  δ  P   = ∑  F  Q       
 F  P   L

 ___ 
AE

   =   1 __ 
E

    ∑  F  Q       
 F  P   L

 ___ 
A

    (8.24)

  where the quantity ∑FQ(FPL/A) is evaluated in column 6 of Table 8.2. 
Substituting into Equation 8.24 and expressing units in kips and inches 
yield

 1 kip ( δ  1  )  + 1 kip ( δ  2  )  =   1 _____ 
30,000

    (37.5)  (12)  

  Factoring out 1 kip on the left side of the equation and letting 𝛿1 + 𝛿2 = 
𝛿Rel give

  δ  Rel   =  δ  1   +  δ  2   = 0.015 in.  Ans.

  Since the sign of the relative displacement is positive, joints B and E 
move toward each other. In this example we are not able to establish 
the absolute values of 𝛿1 and 𝛿2 because we cannot solve for two 
unknowns with one equation. To compute 𝛿1, for example, we must 
apply a single diagonal dummy load to joint B and apply the virtual 
work equation.

(b)  To determine the vertical deflection of joint F produced by the 60-kip 
load in Figure 8.12a, we must apply a dummy load at joint F in the ver-
tical direction. Although we typically use a 1-kip dummy load (as pre-
viously discussed in Example 8.2), the magnitude of the dummy load is 
arbitrary. Therefore, the actual 60-kip load can also serve as the dummy 
load, and the truss analysis for the P-system shown in Figure 8.12a 

Figure 8.12: (a) P-system with bar forces FP;  
(b) Q-system with FQ forces shown on bars.
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also supplies the values of FQ. Using Equation 8.24 with FQ = FP and 
therefore Q = 60 kips, we obtain

 
∑Q  δ  P   = ∑  F  Q       

 F  P   L
 ___ 

AE
   =   1 __ 

E
    ∑  F  P  2      L __ 

A
   

  where ∑F2 
P (L /A), evaluated in column 7 of Table 8.2, equals 83,125. 

Solving for 𝛿P gives

  (60)   δ  P   =   1 _____ 
30,000

    (83,125)  (12)  

 𝛿P = 0.554 in.↓ Ans.

(c)  Since the applied load of 60 kips in Figure 8.12a acts in the vertical 
direction, we can again use it as the dummy load to evaluate the vertical 
displacement (camber) of joint F due to shortening of the bottom chord 
bars. Using Equation 8.23, in which ΔLP represents the amount each 
of the three lower chord bars is shortened, we find for 𝛿P = −1.2 in.

 ∑Q  δ  P   = ∑  F  Q   ΔL 

  (60 kips)  (−1.2)  =  (30 kips)  (Δ  L  P  )  +  (15 kips)  (Δ  L  P  )  
 +  (15 kips)  (Δ  L  P  )  

  Δ  L  P   = −1.2 in . Ans.

A negative 1.2 in. is used for 𝛿P on the left-hand side of Equation 8.23 be-
cause the displacement of the joint is opposite in sense to the 60-kip load.

TABLE 8.2   

Member  
(1)

FQ 

kips  
(2)

FP  

kips  
(3)

L 
ft  

(4)

A  
in.2  

(5)

FQFP     
L

 __ 
A

   

(kip2 · ft)/in.2  
(6) 

F2
p     

L
 __ 

A
   

(kip2· ft)/in.2)  
(7)

AB
BC
CD
DE
EF
FA
BF
FC
CE

0
−   3 _ 5   

0
0

−   3 _ 5   
0

−   4 _ 5   
+1
−   4 _ 5   

−50
−30

−25
+15
+15

+30
+40

+25
0

25
15
25
15
15
15
20
25
20

2
2
2
1.5
1.5
1.5
2
2
2

0
+135

0
0

−90
0

−320
+312.5

0

31,250
6,750
7,812.5
2,250
2,250
9,000

16,000
7,812.5

0

∑FQFP    L __ 
A

    = +37.5   ∑F2
P    L __ 

A
    = 83,125
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E X A M P L E  8 . 8 Compute the vertical displacement 𝛿y of joint C for the truss shown in 
Figure 8.13a. The truss bars are fabricated from an aluminum alloy whose  
stress-strain curve (Figure 8.13c) is valid for both uniaxial tension and com -
pression. The proportional limit, which occurs at a stress of 20 kips/in.2, 
divides elastic from inelastic behavior. Area of bar AC = 1 in.2, and area 
of bar BC = 0.5 in.2. In the elastic region E = 10,000 kips/in.2.

Solution
The P-system with the FP forces noted on the bars is shown in Figure 8.13a. 
The Q-system with the FQ forces is shown in Figure 8.13b. To establish if 
bars behave elastically or are stressed into the inelastic region, we compute 
the axial stress and compare it to the proportional limit stress.
For bar AC,

  σ  AC   =   
FP ______ 
A

   =   12.5 ______ 
1
   = 12.5 kips/in.2  < σPL  behavior elastic

Using Equation 8.8 gives

  ΔL  AC   =   
FPL

 ______ 
AE

   =   
12.5(25 × 12)

  ______ 
1(10,000)

   = 0.375 in .

For bar BC,

  σ  BC   =   F ______ 
A

   =   12.5 ______ 
0.5

   

  = 25.0 kips/in.2 > σPL bar stressed into inelastic region

 To compute ΔLP, we use Figure 8.13c to establish ϵ. For σ = 25 ksi, we 
read ϵ = 0.008 in./in.

ΔLBC = ϵL = −0.008(25 × 12) = −2.4 in.  (shortens) Ans.

Compute 𝛿y, using Equation 8.23.

(1 kip)(𝛿y) = ∑FQ ΔLP 

𝛿 y = (−   5 _ 8   )(−2.4) + (−   5 _ 8   )(0.375)

 = 1.27 in.↓ Ans.
Figure 8.13: (a) P-system showing bar forces 
FP; (b) Q-system showing FQ bar forces; 
(c)  stress-strain curve (inelastic behavior 
 occurs when stress exceeds 20 kips/in.2).
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Virtual Work: Beams and Frames
8.6

Both shear and moment contribute to the deformations of beams. However, 
because the deformations produced by shear forces in beams of normal pro-
portions are small (typically, less than 1 percent of the flexural deformations), 
we will neglect them in this book (the standard practice of designers) and 
consider only deformations produced by moment. If a beam is deep (the ratio 
of span to depth is on the order of 2 or 3), or if a beam web is thin or con-
structed from a material (wood, for example) with a low shear modulus, shear 
deformations may be significant and should be investigated.

The procedure to compute a deflection component of a beam by vir-
tual work is similar to that for a truss (except that the expression for strain 
energy is obviously different). The analyst applies a dummy load Q at 
the point where the deflection is to be evaluated. Although the dummy 
load can have any value, typically we use a unit load of 1 kip or 1 kN to 
compute a linear displacement and a unit moment of 1 kip  · ft or 1 kN · m 
to compute a rotational displacement. For example, to compute the deflec-
tion at point C of the beam in Figure 8.14, we apply a 1-kip dummy load 
Q at C. The dummy load produces a moment MQ on a typical infinitesimal 
beam element of length dx, as shown in Figure 8.14b. With the dummy 
load in place, the real loads (the P-system) are applied to the beam. The 
MP moments produced by the P-system bend the beam into its equilibrium 
position, as shown by the dashed line in Figure 8.14a. Figure 8.14c shows 
a short segment of the beam cut from the unstressed member by two ver-
tical planes a distance dx apart. The element is located a distance x from 
support A. As the forces of the P-system increase, the sides of the element 
rotate through an angle dθ because of the MP moments. Neglecting shear 
deformations, we assume that plane sections before bending remain plane 
after bending; therefore, longitudinal deformations of the element vary 
linearly from the neutral axis of the cross section. Using Equation 7.13, 
we can express dθ as

   dθ =  M  P     dx __ 
EI

    (7.13)

As the beam deflects, external virtual work WQ is done by the dummy 
load Q (and its reactions if supports displace in the direction of the reactions) 
moving through a distance equal to the actual displacement 𝛿P in the direction 
of the dummy load, and we can write

    W  Q   = ∑Q  δ  P    (8.20)

Virtual strain energy dUQ is stored in each infinitesimal element as the 
moment MQ moves through the angle dθ produced by the P-system; thus we 
can write

   d  U  Q   =  M  Q   dθ  (8.14)
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dx
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MP
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MQ
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θ

Figure 8.14: (a) P-system; (b) Q-system 
with dummy load at C; (c) infinitesimal ele-
ment, dθ produced by MP.
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To establish the magnitude of the total virtual strain energy UQ stored in the 
beam, we must sum—typically by integration—the energy contained in all the 
infinitesimal elements of the beam. Integrating both sides of Equation 8.14 over 
the length L of the beam gives

  UQ =   ∫ 
 x = 0

  
 x = L

    MQ dθ (8.29)

Since the principle of conservation of energy requires that the external  
virtual work WQ equal the virtual strain energy UQ, we can equate WQ given by 
Equation 8.21a and UQ given by Equation 8.29 to produce Equation 8.30, the 
basic virtual work equation for beams

  ∑Q𝛿 P =   ∫ 
 x = 0

  
 x = L

    MQ dθ (8.30)

or using Equation 7.13 to express dθ in terms of the moment MP and the 
properties of the cross section, we have

 
 ∑Q𝛿 P =   ∫ 

 x = 0
  

 x = L

    MQ    
MP dx

 __ 
EI

    (8.31)

where Q = dummy load and its reactions
 𝛿P =  actual displacement or component of displacement in direc-

tion of dummy load produced by real loads (the P-system)
 MQ = moment produced by dummy load
 MP = moment produced by real loads
 E = modulus of elasticity
 I =  moment of inertia of beam’s cross section with respect to an 

axis through centroid

If a unit moment QM = 1 kip·ft is used as a dummy load to establish the 
change in slope θP produced at a point on the axis of a beam by the actual 
loads, the external virtual work WQ equals QMθP and the virtual work equa-
tion is written as

  ∑QM𝜃P =   ∫ 
 x = 0

  
 x = L

    MQ    
MP dx

 __ 
EI

    (8.32)

To solve Equation 8.31 or 8.32 for the deflection 𝛿P or the change in slope θP,  
the moments MQ and MP must be expressed as a function of x, the distance 
along the beam’s axis, so the right side of the virtual work equation can be 
integrated. If the cross section of the beam is constant along its length, and 
if the beam is fabricated from a single material whose properties are uniform, 
EI is a constant. 
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8.6 ■ Virtual Work: Beams and Frames  345

Alternate Procedure to Compute UQ

As an alternate procedure to evaluate the integral on the right-hand side 
of Equation 8.32 for a variety of MQ and MP diagrams of  simple geometric 
shapes and for members with a constant value of EI, a graphical method en-
titled “Values of Product Integrals” is provided in the Appendix Table A.2 of 
the text. For example, if both MQ and MP vary linearly within the span and EI 
is constant, then the integral can be expressed as follows:

 
    ∫ 

 x = 0
  

 x = L

    MQMP    dx __ 
EI

    =    1 __ 
EI

    (CM1M3L) (8.33)

where C = constant listed in product integrals table
 M1 = magnitude of MQ
 M3 = magnitude of MP
 L = length of member

See Table A.2 for other cases of MQ and MP distributions. This proce-
dure, together with the classical methods of integration, is illus trated in 
 Examples 8.10 and 8.11.

If the depth of the member varies along the longitudinal axis or if the 
properties of the material change with distance along the axis, then EI is not 
a constant and must be expressed as a function of x to permit the integral for 
virtual strain energy to be evaluated. As an alternative to integration, which 
may be difficult, the beam may be divided into a number of segments and a 
finite summation used. This procedure is illustrated in Example 8.16.

In the examples that follow, we will use Equations 8.31, 8.32, and 8.33 
to compute the deflections and slopes at various points along the axis of 
determinate beams and frames. The method can also be used to  compute 
deflections of indeterminate beams after the structure is  analyzed and the 
moment diagrams established.
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E X A M P L E  8 . 9 Using virtual work, compute (a) the deflection 𝛿B and (b) the slope θB at the 
tip of the uniformly loaded cantilever beam in Figure 8.15a. EI is constant.

Solution
(a)  To compute the vertical deflection at B, we apply a dummy load of 

1 kip vertically at point B (Figure 8.15b). The moment MQ, produced 
by the dummy load on an element of infinitesimal length dx located a 
distance x from point B, is evaluated by cutting the free body shown in  
Figure 8.15d. Summing moments about the cut gives

   M  Q   =  (1 kip)  (x)  = x kip ⋅ ft  (1)

  In this computation we arbitrarily assume that the moment is positive 
when it acts counterclockwise on the end of the section.
    With the dummy load on the beam, we imagine that the uniform  
load w (shown in Figure 8.15a) is applied to the beam—the uniform 
load and the dummy load are shown separately for clarity. The dummy 
load, moving through a displacement 𝛿 B, does virtual work equal to  
  W  Q   =  (1 kip)  ( δ  B  ) . 
    We evaluate MP, the moment produced by the uniform load, with 
the free body shown in Figure 8.15c. Summing moments about the cut,  
we find

   M  P   = wx    x __ 
2
   =   w  x   2  ___ 

2
    (2)

  Substituting MQ and MP given by Equations 1 and 2 in to Equation 8.31 
and integrating, we compute 𝛿B.

WQ = UQ; ∑ Q𝛿 P =   ∫ 
 0
  

 L

    MQ    
MP dx

 __ 
EI

    =   ∫ 
 0
  

 L

    x    wx2 dx __ 
2EI

    

 1 kip (𝛿 B) =    w ____ 
2EI

      [   x
4
 ____ 

4
   ]      ; 𝛿 B =    wL4

 __ 
8EI

    ↓   Ans.

(b)   To compute the slope at B, we apply a 1 kip · ft dummy load at B 
(Figure 8.15e). Cutting the free body shown in Figure 8.15f, we sum 
moments about the cut to evaluate MQ as MQ = 1 kip · ft.
    Since the initial slope at B was zero before load was applied, θB, 
the final slope, will equal the change in slope given by Equation 8.32.

∑QMθP =   ∫ 
 0
  

 L

    MQ    
MP dx

 __ 
EI

    =   ∫ 
 0
  

 L

       
(1)(wx2)

 __ 
2EI

    dx

1 kip (θB) =   [   wx3
 ____ 

6EI
   ]    

 θB =    wL3
 __ 

6EI
    ↷  Ans.

L

0

L

0

w

wV

x
2

x

A

B

L

B
B

(a)

x

x

x

A

R = wx

B

(b)

(c)

Q = 1 kip

1 kip

A

B

(e)

B

dx

dx

wx2

2MP =

V

x

(d )

B

MQ = x

V

x

( f )

B

MQ = 1

QM = 1 kip • ft

1 kip • ft

δ
θ

Figure 8.15: (a) P-system; (b) Q-system for 
computation of 𝛿B; (c) free body to evaluate 
MP; (d) free body to evaluate MQ required for 
com putation of 𝛿B; (e) Q-system for computa-
tion of θB; ( f ) free body to evaluate MQ for 
computation of θB.
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8.6 ■ Virtual Work: Beams and Frames  347

Compute the vertical displacement and the slope at B produced by the uni-
formly distributed load w in Figure 8.16a. EI is constant. Use the product 
integrals provided in Appendix Table A.2.

Solution
Evaluate the strain energy for the computation of the vertical deflection at 
point B in Figure 8.16a.

 1 kip(𝛿B) =    1 ___ 
EI

    (CM1M3L) (8.33)

 
 
=   1 __ 

EI
   [  1 __ 

4
    (−L)  (  −w  L   2  ____ 

2
  )  (L) ]  =   w  L   4  ___ 

8EI
    Ans.

Evaluate the strain energy for the computation of the slope at point B in  
Figure 8.16a.

  1 kip ⋅ ft ( θ  B  )  =   1 __ 
EI

    (C  M  1    M  3   L)   (8.33)

  
=   1 __ 

EI
   [  1 __ 

3
   (−1)  (−   w  L   2  ____ 

2
  )  (L) ]  =   w  L   3  ____ 

6EI
    Ans.

E X A M P L E  8 . 1 0

Figure 8.16: Computation of strain energy us-
ing Product Integrals Table A.3: (a) P-system; 
(b)  moment diagram for the uniformly 
loaded cantilever beam in (a); (c) Q-system 
for deflection at point B; (d )  moment dia-
gram produced by the Q-system in (c);  
(e) Q-system for slope at B; ( f ) moment dia-
gram for Q-system in (e).

Mp = wL2

2

w

A B

L

B
B

(a)

θ
δ

wL2

2M3 = Mp = –

M3

(b)

parabola

MQ = L
A B

(c)

Q = 1 kip

M1 = –L

M1

(d)

MQ = 1 kip • ft QM = 1 kip • ft
A B

(e)

MQ = –1 kip • ft
MQ = M1

( f )
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E X A M P L E  8 . 1 1 (a)  Compute the vertical deflection at midspan 𝛿C for the beam in 
Figure 8.17a, using virtual work. Given: EI is constant, I = 240 in.4,  
E = 29,000 kips/in.2. (b) Recompute 𝛿c using Equation 8.33 to 
 evaluate UQ.

Figure 8.17: (a) Real beam (the P-system).

5ʹ 5ʹ 10ʹ

A B C D

P = 16 kips

C

(a)

d = 15ʹc = 5ʹ

12 kips 4 kips

x1 x3x2

M3 = Mp = 60 kip • ft

δ

Solution
(a)  In this example it is not possible to write a single expression for MQ and 

MP that is valid over the entire length of the beam. Since the loads on the 
free bodies change with distance along the beam axis, the expression for 
either MQ or MP at a section will change each time the section passes a 
load in either the real or the dummy system. Therefore, for the beam in  
Figure 8.17, we must use three integrals to evaluate the total virtual 
strain energy. For clarity we will denote the region in which a particular 
free body is valid by adding a subscript to the variable x that represents 
the position of the section where the moment is evaluated. The origins 
shown in Figure 8.17 are arbitrary. If other positions were selected for 
the origins, the results would be the same, only the limits of a particular 
x would change. The expressions for MQ and MP in each section of the 
beam are as follows:

Segment Origin Range of x MQ MP

AB

BC

DC 

A

A

D

0 ≤ x1 ≤ 5 ft

  5 ≤ x2 ≤ 10 ft

  0 ≤ x3 ≤ 10 ft

   1 _ 2   x1

   1 _ 2   x2

   1 _ 2   x3

12x1

12x2 − 16(x2 − 5)

4x3
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8.6 ■ Virtual Work: Beams and Frames  349

Figure 8.17: (b) Dummy load and reactions (the 
Q-system).

A DC

Q = 1 kip

1
2

1
2

(b)

kip kip

x1 x3x2

b = 10ʹ

M1 = MQ = 5 kip • ft

a = 10ʹ

  In the expressions for MQ and MP, positive moment is defined as mo-
ment that produces compression on the top fibers of the cross section. 
Using Equation 8.31, we solve for the deflection.

 Q  δ  C   =    ∑ 
i=1

  
3
      

 

       ∫    
 

      MQ   
MP  dx

 ____ 
EI

   

(1 kip)(𝛿C) =   ∫ 
 0
  

 5

        
x1 __ 
2
    (12x1)    

dx ___ 
EI

     +   ∫ 
 5
  

 10

        
x2 __ 
2
    [12x2 − 16(x2 − 5)]   dx ____ 

EI 
    

+  ∫ 
 5
  

 10

        
x3 __ 
2
    (4x3)    

dx ____ 
EI 

   

𝛿C =    
250 _____ 
EI

   +   916.666 _____ 
  EI    

   +   666.666 _____ 
 EI    

   

   =   1833.33 _______ 
EI

   =   1833.33 (1728)   ___________  
240 (29,000) 

   = 0.455 in.  Ans.

(b)  Recompute 𝛿c using Equation 8.33 (see the product integral value in 
Appendix Table A.2).

 
Q ⋅  δ  c   =  U  Q   =   1 __ 

EI
   [  1 __ 

3
   −   

  (a − c)    2 
 _____ 

6ad
  ]   M  1    M  3   L 

 
1 ⋅  δ  c   =   1 _________ 

29,000 (240) 
   [  1 __ 

3
   −     (10 − 5)    2  _________ 

6 × 10 × 15
  ] 5 × 60 × 20 × 1728 

      δ  c   = 0.455 in . Ans.
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E X A M P L E  8 . 1 2 Compute the deflection at point C for the beam shown in Figure 8.18a. 
Given: EI is constant.

Solution
Use Equation 8.31. To evaluate the virtual strain energy UQ, we must di-
vide the beam into three segments. The following tabulation summarizes 
the expressions for MP and MQ:

B C
D

Dy = 20 kNBy = 22 kN

A

10 kN

MP

MPMP

(a)

2 m 3 m 4 m

w = 8 kN/m

x1 x2 x3

B C
DA

Q = 1 kN

kNkN

MQMQMQ

(b)

3
7

x1 x2 x3

4
7

ΔC

(c)

Figure 8.18: (a) P-system showing the ori-
gins for the coordinate system; (b) Q-system; 
(c) the deflected shape.

Segment

x

MP 

kN · m
MQ 

kN · mOrigin
Range  

m

AB
BC
DC 

A
B
D

0–2
0–3
0–4

−10x1

−10(x2 + 2) + 22x2

20x3 − 8x3(x3/2)

0
   4 _ 7   x2

   3 _ 7   x3

Since MQ = 0 in segment AB, the entire integral for this segment will equal 
zero; therefore, we only have to evaluate the integrals for segments BC and CD.

 (1 kip) (ΔC) = ∑   ∫    
 

    MQ    
MP dx

 _____ 
EI

    (8.31)

ΔC =   ∫ 
 0
  

 2

    (0)(−10x1)    
dx ___ 
EI

    +   ∫ 
 0
  

 3

        4 __ 
7
   x2  (12x2 − 20)    dx ___ 

EI
    +   ∫ 

 0
  

 4

        3 __ 
7
   x3 (20x3 − 4x2

3)    
dx ___ 
EI

    

Integrating and substituting the limits yield

ΔC = 0 +     
10.29 _____ 

EI
   +   73.14 _____ 

  EI    
   =   83.43 _____ 

 EI    
   ↓  Ans.

The positive value of ΔC indicates that the deflection is down (in the direc-
tion of the dummy load). A sketch of the beam’s deflected shape is shown in  
Figure 8.18c.
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8.6 ■ Virtual Work: Beams and Frames  351

The beam in Figure 8.19 is to be fabricated in the factory with a constant radius 
of curvature so that a camber of 1.5 in. is created at midspan. Using virtual 
work, determine the required radius of curvature R. Given: EI is constant.

E X A M P L E  8 . 1 3

Q = 1 kip

kip kip

R = ?

A B

A B

(a)

(b)

L = 30ʹ

1.5ʺ

1
2

1
2

1
2

MQ = x

x

Figure 8.19: (a) Beam rolled with a constant 
radius of curvature R to produce a 1.5-in. 
camber at midspan (P-system); (b) Q-system.

Solution
Use Equation 8.30.

 ∑Q𝛿 P =   ∫    
 

    MQ  d𝜃 (8.30)

Since dθ/dx = 1/R and dθ = dx/R (see Equation 7.4)

  δ  P   =   1.5 in. _____ 
12

   = 0.125 ft   M  Q   =   1 __ 2    x   (Figure 8.19b)  

Substituting dθ, 𝛿P, and MQ into Equation 8.30 (because of symmetry we 
can integrate from 0 to 15 and double the value) gives

(1 kip) (0.125 ft) = 2   ∫ 
 0
  

 15

        x ____ 
2
       dx ___ 

R
    

Integrating and substituting limits then give

 0.125 =   225 ___ 
2R

   

 R = 900 ft  Ans.
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E X A M P L E  8 . 1 4 Considering the strain energy associated with both axial load and moment, 
compute the horizontal deflection of joint C of the frame in Figure 8.20a. 
Members are of constant cross section with I = 600 in.4, A = 13 in.2, and  
E = 29,000 kips/in.2.

Figure 8.20: (a) Details of frame; (b) P-system; 
(c) Q-system.

A

B

C D

(a)

18ʹ

9ʹ

6ʹ

P = 24 kips

A

B

x

C D

(b)

24 kips

24 kips

8 kips

8 kips
x

x

Q = 1 kip

1 kip

kip

kip

x

x

x

A

B

C D

(c)

5
6

5
6

Solution
Determine the internal forces produced by the P and Q-systems 
(Figure 8.20b and c).
 From A to B, x = 0 to x = 6 ft:

  M  P   = 24 ⋅ x   F  P   = +8 kips  (tension)   

  M  Q   = 1 ⋅ x     F  Q   = +   
5 kips

 _____ 
6
     (tension)  
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From B to C, x = 6 to x = 15 ft:

  M  P   = 24x − 24 (x − 6)  = 144 kip ⋅ ft   F  P   = 8 kips 

  M  Q   = 1 ⋅ x               F  Q   =   
5 kips

 _____ 
6
   

From D to C, x = 0 to x = 18 ft:

  M  P   = 8x   F  P   = 0 

  M  Q   =   5 __ 
6
    x     F  Q   = 0 

Compute the horizontal displacement 𝛿CH using virtual work. Consider both 
flexural and axial deformations in evaluating UQ. Only member AC carries 
axial load.

  W  Q   =  U  Q   

∑Q𝛿 CH = ∑  ∫    
 

         
MQMP  dx

 ________ 
EI

    + ∑    
FQFPL

 ______ 
AE

   

1 kip · 𝛿 CH =   ∫ 
 0
  

 6

        
x(24x)dx

 ____ 
EI

    +   ∫ 
 6
  

 15

        
x(144)dx

 ____ 
EI

    +   ∫ 
 0
  

 18

         
(5x/6)(8x)dx

 ____ 
EI

    

  +    
(5/6)  (8)  (15 × 12)   ____________ 

AE
   

 =   [  8  x   3  ___ 
EI

  ]   
0
  

6

  +   [  72  x   2  ____ 
EI

  ]   
6
  

15

  +   [  20  x   3  dx ______ 
9EI

  ]   
0
  

18

  +   1200 ____ 
AE

   

  =   
28,296 (1728) 

  __________ 
600 (29,000) 

   +   1200 ________ 
13 (29,000) 

   

 = 2.8 in. + 0.0032 in.  round to 2.8 in.  Ans.

In the equation above, 2.8 in. represents the deflection produced by the 
flexural deformations, and 0.0032 in. is the increment of deflection pro-
duced by the axial deformation of the column. In the majority of structures 
in which deformations are produced by both axial load and flexure, the 
axial deformations, which are very small compared to the flexural defor-
mations, may be neglected.
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E X A M P L E  8 . 1 5 Under the 5-kip load the support at A rotates 0.002 rad clockwise and settles 
0.26 in. (Figure 8.21a). Determine the total vertical deflection at D due to 
all effects. Consider bending deformations of the member only (i.e., neglect 
axial deformations). Given: I = 1200 in.4, E = 29,000 kips/in.2.

Solution
Since the moment of inertia between points A and B is twice as large as that 
of the balance of the bent member, we must set up separate integrals for the 
internal virtual strain energy between points AB, BC, and DC. Figure 8.21b 
and c shows the origins of the x’s used to express MQ and MP in terms of  
the applied forces. The expressions for MQ and MP to be substituted into 
Equation 8.31 follow.

Segment

x

MP, 
kip ·ft

MQ, 
kip · ftOrigin

Range,  
ft

AB
BC
DC

A
B
D

0–10
0–10
0–6

−80 + 4x1
−40 + 4x2

0

−22 + 0.8x1
−14 + 0.8x2

−x3

Since MP = 0, the virtual strain energy—the product of MQ and MP—
equals zero between D and C; therefore, the integral for UQ does not have 
to be set up in that region.

Compute 𝛿D using Equation 8.31. Since support A rotates 0.002 rad 
and settles 0.26 in., the external virtual work at A done by the reactions of 
the dummy load must be included in the external virtual work.

  W  Q   =  U  Q   

∑ MQθP + Q𝛿 P =∑   ∫    
 

     MQ    
MP dx

 _____ 
EI

    − 22 (12) (0.002) − 1(0.26) + 1(𝛿 D)

=   ∫ 
 0
  

 10

    (−22 + 0.8x1)(−80 + 4x1)    
dx _____ 

E(2I)
   

+   ∫ 
 0
  

 10

    (−14 + 0.8x2)(−40 + 4x2)    
dx _____ 
EI

   

  
− 0.528 − 0.26 +  δ  D   =   7800 (1728)  __________  

1200 (29,000) 
   

𝛿 D = 1.18 in. ↓ Ans.

Figure 8.21: (a) A 5-kip load produces 
 settlement and rotation of support A and 
bending of member ABC; (b) P-system 
 [support A also rotates and settles as shown 
in (a)]; (c)  Q-system with dummy load of 
1 kip downward at D.

A

B

C D

P = 5 kips

(b)

80 kip • ft

D

5 kips
4 kips3 kips

x1

x2

x3

MP

MP

δ

A

B

C
D

1 kip

(c)

22 kip • ft

1 kip
0.8 kip0.6 kip

x1

x2

x3

MQ

MQ

MQ

A

B

2I

I
I

C D

P = 5 kips

A

(a)

= 0.002 rad

A= 0.26ʺ

8ʹ 8ʹ

10ʹ

10ʹ

6ʹ

12ʹ

δ

θ
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8.7 ■ Finite Summation  355

Finite Summation
8.7

The structures that we have previously analyzed by virtual work were com-
posed of members of constant cross section (i.e., prismatic members) or of 
members that consisted of several segments of constant cross section. If the 
depth or width of a member varies with distance along the member’s axis, the 
member is nonprismatic. The moment of inertia I of a nonprismatic member 
will, of course, vary with distance along the member’s longitudinal axis. If 
deflections of beams or frames containing nonprismatic members are to be 
computed by virtual work using Equation 8.31 or 8.32, the moment of inertia 
in the strain energy term must be expressed as a function of x in order to carry 
out the integration. If the functional relationship for the moment of inertia is 
complex, expressing it as a function of x may be difficult. In this situation, we 
can simplify the computation of the strain energy by replacing the integration 
(an infini tesimal summation) by a finite summation.

In a finite summation we divide a member into a series of segments, often of 
identical length. The properties of each segment are assumed to be constant over 
the length of a segment, and the moment of inertia or any other property is based 
on the area of the cross section at the midpoint of the segment. To evaluate the 
virtual strain energy UQ contained in the member, we sum the contributions of 
all segments. We further simplify the summation by assuming that moments MQ 
and MP are constant over the length of the segment and equal to the values at the 
center of the segment. We can represent the virtual strain energy in a finite sum-
mation by the following equation:

  UQ =   ∑ 
1
  

N
   MQMP      

Δxn ____ 
EIn

    (8.34)

where Δxn = length of segment n
 In =  moment of inertia of a segment based on area of midpoint 

cross section
 MQ =  moment at midpoint of segment produced by dummy load 

(Q-system)
 MP =  moment at midpoint of segment produced by real loads  

(P-system)
 E = modulus of elasticity
 N = number of segments

Although a finite summation produces an approximate value of strain 
energy, the accuracy of the result is usually good even when a small num-
ber of segments (say, five or six) are used. If the cross section of a member 
changes rapidly in a certain region, smaller length segments should be used to 
model the variation in moment of inertia. On the other hand, if the variation in 
cross section is small along the length of a member, the number of segments 
can be reduced. If all segments are the same length, the computations can be 
simplified by factoring Δxn out of the summation.
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E X A M P L E  8 . 1 6 Using a finite summation, compute the deflection 𝛿B of the tip of the can-
tilever beam in Figure 8.22a. The 12-in.-wide beam has a uniform taper, 
and E = 3000 kips/in.2.

(a)

A B

P = 2.4 kips

A

A
8ʹ

20ʺ
12ʺ

12ʺ

section A-A

varies

(b)

A B

P = 2.4 kips

1ʹ

4 3 2 1

3ʹ
5ʹ

7ʹ

(c)

A B

Q = 1 kip

1ʹ

4 3 2 1 12ʺ

3ʹ
5ʹ

7ʹ

Figure 8.22: (a) Details of tapered beam;  
(b) P-system; (c) Q-system.

Solution
Divide the beam length into four segments of equal length (Δxn = 2 ft). 
Base the moment of inertia of each segment on the depth at the center of 
each segment (see columns 2 and 3 in Table 8.3). Values of MQ and MP are 
tabulated in columns 4 and 5 of Table 8.3. Using Equation 8.34 to evaluate 
the right side of Equation 8.31, solve for 𝛿B.

WQ = UQ

(1 kip) (𝛿 B) =    ∑ 
n = 1

  
 4
        

MQMP Δxn
 ____ 

EI
    =    

Δxn ____ 
E

    ∑    
MQMP

 ______ 
I
   

Substituting ∑MQMP/I = 5.307 (from the bottom of column 6 in Table 8.3), 
Δxn = 2 ft, and E = 3000 kips/in. into Equation 8.34 for UQ gives

𝛿 B =    
2(12)(5.307)

 ___________ 
3000

    = 0.042 in. Ans.

TABLE 8.3  

Segment 
(1)

Depth 
in. 
(2)

I = bh3/12 
in.4 
(3)

MQ 
kip · ft 

(4)

MP 
kip · ft 

(5)

MQMP(144)/I 
kip2/in.2  

(6)

1
2
3
4

13
15
17
19

2197
3375
4913
6859

1
3
5
7

2.4
7.2

12
16.8

0.157
0.922
1.759
2.469

∑    
MQMP

 ______ 
I
    = 5.307

NOTE. Moments in column 6 are multiplied by 144 to express MQ and 
MP in kip-inches.
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Bernoulli’s Principle of Virtual  
Displacements

8.8

Bernoulli’s principle of virtual displacements, a basic structural theorem, is 
a variation of the principle of virtual work. The principle is used in theoreti-
cal derivations and can also be used to compute the deflection of points on 
a determinate structure that undergoes rigid body movement, for example, a 
support settlement or a fabrication error. Bernoulli’s principle, which seems 
almost self-evident once it is stated, says:

If a rigid body, loaded by a system of forces in equilibrium, is given a 
small virtual displacement by an outside effect, the virtual work WQ 
done by the force system equals zero.

In this statement a virtual displacement is a real or hypothetical displacement 
produced by an action that is separate from the force system acting on the structure. 
Also, a virtual displacement must be sufficiently small that the geometry and mag-
nitude of the original force system do not change significantly as the structure is 
displaced from its initial to its final position. Since the body is rigid, UQ = 0.

In Bernoulli’s principle, virtual work equals the product of each force 
or moment and the component of the virtual displacement through which it 
moves. Thus it can be expressed by the equation
 WQ = UQ = 0;  ∑Q𝛿 P + ∑Qm𝜃P = 0 (8.35)
where Q = force that is part of equilibrium force system; 𝛿P = virtual dis-
placement that is collinear with Q; Qm = moment that is part of equilibrium 
force system; θP = virtual rotational displacement.

The rationale behind Bernoulli’s principle can be explained by consider-
ing a rigid body in equilibrium under a coplanar Q force system (the reactions 
are also considered part of the force system). In the most general case, the 
force system may consist of both forces and moments. As we discussed in Sec-
tion 3.6, the external effect of a system of forces acting on a body can always 
be replaced by a resultant force R through any point and a moment M. If the 
body is in static equilibrium, the resultant force equals zero, and it follows that

R = 0  M = 0
or by expressing R in terms of its rectangular components,

 Rx = 0  Ry = 0   M = 0 (8.36)
If we now assume that the rigid body is given a small virtual displacement 
consisting of a linear displacement ΔL and an angular displacement θ, where 
ΔL has components Δx in the x direction and Δy in the y direction, the virtual 
work WQ produced by these displacements equals

WQ = Rx Δx + Ry Δy + M𝜃
Since Equation 8.36 establishes that Rx, Ry, and M equal zero in the equation 
above, we verify Bernoulli’s principle that
  WQ = 0 (8.36a)
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E X A M P L E  8 . 1 7 If support B of the L-shaped beam in Figure 8.23a settles 1.2 in., determine 
(a) the vertical displacement 𝛿C of point C, (b) the horizontal displacement 
𝛿D of point D, and (c) the slope θA at point A.

Solution
(a)  In this example the beam acts as a rigid body because no internal 

stresses, and consequently no deformations, develop when the beam 
(a determinate structure) is displaced due to the settlement of support 
B. To  compute the vertical displacement at C, we apply a 1-kip dummy 
load in the vertical direction at C (Figure 8.23b). We next compute the 
reactions at the supports, using the equations of statics. The dummy load 

A B

Bʹ

C

D

A

C

D

(a)

8ʹ 4ʹ

5ʹ

= 1.2ʺδ δ

δ

θ

1 kip

kip

Q = 1 kip

5
8 kip5

8

A B C

D

(c)

Q = 1 kip • ft

kip1
8

kip1
8

A B C

D

(d)

A B

Q = 1 kip
kip

kips

C

D

(b)

1
2 3

2

Figure 8.23: (a) Deflected shape produced by the settlement of support B; (b) Q-system 
used to compute the deflection at C; (c) Q-system used to compute the horizontal 
deflection of D; (d) Q-system used to compute the slope at A.
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and its reactions constitute a force system in equilibrium—a Q-system. 
We now imagine that the loaded beam in Figure 8.23b undergoes the 
support settlement indicated in Figure 8.23a. In accordance with 
Bernoulli’s principle, to determine 𝛿C, we equate to zero the sum of 
the virtual work done by the Q-system forces.

  W  Q   = 0 

 1 kip ( δ  C  )  −  (  3 __ 
2
    kips)  (1.2)  = 0 

   δ  C   = 1.8 in.  Ans.

  In the equation above, the virtual work done by the reaction at 
B is  negative because the downward displacement of 1.2 in. is oppo-
site in sense to the reaction of    3 _ 2    kips. Since support A does not move, 
its reaction produces no virtual work.

(b)  To compute the horizontal displacement of joint D, we establish a 
Q-system by applying a 1-kip dummy load horizontally at D and com-
puting the support reactions (Figure 8.23c). Then 𝛿D is computed by 
subjecting the Q-system in Figure 8.23c to the virtual displacement 
shown in Figure 8.23a. We then compute the virtual work and set it 
equal to zero.

  W  Q   = 0 

 1 kip ( δ  D  )  −  (  5 __ 
8
    kip)  (1.2)  = 0 

   δ  D   = 0.75 in.  Ans.

(c)  We compute θA by applying a dummy moment of 1 kip·ft at A 
(Figure 8.23d ). The force system is then given the virtual displacement 
shown in Figure 8.23a, and the virtual work is evaluated. To express θA 
in radians, the l kip · ft moment is multiplied by 12 to convert kip-feet 
to kip-inches.

  W  Q   = 0 

  (1 kip ⋅ ft)  (12)   θ  A   −  (  1 __ 
8
    kip) 1.2 = 0 

   θ  A   =   1 __ 
80

    rad  Ans.
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Maxwell-Betti Law of Reciprocal Deflections
8.9

Using the method of real work, we will derive the Maxwell-Betti law of re-
ciprocal deflections, a basic structural theorem. Using this theorem, we will 
establish in Chapter 9 that the flexibility coefficients in compatibility equa-
tions, formulated to solve indeterminate structures of two or more degrees of 
indeterminacy by the flexibility method, form a symmetric matrix. This obser-
vation permits us to reduce the number of deflection computations required 
in this type of analysis. The Maxwell-Betti law also has applications in the 
construction of indeterminate influence lines.

The Maxwell-Betti law, which applies to any stable elastic structure 
(a beam, truss, or frame, for example) on unyielding supports and at constant 
temperature, states:

A linear deflection component at a point A in direction 1 produced 
by the application of a unit load at a second point B in direction 2 is 
equal in magnitude to the linear deflection component at point B in 
direction 2 produced by a unit load applied at A in direction 1.

Figure 8.24 illustrates the components of truss displacements ΔBA and 
ΔAB that are equal according to Maxwell’s law. Directions 1 and 2 are indi-
cated by circled numbers. Displacements are labeled with two subscripts. The 
first subscript indicates the location of the displacement. The second sub-
script indicates the point at which the load producing the displacement acts.

We can establish Maxwell’s law by considering the deflections at points A 
and B of the beam in Figure 8.25a and b. In Figure 8.25a application of a verti-
cal force FB at point B produces a vertical deflection ΔAB at point A and ΔBB at 
point B. Similarly, in Figure 8.25b the application of a vertical force FA at point 
A produces a vertical deflection ΔAA at point A and a deflection ΔBA at point B. 
We next evaluate the total work done by the two forces FA and FB when they 
are applied in different order to the simply supported beam. The forces are as-
sumed to increase linearly from zero to their final value. In the first case, we 
apply FB first and then FA. In the second case, we apply FA first and then FB. 
Since the final deflected position of the beam produced by the two loads is 
the same regardless of the order in which the loads are applied, the total work 
done by the forces is also the same regardless of the order in which the loads  
are applied.

Case 1.  FB Applied Followed by FA

(a) Work done when FB is applied:

  W  B   =   1 __ 2      F  B    Δ  BB   

(b) Work done when FA is applied with FB in place:

  W  A   =   1 __ 2      F  A    Δ  AA   +  F  B    Δ  BA   

AB

A
B

Δ

(a)

1 kip

1

2

BAA
B

Δ

(b)

1 kip

1

2

Figure 8.24

A

ABΔ BBΔ

B

FB

(a)

A

AAΔ BAΔ

B

FA

(b)

Figure 8.25
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Since the magnitude of FB does not change as the beam deflects under 
the action of FA, the additional work done by FB (the second term in the 
equation above) equals the full value of FB times the deflection ΔBA produced 
by FA.

  W  total   =  W  B   +  W  A   

   =   1 __ 2    F  B    Δ  BB   +   1 __ 2    F  A    Δ  AA   +  F  B    Δ  BA    (8.37)

Case 2.  FA Applied Followed by FB

(c) Work done when FA is applied:

 W  ′  A   =   1 __ 2      F  A    Δ  AA   

(d ) Work done when FB is applied with FA in place:

 W  ′  B   =   1 __ 2      F  B    Δ  BB   +  F  A    Δ  AB   

 W  ′  total   = W  ′  A   + W  ′  B   

  =   1 __ 2      F  A    Δ  AA   +   1 __ 2      F  B    Δ  BB   +  F  A    Δ  AB    (8.38)

Equating the total work of cases 1 and 2 given by Equations 8.37 and 8.38 
and simplifying give

   1 __ 2      F  B    Δ  BB   +   1 __ 2      F  A    Δ  AA   +  F  B    Δ  BA   =   1 __ 2      F  A    Δ  AA   +   1 __ 2      F  B    Δ  BB   +  F  A    Δ  AB   

   F  B    Δ  BA   =  F  A    Δ  AB    (8.39)

When FA and FB = 1 kip, Equation 8.39 reduces to the statement of the 
 Maxwell-Betti law:

    Δ  BA   =  Δ  AB    (8.40)

The Maxwell-Betti theorem also holds for rotations as well as rotations 
and linear displacements. In other words, by equating the total work done by a 
moment MA at point A followed by a moment MB at point B and then reversing 
the order in which the moments are applied to the same member, we can also 
state the Maxwell-Betti law as follows:

The rotation at point A in direction 1 due to a unit couple at B in 
direction 2 is equal to the rotation at B in direction 2 due to a unit 
couple at A in direction 1.

In accordance with the foregoing statement of the Maxwell-Betti law, αBA 
in Figure 8.26a equals αAB in Figure 8.26b. Moreover, the couple at A and the 
rotation at A produced by the couple at B are in the same direction (counter-
clockwise). Similarly, the moment at B and the rotation at B produced by the 
moment at A are also in the same direction (clockwise).

A

BA

B

Bʹ

Aʹ

(a)

1 kip • ft

A

AB

B

(b)

1 kip • ftα

α

Figure 8.26
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362  Chapter 8 ■ Work-Energy Methods for Computing Deflections

As a third variation of the Maxwell-Betti law, we can also state:

Any linear component of deflection at a point A in direction 1 produced 
by a unit moment at B in direction 2 is equal in magnitude to the rota-
tion at B (in radians) in direction 2 due to a unit load at A in direction 1.

Figure 8.27 illustrates the foregoing statement of the Maxwell-Betti 
law; that is, the rotation αBA at point B in Figure 8.27a produced by the 
unit load at A in the vertical direction is equal in magnitude to the vertical 
deflection ΔAB at A produced by the unit moment at point B in Figure 8.27b. 
Figure 8.27 also shows that ΔAB is the same direction as the load at A, and 
the rotation αBA and the moment at B are in the same counterclockwise  
direction.

In its most general form, the Maxwell-Betti law can also be applied to a 
structure that is supported in two different ways. The previous applications of 
this law are subsets of the following theorem:

Given a stable linear elastic structure on which arbitrary points have 
been selected, forces or moments may be acting at some of or all these 
points in either of two different loading systems. The virtual work 
done by the forces of the first system acting through the displace-
ments of the second system is equal to the virtual work done by the 
forces of the second system acting through the corresponding dis-
placements of the first system. If a support displaces in either system, 
the work associated with the reaction in the other system must be in-
cluded. Moreover, internal forces at a given section may be included 
in either system by imagining that the restraint corresponding to the 
forces is removed from the structure but the internal forces are ap-
plied as external loads to each side of the section.

The statement above, illustrated in Example 8.18, may be represented by 
the following equation:

   ∑  F  1    δ  2   = ∑  F  2    δ  1    (8.41)

where F1 represents a force or moment in system 1 and 𝛿2 is the displacement 
in system 2 that corresponds to F1. Similarly, F2 represents a force or moment 
in system 2, and 𝛿1 is the displacement in system 1 that corresponds to F2.

A

BA ABΔ

B

(a)

1 kip

A

B

(b)

1 kip • ft

α

Figure 8.27
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8.9 ■ Maxwell-Betti Law of Reciprocal Deflections  363

Figure 8.28 shows the same beam supported and loaded in two different 
ways. Demonstrate the validity of Equation 8.41. Required displacements 
are noted on the figure.

E X A M P L E  8 . 1 8

C

L
2

L
2

A CB

(a)
system 1

L
2

L
2

(b)
system 2

3 kips

4 kips

3L2

16EI

1.5 kips

BA C

4 kips
4L kip • ft

1.5 kips

=

4L3

3EI
=

B
5L3

12EI
=

θ

δ δ

Figure 8.28: Identical beams with two different conditions 
of support.

Solution

  ∑  F  1    δ  2   = ∑  F  2    δ  1    (8.41)

 1.5 kips (0)  +  (3 kips)    5  L   3  ____ 
12EI

   −  (1.5 kips)    4  L   3  ___ 
3EI

   = − (4L kip ⋅ ft)    3  L   2  ____ 
16EI

   

+ (4 kips)(0) + (4 kips)(0)

 −   3  L   3  ___ 
4EI

   = −   3  L   3  ___ 
4EI

    Ans.
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Summary

 • Virtual work permits the engineer to compute a single component of 
deflection with each application of the method.

 • Based on the principle of the conservation of energy, virtual work 
 assumes loads are applied slowly so that neither kinetic nor heat 
 energy is produced.

 • To compute a component of deflection by the method of vir-
tual work, we apply a force (also termed the dummy load) to the 
structure at the point of, as well as in the direction of, the desired 
 displacement. The force and its associated reactions are called the  
Q-system. If a slope or angle change is required, the force is a 
 moment. With the dummy load in place the actual loads—called 
the P-system—are applied to the structure. As the structure deforms 
 under the actual loads, external virtual work WQ is done by the 
 dummy loads as they move through the real displacements produced 
by the P-system. Simultaneously an equivalent quantity of virtual 
strain  energy UQ is stored in the structure. That is,

WQ = UQ

 • Although virtual work can be applied to all types of structures 
 including trusses, beams, frames, slabs, and shells, here we limit 
the application of the method to three of the most common types of 
 planar structures: trusses, beams, and frames. We also neglect the 
effects of shear since its contribution to the deflections of slender 
beams and frames is negligible. The effect of shear on deflections is 
only signifi cant in short, heavily loaded deep beams or beams with a 
low modulus of rigidity. The method also permits the engineer to in-
clude deflections due to temperature change, support settlements, and 
 fabrication errors.

 • If a deflection has both vertical and horizontal components, two  separate 
analyses by virtual work are required; the unit load is applied first in 
the vertical direction and then in the horizontal direction. The actual 
deflection is the vector sum of the two orthogonal compo nents. In the 
case of beams or trusses, designers are generally interested only in the 
maximum vertical deflection under live load, because this component is 
limited by design codes.

 • The use of a unit load to establish a Q-system is arbitrary. However, 
since deflections due to unit loads (called flexibility coefficients) are 
utilized in the analysis of indeterminate structures (Chapter 9), use of 
unit loads is common practice among structural engineers.

 • To determine the virtual strain energy when the depth of a beam varies 
along its length, changes in cross-sectional properties can be taken into 
account by div iding the beam into segments and carrying out a finite 
 summation (Section 8.7).
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 • In Section 8.9, we introduce the Maxwell-Betti law of reciprocal 
deflections. This law will be useful when we set up the terms of the 
symmetric matrices required to solve indeterminant structures by the 
flexibility method in Chapter 9.

P8.1. For the truss in Figure P8.1, compute the horizontal 
and vertical components of displacement of joint B pro-
duced by the 100-kip load. The area of all bars = 4 in.2, 
and E = 24,000 kips/in.2.

PROBLEMS
P8.4. For the truss in Figure P8.4, compute (a) the verti-
cal displacement of joint C, (b) the horizontal displace-
ment of joint C, and (c) the horizontal displacement of 
joint D. Members AB, BC, and CD have area = 1 in.2, and 
members AE, ED, BE, and CE have area = 0.25 in.2, and  
E = 10,000 ksi.

P8.1

20ʹ20ʹ

15ʹ

15ʹ

A

C

B

D
E

P = 100 kips

P8.2. For the truss in Figure P8.1, compute the vertical 
displacement of joint A and the horizontal displacement 
of joint C. Assume all member properties are the same 
except the areas of AE, ED, BD, and BC are 8 in.2.

P8.3. For the truss in Figure P8.3, compute the horizon-
tal and vertical components of the displacement of joint 
C. The area of all bars = 2500 mm2, and E = 200 GPa.

P8.3

C

120 kN

240 kNB

A
D

6 m

8 m

P8.4

10 kips

8ʹ

D

B C

A
E

6ʹ 6ʹ5ʹ 5ʹ

15 kips

P8.5. The pin-connected frame in Figure P8.3 is subjected 
to two vertical loads. Compute the vertical displacement 
of joint B. Will the frame sway horizontally? If yes, com-
pute the horizontal displacement of joint B. The area of 
all bars = 5 in.2, and E = 29,000 kips/in.2.

150 kips 150 kips

A E D

B
C

6ʹ 12ʹ

12ʹ

P8.5
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P8.8. When the truss in Figure P8.8 is loaded, the support 
at E displaces 0.6 in. vertically downward and the support 
at A moves 0.4 in. to the right. Compute the horizontal and 
vertical components of displacement of joint C. For all 
bars the area = 2 in.2, and E = 29,000 kips/in.2.

P8.10. (a) Compute the horizontal displacement of  
joint B produced by the 240-kN load in Figure P8.10.  
For all bars, area = 2400 mm2 and E = 200 GPa. 
(b) Assuming that no load acts, determine the horizontal 
displacement of joint B if support A moves 20 mm to the 
right and 30 mm down and support E moves downward 
36 mm.

P8.6. For the pin-connected frame in Figure P8.5, in addi-
tion to the vertical loads a lateral load of 30 kips also acts 
to the right at joint B. Compute the vertical and horizontal 
displacements at joint B.

P8.7. Determine the value of the force P that must be  
applied to joint C of the truss in Figure P8.7 if the vertical 
deflection at C is to be zero. The area of all bars = 1.8 in.2, 
and E = 30,000 kips/in.2.

P8.9. When the 20-kip load is applied to joint B of 
the truss in Figure P8.9, support A settles vertically  
downward    3 _ 4    in. and displaces    1 _ 2    in. horizontally to the 
right.  Determine the vertical displacement of joint B 
due to all effects. The area of all bars = 2 in.2, and  
E = 30,000 kips/in.2.

P8.7

20ʹ20ʹ

30ʹ

E

CB

D

A

P = ?9 kips

P8.8

A

C

B
D

F
E

8ʹ

48 kips

24 kips

8ʹ

6ʹ

6ʹ

P8.9

A

B

20 kips

C D E

10ʹ 10ʹ

hinge

10ʹ

10ʹ

P8.10

A

B C D

E
F

8 m

P = 240 kN

8 m 8 m

8 m
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P8.12. For the truss in Figure P8.12, compute the vertical 
displacement at joint G. The area of all bars = 5 in.2, and 
E = 29,000 kips/in.2.

P8.13. (a) Compute the vertical deflection of joint D 
produced by the 30-kip load in Figure P8.13. For all bars, 
area = 2 in.2, and E = 9000 kips/in.2. (b) Assume that the 
truss is not loaded. If bar AE is fabricated    8 _ 5    in. too long, 
how far to the right must the roller at B be displaced hori-
zontally so that no vertical deflection occurs at joint D?

P8.11. Determine the horizontal and vertical deflection of 
joint C of the truss in Figure P8.11. In addition to the load 
at joint C, the temperature of member BD is subject to a 
temperature increase of 60°F. For all bars, E = 29,000 kips/
in.2, A = 4 in.2, and α = 6.5 × 10−6 (in./in.)/°F.

P8.11

15ʹ

80 kips

15ʹ

A B

C D

20ʹ

P8.12

9ʹ

24ʹ

9ʹ

EA
G F

D

C

B

40 kips

60 kips60 kips

12ʹ12ʹ

P8.13

9ʹ

12ʹ

12ʹ

A

B

D

E

C
P = 30 kips

P8.14. (a) Find the horizontal deflection at joint B produced 
by the 40-kip load in Figure P8.14. The area of all bars is 
shown on the sketch of the truss; E = 30,000 kips/in.2. (b) To 
restore joint B to its initial position in the horizontal di-
rection, how much must bar AB be shortened? (c) If the 
temperature of bars AB and BC increases 80°F, determine 
the vertical displacement of joint C. αt = 6.5 × 10−6 (in./
in.)/°F. The rocker at support A is equivalent to a roller.

P8.14

A

B

C
D

15ʹ

P = 40 kips

15ʹ

20ʹ5 in.2 5 in.2

4 in.2

2 in.2 2 in.2
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P8.16. Compute the vertical displacement of the hinge at 
C for the funicular loading shown in Figure P8.16. The 
funicular loading produces direct stress on all sections 
of the arch. Columns transmit only axial load from the 
roadway beams to the arch. Also assume that the roadway 
beams and the columns do not restrain the arch. All reac-
tions are given. For all segments of the arch A = 70 in.2,  
I = 7800 in.4, and E = 30,000 kips/in.2.

P8.19. Compute the deflection at midspan and the slope 
at A in Figure P8.19. EI is constant. Express the slope in 
degrees and the deflection in inches. Assume a pin support 
at A and a roller at D. E = 29,000 kips/in.2, I = 2000 in.4.

P8.15. (a) In Figure P8.15 compute the vertical and hori-
zontal components of displacement of joint E produced by 
the loads. The area of bars AB, BD, and CD = 5 in.2; the 
area of all other bars = 3 in.2. E = 30,000 kips/in.2. (b) If 
bars AB and BD are fabricated    3 _ 4    in. too long and support D 
settles 0.25 in., compute the vertical displacement of joint 
E. Neglect all the applied loads.

P8.15

A

B C

D
E

15ʹ

120 kips

80 kips

15ʹ 15ʹ

20ʹ

P8.17. Determine the horizontal and vertical deflec tion 
of the hinge at point C of the arch in Figure P8.16 for a 
single concentrated load of 60 kips applied at joint B in 
the vertical direction.

P8.18. Compute the slope at support A and the deflection 
at B in Figure P8.18. EI is constant. Express your answer 
in terms of E, I, L, and M.

P8.18

A C

2L
3

M

L
3

B

P8.19

10ʹ

30 kips 30 kips

elastomeric
pad

10ʹ 10ʹ

A B C D

P8.20. (a) Compute the vertical deflection and slope of 
the cantilever beam at points B and C in Figure P8.20. 
Given: EI is constant throughout, L = 12 ft, and E =  
4000 kips/in.2. What is the minimum required value of I if 
the deflection of point C is not to exceed 0.4 in.?

P8.20

A B C

6ʹ 6ʹ

P = 6 kips
w = 1 kip/ft

P8.16

40 kips

90 kips

39 kips

J

A

B DC

35 kips

I

30 kips

H

35 kips

G

40 kips

F

E

38.46ʹ

4@30ʹ = 120ʹ

90 kips

39 kips

50ʹ
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P8.22. Determine the value of moment that must be ap-
plied to the left end of the beam in Figure P8.22 if the 
slope at A is to be zero. EI is constant. Assume rocker at 
support D acts as a roller.

P8.21. Compute the deflection at B and the slope at C in 
Figure P8.21. Given: EI is constant.

P8.21

A

CB
85 kip • ft3 kips/ft

15ʹ 15ʹ

P8.22

A = 0 A C DB

MA 3 m

24 kN 24 kN

3 m 3 m

θ

P8.23. Compute the vertical deflection of point C in 
Figure P8.23. Given: I = 1200 in.4, E = 29,000 kips/in.2.

P8.23

A
B2I I

C

P = 6 kips

w = 1.2 kips/ft

8ʹ12ʹ

P8.24. Compute the deflection at midspan of the beam in 
Figure P8.24. Given: I = 46  × 106 mm4, E = 200 GPa. 
Treat rocker at E as a roller.

P8.24

P = 18 kN

2 m2 m2 m2 m

A B

2I II

C D E

P8.25. Under the dead load of the arch in Figure P8.25, the 
hinge at B is expected to displace 3 in. downward. To elimi-
nate the 3-in. displacement, the designers will shorten the 
distance between supports by moving support A to the 
right. How far should support A be moved?

P8.25

90ʹ

= ?

90ʹ

30ʹ
hingeA Aʹ

B

C

δ

P8.26. If supports A and E in Figure P8.26 are con-
structed 30 ft and 2 in. apart instead of 30 ft apart, and 
if support E is also 0.75 in. above its specified elevation,  
determine the vertical and horizontal components of 
deflections of the hinge at C and the slope of member AB 
when the frame is erected. 

P8.26

A

B C D

E

15ʹ

12ʹ

15ʹ

hinge

0.75ʺ

2ʺ
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P8.27. In Figure P8.27 support D is constructed 1.5 in. to 
the right of its specified location. Using Bernoulli’s prin-
ciple in Section 8.8, compute (a) the horizontal and verti-
cal components of the displacement of joint B and (b) the 
change in slope of member BC.

P8.29. Compute the horizontal and vertical components 
of the deflection at C in Figure P8.29. E = 200 GPa, A = 
25 × 103 mm2, and I = 240 × 106 mm4.

P8.30. Compute the vertical displacement of joints 
B and C for the frame shown in Figure P8.30. Given:  
I = 360 in.4, E = 30,000 kips/in.2. Consider only flexural  
deformations.

P8.27

B C

D Dʹ

A

15ʹ 30ʹ

10ʹ

1.5ʺ

20ʹ

P8.28

5 kips

A B

C

D

8ʹ 8ʹ 3ʹ

12ʹ
3 kips

P8.29

B
C

A

3 m

20 kN

w
 =

 6
 k

N
/m

5 m

P8.28. Compute the horizontal and vertical components 
of deflection at point D in Figure P8.28. EI is constant,  
I = 120 in.4, E = 29,000 kips/in.2.

P8.30

B

C

P = 12 kips

A

7ʹ 8ʹ

6ʹ
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P8.31. For the steel rigid frame in Figure P8.31, com-
pute the rotation of joint B and the horizontal displace-
ment of support C. Given: E = 200 GPa, A = 500 mm2,  
I = 200 × 106 mm4.
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P8.31

60 kN

B C

A

4 m3 m

4 m

P8.32. (a) Compute the slope at A and the horizontal dis-
placement of joint B in Figure P8.32. EI is constant for all 
members. Consider only bending deformations. Given:  
I = 100 in.4, E = 29,000 kips/in.2. (b) If the horizontal 
displacement at joint B is not to exceed    3 _ 8    in., what is the 
minimum required value of I?

P8.32

B
6ʹ

20ʹ

10ʹ

D

P = 2 kips
C

A

P8.33. For the frame in Figure P8.33, compute the 
horizontal and vertical displacements at joint B. Given:  
I = 150 in.4, E = 29,000 kips/in.2. Consider only the flex-
ural deformations.

P8.33

A

B

D

E

C

10 kips

8ʹ

6ʹ 6ʹ 6ʹ 6ʹ

8ʹ

P8.34. (a) Compute the vertical displacement of the hinge 
at C in Figure P8.34. EI is constant for all members, E = 
200 GPa, I = 1800 × 106 mm4. (b) The designer would 
like to offset the vertical displacement of the hinge at C 
by moving the support A. How far should support A be 
moved horizontally? 

P8.34

A

B
C

w = 4.2 kN/m

D

E

15 m

hinge

15 m

6 m
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P8.35. Compute the vertical displacement of point C  for 
the beam in Figure P8.35. For the beam A = 5000 mm2, 
I = 360  × 106 mm4, and E = 200 GPa. For the cable  
A = 6000 mm2 and E = 150 GPa.

P8.35

A

D

C
B

6 m 2 m

6 m

280 kN

P8.36. Compute the vertical deflection of joint C in 
Figure P8.36. In member ABC consider only the strain 
energy associated with bending. Given: IAC = 340 in.4, 
ABD = 5 in.2. How much should bar BD be lengthened 
to eliminate the vertical deflection of point C when the  
16-kip load acts?

P8.37. Compute the vertical deflection at B and the hori-
zontal deflection at C in Figure P8.37. Given: ACD = 3 in.2, 
IAC = 160 in.4, AAC = 4 in.2, and E = 29,000 kips/in.2. 
Consider the strain energy produced by both axial and 
flexural deformations.

P8.38. Compute the vertical and horizontal deflection 
at B and at the midspan of member CD in Figure P8.38. 
Consider both axial and bending deformations. Given:  
E = 29,000 kips/in.2, I = 180 in.4, area of column = 6 in.2, 
area of girder = 10 in.2.

P8.38

D
C2I 2I

I

w = 2.4 kips/ft

A

B

5ʹ

10 kips

6 kips

20ʹ

12ʹ
6ʹ

P8.37

60 kips

hinge

w = 4 kips/ft

A
B C

D

6ʹ18ʹ

9ʹ 8ʹ

P8.36

A

B
C

6ʹ12ʹ

16 kips

9ʹ

D
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P8.39. Beam ABC is supported by a three-bar truss at 
point C and at A by an elastomeric pad that is equivalent 
to a roller. (a) Compute the vertical deflection of point 
B in Figure P8.39 due to the applied load. (b) Compute 
the change in length of member DE required to displace  
point B upward 0.75 in. Is this a shortening or lengthening 
of the bar? Given: E = 29,000 kips/in.2, area of all truss 
bars = 1 in.2, area of beam = 16 in.2, I of beam = 1200 in.4.

P8.40. If the horizontal displacement of joint B of the 
frame in Figure P8.40 is not to exceed 0.36 in., what is 
the required I of the members? Bar CD has an area of 
4 in.2, and E = 29,000 kips/in.2. Consider only the bend-
ing deformations of members AB and BC and the axial 
deformation of CD.

P8.40

A

w = 2 kips/ft

P = 4 kips

D

CB I

I A = 4 in.2

30ʹ

hinge

14ʹ

P8.39

A B
C

D E

6ʹ 6ʹ

10ʹ 10ʹ
P = 64 kips

8ʹ

P8.41. For the steel frame in Figure P8.41, compute the 
horizontal displacement of joint B. For member BCD, 
A = 6000 mm2 and I = 600 × 106 mm4. For member AB, 
A = 3000 mm2. E = 200 GPa for all members.

P8.41

10 m

5 m

5 m

D

P = 80 kN

C

A

B

Effective Moment of Inertia of a Reinforced 
Concrete Beam

NOTE: This note applies to Problems P8.42 to P8.44. 
Because reinforced concrete beams crack due to ten-
sile stresses created by moment and shear, initial elastic 
deflections are based on an empirical equation for mo-
ment of inertia established from experimental studies of 
full-size beams (provided in the ACI Code). This equa-
tion produces an effective moment of inertia Ie that var-
ies from about 0.35 to 0.5 of the moment of inertia IG 
based on the gross area of the cross section. The addi-
tional deflection due to creep and shrinkage that occurs 
over time, which can exceed the initial deflection, is not  
considered.
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374  Chapter 8 ■ Work-Energy Methods for Computing Deflections

P8.42. Using a finite summation, compute the initial 
deflection at midspan for the beam in Figure P8.42. 
Given: E = 3000 kips/in.2. Use 3-ft segments. Assume  
I = 0.5IG.

P8.42

8ʹ

9ʹ

12ʹ

30 kips

k = 5 kips/in.

A
B

P8.43. Using a finite summation, compute the ini-
tial deflection at point C for the tapered beam in Fig-
ure P8.43. E = 24 GPa. Base your analysis on the proper-
ties of 0.5IG.

P8.44. Computer study—Influence of supports on frame 
behavior. (a) Using the RISA-2D computer pro-
gram, compute the initial elastic deflection at 
midspan of the girder in Figure P8.44, given that 

the support at D is a roller. For the computer analysis,  
replace the tapered members by 3-ft-long segments of 
constant depth whose properties are based on each seg-
ment’s midspan dimensions; that is, there will be 9 mem-
bers and 10 joints. When you set up the problem, specify 
in GLOBAL that forces are to be computed at three sec-
tions. This will produce values of forces at both ends and 
at the center of each segment. To account for cracking of 
the reinforced concrete, assume for girder BCD that Ie = 
0.35IG; for column AB assume Ie = 0.7IG (compression 
forces in columns reduce cracking). Since deflections of 
beams and one-story rigid frames are due almost entirely 
to moment and not significantly affected by the area of the 
member’s cross- section, substitute the gross area in the 
Member Properties Table.

 (b) Replace the roller at support D in Figure P8.44 
by a pin to prevent horizontal displacement of joint D, 
and repeat the analysis of the frame. The frame is now 

P8.44

A

B

C
D

18ʹ

9ʹ

9ʹ

CL

CL

CL P = 24 kips

22ʺ

22ʺ 16ʺ

16ʺ

12ʺ

varies

11ʺ

P8.43

A B C

6 m 3 m
2 @ 1 m

300 mm

300 mm

600 mm
180 kN

320 mm

varies

lee98004_ch08_318-375.indd   374 23/12/16   4:25 pm



 ■ Problems  375

an indeterminate structure. Compare your results with 
those in part (a), and briefly discuss differences in be-
havior with respect to the magnitude of deflections and 
moments.

P8.45. Computer study—Truss Stiffening Strategy. For 
the truss in Example 8.7, use the RISA-2D computer pro-
gram to (a) recompute the vertical deflection of F if the 

areas of members BC, CD, DE, EF, FA, FC, and CE are 
doubled. What is the percent increase in total volume of 
material used? What is the percent reduction in deflection?  
(b) Recompute the vertical deflection of F if only members 
AB and BF have double the area. What is the percent in-
crease in total volume of material used? What is the percent 
reduction in deflection? (c) Using only Table 8.2, explain 
your result.

lee98004_ch08_318-375.indd   375 23/12/16   4:25 pm



London Aquatic Centre Under Construction
The flowing undulating roof of the London Aquatic Centre, built in 2011, demonstrates 
the complex geometries of many modern building designs. With the availability of struc-
tural analysis software nowadays, engineers routinely utilize these powerful tools to aid 
in design calculations which would have previously been extremely difficult and time 
consuming.

© PA Images/Alamy Stock Photo
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9Analysis of 
Indeterminate 
Structures by the 
Flexibility Method

Introduction
9.1

The flexibility method, also called the method of consistent deformations or 
the method of superposition, is a procedure for analyzing linear elastic inde-
terminate structures. Although the method can be applied to almost any type 
of structure (beams, trusses, frames, shells, and so forth), the compu tational 
effort increases exponentially with the degree of indeterminancy. Therefore, 
the method is most attractive when applied to structures with a low degree of 
indeterminancy.

All methods of indeterminate analysis require that the solution satisfy 
equilibrium and compatibility requirements. By compatibility we mean that the 
structure must fit together—no gaps can exist—and the deflected shape must 
be consistent with the constraints imposed by the supports. In the flexibility 
method, we will satisfy the equilibrium requirement by using the equations of 

C H A P T E R

Chapter Objectives
 ● Show that the equations of static equilibrium alone are not enough to analyze indeterminate structures; 

additional equations are needed.

 ● Learn in the flexibility method to establish additional equations (i.e., compatibility equations) by using 
 extra unknown reactions or internal forces as the redundants.

 ● Identify redundants and then use any method learned in Chapter 7 or 8 to compute the deflections 
produced by both external loads and redundants on a released structure to establish the compatibility 
equations.
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378  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

static equilibrium in each step of the analysis. The compatibility requirement 
will be satisfied by writing one or more equations (i.e., compatibility equa-
tions) which state either that no gaps exist internally or that deflections are 
consistent with the geometry imposed by the supports.

As a key step in the flexibility method, the analysis of an indeterminate 
structure is replaced by the analysis of a stable determinate structure. This 
structure—called the released or base structure—is established from the orig-
inal indeterminate structure by imagining that certain restraints (supports, for 
example) are temporarily removed.

 Concept of a Redundant
9.2

We have seen in Section 3.7 that a minimum of three restraints, which 
are not equivalent to either a parallel or a concurrent force system, are 
required to produce a stable structure, that is, to prevent rigid-body 
displacement under any condition of load. For example, in  Figure 9.1a 
the horizontal and vertical reactions of the pin at A and the vertical 
reaction of the roller at C prevent both translation and rotation of the 
beam regardless of the type of force system applied. Since three equa-
tions of equilibrium are available to determine the three reactions, the 
structure is statically determinate.

If a third support is constructed at B (Figure 9.1b), an additional 
re action RB is available to support the beam. Since the reaction at B is 
not absolutely essential for the stability of the structure, it is termed 
a redundant. In many structures the designation of a particular reac-
tion as a redundant is arbitrary. For example, the reaction at C in 
 Figure 9.1b could just as logically be considered a redundant because 
the pin at A and the roller at B also provide sufficient restraints to 
produce a stable determinate structure.

Although the addition of the roller at B produces a structure that 
is indeterminate to the first degree (four reactions exist but only three 
equations of statics are available), the roller also imposes the geometric 
requirement that the vertical displacement at B be zero. This geometric 
condition permits us to write an additional equation that can be used 
together with the equations of statics to determine the magnitude of all 
reactions. In Section 9.3 we outline the main features of the flexibility 
method and illustrate its use by analyzing a variety of indeterminate 
structures.

Figure 9.1: (a) Determinate beam; (b) in-
determinate beam with RB considered as the 
redundant; (c) the released structure for the 
beam in (b) with the reaction at B applied as 
an external force.

RAY RB RC

RAX

= 0BΔ

(b)

(a)
P

RAY

RB

RC

RAX

= 0BΔ

(c)

P

RAY RC

RAX

P

A C

B
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9.3 ■ Fundamentals of the Flexibility Method  379

In the flexibility method, one imagines that sufficient redundants (sup-
ports, for example) are removed from an indeterminate structure to pro-
duce a stable, determinate released structure. The number of restraints 
removed equals the degree of indeterminancy. The design loads, which 
are specified, and the redundants, whose magnitude are unknown at this 
state, are then applied to the released structure. For example, Figure 9.1c 
shows the determinate released structure for the beam in Figure 9.1b 
when the reaction at B is taken as the redundant. Since the released struc-
ture in Figure 9.1c is loaded exactly like the original structure, the internal 
forces and deformations of the released structure are identical to those of 
the original indeterminate structure.

We next analyze the determinate released structure for the applied 
loads and redundants. In this step the analysis is divided into separate cases 
for (1) the applied loads and (2) for each unknown redundant. For each 
case, deflections are computed at each point where a redundant acts. Since 
the structure is assumed to behave elastically, these individual analyses 
can be combined—superimposed—to produce an analysis that includes 
the effect of all forces and redundants. To solve for the redundants, the 
deflections are summed at each point where a redundant acts and set equal 
to the known value of deflection. For example, if a redundant is supplied 
by a roller, the deflection will be zero in the direction normal to the plane 
along which the roller moves. This procedure produces a set of compatibil-
ity equations equal in number to the redundants. Once we determine the 
values of the redundants, the balance of the structure can be analyzed with 
the equations of statics. We begin the study of the flexibility method by 
considering structures that are indeterminate to the first degree. Section 9.7  
covers indeterminate structures of higher order.

To illustrate the foregoing procedure, we will consider the analysis 
of the uniformly loaded beam in Figure 9.2a. Since only three equa-
tions of statics are available to solve for the four restraints supplied by 
the fixed support and roller, the structure is indeterminate to the first 
degree. To determine the reactions, one additional equation is needed 
to supplement the three equations of statics. To establish this equa-
tion, we arbitrarily select as the redundant the reaction RB exerted by 
the roller at the right end. In Figure 9.2b the free-body diagram of the 
beam in Figure 9.2a is redrawn showing the reaction RB exerted by the 
roller at support B but not the roller. By imagining that the roller has 

Fundamentals of the Flexibility Method
9.3

Figure 9.2: Analysis by the flexibility method: (a) beam indeterminate to the first 
degree; (b) released structure loaded with load w and redundant RB; (c) forces and 
displacements produced by load w in the released structure; (d) forces and displace-
ments of released structure produced by redundant XB; (e) forces and displacements 
in released structure produced by a unit value of the redundant.

RA
MA

AX

RB
(a)

BA
w

L

= 0BΔ

RA

MA

AX

RB = XB
(b)

w

= 0BΔ

RA0 = wL
(c)

w
MA0 = wL2

2

=B0Δ wL4

8EI

MAB XBL=

XB

RAB = XB

(d)

=BBΔ XBL3

3EI

M = 1·L

1 kip

[XB]

1 kip

(e)

=BB
1(L)3

3EI
δ

+
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380  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

been removed, we can treat the indeterminate beam as a simple determinate 
cantilever beam carrying a uniformly distributed load w and an unknown 
force RB at its free end. By adopting this point of view, we have produced 
a determinate structure that can be analyzed by statics. Since the beams in 
 Figure  9.2a and b carry exactly the same loads, their shear and moment 
curves are identical and they both deform in the same manner. In particular, 
the vertical deflection ΔB at support B equals zero. To call attention to the fact 
that the reaction supplied by the roller is the redundant, we now denote RB  
by the symbol XB (Figure 9.2b).

We next divide the analysis of the cantilever beam into the two parts 
shown in Figure 9.2c and d. Figure 9.2c shows the reactions and the 
deflections at B, ΔB0, produced by the uniform load whose magnitude is 
specified. Deflections of the released structure produced by the applied 
loads will be denoted by two subscripts. The first will indicate the location 
of the deflection; the second subscript will be a zero, to distinguish the re-
leased structure from the actual structure. Figure 9.2d shows the reactions 
and the deflection at B, ΔBB, produced by the redundant XB whose magnitude 
is unknown. Assuming that the structure behaves elastically, we can add 
(superimpose) the two cases in Figure 9.2c and d to give the original case 
shown in Figure 9.2b or a. Since the roller in the real structure establishes 
the geometric requirement that the vertical displacement at B equal zero, the 
algebraic sum of the vertical displacements at B in Figure 9.2c and d must 
equal zero. This condition of geometry or compatibility can be expressed as 

    Δ  B   = 0  (9.1)

Superimposing the deflections at point B produced by the applied load in 
 Figure 9.2c and the redundant in Figure 9.2d, we can write Equation 9.1 as

    Δ  B0   +  Δ  BB   = 0  (9.2)

The deflections ΔB0 and ΔBB can be evaluated by the moment-area method or 
by virtual work, or from tabulated values shown in Figure 9.3a and b. Also see 
Table A.3 in the Appendix for more cases.

As a sign convention, we will assume that displacements are positive 
when they are in the direction of the redundant. In this procedure you are 
free to assume the direction in which the redundant acts. If you have cho-
sen the correct direction, the solution will produce a positive value of the 
redundant. On the other hand, if the solution results in a negative value for 
the redundant, its magnitude is correct, but its direction is opposite to that 
initially assumed.

Expressing the deflections in terms of the applied loads and the proper-
ties of the members, we can write Equation 9.2 as

 −   w  L   4  ___ 
8EI

   +   
 X  B    L   3 

 ____ 
3EI

   = 0 

Solving for XB gives

    X  B   =   3wL ____ 
8
    (9.3)
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After XB is computed, it can be applied to the structure in Figure 9.2a and 
the reactions at A determined by statics; or as an alternative procedure, the 
reactions may be computed by summing the corresponding reaction com-
ponents in Figure 9.2c and d. For example, the vertical reaction at support 
A equals

    R  A   = wL −  X  B   = wL −   3wL ___ 
8
   =   5wL ___ 

8
    

Similarly, the moment at A equals

    M  A   =   w  L   2  ___ 
2
   −  X  B   L =   w  L   2  ___ 

2
   −   3wL (L)  _____ 

8
   =   w  L   2  ___ 

8
    

Once the reactions are computed, the shear and the moment curves can 
be  constructed using the sign conventions established in Section 5.3 
 (Figure 9.4). 

9.3 ■ Fundamentals of the Flexibility Method  381
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Figure 9.3: Displacements of prismatic beams.
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In the preceding analysis, Equation 9.2, the compatibility equation, was 
expressed in terms of two deflections ΔB0 and ΔBB. In setting up the com-
patibility equations for structures that are indeterminate to more than one 
degree, it is desirable to display the redundants as unknowns. To write a com-
patibility equation in this form, we can apply a unit value of the redundant  
(1 kip in this case) at point B (Figure 9.2e) and then multiply this case by XB, 
the actual magnitude of the redundant. To indicate that the unit load (as well 
as all forces and displacements it produces) is multiplied by the redundant, 
we show the redundant in brackets next to the unit load on the sketch of  
the member (Figure 9.2e). The deflection 𝛿BB produced by the unit value  
of the redundant is called a flexibility coefficient. In other words, the units of 
a flexibility coefficient are in distance per unit load, for example, in./kip or  
mm/kN. Since the beams in Figure 9.2d and e are equivalent, it follows that

    Δ  BB   =  X  B    δ  BB    (9.4)

Substituting Equation 9.4 into Equation 9.2 gives

    Δ  B0   +  X  B    δ  BB   = 0  (9.5)

Solving Equation 9.5 to the beam in Figure 9.2, we compute XB as

    X  B   = −   
 Δ  B0   ___ 
 δ  BB  

   = −   −w  L   4  / (8EI)  ________ 
 L   3  / (3EI) 

   =   3wL ___ 
8
    

After XB is determined, the reactions or internal forces at any point in the 
original beam can be determined by combining the corresponding forces in 
Figure 9.2c with those in Figure 9.2e multiplied by XB. For example, MA, the 
moment at the fixed support, equals

    M  A   =   w  L   2  ___ 
2
   −  (1L)   X  B   =   w  L   2  ___ 

2
   − L   3wL ___ 

8
   =   w  L   2  ___ 

8
    

Alternative View of the Flexibility Method (Closing a Gap)
9.4

In certain types of problems—particularly those in which we make internal 
releases to establish the released structure—it may be easier for the student 
to set up the compatibility equation (or equations when several redundants 
are involved) by considering that the redundant represents the force needed 
to close a gap.

As an example, in Figure 9.5a we again consider a uniformly loaded beam 
whose right end is supported on an unyielding roller. Since the beam rests on 
the roller, the gap between the beam and the roller is zero. As in the previous 

L3
8

wL2

8

L3
4

9wL2

128

wL2

8

5wL
8

3wL
8

5wL
8 3wL

8

(a)

(b)

–

–
(c)

shear

moment

w

L

Figure 9.4: Shear and moment curves for 
beam in Figure 9.2a.
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case, we select the reaction at B as the redundant and consider the determinate 
cantilever beam in Figure 9.5b as the released structure. Our first step is to ap-
ply the uniformly distributed load w = 2 kips/ft to the released structure (Figure 
9.5c) and compute ΔB0, which represents the 7.96-in. gap between the original 
position of the support and the tip of the cantilever (for clarity, the support is 
shown shifted horizontally to the right). To indicate that the support has not 
moved, we show the horizontal distance between the end of the beam and the 
roller equal to zero inches.

We now apply a 1-kip load upward at B and compute the vertical deflection 
of the tip 𝛿BB = 0.442 in. (Figure 9.5d). Deflection 𝛿BB represents the amount 
the gap closed by a unit value of the redundant. Since behavior is  elastic, the 
displacement is directly proportional to the load. If we had applied 10 kips 
 instead of 1 kip, the gap would have closed 4.42  in. (that is, 10 times as 
much). If we consider that the redundant XB represents the factor with which 
we must multiply the 1-kip case to close the gap ΔB0, that is, 

  Δ  B   = 0 
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MA RA
RB = XB

1 kip

[XB]

B = 0Δ

B0 = 7.96ʺΔ
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(b)

(c) (e)

(d)
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A B

L = 24ʹ

I = 600 in.4
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w = 2 kips/ft 0ʺ

0ʺ
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Δʹ
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Δʺ

w = 2 kips/ft 0ʺ
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δ

Figure 9.5: (a) Properties of beam; (b) re-
leased structure; (c) gap ΔB0 produced by load 
w; (d) closing of gap by a unit value of redun-
dant; (e) support settlement at B reduces gap 
by 2 in.; ( f ) effect of support movement at 
both A and B.
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384  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

where ΔB represents the gap between the beam and the roller, we can express 
this requirement as

    Δ  B0   +  δ  BB    X  B   = 0  (9.6)

where ΔB0 =  gap produced by applied loads or in more general case by load 
and other effects (support movements, for example)

  𝛿BB = amount the gap is closed by a unit value of redundant
   XB =  number by which unit load case must be multiplied to close 

the gap, or equivalently the value of redundant

As a sign convention, we will assume that any displacement that causes the 
gap to open is a negative displacement and any displacement that closes the 
gap is positive. Based on this criterion, 𝛿BB is always positive. Equation 9.6 is, 
of course, identical to Equation 9.5. Using Figure 9.3 to compute ΔB0 and 𝛿BB, 
we substitute them into Equation 9.6 and solve for XB, yielding

  Δ  B0   +  δ  BB    X  B   = 0 

 −7.96 + 0.442  X  B   = 0 

  X  B   = 18.0 kips 

If we are told that support B settles 2 in. downward to B′ when the load is 
applied (Figure 9.5e), the size of the gap Δ′B0 will decrease by 2 in. to 5.96 in. 
To compute the new value for the redundant X′B now required to close the gap, 
we again substitute into Equation 9.6 and find

 Δ  ′  B0   +  δ  BB   X  ′  B   = 0 

 −5.96 + 0.442X  ′  B   = 0 

 X  ′  B   = 13.484 kips 

As a final example, if the fixed support at A were accidentally constructed 
1 in. above its intended position at point A′, and if a 2-in. settlement also oc-
curred at B when the beam was loaded, the gap ΔB̋0 between the support and 
the tip of the loaded beam would equal 4.96 in, as shown in Figure 9.5f. To 
compute the value of the redundant X B̋ required to close the gap, we substi-
tute into Equation 9.6 and compute

 Δ  ̋  B0   +  δ  BB   X  ̋  B   = 0 

 −4.96 + 0.442X  ̋  B   = 0 

 X  ̋  B   = 11.22 kips 

As you can see from this example, the settlement of a support of an  indeterminate 
structure or a construction error can produce a significant change in the reactions 
(see Figure 9.6 for a comparison between the shear and moment curves for the 
case of no settlement versus a 2-in. settlement at B). Although an indeterminate 
beam or structure may often be overstressed locally by moments created by un-
expected support settlements, a ductile structure usually possesses a reserve of 
strength that permits it to deform without collapsing.
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moment
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30 kips
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A B
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–252.38 kip  ft
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moment

34.516 kips

w = 2 kips/ft
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A B

L = 24ʹ

17.258ʹ

6.742ʹ

Figure 9.6: Influence of support settlements 
on shear and moment: (a) no settlement; 
(b) support B settles 2 in.
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Using the moment MA at the fixed support as the redundant, analyze the 
beam in Figure 9.7a by the flexibility method.

Solution

E X A M P L E  9 . 1

Figure 9.7: Analysis by the flexibility method 
using MA as the redundant: (a) beam inde-
terminate to the first degree; (b) released 
structure with uniform load and redundant 
MA applied as external loads; (c) released 
structure with actual load; (d ) released struc-
ture with reactions produced by unit value of 
redundant.
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The fixed support at A prevents the left end of the beam from rotating. 
Removing the rotational restraint while retaining the horizontal and verti-
cal restraints is equivalent to replacing the fixed support by a pin sup-
port. The released structure loaded by the redundant and the actual load is 
shown in Figure 9.7b. We now analyze the released structure for the actual 
load in Figure 9.7c and the redundant in Figure 9.7d. Since 𝜃A = 0, the rota-
tion 𝜃A0 produced by the uniform load and the rotation αAAXA produced by 
the redundant must add to zero. From this geometric requirement we write 
the compatibility equation as

   θ  A0   +  α  AA    X  A   = 0  (1)

where  𝜃A0 = rotation at A produced by uniform load
 αAA =  rotation at A produced by a unit value of redundant  

(1 kip · ft)
  XA = redundant (moment at A)

Substituting into Equation 1 the values of 𝜃A0 and αAA given by the equa-
tions in Figure 9.3, we find that

 −   w  L   3  ____ 
24EI

   +   L ___ 
3EI

    X  A   = 0 

   X  A   =  M  A   =   w  L   2  ____ 
8
    Ans. (2)

Since MA is positive, the assumed direction (counterclockwise) of the re-
dundant was correct. The value of MA verifies the previous solution shown 
in Figure 9.4.
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386  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

E X A M P L E  9 . 2 Determine the bar forces and reactions in the truss shown in Figure 9.8a. 
First, assume that AE is constant for all bars. Then, recompute assuming 
2AE for bars AD, AE, and ED.

RA

RC = XC

CV = 0Δ

C0Δ

(a)

A B C

D

E

20ʹ

30ʹ
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20ʹ
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–7.5

A B C

D

E
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9 kips
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6 kips
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(c)

1 kip[XC]

A B C

D

E

4
3

(d)
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– 4
3–

5
3+

5
3+

–9
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0

–1.99 –1.99

+2.48

–5.02

+7.5

A B C

D

E

9 kips

7.51 kips

4.01 kips

4.01 kips

1.49 kips

1 kip

(e)
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–1.2 –1.2

+1.5
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+7.5

A B C

D

E

9 kips

8.1 kips

4.8 kips

4.8 kips

0.9 kips

4
3 kips

4
3 kips

δ

Figure 9.8: (a) Truss indeterminate to first degree; (b) released structure with ac-
tual loads; (c) released structure loaded by unit value of redundant; (d ) final values 
of bar forces and reactions by superimposing case (b) and XC times case (c); (e) 
final values of bar forces and reactions when all EA values are not equal. All bar 
forces are in kips.

Solution
Since the truss is externally indeterminate to the first degree (reactions 
 sup ply four restraints), one compatibility equation is required. Arbitrarily se-
lect as the redundant the roller reaction at C. We now load the released struc-
ture with the actual loading (Figure 9.8b) and the redundant (Figure 9.8c). 
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Since the roller prevents vertical displacement (i.e., ΔCV = 0), super position 
of the deflections at C gives the following compatibility equation:

   Δ  C0   +  X  C    𝛿  CC   = 0  (1)

where ΔC0 is the deflection in the released structure produced by the actual 
load and 𝛿CC is the deflection in the released structure produced by a unit 
value of the redundant. (Displacements and forces directed upward are 
positive.)

Evaluate ΔC0 and 𝛿CC by virtual work using Equation 8.24. To compute 
ΔC0 (Figure 9.8b), use loading in Figure 9.8c as the Q-system.

 ∑Q  δ  P   = ∑  F  Q      F  P    L ___ AE   

  1 kip ( Δ  C0  )  =  (  5 __ 
3
  )    −7.5 (25 × 12)   __________ 

AE
    (2)

ΔC0 = −    3750 _____ 
AE

    ↓

To compute 𝛿CC produced by the 1-kip load at C (Figure 9.8c), we also use 
the loading in Figure 9.8c as a Q-system.

   1 kip ( δ  CC  )  = ∑   
 F  Q  2    L

 ____ 
AE

    (3)

  δ  CC   =   (−   4 __ 
3
  )    

2

    20 × 12 ______ 
AE

    (2)  +   (  5 __ 
3
  )    

2

    25 × 12 ______ 
AE

    (2)  =   2520 ____ 
AE

   ↑ 

Substituting ΔC0 and 𝛿CC into Equation 1 yields

  −   3750 ____ 
AE

   +   2520 ____ 
AE

    X  C   = 0  (4)

  X  C   = 1.49  Ans.

The final reactions and bar forces shown in Figure 9.8d are computed by 
superimposing those in Figure 9.8b with 1.49 times those produced by the 
unit load in Figure 9.8c. For example,

  R  A   = 6 −   4 __ 
3
    (1.49)  = 4.01 kips   F  ED   = −7.5 +   5 __ 

3
    (1.49)  = −5.02 kips 

From Equations (2) and (3), assuming bars AD, AE, and ED have 2AE, 
Equation (4) yields XC = 0.89. The reactions and internal bar forces are 
then found and are shown in Figure 9.8e. Notice for indeterminate struc-
tures the cross sections of the members affect the distribution of internal 
forces and reactions since the compatibility equation is required. This is 
not the case for statically determinate structures.
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388  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

E X A M P L E  9 . 3 Determine the reactions and draw the moment curves for the frame mem-
bers in Figure 9.9a. EI is constant.

Solution
To produce a stable determinate released structure, we arbitrarily select 
the horizontal reaction RCX as the redundant. Removing the horizontal 
restraint exerted by the pin at C while retaining its capacity to transmit 
vertical load is equivalent to introducing a roller. The deformations and re-
actions in the released structure produced by the applied load are shown in 
Figure 9.9b. The action of the redundant on the released structure is shown 
in Figure 9.9c. Since the horizontal displacement ΔCH in the real structure 
at joint C is zero, the compatibility equation is

   Δ  C0   +  𝛿  CC    X  C   = 0  (1)

Compute ΔC0 using moment-area principles (see the deflected shape in 
Figure 9.9b). From Figure 9.3d we can evaluate the slope at the right end 
of the girder as

  θ  B0   =   P L   2  ____ 
16EI

   =   10   (12)    2  ______ 
16EI

   =   90 __ 
EI

   

Since joint B is rigid, the rotation of the top of column BC also equals 𝜃B0. 
Because the column carries no moment, it remains straight and

  Δ  C0   = 6  θ  B0   =   540 ___ 
EI

   

Compute 𝛿CC by virtual work (Figure 9.9c). Use the loading in Figure 9.9c as 
both the Q-system and the P-system (i.e., the P- and Q-systems are identical). 
To evaluate MQ and MP, we select coordinate systems with origins at A in the 
girder and C in the column.

 1 kip (𝛿CC) =   ∫    
 

    MQMP    dx ___ 
EI

    =   ∫ 
 0
  

 12

      x __ 
2
     (  x __ 

2
  )     dx ___ 

EI
    +   ∫ 

 0
  

 6

    x(x)   dx ___ 
EI

    (8.31)

Integrating and substituting the limits give

  𝛿  CC   =   216 ___ 
EI

   

Substituting ΔC0 and 𝛿CC into Equation 1 gives

 −   540 ___ 
EI

   +   216 ___ 
EI

   ( X  C  )  = 0 

  X  C   = 2.5  Ans.
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Figure 9.9: (a) Frame indeterminate to first degree, RCX selected as redundant; (b) load 
applied to released structure; (c) reactions and defor mations in released structure due to 
unit value of redundant; (d ) final forces by superposition of values in (b) plus XC times 
values in (c). Moment curves (in kip · ft) also shown.

The final reactions (Figure 9.9d ) are established by superimposing the 
forces in Figure 9.9b and those in Figure 9.9c multiplied by XC = 2.5.
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E X A M P L E  9 . 4 Determine the reactions of the continuous beam in Figure 9.10a by the 
flexibility method. Given: EI is constant.

Solution
The beam is indeterminate to the first degree (i.e., four reactions and three 
equations of statics). We arbitrarily select the reaction at B as the redun-
dant. The released structure is a simple beam spanning from A to C. The 
released structure loaded by the specified loads and the redundant XB is 
shown in Figure 9.10b. Since the roller prevents vertical deflection at B, 
the geometric equation stating this fact is

L

w

A C
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RA RB = XB RC

RA RC

(a)

B = 0Δ
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w

A C
B
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(b)
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(c)

B0Δ

A C
B

(d)
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2 kip1

2 kip
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Figure 9.10: Analysis by consistent deformations: (a) continuous beam indeterminate 
to the first degree, and reaction at B taken as redundant; (b) re leased structure loaded 
by external load and redundant; (c) released structure with external load; (d ) released 
structure loaded by redundant; (e) shear and moment curves.
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   Δ  B   = 0  (1)

To determine the redundant, we superimpose the deflections at B pro-
duced by (1) the external load (Figure 9.10c) and (2) a unit value of the 
redundant multiplied by the magnitude of the redundant XB (Figure 9.10d). 
Expressing Equation 1 in terms of these displacements yields

   Δ  B0   +  δ  BB    X  B   = 0  (2)

Using Figure 9.3c and d, we compute the displacements at B.

  Δ  B0   = −   5w   (2L)    4  ______ 
384EI

     𝛿  BB   =   
 (1 kip)    (2L)    3 

 ________ 
48EI

   

Substituting ΔB0 and 𝛿BB into Equation 2 and solving for XB give

   R  B   =  X  B   = 1.25wL  Ans.

We compute the balance of the reactions by adding, at the corresponding 
points, the forces in Figure 9.10c to those in Figure 9.10d multiplied by XB.

   R  A   = wL −   1 __ 2    (1.25wL)  =   3 __ 8    wL   Ans.

   R  C   = wL −   1 __ 2    (1.25wL)  =   3 __ 8    wL  Ans.

The shear and moment curves are plotted in Figure 9.10e.
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In previous examples of indeterminate structures analyzed by the flexibility 
method, support reactions were selected as the redundants. If the supports do 
not settle, the compatibility equations express the geometric condition that the  
displacement in the direction of the redundant is zero. We will now extend the 
flexibility method to a group of structures in which the released structure is 
established by removing an internal restraint. For this condition, redundants are 
taken as pairs of internal forces, and the compatibility equation is based on the 
geometric condition that no relative displacement (i.e., no gap) occurs between 
the ends of the section on which the redundants act.

We begin our study by considering the analysis of a cantilever beam 
whose free end is supported by an elastic link (Figure 9.11a). Since the fixed 
end and the link apply a total of four restraints to the beam, but only three 
equations of equilibrium are available for a planar structure, the structure is inde-
terminate to the first degree. To analyze this structure, we select as the redundant 
the tension force T in bar BC. The released structure with both the actual load 
of 6 kips and the redundant applied as an external load is shown in Figure 9.11b. 
As we have noted previously, you are free to assume the direction in which the 
redundant acts. If the solution of the compatibility equation produces a positive 
value of the redundant, the assumed direction is correct. A negative value indi-
cates that the direction of the redun dant must be reversed. Since the redundant T 
is assumed to act up on the beam and down on the link, upward displacements 
of the beam are positive and downward displacements are negative. For the link 
a downward displacement at B is positive and an upward displacement negative.

In Figure 9.11c the design load is applied to the released structure, 
producing a gap ΔB0 between the end of the beam and the unloaded link. 
Figure 9.11d shows the action of the internal redundant T in closing the gap. 
The unit values of the redundant elongate the bar an amount 𝛿1 and displace 
the  tip of the cantilever upward an amount 𝛿2. To account for the actual 
value of the redundant, the forces and displacements produced by the unit 
loads are multiplied by T—the magnitude of the redundant.

Analysis Using Internal Releases
9.5

0ʺ

A
ΔB0

B

C

(c)
6 kips

6 kips

T = 0

72 kip  ft
A B

C

RA

(a)

L = 12ʹ

I = 864 in.4
E = 30,000 kips/in.2

A = 0.5 in.2
E = 24,000 kips/in.2

L = 20ʹ

6 kipsMA

T

A T

T

ΔB

ΔB,rel = 0
T

B

Bʹ

C

RA

(b)
6 kips

0ʺ

MA

(d)

0ʺ

A
1

2

B

C

1 kip

[T]

1 kip1 kip

1 kip

12 kip  ft

δ

δ

Figure 9.11: (a) Cantilever supported by 
an elastic link, link force T taken as the re-
dundant; (b) released structure loaded by  
6-kip load and the redundant T; (c) 6-kip load 
applied to released structure; (d ) unit values 
of redundant applied to released structure 
to establish flexibility co ef fi cient 𝛿BB =  
𝛿1 + 𝛿2. Note: Beam shown in de flected posi-
tion produced by 6-kip load. Under the unit 
loads, the beam deflects upward 𝛿2 and the 
link CB downward 𝛿1, partially closing the 
gap 𝛿1 + 𝛿2.
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The compatibility equation required to solve for the redundant is based 
on the observation that the right end of the beam and the link BC both 
deflect the same amount ΔB because they are connected by a pin. Alterna-
tively, we can state that the relative displacement ΔB,Rel between the top of 
the beam and the link is zero (Figure 9.11b). This latter approach is adopted 
in this section.

Superimposing the deflections at B in Figure 9.11c and d, we can write 
the compatibility equation as

   Δ  B,Rel   = 0  (9.7)

  Δ  B0   +  δ  BB   (T)  = 0 

where ΔB0 is the downward displacement of the beam (i.e., the opening of 
the gap in the released structure by the 6-kip load) and 𝛿BB is the distance 
the gap is closed by the unit values of the redundant (i.e., 𝛿BB = 𝛿1 + 𝛿2; see 
Figure 9.11d ).

In Figure 9.11c, ΔB0 may be evaluated from Figure 9.3b as

  Δ  B0   = −   P L   3  ___ 
3EI

   = −   6   (12 × 12)    3  __________  
3 (30,000) 864

   = −0.2304 in .

And 𝛿BB = 𝛿1 + 𝛿2, where 𝛿1 = FL/(AE) and 𝛿2 is given by Figure 9.3b.

  δ  1   =   FL ___ 
AE

   =   
1 kip (20 × 12) 

  __________  
0.5 (24,000) 

   = 0.02 in.      δ  2   =   P L   3  ___ 
3EI

   =   
1 kip   (12)    3  (1728) 

  ____________  
3 × 30,000 × 864

   

     = 0.0384 .

  δ  BB   =  δ  1   +  δ  2   = 0.02 + 0.0384 = 0.0584 in .

Substituting ΔB0 and 𝛿BB into Equation 9.7, we compute the redundant T as

 −0.2304 + 0.0584 T = 0 

 T = 3.945 kips 

The actual deflection at B (Figure 9.11b) may be computed either by evaluat-
ing the change in length of the link

  Δ  B   =   FL ___ 
AE

   =   3.945 (20 × 12)   ___________  
0.5 (24,000) 

   = 0.0789 in. 

or by adding the deflections at the tip of the beam in Figure 9.11c and d,

  Δ  B   =  Δ  B0   − T  δ  2   = 0.2304 − 3.945 (0.0384)  = 0.0789 in. 

After the redundant is established, the reactions and internal forces can be 
computed by superimposition of forces in Figure 9.11c and d. For example,

   R  A   = 6 − 1 (T)  = 6 − 3.945 = 2.055 kips  Ans.

   M  A   = 72 − 12 (T)  = 72 − 12 (3.945)  = 24.66 kip ⋅ ft 
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394  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

E X A M P L E  9 . 5 Analyze the continuous beam in Figure 9.12a by selecting the internal 
 moment at B as the redundant. The beam is indeterminate to the first 
 degree. EI is constant.

Figure 9.12: (a) Continuous beam indeterminate to the first degree; (b) detail of joint B 
showing rotation 𝜃B of longitudinal axis; (c) released structure loaded by actual load P and 
the redundant moment MB; (d) detail of joint B in (c); (e) released structure with actual load;  
( f ) released structure loaded by redundant; forces shown are produced by a unit value 
of the redundant MB.
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Solution
To clarify the angular deformations involved in the solution, we will imag-
ine that two pointers are welded to the beam on each side of joint B. The 
pointers, which are spaced zero inches apart, are perpendicular to the lon-
gitudinal axis of the beam. When the concentrated load is applied to span 
AB, joint B rotates counterclockwise, and both the longitudinal axis of the 
beam and the pointers move through the angle 𝜃B, as shown in Figure 9.12a 
and b. Since the pointers are located at the same point, they remain parallel 
(i.e., the angle between them is zero).

We now imagine that a hinge, which can transmit axial load and shear 
but not moment, is introduced into the continuous beam at support B, pro-
ducing a released structure that consists of two simply supported beams 
(Figure 9.12c). At the same time that the hinge is introduced, we imagine 
that the actual value of internal moment MB in the original beam is applied 
as an external load to the ends of the beam on either side of the hinge at 
B (Figure 9.12c and d ). Since each member of the released structure is 
supported and loaded in the same manner as in the original continuous 
beam, the internal forces in the released structure are identical to those in 
the original structure.
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9.5 ■ Analysis Using Internal Releases  395

To complete the solution, we analyze the released structure sepa-
rately for (1) the actual loading (Figure 9.12e) and (2) the redundant 
(Figure 9.12f ), and we superimpose the two cases.

The compatibility equation is based on the geometric requirement that 
no angular gaps exist between the ends of the continuous beam at support 
B; or equivalently that the angle between the pointers is zero. Thus we can 
write the compatibility equation as

  θ  B,Rel   = 0 

   θ  B0   + 2α  M  B   = 0  (9.8)

Evaluate 𝜃B0 using Figure 9.3e.

  θ  B0   =   P L   2  ____ 
16EI

   

Evaluate α using Figure 9.3f.

 α =   1L ___ 
3EI

   

Substituting 𝜃B0 and α into Equation 9.8 and solving for the redundant give

   P L   2  ____ 
16EI

   + 2   L ___ 
3EI

    M  B   = 0 

  M  B   = −   3 __ 
32

    (PL)   Ans.

Superimposing forces in Figure 9.12e and f, we compute

  R  A   =   P __ 
2
   +   1 __ 

L
      M  B   =   P __ 

2
   +   1 __ 

L
   (−   3 __ 

32
   PL)  =   13 __ 

32
   P  ↑ 

RC  = 0   +   1 __ 
L

   (−   3 __ 
32

   PL)    = −   3 __ 
32

   P  ↓

Similarly, 𝜃B can be evaluated by summing rotations at the right end of 
AB to give

𝜃B = 𝜃B0 +   αM  B   =   PL2
 __ 

16EI
   +   L __ 

3EI
   (−   3 __ 

32
   PL)  =     PL2

 ____ 
32EI

    

or by summing rotations of the left end of BC.

𝜃B = 0 +   αM  B   =   L __ 
3EI

   (−   3 __ 
32

   PL)  =  −    PL2
 ____ 

32EI
    

(minus sign indicates that assumed 
direction up is wrong)
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E X A M P L E  9 . 6 Determine the forces in all members of the truss in Figure 9.13. AE is 
constant for all bars.
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Figure 9.13: (a) Details of truss; (b) released structure loaded with redundant X and  40-kip 
load; (c) detail showing redundant; (d) 40-kip load applied to released structure; (e) Q-system 
for Δ0; ( f ) unit value of redundant applied to released structure; (g) final results.
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Solution
The truss in Figure 9.13a is internally indeterminate to the first degree. The 
unknown forces—bars and reactions—total nine, but only 2n = 8 equa-
tions are available for their solution. From a physical point of view, an 
extra diagonal member that is not required for stability has been added to 
transmit lateral load into support A.

Application of the 40-kip horizontal force at D produces forces in all bars 
of the truss. We will select the axial force FAC in bar AC as the redundant and 
represent it by the symbol X. We now imagine that bar AC is cut by passing 
an imaginary section 1-1 through the bar. On each side of the cut, the redun-
dant X is applied to the ends of the bar as an external load (Figure 9.13b). A 
detail at the cut is shown in Figure 9.13c. To show the action of the internal 
forces on each side of the cut, the bars have been offset. The zero dimen-
sion between the longitudinal axis of the bars indicates that the bars are  
actually collinear. To show that no gap exists be tween the ends of the bars, 
we have noted on the sketch that the relative displacement between the 
ends of the bars ΔRel equals zero.

   Δ  Rel   = 0  (9.9)

The requirement that no gap exists between the ends of the bars in the actual 
structure forms the basis of the compatibility equation.

As in previous examples, we next divide the analysis into two parts. 
In Figure 9.13d the released structure is analyzed for the applied load of  
40 kips. As the stressed bars of the released structure deform, a gap Δ0 
opens between the ends of the bars at section 1-1. The Q-system required 
to compute Δ0 is shown in Figure 9.13e. In Figure 9.13f, the released struc-
ture is analyzed for the action of the redundant. The relative displacement 
𝛿00 of the ends of the bar produced by the unit value of the redundant 
equals the sum of the displacements 𝛿1 and 𝛿2. To compute 𝛿00, we again 
use the force system shown in Figure 9.13e as the Q-system. In this case 
the Q-system and the P-system are identical.

Expressing the geometric condition given by Equation 9.9 in terms 
of the displacements produced by the applied loads and the redundant, we 
can write

   Δ  0   + X  δ  00   = 0  (9.10)

Substituting numerical values of Δ0 and 𝛿00 into Equation 9.10 and solving 
for X give

 −0.346 + 0.0138X = 0 

 X = 25.07 kips [continues on next page]
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398  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

The computations for Δ0 and 𝛿00 using virtual work are given below.

Δ0:
Use the P-system in Figure 9.13d and Q-system in Figure 9.13e:

  W  Q   = ∑   
 F  Q    F  P   L

 _____ 
AE

   

 1 kip ( Δ  0  )  =    1 (− 50)  (20 × 12)    
bar DB

    ___________ 
AE

   +    −0.8 (40)  (16 × 12)    
bar AB

    _____________ 
AE

   

    +    −0.6 (30)  (12 × 12)    
bar AD

    _____________ 
AE

   

  Δ  0   = −   
20,736

 _____ 
AE

   = −   
20,736

 _______ 
2 (30,000) 

   = −0.346 in. 

𝛿00:
P-system in Figure 9.13f and Q-system in Figure 9.13e (note: P- and 
Q-systems are the same; therefore, FQ = FP):

  W  Q   = ∑   
 F  Q  2   L

 ___ 
AE

   

 1 kip ( δ  1  )  + 1 kip ( δ  2  )  =     
(−0.6)    2  (12 × 12)   ____________ 

AE
    (2)  

  +     
(−0.8)    2  (16 × 12)   ____________ 

AE
    (2)  

  +    1   2  (20 × 12)  ________ 
AE

    (2)  

Since 𝛿1 + 𝛿2 = 𝛿00,

  δ  00   =   829.44 ______ 
AE

   =   829.44 _______ 
2 (30,000) 

   = 0.0138 in. 

Bar forces are established by superposition of the forces in Figure 9.13d 
and f. For example, the forces in bars DC, AB, and DB are

  F  DC   = 0 +  (−0.8)   (25.07)  = −20.06 kips 

  F  AB   = 40 +  (−0.8)   (25.07)  = 19.95 kips  Ans.

  F  DB   = −50 + 1 (25.07)  = −24.93 kips 

Final results are summarized in Figure 9.13g.

Example 9.6 continues . . .
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Figure 9.14: Support settlement at location 
of the redundant.

9.6 ■ Support Settlements, Temperature Change, and Fabrication Errors  399

Support settlements, fabrication errors, temperature changes, creep, shrinkage, 
and so forth create forces in indeterminate structures. To ensure that such 
structures are safely designed and do not deflect excessively, the designer 
should investigate the influence of these effects—particularly when the struc-
ture is unconventional or when the designer is unfamiliar with the behavior 
of a structure.

Since it is standard practice for designers to assume that members will be 
fabricated to the exact length and that supports will be constructed at the pre-
cise location and elevation specified on the construction drawings, few engi-
neers consider the effects of fabrication or construction errors when designing 
routine structures. If problems do arise during construction, they are typically 
handled by the field crew. For example, if supports are  constructed too low, 
steel plates—shims—can be inserted under the base plates of columns. If 
problems arise after construction is complete and the client is inconvenienced 
or is not able to use the structure, lawsuits often follow.

On the other hand, most building codes require that engineers consider 
the forces created by differential settlement of structures constructed on com-
pressible soils (soft clays and loose sands), and the AASHTO specifi cations 
require that bridge designers evaluate the forces created by temperature change, 
shrinkage, and so forth.

The effects of support settlements, fabrication errors, and so forth can 
easily be included in the flexibility method by modifying certain terms of 
the compatibility equations. We begin our discussion by considering support 
settlements. Once you understand how to incorporate these effects into the 
compatibility equation, other effects can easily be included.

Case 1.   A Support Movement Corresponds  
to a Redundant

If a predetermined support movement occurs that corresponds to a redundant, 
the compatibility equation (normally set equal to zero for the case of no sup-
port settlements) is simply set equal to the value of the support move ment. 
For example, if support B of the cantilever beam in Figure 9.14 settles 1 in. 
when the member is loaded, we write the compatibility equation as

  Δ  B   = −1 in. 

Superimposing displacements at B yields

  Δ  B0   +  δ  BB    X  B   = −1 

where ΔB0, the deflection at B in the released structure produced by the ap-
plied load, and 𝛿BB, the deflection at B in the released structure produced by a 
unit value of the redundant, are shown in Figure 9.2.

Support Settlements, Temperature  
Change, and Fabrication Errors

9.6
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400  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

Following the convention established previously, the support settlement 
ΔB is considered negative because it is opposite in sense to the assumed direc-
tion of the redundant.

Case 2.   The Support Settlement Does Not Correspond  
to a Redundant

If a support movement occurs that does not correspond to a redundant, 
its effect can be included as part of the analysis of the released structure 
for the applied loads. In this step you evaluate the displacement that cor-
responds to the redundant produced by the movement of the other support. 
When the geometry of the structure is simple, a sketch of the released 
structure in which the support movements are shown will often suffice to 
establish the displacement that corresponds to the redundant. If the geom-
etry of the structure is complex, you can use virtual work to compute the 
displacement. As an example, we will set up the compatibility equation for 
the cantilever beam in Figure 9.14, assuming that support A settles 0.5 in. 
and rotates clockwise 0.01 rad and support B settles 1 in. Figure 9.15a 
shows the deflection at B, denoted by ΔBS, due to the −0.5-in. settlement 
and the 0.01-rad rotation of support A. Figure 9.15b shows the deflection 
at B due to the applied load. We can then write the compatibility equation 
required to solve for the redundant X as

  Δ  B   = −1 

  ( Δ  B0   +  Δ  BS  )  +  δ  BB    X  B   = −1 

(b)

(a)

original position

0.5ʺ0.5ʺ

L = 0.01L

L
B

= 0.01 rad

B0Δ

A
w

B

BSΔ = 0.5 + 0.01L
Aʹ

A

�
�

Figure 9.15: (a) Deflection at B produced 
by settlement and rotation at support A;  
(b) deflec tion at B produced by applied load.
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9.6 ■ Support Settlements, Temperature Change, and Fabrication Errors  401

Determine the reactions induced in the continuous beam shown  in Fig-
ure 9.16a if support B settles 0.72 in. and support C settles 0.48 in. Given: 
EI is constant, E = 29,000 kips/in.2, and I = 288 in.4.

Solution
This example illustrates the analysis procedure when support move-
ment occurs at more than one locations, including one that does not 
correspond to the direction of the redundant. Arbitrarily select the re-
action at support B as the redundant. Figure 9.16b shows the released 
structure with support C in its displaced position. Because the released 
structure is determinate, it is not stressed by the  settlement of support C 
and remains straight. Since the displacement of the beam’s axis varies 
linearly from A, ΔBS = −0.24 in. The forces and displacements pro-
duced by a unit value of the redundant are shown in Figure 9.16c. Using 
Figure 9.3d to evaluate 𝛿BB gives

  δ  BB   =    PL   3  ____ 
48EI

   =   1   (32)    3  (1728)   ____________  
48 (29,000)  (288) 

   = 0.141 in. 

Since support B settles 0.72 in., the compatibility equation is

   Δ  B   = −0.72 in.  (1)

The displacement is negative because the positive direction for dis-
placements is established by the direction assumed for the redundant. 
Superimposing the displacements at B in Figure 9.16b and c, we write 
Equation 1 as

  (Δ  B0   + ΔBS) +  δ  BB   X = −0.72 

where ΔB0 is the displacement at B due to the applied load. But ΔB0 equals 
zero because no external load acts on the structure in this example. The 
second term, ΔBS (=−0.24 in.), is the displacement at B produced by 
the support movement at location C; this support movement does not 
correspond to the direction of the redundant.

Substituting the numerical values of ΔB0 and 𝛿BB, we compute X as

 (0 − 0.24) + 0.141X = −0.72 

 X = −3.4 kips ↓ Ans.

The final reactions, which can be computed by statics or by superposition 
of forces in Figure 9.6b and c, are shown in Figure 9.16d.

Figure 9.16: (a) Continuous beam with spe-
cified support settlements; (b) released struc-
ture with support C in displaced position (no 
reactions or forces in the member develop); 
(c) unit value of redundant applied; (d ) final 
reactions computed by superposition of (b) 
and [X] times (c).
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E X A M P L E  9 . 8
Compute the reaction at support C of the truss in Figure 9.17a if the 
temperature of bar AB increases 50°F, member ED is fabricated 0.3 in. 
too  short, support A is constructed 0.48 in. to the right of its intended 
 position, and support C is constructed 0.24 in. too high. For all bars  
A = 2 in.2, E = 30,000 kips/in.2, and the coefficient of temperature expan-
sion α = 6 × 10−6 (in./in.)/°F.

Solution
We arbitrarily select the reaction at support C as the redundant. Since the 
released structure is determinate, no forces are created in the bars or at the 
reactions due to the displacement of support A or the small changes in length 
of the bars due to temperature change and fabrication error; however, joint 
C displaces vertically and this vertical displacement is composed of two 
components. The first component is produced by the lengthening of bar 
AB and the shortening of bar ED (Figure 9.17b). The second component is 
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5
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Figure 9.17: (a) Details of indeterminate truss; (b) deflected shape of released structure 
due to temperature change and fab rication error; (c) deflected shape of released struc-
ture due to horizontal shift of support A; (d) forces and reactions in released structure 
due to a unit value of redundant; (e) final results of analysis.
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9.6 ■ Support Settlements, Temperature Change, and Fabrication Errors  403

produced by the horizontal shift of support A (Figure 9.17c); the direction 
of this movement does not correspond to that of the redundant.

Since support C is constructed 0.24 in. above its intended position and 
the direction of this displacement is in the same direction as the redundant, 
the compatibility equation is

   Δ  C   = 0.24 in.  (1)

Superimposing the deflections at C in Figure 9.17b and c, we can write

  ( Δ  C0   + ΔCS) +  δ  CC   X = 0.24  (2)

To compute ΔC0 (Figure 9.17b), use the force system in Figure 9.17d 
as the Q-system. Compute ΔLtemp of bar AB using Equation 8.25.

  Δ  L  temp   = α (ΔT) L =  (6 ×  10   −6 ) 50 (20 × 12)  = 0.072 in. 

  ∑Q  δ  P   = ∑ F  Q   Δ  L  P    (8.23)

where ΔLP is given by Equation 8.26

1 kip ( Δ  C0  )  =   5 __ 
3
   (−0.3)  +  (−   4 __ 

3
  )  (0.072) 

ΔC0 = −0.596 in. ↓

In Example 9.2, 𝛿CC was evaluated as

  δ  CC   =   2520 ____ 
AE

   =   2520 _______ 
2 (30,000) 

   = 0.042 in. 

To compute ΔCS, refer to Figure 9.17c. A horizontal shift of support A by 
0.48 in. produces a rigid-body rotation about support E of the released 
structure. This motion produces a downward movement at C:

∆CS = −0.48 (   40 __ 
30

  )  = −0.64 in.

Substituting ΔCS and 𝛿CC into Equation 2 and solving for X give

(−0.596 − 0.64) + 0.042X = 0.24

 X = 35.14 kips  Ans.

Final bar forces and reactions from all effects, established by superimpos-
ing the forces (all equal to zero) in Figure 9.17b and those in Figure 9.17c 
multiplied by the redundant X, are shown in Figure 9.17d.
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The analysis of a structure that is indeterminate to more than one degree  
follows the same format as that for a structure with a single degree of 
indeterminacy. The designer establishes a determinate released struc-
ture by selecting certain reactions or internal forces as redundants. The 
unknown redundants are applied to the released structure as loads to-
gether with the actual loads. The structure is then analyzed separately 
for each redundant as well as for the actual load. Finally, compatibility 
equations equal in number to the redundants are written in terms of the 
displacements that correspond to the redundants. The solution of these 
equations permits us to evaluate the redundants. Once the redundants 
are known, the balance of the analysis can be completed by using the 
equations of static equilibrium or by superposition.

To illustrate the method, we consider the analysis of the two-span 
 continuous beam in Figure 9.18a. Since the reactions exert five restraints 
on the beam and only three equations of statics are available, the beam is 
indeterminate to the second degree. To produce a released structure (in 
this case a determinate cantilever fixed at A), we will select the reactions 
at supports B and C as the redundants. Since the supports do not move, the 
vertical deflection at both B and C must equal zero. Next, we divide the 
analysis of the beam into three cases, which will be superimposed. First, 
the released structure is analyzed for the applied loads (Figure 9.18b). 
Then, separate analyses are carried out for each redundant (Figure 9.18c 
and d). The effect of each redundant is determined by applying a unit 
value of the redundant to the released structure and then multiplying all 
forces and deflections it produces by the magnitude of the redundant. To 
indicate that the unit load is multiplied by the redundant, we show the 
redundant in brackets next to the sketch of the loaded member. 

To evaluate the redundants, we next write compatibility equations 
at supports B and C. These equations state that the sum of the deflections 
at points B and C from the cases shown in Figure 9.18b to d must to-
tal zero. This requirement leads to the following compatibility equations:

   Δ  B   = 0 =  Δ  B0   +  X  B    δ  BB   +  X  C    δ  BC   

    Δ  C   = 0 =  Δ  C0   +  X  B    δ  CB   +  X  C    δ  CC    
(9.11)

Once the numerical values of the six deflections are evaluated and sub-
stituted into Equations 9.11, the redundants can be determined. A small sav-
ing in computational effort can be realized by using the Maxwell-Betti law 
 (Section 8.9), which requires that 𝛿CB = 𝛿BC. As you can see, the magnitude of 
the computations increases rapidly as the degree of indeterminacy increases. For 
a structure that was indeterminate to the third degree, you would have to write 
three compatibility equations and evaluate 12 deflections (use of the Maxwell-
Betti law would reduce the number of unknown deflections to nine).

Analysis of Structures with Several Degrees of Indeterminacy
9.7

Figure 9.18: (a) Beam indeterminate to 
second degree with RB and RC selected as  
redundants; (b)  deflections in released 
structure due to actual load; (c) deflection 
of released structure due to a unit value of 
the redundant at B; (d ) deflection of 
 released structure due to a unit value of the 
redundant at C.

w

C0Δ
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MA

RB = XB RC = XC
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L
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L

w
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2wL
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B0Δ
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1 kip 1 kip

(c)
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9.7 ■ Analysis of Structures with Several Degrees of Indeterminacy  405

Analyze the two-span continuous beam in Figure 9.19a, using the mo-
ments at supports A and B as the redundants; EI is constant. Loads on the 
beam act at midspan.

Solution
The released structure—two simply supported beams—is formed by insert-
ing a hinge in the beam at B and replacing the fixed support at A by a pin. Two 
pointers, perpendicular to the beam’s longitudinal axis, are attached to the 
beam at B. This device is used to clarify the rotation of the ends of the beam 
connecting to the hinge. The released structure, loaded with the applied loads 
and redundants, is shown in Figure 9.19c. The compatibility equations are 
based on the following conditions of geometry:

(a) The slope is zero at the fixed support at A.

   θ  A   = 0  (1)

(b)  The slope of the beam is the same on either side of the center support 
(Figure 9.19b). Equivalently, we can say that the relative rotation be-
tween the ends is zero (i.e., the pointers are parallel).

   θ  B,Rel   = 0  (2)

The released structure is analyzed for the applied loads in Figure 9.19d, 
a unit value of the redundant at A in Figure 9.19e, and a unit value of the 

E X A M P L E  9 . 9

Figure 9.19: (a) Beam indeterminate to 
second degree; (b) detail of joint B showing 
the difference between the rotation of B and 
the relative rota tion of the ends of members; 
(c)  released struc  ture with actual loads and 
redundants applied as external forces.

= 0

L

A

P P
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δ

�

�
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B
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B

δ
�

�

�

P P

A C

B

MA

B

= 0A
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B
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B
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�
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�
�

[continues on next page]
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406  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

redundant at B in Figure 9.19f. Superimposing the angular deformations in 
accordance with the compatibility Equations 1 and 2, we can write

   θ  A   = 0 =  θ  A0   +  α  AA    M  A   +  α  AB    M  B    (3)

   θ  B,Rel   = 0 =  θ  B0   +  α  BA    M  A   +  α  BB    M  B    (4)

Using Figure 9.3d and e, evaluate the angular deformations.

  θ  A0   =   P L   2  ____ 
16EI

     θ  B0   = 2 (  P L   2  ____ 
16EI

  )    α  AA   =   L ___ 
3EI

   

  α  BA   =   L ___ 
6EI

      α  AB   =   L ___ 
6EI

        α  BB   = 2 (  L ___ 
3EI

  )  

Substituting the angular displacements into Equations 3 and 4 and solving 
for the redundants give

   M  A   = −   3PL ____ 
28

     M  B   = −   9PL ____ 
56

    Ans.

The minus signs indicate that the actual directions of the redundants are 
opposite in sense to those initially assumed in Figure 9.19c. Figure 9.20 
shows the free-body diagrams of the beams used to evaluate the end shears 
and also the final shear and moment curves.

Figure 9.19: (d ) Actual loads applied to re-
leased structure; (e) unit value of redundant 
at A applied to released structure; ( f )  unit 
value of redundant at B applied to released 
structure.
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A C [MB]
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–
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Figure 9.20: Free-body diagrams of beams 
used to evaluate shears as well as the shear and 
moment diagrams.

Example 9.9 continues . . .
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9.7 ■ Analysis of Structures with Several Degrees of Indeterminacy  407

Determine the bar forces and reactions that develop in the indeterminate 
truss shown in Figure 9.21a.

Solution
Since b + r = 10 and 2n = 8, the truss is indeterminate to the second de-
gree. Select the force FAC at section 1-1 and the horizontal reaction Bx as 
the redundants. 

E X A M P L E  9 . 1 0

A B

D

FAC = X1

Bx = X2 X2

X1
X1

Ay By Ay By

Ax Ax

C
60 kips

(a)

A = 2 in.2 (all other bars)
E = 30,000 kips/in.2

ABD = 4 in.2

20ʹ

15ʹ

A B

D C
60 kips

(b)

A B

D C
60 kips

60 kips

45 kips

+ +

45 kips
(c)

+60

0
0

+60

+1 +1–75

+29.9

+37.62
–22.57+22.43

–37.38

0

–0.8

–0.8

–0.6 –0.6+45

A B

D C

1k
1k

(d)

[X1]

( f )

A B

D C
60 kips

30.1 kips
29.9 kips

45 kips45 kips

Δ20

Δ10

11
21

–1

00

0 0

0

A B

D

[X2]

C

(e)

1 kip 1 kip

12
22

0ʺ
1

1

ΔBX = 0

δ
δ

δ
δ

Figure 9.21: (a) Details of truss; (b) released structure loaded by redundants X1 and X2 and 
60-kip load; (c) re leased structure with actual load; (d) released structure, forces and displace-
ments due to a unit value of redundant X1; (e) released structure–forces and displacements 
due to a unit value of redundant X2; ( f ) final forces and reactions = (c) + X1(d) + X2(e). [continues on next page]
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408  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

The released structure with the redundants applied as loads is shown in 
Figure 9.21b.

The compatibility equations are based on (1) no horizontal displace-
ment at B

   Δ  BX   = 0  (1)

and (2) no relative displacement of the ends of bars at section 1-1

   Δ  1,Rel   = 0  (2)

Superimposing deflections at section 1-1 and support B in the released 
structure (Figure 9.21c to e), we can write the compatibility equations as

   Δ  1,Rel   = 0:   Δ  10   +  X  1    δ  11   +  X  2    δ  12   = 0  (3)

   Δ  BX   = 0:   Δ  20   +  X  1    δ  21   +  X  2    δ  22   = 0  (4)

To complete the solution, we must compute the six deflections Δ10, Δ20, 
𝛿11, 𝛿12, 𝛿21, and 𝛿22 in Equations 3 and 4 by virtual work.
Δ10:
Use the force system in Figure 9.21d as the Q-system.

  ∑  δ  P   Q = ∑  F  Q     
 F  P   L

 ___ 
AE

    (8.24)

 1 kip ( Δ  10  )  =  (−0.8)    60 (20 × 12)  _________ 
2 (30,000) 

   (2)  +  (−0.6)    45 (15 × 12)  _________ 
2 (30,000) 

   

  +  (1)    −75 (25 × 12)  _________ 
4 (30,000) 

   

  Δ  10   = −0.6525 in.   (gap opens)  

Δ20:
Use the force system in Figure 9.21e as the Q-system for the P-system 
shown in Figure 9.21c.

 1 kip ( Δ  20  )  =  (−1)     60 (20 × 12)  _________ 
2 (30,000) 

   

  Δ  20   = −0.24 in.  → 

Example 9.10 continues . . .
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9.7 ■ Analysis of Structures with Several Degrees of Indeterminacy  409

𝛿11:
The force system in Figure 9.21d serves as both the P- and Q-systems. 
Since FQ = FP, UQ = F2

Q L/(AE),

 1 kip ( δ  11  )  =     
(−0.8)    2  (20 × 12)   ____________  

2 (30,000) 
   (2)  +     

(−0.6)    2  (15 × 12)   ____________  
2 (30,000) 

   (2)  

  +   
 1   2  (25 × 12)

 _________ 
2(30,000)

   +   
 1   2  (25 × 12)

 __________ 
4(30,000)

   

  δ  11   = + 0.0148  in.    (gap closes)  

𝛿12:
Use the force system in Figure 9.21d as the Q-system for the P-system in 
Figure 9.21e.

 1 kip ( δ  12  )  =  (−0.8)    −1 (20 × 12)  _________ 
2 (30,000) 

   

  δ  12   = 0.0032 in. 

𝛿21:
Use the force system in Figure 9.21e as the Q-system for the P-system in 
Figure 9.21d.

 1 kip ( δ  21  )  =  (−1)    −0.8 (20 × 12)   __________ 
2 (30,000) 

   

  δ  21   = 0.0032 in. 

(Alternately, use the Maxwell-Betti law, which gives 𝛿21 = 𝛿12 = 0.0032 in.)

𝛿22:
The force system in Figure 9.21e serves as both the P- and Q-systems.

 1 kip ( δ  22  )  =  (−1)     
(−1)  (20 × 12)   __________ 

2 (30,000) 
   

  δ  22   = 0.004 in. 

Substituting the displacements above into Equations 3 and 4 and solv-
ing for X1 and X2 give

   X  1   = 37.62 kips   X  2   = 29.9 kips  Ans.

The final forces and reactions are shown in Figure 9.21f.
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410  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

E X A M P L E  9 . 1 1 (a)  Choose the horizontal and vertical reactions at C in Figure 9.22a as 
redundants. Draw all the released structures, and clearly label all dis-
placements needed to write the equations of compatibility. Write the 
equations of compatibility in terms of displacements, but you do not 
need to calculate the values of displacement. 

(b)  Modify the equations in part (a) to account for the following sup port 
movements: 0.5-in. vertically upward displacement of C and 0.002-rad 
clockwise rotation of A.

Solution
(a)  As a sign convention, displacements in the direction of redundants in 

Figure 9.22(a) are positive. See Figure 9.22b; note that sign is con-
tained within the symbol for displacements.

  Δ  1   = 0 =  Δ  10   +  δ  11    X  1   +  δ  12    X  2    
Ans.

  Δ  2   = 0 =  Δ  20   +  δ  21    X  1   +  δ  22    X  2   

where 1 denotes the vertical and 2 the horizontal directions at C.
(b) Modify the compatibility equations for support movements. See 
Figure 9.22c.

  Δ  1   = 0.5 =  Δ  10   +  (−0.48)  +  δ  11    X  1   +  δ  12    X  2    
Ans.  Δ  2   = 0    =  Δ  20   +  (−0.36)  +  δ  21    X  1   +  δ  22    X  2   

Figure 9.22: (a) Frame indeterminate to second degree. Cx and Cy are redundants; (b) 
superposition of released structures; (c) Displacements produced by clockwise rotation 
of support A.
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Cx = X2
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(b)
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2 = 0Δ

P
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1 kip
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1 kip

[X2]

[X1]

22

δ

δ

δ

δ
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=

(c)
A

B C

1SΔ

2SΔBΔ = 0.36ʺ = 0.36ʺ

= (20 × 12) (0.002)
= 0.48ʺ

= 0.002 rad

0.002 rad

= 0.002 rad�
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9.8 ■ Beam on Elastic Supports  411

The supports of certain structures deform when they are loaded. For exam-
ple, in Figure 9.23a the support for the right end of girder AB is beam CD, 
which deflects when it picks up the end reaction from beam AB. If beam 
CD behaves elastically, it can be idealized as a spring (Figure 9.23b). For 
the spring the relationship between the applied load P and the deflection Δ 
is given as 

   P = KΔ  (9.12)

where K is the stiffness of the spring in units of force per unit displacement. 
For example, if a 2-kip force produces a 0.5-in. deflection of the spring, 
K = P/Δ = 2/0.5 = 4 kips/in. Solving Equation 9.12 for Δ gives

   Δ =   P __ 
K

    (9.13)

The procedure to analyze a beam on an elastic support is similar to that 
for a beam on an unyielding support, with one difference. If the force X in the 
spring is taken as the redundant, the compatibility equation must state that the 
deflection Δ of the beam at the location of the redundant equals

   Δ = −   X __ 
K

    (9.14)

The minus sign accounts for the fact that the deformation of the spring 
is opposite in sense to the force it exerts on the member it supports. For 
example, if a spring is compressed, it exerts an upward force but displaces 
downward. If the spring stiffness is large, Equation 9.14 shows that the 
deflection Δ will be small. In the limit, as K approaches infinity, the right 
side of Equation 9.14 approaches zero and Equation 9.14 becomes identi-
cal to the compatibility equation for a beam on a simple support. We will 
illustrate the use of Equation 9.14 in Example 9.12.

Beam on Elastic Supports
9.8

Figure 9.23: (a) Beam AB with an elastic 
support at B; (b) elastic support idealized as 
a linear elastic spring (P = KΔ).

A

B

K

P

D

C

Q

(a) (b)

Δ

Δ
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412  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

E X A M P L E  9 . 1 2 Set up the compatibility equation for the beam in Figure 9.24a. Determine 
the deflection of point B. The spring stiffness K = 10 kips/in., w = 2 kips/ft,  
I = 288 in.4, and E = 30,000 kips/in.2.

RB = XB

K = 10 kips/in.

BΔ

(a)

w

A B

L = 18ʹ

BOΔ

XB

XB

0ʺ

0ʺ

BΔ

XB

1 kip

[XB]

1 kip

1
K=

1 kip

(b)

w

A B

(c)

w

A B

1

2

(d)

A B

kipδ

δ

+

=
=

Figure 9.24: (a) Uniformly loaded beam on an elastic support, indeterminate to the first 
degree; (b) released structure with uniform load and redundant XB applied as an external 
load to both the beam and the spring; (c) released structure with actual load; (d) released 
structure, forces and displacements by a unit value of the redundant XB.
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9.8 ■ Beam on Elastic Supports  413

Solution
Figure 9.24b shows the released structure loaded with the applied load and 
the redundant. For clarity the spring is displaced laterally to the right, but 
the displacement is labeled zero to indicate that the spring is actually lo-
cated directly under the tip of the beam. Following the previously estab-
lished sign convention (i.e., the direction of the redundant establishes the 
positive direction for the displacements), displacements of the right end of 
the beam are positive when up and negative when down. Deflection of the 
spring is positive downward. Because the tip of the beam and the spring are 
connected, they both deflect the same amount ΔB, that is,

   Δ  B,beam   =  Δ  B,spring    (1)

Using Equation 9.13, we can write ΔB of the spring as

   Δ  B,spring   =   
 X  B  

 ___ 
K

     (2)

and substituting Equation 2 into Equation 1 gives us

   Δ  B,beam   = −   
 X  B  

 ___ 
K

    (3)

The minus sign is added to the right side of Equation 3 because the end of 
the beam displaces downward.

If ΔB,beam (the left side of Equation 3) is evaluated by superimposing 
the displacements of the B end of the beam in Figure 9.24c and d, we can 
write Equation 3 as

   Δ  B0   +  δ  1    X  B   = −   
 X  B  

 ___ 
K

    (4)

Using Figure 9.3 to evaluate ΔB0 and 𝛿1 in Equation 4, we compute XB

 −   w  L   4  ___ 
8EI

   +    L   3  ___ 
3EI

      X  B   = −   
 X  B  

 __ 
K

   

Substituting the specified values of the variables into the equation above, 
we obtain

 −   2   (18)    4  (1728)   ___________  
8 (30,000)  (288) 

   +     (18)    3  (1728)   ___________  
3 (30,000)  (288) 

    X  B   = −   
 X  B  

 __ 
10

   

  X  B   = 10.71 kips 

If support B had been a roller and no settlement had occurred, the right side 
of Equation 4 would equal zero and XB would increase to 13.46 kips and

   Δ  B,spring   = −   
 X  B  

 ___ 
K

   = −   10.71 _____ 
10

   = 1.071 in.  Ans.
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414  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

Summary

 • The flexibility method of analysis, also called the method of consistent 
deformations, is one of the oldest classical methods of analyzing inde-
terminate structures.

 • Before the development of general-purpose computer programs for 
structural analysis, the flexibility method was the only method available 
for analyzing indeterminate trusses. The flexibility method is based on 
removing restraints until a stable determinate released structure is es-
tablished. Since the engineer has alternate choices with respect to which 
restraints to remove, this aspect of the analysis does not lend itself to the 
development of a general-purpose computer program.

 • The flexibility method is still used to analyze certain types of structures 
in which the general configuration and components of the structure are 
standardized but the dimensions vary. For this case the restraints to be 
removed are established, and the computer program is written for their 
specific value.

P9.1. Compute the reactions, draw the shear and mo ment 
curves, and locate the point of maximum deflection for the 
beam in Figure P9.1. EI is constant.

PROBLEMS
P9.3. Compute the reactions and draw the shear and 
 moment curves for the beam in Figure P9.3. EI is   
constant.

A CB

9ʹ 6ʹ

P = 36 kips

P9.1

P9.2. For the beam in Figure P9.2, compute the reac-
tions, draw the shear and moment curves, and compute 
the deflection of the hinge at C. Use E = 29,000 ksi and 
I = 180 in.4.

B CA

2 m8 m

w = 4 kN/m

P9.2

M = 

C
B

5 m 5 m

A

 30 kN m

P9.3

P9.4. Compute the reactions for the beam in Figure P9.4. 
EI is constant. Use support B as the redundant.

B

CA

7ʹ 7ʹ

w = 3 kips/ft

P9.4
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P9.5. Compute the reactions, draw the shear and mo-
ment curves, and locate the point of maximum deflec tion 
for the beam in Figure P9.5. Repeat the computation if I 
is constant over the entire length. E is constant. Express 
answer in terms of E, I, and L.

P9.9. (a) Recompute the reactions, draw the shear and 
 moment curves for the beam in Figure P9.8 if seg-
ment  AB  has 1.5I. (b) Using RISA-2D, recompute the 
reactions and generate the shear and moment curves 
when  segment AB has 2EI. (c) Repeat (b) if segment AB 
has 2.5EI.

P9.10. (a) Solve Problem P9.1 for the loading shown if 
support C settles 0.25 in. when the load is applied. Use 
moment at support A as the redundant. Given: E = 30,000 
kips/in.2 and I = 320 in.4. (b) Using RISA-2D, compare 
the result if I = 640 in.4.

P9.11. Assuming that no load acts, compute the 
 reactions  and draw the shear and moment curves for 
the beam  in Figure P9.1 if support A settles 0.5 in. and  
support C settles 0.75 in. Given: E = 29,000 kips/in.2 and 
I = 150 in.4.

P9.12. Compute the reactions and draw the shear 
and  moment curves for the beam in Figure P9.12. E is  
constant.

2I I

A B

M = 60 kip  ft

C

6ʹ 9ʹ

P9.5

P9.6. Compute the reactions and draw the shear and mo-
ment curves for the beam in Figure P9.6. EI is  constant.

A CB

6ʹ

15 kips 15 kips

6ʹ12ʹ 12ʹ

P9.6

P9.7. Recompute the reactions, draw the shear and mo-
ment curves for the beam in Figure P9.6 if support B 
settles by 1.5 in.. Check and compare your answer to that 
obtained using RISA-2D, and compare the change in re-
action when B settles by 0.75 in., 3.0 in. What do you 
observe?

P9.8. Determine the reactions for the beam in  
Fig ure P9.8. When the uniform load is applied, the fixed 
support rotates clockwise 0.003 rad and support B settles 
0.3 in. Given: E = 30,000 kips/in.2, I = 240 in.4.

A

B
C

0.003 rad

0.3ʺ

w = 4 kips/ft

2ʹ8ʹ

P9.8

2I

A B C
D

w = 4 kN/m

I

18 kN

6 m

3 m

3 m6 m

hinge

P9.12

P9.13. Compute the reactions and draw the shear and 
moment curves for the beam in Figure P9.13. EI is con-
stant. The bolted web connection at B may be assumed to 
act as a hinge. Use the shear at hinge B as the redundant. 
Express answer in terms of E, I, L, and w.

A B C

hinge

LL

P9.13
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416  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

P9.14. (a) Determine the reactions and draw the shear 
and moment curves for the beam in Figure P9.14. Given: 
EI is constant, E = 30,000 kips/in.2, and I = 288 in.4.  
(b) Repeat the computations if, in addition to the applied 
loads, support B settles 0.5 in. and support D settles 1 in.

P9.18. Compute the reactions and draw the shear and 
moment curves for the beam in Figure P9.18. Given: EI 
is constant. Take advantage of symmetry and use the end 
moment as the redundant.

A B C
D

w = 2 kips/ft

6ʹ 6ʹ12ʹ

P9.14

P9.15. (a) Compute all reactions for the beam in Figure 
P9.15 assuming that the supports do not move; EI is 
constant. (b) Repeat computations given that support C 
moves upward a distance of 288/(EI) when the load is ap-
plied.

A B C

6ʹ 12ʹ6ʹ

P = 16 kips

P9.15

P9.16. Determine all reactions and draw the shear 
and moment curves for the beam in Figure P9.16. EI is  
constant.

A

B
C

24ʹ 16ʹ

w = 1 kip/ft

P9.16

P9.17. (a) Assuming that no loads act in Figure P9.16, 
compute the reactions if support B is constructed 0.48 in. 
too low. Given: E = 29,000 kips/in.2, I = 300 in.4. (b) If 
support B settles    3 _ 2    in. under the applied loads, compute 
the reactions.

20 kN

3 m

A B D

3 m 3 m

20 kN

C

P9.18

P9.19. Compute the reactions and draw the shear and 
moment curves for the beam in Figure P9.19. Given: EI is 
constant. Use the reactions at B as the redundants.

A

L

B

w

P9.19

P9.20. Compute the reactions and draw the shear and 
 moment curves for the beam in Figure P9.20. Given: EI is 
constant for the beam. E = 200 GPa, I = 40 × 106 mm4.

5 m 4 m 3 m

20 kN

K = 40 kN/m

A

DB

C

P9.20
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■ Problems  417

P9.21. Compute the reactions and draw the shear and mo-
ment curves for the beam in Figure P9.21. In addition to 
the applied load, the support at C settles by 0.1 m. EI is 
constant for the beam. E = 200 GPa, I = 60 × 106 mm4.

P9.26. Assuming that the 120-kip load is removed 
from the truss in Figure P9.25, compute the reactions 
and bar forces if the temperature of bars AB and BC in-
creases 60°F; the coefficient of temperature expansion  
α = 6 × 10−6 (in./in.)/°F.

P9.27 to P9.29. For the trusses in Figures P9.27 through 
P9.29, compute the reactions and bar forces produced by 
the applied loads. Given: AE = constant, A = 1000 mm2, 
and E = 200 GPa.

A

C

B

10 m

w = 4 kN/m

K = 40 kN/m

P9.21

P9.22. Consider the beam in Figure P9.21 without the 
applied load and support settlement. Compute the reac-
tions and draw the shear and moment curves for the beam 
if support A rotates clockwise by 0.005 rad.

P9.23. Recompute the reactions for the beam in Figure 9.4 
if a spring with K = 235 kips/in. is provided between 
support B and the midspan of the beam.

P9.24. Consider the truss in Figure P9.24 without the-
applied load. Determine the reactions and all bar forces 
for the truss if member AB is fabricated 0.25 in. too 
short. The area of all bars is 5 in.2 and E is 30,000 ksi.

30ʹ

20ʹ20ʹ

A

C

B

D
E

P9.24

A

B

CD

30 kN

18 kN

8 m

4 m

2 m

8 m

P9.27

8 m

48 kN

6 m

A B

CD

8 m

P9.28

100 kN
3 m3 m3 m 3 m

60 kN

A

E D

B

60 kN

C

4 m

P9.29

P9.25. Compute the reactions and bar forces in all  mem-
bers for the truss in Figure P9.24 if a downward load of 
120 kips is applied at joint E. The area of all bars is 5 in.2 
and E = 30,000 kips/in.2.
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418  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

P9.30. Determine the reactions and bar forces that are 
created in the truss in Figure P9.30 when the top chords 
(ABCD) are subjected to a 50°F temperature increase. 
Given: AE is constant for all bars, A = 10 in.2, E = 30,000 
kips/in.2, and α = 6.5 × 10−6 (in./in.)/°F.

A D

B C

F E

8ʹ 8ʹ12ʹ

6ʹ

6ʹ

P9.30

P9.31. Determine the vertical and horizontal displace-
ments at A of the pin-connected structure in Figure P9.31. 
Given: E = 200 GPa and A = 500 mm2 for all members.

P9.33. (a) Determine all reactions and bar forces pro-
duced by the applied load in Figure P9.33. (b) If support 
B settles 1 in. and support C settles 0.5 in. while the load 
acts, recompute the reactions and bar forces. For all bars 
the area = 2 in.2 and E = 30,000 kips/in.2.

B C D

4 m 4 m

4 m

200 kN

A

P9.31

P9.32. Determine the vertical and horizontal displace-
ments at A of the pin-connected structure in Figure P9.31. 
Given: E = 200 GPa, AAB = 1000 mm2, and AAC  = 
AAD = 500 mm2.

A

D

B C

30 kips

20ʹ

15ʹ

20ʹ

P9.33

P9.34. Determine the reactions and all bar forces for the 
truss in Figure P9.34. E = 29,000 ksi and members AB, 
BC, AD, and DC have A = 3 in.2, and members BD, DE, 
and CE have A = 1 in.2 for all bars.

15ʹ

15ʹ

20ʹ20ʹ

A

E

D

B C

100 kips

P9.34

P9.35. Consider the truss in Figure P9.34 without the 
applied loads. Determine the reactions and all bar forces 
for the truss if supports A and C settle by 0.25 in.
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P9.36. Determine the reactions and all bar forces for 
the truss in Figure P9.36. Given: E = 200 GPa and A = 
1000 mm2 for all bars.

■ Problems  419

P9.39. Determine the reactions at A and C in Fig-
ure P9.39. EI is constant for all members.

80 kN

40 kN

6 m 3 m

A C E

B D

4 m

P9.36

P9.37. Consider the truss in Figure P9.36 without the ap-
plied loads. Determine the reactions and all bar forces for 
the truss if support A settles by 20 mm.

P9.38. Determine all bar forces and reactions for the 
truss in Figure P9.38. Given: area of bar BD = 4 in.2, all 
other bars = 2 in.2, and E = 30,000 kips/in.2.

60 kips

4.5ʹ

9ʹ

12ʹ

A

B

C

D

P9.39

A

B C

30ʹ

2 kips/ft

15ʹ

P9.40

P9.40. Determine all reactions for the frame in Fig-
ure  P9.40 given IAB = 600 in.4, IBC = 900 in.4, and  
E = 29,000 kips/in.2. Neglect axial deformations.

20ʹ

A B

15ʹ

D C
60 kips

P9.38

P9.41. Assuming that the load is removed, compute all 
reactions for the frame in Figure P9.40 if member BC is 
fabricated 1.2 in. too long.
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420  Chapter 9 ■ Analysis of Indeterminate Structures by the Flexibility Method

P9.42. (a) Compute the reactions in Figure P9.42. For 
all members, E = 4000 ksi and I = 1000 in.4. Spring 
CD has a stiffness of 5 kips/in. (b) Compute the vertical 
deflection of joint B. (c) Recompute the reaction at C if 
joint A settles by 0.5 in.

8ʹ 12ʹ

A
B

k = 5 kips/in.

30 kips

9ʹ

P9.42

P9.45. (a) Determine the reactions and draw the shear 
and moment curves for all members of the frame in 
Figure P9.45. Given: EI = constant. (b) Compute the ver-
tical deflection of the girder at point C produced by the 
60-kip load. Use E = 30,000 ksi and I = 600 in.4. Check 
your answer using RISA-2D.

P9.43. Determine all reactions and draw the shear and 
moment diagrams for beam BC in Figure P9.43. Assume 
member AB has 2EI while BC has EI.

18ʹ

A

B C
4 kips

12ʹ

P9.43

P9.44. Recompute the reactions for the frame in Fig-
ure P9.43 if support C settles 0.36 in. when the load acts 
and support A is constructed 0.24 in. above its intended 
position. Given: E = 30,000 kips/in.2 and I = 60 in.4.

12ʹ

E

BA DC

P = 60 kips

12ʹ

12ʹ 12ʹ

P9.45

P9.46. Determine the reactions at supports A and E in 
Figure P9.46. EI is constant for all members.

A E

B
C

D

100 kN

5 m 12 m

8 m

P9.46
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P9.47. Determine the reactions in the rigid frame in 
Figure P9.47. In addition to the applied load, the tempera-
ture of beam BC increases by 60°F. Given: IBC = 3600 in.4, 
IAB = ICD = 1440 in.4, α = 6.5 × 10−6 (in./in.)/°F, and  
E = 30,000 kips/in.2.

A

B

w = 1.6 kips/ft

D

C

24ʹ

48ʹ

P9.47

P9.48. Determine the reactions at supports A and E in 
Figure P9.48. Area of bar EC = 3 in.2, IAD = 400 in.4, and 
AAD = 8 in.2; E = 30,000 kips/in.2.

CA

E

DB

20ʹ

60 kips60 kips

5ʹ

25ʹ

20ʹ

P9.48

P9.49. Practical Design Example
The tall building in Figure P9.49 is constructed of struc-
tural steel. The exterior columns, which are uninsulated, 
are exposed to the outside ambient temperature. To re-
duce the differential vertical displacements between the 
interior and exterior columns due to temperature differ-
ences be tween the interior and exterior of the building, 
a bonnet truss has been added at the top of the building. 
For example, if a bonnet truss was not used to restrain the 

outer columns from shortening in the winter due to a 60°F 
temperature difference between the interior and exterior 
columns, points D and F at the top of the exterior columns 
would move downward 1.68 in. relative to the top of the 
interior column at point E. Displacements of this magni-
tude in the upper stories would produce excessive slope of 
the floor and would damage the exterior facade.

If the temperature of interior column BE is 70°F at all 
times but the temperature of the exterior columns in win-
ter drops to 10°F, determine (a) the forces created in the 
columns and the truss bars by the temperature differences 
and (b) the vertical displacements of the tops of the col-
umns at points D and E. Slotted truss connections at D and 
F have been designed to act as rollers and transmit vertical 
force only, and the connection at E is designed to act as a 
pin. The shear connections between the beam webs and 
the columns may be assumed to act as hinges.

Given: E = 29,000 kips/in.2. The average area of the 
interior column is 42 in.2 and 30 in.2 for the exterior col-
umns. The areas of all members of the truss are 20 in.2. 
The coefficient of temperature expansion α = 6.5 × 10−6 
(in./in.)/°F. Note: The interior columns must be designed 
for both the floor loads and the compression force created 
by the temperature differential.

20ʹ

bonnet
truss

70°F10°F 10°F

A B C

D
E

F

20ʹ

360ʹ

10ʹ 10ʹ 10ʹ 10ʹ

10ʹ

P9.49
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Timber Glulam Arches of the Richmond Oval in British 
Columbia, Canada

Built for the 2010 Winter Olympics, the Richmond Oval is made up of glulam arches 
that span 330 ft, and is one of the largest clearspan wooden structures in the world. 
Glulam, or glued laminated timber, is an engineered wood product made up of several 
layers of different wood strips glued and pressed together to form a composite cross 
section. Material properties of each layer are selected based on the required stress 
along the cross section.

© ITAR-TASS Photo Agency/Alamy Stock Photo
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10Analysis of 
Indeterminate Beams 
and Frames by the 
Slope-Deflection Method

Introduction
10.1

The slope-deflection method is a procedure for analyzing indeterminate 
beams and frames. It is known as a displacement method since equilibrium 
equations, which are used in the analysis, are expressed in terms of unknown 
joint displacements.

The slope-deflection method is important because it introduces the student 
to the stiffness method of analysis. This method is the basis of many general- 
purpose computer programs for analyzing all types of structures—beams, 
trusses, shells, and so forth. In addition, moment distribution—a commonly 
used hand method for analyzing beams and frames rapidly—is also based on 
the stiffness formulation.

In the slope-deflection method an expression, called the slope-deflection 
equation, is used to relate the moment at each end of a member both to the 
end displacements of the member and to the loads applied to the member 
between its ends. End displacements of a member can include both a rotation 
and a translation perpendicular to the member’s longitudinal axis.

C H A P T E R

Chapter Objectives
 ● Learn a stiffness method using the joint displacements–both rotations and translations–as the  unknowns.

 ● Identify all the unknown joint displacements and the associated degree of kinematic indeterminacy.

 ● Establish the slope-deflection equations of individual members.

 ● Set up the equilibrium equations such that the unknown displacements can be solved.

lee98004_ch10_422-465.indd   423 23/12/16   4:52 pm



424  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

Illustration of the Slope-Deflection Method
10.2

To introduce the main features of the slope-deflection method, we briefly out-
line the analysis of a two-span continuous beam. As shown in Figure 10.1a, 
the structure consists of a single member supported by rollers at points A and 
B and a pin at C. We imagine that the structure can be divided into beam seg-
ments AB and BC and joints A, B, and C by passing planes through the beam 
an infinitesimal distance before and after each support (Figure 10.1b). Since 
the joints are essentially points in space, the length of each member is equal 
to the distance between joints. In this problem 𝜃A, 𝜃B, and 𝜃C , the rotational 
displacements of the joints (and also the rotational displacements of the ends 
of the members) are the unknowns. These displacements are shown to an ex-
aggerated scale by the dashed line in Figure 10.1a. Since the supports do not 
move vertically, the lateral displacements of the joints are zero; thus there are 
no unknown joint translations in this example.

To begin the analysis of the beam by the slope-deflection method, 
we use the slope-deflection equation (which we will derive shortly) to 
express the moments at the ends of each member in terms of the unknown 

RA

MAB MAB

A B C

(a)

(b)

Joint A

LʹL

CBA

CBA

P1

V1 V1 V2

P2

P1 P2

MBA MBA

P1

L

MBC

V3 V4

MCB

P2

Lʹ

RC

Joint C

RB

MBC

Joint B

V3V2

MCB

V4

� � �

Figure 10.1: (a) Continuous beam with 
applied loads (deflected shape shown by 
dashed line); (b)  free bodies of joints and 
beams (sign convention: clockwise moment 
on the end of a member is positive).

Slope-Deflection Method
Reinforced concrete building 
and bridge structures became 
popular in the beginning of 
the twentieth century. To 
analyze these indeterminate 
structures that were primar-
ily governed by the effects 
of bending, W.M. Wilson and 
G.A. Maney in 1915 developed 
the slope-deflection method. 
This method was widely used 
until the moment distribution 
method was developed in 
the early 1930s (Chapter 11). 
However, the slope-deflection 
method represents a turning 
point for the development of 
the matrix stiffness method 
(Chapters 14 to 16), and is the 
basis of modern computer 
structural analysis software.
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10.3 ■ Derivation of the Slope-Deflection Equation  425

joint displacements and the applied loads. We can represent this step by the 
following set of equations:

  M  AB   = f  ( θ  A   ,   θ  B   ,  P  1  )  

  M  BA   = f  ( θ  A   ,   θ  B   ,  P  1  )  

    M  BC   = f  ( θ  B   ,   θ  C   ,  P  2  )   (10.1)

    M  CB   = f  ( θ  B   ,   θ  C   ,  P  2  )   

where the symbol f ( ) stands for a function of.
We next write equilibrium equations that express the condition that the 

joints are in equilibrium with respect to the applied moments; that is, the 
sum of the moments applied to each joint by the ends of the beams framing 
into the joint equals zero. As a sign convention we assume that all unknown 
moments are positive and act clockwise on the ends of members. Since the 
moments applied to the ends of members represent the action of the joint on 
the member, equal and oppositely directed moments must act on the joints 
(Figure 10.1b). The three joint equilibrium equations are

At joint A:         M  AB   = 0

  At joint B:   M  BA   +  M  BC   = 0 (10.2)

At joint C:         M  CB   = 0

By substituting Equations 10.1 into Equations 10.2, we produce three 
equations that are functions of the three unknown displacements (as well as the 
applied loads and properties of the members that are specified). These three 
equations can then be solved simultaneously for the values of the unknown joint 
rotations. After the joint rotations are computed, we can evaluate the member 
end moments by substituting the values of the joint rotations into Equations 10.1. 
Once the magnitude and direction of the end moments are established, we apply 
the equations of statics to free bodies of the beams to compute the end shears. As 
a final step, we compute the support reactions by considering the equilibrium of 
the joints (i.e., summing forces in the vertical direction).

In Section 10.3 we derive the slope-deflection equation for a typical 
flexural member of constant cross section using the moment-area method de-
veloped in Chapter 7.

Derivation of the Slope-Deflection  
Equation

10.3

To develop the slope-deflection equation, which relates the moments at the 
ends of members to the end displacements and the applied loads, we will 
analyze span AB of the continuous beam in Figure 10.2a. Since differential 
settlements of supports in continuous members also create end moments, we 
will include this effect in the derivation. The beam, which is initially straight, 
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426  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

has a constant cross section; that is, EI is constant along the longitudinal axis. 
When the distributed load w(x), which can vary in any arbitrary manner along 
the beam’s axis, is applied, supports A and B settle, respectively, by amounts 
ΔA and ΔB to points A′ and B′. Figure 10.2b shows a free body of span AB 
with all applied loads. The moments MAB and MBA and the shears VA and VB 
represent the forces exerted by the joints on the ends of the beam. Although 
we assume that no axial load acts, the presence of small to moderate values 
of axial load (say, 10 to 15 percent of the member’s buckling load) would not 
invalidate the derivation. On the other hand, a large compression force would 
reduce the mem ber’s flexural stiffness by creating additional deflection due 
to the sec ondary moments produced by the eccentricity of the axial load—the  
P-Δ effect. As a sign convention, we assume that moments acting at the ends 
of members in the clockwise direction are positive. Clockwise rotations of the 
ends of members will also be considered positive.

In Figure 10.2c the moment curves produced by both the distributed load 
w(x) and the end moments MAB and MBA are drawn by parts. The moment 
curve associated with the distributed load is called the simple beam moment 
curve. In other words, in Figure 10.2c, we are superimposing the moments 
produced by three loads: (1) the end moment MAB, (2) the end moment MBA, 
and (3) the load w(x) applied between ends of the beam. The moment curve 
for each force has been plotted on the side of the beam that is placed in com-
pression by that particular force.

Figure 10.2d shows the deflected shape of span AB to an exaggerated 
scale. All angles and rotations are shown in the positive sense; that is, all 

w (x)

w (x)

B

A

B

A
AB

AB

(a)

(b)

(c)

(d)

simple beam
moment curve

ΔA ΔB

initial position

elastic curve

L

L
A B

BA

Aʹ
Bʹ

Lʹ

line tangent to curve at Aʹ

line tangent to elastic curve at Bʹ

initial position of centerline

chord

Bʹ

Aʹ

A B

tBA

tAB

ΔB

ΔA

MAB MBA

MS

MBA

x

MAB

VA VB

γ
�

�
ψ

ψ

γ

Figure 10.2: (a) Continuous beam whose 
supports settle under load; (b) free body of 
member AB; (c) moment curve plotted by 
parts, MS equals the ordinate of the simple 
beam moment curve; (d ) deformations of 
member AB plotted to an exaggerated verti-
cal scale.
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have undergone clockwise rotations from the original horizontal position of 
the axis. The slope of the chord, which connects the ends of the member at 
points A′ and B′ in their deflected position, is denoted by 𝜓AB. To establish if a 
chord angle is positive or negative, we can draw a horizontal line through ei-
ther end of the beam. If the horizontal line must be rotated clockwise through 
an acute angle to make it coincide with the chord, the slope angle is positive. 
If a counterclockwise rotation is required, the slope is negative. Notice in 
Figure 10.2d that 𝜓AB is positive regardless of the end of the beam at which 
it is evaluated. And 𝜃A and 𝜃B represent the end rotations of the member. At 
each end of span AB, tangent lines are drawn to the elastic curve; tAB and tBA 
are the tangential deviations (the vertical distance) from the tangent lines to 
the elastic curve.

To derive the slope-deflection equation, we will now use the second 
moment-area theorem to establish the relationship between the member 
end moments MAB and MBA and the rotational deformations of the elastic 
curve shown to an exaggerated scale in Figure 10.2d. Since the deformations  
are small, 𝛾A, the angle between the chord and the line tangent to the elastic 
curve at point A, can be expressed as

    γ  A   =   
 t  BA  

 ___ 
L

    (10.3a)

Similarly, 𝛾B, the angle between the chord and the line tangent to the elastic 
curve at B, equals

    γ  B   =   
 t  AB  

 ___ 
L

    (10.3b)

Since 𝛾A = 𝜃A − 𝜓AB and 𝛾B = 𝜃B − 𝜓AB, we can express Equations 10.3a and 
10.3b as

    θ  A   −  ψ  AB   =   
 t  BA  

 ___ 
L

    (10.4a)

    θ  B   −  ψ  AB   =   
 t  AB  

 ___ 
L

    (10.4b)

where   ψ  AB   =   
 Δ  B   −  Δ  A  

 ____ 
L

    (10.4c)

To express tAB and tBA in terms of the applied moments, we divide the ordinates 
of the moment curves in Figure 10.2c by EI to produce M/EI curves and, apply-
ing the second moment-area principle, sum the moments of the area under the 
M/EI curves about the A end of member AB to give tAB and about the B end 
to give tBA.

  tAB =    
MBA ____ 
EI

       L __ 
2
       2L ___ 

3
    −    

MAB ____ 
EI

       L __ 
2
       L __ 
3
    −    

(AM x)A ______ 
EI

    (10.5)

  tBA =    
MAB ____ 
EI

       L __ 
2
       2L ___ 

3
    −    

MBA ____ 
EI

       L __ 
2
       L __ 
3
    +    

(AM x)B ______ 
EI

    (10.6)

The first and second terms in Equations 10.5 and 10.6 represent the first 
moments of the triangular areas associated with the end moments MAB and MBA. 

10.3 ■ Derivation of the Slope-Deflection Equation  427
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428  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

The last term—(AM x)A in Equation 10.5 and (AM x)B in Equation 10.6— 
represents the first moment of the area under the simple beam moment curve 
about the ends of the beam (the subscript indicates the end of the beam about 
which moments are taken). As a sign convention, we assume that the con-
tribution of each moment curve to the tangential deviation is positive if it 
increases the tangential deviation and negative if it decreases the tangential 
deviation. 

To illustrate the computation of (AM x)A for a beam carrying a uniformly 
distributed load w (Figure 10.3), we draw the simple beam moment curve, a 
parabolic curve, and evaluate the product of the area under the curve and the 
distance x between point A and the centroid of the area.

  (AMx)A = area · x =    2L ___ 
3
       wL2

 ____ 
8
      (  L __ 

2
  )   =    wL4

 ____ 
24

     (10.7)

Since the moment curve is symmetric, (AM x)B equals (AM x)A.
If we next substitute the values of tAB and tBA given by Equations 10.5 and 

10.6 into Equations 10.4a and 10.4b, we can write

  𝜃A − 𝜓AB  =     1 __ 
L

     [  
MBA ____ 
EI

     L __ 
2
     2L ___ 

3
   −   

MAB ____ 
EI

     L __ 
2
     L __ 
3
   −   

(AM x)A ______ 
EI

  ]   (10.8)

  𝜃B − 𝜓AB  =     1 __ 
L

      [  
MAB ____ 
EI

     L __ 
2
     2L ___ 

3
   −   

MBA ____ 
EI

     L __ 
2
     L __ 
3
   −   

(AM x)B ______ 
EI

  ]   (10.9)

To establish the slope-deflection equations, we solve Equations 10.8 and 10.9 
simultaneously for MAB and MBA to give

 MAB =    2EI ____ 
L

    (2𝜃A + 𝜃B − 3𝜓AB) +    
2(AM x)A _______ 

L2
    −    

4(AM x)B _______ 
L2

    (10.10)

 MBA =    2EI ____ 
L

    (2𝜃B + 𝜃A − 3𝜓AB) +    
4(AM x)A _______ 

L2
    −    

2(AM x)B _______ 
L2

    (10.11)

In Equations 10.10 and 10.11, the last two terms that contain the quan-
tities (AM x)A and  (AM x)B are a function of the loads applied between ends 
of the member only. We can give these terms a physical meaning by using 
Equations 10.10 and 10.11 to evaluate the moments in a fixed-end beam that 
has the same dimensions (cross section and span length) and supports the 
same load as member AB in Figure 10.2a (Figure 10.4). Since the ends of the 
beam in Figure 10.4 are fixed, the member end moments MAB and MBA, which 
are also termed fixed-end moments, may be designated FEMAB and FEMBA. 
Because the ends of the beam in Figure 10.4 are fixed against rotation and 
because no support settlements occur, it follows that

𝜃A = 0  𝜃B = 0  𝜓AB = 0

w

RA =

A

L

L
2x =

wL2

8

wL
2 RB = wL

2

B

Moment
diagram

Figure 10.3: Simple beam moment curve 
produced by a uniform load.

w(x)

A B

MAB = FEMAB MBA = FEMBA

= 0A = 0B

= 0AB

L

� �

ψ

Figure 10.4
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Substituting these values into Equations 10.10 and 10.11 to evaluate the 
member end moments (or fixed-end moments) in the beam of Figure 10.4, 
we can write

 FEMAB = MAB =   
2 (AM x)A _______ 

L2
   −   

4 (AM x)B _______ 
L2

   (10.12)

 FEMBA = MBA =   
4 (AM x)A _______ 

L2
   −   

2 (AM x)B _______ 
L2

   (10.13)

Using the results of Equations 10.12 and 10.13, we can write  Equations 10.10 
and 10.11 more simply by replacing the last two terms by FEMAB and FEMBA 
to produce

   M  AB   =   2EI ___ 
L

    (2 θ  A   +  θ  B   − 3  ψ  AB  )  +  FEM  AB   (10.14)

   M  BA   =   2EI ___ 
L

    (2 θ  B   +  θ  A   − 3  ψ  AB  )  +  FEM  BA   (10.15)

Since Equations 10.14 and 10.15 have the same form, we can replace them 
with a single equation in which we denote the end where the moment is being 
computed as the near end (N) and the opposite end as the far end (F). With this 
adjustment we can write the slope-deflection equation as

    M  NF   =   2EI ___ 
L

    (2 θ  N   +  θ  F   − 3  ψ  NF  )  +  FEM  NF    (10.16)

In Equation 10.16 the proportions of the member appear in the ratio I/L. This 
ratio, which is called the relative flexural stiffness of member NF, is denoted 
by the symbol K.

   Relative flexural stiffness K =   I __ 
L

    (10.17)

Substituting Equation 10.17 into Equation 10.16, we can write the slope-
deflection equation as

    M  NF   = 2EK  (2 θ  N   +  θ  F   − 3  ψ  NF  )  +  FEM  NF    (10.18)

The value of the fixed-end moment (FEMNF) in Equation 10.16 or 10.18 
can be computed for any type of loading by Equations 10.12 and 10.13. 
The use of these equations to determine the fixed-end moments produced 
by a single concentrated load at midspan of a fixed-end beam is illustrated 
in Example 10.1. Values of fixed-end moments for this and other types of 
loading as well as support displacements are given in Appendix Table A.4.

10.3 ■ Derivation of the Slope-Deflection Equation  429
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430  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

E X A M P L E  1 0 . 1 Using Equations 10.12 and 10.13, compute the fixed-end moments produced 
by a concentrated load P at midspan of the fixed-end beam in Figure 10.5a. 
We know that EI is constant.

Solution
Equations 10.12 and 10.13 require that we compute, with respect to both 
ends of the beam in Figure 10.5a, the moment of the area under the simple 
beam moment curve produced by the applied load. To establish the simple 
beam moment curve, we imagine the beam AB in Figure 10.5a is removed 
from the fixed supports and placed on a set of simple supports, as shown 
in Figure 10.5b. The resulting simple beam moment curve produced by 
the concentrated load at midspan is shown in Figure 10.5c. Since the area 
under the moment curve is symmetric,

(AM x)A = (AM x)B =   1 __ 
2
   L   PL ___ 

4 
    (  L __ 

2
  )  =   PL3

 ____ 
16

  

Using Equation 10.12 yields

FEMAB =   
2 (AM x)A _______ 

L2
   −   

4 (AM x)B _______ 
L2

  

=   2 __ 
 L   2 

   (  P L   3  ___ 
16

  )  −   4 __ 
 L   2 

   (  P L   3  ___ 
16

  )    
 
 

= −   PL ___ 
8
                      Ans.

Using Equation 10.13 yields

FEMBA =    
4(AM x)A _______ 

L2
    −    

2(AM x)B _______ 
L2

   

 =   4 __ 
 L   2 

   (  P L   3  ___ 
16

  )  −   2 __ 
 L   2 

   (  P L   3  ___ 
16

  )  = +   PL ___ 
8
     clockwise     Ans.

(the minus sign indicates a 
counterclockwise moment)

Figure 10.5

A B
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10.4 ■ Analysis of Structures by the Slope-Deflection Method  431

Although the slope-deflection method can be used to analyze any type of in-
determinate beam or frame, we will initially limit the method to indeter minate 
beams whose supports do not settle and to braced frames whose joints are free 
to rotate but are restrained against the displacement—restraint can be supplied 
by bracing members (Figure 3.24g) or by supports. For these types of struc-
tures, the chord rotation angle 𝜓NF in Equation 10.16 equals zero. Examples of 
several structures whose joints do not displace laterally but are free to rotate 
are shown in Figure 10.6a and b. In Figure 10.6a joint A is restrained against 
displacement by the fixed support and joint C by the pin support. Neglecting 
second-order changes in the length of members produced by bending and ax-
ial deformations, we can assume that joint B is restrained against horizontal 
displacement by member BC, which is connected to an immovable support 
at C and against vertical displacement by member AB, which connects to the 
fixed support at A. The approximate deflected shape of the loaded structures in 
 Figure 10.6 is shown by dashed lines.

Figure 10.6b shows a structure whose configuration and loading are sym-
metric with respect to the vertical axis passing through the center of member BC. 
Since a symmetric structure under a symmetric load must deform in a symmetric 
pattern, no lateral displacement of the top joints can occur in either direction.

Figure 10.6c and d shows examples of frames that contain joints that are 
free to displace laterally as well as to rotate under the applied loads. Under 
the lateral load H, joints B and C in Figure 10.6c displace to the right. This 
displacement produces chord rotations 𝜓 = Δ/h in members AB and CD. 
Since no vertical displacements of joints B and C occur—neglecting second-
order bending and axial deformations of the columns—the chord rotation 
of the girder 𝜓BC equals zero. Although the frame in Figure 10.6d supports  

Analysis of Structures by the  
Slope-Deflection Method

10.4

A

B

P

C

(a)

90°

90° L
2

L
2

A D

B

w

C 

(b)

axis of
symmetry

90° 90°

Δ Δ

L
2

L
2

A

h

D

B

AB

C

(c)

90° 90°

CD

 H

ψ ψ

CB

A

P

(d)

Δ Δ

AB

90°

ψ

Figure 10.6: (a) All joints restrained against displacement; all chord rotations 𝜓 equal zero;
(b) due to symmetry of structure and loading, joints free to rotate but not translate; chord 
rotations equal zero; (c) and (d ) unbraced frames with chord rotations.
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432  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

a vertical load, joints B and C will displace laterally to the right a distance 
Δ because of the bending de formations of members AB and BC. We will 
consider the analysis of structures that contain one or more members with 
chord rotations in Section 10.5.

The basic steps of the slope-deflection method, which were discussed in 
Section 10.2, are summarized briefly below:

1. Identify all unknown joint displacements (rotations) to establish the 
number of unknowns.

2. Use the slope-deflection equation (Equation 10.16) to express all 
member end moments in terms of joint rotations and the applied loads.

3. At each joint, except fixed supports, write the moment equilibrium equa-
tion, which states that the sum of the moments (applied by the members 
framing into the joint) equals zero. An equilibrium equation at a fixed sup-
port, which reduces to the identity 0 = 0, supplies no useful information. 
The number of equilibrium equations must equal the number of unknown 
displacements.

     As a sign convention, clockwise moments on the ends of the mem-
bers are assumed to be positive. If a moment at the end of a member 
is unknown, it must be shown clockwise on the end of a member. The 
moment applied by a member to a joint is always equal and opposite in 
direction to the moment acting on the end of the member. If the magni-
tude and direction of the moment on the end of a member are known, 
they are shown in the actual direction.

4. Substitute the expressions for moments as a function of displace ments 
(see step 2) into the equilibrium equations in step 3, and solve for the 
unknown displacements.

5. Substitute the values of displacement in step 4 into the expressions for 
member end moment in step 2 to establish the value of the member end 
moments. Once the member end moments are known, the balance of the 
analysis—drawing shear and moment curves or computing reactions, for 
example—is completed by statics.

Examples 10.2 and 10.3 illustrate the procedure outlined above.
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10.4 ■ Analysis of Structures by the Slope-Deflection Method  433

Using the slope-deflection method, determine the member end moments in 
the indeterminate beam shown in Figure 10.7a. The beam, which behaves 
elastically, carries a concentrated load at midspan. After the end moments 
are determined, draw the shear and moment curves. If I = 240 in.4 and E = 
30,000 kips/in.2, compute the magnitude of the slope at joint B.

E X A M P L E  1 0 . 2

A
B

P = 16 kips

A = 0

(a)

9ʹ

L = 18ʹ

�

B�

A B

P = 16 kips

(b)

VAB VBA

MBAMAB

A B

L = 18ʹ

P = 16 kips

(d)

VAB VBA

54 kip ft

9ʹ

11 kips

–54 kip ft

45 kip ft
–5 kips

shear

moment

(e)

B

(c)

VBA

MBA

RB

Figure 10.7: (a) Beam with one unknown 
displacement 𝜃B; (b) free body of beam 
AB; unknown member end moments MAB 
and MBA shown clockwise; (c) free body of  
joint B; (d ) free body used to compute end 
shears; (e) shear and moment curves.

[continues on next page]
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434  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

Solution
Since joint A is fixed against rotation, 𝜃A = 0; therefore, the only unknown 
displacement is 𝜃B, the rotation of joint B (𝜓AB is, of course, zero since no 
support settlements occur). Using the slope-deflection equation

 
 M  NF   =   2EI ___ 

L
    (2 θ  N   +  θ  F   − 3  ψ  NF  )  +  FEM  NF   (10.16)

and the values in Appendix Table A.4a for the fixed-end moments pro-
duced by a concentrated load at midspan, we can express the member end 
moments shown in Figure 10.7b as

 
 M  AB   =   2EI ___ 

L
    ( θ  B  )  −   PL ___ 

8
   (1)

  M  BA   =   2EI ___ 
L

    (2 θ  B  )  +   PL ___ 
8
   (2)

To determine 𝜃B, we next write the equation of moment equilibrium 
at joint B (Figure 10.7c).

⟳
+  ΣM  B   = 0

 M  BA   = 0

Substituting the value of MBA given by Equation 2 into Equation 3 and 
solving for 𝜃B give

  4EI ___ 
L

    θ  B   +   PL ___ 
8
   = 0

 θ  B   = −   P L   2  ____ 
32EI

  

where the minus sign indicates both that the B end of member AB and joint 
B rotate in the counterclockwise direction. To determine the member end 
moments, the value of 𝜃B given by Equation 4 is substituted into Equations 
1 and 2 to give

 
 M  AB   =   2EI ___ 

L
   (  −P L   2  ____ 

32EI
  )  −   PL ___ 

8
   = −   3PL ___ 

16
   = −54 kip ⋅ ft   Ans.

 M  BA   =   4EI ___ 
L

   (  −P L   2  ____ 
32EI

  )  +   PL ___ 
8
   = 0

(3)

(4)

Example 10.2 continues . . .
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10.4 ■ Analysis of Structures by the Slope-Deflection Method  435

Although we know that MBA is zero since the support at B is a pin, the 
computation of MBA serves as a check.

To complete the analysis, we apply the equations of statics to a free 
body of member AB (Figure 10.7d ).

⟳+ ∑MA = 0

0 =  (16 kips)   (9 ft)  −  V  BA   (18 ft)  − 54 kip ⋅ ft

 V  BA   = 5 kips

↑
+
 ∑Fy = 0

0 =  V  BA   +  V  AB   − 16

 V  AB   = 11 kips

To evaluate 𝜃B, we express all variables in Equation 4 in units of inches 
and kips.

 θ  B   = −   P L   2  ____ 
32EI

   = −   16   (18 × 12)    2   ___________  
32 (30,000) 240

   = −0.0032 rad

Expressing 𝜃B in degrees, we obtain

  2π rad _____ 
360°

   =   −0.0032 _______ 
 θ  B  

  

  θ  B   = −0.183° Ans.

where the slope 𝜃B is very small and not discernible to the naked eye.
Note that when you analyze a structure by the slope-deflection method, 

you must follow a rigid format in formulating the equilibrium equations. 
There is no need to guess the direction of unknown member end moments 
since the solution of the equilibrium equations will automatically produce 
the correct direction for displacements and moments. For example, in 
Figure 10.7b we show the moments MAB and MBA clockwise on the ends 
of member AB even though intuitively we may recognize from a sketch 
of the deflected shape in Figure 10.7a that moment MAB must act in the 
counterclockwise direction because the beam is bent concave downward 
at the left end by the load. When the solution indicates MAB is −54 kip ·ft, 
we know from the negative sign that MAB actually acts on the end of the 
member in the counterclockwise direction.
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436  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

E X A M P L E  1 0 . 3 Using the slope-deflection method, determine the member end moments in 
the braced frame shown in Figure 10.8a. Also compute the reactions at sup-
port D, and draw the shear and moment curves for members AB and BD.

A B

D

C

P = 6 kips
w = 2 kips/ft

I = 60 in.4
I = 120 in.4

(a)

4ʹ18ʹ

9ʹ

(b)

D

MDB

MDB

(c)

4ʹB BB

D

C

P = 6 kips

MDB

MDB

MBAMBA MBC MBC = 24 kip  ft= 24 kip  ft

Ax = 1.43 kips

19.43 kips

16.57 kips

Ax = 1.43 kips

VBD = 1.43 kips

VBD = 1.43 kips

Dx = 1.43 kips
V M

1.43 kips

Dy = 22.57 kips

VBAw = 2 kips/ft
1.43 kips

F = 22.57 kips

F = 22.57 kips

62.57 kip  ft 36.86 kip  ft

12.86 kip  ft
12.86 kip  ft

24 kip  ft

31.81 kip  ft

36.86 kip  ft
62.57 kip  ft

(d )

18ʹ

4ʹ

9ʹ

P = 6 kipsV = 6 kipsV = 6 kips
VAB VBA

A

V

M

B

B

B

B C

Figure 10.8: (a) Frame details; (b) joint 
D; (c) joint B (shears and axial forces omit-
ted for clarity); (d) free bodies of members 
and joints used to compute shears and reac-
tions (moments acting on joint B omitted for 
clarity).
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10.4 ■ Analysis of Structures by the Slope-Deflection Method  437

Solution
Since 𝜃A equals zero because of the fixed support at A, 𝜃B and 𝜃D are the 
only unknown joint displacements we must consider. Although the mo-
ment applied to joint B by the cantilever BC must be included in the joint 
equilibrium equation, there is no need to include the cantilever in the slope-
deflection analysis of the indeterminate portions of the frame because the 
cantilever is determinate; that is, the shear and the moment at any section 
of member BC can be determined by the equations of  statics. In the slope-
deflection solution, we can treat the cantilever as a device that applies a ver-
tical force of 6 kips and a clockwise moment of 24 kip·ft to joint B.

Using the slope-deflection equation

  M  NF   =   2EI ___ 
L

    (2 θ  N   +  θ  F   − 3 ψ  NF  )  +  FEM  NF   (10.16)

where all variables are expressed in units of kip·inches and the fixed- 
end moments produced by the uniform load on member AB (Appendix 
Table A.4d) equal

 FEM  AB   = −   w  L   2  ___ 
12

  

 FEM  BA   = +   w  L   2  ___ 
12

  

we can express the member end moments as

 
 M  AB   =   2E (120)  ______ 

18 (12) 
    ( θ  B  )  −   2   (18)    2  (12)  ________ 

12
   = 1.11E θ  B   − 648 (1)

  M  BA   =   2E (120)  ______ 
18 (12) 

    (2 θ  B  )  +   2   (18)    2  (12)  ________ 
12

   = 2.22E θ  B   + 648 (2)

  M  BD   =   2E (60)  _____ 
9 (12) 

    (2 θ  B   +  θ  D  )  = 2 . 22E θ  B   + 1.11E θ  D   (3)

  M  DB   =   2E (60)  _____ 
9 (12) 

    (2 θ  D   +  θ  B  )  = 2 . 22E θ  D   + 1.11E θ  B   (4)

To solve for the unknown joint displacements 𝜃B and 𝜃D, we write 
equilibrium equations at joints D and B.

At joint D (Figure 10.8b): +⟲ ∑MD = 0 

 MDB = 0 (5)

At joint B (Figure 10.8c): +⟲ ∑MB = 0 

 MBA + MBD − 24(12) = 0 (6) [continues on next page]
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438  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

Since the magnitude and direction of the moment MBC at the B end of the 
cantilever can be evaluated by statics (summing moments about point B), 
it is applied in the correct sense (counterclockwise) on the end of member 
BC, as shown in Figure 10.8c. On the other hand, since the magnitude and 
direction of the end moments MBA and MBD are unknown, they are assumed 
to act in the positive sense—clockwise on the ends of the members and 
counterclockwise on the joint.

Using Equations 2 to 4 to express the moments in Equations 5 and 6 in 
terms of displacements, we can write the equilibrium equations as

 At joint D:  2.22E θ  D   + 1.11E θ  B   = 0 (7)

At joint B:  (2.22E θ  B   + 648)  +  (2.22E θ  B   + 1.11E θ  D  )  − 288 = 0  (8)

Solving Equations 7 and 8 simultaneously gives

 θ  D   =   46.33 _____ 
E

  

 θ  B   = −   92.66 _____ 
E

  

To establish the values of the member end moments, the values of 𝜃B and 
𝜃D above are substituted into Equations 1, 2, and 3, giving

 M  AB   = 1.11E  (−   92.66 _____ 
E

  )  − 648

= −750.85 kip ⋅ in = −62.57 kip ⋅ ft       Ans.

 M  BA   = 2.22E  (−   92.66 _____ 
E

  )  + 648

= 442.29 kip ⋅ in = +36.86 kip ⋅ ft       Ans.

 M  BD   = 2.22E  (−   92.66 _____ 
E

  )  + 1.11E (  46.33 _____ 
E

  ) 

= −154.28 kip ⋅ in = −12.86 kip ⋅ ft       Ans.

Now that the member end moments are known, we complete the 
 analysis  by using the equations of statics to determine the shears at 
the  ends of all members. Figure 10.8d shows free-body diagrams of 
both members and joints. Except for the cantilever, all members carry 
axial  forces as well as shear and moment. After the shears are com-
puted, axial forces and reactions can be evaluated by considering the 
equilibrium of the joints. For example, vertical equilibrium of the forces 
applied to joint B requires that the vertical force F in column BD equal 
the sum of the shears applied to joint B by the B ends of members AB 
and BC.

Example 10.3 continues . . .
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10.4 ■ Analysis of Structures by the Slope-Deflection Method  439

Use of Symmetry to Simplify the Analysis of a Symmetric 
Structure with a Symmetric Load

Determine the reactions and draw the shear and moment curves for the 
columns and girder of the rigid frame shown in Figure 10.9a. Given: IAB = 
ICD = 120 in.4, IBC = 360 in.4, and E is constant for all members.

Solution
Although joints B and C rotate, they do not displace laterally because both 
the structure and its load are symmetric with respect to a vertical axis of 
symmetry passing through the center of the girder. Moreover, 𝜃B and 𝜃C are 
equal in magnitude; however, 𝜃B, a clockwise rotation, is  positive, and 𝜃C, 
a counterclockwise rotation, is negative. Since the problem contains only 
one unknown joint rotation, we can determine its magnitude by writing 

E X A M P L E  1 0 . 4

30ʹ

16ʹ

16ʹ

w = 2 kips/ft

=

A D
MBA

MBA

MBC MBC

B

B = –C

C

(a)

90° 90°
B

(b)

(c)

7.81 kips 7.81 kips

V = 30 kips V = 30 kips
V = 7.81 kips

7.81 kips

shear moment

Ay = 30 kips

Ax = 7.81 kips A

B

30 kips

30 kips

–30 kips

moment

shear

83.33 kip  ft
83.33 kip  ft 83.33 kip  ft

83.33 kip  ft

41.67 kip  ft 41.67 kip  ft

141.67 kip  ft

–83.33 kip  ft–83.33 kip  ft

30ʹ

w = 2 kips/ft

B C

� � � �

Figure 10.9: (a) Symmetric structure and load; (b) moments acting on joint B (axial 
forces and shears omitted); (c) free bodies of girder BC and column AB used to compute 
shears; final shear and moment curves also shown. [continues on next page]
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440  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

the equilibrium equation for either joint B or joint C. We will arbitrarily 
choose joint B.

Expressing member end moments with Equation 10.16, reading the 
value of fixed-end moment for member BC from Appendix Table A.4d, 
expressing units in kips·inch, and substituting 𝜃B = 𝜃 and 𝜃C = −𝜃, we
can write

  M  AB   =   2E (120)  ______ 
16 (12) 

   ( θ  B  )  = 1.25E  θ  B   (1)

  M  BA   =   2E (120)  ______ 
16 (12) 

   (2 θ  B  )  = 2.50E  θ  B   (2)

 M  BC   =   2E (360)  ______ 
30 (12) 

   (2 θ  B   +  θ  C  )  −   w  L   2  ___ 
12

  

 = 2E [2θ +  (−θ) ]  −   2   (30)    2  (12)  ________ 
12

   = 2Eθ − 1800 (3)

Writing the equilibrium equation at joint B (Figure 10.9b) yields

  M  BA   +  M  BC   = 0 (4)

Substituting Equations 2 and 3 into Equation 4 and solving for 𝜃 produce

2.5Eθ + 2.0Eθ − 1800 = 0

 θ =    400 ___ 
E

   (5)

Substituting the value of 𝜃 given by Equation 5 into Equations 1, 2, and
3 gives

 M  AB   = 1.25E (  400 ___ 
E

  ) 

= 500 kip ⋅ in. = 41.67 kip ⋅ ft Ans.

 M  BA   = 2.5E (  400 ___ 
E

  ) 

= 1000 kip ⋅ in. = 83.33 kip ⋅ ft Ans.

 M  BC   = 2E (  400 ___ 
E

  )  − 1800

 = −1000 kip ⋅ in. = −83.33 kip ⋅ ft  Ans.

The final results of the analysis are shown in Figure 10.9c.

Example 10.4 continues . . .
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10.4 ■ Analysis of Structures by the Slope-Deflection Method  441

Using symmetry to simplify the slope-deflection analysis of the frame in 
Figure 10.10a, determine the reactions at supports A and D. EI is constant 
for all members.

E X A M P L E  1 0 . 5

A

(a)

A
= 0 B

B
= 0

D
D

= 0

C
C
= 0

10ʹ

12ʹ

P = 16 kips P = 16 kips

10ʹ 10ʹ 10ʹ

� � �

�

(b)

P = 16 kips

8 kips

8 kips 8 kips 8 kips 8 kips

8 kips

16 kips

16 kips

16 kips

A B

V

M B

D

B

40 kip ft

40 kip ft 40 kip ft

40 kip ft40 kip ft 40 kip ft40 kip ft

Figure 10.10: (a) Symmetric frame with symmetric load (deflected shape shown by 
dashed line); (b) free body of beam AB, joint B, and column BD. Final shear and mo-
ment diagrams for beam AB. [continues on next page]
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Solution
Examination of the frame shows that all joint rotations are zero. Both 𝜃A and 
𝜃C are zero because of the fixed supports at A and C. Since column BD lies 
on the vertical axis of symmetry, we can infer that it must remain straight 
since the deflected shape of the structure with respect to the axis of sym-
metry must be symmetric. If the column were to bend in either direction, 
the requirement that the pattern of deformations be symmetric would be  
violated.

Since the column remains straight, neither the top nor bottom joints at 
B and D rotate; therefore, both 𝜃B and 𝜃D equal zero. Because no support 
settlements occur, chord rotations for all members are zero. Since all joint 
and chord rotations are zero, we can see from the slope-deflection equa-
tion (Equation 10.16) that the member end moments at each end of beams 
AB and BC are equal to the fixed-end moments PL/8 given by Appendix 
Table A.4a.

FEM = ±    PL ___ 
8
    =    

16(20)
 ______ 

8
    = ±40 kip · ft Ans.

Free bodies of beam AB, joint B, and column BD are shown in Figure 10.10b.

NOTE. The analysis of the frame in Figure 10.10 shows that column 
BD carries only axial load because the moments applied by the beams 
to each side of the joint are the same. A similar condition often exists at 
the interior columns of multistory buildings whose structure consists of 
either a continuous reinforced concrete or a welded rigid-jointed steel 
frame. Although a rigid joint has the capacity to transfer moments from 
the beams to the column, it is the difference between the moments ap-
plied  by the girders on either side of a joint that determines the mo-
ment  to be transferred. When the span lengths of the beams and the 
loads they support are approximately the same (a condition that exists 
in most buildings), the difference in moment is small. As a result, in the 
preliminary design stage of rigid frames for gravity loads, most columns 
can be sized reasonably by considering only the magnitude of the axial 
load produced by the gravity load from the tributary area supported by 
the  column.

Example 10.5 continues . . .
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Determine the reactions and draw the shear and moment curves for the 
beam in Figure 10.11. The support at A has been accidentally constructed 
with a slope that makes an angle of 0.009 rad with the vertical y-axis 
through support A, and B has been constructed 1.2 in. below its intended 
position. Given: EI is constant with I = 360 in.4 and E = 29,000 kips/in.2.

E X A M P L E  1 0 . 6

Figure 10.11: (a) Deformed shape; (b) free body used to compute VA and RB; (c) shear 
and moment curves.

A

y

A = –0.009 rad

A
B
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B x

RB = 7.61 kips

7.61 kips

VA = 7.61 kips

V

M

(a)

(b)

(c)

L = 20ʹ

= 1.2ʺΔ

152.25 kip ft

–152.25 kip ft

�

�

�ψ

Solution
The slope at A and the chord rotation 𝜓AB can be determined from the 
 information supplied about the support displacements. Since the end of 
the beam is rigidly connected to the fixed support at A, it rotates coun-
terclockwise with the support; and 𝜃A = −0.009 rad. The settlement of 
 support B relative to support A produces a clockwise chord rotation

  ψ  AB   =   Δ __ 
L

   =   1.2 _____ 
20 (12) 

   = 0.005 rad 
[continues on next page]
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Angle 𝜃B is the only unknown displacement, and the fixed-end moments are 
zero because no loads act on beam. Expressing member end moments with 
the slope-deflection equation (Equation 10.16), we have

 M  AB   =   
2  EI  AB  

 ____ 
 L  AB  

    (2 θ  A   +  θ  B   − 3  ψ  AB  )  +  FEM  AB  

  M  AB   =   2E (360)  ______ 
20 (12) 

   [2 (−0.009)  +  θ  B   − 3 (0.005) ]  (1)

  M  BA   =   2E (360)  ______ 
20 (12) 

   [2 θ  B   +  (−0.009)  − 3 (0.005) ]  (2)

Writing the equilibrium equation at joint B yields

+⟲ ∑MB = 0
  M  BA   = 0 (3)

Substituting Equation 2 into Equation 3 and solving for 𝜃B yield

3E (2 θ  B   − 0.009 − 0.015)  = 0

 θ  B   = 0.012 rad

To evaluate MAB, substitute 𝜃B into Equation 1.

 M  AB   = 3 (29,000)  [2 (−0.009)  + 0.012 − 3 (0.005) ] 
= −1827 kip ⋅ in = −152.25 kip ⋅ ft

Complete the analysis by using the equations of statics to compute the 
reaction at B and the shear at A (Figure 10.11b).

⟳+ ∑MA = 0

0 =  R  B   (20)  − 152.25

  R  B   = 7.61 kips               Ans.

↑
+
 ∑Fy = 0

 V  A   = 7.61 kips               Ans.

Example 10.6 continues . . .
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Although the supports are constructed in their correct position, girder AB 
of the frame shown in Figure 10.12 is fabricated 1.2 in. too long. Determine 
the reactions created when the frame is connected into the supports. Given: 
EI is a constant for all members, I = 240 in.4, and E = 29,000 kips/in.2.

E X A M P L E  1 0 . 7

A

18ʹ

18ʹ

Δ = 1.2ʺ

9ʹ

71.58 kip  ft

35.76 kip  ft 71.58 kip  ft 71.58 kip  ft

71.58 kip  ft

71.58 kip  ft

35.76 kip  ft

71.58 kip  ft

5.96 kips 5.96 kips 5.96 kips

5.96 kips

5.96 kips

9ʹ

5.96 kips

7.95 kips
7.95 kips 7.95 kips

7.95 kips

7.95 kips

7.95 kips

C

A

B

(a)

(b)

A B B

= 0�

90°

Figure 10.12: (a) Girder AB fabricated 
1.2 in. too long; (b) free-body diagrams of 
beam AB, joint B, and column BC used to 
compute internal forces and reactions.Solution

The deflected shape of the frame is shown by the dashed line in Fig- 
 ure 10.12a. Although internal forces (axial, shear, and moment) are cre-
ated when the frame is forced into the supports, the deformations produced 

[continues on next page]
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by these forces are neglected since they are small compared to the 1.2-in. 
fabrication error; therefore, the chord rotation 𝜓BC of column BC equals

 ψ  BC   =   Δ __ 
L

   =   1.2 ____ 
9 (12) 

   =   1 __ 
90

    rad

Since the ends of girder AB are at the same level, 𝜓AB = 0. The unknown 
displacements are 𝜃B and 𝜃C.
 Using the slope-deflection equation (Equation 10.16), we express 
member end moments in terms of the unknown displacements. Because 
no loads are applied to the members, all fixed-end moments equal zero.

 
 M  AB   =   2E (240)  ______ 

18 (12) 
    ( θ  B  )  = 2.222E θ  B   (1)

  M  BA   =   2E (240)  ______ 
18 (12) 

    (2 θ  B  )  = 4.444E θ  B   (2)

 M  BC   =   2E (240)  ______ 
9 (12) 

    [2 θ  B   +  θ  C   − 3 (  1 __ 
90

  ) ] 

 = 8.889E θ  B   + 4.444E θ  C   − 0.1481E (3)

 M  CB   =   2E (240)  ______ 
9 (12) 

    [2 θ  C   +  θ  B   − 3 (  1 __ 
90

  ) ] 

 = 8.889E θ  C   + 4.444E θ  B   − 0.1481E (4)

Writing equilibrium equations gives

Joint C:               M  CB   = 0 (5)
Joint B:    M  BA   +  M  BC   = 0 (6)

Substituting Equations 2 to 4 into Equations 5 and 6 solving for 𝜃B and 𝜃C 
yield

 8.889E θ  C   + 4.444E θ  B   − 0.1481E = 0

 4.444E θ  B   + 8.889E θ  B   + 4.444E θ  C   − 0.1481E = 0

  θ  B   = 0.00666 rad (7)

  θ  C   = 0.01332 rad (8)

Substituting 𝜃C and 𝜃B into Equations 1 to 3 produces

  M  AB   = 35.76 kip · ft     M  BA   = 71.58 kip · ft

  M  BC   = −71.58 kip · ft    M  CB   = 0 Ans.

The free-body diagrams used to compute internal forces and reactions are 
shown in Figure 10.12b, which also shows moment diagrams.

Example 10.7 continues . . .
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Thus far we have used the slope-deflection method to analyze indetermi-
nate beams and frames with joints that are free to rotate but which are re-
strained against displacement. We now extend the method to frames whose 
joints are also free to sidesway, that is, to displace laterally. For example, 
in Figure  10.13a the horizontal load results in girder BC displacing later-
ally a distance Δ. Recognizing that the axial deformation of the girder is 
insignificant, we assume that the horizontal displacement of the top of both 
columns equals Δ. This displacement creates a clockwise chord rotation 𝜓 in
both legs of the frame equal to

 ψ =   Δ __ 
h
   

where h is the length of column.

Analysis of Structures That Are Free  
to Sidesway

10.5

P

P

Q

Q

Δ Δ

A D

h

hh

B
C

(a)

(b)

V1

V1 V2

MBA

MAB

A

B

D

C

B C

V2

MCD

MDC

90°90°

ψ ψ

Figure 10.13 (a) Unbraced frame, deflected 
shape shown to an exaggerated scale by 
dashed lines, column chords rotate through 
a clockwise angle ψ; (b) free-body diagrams 
of columns and girders; unknown moments 
shown in the positive sense, that is, clock-
wise on ends of members (axial loads in 
columns and shears in girder omitted for 
clarity).
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448  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

Since three independent displacements develop in the frame [i.e., the 
rotation of joints B and C (𝜃B and 𝜃C) and the chord rotation 𝜓], we require
three equilibrium equations for their solution. Two equilibrium equations are 
supplied by considering the equilibrium of the moments acting on joints B 
and C. Since we have written equations of this type in the solution of previous 
problems, we will only discuss the second type of equilibrium equation—the 
shear equation. The shear equation is established by summing in the horizon-
tal direction the forces acting on a free body of the girder. For example, for 
the girder in Figure 10.13b we can write

      →+  Σ F  x   = 0 

    V  1   +  V  2   + Q = 0  (10.19)

In Equation 10.19, V1, the shear in column AB, and V2, the shear in column CD, 
are evaluated by summing moments about the bottom of each column of the 
forces acting on a free body of the column. As we established previously,  
the unknown moments on the ends of the column must always be shown in 
the positive sense, that is, acting clockwise on the end of the member. Sum-
ming moments about point A of column AB, we compute V1.

⟳+ ∑MA = 0

  M  AB   +  M  BA   −  V  1   h = 0 

   V  1   =   
 M  AB   +  M  BA  

 ________ 
h
    (10.20)

Similarly, the shear in column CD is evaluated by summing moments about 
point D.

⟳+ ∑MD = 0

  M  CD   +  M  DC   −  V  2   h = 0 

   V  2   =   
 M  CD   +  M  DC  

 ________ 
h
    (10.21)

Substituting the values of V1 and V2 from Equations 10.20 and 10.21 into 
Equation 10.19, we can write the third equilibrium equation as

    
 M  AB   +  M  BA  

 ________ 
h
   +   

 M  CD   +  M  DC  
 ________ 

h
   + Q = 0  (10.22)

Examples 10.8 and 10.9 illustrate the use of the slope-deflection method 
to analyze frames that carry lateral loads and are free to sidesway. Frames 
that carry only vertical load will also undergo small amounts of sidesway un-
less both the structure and the loading pattern are symmetric. Example 10.10 
illustrates this case.
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10.5 ■ Analysis of Structures That Are Free to Sidesway  449

Analyze the frame in Figure 10.14a by the slope-deflection method. E is 
constant for all members; IAB = 240 in.4, IBC = 600 in.4, and ICD = 360 in.4.

E X A M P L E  1 0 . 8

Figure 10.14: (a) Details of frame; 
(b) reactions and moment diagrams.
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(a)

A
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18ʹ
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12ʹ

Δ Δ
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A

= 0D
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15ʹ

90°90°

�

�

ψ

ψ

1.97 kips

4.03 kips

2.57 kips

2.57 kips

6 kips

18.7 kip ft
18.7 kip ft

16.76 kip ft

16.76 kip ft

21.84 kip ft

26.45 kip ft26.45 kip ft

21.84 kip ft

(b)

Solution
Identify the unknown displacements 𝜃B, 𝜃C, and Δ. Express 
the chord rotations 𝜓AB and 𝜓CD in terms of Δ.

   ψ  AB   =   Δ __ 
12

    and   ψ  CD   =   Δ __ 
18

    so   ψ  AB   = 1.5  ψ  CD    (1)

Compute the relative bending stiffness of all members.

  K  AB   =   EI __ 
L

   =   240E ____ 
12

   = 20E 

  K  BC   =   EI __ 
L

   =   600E ____ 
15

   = 40E 

  K  CD   =   EI __ 
L

   =   360E ____ 
18

   = 20E 

If we set 20E = K, then
   K  AB   = K   K  BC   = 2K   K  CD   = K  (2)
 Express member end moments in terms of displacements with slope-
deflection Equation 10.16: MNF = (2EI/L)(2𝜃N + 𝜃F − 3𝜓NF) + FEMNF. 
Since no loads are applied to members between joints, all FEMNF = 0.

  M  AB   = 2 K  AB   ( θ  B   − 3  ψ  AB  )  
  M  BA   = 2 K  AB   (2 θ  B   − 3  ψ  AB  )  

   M  BC   = 2 K  BC   (2 θ  B   +  θ  C  )   
(3)

  M  CB   = 2 K  BC   (2 θ  C   +  θ  B  )  
  M  CD   = 2 K  CD   (2 θ  C   − 3  ψ  CD  )  
  M  DC   = 2 K  CD   ( θ  C   − 3  ψ  CD  )  [continues on next page]
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In the equations above, use Equations 1 to express 𝜓AB in terms of 𝜓CD, and 
use Equations 2 to express all stiffness in terms of the parameter K.

  M  AB   = 2K ( θ  B   − 4.5  ψ  CD  )  

  M  BA   = 2K (2 θ  B   − 4.5  ψ  CD  )  

   M  BC   = 4K (2 θ  B   +  θ  C  )   
(4)

  M  CB   = 4K (2 θ  C   +  θ  B  )  

  M  CD   = 2K (2 θ  C   − 3  ψ  CD  )  

  M  DC   = 2K ( θ  C   − 3  ψ  CD  )  

 The equilibrium equations are:

 Joint B:    M  BA   +  M  BC   = 0  (5)

 Joint C:    M  CB   +  M  CD   = 0  (6)

    
 M  BA   +  M  AB  

 ________ 
12

   +   
 M  CD   +  M  DC  

 ________ 
18

   + 6 = 0  (7)

 Substitute Equations 4 into Equations 5, 6, and 7 and combine terms.

  12 θ  B   + 4 θ  C   − 9  ψ  CD   = 0  (5a)

  4 θ  B   + 12 θ  C   − 6  ψ  CD   = 0  (6a)

  9 θ  B   + 6 θ  C   − 39  ψ  CD   = −   108 ___ 
K

    (7a)

Solving the equations above simultaneously gives

  θ  B   =   2.257 _____ 
K

     θ  C   =   0.97 ____ 
K

     ψ  CD   =   3.44 ____ 
K

   

Also,   ψ  AB   = 1.5  ψ  CD   =   5.16 ____ 
K

   

Since all angles are positive, all joint rotations and the sidesway angles 
are clockwise.
 Substituting the values of displacement above into Equations 4, we 
establish the member end moments.

   M  AB   = −26.45 kip ⋅ ft    M  BA   = −21.84 kip ⋅ ft 

   M  BC   = 21.84 kip ⋅ ft              M  CB   = 16.78 kip ⋅ ft 

   M  CD   = −16.76 kip ⋅ ft    M  DC   = −18.7 kip ⋅ ft  Ans.

The final results are summarized in Figure 10.14b.

Shear equation  
(Equation 10.22):

Example 10.8 continues . . .
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Analyze the frame in Figure 10.15a by the slope-deflection method. Given: 
EI is constant for all members.

E X A M P L E  1 0 . 9

[continues on next page]

Figure 10.15: (a) Details of frame: rotation 
of chord ψAB shown by dashed line; (b) mo-
ments acting on joint B (shear and axial 
forces omitted for clarity); (c) moments 
acting on joint C (shear forces and reaction 
omitted for clarity); (d ) free body of column 
AB; (e) free body of girder used to establish 
third equilibrium equation (continues on 
page 453).
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Solution
Identify the unknown displacements; 𝜃B, 𝜃C, and 𝜓AB. Since the cantilever 
is a determinate component of the structure, its analysis does not have to 
be included in the slope-deflection formulation. Instead, we consider the 
cantilever a device to apply a vertical load of 6 kips and a clockwise mo-
ment of 24 kip·ft to joint C.
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 Express member end moments in terms of displacements with Equa- 
tion 10.16 (all units in kip·ft).

  M  AB   =   2EI ___ 
8
    ( θ  B   − 3 ψ  AB  )  −   3   (8)    2  ____ 

12
   

   M  BA   =   2EI ___ 
8
    (2 θ  B   − 3 ψ  AB  )  +   3   (8)    2  ____ 

12
    (1)

  M  BC   =   2EI ___ 
12

    (2 θ  B   +  θ  C  )  

  M  CB   =   2EI ___ 
12

    (2 θ  C   +  θ  B  )  

 Write the joint equilibrium equations at B and C.
Joint B (Figure 10.15b):

 +⟲ ΣMB = 0:  MBA + MBC = 0 (2)

Joint C (Figure 10.15c):

 +⟲ ΣMC = 0:  MCB − 24 = 0 (3)

Shear equation (Figure 10.15d ):

⟳+ ΣMA = 0  MBA + MAB + 24(4) − V1(8) = 0

Solving for V1 gives 

   V  1   =   
 M  BA   +  M  AB   + 96

  ___________ 
8
    (4a)

 Isolate the girder (Figure 10.15e) and consider equilibrium in the hori-
zontal direction.

       →+  Σ  F  x   = 0:  therefore  V  1   = 0  (4b)

Substitute Equation 4a into Equation 4b.

 MBA + MAB + 96 = 0 (4)
Express equilibrium equations in terms of displacements by substituting 
Equations 1 into Equations 2, 3, and 4. Collecting terms and simplifying, we find

 10 θ  B   − 2 θ  C   − 9 ψ  AB   = −   192 ___ 
EI

   

  θ  B   − 2 θ  C   =   144 ___ 
EI

   

 
3 θ  B   − 6 ψ  AB   = −   384 ___ 

EI
   

Solution of the equations above gives

  θ  B   =   53.33 _____ 
EI

     θ  C   =   45.33 _____ 
EI

     ψ  AB   =   90.66 _____ 
EI

   

Example 10.9 continues . . .
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10.5 ■ Analysis of Structures That Are Free to Sidesway  453

 Establish the values of member end moments by substituting the val-
ues of 𝜃B, 𝜃C, and 𝜓AB into Equations 1.

  M  AB   =   2EI ___ 
8
   [  53.33 _____ 

EI
   −    

(3)  (90.66)  ________ 
EI

  ]  − 16 = −70.67 kip ⋅ ft 

  M  BA   =   2EI ___ 
8
   [   

(2)  (53.33)  ________ 
EI

   −    
(3)  (90.66)  ________ 

EI
  ]  + 16 = −25.33 kip ⋅ ft 

  M  BC   =   2EI ___ 
12

   [   
(2)  (53.33)  ________ 

EI
   +   45.33 _____ 

EI
  ]  = 25.33 kip ⋅ ft 

  M  CB   =   2EI ___ 
12

   [   
(2)  (45.33)  ________ 

EI
   +   53.33 _____ 

EI
  ]  = 24 kip ⋅ ft  Ans.

After the end moments are established, we compute the shears in all mem-
bers by applying the equations of equilibrium to free bodies of each mem-
ber. Final results are shown in Figure 10.15f.

24 kips
10.11 kips

( f )

A

B C
D

25.33

25.33

–4.11

4.11 kips

–24

6

shear
(kips)

momentshear

24 kips

moment
(kip ft)

70.67
kip ft M = 70.67 kip ft

Figure 10.15: (Continued) ( f ) reactions and shear and moment curves.
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454  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

Analyze the frame in Figure 10.16a by the slope-deflection method. 
Determine the reactions, draw the moment curves for the members, and 
sketch the deflected shape. If I = 240 in.4 and E = 30,000 kips/in.2, deter-
mine the horizontal displacement of joint B.

Figure 10.16 (a) Unbraced frame positive 
chord rotations assumed for columns (see the 
dashed lines), deflected shape shown in (d); 
(b) free bodies of columns and girder used to 
establish the shear equation (continues on 
page 456).
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Solution
Unknown displacements are 𝜃B, 𝜃C, and 𝜓. Since supports at A are fixed, 𝜃A 
and 𝜃D equal zero. There is no chord rotation of girder BC.
 Express member end moments in terms of displacements with the 
slope-deflection equation. Use Appendix Table A.4b to evaluate FEMNF.

   M  NF   =   2EI ___ 
L

    (2 θ  N   +  θ  F   − 3 ψ  NF  )  +  FEM  NF    (10.16) 

  FEM  BC   = −   P b   2 a ____ 
 L   2 

   =   12   (30)    2  (15)  ________ 
  (45)    2 

          FEM  CD   =   P a   2 b ____ 
 L   2 

   =   12   (15)    2  (30)  ________ 
  (45)    2 

   

  = −80 kip ⋅ ft   = 40 kip ⋅ ft 

E X A M P L E  1 0 . 1 0
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To simplify slope-deflection expressions, set EI∕15 = K.

 M  AB   =   2EI ___ 
15

    ( θ  B   − 3ψ)      = 2K ( θ  B   − 3ψ) 

 M  BA   =   2EI ___ 
15

    (2 θ  B   − 3ψ)    = 2K (2 θ  B   − 3ψ) 

 M  BC   =   2EI ___ 
45

    (2 θ  B   +  θ  C  )  − 80 =   2 __ 
3
  K (2 θ  B   +  θ  C  )  − 80

 M  CB   =   2EI ___ 
45

    (2 θ  C   +  θ  B  )  + 40 =   2 __ 
3
  K (2 θ  C   +  θ  B  )  + 40

 M  CD   =   2EI ___ 
15

    (2 θ  C   − 3ψ)    = 2K ( θ  C   − 3ψ) 

 M  DC   =   2EI ___ 
15

    ( θ  C   − 3ψ)      = 2K ( θ  C   − 3ψ) 

 The equilibrium equations are

Joint B:   M  BA   +  M  BC   = 0  (2)

Joint C:   M  CB   +  M  CD   = 0  (3)

 Shear equation (see the girder in Figure 10.16b)

       →+  Σ F  x   = 0   V  1   +  V  2   = 0  (4a)

where   V  1   =   
 M  BA   +  M  AB  

 ________ 
15

     V  2   =   
 M  CD   +  M  DC  

 ________ 
15

    (4b)

Substituting V1 and V2 given by Equations 4b into 4a gives

   M  BA   +  M  AB   +  M  CD   +  M  DC   = 0  (4)

Alternatively, we can set Q = 0 in Equation 10.22 to produce Equation 4.
 Express equilibrium equations in terms of displacements by substitut-
ing Equations 1 into Equations 2, 3, and 4. Combining terms and simplify-
ing give

 8K θ  B   + K θ  C   − 9Kψ = 120 

 2K θ  B   + 16K θ  C   − 3Kψ = −120 

 K θ  B   + K θ  C   − 4Kψ = 0 

(1)

[continues on next page]
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456  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

Solving the equations above simultaneously, we compute

 
 
 θ  B   =   410 ____ 

21K
     θ  C   = −   130 ____ 

21K
    ψ =   10 ___ 

3K
    (5)

 Substituting the values of the 𝜃B, 𝜃C, and 𝜓 into Equations 1, we com-
pute the member end moments below.

  M  AB   = 19.05 kip ⋅ ft      M  BA   = 58.1 kip ⋅ ft 

   M  CD   = −44.76 kip ⋅ ft   M  DC   = −32.38 kip ⋅ ft  (6)

   M  BC   = −58.1 kip ⋅ ft      M  CB   = 44.76 kip ⋅ ft  Ans.

Member end moments and moment curves are shown on the sketch in  
Figure 10.16c; the deflected shape is shown in Figure 10.16d.
 Compute the horizontal displacement of joint B. Use Equation 1 for 
MAB. Express all variables in units of inches and kips.

   M  AB   =   2EI _____ 
15 (12) 

    ( θ  B   − 3ψ)   (7)

From the values in Equation 5, 𝜃B = 5.86𝜓; substituting into Equation 7,
we compute

 19.05 (12)  =   
2 (30,000)  (240) 

  ___________ 
15 (12) 

    (5.86ψ − 3ψ)  

 ψ = 0.000999 rad 

ψ =   Δ __ 
L

  

Δ = ψL = 0.000999 (15 × 12)  = 0.18 in. Ans.

Example 10.10 continues . . .

19.05 kip ft 32.38 kip ft

(d )

P = 12 kips

5.14 kips 5.14 kips

3.7 kips8.3 kips

–44.76

44.76

moment
(kip  ft)

32.28

58.1

19.05

–58.1

66.4

(c)

A D

B C

Figure 10.16: (Continued) (c) Member end moments and moment curves (in kip·ft);  
(d ) reactions and deflected shape.
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10.6 ■ Kinematic Indeterminacy  457

To analyze a structure by the flexibility method, we first established the de-
gree of indeterminacy of the structure. The degree of statical indeterminacy 
determines the number of compatibility equations we must write to evaluate 
the redundants, which are the unknowns in the compatibility equations.

In the slope-deflection method, displacements—both joint rotations and 
translations—are the unknowns. As a basic step in this method, we must write 
equilibrium equations equal in number to the independent joint displacements. 
The number of independent joint displacements is termed the degree of kine-
matic indeterminacy. To determine the kinematic indeterminacy, we simply 
count the number of independent joint displacements that are free to occur. 
For example, if we neglect axial deformations, the beam in Figure 10.17a is 
kinematically indeterminate to the first degree. If we were to analyze this 
beam by slope-deflection, only the rotation of joint B would be treated as an 
unknown. 

If we also wished to consider axial stiffness in a more general stiffness 
analysis, the axial displacement at B would be considered an additional un-
known, and the structure would be classified as kinematically indeterminate 
to the second degree. Unless otherwise noted, we will neglect axial deforma-
tions in this discussion. 

In Figure 10.17b the frame would be classified as kinematically inde-
terminate to the fourth degree because joints A, B, and C are free to rotate 
and the girder can translate laterally. Although the number of joint rotations 
is simple to identify, in certain types of problems the number of indepen-
dent joint displacements may be more difficult to establish. One method to 
determine the number of independent joint displacements is to introduce 
imaginary rollers as joint restraints. The number of rollers required to re-
strain the joints of the structure from translating equals the number of in-
dependent joint displacements. For example, in Figure 10.17c the structure 
would be classified as kinematically indeter minate to the eighth degree, 
because six joint rotations and two joint dis placements are possible. Each 
imaginary roller (noted by the numbers 1 and 2) introduced at a floor pre-
vents all joints in that floor from displacing laterally. In Figure 10.17d the 
Vierendeel truss would be classified as kinematically indeterminate to the 
eleventh degree (i.e., eight joint rotations and three independent joint trans-
lations). Imaginary rollers (labeled 1, 2, and 3) added at joints B, C, and H 
prevent all joints from translating.

Kinematic Indeterminacy
10.6

Figure 10.17: Evaluating degree of kinematic indeterminacy: (a) indeterminate first degree, 
neglecting axial deformations; (b) indeterminate fourth degree; (c) indeterminate eighth de-
gree, imaginary rollers added at points 1 and 2; (d) indeterminate eleventh degree, imaginary 
rollers added at points 1, 2, and 3.

(a)

BA

(b)

A

B C

D

(c)

A B

F

1

2
E

H

C

D

IG

(d)
1 2

3
H G F E

BA C D
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Summary

 • The slope-deflection procedure is a classical method for analyzing  
indeterminate beams and rigid frames. In this method joint dis-
placements are the unknowns.

 • A step-by-step procedure to analyze an indeterminate beam or frame 
based on the slope-deflection method is summarized in Section 10.4.

 • For highly indeterminate structures with a large number of joints, the 
slope-deflection solution requires that the engineer solve a series of si-
multaneous equations equal in number to the unknown displacements—a 
time-consuming operation. While the use of the slope-deflection method 
to analyze structures is impractical given the availability of computer pro-
grams, familiarity with the method provides students with valuable insight 
into the behavior of structures.

 • As an alternate to the slope-deflection method, moment distribution was 
developed in the 1930s to analyze indeterminate beams and frames by 
distributing unbalanced moments at joints in an artificially restrained 
structure. While this method eliminates the solution of simultaneous 
equations, it is still relatively long, especially if a large number of loading 
conditions must be considered. Nevertheless, moment distribution is a 
useful tool as an approximate method of analysis both for checking the 
results of a computer analysis and in making preliminary studies. We 
will use the slope-deflection equation to develop the moment distribution 
method in Chapter 11. 

 • A variation of the slope-deflection procedure, the general stiffness 
method, used to prepare general-purpose computer programs, is pre-
sented in Chapter 14. This method utilizes stiffness coefficients—forces 
produced by unit displacements of joints.
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■ Problems  459

P10.1 and P10.2. Using Equations 10.12 and 10.13, 
compute the fixed-end moments for the fixed-end beams. 
See Figures P10.1 and P10.2.

PROBLEMS

P10.1

L
4

FEMAB FEMBA

A B

L
2

L
4

P P

P10.2

A BM

L
2

FEMBAFEMAB L
2

P10.3. Analyze by slope-deflection and draw the shear 
and moment curves for the beam in Figure P10.3. Given: 
EI = constant.

P10.3

A B C 

5ʹ 5ʹ 5ʹ 5ʹ

20 kips 40 kips

40 kip ft

P10.4. Analyze the beam in Figure P10.4 by slope-
deflection and draw the shear and moment diagrams for 
the beam. EI is constant.

P10.4

10 m

A CB

w = 12 kN/m
24 kN

5 m

14 m

P10.5. Compute the reactions at A and C in Figure P10.5. 
Draw the shear and moment diagram for member BC. 
Given: I = 2000 in.4 and E = 3000 kips/in.2.

P10.5

6ʹ 24ʹ

12ʹ

A

B 4I

I

C

w = 2.8 kips/ft

P10.6. Draw the shear and moment curves for the frame 
in Figure P10.6. Given: EI is constant.

P10.6

w = 2 kips/ft

30 kips

A

B C

14ʹ 14ʹ

10ʹ

10ʹ

P10.7. Analyze the beam in Figure P10.7. Draw the 
shear and moment curves. Given: E = 29,000 ksi and  
I = 100 in.4.

P10.7

A B C D

20 kip ft

4ʹ 8ʹ 8ʹ

w = 3 kips/ft
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460  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

P10.13. Figure P10.13 shows the forces exerted by the 
soil pressure on a typical 1-ft length of a concrete tunnel 
as well as the design load acting on the top slab. Assume 
that a fixed-end condition at the bottom of the walls at A 
and D is produced by the connection to the foundation 
mat. Determine the member end moments and draw the 
shear and moment curves. Also draw the deflected shape. 
EI is constant.

P10.8. If no vertical deflection is permitted at end A for 
the beam in Figure P10.8, compute the required weight 
W that needs to be placed at midspan of CD. Given: 
E = 29,000 ksi and I = 100 in.4.

In Problems P10.11 to P10.14, take advantage of sym-
metry to simplify the analysis by slope deflection.

P10.11. (a) Compute all reactions and draw the shear 
and moment curves for the beam in Figure P10.11. Given: 
EI is constant. Compute the deflection at the midspan of 
segment BC.

P10.8

A
B C D

W
w = 3 kips/ft

4ʹ4ʹ 4ʹ8ʹ

P10.9. (a) Under the applied loads support B in Figure 
P10.9 settles 0.5 in. Determine all reactions. Given: 
E = 30,000 kips/in.2 and I = 240 in.4. (b) Compute the 
deflection of point C.

P10.9

16ʹ

A B
C

4ʹ

w = 3 kips/ft

P10.10. In Figure P10.10, support A rotates 0.002 rad 
and support C settles 0.6 in. Draw the shear and moment 
curves. Given: I = 144 in.4 and E = 29,000 kips/in.2.

P10.10

A B C

12ʹ

0.002 rad

0.6ʺ

15ʹ

P10.11

A CB

I I1.5I

D

30 kips 30 kips

8ʹ 8ʹ 8ʹ 8ʹ24ʹ

w = 2 kips/ft

P10.12. (a) Determine the member end moments for 
the rectangular ring in Figure P10.12, and draw the 
shear and moment curves for members AB and AD. The 
cross section of the rectangular ring is 12 in. × 8 in. 
and E = 3000 kips/in.2. (b) What is the axial force in 
member AD and in member AB?

P10.12

w = 2 kips/ft

6ʹ

12ʹ

8ʺ
8ʺ8ʺ

8ʺ
B

D

C

A

w = 2 kips/ft

P10.13

A

B

D

C

14ʹ

200 lb/ft

800 lb/ft800 lb/ft

2ʹ 2ʹ

16ʹ
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P10.16. Analyze the frame in Figure P10.16. In addition 
to the applied loads, supports A and D settle by 2.16 in. 
EI = 36,000 kip·ft2 for beams and EI = 72,000 kip·ft2 for 
columns. Use symmetry to simplify the analysis.

P10.14. Compute the reactions and draw the shear and 
moment curves for the beam in Figure P10.14. Given: E = 
200 GPa and I = 120 × 106 mm4.

P10.17. Analyze the structure in Figure P10.17. In 
 addition to the applied load, support A rotates clockwise 
by 0.005 rad. Also E = 200 GPa and I = 25 × 106 mm4 
for all members.

P10.14

5 m

A B

C

D E

w = 40 kN/m

5 m 5 m 5 m

P10.15. Consider the beam in Figure P10.14 without the 
applied load. Compute the reactions and draw the shear 
and moment curves for the beam if support C settles 
24 mm and support A rotates counterclockwise 0.005 rad.

P10.16

 A D

20 kips 20 kips

B C

E F

12ʹ 9ʹ9ʹ9ʹ9ʹ

12ʹ

P10.17

A

B C

4 m

3 m

100 kN

3 m

P10.18. Analyze the frame in Figure P10.18. Compute 
all reactions. Given: EI is constant.

P10.18

B C

 A D

20 kips

10ʹ 10ʹ

12ʹ

P10.19. Analyze the frame in Figure P10.19. Given: EI 
is constant.

P10.19

A

C

B

D E

6 m8 m

50 kN

6 kN/m

50 kN

6 m

4 m 3 m

P10.20. Analyze the frame in Figure P10.20. Compute 
all reactions. Given: EI is constant.

P10.20

w = 8 kips/ft

A
CB

E 15ʹ
10ʹ

10ʹ 10ʹ

D

P10.21. Analyze the frame in Figure P10.20. Ignore 
the applied load. But support E settles by 1 in. Use E = 
29,000 ksi and I = 100 in.4.
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462  Chapter 10 ■ Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

P10.23. Analyze the frame in Figure P10.23. Compute 
the reactions and draw the shear and moment diagrams 
for members AB and BD. Given: EI is constant.

created when the structure is connected to its supports. 
Given: E = 29,000 kips/in.2.

P10.25. If member AB in Figure P10.25 is fabricated  
   3 _ 4    in. too long, determine the moments and reactions cre-
ated in the frame when it is erected. Sketch the deflected 
shape. Given: E = 29,000 kips/in.2.

P10.22. Compute the reactions and draw the shear and 
moment diagrams for beam BD in Figure P10.22. EI is 
constant.

P10.22

A

B

w = 6 kN/m

C

D

9 m

6 m

3 m

35 kN

P10.23

A C
B

D

w = 5 kips/ft

15ʹ 8ʹ

12ʹ

P10.24

A

B C

24ʹ

12ʹ

0.48ʺ

� = 0.016 rad

I = 300 in.4

I = 75 in.4

P10.25

A

B C

24ʹ

12ʹ

I = 240 in.4

I = 120 in.4

P10.26. Analyze the frame in Figure P10.26. Given: EI 
is constant.

P10.26

A

C

B

w = 1 kip/ft

1 kip/ft

25ʹ

10ʹ

20ʹ

P10.24. If support A in Figure P10.24 is constructed 
0.48 in. too low and the support at C is accidentally con-
structed at a slope of 0.016 rad clockwise from a verti-
cal axis through C, determine the moment and reactions 
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P10.28. Analyze the frame in Figure P10.28. Notice that 
sidesway is possible because the load is unsymmetric. 
Compute the horizontal displacement of joint B. Given:  
E = 29,000 kips/in.2 and I = 240 in.4 for all  members.

P10.27. Analyze the frame in Figure P10.27. Note that 
support D can translate in the horizontal direction only. 
Compute all reactions and draw the shear and moment 
curves. Given: E = 29,000 ksi and I = 100 in.4.

P10.27

8ʹ

3ʹ

5ʹ

D
B 2I

I

I

A

C

100
kips

P10.28

30 kips
4ʹ

A

B

D

C

20ʹ

12ʹ

P10.29. Analyze the frame in Figure P10.29. Compute 
all reactions. Use IBC = 200 in.4 and IAB = ICD = 150 in.4. 
E is constant.

P10.29

A

C

D

B

20ʹ

20ʹ

20ʹ15ʹ

100 kip ft

P10.30. Determine all reactions at points A and D in 
Figure P10.30. EI is constant.

P10.30

A

B C

D

10 m

60 kN

6 m
8 m

P10.31. Analyze the frame in Figure P10.31. EI is 
constant.

A

B

D

C

3 m

3 m

5 m

70 kN

P10.31
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P10.33. Set up the equilibrium equations required 
to analyze the frame in Figure P10.33 by the slope- 
deflection method. Express the equilibrium equations in 
terms of the appropriate displacements. EI is constant 
for all members.

P10.34. Set up the equilibrium equations required to 
analyze the frame in Figure 10.34 by the slope- deflection 
method. Express the equilibrium equations in terms 
of the appropriate displacements. EI is constant for all 
 members.

P10.32. Set up the equilibrium equations required to  
analyze the frame in Figure P10.32 by the slope deflec-
tion method. Express the equilibrium equations in terms 
of the appropriate displacements. EI is constant for all 
members.

P10.32

A

B C

D

40 kips
10ʹ 10ʹ

15ʹ

20ʹ

16ʹ

12ʹ

8ʹ

w = 2 kips/ft

2 kips

A

B C
D

E

4ʹ

P10.33

P10.34

C

D

B

A

50 kips

12ʹ12ʹ

10ʹ

10ʹ

lee98004_ch10_422-465.indd   464 23/12/16   4:53 pm



P10.35. Determine the degree of kinematic indeter-
minacy for each structure in Figure P10.35. Neglect 
axial deformations.

■ Problems  465

(a)

CBA

(b)

CB

D

A

(c)

CB

F E

DA

(d)

CB

D E F

G H

I J

A

P10.35
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Bixby Creek Bridge in Big Sur, California
The wide use of elegant open-spandrel, reinforced concrete arch bridges in the first 
half of the twentieth century has resulted in many notable historic bridges in the United 
States, including the Bixby Creek Bridge. It is 714-ft long with a 320-ft main span and is 
over 280-ft high. The seismic retrofit, completed in 1996, ensures not only the bridge will 
remain stable during intense earthquake shaking but also addresses important aesthetic 
and environmental concerns during the retrofit construction over the ecologically sensitive 
and inaccessible canyon.

Courtesy of the Godden Collection, NISEE, University of California, Berkeley
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11

Moment distribution, developed by Hardy Cross in the early 1930s, is a pro-
cedure for establishing the end moments in members of indeterminate beams 
and frames with a series of simple computations. The method is based on 
the idea that the sum of the moments applied by the members framing into a 
joint must equal zero because the joint is in equilibrium. In many cases mo-
ment distribution eliminates the need to solve large num  bers of simultane-
ous equations such as those produced in the analysis of highly indeterminate 
structures by either the flexibility or slope-deflection method. While continu-
ous rigid-jointed structures—welded steel or reinforced concrete frames and 
continuous beams—are routinely and rapidly analyzed for multiple loading 
conditions by computer, moment distribution remains a valuable tool for (1) 
checking the results of a computer analysis or (2) carrying out an approximate 
analysis in the preliminary design phase when members are initially sized.

In the moment distribution method, we imagine that temporary re straints 
are applied to all joints of a structure that are free to rotate or to displace. We 
apply hypothetical clamps to prevent rotation of joints and introduce imagi-
nary rollers to prevent lateral displacements of joints (the rollers are required 

C H A P T E R

Analysis of Indeterminate 
Beams and Frames by 
the Moment Distribution
Chapter Objectives

 ● Learn the moment distribution method, which is an approximate procedure for analyzing indeterminate 
beams and frames and eliminates the need to write and solve the simultaneous equations.

 ● Understand how joint equilibrium is achieved by unlocking and locking joints in succession and distribut-
ing moments to both ends of all members framing to the joint until all joints achieve equilibrium.

 ● Learn the procedure to analyze beams and frames with sway inhibited, and then extend the 
procedure to frames with sway uninhibited.

 ● Extend the use of moment distribution method to beams and frames with nonprismatic members.

Introduction
11.1
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468  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

only for structures that sidesway). The initial effect of introducing restraints 
is to produce a structure composed entirely of fixed-end members. When we 
apply the design loads to the restrained structure, moments are created in the 
members and clamps.

For a structure restrained against sidesway (the most common case), the 
analysis is completed by removing clamps—one by one—from successive 
joints and distributing moments to the members framing into the joint. Mo-
ments are distributed to the ends of members in proportion to their flexural stiff-
ness. When the moments in all clamps have been absorbed by the members, the 
indeterminate analysis is complete. The balance of the analysis—constructing 
shear and moment curves, computing axial forces in members, or evaluating 
reactions—is completed with the equations of statics.

For example, as the first step in the analysis of the continuous beam in 
Figure 11.1a by moment distribution, we apply imaginary clamps to joints 
B and C. Joint A, which is fixed, does not require a clamp. When loads are 
applied to the individual spans, fixed-end moments (FEMs) develop in the 
members and restraining moments (  M  B  ʹ    and   M  C  ʹ   ) develop in the clamps. As the 
moment distribution solution progresses, the clamps at supports B and C are 
alternately removed and replaced in a series of iterative steps until the beam 
deflects into its equilibrium position, as shown by the dashed line in Figure 
11.1b. After you learn a few simple rules for distributing moments among 
the members framing into a joint, you will be able to analyze many types of 
indeterminate beams and frames rapidly.

Initially we consider structures composed of straight, prismatic members 
only, that is, members whose cross sections are constant throughout their entire 
length. Later we will extend the procedure to structures that contain members 
whose cross section varies along the axis of the member.

P PʹMB́

A

FEMAB FEMBA

B

C

(a)

clamp

clamp

A = 0 C = 0
B = 0

FEMBC FEMCB

MĆ

�
�

�

Figure 11.1: Continuous beam analyzed by 
moment distribution: (a) temporary clamps 
added at joints B and C to produce a re-
strained structure consisting of two fixed-
end beams; (b) clamps removed and beam 
deflected into its equilibrium position.

MAB MBA
MBC

A = 0 B

C

P Pʹ

A
B C

(b)

� �

�

Development of the Moment Distribution Method
11.2

To develop the moment distribution method, we will use the slope-deflection 
equation to evaluate the member end moments in each span of the continu-
ous beam in Figure 11.2a after an imaginary clamp that prevents rotation of 
joint B is removed and the structure deflects into its final equilibrium position. 
Although we introduce moment distribution by analyzing a simple structure 

Hardy Cross
Before the advent of com-
puter, analyzing a multistory 
building frame was a formida-
ble task because the structure 
is highly indeterminate. Hardy 
Cross (1885–1959) overcame 
this obstacle and achieved 
an international reputation by 
developing the moment dis-
tribution method. Bypassing 
the solution of simultane-
ous equations, his iterative 
method combined reasonable 
precision with speed. This 
stiffness method is rooted in a 
numerical analysis procedure 
called the Jacobi method. 
Cross also extended his 
method to solving complex 
water pipe network problems.
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11.2 ■ Development of the Moment Distribution Method  469

that has only one joint that is free to rotate, this case will permit us to de-
velop the most important features of the method.

When the concentrated load P is applied to span AB, the initially straight 
beam deflects into the shape shown by the dashed line. At support B a line 
tangent to the elastic curve of the deformed beam makes an angle of θB with 
the horizontal axis. The angle θB is shown greatly exaggerated and would 
typically be less than 1°. At supports A and C, the slope of the elastic curve 
is zero because the fixed ends are not free to rotate. In Figure 11.2b we show 
a detail of the joint at support B after the loaded beam has deflected into its 
equilibrium position. The joint, which consists of a differential length ds of 
beam segment, is loaded by shears and moments from beam AB and BC, and 
by the support reaction RB. If we sum moments about the centerline of sup-
port B, equilibrium of the joint with respect to moment requires that MBA = 
MBC, where MBA and MBC are the moments applied to joint B by members AB 
and BC, re spectively. Since the distance between the faces of the element and 
the centerline of the support is infinitesimally small, the moment produced 
by the shear forces is a second-order quantity and does not have to be in-
cluded in the moment equilibrium equation.

We now consider in detail the various steps of the moment distribution 
procedure that permits us to calculate the values of member end moments in 
spans AB and BC of the beam in Figure 11.2. In the first step (Figure 11.2c) 
we imagine that joint B is locked against rotation by a large clamp. The ap-
plication of the clamp produces two fixed-end beams. When P is applied to 

LAB

P

FEMAB

FEMAB
COMBA

FEMBA
DEMBA

DEMBCDEMBA

FEMBA

DEMBC COMBC

FEMBA

UM = FEMBA

UM = FEMBA

BA C
A = 0

A = 0

B = 0

C = 0

B

B

(a)
(b)

(d)

( f )

clamp

UM clamp

LBC
MBA

MBC

RB

VBA

VBC
ds

P

BA C

B

B

(c)

A B

C

P

B B

(e)

�
�

�

�

�

� �

�

Figure 11.2: Various stages in the analysis of 
a beam by moment distribution: (a) loaded 
beam in deflected position; (b) free-body 
diagram of joint B in deflected position; (c) 
fixed-end moments in restrained beam (joint 
B clamped); (d ) free-body diagram of joint B  
before clamp removed; (e) moments in beam 
after clamp removed; (  f )  distributed end  
moments (DEMs) produced by joint rotation 
θB to balance the unbalanced moment (UM).
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470  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

the midspan of member AB, fixed-end moments develop at each end of the 
member. These moments can be evaluated using Appendix Table A.4 or from 
Equations 10.12 and 10.13. No moments develop in beam BC at this stage 
because no loads act on the span.

Figure 11.2d shows the moments acting between the end of beam AB 
and joint B. The beam applies a counterclockwise moment FEMBA to the 
joint. To prevent the joint from rotating, the clamps must apply a moment 
to the joint that is equal and opposite to FEMBA. The moment that develops 
in the clamp is called the unbalanced moment (UM). If span BC were also 
loaded, the unbalanced moment in the clamp would equal the difference 
between the fixed-end moments applied by the two members framing into 
the joint.

If we now remove the clamp, joint B will rotate through an angle θB in the 
counterclockwise direction into its equilibrium position (Figure 11.2e). As 
joint B rotates, additional moments, labeled DEMBC, COMBC, DEMBA, and 
COMBA, develop at the ends of members AB and BC. At joint B these mo-
ments, called the distributed end moments (DEMs), are opposite in sense to 
the unbalanced moment (Figure 11.2 f ). In other words, when the joint reaches 
equilibrium, the sum of the distributed end moments equals the unbalanced 
moment, which was formerly equilibrated by the clamp. We can state this con-
dition of joint equilibrium as

 ⟳+ ΣMB = 0 

DEMBA + DEMBC − UM = 0 (11.1)

where DEMBA =  moment at B end of member AB produced by rotation of 
joint B

 DEMBC =  moment at B end of member BC produced by rotation of 
joint B

 UM = unbalanced moment applied to joint

In all moment distribution computations, the sign convention will be 
the same as that used in the slope-deflection method: Rotations of the ends 
of members and moments applied to the ends of members are positive in 
the clockwise direction and negative in the counterclockwise dir ection. In 
Equation 11.1 and in the sketches of Figure 11.2, the plus or minus sign 
is not shown but is contained in the abbreviations used to designate the 
various moments.

The moments produced at the A end of member AB and at the C end of 
member BC by the rotation of joint B are called carryover moments (COMs). 
As we will show next:

1. The final moment at the end of each member equals the algebraic sum 
of the distributed end moment (or the carryover moment) and fixed-end 
moment (if the span is loaded).

2. For members of constant cross section, the carryover moment in each 
span has the same sign as the distribution end moment, but is one-half 
as large.
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11.2 ■ Development of the Moment Distribution Method  471

To verify the magnitude of the final moments at each end of the mem- 
bers AB and BC in Figure 11.2e, we will use the slope-deflection equation 
(Equation 10.16) to express the member end moments in terms of the proper-
ties of the members, the applied load, and the rotation of joint B: For θA = 
θC = ψ = 0, Equation 10.16 yields

Member AB:

  MBA =    2EIAB _____ LAB
    (2θB) + FEMBA =    4EIAB _____ LAB

    θB + FEMBA (11.2)

                                         (DEMBA)

  MAB =    2EIAB _____ LAB
    θB + FEMAB (11.3)

                 (COMBA)

Member BC:

  MBC =    2EIBC _____ LBC
    (2θB) =    4EIBC _____ LBC

    θB (11.4)

                                         (DEMBC)

  MCB =    2EIBC _____ LBC
    θB (11.5)

                         (COMBC)

Equation 11.2 shows that the total moment MBA at the B end of member AB 
(Figure 11.2e) equals the sum of (1) the fixed-end moment FEMBA and (2) the 
distributed end moment DEMBA. DEMBA is given by the first term on the right 
side of Equation 11.2 as

    DEM  BA   =   4E I  AB   _____  L  AB      θ  B    (11.6)

In Equation 11.6 the term 4EIAB /LAB is termed the absolute flexural stiffness 
of the B end of member AB. It represents the moment required to produce a 
rotation of 1 rad at B when the far end at A is fixed against rotation. If the 
beam is not prismatic, that is, if the cross section varies along the axis of the 
member, the numerical constant in the absolute flexural stiffness will not 
equal 4 (Section 11.9).

Equation 11.3 shows that the total moment at the A end of member AB 
equals the sum of the fixed-end moment FEMAB and the carryover moment 
COMBA. COMBA is given by the first term of Equation 11.3 as

    COM  BA   =   2E I  AB   _____  L  AB      θ  B    (11.7)

If we compare the values of DEMBA and COMBA given by Equations 11.6 
and 11.7, we see that they are identical except for the numerical constants 2 
and 4. Therefore, we conclude that

    COM  BA   =   1 __ 2    ( DEM  BA  )   (11.8)
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472  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

Since both the carryover moment and the distributed end moment given by 
Equations 11.6 and 11.7 are functions of θB—the only variable that has a plus 
or minus sign—both moments have the same sense, that is, positive if θB is 
clockwise and negative if θB is counterclockwise.

Equation 11.4 shows that the moment at the B end of member BC is due only 
to rotation θB of joint B since no loads act on span BC. Similarly, Equation 11.5 
indicates the carryover moment at the C end of member BC is due only to rotation 
θB of joint B. If we compare the value of MBC, the distributed end moment at the B 
end of member BC, with MCB, the carryover moment at the C end of member BC, 
we reach the same conclusion given by Equation 11.8; that is, the carryover mo-
ment equals one-half the distributed end moment. Therefore, the carryover factor 
equals one-half for prismatic members. It will be shown in Section 11.9 that this 
factor will not be equal to one-half for nonprismatic members.

We can establish the magnitude of the distributed end moments at joint 
B (Figure 11.2 f ) as a percentage of the unbalanced moment in the clamp at 
joint B by substituting their values, given by the first term of Equation 11.2 
and by Equation 11.4, into Equation 11.1.

   DEM  BA   +  DEM  BC   − UM = 0 (11.1)

    4E I  AB   _____  L  AB      θ  B   +   4E I  BC   _____  L  BC      θ  B   = UM (11.9)

Solving Equation 11.9 for θB yields

   θ  B   =   UM  _______________  4E I  AB   / L  AB   + 4E I  BC   / L  BC     (11.10)

If we let

   K  AB   =    I  AB   ___  L  AB      and   K  BC   =    I  BC   ___  L  BC     (11.11)

where the ratio I/ L is termed the relative flexural stiffness, we may write 
Equation 11.10 as

   θ  B   =   UM ___________  4E K  AB   + 4E K  BC     =   UM __________  4E  ( K  AB   +  K  BC  )    (11.12)

If KAB = IAB /LAB (Equation 11.11) and θB given by Equation 11.12 are sub-
stituted into Equation 11.6, we may express the distributed end moment 
DEMBA as

   DEM  BA   = 4E K  AB     UM __________  4E  ( K  AB   +  K  BC  )    (11.13)

If the modulus of elasticity E of all members is the same, Equation 11.13 can 
be simplified (by canceling the constants 4E) to

   DEM  BA   =    K  AB   _______  K  AB   +  K  BC     UM (11.14)
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The term KAB/(KAB + KBC), which gives the ratio of the relative flexural stiff-
ness of member AB to the sum of the relative flexural stiffnesses of the mem-
bers (AB and BC ) framing into joint B, is called the distribution factor (DFBA) 
for member AB.

   DF  BA   =    K  AB   _______  K  AB   +  K  BC     =    K  AB   ___ ΣK   (11.15)

where ΣK = KAB + KBC represents the sum of the relative flexural stiffnesses 
of the members framing into joint B. Using Equation 11.15, we can express 
Equation 11.14 as

   DEM  BA   =  DF  AB   (UM)  (11.16)

Similarly, the distributed end moment to member BC may be expressed as

   DEM  BC   =  DF  BC   (UM)  (11.16a)

where  DF  BC   =    K  BC   _______  K  AB   +  K  BC     =    K  BC   ___ ΣK  

Summary of the Moment Distribution  
Method with No Joint Translation

11.3

We have now discussed in detail the basic moment distribution principles for 
analyzing a continuous structure in which joints are free to rotate but not to 
translate. Before we apply the procedure to specific examples, we summarize 
the method below.

1. Draw a line diagram of the structure to be analyzed.
2. At each joint that is free to rotate, compute the distribution factor for 

each member and record in a box on the line diagram adjacent to the 
joint. The sum of the distribution factors at each joint must equal 1.

3. Write down the fixed-end moments at the ends of each loaded member. 
As the sign convention we take clockwise moments on the ends of mem-
bers as positive and counterclockwise moments as negative.

4. Compute the unbalanced moment at the first joint to be unlocked. The 
unbalanced moment at the first joint is the algebraic sum of the fixed-
end moments at the ends of all members framing into the joint. After 
the first joint is unlocked, the unbalanced moments at the adjacent joints 
will equal the algebraic sum of fixed-end moments and any carryover 
moments.

5. Unlock the joint and distribute the unbalanced moment to the ends of 
each member framing into the joint. The distributed end moments are 
computed by multiplying the unbalanced moment by the distribution 
factor of each member. The sign of the distributed end moments is 
opposite to the sign of the unbalanced moment.
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6. Write the carryover moments at the other end of the member. The car-
ryover moment has the same sign as the distributed end moment but is 
one-half as large.

7. Replace the clamp and proceed to the next joint to distribute moments 
there. The analysis is finished when the unbalanced moments in all clamps 
are either zero or close to zero.

Analysis of Beams by Moment Distribution
11.4

To illustrate the moment distribution procedure, we will analyze the two-span 
continuous beam in Figure 11.3 of Example 11.1. Since only the joint at sup-
port B is free to rotate, a complete analysis requires only a single distribution 
of moments at joint B. In succeeding problems we consider structures that 
contain multiple joints that are free to rotate.

To begin the solution in Example 11.1, we compute member stiffness, 
the distribution factors at joint B, and the fixed-end moments in span AB. This 
information is recorded on Figure 11.4, where the moment distribution com-
putations are carried out. The 15-kip load on span AB and the clamp on joint 
B are not shown, to keep the sketch simple. No distribution factors are com-
puted for joints A and C because these joints are never unlocked. The unbal-
anced moment in the clamp at B is equal to the algebraic sum of the fixed-end 
moments at joint B. Since only span AB is loaded, the unbalanced moment—
not shown on the sketch—equals +30 kip· ft. We now assume that the clamp 
at joint B is removed. The joint now rotates and distributed end moments  
of −10 and −20 kip· ft develop at the ends of member AB and BC. These 
moments are recorded directly below support B on the line below the fixed-
end moments. Carryover moments of −5 kip· ft at joint A and −10 kip· ft at 
joint C are recorded on the third line. Since joints A and C are fixed supports, 
they never rotate, and the analysis is complete. The final moments at the ends 
of each member are computed by summing moments in each column. Note 
that at joint B the moments on each side of the support are equal but oppo-
site in sign because the joint is in equilibrium. Once the end moments are 
established, the shears in each beam can be evaluated by cutting free bodies 
of each member and using the equations of statics. After the shears are cal-
culated, the shear and moment curves are constructed. The final results are 
shown in Figure 11.5.

lee98004_ch11_466-527.indd   474 25/12/16   12:30 pm



11.4 ■ Analysis of Beams by Moment Distribution  475

Determine the member end moments in the continuous beam shown in 
Figure 11.3 by moment distribution. Note that EI of all members is constant.

E X A M P L E  1 1 . 1

B CA

LAB = 16ʹ

KAB = I
16

LBC = 8ʹ

8ʹ
P = 15 kips

KBC = I
8

Figure 11.3

Solution
Compute the stiffness K of each member connected to joint B.

 K  AB   =   I ___  L  AB     =   I __ 16     K  BC   =   I ___  L  BC     =   I __ 8  

ΣK =  K  AB   +  K  BC   =   I __ 16   +   I __ 8   =   3I __ 16  

Evaluate the distribution factors at joint B and record on Figure 11.4.

 DF  BA   =    K  AB   ___ ΣK   =   I/16 ____ 3I/16   =   1 __ 3  

 DF  BC   =    K  BC   ___ ΣK   =   I/8 ____ 3I/16   =   2 __ 3  

Compute the fixed-end moments at each end of member AB (Appendix 
Table A.4) and record on Figure 11.4. [continues on next page]
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 FEM  AB   =   −PL ___ 8   =   −15 (16)  ______ 8   = −30 kip ⋅ ft

 FEM  BA   =   +PL ___ 8   =   15 (16)  _____ 8   = +30 kip ⋅ ft

Example 11.1 continues . . .

B CA

FEM (joint B clamped)+30–30

1/2 1/2

1
3

2
3

DEM (clamp removed)–10 –20

–20

COM–10–5

final moments (kip  ft)+20 –10–35

Figure 11.4: Moment distribution computations.

Figure 11.5: Shear and moment curves.
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shear (kips)

8.44
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32.52
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11.4 ■ Analysis of Beams by Moment Distribution  477

In Example 11.2 we extend the moment distribution method to the anal-
ysis of a beam that contains two joints—B and C—that are free to rotate 
(Figure 11.6). As you can observe in Figure 11.7 where the mo ments dis-
tributed at each stage of the analysis are tabulated, the clamps on joints B 
and C must be locked and unlocked several times because each time one of 
these joints is unlocked, the moment changes in the clamp of the other joint 
because of the carryover moment. We begin the analysis by clamping joints 
B and C. Distribution factors and fixed-end moments are computed and re-
corded on the diagram of the structure in Figure 11.7. To help you follow the 
various steps in the analysis, a description of each operation is noted to the 
right of each line in Figure 11.7. As you become more familiar with moment 
distribution, this aid will be discontinued.

Although we are free to begin the distribution of moments by unlock-
ing either joint B or joint C, we will assume that the imaginary clamp 
at joint B is removed first. The unbalanced moment at joint B—the alge-
braic  sum of the fixed-end moments on either side of the joint—equals 
UM = −96 + 48 = −48 kip · ft. To compute the distributed end moments in 
each member, we reverse the sign of the unbalanced moment and multiply 
it by the member’s distribution factor (each   1 _ 2   at joint B). Distributed end 
moments of +24 kip · ft are entered on the second line, and carryover mo-
ments of +12 kip · ft at supports A and C are recorded on the third line of 
Figure 11.7. To show that moments have been distributed and joint B is in 
equilibrium, we draw a short line under the distributed end moments at that 
joint. The imaginary clamp at joint B is now reapplied. Because joint B is 
now in equilibrium, the moment in the clamp is zero.

Next we move to joint C, where the clamp equilibrates an unbalanced 
moment of +108 kip · ft. The unbalanced moment at C is the sum of the 
fixed-end moment of +96 kip · ft and the carryover moment of +12 kip · ft 
from joint B. We next remove the clamp at joint C. As the joint rotates, 
distributed end moments of −36 kip · ft and −72 kip · ft develop in the ends 
of the members to the left and right of the joint, and carryover moments of 
−36 kip · ft and −18 kip · ft develop at joints D and B, respectively. Since all 
joints that are free to rotate have been unlocked once, we have completed 
one cycle of moment distribution. At this point the clamp is replaced at 
joint C. Although no moment exists in the clamp at C, a moment of −18 
kip · ft has been created in the clamp at B by the carryover moment from 
joint C; therefore, we must continue the moment distribution process. We 
now remove the clamp at B for the second time and distribute +9 kip · ft to 
each side of the joint and carryover moments of + 4.5 kip · ft to joints A and 
C. We continue the distribution procedure until the moment in the clamps 
is inconsequential. Normally, the designer terminates the distribution when 
the distributed end moments have reduced to approximately 0.5 percent 
of the final value of the member end moment. In this problem we end the 
analysis after three cycles of moment distribution. The final member end 
moments, computed by summing algebraically the moments in each col-
umn, are listed on the last line in Figure 11.7.
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E X A M P L E  1 1 . 2 Analyze the continuous beam in Figure 11.6 by moment distribution. The 
EI of all members is constant.

A B C D
12ʹ

P = 16 kips

B

w = 2 kips/ft

LAB = 24ʹ

KAB = I
24

LBC = 24ʹ

KBC = I
24

LCD = 12ʹ

KCD = I
12

Figure 11.6

Solution
Compute distribution factors at joints B and C and record on Figure 11.7.
At joint B:

 K  AB   =   I __ 24     K  BC   =   I __ 24  

ΣK =  K  AB   +  K  BC   =   2I __ 24  

 DF  BA   =    K  AB   ___ ΣK   =   I/24 ____ 2I/24   = 0.5   DF  BC   =    K  BC   ___ ΣK   =   I/24 ____ 2I/24   = 0.5

At joint C:

 K  BC   =   I __ 24     K  CD   =   I __ 12  

ΣK =  K  BC   +  K  CD   =   3I __ 24  

  DF  BC   =    K  BC   ___ ΣK   =   I/24 ____ 3I/24   =   1 __ 3          DF  CD   =    K  CD   ___ ΣK   =   I/12 ____ 3I/24   =   2 __ 3  

lee98004_ch11_466-527.indd   478 25/12/16   12:30 pm



11.4 ■ Analysis of Beams by Moment Distribution  479

Fixed-end moments (Appendix Table A.4):

 FEM  AB   =   −PL ___ 8   =   −16 (24)  ______ 8   = −48 kip ⋅ ft

 FEM  BA   =   +PL ___ 8   = +48 kip ⋅ ft

 FEM  BC   =   −w L   2  ____ 12   =   −2   (24)    2  ______ 12   = −96 kip ⋅ ft

 FEM  CB   =   +w L   2  ____ 12   = +96 kip ⋅ ft

Since span CD is not loaded, FEMCD = FEMDC = 0.

B

DA

FEM (all joints locked)+48 +96–96–48

1
2

1
2

C

1
3

2
3

DEM (joint B unlocked)+24 +24

COM+12+12

DEM (joint C unlocked)–36 –72

COM–36–18

DEM (joint B unlocked)+9 +9

COM+4.5+4.5

DEM (joint C unlocked)–1.5 –3

COM–1.5–0.76

DEM (joint B unlocked)+0.38 +0.38

COM+0.2+0.2

DEM (joint C unlocked)–0.07 –0.13

final moments (kip  ft)+81.38 +75.13 –75.13 –37.5–81.38–31.3

temporary
clamps

Figure 11.7: Details of moment distribution (all moments in kip ⋅ ft).
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Example 11.3 covers the analysis of a continuous beam supported 
by a roller at C, an exterior support (Figure 11.8). To begin the analysis 
(Figure 11.9), joints B and C are clamped and the fixed-end moments com-
puted in each span. At joint C the distribution factor DFCB is set equal to  
1 because when this joint is unlocked, the entire unbalanced moment in the 
clamp is applied to the end of member BC. You can also see that the distribu-
tion factor at joint C must equal 1, recognizing that ΣK = KBC because only 
one member extends into joint C. If you follow the standard procedure for 
computing DFCB,

 DF  CB   =    K  BC   ___ ΣK   =    K  BC   ___  K  BC     = 1

The computation of the distribution factor at joint B follows the same 
procedure as before because joints A and C will always be clamped when 
joint B is unclamped.

Although we have the option of starting the analysis by unlocking either 
joint B or joint C, we begin at joint C by removing the clamp which carries 
an unbalanced moment of +16.2 kN· m. As the joint rotates, the end mo-
ment in the member reduces to zero since the roller provides no rotational 
resistance to the end of the beam. The angular deformation that occurs is 
equivalent to that produced when a counterclockwise distributed end moment 
of −16.2 kN· m acts at joint C. The rotation of joint C also produces a car-
ryover moment of −8.1 kN· m at joint B. The balance of the analysis follows 
the same steps as previously described. Shear and moment curves are shown 
in Figure 11.10.

lee98004_ch11_466-527.indd   480 25/12/16   12:30 pm



11.4 ■ Analysis of Beams by Moment Distribution  481

Analyze the beam in Figure 11.8 by moment distribution, and draw the 
shear and moment curves.

Solution

 K  AB   =   1.5I ____ 6     K  BC   =   I __ 6    then  ΣK =  K  AB   +  K  BC   =   2.5I ____ 6  

Compute distribution factors at joint B.

 DF  AB   =    K  AB   ___ ΣK   =   1.5I/6 _____ 2.5I/6   = 0.6    DF  BC   =    K  BC   ___ ΣK   =   I/6 _____ 2.5I/6   = 0.4

 FEM  AB   = −   w L   2  ___ 12   = −   3  (6)    2  ____ 12   = −9 kN ⋅ m

 FEM  BA   = − FEM  AB   = +9 kN ⋅ m

 FEM  BC   = −   w L   2  ___ 12   = −   5.4  (6)    2  ______ 12   = −16.2 kN ⋅ m

 FEM  CB   = −  FEM  BC   = +16.2 kN ⋅ m

Analysis. See Figure 11.9.
Shear and Moment Curves. See Figure 11.10.

E X A M P L E  1 1 . 3

A

B
C

6 m

w = 5.4 kN/m
w = 3 kN/m

KBC = I
6

I1.5I

6 m

KAB = 1.5I
6

Figure 11.8

A B C

FEM

final end
moments

+9 +16.2–16.2–9

–16.2

–8.1

+9.18 +6.12

+3.06+4.59

–3.06

–1.53

+0.92 +0.61

+0.3+0.46

–0.3

–0.15

+0.09 +0.06

+19.19 0–19.19–3.95

temporary
clamps

0.6 0.4 1

Figure 11.9: Details of moment distribution 
(all moments in kN · m).

Figure 11.10: Shear and moment curves.
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We can often reduce the number of cycles of moment distribution required to 
analyze a continuous structure by adjusting the flexural stiffness of certain 
members. In this section we consider members whose ends terminate at an 
exterior support consisting of either a pin or roller (e.g., see members AB, BF, 
and DE in Figure 11.11). We will also establish the influence of a variety of 
end conditions on the flexural stiffness of a beam.

To measure the influence of end conditions on the flexural stiffness of 
a beam, we can compare the moment required to produce a unit rotation  
(1 rad) of the end of a member for various end conditions. For example, if 
the far end of a beam is fixed against rotation as shown in Figure 11.12a, 
where θA = 1 rad and θB = 0, we can use the slope-deflection equation to 
express the ap plied moment in terms of the beams properties. Since no sup-
port set tle  ments occur and no loads are applied between ends, ψAB = 0 and 
FEMAB = FEMBA = 0.

Substituting the above terms into Equation 10.16, we compute

 M  AB   =   2EI ___ L    (2 θ  A   +  θ  B   − 3 ψ  AB  )  + FEM

=   2EI ___ L    [2 (1)  + 0 − 0]  + 0

   M  AB   =   4EI ___ L   (11.17)

Previously we have seen that 4EI/L represents the absolute flexural stiffness 
of a beam acted upon by a moment whose far end is fixed (Equation 11.6).

If the support at the B end of the member is a pin or roller that prevents 
vertical displacement, but provides no rotational restraint (Figure 11.12b), 
we can again apply the slope-deflection equation to evaluate the member’s 
flexural stiffness. For this case,

 θA = 1 rad    θB = −    1 _ 2    rad    (see Figure 9.3e for the relationship  
between θA and θB)

ψAB = 0    and    FEMAB = FEMBA = 0

Modification of Member Stiffness
11.5

A B C

F

D E

Figure 11.11
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11.5 ■ Modification of Member Stiffness  483

Substituting into Equation 10.16 gives

 M  AB   =    2EI ___ L   [2 (1)  −   1 _ 2   + 0]   + 0

   M  AB   =   3EI ___ L   (11.18)

Comparing Equations 11.17 and 11.18, we see that a beam loaded by a 
moment at one end whose far end is pinned is three-fourths as stiff with re-
spect to resistance to joint rotation as a beam of the same dimensions whose 
far end is fixed.

If a member is bent into double curvature by equal end moments 
(Figure 11.12c), the resistance to rotation increases because the moment 
at B, the far end, rotates the near end A in a direction opposite in sense to 
the moment at A. We can relate the magnitude of MAB to the rotation at 
A by using the slope-deflection equation with θA = θB = 1 rad, ψAB = 0, 
and FEMAB = 0. Substituting the above values into the slope-deflection 
equation gives

   M  AB   =   2EI ___ L   (2θA + θB − 3ψAB) + FEMAB  (10.16)

 M  AB   =   2EI ___ L    [2 (1)  + 1]  =   6EI ___ L  

where the absolute stiffness is

   K  AB   =   6EI ___ L   (11.19)

Comparing Equation 11.19 with Equation 11.17, we find that the ab-
solute stiffness for a member bent in double curvature by equal end mo-
ments is 50 percent greater than the stiffness of a beam whose far end is fixed 
against rotation.

If a flexural member is acted on by equal values of end moments (Fig-
ure 11.12d ), producing single-curvature bending, the effective bending stiff-
ness with respect to the A end is reduced because the moment at the far end 
(the B end) contributes to the rotation at the A end.

Using the slope-deflection equation with θA = 1 rad, θB = −1 rad,  
ψAB = 0, and FEMAB = 0, we get

 M  AB   =   2EI ___ L   (2θA + θB − 3ψAB) ± FEMAB 

=   2EI ___ L    [2 × 1 + (−1) − 0]  ± 0

=   2EI ___ L  

where the absolute stiffness

   K  AB   =   2EI ___ L   (11.20)

(c)

L
2

(a)

A B
b = 0

A = 1 rad

A = 1 rad

B = 1 rad

 MAB = 4EI
L

L
2

A B

(b)

MAB = 3EI
L

A = 1 rad B = – 1
2

A B

rad

 MAB

(e)

A B

MAB

MAB

(d)
A = 1 rad B = –1 rad

A B

MBA = –MAB

MBA = MAB

�

�

� �

�

�

� �

Figure 11.12: (a) Beam with far end fixed; 
(b)  beam with far end unrestrained against 
rotation; (c) equal values of clockwise 
moment at each end; (d) single curvature 
bending by equal values of end moments; 
(e) cantilever loaded at supported end.
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484  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

Comparing Equation 11.20 to Equation 11.17, we find that the absolute stiff-
ness KAB of a member bent into single curvature by equal values of end mo-
ments has an effective stiffness KAB that is 50 percent smaller than that of a 
beam whose far end is fixed against rotation.

Members, when acted upon by equal values of end moment that produce 
single-curvature bending, are located at the axis of symmetry of symmetric 
structures that are loaded symmetrically (see members BC in Figure 11.13a 
and b). In the symmetrically loaded box beam in Figure 11.13c, the end mo-
ments act to produce single-curvature bending on all four sides. Of course 
if transverse loads also act, there can be regions of both positive and nega-
tive moments. As we will de monstrate in Example 11.6, taking advantage of 
this modification in a mo ment distribution analysis of a symmetric structure 
simplifies the analysis significantly.

Stiffness of a Cantilever

In Figures 11.12a to d, the fixed and the pin supports at B provide  vertical 
restraint that prevents the beam from rotating clockwise as a rigid body 
about support A. Since each of these beams is supported in a stable 
manner, they are able to resist the moment applied at joint A. On the 
other hand, if a moment is applied to the A end of the cantilever beam in  

A

A D

B C
D

(a)

w
PP

8ʹ

5ʹ

12ʹ 12ʹ

5ʹ

8ʹ

axis of
symmetry

(b)

axis of
symmetry

CB

D C

A B

w

w

(c)

axis of
symmetry

axis of
symmetry

Figure 11.13: Examples of symmetric struc-
tures, symmetrically loaded, that contain 
members whose end moments are equal in 
magnitude and produce single-curvature 
bending: (a) beam BC of the continuous 
beam; (b) beam BC of the rigid frame; (c) all 
four members of the box beam.
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11.5 ■ Modification of Member Stiffness  485

Figure 11.12e, the cantilever is not able to develop any flexural resistance 
to the moment because no support exists at the right to prevent the beam 
from rotating clockwise about support A. Therefore, you can see that a 
cantilever has zero resistance to moment. When you compute the distri-
bution factors at a joint that contains a cantilever, the distribution factor 
for the cantilever is zero, and no unbalanced moment is ever distributed 
to the cantilever.

Of course, if a cantilever is loaded, it can transmit both a shear and a 
moment to the joint where it is supported; however, this is a separate function 
and has nothing to do with its ability to absorb unbalanced moment.

In Example 11.4 we illustrate the use of the factor    3 _ 4    to modify the stiff-
ness of pin-ended members of the continuous beam in Figure 11.14a. In the 
analysis of the beam in Figure 11.14, the flexural stiffness I/L of members 
AB and CD can both be reduced by    3 _ 4    since both members  terminate at pin or 
roller supports. You may have some concern that the factor    3 _ 4    is applicable to 
span CD because of the cantilever extension DE to the right of the support. 
However, as we just discussed, the cantilever has zero stiffness as far as ab-
sorbing any unbalanced moment that is carried by a clamp on joint D; there-
fore, after the clamp is removed from joint D, the cantilever has no influence 
on the rotational restraint of member CD.

We begin the analysis in Figure 11.15a with all joints locked against 
rotation. The loads are next applied, producing the fixed-end moments tabu-
lated on the first line. From the free-body diagram of cantilever DE in Figure 
11.14b, you can see that equilibrium of the member requires that the moment 
at the D end of member DE acts counterclockwise and equals −60 kip· ft. 
Since the flexural stiffnesses of members AB and CD have been reduced by    3 _ 4   , 
the clampsat joints A and D must be removed first. When the clamp is removed 
at A, a distributed end moment of +33 kip· ft and a carryover moment of  
+16.7 kip· ft develop in span AB. The total moment at joint A is now zero. In 
the balance of the analysis, joint A will remain unclamped. Since joint A is 
now free to rotate, no carryover moment will develop there whenever joint B 
is unclamped.

We next move to joint D and remove the clamp, which initially carries 
an unbalanced moment equal to the difference in fixed-end moments at the 
joint

UM = +97.2 − 60 = +37.2 kip ⋅ ft

As joint D rotates, a distributed end moment of −37.2 kip · ft develops at 
D and a carryover moment of −18.6 kip· ft at C develops in member CD. 
Note: Joint D is now in balance, and the −60 kip · ft applied by the canti-
lever is balanced by the +60 kip · ft at the D end of member CD. For the 
balance of the analysis, joint D will remain unclamped and no carryover 
moment will develop there when joint C is unclamped. The analysis is 
completed by distributing moments between joints B and C until the mag-
nitude of carryover moment is negligible. By using freebodies of beam 
elements between supports, reactions are computed by statics and shown 
in Figure 11.15b.
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486  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

E X A M P L E  1 1 . 4 Analyze the beam in Figure 11.14a by moment distribution, using modified 
flexural stiffnesses for members AB and CD. Given: EI is  constant.

Solution

 K  AB   =   3 __ 4   (  360 ___ 15  )  = 18   K  BC   =   480 ___ 20   = 24

 K  CD   =   3 __ 4   (  480 ___ 18  )  = 20   K  DE   = 0

Compute the distribution factors.
Joint B:

ΣK =  K  AB   +  K  BC   = 18 + 24 = 42

D F  BA   =    K  AB   ___ ΣK   =   18 __ 42   = 0.43  D F  BC   =    K  BC   ___ ΣK   =   24 __ 42   = 0.57

Joint C:

ΣK =  K  BC   +  K  CD   = 24 + 20 = 44

 DF  BC   =    K  BC   ___ ΣK   =   24 __ 44   = 0.55   DF  CD   =    K  CD   ___ ΣK   =   20 __ 44   = 0.45

Compute the fixed-end moments (Appendix Table A.4).

 FEM  AB   = −   Pa b   2  ____ 
 L   2 

   = −   30 (10)  ( 5   2 )  ________ 
 15   2 

      FEM  BA   =   Pb a   2  ____ 
 L   2 

   =   30 (5)  ( 10   2 )  ________ 
 15   2 

  

= −33.3 kip ⋅ ft = +66.7 kip ⋅ ft

 FEM  BC   = −   w L   2  ___ 12   = −120 kip ⋅ ft     FEM  CB   = −  FEM  BC   = 120 kip ⋅ ft

 FEM  CD   = −   w L   2  ___ 12   = −97.2 kip ⋅ ft    FEM  DC   = −  FEM  CD   = 97.2 kip ⋅ ft

 FEM  DE   = −60 kip ⋅ ft  (Figure 11.14b)  

The minus sign is required because the moment acts counterclockwise on 
the end of the member.
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A

B C D
E

15ʹ 20ʹ 18ʹ 4ʹ

10ʹ

(a)

I = 360 in.4 I = 480 in.4 I = 480 in.4

P = 30 kips P =15 kips
w = 3.6 kips/ft

D
E

15 kips
P = 15 kips

4ʹ

(b)

MDE = 60 kip  ft

Figure 11.14: (a) Continuous beam; (b) free body 
of cantilever DE.
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E
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w = 3.6 kips/ft

Figure 11.15: (a) Moment distribution 
details; (b) reactions.
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488  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

The use of moment distribution to analyze a frame, whose joints are 
restrained against displacement but free to rotate, is illustrated in Exa mple 
11.5 by the analysis of the structure shown in Figure 11.16. We begin by 
computing the distribution factors and recording them on the line drawing 
of the frame in Figure 11.17a. Joints A, B, C, and D, which are free to rotate, 
are initially clamped. Loads are then applied and produce fixed-end moments 
of ±120 kip · ft in span AB and ±80 kip · ft in span BC. These moments are 
recorded on Figure 11.17a above the girders. To begin the analysis, joints 
A and D must be unlocked first because the stiffnesses of members AB and 
CD have been modified by factor    3 _ 4   . As joint A rotates, a distributed end mo-
ment of +120 kip · ft at joint A and a carryover moment of +60 kip · ft at joint 
B develop in span AB. Since no transverse loads act on member CD, there 
are no fixed-end moments in member CD; therefore, no moments develop in 
member CD when the clamp is removed from joint D. Since joints A and D 
remain unclamped for the balance of the analysis, no carryover moments are 
made to these joints.

At joint B the unbalanced moment equals 100 kip · ft—the algebraic sum 
of the fixed-end moments of +120 and −80 kip · ft and the carryover moment 
of +60 kip · ft from joint A. The sign of the unbalanced moment is reversed, 
and distributed end moments of −33, −22, and −45 kip · ft, respectively, are 
made to the B end of members BA, BC, and BF. In  addition, carryover mo-
ments of −11 kip · ft to the C end of member BC and −22.5 kip · ft to the base 
of column BF are made. Next, joint C is unlocked, and the unbalanced mo-
ment in the clamp of +69 kip · ft—the algebraic sum of the fixed-end moment 
of +80 kip · ft and the carryover moment of −11 kip · ft—is distributed. Un-
locking of joint C also produces carryover moments of−7.2 kip · ft to joint B 
and −14.85 kip · ft to the base of column CE. After a second cycle of moment 
distribution is completed, the carryover moments are insignificant and the 
analysis can be terminated. A double line is drawn, and the moments in each 
member are summed to establish the final values of member end moment. 
Reactions, computed from free bodies of individual members, are shown in 
Figure 11.17b.
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11.5 ■ Modification of Member Stiffness  489

Analyze the frame in Figure 11.16 by moment distribution. E X A M P L E  1 1 . 5

Solution
Compute the distribution factors at joint B.

 K  AB   =   3 __ 4   (  2I __ 20  )  =   3I __ 40       K  BC   =   I __ 20       K  BF   =   I __ 10     ΣK =   9I __ 40  

 DF  BA   =    K  AB   ___ ΣK   = 0.33       DF  BC   =    K  BC   ___ ΣK   = 0.22       DF  BF   =    K  BF   ___ ΣK   = 0.45

Compute the distribution factors at joint C.

 K  CB   =   I __ 20     K  CD   =   3 __ 4     (  I __ 9  )    K  CE   =   I __ 10      ΣK =   14I ___ 60  

 DF  CB   = 0.21   DF  CD   = 0.36   DF  CE   = 0.43

Compute the fixed-end moments in spans AB and BC (Appendix Table A.4).

 FEM  AB   =   w  L   2  ___ 12   =   −3.6   (20)    2  _______ 12   = −120 kip ⋅ ft

 FEM  BA   = −  FEM  AB   = + 120 kip ⋅ ft

 FEM  BC   =   −PL ___ 8   =   −32 (20)  ______ 8   = −80 kip ⋅ ft

 FEM  CB   = −  FEM  BC   = +80 kip ⋅ ft

A

F E

B C

D

20ʹ

w = 3.6 kips/ft

2I I

I I

I

10ʹ

9ʹ
P = 32 kips

20ʹ

10ʹ

Figure 11.16: Details of rigid frame.

[continues on next page]
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490  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

Example 11.6 continues . . .

A
B

F E

D

C

(a)
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2.4
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+
+
–
+
+
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+
–
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3.2

41.8

–
+
–

MFB = 20.9
1.6

22.5

–
+
–

MCE =

MCE =

29.7
0.3

30.0

–
–
–

= MCD25.1
0.3

24.8

–
–
–

MEC = 15.0
0.15

14.85

–
–
–

MBC = 107.6
1.6
7.2

22.0
80.0

–
+
–
–
–

MCB = 55.1
0.2
0.8

14.5
11.0
80.0

+
–
+
–
–
+

1

.45

.22 .21

.36

.43

.33

Figure 11.17: (a) Analysis by moment  distribution; (b) reactions computed from free 
bodies of members.
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28.53 kips
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11.5 ■ Modification of Member Stiffness  491

Analyze the frame in Figure 11.18a by moment distribution, modifying the 
stiffness of the columns and girder by the factors discussed in Section 11.5 
for a symmetric structure, symmetrically loaded.

E X A M P L E  1 1 . 6

Solution

STEP 1 Modify the stiffness of the columns by    3 _ 4    for a pin support at 
points A and D.

 K  AB   =  K  CD   =   3 __ 4     I __ L   =   3 __ 4     360 ___ 18   = 15

 Modify the stiffness of girder BC by   1 _ 2   (joints B and C will 
be unclamped simultaneously and no carryover moments are 
distributed).

 K  BC   =   1 __ 2     I __ L   =   1 __ 2     600 ___ 40   = 7.5

STEP 2 Compute the distribution factors at joints B and C.

 DF  BA   =  DF  CD   =    K  AB   ___ ΣK  ′  s  
   =   15 ______ 15 + 7.5   =   2 __ 3  

 DF  BC   =  DF  CB   =    K  BC   ___ ΣK  ′  s  
   =   7.5 ______ 15 + 7.5   =   1 __ 3  

FEMBC = FEMCB =   WL2
 ____ 12   =   4 (40)2

 ______ 12   = ±533.33 kip · ft
[continues on next page]

20ʹ

18ʹ

w = 4 kips/ft

A D

axis of
symmetry

CB

20ʹ

IAB = 360 in.4 

IBC = 600 in.4 
ICD = 360 in.4 

(a)

Figure 11.18: (continues) 
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492  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

Example 11.6 continues . . .

STEP 3 (a) Clamp all joints and apply the uniform load to girder BC 
(Figure 11.18b).

 (b) Remove clamps at supports A and D. Since no loads act 
on the columns, there are no moments to distribute. The 
joint at the supports will remain unclamped. Since the base 
of each column is free to rotate if the far end is unclamped, 
the stiffness of each column may be reduced by a factor of    3 _ 4   .

STEP 4 Clamps at joints B and C are next removed simultaneously. 
Joints B and C rotate equally (the condition required for the  
   1 _ 2    factor applied to the girder stiffness), and equal values of end 
moment develop at each end of girder BC (Figure 11.18c). 
Final results of the analysis are shown in Figure 11.18d.

(d)
80 kips 80 kips

19.75 kips 19.75 kips

355 kip ft355 kip ft

445 kip ft

355 kip ft355 kip ft

A D

CB

Figure 11.18: Continued
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A D
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CB 1
3

1
3

2
3

2
3

(c)

A D

+355.55 –355.55

–355.55
+177.78
–533.33

CB 1
3

1
3

2
3

2
3

+355.55
–177.78
+533.33
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11.5 ■ Modification of Member Stiffness  493

Support Settlements, Fabrication Errors,  
and Temperature Change

Moment distribution and the slope-deflection equation provide an effective 
combination for determining the moments created in indeterminate beams 
and frames by fabrication errors, support settlements, and temperature 
change. In this application the appropriate displacements are introduced into 
the structure while simultaneously all joints that are free to rotate are locked 
by clamps against rotation in their initial orientation. Locking the joints 
against rotation ensures that the changes in slope at the ends of all members 
are zero and permits the end moments produced by specified values of dis-
placement to be evaluated by the slope-deflection equation. To complete the 
analysis, the clamps are removed and the structure is allowed to deflect into its 
final equilibrium position.

In Example 11.7 we use this procedure to determine the moments in a 
structure whose supports are not located in their specified position—a com-
mon situation that frequently occurs during the construction. In Exam  ple 11.8 
the method is used to establish the moments created in an indeterminate frame 
by a fabrication error.
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494  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

E X A M P L E  1 1 . 7 Determine the reactions and draw the shear and moment curves for the 
continuous beam in Figure 11.19a. The fixed support at A is accidentally 
constructed incorrectly at a slope of 0.002 rad counterclockwise from a 
vertical axis through A, and the support at C is accidentally constructed 
1.5 in. below its intended position. Given: E = 29,000 kips/in.2 and I = 
300 in.4.

A
B C

A= 0.002 rad

A = 0.002 rad

(a)

20ʹ

1.5ʺ

25ʹ

A B

A= 0.002 rad

B = 0

BC

BC C = 0

(b)

clamp

1.5ʺ

1.5
25 (12)=

clamp

�

�

�

�

�

ψ

ψ

Figure 11.19: (a) Beam with supports con-
structed out of position, deflected shape 
shown by dashed line; (b) restrained beam 
locked in position by temporary clamps at 
joints B and C.

Solution
With the supports located in their as-built position (Figure 11.19b), the 
beam is connected to the supports. Since the unloaded beam is straight but 
the supports are no longer in a straight line and correctly aligned, external 
forces must be applied to the beam to bring it into contact with its sup-
ports. After the beam is connected to its supports, reactions must develop 
to hold the beam in its bent configuration. Also at both joints B and C we 
imagine that clamps are applied at these joints to hold the ends of the beam 
in a horizontal position; that is, θB and θC are zero. We now use the slope-
deflection equation to compute the moments at each end of the restrained 
beams in Figure 11.19b.

  M  NF   =   2EI ___ L    (2 θ  N   +  θ  F   − 3ψ)  +  FEM  NF   (10.16)

Compute moments in span AB: θA = −0.002 rad, θB = 0, and ψAB = 0.
Since no transverse loads are applied to span AB, FEMAB = FEMBA = 0.

 M  AB   =   2 (29,000)  (300)   ___________ 20 (12)     [2 (−0.002) ]  = −290 kip ⋅ in. = −24.2 kip ⋅ ft

 M  BA   =   2 (29,000)  (300)   ___________ 20 (12)     (−0.002)  = −145 kip ⋅ in. = −12.1 kip ⋅ ft

lee98004_ch11_466-527.indd   494 25/12/16   12:30 pm



11.5 ■ Modification of Member Stiffness  495

Compute moments in span BC: θB = 0, θC = 0, ψ = 1.5 in. /[25(12)] = 0.005.
FEMBC = FEMCB = 0 since no transverse loads applied to span BC.

 M  BC   =  M  CB   =   2 (29,000)  (300)   ___________ 12 (25)     [2 (0)  + 0 − 3 (0.005) ] 

= −870 kip ⋅ in. = −72.5 kip ⋅ ft

Compute the distribution factors at joint B.

 K  AB   =   300 ___ 20   = 15   K  BC   =   3 __ 4   (  300 ___ 25  )  = 9  ΣK = 24

 DF  BA   =    K  AB   ___ ΣK   =   15 __ 24   = 0.625   DF  BC   =    K  BC   ___ ΣK   =   9 __ 24   = 0.375

The moment distribution is carried out in Figure 11.20a, shears and reac-
tions are computed in Figure 11.20b, and the moment curve is shown in 
Figure 11.20c.

(a)

A B
C

FEM–12.1 –72.5–72.5–24.2

1/2

1/2 +72.5

+36.3

+30.2 +18.11

+15.1

final moment (kip • ft)+18.09 0–18.09–9.1

0.625 0.375 1

Figure 11.20: (a) Moment distribution;  
(b) free bodies used to evaluate shears and 
reactions; (c)  moment curve produced by 
support movements.

moment diagram
kip • ft

(c)
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– 18.09

– 0.45

0.724
shear
(kips)

(b)

B
A B B

C

RB = 1.174 kips RB = 0.724 kip

V = 0.45 kip 0.45 kip

9.1 18.09 18.09

0.45 kip  0.724 kip  0.724 kip
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E X A M P L E  1 1 . 8 If girder AB of the rigid frame in Figure 11.21a is fabricated 1.92 in. too 
long, what moments are created in the frame when it is erected? Given:  
E = 29,000 kips/in.2.

Solution
Add 1.92 in. to the end of girder AB, and erect the frame with a clamp at  
joint B to prevent rotation (Figure 11.21b). Compute the fixed-end  
moments in the clamped structure using the slope-deflection equation.

Column BC:  θ  B   = 0   θ  C   = 0   ψ  BC   =   1.92 _____ 12 (12)    = +0.0133 rad

And FEMBC = FEMCB = 0 since no loads are applied between joints.

 M  BC   =  M  CB   =   2EI ___ L    (−3  ψ  BC  ) 

=   2 (29,000)  (360)   ___________ 12 (12)     [−3 (0.0133) ] 

= −5785.5 kip ⋅ in. = −482.13 kip ⋅ ft

No moments develop in member AB because ψAB = θA = θB = 0.
Compute the distribution factors.

 K  AB   =   I __ L   =   450 ___ 30   = 15    K  BC   =   360 ___ 12   = 30   ΣK = 15 + 30 = 45

 DF  BA   =    K  AB   ___ ΣK   =   15 __ 45   =   1 __ 3       DF  BC   =    K  BC   ___ ΣK   =   30 __ 45   =   2 __ 3  

Analysis by moment distribution is carried out on Figure 11.21c. Member 
end moments and reactions are computed by cutting out free bodies of each 
member and using equations of statics to solve for the shears. Reactions 
and the deflected shape are shown in Figure 11.21d.

(a)

C

BA

30ʹ

I = 450 in.4

I = 360 in.4 12ʹ

(b)

A

C

B

1.92ʺ

clamp

(c)

+80.36 +160.71
482.13
321.42
160.71

–
+
–

1
3

160.71
482.13
321.42

+
–
–

2
3

Figure 11.21: (a) Frame; (b) deformation 
introduced and joint B clamped against rota-
tion (θB = 0); (c) analysis by moment dis-
tribution (moments in kip · ft); (d ) reactions 
and deflected shape; (e) moment curves.

(d)

40.18 kips

40.18 kips

8.04 kips

8.04 kips

deflected
shape

MAB = 80.36 kip • ft

MCB = 321.42 kip • ft

1.92ʺ

(e)

A
B

B

C

80.36

160.71
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moment (kip • ft)
10ʹ

4ʹ
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11.6 ■ Analysis of Frames That Are Free to Sidesway  497

All structures that we have analyzed thus far contained joints that were free 
to rotate but not translate. Frames of this type are called braced frames. In these 
structures we were always able to compute the initial moments to be distrib-
uted because the final position of the joints was known (or specified in the 
case of a support movement).

When certain joints of an unbraced frame are free to translate, the de-
signer must include the moments created by chord rotations. Since the final 
positions of the unrestrained joints are unknown, the sidesway angles cannot 
be computed initially, and the member end moments to be distributed cannot 
be determined. To introduce the analysis of unbraced frames, we will first con-
sider the analysis of a frame with a lateral load applied at a joint that is free to 
sidesway (Figure 11.22a). In Section 11.7, we will extend the method of analy-
sis to an unbraced frame whose members are loaded between joints or whose 
supports settle.

Under the action of a lateral load P at joint B, girder BC translates hori-
zontally to the right a distance Δ. Since the magnitude of Δ and the joint 
rotations are unknown, we cannot compute the end moments to be distrib-
uted in a moment distribution analysis directly. However, an indirect solution 
is possible if the structure behaves in a linear elastic manner, that is, if all 
deflections and internal forces vary linearly with the magnitude of the lateral 
load P at joint B. For example, if the frame behaves elastically, doubling 
the value of P will double the value of all forces and displacements (Figure 
11.22b). Engineers typically assume that the majority of structures behave 
elastically. This assumption is reasonable as long as deflections are small and 
stresses do not exceed the proportional limit of the material.

If a linear relationship exists between forces and displacements, the fol-
lowing procedures can be used to analyze the frame:

1. The girder of the frame is displaced an arbitrary distance to the right 
while the joints are prevented from rotating. Typically, a unit displacement 
is introduced. To hold the structure in the deflected position, temporary 
restraints are introduced (Figure 11.22c). These restraints consist of a 
roller at B to maintain the 1-in. displacement and clamps at A, B, and C 
to prevent joint rotation.

 Since all displacements are known, we can compute the member 
end moments in the columns of the restrained frame with the slope-
deflection equation. Because all joint rotations equal zero (θN = 0 and 
θF = 0) and no fixed-end moments are produced by loads applied to 
members between joints (FEMNF = 0), with ψNF = Δ/L, the slope-
deflection equation (Equation 10.16) reduces to

   M  NF   =   2EI ___ L    (−3 ψ  NF  )  = −   6EI ___ L     Δ __ L   (11.20)

Analysis of Frames That Are Free  
to Sidesway

11.6
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Figure 11.22: (a) Displacement of loaded frame; (b) linear elastic load displacement curve; 
(c) unit displacement of frame, temporary roller, and clamps introduced to restrain frame; 
(d) displaced frame with clamps removed, joints rotated into equilibrium position; all mem-
ber end moments are known; (e) computation of reaction (S) at roller after column shears 
computed; axial forces in columns omitted for clarity; (  f  ) frame displaced 1 in. by a hori-
zontal force S, multiply all forces by P/S to establish forces and deflections produced in (a) 
by force P.
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11.6 ■ Analysis of Frames That Are Free to Sidesway  499

  For Δ = 1, we can write Equation 11.20 as

   M  NF   = −   6EI ___ 
 L   2 

   (11.21)

  At this stage with the joints clamped and prevented from rotating, the 
moments in the girder are zero because no loads act on this member.

2. Clamps are now removed and moments distributed until the structure 
relaxes into its equilibrium position (Figure 11.22d ). In the equilibrium 
position, the temporary roller at B applies a lateral force S to the frame. 
The force required to produce a unit displacement of the frame, denoted 
by S, is termed a stiffness coefficient.

3. The force S can be computed from a free-body diagram of the girder by 
summing forces in the horizontal direction (Figure 11.22e). Axial forces 
in columns and the moments acting on the girder are omitted from Fig-
ure 11.22e for clarity. The column shears V1 and V2 applied to the girder 
are computed from free-body diagrams of the columns.

4. In Figure 11.22 f we redraw the frame shown in Figure 11.22d in its 
deflected position. We imagine that the roller has been removed, but 
show the force S applied by the roller as an external load. At this stage 
we have analyzed the frame for a horizontal force S rather than P. How-
ever, since the frame behaves linearly, the forces produced by P  
can be evaluated by multiplying all forces and displacements in  
Figure 11.22 f by the ratio P/S. For example, if P is equal to 10 kips  
and S is equal to 2.5 kips, the forces and displacements in Figure 11.22 f 
must be multiplied by a factor of 4 to produce the forces induced by the 
10-kip load. Example 11.9 illustrates the analysis of a simple frame of 
the type discussed in this section.
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E X A M P L E  1 1 . 9 Determine the reactions and the member end moments produced in the 
frame shown in Figure 11.23a by a load of 5 kips at joint B. Also deter-
mine the horizontal displacement of girder BC. Given: E = 30,000 kips/
in.2. Units of I are in in.4.

I = 100

I = 200

I = 200

5 kips

(a)

B

A

C

D

40ʹ

40ʹ

20ʹ

(b)

–26

–26

–13

–13

1ʺ
1ʺ

Figure 11.23: (a) Frame details; (b) mo-
ments in units of kip · ft induced in restrained 
frame ( joints clamped to prevent rotation) by 
a unit dis place ment. (continued ob page 502)

Solution
We first displace the frame 1 in. to the right with all joints clamped against 
rotation (Figure 11.23b) and introduce a temporary roller at B to provide 
horizontal restraint. The column moments in the restrained structure are 
computed using Equation 11.21.

 M  AB   =  M  BA   = −   6EI ___ 
 L   2 

   = −   6 (30,000)  (100)   ___________ 
  (20 × 12)    2 

   = −312 kip ⋅ in.

= −26 kip ⋅ ft

 M  CD   =  M  DC   = −   6EI ___ 
 L   2 

   = −   6 (30,000)  (200)   ___________ 
  (40 × 12)    2 

   = −166 kip ⋅ in.

= −13 kip ⋅ ft
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The clamps are now removed (but the roller remains) and the column 
moments distributed until all joints are in equilibrium. Details of the analy-
sis are shown in Figure 11.23c. The distribution factors at joints B and C 
are computed below.

Joint B:
                                     Distribution factors 

   K  AB   =   3 __ 4   (  I __ L  )  =   3 __ 4   (  100 ___ 20  )  =   15 __ 4                 K  AB   ___ ΣK   =   3 __ 7  

   K  BC   =   I __ L   =   200 ___ 40          =   20 __ 4                 K  BC   ___ ΣK   =   4 __ 7  

                   ΣK =   35 __ 4  

Joint C:
                                        Distribution factors 

  K  CB   =   I __ L   =   200 ___ 40   = 5                      5 __ 10   =   1 __ 2  

  K  CD   =   I __ L   =   200 ___ 40   = 5                      5 __ 10   =   1 __ 2  

          ΣK = 10

We next compute the column shears by summing moments about an 
axis through the base of each column (Figure 11.23d ). 

Compute V1.

⟳+ ΣMA = 0  20V1 − 8.5 = 0  V1 = 0.43 kip

Compute V2.

⟳+ ΣMD = 0  40V2 − 8.03 − 10.51 = 0  V2 = 0.46 kip

Considering horizontal equilibrium of the free body of the girder (in 
Figure 11.23d ), compute the roller reaction at B.

→+ ΣFx = 0  S − V1 − V2 = 0

S = 0.46 + 0.43 = 0.89 kip

At this stage we have produced a solution for the forces and reactions 
produced in the frame by a lateral load of 0.89 kip at joint B. (The results 
of the analysis in Figure 11.23c and d are summarized in Figure 11.23e.)

To compute the forces and displacements produced by a 5-kip load, 
we scale up all forces and displacements by the ratio of P/S = 5/0.89 = 
5.62. Final results are shown in Figure 11.23 f. The displacement of the 
girder = (P/S) (1 in.) = 5.62 in. [continues on next page]
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502  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

Example 11.9 continues . . .

Figure 11.23: Continued (c) Moment distribution computations; (d) computation of roller 
force; (e) forces created in the frame by a unit displacement after clamps in (b) removed  
(moments in kip · ft and forces in kips); (  f ) reactions and member end moments produced 
by 5-kip load.
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11.7 ■ Analysis of an Unbraced Frame for General Loading  503

If a structure that is loaded between joints undergoes sidesway (Figure 11.24a), 
we must divide its analysis into several cases. We begin the analysis by intro-
ducing temporary restraints (holding forces) to prevent joints from translating. 
The number of restraints introduced must equal the number of independent 
joint displacements or degrees of sidesway (Section 10.16). The restrained 
structure is then analyzed by moment distribution for the loads applied be-
tween joints. After the shears in all members are computed from free bodies 
of individual members, the holding forces are evaluated using the equations of 
statics by considering the equilibrium of members and/or joints. For example, 
to analyze the frame in Figure 11.24a, we introduce a temporary roller at C (or 
B) to prevent sidesway of the upper joints (Figure 11.24b). We then analyze 
the structure by moment distribution in the standard manner for the applied 
loads (P and P1) and determine the reaction R supplied by the roller. This step 
constitutes the Case A analysis.

Since no roller exists in the real structure at joint C, we must remove 
the roller and allow the structure to absorb the force R supplied by the roller. 
To eliminate R, we carry out a second analysis—the Case B analysis shown 
in Figure 11.24c. In this analysis we apply a force to joint C equal to R 
but acting in the opposite direction (to the right). Superposition of the Case 
A and Case B analyses produces results equivalent to the original case in 
Fig ure 11.24a.

Example 11.10 illustrates the foregoing procedure for a simple one-bay 
frame. Since this frame was previously analyzed for a lateral load at the top 
joint in Example 11.9, we will make use of these results for the Case B analy-
sis (sidesway correction).

Analysis of an Unbraced Frame for  
General Loading

11.7

A

P

D

B C

A D

B C

A D

B C

(a)

= P

P1P1

R

(b)

Case A Case B

+

R

(c)

Figure 11.24: (a) Deformations of an un-
braced frame; (b) sidesway prevented by 
adding a temporary roller that provides a 
holding force R at C; (c) sidesway correc-
tion, holding force reversed and applied to 
structure at joint C.
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E X A M P L E  1 1 . 1 0 Determine the reactions and member end moments produced in the frame 
shown in Figure 11.25a by the 8-kip load. Also determine the horizontal 
displacement of joint B. Values of moment of inertia of each member in 
units of in.4 are shown on Figure 11.23a. E = 30,000 kips/in.2.

Solution
Since the frame in Figure 11.25 is the same as that in Example 11.9, we will 
refer to that example for the forces produced by the lateral load (Case B) 
analysis. Because the frame is free to sidesway, the analysis is broken into 
two cases. In the case A analysis, an imaginary roller is introduced at sup-
port B to prevent sidesway (Figure 11.25b). The analysis of the restrained 
frame for the 8-kip load is carried out in Figure 11.25d. The fixed-end 
moments produced by the 8-kip load are equal to

FEM = ±    PL ___ 8    = ±    8 (20) ______ 8    = ±20 kip · ft

The distribution factors were previously computed in Example 11.9. After 
the moment distribution is completed, the column shears, the axial forces, 
and the reaction R at the temporary support at B are computed from the 
free-body diagrams in Figure 11.25e. Since the roller force at B equals 4.97 
kips, we must add the Case B sidesway correction shown in Figure 11.25c.

We have previously determined in Figure 11.23e the forces created in 
the frame by a horizontal force of S = 0.89 kip applied at B. This force pro-
duces a 1-in. horizontal displacement of the girder. Since the frame is as-
sumed to be elastic, we can establish the forces and displacement produced 
by a horizontal force of 4.97 kips by direct proportion; that is, all forces and 
displacements in Figure 11.23e are multiplied by a scale factor 4.97/0.89 = 
5.58. The results of this computation are shown in Figure 11.25 f.

The final forces in the frame produced by summing the Case A and 
Case B solutions are shown in Figure 11.25g. The displacement of the girder 
is 5.58 in. to the right.
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Figure 11.25: Analysis of an unbraced 
frame: (a) details of loading; (b) Case A 
solution (sidesway prevented); (c) Case B 
(sidesway correction); (d) Case A analysis; 
(e) computation of holding force at B for 
Case A; (  f  ) sidesway correction forces, 
Case B; (g) final results from superposi-
tion of Case A and Case B (forces in kips, 
moments in kip · ft).
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E X A M P L E  1 1 . 1 1 If a member BC of the frame in Example 11.9 is fabricated 2 in. too long, 
determine the moments and reactions that are created when the frame is 
connected to its supports. Properties, dimensions of the frame, distribution 
factors, and so forth are specified or computed in Example 11.9.

Solution
If the frame is connected to the fixed support at D (Figure 11.26a), the 
bottom of column AB will be located 2 in. to the left of support A because 
of the fabrication error. Therefore, we must force the bottom of column AB 
to the right in order to connect it to the support at A. Before we bend the 
frame to connect the bottom of column AB to the pin support at A, we will 
fix the position of joints B and C by adding a roller at B and clamps at B 
and C. We then translate the bottom of column AB laterally 2" without al-
lowing joint A to rotate (θA = 0) and connect it to the pin support. A clamp 
is then added at A to prevent the bottom of the column from rotating. We 
now compute the end moments in column AB due to the chord rotation, 
using the modified form of the slope-deflection equation given by Equation 
11.20. Since the chord rotation is counterclockwise, ψAB is negative and 
equal to

 ψ  AB   = −   2 _____ 20 (12)    = −   1 __ 20    rad

 M  AB   =  M  BA   = −   6EI ___ L    ψ  AB   = −   6 (30,000)  (100)   ___________ 20 × 12   (−   1 ___ 120  ) 

= 625 kip ⋅ in. = 52.1 kip ⋅ ft

To analyze for the effect of removing the clamps in the restrained struc-
ture (Figure 11.26a), we carry out a moment distribution until the frame 
has absorbed the clamp moments—the roller at B remains in position 
during this phase of the analysis. Details of the distribution are shown in 
Figure 11.26b. The reaction at the roller is next computed from the free-
body diagrams of the columns and girder (in Figure 11.26c). Since the 
rollers exerts a reaction on the frame of 0.85 kip to the left (Figure 11.26d ), 
we must add the sidesway correction shown in Figure 11.26e. The forces 
associated with the correction are determined by proportion from the basic 
case in Figure 11.23e. Final reactions, shown in Figure 11.26 f, are deter-
mined by superimposing the forces in Figure 11.26d and e.
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Figure 11.26: (a) Frame with girder BC fabricated 2 in. too 
long, temporary supports—clamp at C and the roller and 
clamp at B—added, next the A end of column AB displaced 
2 in. to the right without rotating, connected to support A, and 
clamped; (b)  moments in frame associated with removal of 
clamps shown in (a); (c) computation of holding force in tem-
porary roller at B (forces in kips, moments in kip · ft); (d) re-
sults of analysis in (c); (e) sidesway correction made by multi-
plying results in Figure 11.23e by 0.85/0.89; (  f ) final results.
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To extend moment distribution to the analysis of multistory frames, we must 
add one sidesway correction for each independent degree of sidesway. Since the 
repeated analysis of the frame for the various cases becomes time consuming, 
we will only outline the method of analysis, so the student is aware of the com-
plexity of the solution. In practice, engineers today use computer programs to 
analyze frames of all types.

Figure 11.27a shows a two-story frame with two independent sidesway 
angles ψ1 and ψ2. To begin the analysis, we introduce rollers as temporary 
restraints at joint D and E to prevent sidesway (Figure 11.27b). We then use 
moment distribution to analyze the restrained structure for the loads applied 
between joints (Case A solution). After the column shears are computed, we 
compute reactions R1 and R2 at the rollers using free bodies of the girders. 
Since the real structure is not restrained by forces at joints D and E, we must 
eliminate the roller forces. For this purpose we require two independent so-
lutions (sidesway corrections) of the frame for lateral loads at joints D and 
E. One of the most convenient sets of sidesway corrections is produced by 
introducing a unit displacement that corresponds to one of the roller reac-
tions while preventing all other joints from displacing laterally. These two 
cases are shown in Figure 11.27c and d. In Figure 11.27c we restrain joint E 
and introduce a 1-in. displacement at joint D. We then analyze the frame and 
compute the holding forces S11 and S21 at joints D and E. In Figure 11.27d we 
introduce a unit displacement at joint E while restraining joint D and compute 
the holding forces S12 and S22.

The final step in the analysis is to superimpose the forces at the rollers 
in the restrained structure (Figure11.27b) with a certain fraction X of Case I 
(Figure 11.27c) and certain fraction Y of Case II  (Figure 11.27d). The amount 
of each case to be added must eliminate the holding forces at joints D and E. 

Analysis of Multistory Frames
11.8

P2

 P1

R2

R1
D

E

1ʺ

1ʺ

(b)
Case A

S22

S12
D

E

(d)

+ +

Case II

S2I

S1I
D

E

(c)
Case I

Figure 11.27: (a) Building frame with two 
degrees of sidesway; (b) restraining forces 
introduced at joints D and E; (c) Case I  
correction unit displacement introduced at 
joint D; (d) Case II  correction, unit displace-
ment introduced at joint E.

(a)

A

 P2

P1

F

B E

C D

1Δ

1ψ

2ψ

2Δ 2Δ
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11.9 ■ Nonprismatic Members  509

To determine the values of X and Y, two equations are written expressing the 
requirement that the sum of the lateral forces at joints D and E equal zero 
when the basic case and the two corrections are superimposed. For the frame 
in Figure 11.27a, these equations state

   At D:  Σ F  x   = 0  (11.22)

   At E:  Σ F  x   = 0  (11.23)

Expressing Equations 11.22 and 11.23 in terms of the forces shown in Figure 
11.27b to d gives

    R  1   + X S  11   + Y S  12   = 0  (11.24)

    R  2   + X S  21   + Y S  22   = 0  (11.25)

By solving Equations 11.24 and 11.25 simultaneously, we can determine the 
values of X and Y. Examination of Figure 11.27 shows that X and Y represent 
the magnitude of the deflections at joints D and E, respectively. For example, 
if we consider the magnitude of the deflection Δ1 at joint D, it is evident that all 
the displacement must be supplied by the Case I correction in Figure 11.27c 
since joint D is restrained in the Case A and Case II solutions.

Nonprismatic Members
11.9

Many continuous structures contain members whose cross sections vary 
along the length of the members. Some members are tapered to conform to 
the moment curve; other members, although the depth remains constant for a 
certain distance, are thickened where the moments are largest ( Figure 11.28). 
Although moment distribution can be used to analyze these structures, the 
fixed-end moments, carryover moments, and member stiffness are differ-
ent from those we have used to analyze structures composed of prismatic 
members. In this section we discuss procedures for evaluating the various 
terms required to analyze structures with nonprismatic members. Since these 
terms and factors require considerable effort to evaluate, design tables (e.g., 
Tables 11.1 and 11.2) have been prepared to facilitate these computations.

Computation of the Carryover Factor

When a clamp is removed from a joint during a moment distribution, a por-
tion of the unbalanced moment is distributed to each member framing into 
the joint. Figure 11.29a shows the forces applied to a typical member (i.e., 
the end at which the moment is applied is free to rotate but not to translate, 
and the far end is fixed). The moment MA represents the distributed end mo-
ment, and the moment MB equals the carryover moment. As we have seen in 

(a)

(b)

drop panel

Figure 11.28: (a) Tapered beam; (b) floor 
slab with drop panels that is designed as a 
continuous beam with a variable depth.
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510  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

Section 11.2, the carryover moment is related to the distributed end moment; 
for example, for a prismatic member COM =    1 _ 2    (DEM). We can express the 
carryover moment MB as

   M  B   =  COM  AB   =  C  AB   ( M  A  )  (11.26)

where CAB is the carryover factor from A to B. To evaluate CAB, we will apply 
the M/EI curves associated with the loading in Figure 11.29a by “parts” to 
the conjugate beam in Figure 11.29b. If the computation is simplified further 
by setting MA = 1 kip · ft in Equation 11.22, we find

 M  B   =  C  AB  

If we assume (to simplify the computations) that the member is prismatic 
(that is, EI is constant), we can compute CAB by summing moments of the 
areas under the M/EI curve about support A of the conjugate beam.

⟳+ ΣMA = 0

  (  1 __ 2   L)    (  1 ___ EI  )    (  L __ 3  )   −   (  1 __ 2   L)    (  CAB ____ EI  )    (  2L ___ 3  )   = 0

CAB =    1 __ 2   

The value above, of course, confirms the results of Section 11.2. In Example 11.2 
we use this procedure to compute the carryover factor for a beam with a vari-
able moment of inertia. Since the beam is not symmetric, the carryover fac-
tors are different for each end.

L

MA = 1

RA

MB = CABMA = CAB

(a)

(b)

L
3

1
2 L

CAB
EI

1
2 L1

EI

CAB
EI

1
EI

BA

2L
3Figure 11.29: (a) Beam loaded by a unit 

moment at A; (b) conjugate structure loaded 
with M/EI curve by parts.
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11.9 ■ Nonprismatic Members  511

Computation of Absolute Flexural Stiffness

To compute the distribution factors at a joint where nonprismatic members 
intersect, we must use absolute flexural stiffness KABS of the members. The 
absolute flexural stiffness of a member is measured by the magnitude of the 
moment required to produce a specified value of rotation—typically 1 rad. 
Moreover, to compare one member with another, the boundary conditions of 
the members must also be standardized. Since one end of a member is free 
to rotate and the other end is fixed in the moment distribution method, these 
boundary conditions are used.

To illustrate the method used to compute the absolute flexural stiffness 
of a beam, we consider the beam of constant cross section in Figure 11.30. 
To the A end of the beam, we apply a moment KABS that produces a rotation of  
1 rad at support A. If we assume that CAB has been previously computed, the 
moment at the fixed end equals CABKABS. Using the slope-deflection equation, 
we can express the moment KABS in terms of the properties of the member as

KABS =   2EI ____ L   (2θA) =   4EIθA _____ L  

Substituting θA = 1 rad gives

   K  ABS   =   4EI ___ L   (11.27)

Since the slope-deflection equation applies only to prismatic members, 
we must use a different procedure to express the absolute flexural stiffness 
KABS of a nonprismatic member in terms of the properties of the member. 
Although a variety of methods can be used, we will use the moment-area 
method. Since the slope at B is zero and the slope at A is 1 rad, the area 
under the M/EI curve between the two points must equal 1. To produce an 
M/EI curve when the moment of inertia varies, we will express the moment 
of inertia at all sections as a multiple of the smallest moment of inertia. The 
procedure is illustrated in Example 11.12.

Reduced Absolute Flexural Stiffness

Once the carryover factors and the absolute flexural stiffness are established 
for a nonprismatic member, they can be used to evaluate the reduced abso-
lute flexural stiffness KR

ABS, for a beam with its far end pinned. To establish 
the expression for KR

ABS, we consider the simply supported beam in Figure 
11.31a. If a temporary clamp is applied to joint B, a moment applied at A 
equal to KABS will produce a rotation of 1 rad at A and carry over moment 
of CABKABS at joint B. If we now clamp joint A and unclamp joint B (Figure 
11.31b), the moment at B reduces to zero and the moment at A, which now 
represents KR

ABS, equals

  K  ABS  
R   =  K  ABS   −  C  BA    C  AB    K  ABS   

                         =  K  ABS   (1 −  C  BA    C  AB  )   (11.28)

A = 1 rad

KABS

B

L

A
CABKABS

θ

Figure 11.30: Support conditions used to 
establish the flexural stiffness of the A end of 
beam AB. The flexural stiffness is measured 
by the moment KABS required to produce a 
unit rotation at end A.

A = 1 rad

B = 0

KABS

CABKABS

(a)

A

A = 1 rad

KABS = KABS  – CBACABKABS

(b)

A

B

B

θ

θ

θ

Figure 11.31
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512  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

Computation of Fixed-End Moments

To compute the fixed-end moments that develop in a nonprismatic beam, we 
load the conjugate beam with the M/EI curves. When a real beam has fixed 
ends, the supports in the conjugate beam are free ends. To facilitate the com-
putations, the moment curves should be drawn by “parts” to produce simple 
geometric shapes. At this stage the values of the fixed-end moments are un-
known. To solve for the fixed-end moments, we must write two equilibrium 
equations. For the conjugate beam to be in equilibrium, the algebraic sum of 
the areas under the M/EI diagrams (loads) must equal zero. Alternatively, the 
moments of the areas under the M/EI curves about each end of the conjugate 
beam must also equal zero. To establish the fixed-end moments, we solve 
simultaneously any two of the three equations above.

To illustrate the basic principles of the method, we will compute the 
fixed-end moments produced in a prismatic beam (EI is constant) by a con-
centrated load at midspan. This same procedure (with the M/EI diagrams 
modified to account for the variations in moment of inertia) will be used in 
Example 11.12 to evaluate the fixed-end moments at the ends of the nonpris-
matic beam.

Computation of Fixed-End Moments for  
the Beam in Figure 11.32a

Load the conjugate beam with the M/EI curves (Figure 11.32c), and sum mo-
ments about A, giving

⟳+ ΣMA = 0

   −   1 __ 2     PL ___ 4EI   L   L __ 2   +   1 __ 2    FEM  AB   L   L __ 3   +   1 __ 2    FEM  BA   L   2L ___ 3   = 0  (1)

Recognizing that the structure and load are symmetric, we set FEMAB = 
FEMBA in Equation 1 and solve for FEMBA.

  FEM  BA   =   PL ___ 8   

P

A

PL
4

B

(a)

(b)

(c)

FEMAB

FEMAB FEMBA

FEMBA
EI

FEMBA

L

BA
FEMAB

EI

PL
4EI

2L
3

L
3

Figure 11.32: (a) Fixed-end beam with 
EI constant; (b) moment curves by parts; 
(c) conjugate beam loaded with the M/EI 
diagrams.
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11.9 ■ Nonprismatic Members  513

The beam in Figure 11.33a has a variable moment of inertia. Determine (a) 
the carryover factor from A to B, (b) the absolute flexural stiffness of the 
left end, and (c) the fixed-end moment produced by a concentrated load P 
at midspan. Over the length of the beam E is constant.

Solution
(a) Computation of the Carryover Factor. We apply a unit moment of  
1 kip · ft to the end of the beam at A (Figure 11.33b), producing the car-
ryover moment CAB at B. The moment curves are drawn by parts, produc-
ing two triangular moment diagrams. The ordinates of the moment curve 
are then divided by EI on the left half and by 2EI on the right half to 
produce the M/EI diagrams, which are applied as loads to the conjugate 
beam (Figure 11.33c). Since the moment of inertia of the right half of the 
beam is twice as large as that on the left side, a discontinuity in the M/EI 
curve is created at midspan. Positive moment is applied as an upward load 
and negative moment as a downward load. To express CAB in terms of the 
properties of the member, we divide the areas under the M/EI diagram into 
rectangles and triangles and sum moments of these areas about the support 
at A to be equal to zero. In the moment-area method, this step is equivalent 
to the condition that the tangential deviation of point A from the tangent 
drawn at B is zero.

⟳+ Σ M  A   = 0

  1 ___ 2EI     
L __ 2     L __ 4   +   1 __ 2     1 ___ 2EI     

L __ 2     L __ 6   +   1 __ 2     1 ___ 4EI     
L __ 2   (  L __ 2   +   L __ 6  ) 

−   1 __ 2     L __ 2      C  AB   ___ 2EI   (  2 __ 3     L __ 2  )  −    C  AB   ___ 4EI     
L __ 2   (  L __ 2   +   L __ 4  )  −   1 __ 2     L __ 2      C  AB   ___ 4EI   (  L __ 2   +   2 __ 3     L __ 2  )  = 0

Simplifying and solving for CAB give

 C  AB   =   2 __ 3  

If the supports are switched (the fixed support moved to A and the roller 
to B) and a unit moment applied at B, we find the carryover factor CBA = 
0.4 from B to A.

(b) Computation of Absolute Flexural Stiffness KABS. The absolute 
flexural stiffness of the left end of the beam is defined as the moment KABS 
required to produce a unit rotation (θA = 1 rad) at A with the right end 
fixed and the left end restrained against vertical displacement by a roller 
(Figure 11.33d). Figure 11.33e shows the M/EI curves for the loading in 
Figure 11.33d. Because the slope at B is zero, the change in slope be-
tween ends of the beam (equal to the area under the M/EI curve by the first  

E X A M P L E  1 1 . 1 2

[continues on next page]
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514  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

Example 11.12 continues . . .

(a)

(e)

(g)

+

(b)

(c)

– –

A

I
EI

1 kip • ft

A
B

CAB

L
2

2II

2II

L
2

A = 1 rad

P

( f )

A B

L
2

2I

FEMAB FEMBA

I

L
2

(d)

A
B

CABKABS

KABS

2II

1/2
EI 1/2

2EI

CAB
2EI

CABKABS
2EI

– –

CABKABS
2EI

–

CABKABS
4EI

KABS
EI KABS

2EI
KABS
4EI

CAB/2
2EI

CAB/2
EI

PL
4EI

FEMBA
2EI

FEMBA
4EI

FEMBA
2EI

FEMAB
EI

FEMAB
2EI

FEMAB
4EI

PL
8EI

θ

Figure 11.33: (a) Beam of variable cross section; 
(b) loading and boundary conditions for comput-
ing the carryover factor from A to B; (c) conjugate 
beam loaded with M/EI diagrams from loading in 
(b); (d) computation of absolute flexural stiffness 
KABS of the left end of beam AB; (e) M/EI dia-
gram (by parts) for the beam in (d); (  f ) computa-
tion of fixed-end moments for beam AB; (g) M/EI 
diagrams (by parts) for loading in (  f ).
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11.9 ■ Nonprismatic Members  515

moment-area principle) equals 1. To evaluate the area under the M/EI 
curves, we divide it into triangles and a rectangle

Σ area = 1

  1 __ 2     L __ 2      K  ABS    ____ EI   +   1 __ 2     L __ 2      K  ABS   ____ 2EI   +   1 __ 2     L __ 2      K  ABS   ____ 4EI  

−   1 __ 2     L __ 2      C  AB    K  ABS   ______ 2EI   −    C  AB    K  ABS   ______ 4EI     L __ 2   −   1 __ 2      C  AB    K  ABS   ______ 4EI     L __ 2   = 1

Substituting CAB =   2 _ 3   from (a) and solving for KABS give

 K  ABS   = 4.36   EI __ L  

(c) Computation of Fixed-End Moments Produced by a Concen-
trated Load at Midspan. To compute the fixed-end moments, we apply 
the concentrated load to the beam with its ends clamped (Figure 11.33 f ). 
Moment curves are drawn by parts and converted to M/EI curves that are 
applied as loads to the conjugate beam, as shown in Figure 11.33g. (The 
M/EI curve, produced by the fixed-end moment FEMAB at the left end, is 
drawn below the conjugate beam for clarity.) Since both fixed-end moments 
are unknown, we write two equations for their solution.

  Σ F  y   = 0 (1)

 Σ M  A   = 0 (2)

Expressing Equation 1 in terms of the areas of the M/EI diagrams gives

  1 __ 2     L __ 2     PL ___ 4EI   +   1 __ 2     L __ 2     PL ___ 8EI   −   1 __ 2      FEM  BA   _____ 2EI     L __ 2   −    FEM  BA   _____ 4EI     L __ 2   −   1 __ 2     L __ 2      FEM  BA   _____ 4EI  

− (  1 __ 2      FEM  AB   _____ EI   L −   1 __ 2      FEM  AB   _____ 4EI     L __ 2  )  = 0

Simplifying and collecting terms yield

   5 __ 16    FEM  BA   +   7 __ 16    FEM  AB   =   3PL ____ 32   (1a)

Expressing Equation 2 in terms of the moments of areas by multiplying 
each of the areas above by the distance between point A and the respective 
centroids gives

   9 __ 48    FEM  BA   +   1 __ 8    FEM  AB   =   PL ___ 24   (2a)

Solving Equations 1a and 2a simultaneously gives

  FEM  AB   = 0.106PL   FEM  BA   = 0.152PL Ans.

As expected, the fixed-end moment on the right is larger than that on the 
left because of the greater stiffness of the right side of the beam.
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516  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

E X A M P L E  1 1 . 1 3 Analyze the rigid frame in Figure 11.34 by moment distribution. All mem-
bers 12-in. thick are measured perpendicular to the plane of the structure.

Solution
Since the girder has a variable moment of inertia, we will use Table 11.2 
to establish the carryover factor, the stiffness coefficient, and the fixed-end 
moments. The parameters to enter in Table 11.2 are

aL = 10 ft  since L = 50 ft, a =   10 __ 50   = 0.2

r  h  c   = 6 in.  since  h  c   = 10 in., r = 0.6

Read in Table 11.2:

 C  CB   =  C  BC   = 0.674

 k  BC   = 8.8

 FEM  CB   = −  FEM  BC   = 0.1007wL2

= 0.1007(2)(50)2

= 503.5 kip ⋅ ft

 I  min girder   =   b  h   3  ___ 12   =   12   (10)    3  ______ 12   = 1000  in.   4 

 I  column   =   b  h   3  ___ 12   =   12   (16)    3  ______ 12   = 4096  in.   4 

Compute distribution factors at joint B or C:

 K  girder   =   8.8EI _____ L   =   8.8E (1000)  _________ 50   = 176E

 K  column   =   4EI ___ L   =   4E (4096)  _______ 16   = 1024E

ΣK = 1200E

 DF  column   =   1024E _____ 1200E   = 0.85

 DF  girder   =   176E _____ 1200E   = 0.15

See Figure 11.34b for distribution. Reactions are shown in Figure 11.34c.
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Figure 11.34: (a) Details of rigid frame; 
(b)  analysis by moment distribution; 
(c) reactions.
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TABLE 11.1

Prismatic Haunch at One End (from Handbook of Frame Constants by the  
Portland Cement Association) 

   Moment M  
  Concentrated load FEM—coef. × PL at b = 1− aB Haunch load

 Unif. load b

Right Carryover Stiffness FEM       FEM FEM 
haunch factors factors coef. × wL2 0.1 0.3 0.5 0.7 0.9 1−aB coef. × M coef. × wL2

aB rB CAB CBA kAB kBA MAB MBA MAB MBA MAB MBA MAB MBA MAB MBA MAB MBA MAB MBA MAB MBA MAB MBA

    rA = 0           aA = 0

 0.4 0.593 0.491 4.24 5.12 0.0749 0.1016 0.0799 0.0113 0.1397 0.0788 0.1110 0.1553 0.0478 0.1798 0.0042 0.0911 0.0042 0.0911 0.0793 0.8275 0.0001 0.0047
 0.6 0.615 0.490 4.30 5.40 0.0727 0.1062 0.0797 0.0119 0.1378 0.0828 0.1074 0.1630 0.0439 0.1881 0.0029 0.0937 0.0029 0.0937 0.0561 0.8780 0.0001 0.0048
0.1 1.0 0.639 0.488 4.37 5.72 0.0703 0.1114 0.0794 0.0125 0.1358 0.0873 0.1035 0.1716 0.0396 0.1974 0.0016 0.0966 0.0016 0.0966 0.0304 0.9339 0.0001 0.0049
 1.5 0.652 0.487 4.40 5.89 0.0690 0.1143 0.0792 0.0129 0.1346 0.0898 0.1012 0.1764 0.0373 0.2026 0.0008 0.0982 0.0008 0.0982 0.0161 0.9651 0.0000 0.0049
 2.0 0.658 0.487 4.42 5.97 0.0684 0.1156 0.0791 0.0131 0.1341 0.0910 0.1002 0.1786 0.0361 0.2050 0.0005 0.0990 0.0005 0.0990 0.0094 0.9795 0.0000 0.0050
 0.4 0.677 0.469 4.42 6.37 0.0706 0.1126 0.0791 0.0134 0.1345 0.0925 0.1020 0.1788 0.0409 0.1975 0.0050 0.0890 0.0182 0.1581 0.1640 0.6037 0.0013 0.0171
 0.6 0.730 0.463 4.56 7.18 0.0664 0.1225 0.0785 0.0149 0.1302 0.1025 0.0942 0.1972 0.0335 0.2148 0.0037 0.0917 0.0137 0.1684 0.1241 0.7005 0.0010 0.0178
0.2 1.0 0.793 0.458 4.74 8.22 0.0510 0.1353 0.0777 0.0168 0.1248 0.1154 0.0843 0.2207 0.0242 0.2368 0.0022 0.0951 0.0080 0.1815 0.0728 0.8245 0.0006 0.0187
 1.5 0.831 0.455 4.86 8.88 0.0576 0.1434 0.0772 0.0180 0.1214 0.1235 0.0781 0.2355 0.0182 0.2507 0.0012 0.0973 0.0044 0.1897 0.0403 0.9029 0.0003 0.0193
 2.0 0.849 0.453 4.91 9.20 0.0559 0.1473 0.0769 0.0186 0.1197 0.1276 0.0750 0.2429 0.0153 0.2576 0.0007 0.0984 0.0026 0.1939 0.0242 0.9418 0.0002 0.0196
 0.4 0.741 0.439 4.52 7.63 0.0698 0.1155 0.0787 0.0149 0.1319 0.1013 0.0987 0.1899 0.0420 0.1929 0.0056 0.0868 0.0420 0.1929 0.2371 0.3457 0.0045 0.0338
 0.6 0.831 0.427 4.75 9.24 0.0542 0.1296 0.0777 0.0175 0.1255 0.1182 0.0877 0.2185 0.0338 0.2130 0.0045 0.0893 0.0338 0.2130 0.1935 0.4682 0.0036 0.0359
0.3 1.0 0.954 0.415 5.09 11.69 0.0559 0.1511 0.0762 0.0215 0.1158 0.1440 0.0711 0.2621 0.0217 0.2436 0.0028 0.0930 0.0217 0.2436 0.1261 0.6548 0.0023 0.0391
 1.5 1.036 0.409 5.34 13.53 0.0497 0.1673 0.0751 0.0245 0.1085 0.1633 0.0587 0.2948 0.0128 0.2665 0.0017 0.0959 0.0128 0.2665 0.0750 0.7952 0.0014 0.0415
 2.0 1.078 0.407 5.48 14.54 0.0464 0.1762 0.0745 0.0262 0.1045 0.1740 0.0520 0.3129 0.0080 0.2792 0.0010 0.0974 0.0080 0.2792 0.0467 0.8725 0.0008 0.0448
 0.4 0.774 0.405 4.55 8.70 0.0703 0.1117 0.0786 0.0156 0.1315 0.1035 0.0992 0.1855 0.0445 0.1773 0.0059 0.0849 0.0713 0.1938 0.2780 0.0876 0.0106 0.0509
 0.6 0.901 0.386 4.83 11.28 0.0646 0.1269 0.0774 0.0192 0.1240 0.1254 0.0875 0.2182 0.0377 0.1932 0.0049 0.0869 0.0611 0.2204 0.2456 0.2035 0.0089 0.0547
0.4 1.0 1.102 0.367 5.33 16.03 0.0549 0.1548 0.0752 0.0257 0.1105 0.1658 0.0671 0.2780 0.0267 0.2222 0.0034 0.0904 0.0438 0.2689 0.1817 0.4177 0.0063 0.0616
 1.5 1.260 0.357 5.79 20.46 0.0462 0.1807 0.0732 0.0319 0.0982 0.2035 0.0485 0.3339 0.0173 0.2491 0.0022 0.0938 0.0284 0.3142 0.1198 0.6183 0.0037 0.0579
 2.0 1.349 0.352 6.09 23.32 0.0407 0.1975 0.0719 0.0358 0.0903 0.2278 0.0367 0.3699 0.0113 0.2664 0.0014 0.0959 0.0187 0.3434 0.0793 0.7479 0.0027 0.0720
 0.4 0.768 0.371 4.56 9.45 0.0700 0.1048 0.0786 0.0154 0.1312 0.0993 0.0983 0.1679 0.0442 0.1663 0.0059 0.0836 0.0983 0.1679 0.2710 +0.1319 0.0189 0.0556
 0.6 0.919 0.343 4.84 12.94 0.0651 0.1176 0.0774 0.0193 0.1240 0.1218 0.0884 0.1935 0.0386 0.1769 0.0051 0.0849 0.0884 0.1935 0.2593 +0.0493 0.0167 0.0702
0.5 1.0 1.200 0.316 5.42 20.61 0.0561 0.1451 0.0749 0.0280 0.1096 0.1709 0.0706 0.2486 0.0299 0.1993 0.0038 0.0877 0.0705 0.2486 0.2203 0.1356 0.0131 0.0802
 1.5 1.470 0.301 6.10 29.74 0.0466 0.1777 0.0720 0.0384 0.0934 0.2290 0.0516 0.3137 0.0215 0.2255 0.0027 0.0909 0.0516 0.3137 0.1663 0.3579 0.0094 0.0918
 2.0 1.647 0.295 6.63 37.04 0.0393 0.2036 0.0698 0.0466 0.0807 0.2755 0.0370 0.3655 0.0153 0.2463 0.0019 0.0934 0.0370 0.3655 0.1209 0.5361 0.0067 0.1011
 0.4 0.726 0.341 4.62 9.84 0.0675 0.0986 0.0782 0.0146 0.1280 0.0916 0.0923 0.1519 0.0419 0.1603 0.0056 0.0829 0.1154 0.1276 0.2103 +0.2862 0.0283 0.0769
 0.6 0.872 0.305 4.88 13.97 0.0630 0.1072 0.0771 0.0183 0.1214 0.1096 0.0835 0.1664 0.0368 0.1666 0.0048 0.0837 0.1068 0.1463 0.2221 +0.2453 0.0254 0.0813
0.6 1.0 1.196 0.267 5.43 24.35 0.0560 0.1277 0.0748 0.0274 0.1092 0.1537 0.0705 0.1999 0.0299 0.1804 0.0038 0.0854 0.0926 0.1910 0.2190 +0.1321 0.0212 0.0913
 1.5 1.588 0.247 6.18 39.79 0.0482 0.1572 0.0718 0.0408 0.0939 0.2183 0.0572 0.2478 0.0237 0.1997 0.0030 0.0878 0.0762 0.2559 0.1926 0.0433 0.0171 0.1055
 2.0 1.905 0.237 6.92 55.51 0.0412 0.1870 0.0688 0.0544 0.0792 0.2839 0.0455 0.2960 0.0186 0.2189 0.0023 0.0901 0.0611 0.3215 0.1589 0.2243 0.0136 0.1197
 0.4 0.657 0.321 4.86 9.96 0.0631 0.0954 0.0770 0.0138 0.1175 0.0846 0.0844 0.1461 0.0392 0.1582 0.0053 0.0827 0.1175 0.0846 0.0959 +0.3666 0.0372 0.0854
 0.6 0.770 0.275 5.14 14.39 0.0580 0.1006 0.0758 0.0167 0.1097 0.0955 0.0745 0.1543 0.0335 0.1621 0.0045 0.0832 0.1097 0.0955 0.1322 +0.3615 0.0330 0.0890
0.7 1.0 1.056 0.224 5.62 26.45 0.0516 0.1122 0.0738 0.0243 0.0992 0.1203 0.0626 0.1710 0.0269 0.1694 0.0035 0.0841 0.0992 0.1213 0.1655 +0.3228 0.0280 0.0965
 1.5 1.491 0.196 6.24 47.48 0.0463 0.1304 0.0714 0.0371 0.0890 0.1633 0.0537 0.1959 0.0223 0.1796 0.0028 0.0854 0.0890 0.1633 0.1731 +0.2367 0.0241 0.1076
 2.0 1.944 0.183 6.95 73.85 0.0417 0.1523 0.0687 0.0530 0.0793 0.2149 0.0468 0.2255 0.0191 0.1915 0.0024 0.0869 0.0793 0.2149 0.1646 +0.1219 0.0210 0.1210
 0.4 0.583 0.319 5.46 9.97 0.0585 0.0951 0.0741 0.0137 0.1040 0.0837 0.0793 0.1456 0.0380 0.1580 0.0053 0.0826 0.1023 0.0461 0.0804 +0.3734 0.0452 0.0917
 0.6 0.645 0.263 5.89 14.44 0.0516 0.0990 0.0721 0.0160 0.0921 0.0907 0.0667 0.1520 0.0311 0.1614 0.0043 0.0831 0.0950 0.0517 0.0150 +0.3956 0.0388 0.0951
0.8 1.0 0.818 0.196 6.47 27.06 0.0435 0.1053 0.0696 0.0211 0.0781 0.1025 0.0521 0.1615 0.0232 0.1660 0.0031 0.0838 0.0863 0.0628 0.0588 +0.4118 0.0314 0.1004
 1.5 1.128 0.155 6.98 50.85 0.0385 0.1130 0.0676 0.0296 0.0692 0.1175 0.0432 0.1715 0.0184 0.1705 0.0024 0.0844 0.0802 0.0793 0.0990 +0.4009 0.0268 0.1064
 2.0 1.533 0.135 7.47 84.60 0.0355 0.1222 0.0658 0.0412 0.0638 0.1357 0.0384 0.1824 0.0159 0.1750 0.0020 0.0849 0.0759 0.1009 0.1150 +0.3684 0.0242 0.1133
 0.4 0.524 0.356 6.87 10.10 0.0604 0.0948 0.0674 0.0157 0.1031 0.0835 0.0844 0.1439 0.0418 0.1568 0.0059 0.0824 0.0674 0.0157 0.3652 +0.2913 0.0550 0.0942
 0.6 0.542 0.295 7.95 14.58 0.0497 0.0991 0.0623 0.0184 0.0866 0.0913 0.0691 0.1510 0.0339 0.1605 0.0048 0.0830 0.0523 0.0184 0.2658 +0.3364 0.0460 0.0985
0.9 1.0 0.594 0.206 9.44 27.16 0.0372 0.1052 0.0553 0.0226 0.0642 0.1023 0.0484 0.1603 0.0231 0.1656 0.0032 0.0837 0.0553 0.0226 0.1311 +0.3969 0.0337 0.1044
 1.5 0.695 0.142 10.48 51.25 0.0289 0.1098 0.0506 0.0266 0.0492 0.1105 0.0346 0.1680 0.0159 0.1692 0.0021 0.0842 0.0505 0.0266 0.0410 +0.4351 0.0255 0.1089
 2.0 0.842 0.107 11.07 86.80 0.0245 0.1147 0.0481 0.0305 0.0414 0.1159 0.0274 0.1723 0.0121 0.1714 0.0016 0.0845 0.0481 0.0306 0.0049 +0.4515 0.0213 0.1117

Note: All carryover factors are negative and all stiffness 
factors are positive. All fixed-end moment coefficients 
are negative except where plus sign is shown.

A

bL
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M
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P
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TABLE 11.2

Prismatic Haunch at Both Ends (from Handbook of Frame Constants by the  
Portland Cement Association) 

   Haunch load, 
  Concentrated load FEM—coef. × PL both haunches

 Unif. load b

 Carryover Stiffness       FEM 
 factors factors FEM 0.1 0.3 0.5 0.7 0.9 coef. × wL2

a r CAB  = CBA kAB   = kBA coef. × wL2 MAB MBA MAB MBA MAB MBA MAB MBA MAB MBA MAB  = MBA

 0.4  0.583 5.49  0.0921  0.0905 0.0053 0.1727 0.0606 0.1396 0.1396 0.0606 0.1727 0.0053 0.0905 0.0049
 0.6  0.603 5.93  0.0940  0.0932 0.0040 0.1796 0.0589 0.1428 0.1428 0.0589 0.1796 0.0040 0.0932 0.0049
0.1 1.0  0.624 6.45  0.0961  0.0962 0.0023 0.1873 0.0566 0.1462 0.1462 0.0566 0.1873 0.0023 0.0962 0.0050
 1.5  0.636 6.75  0.0972  0.0980 0.0013 0.1918 0.0551 0.1480 0.1480 0.0551 0.1918 0.0013 0.0980 0.0050
 2.0  0.641 6.90  0.0976  0.0988 0.0008 0.1939 0.0543 0.1489 0.1489 0.0543 0.1939 0.0008 0.0988 0.0050
 0.4  0.634 7.32  0.0970  0.0874 0.0079 0.1852 0.0623 0.1506 0.1506 0.0623 0.1852 0.0079 0.0874 0.0187
 0.6  0.674 8.80  0.1007  0.0899 0.0066 0.1993 0.0584 0.1575 0.1575 0.0584 0.1993 0.0066 0.0899 0.0191
0.2 1.0  0.723 11.09  0.1049  0.0935 0.0046 0.2193 0.0499 0.1654 0.1654 0.0499 0.2193 0.0046 0.0935 0.0195
 1.5  0.752 12.87  0.1073  0.0961 0.0029 0.2338 0.0420 0.1699 0.1699 0.0420 0.2338 0.0029 0.0961 0.0197
 2.0  0.765 13.87  0.1084  0.0976 0.0018 0.2410 0.0372 0.1720 0.1720 0.0372 0.2410 0.0018 0.0976 0.0198
 0.4  0.642 9.02  0.0977  0.0845 0.0097 0.1763 0.0707 0.1558 0.1558 0.0707 0.1763 0.0097 0.0845 0.0397
 0.6  0.697 12.09  0.1027  0.0861 0.0095 0.1898 0.0700 0.1665 0.1665 0.0700 0.1898 0.0095 0.0861 0.0410
0.3 1.0  0.775 18.68  0.1091  0.0890 0.0094 0.2136 0.0627 0.1803 0.1803 0.0627 0.2136 0.0084 0.0890 0.0426
 1.5  0.828 26.49  0.1132  0.0920 0.0065 0.2376 0.0492 0.1891 0.1891 0.0492 0.2376 0.0065 0.0920 0.0437
 2.0  0.855 32.77  0.1153  0.0943 0.0048 0.2555 0.0366 0.1934 0.1934 0.0366 0.2555 0.0048 0.0943 0.0442
 0.4  0.599 10.15  0.0937  0.0825 0.0101 0.1601 0.0732 0.1509 0.1509 0.0732 0.1601 0.0101 0.0825 0.0642
 0.6  0.652 14.52  0.0986  0.0833 0.0106 0.1668 0.0776 0.1632 0.1632 0.0776 0.1668 0.0106 0.0833 0.0668
0.4 1.0  0.744 26.06  0.1067  0.0847 0.0112 0.1790 0.0835 0.1833 0.1833 0.0835 0.1790 0.0112 0.0847 0.0711
 1.5  0.827 45.95  0.1131  0.0862 0.0113 0.1919 0.0852 0.1995 0.1995 0.0852 0.1919 0.0113 0.0862 0.0746
 2.0  0.878 71.41  0.1169  0.0876 0.0108 0.2033 0.0822 0.2089 0.2089 0.0822 0.2033 0.0108 0.0876 0.0766
0.5 0.0  0.500 4.00  0.0833  0.0810 0.0090 0.1470 0.0630 0.1250 0.1250 0.0630 0.1470 0.0090 0.0810 0.0833

Note: All carryover factors and fixed-end moment co effi-
cients are negative and all stiffness factors are positive.

aL
L

aL hc
rhc

bL
P
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520  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

 • Moment distribution is an approximate procedure for analyzing  
indeterminate beams and frames that eliminates the need to write 
and solve the simultaneous equations required in the slope-deflection 
method.

 • The analyst begins by assuming that all joints free to rotate are re-
strained by clamps, producing fixed-end conditions. When loads are 
applied, fixed-end moments are induced. The solution is completed by 
unlocking and relocking joints in succession and distributing moments 
to both ends of all the members framing into the joint until all joints 
are in equilibrium. The time required to complete the analysis increases 
significantly if frames are free to sidesway. The method can be extended 
to nonprismatic members if standard tables of fixed-end moments are 
available (Table 11.1).

 • Once end moments are established, free bodies of members are analyzed 
to determine shear forces. After shears are established, axial forces in 
members are computed using free bodies of joints.

 • Although moment distribution provides students with an insight into the 
behavior of continuous structures, its use is limited in practice because a 
computer analysis is much faster and more accurate.

 • However, moment distribution does provide a simple procedure to 
verify the results of the computer analysis of large multistory, multibay, 
continuous frames under vertical load. In this procedure (illustrated in 
Section 13.7), a free-body diagram of an individual floor (including the 
attached columns above and below the floor) is isolated, and the ends of 
the columns are assumed to be fixed or the column stiffness is adjusted 
for boundary conditions. Because the influence of forces on floors 
above and below has only a small effect on the floor being analyzed, the 
method provides a good approximation of forces in the floor system in 
question.

Summary 
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■ Problems  521

P11.1 to P11.7. Analyze each structure by moment dis-
tribution. Determine all reactions and draw the shear and 
moment curves locating points of inflection and labeling 
values of maximum shear and moment in each span. Unless 
otherwise noted, EI is constant.

PROBLEMS

D
CBA

9 kips/ft9 kips/ft
20 kips

10ʹ 10ʹ6ʹ6ʹ

P11.3

CBA

3 m

200 kN • m

9 m

6 m
50 kN

P11.4

C
D

B
A

w = 3 kips/ft
20 kips20 kips

10ʹ 20ʹ 3@10ʹ = 30ʹ

P11.5

24ʹ 18ʹ

w = 6 kips/ft

2I I

CB

A

P11.6

6ʹ6ʹ

DCBA

4 kips/ft

9ʹ9ʹ

30 kips

P11.7

P11.2

A B

I 1.2I

C

9 m

8 m

12 m

P = 40 kN

w = 5 kN/m

P11.1

12ʹ

CBA

w = 3.5 kips/ft

12ʹ

30 kips

12ʹ

A
B C

D

9ʹ 10ʹ 15ʹ8ʹ 5ʹ 5ʹ

5 kips 5 kips 5 kips 5 kips

1.5I 1.5I 4I

P11.8

BA C
D

20ʹ9ʹ

P = 16 kipsP = 16 kips

w = 4 kips/ft

9ʹ 9ʹ 9ʹ

P11.9

CB D E
A F

6ʹ10ʹ10ʹ6ʹ 10ʹ 32ʹ10ʹ

8 kips12 kips8 kips 12 kips
w = 2.4 kips/ft

P11.10

P11.8 to P11.10. Analyze by moment distribution. 
Modify stiffness as discussed in Section 11.5. E is con-
stant. Draw the shear and moment curves.
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522  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

P11.11. Analyze the frame in Figure P11.11 by mo-
ment distribution. Determine all reactions and draw the 
shear and moment curves locating points of inflection and  
labeling values of maximum shear and moment in each 
span. Given: EI is constant.

P11.13. Analyze the reinforced concrete box in  
Figure P11.13 by moment distribution. Modify stiffnesses 
as discussed in Section 11.5. Draw the shear and moment 
curves for the top slab AB. Given: EI is constant.

30ʹ

10ʹ

15ʹ

10ʹ

 P = 30 kips

A

B

D

C

P = 30 kips

w = 2 kips/ft

P11.11

400 kip • ft 400 kip • ft

A

B

D

C

12ʹ

16ʹ

P11.12

12ʹ

6ʹ

B

C

A

D

8ʹ

14ʹ
12ʺ

side
view

1́
1́

w = 0.50 kip/ft

w = 0.50 kip/ft

P11.13

P11.14

A

I I

2I

B

w = 8 kN/m
C

D

4 m 4 m

6 m

P11.12. Analyze the frame in Figure P11.12 by moment 
distribution. Determine all reactions and draw the shear  
and moment curves. Given: EI is constant.

P11.14. Analyze the frame in Figure P11.14 by the mo-
ment distribution method. Determine all reactions and 
draw the moment and shear curves. Given: E is constant. 
Fixed supports at A and C.
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■ Problems  523

P11.15. The cross section of the rectangular ring in 
Figure P11.15 is 12 in. × 8 in. Draw the moment and 
shear curves for the ring; E = 3000 kips/in.2.

P11.17. Analyze the frame in Figure P11.17 by mo-
ment distribution. Determine all reactions and draw the 
shear and moment curves locating points of inflection and  
labeling values of maximum shear and moment in each 
span. Given: EI is constant.

P11.15

B

D

C

A

10 kips

4 kips/ft 4 kips/ft

10 kips

10 kips 10 kips

12ʹ

3ʹ 3ʹ

6ʹ 8ʺ8ʺ
8ʺ

8ʺ

P11.16

12ʹ21ʹ

12ʹ

w = 3 kips/ft

I

3I

A
B C

D

P11.17

A
B DC

12ʹ9ʹ 9ʹ 9ʹ 9ʹ

12ʹ

20 kips 20 kips

E F

P11.18

8 kips
9ʹ

16ʹ 6ʹ16ʹ

w = 3 kips/ft

w = 2 kips/ft

A

B2I I2I

I

I

C D

F

E

10ʹ

P11.16. Analyze the frame in Figure P11.16 by moment 
distribution. Determine all reactions and draw the shear 
and moment curves locating points of inflection and  
labeling values of maximum shear and moment in each 
span. E is constant, but I varies as indicated below.

P11.18. Analyze the frame in Figure P11.18 by mo-
ment distribution. Determine all reactions and draw the 
shear and moment curves locating points of inflection and  
labeling values of maximum shear and moment in each 
span. E is constant, but I varies as noted.
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524  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

P11.19. Analyze the frame in Figure P11.19 by mo ment 
distribution. Determine all reactions and draw the shear and 
moment curves. Given: EI is constant.

P11.22. Analyze the beam in Figure P11.22. In addition 
to the 16-kip load, support A also rotates clockwise by 
0.001 rad and support B settles    1 _ 2    in. Determine the reac-
tions and draw the shear and moment curves for the beam. 
Given: E = 30,000 kips/in.2 and I = 600 in.4.

4 m
B DA C

E

6 m3 m3 m

50 kN

P11.21

A

B

20 kips w = 2 kips/ft

DC

E

10ʹ

10ʹ5ʹ5ʹ

P11.24

P11.19

A

B C

D

20 kips

10ʹ 10ʹ

12ʹ

P11.20

DC

30ʹ 30ʹ 30ʹ

20ʹ

H

II I

A

B

F

E

G

w = 3 kips/ft

1.5I 1.5I 1.5I

I

P11.22

24ʹ

A B
C

8ʹ

1/2ʺ

0.001 rad

P = 16 kips

P11.23

B C

24ʹ

12ʹ

0.48ʺ
A

0.016 rad

I = 300 in.4

I = 75 in.4

P11.20. Analyze the frame in Figure P11.20 by the mo-
ment distribution method. Determine all reactions and 
draw the shear and moment curves. E is constant, but  
I varies as noted.

P11.21. Analyze the beam in Figure P11.21 by the mo-
ment distribution method. Determine all reactions and 
draw the moment and shear curves for beam ABCDE; EI 
is constant.

P11.23. If support A in Figure P11.23 is constructed 
0.48 in. too low and the support at C is accidentally con-
structed at a slope of 0.016 rad clockwise from a verti-
cal axis through C, determine the moment and reactions 
created when the structure is connected to its supports. 
Given: E = 29,000 kips/in.2.

P11.24. Analyze the frame in Figure P11.24 by mo ment 
distribution. Determine all reactions and draw the shear 
and moment curves. Given: EI is constant.
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■ Problems  525

P11.25. Due to a construction error, the support at D 
has been constructed 0.6 in. to the left of column BD. 
Using moment distribution, determine the reactions that 
are created when the frame is connected to the support 
and the uniform load is applied to member BC. Draw the 
shear and moment curves and sketch the deflected shape.  
E = 29,000 kips/in.2 and I = 240 in.4 for all members.

P11.27. Determine the reactions and the moments in-
duced in the members of the frame in Figure P11.27. Also 
determine the horizontal displacement of joint B. Given: 
I = 1500 in.4 and E = 3000 kips/in.2.

P11.25

A B

D

C

18ʹ

0.6ʺ

2 kips/ft

12ʹ

12ʹ

P11.26

A B

D

C

15ʹ

I = 600 in.4I = 600 in.4

I = 200 in.4

20ʹ

15ʹ

P11.27

DC

16ʹ

I I

I I

1.5I

16ʹ

12ʹ

FA

B

E

30 kips

P11.28

3@8ʹ = 24ʹ

18ʹ

12ʹ

3 kips

6 kips 6 kips

A

B C

D

I = 240 in.4

I = 120 in.4

I = 150 in.4

P11.26. What moments are created in the frame in 
Figure P11.26 by a temperature change of +80°F in 
girder ABC? The coefficient of temperature expansion  
αt = 6.6 × 10−6 (in./in.)/°F and E = 29,000 kips/in.2.

P11.28. Analyze the structure in Figure P11.28 by  
mo  ment distribution. Draw the shear and moment 
curves. Sketch the deflected shape. Also compute the 
horizontal displacement of joint B. E is constant and 
equals 30,000 kips/in.2.
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526  Chapter 11 ■ Analysis of Indeterminate Beams and Frames by the Moment Distribution

P11.29. Analyze the frame in Figure P11.29 by mo ment 
distribution. Draw the shear and moment curves. Sketch the 
deflected shape. E is constant and equals 30,000 kips/in.2.  
I = 300 in.4 for all members.

P11.31. Analyze the Vierendeel truss in Figure P11.31 
by moment distribution. Draw the shear and moment  
curves for members AB and AF. Sketch the deflected 
shape, and determine the deflection at midspan. Given: 
EI is constant, E = 200 GPa, and I = 250 × 106 mm4.

 A

B
C

E

D

400 kip • ft
12ʹ 12ʹ

15ʹ

P11.30

P11.29

A

B

D

C

w = 4 kips/ft

EI = constant

20ʹ

16ʹ
8ʹ

 P = 2.4 kips

P11.31

A

F E
D

B C

4 m4 m

3 m

100 kN

P11.32

12ʹ

30 kips

12ʹ

12ʹ

12ʹ

B

D

C

A

w = 2.4 kips/ft

w = 2.4 kips/ft

I = 600 in.4

I = 360 in.4

I = 360 in.4

P11.30. Analyze the frame in Figure P11.30 by mo ment 
distribution. Determine all reactions and draw the shear 
and moment curves. Sketch the deflected shape. E is con-
stant and equals 30,000 kips/in.2.

P11.32. Analyze the frame in Figure P11.32 by mo-
ment distribution. Draw the shear and moment curves. 
Compute the horizontal deflection of joint B. Sketch the 
deflected shape. E is constant and equals 30,000 kips/in.2.
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Rion-Antirion Bridge in Greece
The 7388-ft long Rion-Antirion Bridge spanning the Corinthian Gulf is the world’s longest 
multi-span cable-stayed bridge, and was completed in 2004. The adverse conditions 
the designer had to consider included a water depth of 213 ft, poor soil conditions, strong 
seismicity, and the potential collision of a tanker to the structure. The fully suspended con-
tinuous deck is designed to move as a pendulum during an earthquake; dampers are used 
to reduce the sway of the deck caused by strong wind. Each of the four Pylons rests on a 
297-ft diameter reinforced concrete caisson, which sits on a gravel layer on the sea floor 
such that the structure would remain flexible and free to slide on the gravel layer during a 
seismic event.

© Hemis/Alamy Stock Photo
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12Influence Lines for 
Moving Loads

Introduction
12.1

Thus far we have analyzed structures for a variety of loads without consider
ing how the position of a concentrated load or the distribution of a uniform 
load was established. Further, we have not distinguished between dead load, 
which is fixed in position, and live load, which can change position. In this 
chapter our objective is to establish how to position live load (e.g., a truck 
or a train) to maximize the value of a certain type of force (shear or moment 
in a beam or axial force in a truss) at a designated section of a structure.

C H A P T E R

Chapter Objectives
 ● Understand the concept of and the need for influence lines to analyze structures with moving live loads.

 ● Use the basic concept together with statics to construct influence lines.

 ● Learn the Müller–Breslau principle to graphically construct influence lines of determinate structures.

 ● Learn to position moving loads to maximize the internal forces and reactions based on the influence lines.

 ● Apply the indeterminate structural analysis techniques (e.g., moment distribution, slope-deflection, or 
flexibility method) to establish the ordinates of influence lines.

Influence Lines
12.2

As a moving load passes over a structure, the internal forces at each point in 
the structure vary. We intuitively recognize that a concentrated load applied 
to a beam at midspan produces much greater bending stresses and deflection 
than the same load applied near a support. For example, suppose that you had 
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530  Chapter 12 ■ Influence Lines for Moving Loads

to cross a small stream filled with alligators by walking over an old, flexible, 
partially cracked plank. You would be more concerned about the plank’s ca
pacity to support your weight as you approached midspan than you would be 
when you were standing on the end of the plank at the support (Figure 12.1).

If a structure is to be safely designed, we must proportion its members 
and joints so that the maximum force at each section produced by live and 
dead load is less than or equal to the available capacity of the section. To es
tablish maximum design forces at critical sections produced by moving loads, 
we frequently construct influence lines.

An influence line is a diagram whose ordinates, which are plotted as a 
function of distance along the span, give the value of an internal force, 
a reaction, or a displacement at a particular point in a structure as a 
unit load of 1 kip or 1 kN moves across the structure.

Once the influence line is constructed, we can use it (1) to determine where to place 
live load on a structure to maximize the force (shear, moment, etc.) for which the 
influence line is drawn, and (2) to evaluate the magnitude of the force (represented 
by the influence line) produced by the live load. Although an influence line repre
sents the action of a single moving load, it can also be used to establish the force at 
a point produced by several concentrated loads or by a uniformly distributed load.

Construction of Influence Lines 
for Determinate Beams

12.3

Figure 12.1: Variation of bending with po
sition of load: (a) no bending at midspan, 
load at support; (b) maximum bending and 
deflection, load at midspan. Board fails.

This old
board doesn’t

look safe.

Mealtime

Almost!

I made it!

S NAP!

(a)

(b)

To introduce the procedure for constructing influence lines, we will discuss 
in detail the steps required to draw the influence line for the reaction RA at 
support A of the simply supported beam in Figure 12.2a.

As noted previously, we can establish the ordinates of the influence  
lines for the reaction at A by computing the value of RA for successive po
sitions of a unit load as it moves across the span. We begin by placing the 
unit load at support A. By summing moments about support B (Figure 12.2b), 
we compute RA = 1 kip. We then arbitrarily move the unit load to a second 
position located a distance L/4 to the right of support A. Again, summing  
moments about B, we compute RA =    3 _ 4    kip (Figure 12.2c). Next, we move the  
load to midspan and compute RA =    1 _ 2    kip (Figure 12.2d). For the final com
putation, we position the 1kip load directly over support B, and we compute  
RA = 0 (Figure 12.2e). To construct the influ ence line, we now plot the numeri
cal values of RA directly below each position of the unit load associated with 
the corresponding value of RA. The resulting influ ence line diagram is shown in 
Figure 12.2f. The influe nce line shows that the reaction at A varies linearly from 
1 kip when the load is at A to a value of 0 when the load is at B. Since the reaction 
at A is in kips, the ordinates of the influence line have units of kips per 1 kip of load.

As you become familiar with the construction of influence lines, you will 
only have to place the unit load at two or three positions along the axis of the 
beam to establish the correct shape of the influence line. Several points to 
remember about Figure 12.2f are summarized here:
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12.3 ■ Construction of Influence Lines for Determinate Beams  531

1. All ordinates of the influence line represent values of RA.
2. Each value of RA is plotted directly below the position of the unit load 

that produced it.
3. The maximum value of RA occurs when the unit load acts at A.
4. Since all ordinates of the influence line are positive, a load acting verti

cally downward anywhere on the span produces a reaction at A directed 
upward. (A negative ordinate would indicate the reaction at A is directed 
downward.)

5. The influence line is a straight line. As you will see, influence lines for 
determinate structures are either straight lines or composed of linear 
segments.

By plotting values of the reaction of B for various positions of the unit 
load, we generate the influence line for RB shown in Figure 12.2g. Since the 
sum of the reactions at A and B must always equal 1 (the value of the applied 
load) for all positions of the unit load, the sum of the ordinates of the two 
influence lines at any section must also equal 1 kip.

In Example 12.1 we construct influence lines for the reactions of a beam 
with an overhang. Example 12.2 illustrates the construction of influence lines 
for shear and moment in a beam. If the influence lines for the reactions are 
drawn first, they will facilitate the construction of influence lines for other 
forces in the same structure.

1 kip

movement

RA RB
(a)

L

A B

A B

1 kip

RB = 0RA = 1
(b)

L
4

3
4

A B

RA = 1
4RB =

1 kip

(c)

L
2

1
2

A B

RA = 1
2RB =

1 kip

(d)

A B

RA = 0 RB = 1

1 kip

(e)

RA (kips)

3
41

0

( f )

1
2

RB (kips)

1

0

(g)

1
4

1
2

Figure 12.2: Influence lines for reactions at 
A and B: (a) beam; (b), (c), (d), and (e) show 
successive positions of unit load; ( f ) influence 
line for RA; (g) influence line for RB.
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E X A M P L E  1 2 . 1 Construct the influence lines for the reactions at A and C for the beam in 
Figure 12.3a.

Solution
To establish a general expression for values of RA for any position 
of the unit load between supports A and C, we place the unit load a dis
tance x1 to the right of support A (Figure 12.3b) and sum moments about 
support C.

⟳+ ΣMC = 0

10 R  A   − (1 kN)(10 − x1) = 0

 R  A   = 1 −   
 x  1   __ 10   (1)

where 0 ≤ x1 ≤ 10.

Evaluate RA for x1 = 0, 5, and 10 m.

 x1 RA

 0 1
 5    1 _ 2   

 10 0

A general expression for RA, when the unit load is located between C and 
D, can be written by summing moments about C for the freebody diagram 
shown in Figure 12.3c.

⟳+ ΣMC = 0

10 R  A   + (1 kN)(x2) = 0

 R  A   = −   
 x  2   __ 
10

   (2)

where 0 ≤ x2 ≤ 5.

The minus sign in Equation 2 indicates that RA acts downward when the unit 
load is between points C and D. For x2 = 0, RA = 0; for x2 = 5, RA = −   1 _ 2   . Using 
the foregoing values of RA from Equations 1 and 2, we draw the influence 
line shown in Figure 12.3d.

To draw the influence line for RC (Figure 12.3e), either we can com
pute the values of the reaction at C as the unit load moves across the span, 
or we can subtract the ordinates of the influence line in Figure 12.3d from 
1, because the sum of the reactions for each position of the unit load must 
equal 1—the value of the applied load.

Figure 12.3: Influence lines for reactions 
at supports A and C: (a) beam; (b) load be
tween A and C; (c) unit load between C and 
D; (d ) influence line for RA; (e) influence line 
for RC.

(a)

A B C D

5 m 5 m 5 m

1 kN

RA RC

x1 10 – x1

(b)

A
C

10 m

D

1 kN

RA RC

x2

(c)

A D
C

10 m

RA (kN)

(d)

1

1
2–

RC (kN)

1

(e)

3
2
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12.3 ■ Construction of Influence Lines for Determinate Beams  533

Draw the influence lines for shear and moment at section B of the beam in 
Figure 12.4a.

Solution
The influence lines for shear and moment at section B are drawn in Figure 12.4c 
and d. The ordinates of these influence lines were evaluated for the five posi
tions of the unit load indicated by the circled numbers along the span of the 
beam in Figure 12.4a. To evaluate the shear and moment at B produced by  
the unit load, we will pass an imaginary cut through the beam at B and con
sider the equilibrium of the free body to the left of the section. (The positive 
directions for shear and moment are defined in Figure 12.4b.)

To establish the ordinates of the influence lines for VB and MB at the 
left end (support A), we place the unit load directly over the support at A 
and compute the shear and moment at section B. Since the entire unit load 
is carried by the reaction at support A, the beam is unstressed; thus the 
shear and moment at section B are zero. We next position the unit load at 
point 2, an infinitesimal distance to the left of section B, and evaluate the 
shear VB and moment MB at the section (Figure 12.4e). Summing moments 
about an axis through section B to evaluate the moment, we see that the 
unit load, which passes through the moment center, does not contribute 
to MB. On the other hand, when we sum forces in the vertical direction to 
evaluate the shear VB, the unit load appears in the summation.

We next move the unit load to position 3, an infinitesimal distance to the 
right of section B. Although the reaction at A remains the same, the unit 
load is no longer on the free body to the left of the section (Figure 12.4f). 
Therefore, the shear reverses direction and undergoes a 1kip change in 
magnitude (from −   1 _ 4     to +   3 _ 4    kip). The 1kip jump that occurs between sides 
of a cut is a characteristic of influence lines for shear. On the other hand, 
the moment does not change as the unit load moves an infinitesimal dis
tance from one side of the section to the other.

As the unit load moves from B to D, the ordinates of the influence lines 
reduce linearly to zero at support D because both the shear and the moment 
at B are a direct function of the reaction at A, which in turn varies linearly 
with the position of the load between B and D.

Figure 12.4c and d shows the shear and moment influence lines. Note 
that Equation 5.11 does not apply to these influence lines.

E X A M P L E  1 2 . 2

Figure 12.4: Influence lines for shear 
and moment at section B: (a) position of 
unit load; (b) positive sense of shear and 
moment defined; (c) influence line for shear 
at B; (d )  influence line for moment at B; 
(e) free body for unit load to left of  section B; 
( f ) free body for unit load to right of section 
B; (g) free body for unit load at midspan.

A
B

C
D

RA

(a)

1 2 3 4 5

15ʹ5ʹ

10ʹ

MM

VV
(b)

VB (kips)

(c)

3
4

1
2

1
4–

(d)

MB (kip • ft)

5
2

15
4

1 kip

3
4

(e)

MB =

A

15
4

VB = – 1
4

5ʹ

3
4

( f )

MB =

A

15
4

VB = 3
4

5ʹ

1
2

(g)

MB =

A

5
2

VB = 1
2

5ʹ
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534  Chapter 12 ■ Influence Lines for Moving Loads

E X A M P L E  1 2 . 3 For the frame in Figure 12.5, construct the influence lines for the horizon
tal and vertical components of the reactions Ax and Ay at support A and 
for the vertical component of force FBy applied by member BD to joint B. 
The bolted connection of member BD to the girder may be treated as a pin 
connection, making BD a twoforce member (or a link).

1
3

A

B

C

D

Ax

Ay

30ʹ
5ʹ5ʹ

15ʹ

Figure 12.5

Solution
To establish the ordinates of the influence lines, we position a unit load a 
distance x1 from support A on a free body of member ABC (Figure 12.6a). 
Next we apply the three equations of equilibrium to express the reactions 
at points A and B in terms of the unit load and the distance x1.

Since the force FB in member BD acts along the axis of the member, 
the horizontal and vertical components of FB are proportional to the slope 
of the member; therefore,

  
 F  Bx   ___ 1   =   

 F  By  
 ___ 

3
  

and  F  Bx   =   
 F  By   ___ 3   (1)

Summing forces acting on member ABC (Figure 12.6a) in the y direction 
gives

   +     ↑    ΣFy = 0

0 =  A  y   +  F  By   − 1 kip

 A  y   = 1 kip −  F  By   (2)

Next, a sum of forces in the x direction produces

→+ ΣFx = 0

 A  x   −  F  Bx   = 0

 A  x   =  F  Bx   (3)
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Substituting Equation 1 into Equation 3, we can express Ax in terms of 
FBy as

  A  x   =   
 F  By   ___ 3   (4)

To express FBy in terms of x1, we sum moments of forces on member ABC 
about the pin at support A.

⟳+ ΣMA = 0

(1 kip )x  1   −  F  By   (30) = 0

 F  By   =   
 x  1   __ 30   (5)

Substituting FBy given by Equation 5 into Equations 2 and 4 permits us to 
express Ay and Ax in terms of the distance x1.

  A  y   = 1 kip −   
 x  1   __ 30   (6)

 A  x   =   
 x  1   __ 90   (7)

To construct the influence lines for the reactions shown in Figure 12.6b, c, 
and d, we evaluate FBy, Ay, and Ax, given by Equations 5, 6, and 7, for values 
of x1 = 0, 30, and 40 ft.

 x1 FBy Ay Ax

 0 0 1 0

 30 1 0    1 _ 3   

 40    4 _ 3    −   1 _ 3       4 _ 9   

As we can observe from examining the shape of the influence lines 
in  Examples 12.1 through 12.3, influence lines for determinate struc
tures consist of a series of straight lines; therefore, we can define most 
influence lines by connecting the ordinates at a few critical points along 
the axis of a beam where the slope of the influence line changes or is 
discontinuous. These points are located at supports, hinges, ends of 
cantilevers, and, in the case of shear forces, on each side of the sec
tion on which they act. To illustrate this procedure, we will construct 
the influence lines for the reactions at the supports of the beam in  
Example 12.4.

Figure 12.6: Influence lines.

(a)

A B C
Ax

Ay

x1

FBy

FBx

1 kip

30ʹ 10ʹ

1

– 1
3

(b)

Ay
 (kips)

0

(d)

FBy
 (kips)

4
31

0

(c)

Ax
 (kips)

4
93

9
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536  Chapter 12 ■ Influence Lines for Moving Loads

E X A M P L E  1 2 . 4 Draw the influence lines for reactions RA and MA at the fixed support at A 
and for reaction RC at the roller support at C (Figure 12.7a). The arrows 
shown in Figure 12.7a indicate the positive sense for each reaction.

Figure 12.7

RA

MA

RC

(a)

A

B C
D

10ʹ

hinge

6ʹ 6ʹ

RA (kips)

(b)

1
1

–1

MA (kip • ft)

(c)
–10

+10

(d)
RC (kips)

1
2

0

Solution
In Figure 12.8a, b, d, and e, we position the unit load at four points to supply 
the forces required to draw the influence lines for the support reactions. In 
Figure 12.8a, we place the unit load at the face of the fixed support at point 
A. In this position the entire load flows directly into the support, producing 
the reaction RA. Since no load is transmitted through the rest of the structure, 
and all other reactions are equal to zero, the structure is unstressed.

lee98004_ch12_528-603.indd   536 23/12/16   5:12 pm



12.3 ■ Construction of Influence Lines for Determinate Beams  537

We next move the unit load to the hinge at point B (Figure 12.8b). 
If we consider a free body of beam BCD to the right of the hinge 
(Figure 12.8c) and sum moments about the hinge at B, the reaction 
RC must be equal to zero because no external loads act on beam BD. 
If we sum forces in the vertical direction, it follows that the force RB 
applied by the hinge also equals zero. Therefore, we conclude that the 
entire load is supported by cantilever AB and produces the reactions 
at A shown in Figure 12.8b.

We next position the unit load directly over support C 
(Figure 12.8d ). In this position the entire force is transmitted through  
the beam into the support at C, and the balance of the beam is  
un stressed. In the final position, we move the unit load to the end of 
the cantilever at point D (Figure 12.8e). Summing moments about 
the hinge at B gives

⟳+ ΣMB = 0

0 = 1 kip (12 ft) − RC (6 ft)

 R  C   = 2 kips

Summing forces on member BCD in the vertical direction, we es
tablish that the pin at B applies a force of 1 kip downward on mem
ber BCD. In turn, an equal and opposite force of 1 kip must act  
upward at the B end of member AB, producing the reactions shown 
at support A.

We now have all the information required to plot the influence 
lines shown in Figure 12.7b, c, and d. Figure 12.8a supplies the val
ues of the influence line ordinates at support A for the three influence 
lines; that is, in Figure 12.7b, RA = 1 kip, in Figure 12.7c, MA = 0, 
and in Figure 12.7d, RC = 0.

Figure 12.8b supplies the values of the three influence line 
ordinates at point B, that is, RA = 1 kip, MA = −10 kip · ft (counter
clockwise), and RC = 0. Figure 12.8d supplies the ordinates of the 
influence lines at support C, and Figure 12.8e gives the value of 
the influence line ordinates at point D, the cantilever tip. Drawing 
straight lines between the four points completes the construction of 
the influence lines for the three reactions. Figure 12.8

RA = 1
RC = 0

MA = 0

(a)

A B C D

1 kip

RA = 1
RC = 0

MA = 10 kip • ft

(b)

A C D

B

1 kip

RA = 0
RC = 1

MA = 0

(d)

A B C D

1 kip

MA = 10 kip • ft

RA = 1
RC = 2

RB = 1

RB = 1

(e)

A B C D

1 kip

RC = 0

RB = 0

(c)

B C D

6ʹ
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Müller–Breslau Principle for Determinate Beams
12.4

The Müller–Breslau principle provides a simple procedure for establishing 
the shape of influence lines for the reactions or the internal forces (shear and 
moment) in beams. The influence lines, which can be quickly sketched, can be 
used in the following three ways:

1. To verify that the shape of an influence line, produced by moving a unit 
load across a structure, is correct.

2. To establish where to position live load on a structure to maximize a 
particular function without evaluating the ordinates of the influence line. 
Once the critical position of the load is established, it is simpler to ana
lyze certain types of structures directly for the specified live load than to 
draw the influence line.

3. To determine the location of the maximum and minimum ordi
nates of an influence line so that only a few positions of the unit 
load must be considered when the influence line ordinates are 
computed.

Although the Müller–Breslau method applies to both determinate and in
determinate beams, we limit the discussion in this section to determinate mem
bers. The Müller–Breslau principle states:

The influence line for any reaction or internal force (shear, moment) 
corresponds to the deflected shape of the structure produced by re-
moving the capacity of the structure to carry that force and then in-
troducing into the modified (or released) structure a unit deformation 
that corresponds to the restraint removed.

The unit deformation refers to a unit displacement for reaction, a relative 
unit displacement for shear, and a relative unit rotation for moment. To intro
duce the method, we will draw the influence line for the reaction at A of the 
simply supported beam in Figure 12.9a. We begin by removing the vertical 
restraint supplied by the reaction at A, producing the released struc ture shown 
in Figure 12.9b. We next displace the left end of the beam vertically upward, 
in the direction of RA, a unit displacement (Figure 12.9c). Since the beam 
must rotate about the pin at B, its deflected shape, which is the influence line, 
is a triangle that varies from 0 at B to 1.0 at A′. This result confirms the shape 
of the influence line for the reaction at A that we constructed in Section 12.2 
(Figure 12.2f ).

As a second example, we will draw the influence line for the reac
tion at B for the beam in Figure 12.10a. Figure 12.10b shows the released 
structure produced by removing the support at B. We now introduce a unit 
vertical displacement Δ that corresponds to the reaction at B producing the 
deflected shape, which is the influence line (Figure 12.10c). From simi
lar triangles, we compute the value of the ordinate of the influence line at 
point C as    3 _ 2   .

Figure 12.9: Construction of the influence 
line for RA by the Müller–Breslau principle: 
(a) simply supported beam; (b) the released 
structure; (c) displacement introduced that 
corresponds to reaction at A. The deflected 
shape is the influence line to some unknown 
scale; (d ) the influence line for RA.

A B

RA

Aʹ

B

RA (kips)

Δ=1

(a)

BA

(b)

(c)

1

(d)
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To construct an influence line for shear at a section of a beam by 
the Müller–Breslau method, we must remove the capacity of the cross 
section to transmit shear but not axial force or moment. We will imagine 
that the device constructed of plates and rollers in Figure 12.11a permits 
this modification when introduced into a beam. To illustrate the Mül
ler–Breslau method, we will construct the influ ence line for shear at point 
C of the beam in Figure 12.11b. In Figure 12.11c we insert the plate and 
roller device at section C to release the shear ca pacity of the cross section. 
We then offset the beam segments to the left and right of section C by Δ1 
and Δ2 such that a unit relative displacement (Δ1 + Δ2 = 1) is introduced 
(Figure 12.11c). Since the sliding device inserted at C still maintains mo
ment capacity, no relative rotation is allowed. Therefore, segments AC and 
CD should remain parallel, and the rotation (θ) of these two segments is 
identical, that is no relative rotation exists between segments AC and CD. 
From geometry in Figure 12.11d,

Δ1 = 5θ,    Δ2 = 15θ

and 
Δ1 + Δ2 = 5θ + 15θ = 20θ = 1

It follows that θ =    1 __ 20   , Δ1 =    1 _ 4    (but with a minus sign), and Δ2 =    3 _ 4   .

(d)

1

3
2

(c)

Δ=1

RB

RB (kips)

(b)

(a)

20ʹ 10ʹ10ʹ

hinge

A B C D

A C D

RB

Figure 12.10: Influence line for the reaction 
at B: (a) cantilever beam with hinge at C;  
(b) reaction removed, producing the released 
structure; (c) displacement of released struc
ture by reaction at B establishes the shape 
of the influence line; (d )  influence line for 
reaction at B.(a)

beam beam

A B

A B

DC V

V

Δ1

Δ2

VC (kips)

(b)

15ʹ5ʹ 5ʹ

(c)

(d)

3
4

1
4–

θ

θ

Figure 12.11: Influence line for shear using 
Müller–Breslau method: (a) device to release 
shear capacity of cross section; (b) beam de
tails; (c) shear capacity released at section C; 
(d ) influ ence line for shear at section C.
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(a)

10ʹ 10ʹ

(c)

(b)

hinge

(d)

5

A C

C

B

A B

MC (kip • ft)

Δ
θ = 1θA =

A B

1
2

Figure 12.12: Influence line for moment: (a)  details of 
beam; (b) released structure—hinge inserted at midspan; 
(c) displacement of released structure by moment; (d) in
fluence line for moment at midspan.

Figure 12.13: Influence line for moment at 
support A: (a) details of structure; (b) re
leased structure; (c) deformation produced 
by moment at support A; (d ) influence line 
for moment at A.

(a)

(b)

(c)

(d)

11

MA (kip • ft)

deflected
shape

A B

A B

11ʹ

θ = 1A B

To draw an influence line for moment at an arbitrary section of a beam 
using the Müller–Breslau method, we introduce a hinge at the section to 
remove the moment capacity in the released structure. For example, to es
tablish the shape of the influence line for moment at midspan of the sim
ply supported beam in Figure 12.12a, we introduce a hinge at midspan as 
shown in Figure 12.11b. We then move the hinge at C up by an amount Δ 
such that a unit relative rotation (or a “kink”) of θ = 1 between segments AC 
and CB is achieved. From geometry in Figure 12.11c, θA =    1 _ 2   , and Δ is com
puted as    1 _ 2    (10) = 5, which is the ordinate of the influence line at C. The final 
influence line is shown in Figure 12.11d.

In Figure 12.13 we use the Müller–Breslau method to construct the 
influence line for the moment M at the fixed support of a cantilever beam. 
The released structure is established by introducing a pin at the left sup
port. Introducing a unit relative rotation between the fixed support and 
the released beam produces a deflected shape with a beam tip deflection 
of 11, which is the ordinate of the influence line at that location. The final 
influence line is shown in Figure 12.13d.

The Müller–Breslau principle is also applicable to indeterminate 
structures. The theoretical basis of this principle will be demonstrated by 
using the Maxwe1lBetti law in Section 12.14.
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Use of Influence Lines
12.5

As noted previously, we construct influence lines to establish the maximum 
value of reactions or internal forces produced by live load. In this section 
we describe how to use an influence line to compute the maximum value of 
a function when the live load, which can act anywhere on the structure, is 
either a single concentrated load or a uniformly distributed load of variable 
length.

Since the ordinate of an influence line represents the value of a certain 
function produced by a unit load, the value produced by a concentrated load 
can be established by multiplying the influence line ordinate by the magnitude 
of the concentrated load. This computation simply recognizes that the forces 
created in an elastic structure are directly proportional to the magnitude of the 
applied load.

If the influence line is positive in certain regions and negative in oth
ers, the function represented by the influence line reverses direction for 
certain positions of the live load. To design members in which the direc
tion of the force has a significant influence on behavior, we must establish 
the value of the largest force in each direction by multiplying both the 
maximum positive and the maximum negative ordinates of the influ ence 
line by the magnitude of the concentrated load. For example, if a support 
reaction reverses direction, the support must be detailed to transmit the 
largest values of tension (uplift) as well as the largest value of compression 
into the foundation.

In the design of buildings and bridges, live load is frequently repre
sented by a uniformly distributed load. For example, a building code may 
require that floors of parking garages be designed for a uniformly distrib
uted live load of a certain magnitude instead of a specified set of wheel 
loads.

To establish the maximum value of a function produced by a uniform 
load w of variable length, we must distribute the load over the member in 
the region or regions in which the ordinates of the influence line are either 
positive or negative. We will demonstrate next that the value of the function 
produced by a distributed load w acting over a certain region of an influence 
line is equal to the area under the influence line in that region multiplied by 
the magnitude w of the distributed load.

To establish the value of a function F produced by a uniform 
load w acting over a section of beam of length a between points A and 
B (Figure  12.14), we will replace the distributed load by a series of 
infinitesimal forces dP, and then sum the increments of the function (dF ) 
produced by the infinitesimal forces. As shown in Figure 12.14, the force 
dP produced by the uniform load w acting on an infinitesimal beam seg
ment of length dx equals the product of the distributed load and the length 
of the segment, that is,

  dP = w dx (12.1)

During the Industrial 
Revolution, railroads ex-
panded as did the need 
for longer span bridges. 
Structural engineers re-
sponded to the concern 
for simulating moving train 
loads in terms of safety and 
economy in bridge design. 
The concept of influence lines 
originated through the analy-
sis of elastic arch in 1868 by 
Emil Winkler (1835–1888) and 
Otto Mohr (1835–1918), and 
later in Johann Weyrauch’s 
(1845–1917) publication in 
1878, where he coined the 
method as “influence lines.” In 
1883, Henrich Müller–Breslau 
(1851–1925) first published his 
graphical method for deter-
mining maximum influence 
(i.e., internal forces) for con-
tinuous beams.
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To establish the increment of the function dF produced by the force dP, we 
multiply dP by the ordinate y of the influence line at the same point, to give

  dF = (dP) y (12.2)

Substituting dP given in Equation 12.1 into Equation 12.2 gives

  dF = w dx y (12.3)

To evaluate the magnitude of the function F between any two points A and B, 
we integrate both sides of Equation 12.3 between those limits to give

  F =  ∫ 
 A
  
  B

    dF =    ∫ 
 A
  
  B

    w dx y (12.4)

Since the value of w is a constant, we can factor it out of the integral,  producing

  F = w   ∫ 
 A
  
  B

    y dx (12.5)

Recognizing that y dx represents an infinitesimal area dA under the influ ence 
line, we can interpret the integral on the right side of Equation 12.5 as the area 
under the influence line between points A and B. Thus,

  F = w (areaAB) (12.6)

where areaAB is the area under the influence line between A and B.
In Example 12.5 we apply the principles established in this section to 

evaluate the maximum values of positive and negative moment at midspan 
of a beam that supports both a distributed load of variable length and a con
centrated force.

dP = w (dx)

dA

w

a

dx

A

B

influence line

beam

y

Figure 12.14
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E X A M P L E  1 2 . 5The beam in Figure 12.15a is to be designed to support its deadweight  
of 0.45 kip/ft and a live load that consists of a 30kip concentrated load 
and a variable length, uniformly distributed load of 
0.8 kip/ft. The live loads can act anywhere on the span. 
The influence line for moment at point C is given in  
Figure 12.15b. Compute (a) the maximum positive and 
negative values of live load moment at section C and  
(b) the moment at C produced by the beam’s weight.

Solution
(a) To compute the maximum positive live load moment, 
we load the region of the beam where the ordinates of the 
influence line are positive (Figure 12.15c). The concen
trated load is positioned at the maximum positive ordi
nate of the influence line.

Max. + MC = 30 (5) + 0.8  [  1 _ 2   (20) 5]   = 190 kip · ft

(b) For maximum negative live load moment at C, we 
position the loads as shown in Figure 12.15d . Because 
of symmetry, the same result occurs if the 30kip load 
is positioned at E.

Max. − MC = (30 kips) (−3) + 0.8   [  1 _ 2   (6) (−3)]  (2) = −104.4 kip · ft

(c) For the moment at C due to dead load, multiply the area under the entire 
influence line by the magnitude of the dead load.

MC = 0.45  [  1 _ 2   (6) (−3)]   (2) + 0.45   [  1 _ 2  (20) 5]  

= −8.1 + 22.5 = +14.4 kip · ft

Figure 12.15: (a) Dimensions of beam with 
design live loads indicated at the left end; 
(b) influence line for moment at C; (c) posi
tion of live load to maximize positive moment 
at C; (d )  position of live load to maximize 
negative moment at C. Alternately, the 30kip 
load could be positioned at E.

(a)

10ʹ 10ʹ6ʹ

variable

6ʹ

EDCBA

30 kips
w = 0.8 kip/ft

MC (kip • ft)

(b)

5

–3 –3

EA

(c)

30 kips

w = 0.8 kip/ft

(d)

30 kips

w = 0.8 kip/ft

EA

w = 0.8 kip/ft
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Influence Lines for Determinate Girders Supporting  
Floor Systems

12.6

Figure 12.16a shows a schematic drawing of a structural framing system com
monly used to support a bridge deck. The system is composed of three types 
of beams: stringers, floor beams, and girders. To show the main flexural mem
bers clearly, we simplify the sketch by omitting the deck, crossbracing, and 
connection details between members.

In this system a relatively flexible slab is supported on a series of small 
longitudinal beams—the stringers—that span between transverse floor beams. 
Stringers are typically spaced about 8 to 10 ft apart. The thickness of the slab 
depends on the spacing between stringers. If the span of the slab is reduced by 
spacing the stringers close together, the designer can reduce the depth of the 
slab. As the spacing between stringers increases, increasing the span of the 
slab, the slab depth must be increased to carry larger design moments and to 
limit deflections.

The load from the stringers is transferred to the floor beams, which in turn 
transmit that load together with their own weight to the girders. In the case of 
a steel bridge, if the connections of both the stringers to the floor beams and 
the floor beams to the girders are made with standard steel clip angles, we 
assume that the connections can transfer only vertical load (no moment) and 
treat them (the connections) as simple supports. Except for the weight of the 
girder, all loads are transferred into the girders by the floor beams. The points 
at which the floor beams connect to the girders are termed panel points.

In a decktype bridge, the roadway is positioned at the top of the  girders 
(see the cross section in Figure 12.16b). In this configuration it is  possible 
to cantilever the slab beyond the girders to increase the width of  the road
way. Often the cantilevers support pedestrian walkways. If the floor beams 
are positioned near the bottom flange of the girders (Figure 12.16c)—a half
through bridge—the distance from the bottom of the bridge to the top of 
vehicles is reduced. If a bridge must run under a second bridge and over a  
highway (e.g., at an intersection where three highways cross), a halfthrough 
bridge will reduce the required headroom.

To analyze the girder, it is modeled as shown in Figure 12.16d. In this 
figure the stringers are shown as simply supported beams. For clarity we often 
omit the rollers and pins under the stringers and just show them resting on the 
floor beams. Recognizing that the girder in Figure 12.16d actually represents 
both the girders in Figure 12.16a, we must make an additional computation 
to establish the proportion of the vehicle’s wheel loads that is distributed to 
each girder. For example, if a single vehicle is centered between girders in the 
middle of the roadway, both girders will carry onehalf the vehicle weight. On 
the other hand, if the resultant of the wheel loads is located at the quarter point 
of a floor beam, threefourths of the load will go to the near girder and one
fourth to the far girder (Figure 12.16e). Establishing the portion of the vehicle 
loads that go to each girder is a separate computation that we make after the 
influence lines are drawn.
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(a)

stringer

girder

floor beam

girder

(b)

slab
stringer

floor beam
girder (c)

P
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(d)

floor beam

girder

stringer

(e)

3
4

CL

L3
4

L
4

P1
4

Figure 12.16: (a) Sketch of stringer, floor beam, and girder system; (b) deck bridge; (c) half
through bridge; (d ) schematic representation of (a); (e) one lane loaded.
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E X A M P L E  1 2 . 6 For the girder in Figure 12.17a, draw the influence lines for the reaction at 
A, the shear in panel BC, and the moment at C.

Solution
To establish the ordinates of the influence lines, we will move a unit load 
of 1 kN across stringers and compute the forces and reactions required to 
construct the influence lines. The arrows above the stringers denote the vari
ous positions of the unit load we will consider. We start with the unit load 
positioned above support A. Treating the entire structure as a rigid body, and 
summing moments about the right support, we compute RA = 1 kN. Since the 
unit load passes directly into the support, the balance of the structure is un
stressed. Thus the values of shear and moment at all points within the girder 
are zero, and the ordinates at the left end of the influence lines for shear VBC 
and moment MC are zero, as shown in Figure 12.17c and d.

To compute the ordinates of the influence lines at B, we next move 
the unit load to panel point B, and we compute RA =    4 _ 5    kN (Figure 12.17e). 
Since the unit load is directly at the floor beam, 1 kN is transmitted into 
the girder at panel point B and the reactions at all floor beams are zero. 
To compute the shear in panel BC, we pass section 1 through the girder, 
producing the free body shown in Figure 12.17e. Following the convention 
for positive shear defined in Section 5.3, we show VBC acting downward 
on the face of the section. To compute VBC, we consider equilibrium of the 
forces in the y direction

   +     ↑    ΣFy = 0 =    4 _ 5     −1 − VBC

VBC = −   1 _ 5    kN

where the minus sign indicates that the shear is opposite in sense to that 
shown on the free body (Figure 12.17e).

To compute the moment at C with the unit load at B, we pass 
section 2 through the girder, producing the free body shown in Figure 12.17f. 
Summing moments about an axis, normal to the plane of the member and 
passing through the centroid of the section at point C, we compute MC.

⟳+ ΣMC = 0

   4 _ 5    (12) − 1 (6) − MC = 0

MC =    18
 __ 5    kN · m

We now shift the unit load to panel point C and compute RA =    3 __ 5      kN. To 
compute VBC, we consider equilibrium of the free body to the left of section 1 
(Figure 12.17g). Since the unit load is at C, no forces are applied to the girder 
by the floor beams at A and B, and the reaction at A is the only external force 
applied to the free body. Summing forces in the y direction gives us

   +     ↑    ΣFy = 0 =    3 _ 5     − VBC  and  VBC =    3 _ 5    kN
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Using the free body in Figure 12.17h, we sum moments about C to compute 
MC =    36

 __ 5    kN · m.
When the unit load is positioned to the right of panel point C, the reac

tions of the floor beams on the freebody diagrams to the left of sections 1  
and 2 are zero (the reaction at A is the only external force). Since the reac
tion at A varies linearly as the load moves from point C to point F, VBC and 
MC —both linear functions of the reaction at A—also vary linearly, reducing 
to zero at the right end of the girder.

RA
(a)

1 2

5 panels @ 6 m = 30 m

A B C D E F

1 kN 1 kN 1 kN 1 kN

Figure 12.17: (a) Dimensions of the structure; (b) influence line 
for RA; (c) influence line for shear in panel BC; (d ) influence line 
for moment in girder at C; (e)  free body for shear in panel BC 
with unit load at B; ( f ) computation of MC with unit load at B; 
(g) computation of VBC with unit load at C; (h) computation of MC 
with unit load at C.
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E X A M P L E  1 2 . 7 Construct the influence line for the bending moment MC at point C in the 
girder shown in Figure 12.18a. The influence line for the support reaction 
RG is given in Figure 12.18b.

Solution
To establish the influence line showing the variation of MC, we position 
the unit load at each panel point (the location of the floor beams). The mo
ment in the girder is computed using a free body cut by passing a vertical 
plane through the floor system at point C. The value of the girder reac
tion RG at the left support is read from the influence line for RG shown in 
Figure 12.18b.

We can establish two points on the influence line without computa
tion by observing that when the unit load is positioned over the girder 
supports at points B and E, the entire load passes directly into the sup
ports, no stresses develop in the girder, and accordingly the moment on 
a section through point C is zero. The free bodies and the computation 
of MC for the unit load at points A and C are shown in Figure 12.18d 
and e. The complete influence line for MC is shown in Figure 12.18c. 
Again, we observe that the influence lines for a determinate structure 
are composed of straight lines.

(b)

RG (kips)

4
3 1
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2
3 1

3

1
3
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5 @ 20ʹ = 100ʹ

A B
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3– 40

3

40
3

20ʹ20ʹ
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4
3
+
ΣMC = 0

(20) – MC = 0–1 × 40 + 4
3

MC = kip • ft40
3

(d)

kip • ft

20ʹ

1 kip

RG =

MC
C

2
3

ΣMC = 0

(20) – MC = 02
3

MC = 40
3

(e)

+

Figure 12.18: Influence lines for cantilever 
bridge girder: (a) details of floor system;  
(b) influence line for RG; (c) influence line 
for MC.
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Figure 12.19: Influence lines for bridge girder 
loaded by stringers with cantilevers.
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Draw the influence line for the bending moment on a vertical section 
through point B on the girder (Figure 12.19a). At points A and F the con
nection of the stringers to the floor beam is equivalent to a pin. At points B 
and E, the connections of the stringers to the floor beam are equivalent to 
a roller. The influence line for the reaction at A is given in Figure 12.19b.

E X A M P L E  1 2 . 8

Solution
When the unit load is positioned at point A, the entire load passes directly 
through the floor beam into the pin support at point A. Since no stresses 
develop in sections of the girder away from the support, the bending mo
ment on the section at point B is zero.

We next move the unit load to point B, producing a reaction RA of    5 _ 8    kN 
(Figure 12.19b). Summing moments of the applied loads, about the section 
at point B, we compute MB =    15

 __ 4    kN · m (Figure 12.19d).
Next, the unit load is moved to point C, the tip of the cantilever, produc

ing the stringer reactions shown in Figure 12.19e. The forces on the girder 
are equal in magnitude to the reactions on the stringer but directed in the op
posite direction. Again summing moments about the vertical section at point 
B, we compute MB = 5 kN·m. When the unit load is moved an infinitesimal 
distance across the gap to point D at the tip of the cantilever on the right, 
stringer ABC is no longer loaded; however, the reaction at A, the only force 
acting on the free body of the girder to the left of section B, remains equal 
to    1 _ 2    kN. We now sum moments about B and find that MB has reduced to 
3 kN · m (Figure 12.19f ). As the unit load moves from point D to point F, 
computations show that the moment at Section B reduces linearly to zero.
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Influence Lines for Determinate Trusses
12.7

Since truss members are typically designed for axial force, their cross sections 
are relatively small because of the efficient use of material in direct stress. 
Because a truss member with a small cross section bends easily, transverse 
loads applied directly to the member between its joints would produce exces
sive flexural deflections. Therefore, if the members of the truss are to carry  
axial force only, loads must be applied to the joints. If a floor system is not an 
integral part of the structural system supported by a truss, the designer must 
add a set of secondary beams to carry load into the joints (Figure 12.20). 
These members, together with light diagonal bracing in the top and bottom 
planes, form a rigid horizontal truss that stabilizes the main vertical truss 
and prevents its compression chord from buckling laterally. Although an iso
lated truss has great stiffness in its own plane, it has no significant lateral 
stiffness. Without the lateral bracing system, the compression chord of the 
truss would buckle at a low level of stress, limiting the capacity of the truss 
for vertical load.

Since load is transmitted to a truss through a system of beams similar to 
those shown in Figure 12.16a for girders supporting a floor system, the pro
cedure to construct influence lines for the bars of a truss is similar to that for 
a girder with a floor system; that is, the unit load is positioned at successive 
panel points, and the corresponding bar forces are plotted directly below the 
position of the load.

Loads can be transmitted to trusses through either the top or bottom 
panel points. If load is applied to the joints of the top chord, the truss is known 
as a deck truss. Alternatively, if load is applied to the bottom chord panel 
points, the truss is termed a through truss.

Construction of Influence Lines for a Truss

To illustrate the procedure for constructing influence lines for a truss, we will 
compute the ordinates of the influence lines for the reaction at A and for bars BK, 
CK, and CD of the truss in Figure 12.21a. In this example we will assume that 
load is transmitted to the truss through the lower chord panel points.

We begin by constructing the influence line for the reaction at A. Since 
the truss is a rigid body, we compute the ordinate of the influence line at any 
panel point by placing the unit load at that point and summing moments about 
an axis through the right support. The computations show that the influence 
line for the reaction at A is a straight line whose ordinates vary from 1 at the 
left support to zero at the right support (Figure 12.21b). This example shows 
that the influence lines for the support reactions of simply supported beams 
and trusses are identical.

upper chord
of main truss

upper chord
bracing

floor
beam

floor
beam

stringer

concrete
slab

abutment

lower
chord of

main truss

Figure 12.20: A typical panel of a truss bridge showing floor system which supports con
crete slab roadway. Load on roadway slab transmitted to lower chord panel points of truss by 
floor beams.
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To construct the influence line for the force in bar BK, we apply the unit 
load to a panel point and then determine the force in bar BK by analyzing a 
free body of the truss cut by a vertical section passing through the second 
panel of the truss (section 1 in Figure 12.21a). Figure 12.22a shows the free 
body of the truss to the left of section 1 when the unit load is at the first 
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Figure 12.21: Influence lines for truss:  
(a) details of truss; (b) influence line for 
reaction at A; (c) influence line for bar BK;  
(d ) influence line for bar CK; (e) influence 
line for bar CD.
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Figure 12.22: Freebody diagrams to con
struct influence lines.

panel point. By summing forces in the y direction, we compute the vertical 
component YBK of the force in bar BK.

   +     ↑    ΣFy = 0

   5 _ 6     −1 + YBK = 0

YBK =    1 _ 6    kip (compression)

Since the sides of the slope triangle of the bar are in a ratio of 3:4:5, we 
compute FBK by simple proportion.

   
FBK ____ 
5
    =    

YBK ___ 
4
   

FBK =    
5 __ 
4
    YBK =    5 ___ 

24
    kip
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Because FBK is a compression force, we plot it as a negative influence line 
ordinate (Figure 12.21c).

Figure 12.22b shows the free body to the left of section 1 when the unit 
load acts at joint K. Since the unit load is no longer on the free body, the 
vertical component of force in bar BK must equal    4 _ 6    kip and act downward to 
balance the reaction at support A. Multiplying YBK by    5 _ 4   , we compute a tensile 
force FBK equal to    20

 __ 24    kip. Since the reaction of A reduces linearly to zero as 
the unit load moves to the right support, the influence line for the force in bar 
BK must also reduce linearly to zero at the right support.

To evaluate the ordinates of the influence line for the force in bar CK, 
we will analyze the free body of the truss to the left of section 2, shown in 
Figure 12.21a. Figure 12.22c, d, and e shows free bodies of this section for three 
successive positions of the unit load. The force in the bar CK, which changes 
from tension to compression as the unit load moves from panel point K to J, 
is evaluated by summing forces in the y direction. The resulting influence line 
for bar CK is shown in Figure 12.21d. To the right of point K the distance at 
which the influence line passes through zero is determined by similar triangles:

   
  1 _ 3   __ x    =    

  1 _ 2   ______ 
15 − x

   x = 6 ft

The influence line for the force in bar CD is computed by analyzing 
a free body of the truss cut by a vertical section through the third panel 
(section 3 in Figure 12.21a). Figure 12.22f shows a free body of the truss to the 
left of section 3 when the unit load is at panel point K. The force in CD is evalu
ated by summing moments about the intersection of the other two bar forces at J.

⟳+ ΣMJ = 0

   4 _ 6    (45) − 1 (15) − FCD (20) = 0

FCD =    3 _ 4    kip (compression)

Figure 12.22g shows the free body of the truss to the left of section 3 when the 
unit load is at joint J. Again we evaluate FCD by summing moments about J.

⟳+ ΣMJ = 0

0 =     3 _ 6    (45) − FCD (20)

FCD =    9 _ 8    kips (compression)

The influence line for bar CD is shown in Figure 12.21e.

Influence Lines for a Trussed Arch

As another example, we will construct the influence lines for the reactions at 
A and for the forces in bars AI, BI, and CD of the threehinged trussed arch 
in Figure 12.23a. The arch is constructed by joining two truss segments with 
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554  Chapter 12 ■ Influence Lines for Moving Loads

a pin at midspan. We assume that loads are transmitted through the upper 
chord panel points.

To begin the analysis, we construct the influence line for Ay, the 
vertical reaction at A, by summing moments of forces about an axis 
through the pin support at G. Since the horizontal reactions at both 
supports pass through G, the computations for the ordinates of the 
influence line are identical to those of a simply supported beam. The 
influence line for Ay is shown in Figure 12.23b.

Now that Ay is established for all positions of the unit load, we next 
compute the influence line for Ax, the horizontal reaction at A. In this 
com putation we will analyze a free body of the truss to the left of the 
center hinge at point D. For example, Figure 12.24a shows the free body 
used to compute Ax when the unit load is positioned at the second panel 
point. By summing moments about the hinge at D, we write an equation 
in which Ax is the only unknown.

⟳+ MD = 0

0 =    3 _ 4     (24) − Ax (17) − 1 (12)

Ax =    6 __ 17    kip

The complete influence line for Ax is shown in Figure 12.23c.
To evaluate the axial force in bar AI, we isolate the support at A 

(Figure 12.24b). Since the horizontal component of the force in bar AI 
must equal Ax, the ordinates of the influence line for AI will be propor
tional to those of Ax. Because bar AI is on a slope of 45°, FAI =   √ 

__
 2   XAI =   

√ 
__

 2   Ax. The influence line for FAI is shown in Figure 12.23d.
Figure 12.24c shows the free body used to determine the influence 

line for the force in bar CD. This free body is cut from the truss by a 
vertical section through the center of the second panel. Using the val
ues of Ax and Ay from the influence lines in Figure 12.23b and c, we can 
solve for the force in bar CD by summing moments about a reference 
axis through joint I. Plotting the ordinates of FCD for various positions 
of the unit load, we draw the influence line shown in Figure 12.23e.

To determine the force in bar BI, we consider a free body of the 
truss to the left of a vertical section passing through the first panel 
(Figure 12.24d ). By summing moments of the forces about an axis 
at point X (the intersection of the lines of action of the forces in bars 
AI and BC), we can write a moment equation in terms of the force 
FBI. We can further simplify the computation by extending force FBI 

along its line of action to joint B and resolving the force into rectangular 
components. Since XBI passes through the moment center at point X, only 
the ycomponent of FBI appears in the moment equation. From the slope 
relationship, we can express FBI as

 F  BI   =    13
 __ 5     Y  BI  

The influence line for FBI is plotted in Figure 12.23f.

A

I H

G

B C D E F

Ay

Ax

(a)

4 @ 12ʹ = 48ʹ

hinge
12ʹ
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4 1
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6
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(kips)

FCD
(kips)
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( f )

351
340

182
340–

2

19.9ʹ

18.9ʹ

Figure 12.23: Influence lines for a trussed 
arch: (a) truss details; (b) reaction Ay; (c) 
reaction Ax; (d ) force in bar AI; (e) force in  
bar CD; ( f ) force in bar BI.

lee98004_ch12_528-603.indd   554 23/12/16   5:14 pm



12.8 ■ Live Loads for Highway and Railroad Bridges  555

Live Loads for Highway and Railroad Bridges
12.8

(a)
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3
4
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I

24ʹ

12ʹ
1 kip

17ʹ

(b)
Ay

Ax A

FAI = 2 XAI

(c)

Ay

Ax A

B C

I

12ʹ

12ʹ

FCD

FID

(d)

Ay

Ax A

B X

17ʹ

17ʹ
FAI

FBI

FBI
YBI

XBI
FBC

Figure 12.24: Free bodies used to analyze 
the threehinged arch in Figure 12.23a.

In Section 12.5 we established how to use an influence line to evalu
ate the force at a section produced by either a uniformly distributed or 
a concentrated live load. We now will extend the discussion to include 
establishing the maximum force at a section produced by a set of moving 
loads such as those applied by the wheels of a truck or train. In this sec
tion we describe briefly the characteristics of the live loads (the standard 
trucks and trains) for which highway and railroad bridges are designed. 
In Section 12.9 we describe the increase–decrease method for positioning 
the wheel loads.

Highway Bridges

The live loads for which highway bridges in the United States must be de
signed are specified by the American Association of State Highway and 
Transportation Officials (AASHTO). At present major highway bridges must 
be designed to carry in each lane the HL93 design live load, which is a combi
nation of the standard 72kip sixwheel design truck, shown in Figure 12.25a 
or the design tandem shown in Figure 12.25b, and a lane loading consisting 
of the uniformly distributed load shown in Figure 12.25d. The basic com
binations of these loads are shown in Figure 12.25f and Figure 12.25g. The 
designer is responsible for applying these vehicular live loads in a variety of 
locations, configurations, and combinations (for more detail see the AASHTO 
specifications) to identify the maximum member forces for design.

Although the distance between the front and middle wheels of the design 
truck (Figure 12.25a) is fixed at 14 ft, the designer is free to set a value of V 
between 14 and 30 ft for the spacing between the middle and rear wheels. The 
wheel spacing the designer selects should maximize the value of the design 
force being computed. In all designs, the engineer should consider the pos
sibility of the truck moving in either direction across the span.
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556  Chapter 12 ■ Influence Lines for Moving Loads

Railroad Bridges

The design loads for railroad bridges are contained in the specifications of 
the American Railway Engineering and Maintenance of Way Association 
(AREMA). The AREMA specifications require that bridges be designed 
for a train composed of two engines followed by a line of railroad cars. 
As shown in Figure 12.26, the wheels of the engines are represented by 
concentrated loads and the railroad cars by a uniformly distributed load. 
The live load representing the weight of trains is specified in terms of a 
Cooper E loading. Most bridges today are designed for the Cooper E72 
loading shown in Figure 12.26. The number 72 in the Cooper designation 
represents the axle load in units of kips applied by the main drive wheels 

curb

(a) (b)

(c)

(d) (e)

uniform load
640 lb per
linear foot

of lane load

W = Combined weight on the first two axles, which is the same
        as for the corresponding H truck
V = Variable spacing – 14 ft to 30 ft inclusive. Spacing to be
        used is that which produces maximum stresses.

6ʹ- 0ʺ
2ʹ- 0ʺ 2ʹ- 0ʺ

curb

10ʹ- 0ʺ
clearance and

load lane width

4ʹ- 0ʺ

14ʹ- 0ʺ V

8000 lb 32,000 lb

0.4 W

32,000 lb
V14ʹ- 0ʺ

0.1 W

0.
2 

W

0.
8 

W

0.
8 

W

0.4 W

0.4 W0.1 W 0.4 W

(g)

25 kips 25 kips

25,000 lb

0.25 W

25,000 lb
4ʹ- 0ʺ

10ʹ- 0ʺ
640 lb/ft

0.
5 

W

0.
5 

W

0.25 W

0.25 W 0.25 W

( f )

8 kips 32 kips 32 kips
640 lb/ft

Figure 12.25: AASHTO HL93 design live 
loads: (a) 72kip design truck; (b) 50kip 
design tandem; (c) bridge transverse view of 
truck and tandem; (d) 640lb per foot design 
lane load; (e) bridge transverse view of lane 
load; ( f ) combination of design truck and 
lane load; (g) combination of design tandem 
and lane load.
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of the locomotive. Other Cooper loadings are also used. These loadings 
are proportional to those of the Cooper E72. For example, to establish a 
Cooper E80 loading, all forces in Figure 12.26 should be multiplied by 
the ratio 80/72.

Impact

If you have traveled by truck or car, you probably recognize that mov
ing vehicles bounce up and down as they move over a roadway—springs 
are supplied to damp these oscillations. The vertical motion of a vehicle 
is a function of the roughness of the roadway surface. Bumps, an un
even surface, expansion joints, potholes, spalls, and so forth all contrib
ute to vertical sinusoidal motion of the vehicle. The downward vertical 
movement of the vehicle’s mass increases the force applied to the bridge 
through the wheels. For highway bridges the AASHTO specifications re
quire that a factor be applied according to the type of component being 
designed as well as the failure mode under consideration. The factor is 
taken as

  1 + IM (12.7)

where IM is the AASHTO Dynamic Load Allowance show in Table 12.1. 
For instance, live loads that tend to wear down, or fatigue, members over 
thousands of repeated instances, a smaller impact factor, 1.15, is applied to 
the static value to account for the apparent increase in force. For loads that 
govern the strength or maximum deformation of a component, the impact 
factor is larger (= 1.33). 

7236 kips

8ʹ 5ʹ

72 72 72 72 723646.8 46.8

5ʹ 5ʹ 5ʹ9ʹ

46.8

6ʹ

46.8

5ʹ

46.8 46.8

5ʹ9ʹ

46.8

6ʹ

46.8 7.2 kips/ft

5ʹ 5ʹ5ʹ

72

5ʹ

72

5ʹ8ʹ 8ʹ

Figure 12.26: Cooper E72 train for design 
of railroad bridges (wheel loads in kips).
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The dead loads are not increased by the impact factor.

TABLE 12.1 AASHTO Dynamic Load Allowance
IM

Deck joints 75%
All other components
Fatigue and fracture loading 15%
All others 33%
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Increase–Decrease Method
12.9

In Section 12.5 we discussed how to use an influence line to evaluate the max
imum value of a function when the live load is represented by either a single 
concentrated load or a uniformly distributed load. We now want to extend the 
discussion to include maximizing a function when the live load consists of a 
set of concentrated loads whose relative position is fixed. Such a set of loads 
might represent the forces exerted by the wheels of a truck or a train.

In the increase–decrease method, we position the set of loads on the struc
ture so that the leading load is located at the maximum ordinate of the influence 
line. For example, in Figure 12.27 we show a beam that is to be designed to 
carry a live load applied by five wheels. To begin the analysis, we imagine that 
the loads have been moved onto the structure so that force F1 is directly below 
the maximum ordinate y of the influence line. In this case the last load F5 is 
not on the structure. We make no computations at this stage.

We now shift the entire set of loads forward a distance x1 so that the second 
wheel is located at the maximum ordinate of the influence line. As a result of the 
shift, the value of the function (represented by the influence line) changes. The 
contribution of the first wheel F1 to the function decreases (i.e., at the new loca
tion the ordinate of the influence line y′ is smaller than the former ordinate y). 
On the other hand, the contribution of F2, F3, and F4 increases because they 
have moved to a position where the ordinates of the influence line are larger. 
Since wheel F5 is now on the structure, it too stresses the member. If the net 
change is a decrease in the value of the function, the first position of the loads 
is more critical than the second position, and we can evaluate the function 
by multiplying the loads in position 1 (Figure 12.27c) by the corresponding 
ordinates of the influence line (that is, F1 is multiplied by y). However, if the 
shift of loads to position 2 (Figure 12.27d ) produces an increase in value of 
the function, the second position is more critical than the first.

To ensure that the second position is the most critical, we will shift all 
loads forward again a distance x2 so that force F3 is at the maximum ordinate 
(Figure 12.27e). We again compute the change in magnitude of the func
tion produced by the shift. If the function decreases, the previous position is 
critical. If the function increases, we again shift the loads. This procedure is 
continued until a shift of the loads results in a decrease in value of the func
tion. Once we secure this result, we establish that the previous position of the 
loads maximizes the function.

The change in value of the function produced by the movement of a par
ticular wheel equals the difference between the product of the wheel load and 
the ordinate of the influence line in the two positions. For example, the change 
in the function Δf due to wheel F1 as it moves forward a distance x1 equals

Δf =  F  1  y −  F  1  y′

  Δf =  F  1   (y − y′)  =  F  1   (Δy)  (12.8)

where the difference in ordinates of the influence line Δy = y − y′.
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If m1 is the slope of the influence line in the region of the shift, we can express 
Δy as a function of the slope and the magnitude of the shift by considering the pro
portions between the slope triangle and the shaded area shown in Figure 12.27b.

  
Δy

 __  x  1  
   =   

 m  1   ___ 
1

  

 Δ  y   =  m  1   x  1   (12.9)

Substituting Equation 12.9 into Equation 12.8 gives
  Δf =  F  1   m  1   x  1   (12.10)
where the slope m1 can be negative or positive and F1 is the wheel load.

If a load moves on or off the structure, its contribution Δf to the func
tion would be evaluated by substituting the actual distance it moves into 
Equation 12.10. For example, the contribution of force F5 (Figure 12.27d ) as 
it moves on to the structure would be equal to

Δf =  F  5   m  2   x  5  
where x5 is the distance from the end of the beam to load F5. The increase– 
decrease method is illustrated in Example 12.9.

(a)

a b

x1

Δy

yʹ y
1 1

m1 m2

(e)

(d)

(c)

(b)

Position 3

Position 2

Position 1

F1 F2 F3 F4 F5
x3 x4x1 x2

x5

F1 F2 F3 F4 F5
x3 x4x1 x2

F1 F2 F3 F4 F5
x3 x4x1 x2

Figure 12.27: Increase–decrease method for 
establishing the maximum values of a func
tion produced  by a set of concentrated live 
loads: (a) beam; (b)  influence line for some 
function whose maximum ordinate equals y; 
(c) position 1: the first wheel load F1 is located 
at maximum ordinate y; (d ) in position 2: all 
wheel loads moved forward a distance x1,  
bringing wheel F2 up to the maximum 
ordinate; (e) position 3: all wheels moved 
forward a distance x2, bringing wheel F3 up 
to the maximum ordinate.
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560  Chapter 12 ■ Influence Lines for Moving Loads

E X A M P L E  1 2 . 9 The 80ft bridge girder in Figure 12.28b must be designed to support the 
wheel loads shown in Figure 12.28a. Using the increase–decrease method, 
determine the maximum value of moment at panel point B. The wheels can 
move in either direction. The influence line for moment at panel point B is 
given in Figure 12.28b.
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Solution
Case 1. A 10-kip load moves from right to left. Begin with the 10kip load 
at panel B (see position in Figure 12.28b). Calculate the change in moment 
as all loads shift left 10 ft; that is, load 2 moves up to panel point B (see 
position 2). Use Equation 12.10.

   Increase in moment   (loads 2, 3, 4, and 5)  
  =  (20 + 20 + 30 + 30)  (  1 __ 

4
  ) (10) = +250 kip ⋅ ft

  Decrease in moment   (load 1)                        
 = 10 (−  3 __ 4  ) (10) = −75 kip ⋅ ft

Net change = +175 kip ⋅ ft

Therefore, position 2 is more critical than position 1.
Shift the loads again to determine if the moment continues to in

crease. Calculate the change in moment as the loads move 5 ft to the left 
to position 3; that is, load 3 moves up to panel point B.

  Increase in moment   (loads 3, 4, and 5)   
  =  (20 + 30 + 30)  (5) (  1 __ 4  )  = +100.0 kip ⋅ ft

   Decrease in moment   (load 2 and 3)              
 =  (10 + 20)  (5) (−  3 __ 4  )  = −112.5 kip ⋅ ft

Net change = −12.5 kip ⋅ ft

Therefore, position 2 is more critical than position 3.
Evaluate the maximum moment at panel point B. Multiply each load 

by the corresponding influence line ordinate (number in parentheses).

 M  
B
   = 10  (7.5)  + 20  (15)  + 20  (13.75)  + 30  (11.25)  + 30  (10) 
= 1287.5 kip ⋅ ft

Case 2. The 30-kip load moves from right to left. Begin with a 30kip 
load at panel B (see position 1 in Figure 12.28c). Compute the change in 
moment as loads move 5 ft left to position 2.

   Increase in moment   (loads 4, 3, 2, and 1)  
  =  (80 kips)   (5)  (  1 __ 4  )      = +100.0 kip ⋅ ft

  Decrease in moment   (load 5)                        
 =  (30 kips)   (5)  (−  3 __ 4  )  = −112.5 kip ⋅ ft

Net change = −12.5 kip ⋅ ft

Therefore, position 1 is more critical than position 2.
Compute the moment at panel point 2, using influence line ordinates.

MB = 30 (15) + 30 (13.75) + 20 (11.25) + 20 (10) + 10 (7.5)

= 1362.5 kip ⋅ ft controls design > 1287.5 kip ⋅ ft
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562  Chapter 12 ■ Influence Lines for Moving Loads

Moment Envelope and Absolute Maximum Live  
Load Moment

12.10

So far we have learned how to use the influence line to position moving loads 
to maximize the moment at a given section in a beam. As a designer, however, 

it is necessary to determine which section along the span of the beam 
is the most critical one. In the following, two loading cases are consid
ered for a simply supported beam. It will be shown that the most critical 
section is obvious for the single concentrated load case, but not when a 
series of loads is involved.

Case 1. Single Concentrated Load

A single concentrated load acting on a beam produces a triangular mo
ment curve whose maximum ordinate occurs directly at the load. As 
a concentrated load moves across a simply supported beam, the value 
of the maximum moment directly under the load increases from zero 
when the load is at either support to 0.25PL when the load is at mid
span. Figure 12.29b, c, and d shows the moment curves produced by a 
single concentrated load P for three loading positions, a distance L/6, 
L/3, and L/2 from the left support, respectively. In Figure 12.29e, the 
dashed line, termed the moment envelope, represents the maximum 
value of live load moment produced by the concentrated load that can  
develop at each section of the simply supported beam in Figure 12.29a. 
The moment envelope is established by plotting the ordinates of the 
moment curves in Figure 12.29b to d. Since a beam must be designed 
to carry the maximum moment at each section, the flexural capacity of 
the member must equal or exceed that given by the moment envelope 
(rather than by the moment curve shown in Figure 12.29d). The abso-
lute maximum live load moment due to a single load on a simple beam 
occurs at midspan.

Case 2. Series of Wheel Loads

The increase–decrease method provides a procedure to establish the 
maximum moment produced at an arbitrary section of a beam by a 
set of moving loads. To use this method, we must first construct the 

influence line for moment at the section where the moment is to be evalu
ated. Although we recognize that the maximum moment produced by a set 
of wheel loads will be larger for sections at or near midspan than for sec
tions located near a support, thus far we have not established how to locate 
the most critical section in the span at which the wheel loads produce the 
greatest value of moment. While Case 1 shows that the most critical sec
tion for moment evaluation with a moving single concentrated load is at the 

(a)

(b)

(c)

(d)

(e)

0.139PL

0.222PL

0.25PL

0.25PL

0.139PL

0.222PL

L
6

L
6

L
6

L
2

A B C D

P P P P

Figure 12.29: Moment envelope for a con
centrated load on a simply supported beam: 
(a) four loading positions (A through D) 
considered for construction of moment en
velope; (b) moment curve for load at point 
B; (c) moment curve for load at point C; (d ) 
moment curve for load at point D (midspan);  
(e) moment envelope, curve showing maxi
mum value of moment at each section.
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midspan, it will be shown in the following that this is not the case when a 
series of wheel loads is applied to the simply supported beam. To locate this 
section and to establish the value of the absolute maximum moment produced 
by a particular set of wheel loads, we will investigate the moment produced 
by the wheel loads acting on the beam in Figure 12.30. In this discussion 
we will assume that the resultant R of the wheel loads is located a distance 
d to the right of wheel 2. (The procedure to locate the resultant of a set of 
concentrated loads is covered in Example 3.2.)

Although we cannot specify with absolute certainty the wheel at 
which the maximum moment occurs, experience indicates that it will 
probably occur under one of the wheels adjacent to the resultant of the 
force system. From our experience with the moment produced by a single 
concentrated load, we recognize that the maximum moment occurs when 
the wheel loads are located near the center of the beam. We will arbi
trarily assume that the maximum moment occurs under wheel 2, which is 
located a distance x to the left of the beam’s centerline. To determine the 
value of x that maximizes the moment under wheel 2, we will express the 
moment in the beam under wheel 2 as a function of x. By differentiating 
the expression for moment with respect to x and setting the derivative 
equal to zero, we will establish the position of wheel 2 that maximizes the 
moment. To compute the moment under wheel 2, we use the resultant R of 
the wheel loads to establish the reaction at support A. Summing moments 
about support B gives

⟳+ ΣMB = 0

 R  A  L − R [  L __ 
2
   −  (d − x) ]  = 0

 R  A   =   R __ 
L

    (  L __ 
2
   − d + x)  (12.11)

RA

W1 W2 W3

L
2

CL

x

a

d – x

L
2

L
2 – (d – x)

b

d
R

A B

Figure 12.30: Set of wheel loads with a resultant R.
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To compute the moment M in the beam at wheel 2 by summing moments 
about a section through the beam at that point, we write

  M =  R  A   (  L __ 2   − x)  −  W  1  a (12.12)

where a is the distance between W1 and W2. Substituting RA given by 
Equation 12.11 into Equation 12.12 and simplifying give

  M =   RL ___ 4   −   Rd ___ 2   +   xRd ____ L   −  x   2    R __ L   −  W  1  a (12.13)

To establish the maximum value M, we differentiate Equation 12.13 with 
respect to x and set the derivative equal to zero.

 0 =   dM ___ dx   = d   R __ L   − 2x   R __ L  

and x =   d __ 2   (12.14)

For x to equal d/2 requires that we position the loads so that the 
 centerline of the beam splits the distance between the resultant and 
the wheel under which the maximum moment is assumed to occur. In 
Example 12.10 we will use the foregoing principle to establish the abso
lute maximum moment produced in a simply supported beam by a set of 
wheel loads.
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Determine the absolute maximum moment produced in a simply supported 
beam with a span of 30 ft by the set of loads shown in Figure 12.31a.

E X A M P L E  1 2 . 1 0

30 kips

(a)

(b)

9ʹ 6ʹ

2.75ʹ 2.75ʹ
12.25ʹ 12.25ʹ

30ʹ

x = 5.5ʹ

R = 60 kips

RA = 24.5 kips

A B

20 kips 10 kips

30 kips
CL

R = 60 kips

20 kips 10 kips

(c)

13.25ʹ 13.25ʹ
1.75ʹ 1.75ʹ

6ʹ

RB = 26.5 kips

A B

30 kips
CL

R = 60 kips

20 kips 10 kips

Figure 12.31: (a) Wheel loads; (b) position of loads to check maximum moment under 
30kip load; (c) position of loads to check maximum moment under 20kip load. [continues on next page]
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lee98004_ch12_528-603.indd   565 23/12/16   5:14 pm



566  Chapter 12 ■ Influence Lines for Moving Loads

Solution
Compute the magnitude and location of the resultant of the loads shown 
in Figure 12.31a.

R = Σ F  y   = 30 + 20 + 10 = 60 kips

Locate the position of the resultant by summing moments about the 30-kip 
load.

R ⋅   
_
 x   = Σ F  n   ⋅  x  n  

60  
_
 x   = 20  (9)  + 10  (15) 

  
_
 x   = 5.5 ft

Assume that the maximum moment occurs under the 30-kip load. 
Position the loads as shown in Figure 12.31b; that is, the beam’s centerline 
divides the distance between the 30-kip load and the resultant. Compute RA 
by summing moments about B.

⟳+ ΣMB = 0 = RA (30) − 60 (12.25)

 R  A   = 24.5 kips

Moment at 30-kip load = 24.5  (12.25) 

= 300 kip ⋅ ft

Assume that the maximum moment occurs under the 20-kip load. 
Position the loads as shown in Figure 12.31c; that is, the centerline of the 
beam is located halfway between the 20-kip load and the resultant.

Compute RB by summing moments about A.

⟳+ ΣMA = 0 = 60 (13.25) − RB (30)

RB = 26.5 kips

Moment at 20-kip load = 13.25 (26.5) − 10 (6) = 291.1 kip ⋅ ft

Absolute maximum moment = 300 kip ⋅ ft under 30-kip load Ans.

Example 12.10 continues . . .
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Shear Envelope
12.11

The maximum value of shear in a beam (simply supported or continuous) 
typically occurs adjacent to a support. In a simply supported beam, the shear 
at the end of a beam will be equal to the reaction; therefore, to  maximize the 
shear, we position loads to maximize the reaction. The influence line for 
the reaction (Figure 12.32b) indicates that load should be placed as close to  
the support as possible and that the entire span should be loaded. If a sim
ple beam carries a set of moving loads, the increase–decrease method of 
Section 12.9 can be used to establish the position of the loads on the member 
to maximize the reaction.

To maximize the shear at a particular section BB, the influence line in 
Figure 12.32c indicates that load should be placed (1) only on one side of the 
section and (2) on the side that is most distant from the support. For example, 
if the beam in Figure 12.32a supports a uniformly distributed live load of 
variable length, to maximize the shear at section B, the live load should be 
placed between B and C.

If a simply supported beam carries a uniform live load of variable length, 
the designer may wish to establish the critical live load shear at sections along 
the beam’s span by constructing an envelope of maximum shear. An accept
able envelope can be produced by running a straight line between the maxi
mum shear at the support and the maximum shear at midspan (Figure 12.33). 
The maximum shear at the support equals wL/2 and occurs when the entire 
span is loaded. The maximum shear at midspan equals wL/8 and occurs when 
load is placed on either half of the span.

RA

RA

VB

VB

VB

(a)

1

(b)

(c)

A

B

C

Figure 12.32: Maximum shear in a simply 
supported beam: (a) positive sense of shear 
at B; (b) influence line for RA; (c) influence 
line for shear at section B.
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Influence Lines for Indeterminate Structures: Introduction
12.12

V = RA

(a)

w

L
2

L

BA

RA= wL
2

RA= wL
8

V = RA

(b)

envelope

(c)

w

wL
8

wL
2

wL
2–

Figure 12.33: Loading conditions to estab
lish the shear envelope for a beam support
ing a uniform live load of variable length:  
(a) entire span loaded to maximum shear at 
support; (b) maximum shear at midspan pro
duced by loading on half of span; (c) shear 
envelope.

The construction of influence lines for indeterminate structures follows 
the same procedure as that for determinate structures. Since computer 
programs for analyzing structures are generally available to practicing en
gineers nowadays, even highly indeterminate structures can be analyzed 
for many positions of the unit load rapidly. The first method to construct 
the influence lines is to use the basic definition that requires a unit load be 
moved across the structure, and values of a particular reaction or internal 
member force are plotted against successive positions of the load. Com
pared to the case of a determinate structure, the only difference is that a 

lee98004_ch12_528-603.indd   568 23/12/16   5:14 pm



12.13 ■ Construction of Influence Lines Using Moment Distribution  569

series of indeterminate structural analysis needs to be performed. Any 
method (flexibility method, slopedeflection method, moment distribu
tion method, or even computer software) can be used. In Section 12.13, 
the moment distribution method is used to demonstrate the construction 
of influence lines.

The Muller–Breslau principle provides a convenience way to construct 
influence lines, and it is equally applicable to indeterminate structures. Using 
an indeterminate beam as an example, the proof of the principle is presented 
in Section 12.14. For determinate structures, this principle provides not only 
the shape but also the ordinates of the influence lines. It was also shown in 
Section 12.4 that the influence lines for determinate beams are composed of 
straight line segments. But it will be shown in Section 12.14 that this princi
ple can only provide a qualitative sketch of the influence lines for indetermi
nate structures. These qualitative influence lines are very useful in practical 
design to position live loads for the design of bridge girders, trusses, or mul
tistory frames.

Construction of Influence Lines Using  
Moment Distribution

12.13

For each position of the unit load, the moment distribution analysis sup
plies all member end moments. After the end moments are determined, re
actions and internal forces at critical sections can be established by cutting 
free bodies and using the equations of statics to compute internal forces.  
Example 12.11 illustrates the use of moment distribution for constructing the 
influence lines for the reactions of a beam indeterminate to the first degree. To 
simplify the computations in this example, the ordinates of the influence lines 
(Figure 12.34c to e) are evaluated at intervals of onefifth the span length. In 
an actual design situation (e.g., a bridge girder) a smaller increment—one
twelfth to onefifteenth of the span length—would be more appropriate.
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570  Chapter 12 ■ Influence Lines for Moving Loads

E X A M P L E  1 2 . 1 1 (a) Using the moment distribution method to construct the influence lines 
for the reactions at supports A and B of the beam in Figure 12.34a.
(b) Given L = 25 ft, determine the moment created at support B by the 
16 and 24kip set of wheel loads shown in Figure 12.34a when they are 
positioned at points 3 and 4. EI is constant.

A
B

(a)

1 2 3 4 5 6

5 @ 0.2L = L

1 kip
16 kips 24 kips

5ʹ

RA = 1 kip
RB = 0

MB = 0

A
B

(b)

end moment

0.8L 

– 0.128L
+ 0.128L

1
2

0

0.2L 

+ 0.032L
+ 0.064L
+ 0.096L

RA

1 kip

RB

MB

(c)

1
0.704

0.432 0.208 0.056
RA
(kips)

(d)

1

0.296
0.568 0.792 0.944

RB
(kips)

(e)

0.144L
0.192L0.168L

0.096L

MB
(kip • ft)

16 kips 24 kips

Figure 12.34: (a) Unit load at support A; (b) unit load 0.2L to right of support A; 
(c) influence line for reaction at A; (d) influence line for vertical reaction at B; (e) influence 
line for moment at support B.

Solution
(a) Influence lines will be constructed by placing the unit load at six 
points—a distance 0.2L apart—along the span of the beam. The points 
are indicated by the circled numbers in Figure 12.34a. We will discuss the 
computations for points 1, 2, and 6 to illustrate the procedure.

To establish the influence line ordinate at the left end (point 1),  
the unit load is placed on the beam directly over support A (Figure 12.34a). 
Since the entire load passes directly into the support, the beam is un
stressed; therefore, RA = 1 kip, RB = 0, and MB = 0. Similarly, if the 
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unit load is moved to point 6 (applied directly to the fixed support), 
RB = 1 kip, RA = 0, and MB = 0. The above reactions, which repre
sent the ordinates of the influence line at points 1 and 6, are plotted in 
Figure 12.34c, d, and e.

We next move the unit load a distance 0.2L to the right of support A 
and determine the moment at B by moment distribution (Figure 12.34b). 
Compute fixedend moments (Appendix Table A.4b).

 FEM  AB   = −  Pa b   2  _____ 
 L   2 

   = −  1 (0.2L)    (0.8L)    2   _____________ 
 L   2 

   = −0.128L

 FEM  BA   =   Pb a   2  _____ 
 L   2 

   =   1 (0.8L)    (0.2L)    2   _____________ 
 L   2 

   = +0.032L

The moment distribution is carried out on the sketch in Figure 12.34b. 
After the end moment of 0.096L is established at support B, we compute 
the vertical reaction at A by summing moments about B of the forces on a 
free body of the beam:

⟳+ ΣMB = 0

 R  A  L − 1 (0.8L)  + 0.096L = 0

 R  A   = 0.704 kip

Compute RB.

   +     ↑    Σ F  y   = 0

 R  A   +  R  B   − 1 = 0

 R  B   = 0.296 kip

To compute the balance of the influence line ordinates, we move the 
unit load to points 3, 4, and 5 and reanalyze the beam for each posi
tion of the load. The computations, which are not shown, establish the 
remaining influence line ordinates. Figure 12.34c to e shows the final 
influence lines.
(b) Moment at B due to wheel loads (Figure 12.34e) is

 M  B   = Σ influence line ordinate ×  (load) 

= 0.168L  (16 kips)  + 0.192L  (24 kips) 

= 7.296L = 7.296  (25)  = 182.4 kip ⋅ ft Ans.

12.13 ■ Construction of Influence Lines Using Moment Distribution  571
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572  Chapter 12 ■ Influence Lines for Moving Loads

E X A M P L E  1 2 . 1 2
Construct the influence lines for shear and moment at section 4 of the beam 
in Figure 12.34a, using the influence line in Figure 12.34c to evaluate the 
reaction at A for various positions of the unit load.

Solution
With the unit load at either support A or B (points 1 and 6 in Figure 12.34a), 
the beam is unstressed; therefore, the shear and moment at point 4 are zero, 
and the ordinates of the influence lines in Figure 12.35e and f begin and 
end at zero.

To establish the ordinates of the influence lines for other positions of 
the unit load, we will use the equations of statics to evaluate the internal 
forces on a free body of the beam to the left of a section through point 4. 
The free body in Figure 12.35a shows the unit load at point 2. The reaction 
at A of 0.704 kip is read from Figure 12.34c.

   +     ↑    Σ F  y   = 0

0.704 − 1 −  V  2   = 0

 V  2   = −0.296 kip

⟳+ ΣM4 = 0

 (0.704 kip)   (0.6L)  −  (1 kip)   (0.4L)  −  M  2   = 0

 M  2   = 0.0224L kip ⋅ ft

Figure 12.35b shows the unit load just to the left of point 4. For this posi
tion of the unit load, the equations of equilibrium give V4L = −0.792 kip 
and M4L = 0.125L kip · ft. If the unit load is moved a distance dx across 
the cut to the free body on the right of section 4, the reaction at A does not 
change, but the unit load is no longer on the free body (Figure 12.35c). 
Writing the equations of equilibrium, we compute V4R = 0.208 kip and 
M4r = 0.125L kip·ft. Figure 12.35d shows the forces on the free body 
when the unit load is at point 5 (off the free body). Computations give 
V5 = 0.056 kip and M5 = 0.0336L kip · ft. Using the computed values of 
shear and moment at section 4 for the various positions of the unit load, 
we plot the influence lines for shear in Figure 12.35e and for moment in 
Figure 12.35f.

V2

M2

(a)

1 kip

0.704 kip

4

0.4L

0.6L

V4L

(b)

1 kip

0.208 kip

0.6L

V4R

M4r

(c)0.208 kip

0.6L

V5

M5

(d)

(e)

( f )

0.056 kip

0.6L

M4

–0.296

–0.568

–0.792

0.208
0.056

0.0224L
0.0592L

0.125L

0.0336L
Figure 12.35: Influence lines for shear and moment at section 4: (a) unit load at section 
2; (b) unit load to left of section 4; (c) unit load to right of section 4; (d) unit load at 
section 5; (e) influence line for shear; ( f ) influence line for moment.
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12.14 ■ Proof of Müller–Breslau Principle  573

Proof of Müller–Breslau Principle
12.14

We begin this section by using the MaxwellBetti law to demonstrate the va
lidity of the Müller–Breslau principle. We will then use the Müller–Breslau 
principle to construct qualitative and quantitative influence lines for several 
common types of indeterminate beams and frames.

To demonstrate the validity of the Müller–Breslau principle, we will con
sider two procedures to construct an influence line for the reaction at support A 
of the continuous beam in Figure 12.36a. In the conventional procedure, we 
apply a unit load to the beam at various points along the span, evaluate the 
corresponding value of RA, and plot it below the position of the unit load. For 
example, Figure 12.36a shows a unit load, used to construct an influence line, 
at an arbitrary point x on the beam; RA is assumed positive in the direction 
shown (vertically upward).

If the Müller–Breslau principle is valid, we can also produce the cor
rect shape of the influence line for the reaction at A simply by removing 
the support at A (to produce the released structure) and introducing into the 
structure at that point a vertical displacement which corresponds to reac
tion RA supplied by the roller (Figure 12.36b). We introduce the displace
ment that corresponds to RA by arbitrarily applying a 1kip load vertically 
at A.

Denoting the loaded beam in Figure 12.36a as system 1 and the loaded 
beam in Figure 12.36b as system 2, we now apply the MaxwellBetti law, 
given by Equation 8.41, to the two systems

  Σ F  1   Δ  2   = Σ F  2   Δ  1   (8.41)

where Δ2 is the displacement in system 2 that corresponds to the loading F1 
in system 1 and Δ1 is the displacement in system 1 that corresponds to the 
loading F2 in system 2. If a force in one of the systems is a moment, the corre
sponding displacement is a rotation. Substituting into Equation 8.41, we find

   R  A   δ  AA   +  (1 kip)   ( δ  xA  )  = 1 (0)  (12.15) 

Since the reactions at supports B and C in both systems do no virtual 
work because the supports in the other system do not displace, these terms are 
omitted from both sides of Equation 12.15. Solving Equation 12.15 for RA, we 
compute

   R  A   = −  
 δ  xA  

 ___ 
 δ  AA  

   (12.16)

Since δAA has a constant value but the value of δxA varies along the span of 
the beam, Equation 12.16 shows that RA is proportional to the ordinates of the 
deflected shape in Figure 12.36b. Therefore, the shape of the influ ence line for 

1 kip

RA

xAδ
AAδ

A = 0Δ

(a)

A xB C

(b)

(c)

1 kip

1

A B C

Figure 12.36: (a) Unit load used to construct 
influence line for RA; (b) unit load used to  
introduce a displacement into the released 
structure; (c) influence line for RA.
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574  Chapter 12 ■ Influence Lines for Moving Loads

RA is the same as that of the deflected shape of the released structure produced 
by introducing the displacement δAA at point A, and we verify the Müller– 
Breslau principle. The final influence line for RA is shown in Figure 12.36c. 
The ordinate at A equals 1 because the unit load on the real structure at that 
point produces a 1kip reaction at A.

A qualitative influence line, of the type shown in Figure 12.36c, is often 
adequate for many types of analysis; however, if a quantitative influence line 
is required, Equation 12.16 shows that it can be constructed by dividing the 
ordinates of the deflected shape by the magnitude of the displacement δAA in
troduced at point A.

Significance of the Minus Sign in Equation 12.16. As a first step in the 
construction of an influence line, we must assume a positive direction for the 
function. For example, in Figure 12.36a, we assume that the positive direction 
for RA is vertically upward. The first virtual work term in Equation 12.15 is  
always positive because both the displacement δAA and RA are in the same  
direction. The virtual work represented by the second term [(1 kip)(δxA)] 
is also positive because the 1kip force and the displacement δxA are both 
directed downward. When we transfer the second term to the right side of 
Equation 12.15, a minus sign is introduced. The minus sign indicates that 
RA is actually directed downward. If the 1kip load had been located on span 
AB—a region where the influence line ordinates are positive—the virtual 
work terms containing δxA would have been negative, and when the term was 
transferred to the right side of Equation 12.15, the expression for RA would be 
positive, indicating that RA was directed upward.

In summary, we conclude that where an influence line is positive, down
ward load will always produce a value of the function directed in the positive 
direction. On the other hand, in regions where the influence line is negative, 
downward load will always produce a value of the function directed in the 
negative direction.
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(a) Using the Müller–Breslau principle stated by Equation 12.16, construct 
the influence line for moment at support C for the beam in Figure 12.37a. 
(b) Show the computations for the ordinate of the influence line at point B. 
EI is constant.

E X A M P L E  1 2 . 1 3

RA =

R1
MB

BC CC

MC

(a)

(b)

CBA

1 kip • ft

1
L

1
L

L
0.4L

0.4L

0.168L

0.4L

(c)

(d)

(e)

L
6EI

L
6EI

0.4L
3

L
3

0.4
EI

RC = L
3EI

R = L
2EI 1

EI

δ α

Figure 12.37: Influence line for MC: (a) beam showing positive sense of MC; (b) displace
ment αCC introduced into released structure; (c) conjugate beam loaded with M/EI diagram; 
(d) mo ment in conjugate beam equals deflection at B in real structure; (e) influ ence line 
for MC. [continues on next page]
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Solution
(a) Assume that the positive sense of MC is clockwise, as shown in  
Figure 12.37a. Produce the released structure by introducing a pin sup
port at C. Introduce a rotational displacement at C by applying a unit mo
ment to the right end of the beam, as shown in Figure 12.37b. The deflected 
shape is the influence line for MC.
(b) Compute the ordinate of the influence line at B by using the conjugate 
beam method to evaluate the deflections in Equation 12.16. Figure 12.37c 
shows the conjugate beam loaded by the M/EI curve associated with 
the unit value of MC in Figure 12.37b. To determine the reactions of 
the conjugate beam, we compute the resultant R of the triangular loading 
diagram.

R =   1 __ 2   L   1 __ EI   =   L ___ 2EI  

Since the slope at C in the released structure equals the reactions at C in 
the conjugate beam, we compute RC by summing moments about the roller 
at A to give

 α  CC   =  R  C   =   L ___ 
3EI

  

To compute the deflection at B, we evaluate the moment in the conjugate 
beam at B, using the free body shown in Figure 12.37d.

 δ  BC   =  M  B   =   L ___ 
6EI

    (0.4L)  −  R  1     
0.4L _____ 

3
  

where  R  1   = area under M/EI curve =    1 __ 
2
    (0.4L)    0.4 ____ 

EI
   =   0.08L ______ 

EI
  

 δ  BC   =   0.4 L   2  _____ 
6EI

   −   0.08L ______ 
EI

     0.4L _____ 
3
   =   0.336 L   2  _______ 

6EI
  

Evaluate the influence line ordinate at point B, using Equation 12.16.

 M  C   =   
 δ  BC  

 ___  α  CC     =   0.336 L   2 / (6EI)   ____________ 
L/ (3EI) 

   = 0.168L

The influence line, which was constructed in Example 12.11 (Figure 12.34e), 
is shown in Figure 12.37e.

Example 12.13 continues . . .
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Using the Müller–Breslau principle stated by Equation 12.16, construct the 
influence line for the reaction at B for the beam in Figure 12.38a. Evaluate 
the ordinates at midspan of AB, at B and at C. EI is constant.

Solution
The positive sense of RB is taken as upward, as shown in Figure 12.38a. 
Figure 12.38b shows the released structure with a unit value of RB applied 
to introduce the displacement that produces the influence line. The influ
ence line is shown by the dashed line. In Figure 12.38c the conjugate beam 
for the released structure is loaded by the M/EI curve associated with the 
released structure in Figure 12.38b. The slope in the released structure, 
given by the shear in the conjugate beam, is shown in Figure 12.38d. This 
curve indicates that the maximum deflection in the conjugate beam, which 
occurs where the shear is zero, is located a small distance to the right of 
support B. The deflection of the released structure, represented by mo
ment in the conjugate beam, is shown in Figure 12.38e. To compute the 
ordinates of the influence line, we use Equation 12.16.

 R  B   =   
 δ  XB  

 ___ 
 δ  BB  

  

where both δBB = 204/EI and δXB are shown in Figure 12.38e.
The influence line is shown in Figure 12.38f.

E X A M P L E  1 2 . 1 4

12.14 ■ Proof of Müller–Breslau Principle  577

(c)

24
EI

 RA = 25
EI

RC = 16
EI

6
EI

12
EI

27
EI

4
EI

8ʹ 4ʹ

6ʹ

(d)

5.74ʹ

25
EI 1

EI

27
EI

11
EI

9ʹ6ʹ
(e)

138
EI

204
EI

162
EI

Figure 12.38: Influence line for RB using the Müller–Breslau principle: (a) dimensions 
of beam; (b) released structure displaced by unit value of RB; (c) conjugate beam loaded 
by M/EI curve for loading in (b); (d) shear in conjugate beam (slope of released struc
ture); (e) moment in conjugate beam (deflection of released structure); (f)  influence 
line for RB.

A B C D

RB

(a)

hinge

12ʹ 6ʹ 9ʹ

MD = 6 kip  ft

(b)

1 kipkip1
3 kip2

3

( f )

0.676 1.00 0.794
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Qualitative Influence Lines for Indeterminate Beams and Frames
12.15

In this section we illustrate the use of the Müller–Breslau method to  construct 
qualitative influence lines for a variety of forces in continuous beams and 
frames. As described in Section 12.14 in the Müller–Breslau method, we first 
remove the capacity of the structure to carry the function represented by the 
influence line. At the location of the release, we introduce a displacement 
that corresponds to the restraint released. The resulting deflected shape is the 
influence line to some scale. If you are uncertain about the type of displace
ment to introduce, imagine a force that corresponds to the function is applied 
at the location of the release and creates the displacement.

As an example, we will draw the influence line for positive moment at 
point C of the twospan continuous beam in Figure 12.39a. Point C is located 
at the midpoint of span BD. To remove the flexural capacity of the beam, we 
insert a hinge at point C. Since the original structure was indeterminate to the 
first degree, the released structure shown in Figure 12.39b is stable and deter
minate. We next introduce a displacement at C that corresponds to a positive 
moment, as indicated by the two curved arrows on either side of the hinge. The 
effect of the positive moments at C is to rotate the ends of each member in the 
direction of the moment and to  displace the hinge upward. Figure 12.39c shows 
the deflected shape of the beam, which is also the shape of the influence line.

Although it is evident that a positive moment at C rotates the ends of 
the members, the vertical displacement that also occurs may not be obvious. 
To clarify the displacements produced by the moments on each side of the 

A B C D

M M

(a)

L L
2

2M
L

4M
L

2M
L

2M
L

2M

M M

Cy =
2M 

LRD =

D

L
2

L
2

A B C C

M M
C

(b)

(c)

(d)

(e)

hinge

Figure 12.39: Construction of the influence line for moment at C by 
the Müller–Breslau method: (a) twospan beam; (b) released structure; 
(c)  deflected shape produced by a displacement to the restraint removed 
at C; (d) moment curves to establish deflected shape of released structure; 
(e) influence line for moment C.
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12.15 ■ Qualitative Influence Lines for Indeterminate Beams and Frames  579

hinge, we will examine the free bodies of the beam on each side of the hinge 
(Figure 12.39d ). We first compute the reaction at D by summing moments, 
about the hinge at C, of the forces on member CD.

⟳+ ΣMC = 0

M −  R  D     L __ 2   = 0

 R  D   =   2M ___ L  

For equilibrium to exist in the ydirection for member CD, the verti
cal force at the hinge Cy must be equal in magnitude and opposite in sense 
to RD. Since Cy represents the action of the free body on the left, an equal 
and opposite force—acting upward—must act at joint C of member ABC.

We next compute the reactions at supports A and B of member ABC, 
and we draw the moment curves for each member. Since the moment is 
positive along the entire length of both members, they bend concave up
ward, as indicated by the curved lines under the moment diagrams. When 
member ABC is placed on supports A and B (Figure 12.39c), point C 
must move vertically upward to be consistent with the restraints supplied 
by the supports and the curvature created by the moment. The final shape 
of the influence line is shown in Figure 12.39e. Although the magnitude 
of the positive and negative ordinates is unknown, we can reason that the 
ordinates are greatest in the span that contains the hinge and the applied 
loads. As a general rule, the influence of a force in one span drops off rap
idly with distance from the loaded span. Moreover, a span that contains a 
hinge is much more flexible than a span that is continuous.

Additional Influence Lines for Continuous Beams

In Figure 12.40 we use the Müller–Breslau principle to sketch quali
tative influence lines for a variety of forces and reactions in a three
span continuous beam. In each case the restraint corresponding to the 
function represented by the influence lines is removed, and a displace
ment corresponding to the restraint is introduced into the structure. 
Figure 12.40b shows the influence line for the reaction at C. The roller 
and plate device that removes the shear capacity of the cross section in 
Figure 12.40c is able to transmit both axial load and moment. Since the 
plates must remain parallel as the shear deformation occurs, the slopes 
of the members attached to each side of the plate must be the same, 
as shown by the detail to the right of the beam. In Figure 12.40d the 
influence line for negative moment is constructed by introducing a hinge 
into the beam at C. Since the beam is attached to the support at that point, 
the ends of the members, under the action of the moments, on each side 
of the hinge are free to rotate but not to move vertically. The influence line 
for the reaction at F is generated by removing the vertical support at F and 
introducing a vertical displacement (Figure 12.40f ).

In Example 12.15 we illustrate the use of a qualitative influence line to 
establish where to load a continuous beam to produce the maximum value 
of shear at a section.

Figure 12.40: Construction of influence 
lines by the Müller–Breslau method for 
the threespan continuous beam in (a); (b) 
influence line for RC; (c) influence line for 
shear at B; (d) influence line for negative mo
ment at C; (e) influence line for positive mo
ment at D; (f) influence line for reaction RF.
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580  Chapter 12 ■ Influence Lines for Moving Loads

E X A M P L E  1 2 . 1 5 The continuous beam in Figure 12.41a carries a uniformly distributed live 
load of 4 kips/ft. The load can be located over all or a portion of each span. 
Compute the maximum value of shear at midspan (point B) of member AC. 
Given: EI is constant.

B

V
V

A B C D A

A A

B C D

A C D

(a)

(b)
influence

line

–
+

91.67
91.67
   0     

4 kips/ft 4 kips/ft 4 kips/ft

17.19 kips 32.81 kips

MC = 143.76 kip • ft

RA = 22.81 kips

C

10ʹ 10ʹ 20ʹ

40 kips

+
+
+
+

41.67
45.84
56.25

143.76

–
–
+
–

133.33
66.67
56.25

143.75

+
–

133.33
133.33

0     

–
+

41.67
41.67
   0     –

–
56.25
56.25

+
+
–
+

91.67
20.84
56.25
56.26

MC = 56.26 kip • ft

RA = 7.19 kips

C

40 kips

(c)

5.71ʹ

22.81 kips

–17.19 kips

Shear (kips)

(d)

11.8ʹ

7.19 kips

–32.81 kips

Shear (kips)

Figure 12.41: Computation of maximum shear at section B: (a) continuous beam;  
(b) influence line for shear at B; (c) analysis of beam with distributed load placed to produce 
maximum negative shear of 17.19 kips at B; (d) analysis of beam with distributed load 
positioned to produce maximum positive shear of 7.19 kips at B.
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Solution
To establish the position of the live load to maximize the shear, we first 
construct a qualitative influence line for shear at point B. Using the 
Müller–Breslau principle, we introduce displacements corresponding to 
positive shear forces into the beam at section B to produce the influence 
line shown in Figure 12.41b. Since the influence line contains both posi
tive and negative regions, we must investigate two loading conditions. In 
the first case (Figure 12.41c) we distribute the uniform load over all sec
tions where the ordinates of the influence line are negative. In the second 
case (Figure 12.41d) we load the continuous beam between points B and 
C where the influence line ordinates are positive. Using moment distribu
tion, we next determine the moment in the beam at support C. Since the 
beam is symmetric about the center support, both members have the same 
stiffness, and the distribution factors at joint C are identical and equal to    1 _ 2   . 
Using Appendix Table A.4, we computed fixedend moments for members 
AC and CD in Figure 12.41c.

 FEM  AC   = −  11w L   2  ______ 
192

   = −  11 (4)  ( 20   2 )  _________ 
192

   = −91.67 kip ⋅ ft

 FEM  CA    =   5w L   2  _____ 
192

   =   5 (4)  ( 20   2 )  ________ 
192

   = 41.67 kip ⋅ ft

 FEM  CD   = −FEMDC =   w L   2  _____ 
12

   =   4 ( 20   2 )  ________ 
12

   = ±133.33 kip ⋅ ft

The moment distribution, which is carried out under the sketch of 
the beam in Figure 12.41c, produces a value of moment in the beam 
at C equal to 143.76 kip · ft. Because of roundoff error in the analysis, 
a small difference exists in the values of the moments on each side 
of joint C. We next compute the reaction at A by summing moments 
about C of the forces acting on a free body of beam AC. After the re
action at A is computed, the shear diagram (see the bottom sketch in 
Figure 12.41c) is drawn. The analysis shows that VB = −17.19 kips. A 
similar analysis for the loading in Figure 12.41d gives VB = +7.19 kips. 
Since the magnitude of  the shear rather than its sign determines the 
greatest value of the shear stresses at B, the section must be sized to 
carry a shear force of 17.19 kips.
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E X A M P L E  1 2 . 1 6 The continuous beam in Figure 12.42a carries a uniformly distributed live 
load of 3 kips/ft. Assuming that the load can be located over all or a portion 
of any span, compute the maximum values of positive and negative moment 
that can develop at midspan of member BD. Given: EI is constant.

Solution
The qualitative influence line for moment at point C, located at midspan of 
BD, is constructed using the Müller–Breslau principle. A hinge is in serted 
at C, and a deformation associated with positive moment is introduced at 
that point (Figure 12.42b). Figure 12.42c shows the load positioned over 
the section of the beam in which the influence line ordinates are positive. 
Using moment distribution (the computations are not shown), we compute 
the member end moments and construct the moment curve. The maximum 
positive moment equals 213.33 kip · ft.

To establish the maximum value of negative moment at point C, the 
load is positioned on the beam in those sections in which the influence  
line ordinates are negative (Figure 12.42d ). The moment curve for  
this loading is shown below the beam. The maximum value of negative 
moment is −72 kip · ft.

NOTE. To establish the total moment at section C, we must also combine 
each of the live load moments with the positive moment at C produced by 
dead load.

A B C D E

(a)
24ʹ 32ʹ 24ʹ

(b)

M M

(c)

–170.67

Moment (kip • ft)

–170.67

213.33

w = 3 kips/ft

(d)

–72
Moment (kip • ft)

181.5 181.5

w = 3 kips/ft w = 3 kips/ft

Figure 12.42: (a) Details of beam; (b) construction of qualitative influence line for mo
ment at C; (c) load positioned to maximize positive moment at C; (d) load positioned to 
maximize negative moment at C.
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Dx
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D E

(a)

18ʹ 24ʹ

12ʹ

F

(b)

(c)

41.13

3.43 kips

w = 3 kips/ft w = 3 kips/ft

(d)

26.03
2.17 kips

90°

Figure 12.43: (a) Dimensions of frame; (b) establishing the shape of the influence line, 
horizontal restraint removed by replacing pin with a roller, dashed lines show the influence 
line; (c) position of load to establish maximum lateral thrust in positive sense (to the right); 
(d) position of load to produce maximum thrust in negative sense.

The frame in Figure 12.43a is loaded only through girder ABC. If the frame 
carries a uniformly distributed load of 3 kips/ft that can act over part or all 
of spans AB and BC, determine the maximum value of horizontal thrust 
Dx that develops in each direction at support D. For all members EI is a 
constant.

Solution
The positive sense of the thrust Dx is shown in Figure 12.43a. To con
struct the influence line for the horizontal reaction at support D by the 
Müller–Breslau principle, we remove the horizontal restraint by introduc
ing a roller at D (Figure 12.43b). A displacement corresponding to Dx is 
introduced by applying a horizontal force F at D. The deflected shape, 
shown by the dashed line, is the influence line.

In Figure 12.43c we apply the uniform load to span BC, where the or
dinates of the influence line are positive. Analyzing the frame by moment 
distribution, we compute a clockwise moment of 41.13 kip·ft at the top of 
the column. Applying statics to a free body of column BD, we compute a 
horizontal reaction of 3.43 kips.

To compute the maximum thrust in the negative direction, we load the 
frame in the region where the ordinates of the influence line are negative 
(Figure 12.43d ). Analysis of the frame produces a thrust of 2.17 kips to 
the left.

E X A M P L E  1 2 . 1 7
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Live Load Patterns to Maximize Member Forces  
in Multistory Buildings

12.16

Building codes specify that members of multistory buildings be designed 
to support a uniformly distributed live load as well as the dead load of the 
structure and the nonstructural elements. Nonstructural elements include 
walls, ceilings, ducts, pipe, light fixtures, and so forth. Normally, we ana
lyze for dead and live loads separately. While the dead load is fixed in posi
tion, the position of the live load must be varied to maximize a  particular 
force at a certain section. In most cases, the greatest member force at a 
section produced by live load is produced by pattern loading; that is, live 
load is placed on certain spans or portions of spans but not on other spans. 
By using the Müller–Breslau principle to construct qualitative influence 
lines, we can establish the spans or portions of a span that should be loaded 
to maximize the internal force or forces at critical design sections of indi
vidual members.

For example, to establish the loading pattern to maximize the axial 
force in a column, we imagine the capacity of the column to carry axial 
load is removed and an axial displacement is introduced into the structure. 
If we wished to determine the spans on which live load should be placed to 
maximize the axial force in column AB of the structure in Figure 12.44a, we 
would disconnect the column from its support at A and introduce a vertical 
displacement Δ at that point. The deflected shape, which is the influence 
line, produced by Δ is shown by the dashed lines. Since live load must 
be positioned on all spans in which the influence line ordinates are posi
tive, we must place the distributed live load over  the entire length of all 
beams connected directly to the column on all floors above the column 
(Figure 12.44b). Since all floors displace by the same amount, a given value 
of live load on the third or fourth floor (the roof) produces the same incre
ment of axial load in column AB as that load positioned on the second floor 
(i.e., directly above the  column).

In addition to axial load, the loading shown in Figure 12.44b produces 
moment in the column. Since the column is pinned at its base, the maximum 
moment occurs at the top of the column. If the span lengths of the beams 
framing into each side of an interior column are approximately the same (the 
usual case), the nearly equal but oppositely directed moment each beam ap
plies to the joint directly at the top of the column will balance or nearly bal
ance out. Since the unbalanced moment at the joint is small, the moment in the 
column will also be small. Therefore, in a preliminary design of an interior 
column, the engineer can size the column accurately by considering only the 
axial load.

Although the forces produced by the loading pattern in Figure 12.44b 
control the dimensions of most interior columns, under certain condi
tions—for example, a large difference in adjacent span lengths, or a high 
livetodead load ratio—we may wish to verify that the capacity of the 
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Figure 12.44: Pattern loading to maximize forces in columns: (a) influence line for axial 
load in column AB; (b) live load pattern to maximize axial force in column AB; (c) influ ence 
line for moment in column AB; (d) position of live load to maximize moment in column 
AB, and the axial force associated with maximum moment is approximately onehalf that 
shown in (b) since a checkerboard pattern of loading is required.
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col  umn is also adequate for the loading pattern that maximizes the mo
ment (rather than the axial load). To construct the qualitative influence 
line for moment in the column, we insert a hinge into the column just 
below the floor beams at point B and then apply a rotational displacement 
to the ends of the structure above and below the hinge (Figure 12.44c). 
We can imagine that this displacement is produced by applying moments 
of magnitude M to the structure. The corresponding deflected shape is 
shown by the dashed line. Figure 12.44d shows the checkerboard pattern 
of live load that maximizes the moment at the top of the column. Since 
this pattern is produced by load applied to only one beam per floor above 
the column, the axial load associated with the maximum moment will 
be approximately onehalf as large as that associated with the loading in 
 Figure 12.44b that maximizes axial load. Because the magnitudes of the 
influence line ordinates produced by the moments at B reduce rapidly with 
distance from the hinge, the greatest portion (on the order of 90 percent) of 
the column moment at B is produced by loading only span BD. Therefore, 
we can usually neglect the contribution to the moment at B (but not the 
axial load) produced by the load on all spans except BD. For example, 
Section 8.8.1 of the American Concrete Institute Building Code, which 
controls the design of reinforced concrete buildings in the United States, 
specifies that: “Columns shall be designed to resist . . . the  maximum 
moment from factored loads on a single adjacent span of the floor or roof 
under consideration.”

Moments Produced by Dead Load

In addition to live load, we must consider the forces produced in a column 
by dead load, which is present on every span. If we consider spans BC and 
BD in Figure12.44c, we can see that the influence line is negative in span 
BC and positive in span BD. Vertical load on span BD produces moments 
in the direction shown on the sketch. On the other hand, load on span BC 
produces moment in the opposite direction and reduces the moment pro
duced by the load on span BD. When spans are about the same length on 
either side of an interior column, the net effect of loading adjacent spans 
is to reduce the column moment to an insignificant value. Since exterior 
columns are loaded from only one side, the moment in these columns will 
be much larger than the moment in interior columns, but the axial force 
will be much smaller.
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Using the Müller–Breslau principle, construct the influence lines for posi
tive moment at the center of span BC in Figure 12.45a and for negative mo
ment in the girder adjacent to joint B. The frames have rigid joints. Indicate 
the spans on which a uniformly distributed live load should be positioned to 
maximize these forces.

E X A M P L E  1 2 . 1 8
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Figure 12.45: Positioning uniformly dis
tributed loads to maximize positive and 
negative moments in continuous frames:  
(a) influence line for positive moment at 
midspan of beam BC; (b) influ ence line 
for negative moment in beam adjacent to a  
column; (c) detail of position of hinge for 
frame in (b).
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Solution
The influence line for positive moment is constructed in Figure 12.45a 
by inserting a hinge at the midspan of member BC and introducing a dis
placement associated with a positive moment. The deflected shape, shown 
by the dashed lines, is the influence line. As indicated on the sketch, the or
dinates of the influence line reduce rapidly on either side of span BC, and the 
bending of the girders in the top floor is small. The influence line indicates 
that in a multistory building vertical load (also termed gravity load) applied 
to one floor has very little effect on the moments created in adjacent floors. 
Moreover, as we have noted previously, the moments created in the girders 
of a particular floor by loading one span reduce rapidly with distance from 
the span. Therefore, the contribution to the positive moment in span BC by 
load on span DE is small—on the order of 5 or 6 percent of that produced 
by the load on girder BC. To maximize the positive moment in span BC, we 
position live load on all spans where the influence line is positive.

Figure 12.45b shows the influence line for negative moment in the 
girder and the spans to be loaded. Figure 12.45c shows a detail of the joint 
B to clarify the deformation introduced in Figure 12.45b. As discussed 
previously, the major contribution to the negative moment in the girder at 
B is produced by load on spans AB and BC. The contribution to the nega
tive moment from load on span DE is small. Recognizing that the negative 
moment produced at B by load on other floors is small, we position the 
distributed load on spans AB, BC, and DE to compute the maximum nega
tive moment at B.
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Influence Lines for Indeterminate Trusses
12.17

Using the basic defination, influence lines of a truss that is indeterminate to 
the first degree is presented in Example 12.19. The flexibility method is used 
to analyze the truss.

E X A M P L E  1 2 . 1 9 For the indeterminate truss shown in Figure 12.46, construct the influence 
lines for the reactions at I and L and for the force in upper chord member 
DE. The truss is loaded through the lower chord panel points, and AE is 
constant for all members.

Solution
The truss will be analyzed for a 1kip load at successive panel points. Since 
the truss is indeterminate to the first degree, we use the method of consis
tent deformations for the analysis. Because of symmetry, we only have to 
consider the unit load at panel points N and M. Only the computations for 
the unit load at panel point N are shown.

We begin by establishing the influence lines for reaction RL at the cen
ter support. After this force is established for each position of the unit load, 
all other reactions and bar forces can be computed by statics.

Select RL as the redundant. Figure 12.46b shows the bar forces pro
duced in the released structure by the unit load at panel point N. The 
deflection at support L is denoted by ΔLN. Figure 12.46c shows the bar 
forces and vertical deflection δLL at point L produced by a unit value of the 
redundant. Since the roller support at L does not deflect, the compatibility 
equation is

  Δ  LN   +  δ  LL   R  L   = 0 (1)

where the positive direction for displacements is upward.
Using the method of virtual work, we compute ΔLN.

 1 ⋅  Δ  LN   =  ∑ 
 
 
 
       

 F  P   F  Q  L
 ______ 

AE
   (2)

Since AE is a constant, we can factor it out of the summation.

 
 Δ  LN   =   1 ___ 

AE
    ∑ 

 
 
 
      F  P   F  Q  L = −  64.18 ______ 

AE
   (3)

where the quantity ΣFPFQL is evaluated in Table 12.2 (see column 5).
Compute δLL by virtual work.

 
 (1 kip)   ( δ  LL  )  =   1 ___ 

AE
    ∑ 

 
 
 
     F  Q  2  L =   178.72 _______ 

AE
   (4)

The quantity Σ F  Q  2  L is evaluated in column 6 of Table 12.2.
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Figure 12.46: (a) Details of truss; (b) unit load on released structure produces FP forces; 
(c) unit value of redundant RL produces FQ forces; (d) influence line for RL; (e) influence 
line RI; (f ) influence line for force in upper chord FDE.
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Substituting the values of ΔLN and δLL above into Equation 1, we 
compute RL

−  64.18 ______ 
AE

   +  R  L     178.72 _______ 
AE

   = 0

 R  L   = 0.36 kip

If the unit load is next moved to panel point M and the computations 
repeated using the method of consistent deformations, we find

 R  L   = 0.67 kip

Example 12.19 continues . . . TABLE 12.2

Bar FP FQ L FQFPL   F  Q  2
   L 

(1) (2) (3) (4) (5) (6)

AB −   5 _ 6       1 _ 2    20 −8.33 5.00
BC −   5 _ 8       3 _ 8    15 −3.52 2.11
CD −   1 _ 2       3 _ 4    15 −5.63 8.44
DE −   1 _ 2       3 _ 4    15 −5.63 8.44
EF −   1 _ 4       3 _ 4    15 −2.81 8.44
FG −   1 _ 4       3 _ 4    15 −2.81 8.44
GH −   1 _ 8       3 _ 8    15 −0.70 2.11
HI −   1 _ 6    −   1 _ 2    20 −1.67 5.00
IJ 0 0 15 0 0
JK    1 _ 8    −   3 _ 8    15 −0.70 2.11
KL    3 _ 8    −   9 _ 8    15 −6.33 18.98
LM    3 _ 8    −   9 _ 8    15 −6.33 18.98
MN    5 _ 8    −   3 _ 8    15 −3.52 2.11
NA 0 0 15 0 0
BN    25

 __ 24    −   5 _ 8    25 −16.28 9.76
CN    1 _ 6       1 _ 2    20 1.67 5.00
CM −   5 __ 24    −   5 _ 8    25 3.26 9.76
DM 0 0 20 0 0
EM    5 __ 24       5 _ 8    25 3.26 9.76
EL 0 −1 20 0 20.00
EK −   5 __ 24       5 _ 8    25 −3.26 9.76
FK 0 0 20 0 0
KG    5 __ 24    −   5 _ 8    25 −3.26 9.76
GJ −   1 _ 6       1 _ 2    20 −1.67 5.00

JH    5 __ 24    −   5 _ 8    25 −3.26 9.76
 Σ = −64.18 Σ = 178.72
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The influence line for RL, which is symmetric about the centerline of the 
structure, is drawn in Figure 12.46d. When the unit load is at support L, it 
is carried into support L; thus RL = 1. The remaining influence lines can 
now be constructed by the equations of statics for each position of the unit 
load. Figure 12.46e shows the influence line for RI. Because of symmetry, 
the influence line for RA is the mirror image of that for RI.

As you can see, the influence lines for bar forces and reactions of 
the truss are nearly linear. Moreover, because the number of panel points 
between supports is small, the trusses, which are relatively short and deep, 
are very stiff. Therefore, the forces in members, produced by ap plied loads, 
are largely limited to the span in which the load acts. For example, the axial 
force in bar DE in the left span is nearly zero when the unit load moves 
to span LI (Figure 12.46f ). If additional panels were added to each span, 
increasing the flexibility of the structure, the bar forces produced in an 
adjacent span, by a load in the other span, would be larger.

Summary

 • Influence lines are used to establish where to position a moving load 
or a variable length of uniformly distributed live load on a structure to 
maximize the value of an internal force at a particular section of a beam, 
truss, or other type of structure.

 • Influence lines are constructed for an internal force or a reaction at 
a particular point in a structure by evaluating the value of the force at the 
particular point as a unit load moves over the structure. The value of the 
internal force for each position of the unit load is plotted directly below 
the position of the unit load.

 • Influence lines consist of a series of straight lines for determinate struc
tures and curved lines for indeterminate structures.

 • The Müller–Breslau principle provides a simple procedure for 
establishing the qualitative shape of an influence line. The influence 
line is quantitative for determinate structures, but is qualitative for 
indeterminate structures. The principle states: The influence line for any 
reaction or internal force (shear, moment) corresponds to the deflected 
shape of the structure produced by removing the capacity of the structure 
to carry that force and then introducing into the modified (or released) 
structure a unit deformation that corresponds to the restraint removed.

 • Influence lines for multistory buildings frames clarify building code 
provisions that specify how uniformly distributed live loads are to be 
positioned on floors to maximum moments at critical sections.

12.17 ■ Influence LInes for Indeterminate Trusses  591
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592  Chapter 12 ■ Influence Lines for Moving Loads

Determinate Structures

P12.1. Draw the influence lines for the reaction at A and 
for the shear and moment at points B and C. The rocker 
at D is equivalent to a roller.

PROBLEMS
P12.4. (a) Draw the influence lines for reactions MA, RA, 
and Rc of the beam in Figure P12.4. (b) Assuming that 
the span can be loaded with a 1.2 kips/ft uniform load 
of variable length, determine the maximum positive and 
negative values of the reactions.

P12.1

5ʹ 5ʹ 10ʹ

20ʹ

A B

RA RD

C D

P12.2

A CB

3 m 2 m

A B C D

8 m 6 m 4 m

RA
RC

P12.4

A CB D

8ʹ 6ʹ 3ʹ

RC

RAMA hinge

P12.5

8ʹ

hinge

4ʹ 4ʹ

GFEDCBA

4ʹ 4ʹ 4ʹ

P12.2. For the beam shown in Figure P12.2, draw the 
influence lines for the reactions MA and RA and the shear 
and moment at point B.

P12.3. Draw the influence lines for the reactions at sup
ports A and C, the shear and moment at section B, and the 
shear just to the left of support C.

P12.5. (a) Draw the influence lines for reactions RB, RD, 
and RF of the beam in Figure P12.5 and the shear and 
moment at E. (b) Assuming that the span can be loaded 
with a 1.2 kips/ft uniform load of variable length, deter
mine the maximum positive and negative values of the 
reactions.

P12.6. For the beam in Figure P12.6, draw the influence 
lines for reactions at B, C, E, and G, and moments at C 
and E. If a uniform load of 2 kips/ft is applied over the 
entire length of the beam, compute the reactions at B, C, 
D and E, moments at C and D.

P12.3

A

D F

B C E G
H

8ʹ22ʹ 22ʹ 12ʹ8ʹ12ʹ 30ʹ
P12.6
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P12.7. Load moves along girder BCDE. Draw the 
influence lines for the reactions at supports A and D, the 
shear and moment at section C, and the moment at D. 
Point C is located directly above support A.

P12.10 to P12.14. Using the Müller–Breslau principle, 
draw the influence lines for the reactions and internal 
forces noted below each structure.

P12.9

A DCB

4ʹ 4ʹ 3ʹ

6ʹ

E

P12.10

C

VA, MB, MC, and RC

DA B

12ʹ 4ʹ8ʹ

P12.11

A B C D

12ʹ 12ʹ 6ʹ
MA, RA , MC , and VC (to left of support C )

P12.12

A CB D E

18ʹ12ʹ 18ʹ 12ʹ

RB, VB (to left of support B),VB (to right of support B), MC, and VC

P12.13

20ʹ 10ʹ 10ʹ8ʹ

A DC EB

RA, RC, MD, and VD

hinge

P12.7

RD

RA

5ʹ 5ʹ10ʹ

12ʹ

B

A

C D
E

P12.8

A B

C

15ʹ

15ʹ

P12.8. Hoist load moves along beam AB shown in Figure 
P12.8. Draw the influence lines for the vertical reaction 
at C, and moments at B and C.

P12.9. Beam AD is connected to a cable at C. Draw the 
influence lines for the force in cable CE, the vertical reac
tion at support A, and the moment at B.

P12.14

A CB D E
F

8 m 4 m

RA, RB, RF, MF, VB (to left of support B),
VB (to right of support B), VE

4 m 4 m 4 m
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594  Chapter 12 ■ Influence Lines for Moving Loads

P12.15. For the girder in Figure P12.15, draw the influ
ence lines for the reaction at A, the moment at point B, 
and the shear between points A and B.

P12.18. (a) Draw the influence lines for the reactions at 
B and E, the shear between CD, the moment at B and D 
for the girder HG in Figure P12.18. (b) If the dead load 
of the floor system (stringers and slab) is approximated 
by a uniformly distributed load of 3 kips/ft, the reaction 
of the floor beam’s dead load to each panel point equals 
1.5 kips, and the deadweight of the girder is 2.4 kips/ft, 
determine the moment in the girder at D and the shear 
just to the right of C.

P12.15

4 m 2 m 4 m 2 m 4 m

B CA D E F

RA

P12.16

5 @ 24ʹ = 120ʹ

A B C D E

H G

F

P12.17

8ʹ 4ʹ 4ʹ

A E

B C D

8ʹ 8ʹ

P12.18

15ʹ 15ʹ 15ʹ 15ʹ 15ʹ

A B

H G

C D E F

P12.19

20ʹ 20ʹ24ʹ 24ʹ
12ʹ 12ʹ

I H

BA GC D E F

P12.20

3 @ 5 m 2 @ 5 m
2.5 m 2.5 m

A

H
I J

K

B C D E F G

P12.16. For the floor system shown in Figure P12.16, 
draw the influence lines for shear between points B 
and C and for the moment at points C and E in the 
girder.

P12.17. For the girder in Figure P12.17, draw the 
influ ence lines for the reaction at A, the moment 
at point C, and the shear between points B and C in  
girder AE.

P12.19. For the girder in Figure P12.19, draw the 
influence lines for the reaction at I, the shear to the 
right of support I, the moment at C, and the shear be
tween CE.

P12.20. (a) For the girder HIJ shown in Figure P12.20, 
draw the influence line for moment at C. (b) Draw the 
influence lines for the reactions at supports H and K.

lee98004_ch12_528-603.indd   594 23/12/16   5:15 pm



P12.21. The load can only be applied between points B 
and D of the girder shown in Figure P12.21. Draw the 
influence lines for the reaction at A, the moment at D, and 
the shear to the right of support A.

P12.22

30 m

A

D B

w = 10 kN/m

C

15 m 15 m

12 m

P12.23

B

A F

C

hinge

35ʹ

35°

D E

r =
 5

0ʹ
P12.21

A
CB D E

F

5 @ 5 m = 25 m

P12.24

B

D

x

y

P

CA

L = 175ʹ

h = 150ʹ

100ʹ

P12.25. Draw the influence lines for the reactions at 
A and F and for the shear and moment at section 1. 
Using the influence lines, determine the reactions at 
supports A and F if the dead load of the floor system 
can be approximated by a uniform load of 10 kN/m. 
See Figure P12.25.

P12.25

40 m20 m

hinge

EF

A
B C

D

20 m

15 m

20 m20 m

30 mhinge

1

P12.22. (a) The threehinged arch shown in Figure P12.22 
has a parabolic profile. Draw the influence lines for both 
the horizontal and vertical reactions at A and the moment 
at D. (b) Compute the horizontal and vertical reactions 
at support A if the arch is loaded by a uniform load of  
10 kN/m. (c) Compute the maximum moment at point D.

P12.23. For the semicircular, threehinged arch ABC, 
shown in Figure P12.23, construct the influence lines for 
reactions at A and C, and shear, axial load and moment 
at F. A uniform live load of 2 kips/ft is applied along the 
top deck girder DE, assume that the load acts uniformly 
on the arch through the vertical struts. Compute the reac
tions at A and C, and shear, axial load and moment at F 
using the influence lines. 

P12.24. Load moves along the threehinged, para
bolic arch ABC, shown in Figure P12.24. Construct 
the influence lines for the reactions at C, and shear, 
axial load and moment at point D. The equation for the 
parabolic arch is y = 4hx2/L2. If a point load P = 3 kips 
is applied at B, compute shear, axial load and moment 
at D.

■ Problems  595
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596  Chapter 12 ■ Influence Lines for Moving Loads

P12.26. The horizontal load P can act at any location 
along the length of member AC shown in Figure P12.26. 
Draw the influence lines for the moment and shear at 
section 1, and the moment at section 2.

P12.28

DA

B C

1
1ʹ

18ʹ

48ʹ

P12.29

A
L K J I H

B F

G

C D E

6 @ 15ʹ = 90ʹ

15ʹ

5ʹP12.26

A

B

C

D

P

5 m

3 m

5 m

8 m

4 m

1 2

D

A EAx

Ay

Ex

Ey

C

B

hinge

1
1ʹ

18ʹ

24ʹ 24ʹ

P12.27

P12.27. Draw the influence lines for the reactions Ax and 
Ay at the left pin support and the bending moment on 
section 1 located at the face of column AB.

P12.29. Draw the influence lines for the bar forces in 
members DE, DI, EI, and IJ if the live load in Figure P12.29 
is applied through the lower chord panel points.

P12.30. Draw the influence lines for the bar forces in 
members AB, BK, BC, and LK if the live load is applied 
to the truss in Figure P12.29 through the lower chord.

P12.31. Draw the influence lines for RA and the bar forces 
in members AD, EF, EM, and NM. Loads are transmit
ted into the truss through the lower chord panel points. 
Vertical members EN and GL are 18ft long, FM is 16 ft.

P12.28. Load moves along girder BC. Draw the influ
ence lines for the reactions at A and the bending mo
ment on section 1 located 1 ft from the centerline of 
column AB. P12.31

6 @ 18ʹ = 108ʹ

16ʹ

6ʹ

16ʹ

6ʹ

4ʹ 6ʹ 4ʹ

RA

AB

C I
D H

JKLMN

E F G
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P12.32. (a) Draw the influence lines for the bar forces 
in  members HC, HG, and CD of the truss shown in  
Figure P12.32. The load moves along the bottom chord of 

■ Problems  597

the truss. (b) Compute the force in member HC if panel 
points B, C, and D are each loaded by a concentrated 
vertical load of 12 kips.

P12.32

A
B DC

H F

E

4 @ 24ʹ = 96ʹ

18ʹ

6ʹ

G

P12.33 Draw the influence lines for bar forces in mem
bers HD and HC of the truss shown in Figure P12.33. 
The load moves along the bottom chord of the truss. If the 
truss is to be designed for a uniform live load of 0.32 kip/ft 

that can be placed anywhere on the span in addition to a 
concentrated live load of 13 kips that can be positioned 
where it will produce the largest force, compute the maxi
mum tension and compression forces in bar HD.

P12.33

6 @ 20ʹ = 120ʹ

20ʹ
10ʹ

A B C D

H

E F G

P12.34. Draw the influence lines for bar forces in mem
bers CD, EL, and ML of the truss shown in Figure P12.34. 

The load moves along BH of the truss.

P12.34

A

B C D E

JK I

H

M L

F G

6 @ 6 m

6 m

6 m

hinge

P12.35. Draw the influence lines for bar forces in mem
bers ML, BL, CD, EJ, DJ, and FH of the cantilever truss 

in Figure P12.35 if the live load is applied through the 
lower chord panel points.

P12.35

DCB

KLM

7 @ 15ʹ = 105ʹ

A

E F

G
J I H

15ʹ
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598  Chapter 12 ■ Influence Lines for Moving Loads

P12.36. Draw the influence lines for the vertical and 
horizontal reactions, AX and AY, at support A and the bar 
forces in members AD, CD, and BC. If the truss is loaded 

by a uniform dead load of 4 kips/ft over the entire length 
of the top chord, determine the magnitude of the bar 
forces in members AD and CD.

DB C E

A G

F

4 @ 20ʹ = 80ʹ

hinge

20ʹ

P12.36

P12.37. Draw the influence lines for the forces in mem
bers BC, AC, CD, and CG. Load is transferred from the 
roadway to the upper panel points by a system of stringers 
and floor beams (not shown). If the truss is to be designed 
for a uniform live load of 0.32 kip/ft that can be placed 

anywhere on the span in addition to a concentrated live 
load of 24 kips that can be positioned where it will pro
duce the largest force in bar CG, determine the maximum 
value of live load force (tension, compression, or both) 
created in bar CG.

P12.37

A

B C D E

G
F

20ʹ

6 @ 15ʹ = 90ʹ

P12.38

G
F

E

A B C D

4 m

6 @ 3 m = 18 m

2 m 3 m

30 kN 30 kN 10 kN

P12.38. A bridge is composed of two trusses whose 
configuration is shown in Figure P12.38. The trusses are 
loaded at their top chord panel points by the reactions 
from a stringer and floor beam system that supports a 
roadway slab. Draw the influence lines for forces in bars 
FE and CE. Assume that vehicles move along the center 

of the roadway so onehalf the load is carried by each 
truss. If a fully loaded motorized ore carrier with a total 
weight of 70 kN crosses the bridge, determine the maxi
mum live load forces in bars FE and CE. Assume the 
truck can move in either direction. Consider the possibil
ity of both tension and compression force in each bar.
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6 panels @ 24ʹ = 144ʹ

4ʹ
16ʹ

36ʹ

A

C

M

L K

J

I

B D E F G H

P12.40

P12.39

FEDCB

H
IJK

L

G

6 @ 20ʹ = 120ʹ

20ʹ

20ʹ 10ʹ A

20 kips 24 kips 10 kips

P12.39. Draw the influence lines for forces in bars AL 
and KJ in Figure P12.39. Using the influence lines, de
termine the maximum live load force (consider both ten
sion and compression) produced by the 54kip truck as 

it transverses the bridge, which consists of two trusses. 
Assume the truck moves along the center of the roadway 
so that onehalf of the truck load is carried by each truss. 
Assume the truck can travel in either  direction.

P12.40. (a) Load is applied to the threehinged trussed 
arch in Figure P12.40 through the upper chord panel 
points by a floor beam and stringer floor system. Draw 
the influence lines for the horizontal and vertical reac
tions at support A and the forces or components of force 
in members BC, CM, and ML. (b) Assuming that the dead 
load of the arch and floor system can be represented by a 

uniform load of 4.8 kips/ft, determine the forces in bars 
CM and ML produced by the dead load. (c) If the live load 
is represented by a uniformly distributed load of 0.8 kip/ft 
of variable length and a concentrated load of 20 kips, 
determine the maximum force in bar CM produced by the 
live load. Consider both tension and compression. Joint 
E acts as a hinge.

P12.41. Compute the absolute maximum shear and 
moment produced in a simply supported beam by two 

concentrated live loads of 20 kips spaced 10 ft apart. The 
beam span is 30 ft.
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600  Chapter 12 ■ Influence Lines for Moving Loads

P12.42. Draw the envelopes for maximum shear and 
moment in a 24ftlong simply supported beam produced 
by a live load that consists of both a uniformly distributed 
load of 0.4 kip/ft of variable length and a concentrated 
load of 10 kips (Figure P12.42). The 10kip load can act 
at any point. Compute values of the envelope at the sup
ports, quarter points, and midspan.

P12.42

10 kips

24ʹvariable

w = 0.4 kip/ft

A B

P12.43

24 m

8 m 3 m

24 kN 32 kN 8 kN

A B

P12.44

30ʹ

6ʹ10ʹ

8 kips 10 kips 6 kips

10ʹ 10ʹ

A B

P12.45

6 kips 24 kips
12ʹ

24 kips
16ʹ

P12.46

4 m 4 m 4 m 4 m8 m

80 kN

FC D EBA

P12.48

RA

RB

MA

5 @ 4ʹ = 20ʹ 4ʹ

1 2 3 4 5 6

8ʹ

20 kips 20 kips

P12.43. Determine (a) the absolute maximum values of 
shear and moment in the beam produced by the wheel 
loads and (b) the maximum value of moment when the 
middle wheel is positioned at the center of the beam in 
Figure P12.43.

P12.44. Determine (a) the absolute maximum value of 
live load moment and shear produced in the 50ft girder 
and (b) the maximum value of moment at midspan 
(Figure P12.44). Hint: For part (b) use the influence line 
for moment.

P12.45. Determine the absolute maximum value of 
live load shear and moment produced in a simply sup
ported beam spanning 40 ft by the wheel loads shown in 
Figure P12.45.

P12.46. The beam shown in Figure P12.46 is subjected 
to a moving concentrated load of 80 kN. Construct the en
velope of both maximum positive and negative moments 
for the beam.

P12.47. Consider the beam shown in Figure P12.46 with
out the 80 kN load. Construct the envelope of maximum 
positive shear assuming the beam supports a 6 kN/m uni
formly distributed load of variable length.

P12.48. Computer application. Construction of an influ-
ence line for an indeterminate beam. (a) For the 
indeterminate beam shown in Figure P12.48, con

struct the influence lines for MA, RA, and RB by applying a 
unit load to the beam at 4ft intervals to compute the cor
responding magnitudes of the reactions.
 (b) Using the influence line in part (a), determine the 
maximum value of the reaction RB produced by two con
centrated 20kip wheel loads spaced 8 ft apart.
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P12.49. A simply supported crane runway girder has 
to support a moving load shown in Figure P12.49. The 
moving load shown has to be increased by an impact 
factor listed in Table 2.3. (a) Position the moving 
load to compute the maximum moment. Also com
pute the maximum deflection produced by the load. 
(b) Reposition the moving load symmetrically on 
the span and compute the maximum moment and the 
maximum deflection. Which case produces a larger 
deflection?

P12.52. Using moment distribution, construct the 
influ ence lines for the reaction at A and the shear and 
moment at section B (Figure P12.52). Evaluate influ
ence line ordinates at 8ft intervals in span AC and CD 
and at E.

P12.49

A B

40ʹ

20 kips 20 kips

8ʹ

Indeterminate Structures

Unless otherwise noted, EI is constant for all problems.

P12.50. Construct the influence lines for the verti
cal reaction at support A and the moment at support C. 
Evaluate the ordinates at 6ft intervals of the influence 
line. EI is constant.

A CB

18ʹ 24ʹ
MC 

RA

P12.50

P12.51. (a) Construct the influence lines for the moment 
and the vertical reaction RA at support A for the beam in 
Figure P12.51. Evaluate the influence line ordinates at the 
quarter points of the span. (b) Using the influence lines 
for reactions, construct the influence line for moment at 
point B. Compute the maximum value of RA produced by 
the set of wheel loads.

10ʹ
10ʹ

60 kips 30 kips

L = 40ʹ
MA

RA

A B C

P12.51

A DB C

9 kips 9 kips

60ʹ

10ʹ20ʹ

60ʹ

P12.53

L = 32ʹ

A

RA

B C D E

L = 32ʹ

8ʹ
6ʹ

P12.52

P12.53. (a) Draw the influence line for the positive 
moment at B (Figure P12.53). (b) If the beam carries 
a uniformly distributed live load of 2 kips/ft that can 
act on all or part of each span as well as a concentrated 
live load of 20 kips that can act anywhere, compute the 
maximum moment at B. (c) Determine the maximum 
value of live load moment at B produced by the set of 
wheel loads.
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A B C D E F G

10ʹ 10ʹ5ʹ 5ʹ 5ʹ10ʹ

P12.54

P12.54. Draw the qualitative influence lines for RA, RB, 
MC, VC, and shear to the left of support D for the beam in 
Figure P12.54.

P12.55 (a) Draw a qualitative influence line for the 
moment at the top of column AB in Figure P12.55. 
Indicate the spans that should be loaded with a uni
formly distributed live load to maximize moment in 
the column. (b) Sketch the influence line for axial 
load in column AB and indicate the spans that should 
be loaded to maximum the axial load. (c) Sketch the 
qualitative influence line for positive moment at the 
midspan of girder AC.

P12.55

B

A C

P12.56. The ordinates of the moment influence line 
at midspan B of a 2span continuous beam are pro
vided at every onetenth of the span in Figure P12.56. 
(a) Position the AASHTO HL93 design truck and lane 
loads in Figure 12.25f to produce the maximum moment. 
(b) Position the AASHTO HL93 design tandem and lane 
loads shown in Figure 12.25(g) to produce the maximum 
positive moment. Which loading is more critical?

P12.56

A B C

+

–

D

0 0 00.
03

8L
0.

07
6L

0.
11

6L
0.

15
8L

0.
20

3L
0.

15
2L

0.
10

5L
0.

06
4L

0.
02

8L

0.
02

1L
0.

03
6L

0.
04

5L
0.

04
8L

0.
04

7L
0.

04
2L

0.
03

4L
0.

02
4L

0.
01

2L

35ʹ 35ʹ L = 70ʹ

P12.57. (a) Draw a qualitative influence line for the reac
tion at support A for the beam in Figure P12.57. Using 
moment distribution, calculate the ordinate of the influ
ence line at section 4. (b) Draw the qualitative influence 
line for the moment at B. Using the conjugate beam or 
moment distribution method, calculate the ordinate of the 
influence line at section 8. EI is constant.

P12.57

5 @ 6ʹ = 30ʹ 3 @ 6ʹ = 18ʹ

A
B

C

1 2 3 4 5 6 7 8 9

P12.58

18ʹ

A B C D

24ʹ6ʹ

hinge

P12.58. Construct the influence lines for RC and MC  
in Figure P12.58, using the Müller–Breslau method. 
Evaluate the ordinates at points A, B, C, and D.
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P12.59. Computer analysis of beam of varying depth. 
The reinforced concrete bridge girder, attached to 
the mas sive end wall as shown in Figure P12.59, 

may be treated as a fixed-end beam of varying depth. 
(a) Construct the influence lines for the reactions RA and 

P12.59

A C DB

30ʹ

15ʹ

30ʹ 30ʹ

RA
MA

Compact
fillCompact

fill

30 k 20 k

I = 4000 in.4 I = 6000 in.4I = 6000 in.4

MA at support A. Evaluate the ordinates at 15-ft intervals. 
(b) Evaluate the moment MA and the vertical reaction RA at 
end A produced by the loaded ore- carrier when its 30-kip 
rear wheel is positioned at point B. E = 3000 kips/in.2
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Forth Bridge over the Firth of Forth between Fife and 
Edinburgh, Scotland

When it opened in 1890, the Forth Bridge was the longest cantilevered truss bridge in the 
world, and still remains as the world’s second longest. The superstructure of the bridge 
takes the form of three double-cantilever towers, with cantilever arms each projecting 
680 ft from the sides of the towers, and are linked together by two 350-ft long suspended 
truss spans. An incredible 6.5 million rivets connect the mild steel structural members, 
which at the time was an advance in building material over wrought iron. Recognizing 
its extraordinary and impressive milestone in bridge design and construction, the United 
Nations Educational, Scientific and Cultural Organization made this railroad bridge a World 
Heritage Site in 2015.

© Chris Hepburn/robertharding/Getty Images
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13

Thus far we have used methods to analyze indeterminate structures for exact 
internal forces and deformations. These methods produce a structural solu-
tion that satisfies the equilibrium of forces and compatibility of deformations 
at all joints and supports. If a structure is highly indeterminate, an exact anal-
ysis by using, for example, the consistent deformations or slope-deflection 
method can be time-consuming. 

If designers understand the behavior of a particular structure, they can 
often use an approximate analysis to estimate closely, with a few simple 
computations, the approximate magnitude of the forces at various points in 
the structure. In an approximate analysis, we make simplifying as sumptions 
about structural action or about the distribution of forces to various mem-
bers. These assumptions often permit us to evaluate forces by using only the 
equations of statics without considering compatibility requirements. 

C H A P T E R

Approximate Analysis 
of Indeterminate 
Structures
Chapter Objectives

 ● Learn the importance of approximate analysis for estimating member forces with reasonable  
accuracy, checking hand calculations, and to avoid an overlook in computer-generated structural 
analysis results.

 ● Approximate analysis is also a very useful tool to estimate required design forces for preliminary 
member sizing of a structure.

 ● Approximate analysis methods include estimating locations of points of inflections for beams and 
frames, and utilizing beam action as an analogy for approximate analysis of trusses.

 ● The portal method and cantilever method are very useful approximate analysis methods for multistory 
frames with lateral loads, such as wind and earthquake forces.

Introduction
13.1
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606  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

Although the results of an approximate solution may sometimes deviate 
as much as 10 or 20 percent from those of an exact solution, they are useful 
at certain design stages. Designers use the results of an approximate analysis 
for the following purposes:

1. To size the members of a structure during the preliminary design 
phase—the stage when the initial configuration and proportions of the 
structure are established. Since the distribution of forces in an indetermi-
nate structure is influenced by the stiffness of individual members, the 
designer must estimate the size of members closely before  the structure 
can be analyzed accurately.

2. To verify the accuracy of an exact or computer analysis. As you have 
discovered from solving homework problems, computational errors are 
difficult to eliminate in the analysis of a structure. Nowadays computer 
structural analysis also becomes a routine practice in design office 
Therefore, it is essential that a designer can use an approximate analysis 
to verify the results of an exact analysis. If a gross error in computations 
is made and the structure is sized for forces that are too small, it may 
fail. The penalty for a structural failure is incalculable—loss of life, loss 
of investment, loss of reputation, lawsuits, inconvenience to the public, 
and so forth. On the other hand, if a structure is sized for values of force 
that are too large, it will be excessively costly.

If radical assumptions are required to model a complex structure, the 
results of an exact analysis of the simplified model are often no better than 
those of an approximate analysis. In this situation the designer can base the 
design on the approximate analysis with an appropriate factor of safety.

Designers use a variety of techniques to carry out an approximate analy-
sis. These include the following:

1. Guessing the location of points of inflection in continuous beams and 
frames.

2. Using the solution of one type of structure to establish the forces 
in another type of structure whose structural action is similar. For 
example, the forces in certain members of a continuous truss may be 
estimated by assuming that the truss acts as a continuous beam.

3. Analyzing a portion of a structure instead of the entire structure.

In this chapter we discuss methods to make an approximate analysis of 
the following structures:

1. Continuous beams and trusses.
2. Simple rigid frames and multistory building frames for both gravity and 

lateral loads.

In the mid-1800s, rigid frames 
of steel and reinforced 
concrete were introduced 
for resisting lateral loads. 
As structures became more 
highly indeterminate with 
the development of multi-
bay mill buildings and 
multistory structures, a need 
for approximate analysis 
methods grew. In 1913, Robin 
Fleming, a bridge engineer 
for the American Bridge 
Company in New York, 
fulfilled that need with his 
development of the cantilever 
and portal methods. When 
Hardy Cross’ method of 
moment distribution was 
developed in 1930, it became 
the choice of analysis for 
indeterminate frames. 
However, cantilever and 
portal methods continue to 
be useful tools to estimate 
forces for preliminary sizing 
of framing members and 
checking computer analysis 
results.
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13.2 ■ Continuous Beams for Gravity Load  607

The approximate analysis of a continuous beam is normally made by one of 
the following two methods:

1. Guessing the location of points of inflection (points of zero moment).
2. Estimating the values of the member end moments.

Method 1.  Guessing the Location of Inflection Points

Since the moment is zero at a point of inflection (the point where the curva-
ture reverses), we can treat a point of inflection as if it were a hinge for the 
purposes of analysis. At each point of inflection we can write a condition 
equation (i.e., ΣM = 0). Therefore, each hinge we introduce at a point of 
inflection reduces the degree of indeterminacy of the structure by 1. By add-
ing hinges equal in number to the degree of indeterminacy, we can convert an 
indeterminate beam to a determinate structure that can be analyzed by statics.

To serve as a guide for locating the approximate position of points of 
inflection in a continuous beam, we observe the position of the points of 
inflection for the idealized cases shown in Figure 13.1. We can then use our 
judgment to modify these results to account for deviations of the actual end 
conditions from those of the idealized cases.

For the case of a uniformly loaded beam whose ends are completely fixed 
against rotation (Figure 13.1a), the points of inflection are located 0.21L from 
each end. If a fixed-end beam carries a concentrated load at midspan (Figure 
13.1b), the points of inflection are located 0.25L from each end. If a beam is 
supported on either a roller or a pin, the end restraint is zero (Figure 13.1c). 
For this case the points of inflection shift outward to the ends of the member. 
Support conditions in Figures 13.1a (full restraint) and 13.5c (no restraint) 
establish the range of positions in which a point of inflection may be located. 
For the case of a uniformly loaded beam fixed at one end and simply sup-
ported at the other, the point of inflection is located a distance 0.25L from the 
fixed support (Figure 13.1d ).

As a preliminary step in the approximate analysis of a continuous beam, 
you may find it helpful to draw a sketch of the deflected shape to locate the 
approximate position of the points of inflection. Examples 13.1 and 13.2  il-
lustrate the use of the cases in Figure 13.1 to analyze continuous beams by 
guessing the location of the points of inflection.

Continuous Beams for  
Gravity Load

13.2
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Figure 13.1: Location of points of inflection and shear and moment curves for beams 
with various idealized end conditions.
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13.2 ■ Continuous Beams for Gravity Load  609

Carry out an approximate analysis of the continuous beam in Figure 13.2a 
by assuming the location of a point of inflection.

E X A M P L E  1 3 . 1

Solution
The approximate location of each point of inflection is indicated by a small 
black dot on the sketch of the deflection shape shown by the dashed line 
in Figure 13.2a. Although the continuous beam has a point of inflection 
in each span, we only have to guess the location of one point because the 
beam is indeterminate to the first degree. Since the shape of the longer-
span AC is probably more accurately drawn than the shorter span, we will 
guess the position of the point of inflection in that span.

If joint C did not rotate, the deflected shape of member AC would be 
identical to that of the beam in Figure 13.1d, and the point of inflection 
would be located 0.25L to the left of support C. Because span AC is longer 
than span CE, it applies a greater fixed-end moment to joint C than span 
CE does. Therefore, joint C rotates counterclockwise. The rotation of joint 
C causes the point of inflection at B to shift a short distance to the right 
toward support C. We will arbitrarily guess that the point of inflec tion is 
located 0.2LAC = 4.8 ft to the left of support C.

We now imagine that a hinge is inserted into the beam at the location 
of the point of inflection, and we compute the reactions using the equations 
of statics. Figure 13.2b represents the results of this analysis. The shear and 
moment curves in Figure 13.2c show the results of the approximate analysis.

(a)

24ʹ

4.8ʹ

18ʹ

w = 3 kips/ft

A
B C D

E

w = 3 kips/ft w = 3 kips/ft

A
B
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C
E

(b)

19.2ʹ 18ʹ4.8ʹ

28.8 kips 79.8 kips 17.4 kips
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–43.2
–28.8–28.8

138.24

28.8 36.6

moment
(kip • ft)

shear
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(c)

BA B D E

Figure 13.2: (a) Continuous beam, points of 
inflection indicated with a black dot; (b) free 
bodies of beam on either side of the point 
of inflec tion; (c) shear and moment curves 
based on the approximate analysis. Note: An 
exact analysis gives MC = −175.5 kip · ft.
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610  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

E X A M P L E  1 3 . 2 Estimate the values of moment at midspan of member BC as well as at 
support B of the beam in Figure 13.3a.

(a)

(b)

20ʹ

w = 2 kips/ft

w = 2 kips/ft

A
B

B

P.I.

P.I. P.I.

P.I.

C

D

25ʹ 20ʹ

MB

R = 10 kips

5ʹ

2.5ʹ

15ʹ
15 kips 15 kips 15 kips

Figure 13.3: (a) Uniformly loaded continuous beam showing assumed location of 
points of inflec  tion; (b) free bodies of the center span.

Solution
The deflected curve in Figure 13.3a shows that there are two points of in-
flection. Since the continuous beam is indeterminate to the second degree, 
we only need to assume the location of two points of inflection to analyze 
by the equations of statics. Because all spans are about the same length 
and carry the same load, the slope of the beam at supports B and C will be 
nearly zero. Therefore, the deflected shape, as shown by the dashed line, 
will be similar to that of the fixed-end beam in Figure 13.1a. Consequently, 
we can assume that points of inflection develop at a distance of 0.2L = 5 ft 
from each support. If we imagine that hinges are inserted at both points of 
inflection, the 15-ft segment between the two points of inflection can be 
analyzed as a simply supported beam. Accordingly, the moment at mid-
span equals

 M ≈   w L   2  ___ 8   =   2   (15)    2  _____ 8   = 56.25 kip · ft Ans.

Treating the 5-ft segment of beam between the hinge and the support at B 
as a cantilever, we compute the moment at B as

  M  B   ≈ 15 (5)  +  (2) 5 (2.5)  = 100 kip · ft Ans.
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13.2 ■ Continuous Beams for Gravity Load  611

Method 2.  Estimating Values of End Moments

As we have seen from our study of indeterminate beams in Chapters 10 and 
11, the shear and moment curves for the individual spans of a continuous 
beam can be constructed after the member end moments are established. The 
magnitude of the end moments is a function of the rotational restraint sup-
plied by either the end support or the adjacent members. Depending on the 
magnitude of the rotational restraint at the ends of a member, the end mo-
ments produced by a uniform load can vary from zero (simple supports) at 
one extreme to wL2/8 (one end fixed and the other pinned) at the other.

To establish the influence of end restraint on the magnitude of the posi-
tive and negative moments that can develop in a span of continuous beam, 
we can again consider the various cases shown in Figure 13.1. From exam-
ining Figure 13.1a and c, we observe that the shear curves are identical for 
uniformly loaded beams with symmetric boundary conditions. Since the area 
under the shear curve between the support and midspan equals the simple 
beam moment wL2/8, we can write

   M  s   +  M  c   =   w L   2  ____ 8   (13.1)

where Ms is the absolute value of the negative moment at each end, and Mc is 
the positive moment at midspan.

In a continuous beam the rotational restraint supplied by adjacent mem-
bers depends on how they are loaded as well as on their flexural stiffness. For 
example, in Figure 13.4a the spans of the exterior beams have been selected 
so that the rotations of joints B and C are zero when uniform load acts on all 
spans. Under this condition the moments in member BC are equal to those in 
a fixed-end beam of the same span (Figure 13.4b). On the other hand, if the 
exterior spans are unloaded when the center span is loaded (Figure 13.4c), 
the joints at B and C rotate, and the end moments are reduced by 35 percent. 
Because rotation at the ends increases the curvature at midspan, the positive 
moment increases 70 percent. The change in moment at midspan—associated 
with the end rotation—is twice as large as that at the supports because the 
initial moments (assuming we start with the ends fixed and allow the end 
joints to rotate) at the ends are twice as large as the moment at midspan. We 
also observe that rotation of the ends of the members results in the points of 
inflection moving outward toward the supports (from 0.21L2 to 0.125L2).

We will now use the results of Figures 13.1 and 13.4 to carry out an approx-
imate analysis of the uniformly loaded beam of equal spans in Figure 13.5. Be-
cause all spans are about the same length and carry uniform load, all beams will 
be concave up in the center—indicating positive moment at or near midspan—
and concave down—indicating negative moment—over the supports.

We begin by considering interior span CD. Since the end moments ap-
plied to each side of an interior joint are about the same, the joint undergoes 
no significant rotation, and the slope of the beam at supports C and D will 
be nearly horizontal—a condition similar to that of the fixed-ended beam in 
Figure 13.1a; therefore, we can assume that the negative moments at sup-
ports C and D are approximately equal to wL2/12. In addition, Figure 13.1a 
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Figure 13.5:  (a) Five-span continuous beam with uniform load; (b) moment 
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13.3 ■ One-bay Rigid Frames for Vertical Load  613

shows that the positive moment at midspan of span CD will be approximately 
wL2/24.

To estimate the moments in span AB, we will use the moment curve for 
the beam in Figure 13.1d as a guide. If the support at B were completely fixed, 
the negative moment at B would equal wL2/8. Since some counterclockwise 
rotation of joint B occurs, the negative moment will reduce moderately. As-
suming a 20 percent reduction in the negative moment occurs, we estimate 
the value of a negative moment at B equals wL2/10. After the negative mo-
ment is estimated, analysis of a free body of the exterior span gives a posi-
tive value of moment near midspan equal to wL2/12.5. In a similar manner, 
computations show the positive moment in span BC is approximately equal  
to wL2/30.

The value of the shear at the ends of a continuous beam is influenced by 
the difference in the magnitudes of the end moments as well as the magnitude 
and position of the loading. If the end moments are equal and the beam is 
loaded symmetrically, the end reactions are equal. The greatest difference in 
the magnitude of the reactions in Figure 13.1 occurs when one end is fixed 
and the other end pinned, that is, when (3/8)wL goes to the pin support and  
(5/8)wL to the fixed support (Figure 13.1d).

One-bay Rigid Frames  
for Vertical Load

13.3

The design of the columns and girder of a one-bay rigid frame used to support the 
roof of a field house or a warehouse is usually controlled by moment. Since the 
axial force in both the legs and the girder of a rigid frame is typically small, it can 
be neglected, and in an approximate analysis the members are sized for moment.

The magnitude of the negative moment at the ends of the girder in a 
rigid frame will depend on the relative stiffness between the columns and the 
girder. Typically, the girder is four or five times longer than the columns. On 
the other hand, the moment of inertia of the girder is often much larger than 
that of the columns. Since the relative stiffness between the columns and the 
girder of a rigid frame can vary over a wide range, the end moment in the 
girder can range from 20 to 75 percent of the fixed-end moment. As a result, 
the values of the moment predicted by an approximate analysis may deviate 
considerably from the values of an exact analysis.

If the members of a uniformly loaded rigid frame are constructed of 
the same-size members, the flexural stiffness of the shorter columns will 
be relatively large compared to the stiffness of the girder. For this condi-
tion we can assume that the rotational restraint supplied by the columns 
produces an end moment in a uniformly loaded girder that is on the order 
of 70 to 85 percent of the moment that occurs in a fixed-end beam of the 
same span (Figure 13.1a). On the other hand, if for architectural reasons 
the frame is constructed with shallow columns and a deep girder, the ro-
tational restraint supplied by the flexible columns will be small. For this 
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614  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

condition the end moments that develop in the girder may be on the order 
of 15 to 25 percent of those that develop in a fixed-end beam. Figure 13.6 
shows the variation of negative moment at the end of a girder (fixed at C ) 
as a function of the ratio between the flexural stiffness of the column and 
the girder.

A second procedure for estimating the moments in a frame is to guess the 
location of the points of inflection (the points of zero moments) in the girder. 
Once these points are established, the balance of the forces in the frame can 
be determined by statics. If the columns are stiff and supply a large rotational 
restraint to the girder, the points of inflection will be located at about the same 
position as those in a fixed-ended beam (i.e., about 0.2L from each end). On 
the other hand, if the columns are flexible relative to the girder, the points of 
inflection will move toward the ends of the girder. For this case the designer 
might assume that the point of inflection is located between 0.1L and 0.15L 
from the ends of the girder. Use of this method to estimate the forces in a rigid 
frame is illustrated in Example 13.4.

As a third method of determining the moments in a rigid frame, the de-
signer can estimate the ratio between the positive and negative moments in 
the girder. Typically, the negative moments are 1.2 to 1.6 times that of the 
positive moment. Since the sum of the positive and negative moments in a 
girder that carries a uniformly distributed load must equal wL2/8, once the 
ratio of moments is assumed, the values of positive and negative moments 
are established.
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Figure 13.6: Influence of column stiffness on the end moment at joint B in a girder 
whose far end is fixed. Case A: base of column fixed; case B: base of column pinned.
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13.3 ■ One-bay Rigid Frames for Vertical Load  615

Analyze the symmetric frame in Figure 13.7a by estimating the values of 
negative moments at joints B and C. Columns and girders are constructed 
from the same-size members, that is, EI is constant.

E X A M P L E  1 3 . 3

Solution
Since the shorter columns are much stiffer than the longer girder (flexu ral 
stiffness varies inversely with length), we will assume the negative mo-
ments at joints B and C are equal to 80 percent of the end moments in a 
fixed-end beam of the same span.

 M  B   =  M  C   = −0.8   w L   2  ___ 12   = −   0.8 (2.4)   80   2  _________ 12   = −1024 kip · ft

We next isolate the girder (Figure 13.7b) and the column (Figure 13.7c), 
compute the end shears using the equations of statics, and draw the shear 
and moment curves.

An exact analysis of the structure indicates that the end moment in the 
girder is 1113.6 kip · ft and the moment at midspan is 806 kip · ft.
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Figure 13.7: (a) Symmetric frame with uniform load; (b) free body of girder and ap-
proximate shear and moment curves; (c) free body of column with estimated value of 
the end moment.
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616  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

E X A M P L E  1 3 . 4 Estimate the moments in the frame shown in Figure 13.8a by guessing the 
location of the points of inflection in the girder.

Solution
If we consider the influence of both length and moment of inertia on the 
flexural stiffness of the columns and the girder, we observe that the col-
umns, because of a smaller I, are more flexible than the girder. Therefore, 
we will assume arbitrarily that the points of inflection in the girder are 
located 0.12L from the ends of the girder.

Compute the distance Lʹ between points of inflection in the girder.

L′= L −  (0.12L)  (2)  = 0.76L = 45.6 ft

Since the segment of girder between points of inflection acts as a simply 
supported beam (i.e., the moments are zero each end), the moment at mid-
span equals

 M =   wL ′   2  ____ 8   =   2.4   (45.6)    2  ________ 8   = 623.8 kip · ft Ans.

Using Equation 13.1, we compute the girder end moments Ms:

 M  s   +  M  c   =   w L   2  ___ 8   =   2.4   (60)    2  ______ 8   = 1080 kip · ft

    M  s   = 1080 − 623.8 = 456.2 kip · ft Ans.

The moment curves for the girder and column are shown in Figure 13.8b 
and c. The exact value of moment at the ends of the girder is 404.64 kip · ft.
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Figure 13.8: (a) Details of frame; (b) free body of girder between points of inflection; 
(c) free body of  column AB.

lee98004_ch13_604-659.indd   616 27/12/16   3:22 pm



13.4 ■ Trusses with Single Diagonals  617

As we discussed in Section 4.1, the structural action of a truss is similar to that 
of a beam (Figure 13.9). The chords of the truss, which act as the flanges of 
an I-shaped beam, carry the bending moment, and the diagonals of the truss, 
which perform the same function as the web of a beam, carry the shear. Since 
the behavior of a truss and a beam is similar, we can evaluate the bar forces 
in a truss by treating it as a beam instead of using the method of joints or 
sections. In other words, we apply the panel loads acting on the truss to an 
imaginary beam whose span is equal to that of the truss, and we construct 
conventional shear and moment curves. By equating the internal couple MI 
produced by the forces in the chords to the internal moment M at the section 
produced by the external loads (and given by the moment curve), we can 
compute the approximate value of axial force in the chord. For example, in 
Figure 13.9b we can express the internal moment on section 1 of the truss by 
summing moments of the horizontal forces acting on the section about point 
o at the level of the bottom chord to give

 MI = Ch (13.2a)

Setting MI = M and solving the expression above for C give

  C =    M __ h    (13.2b)

Trusses with Single Diagonals
13.4

Figure 13.9: Internal forces in (a) a beam and (b) a truss. The distance between centroids 
of the flanges is y, and h is the distance between centroids of the chords.
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618  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

where h equals the distance between centroids of the top and bottom chords 
and M equals the moment in the beam at section 1 in Figure 13.9a.

When the panel loads acting on a truss are equal in magnitude, we can 
simplify the beam analysis by replacing the concentrated loads by an equiva-
lent uniform load w. To make this computation, we divide the sum of the 
panel loads ΣPn by the span length L:

  w =   Σ P  n   ___ L   (13.3)

If the truss is long compared to its depth (say, the span-to-depth ratio ex-
ceeds 10 or more), this substitution should have little influence on the results 
of the analysis. We will use this substitution when analyzing a continuous 
truss as a beam, because the computation of fixed-end moments for a uniform 
load acting over the entire span is simpler than computing the fixed-end mo-
ments produced by a series of concentrated loads.

Continuing the analogy, we can compute the force in the diagonal 
of a truss by assuming that the vertical component of force Fy in the  diagonal 
equals the shear V at the corresponding section of the beam (Figure 13.9).

To illustrate the details of the beam analogy and to check its accuracy, 
we will use the method to compute the forces in several members of the de-
terminate truss in Example 13.5. We will then use the method to analyze the 
indeterminate truss in Example 13.6.

Example 13.5 shows that the bar forces in a determinate truss  computed 
by the beam analogy are exact. This result occurs because the  distribution 
of forces in a determinate structure does not depend on the stiffness of the 
individual members. In other words, the forces in a determinate beam or truss 
are computed by applying the equations of statics to free bodies of the truss. 
On the other hand, the forces in an indeterminate truss will be influenced by 
the dimensions of the chord members, which correspond to the flanges of a 
beam. Since the forces in the chords are much larger adjacent to an interior 
support, the cross section of the  members in that location will be larger than 
those between the center of each span and the exterior supports. Therefore, 
the truss will act as a beam with a variable moment of inertia. To adjust for 
the variable stiffness of the equivalent beam in an approximate analysis, the 
designer can arbitrarily increase by 15 or 20 percent the forces (produced 
by analyzing the truss as a continuous beam of constant cross section) in 
the chords. Forces in the diagonals adjacent to the interior supports may be 
increased about 10 percent. The method is applied to an indeterminate truss 
in Example 13.6.
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13.4 ■ Trusses with Single Diagonals  619

By analyzing the determinate truss in Figure 13.10a as a beam, compute the 
axial forces in the top chord (member CD) and bottom chord (member JK) 
at midspan and in diagonal BK. Compare the values of force to those com-
puted by the method of joints or sections.

Solution
Apply the loads acting at the bottom panel points of the truss to an equiva-
lent beam of the same span, and construct the shear and moment curves 
(Figure 13.10b).

Compute the axial force in member CD of the truss, using Equa-
tion 13.2b and the beam moment at D (Figure 13.10c).

 Σ M  J   = 0 

  F  CD   = C =    M  D   ___ h   =   810 ___ 12   = 67.5 kips Ans.

Similarly, compute the axial force in member JK of the truss, using Equa-
tion 13.2b and the beam moment at C (Figure 13.10d).

  F  JK   = C =    M  C   ___ h   =   720 ___ 12   = 60 kips Ans.

Compute the force in diagonal BK. Equate the shear of 30 kips between 
BC of the beam to the vertical component, Fy, of the axial force in bar BK 
(Figure 13.10e).

 F  y   = V

= 30 kips

  F  BK   =   5 __ 4    F  y   = 37.5 kips Ans.

Values of force are identical to those produced by an exact analysis of 
the truss.

E X A M P L E  1 3 . 5

[continues on next page]
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Example 13.5 continues . . .

Figure 13.10: Analysis of a truss by beam analogy: (a) details of truss; (b) loads from 
truss applied to beam of same span; (c) free body of truss cut by a vertical section an 
infinitesimal distance to the left of midspan; (d ) free body of truss cut by a vertical 
section at infinitesimal distance to the right of joint K; (e) free body of truss cut by a 
vertical section through panel BC.
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13.4 ■ Trusses with Single Diagonals  621

Estimate the forces in bars a, b, c, and d of the continuous truss in 
Figure 13.11.

Solution
The truss will be analyzed as a continuous beam of constant cross section 
(Figure 13.11b). Using Equation 13.3, we convert the panel loads to a stati-
cally equivalent uniform load.

E X A M P L E  1 3 . 6
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Figure 13.11: (a) Details of truss and loads; 
(b)  beam loaded by an equivalent uniform 
load; (c) analysis of beam in (b) by moment 
distribution (moments in kip · ft); (d ) compu-
tation of reactions using free-body diagrams 
of beams and support at E (continues).

[continues on next page]
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622  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

w =   ΣP ___ L   =   
 (8 kips)  (13)  +  (4 kips)  (2) 

  ________________  72 + 96   =   2 __ 3   kip/ft

Analyze the beam by moment distribution (Figure 13.11c for details). 
Compute reactions using the free bodies shown in Figure 13.11d.

To compute bar forces, we will pass vertical sections through the 
beam; alternatively, after the reactions are established, we can analyze the 
truss directly. 

For bar a (free body in Figure 13.11e),

   +     ↑    Σ F  y   = 0

15.2 − 4 − 8 −  F  ay   = 0

 F  ay   = 3.2 kips

    F  a   =   5 __ 4    F  ay   =   5 __ 4    (3.2)  = 4 kips Ans.

For bar b, sum moments about point 1, 12 ft to the right of support D  
(Figure 13.11 f ).

⟳+ ΣM1 = 0

 (15.2) 12 − 4 (12)  − 15 F  b   = 0

  F  b   =   134.4 _____ 15   = 8.96 kips tension, round to 9 kips Ans.

For bar c,

Moment at center support = 632.5 kip · ft

  F  c   =   M __ h   =   623.5 _____ 15   = 42.2 kips Ans.

Arbitrarily increase by 10 percent to account for the increased stiffness of 
heavier chords adjacent to the center support in the real truss.

 F  c   = 1.1 (42.2)  = 46.4 kips compression

For bar d, consider a free-body diagram just to the left of support E cut by 
a vertical section.

   +     ↑    Σ F  y   = 0

15.2 kips − 4 kips − 5 (8 kips)  +  F  dy   = 0

 F  dy   = 28.8 kips  (tension) 

 F  d   =   5 __ 4    F  dy   =   5 __ 4    (28.8)  = 36 kips

Increase by 10 percent:   Fd = 39.6 kips Ans.

Example 13.6 continues . . .
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Figure 13.11: (Continued) (e) Computation 
of force in diagonal bar; (  f ) computation of 
force Fb.
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13.5 ■ Estimating Deflections of Trusses  623

Virtual work, which requires that we sum the strain energy in all bars of 
a truss, is the only method available for computing exact values of truss 
deflections. To verify that deflections computed by this method are of the 
correct order of magnitude, we can carry out an approximate analysis of the 
truss by treating it as a beam and by using standard beam deflection equations 
such as those given in Figure 9.3.

Deflection equations for beams are derived on the assumption that all de-
formations are produced by moment. These equations all contain the moment 
of inertia I in the denominator. Since shear deformations in shallow beams 
are normally small, they are neglected.

Unlike a beam, the deformations of the vertical and diagonal members of 
a truss contribute nearly as much to the total deflection as do the deformations 
of the top and bottom chords. Therefore, if we use a beam equation to pre-
dict the deflection of a truss, the value will be approximately 50 percent too 
small. Accordingly, to account for the contribution of the web members to the 
deflection of the truss, the designer should double the value of the deflection 
given by a beam equation.

Example 13.7 illustrates the use of a beam equation to estimate the deflection 
of a truss. The value of moment of inertia I in the beam equation is based on the 
area of the chords at midspan. If the chord areas are smaller at the ends of a truss 
(where the magnitude of the forces is smaller), use of the midspan properties 
overestimates the stiffness of the truss and produces values of deflection that are 
smaller than the true values.

Estimating Deflections of Trusses
13.5
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624  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

E X A M P L E  1 3 . 7 Estimate the midspan deflection of the truss in Figure 13.12 by treating it 
as a beam of constant cross section. The truss is symmetric about a vertical 
axis at midspan. The area of the top and bottom chords in the four center 
panels is 6 in.2. The area of all other chords equals 3 in.2. The area of all 
diagonals equals 2 in.2; the area of all verticals equals 1.5 in.2. Also E = 
30,000 kips/in.2.

Solution
Compute the moment of inertia I of the cross section at midspan. Base your 
computation on the area of the top and bottom chords. Neglecting the mo-
ment of inertia of the chord area about its own centroid (Ina), we evaluate 
I with the standard equation (section 1-1)

I = Σ ( I  na   + A d   2 ) 

= 2 [6   (60)    2 ]  = 43,200  in.   4 

Compute the deflection at midspan (see Figure 9.3d for the equation).

Δ =   P L   3  ____ 48EI  

=   60   (80 × 12)    3   ______________  48 (30,000)  (43,200)   

= 0.85 in.

Double Δ to account for contribution of web members.

 Estimated  Δ  truss   = 2Δ = 2 (0.85)  = 1.7 in. Ans.

Solution by virtual work, which accounts for the reduced area of chords at 
each end and the actual contribution of the diagonals and verticals to the 
deflection, gives  Δ  truss   = 2.07 in.
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Figure 13.12
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13.6 ■ Trusses with Double Diagonals  625

Trusses with double diagonals are a common structural system. Double di-
agonals are typically incorporated into the roofs and walls of buildings and 
into the floor systems of bridges to stabilize the structure or to transmit wind 
or other lateral loads (e.g., sway of trains) into the end supports. Each panel 
containing a double diagonal adds one degree of indeterminacy to the truss; 
therefore, the designer must make one assumption per panel to carry out an 
approximate analysis.

If the diagonals are fabricated from heavy structural shapes and have 
sufficient flexural stiffness to resist buckling, the shear in a panel may be 
assumed to divide equally between diagonals. Resistance to buckling is a 
function of the member’s slenderness ratio—the length divided by the radius 
of gyration of the cross section as well as the restraint provided by the bound-
aries. Example 13.8 illustrates the analysis of a truss in which both diagonals 
are effective.

If the diagonals are slender—constructed from small-diameter steel 
rods or light structural shapes—the designer can assume that the diagonals 
only carry tension and buckle under compression. Because the sloping di-
rection of a diagonal determines if it acts in tension or compression, the de-
signer must establish the diagonal in each panel that is effective, and must 
assume that the force in the other diagonal is zero. Since wind or earth-
quake loads can act in either transverse direction, both sets of diagonals are 
needed in real design. Example 13.9 illustrates the analysis of a truss with 
tension-only diagonals.

Trusses with Double Diagonals
13.6
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626  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

E X A M P L E  1 3 . 8 Analyze the indeterminate truss in Figure 13.13. Diagonals in each panel 
are identical and have sufficient strength and stiffness to carry loads in 
either tension or compression. Two diagonal members in each panel are 
not connected at the midspan.

Solution
Pass a vertical section 1-1 through the first panel of the truss cutting the free 
body shown in Figure 13.13b. Assume each diagonal carries one-half the 
shear in the panel (120 kips produced by the reaction at support H ). Since 
the reaction is up, the vertical component of force in each diagonal must 
act downward and equal 60 kips. To be consistent with this requirement, 
member AG must be in tension and member BH in compression. Since the  
resultant bar force is    5 _ 3    of the vertical component, the force in each bar 
equals 100 kips.

We next pass section 2-2 through the end panel on the right. From a 
summation of forces in the vertical direction, we observe that a shear of 
60 kips acting downward is required in the panel to balance the reaction on 
the right; therefore, the vertical component of force in each diagonal equals 
30 kips acting downward. Considering the slope of the bars, we compute a 
tension force of 50 kips in member DF and a compression force of 50 kips 
in member CE. If we consider a free body of the truss to the right of a verti-
cal section through the center panel, we observe that the unbalance shear 
is 60 kips and the forces in the diagonals act in the same direction as those 
shown in Figure 13.13c. After the forces in all diagonals are evaluated, the 
forces in the chords and verticals are computed by the method of joints. 
The final results are summarized in Figure 13.13a.
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Figure 13.13: (a) Truss with two effective diagonals in each panel; (b) free body of truss 
cut by section 1-1; (c) free body of truss cut by section 2-2. All bar forces in units of kips.
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13.6 ■ Trusses with Double Diagonals  627

Small-diameter rods form the diagonal members of the truss in 
Figure 13.14a. The diagonals can transmit tension but buckle if com-
pressed. Analyze the truss for the loading shown.

Solution
Since the truss is externally determinate, we first compute the reactions. 
We next pass vertical sections through each panel and establish the direc-
tion of the internal force in the diagonal bars required for vertical equilib-
rium of the shear in each panel. The tension and compression diagonals are 
next identified as discussed in Example 13.8 (the compression diagonals 
are indicated by the dashed lines in Figure 13.14b). Since the compres-
sion diagonals buckle, the entire shear in a panel is assigned to the tension 
diagonal, and the force in the compression diagonals is set equal to zero. 
Once the compression diagonals are identified, the truss may be analyzed 
by the methods of joints or sections. The results of the analysis are shown 
in Figure 13.14b.

E X A M P L E  1 3 . 9
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Figure 13.14: (a) Truss with tension diagonals; (b) values of bar forces in kips, com-
pression diagonals indicated by dashed lines.
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628  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

To establish a set of guidelines for estimating the force in members of highly 
indeterminate multistory frames with rigid joints, we will examine the results 
of a computer analysis of the symmetric reinforced concrete building frame 
in Figure 13.15. The computer analysis considers both the axial and flexural 
stiffness of all members. The dimensions and properties of the members in 
the frame are representative of those typically found in small office or apart-
ment buildings. In this study all beams in the frame carry a uniform load of 
w = 4.3 kips/ft to simplify the discussion. In practice, building codes permit 
the engineer to reduce values of live load on lower floors because of the low 
probability that the maximum values of live load will act simultaneously on 
all floors at any given time (Section 2.4).

Multistory Rigid Frames for Gravity Load
13.7
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Figure 13.15: Dimensions and member 
properties of a vertically loaded multistory 
building frame.

Properties of Members

Member A (in.2) I (in.4)

Exterior columns 100 1000
Interior columns 144 1728
Girders 300 6000

Forces in Beams

Figure 13.16 shows the shear, moment, and axial force in each of the four 
beams in the left bay of the frame in Figure 13.15. All forces are expressed in 
units of kips and all moments in units of kip · feet. The beams are shown in the 
same relative position they occupy in the frame (i.e., the top beam is located 
at the roof, the next at the fourth floor, and so on). We observe in each beam 
that the moment is greater at the right end—where the beams connect to the 
interior column—than at the left end, where the beams connect to the exterior 
column. Larger moments develop on the right because the interior joint, which 
does not rotate, acts as a fixed support. The interior joint does not rotate be-
cause the moments, applied by the beams on each side of the joint, are equal in 
magnitude and opposite in direction (see the curved arrows in Figure 13.18b). 
On the other hand, at the exterior joints where beams frame into one side of the 
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13.7 ■ Multistory Rigid Frames for Gravity Load  629

column only, the exterior joint—subjected to an unbalanced moment—will 
rotate in the clockwise direction. As the joint rotates, the moment at the left 
end of the beam reduces and the moment at the right end builds up due to the 
carryover moment. Therefore, the negative moment at the first interior support 
will always be larger than the fixed-end moment. For uniformly loaded beams 
the negative moment at the first interior support will usually range between 
wL2/9 and wL2/10. As the flexibility of the exterior column increases, the mo-
ments in the beam approach those shown in Figure 13.1d.

The moment of 70.1 kip · ft at the exterior end of the roof beam in Figure 
13.16a is smaller than the exterior moment in the floor beams below because the 
roof beam is restrained by a single column at joint E, whereas the floor beams 
are restrained by two columns (i.e., one below and one above the floor). Two col-
umns apply twice the rotational restraint of one column, assuming that they have 
the same dimensions and end conditions. The moment at joint B of the second 
floor beam in Figure 13.16d is smaller than that in the upper floor beams because 
the bottom column, which is pinned at its base and 13 ft long, is more flexible 
than the shorter columns in the upper floors that are bent in double curvature.

We also observe that the reactions and consequently the shear and mo-
ment curves of the beams on the third and fourth floors are approximately 
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Figure 13.16: Free bodies of floor beams showing forces from an exact analysis: (a) roof; 
(b) fourth floor; (c) third floor; (d ) second floor (load in kips per foot, forces in kips, and 
moments in kip · ft).
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630  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

the same because they have identical spans and loadings and are supported  
by the same size columns. Therefore, if we design the beams for a typical 
floor, the same members can be used in all other typical floors. Since the 
dimensions of columns supporting the lower floors of tall buildings have 
larger cross sections than those in the upper floors where the column loads  
are smaller, their flexural stiffness is larger than that of the smaller columns. 
As a result, the exterior moment in the floor beams will increase as the stiff-
ness of the columns increases. This effect, which is often moderate, is gener-
ally neglected in practice.

Estimating Values of End Shear in Beams

Because the end moments on the beams (Figure 13.16) are greater on the 
right than on the left end, the end shears are not equal. The difference in end 
moments reduces the shear produced by the uniform load at the left end and 
increases it at the right end. A good estimate for all exterior beams (beams 
that connect to an exterior column) is to assume 45 percent of the total uni-
form load wL is carried to the exterior column and 55 percent to the interior 
column. If a beam spans between two interior columns, the shears are ap-
proximately equal at both ends (i.e., V = wL /2).

Axial Loads in Beams

Although axial forces develop in all beams because of shear in the col-
umns, the stresses produced by these forces are small and may be neglected.  
For example, the axial stress, which is greatest in the roof beams, produced 
by 11.01 kips (Figure 13.16a) is about 37 psi.

Computation of Approximate Values of Shear  
and Moment in Beams

The shears and moments that develop from gravity loads applied to the beams 
of a typical floor are due almost entirely to the loads acting directly on that 
floor. Therefore, we can estimate the moments in the floor beams closely by 
analyzing an individual floor instead of the entire building. To determine the 
shear and moment in a floor of the frame in Figure 13.15, we will analyze 
a frame composed of the floor beams and the attached columns. The frame 
used to analyze the roof beams is shown in Figure 13.17a. Figure 13.17b 
shows the frame used to analyze the beams of the third floor.

We normally assume that the ends of the columns are fixed at the point 
where they attach to the floors above or below the floor being analyzed (for 
example, this is the assumption specified in Section 8.9 of the American Con-
crete Institute Building Code). Since the rotation of the interior joints is small, 
this assumption appears reasonable. On the other hand, since the exterior joints 
along the same column at each floor level rotate in the same direction, the exte-
rior columns are bent into double curvature (Figure 13.18c). As we established 
in Figure 11.12c, the flexural stiffness of a member bent into double curvature 
is 50 percent greater than that of a member fixed at one end. As a result, the 
values of moment in the exterior columns from an approximate analysis of the 
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13.7 ■ Multistory Rigid Frames for Gravity Load  631

frames in Figure 13.17a and b will be much smaller than those produced by an 
analysis that considers the entire building frame, unless the engineer arbitrarily 
increases the stiffness of the exterior columns by a factor of 1.5.

Since building owners often want the exterior columns as small as pos-
sible for architectural reasons (small columns are easier to conceal in the 
exterior walls and simplify the wall details), the fixed-end assumption for col-
umns is retained as the standard in the design of reinforced concrete buildings.

The analysis of the frames in Figure 13.17 is carried out by moment 
distribution. Since sidesway produced by gravity loads is either zero (if the 
structure and loading are symmetric) or very small in other cases, we  neglect 
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Figure 13.17: Approximate analysis of beams in frame for vertical load (all values of mo-
ment in kip · ft): (a) rigid frame composed of roof beams and attached columns; (b) rigid 
frame composed of floor beams and attached columns; (c) moments created by differential 
displacement of interior and exterior joints (these moments are not included in the ap-
proximate analysis).
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632  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

the moments produced by sidesway in an approximate analysis. Details of the 
moment distribution are shown in the figures. Since the struc ture is symmetric, 
we can assume that the center joint does not rotate and treat it as a fixed sup-
port. Therefore, only one-half of the frame has to be  analyzed. The moments 
produced by analyzing the frames (Table 13.1) compare closely to the more 
exact values of the computer analysis. If the stiffness of the exterior columns 
(excluding column AB, which is pin-ended) is increased by 50 percent, the 
difference between the exact and approximate values is on the order of 5 or 
6 percent (see the last column in Table 13.1).

In the roof beams, most of the difference between the approximate and 
the exact values of moments is due to the differential displacement of the end 
joints in the vertical direction. The interior column undergoes a greater axial 
deformation than the exterior columns because it carries more than twice as 
much load but has an area that is only 44 percent greater. Figure 13.17c shows 
the deformation and the direction for the member end moments produced in 
the roof beams by the differential displacement of the ends of the beams. The 
effect—a function of the length of the column—is greatest in the top floor 
and diminishes toward the bottom of the column.

In the computer analysis the properties of the members (area and mo-
ment of inertia) are based on the gross area of the members’ cross section (a 
standard assumption). If the influence of the reinforcing steel area on axial 
stiffness is considered by transforming the stiffer steel into equivalent con-
crete, the difference in axial deformations of the various columns would be 
largely eliminated. Since the moments induced in the beams by the differen-
tial axial deformations of the columns are typically small, they are neglected 
in an approximate analysis.

Axial Forces in Columns

Loads applied to columns at each floor are produced by the shears and mo-
ments at the ends of the beams. In Figure 13.18a the arrows at the end of each 

TABLE 13.1  Comparison Between Exact and 
Approximate Values of Beam End 
Moment (all moments in kip · ft) 

Approximate Analysis

Moment
Exact Analysis 

(Fig. 13.16)

Ends of Columns 
Assumed Fixed 

(Fig. 13.17)

Double Curvature 
Bending, Exterior Column  

Stiffness Increased  
50 Percent

MEF 70.1 51.6 68.8
MFE 264.3 283.6 275.2
MCH 112.1 82.6 103.2
MHC 246.1 268.3 258.0
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13.7 ■ Multistory Rigid Frames for Gravity Load  633

beam indicate the force (end shears in the beams) applied to the column by the 
ends of the beam (the uniformly distributed load of 4.3 kips/ft acting on all 
beams is not shown on the figure for clarity). The axial force F in the column at 
any level is equal to the sum of the beam shears above that level. Since the axial 
force in columns varies with the number of floors supported, the column loads 
increase nearly linearly with the number of floors supported. Engineers often 
increase the size of the column’s cross section or use higher-strength materi-
als to carry the larger loads in the lower sections of multistory columns. Axial 
forces in interior columns, which carry the load from beams on each side, are 
typically more than twice as large as those in exterior columns—unless the 
weight of the exterior wall is large (Figure 13.18a).

The moments applied by the ends of the beams to the columns in the 
building frame are shown in Figure 13.18b. Since the beams framing into the 
interior column are the same length and carry the same value of  uniform load, 
they apply equal values of end moments to the column at an interior joint. Be-
cause the moments on each side of the column act in opposite directions, the joint 
does not rotate. As a result, no bending moments are created in the interior col-
umn. Therefore, when we make an approximate analysis of an interior column, 
we consider only the axial load. If we considered  pattern loading of the live load 
(i.e., both dead and live loads placed on the longer span and only dead load on 
the shorter span framing into the sides of a column), moment would develop in 
the column, but the axial load would reduce. Even if the beams are not the same 
length or carry different values of load, the moments induced in an interior 

(a)

43.5

F = 43.5

F = 89.9

F = 135.9

F = 180.2

59.759.7

46.4 56.856.8

46.0 57.257.2

44.3 58.958.9

F = 119.4

F = 233.0

F = 347.4

F = 465.2

(b)

70.1 264.3264.3

116.4 242.1242.1

112.1 246.1246.1

86.8 261.6261.6

(c)

60.9

54.5

62.0

25.8

57.6

54.4

70.1

Figure 13.18: Results of computer analysis of frame in Figure 13.15: (a) axial force 
(kips) in columns produced by reactions of beams supporting a uniformly distributed 
load of 4.3 kips/ft; (b) moments (kip · ft) applied to columns by beams; this moment di-
vides between top and bottom columns; (c) moment curve for exterior column (kip · ft).  
Note: Column moments are not cumulative as the axial loads are.
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634  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

column will be small and typically can be neglected in an approximate analysis. 
Moments in interior columns are small for the following reasons:

1. The unbalanced moment applied to the column equals the difference 
between the beam moments. Although the moments may be large, the 
difference in moments is usually small.

2. The unbalanced moment is distributed to the columns above and below 
the joint as well as to the beams on each side of the joint in proportion 
to the flexural stiffness of each member. Since the stiffness of the beams is 
often equal to or greater than the stiffness of the columns, the increment 
of the unbalanced moment distributed to an interior column is small.

Moments in Exterior Columns

Figure 13.18b shows the moments applied by the beams at each floor to the 
interior and exterior columns. In the exterior columns these moments—resisted 
by the columns above and below each floor (except at the roof where only 
one column exists)—bend the column into double curvature, producing the 
moment curve shown in Figure 13.18c. From an examination of the moment 
curve, we can reach the following conclusions:

1. Moments do not build up in the lower story columns.
2. All exterior columns (except the bottom column, which is pinned at the 

base) are bent into double curvature, and a point of contraflexure devel-
ops near midheight of the column.

3. The greatest moment develops at the top of the column supporting the 
roof beam because the entire moment at the end of the beam is applied 
to a single column below the beam. In the lower floors the moment ap-
plied by the beam to the joint is resisted by two columns, one above and 
one below the beam.

4. The most highly stressed section in a column segment (between floors) 
occurs at either the top or the bottom; that is, the axial load is constant 
throughout the length of the column, but the maximum moment occurs at 
one of the ends.
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Using an approximate analysis, estimate the axial forces and moments in 
columns BG and HI of the frame in Figure 13.19a. Also draw the shear and 
moment curves for beam HG. Assume that I of all exterior columns equals 
833 in.4, I of interior columns equals 1728 in.4, and I of all beams equals 
5000 in.4. Circled numbers represent column lines.

E X A M P L E  1 3 . 1 0

[continues on next page]
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Figure 13.19: (a) Building frame; (b) approximate analysis of second floor by moment 
dis tribution to establish moments in beams and columns; only one cycle used because  
carryover moments are small (moments in kip · ft).

Solution
Axial Load in Column HI  Column HI supports two floors above. 
Assume that 45 percent of the uniform load on beams PO and IJ is carried 
to the exterior column.

 F  HI   = 0.45 ( w  1   L +  w  2   L)  = 0.45 [2 (20)  + 3 (20) ]  = 45 kips Ans.
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Example 13.10 continues . . . Axial Load in Column BG  Column BG supports three floors above. 
Assume that 55 percent of the load from exterior beams on the left side of 
the column and 50 percent of the load from the interior beams on the right 
side of the column are carried into the column.

 F  BG   = 0.55 [2 (20)  + 3 (20)  + 4 (20) ]  + 0.5 [2 (22)  + 3 (22)  + 4 (22) ] 

              = 198 kips Ans.

Compute the moments in columns and beam HG by analyzing the frame in 
Figure 13.19b by moment distribution. Assume that the far ends of the columns 
above the floor are fixed. Since the frame is symmetric, modify the stiffness 
of the center beam and analyze one-half of the structure. Also, increase the 
stiffness of column HI by 50 percent to account for double curvature bending.
The distribution factors at joint H are computed based on the following 
relative flexural stiffnesses:

KAH = 3 (  833 ____ 14  )   KHI = 6 (  833 ____ 11  )  KHG = 4 (  5000 _____ 20  ) 

and at joint G:

KGH = 4 (  5000 _____ 20  )  KGF = 2 (  5000 _____ 22  )  KGJ = 6 (  1728 _____ 11  )  KGB = 3 (  1728 _____ 14  ) 

The results of the analysis are shown in Figure 13.20. Since the end moments 
are approximately the same at both ends of a column, the moment at the top of 
column HI may also be taken equal to the value of 37.3 kip · ft at the bottom.

I
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(a) (b)

(c)
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45 kips

34.13

–45.87

shear (kips)
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Figure 13.20: Results of approximate analysis of frame: (a) column HI; (b) column BG; 
(c) shear and moment curves for beam HG.
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Although we are primarily interested in approximate methods to analyze mul-
tistory unbraced frames with rigid joints, we begin our discussion with the 
analysis of a simple one-story rectangular unbraced frame. The analysis of this 
simple structure will (1) provide an understanding of how lateral forces stress 
and deform a rigid frame and (2) introduce the basic assumptions required for 
the approximate analysis of more complex multistory frames. Lateral loads on 
buildings are typically produced by either wind or inertia forces created by 
ground movements during an earthquake.

When gravity loads are much larger than lateral loads, designers initially 
size a building frame for gravity loads. The resulting frame is then checked 
for various combinations of gravity and lateral loads as specified by the gov-
erning building code.

As we have seen in Section 13.7, except for exterior columns, gravity 
loads produce mostly axial force in columns. Since columns carry axial load 
efficiently in direct stress, relatively small cross sections are able to support large 
values of axial load. Moreover, designers tend to use compact column sections 
for architectural reasons. A compact section is easier to conceal in a building 
than a deep section. Since a compact section has a smaller bending stiffness than 
a deep section, the flexural stiffness of a column is often relatively small com-
pared to its axial stiffness. As a result, small to moderate values of lateral load, 
which are resisted primarily by bending of the columns, produce significant lat-
eral displacements of  unbraced multistory frames. Therefore, as a general rule, 
knowledgeable engineers make every effort to avoid designing unbraced build-
ing frames that must resist lateral loads. Instead, they incorporate shear walls or 
diagonal bracing into the structural system to transmit lateral loads efficiently.

In Section 13.9 we describe procedures for evaluating member forces 
produced by lateral loads in unbraced multistory building frames. These pro-
cedures include the portal and the cantilever methods. The portal method 
is considered best for low buildings (say five or six stories) in which shear 
is resisted by double curvature bending of the columns. For taller buildings 
the cantilever method, which considers that the building frame behaves as a 
vertical cantilever beam, produces the best results. Although both methods 
produce reasonable estimates of the forces in members of a building frame, 
neither method provides an estimate of the lateral deflections. Since lateral 
deflections can be large in tall buildings, a deflection computation should also 
be made as part of a complete design.

Approximate Analysis of a Simple Pin-Supported Frame

The rigid frame in Figure 13.21a, supported by pins at A and D, is indetermi-
nate to the first degree. To analyze this structure, we must make one assump-
tion about the distribution of forces. If the columns of the frame are identical, 
the flexural stiffness of both members is identical (both members also have the 
same end restraint). Since the lateral load divides in proportion to the flexural 

Single-story Rigid Frames for Lateral Load
13.8
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Figure 13.21: (a) Laterally loaded frame; 
(b)  reactions and moment curves; point of 
inflection occurs at midspan of girder.
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638  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

stiffness of the columns, we can assume that the lateral load divides equally 
between the columns, producing equal horizontal reactions of P/2 at the base. 
Once this assumption is made, the vertical reactions and the internal forces 
can be computed by statics. To compute the vertical reaction at D, we sum 
moments about A (Figure 13.21a).

⟳+ ΣMA = 0
Ph − Dy L = 0

Dy =    Ph ___ L    ↑

Compute Ay.

   +     ↑    ΣFy = 0

− Ay + Dy = 0  and  Ay + Dy =    Ph ___ L    ↓

The moment curves for the members are shown in Figure 13.21b. Since the 
moment at midspan of the girder is zero, a point of inflection occurs there and 
the girder bends into double curvature. The deflected shape is shown by the 
dashed line in Figure 13.21a.

Approximate Analysis of a Frame Whose Columns  
Are Fixed at the Base

If the base of the columns in a rigid frame is fixed against rotation, the columns 
will bend in double curvature (Figure 13.22). In the columns the position of 
the point of inflection depends on the ratio of the flexural stiffness of the girder 
to that of the column. The point of inflection will never be located below mid-
height of the column, and even then this lower limit is theo retically possible 
only when the girder is infinitely stiff. As the girder stiffness reduces relative to 
the column stiffness, the point of inflection moves upward. For a typical frame 
the designer can assume the point of inflection is located a distance of approxi-
mately 60 percent of the column height above the base. In practice, a fixed sup-
port is difficult to construct because most foundations are not completely rigid. 
If the fixed support rotates, the point of inflection will rise.

 Because the frame in Figure 13.22 is indeterminate to the third degree, 
we must make three assumptions about the distribution of the forces and the 
location of the points of inflection. Once these assumptions are made, the ap-
proximate magnitude of the reactions and the forces in the members can be 
computed by statics. If the columns are identical in size, we can assume the 
lateral load divides equally between the columns, producing horizontal reac-
tions at the base (and shears in each column) equal to P/2. As we discussed 
previously, points of inflection in the columns may be assumed to develop 
at 0.6 of the column height above the base. Finally, although not actually re-
quired for a solution (if the first three assumptions are used), we can assume 
a point of inflection develops at midspan of the girder. These assumptions are 
used to analyze the frame in Example 13.11.

90°

90°

P.I.
P.I.

P.I.

L

A D

B
P

C

h

Figure 13.22: A laterally loaded rigid frame 
with fixed-end columns.
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Estimate the reactions at the base of the frame in Figure 13.23a pro-
duced by the horizontal load of 4 kips at joint B. The columns are 
identical.

E X A M P L E  1 3 . 1 1

Solution
Assume that the 4-kip load divides equally between the two columns, pro-
ducing shears of 2 kips in each column and horizontal reactions of 2 kips 
at A and D. Assume that the points of inflection (P.I.) in each column are  
located 0.6 of the column height, or 9 ft, above the base. Free bodies of 
the frame above and below the points of inflection are shown in Figure 
13.23b. Considering the upper free body, we sum moments about the point 
of inflection in the left column (point E ) to compute an axial force F = 
0.6 kip in the column on the right. We next reverse the forces at the points 
of inflection on the upper free body and apply them to the lower column 
segments. We then use the equations of statics to compute the moments 
at the base.

MA = MD = (2 kips) (9 ft) = 18 kip · ft

9ʹ

R = 4 kips

M = 18 kip • ft
M = 18 kip • ft

2 kips 2 kips

2 kips 2 kips

2 kips 2 kips

P = 4 kips

(a)

12

12
1212

18 18

(c) (b)
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40ʹ

15ʹ
6ʹ

40ʹ

0.6 kip0.6 kip

0.6 kip0.6 kip

E

A D

P.I.P.I.

0.6 kip0.6 kip

Figure 13.23: (a) Dimensions of frame; (b) free bodies above and below the points of 
inflections in the columns (forces in kips and moments in kip  · ft); (c) moment diagram 
(kip · ft).
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Under lateral load, the floors of multistory frames with rigid joints deflect 
horizontally as the beams and columns bend in double curvature. If we ne-
glect the small axial deformations of the girders, we can assume all joints in a 
given floor deflect laterally the same distance. Figure 13.24 shows the defor-
mations of a two-story frame. Points of inflection (zero moment), denoted by 
small dark circles, are located at or near the midpoints of all members. The 
figure also shows typical moment curves for both columns and girders (mo-
ments plotted on the compression side).

The portal method, a procedure for estimating forces in members 
of laterally loaded multistory frames, is based on the following three 
assumptions:

1. The shears in interior columns are twice as large as the shears in exterior 
columns.

2. A point of inflection occurs at midheight of each column.
3. A point of inflection occurs at midspan of each girder.

The first assumption recognizes that interior columns are usually 
larger than exterior columns because they support greater load. Interior 
columns typically support about twice as much floor area as exterior col-
umns do. However, exterior columns also carry the load of exterior walls 
in addition to floor loads. If window areas are large, the weight of exterior 
walls is minimal. On the other hand, if exterior walls are constructed of 
heavy masonry and window areas are small, loads supported by the exte-
rior columns may be similar in magnitude to those carried by the interior 
columns. Under these conditions, the designer may wish to modify the 
 distribution of shear specified in assumption 1. The shear distributed to 

 Multistory Rigid Frames for Lateral Load: Portal Method
13.9
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Figure 13.24: Deflected shape of rigid frame; points of inflection shown at center of all 
members by black dots.
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columns supporting a particular floor will be approximately proportional 
to their flexural stiffness (EI/L).

Since all columns supporting a given floor are the same length and pre-
sumably constructed of the same material, their flexural stiffness will be pro-
portional to the moment of inertia of the cross section. Therefore, if the cross 
sections of the columns can be estimated, the designer may wish to distribute 
the shears in proportion to the moments of inertia of the columns.

The second assumption recognizes that columns in lateral loaded frames 
bend in double curvature. Since the floors above and below a column are usu-
ally similar in size, they apply about the same restraint to the top and bottom 
ends of each column. Therefore, inflection points develop at or near midheight 
of columns.

If the columns in the bottom floor are connected to pins, the column 
bends in single curvature. For this case the point of inflection (zero moment) 
is at the base.

The final assumption recognizes that points of inflection occur at or near 
midspan of girders in laterally loaded frames. Since the shear is constant 
through the length, the girder bends in double curvature, and the moments at 
each end are of the same magnitude and act in the same sense. We have previ-
ously observed this behavior in the girders of Figures 13.21 and 13.22. The 
steps in the analysis of multistory rigid frame by the portal method are outlined 
below:

1. Pass an imaginary section between any two floors through the col-
umns at their midheight. Since the section passes through the points 
of inflection of all columns, only shear and axial load act on the cut. 
The total shear distributed to all columns equals the sum of all lateral 
loads above the cut. Assume that the shear in interior columns is 
twice as large as the shear in exterior columns unless properties of 
the columns indicate that some other distribution of forces is more 
appropriate.

2. Compute the moments at the ends of the columns. The column end 
moments equal the product of the column shear and the half-story 
height.

3. Compute the moment at the end of the girders by considering equilib-
rium of the joints. Start with an exterior joint and proceed systemati-
cally across the floor, considering free bodies of the girders and joints. 
Since all girders are assumed to have a point of inflection at midspan, 
the moments at each end of a girder are equal and act in the same sense 
(clockwise or counterclockwise). At each joint the moments in the gird-
ers balance those in the columns.

4. Compute the shear in each girder by dividing the sum of the girder end 
moments by the span length.

5. Apply the girder shears to the adjacent joints and compute the axial 
force in the columns.

6. To analyze an entire frame, start at the top and work down. The proce-
dure is illustrated in Example 13.12.
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E X A M P L E  1 3 . 1 2 Analyze the frame in Figure 13.25a, using the portal method. Assume the 
reinforced baseplates at supports A, B, and C produce fixed ends.

Solution
Pass horizontal section 1 (see number in circle) through the middle of 
the row of columns supporting the roof, and consider the upper free body 
shown in Figure 13.25b. Establish the shear in each column by equating 
the lateral load above the cut (3 kips at joint L) to the sum of the column 
shears. Let V1 represent the shear in the exterior columns and 2V1 equal the 
shear in the interior column.

→+ Σ F  x   = 0

3 −  ( V  1   + 2 V  1   +  V  1  )  = 0  and   V  1   = 0.75 kip

Compute moments at the tops of the columns by multiplying the shear 
forces at the points of inflection by 6 ft, the half-story height. Moments 
applied by the column to the upper joints are shown by curved arrows. The 
reaction of the joint on the column is equal and opposite.

Isolate joint L (Figure 13.25c). Compute FLK = 2.25 kips by summing 
forces in the x direction. Since the girder moment must be equal and op-
posite to the moment in the column for equilibrium, MLK = 4.5 kip · ft. Both 
VL and FLG are calculated after the shear in girder LK is computed (Figure 
13.25d ). Apply equal and oppositely directed values of FLK and MLK to the 
free body of the beam in Figure 13.25d. Since the shear is constant along 
the entire length and a point of inflection is assumed to be located at mid-
span, the moment MKL at the right end of the girder equals 4.5 kip · ft and 
acts clockwise on the end of the girder. We observe that all end moments 
on all girders at all levels act in the same direction (clockwise). Compute 
the shear in the girder by summing moments about K.

 V  L   =   ΣM ___ L   =   4.5 + 4.5 _______ 24   = 0.375 kip

Return to joint L (Figure 13.25c). Since the axial load in the column 
equals the shear in the girder, FLG = 0.375 kip tension. Proceed to joint K 
(Figure 13.25e) and use the equilibrium equations to evaluate all unknown 
forces acting on the joint. Isolate the next row of girders and columns 
between sections 1 and 2 (Figure 13.25 f ). Evaluate shears at points of 
inflection in the columns along section 2.

→+ Σ F  x   = 0

3 + 5 − 4 V  2   = 0

 V  2   = 2 kips

lee98004_ch13_604-659.indd   642 27/12/16   3:23 pm



13.9 ■ Multistory Rigid Frames for Lateral Load: Portal Method  643

[continues on next page]

2

1

24ʹ

12ʹ

12ʹ

12ʹ

(a)

A

F

G

L

B

E

H

K

C

D V total = 3 + 5 = 8 kips

V total = 3 kips

V 1 =
0.75 kip

2V 1 = 
1.5 kips

V 1 =
0.75 kip

V 2 = 2 kips

V 1 = 0.75 kip

3 kips

5 kips

P.I. P.I.

5 kips

6ʹ
3 kips

4.5 kip • ft 9 kip • ft 4.5 kip • ft

I

J

L K J

24ʹ

6ʹ

6ʹ

24ʹ

(b)

0.75 kip

FLG = 0.375 kip

VL = 0.375 kip VL = 0.375 kip

0.375 kip

5 kips

0.375 kipVK = 0.375 kip 0.375 kip

L

G H I

K K
FLK

MKL = 4.5 kip • ft MKL = 4.5 kip • ft M = 4.5 kip • ftMLK = 4.5 kip • ft

4.5 kip • ft

16.5 kip • ft 16.5 kip • ft12 kip • ft
2V 2 = 4 kips

2V 1 = 1.5 kip

0 kip

0 kip

9 kip • ft

24 kip • ft

MLK = 4.5 kip • ft

3 kips 2.25 kips 2.25 kips 2.25 kips 0.75 kip

M = 4.5 kip • ft

L

(c)

1.5 kips

F = 0 kip

 M = 9 kip • ft

(e)

(d)

( f )

24ʹ

24ʹ

6ʹ

6ʹ
16.5 kip • ft 16.5 kip • ft

V 2 = 2 kips

V 1 = 0.75 kip

0.375 kip

4.5 kip • ft

12 kip • ft

2

1

24ʹ

12ʹ

12ʹ

12ʹ

(a)

A

F

G

L

B

E

H

K

C

D V total = 3 + 5 = 8 kips

V total = 3 kips

V 1 =
0.75 kip

2V 1 = 
1.5 kips

V 1 =
0.75 kip

V 2 = 2 kips

V 1 = 0.75 kip

3 kips

5 kips

P.I. P.I.

5 kips

6ʹ
3 kips

4.5 kip • ft 9 kip • ft 4.5 kip • ft

I

J

L K J

24ʹ

6ʹ

6ʹ

24ʹ

(b)

0.75 kip

FLG = 0.375 kip

VL = 0.375 kip VL = 0.375 kip

0.375 kip

5 kips

0.375 kipVK = 0.375 kip 0.375 kip

L

G H I

K K
FLK

MKL = 4.5 kip • ft MKL = 4.5 kip • ft M = 4.5 kip • ftMLK = 4.5 kip • ft

4.5 kip • ft

16.5 kip • ft 16.5 kip • ft12 kip • ft
2V 2 = 4 kips

2V 1 = 1.5 kip

0 kip

0 kip

9 kip • ft

24 kip • ft

MLK = 4.5 kip • ft

3 kips 2.25 kips 2.25 kips 2.25 kips 0.75 kip

M = 4.5 kip • ft

L

(c)

1.5 kips

F = 0 kip

 M = 9 kip • ft

(e)

(d)

( f )

24ʹ

24ʹ

6ʹ

6ʹ
16.5 kip • ft 16.5 kip • ft

V 2 = 2 kips

V 1 = 0.75 kip

0.375 kip

4.5 kip • ft

12 kip • ft

Figure 13.25: Analysis by the portal method: (a) details of rigid frame; (b) free body of 
roof and columns cut by section 1, which passes through points of inflection of columns; 
(c) free body of joint L (forces in kips and moments in kip · ft); (d) free body of girder 
LK used to compute shears in girders; (e) free body of joint K; (  f ) free body of floor and 
columns located between sections 1 and 2 in (a) (moments in kip · ft).
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644  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

Evaluate moments applied to joints G, H, and I by multiplying the 
shear by the half-column length (see curved arrows). Starting with an exte-
rior joint (G, for example), compute the forces in girders and axial loads in 
columns following the procedure previously used to analyze the top floor. 
Final values of shear, axial load, and moment are shown on the sketch of 
the building in Figure 13.26.

Example 13.12 continues . . .
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Figure 13.26: Summary of portal analysis. Arrows indicate the direction of the forces 
applied to the members by the joints. Reverse forces to show the action of members on 
joints. Axial forces are labeled with a C for compression and a T for tension. All forces 
in kips; all moments in kip · ft.
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13.9 ■ Multistory Rigid Frames for Lateral Load: Portal Method  645

Analysis of a Vierendeel Truss

The portal method can also be used for an approximate analysis of a Vier-
endeel truss (Figure 13.27a). In a Vierendeel truss the diagonals are omit-
ted to provide a clear, open rectangular area between chords and verticals. 
When the diagonals are removed, a significant portion of truss action is 
lost (i.e., forces are no longer transmitted exclusively by axial forces in 
members). The shear force, which must be transmitted through the top and 
bottom chords, creates bending moments in these members. Since the main 
function of the vertical members is to supply a resisting moment at the 
joints to balance the sum of the moments applied by the chords, they are 
most heavily stressed.

For the analysis of the Vierendeel truss we assume that (1) the top and 
bottom chords are the same size, and therefore, shear divides equally be-
tween the chords and (2) all members bend in double curvature, and a point 
of inflection develops at midspan. In the case of the symmetrically loaded, 
four-panel truss in Figure 13.27, no bending moments develop in the vertical 
member at midspan because it lies on the axis of symmetry. The deflected 
shape is shown in Figure 13.27d.

To analyze a Vierendeel truss by the portal method, we pass vertical 
sections through the center of each panel (through the points of inflection 
where M = 0). We then establish the shear and axial forces at the points of 
inflection. Once the forces at the points of inflection are known, all other 
forces can be computed by statics. Details of the analysis are illustrated in 
Example 13.13.
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646  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

E X A M P L E  1 3 . 1 3 Carry out an approximate analysis of the Vierendeel truss in Figure 13.27, 
using the assumptions of the portal method.

A

B C

J

D

I

E F

H
G

(a)

1

1

2

9 kips 9 kips

2

4 @ 12ʹ = 48ʹ
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Figure 13.27: (a) Details of Vierendeel truss; (b) free body used to establish the forces 
at the points of inflection in the first panel; (c) free body to compute forces at points 
of inflection in second panel; (d ) deflected shape: points of inflection denoted by black 
dots, moments acting on the ends of member indicated by curved arrows, shears and axial 
forces in kips, moments in kip · ft. Structure symmetric about centerline.

10ʹ

6ʹ

A

B

(b) (c)

1

1

9 kips

FBC = 5.4 kips

FAJ = 5.4 kips

4.5 kips

4.5 kips

FCD = 12.6 kips

FJI = 12.6 kips

1.5 kips

1.5 kips

6ʹ

A

B C

J
2

9 kips

2

18ʹ

6 kips

lee98004_ch13_604-659.indd   646 27/12/16   3:23 pm



13.9 ■ Multistory Rigid Frames for Lateral Load: Portal Method  647

Solution
Since the structure is externally determinate, the reactions  are com-
puted by statics. Next, section 1-1 is passed through the center of the 
first panel, producing the free body shown in Figure 13.27b. Because 
the section passes through the points of inflection in the chords, no mo-
ments act on the ends of the members at the cut. Assuming the shear is 
equal in each chord, equilibrium in the vertical direction requires that 
shear forces of 4.5 kips develop to balance the 9-kip reaction at sup-
port A. We next sum moments about an axis through the bottom point 
of inflection (at the intersection of section 1-1 and the longitudinal axis 
of the bottom chord) to compute an axial force of 5.4 kips compression 
in the top chord.

⟳+ ΣM = 0

9 (6)  −  F  BC   (10)  = 0

 F  BC   = 5.4 kips

Equilibrium in the x direction establishes that a tension force of 5.4 kips 
acts in the bottom chord.

To evaluate the internal forces at the points of inflec tion in the 
second panel, we cut the free body shown in Figure 13.27c by pass-
ing section 2-2 through the midpoint of the second panel. As before, 
we divide the unbalanced shear of 3 kips between the two chords and 
compute the axial forces in the chords by summing moments about the 
bottom point of inflec  tion.

⟳+ ΣM = 0

9 (18)  − 6 (6)  −  F  CD   (10)  = 0

 F  CD   = 12.6 kips

The results of the analysis are shown on the sketch of the deflected shape 
in Figure 13.27d. The moments applied by the joints to the members are 
shown on the left half of the figure. The shears and axial forces are shown 
on the right half. Because of symmetry, forces are identical in correspond-
ing members on either side of the centerline.

A study of the forces in the Vierendeel truss in Figure 13.27d indicates 
that the structure acts partially as a truss and partially as a beam. Since the 
moments in the chords are produced by the shear, they are greatest in the 
end panels where the shear has its maximum value, and the smallest in the 
panels at midspan where the minimum shear exists. On the other hand, 
because part of the moment produced by the applied loads is resisted by the 
axial forces in the chords, the axial force is maximum in the center panels 
where the moment produced by the panel loads is greatest.
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648  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

 Multistory Rigid Frames for Lateral Load: Cantilever Method
13.10

The cantilever method, a second procedure for estimating forces in laterally 
loaded frames, is based on the assumption that a building frame behaves as 
a cantilever beam. In this method we assume that the cross section of the 
imaginary beam is composed of the cross-sectional areas of the columns. 

For example, in Figure 13.28b the cross section of the imaginary beam 
(cut by section A-A) consists of the four areas A1, A2, A3, and A4. On any 
horizontal section through the frame, we assume that the longitudinal 
stresses in the columns—like those in a beam—vary linearly from the 
centroid of the cross section. The forces in the columns created by these 
stresses make up the internal couple that balances the overturning mo-
ment produced by the lateral loads. The cantilever method, like the portal 
method, assumes that points of inflection develop at the middle of all 
beams and columns.

To analyze a frame by the cantilever method, we carry out the fol-
lowing steps:

1.  Cut free bodies of each story together with the upper and lower 
halves of the attached columns. The free bodies are cut by 
passing sections through the middle of the columns (midway 
between floors). Since the sections pass through the points of 
inflection, only axial and shear forces act on each column at  
that point.

2.  Evaluate the axial force in each column at the points of inflection 
in a given story by equating the internal moments produced by the 
column forces to the moment produced by all lateral loads above 
the section.

3.  Evaluate the shears in the girders by considering vertical equilibrium 
of the joints. The shear in the girders equals the difference in axial 
forces in the columns. Start at an exterior joint and proceed laterally 
across the frame.

4.  Compute the moments in the girders. Since the shear is constant, the 
girder moment equals

  M  G   = V (  L __ 2  )  (13.4)

5.  Evaluate the column moments by considering equilibrium of joints. 
Start with the exterior joints of the top floor and proceed downward.

6.  Establish the shears in the columns by dividing the sum of the col-
umn moments by the length of the column.

7.  Apply the column shears to the joints and compute the axial forces 
in the girders by considering equilibrium of forces in the x direction.

The details of the method are illustrated in Example 13.14.

1

3 4

2

P3

P4

P5

P2

P1

(a)

A A

P3

P.I. P.I. P.I. P.I.

P4

P5

F1

A1 A2 A3 A4

MA

F4
F2 F3

(b)

centroidal axis

stresses

A A

σσ
σσ

Figure 13.28: (a) Laterally loaded frame; 
(b)  free body of frame cut by section A-A, 
axial stresses in columns (σ1 through σ4) as-
sumed to vary linearly from centroid of the 
four column areas.
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13.10 ■ Multistory Rigid Frames for Lateral Load: Cantilever Method  649

Use the cantilever method to estimate the forces in the laterally loaded 
frame shown in Figure 13.29a. Assume that the area of the interior columns 
is twice as large as the area of the exterior columns.

E X A M P L E  1 3 . 1 4

[continues on next page]

Solution
Establish the axial forces in the columns. Pass section 1-1 through the 
frame at midheight of the upper floor columns. The free body above sec-
tion 1-1 is shown in Figure 13.29b. Since the cut passes through the points 
of inflection, only shear and axial force act on the ends of each column. 
Com pute the moment on section 1-1 produced by the external force of 
4 kips at A. Sum moments about point z located at the intersection of the 
axis of symmetry and section 1-1.

 External moment Mext = (4 kips) (6 ft) = 24 kip · ft (1)

(a)

(b)

4 kips

24ʹ 24ʹ24ʹ

12ʹ 12ʹ 24ʹ24ʹ

12ʹ6ʹ

6ʹ

8ʹ

12ʹ

16ʹ

1

1 1

11

A A

A B C D

A B C D

z

2A 2A

3
3

 axial stresses

 column areas

F1 = 3 A 1F2 = 2A 1F3 = 2A 1F4 = 3 A

8 kips

8 kips

4 kips

2 2

3 3

1 1

6ʹ
1

H G F E

I J K L

P O N M

σ σ σ σ

σσ
σσ

Figure 13.29: Analysis by the cantilever method: (a) continuous frame under lateral 
load; (b) free body of roof and attached columns cut by section 1-1, axial stress in col-
umns assumed to vary linearly with distance from centroid of column areas.
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650  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

Example 13.14 continues . . .

Compute the internal moment on section 1-1 produced by axial forces 
in columns. The assumed variation of axial stress on the columns is shown 
in Figure 13.29b. We will arbitrarily denote the axial stress in the interior 
columns as σ1. Since the stress in the columns is assumed to vary linearly 
from the centroid of the areas, the stress in the exterior columns equals 
3σ1. To establish the axial force in each column, we multiply the area of 
each column by the indicated axial stress. Next, we compute the internal 
moment by summing moments of the axial forces in the columns about an 
axis passing through point z.

  M  int   = 36 F  1   + 12 F  2   + 12 F  3   + 36 F  4    (2)

Expressing the forces in Equation 2 in terms of the stress σ1 and the column 
areas, we can write

 M  int   = 3 σ  1   A (36)  + 2 σ  1   A (12)  + 2 σ  1   A (12)  + 3 σ  1   A (36) 

= 264 σ  1   A (3)

Equating the external moment given by Equation 1 to the internal moment 
given by Equation 3, we find

24 = 264 σ  1   A;  σ  1   A =   1 __ 11  
 

Substituting the value of σ1A into the expressions for column force gives

 F  1   =  F  4   = 3 σ  1   A =   3 __ 11   = 0.273 kip

 F  2   =  F  3   = 2 σ  1   A =   2 __ 11   = 0.182 kip

Compute the axial force in the second-floor columns. Pass section 2-2 
through the points of inflection of the second-floor columns, and con-
sider the free body of the entire structure above the section. Compute the 
moment on section 2-2 produced by the external loads.

  M  ext   =  (4 kips)  (12 + 6)  +  (8 kips)  (6)  = 120 kip · ft (4)

Compute the internal moment on section 2-2 produced by the axial forces 
in the columns. Since the variation of stress in the columns cut by sec-
tion 2-2 is the same as that along section 1-1 (Figure 13.29b), the internal 
moment at any section can be expressed by Equation 3. To indicate the 

0.546

0.273

3.454

VAB = 0.2733.28

4 kips

3.28

A

(a)

0.273

12ʹ

0.273

3.28

3.28

VAH = 0.546

VAH = 0.546

A

H

(c)

3.454 3.454
A B

VAB = 0.273

VBA = 0.2733.28

3.28

(b)

24ʹ

Figure 13.30: (a) Free body of joint A 
initially used to establish VAB = 0.273 kip; 
(b) free body of beam AB, used to establish 
end moments in beam; (c) free body of col-
umn used to compute shear. All moments 
expressed in kip · ft and all forces in kips.
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13.10 ■ Multistory Rigid Frames for Lateral Load: Cantilever Method  651

stresses act on section 2-2, we will change the subscript on the stress to a 
2. Equating the internal and external moments, we find

120 kip · ft = 264 σ  2   A;  σ  2   A =   5 __ 11  
 

Axial forces in columns are 

 F  1   =  F  4   = 3  σ  2   A =   15 __ 11   = 1.364 kips

 F  2   =  F  3   = 2  σ  2   A =   10 __ 11   = 0.91 kip

To find the axial forces in the first-floor columns, pass section 3-3 through 
the points of inflection, and consider the entire building above the section 
as a free body. Compute the moment on section 3-3 produced by all exter-
nal loads acting above the section.

 M  ext   =  (4 kips)  (32)  +  (8 kips)  (20)  +  (8 kips)  (8)  = 352 kip · ft

Equate the external moment of 352 kip · ft to the internal moment given 
by Equation 3. To indicate the stresses act on section 3-3, the symbol for 
stress in Equation 3 is subscripted with a 3.

264 σ  3   A = 352;  σ  3   A =   3 __ 4  
 

Compute the forces in the columns.

 F  1   =  F  4   = 3 σ  3   A = 3 (  4 __ 3  )  = 4 kips

 F  2   =  F  3   = 2 σ  3   A = 2 (  4 __ 3  )  = 2.67 kips

With the axial forces established in all columns, the balance of the forces 
in the members of the frame can be computed by applying the equations 
of static equilibrium to free bodies of joints, columns, and girders in se-
quence. To illustrate the procedure, we will describe the steps required to 
compute the forces in girder AB and column AH.

Compute the shear in girder AB by considering equilibrium of vertical 
forces applied to joint A (Figure 13.30a).

   +     ↑    Σ F  y   = 0  0 = −0.273 +  V  AB       V  AB   = 0.273 kip

Compute the end moments in girder AB. Since a point of inflection is as-
sumed to exist at midspan, the end moments are equal in magnitude and 
act in the same sense.

M =  V  AB     L __ 12   = 0.273 (12)  = 3.28 kip · ft

Apply the girder end moment to joint A, and sum moments to establish 
that the moment at the top of the column equals 3.28 kip · ft (the moment 
at the bottom of the column has the same value).

[continues on next page]
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652  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

Example 13.14 continues . . .

Compute the shear in column AH. Since a point of inflection is assumed 
to occur at the center of the column, the shear in the column equals

 V  AH   =   M ___ L/2   =   3.28 ____ 6   = 0.547 kip

To compute the axial force in the girder AB, we apply the value of 
column shear from above to joint A. The equilibrium of forces in the x 
direction establishes that the axial force in the girder equals the difference 
between 4 kips and the shear in column AH.

The final values of force—applied by the joints to the members—are 
summarized in Figure 13.31. Because of symmetry of structure and anti-
symmetry of load, shears and moments at corresponding points on either 
side of the vertical axis of symmetry must be equal. The small differences 
that occur in the value of forces—that should be equal—are due to round-
off error.
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Figure 13.31: Summary of cantilever analy-
sis. Arrows indicate the direction of the 
forces acting on the ends of members. Axial 
forces labeled with a C for compression and 
a T for tension. All forces in kips; all mo-
ment in kip · ft.
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 • Since it is difficult to avoid mistakes when analyzing highly inde- 
terminate structures with many joints and members, designers typically 
check the results of a computer analysis (or occasionally the result of an 
analysis by one of the classical methods previously discussed) by mak-
ing an approximate analysis. In addition, during the initial design phase, 
designers use an approximate analysis to estimate the design forces to 
enable them to select the initial proportions of members.

 • This chapter covers several of the most common methods used to make 
an approximate analysis. As designers acquire a greater understanding of 
structural behavior, they will be able to estimate forces within 10 to  
15 percent of the exact values in most structures by using a few simple 
computations.

 • A simple procedure to analyze a continuous structure is to estimate 
the location of the points of inflection (where the moment is zero) in a 
particular span. This permits the designer to cut out a free-body diagram 
that is statically determinate. To help locate points of inflection (where 
the curvature changes from concave up to concave down), the designer 
can sketch the deflected shape.

 • Force in the chords and the diagonal and vertical members of continu-
ous trusses can be estimated by treating the truss as a continuous beam. 
After the shear and moment diagrams are constructed, the chord forces 
can be estimated by dividing the moment at a given section by the depth 
of the truss. Vertical components of forces in diagonal members are as-
sumed to be equal to the shear in the beam at the same section.

 • The classical methods for approximate analysis of multistory frames for 
lateral wind loads or earthquake forces by the portal and cantilever meth-
ods are presented in Sections 13.9 and 13.10.

Summary
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P13.1. Use an approximate analysis (assume the location 
of a point of inflection) to estimate the moment in the beam 
at support B (Figure P13.1). Draw the shear and moment 
curves for the beam. Check results by moment distribu-
tion. EI is constant. 

P13.3. Assume values for member end moments and 
compute all reactions in Figure P13.3 based on your as-
sumption. Given: EI is constant. If IBC = 8IAB, how would 
you adjust your assumptions of member end mo ments · 

PROBLEMS

P13.1

24ʹ

A C
B

w = 5 kips/ft

20ʹ

P13.2

B
A

6 m

L1
2

L1

20 kN/m
5 kN/m

C

P13.3

6 m

12 kN/m

9 m

A

B
C

B

P13.4

A

B
C

20ʹ

16 kips

15ʹ

10ʹ

P13.2. Guess the location of the points of inflection in 
each span in Figure P13.2. Compute the values of mo-
ment at supports B and C, and draw the shear and moment 
curves. EI is constant.

Case 1: L1 = 3 m
Case 2: L1 = 12 m

Check your results by using moment distribution.

P13.4. Assuming the location of the point of inflection in 
the girder in Figure P13.4, estimate the moment at B. Then 
compute the reactions at A and C. Given: EI is constant.
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P13.5. Estimate the moment in the beam in Figure P13.5 
at support C and the maximum positive moment in span CD 
by guessing the location of one of the points of in  flec tion 
in span CD. Check the results by moment distribution. EI 
is constant.

P13.8. The frame in Figure P13.8 is to be constructed 
with a deep girder to limit deflections. However, to satisfy 
architectural requirements, the depth of the columns will 
be as small as possible. Assuming that the moments at the 
ends of the girder are 25 percent of the fixed-ended mo-
ments, compute the reactions and draw the moment curve 
for the girder. The column bases cannot resist moment.

P13.5

A B C D E

12ʹ 12ʹ 12ʹ6ʹ 6ʹ

w = 2 kips/ft

F

P13.6

6 kN/m
24 kN

12 m3 m

A B C

P13.7

A
B C D

w = 3 kips/ft

6ʹ 30ʹ 24ʹ

P13.8

A D

B C

48ʹ 48ʹ

18ʹ

w = 2.4 kips/ft

P = 10 kips

P13.9

A D

B C

20 m

5 m

w = 3.6 kN/m

P = 38 kN

20 m

P13.6. Estimate the moment at support C in Figure 
P13.6. Based on your estimate, compute the reactions at 
B and C.

P13.7. The beam in Figure P13.7 is indeterminate to the 
second degree. Assume the location of the minimum num-
ber of points of inflection required to analyze the beam. 
Compute all reac tions and draw the shear and moment dia-
grams. Check the results using moment distribution.

P13.9. The cross sections of the columns and girder of 
the frame in Figure P13.9 are identical. Carry out an ap-
proximate analysis of the frame by estimating the loca-
tion of the points of inflection in the girder. The analysis 
is to include evaluating the support reactions and drawing 
the moment curves for column AB and girder BC. Check 
the results by moment distribution. EI is constant.
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656  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

P13.10. Carry out an approximate analysis of the truss in Figure P13.10 by treating it as a continuous beam of  
constant cross section. As part of the analysis, evaluate the forces in members DE and EF and compute the reactions 
at A and K.

P13.10

6 @ 16ʹ = 96ʹ 6 @ 16ʹ = 96ʹ

A

C EB D F

L JM K I
H

G

12ʹ

30 kips 30 kips 30 kips 30 kips 30 kips 30 kips

P13.11

A
a

b c

d
B C D

6 @ 3 m = 18 m

P
2

P
2

6 @ 3 m = 18 m 6 @ 3 m = 18 m

4 m

P P P P P P P P P P P P P P P P P

P13.12

2.5
 ki

ps

2.5
 ki

ps

A

A

A B

10 @ 12ʹ = 120ʹ

10 kips

5 k
ips

5 k
ips

5 k
ips

5 k
ips

5 k
ips

5 k
ips

5 k
ips

5 k
ips

5 k
ips

9ʹ9ʹ

Section A-A

top chord
A = 10 in.2

bottom chord
A = 10 in.2

P13.11. Use an approximate analysis of the continuous truss in Figure P13.11 to determine the reactions at A and B. 
Also evaluate the forces in bars a, b, c, and d. Given: P = 9 kN.

P13.12. Estimate the deflection at midspan of the truss in Figure P13.12, treating it as a beam of constant cross sec-
tion. The area of both the top and bottom chords is 10 in.2. E = 29,000 kips/in.2. The distance between the centroids of 
the top and bottom chords equals 9 ft.
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P13.13. Determine the approximate values of force in 
each member of the truss in Figure P13.13. Assume that 
the diagonals can carry either tension or compression 
force.

P13.15. (a) All beams of the frame in Figure P13.15 
have the same cross section and carry a uniformly distrib-
uted gravity load of 3.6 kips/ft. Estimate the approximate 
value of axial load and the moment at the top of columns 
AH and BG. Also estimate the shear and moment at each 
end of beams IJ and JK. (b) Assuming that all columns 
are 12 in square (I = 1728 in.4) and the moment of inertia 
of all girders equals 12,000 in.4, carry out an approximate 
analysis of the second floor by analyzing the second-floor 
beams and the attached columns (above and below) as a 
rigid frame.

P13.13

A B

CD
20 kips 20 kips

20ʹ

15ʹ

P13.14

6 @ 10ʹ = 60ʹ

C E
B

D F

L JMN K
I

G H

10ʹ

6 kips3 kips 6 kips 6 kips 6 kips 6 kips 3 kips

A

P13.15

M

T

L

E

DCB

FG

A

H

I

P

20ʹ

15ʹ

12ʹ

12ʹ

12ʹ

KJ

NO

Q
SR

24ʹ20ʹ

P13.16

J I H G F

A B C D
E

4 @ 15ʹ = 60ʹ

10ʹ

40 kips40 kips40 kips

P13.14. Determine the approximate values of bar force 
in the members of the truss in Figure P13.14 for the fol-
lowing two cases:
 (a)  Diagonal bars are slender and can carry only  

tension.
 (b)  Diagonal bars do not buckle and may carry  

either tension or compression.

P13.16. Using an approximate analysis of the Vierendeel 
truss in Figure P13.16, determine the moments and ax-
ial forces acting on free bodies of members AB, BC, IB,  
and HC.

lee98004_ch13_604-659.indd   657 27/12/16   3:23 pm



658  Chapter 13 ■ Approximate Analysis of Indeterminate Structures

P13.17. Determine the moments and axial forces in 
members of the frame in Figure 13.17, using the portal 
method. Compare the results with those produced by the 
cantilever method.

P13.19. Computer Study—comparison of cantilever and 
portal methods with an exact analysis. (a) Analyze 
the two-story frame in Figure P13.19 by the por-

tal method. (b) Repeat the analysis using the cantilever 
method. Assume the area of the interior columns is twice 
the area of the exterior columns. Assume the baseplates 
connecting all columns to the foundations can be treated 
as a pin support. (c) Compare the results with an exact 
analysis using a computer software. Use E = 200 GPa for 
all members; for beams and interior columns use A = 
10,000 mm2 and I = 50 × 106 mm4; for exterior columns 
use A = 5000 mm2 and I = 25 × 106 mm4.

P13.17

25ʹ

12ʹ

16ʹ

30 kips

A

B

C

F

E

D

P13.18

15ʹ

16ʹ

12ʹ

12ʹ

15ʹ15ʹ

15 kips

25 kips

25 kips

A B C D

EFGH

LKJI

MNOP

P13.19

5 m 5 m8 m8 m

6 m

4 m
100 kN

300 kN

A B C D E

F G H I J

K L M N O

P13.20

30ʹ

15ʹ

10 kips

A D

B
C

P13.18. Computer Study—comparison of cantilever and 
portal methods with an exact analysis. (a) Deter-
mine the moments, shear, and axial forces in the 

members of the frame in Figure P13.18, using the portal 
method. (b) Repeat the analysis using the cantilever 
method. Assume the area of the interior columns is twice 
the area of the exterior columns. (c) Compare the results 
with an exact analysis using a computer software. Use 
E = 29,000 kips/in.2 for all members; A = 12 in.2 and I = 
600 in.4 for beams and interior columns; A = 8 in.2 and I = 
400 in.4 for exterior columns.

P13.20. Computer Study—comparison of approximate 
analysis with an exact analysis. (a) Use approxi-
mate analysis to compute the reactions and draw 

the moment diagrams for column AB and girder BC of the 
frame in Figure P13.20, and draw the deflected shape. 
Consider column bases are fixed. (b) Repeat the computa-
tions with pinned column bases at A and D. (c) Compare 
the results with the exact analysis using a computer soft-
ware. Consider columns A = 13.1 in.2, I = 348 in.4; girder 
A = 16.2 in.2, I = 1350 in.4. Use E = 29,000 kips/in.2 for 
all members.
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P13.21. and P13.22. Computer Study—comparison of 
approximate analysis with exact analysis. Con- 
sider the structures in Figures P13.21 and P13.22, 

respectively. (a) Use approximate analysis to compute the 
reactions and draw moment diagram for the column AB 
and draw the approximate deflected shape of the frame. 

(b) Determine truss bar forces. All truss joints are pinned. 
(c) Compare the results with the exact analysis using 
a computer software. Truss member properties are 
A = 4 in.2, columns A = 13.1 in.2, I = 348 in.4 and E = 
29,000 kips/in.2 for all members.

P13.21

A

B

C D E F G H

L M N O P

I

J

K

15ʹ

5ʹ

10 kips

pinned connections typical

pinned base typical

6 @ 5ʹ = 30ʹ

P13.22

A K

C

D E F G H

L M N O P

B

I

J

10ʹ

5ʹ

5ʹ

10 kips

pinned connections typical

pinned base typical

6 @ 5ʹ = 30ʹ

P13.23. Compare the results of Problem P13.20 (a) and (c) with Problem P13.21(a) and (c).

P13.24. Compare the results of Problem 13.21(a) and (c) with Problem 13.22(a) and (c).
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Space Truss Support for a Radar Antenna
A three-dimensional space truss used to support a 150-ft diameter radar antenna was 
under erection. A computer program using a matrix formulation was used to analyze this 
complex structure for a variety of static and dynamic loading conditions.

Library of Congress
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14

This chapter provides a transition from classical methods of hand analy-
sis, such as the flexibility method (Chapter 9) or slope-deflection method 
(Chapter 10), to analysis by computer, which follows a set of programmed 
instructions. Before computers first became available in the 1950s, teams of 
engineers could require several months to produce an approximate analysis 
of a highly indeterminate three-dimensional space frame. Today, however, 
once the engineer specifies joint coordinates, type of joint (such as pinned or 
rigid), member properties, and the distribution of applied loads, the computer 
program can produce an exact analysis within minutes. The computer output 
specifies the forces in all members, reactions, and the displacement compo-
nents of joints.

Although sophisticated computer programs are now available to analyze 
the most complex structures composed of shells, plates, and space frames, 
in this introductory chapter we will limit the discussion to planar structures 
(trusses, beams, and frames) composed of linear elastic members. To mini-
mize computations and clarify concepts, we will only consider structures that 
are kinematically indeterminate to the first degree. Later in Chapters 15 and 
16, using matrix notation, we extend the stiffness method to more complex 
structures with multiple degrees of kinematic indeterminacy.

C H A P T E R

Introduction to the 
General Stiffness 
Method
Chapter Objectives

 ● This chapter provides a transition from the classical to matrix methods of structural analysis.

 ● A comparison is first made between the classical flexibility method and stiffness (slope-deflection) 
method. Then the latter method is extended to a general stiffness method for analyzing an  
indeterminate structure with only one degree of kinematic indeterminacy.

Introduction
14.1
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662  Chapter 14 ■ Introduction to the General Stiffness Method

To set up the analytical procedures used in a computer analysis, we will 
use a modified form of the slope-deflection method—a stiffness method in 
which equilibrium equations at joints are written in terms of unknown joint 
displacements. The stiffness method eliminates the need to select redundants 
and a released structure, as discussed in Chapter 9.

We begin the study of the stiffness method in Section 14.2 by  comparing 
the basic steps required to analyze a simple indetermi nate, pin-connected, two-
bar system by both the flexibility and stiffness methods. Next, we extend the 
stiffness method to the analysis of indeterminate beams, frames, and trusses. A 
brief review of matrix operations, which provide a convenient format for pro-
gramming  the computations required to analyze indeterminate structures by 
 computers, is available from the following web site: http://www.mhhe.com/leet.

Comparison between Flexibility and Stiffness Methods
14.2

The flexibility and stiffness methods represent two basic procedures that are 
used to analyze indeterminate structures. We discussed the flexibility method 
in Chapter 9. The slope-deflection method, covered in Chapter 10, is a stiff-
ness formulation.

In the flexibility method, we write compatibility equations in terms of 
unknown redundant forces. In the stiffness method, we write equilibrium 
equations in terms of unknown joint displacements. We will illustrate the 
main characteristic of each method by analyzing the two-bar structure in 
Fig ure 14.1a. In this system, which is statically indeterminate to the first de-
gree, the axially loaded bars connect to a center support that is free to dis-
place horizontally but not vertically. In this structure, joints are designated 
by a number in a square, and members are identified by a number in a circle.

Flexibility Method

To analyze the structure in Figure 14.1a, we select the horizontal reaction F1 
at joint 1 as the redundant. We produce a stable determinate released struc-
ture by imagining that the pin at joint 1 is replaced by a roller. To analyze the 
structure, we load the released structure separately with (1) the applied load 
(Figure 14.1b) and (2) the redundant F1 (Figure 14.1c). We then superimpose 
the displacements at joint 1 and solve for the redundant.

Since support 3 in the released structure is the only support able to re-
sist a horizontal force, the entire 30-kip load in Figure 14.1b is transmitted 
through member 2. As member 2 compresses, joints 1 and 2 displace to the 
right a distance Δ10. This displacement is computed by Equation 8.8. See 
Figure 14.1a for member properties.

   Δ  10   =    F  20    L  2   ____  A  2    E  2  
   =   −30 (150)  _________ 0.6 (20,000)    = −0.375 in. (14.1)

where the minus sign indicates that Δ10 is opposite in direction to the redundant.
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14.2 ■ Comparison between Flexibility and Stiffness Methods  663

We now apply a unit value of the redundant to the released structure 
(Figure 14.1c) and use Equation 14.1 to compute the horizontal displacement 
𝛿11 due to the elongation of bars 1 and 2.

   δ  11   =    F  11    L  1   ____  A  1    E  1  
   +    F  21    L  2   ____  A  2    E  2  

   (14.2)

=   1 (120)  _________ 1.2 (10,000)    +   1 (150)  _________ 0.6 (20,000)    = 0.0225 in.

To determine the reaction F1, we write an equation of compatibility based 
on the geometric requirement that the horizontal displacement at support  
1 must be zero.

   Δ  1   = 0 (14.3)

Expressing Equation 14.3 in terms of the displacements yields

   Δ  10   +  δ  11    F  1   = 0 (14.4)

F1

(a)

30 kips

CL

CL

L1 = 120ʺ

∆10

L2 = 150ʺ

A2 = 0.6 in.2
E2 = 20,000 kips/in.2

A1 = 1.2 in.2
E1 = 10,000 kips/in.2

F2

∆10

1 2 31 2

(b)

+

=
30 kips

30 kips

P = 30 kips

F10 = 0 F20 = 30 kips

CL

11

(c)

(d)

1 kip1 kip[F1]
F11 = 1 kip F21 = 1 kip

F2F1

δ

Figure 14.1: Analysis by the flexibility 
method: (a) details of the structure; (b) load 
applied to the released structure; (c) redun-
dant F1 applied to the released structure at 
joint 1; (d ) forces acting on support 2.
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664  Chapter 14 ■ Introduction to the General Stiffness Method

Substituting the numerical values of Δ10 and 𝛿11 into Equation 14.4 and solv-
ing for F1, we compute

 F  1   =   −  Δ  10   ____  δ  11  
   =   0.375 ______ 0.0225   = 16.67 kips

To compute F2, we consider equilibrium in the horizontal direction of the 
center support (Figure 14.1d ).

→+ Σ F  x   = 0

30 −  F  1   −  F  2   = 0

 F  2   = 30 −  F  1   = 13.33 kips

The actual displacement of joint 2 can be found by computing either the elon-
gation of bar 1 or the shortening of bar 2.

Δ L  1   =    F  1    L  1   ____  A  1    E  1  
   =   16.67 (120)  _________ 1.2 (10,000)    = 0.167 in.

Δ L  2   =    F  2    L  2   ____  A  2    E  2  
   =   13.33 (150)  _________ 0.6 (20,000)    = 0.167 in.

Stiffness Method

The structure in Figure 14.1a (repeated in Figure 14.2a) will now be reana-
lyzed by the stiffness method. Since only joint 2 is free to displace, the struc-
ture is kinematically indeterminate to the first degree. Under the action of the 
30-kip load in Figure 14.2b, joint 2 moves a distance Δ2 to the right. Since 
compatibility of deformations requires that the elongation of bar 1 equal the 
shortening of bar 2, we can write

  Δ L  1   = Δ L  2   =  Δ  2   (14.5)

Using Equations 14.1 and 14.5, we express the forces in each bar in terms of 
the displacement of joint 2 and the properties of the members.

  F  1   =    A  1    E  1   ____  L  1  
   Δ L  1   =   1.2 (10,000)  _________ 120    Δ  2   = 100  Δ  2   

(14.6)

 F  2   =    A  2    E  2   ____  L  2  
   Δ L  2   =   0.6 (20,000)  _________ 150    Δ  2   = 80  Δ  2  

Horizontal equilibrium of joint 2 (Figure 14.2c) gives

  Σ F  x   = 0 (14.7)

30 −  F  1   −  F  2   = 0
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14.2 ■ Comparison between Flexibility and Stiffness Methods  665

Expressing the forces in Equation 14.7 in terms of the displacement Δ2 given 
by Equation 14.6 and solving for Δ2 give

 30 − 100  Δ  2   − 80  Δ  2   = 0 (14.8)
 Δ  2   =   1 __ 6   in.

To establish the bar forces, we substitute the value of Δ2 above into Equa-
tion 14.6.

  F  1   = 100  Δ  2   = 100 (  1 __ 6  )  = 16.67 kips 
(14.9)

 F  2   = 80  Δ  2   = 80 (  1 __ 6  )  = 13.33 kips

Equation 14.8 can also be set up in a slightly different way. Let us intro-
duce a unit displacement of 1 in at joint 2, as shown in Figure 14.2d. Using 

F1

(a)

P = 30 kips

CL

CL

L1 = 120ʺ L2 = 150ʺ

∆ = 1ʺ

80∆2 kips100∆2 kips

A2 = 0.6 in.2
E2 = 20,000 kips/in.2

A1 = 1.2 in.2
E1 = 10,000 kips/in.2

F2

F2

∆2

F1

1

1 3

2

2 31 2

1 2

(b)

(c)

P = 30 kips

P = 30 kips

F2F1

2 P = 30 kips

CL

 f1 = 100 kips
K2 = 180 kips

f2 = 80 kips
1 3

(d)

(e)

[∆2]

Figure 14.2: (a) Structure kinematically 
indeterminate to first degree; (b) deflected 
position of  loaded structure; (c) free body 
of joint 2; (d ) forces produced by a unit dis-
placement of joint 2; (e) free body of center 
support.
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666  Chapter 14 ■ Introduction to the General Stiffness Method

Equation 14.1, the force K2 required to hold the joint in this position can be 
computed by summing the forces needed to elongate bar 1 and compress bar 
2 by 1 in.

  K  2   =    A  1    E  1   ____   L  1  
    (1 in.)  +    A  2    E  2   ____  L  2  

    (1 in.)  (14.10)

= 180 kips/in.

Note that K2 represents the force required to produce a unit displacement 
at joint 2. So the unit of K2 is kips/in. Since the actual displacement of joint 
2 is not 1 in but Δ2, we must multiply all forces and deflections (Figure 14.2) 
by the magnitude of Δ2, as in dicated by the symbol in brackets to the right of 
joint 3. For the block to be in equilibrium, the magnitude of Δ2, the displace-
ment of joint 2, must be large enough to develop only 30 kips of resistance. 
Since the restraining force exerted by the bars is a linear function of the dis-
placement of joint 2, the actual joint displacement Δ2 can be determined by 
writing the equilibrium equation for forces in the horizontal direction at joint 2  
(Figure 14.2e).

 →+ Σ F  x   = 0

30− K  2    Δ  2   = 0

and

   Δ  2   =   30 ___ 180   =   1 __ 6    in.

The quantity K2 is called a stiffness coefficient. If the two bars are treated 
as a large spring, the stiffness coefficient measures the resistance (or stiff-
ness) of the system to deformation.

Most computer programs are based on the stiffness method. This 
method eliminates the need for the designer to select a released structure and 
permits the analysis to be automated. Once the designer identifies the joints 
that are free to displace and specifies the joint coordinates, the computer is 
programmed to introduce unit displacements and to generate the required 
stiffness coefficients, set up and solve the joint equilibrium equations, and 
compute all reactions, joint displacements, and member forces.

Analysis of an Indeterminate Structure by the  
General Stiffness Method

14.3

In the example in Figure 14.3 we extend the general stiffness method to the 
analysis of an indeterminate beam—a structural element whose deformations 
are produced by bending moments. This example will also provide the back-
ground for the analysis of indeterminate frames (with the matrix formulation, 
covered in Chapter 16). As you will observe, the method utilizes procedures 
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14.3 ■ Analysis of an Indeterminate Structure by the General Stiffness Method  667

and equations previously developed in Chapters 10 and 11, which introduced 
the slope-deflection and moment distribution methods.

Figure 14.3a shows a continuous beam of constant cross section. Since 
the only unknown displacement of the continuous beam is the rotation θ2 
that occurs at joint 2, the structure is kinematically indeterminate to the first 
degree (Section 10.6).

As the first step in the analysis, before loads are applied, we clamp joint 2 
to prevent rotation, thereby producing two fixed-end beams (Fig ure 14.3b). 
Next we apply the 15-kip load, which produces fixed-end moments FEM12 
and FEM21. Using Figure Appendix Figure A.4a to evaluate these moments 
gives

 FEM  12   = −   PL ___ 8   = −   15 (16)  _____ 8   = −30 kip ⋅ ft

 FEM  21   =   PL ___ 8   =   15 (16)  _____ 8   = 30 kip ⋅ ft

We will adopt the previous sign convention used in Chapters 10 and 11; that 
is, clockwise moments and rotations at the ends of members are positive, and 
counterclockwise moments and rotations are negative. 

Figure 14.3c shows the forces on a free body of joint 2. Since no loads 
act on the 8-ft span at this stage, it remains unstressed and applies no forces 
to the right side of joint 2.

To account for the rotation θ2 that occurs in the actual beam (Figure 
14.3d ), we next, in a separate step, induce a unit clockwise rotation of +1 rad 
at joint 2 and clamp the beam in its deflected position. This rotation produces 
member end moments that can be evaluated using the first two terms of the 
slope-deflection equation (Equation 10.16). We will denote these moments 
with the superscript JD, which stands for a joint displacement, in this case, a 
joint rotation. 

In span 1-2

 
 M  12  JD  =   2EI ___ L    [2 (0)  + 1]  =   2EI ___ 16    [0 + 1]  =   EI __ 8   (14.11)

  M  21  JD  =   2EI ___ L    [2 (1)  + 0]  =   2EI ___ 16    [2 (1)  + 0]  =   EI __ 4   (14.12)

In span 2-3

   M  23  JD  =   2EI ___ L    [2 (1)  + 0]  =   2EI ___ 8    (2)  =   EI __ 2   (14.13)

   M  32  JD  =   2EI ___ L    [2 (0)  +  (1) ]  =   2EI ___ 8    (1)  =   EI __ 4   (14.14)

From the free-body diagram of joint 2 shown in Figure 14.3e, we ob-
serve that the moment K2 (the stiffness coefficient) applied by the clamp  
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2

(a)

tangent at 2

P = 15 kips

L2 = 8ʹ

8ʹ

moment diagram
(kip • ft)

L1 = 16ʹ

(b)
Case 1

Case II

(c)

P = 15 kips

15 kips

8ʹ

1

clamp

32

16ʹ

+
=

FEM12 = –30 kip • ft FEM21 = 30 kip • ft

M2 = 30 kip • ft M2 = 30 kip • ft

FEM21 = 30 kip • ft

clamp

joint 2

(d )

–35

35 kip • ft 10 kip • ft

8.438 kips 10.312 kips
3.75 kips

–20

32.5

21 3
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( f )

(g)

(e)

joint 2
M12

JD M32
JD

M21
JD

M23
JD
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Figure 14.3  
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to maintain the unit rotation equals the sum of  M  21  JD  +  M  23  JD  (given by Equa-
tions 14.12 and 14.13); that is,

  K  2   =  M  21  JD  +  M  23  JD  =   EI __ 4   +   EI __ 2   =   3EI ___ 4   (14.15)

Since the behavior is linearly elastic, to establish both the actual deformation 
and the member end moments, we must multiply the unit rotation and the 
moments it produces (Figure 14.3d ) by the actual rotation θ2. We denote this 
operation by showing θ2 in brackets to the left of the fixed support at joint 1.

Since no external moments or a clamp exist at joint 2 in the real beam, it 
must follow that M2 in Figure 14.3c equals θ2K2 in Figure 14.3e; that is, for 
the joint to be in equilibrium

⟳+ Σ M  2   = 0

 30 +  K  2    θ  2   = 0 (14.16)

Substituting the value of K2 given by Equation 14.15 into Equation 14.16 gives

30 +   3EI θ  2   ____ 4   = 0

Solving for θ2 gives

   θ  2   = −   40 __ EI     rad (14.17)

Since the value of θ2 is negative, the rotation at joint 2 is opposite to that 
assumed in Figure 14.3d to define the stiffness coefficient, that is, the rotation 
at joint 2 is counterclockwise. Once θ2 is determined, the member end moments 
can be evaluated by superposition of the cases shown in Figures 14.3b and d. 
For example, to evaluate the moment in the beam just to the left of joint 2, we 
write the following superposition equation, substituting into Equation 14.18 the 
value of  M  21  JD  given by Equation 14.12 and θ2 given by Equation 14.17; we find

   M  21   =  FEM  21   +  M  21    JD    θ  2   (14.18)

  M  21   = 30 +   EI __ 4   (−   40 __ EI  )  = 20 kip ⋅ ft  clockwise

At fixed support ( joint 3),

 M  32   = 0 +  M  32  JD   θ  2   = 0 +   EI __ 4   (−   40 __ EI  )  = −10 kip ⋅ ft

where the minus sign indicates that the direction for M32 is counter clockwise.
After the member end moments are computed, shear forces and reactions 

can be calculated by using free-body diagrams of each beam. The complete 
moment diagram is shown in Figure 14.3f. The final reactions are shown in 
Figure 14.3g.
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Summary of the General Stiffness Method

The analysis of the continuous beam in Figure 14.3a is based on the superpo-
sition of two cases. In case 1, we clamp all joints that are free to rotate and 
apply the load. The load creates fixed-end moments in the beam and an equal 
moment in the clamp. Had there been loads on both spans, the moment in the 
clamp would have been equal to the difference of the fixed-end moment acting 
on joint 2. At this point the structure is in equilibrium with the load; however, 
the joint has been restrained by a clamp and not allowed to rotate.

To eliminate the clamp, we must remove it and allow the joint to rotate. 
This rotation will produce additional moments in the members. We are pri-
marily interested at this stage in the magnitude of the moments at the ends 
of each member. Since we do not know the magnitude of the rotation, in a 
separate case 2, we arbitrarily introduce a unit rotation of 1 rad and clamp 
the beam in the deflected position. The case 2 clamp now applies a moment, 
termed a stiffness coefficient, which holds the beam in the rotated position. 
Since we have induced a specific value of rotation (that is, 1 rad), we are able 
to compute the moments at the ends of each member by using the slope-
deflection equation. The moment in the clamp is computed from a free body 
of the joint. If we now multiply the forces and displacements in case 2 by 
the actual magnitude of the joint rotation θ2, all forces and displacements 
(including the moment in the clamp and the rotation at joint 2) will be scaled 
proportionally to the correct value. Since no clamp exists in the actual beam, 
it follows that the sum of the moments in the clamp from the two cases must 
equal zero. Accordingly the value of θ2 can now be determined by writing an 
equilibrium equation that states the sum of the moments in the clamp, from 
case 1 and case 2, must equal zero. Once θ2 is known, all forces in case 2 can 
be evaluated and added directly to those of case 1.
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Analyze the rigid frame in Figure 14.4a by the general stiffness method. 
EI is constant.

Solution
Since the only unknown displacement is the rotation θ2 at joint 2, the frame is 
kinematically indeterminate to the first degree; therefore, a solution requires 
one joint equilibrium equation, written at joint 2. In the first step, we imagine 
a clamp is applied to joint 2 that prevents rotation and produces two fixed-end 
members (Figure 14.4b). When the loads are applied, fixed-end moments  
develop in the beam but not in the column because the clamp prevents rota-
tion of the top of the column. Using the equation given in Figure Appendix 
Figure A.4, these fixed-end moments in the beam are

 FEM = ±   2PL ____ 9   = ±   2(24)(18) ________ 9   = ± 96 kN · m (1)

Figure 14.4c shows a detail of the fixed-end moment acting on a free body 
of joint 2.

We next introduce a clockwise unit rotation of 1 rad at joint 2 and 
clamp the joint in the deflected position. The moments produced by the 
unit rotation are superscripted with a JD (for joint displacement). Since we 
want the effect of the actual rotation θ2 produced by the 24-kN loads, we 
must multiply this case by θ2, as indicated by the symbol θ2 in brackets at 
the left of Figure 14.4d. We express the moments induced by the unit rota-
tion at joint 2 in terms of the member properties, using the slope-deflection 
equation (Equation 10.16). Since joint 2 cannot translate, the terms 𝜓NF 
and FEMNF in Equation 10.16 equal zero, and the slope-deflection equa-
tion reduces to

 MNF =   2EI ____ L   (2θN + θF) (2)

Using Equation 2, we next evaluate the member end moments pro-
duced by the unit joint rotation.

  M  12  JD  =   2EI ___ 6    (0 + 1)  =   EI __ 3   (3)

  M  21  JD  =   2EI ___ 6    [2 (1)  + 0]  =   2EI ___ 3   (4)

  M  23  JD  =   2EI ___ 18    [2 (1)  + 0]  =   2EI ___ 9   (5)

  M  32  JD  =   2EI ___ 18    [2 (0)  + 1]  =   EI __ 9   (6)

E X A M P L E  1 4 . 1

[continues on next page]
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Figure 14.4  
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Example 14.1 continues . . .
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The total moment K2 applied by the clamp equals the sum of the mo-
ments applied to the ends of the beams framing into joint 2 (Figure 14.4e).

 K  2   =  M  21  JD  +  M  23  JD 

  K  2   =   2EI ___ 3   +   2EI ___ 9   =   8EI ___ 9   (7)

For the clamp to be removed, equilibrium requires that the sum of the 
moments acting on the clamp at joint 2 (Figure 14.4c and e) equal zero.

⟳+ ΣM2 = 0

  K  2    θ  2   − 96 = 0 (8)

Substituting the value of K2 given by Equation 7 into Equation 8 and solv-
ing for θ2 give

 (  8EI ___ 9  )   θ  2   − 96 = 0

  θ  2   =   108 ___ EI   Ans. (9)

To establish the magnitude of the moment at the end of each mem-
ber, we superimpose the forces at each joint shown in Figure 14.4b and 
d; that is, we multiply the values of moment due to the unit rotation 
(Equa tions 3, 4, 5, and 6) by the actual rotation θ2 and add any fixed-end 
moments.

 M  12   =  θ  2    M  12  JD  =   108 ___ EI   (  EI __ 3  )  = 36 kN ⋅ m  clockwise

 M  21   =  θ  2    M  21  JD  =   108 ___ EI   (  2EI ___ 3  )  = 72 kN ⋅ m  clockwise

 M  23   =  θ  2    M  23  JD  +  FEM  23   =   108 ___ EI   (  2EI ___ 9  )  − 96 = −72 kN ⋅ m  counterclockwise

 M  32   =  θ  2    M  32  JD  +  FEM  32   =   108 ___ EI   (  EI __ 9  )  + 96 = 108 kN ⋅ m  clockwise

The remainder of the analysis is carried out using free-body diagrams 
of each member to establish shears and reactions. The final results are 
summarized in Figure 14.4 f.
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E X A M P L E  1 4 . 2 The pin-connected bars in Figure 14.5a are connected at joint 1 to a roller 
support. Determine the force in each bar and the magnitude of the hori-
zontal displacement Δx of joint 1 produced by the 60-kip force. Area of 
bar 1 = 3 in.2, area of bar 2 = 2 in.2, and E = 30,000 kips/in.2.

(a)

60 kips ∆x

45°

L2 = 10ʹ

L1 = 14.14ʹ

2 1

3

1

2

1ʺ

imaginary
support

3

1

(b)

A

B
= 0.707ʺ∆L145°

90°

K1

F1

F2
2

1

2 [∆x]

(c)

F1y  = 265.13 kips

K1F2   = 500 kips

265.13 kips

F1x  = 265.13 kips

F1   = 375 kipsJD

JD

JD

JD

1

Figure 14.5: (a) Details of structure; (b) joint 1 displaced 1 in. to the right and attached 
to imaginary support; (c) forces at joint 1 produced by a 1-in. horizontal displacement.
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Solution
We first displace the roller 1 in. to the right and connect it to an imaginary pin 
support (Figure 14.5b) that develops a reaction of K1 kips to hold the joint in 
its new position. Because the horizontal displacement of joint 1, shown to an 
exaggerated scale in Figure 14.5b, is very small compared to the length of the 
bars, we assume its slope remains 45° in the deflected position. To establish the 
elongation of bar 1, we mark its original un stressed length on the displaced bar 
by rotating the original length about the pin at joint 3. Since the end of the un-
stressed bar moves on the arc of a circle, from point A to B, the initial displace-
ment of its end is perpendicular to the original position of the bar’s axis. Since 
we require the bar forces due to the actual displacement, which is a fraction of 
an inch, we multiply the forces and displacements shown in Figure 14.5b by Δx.

From the geometry of the displacement triangle at joint 1 (Fig-
ure 14.5b), we compute ΔL1

Δ L  1   =  (1 in.)  (cos 45°)  = 0.707 in.

With the elongation of each bar established, we can use Equation 14.1 
to compute the force in each bar.

  F  1     JD  =    A  1   EΔ L  1   ______  L  1  
   =   3 (30,000)  (0.707)   ____________  14.14 × 12   = 375 kips

  F  2     JD  =    A  2   EΔ L  2   ______  L  2  
   =   2 (30,000)  (1)  _________ 10 × 12   = 500 kips

We then compute the horizontal and vertical components of F1.

  F  1x  JD   =   F  1  JD   (cos 45°)  = 375 (0.707)  = 265.13 kips

  F  1y  JD   =   F  1  JD   (sin 45°)  = 375 (0.707)  = 265.13 kips

To evaluate K1, we sum forces applied to the pin (Figure 14.5c) in the 
horizontal direction.

Σ F  x   = 0

 K  1   −   F  1x  JD   −   F  2     JD  = 0

 K  1   =   F  1x  JD   +   F  2     JD  = 265.13 + 500 = 765.13 kips

To compute the actual displacement, we multiply the force K1 in Fig-
ure 14.5c by Δx, the actual displacement and consider the horizontal 
force equilibrium at joint 2.

 K  1    Δ  x   − 60 = 0
765.13  Δ  x   − 60 = 0

 Δ  x   = 0.0784 in. Ans.

Compute the force in each bar.

 F  1   =   F  1x  JD   ( Δ  x  )  = 375 (0.0784)  = 29.4 kips 
Ans.

 F  2   =   F  2  JD   ( Δ  x  )  = 500 (0.0784)  = 39.2 kips
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E X A M P L E  1 4 . 3 Analyze the rigid frame in Figure 14.6a by the general stiffness method.

Solution
The rigid frame in Figure 14.6a is kinematically indeterminate to the third 
degree because joints 2 and 3 can rotate and the beam can displace later-
ally. However, because the structure and load are symmetric with respect 
to a vertical axis through the center of the frame, the deflections form a 
symmetric pattern. Therefore, rotations θ2 and θ3 of joints 2 and 3 are equal 
in magnitude, and no lateral displacement of the frame occurs. These con-
ditions permit a solution based on a single equilibrium equation, arbitrarily 
written at joint 2.

We begin the analysis by clamping joints 2 and 3 to prevent rota tion 
(Figure 14.6b), and we apply the load, producing fixed-end moments in the 
beam where

 FEM = ±   PL ____ 8   = ±   20(36) ________ 8   = ± 90 kip · ft (1)

Figure 14.6c shows the moments acting on joint 2 from the beam and col-
umn as well as the clamp (shear forces are omitted for clarity).

We next introduce simultaneously rotations of 1 rad clockwise at 
joint 2 and −1 rad counterclockwise at joint 3, and we clamp the joints 
in the deflected position (Figure 14.6d ). The moments in the beam 
and columns at joints 2 and 3 produced by the rotations are identical 
in magnitude but act in opposite directions. Using the first two terms 
of the slope-deflection equation at joint 2, we compute the moments at 
the left end of the beam and the moments at the top and bottom of the 
left column.

  M  23  JD  =   2EI ___ 36   [2 (1)  + (−1)] =   EI __ 18   (2)

  M  21  JD  =   2EI ___ 12    [2 (1)  + 0]  =   EI ___ 3   (3)

  M  12  JD  =   2EI ___ 12    [2 (0)  + 1]  =   EI ___ 6   (4)
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Figure 14.6: (a) Details of frame; (b) design 
load applied to restrained frame; (c) forces at 
joint 2; (d) unit rotations introduced at joints 
2 and 3; (e) forces at joint 2; ( f ) final values 
of reactions; (g) moment diagrams for mem-
bers 1 and 2.

[continues on next page]
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The moment K2 exerted by the clamp at joint 2 (Figure 14.6e) equals 
the sum of the applied moments at joint 2.

 ⟳+ ΣM2 = 0 (5)

  K  2   =  M  21  JD  +  M  23  JD  (6)

Substituting Equations 2 and 3 into Equation 6 gives

 K2 =    EI ___ 3    +    EI ___ 18    =    7EI ____ 18    (7)

To establish the moment produced by the actual rotation, we multiply all 
forces and displacements in Figure 14.6d by θ2.

Since the sum of the moments acting on the clamp at joint 2 in 
Figures 14.6c and e must equal zero, we write the equilibrium equation

⟳+ ΣM2 = 0

  θ  2    K  2   − 90 = 0 (8)

Substituting the value of K2 given by Equation 7 into Equation 8 gives

 θ  2     (  7EI ____ 18  )   = 90

  θ  2   =    231.42 ______ EI    Ans. (9)

The final moment at any section is computed by combining moments at 
corresponding sections in Figures 14.6b and d.

At joint 2 in the beam,

M23 = FEM23 + θ2  M  23  JD 

= −90 +    231.42 ______ EI      (  EI ___ 18  )   = −77.14 kip · ft counterclockwise

From symmetry,

M32 = − M23 = 77.14 kip · ft clockwise

M21 = θ2  M  21  JD  =    231.42 ______ EI      (  EI ___ 3  )   = 77.14 kip · ft clockwise

M12 = θ2  M  12  JD  =    231.42 ______ EI      (  EI ___ 6  )   = 38.57 kip · ft clockwise

Final results are shown in Figures 14.6 f and g.

Example 14.3 continues . . .
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Summary

 • The general stiffness method introduced in this chapter is the basis of the 
majority of computer programs used to analyze all types of determinate 
and indeterminate structures including planar structures and three-
dimensional trusses, frames, and shells. The stiffness method eliminates 
the need to select redundants and a released structure, as required by the 
flexibility method.

 • In the general stiffness method, joint displacements are the unknowns. 
With all joints initially artificially restrained, unit displacements  
are introduced at each joint and the forces associated with the unit dis-
placements (known as stiffness coefficients) computed. In this introduc-
tory discussion, we consider beams, frames, and trusses with a single 
unknown linear or rotational displacement. In structures with multiple 
joints that are free to displace, the number of unknown displacements 
will be equal to the degree of kinematic indeterminacy. If programs are 
written for three-dimensional structures with rigid joints, six unknown 
displacements (three linear and three rotational) are possible at each 
unrestrained joint. For these situations the torsional stiffness as well as 
the axial and bending stiffness of members must be considered when 
evaluating stiffness coefficients.

 • In a typical computer program, the designer must select a coordinate 
system to establish the location of joints, specify member properties 
(such as area, moment of inertia, and modulus of elasticity), and specify 
the type of loading. An approximate analysis (Chapter 13) can be car-
ried out to size members initially.
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P14.1. The structure in Figure P14.1 is composed of 
three pin-connected bars. The bar areas are shown in the 
figure. Given: E = 30,000 kips/in.2. 
 (a) Compute the stiffness coefficient K associated 
with a 1-in. vertical displacement of joint A. (b) Determine 
the vertical displacement at A produced by a vertical load 
of 24 kips directed downward. (c) Determine the axial 
forces in all bars.

PROBLEMS
P14.3. The pin-connected bar system in Figure P14.3 is 
stretched 1 in. horizontally and connected to the pin sup-
port 4. Determine the horizontal and vertical components 
of force that the support must apply to the bars. Area of bar 
1 = 2 in.2, area of bar 2 = 3 in.2, and E = 30,000 kips/in.2. 
K2x and K2y are stiffness coefficients.

24 kips

A

CB D

12ʹ 12ʹ

16ʹ2 in.22 in.2
1 in.2

P14.1

A

I = 240 in.2

β = 10 kips/in.

B

6ʹ 6ʹ

P

P14.2

1ʺ

45°

K2x

K2y

L2 = 15ʹ

L1 = 12ʹ

1 2

4

3

1

2

P14.3

A C
B

8 m 6 m

18 kN
3 m

w = 12 kN/m

P14.4

P14.2. The cantilever beam in Figure P14.2 is supported 
on a spring at joint B. The spring stiffness is 10 kips/in. 
Given: E = 30,000 kips/in.2
 (a) Compute the stiffness coefficient associated with 
a 1-in. vertical displacement at joint B. (b) Compute the 
vertical deflection of the spring produced by a vertical load 
of 15 kips. (c) Determine all support reactions produced 
by the 15-kip load.

P14.4. Analyze the beam in Figure P14.4. After member 
end moments are determined, compute all reactions and 
draw the moment diagrams. EI is constant.
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P14.5. Analyze the steel rigid frame in Figure P14.5. 
After member end moments are evaluated, compute all 
reactions and the moment diagram for beam BC.

P14.8. The structure in Figure P14.8 is composed of 
a beam supported by two struts at the cantilever end. 
Compute all reactions and the strut member forces. Use 
E = 30,000 kips/in.2.

A

4I

I

B C

30ʹ

15ʹ

30 kips

12ʹw = 1 kip/ft

P14.5

30 kips
12ʹ

24ʹ18ʹ

w = 6 kips/ft

A B C

P14.6

3 m

20 kN

12 m

4 m

A

C
B

2I
I

D

w = 6 kN/m

P14.7

I = 1000 in.4

A = 1 in.2A = 1 in.2

10ʹ
30 kips

4ʹ 4ʹ

6ʹ

P14.8

I = 300 in.4

L = 10ʹ
A = 1.2 in.2

12ʹ

36 kips

1 2

3

3
4

P14.9

P14.6. Analyze the beam in Figure P14.6. Compute 
all reactions and draw the shear and moment diagrams. 
Given: EI is constant.

P14.7. Analyze the reinforced concrete frame in Fig ure 
P14.7. Determine all reactions. E is constant.

P14.9. The cantilever beam in Figure P14.9 is connected 
to a bar at joint 2 by a pin. Compute all reactions. Given: 
E = 30,000 kips/in.2. Ignore axial deformation of the 
beam.
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P14.10 and P14.11. Analyze the rigid frames in Fig-
ures P14.10 and P14.11, using symmetry to simplify 

the analysis. Compute all reactions and draw the moment 
diagrams for all members. Also E is constant.
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U.S. Pavilion at Expo ΄67 in Montreal, Canada
The U.S. Pavilion was enclosed by a 250-ft diameter geodesic dome. The dome is a 
beautifully proportioned, three-quarter sphere which is enclosed by a space frame of steel 
pipes with 1900 molded acrylic panels. The designer distributed the structure’s weight 
over the whole surface of the dome with minimum use of materials.

© Howard Epstein, University of Connecticut
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15Matrix Analysis of 
Trusses by the Direct 
Stiffness Method

Introduction
15.1

C H A P T E R

Chapter Objectives
 ● Learn how to establish the matrix form of equilibrium equations for a determinate or an indetermi-

nate truss and to partition the matrices such that both the unknown joint displacements and unknown 
reactions can be solved by matrix operation.

 ● Learn how to establish the structure stiffness matrix, which can be constructed by either basic  
mechanics or, more conveniently, individual member stiffness matrices. The latter method, which is 
suitable for computer implementation, is called the direct stiffness method.

 ● Construct member stiffness matrix by using either the local or global coordinate system. Learn 
how to convert a member stiffness matrix from local to global coordinate system by the concept of 
coordinate transformation.

In this chapter we introduce the direct stiffness method, a procedure that pro-
vides the basis for most computer programs used to analyze structures. The 
method can be applied to almost any type of structure, for example, trusses, 
continuous beams, indeterminate frames, plates, and shells. When the method 
is applied to plates and shells (or other types of problems that can be subdi-
vided into two- and three-dimensional elements), it is called the finite element 
method.

As in the flexibility method of Chapter 9, the direct stiffness method 
requires that we divide the analysis of a structure into a number of basic cases 
that, when superimposed, are equivalent to the original structure. However, in-
stead of writing compatibility equations in terms of unknown redundant forces 
and flexibility coefficients, we write joint equilibrium equations in terms of 
unknown joint displacements and stiffness coeffi cients (forces produced by 
unit displacements). Once the joint displacements are known, the forces 
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686  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

in the members of the structure can be calculated from force-displacement 
relationships. 

To illustrate the method, we analyze the two-bar truss in Figure 15.1a. 
We identify truss joints or nodes by numbers in circles and bars by numbers 
in squares. Under the action of the 10-kip vertical load at joint 2, the bars 
deform, and joint 2 displaces a distance Δx horizontally and Δy vertically. 
These displacements are the unknowns in the stiffness method. To establish 
the positive and negative sense of forces and displacements in the horizontal 
and vertical directions, we introduce a global xy coordinate  system at 
joint 2. The x direction is denoted by the number 1 and the y direction by the 
number 2. The positive directions are indicated by the arrowheads.

In the stiffness method, we carry out the truss analysis by superimposing 
the following two loading cases:

Case I. The structure is loaded at joint 2 by a set of forces that displace joint 
2 a unit distance to the right but permit no vertical displacement. The forces 
and displacements associated with unit displacements are then multiplied by 
the magnitude of Δx to produce the forces and displacements associated with 
the actual displacement Δx. This multiplication is indicated by Δx in brackets 
to the right of the sketch in Figure 15.lb.

Case II. The structure is loaded at joint 2 by a set of forces that displace 
joint 2 a unit distance vertically but permit no horizontal displacement. The 
forces and displacements are then multiplied by the magnitude of Δy, to pro-
duce the forces and displacements associated with the actual displacement Δy 
(Figure 15.1c).

If the structure responds to load in a linear, elastic manner, super-
position of the two cases above is equivalent to the actual case. Case I supplies 
the required horizontal displacement, and Case II supplies the required vertical 
displacement.

In Figure 15.lb, forces K11 and K21 represent the forces required to dis-
place joint 2 by 1 in. to the right. In Figure 15.lc, forces K22 and K12 de-
note the forces required to displace joint 2 by 1 in. upward. Subscripts are 

Matrix Structural Analysis

John Hadji Argyris 
(1913–2004), a professor in 
aeronautical engineering, 
pioneered the matrix structural 
analysis and finite element 
analysis. In his own words 
(1957), “We have known for 
some years that none of the 
conventional statical methods 
are really suitable for deter-
mining the stress distribution 
and flexibility matrices of 
highly statically indeterminate 
systems of modern aircraft 
designs. . . . We have over-
come these difficulties by 
way of the matrix formulation 
of statics in conjunction with 
automatic electronic digital 
computers.”

R1
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F2

F21

F11
F12

F22
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K11
F1

(a)

= +

(b) (c)

Case I Case II

1

1

1
1

1

3

2

2
ϕ = 45°

2

10 kips

1ʺ
x

x[Δ  ]

K22

K12

2

1ʺ
y[Δ  ]

y– r11

r31

2

r12

r32

Δ

Δ

Figure 15.1: (a) Horizontal and vertical 
displacements Δx and Δy produced by the 
10-kip load at joint 2; initially bar 1 is hori-
zontal: bar 2 slopes upward at 45°; (b) forces 
(stiffness coeffi cients) K21 and K11 required 
to produce a unit horizontal displacement of 
joint 2; (c) forces K22 and K12 required to pro-
duce a unit vertical displacement of joint 2.
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15.1 ■ Introduction  687

used to denote the direction of both the forces and the unit displacement 
with reference to the local x-y coordinate system at joint 2. The first sub-
script specifies the direction of the force. The second subscript denotes 
the direction of the unit displacement. The forces associated with a unit 
displacement are termed stiffness coefficients. These coefficients can be 
evaluated by referring to the member oriented with respect to the horizon-
tal axis by an angle ϕ in Figure 15.2. In Figure 15.2a, the initial position 
of the unstressed member is shown by a dashed line. A unit horizontal 
 displace ment is induced at one end of the member, while vertical displace-
ment is  prevented. This displacement causes the member to elongate by 
an amount cos ϕ, which results in an axial force F equal to (AE/L) cos ϕ. 
The horizontal component Fx and vertical component Fy of the axial force 
 represent the contribution of this member to K11 and K12, respectively, in 
Figure 15.1b. Similarly, to evaluate the contribution of the member to K12 
and K22, a unit vertical displacement is induced, which produces an axial 
deformation sin ϕ. See Figure 15.2b for the corresponding force compo-
nents. These expressions relate longitudinal force in an axially loaded bar 
(restrained at one end) to unit displacements in the horizontal and the verti-
cal direction at the opposite end.

There is no need to guess the direction of the actual joint displacements. 
We arbitrarily specify the positive sense of the unit displacements. (In this 
book we assume that positive displacements are in the same direction as the 
positive sense of the local coordinate axes.) If the solution of the equilibrium 
equations (a step in the analysis that we discuss shortly) produces a positive 
value of displacement, the displacement is in the same direction as the unit 
displacement. Conversely, a negative value of displacement indicates that the 
actual displacement is opposite in direction to the unit displacement. 

To establish the values of Δx and Δy for the truss in Figure 15.1a, we solve 
two equilibrium equations. These equations are established by super  imposing 

x

y L

(a)

1ʺ

Fy = F sin sin= AE
L cos

cos

sin
1ʺ

Fx = F cos = AE
L cos2

Fx = F cos = AE
L cossin

F = AE
L cos

F = AE
L sin

x

y

(b)

Fy = F sin sin2= AE
L

ϕ ϕ ϕ

ϕ ϕ

ϕ

ϕ

ϕ

ϕ ϕ

ϕ

ϕϕ ϕ ϕ

ϕ

ϕ

ϕ

Figure 15.2: Stiffness coefficients for an 
axially loaded bar with area A, length L, and 
modulus of elasticity E. (a) Forces created 
by a unit horizontal displacement; (b) forces 
created by a unit vertical displacement.
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688  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

the forces at joint 2 in Figure 15.lb and c and then equating their sum to the 
values of the actual joint forces in the original structure (Figure 15.1a).

→+   ΣF  x   = 0   K  11  Δx +  K  12   Δ  y   = 0 (15.1)

   +     ↑      ΣF  y   = 0   K  21   Δ  x   +  K  22   Δ  y   = −10 (15.2)

Equations 15.1 and 15.2 can be written in matrix form as 

KΔ = F (15.3)

where

K =  [ 
 K  11    

 K  12     K  21  
   K  22  

 ]   Δ =  [ 
 Δ  x     Δ  x  

 ]   F =  [ 
 F  1     F  2  

 ]  =  [      0  −10  ]  (15.4)

where K =  structure stiffness matrix (i.e., its elements are stiffness 
coefficients)

 Δ = column matrix of unknown joint displacements 
 F = column matrix of applied joint forces

To determine the values of Δx and Δy (the elements in the Δ matrix), we 
premultiply both sides of Equation 15.3 by K−1, the inverse of K.

 K   −1 KΔ =  K   −1 F

Since K−1K = 1,

Δ =  K   −1 F (15.5)

After Δx and Δy are computed, reactions and bar forces can be calculated 
by superposition of corresponding forces acting at the supports and in the 
members shown in Cases I and II; that is, we multiply the forces in Case I by 
Δx and add the product to the corresponding forces in Case II multiplied by Δy. 
For example,

Reaction at support 1:  R  1   =  r  11   Δ  x   +  r  12   Δ  y   (15.6a)

Force in bar 1:    F  1   =  F  11   Δ  x   +  F  12   Δ  y   (15.6b)

To illustrate the details of the stiffness method, we will analyze the truss 
in Figure 15.la, assuming the following member properties: 

Bar areas:   A  1   =  A  2   = A

Modulus of elasticity:  E  1   =  E  2   = E

Length of bar:  L  1   =  L  2   = L
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We evaluate the stiffness coefficients in Figure 15.1b with the aid of 
Figure 15.2a, where ϕ = 0° for bar 1 and ϕ = 45° for bar 2. For these angles, 
the respective values of sin ϕ and cos ϕ are

Bar 1:   cos 0° = 1   sin 0° = 0

Bar 2: cos 45° =    
√ 

__
 2   __ 

2
   sin 45° =     

√ 
__

 2   __ 
2
  

Although the properties (A, E, and L) of both bars are identical, we will ini-
tially identify the terms that apply to each bar by using subscripted variables. 
Using Figure 15.2a to evaluate the stiffness coefficients in Figure 15.lb yields 

 K  11   =  ∑ 
 
 
 
      AE ___ 

L
    cos   2  ϕ =   

 A  1   E  1   _____ 
 L  1  

     (1)    2  +   
 A  2   E  2   _____ 
 L  2  

    (   
√ 

__
 2   __ 

2
  )    

2

  (15.7)

 K  21   =  ∑ 
 
 
 
       AE ___ 

L
   cos ϕ sin ϕ =   

 A  1   E  1   _____ 
 L  1  

    (1)  (0)  +   
 A  2   E  2   _____ 
 L  2  

    (   
√ 

__
 2   __ 

2
  )    

2

  (15.8)

We evaluate the stiffness coefficients in Figure 15.1c with Figure 15.2b.

 K  22   =  ∑ 
 
 
 
       AE ___ 

L
    sin   2  ϕ =   

 A  1   E  1   _____ 
 L  1  

     (0)    2  +   
 A  2   E  2   _____ 
 L  2  

    (   
√ 

__
 2   __ 

2
  )    

2

  (15.9)

 K  12   =  ∑ 
 
 
 
       AE ___ 

L
   sin ϕ cos ϕ =   

 A  1   E  1   _____ 
 L  1  

    (0)  (1)  +   
 A  2   E  2   _____ 
 L  2  

    (   
√ 

__
 2   __ 

2
  )    

2

  (15.10)

Writing the stiffness coefficients in Equations 15.7 to 15.10 in terms of A, E, 
and L; combining terms; and substituting them into Equation 15.4, we can 
write the structure stiffness matrix K as

K =  

⎡

 ⎢ 
⎣
 
  3AE ____ 
2L

  
  

  AE ___ 
2L

  
  

  AE ___ 
2L

  
  

  AE ___ 
2L

  
 

⎤

 ⎥ 
⎦
  =   AE ___ 

2L
    [ 3  1  1  1 ]  (15.11)

The inverse of the K matrix is

 K   −1  =   L ___ 
AE

   [    1  −1  −1     3 ]  (15.12)

Substituting K−1 given by Equation 15.12 and F given by Equation 15.4 into 
Equation 15.5 and multiplying give

 [ 
 Δ  x     Δ  y  

 ]  =   L ___ 
AE

    [    1  −1  −1     3 ]  [      0  −10  ]  =   L ___ 
AE

   [    10  −30 ] 

that is,

 Δ  x   =   10L ____ 
AE

     Δ  y   = −  30L ____ 
AE

   (15.13)
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690  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

Bar forces are now computed by superimposing Cases I and II. To evalu-
ate the axial forces produced by unit displacements, we use Fig ure 15.2. For 
bar 1 (ϕ = 0°),

 F  1   =  F  11   Δ  x   +  F  12   Δ  y   (15.6b)

where  F  11   = F =  (AE/L)  cos ϕ (Figure 15.2a) and  F  12   = F = (AE/L) sin ϕ 
(Figure 15.2b).

 F  1   =   AE ___ 
L

    (1)   (  10L ____ 
AE

  )  +   AE ___ 
L

    (0)  (−   30L ____ 
AE

  )  = 10 kips

For bar 2 (ϕ = 45°),

F2 = Δx F21 + Δy F22

where  F  21   = F =  (AE/L)  cos ϕ in Figure 15.2a, and  F  22   = F = (AE/L) sin ϕ 
in Figure 15.2b.

 F  2   =   AE ___ 
L

   (   
√ 

__
 2   __ 

2
  )  (  10L ____ 

AE
  )  +  (  AE ___ 

L
  )  (   

√ 
__

 2   __ 
2
  )  (−   30L ____ 

AE
  )  = −10 √ 

__
 2   kips

Member and Structure Stiffness Matrices
15.2

To permit the stiffness method (introduced in Section 15.1) to be programmed 
automatically from the input data (i.e., joint coordinates, member properties, 
joint loads, and so forth), we now introduce a slightly different procedure for 
generating the structure stiffness matrix K. In this modified procedure we 
generate the member stiffness matrix k of individual truss members and then 
combine these matrices to form the structure stiffness matrix K.

The member stiffness matrix for an axially loaded bar relates the axial 
forces at the ends of the member to the axial displacements at each end. The 
elements of the member stiffness matrix are initially expressed in terms of a 
local or member coordinate system whose x′ axis is collinear with that of the 
member’s longitudinal axis. Since the inclination of the longitudinal axes of 
individual bars usually varies, before we can combine the member stiffness 
matrices, we must transform their properties from the individual member co-
ordinate systems to that of a single global coordinate system for the structure. 
Although the orientation of the global coordinate system is arbitrary, typi-
cally we locate its origin at an exterior joint on the base of the structure. For 
a planar structure we position its x and y axes in the horizontal and vertical 
directions. 

In Section 15.3, we introduce a procedure to construct the member stiff-
ness matrix k′ in terms of a local coordinate system. When the local coor-
dinate system of all truss bars coincides with the global coordinate system, 
Section 15.4 presents a procedure to assemble the structure stiffness matrix 
from the member stiffness matrices. After the structure stiffness matrix is es-
tablished, Section 15.5 describes a procedure to determine the unknown nodal 
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15.3 ■ Construction of a Member Stiffness Matrix for an Individual Truss Bar  691

displacements, reactions, member deformations, and forces. Section 15.6 dis-
cusses the more general case of truss bars that are inclined with respect to 
the global coordinate system; for this case a procedure to establish the mem-
ber stiffness matrix k in terms of the global coordinate system is presented.  
Section 15.7 describes an alternate approach to construct k from k′using a 
transformation matrix.

Construction of a Member Stiffness  
Matrix for an Individual Truss Bar

15.3

To generate the member stiffness matrix of an axially loaded bar, we will 
consider member n with length L, area A, and modulus of elasticity E in 
Figure 15.3a. The nodes (or joints) of the member are denoted by the num-
bers 1 and 2. We also show a local coordinate system with origin at 1 and x′ 
and y′ axes superimposed on the bar. We assume that the positive direction 
for horizontal forces and displacements is in the positive direction of the x′ 
axis (i.e., directed to the right). As shown in Figure 15.3b, we first introduce 
a displacement Δ1 at joint 1, while joint 2 is assumed to be restrained by 
a temporary pin support. Expressing the end forces in terms of Δ1 using 
Equation 14.6 yields

 Q  11   =   AE ___ 
L

    Δ  1    and   Q  21   = −   AE ___ 
L

    Δ  1   (15.14)

The end forces produced by the displacement Δ1 are identified by two 
subscripts. The first subscript denotes the location of the joint at which the 
force acts, and the second subscript indicates the location of the displace-
ment. The minus sign for Q21 is required because it acts in the negative x′ 
direction. As we have seen in Section 15.1, the end forces Q11 and Q21 could 
also have been generated by introducing a unit displacement at joint 1 and 
multiplying the stiffness coefficients K11 = AE/L and K21 = −AE/L by the 
actual displacement Δ1.

Similarly, if joint 1 is restrained while joint 2 is displaced in the positive 
direction a distance Δ2, the end forces are

 Q  12   = −   AE ___ 
L

    Δ  2    and   Q  22   =   AE ___ 
L

    Δ  2   (15.15)

To evaluate the resultant forces Q1 and Q2 at each end of the member in 
terms of the end displacements Δ1 and Δ2 (Figure 15.3d), we add correspond-
ing terms of Equations 15.14 and 15.16, producing

 Q  1   =  Q  11   +  Q  12   =   AE ___ 
L

    ( Δ  1   −  Δ  2  ) 

 Q  2   =  Q  21   +  Q  22   =   AE ___ 
L

    (− Δ  1   +  Δ  2  )  
(15.16)

nyʹ

xʹ

(a)

1

1

1

1

2

2

2

2

L

Δ1

Q11

Q21

(b)

+
Q22

Q12

Δ2

(c)

=

Δ1

(d)

Q2

Q1

Δ2

Figure 15.3: Stiffness coefficients for an 
axially loaded bar: (a) bar showing local 
coordinate system with origin at node 1; 
(b) displacement introduced at node 1 with 
node 2 restrained; (c) displacement intro-
duced at node 2 with node 1 re strained; (d) 
end forces and displacements of the actual bar 
produced by superposition of (b) and (c).
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692  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

Equation 15.16 can be expressed in matrix notation as

 [ 
 Q  1     Q  2  

 ]  =  

⎡

 ⎢ 
⎣
  
  AE ___ 
L

  
  

−   AE ___ 
L

  
  

−   AE ___ 
L

  
  

  AE ___ 
L

  
  

⎤

 ⎥ 
⎦
  [ 

 Δ  1     Δ  2  
 ]  (15.17)

or Q = k′Δ (15.18)

where the member stiffness matrix in the local coordinate system is

k′ =  

⎡

 ⎢ 
⎣
  
     AE ___ 

L
  
  

−   AE ___ 
L

  
  

−   AE ___ 
L

  
  

  AE ___ 
L

  
  

⎤

 ⎥ 
⎦
  =   AE ___ 

L
   [    1  −1  −1     1 ]  (15.19)

and Δ is the displacement vector. The prime is added to k′ to indicate that the 
formulation is in terms of the member’s local coordinates x′ and y′. Since all 
elements AE/L in matrix k′ can be interpreted as the force associated with a 
unit axial displacement of one end of the member when the opposite end is 
restrained, they are stiffness coefficients and may be denoted as

k =   AE ___ 
L

   (15.20)

We also observe that the sum of the elements in each column of k′ equals 
zero. This condition follows because the coefficients in each column represent 
the forces produced by a unit displacement of one joint while the other joint 
is restrained. Since the bar is in equilibrium in the x′ direction, the forces must 
sum to zero. In addition, all coefficients along the main diagonal must be 
positive because these terms are associated with the force acting at that joint 
at which a positive displacement is introduced into the structure, and corre-
spondingly the force is in the same (positive) direction as the displacement. 

Note that the displacement matrix Δ in Equation 15.17 contains only 
displacements Δ1 and Δ2 along the axis of the member. End displacements in 
the y′ direction do not have to be included in the formulation because these 
transverse movements do not produce internal force in truss members based 
on small-deformation theory.

Assembly of the Structure Stiffness Matrix
15.4

If a structure consists of several bars and the local coordinate system of these 
bars coincides with the global coordinate system, then the stiffness matrix K 
of the structure can be generated by either of the two following methods:

1. Introducing displacements at each joint with all other joints restrained
2. Combining the stiffness matrices of the individual bars

We will illustrate the use of both methods by generating the structure 
stiffness matrix of the two-bar system shown in Figure 15.4a.
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15.4 ■ Assembly of the Structure Stiffness Matrix  693

Method 1. Superimposing Forces Produced  
by Nodal Displacements 

As shown in Figure 15.4b to d, we introduce displacements at each joint 
while all other joints are restrained and compute the joint forces using 
Equation 14.6 [i.e., Q = (AE/L)Δ = kΔ]. Displacements and forces are posi-
tive when directed to the right. Define k1 = A1E1/L1 and k2 = A2E2/L2.

Case 1. Joint 1 displaces Δ1; joints 2 and 3 are restrained (Figure 15.4b). 
Since bar 2 does not deform, no reaction develops at joint 3.

 Q  11   =  k  1   Δ  1     Q  21   = − k  1   Δ  1     Q  31   = 0 (15.21)

Case 2. Joint 2 displaces Δ2; joints 1 and 3 are restrained (Figure 15.4c). 

 Q  12   = − k  1   Δ  2     Q  22   =  ( k  1   +  k  2  )  Δ  2     Q  32   = − k  2   Δ  2   (15.22)

Case 3. Joint 3 displaces Δ3; joints 2 and 3 are restrained (Figure 15.4d). 

 Q  13   = 0   Q  23   = − k  2   Δ  3     Q  33   =  k  2   Δ  3   (15.23)

To express the resultant joint forces Q1, Q2, and Q3 in terms of nodal 
displacements, we sum the Q forces at each joint given by Equations 15.21, 
15.22, and 15.23.

 Q  1   =  Q  11   +  Q  12   +  Q  13   =  k  1   Δ  1   − k  1   Δ  2  

 Q  2   =  Q  21   +  Q  22   +  Q  23    =      − k  1   Δ  1   +  ( k  1   +  k  2  )  Δ  2   − k  2   Δ  3   (15.24)

 Q  3   =  Q  31   +  Q  32   +  Q  33   = − k  2   Δ  2      k  2   Δ  3  

(a)

(b)

L1

Q12

Q31Q11
Q21

Δ1

11 2 32

(c)

Q32
Q22

Δ2

Δ3
Q13

(d)

Q33
Q23

L2

A1, E1 A2, E2

Figure 15.4: Loading conditions used to gen-
erate the structure stiffness matrix: (a) prop-
erties of two-bar system; (b) node forces 
produced by a positive displacement Δ1 of 
joint 1 with nodes 2 and 3 restrained; (c) node 
forces produced by a positive displacement of 
node 2 with nodes 1 and 3 restrained; (d ) node 
forces produced by a positive displacement of 
node 3 with nodes 1 and 2 restrained.
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694  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

Expressing the three equations above in matrix notation yields 

 
[

 
 Q  1  

   Q  2    
 Q  3  

 
]

  =  
[

 
    k  1  

  
− k  1  

  
  0

   − k  1     k  1   +  k  2    − k  2     
 0

  
− k  2  

  
   k  2  

  
]

  
[

 
 Δ  1  

   Δ  2    
 Δ  3  

 
]

  (15.25)

or Q = KΔ (15.26)

where Q = column matrix of nodal forces
 Δ = column matrix of nodal displacements
 K = structure stiffness matrix

As we discussed previously, the coefficients in each column of the stiffness 
matrix of Equation 15.25 sum to zero because they constitute a set of forces in 
equilibrium. Since the matrix is symmetric (the Maxwell-Betti principle), the 
sum of the coefficients in each row must also equal zero. 

If the nodal forces in vector Q of Equation 15.26 are specified, it ap pears 
initially that we can determine the joint displacements by premultiplying both 
sides of Equation 15.26 by the inverse of the structure stiffness matrix K. How-
ever, the three equations represented by Equation 15.25 are not independent 
since row 2 is a linear combination of rows 1 and 3. To prove this, we can pro-
duce row 2 by adding rows 1 and 3 after they are multiplied by −1. Since only 
two independent equations are available to solve for three unknowns, the K 
matrix is singular and cannot be inverted. The fact that we are not able to solve 
the three equilibrium equations indicates that the structure is unstable (i.e., not 
in equilibrium). The instability occurs because no supports were specified for 
the structure (Figure 15.4a). As we will discuss shortly, if sufficient supports 
are provided to produce a stable structure, we can partition the matrix into 
submatrices that can be solved for the unknown nodal displacements. 

Method 2. Construction of the Structure Stiffness Matrix  
by Combining Member Stiffness Matrices 

The stiffness matrix of the structure in Figure 15.4 can also be generated by 
combining the member stiffness matrices of bars 1 and 2. Using Equation 15.19, 
we can write the member stiffness matrices of the two bars as 

k ′  1   =  [ 
   k1  

−k1  −k1
     k1

 ]      
2

  
1
   k ′  2   =   [ 

   k2  
−k2  −k2

     k2
  ]      

3

  
2
  (15.27)

Subscripts are added to the stiffness coefficients to identify the bar whose 
properties they represent. We also label the top of each column with a number 
that identifies the particular joint displacement associated with the elements in 
the column, and we number the rows to the right of each bracket to identify the 
nodal force associated with the elements in the row. 

We construct a global xy coordinate system at joint 1 such that this 
system coincides with the local x′y′ coordinate system of individual bars. 

21 32
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15.5 ■ Solution of the Direct Stiffness Method  695

Because the x′ axis of each bar coincides with the x axis in the global coordi-
nate system, so k1 = k ′ 1 and k2 = k′ 2. Since the elements in the first and second 
columns of each matrix in Equation 15.27 refer to different joints, adding 
these two matrices directly has no physical significance. To permit addition 
of the matrices, we expand them to the same order as that of the structure 
stiffness matrix (3 in this case for horizontal displacements at three joints) by 
adding an extra row and an extra column.

 k  1   =  
⎡

 ⎢ 
⎣
 
     k  1     

  1
  

  
 − k  1     

2
  

  
 0   
3
  
   − k  1        k  1    0  

 0

  

 0

  

0

 
⎤

 ⎥ 
⎦
     k  2   =   

[
 
0
  

0  
  

  0
   0  k2  −k2   

0
  

−k2   
  

   k2

  
]

   (15.28)

For example, the coefficients in matrix k1 (Equation 15.27) relate the forces 
at joints 1 and 2 to the displacement of the same joints. To eliminate in the 
expanded matrix (Equation 15.28) the effect of displacements at joint 3 on the 
forces at joints 1, 2, and 3, the elements in the third column of the expanded 
matrix must be set equal to zero because these terms will be multiplied by the 
displacement of joint 3. Similarly, since the original 2 × 2 k1 matrix does not 
influence the force at joint 3, the elements in the bottom row of the matrix must 
all be set equal to zero. Similar reasoning requires that we expand matrix k2 to 
a 3 × 3 matrix by adding zeros in the first row and column. Since the expanded 
matrices given by Equation 15.28 are of the same order, we can add their ele-
ments directly to produce the structure stiffness matrix K.

K =  k  1   +  k  2   =   
[

  
k1

  
−k1

  −k1         k1  
0 

  
 
         

 
  

  0
  +     k2      −k2  

   −k2 
  

   k2

  
⎤
 ⎥ 

⎦
    =   

⎡
 ⎢ 

⎣
  

k1

  
−k1

  
   0

   −k1       k1 + k2  −k2   
0  

  
−k2

  
   k2

  
⎤
 ⎥ 

⎦
    
1

  2  

3

    

(15.29)
The stiffness matrix given by Equation 15.29 is identical to that produced by 
method 1 (Equation 15.25).

It is not necessary in actual application to expand the individual member 
stiffness matrices to construct the structure stiffness matrix. More simply, we 
insert the stiffness coefficients of the member stiffness matrix into the appro-
priate rows and columns of the structure stiffness matrix. In Equa tion 15.29 
the individual member stiffness matrix is enclosed in dashed lines to show its 
position in the structure stiffness matrix.

  
1

  2  

3

  

21 3

2 21 3 21 3

Solution of the Direct Stiffness Method
15.5

Once the structure stiffness matrix K is assembled and the force- displacement 
relationship (Equation 15.26) established, we describe in this section how to 
evaluate the unknown joint displacement vector Δ and support reactions of 
a structure. As we discussed in Section 15.1, the first step in the stiffness 
anal ysis is to compute the unknown nodal displacements. This step consists 

  
1

  2  

3

  

  
1

  2  

3
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696  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

of solving a set of equilibrium equations (e.g., see Equations 15.1 and 15.2) 
in which the nodal displacements are the unknowns. The terms that make up 
these equilibrium equations are submatrices of the three matrices Q, K, and Δ 
of Equation 15.26. These submatrices can be established by partitioning the 
matrices in Equation 15.26 so that terms associated with the nodes that are 
free to displace are separated from terms that are associated with nodes re-
strained by the supports. This step requires that all rows associated with the 
degrees of freedom be shifted to the top of the matrix. (When a row is shifted 
upward, the corresponding column also needs to be shifted forward to the 
left in a similar manner.) If the matrix analysis is done by hand, we can ac-
complish this step by numbering the unrestrained joints before the restrained 
joints. The result of this reorganization and partitioning will permit us to ex-
press Equation 15.26 in terms of the following submatrices:

 [  
 Q  f    
 Q  s  

 ]  =  [ 
 K  11    

 K  12     K  21  
   K  22  

 ]  [   Δ  f    
Δs

 ]  (15.30)

where Qf = matrix containing values of load at joints free to displace
 Qs = matrix containing unknown support reactions
 Δf = matrix containing unknown joint displacements
 Δs = matrix containing support displacements

Multiplying the matrices in Equation 15.30 gives

 Q  f   =  K  11   Δ  f   +  K  12   Δ  s   (15.31)

 Q  s   =  K  21   Δ  f   +  K  22   Δ  s   (15.32)

If the supports do not move (i.e., Δs is a null matrix), the equations above 
reduce to

 Q  f   =  K  11   Δ  f   (15.33)

 Q  s   =  K  21   Δ  f   (15.34)

Since the elements in Qf and K11 are known, Equation 15.33 can be 
solved for Δf by premultiplying both sides of the equation by K −1

11, to give

 Δ  f   =  K  11  −1  Q  f   (15.35)

Substituting the value of Δf into Equation 15.34 gives the support reactions

 Q  s   =  K  21   K  11  −1  Q  f   (15.36)

In Example 15.1 we apply the stiffness method to the analysis of a simple 
truss. The method does not depend on the degree of indeterminacy of the 
structure and is applied in the same way to both determinate and indeterminate 
structures.
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15.5 ■ Solution of the Direct Stiffness Method  697

Determine the joint displacements and reactions for the structure in 
Figure 15.5 by partitioning the structure stiffness matrix. 

E X A M P L E  1 5 . 1

Solution
Number the joints, starting with those that are free to displace. The positive 
sense of displacements and forces at each joint are indicated by arrows. 
Since the bars carry only axial force, we only consider displacements in 
the horizontal direction.

Compute the stiffness k = AE/L for each member.

 k  1   =   
1.2 (10,000) 

 __________ 
120

   = 100 kips/in.

 k  2   =   
0.6 (20,000) 

 __________ 
150

   = 80 kips/in.

Evaluate member stiffness matrices, using Equation 15.19. Because the 
local coordinate system of each bar coincides with the global coordinate 
system, k′ = k.

 k  1   =  k  1   [    1  −1  −1     1 ]  =   [     100   
     1

     −100   
    2

     
−100

  
   100

 ]   
2
  

1
 

 k  2   =  k  2   [    1  −1  −1     1 ]  =   [     80   
   1

     −80   
    3

    
−80

  
   80

 ]   
3
  

1
 

Figure 15.5 

L1 = 120ʺ

A1 = 1.2 in.2
E1 = 10,000 kips/in.2

Δ1Δ2 Δ3
2

32

1
1

30 kips

L2 = 150ʺ

A2 = 0.6 in.2
E1 = 20,000 kips/in.2

[continues on next page]
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698  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

Set up the structure stiffness matrix K by combining terms of the member 
stiffness matrices k1 and k2.  Establish Equation 15.30 as follows:

 
[

  
 Q  1   = 30

   Q  2              
 Q  3            

 
]

  =  
[

 
100    +     

1
    80

  
− 100   

2

  
  

− 80   
3

  
     −100       100      0   

  −80    
  

       0
  

  80
  
]

  
[

 
 Δ  1         

   Δ  2   = 0  
 Δ  3   = 0

  
]

 

Partition the matrices as indicated by Equation 15.30 and solve for 
Δ1 using Equation 15.35. Since each submatrix contains one element, 
Equation 15.35 reduces to a simple algebraic equation. 

 Δ  f   =  K  11  −1  Q  f  

 Δ  1   =   1 ____ 
180

    (30)  =   1 __ 
6
   in. Ans.

Solve for the reactions, using Equation 15.36. 

 Q  s   =  K  21   K  11  −1  Q  f  

 [ 
 Q  2     Q  3  

 ]  =  [ −100    −80 ]  [  1 ____ 
180

  ]  [30]  =  [ −16.67  −13.33 ]  Ans.

where 
 
 Q  2   =   1 ____ 

180
    (−100) 30 = −16.67 kips

 Q  3   =   1 ____ 
180

    (−80) 30 = −13.33 kips

Therefore, the reactions at joints 2 and 3 are −16.67 and −13.33 kips, 
respectively. The minus signs indicate that the forces act to the left.

Example 15.1 continues . . .
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15.6 ■ Member Stiffness Matrix of an Inclined Truss Bar  699

Member Stiffness Matrix of an Inclined  
Truss Bar

15.6

To illustrate the construction of the structure stiffness matrix in Section 15.4, 
we analyzed a simple truss with horizontal bars. Since the orientation of both 
the member and the global coordinate systems for these bars is identical, k′ 
equals k and we are able to insert the 2 × 2 member stiffness matrices directly 
into the structure stiffness matrix. This method, however, cannot be applied 
to a truss with inclined bars. In this section, we develop the member stiffness 
matrix k for an inclined bar in terms of global coordinates so that the direct 
stiffness method can be extended to trusses with diagonal members.

In Figure 15.6a we show an inclined member ij. Joint i is denoted the 
near end and joint j the far end. The initial position of the unstressed mem-
ber is shown by a dashed line. The member’s local axis, x′, makes an angle 
ϕ with the x axis of the global coordinate system whose origin is located at 
joint i. We assign a positive direction to the bar by placing an arrow directed 
from joint i to joint j along the axis of the bar. By assigning a positive di-
rection to each bar, we will be able to account for the sign (plus or minus) 
of the sine and cosine functions that appear in the elements of the member 
stiffness matrix.

To generate the force-displacement relationships for an inclined bar in 
the global coordinate system, we introduce, in sequence, displacements in the 
x and y directions at each end of the member. These displacements are labeled 
with two subscripts. The first identifies the location of the joint where the dis-
placement occurs; the second denotes the direction of the displacement with 
respect to the global axes. 

The components of force at the ends of the bar and the magnitude of 
the joint displacement along the axis of the bar created by the respective 
displacements in Figure 15.6 are evaluated using Figure 15.2. Since the 
forces and deformations in Figure 15.2 are produced by unit displacements, 
they must be multiplied by the actual magnitude of the displacements in 
Figure 15.6. Displacements in Figure 15.6 are shown to an  exaggerated 
scale to show the geometric relationships clearly. Since the displacements 
are actually small, we can assume that the slope of the bar is not changed 
by the end displacements. Treating xi, yi, xj, and yj as the coordinates of 
joints i and j, respectively, sin ϕ and cos ϕ can be expressed in terms of the 
coordinates of nodes i and j as

sin ϕ =   
 y  j   −  y  i  

 _____ 
L

    cos ϕ =   
 x  j   −  x  i  

 _____ 
L

   (15.37)

where L =  √ 
_______________

    ( x  j   −  x  i  )    2  +   ( y  j   −  y  i  )    2    (15.38)
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700  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

Case 1. Introduce a horizontal displacement Δix at node i with the j end of 
the bar restrained, producing an axial force Fi in the bar (Figure 15.6a).

  F  i   =   AE ___ 
L

    δ  ix    where  δ  ix   =  (cos ϕ)  Δ  ix   (15.39)

y

x

Fjx

Fix

j

i

Fjy

Fiy

(a)
Δix

ix

y

x

Fjx

Fix

j

i

Fjy

Fiy

(b)

Δiy

iy

jx

y

x

Fjx

Fix

j

i

Fjy

Fiy
(c)

Δjx

Fix

Δjy

y

x

Fjx

j

i

Fjy

Fiy

(d)

jy

ϕ

ϕ

ϕ
δ

δ

δ

δ

ϕ

Figure 15.6: Forces induced by (a) horizontal displacement Δix; (b) vertical displacement 
Δiy; (c) horizontal displacement Δjx; (d ) vertical displacement Δjy.
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 F  ix   =  F  i   cos ϕ =   AE ___ 
L

    ( cos   2  ϕ)  Δ  ix  

 F  iy   =  F  i   sin ϕ =   AE ___ 
L

    (cos ϕ)  (sin ϕ)  Δ  ix   
(15.40)

 F  jx   = − F  ix    = −   AE ___ 
L

    ( cos   2  ϕ)  Δ  ix  

 F  jy   = − F  iy    = −   AE ___ 
L

    (cos ϕ)  (sin ϕ)  Δ  ix  

Case 2. Introduce a vertical displacement Δiy at node i with the j end of 
the bar restrained (Figure 15.6b).

 F  i   =   AE ___ 
L

    δ  iy    where  δ  iy   =  (sin ϕ)  Δ  iy   (15.41)

 F  ix   =   AE ___ 
L

    (sin ϕ)   (cos ϕ)  Δ  iy  

 F  iy   =   AE ___ 
L

    ( sin   2  ϕ)  Δ  iy   
(15.42)

 F  jx   = − F  ix   = −   AE ___ 
L

    (sin ϕ)   (cos ϕ)  Δ  iy  

 F  jy   = − F  iy   = −   AE ___ 
L

    ( sin   2  ϕ)  Δ  iy  

Case 3. Introduce a horizontal displacement Δjx at node j with the i end of 
the bar restrained (Figure 15.6c).

 δ  jx   =  (cos ϕ)  Δ  jx   (15.43)

Values of joint force are identical to those given by Equations 15.40 but 
with Δjx substituted for Δix and the signs reversed; that is, the forces at joint j 
act upward and to the right, and the reactions at joint i act downward and to 
the left. 

 F  ix   = −  AE ___ 
L

   ( cos   2  ϕ)  Δ  jx  

 F  iy   = −  AE ___ 
L

    (sin ϕ)  (cos ϕ)  Δ  jx  

 F  jx   =   AE ___ 
L

    ( cos   2  ϕ)  Δ  jx   (15.44)

 F  jy   =   AE ___ 
L

    (sin ϕ)  (cos ϕ)  Δ  jx  

15.6 ■ Member Stiffness Matrix of an Inclined Truss Bar  701
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702  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

Case 4. Introduce a vertical displacement Δjy at node j with the i end of 
the bar restrained (Figure 15.6d).

 δ  jy   =  (sin ϕ)  Δ  jy   (15.45)

Values of joint forces are identical to those given by Equations 15.42 but 
with Δjy substituted for Δiy and the signs reversed. 

 F  ix   = −   AE ___ 
L

    (sin ϕ)  (cos ϕ)  Δ  jy  

 F  iy   = −   AE ___ 
L

    ( sin   2  ϕ)  Δ  jy  

 F  jx   =   AE ___ 
L

    (sin ϕ)  (cos ϕ)  Δ  jy   
(15.46)

 F  jy   =   AE ___ 
L

    ( sin   2  ϕ)  Δ  jy  

If horizontal and vertical displacements occur at both joints i and j, the 
components of member force Q at each end can be evaluated by summing the 
forces given by Equations 15.40, 15.42, 15.44, and 15.46; that is,

 Q  ix   = Σ F  ix   =   AE ___ 
L

   [ ( cos   2  ϕ)  Δ  ix   +  (sin ϕ)  (cos ϕ)  Δ  iy   −  ( cos   2  ϕ)  Δ  jx   −  (sin ϕ)  (cos ϕ)  Δ  jy  ] 

 Q  iy   = Σ F  iy   =   AE ___ 
L

    [ (sin ϕ)  (cos ϕ)  Δ  ix   +  ( sin   2  ϕ)  Δ  iy   −  (sin ϕ)  (cos ϕ)  Δ  jx   −  ( sin   2  ϕ)  Δ  jy  ] 

 Q  jx   = Σ F  jx   =   AE ___ 
L

    [− ( cos   2  ϕ)  Δ  ix   −  (sin ϕ)  (cos ϕ)  Δ  iy   +  ( cos   2  ϕ)  Δ  jx   +  (sin ϕ)  (cos ϕ)  Δ  jy  ]  (15.47)

 Q  jy   = Σ F  jy   =   AE ___ 
L

   [− (sin ϕ)  (cos ϕ)  Δ  ix   −  ( sin   2  ϕ)  Δ  iy   +  (sin ϕ)  (cos ϕ)  Δ  jx   +  ( sin   2  ϕ)  Δ  jy  ] 

Letting cos ϕ = c and sin ϕ = s, we can write the foregoing set of equations 
in matrix notation as 

 

⎡

 ⎢ 

⎣

 

 Q  
ix
  

  
 Q  iy     Q  jx  

  

 Q  jy  

  

⎤

 ⎥ 

⎦

  =   AE ___ 
L

     

⎡

 ⎢ 

⎣

 

    c   2 

  

  sc

  

− c   2 

  

−sc

     sc      s   2   −sc  − s   2    
− c   2 

  
−sc

  
   c   2 

  
  sc

   

−sc

  

− s   2 

  

  sc

  

   s   2 

  

⎤

 ⎥ 

⎦

   

⎡

 ⎢ 
⎣

 

 Δ  
ix
  

  
 Δ  

iy
  
   Δ  jx  
  

 Δ  jy  

 

⎤

 ⎥ 
⎦

  (15.48)
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or Q = kΔ (15.49)

where Q =  vector of member end forces referenced to the global 
coordinate system 

 k = member stiffness matrix in terms of global coordinates 
 Δ =  matrix of joints displacements referenced to the global 

coordinate system

The axial displacement δi of joint i in the direction of the member’s 
longitudinal axis can be expressed in terms of the horizontal and vertical 
components of displacement at joint i by summing Equations 15.39 and 
15.41. Similarly, Equations 15.43 and 15.45 can be summed to establish the 
axial displacement at joint j.

 δ  i   =  δ  ix   +  δ  iy   =  (cos ϕ)  Δ  ix   +  (sin ϕ)  Δ  iy  

 (15.50)
 δ  j   =  δ  jx   +  δ  jy   =  (cos ϕ)  Δ  jx   +  (sin ϕ)  Δ  jy   

The expressions above also can be represented by the matrix equation 

 [ 
 δ  i     δ  j  

 ]  =  [  c  s  0  0  0  0  c  s  ]  

⎡

 ⎢ 

⎣

 

 Δ  ix  

  
 Δ  iy  

   Δ  jx  
  

 Δ  jy  

 

⎤

 ⎥ 

⎦

  (15.51)

or δ = TΔ (15.52)

where T is a transformation matrix that converts the components of member 
end displacements in global coordinates to the axial displacements in the 
direction of the member’s axis.

The axial force Fij in bar ij depends on the net axial deformation of the 
member, that is, the difference in the end displacements δj − δi. This force can 
be expressed in terms of the member’s stiffness AE/L as

 F  ij   =   AE ___ 
L

    ( δ  j   −  δ  i  )           
  (15.53)
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704  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

E X A M P L E  1 5 . 2 Determine the joint displacements and bar forces of the truss in 
Figure 15.7 by the direct stiffness method. Member properties: 
A1 = 2 in.2, A2 = 2.5 in. 2, and E = 30,000 kips/in.2.

Solution
Members and joints of the truss are identified by numbers in squares 
and circles, respectively. We arbitrarily select the origin of the global 
coordinate system at joint 1. Arrows are shown along the axis of each 
member to indicate the direction from the near to far joints. At each 
joint we establish the positive direction for the components of global 
displacements and forces with a pair of numbered arrows. The co-
ordinate in the x direction is assigned the lower number because the 
rows of the member stiffness matrix in Equation 15.48 are generated 
by introducing displacements in the x direction before those in the 
y direction. As we discussed in Section 15.4, we number the direc-
tions in sequence, starting with the joints that are free to displace. 
For example, in Figure 15.7, we begin at joint 3 with direction com-
ponents 1 and 2. After we number the displacement components at 
the unrestrained joints, we number the coordinates at the restrained 
joints. This sequence of numbering produces a structure stiffness ma-
trix that can be partitioned according to Equation 15.30 without shift-
ing the rows and columns. 

Construct member stiffness matrices (Equation 15.48). For member 1, 
joint 1 is the near joint and joint 3 is the far joint. Compute the sine and 
cosine of the slope angle with Equation 15.37.

20ʹ

30 kips
1

24

6

y

5

3

15ʹ
2

2

1 31
x

Figure 15.7 
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15.6 ■ Member Stiffness Matrix of an Inclined Truss Bar  705

cos ϕ =   
 x  j   −  x  i  

 ____ 
L

   =   20 − 0 _____ 
20

   = 1 and sin ϕ =   
 y  i   −  y  i   ____ 

L
   =   0 − 0 ____ 

20
   = 0

             AE ___ 
L

   =   
2 (30,000) 

 ________ 
20 (12) 

   = 250 kips/in.

 k  1   = 250   

⎡
 ⎢ 

⎣
  

1
  

0
  

−1   
  

0
   0  0  0  0   −1    0  1  0   

0

  

0

  

0

  

0

 

⎤
 ⎥ 

⎦
  

For member 2, joint 2 is the near joint and joint 3 is the far joint.

cos ϕ =   20 − 0 _____ 25   = 0.8
          

sin ϕ =   0 − 15 _____ 25   = −0.6 

  AE ___ L   =   2.5 (30,000)  __________ 25 (12)    = 250 kips/in.

 k  2   = 250   

⎡
 ⎢ 

⎣
 
   0.64

  
−0.48

  
−0.64

  
   0.48

    −0.48    0.36     0.48  −0.36    −0.64    0.48     0.64  −0.48    

   0.48

  

−0.36 

  

−0.48

  

   0.36

 

⎤
 ⎥ 

⎦
  

Set up the matrices for the force-displacement relationship of 
Equation 15.30 (i.e., Q = KΔ). The structure stiffness matrix is assembled 
by inserting the elements of the member stiffness matrices k1 and k2 into 
the appropriate rows and columns. 

 

⎡

 ⎢ 

⎣

  

 Q  1   = 0      

  

 Q  2   = −30 

  
 Q  3                 Q  4                     

  

 Q  5              

  

 Q  6               

 

⎤

 ⎥ 

⎦

  = 250 

   1.64 −0.48 −1 0 0.64 0.48
−0.48 0.36 0 0 0.48 −0.36
−1 0 1 0 0 0

0 0 0 0 0 0
−0.64 0.48 0 0 0.64 −0.48
   0.48 −0.36 0 0 −0.48 0.36

1 2 3 4 5 6

  

⎡

 ⎢ 
⎣

  

 Δ  1        

  

 Δ  2         

  
 Δ  3   = 0

   Δ  4   = 0  

 Δ  5   = 0

  

 Δ  6   = 0

  

⎤

 ⎥ 
⎦

 

21 5 6

[continues on next page]

21 3 4
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706  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

Partition the matrices above as indicated in Equation 15.30, and solve 
for the unknown displacements Δ1 and Δ2 by using Equation 15.33. 

 Q  f    =  K  11   Δ  f  

 [      0  −30  ]  = 250 [    1.64  −0.48   −0.48     0.36 ]  [ 
 Δ  1     Δ  2  

 ] 

Solving for the displacements gives 

 Δ  f   =  [ 
 Δ  1     Δ  2  

 ]  =  [  −0.16    −0.547 ] 

Substitute the values of Δ1 and Δ2 into Equation 15.34 and solve for 
the support reactions Qs.

 Q  s   =  K  21   Δ  f  

 

⎡

 ⎢ 

⎣

  

 Q  3  

  
 Q  4     Q  5  

  

 Q  6  

  

⎤

 ⎥ 

⎦

  = 250  

⎡
 ⎢ 

⎣
  
−1     

  
0     

      0       0        −0.64  0.48   

   0.48

  

−0.36   

 

⎤
 ⎥ 

⎦
     [ −0.16    −0.547 ]  =  

⎡
 ⎢ 

⎣
  
 40

     0  −40   

  30

  

⎤
 ⎥ 

⎦
 

A minus sign indicates a force or displacement is opposite in sense to 
the direction indicated by the direction arrows at the joints. 

Compute member end displacements δ in terms of member coordi-
nates with Equation 15.51. For bar 1, i = joint 1 and j = joint 3, cos ϕ = 1, 
and sin ϕ = 0. 

  [ 
 δ  1     δ  3  

 ]  =  [ 1  0  0  0  0  0  1  0 ]  

⎡

 ⎢ 

⎣

  

  Δ  3   = 0         

  
 Δ  4   = 0         

   Δ  1   = −0.16   

  Δ  2   = −0.547

 

⎤

 ⎥ 

⎦

  =  [  0    −0.16 ]  Ans.

Substituting these values of δ into Equation 15.53, we compute the bar 
force in member 1 as 

 F  13   = 250 [ 0  −0.16 ]  [  −1     1 ]  = −40 kips  (compression)  Ans.

For bar 2, i = joint 2 and j = joint 3, cos ϕ = 0.8, and sin ϕ = 0.6.

 [ 
 δ  2     δ  3  

 ]  =  [ 0.8  −0.6  0     0    0     0   0.8  −0.6 ]  

⎡

 ⎢ 

⎣

  

 Δ  5   = 0        

  
 Δ  6   = 0        

   Δ  1   = −0.16  

  Δ  2    = −0.547

 

⎤

 ⎥ 

⎦

  =  [ 0       0.20 ] 

Substituting into Equation 15.53 yields 

 F  23   = 250 [0 0.20] [  −1     1 ]  = 50 kips  (tension)  Ans.

Example 15.2 continues . . .
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E X A M P L E  1 5 . 3Analyze the truss in Figure 15.8 by the direct stiffness method. Construct 
the structure stiffness matrix without considering if joints are restrained or 
unrestrained against displacement. Then, rearrange the terms and partition 
the matrix so that the unknown joint displacements Δf can be determined 
by Equation 15.30. Use k1 = k2 = AE/L = 250 kips/in. and k3 = 2AE/L = 
500 kips/in. 

15ʹ

40 kips
3

42

6

y

x

5

1

20ʹ 3

3

1 2

2

1

Figure 15.8: Truss with origin of global coordinate 
system at joint 1.

Solution
Number the joints arbitrarily as shown in Figure 15.8. Arrows are shown 
along the axis of each truss bar to indicate the direction from the near end 
to the far end of the member. We then establish, for each joint sequen-
tially, the positive direction of the components of global displacements 
and forces with a pair of numbered arrows without considering if the 
joint is restrained from movement. Superimpose on the truss a global 
coordinate system with origin at joint 1. Form the member stiffness ma-
trices using Equation 15.48. For bar 1, i = joint 1 and j = joint 2. Using 
Equation 15.37,

cos ϕ =   
 x  j   −  x  i   ____ L   =   15 − 0 _____ 15   = 1

15.6 ■ Member Stiffness Matrix of an Inclined Truss Bar  707

[continues on next page]
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708  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

sin ϕ =   
 y  j   −  y  i   ____ L   =   0 − 0 ____ 15   = 0

 k  1   = 250   

⎡
 ⎢ 

⎣
  

1
  

0
  

−1  
  

0
   0  0  0  0   −1     0  1  0   

0

  

0

  

0

  

0

 

⎤
 ⎥ 

⎦
  

For bar 2, i = joint 1 and j = joint 3.

cos ϕ =   0 − 0 ____ 20   = 0  sin ϕ =   20 − 0 _____ 20   = 1

 k  2   = 250   

⎡
 ⎢ 

⎣
 
0
  

0
  

0
  

   0
   0  1  0  −1   0  0  0     0   

0

  

−1   

  

0

  

   1

 

⎤
 ⎥ 

⎦
   

For bar 3, i = joint 3 and j = joint 2.

cos ϕ =   15 − 0 _____ 
25

   = 0.6  sin ϕ =   0 − 20 _____ 
25

   = −0.8

 k  3   = 500   

⎡
 ⎢ 

⎣
  

0.36
  

−0.48
  

−0.36
  

   0.48
    −0.48       0.64    0.48  −0.64    −0.36       0.48    0.36  −0.48    

0.48

  

−0.64 

  

−0.48

  

   0.64

 

⎤
 ⎥ 

⎦
   

Add k1, k2, and k3 by inserting the elements of the member stiffness 
matrices into the structure stiffness matrix at the appropriate locations. 
Multiply the elements of k3 by 2 so that all matrices are multiplied by the 
same scalar AE/L, that is 250. 

K = 250   

⎡

 ⎢ 

⎣

  

  1

  

   0

  

−1        

  

0  

  

0  

  

0     

     

  0

  

   1

  

  0       

  

0  

  

0  

  

−1        

     −1      0  1.72  −0.96  −0.72  0.96       0     0  −0.96        1.28     0.96  −1.28        

  0

  

   0

  

−0.72   

  

   0.96

  

  0.72

  

−0.96   

     

  0

  

−1

  

0.96

  

−1.28

  

−0.96

  

2.28

  

⎤

 ⎥ 

⎦

  

21 3 4
1

2

3

4

1

2

5

6

21 3 4

65 3 4
5

6

3

4

1
2

3

4
5

6

Example 15.3 continues . . .

21 3 4 5 6
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Establish the force-displacement matrices of Equation 15.30 by shift-
ing the rows and columns of the structure stiffness matrix so that elements 
associated with the joints that displace (i.e., direction components 3, 4, and 
6) are located in the upper left corner. This can be achieved by first shifting 
the third row to the top and then shifting the third column to the first col-
umn. The procedure is then repeated for the direction components 4 and 6.

 

⎡

 ⎢ 

⎣

  

 Q  3   = 0      

  

 Q  4   = −40 

  
 Q  6   = 0      

   Q  1               
  

 Q  2               

  

 Q  5               

 

⎤

 ⎥ 

⎦

  = 250  

1.72 −0.96 0.96 −1 0 −0.72
−0.96 1.28 −1.28 0 0 0.96

0.96 −1.28 2.28 0 −1 −0.96
 −1       0     0 1 0 0
   0       0  −1 0 1 0
−0.72 0.96 −0.96 0 0 0.72

3 4 6 1 2 5

  

⎡

 ⎢ 
⎣

  

 Δ  3        

  

 Δ  4         

  
 Δ  6            Δ  1   = 0  

 Δ  2   = 0

  

 Δ  5   = 0

  

⎤

 ⎥ 
⎦

 

Partition the matrix and solve for the unknown joint displacements, 
using Equation 15.33. 

 Q  f   =  K  11   Δ  f  

  
[

 
     0

  −40  
     0

 
]

   = 250 
[

  
1.72

  
−0.96

  
   0.96

   −0.96        1.28  −1.28   
0.96

  
−1.28

  
   2.28

 
]

  
[

 
 Δ  3  

   Δ  4    
 Δ  6  

 
]

 

Solving the set of equations above gives 

 
[

 
 Δ  3  

   Δ  4    
 Δ  6  

 
]

  =  
[

 
−0.12  

  −0.375  
−0.16  

 
]

  Ans.

Solve for the support reactions, using Equation 15.34.

 Q  s   =  K  21   Δ  f   (15.34)

 
[

  
 Q  1  

   Q  2    
 Q  5  

 
]

  = 250 
[

  
−1    

  
0     

  
0   

   0    0       −1        
−0.72

  
0.96

  
−0.96

 
]

  
[

  
−0.12 

  −0.375  
−0.16  

 
]

  =  
[

  
30

  40  
−30  

 
]

  Ans.

1

2

5

3

4

6
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710  Chapter 15 ■ Matrix Analysis of Trusses by the Direct Stiffness Method

E X A M P L E  1 5 . 4 If the horizontal displacement of joint 2 of the truss in Example 15.3 is 
re strained by the addition of a roller (Figure 15.9), determine the re actions. 

Solution
The structure stiffness matrix of the truss was established in Example 15.3. 
Although the addition of an extra support creates an indeterminate struc-
ture, the solution is carried out in the same manner. The rows and columns 
associated with the degrees of freedom that are free to displace are shifted 
to the upper left corner of the structure stiffness matrix. This operation 
produces the following force-displacement matrices: 

  

⎡

 ⎢ 

⎣

  

 Q  4   = −40 

  

 Q  6   = 0      

  
 Q  1                 Q  2              

  

 Q  3              

  

 Q  5                     

   

⎤

 ⎥ 

⎦

    = 250 

1.28 −0.28 0 0 −0.96 0.96
−1.28 2.28 0 0 0.96 −0.96
    0      0 1 0 −1   0
     0   −1 0 1    0   0
−0.96     0.96  −1 0 1.72 −0.72

0.96 −0.96 0 0 −0.72 0.72

4 6 1 2 3 5

  

⎡

 ⎢ 

⎣

  

 Δ  4        

  

 Δ  6         

  
 Δ  1   = 0

   Δ  2   = 0  

 Δ  3   = 0

  

 Δ  5   = 0

  

⎤

 ⎥ 

⎦

 

Partition the matrix above, and solve for the unknown joint displace-
ments, using Equation 15.33.

 Q  f   =  K  11   Δ  f  

 [  −40       0 ]  = 250  [    1.28  −1.28   −1.28     2.28 ]  [ 
 Δ  4     Δ  6  

 ] 

Solution of the set of equations above gives 

 [ 
 Δ  4     Δ  6  

 ]  =  [ −0.285  −0.160 ] 

Solve for the reactions using Equation 15.34.

 Q  s   =  K  21   Δ  f  

   

⎡

 ⎢ 
⎣

 

Q1

  
Q2  Q3

  

Q5

 

⎤

 ⎥ 
⎦

   = 250   

⎡
 ⎢ 

⎣
  

0  
  

0  
  0    −1        −0.96     0.96   

   0.96

  

−0.96

  

⎤
 ⎥ 

⎦
   [ −0.285   −0.160  ]  =  

⎡
 ⎢ 

⎣
 
     0

     40     30  

−30

  

⎤
 ⎥ 

⎦
  Ans.

Results are shown in Figure 15.9b. Bar forces can be computed using 
Equations 15.52 and 15.53. 

2

3

5

4

6

1

(a)

40 kips

3

4
2

6

y

x

5

1

3

3

1
2

2

1

(b)

40 kips
40 kips

0 kip

30 kips

30 kips

Figure 15.9: (a) Details of truss; (b) results 
of analysis.
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Coordinate Transformation of a Member  
Stiffness Matrix

15.7

15.7 ■ Coordinate Transformation of a Member Stiffness Matrix  711

In Section 15.3 we derived the 2 × 2 stiffness member matrix k′ of a truss bar 
with respect to a local coordinate system (Equation 15.19). In the analysis of 
a truss composed of members inclined at various angles of inclination, it was 
shown in Section 15.6 that the assembly of the structure stiffness matrix K 
requires that we express all member stiffness matrices in terms of a common 
global coordinate system. For an individual truss bar whose axis forms an 
angle ϕ with the global x axis (Figure 15.10), the 4 × 4 member stiffness ma-
trix k in global coordinates is given by the middle matrix in Equation 15.48. 
Although we derived this matrix from basic principles in Section 15.6, it is 
more commonly generated from the member stiffness matrix k′ formulated 
in local coordinates, using a transformation matrix T constructed from the 
geometric relationship between the local and global coordinate systems. The 
equation used to perform the coordinate transformation is 

k =  T   T k′ T (15.54)

where k =  4 × 4 member stiffness matrix referenced to global coordinates 
 k′ =  2 × 2 member stiffness matrix referenced to local coordinate 

system
 T =  transformation matrix, that is, matrix that converts 4 × 1 dis-

placement vector Δ in global coordinates to the 2 × 1 axial 
displacement vector δ in the direction of bar’s longitudinal axis

The matrix T was previously derived in Section 15.6 and appears in 
Equation 15.51.

Show that the member stiffness matrix k in global coordinates that ap-
pears in Equation 15.48 can be generated from the member stiffness ma-
trix k′ in local coordinates (Equation 15.19) by using Equation 15.54. 

Solution

E X A M P L E  1 5 . 5

y

yʹ

x

xʹ

L

ϕ

Figure 15.10: Global coordinates shown by 
xy system; member or local coordinates shown 
by x′y′ system.

k =  T   T k′ T 

=  

⎡
 ⎢ 

⎣
  
c
  

0
  s  0  0  c  

0

  

s

  

⎤
 ⎥ 

⎦
    AE ___ 

L
     [    1  −1  −1     1 ]     [  c  s  0  0  0  0  c  s  ]      =  

⎡

 ⎢ 

⎣

 

     c   2 

  

   sc

  

− c   2 

  

−sc

      sc      s   2   −sc  − s   2    
− c   2 

  
−sc

  
    c   2 

  
  sc

   

−sc

  

− s   2 

  

  sc

  

   s  2  

  

⎤

 ⎥ 

⎦

  Ans.

As we observe, the product of this operation produces the member stiff-
ness matrix that appears initially in Equation 15.48. 
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Summary

 • Structural analysis computer software is generally programmed 
using the direct stiffness matrix. In matrix form, the equilibrium 
equation is

KΔ = F

 where K is the structure stiffness matrix, F is a column vector of forces 
acting on the joints of a truss, and Δ is a column vector of unknown joint 
displacements.

 • The element kij, which is located in the ith row and jth column of the K 
matrix, is called a stiffness coefficient. Coefficient kij represents the joint 
force in the direction (or degree of freedom) of i due to a unit displace-
ment in the direction of j. With this definition, the K matrix can be 
constructed by basic mechanics. For computer applications, however, it 
is more convenient to assemble the structure stiffness matrix from the 
member stiffness matrices.

 • A local x′-y′ coordinate system can be constructed for each truss member 
(Figure 15.3). With one axial deformation at each joint in the longitudinal 
(x′) direction, a 2 × 2 member stiffness matrix k′ in local coordinates 
is presented in Equation 15.19. If the structure does not have inclined 
members and if the local coordinates of the members coincide with the 
global (x-y) coordinates of the truss, Section 15.4 illustrates a procedure 
to construct the structure stiffness matrix by combining member stiffness 
matrices (Equation 15.29).

 • The equilibrium equation needs to be partitioned to separate the 
degrees of freedom that are allowed to move from those that can-
not move (i.e., those restrained by supports); the joint forces cor-
responding to the degrees of freedom that cannot move are the 
support reactions. Once the equilibrium equation is partitioned as in 
Equation 15.30, two equations result. The first one, Equation 15.33, 
is used to calculate the unknown joint displacements, Δf. Once Δf 
is determined, the support reactions, Qs, can be determined using 
Equation 15.34.

 • When inclined members exist in a truss, it is more useful to express 
the member stiffness matrix using a global coordinate system. The 
general form of such a 4 × 4 member stiffness matrix, k, is presented 
in Equation 15.48. The matrix k can be constructed from the basic 
mechanics described in Section 15.6. Alternatively, k can be ob-
tained from k′ using the coordinate transformation matrix described 
in Section 15.7.

 • Once the unknown joint displacements are computed from the equi-
librium equation, axial deformations at both ends of a member can be 
determined from Equation 15.52. With this information, the axial force 
of the member is computed using Equation 15.53.
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PROBLEMS

■ Problems  713

P15.1. Using the stiffness method, write and solve the 
equations of equilibrium required to determine the  
horizontal and vertical components of deflection at 
joint 1  in Figure P15.1. For all bars E = 200 GPa and  
A = 800 mm2.

5 m 3 m

4 m

12

80 kN

3
41

3

2

P15.1 

60 kips

12ʹ 12ʹ

16ʹ

30°

2 1

3 4

1

2 3

P15.2 

20ʹ

15ʹ
2

36 kips

12

3

1

3

P15.3 

Q2 = 48 kips

1

Q4

Q6

Q5

Q2

6

4

3

2

5

Q3 = 60 kips

12ʹ

16ʹ 9ʹ

2

1

3

1 2

3

P15.4 

P15.2. Using the stiffness method, determine the horizon-
tal and vertical components of displacement of joint 1 in 
Figure P15.2. Also compute all bar forces. For all bars, L 
= 20 ft, E = 30,000 kips/in.2, and A = 3 in.2.

P15.3. Form the structure stiffness matrix for the truss 
in Figure P15.3. Partition the matrix as indicated by 
Equation 15.30. Compute all joint displacements and re-
actions using Equations 15.34 and 15.35. For all bars, 
A = 2 in.2 and E = 30,000 kips/in.2.

P15.4. Form the structure stiffness matrix for the truss in 
Figure P15.4. Use the partitioned matrix to compute the 
displacement of all joints and reactions. Also compute 
the bar forces. Area of bars 1 and 2 = 2.4 in.2, area of bar 
3 = 2 in.2, and E = 30,000 kips/in.2.
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16ʹ

40 kips

12ʹ

1

4

3

2

1 3

2

4

5

6

P15.5 

4 m

80 kN

3 m

3 m

4

3

1 2

1

2

3

5 m

P15.6 

P15.5. Determine all joint displacements, reactions, and 
bar forces for the truss in Figure P15.5. AE is constant for 
all bars. A = 2 in.2, E = 30,000 kips/in.2.

P15.6. Determine all joint displacements, reactions, and 
bar forces for the truss in Figure P15.6. For all bars, 
A = 1500 mm2 and E = 200 GPa.
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Collapse of Hartford Civic Center Arena Roof Truss  
in Connecticut

Failure of the roof supported by the space truss shown in the photo at the beginning 
of Chapter 15 reminds us that the results of a computer analysis are no better than the 
information supplied by the engineer (see Section 1.7 for details). Although engineers nowa-
days have access to powerful computer programs that can analyze very complex structure, 
they must still exercise great care in modeling the structure and selecting the proper loads. 

© Bettmann/Getty Images
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16

In Chapter 15 we discussed the analysis of trusses using the direct stiffness 
method. In this chapter we extend the method to structures in which loads 
may be applied to joints as well as to members between joints, and induce 
both axial forces and shears and moments. Whereas in the case of trusses 
we had to consider only joint displacements as unknowns in setting up the 
equilibrium equations, for frames we must add joint rotations. Consequently, 
a total of three equations of equilibrium, two for forces and one for moment, 
can be written for each joint in a plane frame.

Even though the analysis of a plane frame using the direct stiffness 
method involves three displacement components per joint (θ, Δx, Δy), we can 
often reduce the number of equations to be solved by neglecting the change 
in length of the members. In typical beams or frames, this simplification in-
troduces little error in the results. 

In the analysis of any structure using the stiffness method, the value of any 
quantity (e.g., shear, moment, or displacement) is obtained from the sum of 

C H A P T E R

Matrix Analysis of Beams 
and Frames by the 
Direct Stiffness Method
Chapter Objectives

 ● Extend the direct stiffness method learned in Chapter 15 for trusses to indeterminate beams and frames.

 ● Learn how to establish the structure stiffness matrix, which can be constructed by either basic  
mechanics or, more conveniently, individual member stiffness matrices.

 ● Construct member stiffness matrix as a 2 × 2, 4 × 4, or 6 × 6 matrix, depending on whether joint 
translation is allowed and whether axial deformation of the member is considered.

 ● Learn how to convert a member stiffness matrix from local to global coordinate system by using the 
concept of coordinate transformation.

Introduction
16.1
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718  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

two parts. The first part is obtained from the analysis of a restrained structure 
in which all the joints are restrained against movement. The moments induced 
at the ends of each member are fixed-end moments. This procedure is similar 
to that used in the moment distribution method in Chapter 11. After the net 
restraining forces are computed and the signs reversed at each joint, these re-
straining forces are applied to the original structure in the second part of the 
analysis to determine the effect induced by joint displacements. 

The superposition of forces and displacements from two parts can be ex-
plained using as an example the frame in Figure 16.1a. This frame is composed 
of two members connected by a rigid joint at B. Under the loading shown, the 
structure will deform and develop shears, moments, and axial loads in both 
members. Because of the changes in length induced by the axial forces, joint 
B will experience, in addition to a rotation θB, small displacements in the x 

A

B

ΔD = ΔD + ΔDʹ ʺ

CDB

(a)

P

MD = MD + MDʹ ʺ

MCB = MCB + MCBʹ ʺ

MBC + MBCʹ ʺ

MBA = MBAʺ

MAB = MABʺ

BM

ΔD́

(b)

clamp moment in
clamp with

reversed
direction

=

= +

+

P

MD́

MCBʹMBCʹ

A

B

M

ΔD̋

ʺ
CDB

(c)

MCBʺ

MBC̋
MD̋

MBA̋

MAB̋

� �

Figure 16.1: Analysis by the stiffness method: (a) deflected shape and moment diagrams 
(bottom of figure) produced by the vertical load at D; (b) loads applied to the restrained 
structure; imaginary clamp at B prevents rotation, producing two fixed-end beams;  
(c) deflected shape and moment diagrams produced by a moment opposite to that applied 
by the clamp at B.
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16.2 ■ Structure Stiffness Matrix  719

and y directions. Since these displacements are small and do not appreciably 
affect the member forces, we neglect them. With this simplification we can 
analyze the frame as having only one degree of kinematic indeterminacy (i.e., 
the rotation of joint B).

In the first part of the analysis, which we designate as the restrained 
condition, we introduce a rotational restraint (an imaginary clamp) at joint B 
(see Figure 16.lb). The addition of the clamp transforms the structure into 
two fixed-end beams. The analysis of these beams can be readily carried out 
using established fixed-end moment equations (e.g., Appendix Figure A.4). 
The deflected shape and the corresponding moment diagrams (directly under 
the sketch of the frame) are shown in Figure 16.lb. Forces and displacements 
associated with this case are superscripted with a prime.

Since the counterclockwise moment M applied by the clamp at B does 
not exist in the original structure, we must eliminate its effect. We do this in 
the second part of the analysis by solving for the rotation θB of joint B pro-
duced by an applied moment that is equal in magnitude but opposite in sense 
to the moment applied by the clamp. The moments and displacements in  
the members for the second part of analysis are superscripted with a double 
prime, as shown in Figure 16.1c. The final results, shown in Figure 16.1a, 
follow by direct superposition of the cases in Figure 16.lb and c.

We note that not only are the final moments obtained by adding the val-
ues in the restrained case to those produced by the joint rotation θB, but also 
any other force or displacement can be obtained in the same manner. For 
example, the deflection directly under the load ΔD equals the sum of the cor-
responding deflections at D in Figure 16.1b and c, that is, 

 Δ  D   = Δ ′  D   + Δ ̋  D  

Structure Stiffness Matrix
16.2

In the analysis of a structure using the direct stiffness method, we start by intro-
ducing sufficient restraints (i.e., clamps) to prevent movement of all unrestrained 
joints. We then calculate the forces in the restraints as the sum of fixed-end 
forces for the members meeting at a joint. The internal forces at other locations 
of interest along the elements are also determined for the restrained condition.

In the next step of the analysis we determine values of joint displace-
ments for which the restraining forces vanish. This is done by first applying 
the joint restraining forces, but with the sign reversed, and then solving a set 
of equilibrium equations that relate forces and displacements at the joints. In 
matrix form we have 

  K𝚫 = F (16.1)

where F is the column matrix or vector of forces (including moments) in the 
fictitious restraints but with the sign reversed, 𝚫 is the column vector of joint dis-
placements selected as degrees of freedom, and K is the structure stiffness matrix.
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720  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

The term degree of freedom (DOF ) refers to the independent joint displace-
ment components that are used in the solution of a particular problem by the 
direct stiffness method. The number of degrees of freedom may equal the number 
of all possible joint displacement components (e.g., three times the number of free 
joints in planar frames) or may be smaller if simplifying assumptions (such as ne-
glecting axial deformations of members) are introduced. In all cases, the number 
of degrees of freedom and the degree of kinematic indeterminacy are identical. 

Once the joint displacements Δ are calculated, the member actions (i.e., 
the moments, shears, and axial loads produced by these displacements) can 
be readily calculated. The final solution follows by adding these results to 
those from the restrained case. 

The individual elements of the structure stiffness matrix K can be computed 
by introducing successively unit displacements that correspond to one of the de-
grees of freedom while all other degrees of freedom are restrained. The external 
forces at the location of the degrees of freedom required to satisfy equilibrium of 
the deformed configuration are the elements of the matrix K. More explicitly, a 
typical element kij of the structure stiffness matrix K is defined as follows: kij = 
force at degree of freedom i due to a unit displacement of degree of freedom j; 
when degree of freedom j is given a unit displacement, all others are restrained. 

The 2 × 2 Rotational Stiffness Matrix for 
a Flexural Member

16.3

In this section we derive the member stiffness matrix for an individual flexural 
element using only joint rotations as degrees of freedom. The 2 × 2 matrix 
that relates moments and rotations at the ends of the member is important 
because it can be used directly in the solution of many practical problems, 
such as continuous beams and braced frames where joint translations are pre-
vented. Furthermore, it is a basic item in the derivation of the more general 
4 × 4 member stiffness matrix to be presented in Section 16.4. 

Figure 16.2 shows a beam of length L with end moments Mi and Mj. As 
a sign convention the end rotations θi and θj are positive when clockwise and 

i

j

L
i

j

EI = constant

chord

Mi

Mj

�

�

α

Figure 16.2: End rotations produced by member 
end moments.
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16.3 ■ The 2 × 2 Rotational Stiffness Matrix for a Flexural Member  721

negative when counterclockwise. Similarly, clockwise end moments are also 
positive, and counterclockwise moments are negative. To highlight the fact 
that the derivation to follow is independent of the member orientation, the 
axis of the element is drawn with an arbitrary inclination α.

In matrix notation, the relationship between the end moments and the 
resulting end rotations can be written as 

   [ 
Mi  Mj

 ]  =   ̄  k   [ 
θi  θj

 ]  (16.2)

where    ̄  k   is the 2 × 2 member rotational stiffness matrix. 
To determine the elements of this matrix, we use the slope-deflection 

equation to relate end moments and rotations (Equations 10.14 and 10.15). 
The sign convention and the notation in this formulation are identical to 
those used in the original derivation of the slope-deflection equation in 
Chapter 10. Since no loads are applied along the member’s axis and no chord 
rotation 𝜓 occurs (both 𝜓 and the FEM equal zero), the end moments can be 
expressed as

 M  i   =   2EI ___ L    (2 θ  i   +  θ  j  )  (16.3)

and   M  j   =   2EI ___ L    ( θ  i   + 2 θ  j  )  (16.4)

Equations 16.3 and 16.4 can be written in matrix notation as 

 [ 
Mi  Mj

 ]  =   2EI ___ L    [ 2  1  1  2 ]   [ 
θi  θj

 ]  (16.5)

By comparing Equations 16.2 and 16.5 it follows that the member rotational 
stiffness matrix    ̄  k   is 

   ̄  k   =   2EI ___ L    [ 2  1  1  2 ]  (16.6)

We will now illustrate the use of the preceding equations by solving a 
number of examples. To analyze a structure, it is necessary to identify the de-
gree of freedom first. After the degree of freedom has been identified, the so-
lution process can be conveniently broken down into the following five steps: 

1. Analyze the restrained structure and calculate the clamping forces at  
the joints. 

2. Assemble the structure stiffness matrix. 
3. Apply the joint clamping forces but with the sign reversed to the 

original structure, and then calculate the unknown joint displacements 
using Equation 16.1.

4. Evaluate the effects of joint displacements (e.g., deflections, moments, 
shears).

5. Sum the results of steps 1 and 4 to obtain the final solution.
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722  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

E X A M P L E  1 6 . 1 Using the direct stiffness method, analyze the frame shown in Figure 16.3a. 
The change in length of the members may be neglected. The frame con-
sists of two members of constant flexural rigidity EI connected by a rigid 
joint at B. Member BC supports a concentrated load P acting downward 
at midspan. Member AB carries a uniform load w acting to the right. The 
magnitude of w (in units of load per unit length) is equal to 3P/L.

Solution
With axial deformations neglected, the degree of kinematic indeterminacy 
equals 1 (this structure is discussed in Section 16.1). Figure 16.3b illus-
trates the positive direction (clockwise) selected for the rotational degree 
of freedom at joint B.

Figure 16.3: (a) Details of frame; (b) curved arrow indicates positive sense of joint  
rotation at B; (c) fixed-end moments in restrained structure produced by applied loads 
(loads omitted from sketch for clarity); the clamp at B applies mo ment M1 to the structure 
(see detail in lower right corner of figure); (d ) moment diagrams for re strained structure  
(continues on page 724).
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L
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L
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B C
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Step 1: Analysis of the Restrained Structure  With the rotation at 
joint B restrained by a temporary clamp, the structure is transformed into 
two fixed-end beams (Figure 16.3c). The fixed-end moments (Appendix 
Figure A.4d ) for member AB are

 M ′  AB   = −   w L   2  ____ 12   = −   3P __ L   (   L   2  __ 12  )  = −   PL ___ 4   (16.7)

 M ′  BA   = −M ′  AB   =   PL ___ 4   (16.8)

and for member BC (Appendix Figure A.4a),

 M  ′  BC   = −   PL ___ 8   (16.9)

 M ′  CB   = −M ′  BC   =   PL ___ 8   (16.10)

Figure 16.3c shows the fixed-end moments and the deflected shape of 
the restrained frame. To illustrate the calculation of the restraining moment 
M1, a free-body diagram of joint B is also shown in the lower right corner 
of Figure 16.3c. For clarity, shears acting on the joint are omitted. From 
the requirement of rotational equilibrium of the joint (ΣMB = 0) we obtain 

−   PL ___ 4   +   PL ___ 8   +  M  1   = 0

from which we compute 

  M  1   =   PL ___ 8   (16.11) 

In this 1-degree of freedom problem, the value of M1 with its sign 
reversed is the only element in the restraining force vector F (Equation 16.1). 
Figure 16.3d shows the moment diagrams for the members in the restrained 
structure. 

Step 2: Assembly of the Structure Stiffness Matrix  To assemble 
the stiffness matrix, we introduce a unit rotation at joint B and calcu-
late the moment required to maintain the deformed configuration. The 
deflected shape of the frame produced by a unit rotation at joint B is 
shown in Figure 16.3e. Substituting θA = θC = 0 and θB = 1 rad into 
Equation 16.5, we compute the moments at the ends of members AB 
and BC as 

16.3 ■ The 2 × 2 Rotational Stiffness Matrix for a Flexural Member  723

[continues on next page]
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724  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

Example 16.1 continues . . .
  [ 

MAB  MBA
  ]   =   2EI ___ L    [ 2  1  1  2 ]  [ 0  1 ]  =  

⎡
 ⎢ 

⎣
 
  2EI ___ L  

  
  4EI ___ L  

 
⎤
 ⎥ 

⎦
 

and

 [ 
 M  BC  

   M  CB   ]  =   2EI ___ L     [ 2  1  1  2 ]   [ 1  0 ]   =  
⎡
 ⎢ 

⎣
 
  4EI ___ L  

  
  2EI ___ L  

 
⎤
 ⎥ 

⎦
 

These moments are shown on the sketch of the deformed structure in 
Figure 16.3e. The moment required at joint B to satisfy equilibrium can 
be easily determined from the free-body diagram shown in the lower right 
corner of Figure 16.3e. Summing moments at joint B, we compute the 
stiffness coefficient K11 as 

  K  11   =   4EI ___ L   +   4EI ___ L   =   8EI ___ L   (16.12)

In this problem the value given by Equation 16.12 is the only element of 
the stiffness matrix K. The moment diagrams for the members correspond-
ing to the condition θB = 1 rad are shown in Figure 16.3f.

Step 3: Solution of Equation 16.1  Because this problem has only one de-
gree of freedom, Equation 16.1 is a simple algebraic equation. Substituting 
the previously calculated values of F and K given by Equations 16.11 and 
16.12, respectively, yields 

 KΔ = F (16.1)

    8EL ____ L    θ  B   = −   PL ___ 8   (16.13)

Solving for θB yields

  θ  B   = −   P  L   2  ____ 64EI   (16.14)

The minus sign indicates that the rotation of joint B is counterclock-
wise, that is, opposite in sense to the direction defined as positive in 
Fig ure 16.3b.

B = 1

(e)

B

2EI
L

K11

A

B
C

4EI
L

4EI
L

4EI
L

4EI
L

2EI
L�

Figure 16.3: Continued (e) Moments pro-
duced by a unit rotation of joint B; the 
stiffness coefficient K11 represents the mo-
ment required to produce the unit rotation;  
(  f  ) moment diagrams produced by the unit 
rotation of joint B (continues).

( f )
A

B

B C

2EI
L

2EI
L4EI

L

4EI
L
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Step 4: Evaluation of the Effects of Joint Displacements  Since the  
moments produced by a unit rotation of joint B are known from step 2 
(Figure 16.3f ), the moments produced by the actual joint rotation are 
readily obtained by multiplying the forces in Figure 16.3f by θB given by 
Equation 16.14; proceeding, we find 

 MA̋B =   2EI ___ L    θ  B   = −    PL ___ 32   (16.15)

 MB̋A =   4EI ___ L    θ  B   = −   PL ___ 16   (16.16)

 MB̋C =   4EI ___ L    θ  B   = −   PL ___ 16   (16.17)

 MC̋B =   2EI ___ L    θ  B   = −   PL ___ 32   (16.18)

The double prime indicates that these moments are associated with the 
joint displacement condition. 

Step 5: Calculation of Final Results  The final results are obtained by 
adding the values from the restrained condition (step 1) with those pro-
duced by the joint displacements (step 4).

 M  AB   = M  ′  AB   + MA̋B = −   PL ___ 4   +  (−   PL ___ 32  )  = −   9PL ___ 32  

 M  BA   = M  ′  BA   + MB̋A =   PL ___ 4   +  (−   PL ___ 16  )  =   3PL ___ 16  

 M  BC   = M  ′  BC   + MB̋C = −   PL ___ 8   +  (−   PL ___ 16  )  = −   3PL ___ 16  

 M  CB   = M  ′  CB   + MC̋B =   PL ___ 8   +  (−   PL ___ 32  )  =   3PL ___ 32  

The member moment diagrams can also be evaluated by combining the 
diagrams from the restrained case with those corresponding to the joint 
displacements. Once the end moments are known, however, it is much 
easier to construct the individual moment diagrams using basic principles 
of statics. The final results are shown in Figure 16.3g.

0.53L

0.142PL

(g)

A

B

B C

7EI
64

3PL
323PL

16
3PL
16

9PL
32

Figure 16.3: Continued (g) Final moment 
diagrams produced by superimposing mo-
ments in (d ) with those in (  f  ) multiplied 
by θB. 
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726  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

E X A M P L E  1 6 . 2 Construct the bending moment diagram for the three-span continuous 
beam shown in Figure 16.4a. The beam, which has a constant flexural 
rigidity EI, supports a 20-kip concentrated load acting at the center of 
span BC. In addition, a uniformly distributed load of 4.5 kips/ft acts over 
the length of span CD.

Solution
An inspection of the structure indicates that the degree of kinematic inde-
terminacy is three. The positive directions selected for the three degrees of 
freedom (rotations at joints B, C, and D) are shown with curved arrows in 
Figure 16.4b.

C DBA

20 kips

EI = constant

4.5 kips/ft

(a)

20ʹ 20ʹ 20ʹ 20ʹ

(b)

1 2 3

C
D

BA

(c)

100

100

100

M1
B

DB B C CA

100 150 150

100
150 150

75100

150100

M2
C

150

M3
D

20 kips
4.5 kips/ft

Figure 16.4: (a) Details of continuous 
beam; (b) curved arrows indicate the posi-
tive direction of the unknown joint rotations 
at B, C, and D; (c) moments induced in the 
restrained structure by the applied loads; 
bottom figures show the moments acting on 
free-body diagrams of the clamped joints 
(shears and reactions omitted for clarity)  
(continues).
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Step 1: Analysis of the Restrained Structure  The fixed-end moments 
induced in the restrained structure by the applied loads are calculated using 
the formulas in Table A.4 in the Appendix. Figure 16.4c shows the moment 
diagram for the restrained condition and the free-body diagrams of the 
joints that are used to calculate the forces in the restraints. Considering 
moment equilibrium, we compute the restraining moments as follows:

Joint B:  M  1   + 100 = 0   M  1   = −100 kip ⋅ ft

Joint C: −100 +  M  2   + 150 = 0   M  2   = −50 kip ⋅ ft

Joint D: −150 +  M  3   = 0   M  3   = 150 kip ⋅ ft

Reversing the sign of these restraining moments, we construct the force  
vector F.

 F =  
[

 
   100

       50  
−150

  
]

 kip ⋅ ft (16.19)

Step 2: Assembly of the Structure Stiffness Matrix The forces at the 
ends of the members resulting from the introduction of unit displacements 
at each one of the degrees of freedom are shown in Figure 16.4d to f. The 
elements of the structure stiffness matrix are readily calculated from the 
free-body diagrams of the joints. Summing moments, we calculate from 
Figure 16.4d:

−0.2EI − 0.1EI +  K  11   = 0  and   K  11   = 0.3EI

−0.05EI +  K  21   = 0  and   K  21   = 0.05EI

 K  31   = 0  and   K  31   = 0
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A B DC

1= 1 rad

(d)
0.2EI 0.05EI0.1EI

K11
B

K21
C

K31
D

�

Figure 16.4: Continued (d ) Stiffness coefficients produced by a unit rotation of joint 
B with joints C and D restrained (continues). [continues on next page]
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728  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

Example 16.2 continues . . . From Figure 16.4e,

−0.05EI +  K  12   = 0  and   K  12   = 0.05EI
−0.1EI − 0.2EI +  K  22   = 0  and   K  22   = 0.3EI

−0.1EI +  K  32   = 0  and   K  32   = 0.1EI

From Figure 16.4f,

 K  13   = 0  and   K  13   = 0
−0.1EI +  K  23   = 0  and   K  23   = 0.1EI
−0.2EI +  K  33   = 0  and   K  33   = 0.2EI

Arranging these stiffness coefficients in matrix form, we produce the fol-
lowing structure stiffness matrix K:

 K = EI  
[

 
0.3  

  
0.05

  
0
   0.05  0.3       0.1   

0     
  

0.1  
  

   0.2
 
]

  (16.20)

As we would anticipate from Betti’s law, the structure stiffness matrix K 
is symmetric.

A B DC

2 = 1 rad

(e)
0.1EI 0.1EI0.05EI

K12
B

K22
C

0.2EI

K32
D

�

A B DC

3 = 1 rad

( f )
0.1EI 0.2EI

K13
B

K23
C

K33
D

�

Figure 16.4: Continued (e) Stiffness coefficients produced by a unit rotation of joint C 
with joints B and D restrained; ( f ) stiffness coefficients produced by a unit rotation of 
joint D with joints B and C restrained (continues on page 730).
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Step 3: Solution of Equation 16.1 Substituting the previously calculated 
values of F and K (given by Equations 16.19 and 16.20) into Equation 16.1 
gives

 EI   
[

 
0.3  

  
0.05

  
0
   0.05  0.3       0.1   

0     
  

0.1  
  

   0.2
 
]

   
[

 
θ1

  θ2  
θ3

 
]

   =  
[

  
  100

      50  
−150

 
]

  (16.21)

Solving Equation 16.21, we compute 

   
[

 
θ1

  θ2  
θ3

 
]

   =   1 __ EI    [
 
   258.6

     448.3  
−974.1

  
]

  (16.22)

Step 4: Evaluation of the Effect of Joint Displacements The mo ments 
produced by the actual joint rotations are determined by multi ply ing the 
moments produced by the unit displacements (Figure 16.4d to f ) by the 
actual displacements and superimposing the results. For example, the end 
moments in span BC are

MB̋C =  θ  1   (0.1EI)  +  θ  2   (0.05EI)  +  θ  3   (0)  = 48.3 kip ⋅ ft (16.23)

MC̋B =  θ  1   (0.05EI)  +  θ  2   (0.1EI)  +  θ  3   (0)  = 57.8 kip ⋅ ft (16.24)

The evaluation of the member end moments produced by joint 
displacements using superposition requires that for an n degree of 
freedom structure we add n appropriately scaled unit cases. This ap-
proach becomes increasingly cumbersome as the value of n increases. 
Fortunately, we can evaluate these moments in one step by using the 
individual member rotational stiffness matrices. For example, consider 
span BC, for which the end moments due to joint displacements were 
calculated previously by using superposition. If we substitute the end 
rotations θ1 and θ2 (given by Equation 16.22) into Equation 16.5 with 
L = 40 ft, we obtain 

   [ 
MB̋C  MC̋B

 ]   =   2EI ___ 40     [ 2  1  1  2 ]    1 __ EI   [ 258.6  448.3 ]  =  [ 48.3  57.8 ]  (16.25)

These results are, of course, identical to those obtained by superposition in 
Equations 16.23 and 16.24. [continues on next page]
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730  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

Proceeding in a similar manner for spans AB and CD, we find that 

  [ 
MA̋B  MB̋A

  ]   =   2EI ___ 20     [ 2  1  1  2 ]     1 __ EI   [        0  258.6 ]  =  [ 25.9  
51.7

 ]  (16.26)

  [ 
MC̋D  MD̋C

 ]   =   2EI ___ 20   [ 2  1  1  2 ]    1 __ EI   [    448.3  −974.1  ]  =  [     −7.8  −150.0 ]  (16.27)

The results are plotted in Figure 16.4g.

Step 5: Calculation of Final Results The complete solution is obtained 
by adding the results from the restrained case in Figure 16.4c to those pro-
duced by the joint displacements in Figure 16.4g. The resulting moment 
diagrams are plotted in Figure 16.4h.

Example 16.2 continues . . .

Figure 16.4: Continued (g) Moments produced by actual joint rotations; (h) final 
moment diagrams (in units of kip·ft).
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The 4 × 4 Member Stiffness Matrix  
in Local Coordinates

16.4

In Section 16.3 we derived a 2 × 2 member rotational stiffness matrix for the 
analysis of a structure in which joints can only rotate, but not translate. We 
now derive the member stiffness matrix for a flexural element considering both 
joint rotations and transverse joint displacements as degrees of freedom; the 
axial deformation of the member is still ignored. With the resulting 4 × 4 ma-
trix we can extend the application of the direct stiffness method to the solution 
of structures with joints that both translate and rotate as a result of applied 
loading.

For educational purposes, the 4 × 4 member stiffness matrix in local 
coordinates will be derived in three different ways.

Derivation 1: Using the Slope-Deflection Equation

Figure 16.5a shows a flexural element of length L with end moments and 
shears; Figure 16.5b illustrates the corresponding joint displacements. The 
sign convention is as follows: Clockwise moments and rotations are positive. 
Shears and transverse joint displacements are positive when in the direction 
of the positive y axis.

The positive directions for local coordinates are as follows: The local  
x′ axis runs along the member from the near joint i to the far joint j. The posi-
tive z′ axis is always directed into the paper, and y′ is such that the three axes 
form a right-handed coordinate system. 

Setting the fixed-end moment (FEM) equal to zero in Equations 10.14 and 
10.15 (assuming no load between joints) yields

 M  i   =   2EI ___ L   (2 θ  i   +  θ  j   − 3ψ)  (16.28)

and   M  j   =   2EI ___ L   (2 θ  j   +  θ  i   − 3ψ)   (16.29)

where the chord rotation 𝜓 from Equation 10.4c is

 ψ =   
 Δ  j   −  Δ  i   _____ L    (16.30)

Equilibrium (ΣMj = 0) requires that the end shears and moments in 
Figure 16.5a be related as follows:

  V  i   = − V  j    =   
 M  i   +  M  j   _____ L    (16.31)

(a)

i

j

L
Mi

Vi

Vj

Mj xʹ

yʹ

xʹ

yʹ

zʹ

i

j

(b)

i

j

Δi

Δj

xʹ

yʹ

�

�

Figure 16.5: (a) Convention for positive 
end shears and moments; (b) convention for 
positive joint rotations and end displacements.
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732  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

Substituting Equation 16.30 into Equations 16.28 and 16.29 and then substi-
tuting these equations into Equations 16.31, we produce the following four 
equations:

  M  i   =   2EI ___ L   (2  θ  i   +  θ  j   +    3 __ L    Δ  i   −   3 __ L    Δ  j  )   (16.32)

  M  j   =   2EI ___ L   ( θ  i   + 2  θ  j   +   3 __ L    Δ  i   −   3 __ L    Δ  j  )   (16.33)

  V  i   =   2EI ___ L   (  3 __ L    θ  i   +   3 __ L    θ  j   +   6 __ 
 L   2 

    Δ  i   −   6 __ 
 L   2 

    Δ  j  )    (16.34)

  V  j   = −   2EI ___ L   (  3 __ L    θ  i   +   3 __ L    θ  j   +   6 __ 
 L   2 

    Δ  i   −   6 __ 
 L   2 

    Δ  j  )   (16.35)

We can write these equations in matrix notation as 

  

⎡

 ⎢ 

⎣

 

 M  i  

  
 M  j     V  i  

  

 V  j  

  

⎤

 ⎥ 

⎦

  =   2EI ___ L     

⎡

 ⎢ 

⎣

  

2

  

1

  

  3 __ L  

  

−   3 __ L  

    
1
  

2
  

  3 __ L  
  

−   3 __ L  
    

  3 __ L  
  

  3 __ L  
  

  6 __ 
 L   2 

  
  

−   6 __ 
 L   2 

  
    

−   3 __ L     

  

−   3 __ L     

  

−  6 __ 
 L   2 

     

  

    6 __ 
 L   2 

  

  

⎤

 ⎥ 

⎦

  

⎡

 ⎢ 

⎣

  

 θ  i  

  
 θ  j     Δ  i  

  

 Δ  j  

 

⎤

 ⎥ 

⎦

   (16.36)

where the 4 × 4 matrix together with the multiplier 2EI/L is the 4 × 4 member 
stiffness matrix k′.

Derivation 2: Using the Basic Definition  
of Stiffness Coefficient 

The 4 × 4 member stiffness matrix can also be derived using the basic ap-
proach of introducing unit displacements at each one of the degrees of free-
dom. The external forces, at the DOF, required to satisfy equilibrium in each 
deformed configuration are the elements of the member stiffness matrix in 
the column corresponding to that DOF. Refer to Figure 16.6 for the follow-
ing derivations.

Unit Displacement at DOF 1 (θi = 1 rad)
The corresponding sketch is shown in Figure 16.6b; the end moments com-
puted with Equation 16.5 are the usual 4EI/L and 2EI/L. The shears at the 
ends are readily calculated from statics. (The positive sense of  displacements 

(a)

1

3

2

4

i

j

Δ

iΔ

yʹ

zʹ

�

�

Figure 16.6: (a) Positive sense of unknown 
joint displacements indicated by numbered 
arrows; (b) stiffness coefficients produced by 
a unit clockwise rotation of the left end of the 
beam with all other joint displacements pre-
vented; (c) stiffness coefficients produced by 
a unit clockwise rotation of the right end of 
the beam with all other joint displacements 
prevented (continues).
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is indicated by the numbered arrows in Figure 16.6a.) From these computa-
tions we get

k  ′  11   =   4EI ___ L    k  ′  21   =   2EI ___ L    k  ′  31   =   6EI ___ 
 L   2 

    k  ′  41   = −   6EI ___ 
 L   2 

   (16.37)

These four elements constitute the first column of matrix k′.

Unit Displacement at DOF 2 (θj = 1 rad)
The sketch for this condition is illustrated in Figure 16.6c; proceeding as 
before, we obtain

k  ′  12   =   2EI ___ L    k  ′  22   =   4EI ___ L    k  ′  32   =   6EI ___ 
 L   2 

    k  ′  42   = −   6EI ___ 
 L   2 

   (16.38)

The four elements constitute the second column of matrix k′.

Unit Displacement at DOF 3 (Δi = 1)
From the sketch in Figure 16.6d we can see that this displacement pattern, 
as far as member distortions go, is equivalent to a positive rotation of 1/L 
measured from the beam chord to the deformed configuration of the beam. 
(Note that rigid-body motions do not introduce moments or shears in the 
beam element.) Substituting these rotations in Equation 16.5, we obtain the 
following end moments:

 [ 
 M  

i
  
   M  

j
    ]  =   2EI ___ L   [ 2  1  1  2 ]    1 __ L    [    1  1 ]  =   6EI ___ 

 L   2 
    [ 1  1 ]  (16.39)

The end moments and corresponding shears (calculated from statics) are de-
picted in Figure 16.6d; again we have

 k  ′  13   =   6EI ___ 
 L   2 

    k  ′  23   =   6EI ___ 
 L   2 

    k  ′  33   =   12EI ____ 
 L   3 

    k  ′  43   = −   12EI ____ 
 L   3 

    (16.40)

These four elements constitute the third column of matrix k′.

Unit Displacement at DOF 4 (Δj = 1)
In this case the rotation from the beam chord to the final configuration of the 
member, as shown in Figure 16.6e, is counterclockwise and, therefore, nega-
tive. Proceeding in exactly the same manner as before, the result is

 k  ′  14   = −   6EI ___  L   2    k  ′  24   = −   6EI ___  L   2    k  ′  34   = −   12EI ____  L   3    k  ′  44   =   12EI ____  L   3     (16.41)

These four elements constitute the fourth column of matrix k′.
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Figure 16.6: Continued (d ) Stiffness coeffi-
cients produced by a unit vertical displace-
ment of the left end with all other joint  
displacements prevented; (e) stiffness coeffi- 
cients produced by a unit vertical displace-
ment of the right end with all other joint  
displacements prevented.

chord

(d)

i = 1Δ

=k13ʹ
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1
L
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=

=
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12EI

L3
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ʹ
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L
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2EI
L

�

(c)

j = 1
k22

4EI
L

=k32ʹ
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jΔ

i

i chord

j
yʹ

xʹ

Δ

i

j

ic
jc

�
�

�

�

ψ

ψ

Figure 16.7: Deflected shape of a beam 
element whose joints rotate and displace 
laterally.

Organizing these coefficients in a matrix format for the member stiffness 
matrix yields

k′ =    2EI ____ L    

 

 

⎡

 ⎢ 

⎣

  

2

  

1

  

  3 __ L  

  

−   3 __ L  

    
1
  

2
  

  3 __ L  
  

−   3 __ L  
    

  3 __ L  
  

  3 __ L  
  

  6 __ 
 L   2 

  
  

−   6 __ 
 L   2 

  
    

−   3 __ L     

  

−   3 __ L     

  

−  6 __ 
 L   2 

     

  

    6 __ 
 L   2 

  

  

⎤

 ⎥ 

⎦

   (16.42)

Equation 16.42 is identical to the matrix derived previously using the slope-
deflection equation (Equation 16.36).

Derivation 3: Using the 2 × 2 Rotational Stiffness Matrix with 
a Coordinate Transformation 

As we saw in the preceding derivation, as far as distortions go, the transverse 
displacements of the flexural member are equivalent to end rotations with 
respect to the chord. Since the rotations with respect to the chord are a func-
tion of both the rotations with respect to the local axis x′ and the transverse 
displacements, we can write

  [ 
 θ  ic     θ  jc  

  ]  = T  

⎡

 ⎢ 
⎣

  

 θ  i  

  
 θ  j     Δ  i  

  

 Δ  j  

 

⎤

 ⎥ 
⎦

   (16.43)

where T is the transformation matrix and the subscript c has been added to 
distinguish between rotations measured with respect to the chord and rota-
tions with respect to the local axis x′.

The elements of the transformation matrix T can be obtained with the aid 
of Figure 16.7. From there we have 

  θ  ic   =  θ  i   − ψ  (16.44)

  θ  jc   =  θ  j   − ψ  (16.45)

where the chord rotation 𝜓 is given by 

 ψ =   
 Δ  j   −  Δ  i   _____ L    (16.30)
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Substituting Equation 16.30 into Equations 16.44 and 16.45, we obtain 

  θ  ic   =  θ  i   +    Δ  i   __ L   −   
 Δ  j   __ L    (16.46)

  θ  jc   =  θ  j   +    Δ  i   __ L   −   
 Δ  j   __ L    (16.47)

Writing Equations 16.46 and 16.47 in matrix notation produces 

 

 [ 
 θ  ic     θ  jc  

  ]  =  
⎡
 ⎢ 

⎣
 
1
  

0
  

  1 __ L  
  

−   1 __ L  
   

0
  

1
  

  1 __ L  
  

−   1 __ L  
 
⎤
 ⎥ 

⎦
      
⎡
 ⎢ 

⎣
 
θi

  θj  Δi
  

Δj

    (16.48)

The 2 × 4 matrix in Equation 16.48 is, by comparison with Equation 16.43, 
the transformation matrix T.

From Section 15.7 we know that if two sets of coordinates are geometri-
cally related, then if the stiffness matrix is known in one set of coordinates, it 
can be transformed to the other by the following operation:

k′ =   T   T 
    
_
 k   T (16.49)

where   
_
 k   is the 2 × 2 rotational stiffness matrix (Equation 16.6) and kʹ is 

the 4 × 4 member stiffness matrix in local coordinates. Substituting the T 
matrix in Equation 16.48 and the rotational stiffness matrix of Equation 16.6 
for   

_
 k  , we get

k′=   

⎡

 ⎢ 

⎣

  

1

  

   0

  
0
  

   1
    1 __ L         1 __ L    

−  1 __ L     

  

−  1 __ L  

  

⎤

 ⎥ 

⎦

     2EI ___ L    [ 2  1  1  2 ]  
⎡
 ⎢ 

⎣
 
1
  

0
  

  1 __ L  
  

−   1 __ L  
   

0
  

1
  

  1 __ L  
  

−   1 __ L  
 
⎤
 ⎥ 

⎦
 

The multiplication of the matrices shown above yields the same beam ele-
ment stiffness matrix as derived previously and presented as Equation 16.42; 
the verification is left as an exercise for the reader.
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736  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

E X A M P L E  1 6 . 3 Analyze the plane frame shown in Figure 16.8a. The frame is made up 
of two columns of moment of inertia I, rigidly connected to a horizontal 
beam whose moment of inertia is 3I. The structure supports a concentrated 
load of 80 kips acting horizontally to the right at the midheight of column 
AB. Neglect the deformations due to axial forces.

30ʹ

80 kips

8ʹ

8ʹ

A D

Ic = I
Ic = I

Ib = 3IB C

(a)

1

(b)

2

3

Figure 16.8: Analysis of an unbraced frame: 
(a) details of frame; (b) positive sense of  
unknown joint displacements defined  
(continues).

Solution
Because axial deformations are neglected, joints B and C do not move ver-
tically but have the same horizontal displacement. In Figure 16.8b we use 
arrows to show the positive sense of the three independent joint displace-
ment components. We now apply the five-step solution procedure utilized 
in the preceding examples.

Step 1: Analysis of the Restrained Structure With the degrees of free-
dom restrained by a clamp at B as well as a clamp and horizontal support 
at C, the frame is transformed to three independent fixed-end beams. The 
moments in the restrained structure are shown in Figure 16.8c. The re-
straining forces are calculated using the free-body diagrams shown at the 
bottom of Figure 16.8c.

We note that the horizontal restraint at joint C that prevents sway of 
the frame (DOF 3) can be placed at either joint B or C without affecting 
the results. The selection of joint C in the sketch of Figure 16.8c is thus ar-
bitrary. We also note that the simplification introduced by neglecting axial 
deformations does not imply that there are no axial forces. It only means 
that axial loads are assumed to be carried without producing shortening or 
elongation of the members.

From the free-body diagrams in Figure 16.8c we compute the restrain-
ing forces as 

−160.0 +  M  1   = 0   M  1   = 160.0

 M  2   = 0

40.0 +  F  3   = 0   F  3   = −40.0
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Reversing the sign of restraining forces to construct the force vector F 
gives

F =   
[

  
−160.0

      0  
     40.0

 
]

   (16.50)

where forces are in kips and moments are in kip ·  ft.

Step: 2 Assembly of the Structure Stiffness Matrix  The deformed 
configurations, corresponding to unit displacements at each degree of free-
dom, are shown in Figure 16.8d. The moments at the end of the members, 
in the sketches corresponding to unit rotations of joints B and C (i.e., DOF 
1 and 2, respectively), are most easily calculated from the 2 × 2 member 
rotational stiffness matrix of Equation 16.5. Using the appropriate free-
body diagrams, we compute

−0.25EI − 0.4EI +  K  11   = 0  or   K  11   = 0.65EI

−0.2EI +  K  21   = 0  or   K  21   = 0.20EI

0.0234EI +  K  31   = 0  or   K  31   = −0.0234EI

−0.4EI − 0.25EI +  K  22   = 0  or   K  22   = 0.65EI

0.0234EI +  K  32   = 0  or   K  32   = −0.0234EI

The elements of the third row of the structure stiffness matrix are 
evaluated by introducing a unit horizontal displacement at the top of the 
frame (DOF 3). The forces in the members are calculated as follows. From 
Figure 16.8d we see that for this condition member BC remains undeformed, 

Figure 16.8: Continued (c) Computa-tion 
of restraining forces corresponding to three 
unknown joint displacements; moments in 
kip · ft (continues).

80 kips

160

B C

B C

A

M1 M2

F3

D

B C

(c)

160

160

160

40

A D

B C

[continues on next page]
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738  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

thus having no moments or shears. The columns, members AB and DC, are 
subjected to the deformation pattern given by 

  

⎡

 ⎢ 

⎣

  

 θ  i  

  
 θ  j     Δ  i  

  

 Δ  j  

 

⎤

 ⎥ 

⎦

  =  

⎡

 ⎢ 
⎣

 

0

  
0
  

0
  

1

 

⎤

 ⎥ 
⎦

  

where the subscripts i and j are used to designate the near and the far joints,  
respectively. Notice that by defining the columns as going from A to B and 
from D to C, both local y axes are in accordance with the previously estab-
lished sign convention, directed to the right, thus making the displacement  
Δ = 1 positive.

The moments and shears in each column are obtained by substituting 
the displacements shown above into Equation 16.36, that is, 

Example 16.3 continues . . .
1 = 1

2 = 1

(d)

B C
K31

0.25 + 0.125
16 EI = 0.0234EI

A D

B

0.125EI

0.25EI 0.4EI

0.2EI C

B C

K11

K12

K21

K22

K13 K23

K32

K33

B C

A D

B

0.125EI

0.25EI

0.25EI

0.25EI

0.25EI

0.0234EI

0.0234EI

0.0029EI

0.4EI

0.2EI

0.2EI

0.4EI

0.4EI

C

B C

3 = 1Δ

B C

0.0029EI
A D

B

0.0234EI

C

B C

0.0234EI

0.0234EI

0.0234EI

0.0234EI

�

�

Figure 16.8: Continued (d ) Computation of 
stiffness coefficients by introducing unit dis-
placements corresponding to unknown joint 
displacements; the restraints (clamps and the 
lateral support at joint C ) are omitted to sim-
plify the sketches (continues on page 740).
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⎡

 ⎢ 

⎣

 

 M  i  

  
 M  j     V  i  

  

 V  j  

  

⎤

 ⎥ 

⎦

  =   2EI ___ L     

⎡

 ⎢ 

⎣

  

2

  

1

  

  3 __ L  

  

−   3 __ L  

    
1
  

2
  

  3 __ L  
  

−   3 __ L  
    

  3 __ L  
  

  3 __ L  
  

  6 __ 
 L   2 

  
  

−   6 __ 
 L   2 

  
    

−   3 __ L     

  

−   3 __ L     

  

−  6 __ 
 L   2 

     

  

    6 __ 
 L   2 

  

  

⎤

 ⎥ 

⎦

    

⎡

 ⎢ 
⎣

 

0

  0  
0
  

1

 

⎤

 ⎥ 
⎦

  

Substituting L = 16 ft gives

  

⎡

 ⎢ 

⎣

 

 M  i  

  
 M  j     V  i  

  

 V  j  

  

⎤

 ⎥ 

⎦

   = EI   

⎡

 ⎢ 

⎣

 

−0.0234

  −0.0234  
−0.0029

  

   0.0029

  

⎤

 ⎥ 

⎦

  

These results are shown in Figure 16.8d. From equilibrium of forces in the 
horizontal direction on the beam, we compute

− 0.0029EI − 0.0029EI +  K  33   = 0  or   K  33   = 0.0058EI 

Equilibrium of moments at joints B and C requires that K13 = K23 = 
− 0.0234EI.

Arranging these coefficients in matrix form, we produce the structure 
stiffness matrix

K = EI  
[

  
0.65 

  
0.20 

  
−0.0234

    0.20   0.65   −0.0234    
−0.0234

  
−0.0234

  
   0.0058

 
]

 

As a check of the computations, we observe the structure stiffness matrix 
K is symmetric (Betti’s law).

Step 3: Solution of Equation 16.1 Substituting F and K into Equation 16.1, 
we generate the following set of simultaneous equations: 

 EI  
[

  
0.65 

  
0.20 

  
−0.0234

    0.20   0.65   −0.0234    
−0.0234

  
−0.0234

  
   0.0058

 
]

  
⎡
 ⎢ 

⎣
  
 θ  1  

   θ  2    
 Δ  3  

 
⎤
 ⎥ 

⎦
  =  

[
  
−160.0

         0.0  
     40.0

 
]

  

Solving yields

  
⎡
 ⎢ 

⎣
  
 θ  1  

   θ  2    
 Δ  3  

 
⎤
 ⎥ 

⎦
    =   1 __ EI     [

  
 −57.0

    298.6  
7793.2

 
]

  

The units are radians and feet. [continues on next page]
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740  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

Step 4: Evaluation of the Effect of Joint Displacements As explained 
in Example 16.2, the effects of the joint displacements are most easily 
calculated using the individual element stiffness matrices. These compu-
tations produce the following values of displacement at the ends of each 
member. For member AB,

  

⎡

 ⎢ 

⎣

  

 θ  A  

  
 θ  B  

   Δ  A    

 Δ  B  

 

⎤

 ⎥ 

⎦

  =   1 __ EI       

⎡

 ⎢ 

⎣

 

      0

    −57.0  
      0.0

  

7793.2

  

⎤

 ⎥ 

⎦

  

for member BC,

  

⎡

 ⎢ 

⎣

  

 θ  B  

  
 θ  C  

   Δ  B    

 Δ  C  

 

⎤

 ⎥ 

⎦

  =   1 __ EI       

⎡

 ⎢ 

⎣

 

 −57.0

    298.6  
      0

  

      0

  

⎤

 ⎥ 

⎦

  

and for member DC,

  

⎡

 ⎢ 

⎣

  

 θ  D  

  
 θ  C  

   Δ  D    

 Δ  C  

  

⎤

 ⎥ 

⎦

  =   1 __ EI       

⎡

 ⎢ 

⎣

 

      0

    298.6  
      0

  

7793.2

 

⎤

 ⎥ 

⎦

  

The results obtained by substituting these displacements into Equation 16.36 
(with the appropriate values of L and flexural stiffness EI) are shown graphi-
cally in Figure 16.8e.

Step 5: Calculation of Final Results  The complete solution is obtained 
by superimposing the results of the restrained case (Figure 16.8c) and the 
effects of the joint displacements (Figure 16.8e). The final moment dia-
grams for the members of the frame are plotted in Figure 16.8f.

Example 16.3 continues . . .

Figure 16.8: Continued (e) Moments pro-
duced by joint displacements; ( f ) final re-
sults. All moments in kip · ft.

(e)
189.8 145.3

196.9

36.9

108.0

108.0

( f )
145.3349.8

36.9

163.6

108.0

36.9 108.0

80 kips
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16.5 ■ The 6 × 6 Member Stiffness Matrix in Local Coordinates  741

The 6 × 6 Member Stiffness Matrix  
in Local Coordinates

16.5

While virtually all members in real structures are subject to both axial and 
flexural deformations, it is often possible to obtain accurate solutions using 
analytical models in which only one deformation mode (flexural or axial) 
is considered. For example, as we showed in Chapter 15, the anal ysis of 
trusses can be carried out using a member stiffness matrix that relates ax-
ial loads and deformations; bending effects, although present (since real 
joints do not behave as frictionless pins, and the dead weight of a mem-
ber produces moment), are negligible. In other structures, such as beams 
and frames treated in the previous sections of this chapter, often the axial 
deformations have a negligible effect, and the analysis can be carried out 
considering bending deformations only. When it is necessary to include 
both deformation components, in this section we derive a member stiffness 
matrix in local coordinates that will allow us to consider both axial and 
bending effects simultaneously. 

When bending and axial deformations are considered, each joint has 
three degrees of freedom; thus the order of the member stiffness matrix is 6. 
Figure 16.9 shows the positive direction of the degrees of freedom (joint 
displacements) in local coordinates; notice that the sign convention for end 
rotations and transverse displacements (degrees of freedom 1 through 4) is 
identical to that previously used in the derivation of the member stiffness ma-
trix given by Equation 16.36. The displacements in the axial direction (de-
grees of freedom 5 and 6) are positive in the direction of the positive x′ axis, 
which, as stated previously, runs from the near to the far joint. 

The coefficients in the 6 × 6 member stiffness matrix can readily 
be obtained from information derived previously for the beam and truss 
 elements.

i

i
1

2

3

j yʹ

xʹzʹ

Δ

jΔ

i

j

i

j

4

6

5

�

�
δ

δ

Figure 16.9: Positive sense of joint displacement for a flexural member.
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742  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

Unit Displacements at DOF 1 through 4
These displacement patterns were shown in Figure 16.6; the results were cal-
culated in Section 16.4 and are contained in Equations 16.37, 16.38, 16.40, 
and 16.41. We also notice that since these displacements do not introduce any 
axial elongations,

k  ′  51   = k  ′  52   = k  ′  53   = k  ′  54   = k  ′  61   = k  ′  62   = k  ′  63   = k  ′  64   = 0 (16.51)

Unit Displacements at DOF 5 and 6
These conditions were considered in the derivation of the 2 × 2 member 
stiffness matrix for a truss bar in Chapter 15. From Equation 15.15 we 
compute

 k  ′  55   = k  ′  66   = −k  ′  56   = −k  ′  65   =   AE ___ L    (16.52)

Since no moments or shears are induced by these axial deformations, it fol-
lows that 

 k  ′  15   = k  ′  25   = k  ′  35   = k  ′  45   = k  ′  16   = k  ′  26   = k  ′  36   = k  ′  46   = 0  (16.53)

Notice that the coefficients in Equations 16.51 and 16.53 satisfy symmetry 
(Betti’s law).

Organizing all the stiffness coefficients in a matrix, we obtain the 6 × 6 
member stiffness matrix in local coordinates as 

DOF:

 k′=  

⎡

 

⎢ ⎢ 
⎣

  

   4EI ___ 
L

  

  

  2EI ___ 
L

  

  

  6EI ___ 
 L   2 

  

  

−   6EI ___ 
 L   2 

  

  

0

  

0

     

  2EI ___ 
L

  

  

  4EI ___ 
L

  

  

  6EI ___ 
 L   2 

  

  

−   6EI ___ 
 L   2 

  

  

0

  

0

     
   6EI ___ 
 L   2 

  
  

  6EI ___ 
 L   2 

  
  

  12EI ____ 
 L   3 

  
  

  −12EI _____ 
 L   3 

  
  

0
  

0
     

−   6EI ___ 
 L   2 

  
  

−   6EI ___ 
 L   2 

  
  

−   12EI ____ 
 L   3 

  
  

  12EI ____ 
 L   3 

  
  

0
  

0
     

0

  

0

  

0

  

0

  

  AE ___ 
L

  

  

−   AE ___ 
L

   

     

0

  

0

  

0

  

0

  

−   AE ___ 
L

  

  

  AE ___ 
L

   

  

⎤

 

⎥ ⎥ 
⎦

   (16.54)

 
We illustrate the use of Equation 16.54 in Example 16.4.

54321 6

5

4

3

2

1

6
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Analyze the frame in Figure 16.10a, considering both axial and flexural 
deformations. The flexural and axial stiffnesses EI and AE are the same for 
both members and equal 24 × 106 kip · in.2 and 0.72 × 106 kips, respectively. 
The structure supports a concentrated load of 40 kips that acts vertically 
down at the center of span BC.

Solution
With axial elongations considered, the structure has three degrees of ki-
nematic indeterminacy, as shown in Figure 16.10b. The five-step solution 
procedure follows:

Step 1: Analysis of the Restrained Structure With the three degrees 
of freedom restrained at joint B, the frame is transformed to two fixed-end 
beams. The moments for this case are shown in Figure 16.10c. From equi-
librium of the free-body diagram of joint B,

  X  1   = 0  or   X  1   = 0 

  Y  2   + 20.0 = 0  or   Y  2   = −20.0 

  M  3   + 250.0 = 0  or   M  3   = −250.0 kip ⋅ ft = −3000 kip ⋅ in .

Reversing the sign of these restraining forces to construct the force vector 
F gives

 F =  
[

  
   0

      20.0  
3000.0

 
]

   (16.55)

The units are kips and inches.

E X A M P L E  1 6 . 4

Figure 16.10: (a) Details of frame; (b) posi-
tive sense of unknown joint displacements. 

A

B C

(a)
30ʹ 50ʹ

40ʹ

40 kips

(b)

1

2

3

Figure 16.10: (c) Forces in the restrained structure produced by the 40-kip load; only 
member BC is stressed. Moments in kip · ft (continues).

A

B

X1

Y2

M3

C

A

B C

(c)

40 kips

restraints

20 kips

250 kip • ft

250

250 250

[continues on next page]

16.5 ■ The 6 × 6 Member Stiffness Matrix in Local Coordinates  743

lee98004_ch16_716-758.indd   743 23/12/16   5:30 pm



744  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

Figure 16.10: Continued (d ) Stiffness coeffi-
cients associated with a unit horizontal dis-
placement of joint B (continues). 

1

0.8 0.6

DOF1 = 1
A

B C

(d)

B
K11

K21

K31

1.067

720

320

1200

Example 16.4 continues . . . Step 2: Assembly of the Structure Stiffness Matrix The stiffness ma-
trices in local coordinates for members AB and BC are identical because 
their properties are the same. Substituting the numerical values for EI, AE, 
and the length L, which is 600 in., into Equation 16.54 gives 

 k′=  10   2   

⎡

 ⎢ 

⎣

 

1600

  

  800

  

4         

  

−4         

  

  0

  

    0

     
  800

  
1600

  
4         

  
−4         

  
  0

  
    0

           4        4  0.0133  −0.0133    0      0        −4     −4  −0.0133        0.0133    0      0     

      0

  

      0

  

0         

  

0      

  

12

  

−12

     

      0

  

      0

  

0         

  

0      

  

−12  

  

   12

 

⎤

 ⎥ 

⎦

   (16.56)

The deformed configuration corresponding to a 1-in. displacement of de-
gree of freedom 1 is shown in Figure 16.10d. The deformations expressed in 
local coordinates for member AB are
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⎣

  

 θ  A  

  

 θ  B  
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⎦
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⎣
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⎦

   (16.57)

and for member BC are
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0

 

⎤

 ⎥ 

⎦

   (16.58)

The units are radians and inches. 
The forces in the members are then obtained by multiplying the 

member deformations by the element stiffness matrices. Premultiplying 
Equations 16.57 and 16.58 by Equation 16.56, we get for member AB,

  

⎡

 ⎢ 

⎣

 

 M  i  

  

 M  j  

  
 V  i     V  j  

  

 F  i  

  

 F  j  

  

⎤

 ⎥ 

⎦

  =  

⎡

 ⎢ 
⎣

  

−320.0

  

−320.0

          −1.064  
           1.064

  

−720.0

  

   720.0

  

⎤

 ⎥ 
⎦

   (16.59)
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and for member BC,

  

⎡

 ⎢ 
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 V  i     V  j  

  

 F  i  

  

 F  j  

  

⎤

 ⎥ 

⎦

  =  
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 ⎢ 
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     0

  

     0

       0  
     0

  

   1200.0

  

−1200.0

 

⎤

 ⎥ 

⎦

   (16.60)

In Equations 16.59 and 16.60 subscripts i and j are used to designate 
the near and far joints, respectively. These member end forces, with the 
sign reversed, can be used to construct the free-body diagram of joint B 
in Figure 16.10d. We compute from this diagram the forces required for 
equilibrium of this deformed configuration.

 K  11   − 1200 −  (720 × 0.6)  −  (1.067 × 0.8)  = 0     or       K  11   = 1632.85

 K  21   +  (720 × 0.8)  −  (1.067 × 0.6)  = 0     or       K  21   = −575.36

 K  31   + 320.0 = 0     or       K  31   = −320.0

In Figure 16.10e we show the deformed configuration for a unit dis-
placement at degree of freedom 2. Proceeding as before, we find the member 
deformations. For member AB,
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 ⎢ 
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 θ  A  

  

 θ  B  
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   Δ  B    
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 δ  B  
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⎦
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   (16.61)

and for member BC,

   

⎡

 ⎢ 
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  1  
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0

  

0

 

⎤

 ⎥ 
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   (16.62)

Multiplying the deformations in Equations 16.61 and 16.62 by the element 
stiffness matrices, we obtain the following member forces. For member AB,
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[continues on next page]
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Figure 16.10: Continued (e) Stiffness co-
efficients produced by a unit vertical displace-
ment of joint B (continues on page 747).
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⎦

   (16.63)

and for member BC,
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 ⎢ 
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0       

  

0       

  

⎤
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⎦

   (16.64)

Given the internal member forces, the external forces required for 
equilibrium at the degrees of freedom are readily found; referring to the 
free-body diagram of joint B in Figure 16.10e, we calculate the following 
stiffness coefficients: 

 K  12   +  (960 × 0.6)  −  (0.8 × 0.8)  = 0   or     K  12   = −575.36

 K  22   −  (960 × 0.8)  −  (0.8 × 0.6)  − 1.33 = 0   or     K  22   = 769.81

 K  32   + 240 − 400 = 0   or     K  32   = −160.0

Finally, introducing a unit displacement at degree of freedom 3, we 
obtain the following results (see Figure 16.10f ). The deformations for 
member AB are
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   (16.65)

and for member BC,
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   (16.66)

Example 16.4 continues . . .
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The member forces for member AB are
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 ⎢ 

⎣

 

 M  i  

  

 M  j  

  
 V  i     V  j  

  

 F  i  

  

 F  j  
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           0

  

           0

 

⎤
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   (16.67)

and for member BC,
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         400  
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           0

  

           0
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   (16.68)

From the free-body diagram of joint B in Figure 16.10f we get the fol-
lowing stiffness coefficients:

 K  13   + 400 × 0.8 = 0  and   K  13   = −320

 K  23   + 400 × 0.6 − 400 = 0  and   K  23   = 160

 K  33   − 160,000 − 160,000 = 0  and   K  33   = 320,000

Organizing the stiffness coefficients in matrix notation, we obtain the fol-
lowing structure stiffness matrix: 

 K =  
[

  
1632.85

  
−575.36

  
   −320.0

    −575.36     769.81        160.0    
−320.0  

  
   160.0  

  
320,000.0

 
]

   (16.69)

Step 3: Solution of Equation 16.1 Substituting F and K into Equation 16.1, 
we produce the following system of simultaneous equations: 

 
[

  
1632.85

  
−575.36

  
    −320.0

    −575.36     769.81         160.0    
−320.0   

  
 160.0 

  
320,000.0

 
]

  
[

 
 Δ  1  

   Δ  2    
 θ  3  

  
]

  =  
[

  
   0

      20.0  
3000.0

 
]

  (16.70)

Solving Equation 16.70 gives

 
[

 
 Δ  1  

   Δ  2    
 θ  3  

  
]

 =  
[

 
0.014    

  0.0345    
0.00937

 
]

  (16.71)

The units are radians and inches. 

Figure 16.10: Continued ( f ) Stiffness co-
efficients produced by a unit rotation of joint 
B (continues on page 749). 
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[continues on next page]
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748  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

Step 4: Evaluation of the Effect of Joint Displacements  The effects 
of joint displacements are calculated by multiplying the individual mem-
ber stiffness matrices by the corresponding member deformations in lo-
cal coordinates, which are defined in Figure 16.9. Member deformations 
can be computed from global displacements (Equation 16.71) using the 
geometric relationships established in Figures 16.10d, e, and f. Consider 
the axial deformation of member AB for example. The axial deformation 
δA at joint A is zero because it is a fixed end. The axial deformations δB 
produced by a unit displacement in the horizontal, vertical, and rotational 
directions of joint B are 0.6, −0.8, and 0.0, respectively. Therefore, joint 
displacements calculated in Equation 16.71 produce the following axial 
deformation at joint B:

 δ  B   = (0.014 × 0.6) + (0.0345 × −0.8) + (0.00937 × (0.0) = −0.0192

Following this procedure, the six components of the local deformations 
for member AB are

  θ  A   = 0 
  θ  B   = 0.00937 

  Δ  A   = 0 
 Δ  B   =  (0.014 × 0.8)  +  (0.0345 × 0.6)  = −0.0319
  δ  A   = 0 
 δ  B   =  (0.014 × 0.6)  +  (0.0345 × −0.8)  = −0.0192

Similarly, for member BC,

  θ  B   = 0.00937 

  θ  C   = 0 

  Δ  B   = 0.0345 

  Δ  C   = 0 

  δ  B   = 0.014 

  δ  C   = 0 

Multiplying these deformations by the member stiffness matrix (Equation 16.54), 
we get the member forces from joint displacements. For member AB,

 

⎡

 ⎢ 

⎣

 

M  ̋   AB  

  

M  ̋   BA  

  
V  ̋   AB  

  
V  ̋   BA    

F  ̋   AB  

  

F  ̋   BA  

  

⎤

 ⎥ 

⎦

  =   

⎡

 ⎢ 

⎣

  

 736.98

  

1486.71 

         3.706  
    −3.706

  

     23.04  

  

   −23.04   

 

⎤

 ⎥ 

⎦

   (16.72)

Example 16.4 continues . . .
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Figure 16.10: Continued (g) Moment dia-
grams and axial forces produced by the actual 
displacements of joint B; (h) final results.
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281.3

313.6

and for bar BC,
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 ⎢ 
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M  ̋  BC  

  

M  ̋   CB  

  
V  ̋   BC  

  
V  ̋   CB    

F  ̋   BC  

  

F  ̋   CB  

  

⎤

 ⎥ 

⎦

  =   

⎡

 ⎢ 
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1513.29

  

  763.54

        3.79  
   −3.79

  

    16.80

  

 −16.80

  

⎤

 ⎥ 

⎦

   (16.73)

The results given by Equations 16.72 and 16.73 are plotted in Figure 16.10g. 
Note that the units of moment in the figure are kip · feet.

Step 5: Calculation of Final Results The complete solution is ob-
tained as usual by adding the restrained case (Figure 16.10c) to the ef-
fects of joint displacements (Figure 16.10g). The results are plotted in 
Figure 16.10h.
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750  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

The 6 × 6 Member Stiffness Matrix in 
Global Coordinates

16.6

The stiffness matrix of a structure can be assembled by introducing unit dis-
placement at the selected degrees of freedom (with all other joints restrained) 
and then calculating the corresponding joint forces required for equilibrium. 
This approach, although most efficient when using hand calculators, is not 
well suited to computer applications. 

The technique actually utilized to assemble the structure stiffness matrix in 
computer applications is based on the addition of the individual member stiff-
ness matrices in a global coordinate system. In this approach, initially discussed 
in Section 15.2 for the case of trusses, the individual member stiffness matrices 
are expressed in terms of a common coordinate system, usually referred to 
as the global coordinate system. Once expressed in this form, the individual 
member stiffness matrices are expanded to the size of the structure stiffness 
matrix (by adding columns and rows of zeros where necessary) and then 
added directly. 

In this section we derive the general beam-column member stiffness ma-
trix in global coordinates. In Section 16.7, the direct summation process by 
which these matrices are combined to give the total stiffness matrix for the 
structure is illustrated with an example. 

The 6 × 6 member stiffness matrix for a beam-column element is derived 
in local coordinates in Section 16.5 and is presented as Equation 16.54. A der-
ivation in global coordinates can be carried out in much the same manner 
by using the basic approach of introducing unit displacement at each node 
and calculating the required joint forces. The process is, however, rather 
cumbersome because of the geometric relationships involved. A simpler, 
more concise derivation can be made using the member stiffness matrix in 
local coordinates and the coordinate transformation expression presented 
in Section 15.7. For convenience in this development, the equation for 
the transformation of coordinates, originally denoted as Equation 15.54, is 
repeated below as Equation 16.74.

k =  T   T  k′T (16.74)

where k′ is the member stiffness matrix in local coordinates (Equa - 
tion 16.54), k is the member stiffness matrix in global coordinates, and  
T is the transformation matrix. The T matrix is formed from the geomet-
ric relationships that exist between the local and the global coordinates. In 
matrix form

δ = TΔ (16.75)

where δ and Δ are the vectors of local and global joint displacements, 
respectively.

Refer to Figure 16.11a and b for the member ij expressed in the lo-
cal and global coordinate systems, respectively. Note that the components 
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of translation are different at each end, but the rotation is identical. The 
relationship between the local displacement vector δ and the global dis-
placement vector Δ is established as follows. Figure 16.11c and d shows the  
displacement components in the local coordinate system produced by global 
displacements Δix and Δiy, at joint i, respectively. From the figure,

 δ  i   =  (cos ϕ)  ( Δ  ix  )  −  (sin ϕ)  ( Δ  iy  )  (16.76)

 Δ  i   =  (sin ϕ)  ( Δ  ix  )  +  (cos ϕ)  ( Δ  iy  )  (16.77)

Similarly, by introducing Δjx and Δjy, respectively, to joint j (see Figure 16.11e 
and f ), the following expressions can be established:

 δ  j   =  (cos ϕ)  ( Δ  jx  )  −  (sin ϕ)  ( Δ  jy  )  (16.78)

 Δ  j   =  (sin ϕ)  ( Δ  jx  )  +  (cos ϕ)  ( Δ  jy  )  (16.79)

Together with two identity equations for joint rotations (θi = θi and θj = θj), 
the relationship between δ and Δ is
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   (16.80)

where s = sin ϕ, c = cos ϕ, and the 6 × 6 matrix is the transformation 
matrix T.

From Equation 16.74, the member stiffness matrix in global coordi-
nates is

 k =  T   T  k′ T 

i

iyΔ

ixΔ

(a)

i

j
j

jyΔ

jxΔ

x

y

�

�

Figure 16.11: (a) Member displacement com po nents in global coordinates; (b) member dis-
placement components in local coordinates; (c) lo cal dis placement components produced 
by a global dis placement Δix; (d) local displacement com ponents produced by a global dis-
placement Δiy; (e) Lo cal displacement components produced by a global displacement Δjx; 
and ( f ) local displacement components produced by a global displacement Δjy.
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k =    EI ___ L      

Nc2 + Ps2  sc(−N + P)  Qs  −(Nc2 + Ps2)  −sc(−N + P)   Qs
      Ns2 + Pc2      Qc   sc(N − P)     −(Ns2 + Pc2)   Qc
              4        −Qs          −Qc        2
Symmetric about main diagonal    Nc2 + Ps2     sc(−N + P)    −Qs
                        Ns2 + Pc2   −Qc
                                 4

 (16.81)

where k′ is from Equation 16.54, N = A/I, P = 12/L2, and Q = 6/L.

Assembly of a Structure Stiffness Matrix— 
Direct Stiffness Method

Once the individual member stiffness matrices are expressed in global co-
ordinates, they can be summed directly using the procedure described in 
Chapter 15. The combination of individual member stiffness matrices to 
form the structure stiffness matrix can be simplified by the introduction of 
the following notation in Equation 16.81. Partitioning after the third col-
umn (and row), we can write Equation 16.81 in compact form as 

  k =  [  
 k  N  m 

  
 k  NF  m  

  
 k  FN  m  

  
 k  F  m 

  ]   (16.82)

where the subscripts N and F refer to near and far joints for the member, respec-
tively, and the superscript m is the number assigned to the member in question 
in the structural sketch. The terms in each of the submatrices of Equation 16.82 
are readily obtained from Equation 16.81 and are not repeated here. 

To illustrate the assembly of the structure stiffness matrix by direct sum-
mation, let’s consider once again the frame shown in Figure 16.10. The stiffness 
matrix for this structure is derived in Example 16.4 and is labeled Equation 16.69. 

16.7
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Using the direct stiffness method, assemble the structure stiffness matrix 
for the frame in Figure 16.10a.

E X A M P L E  1 6 . 5

[continues on next page]
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Figure 16.12: (a) Frame with three degrees of freedom; (b) assembly of structure 
stiffness matrix from member stiffness matrices.

Solution
Figure 16.12a illustrates the structure and identifies the degrees of freedom. 
Note that the degrees of freedom are numbered in the order x, y, z and are 
shown in the sense of the positive direction of the global axes; this order is 
necessary to take advantage of the special form of Equation 16.82.

Since the frame considered has three joints, the total number of 
independent joint displacement components, before any supports are 
introduced, is 9. Figure 16.12b shows the stiffness matrices for the two 
members (expressed in the format of Equation 16.82), properly located 
within the 9 × 9 matrix space. Because of the specific support conditions, 
the columns and rows labeled S (support) can be deleted, thus leaving only 
a 3 × 3 structure stiffness matrix.
 As can be seen in Figure 16.12b, the structure stiffness matrix, in terms 
of the individual members, is given by 

 K =  k  F  1   +  k  N  2    (16.83)

where   k  F  1    refers to the submatrix of member 1 at far end, and   k  N  2    refers to 
the submatrix of member 2 at near end. The matrices in Equation 16.83 
are evaluated from Equation 16.81 as follows. For member 1, α = 53.13° 
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754  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

(positive since clockwise from local to global x axes); so s = 0.8 and c = 0.6. 
From the data in Example 16.4,

 N =   A __ I   =   0.72 ____ 24.0   = 0.03  in.   −2  

 P =   12 __ 
 L   2 

   =   12 ____ 
 600   2 

   = 33.33 ×  10   −6   in.   −2  

 Q =   6 __ L   =   6 ___ 600   = 0.01   in   .−1  

   EI __ L   =   24.0 ×  10   6  ________ 600   = 40,000 kip ⋅ in .

For member 2, α = 0°, s = 0, c = 1, and the values of N, P, Q, and EI 
are the same as in member 1. Substituting these numerical results into 
Equation 16.81, we compute 

  k  F  1   =  
[

  
432.85

  
−575.36

  
    −320

    −575.36        768.48      −240    
−320         

  
−240     

  
160,000

 
]

   (16.84)

and   k  N  2   =  
[

 
1200

  
0     

  
          0

          0  1.33        400    
      0

  
400          

  
160,000

 
]

   (16.85)

Finally, substituting Equations 16.84 and 16.85 into Equation 16.83, we 
obtain the structure stiffness matrix by direct summation.

 K =  
[

  
1632.85

  
−575.36

  
    −320

    −575.36     769.81         160    
−320     

  
160  

  
320,000

 
]

   Ans. (16.86)

The K matrix in the above equation is identical to Equation 16.69, which 
was derived in Example 16.4 using the unit displacement approach. 

21 3

2
1

3

21 3

2
1

3

Example 16.5 continues . . .
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 ■ Summary  755

Summary

 • For the analysis of an indeterminate beam or frame structure by the 
matrix stiffness method, a five-step procedure is presented in this 
chapter. The procedure requires that the structure be analyzed first 
as a restrained system. After the joint restraining forces are deter-
mined, the second part of the analysis requires the solution of the 
following equilibrium equation for the unrestrained (or original) 
structure:

 KΔ = F 

 where K is the structure stiffness matrix, F is the column vector of joint 
restraining forces but with the signs reversed, and  Δ  is the column vec-
tor of unknown joint displacements.

 • The structure stiffness matrix K can be assembled from the member 
stiffness matrices by the direct stiffness method. When only rotations at 
two end joints are considered, the 2 × 2 member stiffness matrix   

_
 k   is ex-

pressed by Equation 16.6, and the five-step solution process presented in 
Section 16.3 can be used to analyze an indeterminate beam or a braced 
frame when joint translations are prevented.

 • When joint translations are present, but axial deformation of the 
member can be ignored, the 4 × 4 member stiffness matrix based on 
the local coordinate system in Figure 16.5 given by Equation 16.42  
is used.

 • When both bending and axial deformations are considered, each joint 
has three degrees of freedom. The 6 × 6 member stiffness matrix k′ 
based on the local coordinate system in Figure 16.9 is presented in 
Equation 16.54.

 • For computerized applications, however, it is desirable to express the 
member stiffness matrix in a common (or global) coordinate system, 
such that a direct summation process can be used to establish the 
structure stiffness matrix K. The member stiffness matrix k, presented 
in Equation 16.81, in the global coordinate system can be constructed 
from k′ using the concept of coordinate transformation. Once the 
stiffness matrix k is established for each member, the structure stiff-
ness matrix K is formed by summing the member stiffness matrices 
(Section 16.7).
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756  Chapter 16 ■ Matrix Analysis of Beams and Frames by the Direct Stiffness Method

P16.1. Using the stiffness method, analyze the two-span 
continuous beam shown in Figure P16.1 and draw the 
shear and moment curves EI is constant.

PROBLEMS
P16.5. Analyze the frame in Figure P16.5 and draw the 
shear and moment curves for the members. Neglect axial 
deformation. EI is constant.

CBA

30ʹ20ʹ

w = 2 kips/ft

P16.1 

P16.2 

A

EI = constant

B

1

spring

2 3
C D

L

KS =
5EI
L3

L L

P16.6

16ʹ

8ʹ

10k

5k

8ʹ
12ʹ

8ʹ

CB

D

A

P16.4

6ʹ 6ʹ

8ʹ

10 kips

20 kips
6ʹ

CB

D

A

P16.5 

80 kips

C

B
A

8ʹ

6ʹ

6ʹ12ʹ

P16.2. Write the stiffness matrix corresponding to the 
degrees of freedom 1, 2, and 3 of the continuous beam 
shown in Figure P16.2.

P16.3. In Problem P16.2, find the force in the spring lo-
cated at B if beam ABCD supports a downward uniform 
load w along its entire length.

P16.4. Using the stiffness method, analyze the frame in 
Figure P16.4 and draw the shear and moment curves 
for the members. Neglect axial deformations. EI is 
constant.

P16.6. Using the stiffness method, analyze the frame in 
Figure P16.6 and draw the shear and moment curves for 
the members. Neglect axial deformations. EI is constant.
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P16.7. For the frame shown in Figure P16.7, write the stiff-
ness matrix in terms of the three degrees of freedom indi-
cated. Use both the method of introducing unit displace-
ments and the member stiffness matrix of Equation 16.36. 
Given: E = 30,000 kips/in.2; I = 500 in.4, and A = 15 in.2.

A

B C

1

2

3

10ʹ

10ʹ

P16.7 

P16.8. Solve Problem P16.7 using the direct summation 
of global element stiffness matrices.
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759

Table A.1: Properties of Areas

h

c

x

h
x

= 0

h

x

h

h

x

x

= 0

h

x

b

b

= 0

b

b

b

b

�

�

�

x

h1
h2

b

Shape Figure Area Centroidal  
Distance    ̄  x   

(a) Triangle

   bh __ 2      b + c __ 3   

(b) Right triangle
   bh __ 2      b __ 3   

(c) Parabola
   2bh __ 3      3b __ 8   

(d) Parabola

   bh __ 3      b __ 4   

(e) Third-degree parabola
   bh __ 4   

0.2b

(  f  ) Rectangle

bh    b __ 2   

(g) Trapezoid

   b __ 2    (h1 + h2)    b(2h1 + h2) __________ 3(h1 + h2)
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L

M1

L

M1

L

M1
M2

L

M1

ba

L

M3

L

M3

L

M3

L

M3
M4

L

M3

c d

L

M3
Parabola

L

M3Parabola

M1M3L    1 __ 2    M1M3L    1 __ 2    (M1 + M2)M3L    1 __ 2    M1M3L

   1 __ 2    M1M3L    1 __ 3    M1M3L    1 __ 6    M1M3(L + a)

   1 __ 2    M1M3L    1 __ 6    M1M3L    1 __ 6    M1M3(L + b)

   1 __ 2    M1(M3 + M4)L    1 __ 6    M1(M3 + 2M4)L
   1 __ 6    M1(2M3 + M4)L  

+    1 __ 6    M2(M3 + 2M4)L

   1 __ 6    M1M3(L + b)  

+    1 __ 6    M1M4(L + a)

   1 __ 2    M1M3L    1 __ 6    M1M3(L + c)
   1 __ 6    M1M3(L + d)  

+    1 __ 6    M2M3(L + c)

for c ≤ a: 

  (  1 __ 3   −   (a − c)2
 _______ 6ad  )  M1M3L

   2 __ 3    M1M3L    1 __ 3    M1M3L    1 __ 3    (M1 + M2)M3L    1 __ 3    M1M3  (L +   ab ___ L  )  

   1 __ 3    M1M3L    1 __ 4    M1M3L    1 ___ 12    (M1 + 3M2)M3L    1 ___ 12    M1M3  (3a +   a
2
 __ L  )  

MP

MQ

Table A.2: Values of Product Integrals   ∫ 
x=0

  
 x=L

    MQ MP dx

   1 __ 6    (M1 + 2M2)M3L

   1 __ 6    (2M1 + M2)M3L
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Table A.3: Moment Diagrams and Maximum Deflections

L

w

ΔMAX

ΔMAX =

wL
2

M

M

M
M

M

wL
2

(a) (e)

(b) ( f )

(c) (g)

(d) (h)

wL2

8

5wL4

384EI

L

P

ΔMAX

ΔMAX =

PL
4

L
2

L
2

P
2

P
2

PL3

48EI

L

P P

ΔMAX

ΔMAX = (3L2 – 4a2)

Pa

a a

PP

Pa
24EI

L

P

P
ΔMAX

ΔMAX = PL3

3EI
M = – PL

L

ΔMAX

ΔMAX (L + a)=

M
–Pa

a

P 1 +
Pa
L

a
L

Pa2

3EI

L

w

P

ΔMAX

ΔMAX =
–wL4

384EI

wL2

12

wL2

12– wL2

12

wL2

24

wL2

12

ΔMAX PL
8

PL

P
2

P
2

PL
8

PL
8– PL

8–

PL
8

L

P

ΔMAX = PL3

192EI

L

wL
ΔMAX

ΔMAX = wL4

8EI
– = MwL2

2

wL2

2

w

wL
2

wL
2
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Table A.4: Fixed-End Moments

A

M

B

(2a – b)+Mb
L2 (2b – a)+Ma

L2

(l)

a b

L

–11wL2

192 + 5wL2

192

w

A B

L
2

L

(e)

– 5wL2

96 + 5wL2

96A B
L
2

L
2

(h) w

–17wL2

384 +17wL2

384A B
L
2

L
2

(i)
w w

++

L2
6EI

L
4EI

4EI

B = 0

L
2EI

L2
6EI

A B

L

( j)

A = 0 B = 0

––
L2

6EI
L2

6EIΔΔ

L3
12EIΔ

Δ

L3
12EIΔ

A B

L

(k)

A B

P
a

L

Pb2a
L2 +Pba2

L2

b(b)

w

–wL2

20 +wL2

30A B

L

(g)

A B

w

–

L

wL2

12 +wL2

12

(d)

A B

w

L

a( f )

Note: clockwise moment is positive.

A B

FEMAB FEMBA
P

–

–

L
2

L

PL
8 +PL

8

(a)

A B

P P

L

(c)
+ (1 – )PL– (1 – )PL

L L

a

– w
12L

(L3 – 2a2L + a3) + w
12L

(L3 – 2a2L + a3)

α α
α αα α

� �

�

�

�

�

�
�
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A N S W E R S  TO  O D D - N U M B E R E D  P R O B L E M S

CHAPTER 2
P2.1 900 lb/ft
P2.3 1.66 kips/ft
P2.5  (a) 200 ft2, (b) 133.3 ft2, (c) 720 ft2, (d) 493.4 ft2  

(e) 600 ft2, (  f  ) 100 ft2

P2.7  (a) 0.6 kip/ft, (b) 0.4 kip/ft, (c) 6.19 kips, (d) 0.17 kip/ft 
and 2.91 kips

P2.9 20.0 kips; 60.1 kips
P2.11 (a) I = 20%, (b) 2,300 lb, (c) 1,000 lb
P2.13  Windward wall pressure for 0–15′ is 8.43 psf and 

15′–16′ is 9.17 psf. Windward roof pressure is 
p = 3.34 psf ↘

P2.15 (a) Windward wall pressure  p  0’   = 34.4 psf,
  p  35’   = 39.7 psf,  p  70’   = 44.7 psf,  p  105’   = 48 psf, 
  p  140’   = 50.7 psf.
P2.17 V = 810 kips
P2.19 313.6 lb/ft
P2.21 Fv = 33.8 kips, yes

CHAPTER 3
P3.1  R  AX   = 6 kips →,  R  AY   = 8.62 kips ↑,  R  BY   = 19.38 kips ↑
P3.3  R  AX   = 4.2 kN →,  R  AY   = 34.4 kN ↑
P3.5 RAX = 0, RAY = 0.83 kip ↓, RCY = 0.83 kip ↑
P3.7  M  A   = 12 kN ⋅ m ⤸,  R  CY   = 7 kN ↑, RDY = 3 kN ↓
P3.9  R  AX   = 1.33 kips ←,   R  AY   = 5 kips ↑,
  R  EX   = 4.67 kips ←,   R  EY   = 11 kips ↑
P3.11  R  AX   = 15 kips ←,  R  AY   = 7.5 kips ↑,  R  CY   = 81.5 kips ↑,
  R  DY   = 56 kips ↑,   R  BY   = 13 kips ↑,  R  BX   = 0
P3.13  R  AX   = 9 kN →,   R  AY   = 12 kN ↑,   R  GX   = 9 kN →,
  R  GY   = 0
P3.15  R  AY   = 4 kN ↑,   R  CY   = 80 kN ↑,   R  EY   = 4  kN ↑,
  M  E   = 16 kN ⋅ m ⤸
P3.17  R  AX   = 75 kN ←,   R  BY   = 152.25 kN ↑, 
  R  AY   = 39.75 kN ↑
P3.19  R  AX   = 450 kips →,  R  AY   = 675 kips ↑
P3.21 RAX = 5 kips ←, RAY = 10.44 kips ↓,
  R  DX   = 6.6 kips ←,   R  DY   = 2.44 kips ↑
P3.23 RAX = 21.6 kips →, RAY = 5.13 kips ↓,
 RCY = 0.27 kips ↓
P3.25 RAX = 6.25 kips →, RAY = 20 kips ↑, MA = 0,

  R  FX   = 6.25 kips ←,   R  FY   = 20 kips ↑
P3.27  R  AX   = 8 kips ←,   R  AY   = 65.83 kips ↑,
  R  DY   = 121.37 kips ↑
P3.29  R  AX   = 10 kN ←,   R  AY   = 90 kN ↑, RBY = 70 kN ↓,
  E  X   = 30 kN,  E  Y   = 105 kN
P3.31  R  AX   = 5.6 kips →,   R  AY   = 5.6 kips ↑,
  R  CX   = 25.6 kips ←,   R  CY   = 38.4 kips ↑,
  R  EX   = 20 kips →,   R  EY   = 40 kips ↑
P3.33  (a) Indeterminate 1°; (b) indeterminate 3°; (c) unstable; 

(d) indeterminate 2°; (e) indeterminate 3°; (f ) indeter-
minate 4°

P3.35  R  AX   = 20 kips ←,   R  AY   = 75 kips ↑,  M  A   = 760 kip ⋅ ft ⤸
  F  BF   = 29.73 kips  (C) ,   F  CG   = 11 kips  (C) 
  F  DE   = 64 kips  (T) 
P3.37  R  AX   = 0,   R  AY   = 100.8 kips ↑,  R  By   = 259.2 kips ↑,
  R  EY   = 257.3 kips ↑,   R  FY   = 132.7 kips ↑

CHAPTER 4
P4.1  (a) Stable, indeterminate to second degree; (b) Stable, 

indeterminate second degree; (c) geometrically unstable; 
(d) Stable, indeterminate to second degree; (e) geo-
metrically unstable; (f) stable, determinate; (g) stable, 
determinate; (h) unstable, concurrent reactions

P4.3 FAB = –90 kN, FAG = –120 kN, FDF = 0, FEF = –25 kN
P4.5  F  AJ   = 17.5 kips,   F  CD   = –15 kips,   F  DG   = –45.96 kips
P4.7  F  BC   = 141.4 kips,   F  BD   = –125 kips
P4.9 FAB = 38.67 kips, FAC = 4.81 kips
P4.11  F  AB   = –14.12 kips,   F  CE   = 30 kips
P4.13  F  BH   = –26.5 kips,   F  CG   = 6.5 kips,   F  EF   = 4.7 kips
P4.15  F  AB   = 104 kips,   F  CG   = 42.67 kips,   F  CF   = –20.87 kips
P4.17  F  AB   = 0,   F  GF   = 17.5 kips,   F  IC   = –3.54 kips
P4.19  F  AB   = –42 kN,   F  AD   = 0,   F  BF   = 59.4 kN
P4.21  F  AB   = –34.67 kN,   F  BG   = –2 kN,   F  ED   = 46.67 kN
P4.23  F  AB   = 123.8 kN,   F  AF   = –39.6 kN
P4.25   F  AB   = FGF = 25 kips, FJO = FHR = 0, FBK =  

FFN = 35.4 kips
P4.27 Unstable
P4.29  F  AB   = 24 kips,   F  FE   = 0
P4.31  F  CB   = –7.2 kips,   F  DB   = 5.625 kips
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P4.33  F  AB   = 14.85 kips,   F  CF   = –17.57 kips
P4.35  F  AB   = –18 kips,   F  BD   = 18 kips,   F  AD   = –30 kips
P4.37  F  BF   = 40 kips,   F  BI   = –135 kips,   F  CD   = 145 kips
P4.39  F  IJ   = –13.33 kN,   F  MC   = 6.67 kN
P4.41  F  AB   = 40 kips,   F  IH   = –50 kips,   F  GF   = –40 kips
P4.43 FAB = 5 kN, FIE = –48.47 kN, FCG = 12 kN
P4.45  F  AB   = –25 kN,   F  BC   = –20 kN,   F  CF   = –5 kN
P4.47  F  AB   = –30 kips,   F  DE   = –40 kips,   F  CI   = 8 kips
P4.49  F  AB   = –60 kN,   F  CE   = –150 kN
P4.51  F  AJ   = 30 kN,   F  JI   = 108.66 kN,   F  EH   = 40.75 kN

P4.53  Case 1, 
joint 2: δx = 0.702 in., δy = 0 in.  
Case 2: for A = 7 in.2, δx = 0.25 in.

P4.55  (a) F1 = –64.8 kips, F2 = –71.9 kips, F8,9 =  
54 kips, F10 = 24 kips, F11 = 21.5 kips, F12 = 0, 
ΔMIDSPAN = 0.987 in.; (b) F5,6 = 57 kips,  
M@jt.6 = 7.22 ft-kips, σMAX. = 68.6 ksi

CHAPTER 5
P5.1  (a) V = −14, M = 80 − 14x; (b) V = −14,  

M = −340 + 14x

P5.3 V = 1 −    x   2  __ 4   ; M = 12 + x −    x   3  __ 12  

P5.5 Origin at B, SEGMENT BC; 

 
V = −4 − 3x; M = −16 − 4x −   3 __ 2    x   2 

P5.7  SEGMENT BC; 0 ≤ x ≤ 3; Origin at B; 

 V = 17.83 −5x; M = −40 + 37.83x −   5 __ 2       (4 +  x     )    2 

P5.9 MEMBER BC; 0 ≤ x ≤ 16; Origin at B;
 M = −60 + 48x − 3  x   2 

P5.11  V  BC   =   2 __ 9    x   2  − 8.67,   M  BC   = 8.67x −   2  x   3  ___ 27  

P5.15  M  max   = 218.4 kip ⋅ ft
P5.17  M  max   = −650 kip ⋅ ft at D
P5.19  V  max    at D = 87.7 kips,
  M  max   = 481.3 kip ⋅ ft at 11.87 ft from D
P5.21  V  max    left of support C = 92 kips,
  M  max   = −462 kip ⋅ ft at support C
P5.23  R  DY   = 32 kips ↑,   R  EX   = 6 kips ←,   R  EY   = 22 kips ↑,
  M  max   = 170.67 kip ⋅ ft at 10.67 ft from D
P5.25  M  A   = 120 kN ⋅ m ⤹,  R  AY   = 15 kN ↑,  R  DY   = 15 kN ↑
P5.27  M  A   = 140 kip ⋅ ft ⤸,  R  AX   = 4 kips →,   R  AY   = 42 kips ↑
P5.29  R  AX   = 2 kips →,   R  AY   = 8 kips ↑,   R  CX   = 2 kips ←
P5.31  M  A   = 33.36 kN ⋅ m ⤸,  R  AY   = 13.33 kN ↑,
 BY = 11.67 kN ↓ RCY = 76.67 kN ↑, REY = 0
P5.33  R  BY   = 15.19 kips ↑,   R  CY   = 10.5 kips ↑,
   M  max   = 13.76 kip ⋅ ft at 2.62 ft from B on segment BC
P5.35  R  AY   = 18.85 kips ↑,   R  BY   = 85.49 kips ↑, 
  R  CY   = 27.66 kips  ↑

P5.37 max + M = 52.12 kip ⋅ ft, max − M = 47.96 kip ⋅ ft
P5.39 RAY = 10.4 kips ↓, RBY = 23.4 kips ↑, REY = 18.2 kips ↑,
 RFY = 5.2 kips ↓, Mmax = –104 kip ⋅ ft
P5.41  R  AY   =  R  HY   = 6 kips ↑,   M  max   = ±18 kip ⋅ ft
P5.43  R  AY   = 21 kips ↑,   R  DX   = 24 kips ←,  R  DY   = 3 kips ↑
P5.45  R  BY   =  R  CY   = 10 kips ↑,   M  max   = –42.7 kip ⋅ ft
P5.47  M  CB   = 120 kip ⋅ ft,   M  CE   = 200 kip ⋅ ft,
  M  CD   = –80 kip ⋅ ft, 
  M  A   = 120 kip ⋅ ft ⤹,  R  AY   = 20 kips ↓ REY = 40 kips ↑
P5.49 Member BE:  M  max   = 34.03 kip ⋅ ft,  M  BA   = 18 kip ⋅ ft,
  M  BC   = 0,   M  BE   = –18 kip ⋅ ft
P5.51  M  max   = 908.3 kip ⋅ ft,   V  max   = 244.8 kips.
P5.53  (a) indeterminate 2°, (b) unstable, (c) indeterminate 3°,  

(d) indeterminate 6°, (e) determinate, ( f ) indeterminate 9°
P5.55 Beam 1:  R  AY   =  R  BY   = 10.5 kips ↑
 Beam 2:  R  AY   =  R  CY   = 7.5 kips ↑
P5.57  (a)  R  1X   = 25.395 kips,   R  1Y   = 77.75 kips,   M  1   = 0 

 R  4X   = –31.395 kips,   R  4Y   = 82.25 kips,   M  4   = 0
  (b) Vertical deflection at midspan of girder = 1.179 in. 

Round the camber to 1   1 __ 4   in. for practical  
applications

CHAPTER 6
P6.1  A  Y   = 60 kips,   A  X   = 75 kips,  T  AB   = 96 kips, 
  T  BC   = 80.78 kips, cable length = 114.3 ft.
P6.3 AY = 400 kips, AX = 447.4 kips, hB = 44.7 ft
P6.5  A  X   =  B  X   = 2160 kips,   A  Y   = 0,   B  Y   = 1440 kips,
  T  max   = 2531.4 kips
P6.7 T = 28.02 kips
P6.9 Cable force = 38.2 kips, post force = 15 kips
P6.11 hB = 7.2′, hC = 14′, hD = 15.3′
P6.13  A  X   = 78.75 kN,   A  Y   = 18 kN,   T  max   = 80.78 kips
P6.15  Required weight of tension ring = 11.78 kips, Tmax = 

25.28 kips, ACABLE REQUIRED = 0.23 in.2
P6.17 T = 969.33 kips for h = 12 ft; 
 T = 576.28 kips for h = 24 ft;
 T = 486.6 kips for h = 36 ft;
 T = 424.53 kips for h = 48 ft;
 T = 402.5 kips for h = 60 ft
P6.19  A  X   = 48.3 kN →,   A  Y   = 48.3 kN ↑, 
  C  X   = 48.3  kN ←,   C  Y   = 88.26 kN ↑
P6.21  A  Y   = 27.29 kips,   C  Y   = 12.71 kips, T = 16.95 kips
P6.23  A  X   = 20 kips →,   A  Y   = 30 kips ↑,
  E  X   = 20 kips ←,   E  Y   = 30 kips ↑,
  F  B   = 25 kips ↙,  V  B   = 0  , M  B   = 0, 
  F  D   = 34 kips ↘,  V  D   = 12 kips ↙,  M  D   = 75 kip ⋅ ft ⤸
P6.25  A  X   = 30.5 kN →,  A  Y   = 38.75 kN ↑,  C  X   = 12.5 kN ←,
  C  Y   = 21.25 kN ↑
P6.27 Case A:  A  X   = 67.5 kN →,  A  Y   =  G  Y   = 45 kN ↑,
  G  X   = 67.5 kN ←,  F  AM   = 22.5 kN,   F  BL   = 15 kN,
  F  ML   = 22.5 kN,  F  LK   =  F  KD   = 67.5 kN
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 Case B:  A  X   = 37.5 kN →,   A  Y   = 25 kN ↑, 
  G  X   = 97.5 kN ←,  G  Y   = 65 kN ↑,  F  DE   = 205.55 kN,
  F  EF   = 156.21 kN,   F  FG   = 137.88 kN
P6.29 P = 46.67 kN,   y  1   = 8 m
P6.31  y  B   = 7.73 m,  y  C   = 11.7 m,  y  E   = 5.4 m
P6.33 max.   Δ  X   = 4.23 in. → at joint 4,
 max.   Δ  Y   = 5.88 in. ← at joint 18

CHAPTER 7
P7.1 θB = –PL2/2EI, ΔB = PL3/3EI
P7.3 Δmax at x = 0.4725L;
 Δmax = – 0.094ML2/EI
P7.5  θ  A   =   ML ___ 24   ,   θ  C   =   ML ___ 24  

P7.7  θ  B   =  θ  C   = –960/EI,   v  B   = 3840/EI ↑,  v  C   = 7680/EI ↑
P7.9 θA = 13.33/EI, θC = 40/EI, vB = 106.67/EI ↑
P7.11 θA = 360/EI, ΔA = 1800/EI ↓,
  Δ  E   = 540/EI ↑ at midspan
P7.13 θA = 109PL2/1152EI, ΔB = 11PL3/512EI ↓
P7.15 θC = –282/EI, ΔC = 1071/EI ↓
P7.17 θB = 0, ΔB = 0.269 in. ↓, θD = 0, ΔD = 0.269 in. ↓
P7.19 P = 5.184 kips
P7.21  Δ  DH   = 216/EI →,   Δ  BV   = 0
P7.23 ΔCV = 3163.4/EI ↓,
  Δ  CH   = 5723.4/EI in. ←
P7.25  Δ  C   = 1728/EI ↑
P7.27 θA = 450/EI, ΔDH = 2376/EI →, ΔDV = –1944/EI ↓
P7.29  θ  B   = 0.0075 rad,   v  D   = 0.07 m ↑
P7.31 Δ = 18,755.67/EI ↑
P7.33 θC = –67.5/EI, ΔC = 175.5/EI ↓, Δmax = 54/EI ↑
P7.35 K = 3.20 EI/L for M@A, K = 5.33 EI/L for M@B
P7.37  Δmax,B−D = 1190/EI, θ−

 B = 178.5/EI, θ+
 B =  

−140.8/EI
P7.39 θBL = 90/EI, θBR = 95/EI, ΔB = 720/EI ↓
 Δmax = 1272/EI ↓
P7.41 θB = 0, ΔB = 0.269 in. ↓
P7.43  θ − C = 10.4/EI, θ −+ C = 104.17/EI, ΔC =  

41.65 mm ↓
P7.45 0.27 in. ↑

CHAPTER 8
P8.1  δ  BH   = 0.70 in. →,   δ  BV   = 0.28 in. ↑
P8.3  δ  CH   = 0.02 m →,   δ  CV   = 0
P8.5 δBH = 0.298 in. →, δBV = 0.149 in. ↓
P8.7 P = 1.488 kips
P8.9 δBV = 1.483 in. ↓
P8.11 δCV = 0.41 in. ↓, δCH = 0
P8.13 (a) δDV = 0.895 in.; (b) δBH  = 8/3 in.
P8.15  (a)  δ  EH   = 0.18 in. →,  δ  EV   = 0.135 in. ↑; 

(b)  δ  EV   = 0.81 in. ↑
P8.17  δ  CV   = 8.6 in. ↑,   δ  CH   = 15.4 in. →
P8.19 δ = 0.86 in. ↓ at midspan,  θ  A   = 0.00745 rad.

P8.21 δB = 11,042.8/EI ↓, θC = 626.3/EI
P8.23 δC = 1.034 in. ↓
P8.25  δ  AH   = 2 in. →
P8.27 (a) δBH = 1 in. →, δBV = 3/4 in. ↓;
 (b) Δ  θ  BC   = 0.004167 rad
P8.29 δCH = 25.4 mm →, δCV = 30.3 mm ↓
P8.31  θ  B   = 0.00031 rad,   δ  CH   = 44.1 mm →
P8.33 δBH = 1.175 in. →, δBV = 0.883 in. ↓
P8.35 δCV = 76.3 mm ↓
P8.37 δBV = 1.13 in. ↓ δCH = 0.096 in. ←
P8.39 (a) δBV = 0.59 in. ↓; (b) ΔLDE = 4 in. (shorten)
P8.41  δ  BH   = 92.5 mm →
P8.43  δ  C   = 206.2 mm ↓
P8.45  (a) 72.5% increase, 23.5% decrease; (b) 15.9% 

increase, 29.6% decrease; (c) values in column 7

CHAPTER 9
P9.1 MA = 90.72 kip ⋅ ft ⤹, RAY = 20.45 kips ↑,  
 RCY = 15.55 kips ↑
P9.3  M  A   = 3.75 kN ⋅     m ⤹,  R  AY   = 3.375 kN ↑,
  R  CY   = 3.375 kN
P9.5  R  AY   = 6.71 kips ↑,  M  A   = 40.65 kip ⋅ ft ⤹,
 RCY = 6.71 kips ↓ If I is constant,  M  A   = 30 kip ⋅ ft ⤹
P9.7 Ay = Cy = 9.1 kips, By = 11.8 kips
P9.9 (a)  Ay = 18.9 kips ↑, MA = 31.5 kip-ft ⤹, By =  

21.1 kips ↑
P9.11   R  AY   = 0.559 kips ↑,  M  A   = 8.39 kip-ft ⤹ ↓
P9.13  M  A   = 5w  L   2  /16 ⤹,  R  AY   = 13wL/16 ↑,   R  CY   = 3wL/16 ↑,
  M  C   = 3w  L   2  /16 ⤸
P9.15 (a)  R  AY   = 6.5 kips ↑,   R  BY   = 11 kips ↑,
 RCY = 1.5 kips ↓;
 (b)  R  AY   = 6.75 kips ↑,   R  BY   = 10.5 kips ↑,
 RCY = 1.25 kips ↓
P9.17 (a) RAY = 0.787 kips ↑, RBY = 1.967 kips ↓, 
  R  CY   = 1.18 kips ↑
 (b)  R  AY   = 1.925 kips ↑,   R  BY   = 3.187 kips ↑, 
  R  CY   = 10.89 kips ↑
P9.19  R  AY   =  R  BY   = wL/2 ↑,  M  A   = w  L   2  /12 ⤹,  M  B   = w  L   2  /12 ⤸
P9.21  M  A   = 140 kN ⋅ m ⤹,  R  AY   = 34 kN ↑,   R  BY   = 6 kN
P9.23 Ay = Cy = By = 14 kips ↑, MA = −MC = 24.5 kip-ft
P9.25  R  AX   = 32.9 kips ←,  R  AY   = 35.33 kips ↑,
  R  DY   = 84.67 kips ↑,  R  CX   = 32.9 kips →,
  F  AB   = −58.9 kips,   F  BC   = 41.1 kips, 
  F  AE   =  F  ED   = 80 kips,   F  BE   = 120 kips,
  F  BD   = −100 kips,  F  CD   = −24.67 kips
P9.27 RAX = 1.89 kN →, RAY = 2.25 kN ↓,
  R  CX   = 31.89 kN ←,   R  CY   = 20.25 kN ↑,
  F  AB   = 6.8  kN,   F  BC   = −30.7 kN,   F  BD   = 14.34 kN,
  F  AD   =  F  CD   = −7.54 kN
P9.29  R  AX   = 30.95 kN ←,  R  AY   = 80.42 kN ↑, 
  R  CX   = 30.95 kN →,  R  CY   = 139.58 kN ↑,
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  F  AB   = −29.4  kN,   F  BC   = 45 kN,  F  CD   = −75 kN,  
  F  AE   = 100.53 kN,   F  BE   = 24.47 kN,  
  F  BD   = −99.47 kN,   F  DE   = 45.63 kN
P9.31 ΔAH = 0, ΔAV = 4.69 mm ↓
P9.33 (a) RAX = 30 kips ←, RAY = 14.2 kips ↓,
 RBY = 5.9 kips ↑, RCY = 8.3 kips ↑ 
 FAB = FBC = 11.07 kips, FAD = 23.7 kips,
 FCD = −13.83 kips, FBD =−5.9 kips; 
 (b)  R  AX   = 30 kips ←,   R  AY   = 13.57 kips ↑,
 RBY = 49.64 kips ↓, RCY = 36.07 kips ↑ 
  F  AB   =  F  BC   = 48.1 kips,   F  AD   = −22.6 kips, 
  F  CD   = −60.1 kips,  F  BD   = 49.64 kips
P9.35 FAB = −12.4 kips, FAD = 15.5 kips, FBD = −18.6 kips
P9.37 RAY = 45.4 kN ↓, RCY = 136.1 kN ↑, RCX = 68 kN←, 
 REY = 90.7 kN ↓, REX = 68 kN →, FAB = 45.4 kN,
 FBC = −81.78 kN, FBD = 68 kN,
  F  CD   = −90.7 kN,   F  DE   = 113.3 kN
P9.39  R  AX   = 15.74 kips ←,   R  CX   = 15.74 kips →,  
  R  CY   = 60 kips ↑,  M  C   = 60.54 kip ⋅ ft ⤸

P9.41  R  AX   = 4.6 kips →,   R  AY   = 2.3 kips ↑, 
  R  CX   = 4.6 kips ←, RCY = 2.3 kips ↓
P9.43  R  AX   = 4 kips ←,   M  A   = 36 kips ⋅ ft 

⤺

, 
 RAY  0.7 kips ↓,  R  CY   = 0.7 kips ↑
P9.45 (a) RAY = 15 kips ↓, REY = 52.5 kips ↑, 
  R  DY   = 22.5 kips ↑,
 (b) ΔC = 1.04 in. ↓
P9.47  R  AY   = 38.4 kips ↑,   R  AX   = 7.26 kips →,  
  R  DX   = 7.26 kips ←,  R  DY   = 38.4 kips ↑
P9.49 REY = 232.18 kips ↑, RDY = RFY = 116.09 kips ↓

CHAPTER 10
P10.1 FEMAB = −3PL/16, FEMBA = 3PL/16
P10.3 MA = 124.4 kip ft ⋅ ⤹, RAY = 32.3 kips ↑, RBY = 27.7 kips ↑
P10.5 RAX = 3.5 kips →, MA = 14 kip ⋅ ft ⤸,
 RAY = 46.9 kips ↑ RCX = 3.5 kips ←,
 RCY = 37.1 kips ↑, MC = 162.4 kip ⋅ ft⤸
P10.7 RBY = 7.07 kips ↑, RCY = 20.57 kips ↑,
 RDY = 3.64 kips ↓ MD = 9.71 kip ⋅ ft ⤹
P10.9 RAY = 29.27 kips ↑, MA = 108.4 kip ⋅ ft,
 RBY = 30.73 kips ↑, ΔC = 0.557 in. ↓
P10.11 MAB = 48 kip ⋅ ft ⤹, MBA = 84 kip ⋅ ft ⤸,
 RAY = 12.7 kips ↓, RBY = 41.3 kips ↑,
P10.13 MA = 11.4 kip ⋅ ft ⤹, RAX = 4.6 kips ←,
 RAY = 1.4 kips ↑ MB = 4.55 kip ⋅ ft ⤸
P10.15 MA = 76.56 kN ⋅ m ⤹, RAY = 12.312 kN ↑,
 RCY = 21.024 kN ↓
P10.17 MA = 77.94 kN ⋅ m ⤹, RAX = 55.636 kN ←,
 RAY = 11.031 kN ↑, RCX = 44.364 kN ←,
 RCY = 11.031 kN ↓
P10.19 RAX = 0.62 kN →, RAY = 22.715 kN ↑,
 MA = 4.84 kN ⋅ m ⤸, RBX = 1.96 kN ←,
 RBY = 54.245 kN ↑, MB = 3.92 kN ⋅ m ⤹

P10.21 RAX = 2.53 kips →, RAY = 18.29 kips ↑,
 MA = 94.12 kip ⋅ ft ⤹, REX = 1.62 kips →,
 REY = 30.25 kips ↓, ME = 5.4 kip ⋅ ft ⤸
 RDX = 4.15 kips ←, RDY = 11.96 kips ↑,
 MD = 20.7 kip ⋅ ft ⤹
P10.23 RAX = 2.67 kips ←, RAY = 34.08 kips ↑,
 MA = 76.66 kip ⋅ ft ⤹, RDX = 2.67 kips →,
 RDY = 40.92 kips ↑
P10.25 RAX = 1.12 kips →, RAY = 1.495 kips ↑,
 MBA = 13.45 kip ⋅ ft
P10.27 MA = 61.2 kip ⋅ ft ⤹, RAX = 26.7 kips ←,
 MC = 119.9 kip ⋅ ft ⤸, RCX = 73.4 kips ←,
 MD = 14.2 kip ⋅ ft ⤹, RDY = 5.3 kips ↓
P10.29 RAX = 1.3 kips ←, RAY = 4.1 kips ↓,
 RDX = 1.3 kips →,
 RDY = 4.1 kips ↑, MD = 9.3 kip ⋅ ft ⤹
P10.31 MAB = −76.4 kN ⋅ m, MBA = −28.64 kN ⋅ m,
 RAX = 35 kN ←
P10.33 MBA + MBC = 0, MCB + MCE − 16 = 0, MEC = 0,

 2 −    MAB + MBA __________ 12    +    MCE ____ 8    = 0

P10.35  (a) Indeterminate 3°: θA, θB, θC; (b) Indeterminate 
3°: θB, θC, θD,; (c) Indeterminate 6°: θA, θB, θC, θD, 
θE, θF; (d) Indeterminate 13°: 10 joint rotations and 
3 degrees of sidesway

CHAPTER 11
P11.1 RAY = 16.53 kips ↑, MA = 83.56 kip ⋅ ft ⤹,
 MB = −72.89 kip ⋅ ft, MC = 59.56 kip ⋅ ft ⤸,
 RCY = 23.17 kips ↑, RBY = 40.3 kips ↑
P11.3 RAY = 50.81 kips ↑, MA = 94.4 kip ⋅ ft ⤹,
 RBY = 46.74 kips ↑, RCY = 64.04 kips ↑,
 RDY = 38.42 kips ↑
P11.5 RBY = 22.94 kips ↑, RCY = 57.45 kips ↑,
 RDY = 19.61 kips ↑, MD = 12.94 kip ⋅ ft ⤸
P11.7 RAY = 4.64 kips ↓, MA = 13.9 kip ⋅ ft ⤸,
 RBY = 17.97 kips ↑, MB = −27.86 kip ⋅ ft,
 RCY = 40 kips ↑, MC = −47.96 kip ⋅ ft,
 RDY = 12.67 kips ↑
P11.9 RAY = 34.87 kips ↑, RBY = RCY = 93.13 kips ↑,
 RDY = 34.87 kips ↑ MB = MC = −164.33 kip ⋅ ft
P11.11 MA = 80.47 kip ⋅ ft ⤻, MD = 80.47 kip ⋅ ft ⤸,
 RAX = 16.14 kips ←, RAY = RDY = 30 kips ↑
P11.13 VA = VB = 3.25 kips, MA = MB = −4.58 kip ⋅ ft
P11.15 MA = MD = −17.4 kip ⋅ ft, MB = MC = −16.8 kip ⋅ ft
P11.17 RAY = 7.2 kips ↑, REY = 12.8 kips ↑,
 REX = 4.2 kips ←, ME = 16.88 kip ⋅ ft ⤹
P11.19 RAX = 3.5 kips →, RAY = 10 kips ↑,
 RDX = 3.5 kips ←, RDY = 10 kips ↑,
 MB = MC = −36.4 kip ⋅ ft
P11.21 RAY = 6.25 kN ↓, RCY = 62.5 kN ↑, RDY = 6.25 kN←
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P11.23 MA = 17.62 kip ⋅ ft ⤹, MB = 35.24 kip ⋅ ft,
 MC = 151 kip ⋅ ft ⤸, RAX = 4.4 kips←,
 RAY = 7.76 kips ↓
P11.25 RAY = 2.21 kips ↓, RAX = 0.69 kip →,
 MA = 13.25 kip ⋅ ft ⤸, RDX = 1.71 kips←,
 RDY = 14.71 kips ↑, RCX = 1.03 kips→,
 RCY = 11.5 kips ↑
P11.27 RAX = 8.1 kips←, RAY = 4.7 kips ↓,
 MA = 58.2 kip ⋅ ft ⤹, RFX = 13.8 kips←,
 RFY = 0, MF = 93.6 kip ⋅ ft ⤹, MCB = 35.9 kip ⋅ ft,
 MCF = 71.8 kip ⋅ ft, ΔBH = 0.71 in. →
P11.29 RAX = 7 kips→, RAY = 39.8 kips ↑,
 MA = 36.96 kip ⋅ ft ⤸, RDX = 9.4 kips←,
 RDY = 40.2 kips ↑, MD = 52.14 kip ⋅ ft ⤹
P11.31 RDY = RFY = 50 kN ↑, MA = −44.44 kN ⋅ m,
 MB = 55.56 kN ⋅ m, Δ = 3.56 mm

CHAPTER 12
P12.1  RA, ordinates: 1 at A, 0 at D; Mc: 0 at A, 5 kip ⋅ ft  

at midspan
P12.3  R  A  : 1 at A, −   2 __ 7    at D;  M  B   : 0 at A,    24 __ 7    at B;  V  C   : −   4 __ 7    at B,
 −   2 __ 7   at D
P12.5  V  E   : 0.5 at C, −   1 __ 2    at G

P12.7  R  A   , ordinates:    3 __ 2    at B, 1 at C, 0 at D, −   1 __ 2    at E;

  R  D   , ordinates: −   1 __ 2    at B,  0 at C, 1 at D,   3 __ 2    at E;

  M  D   : −5 at E;  M  C   : −5 at B;  V  C   :    1 __ 2    at B, −   1 __ 2    at E
P12.9  F  CE   : 0 at A, −2.29 at D;
  R  AY   : 1 at A,    1 __ 2    at B, 0 at C, −0.375 at D; 
  M  B   : 0 at A, 2 at B, 0 at C, −1.5 at D
P12.11  M  A   : 0 at A, −12 kip ⋅ ft at B, 6 kip ⋅ ft at D;
  R  A   : 1 at A, 1 at B, −   1 __ 2    at D;

P12.13  R  C   : 0 at A,   7 __ 5    at B,   1 __ 2    at D;
  M  D   : 0 at A, −8 kip ⋅ ft at B, 5 kip ⋅ ft at D
P12.15   R  A   : 1 at A, 0.8 at B, 0.5 at midspan CD;  

MB: 0 at A, 3 at B, 2.8 at midspan CD;
  V  AB   : 0 at A, 0.8 at B, 0.7 at midspan CD; 
P12.17  V  BC   : −2 at A, 0.625 at hinge, 0.25 at D;
  M  C   : −8 at A, 10 at hinge
P12.19  R  I   : 1 at B,    2 __ 3    at C; V (to the right of I) :    2 __ 3    at C;
  V  CE   : −   1 __ 2    at D, −   1 __ 3    at C,    1 __ 3    at E
P12.21  R  A   : 0.8 at B, 0.4 at D;  M  D   : 2 at B, 6 at D; 
  V  A   : 0.8 at B, 0.4 at D
P12.23  A  Y   : 1.0 at A, 0.342 at B, 0 at C;
  A  X   : 0 at A, 0.658 at B, 0 at C
P12.25   R  A   : 1 at A, −1 at B, 0 at C;  R  F   : 0 at A, 2 at B, 0 at C;
  V  1   : −0.75 and 0.25 at Section 1, −1 at B; 
  M  1   : 0 at A, 0.375 at Section 1, −15 at B; 
 RA = 200 kN ↓, RF = 800 kN ↑

P12.27  Ordinates for  A  X   : 0 at B, 0.28 at Section 1, 0.667 at 
C, 0 at D;

  Ordinates for  A  Y   : 1 at B, 0.979 at Section 1, 0.5 at C, 
0 at D;

  Ordinates for  M  Section 1   : 0 at B, 0.479 at Section 1, 
–11.5 at C, 0 at D

P12.29 Ordinates for  F  DE   : 0, −   1 __ 4   , −   1 __ 2   , −   3 __ 4   , −1, −   1 __ 2   , 0;
 Ordinates for  F  DI   : 0, −0.208, −0.417, −   5 __ 8   , 
 0.417, 0.208, 0;
 Ordinates for  F  EI   : 0, 0.083, 0.167, 0.25, 0.33, 0.167, 0;
 Ordinates for  F  IJ   : 0,    3 __ 8   ,    

3 __ 4   ,  1.12,    3 __ 4   ,    
3 __ 8   , 0

P12.31  FAD = −    5 __ 11    at B, FEF = − 0.566 at B, FEM = 0.884 at 
M, FNM = −    3 _ 4    at B

P12.33  FHD = −0.373 at C and 0.559 at D; FHC = 0.667 at C 
and −0.250 at D; 

  FHD: max. tension = 13.71 kips, max. compression = 
−7.71 kips

P12.35  F  CD   = −   2 __ 3    at L and +   2 __ 3    at J;  F  BL   = −  √ 
__

 2   /3 at M and J
P12.37 Load at C:   F  BC   = 0,   F  CA   = −0.938 kip,
  F  CD   = 0.375 kip,  F  CG   = 0.375 kip
P12.39 Load at C:   F  AL   = 0,   F  KJ   = 0.75 kips
P12.41  M  max   = 208.75 kip ⋅ ft,  V  max   = 33.33 kips
P12.43 (a)  V  max   = 49.67 kN,  M  max   = 280.59 kN ⋅ m;
 (b) at midspan  M  max   = 276 kN ⋅ m
P12.45  M  max   = 323.26 kip ⋅ ft,   V  max   = 40.2 kips
P12.47 at B, V = 60 kN; at C, V = 39 kN; at D, V = 24 kN
P12.49  (a) Δmax = 107,400,000/EI ↓ at 2.4 ft right of left 

wheel load
P12.51  RA: 1, 0.844, 0.500, 0.156;
 MA: 0, 5.625, 5, 1.875;
 MB: 0, 2.81, 0, −0.31;
 Max RA = 85.31
P12.53 (b) 887 kip-ft; (c) 179.8 kip-ft
P12.55  (a) Load middle beam of roof and 2nd floors, and 

left beam of 3rd floor; (b) load left and middle 
beams all levels

P12.57 (a) 0.28 kips; (b) −1 kip-ft
P12.59  (a) Ordinates for RA: 0, 0.927, 0.745, 0.5, 0.255, 

0.073, 0; Ordinates for MA: 0, −10.66, −14.26, 
−12.32, −7.17, −2.2, 0

 (b) RA = 32.35 kips, MA = 674.2 kip ⋅ ft

CHAPTER 13
Note: Since the approximate analysis for Problems P13.1 through
P13.9 requires an assumption, individual answers will vary.
P13.1 For assumption P.I. in span AB = 0.25L = 6 ft,
 MB = −360 kip ⋅ ft. By moment distribution: MB = 
 −310 kip ⋅ ft
P13.3 For assumption P.I. = 0.2L = 8 ft to right of joint B:
 AX = 8.48 kips, AY = 18.18 kips, MB = 127.2 kip ⋅ ft,
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  and CY = 5.82 kips. By moment distribution: CX = 
8.85 kips, CY = 5.68 kips, MB = 132.95 kip ⋅ ft

P13.5 For assumption P.I. = 0.2L = 2.4 ft to supports C and
 D in span CD: max + moment = 13.0 kip ⋅ ft, MC = 
 23.0 kip ⋅ ft. By moment distribution, max. + moment = 
 14.4 kip ⋅ ft, MC = 21.6 kip ⋅ ft
P13.7 For assumption P.I. = 0.25L left side of center support
 and P.I. = 0.2L out from wall; RB = 54.15 kips, RC =
  99.17 kips, and MD = 95.9 kip ⋅ ft. By moment distri-

bution: RB = 56.53 kips, RC = 93.79 kips, and MD = 
91.97 kip ⋅ ft

P13.9 For assumption P.I. = 0.2L in grider: MA = 306.4 kip ⋅ ft,
 AX = 183.84 kips, AY = 91 kips. By moment distribution:
 MA = 315.29 kip ⋅ ft, AX = 189.18 kips, AY = 91 kips
P13.11 Analyze truss as a continuous beam: RB = 59.4 kips,
 FB = 18.9 kips compr, FD = 34.88 kips
P13.13 BD: F = 25.0 kips compr; CB: F = 15.0 kips compr;
 CD: F = 0 kip
P13.15  For assumption P.I. = 0.2L = 2.4 ft to supports C 

and D in span CD: max. + moment = 13.0 kip ⋅ ft, 
Mc = 23.0 kips ⋅ ft. By moment distribution, max. + 
moment =14.4 kip ⋅ ft, Mc = 21.6 kip ⋅ ft.

P13.17 MBE = 330 kip ⋅ ft, MCD  = 90 kip ⋅ ft,  
 FAB = 33.6 kips for both methods
P13.19  Top end of column AF (a) M = 300 kN ⋅ m, shear =  

50 kN, P =−140 kN, (b) M = 131.3 kN ⋅ m,  
V = 21.9 kN, P = −61.3 kN, (c) M = 312.3 kN ⋅ m,

 V = 52.1 kN, P = −161.9 kN
P13.21 (a) Ax = 5 kips, Ay = 6.67 kips, Column moment at
 B = 75 kip ⋅ ft; (b) FBL = +20 kips, FCD = −18.33 kips;
  (c) Ax= 4.9 kips, Ay = 6.67 kips, Column moment at 

B = 73.8 kip ⋅ ft, FBL = +19.7 kips, FCD = −18.10 kips

CHAPTER 14
P14.1 (a) K = 476.25 kips/in. (b) Δ = 0.050 in.
 (c) FAB =  FAD = 10.08 kips, FAC = 7.87 kips
P14.3 K2x = 666.6 kips, K2y = 249.93 kips
P14.5 MA = 7.33 kip ⋅ ft ⤸. MC = 143.42 kip ⋅ ft ⤸,
 RAX = 1.17 kips ←, RAY = 11.91 kips ↑,
 RCX = 10.83 kips ←, RCY  = 18.09 kips ↑
P14.7 K2  = −   5 _ 3    EI, MCD = −67.2 kN ⋅ m,
 AX = 2.7 kN, MDC = 74.4 kN ⋅ m
P14.9 Joint 3: F = 42.96 kips; joint 1: Rx = 25.78 kips,
 RY = 1.62 kips; M = 19.42 kip ⋅ ft
P14.11 RAX = 8.187 kips →, RAY = RDy = 48 kips ↑,
 RDX = 8.187 kips ←, MA = 49.12 kip ⋅ ft ⤸,
 MD = 49.12 kip ⋅ ft ⤹

CHAPTER 15
P15.1 ΔX = −96L/AE; ΔY = −172L/AE
P15.3 Joint 1: ΔX = 0.192 in. →, ΔY = 0.865 in. down
P15.7 Joint 3: ΔX = 0.152 in. →, ΔY = 0.036 in. ↓;
 Joint 4: ΔX = 0.216 in. →, ΔY = 0.036 in. ↑

CHAPTER 16
P16.1 MA = 13.89 kip ⋅ ft, AY = 12.08 kips, BY = 63.66 kips,
 CY = 24.26 kips
P16.3 Force in the Spring = 0.208 wL
P16.5 MA = 151.579 kip ⋅ ft ⤹, RAY = 47.895 kips ↑
 RAX = 31.184 kips →, VBC = 5.684 kips

P16.7 [K ] =   
[
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0
  

−6250
   0  3854.2  6250    

−6250
  

6250
  

1,000,000
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A
AASHTO. See American Association of State Highway and Transportation 

Officials (AASHTO)
Absolute flexural stiffness, 303, 471, 511, 513–515
Absolute maximum live load moment, 562–566
Abutments, 14
ACI. See American Concrete Institute (ACI)
Actual loads (P-system), 326, 344, 364, 406
Actual magnitude, 382
AFPA. See American Forest & Paper Association (AFPA)
AISC. See American Institute of Steel Construction (AISC)
American Association of State Highway and Transportation Officials 

(AASHTO), 27, 555
Dynamic Allowance Factor, 41
HL-93 design load, 40, 555
LRFD Bridge Design Specifications, 40
truck, 247

American Concrete Institute (ACI), 28
American Forest & Paper Association (AFPA), 28
American Institute of Steel Construction (AISC), 28, 305
American Railway Engineering and Maintenance-of-Way Association 

(AREMA), 28, 41–42, 556
Cooper E80 railroad loadings, 42
Manual for Railway Engineering, 41

American Society of Civil Engineers standard (ASCE standard), 28, 33, 36–38, 
42, 45–46, 50, 55, 56, 64, 65, 68, 70

Anchor bolts, 21
Anemometers, 46
Angle changes for beam deflection, 280
Angular displacement, 321
Approximate analysis, 605–652

approximate solution, 606
axial loads, 630
beam, 607–613, 628–632
cantilever method, 648–652
columns, 632–636
continuous beam, 607–613
continuous truss, 617–622
deflections, estimating for trusses, 623–624
double diagonals, trusses with, 625–627
end moments, estimating values of, 611–613
frame, 638–639
gravity load, 607–613, 628–636
indeterminate structures, 605–652
inflection points, guessing location of, 607–610
lateral load, 637–639
multistory rigid frame, 628–636
pin-supported frame, 637–638
portal method, 640–647

rigid frame, 613–616
shear and moment in beams, 630–632
structural solution, 606
unbraced frames, 637–639
vertical load, rigid frame for, 613–616
Vierendeel truss, 645–647

Arches, 14, 245–255
abutments, 14
barrel, 247
bending deflection of, 14
bridge design using, 8, 14, 245–247
buckling, 245–247
compression, 14
fixed-ended, 245
funicular shape of, 249–251, 252–255
general cable theorem, 245
railroad bridge, 245
ribs, 245–246
structural optimization, 245
tensile bending stresses, 247
three-hinged, 247–249
types, 245–247
uniformly distributed load supported, 252–255

AREMA. See American Railway Engineering and Maintenance-of-Way 
Association (AREMA)

ASCE standard. See American Society of Civil Engineers standard (ASCE standard)
Axial forces, 180
Axial load, 135
Axially loaded members

in compression, 11
hangers, 10
suspension cables, 10
in tension, 10–11

B
Barrel arches, 247
Bars, 131, 135

direct stiffness method, 699
forces, 136, 137–141, 398, 690, 710
inclined truss, 699–710
inspection, determination of forces by, 137–139
member stiffness matrix, 690–691
method of joints for, 140–141
strain energy, 323
truss, 322–324, 691–692
zero, 140–141

Base determinate structure, 378
Base shear, 60
Bathymetry, 64
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Bayonne Bridge, 130
Beam-columns, 11, 16
Beams, 11, 32, 175–178, 267–306, 324–325, 343–354, 628–632

analysis by moment distribution, 474–481
analysis of symmetric, 284–286
approximate analysis, 218–219, 607–613
approximate indeterminate structural analysis, 218–219
axial loads in, 630
bending, 11–12, 267
cambered, 231, 305
cantilever, 114, 118, 177, 183, 205, 319, 380, 383, 399, 648
conjugate beam method, 297–304
construction of influence line, 530, 569, 578
deflections of, 267–306, 761
degree of indeterminacy, 215–218
design aids for, 305–306
design strength, 177
determinacy of, 82, 105–112
direct stiffness method, 717–757
double integration method, 268–274
elastic load method, 293–296
on elastic supports, 411–413
end shear, estimating, 630
estimating values of end moments, 611–613
fabrication error, 399–403, 493
factored loads, 177
fixed-end moments, 428, 512–519, 762
flange thickness varied to increase flexural capacity, 177
floor, 7, 29, 33, 35, 305
forces in, 628–630
frames and, 175–219, 267–306
frequently in deflection computations, 180
general stiffness method for analysis, 666–670
gravity loads and, 607–610
I-shaped, 617
indeterminate, 423–457, 578–583
inflection points, guessing location of, 607–610
influence line for, 530–537, 578–583
kinematically indeterminate, 457, 661
limits on deflection, 176
matrix analysis, 717–757
member stiffness matrix, 731–752
moment distribution method, 474–481
moment-area method, 275–292
Müller–Breslau principle for, 538–540
overhang, 177–178
nonprismatic, 509
reinforced concrete, 10, 31, 92, 175, 373–375
relationship between load, shear, and moment, 188–191
required strength, 177
rotational stiffness matrix for flexural member, 720–730
section modulus, 176
shear and moment curves, 188–205
shear and moment equations, 181–187
shear and moment values in, 630–632
sketching deflected shapes of, 191–205, 210–214
slope-deflection method for analysis of, 423–457
structure stiffness matrix, 719–720, 752–754
superposition principle, 206–210
tributary area, 29
types, 178
uniformly distributed live load, 567, 587
with variable moment of inertia, 282–283
work-energy methods, 324–325, 343–354

Bending, 11–14, 72
arches, deflection of, 14
beams, deflection of, 11–12, 267
deformations, 431–432

moments, 14, 22, 95, 242, 275
plates, load carried by, 17–18
slabs, load carried by, 16–17
stiffness, 14, 43
stresses, 11, 90, 95, 158, 179, 245, 319, 449

Bernoulli’s principle of virtual displacements, 357–359
Bixby Creek Bridge, 466
Bixby Creek Bridge in Big Sur, 466
Braced frame, 178, 211, 431, 497, 720

deflected shape, 211
joints in, 211
with shear connections, 317
tension-only, 21

Bracing, 107
diagonal, 133–134
lateral, 76
secondary, 133
systems for wind and earthquake forces, 43–45

Brazos River Bridge, 174
Brazos River Bridge in Brazos, Texas, 174
Bridges, 3, 4, 8, 40–42, 237

Bayonne Bridge, 130
Bixby Creek Bridge, 466
Brazos River Bridge, 174
Brooklyn Bridge, 2
cable-stayed, 14, 237
collapse of, 117
deck, 545
design, 5
Forth Bridge, 604
Golden Gate Bridge, 15
Harvard Bridge, 178
highway, 247, 555–556
impact, 557
live load in design, 541
long-span, 245
masonry barrel-arch, 247
plates use in, 17
railroad, 41, 245, 556–557
Rion-Antirion Bridge, 528
San Diego-Coronado Bridge, 90
steel, 544
suspension, 4, 9, 14, 235
Tacoma Narrows Bridge failure, 48, 133, 237
trusses in, 140
use of arches, 8
Verrazano Bridge, 9

Brooklyn Bridge, 2
Buckling, 11, 21, 23

resistance to, 625
of unsupported arch, 246

Building code, 27–28
Buildings, 4, 7, 8, 11, 14, 20, 36–37, 43

adjustment factor for height, 56
component weights, 34
dead loads, 29, 249
as debris in Tsunami following 2011 Tohoku  

Earthquake, 26
earthquake loads, 59–62
Expo ΄67 geodesic dome, 684
Hartford Civic Center Arena Roof Truss collapse, 716
high-rise, 4, 7
influence lines, 541–543
live loads, 36–37, 541, 584–587
low-rise, 55–59
material weights, 34
occupancy importance factor, 63
one-story, 19–22
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wind loads, 46–55
wind pressure exposure, simplified design for, 55–59

Built-up rib, 247

C
Cables, 14–16, 235–244

analysis of, 238–239
characteristics of, 236–237
force, variation of, 237–238
funicular polygon shape, 238–239
general cable theorem, 240–244
gravity loads supported, 238–239
parabola, 14
sag, 14
slenderness ratio, 11
stretch, 267
transverse load, 11

Cambered beam, 231, 305
Cantilever beam, 114, 177, 648

moment-area method for, 278–279
Cantilever method for approximate analysis, 648–652
Cantilever parts, 185
Carryover factor, 472, 509
Carryover moments (COMs), 470, 509–510
Clamps, 468, 470, 501, 719
Closing gap in indeterminate structures, 382–391
Collapse of Hartford Civic Center Arena Roof Truss in Connecticut, 716
Collinear displacement, 321
Centroid, 759
Columns, 11

approximate analysis, 632–636
axial forces in, 632–634
cantilever method, 648–652
gravity load, 632–636
moments distribution in exterior, 634–636
multistory rigid frame, 632–636

Compatibility
actual magnitude, 382
closing gap for, 382–391
of deformations, 664
equations, 378, 379, 387, 393, 395, 404, 411, 662, 663
requirements, 377–378

Complex trusses, 135
Composite action, 17
Compound truss, 134
Compression, 8, 9, 21, 131, 133, 166–167, 349

axially loaded members in, 11
chords, 132
curved members in, 14
stresses, 89

Computations, preparation of, 23–24
Computer analysis, 22–23

joint displacement comparisons, 157
member force comparisons, 158
rigid joint data, 157
structural analysis use, 22–23
of trusses, 156–158

COMs. See Carryover moments (COMs)
Concentrated live loads, 555, 559
Conceptual design, 5
Concurrent force system, 113
Condition, equations of, 102–104
Conjugate beam method, 297–304

conjugate supports, 297–299
determine maximum value of deflection, 300–301
magnitude of moment, 302–303

maximum deflection of beam, 304
Conjugate fixed support, 297
Conservation of energy states, principle of, 320
Consistent deformations method. See Flexibility method
Constant value, 345
Construction, equation of, 102
Continuous beams, 22, 118, 177, 401, 487

with applied loads, 424
approximate analysis, 607–613
gravity load, 607–613
inflection points, guessing location of, 607–610
influence lines for, 579–583
moment distribution, analyzed by, 428
supports settle under load, 426

Continuous truss, approximate analysis of, 617–622
Coordinate transformation, 734–740
Couple force, 82
Cross bracing, 13, 544
Curvature, 269
Curved members in compression, 14
Curved surface, 18–19
Curves of deflection

elastic, 267–274
shallow, 268–269

D
Dampers, 48
Dead loads, 6, 29–35, 249, 529

arches supporting, 14, 245, 252
in buildings, 29, 249
distribution to framed floor systems, 29–33
influence lines, 586–587
moments produced by, 586–587
tributary area methods, 33–35

Debris impact load, 68–70
Deck truss, 550
Deflections, 267–306, 319–363. See also Bending; Sidesway;  

Work-energy methods
of beams, 267–306, 761
computations, 267
conjugate beam method, 297–304
design aids for beams, 305–306
double integration method, 268–274
elastic load method, 293–296
estimating for trusses, 623–624
of frames, 267–306
moment-area method, 275–292
work-energy methods for computation, 319–363

Degree of freedom (DOF), 720
Degree of indeterminacy, 109, 151, 215–218, 360

beams, 215–218
frames, 215–218
statical indeterminacy, 215, 457
kinematic indeterminacy, 457, 661, 719, 720
number of restraints removed equals, 216

DEMs. See Distributed end moments (DEMs)
Design code, 27–28
Design loads. See Loads
Design process, 4–7

and analysis, 4–5
conceptual design, 5
final design and analysis phases, 6
preliminary design, 5, 6
redesign of structures, 6
relationship of analysis, 4–6
strength and serviceability, 6–7
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Design strength, beams, 177
Determinacy, 82, 150–155
Determinacy of structures. See Determinate structures
Determinate structures, 82, 97, 105–112, 118, 119. See also Indeterminate structures

comparison with indeterminate structures, 116–118
influence line for, 530–537
influence lines for, 535
in interconnected rigid structures, 111
Muller–Breslau principle for, 538
restraints, 108–110
rigid bodies, 110
in single rigid structure, 110
stable, 102, 150
supply restraints, 105–107
supply three reactions, 107–108
trusses, 550–555

Determinate truss, 150
DF. See Distribution factor (DF)
Diaphragm action, 44
Direct compression, 249
Direct stiffness method, 685–711, 717–754

bars, 686–687
beams, 717–754
coordinate transformation of member stiffness matrix, 711
DOF, 720
flexural member, 720–730
frames, 717–754
inclined truss bar, member stiffness matrix of, 699–710
joint displacements, 685–686
matrix analysis, 685–711, 717–754
member stiffness matrices, 690–691, 694–695, 731–740, 741–749, 750–752
nodal displacements, superimposing forces by, 693–694
restrained structure, 718
rotational stiffness matrix, 720–730
solution, 695–698
stiffness coefficients, 685–686
structure stiffness matrices, 690–695, 719–720, 752–754
truss bar, member stiffness matrix for, 691–692
of trusses by, 685–711
unit displacements, 685–686

Directionality factor, wind loads, 51–55
Displacements, 43, 89, 320, 326, 360, 387, 423, 686, 699, 719

angular, 321, 406
Bernoulli’s principle of virtual, 357–359
comuptation, 280, 336
direct stiffness method, 685–691, 717–721
forces and, 392, 404, 501
joint, 157, 336, 425, 457, 725, 729
lateral, 43
method, 423
nodal, 693–694
of prismatic beams, 381
rotational, 424
in slope-deflection method, 457
superimposing, 399
virtual, 330
work-energy methods and, 320

Distorted sketch, 211
Distributed end moments (DEMs), 470
Distributed loads, 426, 541

arches, 252–255
influence lines, 541–543
nodes, 86
parabolic variation, 85
resultant of, 85–88
shells, 18
trapezoidal variation, 86
uniform, 31, 185, 193, 252–255, 383, 541, 543, 558, 587, 633

Distribution factor (DF), 473
DOF. See Degree of freedom (DOF)
Double diagonals, trusses with, 625–627
Double integration method, 181, 268–274

deflections of beams and frames, 268–274
elastic curve, differential equation of, 269–274
shallow curves, geometry of, 268–269

Drag factors, 46
Dummy load, 326, 332, 364

E
Earthquake loads, 45, 59–63. See also Tsunami loads;  

Wind loads
base shear, 60, 62–63
Chi-Chi earthquake, 60
diaphragm action, 44
equivalent lateral force procedure, 60
inertia forces, 60
lateral bracing structural systems, 61
occupancy importance factor, 63
response modification factor, 61
seismic base shear, 62–63
seismic base shear, distribution of, 62–63
seismic lateral forces, 63
structural bracing systems for earthquake and wind forces, 43–45

Elastic curve, 268, 275
differential equation of, 269–274
twice, 268

Elastic load method, 293–296
angle change, 293–294
sign convention, 294–296

Elastic moment, 297
Elastic shear, 297
Elastic supports, beam on, 411–413
Elastically method, 320
Elastomeric pad support, 91
End moments, 177, 425–429. See also Joints

approximate analysis, 611–613
DEMs, 470
FEMs, 428, 429, 470, 512, 515–517, 718, 731, 762
girder exact and approximate values, 632
moment distribution method and, 468–472

End shear in beams, 630
Equations

base shear, 62–63
compatibility, 378, 379, 382, 387, 393, 395, 399–401, 404
of condition, 102–104
inconsistent or incompatible, 106
to predict design wind pressures, 48–55
shear, 448, 450, 455
for shear and moment, 181–187
slope-deflection, 423, 424, 425–430, 482, 483, 721
snow load, 42–43
of static equilibrium, 96–101
velocity wind pressure, 49

Equilibrium, 108
equations, 102, 104, 105, 108, 423
equations of static, 96–101, 113
general stiffness method equations, 662, 666
stable, 107

Equivalent lateral force procedure, 60
Evaluation of design, 6
External forces, resultant of, 181
External pressure coefficient, 50, 53
External reactions, 104, 113, 114
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External virtual work, 326
Externally determinate structures, 107, 215, 217
Externally indeterminate structures, 151

F
Fabrication errors, 326

flexibility method and, 399–410
moment distribution method and, 493–496
movement corresponds to redundant, 399–400
settlement not correspond to redundant, 400–403
truss deflections produced by, 334–335

Factor of safety, 7, 71
Factored loads, 177
FBD. See Free-body diagrams (FBD)
FEM. See Fixed-end moments (FEM)
Final design phases, 6
Finite element method, 685
Finite summation, 355–356
First-order analysis, 22, 180
Fixed end support, 91
Fixed-end arches, 14, 245, 246
Fixed-end beams, 92, 177, 299, 512, 607
Fixed-end moments (FEM), 428, 512–519 762

computation, 512–520
general stiffness method and, 667, 670, 671, 673
moment distribution and, 468–471

Flats roofs, 70
Flexibility coefficient, 382
Flexibility method, 360, 377–413

closing a gap, 382–391
elastic supports, beam on, 411–413
fabrication errors and, 399–403
fundamentals of, 379–382
indeterminate analysis, 377–378
internal releases for indeterminate structures, 392–398
redundant, 378
several degrees of indeterminacy, structures analysis  

with, 404–410
support settlements and, 399–403
temperature change and, 399–403

Flexible members in tension, 14–16
Flexural member, matrix analysis of, 720–730
Flexural stiffness, 11, 22

absolute, 303, 511, 513–515
nonprismatic members, 511
prismatic members, 468
relative, 429

Flood loads, 70
Floor systems, 14, 29–33

dead load distribution, 29–33
girders, 544–549
half-through bridge, 544–545
influence lines for, 544–549
square slab, 29–30
tributary area, 29–33

Flying buttresses, 8
Folded plates, 17
Forces, 47, 60, 71, 82–89, 94, 131, 177, 182, 320, 326, 618,  

687, 700, 719, 743. See also Loads
axial, 632–634
bar, 137–139
in beams, 628–630
in columns, 648
displacement curves vs., 322
earthquake, 43–45

inertia, 60
law of sines, 83
linear, 82
members, 158, 584–587, 744
moments, 535, 554
planar force system, 84
planar system, 84–85
principle of transmissibility, 89
resolution of vertical force, 84
resultant of distributed load, 85–88
seismic lateral, 63
stiffness coefficients and, 687
superimposing, 693–694
variation of cable, 237–238
zero bars, 140–141

Forth Bridge, 604
Frames, 16, 178–180, 267–306, 343–354

approximate analysis of, 218–219, 613–616, 638–639
beam-columns, 11, 16
beams and, 175–219, 267–306
braced, 178, 211, 431, 497, 720
cantilever method for, 648–652
conjugate beam method, 297–304
in deflection computations, 180
deflection of column’s axis, 180
deflections of, 267–306
degree of indeterminacy, 215–218
design for gravity load, 21
double integration method, 268–274
elastic load method, 293–296
moment-area method, 275–292
multistory continuous building frame, 179
P-delta moment, 180
relationship between load, shear, and moment, 188–191
shear and moment curves, 188–205
shear and moment equations, 181–187
sketching deflected shapes of, 191–205, 210–214
slope-deflection method for analysis of, 423–457
structure stiffness matrix, 692–695
superposition principle, 206–210
unbraced, 178, 213, 503–507, 637–639
virtual work analysis, 343–354
work-energy methods, 343–354

Free-body diagrams (FBD), 94–96
Frictionless pins, 135
Funicular polygons, 247

shape, 238–239
Funicular shape, 245

of arch, 249–251, 252–255

G
Gaps, closing in indeterminate structures, 382–391
General loading, moment distribution method and, 503–507
General stiffness method, 661–678

analysis of continuous beam, 670
fixed-end moments in beam, 671–672
flexibility method compared to, 662–666
free-body diagram, 667–668
indeterminate structure analysis by, 666–678
JD, 667
pin-connected bars, 674–676
rigid frame, 676–678
shear forces and reactions, 669–670
slope-deflection equation, 671
stiffness coefficient, 670
superposition equation, 669
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Geometrically unstable structure, 107
Geometry of shallow curves, 268–269
Girders, floor systems, 544–549
Global coordinate system, 690, 750
Golden Gate Bridge, 15
Gravity framing, 29–35
Gravity load, 43, 238–239

approximate analysis, 607–613, 628–636
cable supporting, analysis of, 238–239
frame design for, 21
funicular polygon shape, 238–239

Ground elevation factor, 49
Gusset plate, 13, 131, 156, 158
Gust factor, 50, 53

H
Half-through bridge, 544–545
Hangers, 10–11
Hartford Civic Center Arena, 22
Harvard Bridge, 178
Heavy reinforced concrete foundation, 245
High-strength steel wires, 235
Highway bridges, 247, 555–556
Hinge support, 91
Hooke’s law, 176, 271, 323
Hooke’s theory, 253
Hydrodynamic loads, 67–68
Hydrostatic loads, 66–67
Hydrostatic pressure, 66

I
I-shaped beam, 617
Idealizing structures, 93–94
Imaginary fixed support, 297
Impact factor, live load, 40–42
In-plane loads, 180
In-plane stress, 18
Inclined truss bars, 699–710
Increase–decrease method, 558–561
Indeterminate arches, 245
Indeterminacy

statical, 109, 457
kinematic, 457

Indeterminate structure, 82, 98. See also Determinate structures
analysis of continuous beam, 670
approximate analysis of, 218–219, 605–652
closing a gap, 382–391
comparison with determinate structures, 116–118
elastic supports, beam on, 411–413
fabrication errors and, 399–403
fixed-end moments in beam, 671–672
flexibility method, analysis of, 377–413
free-body diagram, 667–668
fundamentals of, 379–382
by general stiffness method, 666–678
indeterminate analysis, 377–378
influence lines for, 568–569
internal releases for indeterminate structures 392–398
pin-connected bars, 674–676
qualitative influence lines for, 578–583
redundant, 378
rigid frame, 676–678
several degrees of indeterminacy, structures analysis with, 404–410
shear forces and reactions, 669–670

slope-deflection method for analysis of, 423–457
support settlements and, 399–403
temperature change and, 399–403
trusses, 396, 407, 588–591

Inelastic behavior, 336–342
Inelastically method, 320
Inertia forces, 43, 44, 60
Inflection points, 212, 218, 607–610
Influence area, 37
Influence lines, 529–591

absolute maximum live load moment, 562–566
construction of, 530–537
dead load, 586–587
determinate trusses, 550–555
floor systems, 544–549
increase–decrease method, 558–561
indeterminate structures, 568–569
indeterminate trusses, 588–591
live loads, 555–557, 584–587
moment distribution, 569–572
moment envelope, 562–566
moving load, 529–530
Müller–Breslau principle, 538–540, 573–577
multistory buildings, 584–587
qualitative, 578–583
shear envelope, 567–568
single concentrated load, 562
use of, 541–543
wheel loads series, 562–566

Internal forces, redundants as pairs of, 392
Internal moments, 102, 179, 181
Internal releases for indeterminate structures, 382, 392–398
International Code Council, 28

J
Jacobi method, 468
Joint displacement (JD), 667
Joints, 136–139, 157. See also Bars

absolute flexural stiffness, 511
in braced frame, 211
COMs, 470, 509–510
direct stiffness method, 685–691, 717–721
displacements, 157, 336, 425, 457, 685–686, 725, 729, 740, 748
external loads and, 140–141
frames, 717–727
joint translation, 473–474
method of, 136–139
nodes, 86
prismatic beams, 381
rigid, 157, 158
type, 661

K
Kinematic indeterminacy, 457

to first degree, structure, 667
one degree of, 719
structure, 664
K truss, 140

L
Lateral bracing, 76
Lateral load
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design for, 21–22
lateral load-resisting systems, 43–45
unbraced frames for, 637–639

Law of sines, 83
Linear component of deflection, 362
Linear elastic indeterminate structures, 377
Linear force, 82
Linear function, 185
Linear relationship, 322
Linearly elastic manner, 206
Link support, 91
Live loads, 36–42, 529, 555–557

bridges, 555–557
impact, 557
patterns in multistory buildings, 584–587
reduction, 37–40
transmitted to column, 33

Loads, 17–18, 28–29, 70. See also Forces
actual (P-system), 326, 344, 364, 406
axial, 16–17, 135, 630
bracing systems for wind and earthquake forces, 43–45
bridges, 40–42
building code, 27–28
buildings, 36–37
combinations, 71–72
concentrated live, 555, 559
dead, 29–3, 586–587, 2495
design code, 27–28
earthquake, 59–63
factors, 177
floor systems, 29–33
gravity, 21, 607–613, 628–636
gravity framing, 29–35
influence lines for, 529–591
lateral, 21–22, 637–639
lateral load-resisting systems, 43–45
live, 36–42, 529, 541, 555–557, 584–587
moving, 529–530
natural hazards, 45–46
path, 22
plates, load carried by, 17–18
reduction, live load, 37–40
relationship between shear and moment, 188–191
service, 6–7
single concentrated, 562
slabs, load carried by, 16–17
snow, 42–43
transverse, 11
tributary areas of columns, 33–35
Tsunami load, 64–70
uniform, 611
uniformly distributed, 185, 252–255
vertical, 613–616
wave, 65
wheel, 562–566
wind, 46–59

Local coordinate system, 690
London Aquatic Centre, 376
Longitudinal fibers, 269
Low-rise buildings, wind loads for, 55–59
Material weights for dead loads, 34

M
Matrix analysis, 685–711, 717–754. See also Structural analysis

assembly of structure stiffness matrix, 692–695
beams, 717–754

coordinate transformation of member stiffness matrix, 711
direct stiffness method, 685–711, 717–754
DOF, 720
flexural member, 720–730
frames, 717–754
global coordinate system, 690–691
inclined truss bar, member stiffness matrix of, 699–710
individual truss bar, member stiffness matrix for, 691–692
joint displacements, 685–686
local coordinate system, 692–693
member stiffness matrix, 690–691, 731–740, 741–749, 750–752
nodal displacements, 693–694
restrained structure, 718
rotational stiffness matrix, 720–730
solution of direct stiffness method, 695–698
stiffness coefficient, 685–687
structure stiffness matrix, 690–691, 694–695, 719–720, 752–754
for truss bar, 691–692
trusses, 685–711
unit displacements, 685–687

Maximum deflection, equations for, 295, 296
Maximum inundation height, 64
Maximum shear live loads, 567
Maxwell-Betti law, 360–363, 405, 540, 573, 694
Maxwell-Betti principle, 694
Member coordinate system, 690
Member stiffness, modification of, 482
Member stiffness matrix (k), 690–691, 731–740, 741–749, 750–752

2 × 2 rotational stiffness matrix, 720–730
4 × 4 member, 731–740
6 × 6 member, 741–752
beams, 717–754
construction of structure stiffness matrix by combining, 694–695
coordinate transformation, 711, 734–740
flexural members, 720–730
frames, 717–754
global coordinate system, 750–752
of inclined truss bar, 699–710
for individual truss bar, 691–692
local coordinate system for, 731–740
rotational, 720–730
slope-deflection equation, 731–732
slope-deflection equation for, 731–732
stiffness coefficient, 732–740
trusses, 690–691, 731–740, 741–749, 750–752
unit displacement, 732–734
unit displacements for, 732–734

Members axially loaded, 11–14
Membrane stresses, 18
Method of joints, 136–139
Method of sections, 136, 142–149

bar forces, 142
forces in bars, 146, 148
restraints to truss, 144

Moment, 175, 297
distribution, multistory rigid frame, 634–636
envelope, 562–566
frames, 16

Moment and axial load, members stressed by, 16–17
Moment curves by parts, 210
Moment diagrams and equations for maximum deflection, 761
Moment distribution, 10, 303, 423, 467–519

beams, 474–481
development of, 468–473
fabrication errors, 493–496
general loading, 503–507
influence lines and, 569–572
joint translation, 473–474
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Moment distribution (continued)
member stiffness, modification of, 482
multistory frames analysis, 508–509
nonprismatic members, 509–519
sidesway and, 497–502
stiffness of cantilever, 484–492
support settlements, 493–496
temperature change, 493–496
temporary restraints, 467–468

Moment-area methods, 275–292, 293
application of, 277–292
derivation of moment-area theorems, 275–277
tangential deviation, 275–280

Müller–Breslau principle, 538–540, 573–577
Multistory buildings, 4, 52, 53

Approximate analysis for gravity loads, 628
cantilever method, 648
deflected shape, 584, 640
frame, 468
portal method, 640
live load patterns, 584–587
member forces maximization, 584–587
moments produced by dead load, 586–587
seismic design of, 7
structural frames in, 178

Multistory rigid frame
approximate analysis, 628–636
axial forces, 632–634
beams, 628–632
moments distribution, 634–636
multistory frames analysis, 508–509

N
AT&T Stadium in Arlington, Texas, 266
Natural hazards, 45–46

risk, 45–46
Neutral axis, 269
Nodal displacements, 693–694
Nodes, 86, 686
Nonprismatic members, 509–519

absolute flexural stiffness, 511, 513–515
COMs, 509–510, 513
FEMs, 512, 515–517
finite summation for, 355–356
haunch at both ends, 519
haunch at one end, 518–519

Number of restraints removed equals degree of indeterminacy, 216

O
Occupancy importance factor, 63
One-half term, 322
One-story building, 19–21
Overhang beams, 177

P
P-delta moment, 180
P-system, 326
P. I. See Point of inflection (P.I.)
Panel points, 544

Parabola, 14
Parabolic variation, 86
Parallel force system, 113
Pin-jointed arch, 247
Pin-support, 21, 91

frame, approximate analysis of, 637–638
reaction forces and, 90, 94

Planar forces, 84, 96
Planar structures, 4
Planar system, resultant forces of, 84–85
Planar trusses, 11–14
Plates, bending loads on, 17–18
Point of inflection (P. I.), 194, 196, 212, 607, 638
Ponding, 70
Portal method for approximate analysis, 640–647
Post-and-lintel system, 7
Pratt truss, 12
Preliminary design, 5, 6
Pressure, 44

drag factors, 46
external coefficient, 50–51
gust factor, 50
velocity exposure coefficient, 51
wind, 46–47

Primary moment, 180, 207
Principle of transmissibility, 89
Prismatic members, 355, 468, 511
Product integrals, values of, 760
Properties of areas, 759

Q
Q-system, 326
Qualitative influence lines, 578–583

R
Railroad bridges, 556–557
Reactions, 81–118. See also Determinate structures; Forces; Indeterminate 

structures
comparison between determinate and indeterminate  

structures, 116–118
determinacy of structures, 105–112
equations of condition, 102–104
equations of static equilibrium, 96–101
external, 104, 113, 114–115
FBD, 94–96
forces, 82–89
idealizing structures, 93–94
law of sines, 83
planar force system, 84
principle of transmissibility, 89
resolution of vertical force, 84
resultant of distributed load, 85–88
on stability of structures, 105–112
statics of structures, 81–118
structural classification by, 113–116
supports, 89–92

Real work, 325–326. See also Work-energy methods
Redesign of structures, 6
Reduction factor, 177
Redundants, 110, 378

actual magnitude, 382
beams on elastic supports, 411–413
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closing gap using, 382–391
compatibility equations, 392, 399, 408, 457
concept of, 378
flexibility method, 378, 379–382
indeterminate structures, 378
internal forces, 392
internal releases to, 382–387
support settlement movement corresponding to, 399–400
support settlement movement not corresponding to, 400–403

Reinforced concrete beams, 9–10
Relative displacement, 392
Relative flexural stiffness, 429
Released determinate structure, 378, 379
Released structure, 538
Required factored strength, 71
Required strength, beams, 177
Response modification factor, earthquake loads, 61
Restrained condition, 719, 727
Restrained structure, 718, 723, 727
Restraints, 108–110. See also Supports

clamps for joints, 468
degree of indeterminacy and, 215–218
determinacy of structures, supply restraints, 105–107
direct stiffness method, 718
member stiffness matrix construction, 691–692
number of restraints removed equals degree of indeterminacy, 216
temporary restraints, 467–468
to truss, 144

Resultant forces, 96–98
distributed loads, 85–88
planar force system, 84–85
principle of transmissibility, 89

Ribs, 245–246
Richmond Oval in British Columbia, 422
Right-hand rule, 83
Rigid body, 357

determinacy of structures, 110
equivalent planar force systems, 97
frames, 16–17, 20–21
single rigid structure, 110
stability, 110

Rigid frames. See Frames
Rion-Antirion Bridge, 528
Rocker support, 91
Rocker supports, 91
Roller supports, 91
Roof systems, 18–20

flat, drainage of, 70–71
live load distribution, 36–37
ponding, 70–71
snow loads, 42–43
thin shells, 18–19

Rotational stiffness matrix, 720–730

S
San Diego-Coronado Bridge, 90
Secondary moment, 180
Section modulus, 176
Sections. See Method of sections
Seismic base shear, 62–63
Seismic lateral forces, 63
Service loads, 6–7
Serviceability, 6–7
Shallow curves, geometry of, 268–269
Shear and moment, 630–632

approximate analysis, 630–632
beams, 191–205, 630–632
bending and, 11
curves, 188–205
equations, 181–187
external force resultants and, 181
frames, 181–187
internal moments, 181
load, relationship between, 188–191
point of inflection, 196, 199
Sign conventions for, 182
sketching deflected shapes of beams, 191–205

Shear(s), 175, 297, 731
envelope, 567–568
equation, 448
forces, 469
members carrying bending moment and, 11
stresses, 176
walls, 43

Sidesway
chord rotations, 497
moment distribution method and, 497–502
slope-deflection method for analysis of structures free to, 447–456
unbraced frame, 497–499

Sign convention, 294–296, 731
Simple beam moment curve, 426
Simple geometric shapes, 345
Simple trusses, 134
Simply supported beam, 177
Single concentrated load, 562
Sketching deflected shapes, 191–205, 210–214

of beams, 191–205, 210–214
frames, 191–205, 210–214
sketching deflected shapes of beams, 191–205

Slabs, 17–18
bending loads on, 17–18
composite action with beams, 17–18
dead load distribution, 29–33
framed floor systems, 29–33
tributary area, 29–32

Slenderness ratio, 11
Slope-deflection method, 423–457

analysis of structures by, 431–446
beams, analysis of, 423–457
braced frames, 431
chord rotation, 431, 432, 442, 443, 446
equilibrium equations, 425, 432
fixed-end moments, 428–430
frames, analysis of, 423–457
illustration of, 424–425
indeterminate structure, analysis of, 423–457
kinematic indeterminacy, 457
member end moments, 468–473
member stiffness matrix derivation using, 731–732
relative flexural stiffness, 429
sidesway, analysis of structures free to, 447–456
sign convention for, 428
simple beam moment curve, 428, 430
slope-deflection equation, 423, 424, 425–430, 468, 667, 721, 731–732
symmetry used to simplify analysis, 439–446

Snow loads, 42–43
Space Roof Truss of Hartford Civic Center Arena  

in Connecticut, 80
Space Truss Support for Radar Antenna, 660
Special-purpose structures, 10
Spherical domes, 18
Spoilers, 48
Square slab, 29
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Stability, 82, 150–155
determinacy and, 105–112
gravity loads and, 21
interconnected rigid structures, 111
lateral loads and, 21–22
one-story building, 19–21
reactions, influence of on, 105–112
restraints, 108–110
rigid bodies, 110
single rigid structure, 110
stable linear elastic structure, 362
structural classification for, 113–116
structural elements, 19–22
of structures, reactions on, 105–112
supply restraints, 105–107
supply three reactions, 107–108
supports and, 105–108
trusses, 150–155

Static equilibrium equations, 96–101, 105
Statical indeterminacy, 457
Statically determinate structure, 97, 378
Statically equivalent set, 86
Statics, 81

and strength of materials courses, 180
Steel cables, 237
Stiffness. See also Direct stiffness method

absolute flexural stiffness, 511
coefficient, 666, 670, 685–686, 732–740
reduced absolute flexural, 511
relative flexural stiffness, 472, 473

Stiffness method, 423, 661–678, 685–711. See also Truss(es)
analysis of indeterminate structure by, 666–678
beams, analysis of continuous, 670
coordinate transformation of member stiffness matrix, 711
direct, 685–711, 695–698
fixed-end moments in beam, 671–672
flexibility method compared to, 662–666
free-body diagram, 667–668
general, 661–678
JD, 667
joint displacements, 685–686
matrix analysis using, 685–711
member stiffness matrices, 690–692, 699–710
nodal displacements, 693–694
pin-connected bars, 674–676
rigid frame, 676–678
shear forces and reactions, 669–670
stiffness coefficient, 685–667
structure stiffness matrices, 690–691
structure stiffness matrix, 692–695
trusses, analysis by, 685–711
use, 692–695

Strain energy, 322–325, 345
beams, 324–325
truss bars, 322–324
values of product integrals for, 345

Strength design, beams, 6–7, 177. See also Stability
Stress, 13–14

arches—curved members, 13–14
compression and, 13–14
in-plane, 18
membrane, 18
thin shells, 18–19

Stringers, floor systems, 544–545
Structural analysis, 3–24. See also Matrix analysis

bridges, 3, 4, 8
comparison between flexibility and stiffness methods, 662–666

computations, preparation of, 23–24
computer analysis, 22–23
design process, 4–7
direct stiffness method, 690–691, 692–695
first-order analysis, 22
flexibility method, 377–413
flying buttresses, 8–9
general stiffness method, 661–678
gravity load and, 21
historical development of, 7–10
indeterminate structures, 377–413
lateral load and, 21–22
moment distribution, 10
monolithic structures, 9–10
one-story building, 19–21
post-and-lintel system, 7–8
slope-deflection method, 423–457
stable structural systems, design for, 19–21
strength and serviceability, 6–7
structural elements, 3–4, 10–22
structural systems, historical development of, 7–10
two-dimensional structures, 4

Structural codes, 27–28
Structural elements, 3–4

analyzing, procedure for, 3–4
arches, 14
axially loaded members in compression, 11
axially loaded members in tension, 10–11
basic, 10–19
beams, 11
bending, load carried by, 17–18
cables, 14–16
columns, 11
composite action, 17–18
compression and, 11, 13–14
curved members, 14
curved surface, 18–19
flexible members, 14–16
frames, 16–17, 20, 22
hangers, 10–11
load, 17–18
members axially loaded, 11–14
members carrying bending moment and shear, 11
members stressed by moment and axial load, 16–17
one-story building, 19–21
planar trusses, 11–14
plates, 17–18
rigid frames, 16
slabs, 17–18
slenderness ratio, 10–11
stable structural design and, 19–22
stresses in members, 14–17
suspension cables, 10–11
thin shells, 18–19
transverse loads, 43–44

Structure stiffness matrix (K), 690–691, 719–720, 723,  
727, 752–754

assembly, 692–695
beams, 719–720
direct stiffness method, solution from, 695–698
frames, 719–720
matrix analysis using, 690–691, 719–720
member stiffness matrices used for, 694–695
nodal displacements, 693–694
trusses, 690–691

Superimposing displacements, 399
Superposition, 206–210
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beams, 206–210
equation, 669
of forces and displacements, 718
frames, 206–210
general stiffness equation, 669
primary moment, 180
principle, 206–210

Support settlements, 399–403
computation of displacements, 336
flexibility method and, 399–403
indeterminate structures, 399
moment distribution method and, 493–496
movement corresponding to redundant, 399–400
movement not corresponding to redundant, 400–403

Supports, 16, 89–92
beams, 11, 29–30, 89, 175–178
characteristics of, 91
clamps, 467–468
conjugate, 297–299
degree of indeterminacy, 215–218
determinacy and, 105–110
elastic, 411–413
fixed-end, 92
frames, 20–21, 178–180
guide, 91
hinge, 91
link, 91
pin-supported frame, 637–638
pins, 90–91
reactions and, 107–108
restraints, 105–107, 108–110
rocker, 91
roller, 91
Space Truss, 660
stability and, 105–108
structural classification and, 113–116

Suspension bridges, 237
Suspension cables, 10–11
Symmetric beam, analysis of, 284–285
Symmetric boundary conditions, 611
Symmetric structures, deflection of, 279
Symmetrical loads, slope-deflection method for analysis of, 439–446

T
Tacoma Narrows Bridge failure, 48, 133, 237
Taipei 101 in Taiwan, 318
Tangential deviation, 275
Temperature variation

indeterminate structures, 399–403
moment distribution, 493
redundant, 399–403
truss displacements from, 334–335

Tensile strength, 236
Tension, 131

axially loaded members in, 10–11
flexible members in, 14–16
trusses, 135–136

Tension-only braced frame, 21
Thin shells, 18–19

in plane of element, 18–19
Three-hinged arches, 245, 247–249
Three-hinged trussed arch, 249
Through truss, 550
Topographic factor, 49

Total virtual strain energy, 344
Transverse joint displacements, 731
Transverse loads, 11
Trapezoidal variation, 86
Tributary areas

of columns, 33–35
Truss(es), 131–158, 267, 326–342, 685–711

analysis, 135–136
analysis of trusses by virtual work, 327–333
arch, 553–555
arrangement of slender interconnected bars, 131
assembly of structure stiffness matrix, 692–695
bar, member stiffness matrix construction for, 691–692
bars, 131, 322–324, 691–692
complex trusses, 135
compound truss, 134
computer analysis, 156–158
construction of influence lines for, 550–553
continuous truss, 617–622
coordinate transformation of member stiffness matrix, 711
deflections produced by temperature and fabrication error, 334–335
deck, 550
determinacy, 150–155
by direct stiffness method, 685–711, 695–698
with double diagonals, 625–627
estimating deflections of, 623–624
with floor beams and secondary bracing, 133
with inclined truss bar, 699–710
indeterminate trusses, 588–591
inelastic behavior, 336–342
influence lines, 550–555
joint displacements, 685–686
matrix analysis of, 685–711
member stiffness matrices, 690–691
member stiffness matrices, construction of structure  

stiffness matrix, 694–695
member stiffness matrix for individual truss bar, 691–692
member stiffness matrix of inclined truss bar, 699–710
method of joints, 136–139
method of sections, 142–149
nodal displacements, 693–694
pin-jointed frames, 134
simple truss, 134
stability, 150–155
stiffness coefficient, 685–667
structural action, 131–132
structure stiffness matrices, 690–691
support settlements, displacements produced by, 336
through, 550
types, 134–135
virtual work method, 326–327
work-energy applied to, 325–326
zero bars, 140–141

Tsunami importance factor, 68
Tsunami loads, 64–70. See also Earthquake loads; Wind loads

anatomy of tsunami wave, 64
ASCE standard, 65
hydrodynamic loads, 67–68
hydrostatic loads, 66–67
simplified debris impact load, 68–70
types, 66
wave loading stages, 65

Tsunamis, 45
Two-dimensional structures, 4
Two-hinged arch, 246
2011 Tohoku Earthquake in Japan, 26
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U
U.S. Pavilion at Expo ΄67 in Montreal, Canada, 684
Unbalanced moment (UM), 470
Unbraced frame, 178, 213, 497

analysis of, 503–507
chord rotation, 431
for lateral load, 637–639
moment distribution method and, 503–507
sidesway of, 497–499

Uniform load, 611
Uniformly distributed load, 185, 252–255

arches supporting, 252–255
Unit displacement, 687–688, 732–734
Unit rotation, 482
Unknown joint displacements, 423
Unknown moments, 425

V
Variable moment of inertia, beam with, 282–283
Variation of cable force, 237–238
Velocity pressure exposure coefficient, 49
Verrazano Bridge, 9
Vertical force resolution, 84
Vertical loads

approximate analysis of, 613–616
cables supporting, 250
rigid frame for, 613–616
rigid frames, 613–616

Vierendeel truss, approximate analysis of, 645–647
Virtual displacement, 357
Virtual strain energy, 327
Virtual work, method of, 320, 325, 326–342, 343–354, 362, 623

actual loads (P-system), 326–327, 343–344
analysis of trusses, 327–333
beams, 343–354
deflection calculations from, 334–335
dummy loads (Q-system), 332
fabrication error, displacements from, 334–335
frames, 343–354
inelastic behavior, 336–342
inelastic behavior, displacements from, 336
procedure to UQ, 345–354
support settlements, displacements produced by, 336
temperature variation, displacements from, 334–335
truss deflections, 334–335

Vortex shedding, 47–48

W
Walls, 4, 7, 37, 43

bracing systems for, 43–44
diaphragm action, 44
lateral loads on, 43–44
live loads of, 37

shear, 43–44
Warren truss, 12
Wave load cases, 65
Wave loading stages, 65
Wheel loads series, 562–566
Wind directionality factor, 49
Wind forces, structural bracing systems for, 43–45
Wind loads, 46–59. See also Earthquake loads; Tsunami loads

anemometers, 46
bridge failure from, 48
bridges and, 59–60
diaphragm action, 44
directionality factor, 49, 51
drag factors, 46, 47
equations to predicting design wind pressures, 48–55
external pressure coefficient, 53
gust factor, 50
for low-rise buildings, 55–59
magnitude of wind pressures, 46
multistory buildings, 52, 53
pressure, 46–47
shear wall reinforcement for, 43–44
structural bracing systems for, 43–45
topographic factor, 49
velocity pressure exposure coefficient, 49
velocity pressure exposure coefficient, 51
vortex shedding, 47–48
wind directionality factor, 51

Wind pressure design, equations to predicting, 48–55
Wires, 236–237
Work, 320–322

angular displacement, 321
collinear displacement, 321
couple, of A, 361
displacements and, 320–322
linear load-deflection curve, 322
linear relationship, 322
one-half term, 322

Work-energy methods, 181, 319–363. See also Virtual work
actual loads (P-system), 326–327, 364
beams, 324–325, 343–354
Bernoulli’s principle of virtual displacements, 357–359
for computing deflections, 319–363
deflections by, 325–326
dummy loads (Q-system), 332, 364
finite summation, 355–356
frames, 343–354
Maxwell-Betti law of reciprocal deflections, 360–363
real work method, 325–326
strain energy, 322–325
truss bars, 322–324
trusses, 326–342
virtual work, 326–342, 343–354

Z
Zero bars, 140–141
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