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Preface

Contact mechanics has its application in many engineering problems. No one
can walk without frictional contact, and no car would move for the same rea-
son. Hence contact mechanics has, from an engineering point of view, a long
history, beginning in ancient Egypt with the movement of large stone blocks,
over first experimental contributions from leading scientists like Leonardo

da Vinci and Coulomb, to today’s computational methods. In the past con-
tact conditions were often modelled in engineering analysis by more simple
boundary conditions since analytical solutions were not present for real world
applications. In such cases, one investigated contact as a local problem using
the stress and strain fields stemming from the analysis which was performed
for the entire structure. With the rapidly increasing power of modern comput-
ers, more and more numerical simulations in engineering can include contact
constraints directly, which make the problems nonlinear.

This book is an account of the modern theory of nonlinear continuum
mechanics and its application to contact problems, as well as of modern sim-
ulation techniques for contact problems using the finite element method. The
latter includes a variety of discretization techniques for small and large defor-
mation contact. Algorithms play another prominent role when robust and effi-
cient techniques have to be designed for contact simulations. Finally, adaptive
methods based on error controlled finite element analysis and mesh adaption
techniques are of great interest for the reliable numerical solution of contact
problems. Nevertheless, all numerical models need a strong backup provided
by modern continuum mechanics and its constitutive theory, which is applied
in this book to the development of interface laws for normal and frictional
contact.

The present text can be viewed as a textbook which is basically self-
contained. It is written for students at graduate level and engineers who have
to simulate contact problems in practical applications and wish to understand
the theoretical and algorithmic background of modern finite element systems.
The organization of the book is straightforward. After an introductory chap-
ter which discusses relevant contact formulations in a simple matter, there
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follows a chapter which provides the continuum mechanics background. The
special geometrical relations needed to set up the contact constraints and con-
stitutive equations valid at the contact interface are then discussed in detail
without going into a numerical treatment. The topic of computational contact
is then described in depth in the next chapters, providing different formula-
tions, algorithms and discretization techniques which have been established
so far. Here solid and beam contact is considered, as well as contact of un-
stable systems and thermomechanical contact. The algorithmic side includes,
besides a broad range of solution methods, adaptive discretization techniques
for contact analysis. However, it can be concluded for the present that there
exists nothing which can be called the robust method for all different types of
contact simulations. This actually also holds for other simulations, including
nonlinearities. However, especially due to the fact that such a method does
not exist, it is necessary to discuss those methods which are on the market in
the light of good or bad behaviour.

It is finally a pleasure to thank many people who have assisted me in writ-
ing the book, and who were always available in the last twenty years for deep
discussions on computational contact mechanics, including the related for-
mulations of continuum mechanics and implementation issues. This scientific
collaboration often resulted in joint work in which new papers or reports were
written. In particular, I should like to mention my PhD students Anna Har-
aldsson, Henning Braess, Katrin Fischer, Michael Imhof, Joze Korelc, Lovre
Krstulovic-Opara, Tilmann Raible, Albrecht Rieger, Oliver Scherf and Hol-
ger Tschöpe. But I have also to include colleagues who worked and still work
with me on issues of computational contact mechanics: the late Mike Crisfield,
Christian Miehe, Bahram Nour-Omid, the late Panos Panagiotopoulos, Karl
Schweizerhof, the late Juan Simo, Bob Taylor, Giorgio Zavarise and Tarek
Zohdi.

Furthermore, I would like to express my appreciation to Bob Taylor, Gior-
gio Zavarise and Tarek Zohdi, who read early parts of the manuscript and
helped with their constructive comments and criticisms to improve the text. I
would also like to thank Elke Behrend and Christian Steenbock who together
with Tilman Raible, drew most of the figures in the text. Last but not least,
I would like to thank Springer publishing company, for publishing this new
edition of the book and for the good collaboration during the last years.

Hannover Peter Wriggers
January 2006



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Introduction to Contact Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Contact in a Mass Spring System . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Lagrange multiplier method . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Penalty method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Finite Element Analysis of the Contact of Two Bars . . . . . . . . . 18
2.3 Thermo-mechanical Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Continuum Solid Mechanics and Weak Forms . . . . . . . . . . . . . . 31
3.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Motion and deformation gradient . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Strain measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Transformation of vectors and tensors . . . . . . . . . . . . . . . . 36
3.1.4 Time derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Balance Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Balance of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Local balance of momentum and moments of momentum 38
3.2.3 First law of thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.4 Transformation to the initial configuration, different

stress tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Weak Form of Balance of Momentum, Variational Principles . . 41

3.3.1 Weak form of balance of momentum in the initial
configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Spatial form of the weak formulation . . . . . . . . . . . . . . . . . 42
3.3.3 Minimum of total potential energy . . . . . . . . . . . . . . . . . . . 43

3.4 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 Hyperelastic response function . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Incremental constitutive tensor . . . . . . . . . . . . . . . . . . . . . . 46



VIII Contents

3.5 Linearizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.1 Linearization of kinematical quantities . . . . . . . . . . . . . . . 51
3.5.2 Linearization of constitutive equations . . . . . . . . . . . . . . . 52
3.5.3 Linearization of the weak form . . . . . . . . . . . . . . . . . . . . . . 53
3.5.4 Linearization of a deformation dependent load . . . . . . . . 55

4 Contact Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 Normal Contact of Three-dimensional Bodies . . . . . . . . . . . . . . . 58
4.2 Tangential Contact of Three-dimensional Bodies . . . . . . . . . . . . . 62

4.2.1 Stick condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 Slip condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Variation of the Normal and Tangential Gap . . . . . . . . . . . . . . . . 66
4.3.1 Variation of normal gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Variation of tangential gap . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Constitutive Equations for Contact Interfaces . . . . . . . . . . . . . 69
5.1 Normal Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Constraint formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.2 Constitutive equations for normal contact . . . . . . . . . . . . 72

5.2 Tangential Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.1 Stick as a constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Coulomb law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Regularization of the Coulomb law . . . . . . . . . . . . . . . . . . 79
5.2.4 Elasto-plastic analogy for friction . . . . . . . . . . . . . . . . . . . . 80
5.2.5 Friction laws for metal forming . . . . . . . . . . . . . . . . . . . . . . 86
5.2.6 Friction laws for rubber and polymers . . . . . . . . . . . . . . . . 88
5.2.7 Friction laws for concrete structures on soil . . . . . . . . . . . 90
5.2.8 Friction laws from computational homogenization

procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Lubrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4 Adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5 Decohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6 Wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.7 Fractal Contact Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Contact Boundary Value Problem and Weak Form . . . . . . . . 109
6.1 Frictionless Contact in Linear Elasticity . . . . . . . . . . . . . . . . . . . . 109
6.2 Frictionless Contact in Finite Deformations Problems . . . . . . . . 113
6.3 Treatment of Contact Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Lagrange multiplier method . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.2 Penalty method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.3 Direct constraint elimination . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.4 Constitutive equation in the interface . . . . . . . . . . . . . . . . 121
6.3.5 Nitsche method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.6 Perturbed Lagrange formulation . . . . . . . . . . . . . . . . . . . . . 124



Contents IX

6.3.7 Barrier method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.8 Augmented Lagrange methods . . . . . . . . . . . . . . . . . . . . . . 126
6.3.9 Cross-constraint method . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Comparison of Different Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.1 Normal Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.2 Frictional Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5 Linearization of the Contact Contributions . . . . . . . . . . . . . . . . . 140
6.5.1 Normal contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.5.2 Tangential contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.5.3 Special case of stick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.6 Rolling Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.6.1 Special reference frames for rolling contact . . . . . . . . . . . . 148
6.6.2 Strain measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.6.3 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.6.4 Constitutive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.6.5 Contact kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7 Discretization of the Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.1 Isoparametric Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.1.1 Isoparametric interpolation functions . . . . . . . . . . . . . . . . 161
7.1.2 One-dimensional shape functions . . . . . . . . . . . . . . . . . . . . 161
7.1.3 Two-dimensional shape functions . . . . . . . . . . . . . . . . . . . . 163
7.1.4 Three-dimensional shape functions . . . . . . . . . . . . . . . . . . . 165

7.2 Discretization of the Weak Forms . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.2.1 FE formulation of the weak form with regard to the

initial configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.2.2 Linearization of the weak form in the initial configuration172
7.2.3 FE formulation of the weak form in the current

configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.2.4 Linearization of the weak form in the current

configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8 Discretization, Small Deformation Contact . . . . . . . . . . . . . . . . 183
8.1 General Approach for Contact Discretization . . . . . . . . . . . . . . . . 184

8.1.1 Lagrange multiplier method . . . . . . . . . . . . . . . . . . . . . . . . 184
8.1.2 Penalty method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.2 Node-to-Node Contact Element . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.2.1 Frictionless contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.2.2 Contact with friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.3 Isoparametric Discretization of the Contact Contribution . . . . . 194
8.3.1 Examples for isoparametric contact elements . . . . . . . . . . 199

8.4 Discretization for Non-matching Meshes . . . . . . . . . . . . . . . . . . . . 205
8.4.1 Discretization with contact segments . . . . . . . . . . . . . . . . . 206
8.4.2 Mortar method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.4.3 Nitsche method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217



X Contents

9 Discretization, Large Deformation Contact . . . . . . . . . . . . . . . . 225
9.1 Two-dimensional Node-to-Segment Contact Discretization . . . . 226
9.2 Alternative Discretization for the Two-dimensional

NTS-Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
9.3 Three-dimensional Contact Discretization . . . . . . . . . . . . . . . . . . 241

9.3.1 Node-to-surface contact element . . . . . . . . . . . . . . . . . . . . . 242
9.4 Three-Node Master Segment for Frictionless Contact . . . . . . . . . 246

9.4.1 Matrices for Node-To-Edge (NTE) elements . . . . . . . . . . 249
9.4.2 Matrices for Node-To-Node (NTV) elements . . . . . . . . . . 251

9.5 Mortar Discretization for Large Deformations . . . . . . . . . . . . . . . 253
9.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
9.5.2 Mortar discretization for finite deformations . . . . . . . . . . 254
9.5.3 Linear approximation for the frictionless case . . . . . . . . . 256
9.5.4 Quadratic approximation for the frictionless case . . . . . . 262
9.5.5 Numerical examples for frictionless contact . . . . . . . . . . . 265
9.5.6 Quadratic Approximation for the Frictional Case . . . . . . 270
9.5.7 Numerical examples for frictional contact . . . . . . . . . . . . . 273

9.6 Smooth Contact Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
9.6.1 Hermite interpolation for frictionless contact . . . . . . . . . . 280
9.6.2 Bezier interpolation for frictionless contact . . . . . . . . . . . 286
9.6.3 Bezier interpolation for frictional contact . . . . . . . . . . . . . 291
9.6.4 Three-dimensional contact discretization . . . . . . . . . . . . . 299

9.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
9.7.1 The sheet/plate rolling simulation . . . . . . . . . . . . . . . . . . . 303
9.7.2 Simulation of a sliding and rolling wheel . . . . . . . . . . . . . . 305

10 Solution Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
10.1 Contact Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

10.1.1 Spatial search, phase (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
10.1.2 Contact detection, phase (II) . . . . . . . . . . . . . . . . . . . . . . . 316

10.2 Solution Methods for Unconstrained Nonlinear Problems . . . . . 321
10.2.1 Algorithms for time-independent problems . . . . . . . . . . . . 321
10.2.2 Algorithms for time-dependent problems . . . . . . . . . . . . . 323

10.3 Global Solution Algorithms for Contact . . . . . . . . . . . . . . . . . . . . 328
10.3.1 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
10.3.2 Dual formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
10.3.3 Penalty method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
10.3.4 Lagrange multiplier method . . . . . . . . . . . . . . . . . . . . . . . . 336
10.3.5 Augmented Lagrange method, Uzawa algorithm . . . . . . . 338
10.3.6 Partitioning method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
10.3.7 SQP method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
10.3.8 Active set method for quadratic program . . . . . . . . . . . . . 346
10.3.9 Linear complementary problem. . . . . . . . . . . . . . . . . . . . . . 347
10.3.10Contact algorithm of Dirichlet–Neumann type . . . . . . . . 348
10.3.11Contact algorithm based on projected gradients . . . . . . . 349



Contents XI

10.3.12Algorithm for dynamic contact . . . . . . . . . . . . . . . . . . . . . . 352
10.4 Global Algorithms for Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
10.5 Local Integration of Constitutive Equations in the Contact

Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
10.5.1 Evolution of adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
10.5.2 Friction laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

11 Thermo-mechanical Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
11.1 Equations for the Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

11.1.1 Kinematical relations, multiplicative split . . . . . . . . . . . . . 366
11.1.2 Thermoelastic constitutive law . . . . . . . . . . . . . . . . . . . . . . 367

11.2 Constitutive Equations for Thermo-mechanical Contact . . . . . . 368
11.2.1 Heat conductance through spots . . . . . . . . . . . . . . . . . . . . . 370
11.2.2 Heat conductance through gas . . . . . . . . . . . . . . . . . . . . . . 371
11.2.3 Heat conductance by radiation . . . . . . . . . . . . . . . . . . . . . . 373

11.3 Initial Value Problem for Thermo-mechanical Contact . . . . . . . . 374
11.4 Weak Forms in Thermo-mechanical Analysis . . . . . . . . . . . . . . . . 376
11.5 Algorithmic Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
11.6 Discretization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

11.6.1 Node-to-node contact element . . . . . . . . . . . . . . . . . . . . . . . 379
11.6.2 Node-to-segment contact element . . . . . . . . . . . . . . . . . . . . 382

11.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
11.7.1 Heat transfer at finite deformations . . . . . . . . . . . . . . . . . . 385
11.7.2 Frictional heating at finite deformations . . . . . . . . . . . . . . 386

12 Beam Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
12.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

12.1.1 Normal contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
12.1.2 Tangential contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

12.2 Variation of the Gap in Normal and Tangential Directions . . . . 396
12.3 Contact Contribution to Weak Form . . . . . . . . . . . . . . . . . . . . . . . 399
12.4 Finite Element Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
12.5 Contact Search for Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
12.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

12.6.1 Three beams in frictionless contact . . . . . . . . . . . . . . . . . . 404
12.6.2 Two beams in contact with friction . . . . . . . . . . . . . . . . . . 406

13 Computation of Critical Points with Contact Constraints . . 411
13.1 Inequality Constraints for Contact . . . . . . . . . . . . . . . . . . . . . . . . . 412
13.2 Calculation of Stability Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
13.3 Extended System with Contact Constraints . . . . . . . . . . . . . . . . . 414
13.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

13.4.1 Block pressing on arch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
13.4.2 Two arches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419



XII Contents

14 Adaptive Finite Element Methods for Contact Problems . . 423
14.1 Contact problem and discretization . . . . . . . . . . . . . . . . . . . . . . . . 425
14.2 Residual Based Error Estimator for Frictionless Contact . . . . . . 426
14.3 Error Indicator for Contact Based on Projection . . . . . . . . . . . . . 430
14.4 Error Estimators based on Dual Principles . . . . . . . . . . . . . . . . . . 434

14.4.1 Displacement error control . . . . . . . . . . . . . . . . . . . . . . . . . . 434
14.4.2 Stress error control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

14.5 Adaptive Mesh Refinement Strategy . . . . . . . . . . . . . . . . . . . . . . . 437
14.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

14.6.1 Hertzian contact problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
14.6.2 Crossing tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
14.6.3 Fractal interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

14.7 Error Indicator for Frictional Problems . . . . . . . . . . . . . . . . . . . . . 448
14.7.1 Adaptive strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
14.7.2 Transfer of history variables . . . . . . . . . . . . . . . . . . . . . . . . 452
14.7.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

14.8 Adaptive methods for thermo-mechanical contact . . . . . . . . . . . . 461
14.8.1 Staggered solution scheme with independent spatial

grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
14.8.2 Error measures for the coupled problem . . . . . . . . . . . . . . 464
14.8.3 Adaptive method for the coupled problem . . . . . . . . . . . . 466
14.8.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

A Gauss integration rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
A.1 One-dimensional Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
A.2 Two-dimensional Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

B Convective Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

C Parameter Identification for Friction Materials . . . . . . . . . . . . 483

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513



1

Introduction

Boundary value problems involving contact are of great importance in indus-
try related to mechanical and civil engineering, but also in environmental and
medical applications. Virtually all movements on this planet involve contact
and friction, like simple walking or running, driving of cars, riding bicycles
or steaming of trains. If friction were not present (see movement on ice), all
these motions would not be possible. Also, the area in which a foot, a tyre or a
wheel interacts with the soil, the road or the rail is not known a priori, leading
to a nonlinear boundary value problem for these simple everyday tasks.

Due to the nonlinear nature of contact mechanics, such problems in
the past were often approximated by special assumptions within the design
process. Due to the rapid improvement of modern computer technology, one
can today apply the tools of computational mechanics to simulate applica-
tions which include contact mechanisms numerically. This can be done to an
accuracy which is sufficient for design purposes. However, even now most of
the standard finite element software is not fully capable of solving contact
problems, including friction, with robust algorithms. Hence there is still a
challenge for the finite element society to design efficient and robust methods
for computational contact mechanics.

The range of application in contact mechanics starts with relatively simple
problems like foundations, see Figure 1.1, in civil engineering, where the lift off

F F

Fig. 1.1. Contact problems: foundation.
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Fig. 1.2. Contact problems: roller bearing and impact of a lorry.

of the foundation from the soil due to eccentric forces acting on a building are
considered. Furthermore, foundations including piles as supporting members
or the driving of piles into the soil are of interest. The latter being a very
complex problem which involves inelastic constitutive behaviour of the soil,
large deformations and large sliding of the pile relative to the soil.

Also, classical bearing problems of steel constructions, the connecting of
structural members by bolts or screws or the impact of cars against building
structures are areas in which contact analysis enters the design process in civil
engineering (see Figure 1.2). Most of these problems can usually be treated
by the assumption of small strains, however problems like the car impact or
steel connections need the consideration of inelastic constitutive equations
and sometimes also finite deformations. But even if the contact problem can
be formulated as a linear elastic problem then, due to the nature of contact

Fig. 1.3. Sheet metal forming.
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Fig. 1.4. Crash of a car against a deformable barrier, from Daimler Chrysler AG.

problems with an a priori unknown contact area, all applications are nonlinear
and need special solution algorithms.

Applications of contact mechanics in mechanical engineering include the
design of gears and bearings which usually can be treated using linear elastic-
ity. Other contact problems are due to drilling but also occur in metal forming
or cutting processes, like sheet metal or bulk forming (see Figure 1.3). The
latter problems depict large deformations within the sheet and require the use
of inelastic constitutive equations.

Furthermore, crash analysis of cars is of great industrial interest since its
numerical simulation can reduce the development time and costs of modern
cars. An example is provided in Figure 1.4, where a EURO NCAP frontal
impact of a car with initial speed of 64 km/h against a deformable barrier
is shown. Car crash simulations are one of the most challenging and complex
contact problems. First of all, up to 10 million finite elements are needed for
a sufficiently refined model. Secondly the simulation models, as can be ob-
served in Fig. 1.4, involve finite deformations, use inelastic constitutive equa-

Fig. 1.5. Self-contact of a car component during crash, from ABACQUS, Inc.
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Fig. 1.6. Contact of tyres with a road surface, from Michelin.

tions, include dynamic effects and have multiple contact surfaces including
self-contact.

This can also be observed when components of a spatial car structure are
investigated using finite element analysis. Figure 1.5 depicts a final deforma-
tion state of such a component under crash conditions. This part undergoes
finite deformation and is partly in the state of self-contact.

Due to the complex mechanical behaviour, such analysis demands a deep
knowledge of the engineer in mechanics and numerical methods and, from the
software point of view, extremely robust computational methods.

The rolling contact of car tyres (see Figure 1.6) is, besides it is only a part
of a car, today also a very challenging problem. Here implicit time integration
algorithms are often applied for the solution of the contact problem together
with a fine discretization of around 1 million finite elements. This number of
elements is needed for a sufficient resolution of the complex tyre structure and
the treads which can be observed from Figure 1.6. Furthermore tyre contact
problems can also include multi-field investigations which are related to the
heating of the tyre, to aquaplaning simulations or its noise production. The
latter requires the consideration of the acoustic field equations.

Other applications are related to biomechanics where human joints or the
implantation of teeth are of consideration. Here again, large deformation can-
not be excluded in the analysis, and complicated nonlinear material models
have to be applied for a successful numerical simulation.

Due to this variety, contact problems are today combined either with large
elastic or inelastic deformations, including time-dependent responses. Hence
a modern formulation within computational mechanics has to account for all
these effects, leaving the linear theory as a special case. For most industrial
applications, numerical methods have to be applied since the contacting bod-
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Localization Post-critical state

Fig. 1.7. Shearband formation and collapse analysis in soils or avalanches.

ies have complex geometries or undergo large deformations. Today we can
distinguish several branches in computational contact mechanics which are
applied to solve different classes of contact problems:

• Finite element methods, applied to problems undergoing small and large
deformations, as well as in the elastic or inelastic range.

• Discrete element methods, used to compute problems in which up to 108

particles are coming into contact.
• Multi body systems, based on a description of the bodies as rigid ones.

These systems are generally small, and can be applied to model the dy-
namic behaviour of engineering structures in which contact is also allowed.

Thermal coupling might need to be considered within contact analysis, cooling
of electronic devices, heat removal within nuclear power plant vessels or ther-
mal insulation of astronautic vehicles, where the mechanical response and the
thermal conduction interacts in the contact area. When electronic devices are
considered coupling with electro-magnetic field equations can be of interest.
Even stability behaviour has to be linked to contact, like wrinkling arising
in metal forming problems or the shearband formation in soils (see Figure
1.7). The latter problem is also related to the simulation of avalanches. Here
a contact formulation together with the correct modelling of the process in
continuum mechanics can be used to compute the final position of a part of
the avalanche which has sheared off.

All together, Computational Contact Mechanics (CCM) has to cover topics
from tribology, including friction, lubrication, adhesion and wear. One has to
establish weak forms for finite deformation mechanics, coupling to other fields
like thermal or electromagnetic fields, and to derive associated algorithms to
solve the nonlinear boundary value problems, which include inequality con-
straints. Hence, CCM is an interdisciplinary area which needs input from
tribologists, mathematicians, computer scientists and people from mechanics,
together with people working in other fields like heat conduction or electro-
magnetism.

In this book we will restrict ourselves mainly to finite element techniques
for the treatment of contact problems, despite many other numerical schemes
and analytical approaches which could be discussed as well. However, there are
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common formulations and algorithms, and also overlapping of the methods.
These will be discussed in related chapters. Generally, an overview related
to modern techniques applied in discrete element methods can be found in,
for example Attig and Esser (1999) and for multi-body-systems with special
relation to contact in Pfeiffer and Glocker (1996) and Fremond (2002).

Before we provide a short summary of the topics covered in this book,
a short historical overview on contact mechanics and computational contact
mechanics is given.

Historical remarks. Due to this technical importance, a great number
of researchers have investigated contact problems. In ancient Egypt people
needed to move large stone blocks to build the pyramids, and thus had to
overcome the frictional force associated with it. This is depicted in Figure 1.8,
where we can see that even in ancient Egypt people knew about the process
of lubrication.

There is a man standing on the sledge who pours a fluid onto the ground
immediately in front of the sledge. Since friction occurs in many applications
which are of technical importance, famous researchers in the past have inves-
tigated frictional contact problems, amongst them Da Vinci, who in the 15th

century measured friction force and had already considered the influence of
the contact area on the friction force using blocks with different contact area
but the same weight (see Dowson (1979) and Figure 1.9). He found that the
friction force is proportional to the weight of the blocks, and is independent of
the apparent contact area. Associated results are often attributed to Amon-
tons (1699) neglecting the contribution of Da Vinci. When putting these
findings in a formula one obtains the classical equation for friction (known as
Coulomb’s friction law), which every student in engineering learns during
the first semesters of study:

FT = μN (1.1)

Fig. 1.8. Stone block moved by Egyptian worker.
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Fig. 1.9. Da Vinci’s experiments.

where FT is the friction force, N is the normal force and μ the coefficient of
friction.

A first analysis from the mathematical point of view was carried out by
Euler, who assumed triangular section asperities for the representation of
surface roughness (Euler (1748b) and Euler (1748a)). His model is depicted
in Figure 1.10. He had already concluded from the solution of the equations
of motion for a mass on a slope that the kinetic coefficient of friction has to
be smaller than the static coefficient of friction.

Actually, it was Euler who introduced the symbol μ for the friction coeffi-
cient, which is the common symbol nowadays. A comprehensive experimental
study of frictional phenomena was later performed by Coulomb (1785); see
Figure 1.11. He considered the following facts relating to friction: normal
pressure, extent of surface area, materials and their surface coatings, ambi-
ent conditions (humidity, temperature and vacuum), and time dependency
of friction force. These observations resulted in a formula for the frictional
resistance to sliding of a body on a plane

FT = A +
N

μ∗ , (1.2)

where FT is the friction force, N is the normal force and μ∗ the inverse of
the friction coefficient. A represents cohesion, an effect which was already de-
scribed in Desaguliers (1725). The second term was attributed to a ploughing

Fig. 1.10. Euler’s model for friction.
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Fig. 1.11. Coulomb’s model for rough surfaces.

action within the interface. This result, today written as FT = A + μN , is
still acceptable, and is the basis for many developments of contact interface
laws (see e.g. Tabor (1981)). Again Coulomb found that μ is nearly inde-
pendent of the normal force, the sliding velocity, the contact area (see also
results from Da Vinci) and from the surface roughness. However, μ depends
strongly upon the material pairing in the contact interface. His further, re-
markable results concerning the influence of the time of repose upon static
friction are discussed in Dowson (1979).

Starting with the classical analytical work of Hertz (1882) the theory of
elasticity was applied in contact mechanics. Hertz investigated the elastic
contact of two spheres and derived the pressure distribution in the contact
area as well as the approach of the spheres under compression. However very
few problems involving contact can be solved analytically. For an overview
one may consult the books of Johnson (1985) or Timoshenko and Goodier
(1970), and the references therein.

The finite element method developed together with the growing power of
modern computers. Hence the first attempts to solve structural problems us-
ing finite elements were published in the late fifties (see Turner et al. (1956)
or Argyris (1960)). After this, the literature grew enormously since there were
many problems of industrial importance which could not be solved analyti-
cally. It then took another ten years for the first papers in which methods
for the solution of contact problems with finite element methods appeared.
As first contributions we list the work by Wilson and Parsons (1970) or Chan
and Tuba (1971), which contain early treatments of contact using the geomet-
rically linear theory. However, even at an earlier stage Wilkins (1964) devel-
oped the explicit HEMP-hydrocode which could deal with large strains, and
included a simple contact model. Following this, the explicit codes DYNA2D
and DYNA3D, as well as the implicit codes NIKE2D and NIKE3D, were de-
veloped at the Lawrence Livermore Laboratory by J. Hallquist, beginning
in the mid-seventies. For the first time these codes provided the possibility to
solve contact problems undergoing finite deformations on a large scale in an
efficient way. Nowadays all of the commercial finite element packages include
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the possibility to solve contact problems.

Point of departure and connection of chapters. The design of ro-
bust algorithms to treat contact problems efficiently within the finite element
method needs input from different sources. These will be considered in the
book, which also provides the physical and tribological background within
the contact interface. Hence several chapters are devoted to theoretical aspects
of continuum mechanics, contact kinematics and the constitutive behaviour
in the contact interface. Other chapters contain discretization techniques for
solids, and of course, for the contact interface. Furthermore, solution algo-
rithms are discussed, as well as adaptive techniques for contact. Chapters
dealing with special contact formulations or topics are also included to com-
plete the treatment of contact problems. An interaction between the chapters
will be denoted in the following more detailed description of the contents of
the different chapters.

In the first introductory chapter, several contact problems and simple dis-
cretizations are treated to present the basic ideas and difficulties of contact
mechanics, including coupled and impact problems. This chapter requires no
further background besides standard engineering knowledge.

The second chapter is of a more general nature, and discusses the under-
lying theoretical background for finite deformation solid mechanics, including
kinematics, weak forms, linearizations and simple hyperelastic constitutive
equations. This chapter is needed to understand the following chapters re-
garding the kinematics of large deformation contact, and the associated weak
formulations. It can be skipped if the reader is familiar with these formula-
tions.

The third chapter discusses contact kinematics from the continuum me-
chanics point of view. The formulations stated in this chapter are the basis
for the derivations in later chapters.

The physical background of the constitutive behaviour in the contact in-
terface is considered in the fourth chapter. This section can be read on its
own with a classical background in engineering. It contains material regard-
ing normal and frictional contact for different material pairings, as well as
basic formulations for lubrication, adhesion and wear.

The boundary value problem for frictionless and frictional contact is stated
in Chapter 6. This also contains different methods on how the contact con-
straints can be incorporated in the weak forms needed for finite element analy-
sis. This chapter is based on the formulations presented in Chapters 3 and 4.
This chapter also contains a section on the treatment of rolling contact based
on an Arbitrary Lagrangian Eulerian (ALE) formulation for stationary
and non-stationary processes.

The discretization of solids in contact is derived in Chapter 7 on the basis
of the theoretical formulations included in Chapter 3. This chapter is only
concerned with the continuum part of the bodies and hence can be skipped if
the reader is familiar with this subject.
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The discretization of the contact interfaces is described in Chapters 8 and
9 for linear and nonlinear geometry, respectively. Here interpolation functions
and matrix formulations are given for two- and three-dimensional applications.
Also, smooth interpolations are introduced to obtain more robust methods for
arbitrary contact geometries. Furthermore, new techniques such as mortar or
Nitsche interpolations are discussed in Chapter 8 which can be used for non-
matching meshes. This chapter is based on the material derived in Chapters
4, 5, 6 and 8.

Solution methods for contact problems are contained in Chapter 10. Here
different methods of algorithmic treatment are considered for the solution of
contact boundary value problems which are defined in the weak sense in Chap-
ter 5. Furthermore, search algorithms for contact are discussed for different
applications with respect to global and local search.

In Chapter 11 we treat the coupled thermo-mechanical problem of contact.
This chapter is concerned with the heat transfer at the contact interface, which
depends upon the mechanical response. Furthermore, the associated finite
element discretization for small and finite deformations and the algorithmic
treatment of the coupled problem is considered. The contents of this chapter
is based on formulations derived in Chapters 3, 4, 5, 8 and 9.

The contact of beam elements is of interest in, for example, the micro-
mechanical modelling of woven fabrics. Since the formulations do not fit com-
pletely into the general scope, all relevant equations – from the continuous
formulation to the finite element discretization – are developed for the beam
contact in Chapter 12. Knowledge of the background provided in Chapters 4,
6, 7 and 10 is necessary to understand the derivations.

Stability problems which include contact constraints are discussed in
Chapter 13. These problems arise in, for example, sheet metal forming, but
can also occur in civil engineering applications like the drilling of deep holes.
Here the associated algorithms are stated based on the formulations given in
Chapters 6 and 10.

Adaptive methods for contact problems which are necessary to control the
errors inherited in the finite element method are described in Chapter 14. The
objective of adaptive techniques is to obtain a mesh which is optimal in the
sense that the computational costs involved are minimal under the constraint
that the error in the finite element solution is below a certain limit. In general,
adaptive methods rely on error indicators and error estimators, which can be
computed a priori or a posteriori. In Chapter 14 an overview over different
techniques is given, including different error estimators and indicators. Again,
the basic formulations of the solid and the contact constraints from Chapters
3, 4, 7, 8, 9 and 10 are required.



2

Introduction to
Contact Mechanics

To introduce the basic methodology and difficulties related to contact mechan-
ics, some simple contact problems will be discussed in this chapter. These are
one-dimensional examples undergoing static, thermal or dynamic contact.

2.1 Contact in a Mass Spring System

2.1.1 General formulation

Frictionless contact. Let us consider a contact problem consisting of a point
mass m under gravitational load which is supported by a spring with stiffness
k. The deflection of the point mass m is restricted by a rigid plane, see Figure
2.1. The energy for this system can be written as

k

m

u h

h

Pmin

P

P c
min

u

Fig. 2.1. (a) Point mass supported by spring. (b) Energy of the mass spring
system.
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Π(u) =
1
2

k u2 − mg u . (2.1)

If we do not place any restriction on the displacement u, then we can compute
the extremum of (2.1) by variation, leading to

δ Π(u) = k u δu − mg δu = 0 . (2.2)

Since the second variation of Π yields δ2 Π = k, the extremum of (2.1) is a
minimum at u = m g

k . This is depicted in Figure 2.1b, in which the energy of
the mass spring system is plotted.

The restriction of the motion of the mass by a rigid support can be de-
scribed by

c(u) = h − u ≥ 0 , (2.3)

which excludes penetration as an inequality constraint. For c(u) > 0 one has
a gap between point mass and rigid support. For c(u) = 0 the gap is closed.

Note that the variation δu is restricted at the contact surface; from (2.3)
one obtains δu ≤ 0, which means that the virtual displacement has to fulfil
the constraint and can only point in the upward direction. The use of this
variation in the variational form (2.2) yields an inequality

k u δu − mg δu ≥ 0 (2.4)

in which the greater sign follows from the fact that the force mg is greater
than the spring force k h in the case of contact, and that the variation is
δu < 0 at the rigid support. Equation (2.4) is called a variational inequality.
Due to the restriction of the solution space by the constraint condition (2.3)
the solution of (2.1) is not at the minimum point associated with Πmin, but
at the point associated with Πc

min, which denotes the minimal energy within
the admissible solution space, see Figure 2.1b.

Often, instead of the variation δu, one uses the difference between a test
function v and the solution u: δu = v − u. The test function has to fulfil the
condition v − h ≤ 0 at the contact point, as also does the solution u. With
the test function v, (2.2) can be written as

k u (v − u) − mg (v − u) = 0 . (2.5)

Since mg > k u at the contact point, we have with v − h ≤ 0

k u (v − h) ≥ mg (v − h) . (2.6)

In both cases, inequality (2.3) which constrains the displacement u leads to
variational inequalities which characterize the solution of u. These variational
inequalities cannot be directly applied to solve the contact problem. For this
one has to construct special methods. Some frequently used methods are dis-
cussed in the following sections.
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c(u)

RN

Fig. 2.2. Reaction force versus normal gap.

Once the point mass contacts the rigid surface, a reaction force fR appears.
In classical contact mechanics, we assume that the reaction force between rigid
surface and point mass is negative, hence the contact pressure can only be
compression. Such assumption excludes adhesion forces in the contact inter-
face and leads to the restriction

RN ≤ 0 . (2.7)

This means that either we have a compression state (RN < 0) or an inactive
reaction force (RN = 0).

Summarizing, one has to distinguish two cases within a contact problem
where the motion is constrained by (2.3):

1. The spring stiffness is sufficiently large enough that the point mass does
not touch the rigid surface. In this case, the following conditions are valid:

c(u) > 0 and RN = 0 . (2.8)

2. The data of the system are such that the point mass comes into contact
with the rigid support. In that case conditions

c(u) = 0 and RN < 0 (2.9)

hold.

Both cases can be combined in the statement

c(u) ≥ 0 , RN ≤ 0 and RN c(u) = 0 (2.10)

which are known as Hertz–Signorini–Moreau conditions in contact me-
chanics. Such conditions coincide with Kuhn–Tucker complementary con-
ditions in the theory of optimization.

The result of the above considerations an be depicted by plotting the re-
action force versus the gap (2.3), see Figure 2.2. Since the load displacement
curve has a corner it is not differentiable in the standard way. Due to that one
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has to apply mathematical methods for non-smooth problems, when contact
problems have to be analyzed.

Contact with friction. Using now the same system, we can compute
also the frictional behaviour of the mass spring system. For this we assume
that the mass is in contact with the rigid support, hence RN < 0. Now
additionally a force tangential to the supporting plane is applied, see Figure
2.3. The equilibrium equations in vertical and tangential direction follow for
the state of contact with the notation provided in Figure 2.3 as

RN + mg − k h = 0 (2.11)
RT − FT = 0 (2.12)

Friction between the mass and the rigid support is described by a consti-
tutive equation which has to be formulated in such a way that it describes
the physical phenomena of the friction process. The simplest model, widely
used in engineering, is Coulomb’s law. Within this constitutive equation one
differentiates between a stick and sliding state. Stick means that there is no
relative tangential movement between the mass and the rigid support. During
sliding there will be a relative displacement uT between the mass and the
rigid support. These assumptions lead to the following set of equations which
describe the frictional behaviour.

1. Coulomb’s law provides an inequality involving the normal (vertical) and
tangential reaction forces

f(RN , RT ) = |RT | + μRN ≤ 0 . (2.13)

In this inequality the constitutive parameter μ is called friction coeffi-
cient. It actually can depend upon several other quantities, which will be

FT
m

k

RT

mg

kh

FT

RN

Fig. 2.3. Mass spring system under tangential loading.
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FT

uT

Fig. 2.4. Load-displacement diagram for frictional contact.

discussed later. Note that the absolute value of the tangential reaction is
taken, since the tangential force FT can be positive or negative. Inequality
(2.13) can now be used to distinguish between stick and slip.

2. Stick occurs when
|RT | < −μRN . (2.14)

In that case we have no relative tangential displacement between the mass
and the rigid support: uT = 0. Furthermore the tangential force RT is a
reaction force which can be determined from (2.12)2.

3. Slip occurs when
|RT | = −μRN . (2.15)

In that case we have a relative tangential displacement between the mass
and the rigid support: uT �= 0 and RT follows directly from the above
equation. The direction of uT will be opposite to the tangential reaction
force RT .

Again the inequalities formulated above can be written in a form of the Kuhn–

Tucker, see (2.10). Here we formulate

|uT | ≥ 0 , f ≤ 0 and |uT | f = 0 (2.16)

where the absolute value of the tangential displacement enters since the tan-
gential force FT can act in positive or negative direction.

The above analysis leads to load displacement diagram for the tangen-
tial loading versus the tangential displacement in case of friction. It is shown
in Figure 2.4. As in the frictionless case, see Figure 2.2, the frictional load-
displacement curve depicts non-smooth behaviour. This leads to mathemati-
cal difficulties, due to the non-differentiability at the corners, when treating
frictional contact problems.

2.1.2 Lagrange multiplier method

The solution of a contact problem in which the motion is constrained by an
inequality (2.3) can be obtained using the method of Lagrange multipliers.
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Fig. 2.5. Point mass supported by a spring and free body diagram for the La-

grange multiplier method.

For this we assume that a constraint is active, which means condition (2.9)
is fulfilled by the solution. Therefore, the Lagrange multiplier method adds
to the energy of the system (2.1) a term which contains the constraint and
yields

Π(u , λ) =
1
2

k u2 − mg u + λ c(u) . (2.17)

A comparison with (2.10) shows that the Lagrange multiplier λ is equivalent
to the reaction force fR. The variation of (2.17) leads to two equations, since
δu and δλ can be varied independently:

k u δu − mg δu − λ δu = 0 , (2.18)
c(u) δλ = 0 . (2.19)

The first equation represents the equilibrium for the point mass including the
reaction force when it touches the rigid surface (see also Figure 2.5), and the
second equation states the fulfillment of the kinematical constraint equation
(2.3) for contact: u = h. Due to that, the variation is no longer restricted,
and one can solve for Lagrange multiplier λ which is equivalent with the
reaction force RN , see (2.7),

λ = k h − mg = RN . (2.20)

However condition (2.7) still has to be checked and fulfilled by the solution
(2.20). If this condition is not met, and hence an adhesion force is computed,
then the assumption of contact no longer holds. This means the inequality
constraint is inactive and the correct solution can be computed from (2.2) as
u = m g

k ; furthermore, the reaction force or Lagrange multiplier is zero.
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Fig. 2.6. Point mass supported by a spring and a penalty spring due to the penalty
term.

2.1.3 Penalty method

Another well known method which is often applied in finite element analysis
of contact problems is the penalty approach. Here for an active constraint one
adds a penalty term to the energy (2.1) as follows:

Π(u) =
1
2

k u2 − mg u +
1
2

ε [c(u)]2 with ε > 0 . (2.21)

As can be seen in Figure 2.6, the penalty parameter ε can be interpreted as a
spring stiffness in the contact interface between point mass and rigid support.
This is due to the fact that the energy of the penalty term has the same
structure as the potential energy of a simple spring. The variation of (2.21)
yields for the assumption of contact

k u δu − mg δu − ε c(u) δu = 0 , (2.22)

from which the solution

u = (mg + ε h) / (k + ε) (2.23)

can be derived. The value of the constraint equation is then

c(u) = h − u =
k h − mg

k + ε
. (2.24)

Since mg ≥ kh in the case of contact, equation (2.24) means that a penetration
of the point mass into the rigid support occurs, which is physically equivalent
to a compression of the spring, see Figure 2.6. Note that the penetration
depends upon the penalty parameter. The constraint equation is only fulfilled
in the limit ε → ∞ =⇒ c(u) → 0. Hence, in the penalty method we can
distinguish two limiting cases:
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1. ε → ∞ =⇒ u − h → 0, which means that one approaches the correct
solution for very large penalty parameters. Intuitively, this is clear since
that means the penalty spring stiffness is very large, and hence only very
small penetration occurs.

2. ε → 0 represents the unconstrained solution, and thus is only valid for
inactive constraints. In the case of contact, a solution with a very small
penalty parameter ε leads to a high penetration, see (2.24).

The reaction force for a penalty method is computed (see (2.22)) from RN =
ε c(u). For this example, one arrives with (2.24) at

RN = λ = ε c(u) =
ε

k + ε
( k h − mg ) , (2.25)

which in the limit ε → ∞ yields the correct solution obtained with the La-

grange multiplier method, see (2.20).

2.2 Finite Element Analysis of the Contact of Two Bars

This example shows that even for a system which is built from two simple bars
with geometrically linear and elastic behaviour a nonlinear response curve
occurs in the case of contact. This is due to the change of stiffness within the
contact process.

The potential energy of a bar loaded by i point loads is given by

Π =
1
2

∫

(l)

EA [u′(x)]2 dx −
∑

i

Fi u(xi) (2.26)

when distributed forces along the bar are neglected. EA denotes the axial
stiffness, u(x) is the displacement of the bar and Fi describes a point load at
point xi. The problem depicted in Figure 2.7 shows a system consisting of two
bars which are separated by a gap g. When the force F , acting at x = l, is
large enough the gap will close. We assume that a penetration of bar 1 into
bar 2 is impossible. Due to Figure 2.7, this yields the constraint equation

ul urx

ll lg

Fig. 2.7. System of two bars and loading.
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ul − ur ≤ g . (2.27)

For ul−ur < g no contact occurs, whereas contact takes place for ul−ur = g.
This system is discretized using three finite elements, two for the left bar

and one for the right bar. Linear shape functions are chosen (see Figure 2.8)
which already fulfil the boundary conditions at the left and right end of the
structure, see also Figure 2.7. The explicit form of the shape functions and
their derivatives is given within the elements as

0 ≤ x ≤ l : u(x) = x
l u1 u′(x) = u1

l ,
l < x ≤ 2l : u(x) = (2 − x

l )u1 + (x
l − 1)u2 u′(x) = −u1

l + u2
l ,

2l < x ≤ 3l : u(x) = (3 − x
l )u3 u′(x) = −u3

l .
(2.28)

By inserting these interpolations into (2.26), the discretized form of the po-
tential energy can then be derived by integration, leading for the bar system
to

Π =
1
2

EA

l

[
u2

1 + (u2 − u1)2 + u2
3

]
− F u1 . (2.29)

The variation of Π yields

δΠ =
EA

l
[ u1 δu1 + (u2 − u1) (δu2 − δu1) + u3 δu3 ] − F δu1 = 0 . (2.30)

The constraint condition (2.27) is now given by u2 − u3 ≤ g:

i) For u2−u3 < g displacement u3 = 0 and no contact occurs. One says that
the constraint equation is not active, since the gap is open. In this case,
the solution follows directly from (2.30), which has the matrix form

〈δu1 , δu2 , δu3〉

⎧⎨
⎩

EA
l (2u1 − u2) − F

EA
l (u2 − u1)

EA
l u3

⎫⎬
⎭ = 0 , (2.31)

leading for arbitrary virtual displacements δui to the equation system

EA

l

⎡
⎣ 2 −1 0
−1 1 0
0 0 1

⎤
⎦

⎧⎨
⎩

u1

u2

u3

⎫⎬
⎭ =

⎧⎨
⎩

F
0
0

⎫⎬
⎭ (2.32)

with the solution
u1 = u2 =

Fl

EA
, u3 = 0 . (2.33)

u1 u2 u3x

Fig. 2.8. Shape functions.
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Fig. 2.9. Finite element discretization and load-deflection curve.

ii) In case the load is increased such that F > EA g
l , contact occurs and the

constraint u2 −u3 = g has to be fulfilled. Now the gap is closed, hence the
constraint is active. The solution will be computed using the Lagrange

multiplier method. As already shown in Section 2.1.2, one then has to
add the constraint to the potential energy multiplied by the Lagrange

multiplier. This yields

ΠLM = Π + λ g = Π + λ (g + u3 − u2) . (2.34)

Hence, the variation can be written in case of contact with (2.30) as

δΠLM = δΠ + λ (δu3 − δu2) + δλ (g + u3 − u2) = 0 , (2.35)

where the second term is associated with the reaction force (Lagrange

multiplier) in the gap. The third term denotes the fulfillment of the con-
straint equation. The matrix form of (2.35) is given by

〈δu1 , δu2 , δu3 , δλ〉

⎧⎪⎪⎨
⎪⎪⎩

EA
l (2u1 − u2) − F
EA

l (u2 − u1) − λ
EA

l u3 + λ
g + u3 − u2

⎫⎪⎪⎬
⎪⎪⎭

= 0 , (2.36)

leading for arbitrary virtual displacements δui and the virtual Lagrange

multiplier δλ to the equation system
⎡
⎢⎢⎣

2 EA
l −EA

l 0 0
−EA

l
EA

l 0 −1
0 0 EA

l 1
0 −1 1 0

⎤
⎥⎥⎦

⎧⎪⎨
⎪⎩

u1

u2

u3

λ

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

F
0
0
−g

⎫⎪⎬
⎪⎭ . (2.37)

The solution of this system for u2 and λ leads to

u2 =
1
3

(
2g +

F l

EA

)
and λ =

1
3

(
EA

g

l
− F

)
. (2.38)

Observe that the Lagrange multiplier fulfils condition (2.7), since F >
(EAg) / l when the gap is closed, see also (2.33). From (2.38) one can now
compute the dependency between load F and displacement u2:
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F = EA
(

3
u2

l
− 2

g

l

)
. (2.39)

Figure 2.9 depicts the nonlinear load-deflection curve for the complete analy-
sis. It is clear that the stiffness of the bar system increases when contact
occurs; this can be observed from the fact that the load has to be three times
as big to obtain the same increment to the displacement when the gap is
closed as in the case when the gap is open.

Condition (2.38) includes, for u2 = g, the limiting case of the initiation of
contact in which λ = 0. This case can also be obtained from (2.33).

Implications for numerical methods

• Generally, one can observe that in the case of contact two different states of
the structural system are possible. One is related to the open gap, see (i),
the other to the closed gap, see (ii). Both cases were solved using a different
equation system, which means that the topology of the structure changes
due to contact. This points out one of the difficulties when solving contact
problems: the system matrix changes its size (or non-zero form) with active
or inactive constraint equations. As will be seen in later chapters, this can
also include a change of the topology when one finite element node moves
during the deformation process from one element to another.

• Furthermore, we have the choice between different methods for the treat-
ment of contact problems, including the Lagrange multiplier or the
penalty formulation. The former introduces additional variables in the sys-
tem, but does fulfil the constraint equation correctly; the latter leads to
non-physical penetration, but has no additional variables. So both meth-
ods have advantages and disadvantages, which will be discussed in later
chapters in detail, together with techniques to overcome the problems dis-
cussed above.

2.3 Thermo-mechanical Contact

Contact can occur in a coupled thermo-mechanical analysis when two bodies
have different temperatures. To show some of the main effects, the following
example of a bar which contacts a rigid wall is investigated.

We can consider a problem as specified in Figure 2.10. The bar is fixed at
the left end and heated at that point with a temperature of ϑ1. On the other
side there is a gap between the end of the bar and the rigid wall which has
temperature ϑ2. Hence we have to distinguish two situations: contact of the
bar with the wall (ϑ(l) = ϑ2), and the open gap (ϑ(l) = ϑ1). The material
properties of the bar are given by the axial stiffness EA and the coefficient
of heat transfer αT . This system will be analyzed under the assumption of
steady state solution, thus time dependent solutions will not be considered.
Furthermore, the mechanical constitutive properties are assumed to be inde-
pendent of the temperature. For this we can write the following equations for
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the mechanical and thermal problem:

Mechanical problem

Kinematics: εel =
du

dx
− αT (ϑ(x) − ϑ0 )

Equilibrium:
dσ

dx
= 0

Constitutive equation: σ = E εel

(2.40)

with a given reference temperature ϑ0, the stress σ, and the elastic strain εel

in the x-direction and Young’s modulus E.

Heat conduction

Heat balance: − dq

dx
= 0

Constitutive equation: q = −k
dϑ

dx

(2.41)

where q is the heat flux, ϑ is the temperature and k is the thermal conduc-
tivity in Fourier’s law. Note that the assumption of steady state solutions
has been made, and no internal heat will be generated in the bar.

The differential equation which governs the mechanical behaviour of the
bar results from equations (2.40):

E
d

dx

[
du

dx
− αT (ϑ(x) − ϑ0 )

]
= 0 (2.42)

in the same way, from (2.41) one derives

d2ϑ

dx2
= 0 . (2.43)

The mechanical and thermal problems are decoupled in the sense that the
heat equation does not depend upon the mechanical quantities. So one can
always solve for the thermal field ϑ(x) independently of the mechanical field.
Coupling is present in the case of finite deformations, and when dissipative

g

u
l

ϑ1
ϑ2

Fig. 2.10. Contact of a bar due to thermal heating.
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processes like friction or plasticity have to be considered. This will be discussed
in detail in later chapters.

Within the analysis one has to distinguish two different solution states. In
the first the gap is still open, and in the second the gap is closed. This is the
standard situation when contact is present (see also the previous section).

i) Gap open (inactive constraint): in this situation no contact has been made.
Hence the inequality u < g is valid, together with the fact that no contact
pressure occurs. From (2.43) there follows a constant temperature distrib-
ution in the bar with ϑ(x) = ϑ1. Furthermore, the bar is stress free. Thus
for elongation of the bar, the solution yields

u = αT (ϑ1 − ϑ0 ) l . (2.44)

Observe, that the gap closes for a temperature of

ϑg = ϑ0 +
g

αT l
. (2.45)

ii) Gap closed (active constraint): for a temperature which is larger than ϑg

the gap is closed. In that case, from (2.43) one obtains a linear temper-
ature distribution along the bar ϑ(x) = ϑ1 + (ϑ2 − ϑ1)x

l when a perfect
conductance is assumed in the contact point. For the displacement the
condition u = g holds, and hence the stress follows with (2.40) from

g =

l∫

0

{ σ

E
+ αt

[
(ϑ1 − ϑ0) + (ϑ2 − ϑ1)

x

l

]}
dx ,

σ = E
[ g

l
− αT

2
( (ϑ1 − 2ϑ0) + ϑ2)

]
. (2.46)

As long as the second expression is now larger than the first term, a nega-
tive stress occurs in the bar, hence the contact stress is also negative and
condition (2.9) is fulfilled.

However, if the temperature ϑ2 is such that the second term in (2.46) is smaller
than the first term, then a positive stress occurs, which means that the gap
opens up again. This results in an on-off contact state, since after opening
the temperature in the bar again changes to the constant value ϑ1, leading to
contact. Hence the solution is no longer stable. Since such a response has never
been observed in experiments, one has to reformulate the problem in such a
way that this instability does not occur. One method which yields a unique
solution introduces a pressure-dependent heat conduction h(σ) at the contact
point. Such constitutive response can also be derived from micromechanical
observations, e.g. see Section 11.2. A simple relation is given by

h(σ) = hc

( σ

H̄

)β

(2.47)



24 2 Introduction to Contact Mechanics

ϑc

η

ϑc

0
1086420

20

40

60

80

100

Fig. 2.11. Pressure-dependent contact temperature ϑc.

with the thermal conductivity hc in the contact point, the hardness of the
material H̄ and a positive exponent β which has to be determined from ex-
periments. The heat conduction in the contact interface is then given by

qc = h(σ) (ϑc − ϑ2) , (2.48)

where ϑc is the contact temperature. Since qc = −k dϑ
dx , from (2.47) and (2.48)

one obtains the differential equation

−k
dϑ

dx
= h(σ) (ϑc − ϑ2) , (2.49)

which has the solution

ϑ(x) =
∫

h(σ)
k

(ϑ2 − ϑc) dx + C . (2.50)

Evaluation of this equation at the contact point c by considering the boundary
condition ϑ(0) = ϑ1 yields

ϑc =
ϑ1 + η ϑ2

1 + η
with η =

h(σ) l

k
, (2.51)

which means that there is a jump in the temperature at the contact point, since
ϑc �= ϑ2. The contact temperature is depicted in Figure 2.11 as a function of
the dimensionless parameter η which includes the pressure dependency (large
η means a higher contact pressure). The curve in Figure 2.11 is plotted for
the values ϑ1 = 100K and ϑ2 = 20K. The limit cases are η = 0 ⇒ ϑc = ϑ1

and η → ∞ ⇒ ϑc → ϑ2, as can be seen in Figure 2.11. Hence for small
contact pressures, almost no heat is conducted through the surface. Due to the
possibility of incorporating a temperature jump at the boundary, the solution
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of the thermo-mechanical contact problem is stable. However, the solution for
the contact stress now has to be computed from a nonlinear equation, which
follows from the condition u = g with (2.40) and (2.51):

g =

l∫

0

{ σ

E
+ αT [ϑ1 + (ϑc − ϑ1)

x

l
]
}

dx ,

=⇒ 0 = −g

l
+

σ

E
+

αT

2
2ϑ1 + η(ϑ1 + ϑ2)

1 + η
. (2.52)

where η is a function of σ defined in (2.51) and (2.47).

Implications for numerical methods

• In the case of thermo-mechanical contact, in general one has to solve a
system of coupled field equations which leads to algorithms for different
problem classes when non-stationary processes are involved, since the time
dependency of the heat conduction equation is first order, and second order
for the equations of the solid.

• In the contact zone a pressure-dependent constitutive equation is needed
to avoid instability. This means that one has to use a finite element dis-
cretization technique for contact, which yields the contact pressure and
not a contact force.

2.4 Impact

When two bodies which have different velocities come into contact an impact
occurs. Within an impact analysis one is interested in the velocities of the
bodies after impact and in the impact force as a function of time.

Here a one-dimensional example is discussed in which a bar of length l1
impacts another bar of length l2, see Figure 2.12. Both bars have the same
material properties EA1 = EA2 = EA and densities ρ1 = ρ2 = ρ. The left
bar has an initial velocity of v0 1, whereas the right bar is at rest.

The solution of this problem can be derived from the one-dimensional wave
equation

EA
∂2u

∂x2
= −ρA

∂2u

∂t2
. (2.53)

l2l1

v1 = v0 v2 = 0

Fig. 2.12. Longitudinal impact of two bars.
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Furthermore, one has to fulfil the initial and boundary conditions of the prob-
lem stated in Figure 2.12 and the standard contact conditions (2.10), which
describe that no penetration can occur at the contact point, and also that the
contact force has to be a compression force.

The solution of (2.53) is given by

u(t) = f〈x − ct〉 + g〈x + ct〉 with c =

√
E

ρ
, (2.54)

where c denotes the speed of wave travelling in the bars. Function f corre-
sponds to a wave travelling in the x-direction of the bar, while g is associated
with a wave travelling in the opposite direction. By differentiation of both
sides of (2.54) with respect to x and t, one derives

ε =
∂u

∂x
= f ′〈x − ct〉 + g′〈x + ct〉 , (2.55)

v =
∂u

∂t
= c [−f ′〈x − ct〉 + g′〈x + ct〉] , (2.56)

with f ′ =
∂f

∂x
and g′ =

∂g

∂x
. The identity

∂u

∂t
= c

∂u

∂x
(2.57)

follows by comparing the last two relations. Using (2.57), one can conclude
that the normal stress σ in the bar is given by

σ = E ε =
E

c

∂u

∂t
= ρ c

∂u

∂t
, (2.58)

which shows that there is a linear relationship between the stress at any point
in the bar and the particle velocity. Hence when a wave travels with speed c
along the bar, there is also a stress pulse which travels with the same velocity.
When such a pulse reaches the free end of the bar, one can compute the
behaviour of the pulse from the condition that the end of the bar has to be
stress free. This leads, with (2.56), to the condition

σ = E u′(t) = 0 = E (f ′〈x − ct〉 + g′〈x + ct〉) ∀t , (2.59)

from which a relation between f ′ and g′ follows for the free ends at x = 0 and
x = l1 + l2,

f ′〈x − ct〉 = −g′〈x + ct〉 ∀t . (2.60)

Thus a reflection occurs at the free ends with equal amplitude in the stress
pulse but with opposite velocity. Furthermore, the initial conditions can be
stated for the impact of two bars described in Figure 2.12 as:
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v =
∂u

∂t

∣∣∣∣
t=0

= c [−f ′〈x〉 + g′〈x〉] = v0 for 0 ≤ x ≤ l1 ,

v =
∂u

∂t

∣∣∣∣
t=0

= c [−f ′〈x〉 + g′〈x〉] = 0 for l1 < x ≤ l1 + l2 , (2.61)

σ = E
∂u

∂x

∣∣∣∣
t=0

= f ′〈x〉 + g′〈x〉 = 0 for 0 ≤ x ≤ l1 + l2 .

From these conditions follow the initial values of f ′ and g′ as

f ′〈x〉 = −v0

2c
g′〈x〉 =

v0

2c
for 0 ≤ x ≤ l1 ,

f ′〈x〉 = 0 g′〈x〉 = 0 for l1 < x ≤ l1 + l2 .
(2.62)

The problem stated in Figure 2.12 can be solved with the relations stated
above. Since the left bar has an initial velocity of v0, one has a distribution
of f ′ and g′, as shown in Figure 2.13 for t = 0. These are associated with
two waves, one travelling in the x-direction and the other in the opposite
direction. Several states of the waves are depicted at certain times in Figure
2.13 for the case in which bar 2 has length l2 = 2 l1. Figure 2.13 also shows the
stress distribution due to the travelling strain waves. The two bodies remain
in contact until time Timp = 4 l1 / c, which corresponds to the time at which
the reflected wave in bar 2 arrives at the contact point. Since the first bar
is stress free, this wave encounters a free end and hence does not enter bar
1, but reflects due to the stress free boundary condition. After that time,
the bars are no longer in contact. The final velocity of bar 1 after impact is
v1 e = 0, and for bar 2 the velocity is then v2 e = v0 / 2. As can be seen in
Figure 2.13, there is still an oscillation due to the travelling stress wave in
bar 2, whereas bar 1 is at rest. If one assumes that both bars are made of
steel (E = 2.1 · 108 kN / m2, ρ = 7.85 · 103 kg / m3), and that l1 = 1 m, then
the wave speed is c =

√
E /ρ = 5172 m / s, and hence the impact time is

Timp = 4 / 5172 = 7.73 · 10−4 s. If the initial velocity is chosen to be 5 m / s,
a stress amplitude of σ = ρ c v0 / 2 follows from equation (2.58). This leads
in this example to a stress of σ = 7.85 · 103 · 5172 · 2.5 = 10.2 · 104 kN / m2,
which represents 42% of the yield stress (σY = 24 · 104) of a standard steel.

It is interesting to note that the classical impact theory for rigid bodies
yields, under the assumption of an elastic impact, the final velocities v1 e =
−v0 / 3 and v2 e = 2v0 / 3, which are different when compared to the wave
solution above. This is due to the oscillations remaining in bar 2 after impact,
which is, as also the impact time, neglected in the case of rigid body impact.

Another possibility to solve the wave equation (2.53) is by separation of
variables. Using

u(x, t) = v(x) τ(t) (2.63)

one derives

c2 v′′

v
=

τ̈

τ
, (2.64)



28 2 Introduction to Contact Mechanics

which has the solution

v(x) = A cos kx + B sin kx
τ(x) = a cos ωt + b sinωt

k2 =
ω2

c2
. (2.65)

For the bar system with free ends, one obtains with the boundary conditions
σ(0) = σ(3 l1) = 0 the equation sin k(3 l1) = 0, which has the eigenvalues
kn (3 l1) = nπ for n = 1, 2, 3 . . . The related eigenfunctions are

ϕn(x) = cos
nπ

3 l1
x , (2.66)

which with (2.65) yield the solution

u(x, t) =
∞∑

n=1,2,3,...

[
an cos c

n π

3 l1
t + bn sin c

n π

3 l1
t

]
cos

nπ

3 l1
x , (2.67)

which has to be adjusted to the initial conditions. These then lead to a
Fourier series representation of the initial conditions in terms of sin and
cos functions. Here details will be omitted. They can be found in standard
textbooks. However, note that there are two possibilities for solving the im-
pact problem. The latter has the inconvenience that an overshooting can occur
which is a high oscillatory result near the wave fronts.

Implications for numerical methods

• As shown above for impact problems, the impact time is very short and
the stresses generated are high. Hence, the numerical methods to solve
impact problems have to include nonlinear material behaviour and have
to be designed for short time responses.

• Due to the possibility of high oscillatory responses near wave fronts, one
has to be careful when constructing algorithms for impact problems, in
the sense that one should not destroy the wave front characteristics within
the numerical scheme.
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Fig. 2.13. Wave solution for bar impact.



3

Continuum Solid Mechanics
and Weak Forms

The deformation of solids is generally described by the kinematic relations, the
equations of balance and the constitutive equations. This chapter summarizes
the main equations which govern the deformation of solids. For a detailed
treatment of this subject the reader should consult the literature, e.g. the
standard books of Eringen (1967), Malvern (1969), Truesdell and Noll (1965),
Truesdell and Toupin (1960), Ogden (1984) or Chadwick (1999).

3.1 Kinematics

3.1.1 Motion and deformation gradient

In this section we discuss the motion and deformation of continua. A body B
can be described by a set of points which are in a region of the Euclidean

space IE3. A configuration of B is then a one-to-one mapping ϕ: B −→ IE3,
which places the particles of B in IE3. The position of a particle X of B in
the configuration ϕ is defined by x = ϕ (X). The placement of the body
B is described by ϕ(B) = {ϕ(X) |X ∈ B} and therefore be denoted as
configuration ϕ(B) of body B.

The motion of body B is then a temporally parametric series of configu-
rations ϕt: B → IE3. For the position of the particle X at time t ∈ R

+ we
have

x = ϕt (X) = ϕ (X, t). (3.1)

This equation describes a curve in IE3 for the particle X. X = ϕ0 (X) defines
the reference configuration of body B, where X is the position of particle X
in this configuration. With (3.1) we have

x = ϕ (ϕ−1
0 (X), t). (3.2)

REMARK 3.1: Body B does not have to assume the reference configuration at

any time. Since the reference configuration can be chosen in an arbitrary way, it
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is often selected to coincide with the initial configuration. Later, in the sections

regarding finite element discretizations, it will be advantageous to use a special

reference configuration, e.g. for isoparametric elements, which can be handled in a

simple yet somewhat artificial manner.

For practical applications we do not need to differentiate between X and
X. This simplifies the notation, and we can write (3.2) as

x = ϕ (X, t), (3.3)

where X depicts the position of particle X in the reference configuration
B. With this, the positions x and X are described as vectors in IE3 with
respect to the origin O, as shown in Figure 3.1. The point X is denoted in the
reference configuration by the position vector X = XA EA. Here EA defines
an orthogonal basis in the reference configuration with origin O. Therefore
(3.3) can be written in components:

xi = ϕi (XA, t ) . (3.4)

In the following by indices in capital letters we will denote components of
vectors and tensors if these refer to the basis EA of the reference configuration.
XA are the Lagrange coordinates of the particle X. Small letters are used for
indices which refer to the basis ei of the spatial or current configuration. The
quantities xi denote the spatial coordinates of X. To simplify notation, we
employ an orthogonal Cartesian basis. This coincides with the finite element
method, since isoparametric interpolations are always defined in an orthogonal
Cartesian basis. The change to arbitrary curvilinear coordinates is a purely
technical matter.

The equations of mechanics of continua can be formulated with respect to
the deformed or undeformed configuration of a body B. From the theoretical
standpoint, there is no difference whether the equations refer to the current

O

B

X

u(X, t)

x(X, t)

ϕ(B)

Fig. 3.1. Configurations of body B.
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or the reference configuration of the body. However, one should consider the
implications due to physical modelling, as in plasticity. When formulating nu-
merical methods for continua, considerable differences in efficiency can occur
when the equations are related to either the spatial or the reference configura-
tion. Thus we will define strain measures with respect to both configurations.
Within this discussion, we denote by small letters tensors which refer to the
current configuration ϕ(B), and we use capital letters for the reference con-
figuration B.

To describe the deformation process locally, we introduce the deformation
gradient F which maps tangent vectors of the reference configuration to tan-
gent vectors in the spatial configuration. It is a tensor which associates to a
material line element dX in B the line element dx in ϕ(B):

dx = F dX . (3.5)

The components of the deformation gradient follow from the direct notation
F = ∂ x / ∂ X as partial derivatives ∂xi / ∂XA = xi,A. With (3.3) and (3.4)
we obtain

F = Gradϕ(X, t) = FiA ei ⊗ EA =
∂xi

∂XA
ei ⊗ EA . (3.6)

Since the gradient (3.6) is a linear operator, the local transformation (3.5) is
also linear. To preserve the continuous structure in B during the deformation,
the mapping (3.5) has to be one-to-one, i.e. F cannot be singular. This is
equivalent to the condition

J = detF �= 0 , (3.7)

where J defines the Jacobian determinant. Furthermore, to exclude self-
penetration of the body, J has to be greater than 0. Thus its inverse exists,
which is denoted by F−1. With this we can invert equation (3.5):

dX = F−1 dx . (3.8)

The inverse of the deformation gradient has the following form:

F−1 = (FiA)−1 EA ⊗ ei with (FiA)−1 =
(

∂xi

∂XA

)−1

=
∂XA

∂xi
, (3.9)

where X = ϕ−1 (x).
It is well known that the deformation gradient F can be decomposed by

the polar decomposition theorem into a stretching and a rotational part, e.g.
see Malvern (1969):

F = RU = VR , FiA = RiB UBA = Vik RkA , (3.10)
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dV

dA

N n

da

dv

ϕ(B)
B

ϕ, F

Fig. 3.2. Transformation between area and volume elements.

where U is the right stretch tensor with a basis in the reference configuration,
and V is the left stretch tensor which is an object in the current configuration.
The rotation tensor R is a two-field tensor which connects both configurations.

Once the deformation gradient F is known, transformations of area and
volume elements between B and ϕ(B) can be derived. The transformation of
area elements between B and ϕ(B) is given by the formula due to Nanson

(see e.g. Ogden (1984), pp. 88):

da = n da = J F−T N dA = J F−T dA . (3.11)

In this equation n is the normal to the surface of ϕ(B) and N denotes the nor-
mal to the surface of B (see Figure 3.2). J is the Jacobi determinant defined
in (3.7) and da (respectively dA) are the surface elements in the associated
configuration. For the transformation of volume elements from the reference
to the spatial configuration, we have

dv = J dV . (3.12)

With the introduction of a displacement vector u(X, t) as the difference
in position vectors of a point in the reference and current configurations,

u(X, t) = ϕ(X, t) − X , (3.13)

we can write for the deformation gradient (3.6)

F = Grad [X + u(X, t) ] = 1 + Gradu = 1 + H , (3.14)

where H = Gradu is the displacement gradient with respect to X.

3.1.2 Strain measures

In this section we describe different strain measures which will be applied
later. One of the most common strain measures is the right Cauchy–Green

tensor C, which refers to the initial configuration B
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C = FT F . (3.15)

Since this strain measure is not zero at the initial state (there we have F =
1 ⇒ C = 1), it is convenient to introduce the Green–Lagrangian strain
tensor E which refers to the initial configuration B

E =
1
2

(FT F − 1 ) =
1
2

(C − 1 ) , EAB =
1
2

(FiA FiB − δAB ) . (3.16)

In (3.16) C = FT F is the positive definite right Cauchy–Green tensor which
expresses the square of the infinitesimal line element dx via the material line
element dX by dx · dx = dX · CdX. Thus the strain E is the difference of
the square of the line elements in B and ϕ(B). Furthermore, we have C =
UT U = U2.

The spectral decomposition of C can often be advantageous when hyper-
elastic constitutive equations have to be formulated. We have

C =
3∑

i=1

λ2
i Ni ⊗ Ni , (3.17)

where λi and Ni follow from the eigenvalue problem

(C − λ2
i )Ni = 0 . (3.18)

Based on the spectral decomposition (3.17), we define more general strain
measures:

Eα =
1
α

3∑
i=1

(λα
i − 1)Ni ⊗ Ni and eα =

1
α

3∑
i=1

(λα
i − 1)ni ⊗ ni . (3.19)

Eα refers to the reference configuration, and eα has its bases in the current
configuration. As special cases we obtain the Green–Lagrangian strain
tensor

E =
3∑

i=1

1
2

(λ2
i − 1)Ni ⊗ Ni . (3.20)

With respect to the current configuration, the Almansi strain tensor

e =
1
2

(1 − b−1 ) , eik =
1
2

[ δik − (FiA)−1 (FkA)−1 ] (3.21)

is often applied. It is defined with the left Cauchy–Green tensor b = FFT .
The Almansi strain tensor is connected to the Green–Lagrange strain
tenor via the following transformation:

E = FT eF , (3.22)

which can easily be verified with (3.21).
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3.1.3 Transformation of vectors and tensors

Since we know the transformation between differential elements in the refer-
ence and current configuration, we can also transform vectors or tensors from
reference to current configuration, and vice versa. This stems from the fact
that the base vectors can be viewed as differential line elements.

If we transform a quantity from the current to the initial configuration,
we call this transformation a pull back operation, see Marsden and Hughes
(1983). A transformation in the other direction is considered as a push forward
operation.

For the gradient of a scalar field G(X) = g(x) = g[ϕ(X)], we have

GradG = FT grad g ⇐⇒ ∂G

∂XA
=

∂g

∂xi

∂xi

∂XA
, (3.23)

grad g = F−T GradG . (3.24)

In an analogous way, for the gradient of a vector field W(X) = w (x) =
w [ϕ(X)] we obtain

GradW = gradwF ⇐⇒ gradw = GradWF−1 . (3.25)

An application of these general results is given by the computation of the
deformation gradient in terms of the displacement field u [ϕ(X)]. Using (3.14)
and (3.25) yields

F = 1 + Gradu ,

1 = F−1 + GraduF−1 ,

=⇒ F−1 = 1 − gradu . (3.26)

Thus the inverse of the deformation gradient can be computed from the dis-
placements that refers to the current configuration.

REMARK 3.2 : In the case of small deformations, theGreen–Lagrangian

strain tensor E can be written in terms of the displacement field. Since the deforma-
tion gradient can be reformulated as F = Gradx = GradX + Gradu = 1 + gradu,
by neglecting the nonlinear terms, one obtains from (3.16)

ε(u) =
1

2
( Gradu + GradT u ) . (3.27)

3.1.4 Time derivatives

The dependency of the deformation ϕ (X, t) on the time must be consid-
ered in nonlinear problems when either the constitutive relations are time- or
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history-dependent, as in the case of friction, or if the complete process is time-
dependent, like an impact problem. Here we compute the time derivatives of
kinematical quantities.

The velocity of a material point in the reference configuration is defined
by the material time derivative

v (X, t) =
∂ϕ

∂t
(X, t) = ϕ̇ (X, t) . (3.28)

In the current configuration, we write for the velocity v̂ of a particle, which
is a point x at time t in ϕ(B),

v̂ (x, t) = v̂ (ϕ(X, t), t) = v (x, t) . (3.29)

In an analogous way, we obtain the acceleration by differentiation of the
velocity

a = ϕ̈ (X, t) = v̇ (X, t) . (3.30)
Using this definition, the acceleration with respect to the current configuration
yields, with (3.29) and the chain rule,

â = ˙̂v =
∂

∂t
[ v̂ (ϕ(X, t) , t) ] =

∂v̂
∂t

+ grad v̂ v̂ . (3.31)

The first term is known as the local derivative the second term is the con-
vective part of the time derivative. The local time derivative is computed by
fixing the spatial position. Time derivative (3.31) must be applied to Eulerian
descriptions of motions, which is mostly the case in fluid mechanics.

The time derivative of the deformation gradient F, with (3.6), (3.28) and
(3.25), yields

Ḟ = Grad ϕ̇ (X, t) = Gradv = grad v̂ F . (3.32)
The spatial velocity gradient in (3.32) is often described by l. With (3.32) we
can define the spatial velocity gradient by F:

l = Ḟ F−1 . (3.33)

Equation (3.32) can now be applied to compute the time derivative of the
Green–Lagrangian strain tensor (3.16):

Ė =
1
2

(Ḟ
T

F + FT Ḟ) . (3.34)

The time derivative of E can be rewritten with the last relation in (3.32):

Ė = FT 1
2

( l + lT )F = FT dF . (3.35)

This equation has a structure similar to (3.22), and hence it denotes a pull
back of the symmetrical spatial velocity gradient

d =
1
2

( l + lT ) (3.36)

to the initial configuration.
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3.2 Balance Laws

The partial differential equations which represent the local balance laws of con-
tinuum mechanics are summarized in this section. For a detailed derivation,
see (Malvern (1969), Chap. 5) or Marsden and Hughes (1983) for example.

3.2.1 Balance of mass

The balance of mass m of a body is given by the relation

m =
∫

B

ρ0 dV =
∫

ϕ(B)

ρ dV = const. , (3.37)

where ρ0 is the density in the initial configuration and ρ the density in the
current configuration. Within the Lagrange description of a motion, we can
conclude, assuming sufficient smoothness, that ρ0 = J ρ. This equation yields
a relation for the volume elements in the initial and current configurations

dv =
ρ0

ρ
dV = J dV . (3.38)

3.2.2 Local balance of momentum and moments of momentum

The local balance of momentum with respect to a volume element in the
current configuration ϕ(B) can be written as

divσ + ρ b̄ = ρ v̇ , σik,i + ρ b̄k = ρ v̇k . (3.39)

In this equation σ denotes the Cauchy stress tensor. In (3.39) ρ b̄ defines the
volume or body force (e.g. due to gravitation). ρ v̇ is the inertia force term,
which can be neglected in the case of static analysis. Furthermore, we have
the Cauchy theorem, which relates the stress vector t to the surface normal
vector n by

t = σT n , ti = σik ni ,

⎧⎨
⎩

t1
t2
t3

⎫⎬
⎭ =

⎡
⎣σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33

⎤
⎦

⎧⎨
⎩

n1

n2

n3

⎫⎬
⎭ . (3.40)

This relation has been stated here in direct notation, index and matrix nota-
tion.

The local balance of angular of momentum in the absence of micropolar
stresses, which is usually the case in non-magnetic materials (e.g. see Truesdell
and Toupin (1960)), yields

σ = σT , σik = σki , (3.41)

which dictates the symmetry of the Cauchy stress tensor.
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3.2.3 First law of thermodynamics

A further balance law postulates the conservation of energy of a thermody-
namical process. This is the first law of thermodynamics. This law states
that the change of total energy E is induced by mechanical power P and heat
transfer Q into the system: Ė = P +Q. Within continuum mechanics, ignoring
magnetism, etc., the mechanical power is defined by

P =
d

dt

∫

ϕ(B)

1
2
ρv · v dv +

∫

ϕ(B)

σ · d dv , (3.42)

and thus by the material time derivative of the kinetic energy and the stress
power of the Cauchy stress tensor and the symmetrical spatial velocity gra-
dient d, σ · d, which contributes to the internal energy. The heat input into
the system

Q = −
∫

ϕ(∂B)

q · n da +
∫

ϕ(B)

ρ r dv (3.43)

has two sources: the heat transfer through the surface of the body, described
by the heat flux vector q; and the surface normal n, and an internal heat
source r. The total energy consists of the kinetic energy K =

∫
ϕ(B)

1
2ρv ·v dv

and the internal energy U =
∫

ϕ(B)
ρu dv (u is the specific internal energy).

Introducing all relations into the equation Ė = P + Q yields, after some
transformations, the local form of the first law of thermodynamics:

ρ u̇ = σ · d + ρ r − divq , ρ u̇ = σik dik + ρ r − qi,i . (3.44)

In this equation the term σ · d denotes the specific stress power.
In the framework of the constitutive theory, the free Helmholtz energy

is often introduced, which is defined by

ψ = u − η θ , (3.45)

where η is the entropy of the system and θ the absolute temperature. With
this transformation the first law of thermodynamics can be written as

ρ ψ̇ = σ · d + ρ r − divq − η̇ θ − η θ̇ . (3.46)

3.2.4 Transformation to the initial configuration, different stress
tensors

Equations (3.39) and (3.41) refer to the current configuration. Often one needs
a formulation of these equations in quantities which are related to the initial
configuration B. For this transformation, also often called pull back, we define
more stress tensors, which follow from the equivalence of a force which is
defined in B and ϕ(B):
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∫

∂ϕ(B)

σ n da =
∫

∂B

σ J F−T N dA =
∫

∂B

PN dA . (3.47)

This relation defines the first Piola–Kirchhoff stress tensor P. We have
the transformation

P = J σF−T PAk = J σik(FiA)−1 (3.48)

between the Cauchy and the first Piola–Kirchhoff stresses, which are
the actual stresses in terms of the area of the initial configuration. Since in
equation (3.48) the spatial quantity σ is only multiplied on one side by F P,
it is a so-called two field tensor where one base vector lies in B and the other
in ϕ(B). After some manipulation, we can now transform the local balance of
momentum (3.39) to the reference configuration

DIV P + ρ0 b̄ = ρ0 v̇ . (3.49)

However, when using (3.48) in the balance of angular of momentum (3.41),
we see that the Piola–Kirchhoff stress tensor is general in nonsymmetric:
PFT = FPT .

A symmetric stress tensor which is defined with regard to the reference
configuration is the second Piola–Kirchhoff stress tensor, which follows
from the complete pull back of the Cauchy stress tensor to the reference
configuration B:

S = F−1 P = J F−1 σF−T ,
SAB = (FAi)−1 PBi = J (FAi)−1 σik(FkB)−1 .

(3.50)

S does not represent an experimentally measurable stress. However, it is an
essential stress measure that plays a prominent role in the constitutive theory.
It is ”work conjugated” (duality paired) with the Green–Lagrangian strain
tensor (3.16).

Besides the Cauchy stress tensor σ, the Kirchhoff stress tensor τ is
often employed, which is defined as the push forward of the second Piola–

Kirchhoff stress tensor S to the current configuration

τ = FSFT , τ = J σ . (3.51)

The transformation of the first law of thermodynamics (3.44) to the initial
configuration yields, with (3.35),

J σ · d =
(
FSFT

)
·
(
F−T Ė F−1

)
= S · Ė . (3.52)

Furthermore, for (3.38) we have

ρ0 U̇ = S · Ė − DivQ + ρ0 R , ρ0 U̇ = SABĖAB − QA,A + ρ0 R , (3.53)
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where the internal energy, U , the internal heat source, R, and the heat flux,
Q, are referred to the initial configuration. With (3.51) or (3.16) we can also
state the stress power (3.52) as

S · Ė =
1
2

S · Ċ = τ · d (3.54)

3.3 Weak Form of Balance of Momentum, Variational
Principles

For the solution of boundary value problems stemming from the continuum,
we shall employ numerical methods based on variational formulations. Thus
we need associated formulations, which are given in the next sections.

3.3.1 Weak form of balance of momentum in the initial
configuration

The principle of virtual work is an equivalent formulation of the balance of
momentum which often – due to its reduced regularity requirements – is called
the weak form of equilibrium. Since no constitutive equations enter a priori
the weak form, it is valid for all problem classes, including plasticity, friction or
non-conservative loading. The derivation of the weak form starts from the local
equilibrium equation (DivP + ρ0 b̄ = ρ0 v̇), which is multiplied by a vector
valued function η = {η |η = 0 on ∂Bu} – often called a virtual displacement
or test function. Integration over the volume of the body under consideration
yields ∫

B

DivP · η dV +
∫

B

ρ0 (b̄ − v̇) · η dV = 0 . (3.55)

Partial integration of the first term and use of the divergence theorems leads,
with the boundary conditions, to the weak form of

G (ϕ,η) =
∫

B

P ·Gradη dV −
∫

B

ρ0 (b̄− v̇) ·η dV −
∫

∂Bσ

t̄ ·η dA = 0 . (3.56)

The gradient of η can also be viewed as a virtual variation δ F of the defor-
mation gradient

δF =
d

dε
[F(x + εη)]

∣∣∣∣
ε=0

. (3.57)

In (3.56) we can exchange the first Piola–Kirchhoff stress tensor with
P = FS by the second Piola–Kirchhoff stress tensor:

P ·Gradη = S ·FT Gradη = S · 1
2

(FT Gradη +GradT η F) = S · δE , (3.58)
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where the variation of the Green–Lagrangian strain tensor, computed ac-
cording to (3.57), has been used. Note that δE = 1

2 δC. In (3.58) one makes use
of the symmetry of S so that the antisymmetric part of FT Gradη disappears
in the scalar product. With (3.58) we can rewrite (3.56) as

G (ϕ ,η ) =
∫

B

S · δE dV −
∫

B

ρ0 (b̄ − v̇) · η dV −
∫

∂Bσ

t̄ · η dA = 0 . (3.59)

The first term in (3.59) denotes the virtual internal work or the stress diver-
gence, and the last two terms contain the virtual work of the external forces.
This equation can be written in index notation as follows:

G (ϕ ,η ) =
∫

B

SABδEAB dV −
∫

B

ρ0 (b̄A − v̇A) ηA dV −
∫

∂Bσ

t̄A ηA dA = 0 .

(3.60)
We note the equivalence of the strong form, (3.49), and the weak form,

(3.59), provided the solution is smooth enough.

3.3.2 Spatial form of the weak formulation

The transformation of the weak form (3.56) to the current configuration fol-
lows by pure geometrical operations. For this purpose we need to transform
the associated tensors by push forward operations to the current configuration
ϕ(B). With the transformation of the first Piola–Kirchhoff stress tensor
to the Cauchy stress tensor (see (3.48)), σ = 1

J PFT , and by using (3.25)
we derive

P · Gradη = J σ F−T · Gradη = J σ · Gradη F−1 = J σ · grad η .

Furthermore, as dv = J dV and thus ρ = ρ0 J is valid, we can transform the
weak form (3.56) into the current configuration:

g (ϕ,η) =
∫

ϕ(B)

σ ·grad η dv−
∫

ϕ(B)

ρ (b̄− v̇) ·η dv−
∫

ϕ(∂Bσ)

t̄ ·η da = 0 . (3.61)

In this equation the result from (3.47) has been used to transform the stress
vector t̄ into ϕ(B). Symmetry of the Cauchy stress tensor enables us to
replace the spatial gradient of η by its symmetric part. Hence, with the defi-
nition

∇S η =
1
2

(grad η + gradT η ) , (3.62)

it follows that
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g (ϕ,η ) =
∫

ϕ(B)

σ · ∇S η dv −
∫

ϕ(B)

ρ (b̄ − v̇) · η dv −
∫

ϕ(∂Bσ)

t̄ · η da = 0 .

(3.63)
This relation has exactly the same structure as the principle of virtual work
in the geometrically linear theory. The difference, however, is that all inte-
grals, stresses and gradients have to be computed with respect to the current
coordinates, which reflects the nonlinearity of (3.63).

3.3.3 Minimum of total potential energy

In the case of a hyperelastic material there exists the strain energy function W
(see Section 3.4.1) which describes the elastic energy stored in a body B. Based
on this function, the classical minimum principle of the total elastic potential
can be formulated. For this also one has to consider the potential energy of the
forces applied. We assume that these forces are conservative (meaning they
are path-independent). Neglecting dynamical effects, we obtain

Π (ϕ) =
∫

B

[W (C) − ρ0 b̄ · ϕ ] dV −
∫

∂Bσ

t̄ · ϕ dA =⇒ MIN . (3.64)

Out of all possible deformation states ϕ, the one which minimizes Π fulfils
the equilibrium equations. The minimum can be computed by a variation of
(3.64). It is related to the weak form (3.59). This can be shown by applying
the directional derivative, which leads to the so-called first variation of Π:

δΠ = D Π (ϕ) · η =
d

dα
Π (ϕ + α η )

∣∣∣∣
α=0

. (3.65)

In explicit form we obtain

D Π(ϕ) ·η =
∫

B

[
∂W

∂C
·δC−ρ0 b̄ ·η ] dV −

∫

∂Bσ

t̄ ·η dA = G(ϕ ,η) = 0 . (3.66)

The variation of the right Cauchy–Green tensor δC can easily be expressed
in terms of the Green–Lagrange strain tensor: 2 δC = δE, see also (3.58).
The partial derivative of W with respect to C leads, with 2 ∂W / ∂C = S, to
the 2. Piola–Kirchhoff stress tensor, see Eq. (3.67) in Section 3.4.1. Hence
(3.66) is equivalent to the weak form (3.59).

The construction of a minimal principle is important in several respects,
since it enables investigations regarding the existence and uniqueness of so-
lutions. Furthermore, special solution methods can be developed on the basis
of a minimal principle which are efficient and reliable.
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3.4 Constitutive Equations

Since contact takes place at the interface between bodies, the constitutive
laws for the bodies coming into contact which describe the material behav-
iour within the bodies can be arbitrary, and do not affect the main formulation
of contact problems. However it is clear that the physical properties of the sur-
faces of the bodies are influenced by the general constitutive behaviour. Thus,
to include a nonlinear constitutive equation valid for large deformations, we
discuss finite elasticity. Of course, we can consider more complicated consti-
tutive relations which can also be of inelastic nature, but this is not the aim
of this book and we refer to Desai and Siriwardane (1984), Lubliner (1990),
Khan and Huang (1995) or Simo and Hughes (1998) for example.

3.4.1 Hyperelastic response function

Throughout this section we briefly discuss hyperelastic constitutive relations.
For more detailed information, see Ogden (1984) for example. These can be
applied to describe the constitutive behaviour of rubber or foam for instance.
In the case of small deformations, these constitutive equations reduce to the
classical Hooke’s law of linear elasticity.

The constitutive equation or response function for the second Piola–

Kirchhoff stress is, in the case of a hyperelastic material, given by the
partial derivative of the strain energy W function with respect to the right
Cauchy–Green tensor, e.g. seeOgden (1984),

S = 2
∂W (C ,X)

∂C
, SAB = 2

∂W (C ,X)
∂CAB

. (3.67)

This response function represents a constitutive relation which fulfils the re-
quirements of frame indifference, and hence is objective. In the case of a ho-
mogeneous material, the strain energy W does not depend upon X. Here we
restrict ourselves to homogeneous isotropic materials. Thereafter, the strain
energy function can be specialized, and is represented by an isotropic tensor
function

W (C ) = W ( IC , IIC , IIIC ) . (3.68)

The second Piola–Kirchhoff stresses now follow with (3.67) by using the
chain rule

S = 2
[(

∂W

∂IC
+ IC

∂W

∂IIC

)
1 − ∂W

∂IIC
C + IIIC

∂W

∂IIIC
C−1

]
. (3.69)

Within this equation, the following results for the derivative of invariants with
respect to tensors have been used:

∂IC

∂C
= 1 ,

∂IIC

∂C
= IC 1 − C ,

∂IIIC

∂C
= IIIC C−1 . (3.70)
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For the special choice of the strain energy function W , we obtain the
simplest possible response function, which is known as compressible Neo-

Hookian material. We choose

W (IC , J) = g(J) +
1
2

μ (IC − 3) . (3.71)

For compressible materials, function g(J) in (3.71) has to be convex. Further-
more, the following growth conditions must hold:

lim
J→+∞

W → ∞ and lim
J→0

W → −∞ . (3.72)

These conditions are equivalent with the conditions that the stress for a de-
formed body whose volume goes to zero has to go to −∞, and for a deformed
body whose volume goes to +∞ the stress also has to go to +∞. These growth
conditions are fulfilled when the compressible part g(J) is chosen, according
to, Ciarlet (1988), as

g(J) = c (J2 − 1) − d ln J − μ ln, J with c > 0 , d > 0 . (3.73)

The response function of the Neo-Hookian material (3.71) now follows with
(3.69), and for the second Piola–Kirchhoff stress tensor yields

S =
Λ

2
(J2 − 1 )C−1 + μ (1 − C−1 ) , (3.74)

SAB =
Λ

2
(J2 − 1 ) (CAB)−1 + μ [ δAB − (CAB)−1 ] ,

where the constants c and d have been chosen as c = Λ/ 4 and d = Λ/ 2.
The material constants Λ and μ are the Lamé constants, which have to be
determined by experiments.

Note that with Definition (3.51), the Kirchhoff stress can be written in
terms of quantities define in the initial configuration:

τ = 2F
∂W (C)

∂C
FT , τik = 2FiA

∂W (C)
∂CAB

FkB .

From this form, the Kirchhoff stress is given with (3.69) by

τ = 2
[(

∂W

∂IC
+ IC

∂W

∂IIC

)
FFT − ∂W

∂IIC
FCFT + IIIC

∂W

∂IIIC
FC−1 FT

]
.

Since the invariants of C and b are equal using FC−1FT = 1 one derives

τ = 2
[(

∂W

∂Ib
+ Ib

∂W

∂IIb

)
b − ∂W

∂IIb
b2 + IIIb

∂W

∂IIIb
1
]

.

Comparing this result to (3.69), the Kirchhoff stresses can also be derived
from



46 3 Continuum Solid Mechanics and Weak Forms

τ = 2b
∂ψ(b)

∂b
(3.75)

directly in term of spatial quantities.
Equation (3.74) can also be transformed directly into the current config-

uration by the standard push forward operations. We note that the Cauchy

stress tensor is related, via σ = J−1 FSFT , to the second Piola–Kirchhoff

stresses, see (3.50). With this, after some manipulation we obtain

σ =
Λ

2J
(J2 − 1 )1 +

μ

J
(b − 1 ) , (3.76)

σik =
Λ

2J
(J2 − 1 ) δik +

μ

J
( bik − δik ) . (3.77)

3.4.2 Incremental constitutive tensor

To derive the incremental constitutive tensor we have to compute the rate of
the response function (3.67). Thus, the response function must be differenti-
ated with respect to time. This leads to

Ṡ = 2
∂2W

∂C ∂C
[ Ċ ] , (3.78)

and hence to an incremental relation between the rate of the second Piola–

Kirchhoff stress tensor S and the right Cauchy–Green tensor C. With
the definition of a fourth order incremental constitutive tensor

C = 4
∂2W

∂C ∂C
, CABCD = 4

∂2W

∂CAB ∂CCD
, (3.79)

for (3.78) we obtain

Ṡ = C [
1
2

Ċ ] , ṠAB = CABCD
1
2
ĊCD . (3.80)

The push forward of equation (3.80) to the current configuration yields,
with the Lie-derivative of the Kirchhoff stress tensor,

(Lv τ )ik = FiA ṠAB FkB , (3.81)

and with the time derivative of the right Cauchy–Green tensors, see (3.16)
and (3.35),

ĊCD = 2FlC dlm FmD (3.82)

the relation
(Lv τ )ik = FiA FlC FmD FkB CABCD dlm . (3.83)
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d is the symmetrical spatial velocity gradient, see (3.36). Since in (3.83) each
base vector of the incremental constitutive tensor C is transformed by F, we
can define a spatial incremental constitutive tensor cc as

cciklm = FiA FlC FmD FkB CABCD . (3.84)

This leads to the compact form of: (3.83)

(Lv τ )ik = cciklm dlm , Lv τ = cc [d ] . (3.85)

Thereafter, we derive the incremental constitutive tensor for the constitu-
tive equations (3.74) and its push forward to the current configuration. The
response function (3.74) depends upon the deformation via the inverse of the
right Cauchy–Green tensor and its determinant: J =

√
IIIC . Thus for the

computation of C using (3.79), the derivatives of J and C−1 with respect to
C have to be computed.

With (3.63) the derivative of the Jacobian is

∂J

∂C
=

1
2

J C−1 . (3.86)

The derivative of C−1 follows from relation, ∂
∂CCD

[CAM C−1
MB ] = 0, as

∂C−1
AB

∂CCD
= −C−1

AC C−1
BD . (3.87)

Since C is symmetric we only need the symmetrical part of (3.87), and intro-
duce the fourth order tensor IC−1 which has the index notation

IC−1ABCD =
1
2

(
C−1

AC C−1
BD + C−1

AD C−1
BC

)
. (3.88)

With these preliminaries the constitutive tensor can be derived. After some
algebraic manipulations, we obtain

C = ΛJ2 C−1 ⊗ C−1 + [ 2μ − Λ (J2 − 1 ) ] IC−1 ,

CABCD = ΛJ2 C−1
AB C−1

CD + [ 2μ − Λ (J2 − 1 ) ] IC−1 ABCD . (3.89)

Transformation of the incremental constitutive tensor C to the current
configuration yields, with (3.84) and

C−1
AC C−1

BD = F−1
pA F−1

pC F−1
qB F−1

qD FiA FlC FmD FkB = δpi δpl δqk δqm = δil δkm ,

the incremental constitutive tensor in ϕ(B):

cc = ΛJ2 1 ⊗ 1 + [ 2μ − Λ (J2 − 1 ) ] I ,

cciklm = ΛJ2 δik δlm + [ 2μ − Λ (J2 − 1 ) ] Iiklm , (3.90)
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where 1 is the second order unit tensor and I is a fourth order unit tensor.
Both tensors are related to the current configuration. Tensor I has, in index
notation, the form

Iiklm =
1
2

(δil δkm + δim δkl ) . (3.91)

For a formulation of the equations of elasticity for numerical treatment
within the method of finite elements, it is preferable to have the matrix rep-
resentation of equation (3.85). For this purpose the components of the Lie

derivative of the Kirchhoff stresses and the symmetrical spatial velocity
gradient d are represented in vector form. In that case, the incremental consti-
tutive tensor (3.90) is a matrix which can be used to compute the incremental
Kirchhoff stresses once d is known,

Lv τ = Dd , (3.92)

or explicitly
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lvτ11

Lvτ22

Lvτ33

Lvτ12

Lvτ23

Lvτ31

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

2μ + Λ ΛJ2 ΛJ2 0 0 0
ΛJ2 2μ + Λ ΛJ2 0 0 0
ΛJ2 ΛJ2 2μ + Λ 0 0 0

0 0 0 α 0 0
0 0 0 0 α 0
0 0 0 0 0 α

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d11

d22

d33

2 d12

2 d23

2 d31

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

with α = μ − 1
2

Λ (J2 − 1) . (3.93)

The deformation gradient F is equal to 1 in the undeformed initial con-
figuration. Hence, also C−1 = 1 and J = 1. Thus, when the incremental
constitutive tensor in (3.89) is evaluated at the undeformed state in the ini-
tial configuration, we obtain

C0 = Λ1 ⊗ 1 + 2μ I . (3.94)

This equation also follows directly from (3.90) since for F = 1 the initial and
current configuration coincide. The constitutive tensor C0 is identical to the
elasticity tensor of the geometrical linear theory of elasticity. Its matrix form
is

σ = D0 ε , (3.95)

or explicitly,
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ31

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

2μ + Λ Λ Λ 0 0 0
Λ 2μ + Λ Λ 0 0 0
Λ Λ 2μ + Λ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33

2 ε12
2 ε23
2 ε31

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (3.96)
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3.5 Linearizations

Different phenomena lead to nonlinearities in continuum mechanics. There
are geometrical nonlinearities, nonlinearities stemming from the constitutive
equations, or nonlinearities due to unilateral boundary conditions, as in con-
tact. Linearization of the mathematical models is necessary once the asso-
ciated initial or boundary value problems have to be solved. Especially for
numerical methods like the finite element method, it has been proven that
Newton’s method is a very efficient solution algorithm for nonlinear contin-
uum problems.

Thus it is necessary to have a mathematical tool which allows us to com-
pute linearizations of nonlinear continuum problems. The purpose of this sec-
tion is to provide these mathematical tools, and to apply them to kinematical
relations, to constitutive equations and to the weak forms. Mathematical de-
tails are omitted, but they can be found for example in Marsden and Hughes
(1983).

The idea of the linearization process will first be described by means of an
example. Let us introduce a scalar valued function f which is continuous and
has continuous first derivatives (C1-continuity). Under this assumption it is
possible to express f by a Taylor series expansion at x:

f(x̄ + u) = f̄ + D̄f · u + R. (3.97)

In this equation the following notation has been used: f̄ = f(x̄) and D̄f =
Df(x̄). The operator D denotes the derivative of f with respect to x. The “·”
is in this case a simple multiplication. u is an increment and the residual term
R = R(u) has the property limu→0

R
|u| → 0. Figure 3.3 depicts the geometrical

interpretation of equation (3.97). With u being the independent variable and
x̄ a fixed coordinate in (3.97), the tangent to the curve described by f at x̄ is

f(u) = f̄ + D̄f · u (3.98)

which touches the curve in (x̄, f̄). The linear part of f(x) in x = x̄ defines the
linearization

L [ f ]x=x̄ ≡ f(u). (3.99)

This result for the one-dimensional case can be extended to scalar valued
functions in three dimensions. The f is a function of (x). The Taylor series
expansion is then

f(x̄ + u) = f̄ + D̄f · u + R. (3.100)

Here x̄ is a point in three-dimensional space, and u is a vector with its origin
in x̄. We obtain, with the definitions,

f̄ = f(x̄) and D̄f = Df(x̄) =
∂ f(x)

∂ x

∣∣∣∣
x=x̄

, (3.101)
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- -

-

--

x x + u x

L[f]x=xf(x)

f(x)

Df(x) u.

Fig. 3.3. Linearization of f at x̄.

where D̄f denotes the gradient vector of f at x̄. Equation (3.100) can be
written as

f(x̄ + u) = f̄ + Grad f(x̄) · u + R. (3.102)

The product “·” in (3.102) is now a scalar product between two vector. Now
the directional derivative of f is computed at x̄ in the direction of u. The
directional derivative is defined by

d

dε
[ f(x̄ + εu) ]

∣∣∣∣
ε=0

,

where ε is a scalar parameter. Since x̄ + εu is a line in the three-dimensional
space, the directional derivative measures the increment of f in the direction
of this line in x̄. The computation of the directional derivative follows with
the chain rule as

d

dε
[ f(x̄ + εu) ]

∣∣∣∣
ε=0

=
[
∂ f(x̄ + εu)

∂ x
· ∂ (x̄ + εu)

∂ ε

]
ε=0

=
∂ f(x)

∂ x
· u .

A comparison yields that the directional derivative

d

dε
[ f(x̄ + εu) ]

∣∣∣∣
ε=0

= D̄f · u

is in coincidence with the tangent to f in x̄. Thus the linear part of f at x̄
is given by the value of f and the directional derivative at x̄. The directional
derivative is a linear operator, hence rules for standard derivatives like the
product rule apply.

The directional derivative for infinite dimensional function spaces is given
by a formal application of the foregoing results. Hence, one can consider the
following C1-mapping, G : E → F , where x̄, u are points in the associated
space:
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G(x̄ + u) = Ḡ + D̄ G · u + R . (3.103)

Here now the “·” is the inner product of the elements characterizing the as-
sociated space. Again, the directional derivative is

d

dε
[G(x̄ + εu) ]

∣∣∣∣
ε=0

= D̄ G · u. (3.104)

Thus the linear part of the mapping at x̄ is

L [G ]x=x̄ = Ḡ + D̄ G · u . (3.105)

Here elements describing the space under consideration can be scalars, vectors
or tensors.

To simplify notation, the directional derivative D̄ G ·u will also be written
as ΔḠ. Here the bar denotes the evaluation of G at point x̄.

Tensors which refer to the current configuration are linearized by first per-
forming a pull back transformation, see (B.7), to the reference configuration.
There the linearization is computed according to the rules stated above, and
then the result is transformed back to the reference configuration (push for-
ward operation). Note that the pull back and push forward operations depend
upon the description of the tensors, e.g. a covariant tensor has a different pull
back than a contravariant tensor. Thus for tensors τ which refer to a covariant
base (e.g. stress tensors), the directional derivative has the form

D τ · u = F {D [F−1 τ F−T ] · u }FT . (3.106)

In an analogous way, a tensor which refers to a contravariant base like a strain
tensor has the directional derivative

D e · u = F−T {D [FT eF ] · u }F−1 . (3.107)

3.5.1 Linearization of kinematical quantities

The linearization of strain measures is described in this section in detail for
strain measures referring to the initial and the current configuration.

The first strain measure which will be discussed is the Green–Lagrangian

strain tensor (3.16). The linear part is given with (3.105) as

L [E ]ϕ=ϕ̄ = Ē + D̄ E · u = Ē + Δ Ē , (3.108)

where the directional derivative D̄ E · u = ΔĒ has to be computed according
to (3.104)

D̄ E · u =
d

dε
[
1
2

FT (ϕ̄ + εu)F(ϕ̄ + εu) − 1 ]
∣∣∣∣
ε=0

ΔĒ =
1
2

[ F̄T Gradu + GradT u F̄ ] . (3.109)
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This result is linear in u and depends upon the deformation at ϕ̄, which is
represented by F̄. The computation of (3.109) at ϕ = X yields the linear
strain tensor

L [E ]ϕ=X = 0 +
1
2

[Gradu + GradT u ] . (3.110)

As a next strain measure the Almansi strain tensor, e = 1
2 (1 − b−1), is

considered, which refers to the current configuration. First one has to compute
the pull back of e using (3.22), and then apply the directional derivative. This
result is then pushed forward to the current configuration

D e · u = F̄−T {D E · u } F̄−1 =
1
2

(Gradu F̄−1 + F̄−T GradT u)

=
1
2

( gradu + grad
T

u) = ∇̄SΔu . (3.111)

Comparison of this result with (3.109) shows that

ΔĒ = F̄T ∇̄SΔu F̄ , (3.112)

and thus the linearization of the Almansi strain tensor leads to the same
structure as shown in equation (3.35) for the time derivative of the Green–

Lagrangian strain tensor.

3.5.2 Linearization of constitutive equations

Linearization of the constitutive equations can be computed for hyperelastic
response functions in an analogous way as that for the time derivatives. For
inelastic constitutive equations, the linearization depends upon the algorithm
which is used to integrate the evolution equations, and thus the linearization
can only be computed once the integration algorithm is known. Here we only
consider hyperelastic constitutive equations.

The hyperelastic constitutive equation (3.67) describes the response func-
tion for the second Piola–Kirchhoff stress tensor depending on the right
Cauchy–Green tensor. According to (3.105) its linearization yields

L [S ]ϕ=ϕ̄ = S̄ + D̄ S · u = S̄ + Δ S̄

= S̄ +
∂S
∂C

∣∣∣∣
ϕ=ϕ̄

[D̄ C · u] . (3.113)

This result can be reformulated with (3.79) and (3.109) as

L [S ]ϕ=ϕ̄ = S̄ + C̄ [ΔĒ] . (3.114)

A comparison with (3.113) yields

ΔS̄ = C̄ [ΔĒ] . (3.115)

Relation (3.115) has the same structure as the incremental constitutive equa-
tion (3.80). Only the time derivatives have to be replaced by the directional
derivatives.
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3.5.3 Linearization of the weak form

Solution of nonlinear boundary value problems can in general only be ob-
tained by approximate methods. Many of these methods, like the finite ele-
ment method, are based on the variational formulation of the field equations,
given for instance by the weak form or principle of virtual work, hence equa-
tions (3.56) or (3.59) provide the starting point for a numerical method. For
the solution of these nonlinear equations an iterative scheme has to be devel-
oped, since the discretization of the weak form results in a nonlinear system
of algebraic equations.

Among many possible iterative algorithms, Newton’s method has been
proven to often be the most efficient scheme, since it exhibits quadratic conver-
gence near the solution point. Within Newton’s method a correction of the
solution is achieved by the Taylor series expansion of the nonlinear equation
set at a point where the approximated solution is already known. The neces-
sary linearization can be computed with the aid of the directional derivative.

The linearization of the weak form is first derived with respect to the
initial configuration, which is based on equation (3.56). We assume that the
linearization is computed at a deformation state ϕ̄ at which the body under
investigation is in equilibrium.

The linear part of the weak form is

L [G ]ϕ=ϕ̄ = G (ϕ̄,η) + DG (ϕ̄,η) · Δu . (3.116)

G(ϕ̄,η) is equal to (3.58), only ϕ is exchanged by the state ϕ̄. The directional
derivative of G, needed to compute the linearization, has only to be applied to
the first term in (3.58) when the assumption of conservative loading is made

D G (ϕ̄,η) · Δu =
∫

B

[DP(ϕ̄) · Δu] · Gradη dV ; (3.117)

all other terms do not depend upon the deformation. The linearization of the
first Piola–Kirchhoff stress tensor yields, with P = FS,

DG (ϕ̄,η) · Δu =
∫

B

{Grad Δu S̄ + F̄ [DS(ϕ̄) · Δu] } · Gradη dV . (3.118)

Quantities labelled with a bar have to be evaluated at ϕ̄. For linearization of
the second Piola–Kirchhoff stresses, equation (3.115) can be used. This
leads to

DS(ϕ̄) · Δu = C̄ [ΔĒ ] , (3.119)

where the last term is the linearization of the Green–Lagrangian strain
tensor E at ϕ̄, see (3.109). The incremental elasticity tensor CR which is
evaluated with respect to the reference configuration is given, with (3.79), by
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C̄ = 4
∂2W

∂C ∂C

∣∣∣∣
ϕ=ϕ̄

(3.120)

at ϕ̄.
Inserting equation (3.120) into (3.118) completes the linearization:

DG(ϕ̄,η) · Δu =
∫

B

{Grad Δu S̄ + F̄ C̄ [ΔĒ ] } · Gradη dV . (3.121)

Note that also C̄ has to be computed at ϕ̄. By making use of the trace
operation and by considering symmetry of C̄, a compact form of (3.121) can
be obtained:

DG(ϕ̄,η) · Δu =
∫

B

{Grad Δu S̄ · Grad η + δĒ · C̄ [ΔĒ ] } dV . (3.122)

Note the symmetry of the linearization with respect to η and Δu. The first
term in (3.122) is the so-called geometrical matrix or initial stress matrix. The
second term contains the initial deformations which occur in the incremen-
tal constitutive tensor C̄, the variation of the Green–Lagrangian strains
δĒ = 1

2 (F̄T Gradη + GradT η F̄) and its linearization ΔĒ = 1
2 (F̄T GradΔu +

GradT Δu F̄). Equation (3.122) is given in index notation as

DG(ϕ̄,η)AΔuA =
∫

B

{ΔuA,B S̄BC ηA,C + δĒAB C̄ABCD ΔĒCD } dV .

(3.123)
With the last equations, all relations with respect to the initial and current

configurations, are known, which have to applied within an iterative solution
procedure, e.g. Newton’s method. Thus the basis for discretization using the
finite element method for nonlinear problems in solid mechanics is known.

The linearization of the weak form, defined in quantities of the current
configuration, follows by push forward of linearization (3.122) to the already
obtained deformations state ϕ̄. With the push forward ∇̄SΔu of the Green–

Lagrangian strain tensor, the second term in (3.122) can be re-written as
∫

B

∇̄Sη · c̄c [∇̄SΔu] dV .

The fourth order tensor c̄c follows from C̄ by the transformation (3.79).
The first term in (3.122) can be transformed directly with τ̄ = F̄ S̄ F̄T ,

and thus expressed in Kirchhoff stresses:

GradΔu S̄ · Gradη = F̄Grad Δu F̄−1
τ̄ F̄−1 · Gradη = gradΔu τ̄ · gradη .

(3.124)
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With these transformations, the linearization in terms of quantities at the
current configuration state ϕ̄ is

Dg(ϕ̄,η) · Δu =
∫

B

{gradΔu τ̄ · gradη + ∇̄Sη · c̄c [∇̄SΔu ] } dV . (3.125)

With dv̄ = J̄dV integral (3.125) can be transformed into the current config-
uration ϕ̄. For this purpose, we use the Cauchy stress tensor σ̄ = 1

J̄
τ̄ , and

define the incremental constitutive tensor

¯̂cc =
1
J̄

c̄c (3.126)

such that the final result

Dg(ϕ̄,η) · Δu =
∫

ϕ̄(B)

{gradΔu σ̄ · gradη + ∇Sη · ¯̂cc [∇̄SΔu ] } dv (3.127)

follows. Equation (3.127) in the literature is also known as the updated La-
grange formulation e.g. see Bathe et al. (1975), since the deformation state ϕ̄
is always updated during the nonlinear incremental solution procedure.

With the last equations all relations with respect to the current config-
uration are known. These have to be applied within an iterative solution
procedure, e.g. Newton’s method. Thus the basis for discretization using the
finite element method for nonlinear problems in solid mechanics is known.

3.5.4 Linearization of a deformation dependent load

The description of a pressure load stemming from gases or fluids without
internal friction leads to a surface load which depends upon the current de-
formation state. The stress vector t is then given in terms of the pressure p
and the surface normal n by t̄ = pn. This leads in the weak form (3.63) to
the additional term

g(ϕ ,η) + gp(ϕ,η) = g(ϕ ,η) +
∫

ϕ(∂Bp)

pn · η da . (3.128)

For this term the linearization is derived next.
Again, to compute the linearization, it is preferable to perform a pull

back operation and to refer (3.128) to the initial configuration. Two methods
are possible. The first relies on the transformation of the surface normal by
(3.11). This yields the expression

∫
B

p J F−T N · η dA where linearization is
complicated. Simpler is the second method in which the normal vector n is
expressed by the cross product of the tangent vectors which are tangent to
the convective coordinates of the surface of the body, see Figure 3.4.
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The normal unit vector follows with the tangent vectors, as defined in
Figure 3.4, gα (α = 1, 2) as

n =
g1 × g2

‖g1 × g2‖
.

The tangent vectors can be computed from the deformation state using equa-
tion (B.4): gα = ϕ,α. The area element da can be expressed by da =
‖g1 × g2‖dθ1 dθ2 in terms of the tangent vectors with respect to the con-
vective coordinates. Based on these relations, the virtual work for pressure
loading is

gp(ϕ ,η) =
∫

(θ1)

∫

(θ2)

p (ϕ,1 × ϕ,2 ) · η dθ1 dθ2 . (3.129)

With the introduction of the displacement field, the tangent vectors have the
form ϕ,α = (X + u),α. Hence the linearization of (3.129) yields

D gp(ϕ ,η) · Δu =
∫

(θ1)

∫

(θ2)

p (Δu,1 × ϕ,2 + ϕ,1 × Δu,2 ) · η dθ1 dθ2 , (3.130)

when p itself is independent of the deformation state. The linearization refers
to the convected coordinates. It can be pushed forward to the current config-
uration, leading to

D gp(ϕ ,η) · Δu =
∫

ϕ(∂Bp)

p
Δu,1 × ϕ,2 + ϕ,1 × Δu,2

‖ϕ,1 × ϕ,2‖
· η da . (3.131)

With this the linearization of a deformation-dependent pressure load, see
(3.128), has been derived. More theoretical considerations with regard to the
nonconservative nature of deformation dependent loads can be found in Sewell
(1967), Bufler (1984), Ogden (1984) or Simo et al. (1991).

θ2

ϕ(∂Bp)

g2

n

θ1

da g1

Fig. 3.4. Pressure dependent surface loads.



4

Contact Kinematics

Many technical contact problems involve large deformations of the bodies that
are in contact. Thus we will formulate all contact relations for finite defor-
mations, so we look at problems where two or more bodies Bα approach each
other during a finite deformation process and come into contact on parts of
their boundaries denoted by Γc, see Figure 4.1. We observe that two points, X1

and X2, in the initial configuration of the bodies which are distinct can occupy
the same position in the current configuration, ϕ(X2) = ϕ(X1), within the
deformation process. Hence contact conditions have to be formulated with re-
spect to the current configuration. In general, two steps have to be performed

X1

ϕ(B2)

ϕ(X2, t) = ϕ(X1, t)

X2
ϕ2

Γc

ϕ(B1)

ϕ1

B2

B1

Fig. 4.1. Finite deformation contact.

to detect whether or not contact takes place. These are the global search for
contact and the set-up of local kinematical relations which are needed to for-
mulate the contact constraints. Here we focus on the latter; search algorithms
will be discussed in Section 10.1.
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B2
ϕ2(B2)

x2

X1

ϕ1(B1)

ξ

–x1
x1(ξ)

B1

N1

X2 n1ϕ

Γ1

Fig. 4.2. Deformed configuration of bodies Bα, minimum distance.

In a large deformation, continuum-based formulation of contact kinemat-
ics, the distance between the bodies in contact is minimized, as can be found
for the classical non-penetration condition in Curnier and Alart (1988) for
example.

In the case that a small penetration due to the approach of the two bodies
in contact has to be allowed, the contact kinematics are developed in Wriggers
and Miehe (1992). This non-penetration function also plays a significant role
for the definition of the tangential velocity in the contact interface, which is
needed to formulate frictional problems, e.g. see Simo and Laursen (1992),
Wriggers and Miehe (1992), Laursen and Simo (1993b), or Curnier et al.
(1995).

Let us consider two elastic bodies Bα, α = 1, 2, each occupying the bounded
domain Ωα ⊂ R3. The boundary Γα of a body Bα consists of three parts: Γα

σ

with prescribed surface loads, Γα
u with prescribed displacements, and Γα

c ,
where the two bodies B1 and B2 come into contact. In the contact area, we
have to formulate the constraint equations or the approach function for normal
contact, as well as the kinematical relations for the tangential contact.

4.1 Normal Contact of Three-dimensional Bodies

Assume that two bodies come into contact. In that case, the non-penetration
condition is given by

(x2 − x1) · n1 ≥ 0 , (4.1)

see Figure 4.2. xα denotes the coordinates of the current configuration ϕ(Bα)
of body Bα: xα = Xα+uα, where Xα is related to the initial configuration Bα

and uα is the displacement field, see also Appendix B. The normal vector n1
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a1
1

x2

ξ2

ξ1

n1

x1
a1

2
–

–

–

–

Fig. 4.3. Minimum distance problem and coordinate system.

is associated with body B1. By assuming that the contact boundary describes,
at least locally, a convex region, we can relate to every point x2 on Γ 2 a point
x̄1 = x1(ξ̄) on Γ 1 via the minimum distance problem

d̂1(ξ1, ξ2) = ‖x2 − x̄1‖ = min
x1⊆Γ 1

‖x2 − x1(ξ)‖ , (4.2)

see Fig 4.3 for the three-dimensional case. The distance can then be used to
define the gap or penetration between the two bodies. ξ = (ξ1 , ξ2) denotes
the parameterization of the boundary Γ 1 via convective coordinates, e.g. see
Wriggers and Miehe (1992), Wriggers and Miehe (1994) or Laursen and Simo
(1993b). The point x̄1 is computed from the necessary condition for the min-
imum of the distance function (4.2)

d

dξα
d̂1(ξ1, ξ2) =

x2 − x̂1(ξ1, ξ2)
‖ x2 − x̂1(ξ1, ξ2) ‖

· x̂1
,α(ξ1, ξ2) = 0 . (4.3)

The solution of (4.3) requires orthogonality of the first and second terms.
Since x̂1

,α(ξ1, ξ2) is the tangent vector a1
α, the first term must have the same

direction as the normal vector n1 at the minimum point (ξ̄1 , ξ̄2). Thus we
have the condition −n1(ξ̄1 , ξ̄2) ·a1

α(ξ̄1 , ξ̄2) = 0, which means that the current
master point x̂1(ξ̄1, ξ̄2) is the orthogonal projection of a given slave point x2

onto the current master surface ϕ1
t (Γ

1
c ).

Here and in the following, we denote by a bar over a quantity its evaluation
at the minimal distance point (ξ̄1, ξ̄2), which means that these values denote
the solution point of (4.3). Thus

n̄1 =
ā1

1 × ā1
2

‖ā1
1 × ā1

2‖
(4.4)



60 4 Contact Kinematics

is the outward unit normal on the current master surface at the master point,
where ā1

α are tangent vectors at x̂1(ξ̄1, ξ̄2). Note that the normal can also be
defined using (4.3). The result is

n̄1 =
x2 − x̂1(ξ1, ξ2)

‖ x2 − x̂1(ξ1, ξ2) ‖
. (4.5)

The application of this definition is more convenient in special cases; however
it can only be used in relation with the penalty method, and it has the problem
that n̄1 is not defined for ‖ x2 − x̂1(ξ1, ξ2) ‖= 0.

Once the point x̄1 is known, we can define either the inequality constraint
of the non-penetration condition

gN = (x2 − x̄1) · n̄1 ≥ 0 , (4.6)

or a penetration function

g−N =
{

(x2 − x̄1) · n̄1 if (x2 − x̄1) · n̄1 < 0
0 otherwise .

(4.7)

The latter defines the magnitude of penetration of one body into the other
and has to be used in conjunction with the penalty method.

REMARK 4.1: It can happen that the distance function is locally non-differen-
tiable. In such a case the projection point x̂1(ξ1, ξ2) is not unique. Examples of
points which have a non-unique projection are shown in Figure 4.4. Usually the dis-
continuity depicted in Figure 4.4a is not of great influence in practical applications,
since in a next iteration step when the point gets closer to the contact surface, the
discontinuity disappears. A criterion which provides a measure to detect whether
the projection (4.3) yields a unique solution or not was derived in Curnier et al.
(1995). Using the transformation of line elements which lie in the tangent plane of
the master and slave surface d x̄1 = P⊥ dx2, for the area elements on master and
slave surface one obtains

xS

xS
xA

xB

Fig. 4.4. Non-differentiable distance functions.
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n̄1 da1 = P⊥ n2 da2 . (4.8)

The ratio of these area element is now given by (see Curnier et al. (1995)),

j̄ =
da1

da2
=

−n2 · n̄1

| 1 − (κ1 + κ2) gN + κ1 κ2 g2
n | , (4.9)

where we can also write j̄ = ‖P⊥ n2 ‖. κ1 and κ2 describe the principle curvature
of the master surface in point x̂1(ξ1, ξ2). The projection is unique when j̄ < ∞,
which means that the point x2 should not be located at a point of focus which is
the cutting point of two normal vectors of equal length (see Figure 4.5a) or it should
not coincide with the center of curvature of the master surface. One can show (see

xBxA

n1

n2

B2

B1

xB

xS

xA

xS
–

Fig. 4.5. Uniqueness and regularity for minimum distance problem.

Thorpe (1979)) that x̂1(ξ1, ξ2) is associated with a local minimum if no point of
focus lies on the line between x2 and x̂1(ξ1, ξ2). A global minimum of (4.3) is given
for

| gN | <
1

max(|κ1| , |κ2|)
, (4.10)

which means that the distance between the slave node and master surface is smaller
than the smallest radius of curvature for each point of the master surface. Further-
more, to obtain a projection (4.8) which is bijective one has to require that j̄ > 0,
which means that the condition −n2 · n̄1 > 0 holds (see Figure 4.5b) for the normal
vectors.

The case shown in Figure 4.4b is of more practical importance. This is because

often, low order interpolations are applied for the finite element discretization, which

use a linear function within the element to describe the deformed boundary. Hence

there is always a discontinuity in the normal field when point x2 moves from one

element to the next. This problem will be discussed in more detail in Section 10.3.

In the case of geometrically linear kinematics, it is advantageous to write
the inequality constraint as

(u2 − ū1) · n̄1 + gX ≥ 0 , (4.11)
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where uα are the displacements of the bodies Bα. The initial gap g between
the two bodies is given by gX = (X2 − X̄1) · n̄1. In view of the penalty
formulation which will be applied to solve the contact problems, we introduce
a penetration function as follows:

u−
N =

{
(u2 − ū1) · n̄1 + gX if (u2 − ū1) · n̄1 + gX < 0

0 otherwise .
(4.12)

Functions g−N and u−
N indicate a penetration of one body into the other, and

show in which parts of Γα the constraint equations, preventing penetration,
have to be activated. Thus (4.7) or (4.12) can be used to determine the con-
tact area Γα

c ⊆ Γα.

REMARK 4.2: In the case of contact between a rigid surface and a deformable

body, equations (4.7) and (4.12) also hold. In this case, ū1 ≡ 0 holds and n̄1 is the

normal of the rigid body.

4.2 Tangential Contact of Three-dimensional Bodies

In the tangential direction of the contact interface one has generally to distin-
guish two cases. The first is the so-called stick state in which a point which is
in contact is not allowed to move in a tangential direction. The second case is
sliding, which means that a point moves in a tangential direction in the con-
tact interface. This movement can of course only be described by the relative
deformation in the interface.

4.2.1 Stick condition

In the first case a mathematical condition for stick is needed. Such a condition
can be derived from projection (4.3). It is clear that a point which sticks to
another body does not move in a tangential direction, and hence the computed
values for the convective coordinates (ξ̄1 , ξ̄2) do not change for this point
during the motion ˙̄ξ

α
= 0. Therefore, the condition

gT = gT α āα = 0 with gT α = (x2 − x̄1) · ā1
α (4.13)

can be formulated. Here gT denotes the relative displacement in a tangential
direction, which has to be zero. Note that in the stick case, one does not have
to distinguish between the normal and tangential directions. Thus in case the
normal gap is closed, see (4.6), gN = (x2 − x̄1) · n̄1 = 0; then one can instead
combine conditions gN = 0 and gT = 0 to the more simple condition

x2 − x̄1 = 0 . (4.14)

The implication of this choice with respect to numerical implementation of
contact is discussed in Remark 6.2 and Section 9.2.
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4.2.2 Slip condition

The tangential relative slip between two bodies is related to the change of
the point x2 relative to the projection x̄1. This means that the solution point
ξ̄ = (ξ̄1, ξ̄2) which has been obtained via the minimal distance problem (4.2)
will move on the master surface. The sketch in Figure 4.6a depicts the path of
the point x2 along on the master surface beginning at t0 and ending at time t.
Furthermore, the velocity v of point x2 relative to the master surface is shown
at times t1 and t2. Note that the path of a point x2 on the master surface
is not known a priori. It could even cross its own line, as depicted in Figure
4.6b. Hence during our calculations we cannot assume anything regarding the
path and just know the relative velocity vector. Hence in a frictional sliding
situation, one has to integrate the relative velocities to obtain the path of x2

on the master surface. Details regarding the continuum formulation are stated
below.

First we state the tangential relative displacement of a point x2 on the
contact surface, which is defined in terms of body B1. We compute the path
of point x2 on Γ 1 from

dgT = ā1
α dξ α = x̄1

,α dξ α , (4.15)

see Figure 4.7, where the tangent vectors ā1
α are evaluated at the projection

point ξ̄ α. From (4.15) the length of the frictional path can be computed with
d gT = ‖ dgT ‖ and dξα = ξ̇αdt as

gT =

t∫

t0

‖ ξ̇ α x̄1
,α ‖ dt =

t∫

t0

√
ξ̇ α ξ̇ β aαβ dt , (4.16)

where t is the time which is used to parameterize the path of point x2. For
the evaluation of (4.16), we have to know the time derivative of ξ̄α. This can
be computed from the relation

[x2 − x̄1 ] · ā1
α = 0 , (4.17)

which is valid at the contact point, since the difference x2−x̄1 is normal to the
contact surface, and ā1

α denotes the tangent vector to the surface Γ 1 at the

t0

t

t2

t

t1

v(t1) v(t2)

t0

Fig. 4.6. Path of the point x2 relative to the master surface
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Γc

n1

da

a1

a2

ξ2

ξ1

dgT

–

–

–

Fig. 4.7. Increment of the frictional path.

minimal distance point, see Figure 4.2b and (4.3). Time derivation of (4.17)
yields the following result:

d

dt
[x2 − x̄1(ξ̄1, ξ̄2) ] · ā1

α = [v2 − v̄1 − āβ
˙̄ξβ ] · ā1

α +[x2 − x̄1 ] · ˙̄a1
α = 0 . (4.18)

With ˙̄a1
α = v̄1

,α+x̂1
,αβ

˙̄ξβ we obtain ˙̄ξβ from (4.18), which leads to the following
system of equations:

H̄αβ
˙̄ξβ = R̄α , (4.19)

with

H̄αβ = [ āαβ − gN x̄1
,αβ · n̄1 ]

R̄α = [v1
2 − v̄1 ] · ā1

α + [x2 − x̄1 ] · v̄1
,α (4.20)

= [v2 − v̄1 ] · ā1
α + gN n̄1 · v̄1

,α .

Well known results from differential geometry of surfaces introduce āαβ as the
metric tensor and x̄1

,αβ(ξ̄1, ξ̄2) ·n̄1 as the curvature tensor b̄αβ , see also (B.17).
Thus we can rewrite H̄αβ = [ āαβ − gN b̄αβ ]. Denoting H̄αβ = (H̄αβ)−1, we
can now explicitly solve for the relative velocity ξ̄ = { ξ̄1 , ξ̄2 },

˙̄ξβ = H̄αβ
[
(v2 − v̄1 ) · ā1

α + gN n̄1 · v̄1
,α

]
. (4.21)

Using these results we define as the second important kinematical function
the tangential relative velocity function on the current surface ϕ2(Γ 2

c ) by
setting

Lv gT = ˙̄ξα ā1
α . (4.22)

Equation (4.22) determines the evolution of the tangential slip gT , which en-
ters as a local kinematical the constitutive function for the contact tangential
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stress. In the following chapter, we will abbreviate the Lie derivative Lv gT ,
denoting the relative tangential velocity by the term ġT to simplify notation.

REMARK 4.3:

1. Note that the second terms on the right-hand side of (4.19) depends upon the
penetration gN . Thus in the case of a strong enforcement of the non-penetration
condition (gN = 0) with Lagrange multipliers, this term vanishes. The evo-
lution Lv in (4.22) is then given by the projection of the spatial velocities v2

and v̂1(ξ̄), evaluated at the contact points onto the tangential direction of the
contact surface at the master point

Lv gT = P̄T [v2 − v̂1(ξ̄1, ξ̄2) ] , with P̄T = ā1
α ⊗ ā1α . (4.23)

2. If the deformed contact surface is flat, then the curvature tensor b̄αβ is zero and
hence H̄αβ = āαβ . This is always the case for a surface discretization by three
node triangular elements.

3. Note that the (a priori objective) Lie derivative of the tangential vector gT

has the representation Lv gT = F1{ d
dt

[(F1)−1(gT ) ] } = ˙̄ξα ā1
α based on the

deformation gradient F1 = ā1
α ⊗ Ā

1α
+ n̄1 ⊗ N̄

1
of the master surface defined

above. Thus (4.22) represents an evolution equation for the objective rate Lv gT

of the tangential vector introduced above.
4. In the case of no relative movement in a tangential direction (stick condition),

we have Lv gT = gT = 0.
5. In the geometrically linear case all quantities can be computed with respect to

the initial configuration which yields for the tangent vectors: Ā
1
α. From (4.19)

and (4.21) we obtain

d

dt
{ [x2 − x̂1(ξ̄1, ξ̄2) ] · Ā1

α } = [v2 − v̂1(ξ̄1, ξ̄2) − Ā
1
β

˙̄ξβ ] · Ā1
α ,

which leads to
Ā1

αβ
˙̄ξβ = [v2 − v̂1(ξ̄1, ξ̄2) ] · Ā1

α .

The terms multiplied by gN can be neglected. Thus ˙̄ξβ is given by the projection
of the difference velocity of the two bodies at the contact point on the tangent
direction of the undeformed surface. From the last equation, we can deduce the

relative tangential velocity at the contact point: ġT = ˙̄ξβ Ā
1
α.

For a penetration gN < 0 we have to take into account the second term in
(4.21) and the scaling factors H̄αβ , both consequences of the time dependence
of ā2

α.
For the two-dimensional contact we can specify the result in (4.19), which

then yields

˙̄ξ =
1

ā11 − gN b̄11

{
[v2 − v̄1 ] · x̄1, ξ +gN n̄1 · v̄1, ξ

}
, (4.24)

where ā11 = x1, ξ (ξ̄) · x1, ξ (ξ̄) describes the metric and b11 = x1, ξξ (ξ̄) · n̄1

the curvature of the boundary. The vectors vα denote the velocities at xα.
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Knowing the change of the coordinate ξ̄, we can define the relative tangential
velocity as

Lv gT = ˙̄ξ x̄1,ξ (ξ̄) . (4.25)

In that case, for the total sliding distance (4.16) we obtain

gT =

t∫

t0

‖ ˙̄ξ1 x̄1
,ξ‖ dt =

ξ∫

ξ0

√
ā11 dξ . (4.26)

The upper limit ξ in this integral still depends upon the deformation, which
is clear from the implicit definition of ξ via (4.3). However, one can transform
(4.26) into an integral with fixed limits by introducing a different parame-
terization, e.g. as in the case when the isoparametric map is used in a finite
element context.

4.3 Variation of the Normal and Tangential Gap

The variation of the geometrical contact quantities are needed in the weak
forms for contact. In this section the variation of the gap in the normal con-
tact direction and the variation of the tangential relative displacement in the
contact interface are derived for the different cases discussed in the previous
sections.

4.3.1 Variation of normal gap

The first case discussed is the variation of the gap function in the normal
direction for the contact between three-dimensional solids.

The variation of the normal gap follows from (4.6) as

δgN = δ
{
[x2 − x1(ξ̄1 , ξ̄2)] · n1(ξ̄1 , ξ̄2)

}
. (4.27)

To compute the variation (4.27) explicitly, we have to consider all terms which
depend upon the deformation. In the case of contact, we then have to take
into account the projection of point x2 onto the master surface parameterized
by the convective coordinates ξ1 and ξ2. This leads to

δgN = [η2 − η̄1 − x̄1
,α δξα ] · n̄1 + [x2 − x̄1 ] · δn̄1 , (4.28)

where we have set the test function ηα = δxα. Equation (4.28) simplifies due
the fact that x̄1

,α · n̄1 = 0. Furthermore we have n̄1 · δn̄1 = 0, see Appendix
B. With the definition of the normal (4.5), this eliminates the last term in
(4.28). Hence we obtain the result

δgN = [η2 − η̄1 ] · n̄1 . (4.29)

Note, however, that we have to start from (4.28) if we want to derive the
linearization of the variation of the gap function (4.27) since a function can
have a tangent at positions where it is zero.
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4.3.2 Variation of tangential gap

The variation of the tangential slip can be stated in the same way as the
time derivative (relative tangential slip velocity) was computed in (4.21) and
(4.22). We obtain

δgT = δξ̄α ā1
α , (4.30)

with the variation of ξα

δξ̄α = H̄αβ
[
(η2 − η̄1 ) · ā1

β + gN n̄1 · η̄1
,β

]
. (4.31)

The latter relation follows simply from (4.21) by replacing the velocities v by
the test function η with H̄αβ = [ āαβ − gN b̄αβ ]−1.

In the two-dimensional case, these equations simplify. The variation of ξ
can be computed using (4.24) according to (4.31). This leads to

δξ̄ =
1

ā11 − gN b̄11

{
[η2 − η̄1 ] · x̄1

,ξ + gN n̄1 · η̄1
,ξ

}
. (4.32)
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Constitutive Equations for Contact Interfaces

The design of technical systems depends greatly upon the knowledge of the
contact behaviour in interfaces which connect different parts of the system.
Such systems are very general, examples being cars, printing or copy machines,
human joints or implants, unfolding space structures, robots, micro machines
or base isolation systems for buildings to protect against earthquakes.

Related to the precision which is needed to resolve the mechanical behav-
iour in the contact interface, different approaches have been established over
the centuries to model the mechanical behaviour in the contact area.

Two main techniques can be followed to impose contact conditions in the
normal direction. These are the formulation of the non-penetration condition
as a purely geometrical constraint (the normal contact stresses then follow
from the constraint equation), and the development of an elastic or elasto-
plastic constitutive laws for the micromechanical approach within the contact
area, which yields a response function for the normal contact stresses. Such
constitutive equations are often derived from statistical models.

For the tangential direction, one has the same situation as for normal
contact when stick in the contact interface is considered. Again, either a geo-
metrical constraint equation can be formulated, or a constitutive law for the
tangential relative micro displacements between the contacting bodies can be
applied. For tangential sliding between bodies, one always has to derive a con-
stitutive equation for friction which can be stated in the form of an evolution
equation. Usually the frictional evolution depends on different parameters, like
normal force, relative tangential velocity, temperature or total slip distance.

5.1 Normal Contact

The next two sections discuss the formulation of normal contact as a constraint
for non-penetration, or by introducing constitutive equations which describe
the approach of the contacting surfaces. In the case of frictionless contact, one
of the models proposed for normal contact is sufficient within the analysis. In
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the case of friction, the tangential stress also has to be considered, see Section
5.2.

5.1.1 Constraint formulation

The formulation which treats normal contact as a unilateral constraint prob-
lem is in general used when it is most essential to enforce the geometrical
constraints in a correct way (one could coin the term “low contact precision”
for such a situation). In this case, it is not necessary to specify constitutive re-
lations in the contact interface. Therefore, the normal contact pressure cannot
be computed from a constitutive equation, but is then obtained as a reaction
in the contact area, and hence can be deduced from the constraint equations,
see Section 6.3.1. This procedure is the classical way to formulate contact con-
straints, thus numerous researchers have used this strategy, e.g. see Johnson
(1985) or Kikuchi and Oden (1988).

The mathematical condition for non-penetration is stated as gN ≥ 0, see
(4.6), which precludes the penetration of body B1 into body B2. Contact takes
place when gN is equal to zero. In this case, the associated normal component
p1

N of the stress vector

t1 = σ1 n̄1 = p1
N n̄1 + t1 β

T ā1
β (5.1)

in the contact interface must be non-zero. The stress vector acts on both sur-
faces (see Figure 5.1) obeying the action-reaction principle: t1(ξ̄1, ξ̄2) = −t2

in the contact point x̄1. We have pN = p1
N = p2

N < 0, since adhesive stresses
will not be allowed in the contact interface throughout our considerations.
Note that the tangential stress t1 β

T is zero in the case of frictionless contact.

Γ1a1

ϕ2(B2)

ϕ1(B1)

t1

t2

x2

x1

n1–

–

–

Fig. 5.1. Stresses in the contact interface.
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gN

pN

Fig. 5.2. Contact force versus normal gap.

For contact one has the conditions gN = 0 and pN < 0. If there is a gap
between the bodies, then the relations gN > 0 and pN = 0 hold. This leads
to the statements

gN ≥ 0 , pN ≤ 0 , pN gN = 0 , (5.2)

which are known as Hertz–Signorini–Moreau conditions for frictionless
contact. These conditions provide the basis to treat frictionless contact prob-
lems in the context of constraint optimization. In Moreau (1974) this law
is expressed by sub-gradients (see also Curnier (1999)). In optimization the-
ory such a set of equations is called a Kuhn–Tucker condition (sometimes
known as a Kuhn–Tucker–Karush condition, since it was recently discov-
ered that Karush developed them first in 1938). As can be seen from Figure
5.2, equations (5.2) lead to a non-smooth contact law for the normal contact
pressure.

So far stresses related to the current configuration have been introduced.
Hence Cauchy’s theorem was formulated in terms of the Cauchy stresses σ,
see Eq. (5.1). In the same way, one can also introduce the nominal stress or
first Piola–Kirchhoff stress P this leads to two different representations
of the stress vector

t = σ n or T = PN . (5.3)

With Nanson’s formula (3.11) and the transformation (3.48), one concludes
that T dA = t da. Hence by introducing the Jacobian for the area j =
da / dA, one obtains

T = j t with j = J ‖F−T N ‖ . (5.4)

The normal and tangential components follow from

t = P t + (I − P ) t , (5.5)

with the projection tensor P = n̄1⊗n̄1 and the fourth order unit tensor t = I t.
Note that P has the following properties: P

2 = P and P ( I − P) = O. With
(5.4) and (5.1), the relations
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TN = j pN = j n̄1 · P t and TT = j tT = j (I − P ) t (5.6)

hold. Both formulations, using the nominal stresses or the Cauchy stresses,
are equivalent when the transformations derived above are introduced in a
consistent way into constitutive equations or weak forms.

5.1.2 Constitutive equations for normal contact

There exist several contact problems where knowledge of the micromechanical
approach of the surfaces to each other is essential for a proper treatment of
the physical phenomena. In that case an interface compliance is needed for
these problems with “high contact precicion”. Constitutive equations which
include deformation of the micro structure can be developed for normal con-
tact by investigating the micromechanical behaviour within the contact sur-
face. Associated models have been developed based on experiments, e.g. see
Greenwood and Williamson (1966), Kragelsky et al. (1982) and Kragelsky
and Alisin (2001). The micromechanical behaviour depends in general upon
material parameters like hardness and on geometrical parameters like surface
roughness. However, depending on the materials of the bodies being in contact
other parameters also have to be considered when all effects stemming from
the micromechanics of the surfaces have to be included. This can be observed
from Figure 5.3, which shows the complex layer structure of a solid at its
boundary. It consists for example of a contaminant layer (1), an absorbed gas
layer (2), an oxide film (3), a work-hardened layer (4), and finally, the metal
substrate (5). Hence the real micromechanical phenomena are very complex:
it is possible to initiate even chemical reactions in the interface by extremely
high local pressures at the asperities stemming from applied mechanical forces.
However, such phenomena will be neglected here.

A micromechanical view of a rough surface is shown in Figure 5.4, which
clearly depicts different randomly distributed asperities. It is obvious that
contacting bodies at the asperities of the rough surfaces come in contact
where high local stresses occur. Thus, early investigations assumed plastic
deformations when the interface laws where derived. This is correct when the

Fig. 5.3. Surface layers on a workpiece; schematic view from Rabinowicz (1995).
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Fig. 5.4. : Scan of a rough micro-mechanical surface geometry.

loads are only applied once. For repeated loading one can assume that the
surface is flattened due to initial plastic deformations and hence after this
pre-deformation can bear loads elastically, e.g. see Mikic (1971). Thus the
models which are used try only to capture the most important phenomena,
and assume either an elastic or a plastic deformation of the asperities that are
actually in contact at the interface.

The derivation of constitutive contact equations for the approach of two
rough surfaces involves two main steps. First one has to find a mathemati-
cal description of the surface geometry by statistical, e.g. see Greenwood and
Williamson (1966) or lately also by fractal models e.g. see Majumdar and
Bhushan (1990) and Section 5.7. Secondly a model which describes the me-
chanical behaviour of one summit of the rough surface under loading has to
be introduced. Such a method leads to a contact law for normal contact of
the form (see Willner and Gaul (1997))

pN (γ) =
1
h2

∞∫

γ

∞∫

0

Ni(γ)P (ζσ , κσ) dκ dζ . (5.7)

Here ζσ = z / σz is the normalized asperity height, normalized by the rms-
height σz. The height z is measured on a regular grid with spacing h (see
Greenwood and Williamson (1966)). The curvature ks stems then from a finite
difference approximation, and yields the mean curvature by κσ = ks / σk,
normalized by the rms-curvature σk. P (ζσ , κσ) is the probability distribution
of a joint. Ni(γ) is the normal contact force related to one summit, with
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Fig. 5.5. Physical approach in Γc, undeformed and deformed situations.

γ = gN / σz being the gap function normalized by the rms-height. The contact
pressure related to the apparent contact area follows from equation (5.7), when
all input data are known from measurements.

In most applications it is sufficient to formulate the constitutive relation
for the apparent contact pressure like

pN = f (d) or d = h (pN ) , (5.8)

where f and h are nonlinear functions of the current mean plane distance d
or the contact pressure pN , respectively.

In the case of contact, the current mean plane distance d is related to the
geometrical approach gN , see (4.6), via the relation

gN = ζ − d or d = ζ − gN . (5.9)

ζ is the initial mean plane distance in the contact area Γc, which is defined as
the mean plane distance of the two surfaces when the two surfaces just touch
each other in the initial configuration, see Figure 5.5.

Most of the interface laws can be written in the form (5.8). Out of many
different possibilities, two constitutive equations for normal pressure in the
contact area will be stated besides the general relation (5.7). The first was
developed in Zavarise (1991) and Zavarise et al. (1992a), and is based on a
statistical model of the micro-geometry proposed by Song and Yovanovich
(1987). This constitutive relation for the approach of both surfaces yields an
exponential law of the form

pN = c3 e−c4 d2
. (5.10)

A more detailed description of this interface law shows the dependency of c3

and c4 on the geometrical and material parameters of the surface:

pN =
c1

(
1617646.152 σ

m

)c2

5.5891+0.0711 c2
exp

[
−1 + 0.0711 c2

(1.363σ)2
d2

]
. (5.11)

c1 and c2 are mechanical constants which express the nonlinear distribution of
the surface hardness, σ and m are statistical parameters of the surface profile,



5.1 Normal Contact 75

Eq.(5.10)
Eq.(5.12)

d

pN

Fig. 5.6. Contact compliance law.

representing the RMS surface roughness and the mean absolute asperity slope.
As can be seen, many constitutive parameters are needed to describe the
approach of two rough surfaces within the contact area. Thus, these models
are only used when really needed, like in thermo-mechanical contact where the
approach enters the constitutive relation for the heat flux, see Section 11.2.
Further details can be found in the critical review of Zavarise et al. (2004).

Another law for the contact pressure has been given, based on experimen-
tal investigations, by Kragelsky et al. (1982). These authors formulated the
following constitutive equation for the real contact pressure:

pN = cN dn = cN ( ζ − gN )−1/n (5.12)

in terms of the distance function d which is defined in (5.9). cN and n are
constitutive parameters which have to be determined by experiments. For
metals n is usually in the range 2 ≤ n ≤ 3. Thus the possibility with n = −1
and ζ = 0 is excluded, which would coincide with a standard penalty method,
see Section 6.3.2.

Both interface laws could be viewed as nonlinear springs (see Figure 5.6)
which yield a regularization of the Hertz–Signorini–Moreau conditions in
(5.2).

Often, elasto-plastic deformation has to be considered in a realistic micro-
mechanical model. Hence inelastic behaviour can be applied in the derivation
of the statistical models discussed above. Thereafter, a potential from which
the contact pressure follows via partial derivation with respect to the normal
gap cannot be constructed.

The constitutive equations (5.10) and (5.12) represent very high stiffness,
since the approach of both surfaces is very small and limited once all asperities
are flattened. This fact leads to ill-conditioning when numerical solutions have
to be obtained with (5.10) or (5.12), e.g. by the finite element method. A way
in which one can treat such models numerically is described in Section 6.3.8.
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5.2 Tangential Contact

The interfacial behaviour related to frictional response is very important in
most technical applications. The science related to this topic is called tribology,
which is mainly concerned with technical systems (e.g. breaks or bearings)
where friction is present. Tribology covers topics like adhesion, friction, wear,
lubrication, thermal contact or electric contact. Also from the economical
point of view, tribology is an important science, hence it can be applied to
estimate the time until a mechanical part looses its usefulness. Examples for
such processes are the wear of oil well drills, the wear of artificial joints in
biomechanics, the wear of metal cutting machines or the wear of railroad
tracks.

Sometimes it is desirable to maximize friction such as for the contact
between a car tyre and the road during braking, or for the foundations of
buildings when wind forces are acting. However, often it is important to reduce
friction such as during skiing or ice-skating. Since friction is directly linked to
wear, it is necessary to decrease friction in production processes, in e.g. the
heads of computer disks, in bearings, in all moving parts of engines, etc.

Despite the fact that friction has been investigated for a long time, start-
ing with Leonardo da Vinci, Amontons and Coulomb, many frictional
phenomena have to-date not been completely understood. This is due to the
fact that the frictional behaviour on the surface takes place at the atomic
level with, e.g. an interaction of chemical, electro-magnetic and mechanical
processes. Thus, some researchers tried to formulate a third body in the inter-
face which has a special properties, and is only present at the moment of the
tangential mechanical loading, e.g. see Kragelsky (1956). Also, the structure
of surfaces that are in contact is complicated, since a typical metallic surface
consists of several layers which influence friction. In general, the friction co-
efficient depends upon the normal pressure, the relative tangential velocity,
the surface roughness and the temperature, to name but a few of the most
relevant parameters. For a recent extensive overview regarding the physical
understanding of friction see Persson (2000).

We will restrict ourselves to more simple formulations which yield con-
stitutive equations for frictional contact for dry friction. Lubrication which
is essential in many technical applications since it reduces friction and wear
will not be considered here in detail, however a short introduction is given in
Section 5.3.

The most frequently used constitutive equation is the classical law of
Coulomb. However, other frictional laws are available which take into ac-
count local, micromechanical phenomena within the contact interface, e.g. see
Woo and Thomas (1980). An overview with relation to numerical modelling
may be found in Oden and Martins (1986).

The main governing phenomena for dry friction are adhesion of the sur-
faces and ploughing of the asperities. For the physical background, see Tabor
(1981). During the last few years, frictional phenomena have also been con-
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Fig. 5.7. Stick or slip in the contact area.

sidered within the framework of the theory of plasticity. This leads to non-
associative slip rules, for which different relations have been proposed by for
instance Bowden and Tabor (1964) and Michalowski and Mroz (1978). Fur-
ther discussion on the theory of friction is contained in Curnier (1984). Laws
which investigate the non-local character of friction can be found in Oden
and Pires (1983a) and Oden and Pires (1983b). Constitutive equations for
friction with respect to metal forming have a long history, and are discussed
in Tabor (1981); modern treatments with respect to micromechanical behav-
iour are present in, for example Anand (1993), Stupkiewicz and Mroz (1999)
or Stupkiewicz (2001). At the contact interface the response in the tangential
direction can be divided into two different actions. In the first, no tangential
relative displacement occurs in the contact zone under a loading due to, for
example a force F . This behaviour is called stick (see the left part of Figure
5.7). The second action due to the force F is associated with a relative tan-
gential movement gs

T in the contact interface, which denotes the so-called slip
(see the right part of Figure 5.7).

5.2.1 Stick as a constraint

Stick is equivalent to the case in which the relative tangential velocity is zero.
Hence, the stick condition can be obtained from (4.22) as

ġT = 0 ⇔ gT = 0 . (5.13)

This condition is formulated in the current configuration, and thus in general
imposes a nonlinear constraint equation on the motion in the contact interface.
Associated with this constraint is a Lagrange multiplier, λT , which denotes
the reaction due to the constraint (5.13). There exist many possibilities to
enforce the constraint condition (5.13). These will be discussed in detail in
Section 6.3.

5.2.2 Coulomb law

Once the tangential forces are above a certain limit (see Figure 5.8) then the
contacting surfaces no longer stick to each other, but move relative to each
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Fig. 5.8. Coulomb’s friction law.

other. This relative tangential movement is called sliding, and classically is
described by the law of Coulomb. It takes the form

tT = −μ | pN | ġT

‖ ġT ‖ if ‖ tT ‖ > μ | pN | , (5.14)

where μ is the sliding friction coefficient. This coefficient is constant in the
classical Coulomb law. It depends upon the material pairing of the solids in
contact. Table 5.1 contains some values for different materials.

It can be seen from the bandwidth of the friction coefficient for a specific
material pairing that this coefficient must be influenced by other physical and
geometrical circumstances. In general, the friction coefficient depends upon
different parameters like the surface roughness, the relative sliding velocity
ġT between the contacting bodies, the contact normal pressure pN or the
temperature θ, e.g. see Section 5.2.7. If such effects are introduced, one obtains
a variant of the Coulomb law with a variable coefficient μ = μ(ġT , pN , θ).

One such heuristic friction law which incorporates the relative sliding ve-
locity ġT in the expression for the friction coefficient is given by

Table 5.1. Friction coefficient for different material pairings.

Material pairing Friction coefficient μ

concrete–concrete 0.5 —1.0
concrete–sand 0.35 — 0.6
concrete–steel 0.2 –0.4
metal–wood 0.3 — 0.65
rubber–steel 0.15 — 0.65
steel–steel 0.2 — 0.8
steel–teflon 0.04 — 0.06
steel–concrete 0.2 — 0.4
steel–ice 0.015 — 0.03
wood–steel 0.5 –1.2
wood–wood 0.4 —1.0
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Fig. 5.9. Velocity-dependent Coulomb’s friction law.

μ(ġT ) = μD + (μS − μD ) e−c ‖ġT ‖ . (5.15)

It depends upon three constitutive parameters μS , μD and c. Here for zero
sliding velocity, the friction coefficient assumes the static value μS . For large
velocities the dynamic friction coefficient μD is approached (see also Figure
5.9). The additional constitutive parameter c describes how fast the static
coefficient approaches the dynamic one, see the two different curves in Figure
5.9, which stem form different values of c.

For many applications in which the surface roughness is not too large or
too smooth, the friction coefficient is independent from the surface rough-
ness and hence from the real contact area in the interface (see below). If,
furthermore, also the sliding velocity is neither too large nor too small, then
the friction force is proportional to the normal force, leading to a constant
friction coefficient μ.

5.2.3 Regularization of the Coulomb law

Another possibility to formulate tangential constitutive equations in the con-
tact interface is given by a regularization of the stick-slip behaviour. Such a
formulation is used to avoid the non-differentiability of Coulomb’s law at the
onset of sliding, see Figure 5.8. Associated models were introduced by Oden
and Pires (1983b); see also Raous (1999). These are based on a functional
form which yields a smooth transition from stick to slip, as depicted in Figure
5.10.

The explicit forms are given for two-dimensional problems by

tT = −μϕi( ġT ) | pN | , (5.16)

where the function ϕi describing the smooth transition from sticking to sliding
is defined by:

1. a square root regularization
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ϕ1 =
ġT√

ġ2
T + ε2

, (5.17)

2. a hyperbolic tangent regularization

ϕ2 = tanh
(

ġT

ε

)
, (5.18)

3. or a piecewise polynomial regularization

ϕ3 =

⎧⎨
⎩

−1 , if ġT < −ε
ġT

2 ε , if −ε ≤ ġT ≤ ε
1 , if ġT > ε

. (5.19)

The scalar parameter ε denotes in all cases, the regularization variable, which
for ε → 0 as the limit case yields the classical Coulomb law.

These regularized constitutive interface laws physically have the drawback
that they only describe the stick-slip motion in an approximate fashion. For a
value of the parameter ε that is too large, such a model might not be able to
predict real stick-slip motions. On the other hand, due to the differentiability
of formulations (1) and (2), these models lead to numerical algorithms which
are simpler and more robust. The piecewise polynomial regularization can be
used to construct an algorithm for stick-slip motion which is similar to well
known algorithms from the theory of plasticity (see also the next section).

5.2.4 Elasto-plastic analogy for friction

Coulomb’s law and other constitutive equations for friction can also be for-
mulated in the framework of elasto-plasticity. This has been investigated by
several authors who developed different constitutive equations for frictional

ϕ1
ϕ3

ϕ2

ġT

tT

Fig. 5.10. Regularization of Coulomb’s friction law.
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Fig. 5.11. Friction coefficient versus tangential movement; experiments from
Courtney-Pratt and Eisner (1957).

problems, e.g. see Michalowski and Mroz (1978) or Curnier (1984). A treat-
ment of frictional interface laws in terms of non-associated plasticity has
been considered within a finite element formulation by Wriggers (1987), Gi-
annokopoulos (1989), Wriggers et al. (1990) or Laursen and Simo (1993b).

The reason to formulate elasto-plastic constitutive relations in the contact
interface stems from two sources. One is associated with the wish to regularize
Coulomb’s law. The other reason has its source in experimental observations,
as shown in Figure 5.11. These experiments were carried out by Courtney-
Pratt and Eisner (1957) with metallic surfaces (platinum-to-platinum), and
suggest the use of classical elasto-plastic relations which split the tangential
motion into a elastic or adhesive (stick) part and a plastic or slip part. Exper-
iments for steel and copper are discussed in Anand (1993) which depict the
same behaviour.

As depicted in Figure 5.12, in general one can assume softening (1) as well
as hardening (2) for the constitutive behaviour of friction, once a threshold
value t̂T is passed. This is also in accordance with experiments (e.g. see Figure
5.11 for hardening) or it stems from the fact that the sliding coefficient of
friction is lower than the coefficient describing stick, which results in softening.

The key idea of the elasto-plastic approach is a split of the tangential slip
gT into an elastic (stick or adhesive) part ge

T and a plastic (slip) part gs
T , see

Figure 5.12:
ge

T = gT − gs
T . (5.20)

This split can be viewed as a regularization step of the frictional law. However,
one also can find a physical interpretation, in the sense that elastic tangential
micro displacements ge

T occur in the contact interface. These stem from the
elastic behaviour of the asperities in the real contact area. Hence, they model
an elastic stick behaviour since the associated deformations vanish once the
loading is removed from the system. The simplest possible model for the
elastic part of the tangential contact is an isotropic linear elastic relation,
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Fig. 5.12. Kinematical split of slip and elastic stick.

which yields
tT = cT ge

T , (5.21)

where cT is the elastic constant. However, one can also think of anisotropic
elastic constitutive behaviour leading to

tT = CT ge
T , (5.22)

with the constitutive tensor CT . The directions of anisotropy have to be de-
termined from experiments by taking into account the micro-structure of the
contact surfaces, see Figure 5.4.

The plastic frictional tangential slip gs
T is governed by a constitutive evo-

lution equation which can be formally derived by using standard concepts of
elasto-plasticity theory. Let us introduce for the derivation of a slip rule, in
analogy to the derivation of a plastic flow rule, the dissipation

Ds = tT · ġs
T ≥ 0 (5.23)

due to the plastic slip. Now consider an elastic domain

IEt = { tT ∈ R
2 | fs(tT ) ≤ 0 } (5.24)

in the space of the contact tangential stress which is bounded by the function
f̂s. A simple expression for fs in (5.24) is given by

fs(tT ) = ‖ tT ‖ − μ pN ≤ 0 , (5.25)

which is the plastic slip criterion (see figure 5.13(a) for a given contact pressure
pN , and is equivalent to classical Coulomb’s law. The frictional coefficient μ
is a material parameter.
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Fig. 5.13. (a) Coulomb frictional cone (b) more general slip surface.

The evolution equation for the plastic slip can now be computed from
the maximum dissipation principle, well known from the theory of plasticity,
e.g. see Lubliner (1985). The derivation is done here assuming the simple slip
criterion (5.25), however the methods also hold for more advanced slip criteria
discussed below.

Holding pN fixed, from the so-called maximum dissipation principle one
obtains

( tT − t∗T ) · ġs
T ≥ 0 ∀ t∗T ∈ IEt (5.26)

the constitutive evolution equation for the plastic slip

ġs
T = γ̇

∂fs(tT )
∂tT

= γ̇ nT with nT =
tT

‖tT ‖
, (5.27)

which denotes the normality rule for fixed contact pressure. The left-hand side
of (5.27) denotes the relative tangential velocity due to slip. Additionally, we
have the loading-unloading conditions in Kuhn–Tucker form:

γ̇ ≥ 0 , fs(tT ) ≤ 0 , γ̇ fs(tT ) = 0 , (5.28)

which determine the plastic parameter γ̇.
Another slip criterion has been formulated in Wriggers et al. (1990) which

additionally takes into account the pressure dependency of the tangential re-
sponse. Here the form μ = τ0 / pr + β proposed by Tabor (1981) for the
frictional parameter is assumed, where τ0 and β are constitutive parameters
describing a model with linear varying shear strength of the interfacial mate-
rial due to the true contact pressure. The true pressure pr is related to the
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Fig. 5.14. Contact interface, micromechanical view.

true contact area Ar =
∑

i Ari (real contact area due to the contact of the
asperities in the contact interface) whereas the pressure pN is associated with
the nominal contact area Aa, see Figure 5.14.

Woo and Thomas (1980) have formulated a relation for metals between
the true and the nominal area based on experimental observations:

Ar

Aa
=

(
| pN |
Aa H

)n

, n =
5
6

, (5.29)

with the hardness H of the material. With these relations one arrives at the
following slip criterion (e.g. see Figure 5.13(b)):

fs(tT , pN ) =‖ tT ‖ −α | pN |n −β | pN | ≤ 0 , α =
Aa τ0

(Aa H)n
. (5.30)

Note that the choice of one of the slip criteria (5.25) or (5.30) has to be made
with regard to experimental data within the contact interface; of course, other
slip criteria are possible.

Again we assume that the tangential plastic slip gs
T is governed by a con-

stitutive evolution equation which can be derived using standard concepts
of the theory of elasto-plasticity. Within this framework we can formulate a
plastic slip criterion

fs( tT , pN , θ , gv ) ≤ 0 (5.31)

for a given contact pressure pN with material parameter μ, a given temper-
ature and a hardening/softening variable like the effective slip gv. This slip
criterion function can be specialized as follows:

fs( tT , pN , θ , gv ) = ‖ tT ‖ − ĝs( pN , θ , gv ) ≤ 0 , (5.32)

with the special case of classical Coulomb’s model, see (5.25).
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Inequality (5.32) can also be expressed in terms of the nominal stresses in
the contact interface. This results, with (5.6), in

fs(TT , TN , θ , gv ) = ‖TT ‖ − j ĝs( j−1TN , θ , gv ) ≤ 0 . (5.33)

It can be seen that when function ĝs is a homogeneous function of its argu-
ment, as in Coulomb’s law (5.25), then ĝs = Ĝs. Thus for Coulomb one
can write

fs(tT , pN ) = ‖ tT ‖ − μ pN ≤ 0 ⇔ Fs(TT , TN ) = ‖TT ‖ − μTN ≤ 0 . (5.34)

In some applications (see Section 5.2.5) it makes sense to introduce constitu-
tive equations for friction stresses which depend upon the deformation of the
contacting bodies, and hence on the area Jacobian j defined in (5.4).

In all formulations derived so far, the constitutive evolution equation for
the plastic or frictional slip can be stated in a general form of a slip rule for
large deformations in the contact zone as follows:

ġs
T = γ̇

∂fs

∂tT
= γ̇ nT , with nT =

tT

‖tT ‖
,

ġv = γ̇ ,

where equation (5.35) describes the evolution of the effective slip, which is
defined as

gv =
∫ t

0

‖ ġT (τ) ‖ dτ . (5.35)

γ̇ is a parameter which describes the magnitude of the plastic slip. Also, here
we can set up the Kuhn–Tucker conditions, as before, see (5.28).

A generalization of friction models to non-isotropic behaviour is sometimes
necessary if the surface in the interface has a special texture. Models for
anisotropic friction can be found in Mroz and Stupkiewicz (1992) or He and
Curnier (1993). Mroz and Stupkiewicz (1992) introduced a model which is
an extension of the equations derived to-date. To simplify the notation they
introduced an orthogonal cartesian reference frame in the tangent plane of
the contact interface. With respect to that, it is now possible to describe the
slip function by a super ellipse:

fs(pN , tT x , tT y) =
(
| tT x

μx
|n + | tT y

μy
|n

)1 / n

− pN ≤ 0 , (5.36)

where tT x and tT y denote the tangential stresses in the x- and y-directions
and n is a parameter which generates the form of the ellipse. Note that this
model assumes a special case of anisotropic behaviour which has different
friction parameters with respect to the cartesian co-ordinate axes.

According to (5.35), the evolution equation is now given by two equations
for the x- and y-directions,
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ġs
T x = γ̇

∂fs

∂tT x
, ġs

T y = γ̇
∂fs

∂tT y
. (5.37)

Again, the Kuhn–Tucker conditions can be set up to complete the formu-
lation:

γ̇ ≥ 0 , fs(tT x , tT y) ≤ 0 , γ̇ fs(tT x , tT y) = 0 . (5.38)

The dissipation function, which is needed for instance in thermo-mechanical
applications or problems where wear has to be computed, can also be stated;
it yields

Ds = tT · ġs
T = tT x ġs

T x + tT y ġs
T y . (5.39)

5.2.5 Friction laws for metal forming

In case of metal forming, especially in bulk-forming, the use of Coulomb’s
friction law is very limited. This is because the prediction of the frictional
stress related to sliding is much too high when applying this law. Hence, in
most practical applications, a threshold value is introduced to limit the friction
stress, see Figure 5.15.

The simplest approach to account for a limit stress is to change the slip
function (5.25) to

fs(tT ) = ‖ tT ‖ − h ≤ 0 , (5.40)

where h is a function which can be described in different ways. Two possible
choices for function h which are relatively simple are stated in the following:

1. Coulomb–Orowan law:

h = min(μ | pN | , Y0 ) , (5.41)

FN

Coulomb–Orowan

CoulombFT

k

Shaw

Fig. 5.15. Different possibilities to limit the frictional stress.
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where the constitutive parameter Y0 denotes the elastic limit of the ma-
terial, as can be seen in Figure 5.15.

2. Shaw law:
h = β Y0 with β = Ar /Aa , (5.42)

where Ar is the real and Aa the nominal contact area of the contact sur-
face. This quotient can be computed from (5.29), for example. Thus the
parameter β describes the flattening of the asperities depending on the
normal pressure. The law of Shaw, compared to the Coulomb–Orowan

law, leads to a smooth function between the normal pressure and tangen-
tial stress. Hence, it is better suited for numerical purposes.

In the literature, other nonlinear relations are also introduced to describe a
smooth transition from Coulomb’s law to a constant limiting tangential stress
for high contact pressures depending on the sliding stress and normal pres-
sure. Constitutive equations which include this feature can be derived from
micro-mechanical models (e.g. see Wanheim et al. (1974), Avitzur and Naka-
mura (1986) or Anand (1993)). A commonly used model (see also Stupkiewicz
(2001)) is provided by the relation

tT = α Y0 tanh
[
−μ pN

α Y0

]
. (5.43)

Additionally to the friction coefficient μ for low contact pressures, already
introduced in (5.25), two more parameters appear. Y0 is the shear yield stress
of the workpiece, and α can be regarded as another friction coefficient which
is valid in the high pressure range.

Furthermore, there are many applications in metal forming where a coating
is used to improve the sliding conditions in the contact interface. This results
in a decreased frictional resistance, and hence less work is needed to form a
workpiece. However, it can be that the forming process is such that the surface
of the workpiece can expand. Thereafter the coating can break, resulting in a
change of the friction behaviour which cannot be neglected. In this case it is
useful to assume that the friction coefficient μ depends on the change of area
in the contact interface μ = μ(j), where j is the Jacobian connecting the
area elements da = j dA. The formula is equivalent to equation (3.12), which
describes the transformation of volume elements. Using Nanson’s formula
(3.11), one obtains

da = j dA with j = J ‖F−T N ‖ . (5.44)

Now, as shown in Stupkiewicz (2001), one can formulate a relation for
Coulomb’s friction law as follows:

tT = −μ(j) | pN | ġT

‖ ġT ‖ with

μ(j) =
1
2

(μ1 + μ2) +
1
2

(μ2 − μ1) tanh
[
j − j0

j̄

]
, (5.45)
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where now four constitutive parameters are introduced. These are the friction
coefficients μ1 for coating and μ2 for broken coating, with μ2 > μ1, and
the critical surface extension j0, as well as the width of the transition zone j̄.
Further, more advanced models can be found in Stupkiewicz and Mroz (1999).

5.2.6 Friction laws for rubber and polymers

Many technical components include rubber or polymer sealings. Also, rolling
contact of car tyres on roads or rubber coated cylinders in printing machines
have a need for the analysis of constitutive equations for friction. Since the
behaviour of rubber and polymers is different from that of metals, different
friction laws have to be considered. In general the micro-mechanical mecha-
nism is different; a concise statement of the interface physics known so far for
rubber materials can be found in Persson (2000).

Here only the main effects are considered, leading to a constitutive model
which yields a frictional coefficient depending on the sliding velocity and the
normal pressure.

In polymers the internal friction stemming from the visco-elastic behaviour
of the solids contributes to the sliding friction. Hence the frictional coefficient
depends upon the frequency ω ∼ v / r, where v is the sliding velocity and r
denotes the diameter of the real contact area. When ω ≈ 2 / τ , where τ is
the relaxation time of the polymer, then the friction coefficient is maximal.
Thus one can design the polymer such that one achieves maximum friction
by choosing the material so that its relaxation time is τ = 2 /ω, or for small
internal friction one has to use a material whose relaxation time is τ � 2 /ω
or τ � 2 /ω.

Besides the internal friction, adhesion is also a main contributor to the slid-
ing friction of soft materials like rubber. However, this effect depends strongly
upon the surface properties. If the surface is not completely clean, as in most
technical applications, then this effect is reduced. For other polymers one ob-
serves that for small internal friction the sliding process takes place in a thin
contamination layer. However, for large sliding velocities, melting of the poly-
mer occurs at the surface due to low thermal conductivity and a low melting
point of the polymers. This leads to a considerable decrease of the friction
coefficient with increasing wear.

All considerations result in complex constitutive relations if one wants to
take into account all of the effects. For practical purposes, the following forms
for the friction coefficient are applied.

A velocity- and temperature-dependent form for the frictional coefficient

μ( θ , vT ) = μ0 + c1 θ [ ln vT − ln( c2 θ ) ] (5.46)

was proposed in Rieger (1968). This constitutive model for the friction of rub-
ber depends upon the sliding velocity vT and the temperature θ. It has three
parameters which have to be determined by experiments. If the temperature



5.2 Tangential Contact 89

0

0

20 40 60 80 100 120

-2

2

z
/m

m

x / mm

Fig. 5.16. Profile of an asphalt road track from laser measurement, seeKlüppel and
Heinrich (2000).

can be neglected, such as when only small sliding velocities occur, then the
constitutive relation

μ(vT ) = μ0( pN ) + c1 ln
vT

v1
− c2 ln

vT

v2
, (5.47)

which can be found in Nackenhorst (2000), can be used for a range of the
sliding velocity from 10−3 to 10 m/s. In this model the parameter μ0, depends
upon the normal pressure pN ,

μ0(pN ) = μ1

[
pN

p0

]α

. (5.48)

Thus, this model needs seven parameters deduced from experiments.
Other frictional interface laws for contact between a road and a tyre were

developed in Klüppel and Heinrich (2000). These authors base their model on
the assumptions that the adhesion in the interface depends upon the surface
free energy of the bulk rubber and the hysteretic energy loss due to the defor-
mation of rubber by surface asperities. The latter effect is assumed to be the
dominant factor of rubber friction (see also Persson (2000)). To understand
the frictional dynamics of rubber stemming from stochastic excitations during
sliding over multiple scale surfaces, the authors introduce self-affine surfaces
and a visco-elastic model for the behaviour of the rubber. The self-affine sur-
faces are described by

Sz(λ) =
[

λ

ξ‖

]2H

ξ2
⊥ for λ < ξ‖ , (5.49)

where ξ‖ and ξ⊥ are the normal and tangential correlation lengths of the
rough surface. They denote the maximum length scales for which self-affinity
is fulfilled. H = 3−D is the Hurst coefficient with the fractal dimension D.
With (5.49) the surface is described by the set D, ξ‖ and ξ⊥. The values for
the correlation lengths can be obtained from measurements, see Figures 5.16
and 5.17.
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This, together with the visco-elastic model, results in a friction coefficient
which depends upon the sliding velocity vT and the real and imaginary elastic
moduli, E| and E‖.:

μ(vT ) =
1
4

[
ξ⊥
ξ‖

]2
E‖

E| arctan
[
(v1 − v2) vT

v2
T + v1 v2

]
, (5.50)

where the constants v1 and v2 depend upon the relaxation time and the corre-
lation lengths. For more details, and the implications of the formulation with
respect to the choice of fillers in the rubber material for the generation of
specific friction coefficients, see Klüppel and Heinrich (2000).

5.2.7 Friction laws for concrete structures on soil

In this section two possible friction laws which describe the interface behav-
iour of a concrete structure on soil are discussed. With regard to the soil
material, we restrict ourselves to sand. The phenomenological frictional laws
are developed based on results of experimental shear tests, see Figure 5.18.
The plot shows a dependency of the frictional force on the relative tangential
movement in the interface in a nonlinear way. After a first elastic response,
one observes elasto-plastic behaviour with softening. Also, hysteretic effects
are present in the loading/unloading phases of the experiment.

The first material law to describe frictional behaviour between sand and
concrete is developed following a model which was constructed for micro-
sliding between metals, see Sellgren and Olofsson (1999). This derivation is
based on the observation depicted in Figure 5.11 for metals which show a
similar material behaviour.
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No elasto-plastic approach (see Section 5.2.4) is used. Here the frictional
coefficient is introduced as a function of sliding distance and contact pressure.
It thus changes throughout the motion. At each change of direction of motion
the parameter of the frictional coefficient function is actualized, so that the
friction law becomes history dependent. The following constitutive relation is
considered for the tangential stresses:

tT = ˆtN
a6μ� g̃T

||g̃T ||
, (5.51)

with the normalized contact pressure t̂N = pN

p0
N

and the friction coefficient

μ� =

∣∣∣∣∣∣−μ0 + (a1 + μ0)

⎡
⎣1 −

(
1 − a2δ

(a4 + μ0) ˆtN
a5

)a3
⎤
⎦
∣∣∣∣∣∣ . (5.52)

The relative tangential displacement g̃T defines the direction of the frictional
stress in (5.51), and δ =

∫
||ġT ||dt denotes the accumulated sliding distance

during the loading process, which is summed over all time increments Δti,
leading to δ =

∑
i ||g̃T i||.

At a reversal of the tangential motion the condition g̃T n+1 ·g̃T n ≤ 0 holds,
where the subscript n + 1 denotes the current and n the previous time steps.
At that stage, the following parameters are changed:

δ = 0
μ0 = μ�.

(5.53)

In this approach a nonlinear dependency of the contact pressure on frictional
stresses is considered in (5.51), which is different from the model proposed by
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Fig. 5.18. Results of shear tests, see Reul (2000).
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Fig. 5.19. Fit of friction law (5.51) to experiments.

Sellgren and Olofsson (1999). The model works for two- and three-dimensional
problems, and has six constitutive parameters a1 to a6 which have to be de-
termined by experiments. This task has been performed for the experiments
shown in Figure 5.18 using the parameter identification procedure described
in appendix C. The fit of these data to the experiments yields the following pa-
rameters: a1 = 0.891kN /m2, a2 = 40m / kN, a3 = 95.193, a4 = 0.719kN /m2,
a5 = 0.226 and a6 = 0.914. The result of parameter identification using model
(5.51) is depicted in Figure 5.19.

One observes that this model represents the hysteretic effects but not the
decrease of the frictional force with respect to increasing relative tangential
displacement. However, the dependency on the normal pressure is reproduced
correctly.

Another formulation for an interface law between soil and concrete can
be derived on the basis of the elasto-plastic approach, which was described
in Section 5.2.4. The material law for the elastic response depends upon the
contact pressure as follows:

tT = εT t̂a7
N ge

T = εT t̂a7
N (gT − gp

T ) . (5.54)

Again t̂N is a normalized contact pressure as introduced in (5.51). In this
approach, the slip criterion fs is described by

fs = ||tT || − ta6
N

[
a1w

1 + a2w + a3w
2 + a4 arctan(a5w)

]
= ||tT || − ta6

N μ(w) .

(5.55)
This formulation is analogous to the introduction of a hardening function
which was used to describe the constitutive behaviour of sand, see Arslan
(1980).
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Fig. 5.20. Fit of friction law (5.54) to experiments.

The slip rule is given by

ġs
T = λ

∂fs

∂tT
,= λ

tT

||tT ||
. (5.56)

The evolution equation for hardening is described by

ẇ = λ (5.57)

with the hardening parameter w.
Again, the parameters were fitted for the experiments shown in Figure 5.18

using the parameter identification procedure described in Appendix C. This
leads to the following set of parameters: a1 = 16621.kN /m3, a2 = 19817.1 /m,
a3 = 19739311 /m2, a4 = 0.4915kN /m2, a5 = 535.71 /m, a6 = 0.89 and
a7 = 0.99.

The result of parameter identification using model (5.54) is depicted in
Figure 5.20. Now the hysteretic effects are not represented by this model, but
the dependency of the frictional stress on the relative tangential displacement
gT , as well as the dependency on the normal pressure, is described correctly.

For both models the parameter identification procedure yields good results.
This is not obvious, since the model is highly nonlinear and history-dependent
due to the softening behaviour of the tangential stress with respect to the
absolute relative displacement in the interface.

5.2.8 Friction laws from computational homogenization procedures

Another method to derive contact compliances (see Section 5.1.2) and fric-
tion interface laws is provided by a computational homogenization procedure.
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Fig. 5.21. (a) Micro-structure, (b) homogenized model.

In this case a numerical simulation is performed under homogeneous bound-
ary conditions for a Representative Volume Element (RVE). Such an RVE
is depicted as a two-dimensional sketch in Figure 5.21 (a). The RVE has
to include the real contact geometry with known profiles from the micro-
mechanical surfaces. It has to be large enough to resolve the micro-structure
of the surface geometries in the contact area. When the boundary conditions
are such that only deformations are applied in the normal direction, then the
computational homogenization procedure yields a homogenized contact law
for the normal pressure pN , see Figure 5.21(b). When additionally, relative
tangential motions are described, then a friction law for tT can be derived.
Note that all computations have to be performed using three-dimensional
models, since a real micro-geometry is always a two-dimensional surface. To
arrive at a statistically representative homogenized constitutive equation for
the contact interface, several computations have to be performed with a differ-
ent distribution of the micro-geometry until the standard deviation is below
a given tolerance.

Still, for the numerical model which includes the micro-geometry, see Fig-
ure 5.21(a), one has to provide a general contact law for the contact stresses in
the normal and tangential directions. In such micro-mechanical computation
no friction is assumed here between the solids. The friction law then stems

pNs

ns
nm

fN
fT

pNs−1
ns−1

fT
fN

Γs−1 Γs

am
α

Fig. 5.22. Micro-structure of the contact zone.
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either from a constitutive relation describing adhesion in the contact area,
and/or the elastic-plastic response of the solid which is related to ploughing.

Using a micro-structure in the contact surface, as depicted in Figure 5.21
(a) (see also Figure 5.14) the normal contact stresses on the rough microstruc-
tural surface are computed. These stresses only occur in some parts Γs of the
micro-asperities, see Figure 5.22. The sum over all areas Γs in which contact
stresses pNs

ns are present yields a resultant force on the entire contact sur-
face. The contact stress can be represented with respect to the basis (am

α ,nm)
of the contact mean plane surface

∑
s

∫

Γs

pNs
nsdΓ = fN + fT = fN nm + fα

T am
α . (5.58)

Averaging over the mean plane of the contact surface is then carried out.
In the case depicted in Figure 5.22, the mean plane is straight. Hence the
resulting mean contact stresses have the same direction

pm
Nnm =

1
A

fN nm ⇒ pm
N =

1
A

fN

tmT
αam

α =
1
A

fα
T am

α ⇒ tmT
α =

1
A

fα
T

(5.59)

Initial estimates regarding the structure of a frictional law can be drawn by
evaluating these stresses. Therefore, one can derive a general form for the
homogenized friction law; some results of such procedures are reported in
Haraldsson and Wriggers (2001) or Bandeira et al. (2004).

The general procedure to obtain friction laws from such computations is
outlined below. The three steps have to be executed for each of the samples
in a statistically representative set. In general, this means that around 100
different samples have to be solved:

1. Discretization of two solid blocks with a randomly generated surface with
the mean plane of the contact surface being A. A mesh stemming from
such a procedure is presented for one of the solids in Figure 5.23. The
micro-structure is modelled with b-splines in order to be able to discretize
a wavy contact surface for the solids. In the example depicted in Figure
5.23, 25 b-spline-nodes with randomly chosen heights were used to generate
the asperities of the surface.

2. Application of a homogeneous deformation pattern at the boundary of the
blocks in the normal and tangential directions, see Figure 5.24. To derive
a friction law one has to perform several computations with different con-
stant normal forces pN A. Hence, a normal deformation uN is first applied
to obtain a certain normal force, which is then fixed throughout the com-
putation. After that, the relative displacement gT is applied incrementally
in the tangential direction.
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Fig. 5.23. Finite element mesh and randomly generated surface.

3. Incremental solution of the boundary value problem for a fixed normal
force, e.g. fixed normal displacement uN . Due to the applied tangential
relative displacement gT , the tangential stresses tT 1 and tT 2 are computed
as reactions. From this result for normal and tangential reactions, one can
then derive the homogenized contact stresses pN and tT according to
equation (5.59).

This procedure was used to derive a contact law for a concrete-soil interface;
for details see Haraldsson and Wriggers (2001). One then obtains for different
numerical experiments a distribution of the tangential stress in relation to
normal pressure pN and total slip gv, see Figure 5.25. Each line with values
greater than zero for pm

N stands for one numerical experiment. For the flat
areas in between, no numerical experiments were performed; such numerical
experiments still take some time, since one has to solve a geometrical and
material nonlinear three-dimensional boundary value problem with many un-
knowns. However, the effort compared with real experiments is still small.
Hence it makes a lot of sense to support experiments by additional numerical

uN

pN

tT 1 tT 2

gT

Fig. 5.24. Movement of the block and resultant stresses tT 1 and tT 2.
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simulations in order to obtain a statistical representative result for the ho-
mogenized law. Also, one can vary the material parameters of the solids near
the contact surface and hence can account additionally for work hardening in
the case of metals.

Furthermore the virtual testing procedure allows us to gain insight into
the behaviour within the micro-structure of the contact interface. A view of
the stress distribution in the micro-structure is depicted in Figure 5.26 for
the model computation described above. The distribution of the von Mises

Relative-displacement

Normal pressure

Fig. 5.26. von Mises stresses in the micro-structure.
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stresses shows clearly that the largest plastic deformations occur at the as-
perities, which is intuitively clear.

Further results concerning homogenization of metal contact can be found
in Stupkiewicz (2005) in which also attention is given to the interface layers.

5.3 Lubrication

Lubrication is used to reduce friction in tribological systems like bearings,
engines, gears, etc. This phenomenon is produced by, for example, a thin
layer of fluid – the lubricant – between the solids in contact. Lubrication can
also appear when a chemical reaction in the contact interface leads to a layer
of contaminants which reduce friction; also, abrasive wear can decrease the
friction force in the interface.

Even before the steam engine was developed, scientists were interested
in the influence of lubrication when the friction between metals had to be
reduced. Leibniz (1706)) investigated already the difference between sliding
and rolling friction and required special technical solutions to reduce friction.
Later the industrial revolution demanded more insight, which finally lead
to the formulation of the Reynolds equation for thin film lubrication and
the Stribeck curves, which can be used to distinguish mixed friction and
pure hydrodynamic lubrication, see Figure 5.28. Here only lubrication due to
the elasto-hydrodynamic effects of a fluid in the interface will be considered;
for more detailed descriptions of other phenomena, see Polzer and Meissner
(1983), Rabinowicz (1995) or Persson (2000).

Lubrication only works when there is a certain relative velocity v between
the solids such that the fluid layer does not disappear, see Figure 5.27. Such
a process is called hydrodynamic lubrication. If the velocity is too small, then
the fluid will be squeezed out between the bodies leading to direct contact of
the bodies, also called boundary lubrication. Experiments and theoretical pre-
dictions show that the frictional force is much higher for boundary lubrication

solid

solid

fluid

FN

v

Fig. 5.27. Solid-fluid interaction in the case of lubrication.
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than for hydrodynamic lubrication. Another observation is that the hydrody-
namic lubrication depends upon the sliding velocity, leading to an increase in
friction force for increasing velocity, see Figure 5.28.

There are two ways to introduce lubrication: one is the coupled treatment
of the problem; the other is related to the fact that lubrication in general
reduces the coefficient of friction. Hence it can be incorporated into the con-
stitutive relations for friction, discussed in the previous sections, by a different
choice of parameters. These have to be found from experiments or derived from
equations governing lubrication, e.g. see Khonsari and Booser (2001).

If lubrication is treated as a coupled problem, one has to state the relevant
equations for the fluid film. These derive from the classical Navier–Stokes

equations of fluid dynamics by introducing several simplifications inherent
in the problem. It is well known that the flow in the interface is laminar
for most cases, and it is also incompressible. With the further assumption
that the nonlinear convective term in the Navier–Stokes equations can
be neglected as well as inertia terms, the general equations reduce to the
Reynolds equation,

∂

∂x

(
h3

s

ηs

∂pN

∂x

)
+

∂

∂y

(
h3

s

ηs

∂pN

∂y

)
= 6 vx

(
∂pN

∂x

)
. (5.60)

This equation is valid for stationary processes when a constant relative sliding
velocity vx in the x-direction is present. The other variables are defined in Fig-
ure 5.29. hs is the height of the gap, which can depend upon the deformations
of the solids, and which then leads to a nonlinear coupled problem with the
coupling terms being the contact pressure pN and the deformation-dependent
height hs. Note that (5.60) is only valid for δ0 > 0, see Figure 5.29. ηs denotes
the viscosity of the lubricant. This constitutive parameter depends in general
upon the contact pressure pN , the temperature θ or the gap height hs. An
empirical formula which includes observations from experiments and takes the
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Fig. 5.29. Definition of lubrication interface.

change due to hs into account can be defined as

ηs(hs) = ηs

(
hs

hs max

)r

, 0 < r < 1 . (5.61)

Here r and ηs have to be adjusted via experimental data, and hs max follows
from measurements of the problem geometry which can include micromechani-
cal effects. A pressure-dependent viscosity coefficient follows from the function

ηs(pN ) = η0 eη1 pN , (5.62)

with two constitutive parameters η0 and η1.
Note that the gap height is usually very small, e.g. ∼ 10−5 m. Hence,

when the lubrication interface problem is treated in a coupled manner using
the finite element method, one needs a high accuracy (very fine mesh) in the
contact area to resolve these small deformations of the solid.

5.4 Adhesion

If two clean plates (e.g. made of glass) are pressed together and then the
load is reversed such that one tries to pull the plates apart, one can observe
that the plates seem to be glued together. This effect is due to adhesion.
This means that a positive normal stress has to be admitted in the contact
interface (pN > 0). Furthermore, if the contact stresses are large enough,
the adhesion will be broken in the contact interface, leading to a classical
unilateral contact problem as defined in Section 6.1. Applications in which
adhesive forces are present are a model of the micromechanics in contact
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interfaces (see the previous section or debonding processes in heterogeneous
material, e.g. Wriggers et al. (1998), Zohdi and Wriggers (2000), Zohdi and
Wriggers (2001) or Fremond (2002)). Furthermore, the analysis of tape which
works due to adhesion can be mentioned.

Hence adhesion changes the unilateral contact problem and, as a result,
a constitutive equation has to be formulated in the contact interface which
is able to describe the transition from total adhesion to unilateral contact.
Work in this direction was extensively pursued by the French school, e.g.
see Fremond (1987) or Fremond (1988). This author formulated adhesion by
using a measure for the intensity of adhesion on the interface, which is similar
to a description of damage mechanics by a damage function. Coupling of
adhesion to friction was discussed in Raous et al. (2000) and Raous (1999) who
also discussed the thermomechanical background and introduced a numerical
model. However, there are also other models used to investigate the debonding
processes in between matrix materials and particles, e.g. see Suresh et al.
(1993).

We will not go into the details of the derivation of adhesive models, which
can be found in Fremond (1987). Here only the resulting model will be dis-
cussed. For this purpose a condition, similar to (5.2), will be introduced, see
Raous (1999),

−pN + CN gN β2 ≥ 0 , gN ≥ 0 , (−pN + CN gN β2) gN = 0 , (5.63)

where gN is the gap function, see (4.6). The value β describes the intensity of
adhesion:

β =

⎧⎨
⎩

1 total adhesion,
0 < β < 1 partial adhesion,

0 no adhesion.
(5.64)

Furthermore CN is a constitutive parameter which is associated with the
stiffness in the normal direction of the interface. Still missing in this model is
an evolution equation for the intensity of adhesion. The evolution equation

β̇ = −
[

1
η

(w
∂h(β)

∂β
− CN g2

N β)
]1 /p

(5.65)

was proposed by Raous (1999). Here, η describes the viscosity of the adhesive
interface. w is the limit of the debonding energy which acts as a threshold
value: only when the force due to adhesion CN g2

N β is greater than w ∂h(β)
∂β

is an evolution of the adhesion intensity possible. h is a given function which
can be used to adjust the constitutive relation to experimental data. If one
chooses h(β) = β and p = 1, (5.65) simplifies to

β̇ = −1
η

(w − CN g2
N β) . (5.66)

This equation is to be solved for the given constitutive parameters. The be-
haviour of the constitutive equation defined above is depicted in Figure 5.30.
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Fig. 5.30. Adhesive normal stress

One observes that the constitutive equations leads to a stress response which
is well known from continuum damage theory.

The incremental form of the adhesion law needed in a finite element algo-
rithmic treatment is provided in Section 10.5.1.

The extension of the constitutive behaviour defined above to friction will
also include adhesion in the stick/slip phase of the tangential movement. This
leads to a set of equations which basically have the same structure as the
adhesion model for normal contact:

fa
s = ‖tT − CT gT β2‖ − (pN − CN gN β2) ≤ 0 ,

ġT = γ̇
∂fa

s

∂tT
, (5.67)

β̇ = −1
η

[w − (CN g2
N + CT ‖ gT ‖2)β ] .

In this set of equations the only new constitutive parameter is CT , which
describes the elastic stiffness in the tangential direction of the adhesive zone.
Also, only the simplified model (5.66) was used, but the model (5.65) can also
be applied adequately.

5.5 Decohesion

Another application, where special constitutive equations have to be formu-
lated in the contact interface, is debonding. Debonding describes the loss of
contact of e.g. micro-fibres or particles in a matrix material. Special consti-
tutive equations have to be developed to simulate debonding processes. Out
of many different possible formulations, e.g. see Tvergaard (1990), Xu and
Needleman (1993), Allix et al. (1995) and Raous and Monerie (2002), a consti-
tutive equation developed by Needleman (1990) for the two-dimensional case
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σN

Fig. 5.31. Adhesive normal stress for decohesion

is reported, see Figure 5.31. Here normal stresses and the tangential stresses
follow from an elastic strain energy function Φ which relates the stresses in
the interface to the gap opening gN in the following way:

σA =
∂Φ

∂gA
, (5.68)

where the subscript A stands for the direction normal or tangential to the
interface. Using the strain energy function Φ in Needleman (1990), one arrives
at

σN = C
[
ĝN ( ĝN − 1 )2 + α ĝ2

T ( ĝN − 1 )
]

,

σT = α C
[
ĝT ( ĝN − 1 )2

]
. (5.69)

In this equation the normalized gap opening ĝN = gN / δ and the normalized
relative tangential deformation ĝT = gT / δ have been introduced. The length
δ denotes the maximum gap opening which can be tolerated in the interface
before complete debonding occurs. The constant C is related to the maximum
stress carried by the interface C = 27 / 4σmax. In the case of gT = 0, we obtain
at ḡN = 1

3 as the maximum value the stress σmax.

5.6 Wear

Wear among other events like breakage or corrosion is one of the causes leading
to the fact that a part, an engine or a tool is no longer useful. There are
many examples which underline this statement. One can think of a record
player, even if such an object is almost history, where the record as well
as the needle undergoes a wear process during use, which eventually can be
observed easily just by listening to the quality of the sound. Another simple
process from everyday life is writing. What one sees when using a pencil to
write on a piece of paper is just the outcome of a wearing process. If these
processes are connected with wear, then it is clear that wear means the removal
of material from solid surfaces under mechanical action. In general, wear is
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related to sliding contact. However, the amount of material which is removed
is quite small thus the wear process is not always easily detected in industrial
applications where wear between metals has to be considered.

If studied in more detail, one observes that wear involves many different
disciplines, e.g. material science, chemistry and applied mechanics. This is
because besides the geometrical properties of surfaces and the frictional forces
in the interface, surface chemistry and the material properties close to the
surface also play a major role.

Basically, there are four different forms of wear mechanisms, which are
discussed below:

• Adhesive wear. Fragments are pulled off one surface and adhere to the
other during a sliding of smooth surfaces. If later these particle come off
the surface, they can form loose wear particles.

• Abrasive wear. When a rough hard surface and a soft surface are in
sliding contact, the hard surface ploughs grooves in the soft one. The
material stemming from the grooves then forms the wear particles.

• Corrosive wear. This process occurs in a corrosive environment when a
film protects the surfaces and is removed by a sliding action. In that case,
the attack due to corrosion starts due to sliding contact.

• Surface fatigue wear. This happens if, during repeated sliding or rolling,
the material undergoes many loading/unloading cycles which lead to
cracks close to the surface. These might result in a breakup of the sur-
face, and lead to the formation of wear particles.

These wear mechanisms cannot be discussed in this monograph in depth; for
further details see Rabinowicz (1995), for example. From all of the above,
it can be deduced that a wear process is complicated and can also involve
different mechanisms at different stages of the process. Wear in general de-
pends upon the properties of the material surfaces, the surface roughness,
the sliding distance, the sliding velocity and the temperature. If one wants to
describe wear mechanism through constitutive equations and evolution laws,
then one has to determine which of the aforementioned effects play a major
role. Depending on the softness of the surfaces and on the material data of the
particles which are worn off (debris), one might have to consider a third body
(consisting of the debris) which acts in between the contacting interfaces.

The first constitutive equations which can be used to compute the vol-
ume of material lost by the wear process are very simple. A simple law for
adhesive wear was proposed by Holm (1946) and Archard (1953). This Holm–

Archard law has the form

Vwear = kad
FN gT

H
, (5.70)

where kad is the so-called wear coefficient, which depends upon the materials
in contact, and hence can be put in relation to the friction coefficient, see Ra-
binowicz (1995). H denotes the hardness of the surface which is worn away.
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FN is the normal force and gT the relative sliding distance between the ma-
terials. Equation (5.70) provides a linear relationship between wear volume
Vwear and relative sliding distance gT should the normal force FN be kept
constant. The wear coefficient kad has to be deduced from experimental data;
for metals it is in the range of 10−3 to 10−8.

Despite the fact that a completely different mechanism is associated with
abrasive wear, one can apply the same constitutive equation as (5.70) to abra-
sive wear, see Rabinowicz (1995). It reads

Vwear = kabr
FN gT

H
. (5.71)

The only change is the abrasive wear coefficient kabr, which physically rep-
resents a value that depends upon the average of the roughness angle, and
ranges between 10−2 to 10−5.

During a contact analysis the normal force can change and the wear can
depend on the magnitude h of the surface roughness. This is reflected by using
a nonlinear relationship of the form

kabr(h) = kabr 0

[
h0

h

]m

for h > h0 (5.72)

which yields a reduction of the wear for less rough surfaces starting from h0.
The other constitutive parameter of this wear law is m. Both values, h0 and
m, have to be determined by experiments. By assuming that the wear volume
can be expressed as Vwear = Ahwear with the contact area A one can now
write a evolution equation for the abrasive wear with pN = FN /A as

ḣwear =

⎧⎨
⎩

kabr 0

[
h0
h

]m
pN ġT for h > h0

kabr 0 pN ġT for h ≤ h0

. (5.73)

Due to the small amount of material which is worn off, no coupled analysis
(concerning the change of mass or change of geometry) is needed when wear
problems have to be solved. If laws (5.70) or (5.71) are used within an analysis,
one only has to apply them in a post-processing phase. This means that the
normal force is kept constant. However, when the wear law (5.73) is used, then
the amount of wear has to be computed within the solution of the frictional
contact problem. Still no coupling with the displacement field is necessary,
but the change of the normal pressure has to be taken into account.

If this is not the case, as in contact problems in which deformation is
involved, then the constitutive equations have to be refined. A thermody-
namically consistent theoretical background for such models was provided by
Zmitrowicz (1987a) and Zmitrowicz (1987b). Constitutive relations leading
to evolution equations were also discussed in Curnier (1984) and application
within the finite element method can be found in Neto et al. (1996), Strömberg
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et al. (1996), Strömberg (1997), Agelet de Saracibar and Chiumenti (1999)
and Ireman et al. (2002).

These authors indicated a connection between friction and wear effects.
As a result of that, the mean rate of wear can be assumed to be proportional
to the dissipation rate due to friction, see (5.23) or (5.39). The mean rate of
wear itself is characterized by a function which represents the movement of
the contacting surfaces in a normal direction, since wear removes volume and
hence brings the surfaces closer together. The wear rate V̇ is then given by

V̇n = kwear Ds , (5.74)

where kwear is the wear parameter and Ds is the dissipation rate. In general,
one has to assume different wear parameters for both contacting surfaces,
which was omitted here. Using (5.74) leads to an algorithm for wear in which
the wear rate is simply computed in each time or load increment of the fric-
tional analysis.

In a more general situation, the wear parameter can depend upon the
sliding velocity and on the temperature generated in the contact interface due
to friction: kwear = kwear(ġT , θ). In the latter case, the wear computation
needs a coupled thermo-mechanical treatment, e.g. see Chapter 11.

5.7 Fractal Contact Interfaces

Rough contact surfaces can also be modelled by fractals. Here we shall state
the general ideas which lead to such a model. Examples will be given in Section
14.6.3. Structures involving interfaces with fractal geometry are referred to as
sequence of classical interfaces problems, which result from the consideration
of the fractal interfaces as the unique fixed point or the deterministic attractor
of a given Iterated Function System (IFS). On the interface itself, unilateral
contact is assumed to hold.

The geometry of a fractal permits the accurate geometrical description
of certain physical forms and of the figures and graphs resulting in physical,
chemical and biomechanical processes, see e.g. Mandelbrot (1982), Takayasu
(1990), Scholz (1989), Barnsley (1988) and Barnsley and Hurd (1993). One
could mention here the forms of clouds and mountains, landscape and coastline
geometry, fluvial system geometry, the distribution of craters in planets, etc.

In structural analysis and applied mechanics, we often have to deal with
fractal domains Ω and/or fractal boundaries Γ . These are, for example, the
cases of the crack interfaces in natural bodies, the free surfaces and interfaces
in fractured bones, metals and rocks, the geometry of metallic interfaces after
sandblasting or meteoritic rain, the crashed interfaces in composite and gran-
ular materials, the geometry of fluvial systems, nervous cells and the geometry
of plants, see e.g. Takayasu (1990), Scholz (1989) or Feder (1988).

The finite element theory on fractal interfaces in contact problems, based
on the approach of Barnsley (1988), was investigated by Panagiotopoulos et al.
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(1992). He proposed an inequality fractal formulation under the assumption
of the fractal interfaces obeying unilateral contact with friction conditions.
The influence of fractal geometry on the mechanical quantities and on the
displacement and stress fields of deformable bodies was discussed. The reliable
numerical applications from rock mechanics, bone mechanics and fracture
engineering were given. Also, certain methods for consideration of the fractal
geometry in the FEM calculations were exploited, on the assumption that the
fractal geometry does not change during the loading process. Here we apply
this approach to define rough surfaces through fractals, see also Hu et al.
(2000).

An important tool to the theory, which finds many applications to the
mechanics of structure, is the fractal interpolation function. Suppose that in
R

2, for instance, we have a set of given data zi = {xi, yi}, i = 0, 1, ..., N ,
where the maps are affine transformations of the special structure

{x, y} → wi

{
x
y

}
=

[
ai 0
ci di

] {
x
y

}
+

{
ei

fi

}
, (5.75)

with the restrictions

wi(z0) = zi−1, wi(zN ) = zi for i = 1, ..., N. (5.76)

In (5.75) one parameter is free. Choosing 0 ≤ di < 1, we obtain that

ai =
(xi − x(i−1))
(xN − x0)

, ei =
(xNx(i−1) − x0xi)

(xN − x0)
,

ci =
(yi − y(i−1))
(xN − x0)

− di
(yN − y0)
(xN − x0)

, (5.77)

fi =
(xNy(i−1) − x0yi)

(xN − x0)
− di

(xNy0 − yNx0)
(xN − x0)

.

Thus we have constructed an IFS from a given set of points zi = {xi, yi}. If A
denotes the attractor of this IFS, then A is the “fractal graph” of a continuous
function f : [x0, xN ] →R which interpolates the data {xi, yi}, i = 0, 1, ..., N .
This function is called a “fractal interpolation function” and it is shown that
it can be defined as the unique fixed point of a contractive transformation T
which is defined by the relation

Tf(x) = cil
−1
i (x) + dif(l−1

i (x)) + fi , (5.78)

where l−1
i is the inverse of the linear mapping li(x) = aix + ei.

Let us now assume that set A is called the deterministic attractor of IFS.
Furthermore, {R

n;wi} is the deterministic fractal of the IFS considered. It can
easily be shown that if the points x0, ..., xN are equidistant, then the dimA,
denoted by D, is given by the formula
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D = 1 +
ln

(
N∑

i=1

|di|
)

ln N
(5.79)

if the points {xi, yi}, i = 0, 1, ..., N do not form a straight line (in this case
D = 1), and if

∑N
i=1 |di| > 1. If x0, ..., xN are not equidistant, then f is the

real solution of the equation

N∑
i=1

|di| aD−1
i = 1 , (5.80)

if
∑N

i=1 |di| > 1. Note that the proper choice of the parameter di may make
D very close to 1, i.e. we obtain a line-like fractal, or very close to 2, i.e. we
obtain a surface-like fractal which can be used to describe the rough contact
interface. For more details see Panagiotopoulos et al. (1992) or Hu et al.
(2000). An application is shown in Section 14.6.3.
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Contact Boundary Value Problem and Weak
Form

For the formulation of the boundary value problem, we only have to dis-
cuss the additional terms due to contact in detail. The equations describing
the behaviour of the bodies coming into contact do not change, and can be
found in Chapter 3. For the treatment of different material behaviour like
elasto-plasticity or visco-elasticity, see basic textbooks like Lubliner (1990),
Malvern (1969), Maugin (1992) or for algorithms related to plasticity and
visco-plasticity in combination with finite elements, see Simo and Hughes
(1998).

Since the finite element method will be applied to solve the resulting non-
linear boundary value problems, weak formulations have to be developed for
contact problems. The main concern of this chapter is the incorporation of the
constraint equations formulated for frictionless contact in Section 4.1, and of
the interface laws related to stick and sliding in the contact interface. However,
one of the major problems in contact mechanics in the algorithmic treatment,
which is associated with the numerical treatment of contact problems, is the
non-differentiability of normal contact and friction terms. To overcome these
difficulties, different formulations have been developed which are discussed in
Section 6.3.

6.1 Frictionless Contact in Linear Elasticity

As an introduction for contact, a solid with a rigid surface is considered in
three-dimensional linear elasticity. Due to the contact constraints a variational
inequality will appear instead of the standard variational equations known
from classical solid mechanics, see also Section 2.1.

Due to the fact that the motion of the body is constrained from one side
by the rigid surface, the problem is called a unilateral contact problem. The
derivation of the associated variational formulation is the same as for the
example in Section 2.1. One only has to use the relevant equations for the
linear elastic solid in three dimensions which are stated in Chapter 3.
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Fig. 6.1. : Unilateral contact of an elastic solid.

In the case of linear elasticity, the equilibrium equation (3.39) is given by

−Div σ = f̄ in B , (6.1)

where σ is the stress tensor at a point X in the interior of body B. In linear
elasticity the stress can be computed from the linear strain field ε, see (3.27),

ε(u) =
1
2

(Gradu + GradT u ) (6.2)

via the classical law of Hooke, see (3.95);

σ(u) = C [ ε(u) ] , (6.3)

with the displacement field u and the elasticity tensor C. Let us assume that
the following conditions hold on the boundary (see also Figure 6.1):

1. Displacement boundary conditions, also called Dirichlet conditions:

u = 0 on Γu . (6.4)

2. Traction boundary conditions, also called Neumann conditions:

σ n = t̄ on Γσ , (6.5)

where n is the outward normal of the surface of the solid and t̂ denotes
the applied traction on Γσ.

3. Contact conditions:

uN − g ≤ 0 ,

pN ≤ 0 on Γc , (6.6)
(uN − g ) pN = 0 ,
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with the normal component of the displacement field uN = u · n and the
contact pressure pN which is equivalent with the normal component of
the traction vector pN = t · n.

This boundary value problem which yields the displacement field, includes the
inequalities related to frictionless contact. It is called Signorini’s problem,
see Signorini (1933).

For a finite element solution of this system of equations, one needs the
variational formulation of Signorini’s problem. As usual, one can introduce
a space V of vector-valued, real functions defined on B, e.g. see Kikuchi and
Oden (1988). It is assumed that the test function v (which in most of the
engineering literature is called virtual displacement) fulfils the condition v =
0 on Γu and the contact condition vN − g ≤ 0 ∀v ∈ V with vN = v · n.
Furthermore, let be u the solution of Signorini’s problem; then one can state
the weak form of (6.1). This is equivalent to the virtual work produced by the
stresses σ and the virtual strains ε(u − v) due to the virtual displacements
u−v, as well as the virtual work stemming from the external loads and body
forces: ∫

B

σ · ε(u − v) dV =
∫

B

f̄ · (u − v) dV +
∫

Γσ

t̄ · (u − v) dΓ

+
∫

Γc

pN (u)(uN − vN ) dΓ . (6.7)

Here σ = σ(u) is a function of the displacement defined via (6.3) and (6.2).
f̄ are the body forces and t̄ denote the boundary tractions. Note that the
term which includes Γu does not enter, since (u − v) satisfies the boundary
conditions, see (6.4). The last term in (6.7) can be reformulated with (6.6)3
as

pN (uN − vN ) = pN (uN − vN + g − g) = pN (vN − g) ≥ 0 , (6.8)

where the greater equal sign results from (6.6)1,2; see also the discussion in
Section 2.1. With this inequality the solution of the Signorini problem de-
fined by (6.1) to (6.6) has to fulfil

∫

B

σ · ε(u − v) dV ≥
∫

B

f̄ · (u − v) dV +
∫

Γσ

t̄ · (u − v) dΓ . (6.9)

Thus a variational inequality, stemming from the contact constraint, charac-
terizes the solution of Signorini’s problem. This is different from the usual
situation in solid mechanics, where the solutions have to fulfil variational equa-
tions. Due to the inequality constraint on the deformation field the contact
problem is nonlinear even in the case of linear elasticity. Special algorithms
have thus to be designed for problem (6.9).

The variational inequality can be recast in an abstract form, often used
in theoretical and mathematical work regarding contact. In a more general
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situation, one can also formulate (6.9) for the contact between two deformable
bodies. The analysis then yields the same structure as is inherent in (6.9);
only the domain B = ∪2

γ=1 Bγ is the union of both domains of the contacting
bodies. Generally, one then defines the variational inequality by

a(u,v − u) ≥ f(v − u) , (6.10)

with

a(u,v) =
∫

B

ε(u) : C : ε(v) dV, (6.11)

f(v) =
∫

B

b̄ · v dV +
∫

Γσ

t̄ · v dΓ , (6.12)

where all quantities are defined by previous relations.
The problem is now stated by: find u ∈ K such that (6.10) is fulfilled for

all v ∈ K with

K = {v ∈ V | (v2 − v̄1) · n̄1 + g0 ≥ 0 on Γc} , (6.13)

where V represents the space of test functions.
The variational inequality (6.10) is stated here for frictionless contact.

The problem is even more complicated when friction is present. In that case,
not only are the inequality constraints in normal direction present, but there
is also a special constitutive behaviour in the tangent direction at the con-
tact interface. This is governed by sudden changes of the solution states such
that the solution jumps from a state of stick (in which the tangential contact
stresses follow as reactions from the stick conditions) to a state of sliding (in
which the tangential stresses are computed from a constitutive equation, see
Section 5.2). This special behaviour leads to even more mathematical difficul-
ties when questions of existence and uniqueness of frictional contact problems
are addressed. The mathematical structure of the variational inequality (6.10)
is discussed in detail in, e.g., Duvaut and Lions (1976), Cocu (1984), Pana-
giotopoulos (1985), Rabier et al. (1986) or Kikuchi and Oden (1988). The
latter reference also includes a mathematical analysis of the finite element
method for contact problems. Special considerations concerning stability can
be found in Klarbring (1988). Furthermore, examples for non-uniqueness or
non-existence were discussed in Klarbring (1990) and Martins et al. (1994).

For dynamic contact problems, existence and uniqueness results can be
found in Martins and Oden (1987), Jarusek and Eck (1999), Ricaud and Pratt
(2001), Ahn and Stewart (2002) and Pratt and Ricaud (2002), for example.
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6.2 Frictionless Contact in Finite Deformations
Problems

All the equations needed to formulate the problem have already been dis-
cussed in Chapters 3–5. Here these basic equations are combined to obtain
the boundary value problem for frictionless static contact. For this we formu-
late the local momentum equation for each body Bγ , (γ = 1, 2) in contact,
see also (3.49):

DIV P γ + f̄ γ = 0 , (6.14)

where the inertia terms have been neglected. Pγ denotes the first Piola–

Kirchhoff stress tensor acting in the body γ, and f̄γ = ργ
0 b̄γ are the body

forces. Next we formulate the boundary conditions for the deformation and
the stress field

ϕγ = ϕ̄γ on Γ γ
ϕ , (6.15)

tγ = t̄ γ on Γ γ
σ , (6.16)

where ϕ̄γ and t̄γ are described quantities. Furthermore, we have to account
for the contact condition which is given by equation (4.6) when the bodies
can come into contact. Together with the condition that no adhesion stresses
can occur in the contact interface, we have from (5.2) the Kuhn–Tucker–

Karush conditions for contact:

gN ≥ 0 pN ≤ 0 gN pN = 0 on Γc . (6.17)

Similar relations hold for the case in which constitutive equations are assumed
in the contact interface Γc, and we can apply the relations defined in Section
5.1.2. In the case of frictional contact, the geometric relations derived in Sec-
tion 4.2 and the constitutive laws given in Section 5.2 have to be used.

The constitutive equations for each body Bγ have already been discussed
in Section 3.4. For hyperelastic materials we have in general

Pγ = P̂
γ

(Xγ ,F γ , t) , (6.18)

for details see equations (3.74). Here we apply the equation as a model for
nonlinear constitutive equations of the solid which is valid for finite elasticity.
It leads in the current configuration to a nonlinear response function for the
Kirchhoff stress τ in terms of the left Cauchy–Green tensor b = FFT :
τ = f (b ). The Kirchhoff stress is related to the first Piola–Kirchhoff

stress via τ = PFT , with F being the deformation gradient. The simplest
example for hyperelasticity is the Neo-Hookian model, which can be applied,
for example to rubber materials undergoing moderately large strains

τ γ = Λγ (Jα − 1 )1 + μγ (bγ − 1 ) , (6.19)

with the Jacobian of the deformation Jγ = detFγ . The material parameters
for the bodies Bγ are the Lamè constants Λγ and μγ .
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Of course, it is possible to use more complicated constitutive relations
which can also be of an inelastic nature. However, in such a case, no energy
principle can be formulated.

For a numerical solution of the nonlinear boundary value problem sum-
marized above, we will use the finite element method. Thus we need the weak
form of the local field equations. Again, the weak formulation of contact prob-
lems leads to a variational inequality, see Duvaut and Lions (1976), which is
stated in the next section.

Due to the fact that the constraint condition (6.17) is represented by an
inequality, we also obtain a variational inequality which the solution of the
contact problem has to fulfil. The general form can be written, as derived in
Section 6.1 for the linear case, as

2∑
γ=1

∫

Bγ

τ γ ·grad (ηγ−ϕγ) dV ≥
2∑

γ=1

∫

Bγ

f̄ γ ·(ηγ−ϕγ) dV −
∫

Γσ
γ

t̄ γ ·(ηγ−ϕγ) dA .

(6.20)
Here the integration is performed with respect to the domain Bγ occupied by
the body Bγ in the reference configuration. The stress tensor and the gradient
operator “grad” are evaluated with respect to the current coordinates. Fur-
thermore, f̄ γ denotes the body force of body Bγ and t̄ γ is the surface traction
applied on the boundary of Bγ . The Kirchhoff stress τ γ is defined in the
previous section.

We now have to find the deformation (ϕ1 ,ϕ2) ∈ K such that (6.20) is
fulfilled for all (η1 ,η2) ∈ K with

K = { (η1 ,η2) ∈ V | [η2 − η̂1(ξ̄1, ξ̄2) ] · n̄1 ≥ 0 } . (6.21)

This formulation holds for arbitrary constitutive equations, including inelastic
effects.

If the problem can be described by hyperelastic material law, one can
formulate the frictionless contact problem as follows:

Π =
2∑

γ=1

Πγ −→ MIN (6.22)

subject to gN ≥ 0 on Γc ,

which defines an optimization problem with inequality constraints. Here the
energy function Πγ for one body is given by (see also Section 3.3.3)

Πγ =
∫

Bγ

W γ(C) dV −
∫

Bγ

f̄ γ · ϕγ dV −
∫

Γσ
γ

t̄ γ · ϕγ dA , (6.23)

where W γ(C) describes the strain energy function of the body Bγ , which is
defined in Section 3.4.1 in detail.
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In the case of finite elasticity, the existence of the solution of (6.22) can
be proved, e.g. see Ciarlet (1988) or Curnier et al. (1992).

REMARK 6.1: Mathematical analysis can be found for some cases of the uni-

lateral contact undergoing large deflections in Kikuchi and Oden (1988) or Ciarlet

(1988), for example. The linear problem has already been stated in Section 6.1.

6.3 Treatment of Contact Constraints

In this section we shall discuss several different formulations that can be ap-
plied to incorporate the contact constraints into the variational formulation.
Here frictionless as well as frictional contact formulations are derived.

Different possibilities exist for the numerical solution of these problems.
Among them are the so-called active set strategies, which are applied in com-
bination with Lagrange multipliers. Furthermore penalty techniques, e.g.
see the text books of Bertsekas (1984) or Luenberger (1984), can be applied
to solve contact problems. All these methods are well known in optimization
theory. Other solution schemes are based on mathematical programming, e.g.
see Conry and Seireg (1971) or Klarbring (1986), who applied this method to
frictional contact problems.

Most standard finite element codes which are able to handle contact prob-
lems use either the penalty or the Lagrange multiplier method; for an
overview and the mathematical framework, see Kikuchi and Oden (1988).
Each of the methods has its own advantages and disadvantages, which will
be discussed in detail in the following. The methods are designed to fulfil
the constraint equations in the normal direction in the contact interface. For
the tangential part we need in general constitutive relations when stick/slip
motion occurs; associated techniques will be discussed in Chapter 10.

Here we concentrate in general on different possibilities to formulate the
contact conditions. For a more simple representation we assume that the con-
tact interface is known. This will often be the case later when an active set
strategy is employed to solve the inequality (6.20).

Once the contact interface is known we can write the weak form as an
equality. This means that we know the active set of constraints within an
incremental solution step. Hence, equation (6.20) can be written as

2∑
γ=1

⎧⎨
⎩

∫

Bγ

τ γ · grad ηγ dV −
∫

Bγ

f̄ γ · ηγ dV −
∫

Γσ
γ

t̄ γ · ηγ dA

⎫⎬
⎭ + Cc = 0 ,

(6.24)
where Cc are contact contributions associated with the active constraint set.
ηγ ∈ V is the so-called test function or virtual displacement, which is zero at
the boundary Γ γ

ϕ where the deformations are prescribed.
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In the case of hyperelastic materials, the starting point to derive equation
(6.24) is the minimization of the total energy of the two bodies in contact (see
Section 3.3.3)

2∑
γ=1

⎧⎨
⎩

∫

Bγ

W γ(C) dV −
∫

Bγ

f̄ γ · ϕγ dV −
∫

Γσ
γ

t̄ γ · ϕγ dA

⎫⎬
⎭ + Πc =⇒ MIN

(6.25)
where W γ(C) is the strain energy related to body Bγ , which is discussed
in detail in Section 3.4.1. ϕγ denotes the deformation of both bodies. The
contributions due to the contact constraints are enclosed in Πc. Note that this
formulation is only valid for contact problems which do not include frictional
sliding, since the friction process is dissipative and hence the solution becomes
path-dependent.

For two bodies in contact we obtain the weak form or the energy related
to the interface by assuming that contact is active at the surface Γc. Several
different variants for the formulation of Πc and Cc are discussed below:

1. The Lagrange multiplier method.
2. The penalty method.
3. The method of direct elimination of the geometrical contact constraints.
4. The formulation of constitutive equations in the contact interface.
5. The Nitsche method, which enforces geometrical constraints in a weak

sense.
6. The perturbed Lagrange formulation which combines (1) and (2) in a

mixed form.
7. The barrier method.
8. The augmented Lagrange method.
9. The cross-constraint method which combines the penalty and barrier

methods.

This large variety of formulations also reflects the large number of different
algorithms which have so far been developed to solve contact problems; see
also Section 10.3.

Let us note that thermo-mechanical coupling, which is described in Chap-
ter 11, can be formulated without particular problem using the above-
mentioned formulations of the constraint terms. This is related to the fact
that, independent from the method used, one has to compute the contact
pressure and the distance between the mean planes of the rough contact sur-
faces from the normal constitutive law. Such evaluations are not influenced by
the strategy adopted to solve the normal contact. However, not all strategies
described below will turn out to be efficient for thermo-mechanical contact
problems (see Chapter 11).
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6.3.1 Lagrange multiplier method

A classical method is the use of Lagrange multipliers to add constraints to
a weak form. We then formulate for the contact contribution Πc as

ΠLM
c =

∫

Γc

(λN gN + λT · gT ) dA , (6.26)

where λN and λT are the Lagrange multiplier. gN and gT are the normal
and tangential gap functions. The variation of Πc then leads to the constraint
formulation

CLM
c =

∫

Γc

(λN δgN + λT · δgT ) dA +
∫

Γc

(δλN gN + δλT · gT ) dA . (6.27)

The first integral is associated with the virtual work of the Lagrange mul-
tipliers along the variation of the gap functions in normal and tangential
directions. The second integral describes the enforcement of the constraints.
Note that the Lagrange multiplier λN can be identified as the contact pres-
sure pN . δgN is the variation of the normal gap, which is discussed in detail in
Section 4.3. The terms λT ·δgT and δλT ·gT are associated with the tangential
stick. A slip motion due to friction needs further consideration. In the case
of pure stick the relative tangential slip gT is zero, which yields a constraint
equation from which λT follows as a reaction. In the case of sliding, a tan-
gential stress vector tT is determined from the constitutive law for frictional
slip (see Section 5.2) and thus we should instead write λT · δgT −→ tT · δgT ,
leading to

Cslip
c =

∫

Γc

(λN δgN + tT · δgT ) dA +
∫

Γc

δλN gN dA . (6.28)

Again, the variation of the tangential slip can be found in Section 4.3. The
Lagrange multiplier formulation is also the basis for the so-called mortar
method used for connection of different non-matching meshes in the domain
decomposition approaches for parallel computing.

REMARK 6.2: When only stick occurs in the contact interface, then we do
not have to distinguish between the normal and tangential directions in the contact
interface. Thus the constraint condition is given directly in terms of the deformation
at the slave point; see the minimum distance problem (4.2)

x2 − x1(ξ̄) = x2 − x̄1 = 0 . (6.29)

With this, we obtain a simple expression for the contact contribution:

CLM
c =

∫

Γc

λ · ( η2 − η̄1 ) dA +

∫

Γc

δλ ·
[
x2 − x1(ξ̄)

]
dA . (6.30)
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Note that the tangential component x̄1
,α δξα, which occurs when taking the variation

of x̄1, can be neglected in (6.30), since the point x2 sticks at position ξ̄, hence the

convective coordinates ξα do not change.

6.3.2 Penalty method

In this formulation a penalty term due to the constraint condition (4.7) is
added to Π in (6.25) as follows:

ΠP
c =

1
2

∫

Γc

( εN

(
g−N

)2
+ εT gT · gT ) dA , εN , εT > 0 . (6.31)

εN and εT represent the penalty parameters. The penalty term ΠP
c is only

added for active constraints which are defined by the penetration function g−N ,
see (4.7), and has to be formulated for normal and tangential contacts, the
latter in the case of stick. The variation of (6.31) yields

CP
c =

∫

Γc

( εN g−N δg−N + εT gT · δgT ) dA , εN , εT > 0 . (6.32)

It can be shown, e.g. see Luenberger (1984), that the solution of the La-

grange multiplier method is recovered from this formulation for εN → ∞ and
εT → ∞; however, large numbers for εN and εT will lead to an ill-conditioned
numerical problem. As in the Lagrange multiplier method, we have to dis-
tinguish between pure stick in the contact interface which yields (6.32), and
the slip condition which leads to

Cslip
c =

∫

Γc

(εN g−N δg−N + tT · δgT ) dA , εN > 0 . (6.33)

In the latter equation, one of the frictional laws from Section 5.2 has to be
applied.

REMARK 6.3: When only stick occurs in the contact interface, then one does
not need to distinguish between the normal and tangential directions and hence can
proceed as in REMARK 6.2. In such a case we can choose equal penalty parameters
for all directions ε = εN = εT . With this and the constraint equation (6.29), the
penalty term yields a simple expression for the contact contribution

Cstick
c =

∫

Γc

ε (x2 − x̄1 ) · ( η2 − η̄1 ) dA . (6.34)

Again, the tangential component of the variation x̄1
,α δξα can be neglected (see Sec-

tion 4.3.2), since the point sticks at position ξ̄, and hence the convective coordinates

ξα do not change. For application and for comparison of this formulation to the

standard approach, see Section 9.2.
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Fig. 6.2. System loaded by prescribed displacement ū.

REMARK 6.4: Due to the fact that a high penalty parameter leads to an ill-
conditioned problem, one is restricted in the choice of the penalty parameter for a
given problem. The choice of the penalty parameter affects the solution in different
ways. First the constraint equation is only fulfilled approximately. This of course
also results in a deformation field ϕε, which differs from the exact displacement
field ϕ. One has to show that

‖ϕ − ϕε‖ −→ 0

for ε → ∞ (for details, see e.g. Kikuchi and Oden (1988)). However, in practice
a value for ε has to be chosen such that ill-conditioning of the overall system of
equations is avoided. In that case we have to live with the approximate solution ϕε.
In the case of a structure loaded only by surface tractions and body forces (see Figure
6.1) this affects only the displacement field since the loads are transferred through
the contact surface by equilibrium, and hence the stress field is not disturbed too
much when compared to the solution with an exact enforcement of the constraint
equations. This situation changes when the structure is loaded by displacement
boundary conditions (see Figure 6.2). In this case, the reactions and stresses depend
upon the prescribed displacements. As an example, we consider the simple truss
structure consisting of two bars of equal length l and equal axial stiffness EA. The
system is fixed at the right side and loaded by a prescribed displacement ū at the
left side (see Figure 6.2). The initial gap between both bars is assumed to be zero.
The contact constraint in this case is given by (u1

2 −u2
1) ≤ 0. The formulation of the

problem using the penalty method leads to the matrix system

[
EA

l
+ ε −ε

−ε EA
l

+ ε

] {
u1

2

u2
1

}
=

{
EA

l
ū

0

}
, (6.35)

with the solution {
u1

2

u2
1

}
=

ū

2 + EA
l ε

{
1 + EA

l ε

1

}
. (6.36)

The normal force in the left bar is then given by

N =
EA

l
( u1

2 − ū ) =
EA

l

(
1 + EA

l ε

2 + EA
l ε

− 1

)
ū . (6.37)

The limiting cases for ε → 0 and ε → ∞ can be deduced from (6.37), which yields
ε → 0 : N → 0 and ε → ∞ : N → −5, which is equivalent to the exact enforcement
of the constraint.
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Table 6.1. Deviation of normal force from exact solution

ε / EA N Deviation %

1 -3.333 33.33
10 -4.762 4.76

100 -4.975 0.50
1000 -4.998 0.04

The normal force N is plotted in Figure 6.3 for different values of the penalty
parameter ε when we use for the data EA = 1000, l = 1 and ū = 0.01. Observe
that low penalty parameters lead to a large deviation of the normal force from that
obtained by the exact enforcement of the gap condition. This effect is also is shown
in Table 6.1.

Note that even in this simple example, one needs a penalty number which is at

least 100 times EA to have a good approximation of the normal force in the bars.

Due to this observation, it is clear that one has to adjust the penalty parameter in

finite element approximations of contact problems. With refined meshes and hence

better finite element approximations of the solution field, the error due to a too

small penalty parameter also has to be reduced. This leads to a choice of the penalty

parameter as a function of the mesh size.

6.3.3 Direct constraint elimination

The constraint equations (4.6), (4.13) or (4.14) can be enforced directly in
the case of contact. This leads to a coupling in the virtual work expression
(6.24) or in the total energy (6.25). The number of unknowns thus reduces.
However, an efficient enforcement of the constraint depends heavily upon the
discretization. Basically, one could formulate the inequality constraint (4.6)

Fig. 6.3. Solution dependency of normal force on the penalty parameter.
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as an equality constraint

gN = (x2 − x̄1) · n1 = 0 ,

which yields

x2 · n1 = x̄1 · n1 −→ (X2 + u2 ) · n1 = ( X̄1 + ū1 ) · n1 (6.38)

for the current coordinates and the displacements. This local elimination
works well for node-to-node contact elements, but not for arbitrary discretiza-
tions. In such a case, the point of departure is the Lagrange multiplier
method. Using

∫

Γc

δλN gN dΓ =
∫

ΓC

δλN (x2 − x̄1) · n1 dΓ

one can project the constraints
∫

ΓC

δλN x2 · n1dΓ =
∫

ΓC

δλN x̄1 · n1 dΓ , (6.39)

and apply this equation to eliminate the unknowns on one side of the contact
interface Γc. Here the choice of the interpolation for the Lagrange multiplier
is essential for a stable method. Such methods are discussed in more detail
in Section 8.4.2. In total, the direct elimination of the constraints reduces
the problem size by all degrees of freedoms which are associated with the
unknowns on one side of the contact interface Γc. Note that the elimination can
be performed so that the positive definite structure of (6.25) is not destroyed.

6.3.4 Constitutive equation in the interface

In this case the constitutive equations which have been discussed in Sections
5.1 and 5.2 will be applied for the determination of pN and tT . Hence, we do
not add a constraint equation as in the case of the Lagrange multiplier or
penalty method. The contact term to be used in the functional (6.24) when
the constraint is active is then given by

Cc =
∫

Γc

( pN δgN + tT · δgT ) dA . (6.40)

One can easily see that the introduction of the constitutive equation for the
normal pressure (5.12) can be interpreted as a nonlinear penalty functional
for the normal contact. The standard penalty method can be recovered from
relation (5.12) using n = 1. However, such a choice would be artificial, since
the usual range of the constitutive parameter n, stemming from experiments,
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is in the range 2 ≤ n ≤ 3.33.

REMARK 6.5: Due to the fact that the constitutive laws which have to be

applied for pN in (6.40) represent very stiff nonlinear springs in the contact in-

terface, the use of this formulation within the finite element method often leads to

ill-conditioned systems of equations. Hence, methods like the augmented Lagrange

approach (see Section 6.3.8) are needed to avoid this numerical problem.

6.3.5 Nitsche method

Another formulation which can be applied to enforce the contact constraints
was derived in Nitsche (1970) and applied within domain decomposition meth-
ods with non-matching grids in Becker and Hansbo (1999). It is based on a
different concept in which, instead of the Lagrange multipliers, the stress
vector in the contact interface is computed from the stress field of the bodies.
This leads to another set of boundary terms, which are stated here for the
frictionless contact of two bodies:

ΠN
c = −

∫

Γc

1
2
( p1

N + p2
N ) gN dA +

1
2

∫

Γc

εN [gN ]2 dA , (6.41)

where the superscript of the contact pressure pγ
N is associated with the body

Bγ . Note that in this case, a contribution from both bodies enters the formula-
tion in a mean sense. The last term in (6.41) represents the standard penalty
term of Section 6.3.2. It is included only to avoid ill-conditioning of the global
equation system resulting from this formulation. However, since this formula-
tion enforces the constraint exactly, the penalty term is not active, and hence
the solution, contrary to the penalty method, does not depend on the penalty
parameter εN , which will be shown in Section 6.4 by means of an example.

The contact stresses pγ
N in (6.41) are defined in terms of the displacement

field, which for linear elasticity with Cauchy’s theorem (3.40) leads to

pγ
N = tγ · n̄γ = n̄1 · σ(uγ)nγ = n̄γ · C

γ [ε(uγ)]nγ = Nγ
c · ∇suγ , (6.42)

where the last term was introduced to shorten the notation (the structure
of the symmetrical displacement gradient ∇su is defined in (3.62), and the
structure of Nγ

c will be defined in Section 8.4.3). The variation of (6.41) can
be computed, which yields

CN
c = −

∫

Γc

1
2
( δp1

N +δp2
N ) gN dA−

∫

Γc

1
2
( p1

N +p2
N ) δgN dA+

∫

Γc

εN gN δgN dA

(6.43)
with

δpγ
N = n̄γ · C

γ [ε(ηγ)]nγ = Nγ
c · ∇sηγ , (6.44)
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where ηγ is the variation related to body Bγ . Combining (6.42) to (6.44), one
finally obtains

CN
c = −

∫

Γc

1
2
(N1

c · ∇sη1 + N2
c · ∇sη2 ) gN dA

−
∫

Γc

1
2
(N1

c · ∇su1 + N2
c · ∇su2 ) δgN dA (6.45)

+
∫

Γc

εN g−N δg−N dA ,

which shows that the Nitsche method yields a formulation which only de-
pends upon the primary displacement variables.

A similar formulation can also be stated for the stick case, leading with
(6.30) to

ΠN
c = −

∫

Γc

1
2
( t1 +t2 ) · (x2− x̄1 ) dA+

∫

Γc

ε (x2− x̄1 ) · (x2− x̄1 ) dA . (6.46)

Again, the stress vector (traction vector) tγ is computed via Cauchy’s the-
orem:

tγ = σ(uγ)nγ = C
γ [ε(uγ)]nγ . (6.47)

The variation yields

CN
c = −

∫

Γc

1
2
( δt1 + δt2 ) · (x2 − x̄1 ) dA −

∫

Γc

1
2
( t1 + t2 ) · (η2 − η̄1 ) dA

+
∫

Γc

ε (x2 − x̄1 ) · (η2 − η̄1 ) dA , (6.48)

with the variation of the traction vector

δtγ = σ(ηγ)nγ = C
γ [ε(ηγ)]nγ . (6.49)

In contrast to the Lagrange multiplier method, one does not need to intro-
duce additional variables, since the stresses have to be inserted into (6.46) or
(6.48) using (6.47) and (6.49).

In the nonlinear case the Nitsche method becomes more complex, since
the variations of the tractions depend upon the type of constitutive equations
used to model the solid. They are thus more difficult to compute than the
variations of the Lagrange multipliers in Section 6.3.1.
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6.3.6 Perturbed Lagrange formulation

This special formulation can be used to combine both penalty and Lagrange

multiplier methods in a mixed formulation, e.g. see Oden (1981) or Simo et al.
(1985). In this case, the following functional can be formulated for two solids
coming into contact:

ΠPL =
2∑

α=1

Πα + ΠPL
c , (6.50)

where
∑

α Πα defines the total energy of the two bodies and ΠPL
c is the

energy related to the contact interface. In detail, the last term in (6.50) is
given by

ΠPL
c =

∫

Γc

[
λN gN − 1

2 εN
λ2

N + λT · gT − 1
2 εT

λT · λT

]
dΓ . (6.51)

Here the Lagrange multiplier term is regularized by the second term in
the integral, which can be viewed as the complementary energy due to the
Lagrange multiplier. The variation leads to

CPL
c =

∫

Γc

[
λN δgN + δλN

(
gN − 1

εN
λN

)

+λT · δgT + δλT ·
(
gT − 1

εT
λT

)]
dΓ . (6.52)

The first and third terms are again associated with the Lagrange multi-
plier formulation, whereas the second and fourth terms yield the “constitutive
laws”: λN = εN gN and λT = εT gT if evaluated locally. If we insert this result
for λN in the first term of (6.52), we obtain the standard penalty formulation
(6.33). Letting εN −→ ∞ yields the classical Lagrange multiplier method.
However, this formulation is only valid for the frictionless and the stick cases.
In the case of sliding, we have to use an incremental constitutive equation
like Coulomb’s law which cannot be stated in the form of a complementary
energy. In this case one has to use either the Lagrange multiplier or the
penalty method.

We note that equation (6.52) can also be a starting point for special mixed
formulations (e.g. in finite element formulations when different interpolation
functions are used for the Lagrange multiplier and the displacement field;
this is described in more detail in Chapter 8).

6.3.7 Barrier method

Another technique for problems with inequality constraints is the so-called
barrier method which has a close connection to interior point methods, see
e.g. Wright (1997). It adds a constraint functional of the type
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ΠB
c = εN

∫

Γc

b( gN+) dΓ (6.53)

to equation (6.50), which is always active for all possible contact nodes. Based
on this choice the constraint problem is changed to a succession of unconstraint
problems. In the algorithmic treatment one has to take care that the solution
always fulfills the constraint equations in such a way that one body does not
penetrate the other one. Hence by gN+ we denote that in this method there
are no values of gN allowed which violate (4.6). The value εN > 0 is the
so-called barrier parameter, which has to be chosen in an appropriate way or
changed within the algorithmic treatment of the contact problem. The barrier
function b can be chosen as

b( gN ) = − 1
gN

or (6.54)

b( gN ) = − ln [min{1 ,−gN}] . (6.55)

The second function is not differentiable because of the expression min{1 ,
−gN+}. However, one can show that the differentiable function b( gN+ ) =
− ln [−gN+] also leads to convergence. Due to the construction of the con-
straint functional, the solution always has to stay in the feasible region, which
means that no penetration is allowed in any intermediate iteration step. To
ensure this special safeguard algorithms are needed, e.g. see Bazaraa et al.
(1993). The variation of (6.53) yields, for the function (6.54),

CB
c =

∫

Γc

εN

g2
N

δgN dΓ . (6.56)

The advantage of this method is that all constraints are always active, and no
on-and-off switch has to be applied to distinguish between active and passive
constraints, as in the Lagrange multiplier or penalty methods. A drawback,
however, is that one has to find a feasible starting point which fulfils all con-
straints. Furthermore, ill-conditioning as in the penalty method can occur.
The barrier method is, due to these drawbacks, not used very much in com-
putational contact mechanics. However, there is some recent success in using
barrier methods in combination with augmented Lagrange techniques, see
Kloosterman et al. (2001). In this work the inequality constraints gN ≥ 0 are
enforced based on the term

ΠB
c = −εN

∫

Γc

λ̄ ln
(

1 +
gN+

εN

)
dΓ , (6.57)

where λ̄ ≥ 0 is the fixed Lagrange multiplier and εN > 0 the barrier para-
meter.

Based on the barrier method, which has as unknowns the displacement
field, one can construct primal-dual methods. They are frequently applied to
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optimization problems, but have not been used extensively in contact me-
chanics. The basic theory can be found in Wright (1997), some numerical
experiments are provided in Tanoh et al. (2004).

6.3.8 Augmented Lagrange methods

Another method to regularize the non-differentiable normal contact and fric-
tion terms is provided by the augmented Lagrange formulation. This tech-
nique has been considered extensively within the context of incompressibil-
ity constraints in, for example, Glowinski and Le Tallec (1984), and was
also applied to contact problems for frictionless contact in Wriggers et al.
(1985) and Kikuchi and Oden (1988). Recently, this approach has been ex-
tended successfully to large displacement contact problems including friction,
see Alart and Curnier (1991) or Laursen and Simo (1993a). The main idea
is to combine either the penalty method or the constitutive interface laws
with Lagrange multiplier methods. The augmented Lagrange formulation
yields a C1-differentiable saddle point functional which is described in de-
tail in Pietrzak and Curnier (1999). In that paper the following augmented
Lagrange functional is introduced for normal contact:

ΠAM
N =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫

Γc

(λN gN +
εN

2
g2

N ) dΓ for λ̂N ≤ 0 ,

∫

Γc

− 1
2 εN

|λN |2 dΓ for λ̂N > 0 ,
(6.58)

with λ̂N = λN + εN gN . The structure of this functional is such that it holds
not only for λ̂N ≤ 0, but also for λ̂N > 0, where the latter case means that
the gap is open. The variation of (6.58) yields

CAM
N =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫

Γc

( λ̂N δgN + δλN gN ) dΓ for λ̂N ≤ 0 ,

∫

Γc

− 1
εN

λN δλN dΓ for λ̂N > 0 .
(6.59)

In the same way, a similar formulation can be formulated for the classical
Coulomb law. For this purpose we introduce the increment of the relative
tangential movement by ǧT = ˙̄ξ

α
a1

α dt and the augmented Lagrange mul-
tiplier λ̂T = λT + εT ǧT . Using these definitions we can write the following
incremental functional, see Pietrzak and Curnier (1999), for the state of con-
tact (λ̂N ≤ 0):
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ΠAM
T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫

Γc

(λT · ǧT +
εT

2
ǧT · ǧT ) dΓ for ‖λ̂T ‖ ≤ μ p̂N ,

∫

Γc

− 1
2 εT

[
‖λT ‖2 − 2μ p̂N ‖λ̂T ‖ + (μ p̂N )2

]
dΓ for ‖λ̂T ‖ > μ p̂N ,

(6.60)
where μ is the friction coefficient and p̂N is the augmented normal contact
pressure. For the state of no contact (p̂N > 0), we have analogous to (6.58)
the following functional:

ΠAM
T =

∫

Γc

− 1
2 εT

‖λT ‖2 dΓ ∀ λ̂T . (6.61)

Thus the incremental functional also holds in the case of gap opening. This
results from a prolongation of Coulomb’s cone for positive values of the
augmented normal contact pressure. Note that the functional is continuous at
p̂N = 0 and ‖λ̂T ‖ = μ p̂N , which also ensures that the combined functional
(6.25) is globally continuous. The variation of (6.60) and (6.61) for a closed
gap (p̂N ≤ 0) yields

CAM
T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫

Γc

( λ̂T · δǧT + δλT · ǧT ) dΓ , ‖λ̂T ‖ ≤ μ p̂N

∫

Γc

(
μ p̂N λ̂T

‖λ̂T ‖
· δǧT − 1

εT

[
λT − μ p̂N λ̂T

‖λ̂T ‖

]
· δλT

)
dΓ, ‖λ̂T ‖ > μ p̂N

(6.62)
and for the open gap (λ̂N > 0)

CAM
T =

∫

Γc

− 1
εT

λT · δλT dΓ , ∀ λ̂T . (6.63)

A major problem associated with the numerical treatment of the penalty
method and the contact interface laws is the ill-conditioning which arises when
the penalty parameters εN , εT or the stiffness due to constitutive interface
laws are combined with the stiffness of the bodies within the finite element
formulation. A standard method to overcome the problem of ill-conditioning
is based on the augmented Lagrange technique, well known in optimiza-
tion theory. A simplified variant of (6.58) and (6.60) is provided by a special
assumption put on the Lagrange multipliers. This leads to a double loop
algorithm in which the Lagrange multiplier λ̄N is held constant during an
iteration loop to solve the weak form in the inner loop. Then within an outer
loop the Lagrange multiplier is updated to a new value (see Section 10.3.5).
This procedure is known as the Uzawa algorithm.

The formulation leading to the Uzawa algorithm can be derived from
the above equations by keeping the Lagrange multipliers constant. Here we
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shall state the result only for the frictionless case, which leads to the following
contact contribution in the weak form:

CUZ
N =

∫

Γc

( λ̄N + εN gN ) δgN dΓ . (6.64)

Since λ̄N is unknown, an update procedure for the Lagrange multiplier has
to be constructed within an iteration loop. The simplest update is

λ̄Nnew
= λ̄Nold

+ εN gNnew
, (6.65)

which is only of first order accuracy. For other possibilities, see Bertsekas
(1984), for example.

If constitutive equations are used in the contact interface, Wriggers and
Zavarise (1993a) have developed a special update which fulfils the nonlinear
interface law by the update of the Lagrange multiplier λ̄N . For this for-
mulation the geometrical relation (5.9) has to be adopted. This leads to a
reformulation of (6.64)

CUZC
N =

∫

Γc

(
λ̄N + εN [ gN − ζ + d (p̄N ) ]

)
δgN dΓ . (6.66)

Now the update formula is given by

p̄Nnew
= p̄Nold

+ εN [ gNnew
− ζ + d (p̄Nold

) ] , (6.67)

where {..}old are the known quantities from the previous state. Due to the
appearance of a nonlinear function, the update is related, but different, to
the standard update procedure for the Lagrange multipliers, see equation
(6.65).

6.3.9 Cross-constraint method

A relatively new method for the solution of contact problems which is a mod-
ification of standard strategies will be presented in this section. Here the idea
is to satisfy the contact constraints by a nonlinear, smooth change of contact
stiffness around the solution. Thus the adopted approach leads to an itera-
tive method which does not depict numerical instabilities within the solution
search process. This fact permits us to achieve a better convergence rate with
respect to standard methods.

The cross-constraint method, whose basic philosophy is outlined in Zavarise
and Wriggers (1996), adopts smooth analytical functions to represent the non-
linear behaviour in contact processes. The method can be used to solve contact
problems with constraint equations (4.1), or those based on introducing con-
stitutive laws for contact surfaces. In the latter case, the formulation permits
us to deal with problems where high precision of the calculated approach is
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required. To achieve this, the cross-constraint method has to be enhanced by
using as a limit function a stress-penetration relationship which is constructed
on physical bases.

As in the previous sections, the mechanical contact problem is solved by
a modification of the unconstrained potential Π(ϕ)

Π(ϕ) + Pi [ g(ϕ)] → extremum , (6.68)

where g(ϕ) ≤ 0 represents the constraint functions set. Standard penalty
(P ), Lagrange multiplier (LM), barrier method (B) (see Section 6.3.7) and
the new cross-constraint method (CC) can be obtained by suitable particu-
larizations of Pi [ g(ϕ)]. The characteristics of the modification functions are
summarized as follows:

P ≡
{

PP (0) = 0
P ′

P (0) = 0 LM ≡
{

PL(0) = 0
P ′

L(0) = unknown
(6.69)

B ≡
{

PB(0) = ∞
P ′

B(0) = ∞ CC ≡
{

PC(0) = P̂
P ′

C(0) = F̂ ,
(6.70)

where Pi is the modification of the unconstrained potential Π and the deriv-
ative P ′

i is related to the contact force. In the case of the penalty method, a
parabolic function is added; the Lagrange multiplier method adds a linear
function but introduces new variables, i.e. the contact forces, and the barrier
method adds an hyperbolic function. Finally, the proposed method adds a
function, smooth over the entire domain, which presents nonzero, finite val-
ues at the constraint limit. Both traditional penalty and barrier methods can
be obtained as limit cases of the proposed technique. Exponential functions
of the type

Pc =
F̂ 2

K̂
exp

(
F̂

K̂
gN

)
(6.71)

have been successfully used in Zavarise and Wriggers (1996). All methods
produce a shift of the minimum from the unconstrained point to a zone close
to the constrained solution point. The proposed method does not take limit
values at the constraint limit, but takes finite nonzero values, both for the
potential and for the contact forces. Moreover, it does not introduce additional
variables.

Values of the cross-constraint method in the satisfaction of constraint equa-
tions are between those for the penalty and barrier methods. The values of
F̂ and K̂ have to be changed according to the characteristics of the problem
to obtain a good approximation for g(x) = 0. An iterative procedure can be
designed to fulfil this condition up to a specified tolerance.

The cross-constraint function (6.71) is close to zero when the gap is open
(g > 0); this minimizes the disturbance of the solution. Furthermore, (6.71)
also presents a smooth transition around the constraints limit. Numerical tests
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have shown that the employment of (6.71) yields a contact algorithm which
performs well from the numerical point of view.

If we also want to take into account the physics of the problem, i.e. the mi-
cromechanics of the contact interface, we have to consider a relationship based
on the microscopical roughness of the contacting surfaces, and determine a
pressure versus mean-plane-distance law. This can be done using constitutive
equations for contact, see Section 5.1.2.

The basic consideration to replace the analytical function (6.71) with a
contact constitutive law is related to the fact that the shape of such a law
poses all the characteristics required. The law we use here is based on the
microscopical characterization of the contacting surfaces and a hypothesis
of the plastic behaviour of contacting asperities. Suitable adaptation of the
relationship to obtain a form useful for finite element computations is derived
in Zavarise et al. (1992b). The requested contact law is given by

pN = ASNC e[SNE(ξ−gN )2] = f (A , gN ) , (6.72)

where SNC and SNE are two constants which contain a suitable combination
of the statistical parameters that characterize the contacting surfaces. A is
the contact area, ξ is the initial distance of the surfaces and gN denotes the
surface approach.

This relationship represents an implicit nonlinear dependence of exponen-
tial type on the contact force and the mean plane distance. The adoption
of such a constitutive law as a limit function of the cross-constraints method
keeps the efficiency and stability of the method and adds also physical insight.
This fact will be even more important when considering frictional or thermal
contact behaviour. The law can be used within the range of physically rea-
sonable values of the contact pressure. Numerical computations may require
an extension in the range of high pressure, which can occur during the itera-
tive solution process. In this case, the extension can be designed by a linear
function with C1-continuity.

The contact problem is then defined by

δΠ(ϕ) +
∫

Γc

ASNC e[SNE(ξ−gN )2] δgN dΓ = 0 , (6.73)

which is solved by iterative (Newton-type) methods. Due to the continuity
of the function around the constraint limit, typical numerical instabilities that
may take place when the solution jumps between two states, one characterized
by gN > 0, and the other characterized by gN = 0, are avoided. Hence the
contact law represents a regularization of the non-smoothness of the standard
contact formulation.
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6.4 Comparison of Different Methods

We shall illustrate the basic features of methods which lead to a linear systems
of equations for a given set of active constraints. These are the Lagrange

multiplier and the penalty method for the frictionless and frictional case and
the direct elimination and the Nitsche formulations for the frictionless case.
These are presented by means of a simple example undergoing only contact
in normal direction. Furthermore, the different methods are compared with
respect to the accuracy of the solutions.

6.4.1 Normal Contact

Let us consider the two trusses depicted in Figure 6.4. The length of the left
truss is 3l, its axial stiffness EA/ l. It is discretized by three truss elements
with linear shape functions. The right truss has an axial stiffness of 2EA/ l
and a length of l. Both trusses are clamped at the ends. The left truss is
loaded by a point load F . When the load increases, the initial gap g between
the two trusses closes at a certain value. This value can be computed from
the equation system of the unconstrained system which already includes the
boundary conditions at the left and right end of the bar system (v1

1 = v2
2 = 0),

K0 u = f −→ EA

l

⎡
⎢⎣

2 −1 0 0
−1 2 −1 0
0 −1 1 0
0 0 0 2

⎤
⎥⎦

⎧⎪⎨
⎪⎩

u1
2

u1
3

u1
4

u2
1

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0
F
0
0

⎫⎪⎬
⎪⎭ . (6.74)

The solution can be expressed in closed form

uT =
Fl

EA
{ 1 , 2 , 2 , 0 }T .

The force to close an assumed gap of g = 0.01 l follows from 2Fl /EA = 0.01 l
as F = EA

2
g
l . Once the gap is closed, we have to formulate the constraint

problem by using one of the methods described in the previous sections.
For all methods used to enforce the contact constraint, we have to for-

mulate the gap condition and its variation. Since the x-direction is also the
normal direction, from the general formula (4.6) for the gap, we obtain

Fig. 6.4. Truss structure with initial gap.
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gN = g − (u1
4 − u2

1 ) (6.75)

and for the variation
δgN = −δu1

4 + δu2
1 . (6.76)

In this special case we have only one point in the system (see Figure 6.4)
where contact occurs. Hence for some methods to enforce the constraints we
can solve two linear problems. One which was already defined in (6.74) is
related to the unconstrained problem. The other is associated with the en-
forcement of the contact constraint condition. For the Lagrange multiplier
formulation or the penalty method we can then set up a linear system of
equations which directly gives the solution. This is not possible for the bar-
rier or the augmented Lagrange methods, since in these approaches either a
nonlinear constraint is present or an iteration has to be used. In these cases,
a nonlinear system of equations can be formulated and solved iteratively.

Lagrange multiplier method. Using formulation (6.27) one has to add
for the Lagrange multiplier approach the terms λN δgN + δλN gN , which
with the explicit forms the gap function and its variation (6.75) and (6.76)
yields the following system of equations KLM uLM = fLM . This can be written
explicitly as

⎡
⎢⎢⎢⎢⎣

2EA
l −EA

l 0 0 0
−EA

l 2EA
l −EA

l 0 0
0 −EA

l
EA

l 0 −1
0 0 0 2EA

l 1
0 0 −1 1 0

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1
2

u1
3

u1
4

u2
1

λN

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
F
0
0
−g

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (6.77)

Here we used the fact that the displacements are zero in the first step of the
contact algorithm. Since the problem is geometrically linear, in (6.77) we can
use on the right hand side instead of the gap gN as given in (6.75) just the
initial gap g.

The solution of Lagrange multiplier formulation (6.77) can be stated in
closed form as

uLM =
2

7EA

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( 2EAg + 3Fl ) / 2
2EAg + 3Fl
3EAg + Fl

(−EAg + 2Fl) / 2
EA (−EAg + 2Fl) / l

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (6.78)

where the last term represents the Lagrange multiplier or the reaction force
in the contact interface.

Penalty method. In the case of the penalty method, the constraint is
added by εN gN δgN , which leads with (6.75) and (6.76) to the system of
equations KP uP = fP , or explicitly to
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⎡
⎢⎢⎣

2EA
l −EA

l 0 0
−EA

l 2EA
l −EA

l 0
0 −EA

l
EA

l + εN −εN

0 0 −εN 2EA
l + εN

⎤
⎥⎥⎦

⎧⎪⎨
⎪⎩

u1
2

u1
3

u1
4

u2
1

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0
F

εNg
−εNg

⎫⎪⎬
⎪⎭ . (6.79)

Again, it is possible to find a closed form solution for the linear system of
equations. For the variable u1

4 we obtain, for example,

u1
4 =

2 ( 3EAlεN g + 2EAFl + εN Fl2 )
2 (EA)2 + 7 εN EAl

. (6.80)

As discussed in Section 6.3.2, εN −→ ∞ the penalty solution approaches for
the solution for u1

4 in (6.78) of the Lagrange multiplier method, which can
be easily verified using (6.80).

The displacement u1
4 is plotted in Figure 6.5 for different values of F when

we select EA = 1000, l = 1 and g = 0.01 for the data. One can see in Figure
6.5 that the stiffness of the system changes once the gap closes for F = 5.
The solution using the penalty method approaches the Lagrange Multiplier
(LM) solution for large values of εN , which can be observed from the solutions
for εN = 103 and 104.

It is also clear that the penalty solution is only an approximation of the
correct enforcement of the constraint condition obtained by the Lagrange

multiplier approach. It has been shown above that the penalty method yields
in the limit εN −→ ∞ the exact solution. However, in real computational ap-
plications it is not possible to use very large penalty parameters, since these
lead to an ill-conditioning of the system of equations (6.79), hence the Uzawa

scheme related to the augmented Lagrange multiplier method can be ap-
plied to improve the solution for a given penalty parameter εN . We will not
formulate the iterative scheme for the truss structure here, since this is done
in Section 10.3.5.

Fig. 6.5. Comparison of Lagrange and penalty methods.



134 6 Contact Boundary Value Problem and Weak Form

Direct elimination method. This method was described in (6.3.3) and
is based on the fact that the constraint (6.75) is enforced directly. For this
purpose, we construct a projection matrix P which reduces the displacement
variables appearing in the constraint (6.75) by one

u =

⎧⎪⎨
⎪⎩

u1
2

u1
3

u1
4

u2
1

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

1 0 0
0 1 0
0 0 1
0 0 1

⎤
⎥⎦

⎧⎨
⎩

u1
2

u1
3

u1
4

⎫⎬
⎭−

⎧⎪⎨
⎪⎩

0
0
0
g

⎫⎪⎬
⎪⎭ = PT ū − g . (6.81)

This projection, without g, is also valid for the variations. Hence the matrix
system (6.74) of the unconstraint problem can be pre- and post-multiplied by
P, leading to the reduced system

KE ū = PK0 PT ū = Pf + PK0 g , (6.82)

or in explicit form,

EA

l

⎡
⎣ 2 −1 0
−1 2 −1
0 −1 3

⎤
⎦

⎧⎨
⎩

u1
2

u1
3

u1
4

⎫⎬
⎭ =

⎧⎨
⎩

0
F

2EAg
l

⎫⎬
⎭ . (6.83)

Note that the symmetric structure of the stiffness matrix is not destroyed.
The solution of this equation system yields

ū =
2

7EA

⎧⎨
⎩

( 2EAg + 3Fl ) / 2
2EAg + 3Fl
3EAg + Fl

⎫⎬
⎭ , (6.84)

which is equivalent to (6.78). The displacement u2
1 which was eliminated can

be computed from the constraint equation (6.75)

u2
1 = u1

4 − g =
2

7EA
( 3EAg + F l ) − g =

2
7EA

(
−1

2
EAg + Fl

)
,

which is the exact value also given in uLM . The contact force corresponds to
the normal force in the elements adjacent to the gap (see also next section).
More generally, one can compute λN from (6.77) once the displacements are
known. By decomposing this equation system in

K0 u + CλN = f with CT = 〈 0 , 0 ,−1 , 1 〉
CT u = −g ,

one can solve the first equation for λN once u is known. By pre-multiplying
with CT this leads to

CT CλN = CT f − CT K0 u , (6.85)
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where u is the same as in (6.74). The multiplication with CT is necessary
since C−1 does not exist. For this example, we have CT C = 2, CT f = 0,
and hence

λN = −1
2
〈 0 , 0 ,−1 , 1 〉 EA

l

⎡
⎢⎣

2 −1 0 0
−1 2 −1 0
0 −1 1 0
0 0 0 2

⎤
⎥⎦

⎧⎪⎨
⎪⎩

u1
2

u1
3

u1
4

u2
1

⎫⎪⎬
⎪⎭ =

4
7

F − 2
7

EAg

l
,

(6.86)
which is also the result stated in (6.78) for the Lagrange multiplier.

Nitsche method. When the Nitsche method described in Section 6.3.5
is applied to the problem defined in Figure 6.4, one has to formulate the
constraint conditions via equation (6.43). In this equation the contact pressure
pγ

N has to be inserted, which is computed from (6.44). For the problem at
hand, the contact pressure is represented by the normal force. Hence one has
to compute the normal force in the elements adjacent to the gap

N1
3 =

EA

l
(u1

4 − u1
3) and N2

3 =
2EA

l
(0 − u2

1) . (6.87)

With this result and the explicit expressions for the gap (6.75) and its variation
(6.75), equation (6.43) can be formulated as

CN
c = −1

2
EA

l
(u1

4 − u1
3 − 2u2

1 ) ( δu1
4 − δu2

1 )

−1
2

EA

l
( δu1

4 − δu1
3 − 2 δu2

1 ) (u1
4 − u2

1 − g ) (6.88)

+εN (u1
4 − u2

1 − g )( δu1
4 − δu2

1 ) .

This leads to the system of equations KN uN = fN , or explicitly to
⎡
⎢⎢⎣

2EA
l −EA

l 0 0
−EA

l 2EA
l −EA

2l −EA
2l

0 −EA
2l εN

3EA
2l − εN

0 −EA
2l

3EA
2l − εN εN

⎤
⎥⎥⎦

⎧⎪⎨
⎪⎩

u1
2

u1
3

u1
4

u2
1

⎫⎪⎬
⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0
F + EAg

2l

εNg − EAg
2l

EAg
l − εNg

⎫⎪⎪⎬
⎪⎪⎭

, (6.89)

which has the solution

uN =
2

7EA

⎧⎪⎨
⎪⎩

( 2EAg + 3Fl ) / 2
2EAg + 3Fl
3EAg + Fl

(−EAg + 2Fl) / 2

⎫⎪⎬
⎪⎭ . (6.90)

Note that in this solution, the penalty parameter εN does not occur, which
means that (6.90) is independent of εN . This is due to the fact that the
first two constraint equations in (6.88) lead to an exact enforcement of the
contact constraint (6.75). Hence, the penalty stabilization is not needed here.
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However, for large equation systems it is necessary to add the stabilization,
since zeros occur in the diagonals of the stiffness matrix, see (6.89) for εN = 0.
The contact stress can now be computed from the normal force (6.87)

Nc = pN A = N1
3 =

EA

l
(u1

4 − u1
3) =

4
7

F − 2
7

EAg

l
, (6.91)

which is exactly the same result as was obtained for the Lagrange multiplier
in (6.78).

6.4.2 Frictional Contact

In order to understand different solution strategies for frictional contact we
will consider here a simple mass spring system which is solved using the La-

grange multiplier and the penalty method. We discuss here a system consist-
ing of two masses, m1 and m2, which are connected by springs with stiffness
k1 and k2, see Fig. 6.6. Between the masses and the rigid support a Coulomb

frictional constitutive relation with frictional coefficient μ is assumed. We can
distinguish three phases in the behaviour of the system:

1. Total stick. This means that none of the masses moves under the action
of the applied force F . In this case the tangential forces between masses
and rigid support are given as reaction forces.

2. Partial stick and sliding. In that case one mass slides on the rigid support
while the other still sticks to it. The tangential force which is related to
the sliding mass is given from the constitutive equation (Coulomb’s law)
while the tangential force related to the sticking mass follows from the
stick constraint as reaction.

3. Total sliding. Here both masses are sliding on the rigid support under
action of the force applied F . Now all tangential forced are given by
Coulomb’s law.

We will now develop the set of equations for each of the phases using the
Lagrange multiplier and the penalty method.

To distinguish between stick and sliding we use the frictional law (5.14)
which restricts the tangential force R by the inequality constraint where μ is
the frictional coefficient

|R | ≤ μN = μmg . (6.92)

Fig. 6.6. Two point masses supported by springs.
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Lagrange multiplier method

Including the Lagrange multipliers as frictional reaction forces λ1 = R1 ,
λ2 = R2 into the equilibrium yields with the notation given in Fig. 6.6

−k1 u1 + k2(u2 − u1) − λ1 = 0 , (6.93)
−k2(u2 − u1) + F − λ2 = 0 . (6.94)

−→
[

k1 + k2 −k2

−k2 k2

] {
u1

u2

}
=

{
−λ1

F − λ2

}
. (6.95)

Starting from this system of equations one can analyze the three possible
phases mentioned above.

1. Total stick. Provided that both masses do not move under the action of
force F condition u1 = u2 = 0 is valid and the tangential forces are

λ1 = 0 , (6.96)
λ2 = F . (6.97)

It is clear that, when both masses stick to rigid support, the complete
reaction to the force F has to occur between the right mass m2 and the
rigid support.

2. Partial stick and sliding. Mass m2 stats sliding as soon as the applied
force F is larger than the maximal allowed tangential force F > μm2 g
(Coulomb’s law). In this case the reaction force λ2 has to be set to the
maximum value λ2 = μm2 g This yields together with equation (6.95)
and u1 = 0 (stick constraint)

k2 u2 = λ1 , (6.98)
k2 u2 = F − λ2 (6.99)

and therefore λ1 = F − λ2 = F − μm2 g.
3. Total sliding. Both masses are sliding when also for the reaction λ1 the

inequality (6.92) is no longer fulfilled: λ1 = F − μm2 g > μm1 g then the
stick constraint u1 = 0 no longer is fulfilled. In this case we have to solve
a system of equations in order to compute the sliding displacements u1

and u2. Since now λ1 and λ2 are given by Coulomb’s law (λ1 = μm1 g
and λ2 = μm2 g) we obtain with (6.95)

[
k1 + k2 −k2

−k2 k2

] {
u1

u2

}
=

{
−μm1 g

F − μm2 g

}
. (6.100)

To illustrate the displacements u1, u2 which occur under the applied force F ,
we have to choose some values for the spring stiffness and the masses in Fig.
6.6. With m1 = 2m, m2 = m, k1 = k2 = k and F = α m g we can compute
the solution of (6.95) for the different stages, discussed above. As an example,
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Fig. 6.7. Displacements u1, u2 against force F

we write the equation for the tangential displacements u1 and u2 in case of
total sliding

{
u1

u2

}
=

1
k

[
1 1
1 2

] {
−2μmg

α m g − μmg

}
=

mg

k

{
−3μ + α
−4μ + 2α

}
. (6.101)

This condition is fulfilled as soon as α > 3μ. The result of total solution of
the problem defined in Fig. 6.6 is depicted in Fig. 6.7.

Penalty method

Using the penalty approach we add springs in the contact interface between
the masses and the rigid support, see Figure 6.8. Due to that the frictional
forces are now given by the spring force or the limit forces from Coulomb’s

law. From the right part of Fig. 6.8 we obtain a system of equations denoting
equilibrium in tangential direction

−k1 u1 + k2 (u2 − u1) − ε u1 = 0 , (6.102)
−k2 (u2 − u1) + F − ε u2 = 0 . (6.103)

As mentioned in Section 6.3.2 the penalty parameter ε can be interpreted as
spring stiffness.

Fig. 6.8. Model for the penalty solution of the frictional problem.
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For comparison of the results the values for the masses and spring stiffness
are chosen to be the same as in the previous example ( m1 = 2m, m2 = m,
k1 = k2 = k and F = α m g). This leads to

[
2 k + ε −k
−k k + ε

] {
u1

u2

}
=

{
0
F

}
. (6.104)

The general solution is then given by
{

u1

u2

}
=

F

ε2 + 3 ε k + k2

{
k

2k + ε

}
. (6.105)

To simplify the further computation we choose for the penalty parameter
ε = 10 k in the subsequent calculations. Now again, we have to distinguish the
three different cases of total stick, partial slip and total slip. However by using
the penalty we will not observe total slip since there is always some tangential
movement due to the springs ε.

1. Total stick. Here the reaction forces fulfil the inequality (6.92). Hence the
system is in ’stick’ state. In this case the tangential displacements u1 and
u2 are given by {

u1

u2

}
=

α m g

131 k

{
1
12

}
. (6.106)

For ε → ∞ the displacements approach zero, see solution in (6.105), and
we have total stick.

2. Partial sliding. In case that the applied force F is larger than the limit
force given by (6.92) then the tangential force of mass m2 is given by the
Coulomb law as R2 = μmg. The load parameter α associated with this
case can be determined as follows

R2 = μmg = ε u2 = ε
12F

131 k
=

120
131

α m g , (6.107)

which shows that mass m2 starts sliding as soon as

α >
131
120

μ . (6.108)

Sliding of the first mass leads to a new right hand side of (6.106) and
hence to the new equation system

[
2 k + ε −k
−k k

] {
u1

u2

}
=

{
0

F − μmg

}
(6.109)

from which the displacements follow as
{

u1

u2

}
=

mg

11 k

{
α − μ

12(α − μ)

}
. (6.110)
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Fig. 6.9. Displacements u1, u2 for penalty parameter ε = 10 k

3. Total sliding. The second mass m1 starts sliding for

R1 = ε u1 = ε
mg

11 k
(α − μ) =

10mg

11
(α − μ) > 2μmg , (6.111)

so that for α > 32
10 μ both masses are sliding and the displacements in the

new system are {
u1

u2

}
=

mg

k

{
α − 3μ

2α − 4μ

}
. (6.112)

The obtain results for the three cases are shown in Fig. 6.9.
By comparing the solutions of the Lagrange multiplier and the penalty

method, depicted in Figures 6.7 and 6.9, we can observe several differences:

• The penalty method introduces some tangential movement, even for the
stick case. This can produce non-physical behaviour if the penalty spring
is too low.

• Also the forces computed with the penalty solution deviate from the forces
obtained by the Lagrange multiplier method.

• The penalty method always uses the equation system (6.104) with different
right hand sides whereas the Lagrange multiplier methods yields in some
stages reduced equation systems.

6.5 Linearization of the Contact Contributions

For an iterative solution of the nonlinear equation system associated with the
weak form (6.24) and the various contact terms described above, different
methods can be applied. A fast and reliable method is the Newton scheme,
which is available in several variants to improve the global convergence prop-
erties of the method. These formulations rely on a linearization of the weak
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form. For the solids the linearizations were already derived in Sections 7.2.2
and 7.2.4. Thus, we can concentrate here on the linearization of the contact
contributions.

As has been shown above, these have a different structure. However, the
main ingredients are the same, and we will write here a general form of the
contact contribution to see which terms need a detailed derivation for the lin-
earization. For this purpose we distinguish between the normal and tangential
contact terms in (6.24). Based on this we can write

CG
c =

∫

Γc

cN (λN , gN , δλN , δgN )dΓ +
∫

Γc

cT (λT ,gT , δλT , δgT ; pN ) dΓ ,

(6.113)
where cN and cT are functions of variations and variables, e.g. in the case
of frictionless contact within the Lagrange multiplier method (see Section
6.3.1),

cN = λN δgN + δλN gN ,

or for the penalty method (see Section 6.3.2),

cN = εN gN δgN .

Note that, due to the geometrical nonlinearity of the finite deformation prob-
lem, the variations δgN and δgT also contribute to the linearization, often
resulting in very complex terms, see below (this is of course not the case when
geometrically linear problems are formulated). On the contrary, the lineariza-
tion of the Lagrange parameters λN and λT is zero. However, the variation
of the tangential contributions is more involved, since one has to distinguish
between the stick and the slip case in frictional contact. This is denoted by
the dependence on the contact pressure pN which occurs in the friction law.

6.5.1 Normal contact

The linearization of cN can be computed from

∂cN

∂u
Δu =

∂cN

∂λN
ΔλN +

∂cN

∂gN
ΔgN +

∂cN

∂δgN
ΔδgN , (6.114)

where the differentiation with respect to δλN has been neglected, since this
term is zero. For the Lagrange multiplier method we now have

∂cN

∂λN
= δgN ,

∂cN

∂gN
= δλN and

∂cN

∂δgN
= λN .

In the same way, the penalty method yields

∂cN

∂λN
= 0 ,

∂cN

∂gN
= εN δgN and

∂cN

∂δgN
= εN gN .
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Now we have to compute linearizations ΔgN and ΔδgN in terms of the dis-
placement fields of both bodies in contact. The linearization of ΔgN has the
same structure as the variation of gN . Hence with (4.29), by exchanging ηα

by Δuα, we obtain

ΔgN = [Δu2 − Δu1(ξ̄1 , ξ̄2) ] · n1(ξ̄1 , ξ̄2) . (6.115)

The linearization of the gap in the normal direction Δ(δgN ) has to be com-
puted from the full variation (4.28), since terms which are zero in (4.28) (see
Section 4.3) can also contribute to the tangent. We start with (4.6) from

x2 − x̄1 = x2 − x1(ξ̄1 , ξ̄2) = gN n̄1 , (6.116)

and obtain the variation in a way which can be used to compute ΔδgN :

η2 − η̄1 − x̄1
,α δξα = δgN n̄1 + gN δn̄1 . (6.117)

This yields δgN , see (4.29), when multiplied by n̄1. Since η1 is a function of ξ
which again depends on the displacement field, a lot of terms arise from this
equation. To shorten the notation we denote values related to the projection
point ξ̄ by just a bar, however we have to bear in mind that these terms
depend on the deformation dependent surface coordinates ξ. Now from (6.117)
we obtain the linearization

−[η̄1
,αΔξα + Δū1

,α δξα + x̄1
,αβ Δξβ δξα + x̄1

,α Δδξα ]

= Δ(δgN ) n̄1 + δgN Δn̄1 + ΔgN δn̄1 + gN Δδn̄1 , (6.118)

where Δuγ are the increments of xγ = Xγ+uγ and Δξα denote the increments
of ξα. In this equation the quantities Δξ̄α, δξα, Δδξα, Δn̄1, δn̄1 and Δδn̄1 are
still unknown. First we observe that variation and linearization δξ̄α and Δξα

have the same structure, and hence the linearization Δξα can be computed
analogous to (4.21) by interchanging the variations ηγ , related to body Bγ ,
by the increments Δuγ :

Δξ̄ β = H̄−1
αβ

[ (
Δu2 − Δū1

)
· āα + gN n̄1 · Δū1

,α

]
. (6.119)

The tensor H̄αβ is exactly the same as given in equation (4.19). By multipli-
cation with n̄1, (6.118) can be solved for ΔδgN :

Δ(δgN ) = −( η̄1
,αΔξα +Δū1

,α δξα+x̄1
,αβ Δξβ δξα ) ·n̄1−gN n̄1 ·Δδn̄1. (6.120)

Note that several terms disappear due to the identities n̄1 · δn̄1 = 0 and
n̄1 · x̄1

,α = 0. Thus the only term unknown is n̄1 ·Δδn̄1, which can be rewritten
as Δ( n̄1 · δn̄1 ) = Δn̄1 · δn̄1 + n̄1 ·Δδn̄1 = 0. From this identity, the last term
in (6.120) follows as

−gN n̄1 · Δδn̄1 = gN Δn̄1 · δn̄1 .
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Now we have to compute the linearization and variation of the normal at
the projection point ξ̄. From the orthogonality condition n̄1 · ā1

α = 0, where
ā1

α = x1
,α is the tangent vector at the projection point, we compute

δn̄1 · ā1
α = −n̄1 · δā1

α . (6.121)

Since n̄1 · δn̄1 = 0 we can solve (6.121) for the variation of the normal vector

δn̄1 = −[ ā1 α ⊗ n̄1 ] δā1
α = −(n̄1 · δā1

α) ā1 α = −(n̄1 · δā1
α) āαβ ā1

β , (6.122)

and in the same way derive the linearization of the normal vector

Δn̄1 = −[ ā1,α ⊗ n̄1 ]Δā1
α = −(n̄1 ·Δā1

α) ā1,α = −(n̄1 ·Δā1
α) āαβ ā1

β . (6.123)

The contravariant base vector has been expressed by the covariant tangent
vector as ā1 α = āαβ ā1

β . The variation and linearization of the tangent vector
are given by

δā1
α = δū1

,α + x̄1
,αβ δξβ and Δā1

α = Δū1
,α + x̄1

,αβ Δξβ . (6.124)

Once the linearization of the base vector ā1
α is expressed by the incremental

displacements the linearization of the normal vector is completed. What re-
mains is to insert these results into (6.120) to derive the linearization of the
variation of the gap vector. The final result is then given after some algebraic
manipulations:

ΔδgN=−( η̄1
,αΔξα + Δū1

,α δξα + x̄1
,αβ Δξβ δξα ) · n̄1 (6.125)

+gN n̄1 · ( η̄1
,α + x̄1

,αβ δξβ ) āαγ(Δū1
,γ + x̄1

,γθ Δξθ ) · n̄1 .

Note that ΔδgN is symmetric with respect to variation and linearization.
Hence within the finite element discretization this leads to a symmetric contri-
bution to the contact tangent stiffness matrix, see Chapter 9. Equation (6.125)
is valid for general three-dimensional contact problems. For two-dimensional
application it reduces significantly. In that case, the metric tensor āαβ is sim-
ply one number, ā11, which is associated with the length of the tangent vector.
Hence we define ā11 = l̄2, and with ξ1 = ξ obtain

ΔδgN=−( η̄1
,ξΔξ + Δū1

,ξ δξ + x̄1
,ξξ Δξ δξ ) · n̄1 (6.126)

+
gN

l̄2
( η̄1

,ξ + x̄1
,ξξ δξ ) · [ n̄1 ⊗ n̄1 ] (Δū1

,ξ + x̄1
,ξξ Δξ ) ,

a symmetric form in variation η and linearization Δu.

REMARK 6.6

1. In case that the factor gN / l̄2 is very small, one could be tempted to neglect the
second term in (6.125) or (6.126) which makes the formulation much simpler. It
is clear that then the property of quadratic convergence in Newton’s method is
lost. However, the convergence rate can still be superlinear, and thus be sufficient
for many applications.
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2. Some discretization techniques are derived on the basis of flat element geome-
tries. In such a case, equation (6.125) reduces considerably since all terms which
include second derivatives are zero. With this assumption equation (6.125) col-
lapses to

ΔδgN = −( η̄1
,αΔξα + Δū1

,α δξα ) · n̄1 + gN āαγ ( n̄1 · η̄1
,α ) ( Δū1

,γ · n̄1 ) . (6.127)

Note also that the tensor H̄αβ simplifies in this case, which is due to the fact
that the second term in (4.21) disappears. Hence H̄αβ is equal to metric tensor
āαβ , and thus we can use

δξβ = āαβ
[ (

η2 − η̄1
)
· āα + gN n̄1 · η̄1

,α

]
Δξβ = āαβ

[ (
Δu2 − Δū1

)
· āα + gN n̄1 · Δū1

,α

]
,

in (6.127) instead of (4.21) and (6.119).
3. Furthermore, the associated two-dimensional version of the linearization of the

variation of the gap function (6.126) for flat surfaces has the structure

ΔδgN = −( η̄1
,ξΔξ + Δū1

,ξ δξ ) · n̄1 +
gN

l̄2
η̄1

,ξ · [ n̄1 ⊗ n̄1 ] Δū1
,ξ . (6.128)

Here δξ and Δξ are, according to (4.24), given by

δξ =
1

l̄2

[
( η2 − η̄1 ) · x̄1

,ξ + gN n̄1 · η̄1
,ξ

]

Δξ =
1

l2

[
( Δu2 − Δū1 ) · x̄1

,ξ + gN n̄1 · Δū1
,ξ

]
.

6.5.2 Tangential contact

The linearization of the tangential contact contribution cT in (6.113) follows
from

∂cT

∂u
Δu =

∂cT

∂λT
ΔλT +

∂cT

∂gT

ΔgT +
∂cT

∂δgT

ΔδgT +
∂cT

∂pN
ΔpN . (6.129)

However, here we have to distinguish between the stick and the slip case.
We shall thus rewrite the general form of (6.113) for stick and frictional slip
in such a way that we introduce the tangential stress vector tT . It can be
either interpreted as a Lagrange multiplier in the case of stick, or as a stress
vector stemming from a constitutive equation like Coulomb’s friction law.
With this we can write in general

cT = tT · δgT + δtT · gT , (6.130)

where the first term reflects the virtual work of the stress vector along the
relative tangential displacement. This can be either due to a constitutive re-
lation in the interface or due to a Lagrange multiplier. The second term
appears only in the case of a Lagrange multiplier formulation of the stick
part, since in frictional sliding gT �= 0. This equation can be simplified even
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more by noting that δgT = δξα ā1
α. By now introducing the component form

of the stress vector, tT = tT α ā1 α, the first term in (6.130) yields

tT · δgT = tT α δξα . (6.131)

With this the linearization of cT in the stick case for a Lagrange multiplier
formulation leads to

∂cT

∂u
Δu = ΔλT α δξα + λT α Δδξα + δλT α Δξα . (6.132)

In the frictional sliding case we have

∂cT

∂u
Δu = ΔtT α δξα + tT α Δδξα . (6.133)

In these equations the following quantities have to be derived: ΔtT α, Δξα and
Δδξα. Since the linearization of the tangential part of the stress vector depends
heavily on the constitutive equation in the contact interface (see Section 5.2)
we discuss here only the second and third terms. The linearization of the stress
vector ΔtT α can be computed once the update formula is known in terms of
the displacement variables (e.g. see Section 10.5.2).

Equations analogous to (6.132) and (6.133) can also be derived for the
penalty formulation. However, the relevant equations will be found in more
detail in Chapter 9. This is due to the fact that in this formulation, only
knowledge of Δξα and Δδξα is needed, apart from the penalty terms which
are related to the stress vector.

The linearization of ξα has already been given in (6.119), thus it remains
to compute Δδξα. For this purpose we start again from (6.118). This equation
is multiplied by ā1

γ which yields

−ā1
αγΔδξα=[η̄1

,αΔξα + Δū1
,α δξα + x̄1

,αβ Δξβ δξα ] · ā1
γ

+[ δgN Δn̄1 + ΔgN δn̄1 + gN Δδn̄1 ] · ā1
γ , (6.134)

where terms which cancel out have been omitted. With

Δ [ δ(ā1
γ · n̄1) ] = Δ [ δā1

γ · n̄1 + ā1
γ · δn̄1 ]

= Δδā1
γ · n̄1 + δā1

γ · Δn̄1 + Δā1
γ · δn̄1 + ā1

γ · Δδn̄1 ,

one can rewrite the last term in (6.134) as

ā1
γ · Δδn̄1 = −(Δδā1

γ · n̄1 + δā1
γ · Δn̄1 + Δā1

γ · δn̄1 ) . (6.135)

Finally, the evaluation of Δδā1
γ is given by

Δδā1
γ = Δ(η̄1

,γ + x̄1
,γα δξα ) (6.136)

= η̄1
,γαΔξα + Δū1

,γα δξα + x̄1
,γαβ δξα Δξβ + x̄1

,γα Δδξα .
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With this result all quantities in (6.134) are known. These can be combined for
the final result which obtains a nice structure when the definition of the gap
function gN n̄1 = x2− x̄1 is used. Combining the fourth and the fifth terms on
the right-hand side of (6.134) with the last two components in (6.135) yields

[dgN Δn̄1 + ΔgN δn̄1] · ā1
γ − gN ( δā1

γ · Δn̄1 + Δā1
γ · δn̄1 )

= −[ δ( gN n̄1 ) · Δā1
γ + Δ( gN n̄1 ) · δā1

γ ] (6.137)

= −[ δ(x2 − x̄1 ) · Δā1
γ + Δ(x2 − x̄1 ) · δā1

γ ]

= −(η2 − η̄1 ) · Δā1
γ − (Δu2 − Δū1 ) · δā1

γ . + x̄1
αδξα · Δā1

γ + x̄1
αΔξα · δā1

γ

All results obtained so far can be substituted into (6.134), which after some
algebra and grouping of all terms with Δδξα leads on the left-hand side to an
expression for the linearization of the variation of ξα:

Δδξα=
[
−ā1

β · ( δξγΔū1
,γ + η̄1

,γ Δξγ ) − ( ā1
β · ā1

γ,θ − gN n̄1 · ā1
β,γθ ) δξγΔξθ

+gN ( η̄1
,βγΔξγ + Δū1

,βγ δξγ ) · n̄1

−( η̄1
,β + ā1

β,γ δξγ ) · ā1
θ Δξθ − (Δū1

,β + ā1
β,γ Δξγ ) · ā1

θ δξθ (6.138)

+(η2 − η̄1 ) · (Δū1
,β + ā1

β,γ Δξγ )

+(Δu2 − Δū1 ) · ( η̄1
,β + ā1

β,γ δξγ )
]

H̄αβ .

This expression is very complex since, additionally, the quantities δξα and
Δξα also have to be inserted as functions of the incremental displacements
Δuα and the variations ηα, see (4.21) and (6.119). Furthermore, the tensor
H̄αβ is the inverse of H̄αβ defined in (6.119).

REMARK 6.7

1. The term Δδξα simplifies for flat geometries which occur when linear interpo-
lations are applied to discretize the contact terms. One derives from (6.138)

Δδξα=
[
−ā1

β · ( δξγΔū1
,γ + η̄1

,γ Δξγ ) − η̄1
,β · ā1

θ Δξθ − Δū1
,β · ā1

θ δξθ

+( η2 − η̄1 ) · Δū1
,β +(Δu2 − Δū1 ) · η̄1

,β

]
āαβ (6.139)

which omits a lot of terms.
2. In the two-dimensional situation, most of the terms in (6.138) remain in the

linearization of the variation of the gap function

Δδξ=
[
−ā1 · ( δξΔū1

,ξ + η̄1
,ξ Δξ ) − ( ā1 · ā1

,ξ − gN n̄1 · ā1
,ξξ ) δξΔξ

+gN ( η̄1
,ξξΔξ + Δū1

,ξξ δξ ) · n̄1

−( η̄1
,ξ + ā1

,ξ δξ ) · ā1 Δξ − ( Δū1
,ξ + ā1

,ξ Δξ ) · ā1 δξ (6.140)

+( η2 − η̄1 ) · ( Δū1
,ξ + ā1

,ξ Δξ ) +(Δu2 − Δū1 ) · ( η̄1
,ξ + ā1

,ξ δξ )
]

H̄11 .

3. However, in the two-dimensional flat case a lot of terms drop out. This leads to

Δδξ =
[
−2 ā1 · ( δξΔū1

,ξ + η̄1
,ξ Δξ ) (6.141)

+( η2 − η̄1 ) · Δū1
,ξ +(Δu2 − Δū1 ) · η̄1

,ξ

] 1

l̄2
,

where the terms Δξ and δξ are computed as in (6.128).
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6.5.3 Special case of stick

When the formulation discussed in Remarks 6.2 and 6.3 is used to enforce the
constraint condition for stick, then we do not have to distinguish between the
normal and tangential directions in the contact interface, and the constraint
equation is given by (6.29): g = x2 − x1(ξ̄) = x2 − x̄1 = 0. This leads to the
Lagrange multiplier formulation for stick

ΠLM
c =

∫

Γc

λ · g dA . (6.142)

Since the stick condition requires that point x2 remains at the same position on
the master surface, the convective coordinates does not change: δξα = const.
Hence the variation of the stick condition (6.29) is simply given by

δg = η2 − η̄1 , (6.143)

where the variation of ξ̄α can be neglected. From ΠLM
c we obtain the associ-

ated weak form
CLM

c =
∫

Γc

( δλ · g + λ · δg ) dA . (6.144)

The linearization of this term is then given by

ΔCLM
c =

∫

Γc

( δλ · Δg + Δλ · δg ) dA , (6.145)

where Δδg = 0 and Δg has the same structure as (6.143):

Δg = Δu2 − Δū1 . (6.146)

All other terms are zero, which is a considerable simplification regarding all
complicated expressions in the last two sections.

In the same way, for the penalty formulation in Remark 6.3 from (6.34),
we obtain

ΔCstick
c =

∫

Γc

ε (Δu2 − Δū1 ) · (η2 − η̄1 ) dA . (6.147)

Also, this expression is very simple, and should be used to formulate stick
conditions within the penalty method.

6.6 Rolling Contact

Rolling contact has its technical application for the interaction between rail-
road wheels and train tracks and for the analysis of car or lorry tyres. In both
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cases one has to distinguish between stationary and non-stationary loading
and response. Due to the technical importance, many contributions regard-
ing rolling contact can be found in the literature. Railroad wheels in contact
with the track were investigated in detail in Kalker (1990) using special algo-
rithms and formulations based on linear elasticity. Finite element treatment
based on the ALE-formulation for rolling contact problems can be found in
e.g. Padovan and Zeid (1984), Oden and Lin (1986), Tallec and Rahier (1994),
Nackenhorst (2000), Hu and Wriggers (2002) and Nackenhorst (2004) for gen-
eral applications.

Since the ALE-formulation introduces a new reference configuration, all
equations developed so far for contact problems have to be reformulated.

6.6.1 Special reference frames for rolling contact

In the case of rolling contact, it can be useful not to apply the Lagrange

description as given before, but to use a special rotating reference frame.
From the continuum point of view, we distinguish between three different
configurations of the body, see Figure 6.10. B denotes the initial configuration
of the body. With ϕ(B) we describe the deformed configuration. Finally, ϕR(B)
is the rotating reference configuration which rotates with a given angular
velocity ωR. Thus, for the deformation map we have

ϕ = ϕ̂ ⊗ ϕR (6.148)

where ϕ̂ is the deformation relative to the rotation frame. For the line elements
– needed later to define the strain measures – we have

dx = F dX = F̂ dxR

dxR = FR dX (6.149)

Fig. 6.10. Reference frames to describe the deformation.
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with F =
∂x
∂X

, F̂ =
∂x
∂xR

, FR =
∂xR

∂X
. Hence, from this a multiplicative

decomposition of the deformation gradients related to the different configura-
tions follows:

dx = F̂ FR dX . (6.150)

If the reference configuration ϕR(B) is given by a pure spinning rotation, then
we can write

xR = RX , (6.151)

with the orthogonal matrix R describing the rotation. Thus

dx = F̂R dX . (6.152)

The velocity is defined by the material time derivative v =
d ϕ

dt
. Using the

special decomposition of the motion into the rotating frame ϕR and the de-
formation relative to this rotating reference configuration ϕ̂, see (6.148), with
x = ϕ(X , t) = ϕ̂(ϕR(X , t) , t) by the chain rule, one obtains

v =
d ϕ

dt
=

∂ϕ̂

∂t
+

∂ϕ̂

∂ϕR

dϕR

dt
. (6.153)

This equation can be rewritten with (6.149), leading to

v =
d ϕ

dt
=

∂ϕ̂

∂t
+ F̂ vR , (6.154)

where the velocity vR is defined by vR =
d ϕR

dt
. For computation of the

acceleration, the chain rule has to be applied again to (6.153), which yields

a =
d2 ϕ

dt2
=

∂2ϕ̂

∂t2
+ 2

∂2ϕ̂

∂ϕR∂t

dϕR

dt
+

∂2ϕ̂

∂ϕ2
R

[
dϕR

dt

]2

+
∂ϕ̂

∂ϕR

d2ϕR

dt2
. (6.155)

This equation can be shortened using (6.149), which leads to

a =
∂2ϕ̂

∂t2
+ 2 ˙̂FvR +

∂

∂ϕR

F̂ v2
R + F̂ aR , (6.156)

where aR is defined by aR =
d2 ϕR

dt2
. In the case of a steady state spin-

ning process, ϕ̂ is not explicitly time-dependent, which simplifies (6.153) and
(6.155) considerably:

v =
∂ϕ̂

∂ϕR

dϕR

dt
= F̂ vR , (6.157)

a =
∂2ϕ̂

∂ϕ2
R

[
dϕR

dt

]2

+
∂ϕ̂

∂ϕR

d2ϕR

dt2
=

∂

∂ϕR

F̂ v2
R + F̂ aR .
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In this case, the reference frame has a constant angular velocity ωR with
respect to a given axis. This defines a rigid body motion of the reference
frame. Hence, using (6.151) for the velocity vR in the reference frame, one
derives

vR =
∂xR

∂t
+ ΩR xR , (6.158)

with X = R−1 xR = RT xR and ṘRT = ΩR. The associated acceleration
aR is then computed from

aR =
∂2xR

∂t2
+ Ω̇R xR + ΩR

(
∂xR

∂t
+ ΩR xR

)
. (6.159)

To the skew symmetric tensor ΩR, one can associate an axial vector such that

vR =
∂xR

∂t
+ ωR × xR . (6.160)

The first term disappears for a constant time-independent rotation. Combin-
ing (6.157) and (6.158) yields

v = F̂ΩRxR . (6.161)

Furthermore, equations (6.157) and (6.159) then lead to the acceleration

a =
(

∂

∂ϕR

F̂ΩR xR + F̂ΩR

)
ΩR xR . (6.162)

6.6.2 Strain measures

With respect to Section 6.6.1, one has to investigate how the strain measures,
developed in Section 3.1.2, are affected by the rotating reference configuration
introduced. For this purpose, (6.149) is applied, which gives F = F̂R. This
result can be used in (3.15) to compute the right Cauchy Green strains,

C = (F̂R)T F̂R = RT F̂
T

F̂R = RT ĈR . (6.163)

Thus, by the choice of the rotating reference configuration, the strains, Ĉ,
producing stresses exclusively stem from the motion relative to the rotating
frame. By inserting the kinematical relations developed for the rotated refer-
ence frame, the Green–Lagrangian strains follow from (6.163):

E =
1
2

(RT ĈR− 1 ) = RT 1
2

( Ĉ − 1 )R = RT ÊR , (6.164)

which have the same structure as (6.163).
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6.6.3 Weak Form

For numerical simulations the weak form of a contact problem has to be
formulated in such a way that leads to the most efficient solution scheme. In
the case of rolling contact a formulation with respect to the rotating reference
configuration BR is optimal. Due to that the weak form (3.59) is transformed
to the rotating reference configuration∫

BR

FS · Gradη dV =
∫

BR

F̂RS · Ĝradη R dVR

∫

BR

F̂ Ŝ · Ĝradη dVR , (6.165)

where the rotated second Piola–Kirchhoff stress tensor Ŝ has been defined
according to Ŝ = RSRT . Furthermore, the inertia term yields, for a constant
spinning motion,∫

B

ρ0 v̇ · η dV =
∫

BR

ρR Ω2
R xR · η dVR

−
∫

BR

ρR (F̂ΩR xR) · (Ĝradη ΩRxR) dVR , (6.166)

where the first term denotes the body forces due to spinning. The second term
is associated with the inertia forces due to constant spinning.

Using (6.165) and (6.166) in (3.59), we obtain the weak form with respect
to the rotating frame

G(ϕ̂ ,η) = −
∫
BR

[ ρR (F̂ΩR xR) · (Ĝradη ΩRxR) − F̂ Ŝ · Ĝradη ] dVR

−
∫
BR

ρR (b̄ − Ω2
R xR) · η dVR −

∫
∂BσR

t̄ · η dAR = 0 .

(6.167)
The linearization of the weak form, defined in quantities of the rotated

frame, follows from (6.167). Since R and ΩR are constant, we obtain the
same result as in (3.122). However, there is one extra term stemming from the
inertia forces, the first term in (6.167). The linearization of this term is trivial
since it is linear in the relevant deformation ϕ̂. In total,for the linearization
at the known state ¯̂ϕ we derive:

DG( ¯̂ϕ,η) · Δu=
∫

BR

{ Ĝrad Δu ¯̂S · Ĝradη + δ
¯̂E · ¯̂

C [Δ ¯̂E ] } dVR

−
∫

BR

ρR (ĜradΔuΩR xR) · (Ĝrad η ΩRxR) dVR . (6.168)
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6.6.4 Constitutive equation

Due to the introduction of the rotating reference frame, a special treatment
is needed for constitutive equations which depend upon history variables, like
viscoelastic or elastoplastic models. The difference between a purely elastic
and an inelastic constitutive law in a rotating reference configuration is shown
in the next two sections.

Elastic response function. The constitutive equation which repre-
sents the hyperelastic response of the solid (3.74) can be transformed into
the rotated frame which is applied for rolling contact. With Ŝ = RSRT ,
C = RT ĈR and C−1 = RT Ĉ

−1
R, one can write (3.74) directly in terms of

the stress Ŝ and the strain Ĉ as follows:

Ŝ =
Λ

2
(J2 − 1 ) Ĉ

−1
+ μ (1 ,−Ĉ

−1
) (6.169)

since the rotation tensor multiplies the tensors on both sides of (3.74) in the
same way, and thus cancels out. Hence, no special treatment for the elastic
constitutive equation is needed in the case of rolling contact. This is also true
for the incremental constitutive tensor. One only has to exchange C by Ĉ in
(3.89) to compute the associated incremental constitutive tensor in BR.

Viscoelastic response function. Car tyres, which are often investigated
using rolling contact formulations, are made of rubber which not only responds
to deformations like a hyperelastic material, but also shows inelastic behaviour
which can be described by a viscoelastic material model. Here again, one has
to investigate whether a description using the rotated frame does change the
constitutive equation or not (see above). Using a standard viscoelastic model,
see Christensen (1980), we obtain for the second Piola–Kirchhoff stresses,

S(t) = S̄e[E(t)] + ν

t∫

−∞

e−
t−s

τ
∂E
∂s

ds . (6.170)

Here t denotes the time, E is the Green–Lagrangian strain tensor, S̄e is
the hyperelastic response function (see last section) and ν and τ are consti-
tutive parameters. All quantities in (6.170) refer to the initial configuration
B. Transformation with respect to the rotating reference configuration with
Ŝ = RSRT and E = RT ÊR yields

Ŝ(t) = S̄e[Ê(t)] + ν

t∫

−∞

e−
t−s

τ
d

ds
[R(t)RT (s)Ê(s)R(s)RT (t)] ds . (6.171)

In this model, the rotation R depends upon the complete motion, and hence
its history has to be known during the whole simulation. However, the rota-
tion only appears as R(t)RT (s), which means that only the relative rotation
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between the two times t and s is involved. Since we assume steady state rota-
tion, the relative rotation is explicitly given by eΩ(t−s). For a more detailed
treatment of viscoelastic constitutive equations for rolling motions, see Tallec
and Rahier (1994) or Govindjee and Mihalic (1998).

6.6.5 Contact kinematics

Relations for contact kinematics have to be derived based on the rotating
reference frame. This leads, especially for tangential contact, to different for-
mulations, when compared to the results presented in Chapter 4.

Normal contact. To formulate the non-penetration condition for rolling
contact, we define a minimum distance problem between the rolling object
and the rigid surface, see Figure 6.11. The reference configuration which is
used to define the contact conditions can be either the rotating frame or the
initial configuration. In cases when we have to distinguish both, we use the
reference to B or BR.

For a mathematical description of the problem it is useful to introduce
convective coordinates ξ = (ξ1 , ξ2) on the surface with which the rolling
object is in contact, from now on called the master surface. This leads to
the definition of the master surface, described by the position vector X0 =
X0(ξ1 , ξ2). Now for every point x on the deformed boundary of the rolling
object we can define the minimum distance problem:

d = MIN ‖x − X0(ξ1 , ξ2)‖ . (6.172)

The solution of this problem provides the pair of convective coordinates, ξ̄,
which denotes the point on the master surface closest to point x. ξ̄ follows
from the condition, see also (4.3),

d

dξα
d =

1
‖x − X0(ξ1 , ξ2)‖ [x − X0(ξ1 , ξ2)] · X0 ,α(ξ1 , ξ2) = 0 , (6.173)

which is the closest point projection of point x onto the master surface. Since
X̄0 ,α = X0 ,α(ξ̄) are the tangent vectors to the convective coordinates of the

Fig. 6.11. (a) Non-penetration, (b) penetration.
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master surface at the solution point, ξ̄, the vector x − X̄0(ξ̄) points in a
direction normal to the master surface. Hence it can be used to define the
non-penetration condition.

With
gN = [x − X̄0(ξ̄) ] · N̄0(ξ̄) (6.174)

we define the gap function where

N̄0(ξ̄) =
x − X̄0(ξ̄)
‖x − X̄0(ξ̄)‖ or

=
X̄0 ,1(ξ̄) × X̄0 ,2(ξ̄)
‖X̄0 ,1(ξ̄) × X̄0 ,2(ξ̄)‖ . (6.175)

Both definitions can be used in (6.174), though the first is not well behaved for
gN −→ 0. Hence the second condition should be applied in (6.174). Function
gN then describes the state at the interface as follows:

gN > 0 gap opening,
gN = 0 perfect contact,
gN < 0 penetration.

Thus contact is formulated by the inequality constraint

gN ≥ 0 . (6.176)

In case of a flat master surface which is often the case when rolling contact
is considered we can simplify the representation of the master surface by
cartesian coordinates. By defining the base vectors of the master surface as
E1 and E2 we obtain for the normal N0 = E3. In this case the closest point
projection (6.173) yields

[x − X̄0(X1 ,X2)] · Eα = 0 (6.177)

with the solution point (X̄1 , X̄2). Furthermore the gap is given by

gN = [x − X̄0(X̄1 , X̄2) ] · E3 . (6.178)

Tangential contact. The kinematical relations for the tangential motion
in the contact area have lead to the definition of the relative tangential ve-
locity. This quantity can be obtained in the case of rolling contact by the
derivative of condition (6.173) with respect to time. This yields

(v − ˙̄X0) · X̄0 ,α + (x − X̄0) · ˙̄X0 ,α − X̄0 ,β ξ̇β · X̄0 ,α = 0 . (6.179)

Here v is the velocity associated with point x. With the metric Āα β = X̄0 ,α ·
X̄0 ,β the components of the relative gap velocity in the tangential direction
are
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Āα β ξ̇β = (v − V̄0) · X̄0 ,α + (x − X̄0) · ˙̄X0 ,α , (6.180)

where we have set V̄0 = ˙̄X0.
In the case of a flat master surface, equation (6.180) simplifies with ˙̄X0 ,α =

0, X̄0 ,α = Eα and Āα β = δα β to

Ẋα = (v − V̄0) · Eα , (6.181)

where Ẋα denotes the change in time of the projection point (X̄1 , X̄2) on the
master surface, and thus is the relative tangential velocity in the contact area.
With the projection tensor P⊥ = [Eα ⊗ Eα] we can reformulate (6.181) as

v⊥ = P⊥ (v − V0) , (6.182)

with v⊥ = Ẋα Eα being the tangential relative velocity vector in Γc.
With these relations we can now formulate the tangential contact condi-

tions. The first is the non-slip or stick condition

v⊥ = 0 , (6.183)

and hence imposes a constraint on the relative tangential motion. It means
that locally, the rotating object is rolling and not sliding on the surface.

If the tangential forces exceed a certain limit in Γc, then slip occurs. In
that case, the associated relative tangential velocity follows from a constitutive
relation. Classically Coulomb’s law is applied to determine the slip velocity,
however more complicated constitutive equations can also be used to model
the frictional behaviour in the contact interface. These constitutive equations
will be considered in the next section.

Generally slip as well as stick can occur in the contact area. Thus we can
subdivide the contact area Γc into Γ slip

c ∪ Γ stick
c = Γc. Within the numerical

method applied to solve the rolling contact problem, the stick and the slip
area have to be computed.

In some cases it might be necessary in the numerical implementation of
rolling contact, e.g. see Nackenhorst (1993), to enforce the stick condition in
a weak sense. Following Nackenhorst (1993) one can use a least square fit

∫

Γ stick
c

v2
⊥dΓ → MIN =⇒

∫

Γ stick
c

v⊥ · δv⊥dΓ = 0 , (6.184)

which leads with (6.181) and (6.183) to
∫

Γ stick
c

P⊥δv · P⊥ (v − V̄0) dΓ = 0 , (6.185)

and hence yields a system of equations to determine the tangential components
of v in the stick interface Γ stick

c which fulfil the stick condition (6.183) in the
weak sense
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∫

Γ stick
c

δv · P⊥vdΓ =
∫

Γ stick
c

δv · P⊥V̄0 dΓ . (6.186)

Note that if slip occurs in a steady state computation of rolling contact, then
the dissipation due to the frictional forces in the slip zone has to be compen-
sated for by a moment around the spinning axis of the rolling body to preserve
stationary motion.

Definition of creepage. For further reference we also define another
kinematical quantity which measures the creepage in the contact interface.
Its definition is given by

s =
˙̄X0 − ωR × R

‖ ˙̄X0‖
. (6.187)

The creepage vector s can be decomposed into a part which is related to the
flattening of the rolling body

sF =
ωR × (r − R)

‖ ˙̄X0‖
, (6.188)

and a partial slip due to rolling in the contact area

sS =
˙̄X0 − ωR × r

‖ ˙̄X0‖
, (6.189)

so that we have s = sF + sS .
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Discretization of the Continuum

Discretization of the domain contributions of bodies in contact is not the ob-
jective of this work. For a detailed treatment with respect to the finite element
implementations of boundary-value problems regarding large deformations,
see Oden (1972), Crisfield (1991), Crisfield (1997), Zienkiewicz and Taylor
(2000a), Bathe (1996) or Wriggers (2001) and the references therein. How-
ever, in this chapter, the discretization of continua undergoing large strains
using isoparametric elements is discussed briefly for completeness.

Within the finite element method we have different approximations. These
are geometrical approximations of the domain B on which the boundary value
problem is defined. Furthermore, the associated fields, deformations or stresses
have to be approximated. Also, the integrals are not evaluated exactly, since,
as they are evaluated for the weak form, they have to be computed via numer-
ical integration procedures. Collectively, these approximations are sources for
errors inherent in the finite element method. The estimation of these errors is
the contents of Chapter 14.

In this section a description of the interpolations, which are the basis for a
treatment using isoparametric elements, is given. Within this framework, we
assume that the domain B is discretized by ne finite elements, which leads to
its geometrical approximation Bh:

B ≈ Bh =
ne⋃

e=1

Ωe . (7.1)

The configuration of one element is Ωe ⊂ Bh, as shown in Figure 7.1 for
a two-dimensional case. ∂Bh denotes the boundary of the discretization Bh,
which is in general also an approximation of the function describing the real
boundary ∂B.
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Fig. 7.1. Discretization of body B.

7.1 Isoparametric Concept

The finite element method requires that the field variables be approximated
by a finite element Ωe. We write the displacement field u(X) as

uexakt (X) ≈ uh (X) =
N∑

I=1

NI (X)uI , (7.2)

where X is the position vector in Ωe, NI (X) are interpolation or basis func-
tions which are defined on Ωe, and uI denote the unknown nodal variables.
Here, uI = {u1, u2, u3}T

I are the nodal variables of the displacement field.
During the development of finite element methods, many possibilities for

interpolation of the unknown functions within an element have been exploited.
Due to its general applicability, especially when arbitrary geometries have to
be discretized, the isoparametric concept is widely used. On the isoparametric
approach, we approximate geometry and field variables by the same interpo-
lation functions, see Figure 7.2:

Xh
e =

n∑
I=1

NI(ξ)XI , and uh
e =

n∑
I=1

NI(ξ)uI . (7.3)

The interpolation functions in equations (7.3) of the element in Bh have
been represented by interpolation functions NI(ξ) defined on the reference
element Ω�, see Figure 7.2. Thus, for every element Ωe, there exists a trans-
formation (7.3)1 which relates the coordinates Xe = Xe (ξ) to the coordinates
ξ of the reference element Ω�. Hence all computations are performed with re-
spect to the reference configuration. Only in very special cases do the initial
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Fig. 7.2. Isoparametric mapping.

and current configurations of a finite element coincide. However, this trans-
formation is numerically easy to handle, and allows transformation of the
reference element to arbitrary geometries. This feature leads to the fact that,
in implementing of the method, there is almost no difference in the formulation
of finite elements with respect to the current or initial configurations.

Figure 7.3 depicts the two possibilities to describe deformation in contin-
uum mechanics using the isoparametric concept. It can be seen easily that
Figure 7.3 is a discrete version of Figure 3.1, where additionally we have now
introduced the reference configuration Ω�. The kinematical relations within
one element are

Fe = je J−1
e and Je = detFe =

det je
detJe

, (7.4)

which show that the deformation gradient is uniquely defined by the isopara-
metric mapping of Ω� onto Ωe in the initial configuration, or onto ϕ(Ωe)
in the current configuration. In these equations, the gradients je and Je are
defined as follows:

je = Gradξ x =
∂x
∂ξ

=
n∑

I=1

NI,ξ(ξ)xI ⊗ Eξ ,

Je = Gradξ X =
∂X
∂ξ

=
n∑

I=1

NI,ξ(ξ)XI ⊗ Eξ . (7.5)

Since the derivatives NI,ξ are scalar quantities, we can move them in front of
the base vectors Eξ. This yields

je =
n∑

I=1

xI ⊗ NI,ξ(ξ)Eξ =
n∑

I=1

xI ⊗∇ξNI ,
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Fig. 7.3. Isoparametric description of deformations.

Je =
n∑

I=1

XI ⊗ NI,ξ(ξ)Eξ =
n∑

I=1

XI ⊗∇ξNI . (7.6)

∇ξNI is the gradient of the scalar function NI with respect to the coordinates
ξ.

With this, it is simple to compute gradients with respect to the initial or
current configurations. For a vector field this reads as uh,

Graduh = =
n∑

I=1

uI ⊗∇XNI ,

graduh = =
n∑

I=1

uI ⊗∇xNI . (7.7)

Analogous to the transformation of the derivatives between different configu-
rations, see (3.24), we obtain

∇ξNI = JT
e ∇XNI and ∇ξNI = jT

e ∇xNI , (7.8)

or the inverse relations

∇XNI = J−T
e ∇ξNI , and ∇xNI = j−T

e ∇ξNI , (7.9)

such that the gradient in (7.7) is completely defined in quantities which are
defined in the reference configuration Ω� as

Graduh = =
n∑

I=1

uI ⊗ J−T
e ∇ξNI ,

graduh = =
n∑

I=1

uI ⊗ j−T
e ∇ξNI . (7.10)
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The only difference in the formulation of both gradients in (7.10) lies in the
exchange of the gradients je and Je, and therefore this approach is advanta-
geous, especially for large deformation finite element formulations.

7.1.1 Isoparametric interpolation functions

Within the different possibilities to construct interpolation functions for
isoparametric elements, we here follow the concept of the Lagrange interpo-
lation, e.g. see Zienkiewicz and Taylor (1989). For a Lagrange polynomial
of power n-1, in the one-dimensional case we obtain

NI(ξ) =
n∏

J=1
J �=I

( ξJ − ξ )
( ξJ − ξI )

. (7.11)

For two- or three-dimensional interpolations, we choose a product formulation

NJ (ξ , η) = NI(ξ)NK(η) or NJ(ξ , η , ζ) = NI(ξ)NK(η)NL(ζ) , (7.12)

with J = 1, . . . ndim and I ,K ,L = 1, . . . n (dim is the spatial dimension of
the problem). The interpolation or shape functions are defined in the local
coordinate system ξ = { ξ, η, ζ }.

In the next section we specify the isoparametric shape functions for one-,
two- and three-dimensional problems.

7.1.2 One-dimensional shape functions

Here we briefly discuss one-dimensional shape functions which are C0-continuous.
These can be found in many places in the literature, and thus only the final
equations which are needed in subsequent sections will be given.

In one-dimensional problems we only have one component of our field
variables, thus we can write with (7.3)

Xh
e =

n∑
I=1

NI(ξ)XI , uh
e =

n∑
I=1

NI(ξ)uI , (7.13)

for coordinate X and the associated field variable u. n is the number of shape
functions, and ξ ∈ [−1, 1] is the coordinate in the reference configuration, see
Figure 7.4. The shape functions NI(ξ) follow from (7.11) and are different
with respect to the choice of the polynomial order. We have

• Constant shape functions
N1(ξ) = 1 . (7.14)

• Linear shape functions

N1 (ξ) =
1
2

( 1 − ξ ) , N2 (ξ) =
1
2

( 1 + ξ ) . (7.15)
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Fig. 7.4. One-dimensional shape functions.

• Quadratic shape functions

N1 (ξ) =
1
2

ξ ( ξ − 1 ) , N3 (ξ) = ( 1 − ξ2 ) , N2 (ξ) =
1
2

ξ ( 1 + ξ ) .

(7.16)

The isoparametric mapping of function u onto the reference element is ob-
tained with equation (7.13).

Computation of derivatives. For the computation of strains, its varia-
tions or linearizations, we need the derivatives of the field variable u. Within
the isoparametric concept we have to use the chain rule

∂uh
e

∂X
=

n∑
I=1

∂NI ( ξ )
∂X

uI , (7.17)

for the derivative of u

∂uh
e

∂X
=

∂uh
e

∂ξ

∂ξ

∂X
=

(
n∑

I=1

∂NI ( ξ )
∂ξ

uI

)
∂ξ

∂X
. (7.18)

The derivative ∂ξ
∂X is computed with the interpolation for the geometry (7.13),

∂ξ

∂X
=

(
∂X

∂ξ

)−1

=

(
n∑

I=1

∂NI(ξ)
∂ξ

XI

)−1

= Je(ξ)−1 , (7.19)

where we have made use of the abbreviation ∂Xh
e

∂ξ = Je.
In the special case of linear shape functions (7.15), with the length of an

element (Le = X2 − X1 ) we obtain

n∑
I=1

∂NI(ξ)
∂ξ

XI =
1
2

(X2 − X1) =
1
2

Le , (7.20)
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and inserting this into (7.18), the explicit formula

∂uh
e

∂X
=

u2 − u1

Le
, (7.21)

which yields a constant value.

7.1.3 Two-dimensional shape functions

In the two-dimensional case, quadrilateral and triangular finite elements have
to be distinguished. Here we discuss C0-continuous shape functions which are
linear as well as quadratic.

First triangular elements are considered. The simplest element with linear
shape functions consists of three nodes; an element with quadratic interpola-
tion needs six nodes to define the fields and geometry within an element. In
Figure 7.5 the triangular element is depicted for the quadratic interpolation.
For a linear element only the vertices 1 to 3 are necessary to define the in-
terpolation. The element is shown in Figure 7.5 in its reference configuration

Fig. 7.5. Three- and six node triangular element.
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Ω�, denoted by the ξ-η coordinates, and in its physical space, denoted by the
X1-X2 coordinate system.

The shape functions for the linear case are defined by

N1 = 1 − ξ − η , N2 = ξ , N3 = η . (7.22)

Here all partial derivatives with respect to ξ and η are constant.
The shape functions for the quadratic element are

N1 = λ ( 2λ − 1 ) , N4 = 4 ξ λ,
N2 = ξ ( 2 ξ − 1 ) , N5 = 4 ξ η,
N3 = η ( 2 η − 1 ) , N6 = 4 η λ,

(7.23)

with the abbreviation λ = 1 − ξ − η.
Next the shape functions for quadrilateral elements are defined. The sim-

plest quadrilateral has four nodes. The associated interpolation for geometry
and field variables is bilinear. The product formula (7.12), together with the
shape functions (7.15), yields

NI (ξ, η) =
1
2

( 1 + ξI ξ )
1
2

( 1 + ηI η ) , (7.24)

where the coordinates ξI and ηI are associated with the vertices (see Figure
7.6 on the reference element Ω�)

ξ1 = (−1, −1) ξ2 = (1, −1) ξ3 = (1, 1) ξ4 = (−1, 1) . (7.25)

The shape functions for the quadratic nine-node element again follow from
the product formula (7.12) using the quadratic interpolation (7.16). For the
nodes (see Figure 7.6), we obtain

• Vertices (I = 1, 2, 3, 4):

NI (ξ, η) =
1
4

(ξ2 + ξI ξ ) (η2 + ηI η ) , (7.26)

Fig. 7.6. Isoparametric quadrilateral elements.
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• Mid nodes (I = 5, 6, 7, 8):

NI (ξ, η) =
1
2

ξ2
I (ξ2 + ξI ξ ) ( 1 − η2 ) +

1
2

η2
I (η2 + ηI η ) ( 1 − ξ2 ) . (7.27)

• Central node (I = 9):

N9 (ξ, η) = (1 − ξ2 ) (1 − η2 ) . (7.28)

It should be noted that this is not the only possibility to define these nine
shape functions. Often a hierarchical formulation is used, e.g. see Zienkiewicz
and Taylor (1989) or Bathe (1982).

The derivatives of the shape functions defined in the reference coordinates
with respect to the coordinates in the physical space follow within the isopara-
metric concept by the chain rule

∂uh
e

∂Xα
=

n∑
I=1

∂NI ( ξ, η )
∂Xα

uI , (α = 1 , 2 ) . (7.29)

Here the partial derivative of NI with respect to Xα is computed according
to (7.9),

∇XNI =
{

NI,1

NI,2

}
= J−T

e

{
NI,ξ

NI,η

}
, (7.30)

with the Jacobi matrix Je of an Ωe element for the transformation between
the reference and initial configuration,

Je =
n∑

I=1

XI ⊗∇ξNI =
n∑

I=1

{
X1 I

X2 I

}{
NI,ξ

NI,η

}T

=
[

X1,ξ X1,η

X2,ξ X2,η

]
,

with Xα,β =
n∑

I=1

NI,β Xα I . (7.31)

This leads to an explicit from which allows us to compute in (7.29) the deriv-
atives with respect to X:

{
NI,1

NI,2

}
=

1
det Je

[
X2,η −X2,ξ

−X1,η X1,ξ

] {
NI,ξ

NI,η

}
. (7.32)

7.1.4 Three-dimensional shape functions

Finite elements for three-dimensional problems are either brick or tetrahedron
elements. Also, isoparametric interpolations are advantageous here when ar-
bitrary geometries have to be discretized. Besides bricks and tetrahedrons,
more elements are of course possible, e.g. prismatic elements, which will not
be discussed here. For general shape functions, see Dhatt and Touzot (1985).
For the three-dimensional brick element, shown in Figure 7.7, we have the
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Fig. 7.7. Isoparametric 8 node brick element.

shape functions

NI =
1
2

( 1 + ξI ξ )
1
2

( 1 + ηI η )
1
2

( 1 + φI φ ) , (7.33)

which follow from the product formula (7.12) with (7.15). Figure 7.7 depicts
the associated element in its reference configuration, Ω�, and the initial con-
figuration, Ωe. Quadratic elements can be designed with (7.12) and (7.16).
This yields an interpolation with 27 nodes per element. However, we will not
give the explicit representation here, which can be found in Zienkiewicz and
Taylor (1989) or Dhatt and Touzot (1985), for example.

Shape functions for the tetrahedron elements can be developed analogous
to the two-dimensional case. We obtain

• 4-node tetrahedron (linear interpolation)

N1 = 1 − ξ − η − ζ , N2 = ξ , N3 = η , N4 = ζ . (7.34)

• 10-nodes tetrahedron (quadratic interpolation)

N1 = λ ( 2λ − 1 ) , N6 = 4 ξ η,
N2 = ξ ( 2 ξ − 1 ) , N7 = 4 η λ,
N3 = η ( 2 η − 1 ) , N8 = 4 ζ λ,
N4 = ζ ( 2 ζ − 1 ) , N9 = 4 ξ ζ,
N5 = 4 ξ λ , N10 = 4 η ζ,

(7.35)

with λ = 1 − ξ − η − ζ.

The local node numbers associated with these shape functions are depicted
in Figure 7.8.
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Fig. 7.8. Isoparametric tetrahedra elements, local node numbers.

The derivatives of the shape functions with respect to the coordinates
of the initial or current configuration can be computed using (7.8). For the
derivatives with respect to the coordinates of the initial configuration, we have

∇X NI =

⎧⎨
⎩

NI,1

NI,2

NI,3

⎫⎬
⎭ = J−T

e

⎧⎨
⎩

NI,ξ

NI,η

NI,ζ

⎫⎬
⎭ . (7.36)

The Jacobi matrix Je of element Ωe, which is needed in this derivation, is
given by (7.6) from

Je =
n∑

I=1

XI ⊗∇ξNI =

⎡
⎣X1,ξ X1,η X1,ζ

X2,ξ X2,η X2,ζ

X3,ξ X3,η X3,ζ

⎤
⎦ . (7.37)

Within this formula, the components of Je are computed from

Xm,k =
n∑

I=1

NI,k Xm I ,

where the partial derivative with respect to k stands for a derivative with
respect to ξ, η or ζ.

7.2 Discretization of the Weak Forms

In general we can now apply the one-, two- or three-dimensional shape func-
tions to describe the interpolation for the geometry and the field variables
within the weak forms. In this chapter we do this in a brief form for equations
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(3.59) and (3.63). Furthermore, the linearizations of the weak forms are con-
sidered. Following Figure 7.1, a domain is subdivided into ne finite elements.
This discretization leads to an approximation of the geometry, which affects
the representation of the boundary of the domain under consideration.

An interpolation as described in (7.3) is chosen for each finite element Ωe,
which approximates the displacement field u and the geometry. The integrals
of the weak form can then be written with the isoparametric interpolation as

∫

B

(. . .) dV ≈
∫

Bh

(. . .) dV =
ne⋃

e=1

∫

Ωe

(. . .) dΩ =
ne⋃

e=1

∫

Ω�

(. . .) d� . (7.38)

The operator ∪ is introduced instead of a sum sign to denote the assem-
bly process which has to be performed to obtain the set of nonlinear alge-
braic equations following from (7.38). The polynomial shape functions of the
isoparametric interpolation ensures fulfillment of the inter-element continuity
conditions, as well as fulfillment of the boundary conditions within the global
system of equations. Since the assembly process is standard and well known,
it is not described in detail here (see Bathe (1982), Zienkiewicz and Taylor
(1989), Knothe and Wessels (1991), or Gross et al. (1999), for example).

7.2.1 FE formulation of the weak form with regard to the initial
configuration

The approximation of the weak form (3.59) requires discretization of the vir-
tual internal work

∫
B S · δ E dV , of the inertia terms

∫
B ρ0v̇ · η dV and of the

volume- and surface loads
∫
B ρ0 b̄ · η dV +

∫
Γ

t̄ · η dA. For the virtual internal
work, we need the variation of the Green–Lagrangian strain tensors within
the element Ωe, see (7.38). With (3.58) and (7.7), one obtains

δEh =
1
2

n∑
I=1

[
FT

e (ηI ⊗∇X NI) + (∇X NI ⊗ ηI)Fe

]
, (7.39)

where the same interpolation was used for the deformation ϕ and the variation
η. In this equation a finite element approximation of the deformation gradient
(3.6) has to be applied, which can be written with (7.7) within the element
Ωe as

Fe =
n∑

K=1

(xK ⊗∇X NK ) . (7.40)

For the derivation of the matrix formulation needed within the computer
implementation of finite elements, index notation is necessary. For (7.39) this
yields

δEh
AB =

1
2

n∑
I=1

[FkA NI,B + NI,A FkB ] ηk I (7.41)
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with components of the deformation gradients FkB =
∑n

J=1 xk J NJ,B .
Within the matrix formulation we can consider the symmetry of the

Green–Lagrangian strain tensor and its variation. Thus, it is possible to
introduce only six components of nine components for the three-dimensional
strain tensor instead

δE =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δE11

δE22

δE33

2 δE12

2 δE23

2 δE13

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
n∑

I=1

BL I ηI , (7.42)

which can be approximated as a sum over the element nodes I with the
matrices

BL I =

⎡
⎢⎢⎢⎢⎢⎣

F11 NI,1 F21 NI,1 F31 NI,1

F12 NI,2 F22 NI,2 F32 NI,2

F13 NI,3 F23 NI,3 F33 NI,3

F11 NI,2 + F12 NI,1 F21 NI,2 + F22 NI,1 F31 NI,2 + F32 NI,1

F12 NI,3 + F13 NI,2 F22 NI,3 + F23 NI,2 F32 NI,3 + F33 NI,2

F11 NI,3 + F13 NI,1 F21 NI,3 + F23 NI,1 F31 NI,3 + F33 NI,1

⎤
⎥⎥⎥⎥⎥⎦

.

(7.43)
The index L in (7.42) depicts that the matrix BL I is linear in the displace-
ments, since we have Fh = 1 + Graduh.

The stresses follow from the constitutive equation, which will be specified
in the associated sections. However, note that the stresses have to be com-
puted pointwise within the element, and result for instance in finite elasticity
from a pure function evaluation of the response function. Since also the second
Piola–Kirchhoff stress tensor is symmetric, we only need its six indepen-
dent components which yields the vector S = {S11 , S22 , S33 , S12 , S23 , S13 }T .
With these preliminaries, the virtual internal work can be written as

∫

B

δEh · Sh dV =
ne⋃

e=1

∫

Ωe

δET S dΩ

=
ne⋃

e=1

n∑
I=1

ηT
I

∫

Ωe

BT
L I S dΩ (7.44)

=
ne⋃

e=1

n∑
I=1

ηT
I

∫

Ω�

BT
L I S det Je d� .

The last term in (7.45) already reflects the evaluation of the integrals with
respect to the configuration of the isoparametric reference element. To shorten
the notation, we introduce the vector
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RI (ue) =
∫

Ωe

BT
L I S dΩ , (7.45)

and reformulate the virtual internal work
∫

B

δEh · Sh dV =
ne⋃

e=1

n∑
I=1

ηT
I RI (ue) = ηT R (u) . (7.46)

In this equation η is the test function of virtual displacement and R (u) is the
stress divergence term, also often called the residual force vector, which results
from the assembly of all finite elements to the complete structure. Note, that
δEh is linear with respect to the displacement field, whereas the stress tensor
Sh can still depend in an arbitrary nonlinear form upon the displacements.

The inertia term, defined by
∫
B ρ0v̇ · η dV , in the weak form (3.59) is

computed with interpolation of the velocity, using standard shape functions
NK for the spatial discretization,

v(X, t) =
n∑

K=1

NK(ξ)vK(t) .

The acceleration is given by derivation of the nodal values vK(t), since the
shape functions NK depend only upon the spatial coordinates,

v̇(X, t) =
n∑

K=1

NK(ξ) v̇K . (7.47)

Inserting this result in the associated inertia term in (3.59), and applying the
same discretization as in (7.39) for the variations η, leads to

∫

B

ρ0 η · v̇ dV =
ne⋃

e=1

∫

Ωe

ρ0 ηT v̇ dV

=
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I

∫

Ωe

NI ρ0 NK dΩ v̇K .

By introducing the unit matrix I and application to the nodal velocities v̇K =
I v̇K , we obtain the mass matrix for a nodal pair I and K of an element Ωe

MIK =
∫

Ωe

NI ρ0 NK dΩ I , (7.48)

and hence the inertia term for the global system as
∫

B

ρ0 η · v̇ dV =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I MIK v̇K = ηT Mv̇ , (7.49)
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Fig. 7.9. Discretization of surface loads.

where M is the mass matrix and v̇ the acceleration vector after assembly of
the global structure.

The loading terms are determined in an analogous way. After inserting the
finite element approximations for the test function η, it follows

∫

B

ρ0 η · b̄ dV +
∫

Γσ

η · t̄ dA =
ne⋃

e=1

n∑
I=1

ηT
I

∫

Ωe

ρ0 b̄NI dΩ

+
nr⋃

r=1

m∑
I=1

ηT
I

∫

Γr

NI t̄ dΓ ,

where nr are the number of loaded element boundaries and Γl is the element
surface of an element which is subjected to a surface load defined by the stress
vector t̄, see Figure 7.9. Observe that for the interpolation function of the
surface loads, we can use a function which is reduced by one dimension. Thus
the surface loads in Figure 7.9, which depicts a two-dimensional body, need as
an approximation for the test function along the boundary a one-dimensional
function, defined by m surface nodes (in Figure 7.9 we have m = 2 nodes).
Also, here we can simplify by matrix notation, and with

PI =
∫

Ωe

NI ρ b̄ dΩ and Pσ
I =

∫

Γr

NI t̄ dΓ (7.50)

obtain the load vectors
∫

B

ρη · b̄ dV +
∫

Γσ

η · t̄ dA =
ne⋃

e=1

n∑
I=1

ηT
I PI +

nr⋃
r=1

n∑
I=1

ηT
I Pσ

I = ηT P . (7.51)

The vector P contains all information with regard to the loads acting on the
structure.
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The matrix notation in (7.46), (7.49) and (7.51) yields, for the weak form
(3.59),

ηT [Mv̇ + R (u) − P ] = 0 . (7.52)

Due to the fact that the test function η is arbitrary, this leads to a nonlinear
system of ordinary differential equations:

Mv̇ + R (u) − P = 0 ∀u ∈ R
N . (7.53)

In (7.53) all quantities are evaluated with respect to the initial configura-
tion. N is the total number of degrees of freedoms contained in the unknown
displacement vector u. v̇ is the acceleration vector and M denotes the mass
matrix.

In case that the inertia forces are zero (Mv̇ = 0), from the system of ordi-
nary differential equations we obtain a nonlinear algebraic system of equations
which has to be solved by an iterative procedure. In general we apply New-

ton’s method, and hence need the linearization of (7.53), which is discussed
in the next section.

7.2.2 Linearization of the weak form in the initial configuration

For an efficient solution of the nonlinear algebraic equation systems (7.53),
Newton’s method is applied which requires the linearization of (7.53). We
derive the linearization in the following by assuming that the inertia terms
can be neglected. The linearization can be obtained by a direct discretization
of the continuous formulation (3.122)

DG(ϕ̄,η) · Δu =
∫

B

{Grad Δu S̄ · Gradη + δĒ · C̄ [ΔĒ ] } dV. (7.54)

For the first term with

Grad Δuh =
n∑

K=1

ΔuK ⊗∇XNK ,

Grad η =
n∑

I=1

ηI ⊗∇XNI (7.55)

we obtain directly the discretization

∫

B

GradΔu S̄·Grad η dV =
ne⋃

e=1

n∑
I=1

n∑
K=1

∫

Ωe

(ΔuK⊗∇XNK) S̄·(ηI⊗∇XNI) dΩ ,

which yields, with the rules for the dyadic and scalar products and with ΔuK ·
ηI = ηT

I ΔuK = ηT
I IΔuK ,
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∫

B

GradΔu S̄ · Gradη dV =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I

∫

Ωe

ḠIK I dΩ ΔuK , (7.56)

where the abbreviation

ḠIK = (∇XNI)T S̄ ∇XNK (7.57)

has been used. The matrix form of the scalar product (7.57) can be derived
if the gradients are described as vectors. This leads to

ḠIK = [NI,1 NI,2 NI,3 ]

⎡
⎣ S̄11 S̄12 S̄13

S̄21 S̄22 S̄23

S̄31 S̄32 S̄33

⎤
⎦
⎧⎨
⎩

NK,1

NK,2

NK,3

⎫⎬
⎭ . (7.58)

Relation (7.56) is independent from the constitutive equation, since only the
stress at configuration ϕ̄ has to be considered. Hence the matrix which defined
by (7.56) is often called the initial stress matrix.

The second term in (3.122)
∫

B

δĒ · C̄ [ΔĒ ] dV

depends upon the incremental constitutive tensor C̄ which has to be evalu-
ated at configuration ϕ̄, and thus is directly connected to the constitutive
equation. For elastic materials this tensor has been given in Section 3.4.2 (e.g.
see (3.89)). For elasto-plastic or other constitutive equations, the associated
matrix formulation can be found in (3.92). Since ΔĒ has the same structure
as δĒ, with (7.39) we can write

ΔEh =
1
2

n∑
I=1

[
FT

e (ΔuI ⊗∇X NI) + (∇X NI ⊗ ΔuI)Fe

]
. (7.59)

From this relation, the matrix formulation follows with (7.43)

ΔE =
n∑

I=1

BL I ΔuI . (7.60)

Introduction of this relation, together with the incremental constitutive tensor
D̄, yields

∫

B

δĒ · C̄ [ΔĒ ] dV =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I

∫

Ωe

B̄
T
L I D̄ B̄L K dΩ ΔuK . (7.61)

Thus we can summarize, and obtain the discretization
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∫

B

{Grad Δu S̄ · Gradη + δĒ · C̄ [ΔĒ ] } dV =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I K̄TIK

ΔuK .

(7.62)
Here matrix K̄IK denotes the “tangent matrix” because it represents the
tangent to the deformation at ϕ̄:

K̄TIK
=

∫

Ωe

[
(∇XNI)T S̄∇XNK + B̄

T
L I D̄ B̄L K

]
dΩ . (7.63)

It is stated for the nodal combination I, K within a finite element Ωe. In
this notation the submatrix K̄TIK

has the size ndof × ndof , where ndof is
the number of degrees of freedom for one node within the finite element (in
three-dimensional problems in continuum mechanics we have three degrees
of freedom for each point, hence ndof = 3). Indices I and K are nodes of an
element, and thus directly associated with the discretization. For example, for
a ten node tetrahedron we have n = 10, hence the total size of the tangent
matrix K̄Te

for one element is (n · ndof ) × (n · ndof ) = 30 × 30.

Two-dimensional element for St. Venant material. In this section
we derive as an example the matrix formulation for a two-dimensional element
with respect to the initial configuration. As a constitutive relation, St. Venant
material is considered which relates the Green–Lagrangian strains and the
second Piola–Kirchhoff stresses by a linear relation. Furthermore, plain
strain is assumed.

For computation of the stress divergence term resulting from the weak
form, we have to specify (7.45). Thus for a displacement formulation we need
the stresses as a function of the strains and the strains field in terms of the
displacement gradients. The St. Venant constitutive equation is given by

S = ( Λ1 ⊗ 1 + 2μ I ) [E ] . (7.64)

This form can be easily converted into a matrix formulation. For the two-
dimensional case, we obtain

S = DE =

⎧⎨
⎩

S11

S22

S12

⎫⎬
⎭ =

⎡
⎣Λ + 2μ Λ 0

Λ Λ + 2μ 0
0 0 μ

⎤
⎦

⎧⎨
⎩

E11

E22

2E12

⎫⎬
⎭ . (7.65)

Now it remains to compute the Green–Lagrangian strain tensor.
The components of the matrix form of the Green–Lagrangian strain

tensor, see (7.65), follow from (3.16) with (7.40) in the case of two dimensions
for a finite element Ωe:

E =
1
2

(FT
e Fe − I ) with Fe =

n∑
K=1

[
x1K NK,1 x1K NK,2

x2K NK,1 x2K NK,2

]
. (7.66)
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Here the nodal coordinates xα K = Xα K + uα K belong to the current config-
uration ϕ̄.

The approximation of the virtual strains δE with (7.42) yields the matrix
BL I , which in the two-dimensional case has the representation

BL I =

⎡
⎣ F11 NI,1 F21 NI,1

F12 NI,2 F22 NI,2

F11 NI,2 + F12 NI,1 F21 NI,2 + F22 NI,1

⎤
⎦ . (7.67)

We can also express the virtual strain with F = 1 + Gradu different from
(7.43) by

δ E =
4∑

I=1

[B0 I + BV I (u ) ]ηI . (7.68)

In that case, the matrices B0 I and BV I have the explicit form

B0 I =

⎡
⎣NI,1 0

0 NI,2

NI,2 NI,1

⎤
⎦ (7.69)

and

BV I =

⎡
⎣ u1,1 NI,1 u2,1 NI,1

u1,2 NI,2 u2,2 NI,2

u1,1 NI,2 + u1,2 NI,1 u2,2 NI,1 + u2,1 NI,2

⎤
⎦ . (7.70)

The derivative uα,β can be computed for each quadrature point analogous
to the components of the deformation gradient in (7.41). We obtain uα,β =∑4

K=1 NK,β uα K , where the indices α and β take values of 1 and 2. Note that
the nonlinear part defined by matrix BV I disappears for u = const.

The stress divergence term (7.45) is then obtained with (7.68) for an ele-
ment Ωe

RI (ue) =
∫

Ωe

(B0 I + BV I )T S dΩ . (7.71)

The load vector can be computed using equation (7.50), but we do not want
to specify it here in detail.

Linearization of (7.71) at ϕ̄ leads to the tangential stiffness matrix of a
finite element. It is given with (7.68) analogous to (7.63)

K̄TIK
=

∫

Ωe

[
(B0 I + B̄V I )T D (B0 K + B̄V K ) + ḠIK I

]
dΩ . (7.72)

Note that all quantities with a bar have to be evaluated at ϕ̄. Due to the
special St. Venant model for elasticity, the incremental constitutive tensor
D, defined in (7.65), is constant. A more compact notation of the tangent
matrix follows with (7.67):
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K̄TIK
=

∫

Ωe

[
B̄

T
L I DB̄L K + ḠIK I

]
dΩ . (7.73)

The term ḠIK is given for the two-dimensional problem by the product

ḠIK = [NI,1 NI,2 ]
[

S̄11 S̄12

S̄21 S̄22

]{
NK,1

NK,2

}
. (7.74)

Both equations (7.72) and (7.74) have to be evaluated at ϕ̄ at which the lin-
earization takes place. The stresses in (7.74) are computed via the constitutive
relation (7.65), based on the strains (7.66). The integrals in (7.71) and (7.72)

Fig. 7.10. Isoparametric transformation and deformed state at ϕ̄.

have to be computed using a numerical quadrature formula. In this case, it
is efficient to refer to the reference element, see (7.45) and Figure 7.10. This
yields, with (7.45), a ndof × 1 = 2 × 1 vector for the stress divergence term
which is associated with node I:

RI (ue)=
∫

Ωe

(B0 I + BV I )T S dΩ (7.75)

≈
np∑

p=1

Wp [B0 I(ξp , ηp) + BV I(ξp , ηp) ]T S(ξp , ηp) det Je(ξp , ηp) .

For evaluation of the integrals a Gauss quadrature, with np = 2 × 2 = 4
points, is sufficient if the element is a four node element with bilinear shape
functions. The coordinates of the Gauss points ξp, ηp and the associated
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weights Wp are given in Table A.2 in the appendix. For computation of the
stresses at a Gauss point S(ξp ηp), we need the deformation gradient, see
(7.66), which has to be evaluated at (ξp , ηp)

Fe(ξp , ηp) =
n∑

K=1

[
x1K NK,1(ξp , ηp) x1K NK,2(ξp , ηp)
x2K NK,1(ξp , ηp) x2K NK,2(ξp , ηp)

]
. (7.76)

The stress at a Gauss quadrature point then follows with the strains (7.66)
from (7.65). Note that in equation (7.76), the summation (Index K) has to
include all nodes, since all interpolation functions have a contribution to the
deformation at one Gauss quadrature point within the element.

In an analogous way, the numerical integration of the integrals concerning
the tangent matrix (7.72) has to be performed.

The submatrices for the indices I and K are 2 × 2 matrices. Based upon
the result 7.73), their explicit form using the Gauss quadrature follows:

K̄TIK
=
∫

Ωe

[
B̄

T
L I DB̄L K + ḠIK I

]
dΩ (7.77)

≈
np∑

p=1

Wp

[
B̄

T
L I(ξp, ηp)DB̄L K(ξp, ηp) + ḠIK(ξp , ηp) I

]
det Je(ξp, ηp) .

The stress divergence vectors, RI , and the submatrices of the tangent matrix,
K̄TIK

, have to be ordered in the following way to obtain the stress divergent
vector and the tangent matrix for the element Ωe:

Re =

⎧⎪⎨
⎪⎩

R1

R2

R3

R4

⎫⎪⎬
⎪⎭

8×1

K̄Te
=

⎡
⎢⎣

K̄T11 K̄T12 K̄T13 K̄T14

K̄T22 K̄T23 K̄T24

K̄T33 K̄T34

symm. K̄T44

⎤
⎥⎦

8×8

. (7.78)

The total size follows from the number of nodes, 4, and the number of degrees
of freedom, 2.

REMARK 7.1

• The order of the nonlinearity of (7.71) depends only upon the constitutive equa-
tion. For the St. Venant material used here, (7.71) is a cubic polynomial in u.
However, this no longer holds once a constitutive equation like the Neo-Hookian

material, see (3.74), is used.
• If stresses have to be computed in a design analysis then a transformation of the

second Piola–Kirchhoff stresses to the Cauchy stresses must be performed
on the basis of (3.50).

• In the case of the linear theory of small strains and displacements, the terms ḠIK

and B̄V I , B̄V K disappear in (7.71) and (7.72), thus the resulting equations are
linear in u and represent the equations of the classical linear theory of elasticity.
In the two-dimensional form of (3.95), we then obtain the stiffness matrix
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KIK =

∫

Ωe

BT
0 I D0 B0 K dΩ .

7.2.3 FE formulation of the weak form in the current configuration

The derivation of the matrix formulation for the weak form with respect to the
current configuration follows analogous to the derivation of equation (3.59),
but we use as a basic equation (3.61). Within the integrals the push forward of
the variation of the Green–Lagrangian strain tensor δE = ∇Sη is needed,
see (3.62). Hence (3.62) has to be approximated. With equations (7.7)2, this
leads to

∇S ηh =
1
2

n∑
I=1

[ (ηI ⊗∇x NI) + (∇x NI ⊗ ηI) ] . (7.79)

As in the last section, it is advantageous to switch to index notation to derive
the matrix formulation. We obtain

(∇S η)h
im =

1
2

n∑
I=1

[ ηi I NI,k + NI,i ηk I ] , (7.80)

where now NI,m = ∂NI / ∂xm is the partial derivative of the shape functions
with respect to the spatial coordinates xm. These derivatives can be computed
using (7.9)2

NI,k = {j−1
e }1k NI,ξ + {j−1

e }2k NI,η + {j−1
e }3k NI,ζ , (7.81)

where {j−1
e }ik are the associated components of the inverse of the Ja-

cobi matrix je. Equation (7.80) yields the components of ∇S ηh. Due to
symmetry, the components can be assembled in the vector (∇S ηh)T =
[ η1 ,1 , η2 ,2 , η3 ,3 , (η1 ,2 + η2 ,1) , (η2 ,3 + η3 ,2) , (η1 ,3 + η3 ,1) ]. With this the ap-
proximation of the spatial gradient is given by

∇S ηh =
n∑

I=1

⎡
⎢⎢⎢⎢⎢⎣

NI,1 0 0
0 NI,2 0
0 0 NI,3

NI,2 NI,1 0
0 NI,3 NI,2

NI,3 0 NI,1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎨
⎩

η1

η2

η3

⎫⎬
⎭

I

=
n∑

I=1

B0 I ηI . (7.82)

Note that matrix B0 I does not contain any displacements, which is indicated
by the index “0”.

REMARK 7.2 In contrast to matrix BL I , matrix B0 I has a sparse structure.
Half of its entries are zero. It is thus easily concluded that the associated zero
components can be neglected in any multiplication of B0 I with vectors or matrices.
Thus, the finite element formulation with regard to the current configuration is much
more efficient on the element level.
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Furthermore, we note that the structure of B0 I is exactly the same as the B-

matrix of linear theory, see Zienkiewicz and Taylor (1989). The only difference is

that in the linear theory, all derivatives are with respect to the coordinates X of the

initial configuration, while here all derivatives have to be computed with respect to

the coordinates x of the current configuration according to (7.80) and (7.81).

With these preliminary remarks and the introduction of a vector σ which
contains the independent components, σ = {σ11 , σ22 , σ33 , σ12 , σ23 , σ13 }T , of
the Cauchy stress tensor, the internal virtual work in (3.61) can be written
as

∫

ϕ(B)

∇S ηh · σh dv =
ne⋃

e=1

∫

ϕ(Ωe)

(∇S ηh)T σh dω

=
ne⋃

e=1

n∑
I=1

ηT
I

∫

ϕ(Ωe)

BT
0 I σ dω (7.83)

=
ne⋃

e=1

n∑
I=1

ηT
I

∫

Ω�

BT
0 I σ det je d� .

The last form in (7.84) already contains the reference to the isoparametric
base element Ω�. A comparison with the associated relation in (7.45) shows
that both formulations distinguish each other by the B-Matrix, the determi-
nant of the isoparametric mapping (7.5) and, of course, the stress tensor. By
introducing

rI (ue) =
∫

ϕ(Ωe)

BT
0 I σ dω , (7.84)

we can shorten the notation, and for the virtual internal work obtain

∫

ϕ(B)

∇S ηh · σh dv =
ne⋃

e=1

n∑
I=1

ηT
I rI (ue) = ηT r (u) . (7.85)

With the transformation for the volume elements dv = J dV and the
relation between the Cauchy stress tensor and the Kirchhoff stress tensor,
see (3.51), which yields τ = J σ, we can transform the integral representing
the virtual internal work in (7.84) to the reference configuration:

∫

ϕ(B)

∇S ηh · σh dv =
∫

B

∇S ηh · τh dV. (7.86)

Discretization with finite elements leads to
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∫

B

∇S ηh · τh dV =
ne⋃

e=1

∫

Ωe

(∇S ηh)T τh dΩ ,

=
ne⋃

e=1

n∑
I=1

ηT
I

∫

Ωe

BT
0 I τ dΩ , (7.87)

=
ne⋃

e=1

n∑
I=1

ηT
I

∫

Ω�

BT
0 I τ det Je d� .

Hence, in this case the residual vector denoting the stress divergence term is
defined by

rI(ue) =
∫

Ω�

BT
0 I τ d� . (7.88)

The total internal work follows from (7.85).
The approximation of the inertia terms is performed according to (7.49). In

the same way, (7.51), the load terms are formulated. Thus we can summarize
the finite element discretization of the weak form with respect to the current
configuration (3.61):

ηT [Mv̇ + r (u) − P ] = 0 , (7.89)

which for arbitrary values of the test function η yields the nonlinear ordinary
differential system

Mv̇ + r (u) − P = 0 . (7.90)

For static problems this system reduces to a nonlinear algebraic system of
equations for the unknown nodal displacements u:

g (u) = r (u) − P = 0 . (7.91)

The vector representing the stress divergence term r (u) can be computed
in equations (7.90) or (7.91) either by (7.84) or (7.88). Both formulations
are equivalent. Note that the relation (7.85) looks like the formulation in the
linear theory, only the quantities δe and σ are evaluated with respect to the
current configuration.

7.2.4 Linearization of the weak form in the current configuration

In the last section we derived two weak forms, equations (7.85) and (7.88),
which differ only in the region of integration, ϕ(Bh) or Bh. The linearization
of these forms is described in Section 3.5.3, thus we only have to apply the
discretization to these results.

Linearization of the weak form (7.85) follows from equation (3.127) as

Dg(ϕ̄,η) · Δu =
∫

ϕ̄(B)

{gradΔu σ̄ · gradη + ∇̄Sη · ¯̂cc [∇̄SΔu ] } dv . (7.92)
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The first term has exactly the same form as the associated term in the for-
mulation with respect to the initial configuration. Hence the discretization is
the same, and can be directly adopted from the discretization in the initial
configuration, see (7.56). Only the derivatives are now with respect to the
coordinates x̄i of the current configuration ϕ(B̄). With the discretization of
the gradient

grad Δuh =
n∑

K=1

ΔuK ⊗ ∇̄xNK ,

grad ηh =
n∑

I=1

ηI ⊗ ∇̄xNI , (7.93)

we obtain the first part of the integrals

∫

ϕ̄(B)

grad Δu σ̄ · grad η dv =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I

∫

ϕ̄(Ωe)

ḡIK I dΩ ΔuK . (7.94)

Within this term, the abbreviation

ḡIK = (∇̄xNI)T σ̄ ∇̄xNK (7.95)

has been used. The matrix from of the scalar product follows, as in (7.58), as

ḡIK = [ N̄I,1 N̄I,2 N̄I,3 ]

⎡
⎣ σ̄11 σ̄12 σ̄13

σ̄21 σ̄22 σ̄23

σ̄31 σ̄32 σ̄33

⎤
⎦
⎧⎨
⎩

N̄K,1

N̄K,2

N̄K,3

⎫⎬
⎭ . (7.96)

This equation is independent from the constitutive equation, as is (7.56), since
only the stresses of the configuration ϕ̄ enter the integral.

The second term in (3.122)
∫

ϕ̄(B)

∇̄Sη · ¯̂cc [∇̄SΔu] dv

depends upon the incremental constitutive tensor ¯̂cc, evaluated at the current
configuration ϕ̄, and thus directly from the constitutive equation (e.g. see
Section 3.4.2, equation (3.90)). Using the same arguments as for linearization
with respect to the initial configuration and (7.82), we obtain

∫

ϕ̄(B)

∇̄Sη · ¯̂cc [∇̄SΔu] dv =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I

∫

ϕ̄(Ωe)

B̄
T
0 I D̄

M
B̄0 K dΩ ΔuK ,

(7.97)
where all quantities in the integrals have to be evaluated at ϕ̄. In summary,
we find the discretization



182 7 Discretization of the Continuum

∫

ϕ̄(B)

{gradΔu σ̄ · gradη + ∇̄Sη · ¯̂cc [∇̄SΔu ] } dv =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I K̄

M
TIK

ΔuK ,

(7.98)
where matrix K̄

M
TIK

is the tangent matrix with respect to the current config-
uration,

K̄
M
TIK

=
∫

ϕ̄(Ωe)

[
(∇̄xNI)T σ̄ ∇̄xNK + B̄

T
0 I D̄

M
B̄0 K

]
dω . (7.99)

It is defined for the combination of nodes I ,K within the element Ωe, see
also Section 7.2.2. The discretization of the weak form (7.88) in the current
configuration follows in an analogous way, we just state here the final result:

∫

B

{gradΔu τ̄ · gradη + ∇̄Sη · c̄c [∇̄SΔu ] } dv =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I K̄

MR
TIK

ΔuK ,

(7.100)
where matrix K̄

MR
TIK

is the tangent matrix with respect to the current config-
uration:

K̄
MR
TIK

=
∫

Ωe

[
(∇̄xNI)T τ̄ ∇̄xNK + B̄

T
0 I D̄

MR
B̄0 K

]
dΩ . (7.101)

The matrix form D̄
MR of the incremental constitutive tensor c̄c can be found

for a Neo-Hooke material, e.g. in (3.92). The associated form for D̄
M results

from the transformation with the Jacobi determinant J , as given in (3.126).



8

Discretization, Small Deformation Contact

In the first applications of finite elements to contact problems of two de-
formable bodies only small changes in the geometry were assumed so that
the geometrically linear theory could be applied. In that case it is possible
to incorporate the contact constraints on a purely nodal basis, e.g. see Fran-
cavilla and Zienkiewicz (1975). Later, contact elements were also developed,
which resulted from a degenerated solid element, e.g. see Stadter and Weiss
(1979) or the textbook of Kikuchi and Oden (1988). A mathematical study
of these classes of elements which also accounts for the correct integration
rules can be found in Oden (1981) and Kikuchi and Oden (1988). All of the
above-mentioned elements need a discretization in which the element nodes
match each other at the contact interface. For the general case of nodes being
arbitrarily distributed along the possible contact interface between two bod-
ies, which can occur when automatic meshing is used for two different bodies,
Simo et al. (1985) developed a segment approach to discretize the contact
interface for the two-dimensional case. Also, first attempts have been made to
use the hp-version of finite elements for the discretization of contact problems,
see Paczelt et al. (1999). Recently, such discretizations gained more attention
due to automatic meshing tools and domain decomposition methods for large
problems. We refer to mathematical literature like Belgacem et al. (1997) and
Belgacem et al. (1999) for the development of so-called mortar methods, and
to Rebel et al. (2000) or McDevitt and Laursen (2000) for an engineering
treatment of such methods.

In general, in small deformation contact, we do not need search algorithms
since no large slip can occur on the contact surface. Hence when the first dis-
cretization takes into account the contact interface as depicted in Figure 8.1,
then the element sizes coincide at the interface, and one can define contact
elements which have nodes on the surface of both bodies. These contain pairs
{ i , k } ∈ JC which might possibly come into contact. Note also that in fric-
tional contact problems, the mesh topology does not change during the loading
process, since the slip is infinitesimally small. Thus in the case of friction, it
is also possible to develop contact interface elements on a nodal basis, which
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Fig. 8.1. Contact discretization for small deformations.

can be simply added in the assembly procedure to the general stiffness matrix
like standard finite elements.

In the following we discuss the case of two deformable bodies being in con-
tact. The special case of the classical Signorini problem, where a deformable
body is in contact with a rigid obstacle, follows directly from the equations
developed by assuming one body is rigid, and by defining the normal vector
on the rigid obstacle.

8.1 General Approach for Contact Discretization

There are different possibilities to formulate (and hence discretize) the contact
constraint. This was discussed in Section 6.3, leading to the main formulations
of Lagrange multipliers and the penalty approach. Discretization in the
framework of these two methods will be discussed in this section.

In general, for penalty and Lagrange multiplier formulations, different
discretizations of Γc are possible which depend on the problem, on the dis-
cretization of the bodies which come into contact, and on the type of consti-
tutive interface law.

8.1.1 Lagrange multiplier method

The Lagrange multiplier method (6.27) is a mixed method. This means that
the field of Lagrange multipliers λN and the displacement fields uα of both
contacting bodies, which define the gap function gN , as well as its variations
like δgN (here shown for the frictionless case) have to be discretized. This
yields for the residual

∫

Γc

λN δgN dΓ −→
nc∑
i=1

∫
Γ h

i

λh
N δgh

N dΓ , (8.1)

and for the constraint equation
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∫

Γc

δλN gN dΓ = 0 −→
nc∑
i=1

∫
Γ h

i

δλh
N gh

N dΓ = 0 . (8.2)

The interpolations for λh
N and δgh

N are defined on Γh
c i by

λh
N =

∑
K

MK(ξ)λNK and δgh
N =

∑
I

NI(ξ) δgNI . (8.3)

ξ is a local, in general, convective coordinate which defines the shape functions
NI and MK on the reference element; see Section 7.1.1 and Figure 8.2. λNK

and δgNI are the nodal values of the Lagrange multiplier and gap functions,
respectively. nc denotes the number of active contact constraints JA ∈ JC

which have to be determined by the contact algorithm. For evaluation of the
integrals in (8.1), it is not always clear on which side of the interface (body B1

or B2) this integration has to be carried out. Thus, one has to choose one of
the surfaces of the bodies in the contact interface as the reference or master
surface, and then perform the integration in a way that is consistent with
the discretization. In Figure 8.2 the boundary ∂B1 is chosen as the master
surface. The figure describes this discretization for the two-dimensional case
when linear interpolations are used. In this case, the surface of the bodies
coming into contact is also discretized by linear shape functions. It can also
be seen that the sum in (8.1) has to be applied to add up all contributions of
the contact elements associated with Γh

i . Using (8.3) in (8.1), one obtains
∫

Γc

λN δgN dΓ −→
nc∑
i=1

∑
I

∑
K

δgNI

∫

(ξ)

NI(ξ)MK(ξ) detJΓ (ξ) dξ λNK ,

(8.4)
where detJΓ (ξ) is the transformation of a surface element in Γh

i to the refer-
ence element Γ�. By comparing this result to (7.48), we see that the integral
in (8.4) has the structure of a mass matrix. This is especially true when the
same interpolation functions are used for gap and Lagrange multipliers.

Note that the interpolations have to be chosen in such a way that they
fulfil the Babuska–Brezzi BB-condition for this mixed formulation (e.g. see

Fig. 8.2. Contact discretization, isoparametric formulation.
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Fig. 8.3. Non-matching meshes at the contact interface.

Kikuchi and Oden (1988), Belgacem et al. (1999) or El-Abbasi and Bathe
(2001)). This is usually no problem if the nodes of the contacting bodies
assume the same position at the interface, see Figure 8.2.

However, if the bodies coming into contact are discretized by using different
finite element meshes, then the nodes no longer match each other, see Figure
8.3. In this case, one has to carefully investigate the discretization in the
light of the BB-condition. An early suggestion for a discretization for non-
matching grids can be found in Simo et al. (1985). Recently, new methods,
so-called mortar methods, were designed for domain decomposition in which
unstructured grids are connected within a parallel finite element solution.
These methods are well understood mathematically (see Bernadi et al. (1994),
Tallec and Sassi (1995) or Wohlmuth (2000a)). It is obvious that one can also
apply such a strategy to finite element contact problems when the nodes in
the contact interface do not coincide, as can be seen in, for example, Figure
8.3. Work along these lines related to contact problems can be found in the
mathematical literature in Belgacem et al. (1999) or Krause and Wohlmuth
(2002) and in the engineering literature in Rebel et al. (2000) or McDevitt
and Laursen (2000). Another approach for non-matching grids in the contact
interface is provided by the Nitsche method, which only works with the
primary displacement variables as described in Becker and Hansbo (1999).
The mortar and Nitsche methods are discussed in Section 8.4.

Based on the Lagrange multiplier method, the following general matrix
formulation can be derived. The discretization of a body Bγ has already been
discussed in detail in Chapter 7. We recall these results for the linear elastic
case of both bodies, which leads to the discrete form of the potential energy
(6.25),

Π(u) =
1
2

uT Ku − uT f̄, (8.5)

where the displacement vector u includes the nodal displacements of both
bodies. In the same way, the stiffness matrix K is associated with both bodies,
and f̄ contains body forces and surface tractions of both bodies. In more detail,
we can write

Π(u) =
1
2
〈u 1 ,u 2 〉

[
K 1 0
0 K 2

] {
u 1

u 2

}
− 〈u 1 ,u 2 〉

{
f̄

1

f̄
2

}
. (8.6)

Observe that the bodies are not yet coupled. This occurs due to the additional
terms which are derived from (8.1) and (8.2). To obtain a matrix form for these
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terms we introduce for the gap function in each contact element Γh
i

gh
N = Ĉ

T

i u , (8.7)

where Ĉi depends upon the choice of discretization. By integration, using
(8.4), with (8.7) we obtain the vector Ci. Now the contributions can be as-
sembled into a matrix which then contains all nc constraints. With

C = [C1 |C2 | . . . |Cnc
] (8.8)

we obtain the discrete form of (6.25), together with (6.26):

ΠLM (u ,Λ) =
1
2

uT Ku − uT f̄ + ΛT CT u . (8.9)

Λ is the vector of all Lagrange multipliers associated with the nc contact
constraints. Variation of ΠLM (u ,Λ) with respect to displacements and La-

grange multipliers yields with η = δu two equations

ηT
[
Ku − f̄ + CΛ

]
= 0 ,

δΛT
[
CT u

]
= 0 . (8.10)

By the fundamental theorem of variations, these equations can be arranged
in matrix form [

K C
CT 0

] {
u
Λ

}
=

{
f̄
0

}
. (8.11)

Note that this is a linear system of equations for the given number of nc

contact constraints. In a real contact analysis this number is not known. Thus,
we then haves a nonlinear problem in which, in addition to the displacement
field and the Lagrange multipliers, the correct contact zone also has to be
determined. Algorithms for this will be stated in Chapter 10.

In the following sections we shall discuss details for the different discretiza-
tion which are only associated with the contact terms in (8.11).

8.1.2 Penalty method

Contrary to the Lagrange multiplier method, the penalty method only needs
discretization of the displacement variables. The contribution of contact con-
straints to the weak form leads, with (4.7) and (6.32), to

∫
Γc

εN g−N δg−N dΓ −→
∫

Γ h
c

εN gh
N δgh

N dΓ , (8.12)

with the interpolation for the gap function and its variation

gh
N =

∑
I

NI(ξ) gNI and δgh
N =

∑
I

NI(ξ) δgNI . (8.13)
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But here also one has to be careful when choosing the interpolation for contin-
uous contact. Since the penalty method is equivalent to a mixed method the
BB-condition plays the same role as for the Lagrange multiplier approach
(e.g. see Oden (1981) for a detailed discussion of this matter). Hence, when
applying the penalty method one has to take special care to choose the correct
discretization in the case of non-matching grids, see Figure 8.3.

The matrix form for the penalty method follows from (6.25), together with
(6.31). Again we have to perform the integration in (8.12), which analogous
to the definition (8.8) leads to

ΠP (u) =
1
2

uT Ku − uT f̄ +
εN

2
uT CCT u . (8.14)

Variation of ΠP (u) with η = δu yields

ηT
[
Ku − f̄ + εN CCT u

]
= 0 , (8.15)

which leads to the matrix form[
K + KP

]
u = f̄ , with KP = εN CCT . (8.16)

Again, this linear system of equations is given for the fixed number of nc

contact constraints. Algorithms to solve this form will be stated in Chapter
10.

In the following we discuss discretizations related to the methods men-
tioned above, and to the formulation using constitutive equations for the con-
tact interface. Furthermore, to simplify notation, we will drop the superscript
h which denotes the approximation using finite elements.

8.2 Node-to-Node Contact Element

The simplest formulation for contact is a discretization which establishes con-
straint equations and contact interface constitutive equations on a purely
nodal basis. Such a formulation will be called a node-to-node contact. For this
discretization the frictionless as well as the frictional contact formulation is
developed below.

8.2.1 Frictionless contact

A node-to-node contact can only be applied to geometrically linear problems,
since large relative tangential movement of the nodes is not allowed in the
contact area. The constraint equation for contact can then be formulated
directly for each nodal pair, denoted in Figure 8.4. The geometrical contact
constraint condition for the normal contact was stated in (4.11). It reads in
this case for one node pair i
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Fig. 8.4. Node-to-node contact element.

gN i = (u2
i − u1

i ) · n1
i + gi ≥ 0 . (8.17)

Here uα
i are the displacement vectors of bodies Ba of the nodal pair associated

with i. gi is the initial gap between both nodes.
For small strains the change in the normal is neglected within the com-

putations. Since the initial gap is independent of the displacement field, the
variation of (8.17) is given by

δgN i = (η2
i − η1

i ) · n1
i . (8.18)

Due to its simplicity, and assuming that the contact constraint is active for
nc nodes, we can express the integral (8.1) for the contact contributions in
the weak form by a sum over all active contact nodes.

Lagrange multiplier formulation. For the Lagrange multiplier method
this leads to

∫
Γc

λN δgN dΓ −→
nc∑
i=1

λN i δgN i Ai =
nc∑
i=1

λN i (η2
i − η1

i ) · n1
i Ai , (8.19)

and the weak form of the constraint equation

∫
Γc

δλN gN dΓ −→
nc∑
i=1

δλN i gN i Ai =
nc∑
i=1

δλN i [(u2
i − u1

i ) · n1
i + gi ]Ai = 0 ,

(8.20)
where nc are the active contact nodes in Γh

c . The test functions ηα
i and the

normal vector n1
i are defined for the node i as depicted in Figure 8.4. The

product of Lagrange multiplier λN i and area Ai related to node i is the
contact nodal force, and λN i is equivalent to the contact pressure pN i asso-
ciated with node i. The matrix form for this discretization can be obtained
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by introducing two vectors, one for the variations {ηα
i , δλi }, and one for the

increments of the variables {Δuα
i ,Δλi } at node i:

η̂i =
{

ηi

δλi

}
, Δûi =

{
Δui

Δλi

}
with ηi =

{
η2

i

η1
i

}
and Δui =

{
Δu2

i

Δu1
i

}
.

(8.21)
Inserting this into (8.19) and (8.20) yields the contact residuum

∫
Γc

(δλN gN + λN δgN ) dΓ ≈
nc∑
i=1

η̂T
i Gc L

i with Gc L
i =

{
λN i Ci

uT
i Ci

}
Ai

(8.22)
and

Ci =
{

n1
i

−n1
i

}
and ui =

{
u2

i

u1
i

}
. (8.23)

Furthermore from the linearization of (8.22) we obtain the expression

η̂T
i K c L

i Δûi (8.24)

with the contact stiffness matrix for one node i,

Kc L
i =

[
0 Ci

CT
i 0

]
Ai . (8.25)

Penalty formulation. In the case of the penalty method, we have to
discretize equation (8.19) for λN = ε gN , leading with (8.21) and (8.23) to

∫
Γc

εN gN δgN dΓ −→
nc∑
i=1

εN gN i δgN i Ai =
nc∑
i=1

ηT
i εN gN i Ci Ai . (8.26)

Often the area Ai which is associated with the contact point i (see Figure
8.4) is neglected (or “hidden” in the penalty parameter εN ) in the node-to-
node contact formulation. This means that the contact stress pN i = εN gN i

becomes a contact (nodal) force fN i = εN Ai gN i = ε̄N gN i. An evaluation
of a contact interface law like (5.11) is not possible with this simplifying
discretization.

The associated matrix formulation for (8.26) results in the geometrically
linear case for node i to the definition of the contact residual Gc

i = ηT
i Gc P

i

and its associated tangent matrix K c P
i . The explicit form can be stated by

using the notation defined in equation (8.23):

G c P
i = εN gN i Ai Ci , K c P

i = εN Ai Ci C
T
i . (8.27)

Lagrange multiplier and penalty formulation, as given here, are valid
for one-, two- and three-dimensional formulations. One only has to adapt the
definition of the normal n1

i , the variations ηα
i and the displacements uα

i , at
the contacting node i in relation to the spatial dimension of the problem. As
examples we state here the penalty residuals and tangents for the one- and
two-dimensional cases.
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• One-dimensional case. If contact between one-dimensional structures
is considered, then the normal vector n1

i is given by the scalar nx = 1.
Hence the matrix Ci is simply CT

i = 〈 1 ,−1 〉, which yields the residual
and tangent

Gc P
i = εN gN i Ai

{
1

−1

}
and K c P

i = εN Ai

[
1 −1

−1 1

]
. (8.28)

This result can be compared with the formulation used in Section 6.4 to
evaluate different methods to formulate the contact constraints.

• Two-dimensional case. For two-dimensional problems the normal vector
has two components (n1

i )
T = 〈nx , ny 〉i. Thus the matrix Ci, and hence

also the residual matrix, now have four components. Explicitly, one obtains

Gc P
i = εN gN i Ai

⎧⎪⎨
⎪⎩

nx

ny

−nx

−ny

⎫⎪⎬
⎪⎭

i

(8.29)

and

K c P
i = εN Ai

⎡
⎢⎣

n2
x nx ny −n2

x −nx ny

nx ny n2
y −nx ny −n2

y

−n2
x −nx ny n2

x nx ny

−nx ny −n2
y nx ny n2

y

⎤
⎥⎦

i

. (8.30)

We note that it is not always obvious how to define the normal vector for
a given interpolation of the contact boundary. This is especially true when a
linear interpolation, as shown in Figure 8.5, is used. Here it can be seen that
there is a jump in the normal at point i. Thus, the definition of the normal
at point i is not unique. A way out is given by using a normal n1

i , which is
obtained from a smooth interpolation of the discretized contact surface by,
for example, Bézier or spline functions, as depicted in Figure 8.5.

Fig. 8.5. Definition of the contact normal.
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The problem of defining the normal at nodal points can also be circum-
vented by introducing an isoparametric interpolation for the contact surface,
see next section.

8.2.2 Contact with friction

In the case of frictional contact, we have to distinguish between stick and slip
motion. The theoretical background can be found in Section 5.2. Here only
the classical law of Coulomb is applied. The relative tangential movement
between the two contacting nodes is given with respect to (4.23) by

gT i = ( e1
T α ⊗ e1

T α ) (u2
i − u1

i ) , (8.31)

where e1
T α is the unit tangent vector at node i in the direction α = 1, . . . , 2.

The tangent vectors have to be constructed such that they form an orthogonal
frame with the normal vector n1

i , hence e1 T
T α e1

T β = δαβ . In the same way, we
define the relative tangential velocity

ġT i = ( e1
T α ⊗ e1

T α ) ( u̇2
i − u̇1

i ) . (8.32)

First we consider the stick case. This will be done here using the penalty
method, see Section 6.3.2. Again, the integral in (6.32) is discretized by a sum
over the nodes in contact

∫

Γc

εT gT · δgT dA −→
nc∑
i=1

εT δgT
T i gT i Ai (8.33)

=
nc∑
i=1

εT [(u2
i − u1

i )T e1
T α] [(η2

i − η1
i )

T e1
T α ]Ai .

By introducing the matrix

Tα i =
{

e1
T α

−e1
T α

}
, (8.34)

we can state the matrix formulation for (8.33). This results in the geometri-
cally linear case for node i to the definition of the contact residual for tangen-
tial stick ∫

Γc

εT gT · δgT dA =
nc∑
i=1

ηT
i Gc st

T i . (8.35)

The explicit form can be stated by using the notation defined in equation
(8.23):

G c st
T i = εT Ai

2∑
α=1

gT α i Tα i , (8.36)
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with gT α i = TT
α i ui. The associated tangent matrix follows from the lineariza-

tion of (8.36), which only depends in gT α i in the geometrical linear case upon
the displacement field. With ΔgT α i = TT

α i Δui we obtain

K c st
T i = εT Ai

2∑
α=1

Tα i T
T
α i . (8.37)

In the case of slip, the virtual work expression for the contact contribution is
derived using an implicit backward Euler integration of (5.27), see Sections
5.2.4 and 10.5.2. Using these results we obtain

∫

Γc

tT n+1 · δgT dA =
∫

Γc

μ pN n+1 ntr
T n+1 · δgT dA =

nc∑
i=1

ηT
i Gc slip

T i . (8.38)

In this equation the residual slip vector G c slip
T i for contact node i is given by

G c slip
T i = μ pN i n+1 Ai

2∑
α=1

ntr
T α i Tα i with ntr

T α i = (ntr
T n+1)

T e1
T α .

(8.39)
The linearization of (8.38) is now constructed from two terms, since ntr

T n+1

as well as pN n+1 depend upon the displacement field. The linearization of
ntr

T n+1 yields for a node i

Δntr
T n+1 = Δ

ttr
T n+1

‖ttr
T n+1‖

=
1

‖ttr
T i n+1‖

[
1 − ntr

T i n+1 (ntr
T i n+1)

T
]
Δttr

T i n+1

(8.40)
where the linearization of the tangential nodal force with (8.32) yields

Δttr
T i n+1 = εT ΔgT i n+1 = εT

2∑
α=1

(
TT

α i Δui

)
e1

T α . (8.41)

Combining the last two equations, the contribution to the linearized weak
form can be computed with (8.39) as

δgT
T i Δttr

T i n+1 = εT

2∑
α=1

2∑
β=1

ηT
i

[
( δαβ − ntr

T α ntr
T β)Tα i T

T
β i

]
Δui . (8.42)

For node i the linearization of the normal contact pressure pN n+1 follows with
the matrices introduced for the frictionless case in (8.26),

ΔpN i n+1 = εNΔgN i = εN CT
i Δui . (8.43)

This adds
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δgT
T i (μΔpN i n+1 nT n+1 ) = μ εN

2∑
α=1

ηT
i ntr

T α Tα i C
T
i Δui (8.44)

to the linearized weak form. Combining (8.42) and (8.44) yields the tangent
matrix for node i which is in the slip state

K c slip
T i = εT

2∑
α=1

⎧⎨
⎩

2∑
β=1

[
( δαβ − ntr

T α ntr
T β)Tα i T

T
β i

]
+ μ εN ntr

T α Tα i C
T
i

⎫⎬
⎭ .

(8.45)
Due to the second term, the tangent matrix is non-symmetric. This is because
the Coulomb law of friction can be viewed as a non-associative constitutive
equation, and hence cannot be represented by a positive strain energy func-
tion.

Note that the first term in (8.45) is zero in the two-dimensional case.
This stems from the fact that the quantity ntr

T α can then be represented
by a signum function, since ttrT n+1 / | ttrT n+1 | = Sign( ttrT n+1 ), which leads to
( δαβ −ntr

T α ntr
T β) = 1−Sign( ttrT n+1 )2 = 0. Thus only the non-symmetric part

of (8.45) remains in the two-dimensional case:

K c slip
T i = μ εN Sign(ttrT n+1)Ti C

T
i with Ti =

{
e1

T i

−e1
T i

}
, (8.46)

where e1
T i is the unit tangent vector.

8.3 Isoparametric Discretization of the Contact
Contribution

Another possibility to discretize the contact surface is given by a direct inter-
polation of the surface using the isoparametric formulation. Also, this contact
element does not allow large relative tangential movement in the contact area,
and thus is only valid for geometrically linear applications, as discussed below.
Such an element connects the surfaces ∂B1 and ∂B2 at the contact interface,as
shown in Figure 8.6.

The gap function gN , stated in (4.11) for geometrically linear analysis, is
discretized by an isoparametric interpolation, also leading to a well defined
contact pressure. For the gap function we obtain its variation and linearization

gN =
∑

I

NI(ξ , η) gNI ,

δgN =
∑

I

NI(ξ , η) (η2
I − η1

I) · n1 , (8.47)

ΔgN =
∑

I

NI(ξ , η) (Δu2
I − Δu1

I) · n1 ,
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Fig. 8.6. Isoparametric contact element for three-dimensional problems.

where I denotes the nodal points of the isoparametric surface elements.
The contact normal used in (8.48) can be constructed directly from the

interpolation. This is due to the fact that the tangent vectors to the surface
can be obtained directly from the convective description of the surface by the
isoparametric interpolation, see Figure 8.7 and (B.2) in Appendix B. With
this we compute the normal vector to the discretized surface of body B1:

n1 =
G1

1 × G1
2

‖G1
1 × G1

2 ‖
. (8.48)

The tangent vectors are obtained by the partial derivative of the position
vector to the initial configuration of the contact surface, G1

α = X1
,α, with

respect to the coordinates ξ and η. Note that all vectors are now defined on
∂B1, which is denoted by the superscript 1. Thus, for the contact normal we
have

n1 =
X,1ξ ×X,1η

‖X,1ξ ×X,1η ‖ . (8.49)

As we apply an isoparametric interpolation, we use the same shape functions
for displacements and coordinates. The position vector X1 is approximated

Fig. 8.7. Computation of the normal vector.
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by

X1 =
m∑

I=1

NI(ξ , η)X1
I , (8.50)

which leads to the derivatives for its components Xi,

X1
i,α =

m∑
I=1

NI(ξ , η),α X1
i I . (8.51)

With this we can explicitly evaluate the cross product in (8.49), which yields

N 1(ξ , η) = X,1ξ ×X,1η =

⎧⎨
⎩

X1
2,ξ X1

3,η − X1
3,ξ X1

2,η

X1
3,ξ X1

1,η − X1
1,ξ X1

3,η

X1
1,ξ X1

2,η − X1
2,ξ X1

1,η

⎫⎬
⎭ . (8.52)

The matrix formulation for (8.48) can be derived by introducing the vec-
tors

ηc I =
{

η2
I

η1
I

}
, Δuc I =

{
Δu2

I

Δu1
I

}
and N̂ =

{
N 1

−N 1

}
. (8.53)

This leads to the variation and linearization of the gap function:

δgN =
∑

I

ηT
c I [NI(ξ , η) N̂(ξ , η) / ‖N 1 ‖ ] ,

ΔgN = [
∑

I

NI(ξ , η) N̂(ξ , η)T / ‖N 1 ‖]Δuc I . (8.54)

Lagrange multiplier formulation. Using Lagrange multipliers we
have, in addition to discretization (8.54), to introduce a discretization for
the Lagrange multiplier and its variation:

λN =
∑
K

MK(ξ , η)λN K and δλN =
∑
K

MK(ξ , η) δλN K . (8.55)

Note that interpolation for the Lagrange multiplier has to be chosen in
relation to the interpolation of the displacement field (8.48) such that the BB-
condition is fulfilled, e.g. see Kikuchi and Oden (1988). Here for the moment
we use the general formulation with different interpolations for gN and λN ,
without specifying the shape functions NI and MK explicitly. With (8.52),
for the contact contribution of the weak form of equilibrium we can write

∫
Γ e

c

λN δgN dΓ ≈
n∑

I=1

ηT
c I Gu

c I (8.56)

with Gu
c I =

+1∫

−1

+1∫

−1

λN (ξ , η)NI(ξ , η) N̂(ξ , η) dξ dη .
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The area element dΓ in the contact surface Γ e
c can be computed using the

reference configuration Γ�, see Figure 8.7. The area element dΓ is given by
dΓ = ‖X,1ξ ×X,1η ‖ dξ dη = ‖N1 ‖ dξ dη. Note that ‖N1 ‖ appears in the de-
nominator of (8.54), and as a factor in the area element in the reference con-
figuration, hence this term is cancelled in the weak form (8.56). Furthermore,
for the weak form of the constraint we obtain∫

Γ e
c

δλN gN dΓ ≈
m∑

K=1

δλN K Gλ
c K = 0 (8.57)

with Gλ
c K =

+1∫

−1

+1∫

−1

MK(ξ , η) gN (ξ , η) ‖N 1 ‖ dξ dη .

In matrix form, (8.56) is represented by

∫
Γ e

c

λN δgN dΓ ≈ 〈ηT
c1 , . . . ,ηT

cn 〉

⎧⎪⎨
⎪⎩

Gu
c1
...

Gu
cn

⎫⎪⎬
⎪⎭ , (8.58)

and (8.57) yields

∫
Γ e

c

δλN gN dΓ ≈ 〈 δλN1 , . . . , δλNm 〉

⎧⎪⎨
⎪⎩

Gλ
c1
...

Gλ
cm

⎫⎪⎬
⎪⎭ . (8.59)

The linearization of (8.56) and (8.57) leads to
∫

Γ e
c

ΔλN δgN dΓ ≈
n∑

I=1

m∑
K=1

ηT
c I CIK ΔλNK (8.60)

with CIK =

+1∫

−1

+1∫

−1

MK(ξ , η)NI(ξ , η) N̂(ξ , η) dξ dη ,

and ∫
Γ e

c

δλN ΔgN dΓ ≈
n∑

I=1

m∑
K=1

δλNK CKI ΔuI , (8.61)

with CKI = CT
IK . Hence, the complete matrix form for the linearization is

represented for one contact element by

〈ηT
c1 , . . . ,ηT

cn , δλN1 , . . . , λNm〉KLM
e

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δu1
...

Δun

ΔλN1
...

ΔλNm

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (8.62)
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with

KLM
e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C11 . . . C1m

0
...

...
...

Cn1 . . . Cnm

CT
11 . . . CT

n1
...

...
... 0

CT
1m . . . CT

nm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (8.63)

where the matrix elements CIK are defined in (8.60). In this expression, the
indices for the displacement variables run over the number of nodes used to
specify the isoparametric interpolation, e.g. n = 4 for bilinear and n = 9 for
biquadratic shape functions. The same holds for the Lagrange multipliers,
where now m represents the number of nodes used for the interpolation.

Penalty formulation. The weak form for the penalty method is given
in equation (8.12). With (8.48) we can represent the weak form contribu-
tion of one element by further using (8.52), and introduce the finite element
discretization directly to obtain for (8.12) a compact form

∫
Γc

εN gN δgN dΓ ≈
nc⋃

c=1

n∑
I=1

ηT
c I Gc

I , (8.64)

with
Gc

I =
∫

Γ�

εN gN (ξ , η)NI(ξ , η) N̂ dξ dη , (8.65)

where
⋃nc

c=1 denotes the assembly of nc active contact elements and Γ� is the
contact surface of the reference element, see Figure 8.7. In (8.64) the contact
pressure pN is given by pN = εN gN (ξ , η) which is defined for every point of
the contact element domain Γ e

c .
The linearization of contact residual (8.64) yields, with (8.54), the result

∫
Γ e

c

εN δgN ΔgN dΓ≈
∑

I

∑
K

ηT
c I KP

IK Δuc K (8.66)

with KP
IK=

∫ +1

−1

∫ +1

−1

εN NI(ξ , η)NK(ξ , η) N̂ N̂
T
/ ‖N1‖ dξ dη .

Both, residual vector (8.64) and tangent matrix (8.66)2 have to be evaluated
using numerical integration. For the proper choice of the numerical integration
rule, see Oden (1981), who has discussed this topic in the context of perturbed
Lagrange formulations. To avoid locking and pressure oscillations, a reduced
Gauss integration or an integration based on Simpson’s rule works well. This
means that, for instance, a one-point Gauss integration should be used for
a bilinear interpolation. In the case of the application of Simpson’s rule, the
integral has to be evaluated at the four nodal points of the bilinear element.
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The isoparametric discretization leads to a contact element which can
be applied in the context with four, nine node quadrilaterals or triangular
elements for three-dimensional continuum problems. Due to the smooth dis-
cretization, a good approximation of the contact pressure is obtained.

8.3.1 Examples for isoparametric contact elements

To give a more detailed description of this type of contact discretization, we
consider some formulations in more detail. These are mixed formulations based
on the so-called Q1/P0 approximation, and several two-dimensional formula-
tions for the Lagrange, penalty and perturbed Lagrange methods.

Example 1: As a first example we derive the explicit matrix formulation
for a contact element with bilinear interpolation for the displacement field
and constant approximation of the contact pressure in the case of frictionless
contact. This is equivalent to the well known Q1/P0 element used in solid me-
chanics for incompressible problems. To make the formulation more flexible,
we start from the perturbed Lagrange form discussed in Section 6.3.6. In
that case, one has to approximate equation (6.52), which involves Lagrange

multipliers and a regularization term. The weak form of the contact contribu-
tions is then

δCP
c =

∫
Γc

[
λN δgN + δλN

(
gN − 1

εN
λN

)]
dΓ . (8.67)

Using the bilinear shape function, given explicitly in (7.24), we can discretize
(8.67). Furthermore, the Lagrange multiplier λN is approximated by a con-
stant value in the element represented here by λ̄N . This interpolation leads,
with (8.48), (8.52) and (8.56), to the weak form contribution to equilibrium
of a single contact element:

∫
Γ e

c

λN δgN dΓ ≈ λ̄N

∑
I

η̂T
I

+1∫

−1

+1∫

−1

NI(ξ , η) N̂ dξ dη . (8.68)

Furthermore, for the weak form of the constraint equation we obtain
∫

Γ e
c

δλN

(
gN− 1

εN
λN

)
dΓ (8.69)

≈ δλ̄N

⎡
⎣

+1∫

−1

+1∫

−1

gN (ξ , η) ‖N 1‖dξ dη − 1
εN

λ̄N Ae

⎤
⎦ = 0 ,

where the Ae represents the area of the contact element. This equation rep-
resents a regularization (constitutive equation) for the impenetrability con-
straint condition (4.6). It has to be fulfilled in an average sense over the
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finite element Γ e
c . In case the second term is zero, we recover the classical

Lagrange multiplier method. We can also obtain a penalty formulation by
eliminating the Lagrange multiplier using (8.69). Solving this equation for
the Lagrange multiplier λ̄N yields

λ̄N =
εN

Ae

+1∫

−1

+1∫

−1

gN (ξ , η) ‖N1‖ dξ dη . (8.70)

This result can be inserted into (8.68), which leads to

∫

Γ e
c

λN δgN dΓ ≈ εN

Ae

∑
I

η̂T
I

+1∫

−1

+1∫

−1

gN ‖N1‖ dξ dη CI (8.71)

with

CI =

+1∫

−1

+1∫

−1

NI N̂ dξ dη . (8.72)

Note, however, that in this special formulation a double integration is neces-
sary where gN , N1, NI and N̂ are functions of ξ and η. With this the La-

grange multiplier is eliminated from the formulation, which is now a penalty
formulation with a special interpolation (Q1/P0: linear for the displacement
field and constant for the contact pressure λN ). The check for penetration has
to be performed here for the complete contact element by evaluation of the
integral condition

ḡN < 0 =⇒ contact with ḡN =

+1∫

−1

+1∫

−1

gN (ξ , η) ‖N1‖ dξ dη . (8.73)

The linearization of (8.71) with respect to the unknown displacements only
affects the first integral, which contains gN . Since ΔgN has the same structure
as δgN , we obtain with (8.72)

∫

Γ e
c

ΔλN δgN dΓ ≈ εN

Ae

∑
I

∑
K

η̂T
I CI CT

K ΔuK . (8.74)

Example 2: As a second example, we formulate the contact element for
two-dimensional problems. It then reduces to a one-dimensional element, see
Figure 8.8. As in (8.48), for the gap function and its variation we obtain

gN =
∑

I

NI(ξ) gNI and δgN =
∑

I

NI(ξ) (η2
I − η1

I) · n1 , (8.75)
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where now the isoparametric shape functions can be chosen according to Sec-
tion 7.1.2. The contact normal can be constructed directly from the interpo-
lation by the cross product of the tangent vector and the vector E3 perpen-
dicular to the plane, see Figure 8.8. With this we compute the normal vector
to the discretized surface of body B1 from

n1 =
E3 × X1

,ξ

‖X1
,ξ ‖

, (8.76)

where the tangent vector is computed as in (8.49). Since the line element dS
in the contact line can be computed using the reference configuration Γ� of
the isoparametric formulation, we have dS = ‖X1

,ξ ‖ dξ. Now for the different
contact formulations with (8.76), we can state the weak form contribution of
the contact stresses for one element:

1. Lagrange multiplier method:

∫

Γ e
c

λN δgN dΓ =

+1∫

−1

λN (ξ) (η2 − η1) · (E3 × X1
,ξ) dξ (8.77)

∫

Γ e
c

δλN gN dΓ =

+1∫

−1

δλN (ξ) gN (ξ) ‖X1
,ξ ‖ dξ . (8.78)

2. Penalty method:

∫

Γ e
c

εN gN δgN dΓ =

+1∫

−1

εN gN (ξ) (η2 − η1) · (E3 × X1
,ξ) dξ . (8.79)

3. Perturbed Lagrange formulation (see also (8.67)):

Fig. 8.8. Isoparametric contact element for two-dimensional problems.
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∫

Γ e
c

λN δgN dΓ=

+1∫

−1

λN (ξ) (η2 − η1) · (E3 × X1
,ξ) dξ (8.80)

∫

Γ e
c

δλN

[
gN − 1

ε
λN

]
dΓ=

+1∫

−1

δλN (ξ)
[

gN (ξ) − 1
ε

λN (ξ)
]
‖X1

,ξ ‖ dξ .

Based on (8.77), (8.79) or (8.80), the finite element discretization is obtained.
We here restrict the matrix formulation to the penalty method and to the
perturbed Lagrange formulation.

(a) Penalty method. With the isoparametric interpolation

X1 =
m∑

A=1

NA(ξ)X1
A (8.81)

and the resulting derivatives for the components of X1

X1
i,ξ =

m∑
A=1

NA(ξ),ξ X1
i A , (8.82)

the cross product in (8.76) yields

N 1(ξ) = E3 × X,1ξ =
{

−X1
2,ξ

X1
1,ξ

}
. (8.83)

This leads to the discretized form of (8.79)

∫

Γ e
c

εN gN δgN dΓ ≈
+1∫

−1

εN gN (ξ)
∑

I

NI(ξ) (η2
I − η1

I) · N 1(ξ) dξ . (8.84)

The linearization of contact residual (8.84) yields, with (8.66),

∫

Γ e
c

εN δgN ΔgN dΓ ≈
+1∫

−1

εN

∑
I

NI(η2
I−η1

I)·N 1
∑
K

NK(Δu2
I−Δu1

I)·
N 1

‖X1
,ξ ‖

dξ .

(8.85)
The matrix formulation for (8.84) and (8.85) are then based on definitions
(8.53), in which (8.83) has to be used. For the contact residual, this leads to

∫

Γ e
c

εN gN δgN dΓ ≈
nc⋃

c=1

m∑
I=1

ηT
c I G c

I , with G c
I =

+1∫

−1

εN gN (ξ)NI(ξ) N̂ dξ ,

(8.86)
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where the integration has to be performed on the reference element, see Figure
8.8.

For the tangent stiffness we obtain with (8.66) the matrix form
∫

Γ e
c

εN ΔgN δgN dΓ ≈
nc⋃

c=1

m∑
I=1

m∑
K=1

ηT
c I CI KΔuc K , (8.87)

with

CI K =

+1∫

−1

εN NI(ξ)NK(ξ) N̂ N̂
T 1
‖X1

,ξ ‖
dξ . (8.88)

For proper choice of the numerical integration rule, we refer to the remark
made for the three-dimensional contact formulation. It can easily be seen that
the contact residual and tangent changes when using different integration
rules. However, since only polynomials appear in (8.86), an exact integration
is also possible for this integral. For linear shape functions the polynomial
order is 2, thus a two-point Gauss rule is sufficient. A one-point Gauss rule
then leads to an under integration. For a quadratic interpolation the maximal
polynomial order is 6. In this case four Gauss points have to be used for an
exact integration, but also a three-point rule is sufficient.

(b) Perturbed Lagrange formulation. For this formulation the matrix
form for a Q1/P0 interpolation will be developed. This yields matrices which
can be evaluated in closed form, and thus are used to demonstrate in detail
the matrix formulation of the finite element discretization. Note also that in
this case the contact interface is approximated by a piecewise linear interpo-
lation. We start from the weak formulation (8.80) for one contact element. By
using the interpolations for the displacement field, the coordinates and the
Lagrange multiplier are

uα =
2∑

I=1

NI(ξ)uα
I =

2∑
I=1

1
2

(1 + ξ ξI)uα
I , (8.89)

X1 =
2∑

I=1

NI(ξ)X1
I =

2∑
I=1

1
2

(1 + ξ ξI)X1
I , (8.90)

λN = λ̄N , (8.91)

with ξ1 = −1 and ξ2 = +1. Using this interpolation, the normal vector N1

can be expressed explicitly

N 1 =
{

−X1
2,ξ

X1
1,ξ

}
=

1
2

{
X1

21 − X1
22

X1
12 − X1

11

}
, (8.92)

with the components (X1
1)

T = {X1
11 ,X1

12 } and (X1
2)

T = {X1
21 ,X1

22 } of the
position vectors X1

I of the nodal points of the master surface, see also Figure
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8.9. Note that the vector N 1 is constant, which is in accordance with the
straight geometry of the contact element. Now we can write, with (8.91) and
(8.92) for (8.80),

∫

Γ e
c

λN δgN dΓ = λ̄N

+1∫

−1

2∑
I=1

NI(η2
I − η1

I) · N1 dξ . (8.93)

Since ηα
I and N1 are constant, we can integrate (8.93) analytically, and obtain

with
+1∫

−1

1
2

(1 + ξI ξ) dξ = 1

the matrix form

∫

Γ e
c

λN δgN dΓ = λ̄N η̂T GPL with CPL =

⎧⎪⎨
⎪⎩

−N1

−N1

N1

N1

⎫⎪⎬
⎪⎭ , (8.94)

where the vector η̂ which contains the variations ηα
I has been introduced as

η̂T = { η1
11 , η1

12 , η1
21 , η1

22 , η2
11 , η2

12 , η2
21 , η2

22 }T .

Now the constraint equation (8.80)2 can be evaluated. For the chosen
interpolation this leads to an expression for the Lagrange multiplier

λ̄N =
εN

Ae

+1∫

−1

2∑
I=1

NI(ξ) gNI ‖N1 ‖ dξ . (8.95)

The element area Ae is given in the two-dimensional case as the element length
Le. Furthermore, we obtain ‖N1 ‖ = 1

2

√
(X22 − X22)2 + (X12 − X11)2 =

Fig. 8.9. Two-node contact element with Q1/P0 interpolation.



8.4 Discretization for Non-matching Meshes 205

Le / 2. With this, for (8.95) we arrive at a simple expression for the Lagrange

multiplier:
λ̄N =

εN

2
( gN1 + gN2 ) . (8.96)

Hence the constant Lagrange multiplier depends upon the average gap ḡN =
( gN1 + gN2 ) / 2, which is also used in this element formulation to establish
whether the gap is closed or not, leading to the contact condition

ḡN < 0 =⇒ contact . (8.97)

The linearization of the perturbed Lagrange formulation can be com-
puted from (8.80) with (8.95). We then have

D Cc·Δu =
∫

Γc

ΔλN δgN dΓ = Δλ̄N

∫

Γc

δgN dΓ (8.98)

=
εN

Le

+1∫

−1

2∑
I=1

NI (Δu2
I − Δu1

I) · N1 dξ

+1∫

−1

2∑
K=1

NK(η2
K − η1

K) · N1 dξ ,

which with

ΔûT = {Δu1
11 ,Δu1

12 ,Δu1
21 ,Δu1

22 ,Δu2
11 ,Δu2

12 ,Δu2
21 ,Δu2

22 }T

and (8.94) yields the matrix form of the tangent matrix for one contact element

D Cc · Δu = η̂T KPL
c Δû with KPL

c =
εN

Le
CPL (CPL)T . (8.99)

8.4 Discretization for Non-matching Meshes

By using general mesh generators, unstructured meshes can be constructed in
which nodes in the contact interface do not assume the same coordinates, see
Figure 8.10. Then the formulations discussed above can no longer be applied,
even in the geometrically linear case.

Methods for connecting finite element domains with non-matching grids
(see Figure 8.10) are frequently used for parallel computations. Such formu-
lations have different origins, and hence have also received special names.

Fig. 8.10. Contact discretization for small deformations.
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A commonly used approach is the mortar method. However, other methods
like the Nitsche method exist. The formulations are designed in such a way
that they fulfil the BB conditions, also called inf-sup conditions, and hence
lead to a stable discretization. For a good literature overview and the un-
derlying mathematical theory we recommend Wohlmuth (2000a). The basic
difference between the mortar and the Nitsche methods lies in the fact that in
a mortar discretization, one has to introduce Lagrange multipliers, whereas
the formulation due to Nitsche is purely displacement-based, see Section
6.3.5. There are also approaches which were developed in the engineering lit-
erature, e.g. see Simo et al. (1985) or Papadopoulos and Taylor (1992). Here
either a Lagrange or penalty formulation was applied.

All methods will be discussed for the case of frictionless contact. Extensions
to friction can be formulated analogous to Section 8.2.2. Treatments which
include friction can also be found in Krause and Wohlmuth (2002) or McDevitt
and Laursen (2000).

8.4.1 Discretization with contact segments

One idea to discretize the contact interface in the case of non-matching meshes
is based on the introduction of so-called contact segments. The discretization
of the contact interface by segments (see Figure 8.11) was introduced in Simo
et al. (1985) for the geometrically linear case. Based on the definition of con-

Fig. 8.11. Contact segments for two-dimensional problems.

tact segments, it is possible to use different interpolations for the Lagrange

multipliers and the gap function in a natural way. Hence, it is appropriate to
employ the perturbed Lagrange formulation, see Section 6.3.6. This is true
even in the case of a penalty formulation, since then this formulation gives
some freedom in choosing the interpolation spaces for the displacements and
the Lagrange multipliers.

Following Simo et al. (1985) we define the contact segment by the geometry
of the adjacent elements of the bodies in contact. Within the segments an
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intermediate surface Γ s
c is introduced. A typical contact segment is shown

in Figure 8.12. It is defined by two element edges with the nodes x1
2–x

1
1 and

x2
2–x

2
1. The superscripts refer to the body and the subscripts indicate the

node number. The contact segment is now defined by a quadrilateral with four
nodes, specified by the points x̄1 ,x1

2 , x̄2 and x2
2. x̄

1 and x̄2 are the orthogonal
projections of the nodes x2

2 and x1
2 onto the opposite element edge, see Figure

8.12. This projection is given by

x̄γ = (1 − αγ)xγ
1 + αγ xγ

2 , (8.100)

where γ ∈ 1, 2 refers to the body, and αγ follows from

α1 L1
e = (x2

2 − x1
1) · t1 and α2 L2

e = (x1
2 − x2

1) · t2 , (8.101)

where the tangent vectors are defined as

tγ =
xγ

2 − xγ
1

‖xγ
2 − xγ

1 ‖
. (8.102)

Similar to the coordinates of the new nodes x̄1 and x̄2, the displacement vector
at these nodes can be stated:

ūγ = (1 − αγ)uγ
1 + αγ uγ

2 . (8.103)

REMARK 8.1: Note that the projection used in Figure 8.12 does not work in

all cases (see Figure 8.13a), where the projection is not unique for node i, and

furthermore no solution exists for k , l , m within the segments defining the contact

interface. In such situations, one has to redefine the segments. Possible definitions

are stated in Figure 8.13b. However this definition leads to complex coding, since

many special cases have to be checked, especially in three-dimensional situations

where a lot of differently shaped segments can occur.

Fig. 8.12. Geometry of the contact segment.
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Fig. 8.13. Special cases for segment definitions.

Within the segment, defined in Figure 8.12, the current coordinates, dis-
placement fields and variations are interpolated with linear polynomials, and
hence are given as functions of the local coordinate ξ ∈ [ 0 , 1 ]

x1(ξ)=(1 − ξ) x̄1 + ξ x1
2 , x2(ξ) = ξ x̄2 + (1 − ξ)x2

2 ,

u1(ξ)=(1 − ξ) ū1 + ξ u1
2 , u2(ξ) = ξ ū2 + (1 − ξ)u2

2 , (8.104)
η1(ξ)=(1 − ξ) η̄1

1 + ξ η1
2 , η2(ξ) = ξ η̄2

1 + (1 − ξ)η2
2 .

Depending on the discretization used for the bodies Bγ , higher order inter-
polations could also be applied here. With definitions (8.100) the gaps at the
segment edges are obtained as

g1
N = (x2

2 − x̄1) · n1 , g2
N = (x1

2 − x̄2) · n2 , (8.105)

where the normal vector is given for the plane case by nγ = e3 × tγ .
Now the interpolation for the gap function gN (ξ) and its variation δgN (ξ)

can be defined according to (8.104)

gN (ξ) = (1 − ξ) g1
N + ξ g2

N , δgN (ξ) = (1 − ξ) δg1
N + ξ δg2

N . (8.106)
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These interpolations are applied within a segment which is defined by the
edge nodes xγ

2 and the projections onto the other surface x̄γ , see Figure 8.12.
Now we can define an intermediate contact line in the segment which is C1-
continuous:

γc
s(ξ) =

2∑
A=1

HA(ξ)yA + L̄s

2∑
A=1

H̄A(ξ) tA , (8.107)

where HA and H̄A are the classical Hermite polynomials

H1(ξ) = 1 − 3 ξ2 + 2 ξ3 H2(ξ) = ξ2 ( 3 − 2 ξ )
H̄1(ξ) = ξ ( 1 − ξ )2 H̄2(ξ) = ξ2 ( 1 − ξ ) ,

with ξ ∈ [ 0 , 1 ]. tγ is already defined in (8.102) and yγ is the position vector
of the beginning and end of the contact line γc

s (see Figure 8.12):

y1 = ( 1 − β ) x̄1 + β x2
2 , y2 = ( 1 − β )x1

2 + β x̄2 . (8.108)

The limiting choices of β = 0 and β = 1 correspond to selecting one of the
contacting surfaces ∂Bγ h as an intermediate contact line. This does not mean,
however, that the intermediate line is equivalent to the interpolation of one
surface of the bodies, since it is still C1-continuous, which is not true for
interpolation (8.104). The length L̄s is defined as the distance between the
end points y1 and y2: L̄s = ‖y2 − y1 ‖. The actual length of γc

s is computed
via

Ls =

1∫

0

‖ d γc
s

dξ
‖ dξ (8.109)

which can be evaluated numerically using a quadrature rule.
The variational formulation is based on the perturbed Lagrange ap-

proach, see (8.80). The contact contributions take the form

∫

Γc

λN δgN dΓ =
nseg∑
s=1

∫

γs

λN δgN dγ (8.110)

∫

Γc

(gN − λN

εN
) δλN dΓ =

nseg∑
s=1

∫

γs

(gN − λN

εN
) δλN dγ = 0 . (8.111)

The sum over the segments is carried out for all closed gaps. Depending on
the interpolations, the latter equation can be solved for λN directly. With
the interpolations (8.104), and assuming a constant contact pressure λ̄N =
CONST within the segment, for the segment γs we obtain

∫

γs

λN δgN dγ = λ̄N

1∫

0

δgN (ξ) ‖dγc
s

dξ
‖ dξ (8.112)
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Fig. 8.14. Geometrical interpretation of the average gap.

∫

γs

(gN − λN

εN
) δλN dγ = 0 =⇒ λ̄N =

εN

Ls

1∫

0

g(ξ) ‖dγc
s

dξ
‖ dξ . (8.113)

As has been shown in Simo et al. (1985), the evaluation of these integrals by
the trapezoidal rule yields the simple formulas

λ̄N

1∫

0

δgN (ξ) ‖dγc
s

dξ
‖ dξ ≈ λ̄N

2
( δg1

N + δg2
N ) , (8.114)

λ̄N ≈ εN

2
( g1

N + g2
N ) = εN ḡs , (8.115)

where gγ
N and δgγ

N are the gaps defined in (8.105). Equation (8.115) has the
interpretation that the constant Lagrange multiplier λ̄N is given in terms of
the average gap ḡs in the segment. For a consistent formulation this average
gap also has to be used for the contact check. A geometrical view of the
enforcement of the contact constraints in the contact-segment approach is
given in Figure 8.14, which depicts a fulfillment of the contact constraints in
the middle of the left and right segments. This is equivalent to the fact that
the constraint is fulfilled in an average sense, since the integral (8.113) is zero.

Finally, the evaluation of (8.114) can be combined with (8.115) to eliminate
the Lagrange multiplier, and hence yield the contact contribution for the
perturbed Lagrange formulation

λ̄N

1∫

0

δgN (ξ) ‖dγc
s

dξ
‖ dξ ≈ εN L̄s ḡs δḡs , (8.116)

with δḡs = 1
2 ( δg1

N + δg2
N ). With (8.104) this equation can now be expressed

in matrix form by introducing

xT
s = 〈x2

1 ,x2
2 ,x1

1 ,x1
2 〉 and ηT

s = 〈η2
1 ,η2

2 ,η1
1 ,η1

2 〉 , (8.117)

which leads to the contact residual within the perturbed Lagrange formu-
lation with local elimination of the Lagrange multiplier
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εN ḡs L̄s δḡs = εN L̄s (xT
s Cs )ηT

s Cs , (8.118)

with

Cs =

⎧⎪⎨
⎪⎩

− 1
2 (1 − α2)n2

1
2 (n1 − α2 n2 )
− 1

2 (1 − α1)n1

1
2 (n2 − α1 n1 )

⎫⎪⎬
⎪⎭ . (8.119)

In the case of established contact, the segment also contributes to the tan-
gent stiffness. This contribution follows from the linearization of (8.118) with
respect to the displacement variables. Since this term depends only upon the
displacements within the product xT

s Cs = (Xs + us)T Cs, for the tangent
stiffness we obtain

Ks = εN L̄s Cs CT
s , (8.120)

which completes the discretization for contact segments. For more details,
see Simo et al. (1985), and for its nonlinear extension see Papadopoulos and
Taylor (1992).

8.4.2 Mortar method

The mortar method is a special technique to enforce contact constraints in
the discretized system for non-matching meshes. The method is based on
a Lagrange multiplier formulation in which special interpolation functions
are used to discretize the Lagrange multiplier in the contact interface. Two
methods have been established during the last years within the mortar ap-
proach. One leads to a non-conforming method which is based on direct en-
forcements of the constraints, and hence is equivalent to the direct constraint
elimination discussed in Section 6.3.3. This method is described in Bernadi
et al. (1994) and Wohlmuth (2000a). It leads to a positive definite system of
equations, see also the example in Section 6.4. The other method is related
to the weak enforcement of the constraints by applying the Lagrange mul-
tiplier method. The general idea is outlined in Section 6.3.1, however in the
mortar approach different interpolations for the Lagrange multipliers are
introduced. In general, one can use as ansatz space linear, quadratic or even
higher order interpolation functions. However, due to the weak formulation
of the constraints, mathematical conditions like the inf-sup or Babuska–

Brezzi condition have to be fulfilled in order to achieve a stable discretiza-
tion scheme; for details regarding numerical algorithms and theoretical results,
see El-Abbasi and Bathe (2001), Wohlmuth (2000a), Wohlmuth and Krause
(2004), Hüeber and Wohlmuth (2005b) and Hüeber and Wohlmuth (2005a).

In the following, we discuss two aspects related to discretization schemes
based on the mortar approach. These are the introduction of the reference
surfaces and the choice of the interpolation spaces.

Several techniques can be followed to define the contact surface. One is
based on the use of an intermediate contact surface as the reference surface
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and to define the Lagrange multipliers on this surface. This intermediate
contact surface C defines the mortar side in the interface, see Figure 8.15.
Early formulations can be found in Simo et al. (1985), as described in Section
8.4.1. Lately mortar discretizations, based on the intermediate surface, have
been developed in McDevitt and Laursen (2000) or Rebel et al. (2000).

Another choice is made in the mathematical literature, e.g. see Wohlmuth
(2000b) and Krause and Wohlmuth (2002), which is based on the assumption
that the mortar side is one of the surfaces of the bodies in the contact interface
which would, for example, in our notation be the master surface. In Wohlmuth
(2000b) it was shown that such formulation with the appropriate interpolation
functions for the Lagrange multipliers fulfils the BB condition. Furthermore,
the Lagrange multiplier interpolation can be constructed in such a way that
the locality of the support of the nodal basis functions is preserved. Hence this
formulation leads from a mathematical viewpoint to a stable discretization,
and yields a good approximation of the contact stresses. Numerical tests show
that such mortar methods are not stable when the contact between curved
surfaces is considered. For such cases a modified dual method was developed
in Flemisch et al. (2005).

The general approach leading to mortar methods will be described here for
the frictionless case. The basic formulation starts from the Lagrange multi-
plier method stated in Section 6.3.1. From equation (6.26) for the frictionless
case one obtains the energy related to the contact interface

Πc =
∫

Γc

λN gN dA . (8.121)

λN is the Lagrange multiplier in the normal direction of the contact interface
and gN measures the gap distance. Γc denotes the contact interface. The
variation of this form leads to

Fig. 8.15. Definition of intermediate mortar surface.
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Cc = δΠc =
∫

Γc

( δλN gN + λN δgN ) dA . (8.122)

The first term describes the fulfillment of the constraint condition, and the
second term yields the contact pressure (Lagrange multiplier) due to the
enforcement of the constraint. Now the first term can be used to construct
the non-conforming mortar scheme.

Non-conforming mortar method. Within the discretization of the first
term in (8.122) one has to interpolate the gap function gN and the Lagrange

multiplier λN . The gap function is defined by the displacement field of the
contacting surfaces. Thus one can write

gN =
[
u2(ζ) − u1(ξ)

]
· n1(ξ). (8.123)

From this definition it is clear that the non-mortar side is described by the
surface coordinate ζ whereas the surface coordinate of the mortar side is
denoted by ξ. By construction, the normal vector n1(ξ) is defined with respect
to the mortar side.

Hence the interpolation functions have to be the same as the interpola-
tions used to discretize the contacting solids. Thus, the only free choice for
the interpolation in the contact interface can be made for the Lagrange

multipliers. These have to be interpolated in such way that the BB condition
is fulfilled.

We start by introducing a Lagrange multiplier interpolation for the two-
dimensional case, which is defined on the non-mortar side,

λN (ζ) =
2∑

K=1

MK(ζ)λNK , (8.124)

with MK being a linear function (see (7.15)), except at the ends of the contact
area. At this end λN is chosen to be constant to achieve a stable discretiza-
tion, e.g. see Wohlmuth (2000a). With respect to the non-mortar side, the
constraint equation included in (8.122) can be written with (8.123) in a weak
sense as

nc∑
c=1

∑
K

δλNK

∫

Γ nm
c

MK(ζ)

[∑
I

N2
I (ζ)u2

I −
∑

J

N1
J(ξ)u1

J

]
· n1(ξ) dΓ = 0 ,

(8.125)
where nc is the number of element sides in contact on the non-mortar side.
On this side Γnm

c and also the shape functions N2
I of body B2 are defined; see

Figure 8.16 for a linear interpolation. The integration of the right-hand side of
(8.125) also has to be performed on Γnm

c , however the shape functions N1
J are

defined on B1. Hence the integration is more involved, since nodes I and J do
not coincide. An exact integration can be performed for the choice of linear
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Fig. 8.16. Shape functions for displacements and Lagrange multiplier in contact
interface.

shape functions using the segment definition (8.104) from Section 8.4.1. We
observe that the integration along the non-mortar side yields a mass matrix;
for the structure in the continuum case see (7.48). For a linear interpolation
within a contact segment c, this leads with the definition u2

n I = uI · n1 for
constant n1 to

∑
I

∑
K

δλNK

1∫

−1

MK(ζ)N2
I (ζ) dζ u2

I = 〈δλN1 , δλN2〉c
l

6

[
2 1
1 2

]
c

{
u2

n 1

u2
n 2

}
c

= δλT
N c M 2

c u 2
c , (8.126)

where M2
c is the standard mass matrix of a bar. Assembly of all nc terms on

both sides of (8.125) gives

δλT
N (M 2 u 2 − M 1 u 1 ) = 0 , (8.127)

from which we can eliminate the displacements u2 on the non-mortar side by

u 2 =
(
M 2

)−1
M 1 u 1 (8.128)

as discussed in Section 6.3.3.
In (8.127) we have computed matrix M 1 segment-wise, e.g. M 1 follows

from an integration by dividing a segment c into i and j on the mortar side, see
Figure 8.16. This integration can be performed exactly or by using a quadra-
ture rule. For the linear interpolation with straight segments, a two-point
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Fig. 8.17. Support of the standard Lagrange multiplier spaces.

Gauss quadrature is sufficient, and yields an exact integration. For higher or-
der isoparametric interpolations an exact integration is more involved, since
the contact surfaces can be curved, which leads to non-constant Jacobians.

Since M 2 is not a diagonal matrix the influence of one displacement u1
J

is coupled with all displacements u 2. This situation is graphically depicted
in Figure 8.17, where the large grey area on the non-mortar side shows the
coupling due to M 2, and the small grey zone on the mortar side shows the
local distribution of u1

J due to M 1. The same is true when the Lagrange

multipliers are kept within the formulation, as described in Section 6.3.1. Also,
there the locality of the nodal basis function is lost.

Mortar method using dual basis for Lagrange multipliers. Fol-
lowing Wohlmuth (2000b) a dual Lagrange multiplier space is introduced.
This yields the shape functions shown in Figure 8.18 for constant and linear
interpolations. The condition for duality can be stated for a segment Γnm

c as
follows: ∫

Γ nm
c

N2
I (ζ) M̄K(ζ) dΓ = δIK cI

∫

Γ nm
c

[
N2

I (ζ)
]2

dΓ , (8.129)

where N2
I are the standard interpolation functions for the displacements on

the non-mortar side, and M̄K is the dual basis used to interpolate the La-

grange multiplier. The interpolation functions which are depicted on the
right side of Figure 8.18 are stated next in terms of local coordinates for the
two-dimensional case; see also Wohlmuth (2000a). For a piecewise constant
interpolation, we obtain

M̄0
1 (ζ) =

3
2

for − 1 ≤ ζ ≤ 0 and − 1
2

for 0 < ζ ≤ 1 ,

M̄0
2 (ζ) = −1

2
for − 1 ≤ ζ ≤ 0 and

3
2

for 0 < ζ ≤ 1 . (8.130)

Linear dual base functions are given by

M̄1
1 (ζ) =

1
2

(2 | ζ − 1 | − | ζ + 1 | ) ,
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Fig. 8.18. Constant and linear interpolation for the mortar method.

M̄1
2 (ζ) =

1
2

(2 | ζ + 1 | − | ζ − 1 | ) ; (8.131)

finally, quadratic dual basis functions are defined with (7.16) as

M̄2
1 (ζ) =

1
2
− 3

4
N3(ζ) + N1(ζ) =

1
4

( 5 ζ2 − 2 ζ − 1 ) ,

M̄2
2 (ζ) = −1 +

5
2

N3(ζ) =
1
2

(3 − 5 ζ2) , (8.132)

M̄2
3 (ζ) =

1
2
− 3

4
N3(ζ) + N2(ζ) =

1
4

( 5 ζ2 + 2 ζ − 1 ) .

All these functions fulfil the orthogonality condition (8.129). These functions
have to be inserted as interpolation functions for the Lagrange multipli-
ers in (8.122). Note that no modification of these interpolation functions is
needed at the end points, which has been shown in Wohlmuth (2000a). Due
to this orthogonality property, using the shape functions (8.130) to (8.132),
an assembled matrix form of the weak contact constraint equation is given by

δλT
N (D 2 u 2 − M 1 u 1 ) = 0 , (8.133)

instead of (8.127). Hence the elimination (8.128) can now be expressed as

u 2 =
(
D 2

)−1
M 1 u 1 , (8.134)

where D 2 is a diagonal matrix whose elements follow from (8.129). This leads
to a contact interpolation with a local support; see Figure 8.19, which is
computationally more efficient.
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Fig. 8.19. Support of the dual Lagrange multiplier spaces.

By denoting the displacements of nodes lying on the non-mortar side by
un and all others by ug, we can write the Lagrange multiplier equations
according to (8.11) as

⎡
⎣ Kgg Kgn C

Kng Knn D

CT DT 0

⎤
⎦

⎧⎨
⎩

ug

un

λ

⎫⎬
⎭ =

⎧⎨
⎩

fg
fn
0

⎫⎬
⎭ , (8.135)

where D is the diagonal matrix introduced above, and C corresponds to M 1

introduced in the last section. Due to the diagonal matrix D, this equation
has some features which can be exploited algorithmically. For example, if we
know the displacements in an iteration step k, then we can directly compute
the Lagrange multipliers from the second row of (8.135) by

λk = D−1 ( fn − Kng uk
g − Knn uk

n ) . (8.136)

Since the inversion of the diagonal is trivial, an efficient two-step algorithm
can be derived using the dual mortar method.

8.4.3 Nitsche method

Another method which can be applied for contact problems with non-matching
meshes is the variational formulation due to Nitsche. The continuum formu-
lation of this method is provided in Section 6.3.5. It leads to a weak form of
the two bodies in contact, which is amended by three terms, see Becker and
Hansbo (1999). These lead to a symmetrical global matrix system in the pri-
mary displacement variables. The variational formulations is based on (6.41)
which, instead of the Lagrange multipliers, includes the contact pressures
pγ

N stemming from the solids and a stabilizing second term which has the
structure of a penalty term, see Section 6.3.2. It is given as

ΠN
c = −

∫

Γc

1
2
( p1

N + p2
N ) gN dA +

∫

Γc

εN g2
N dA . (8.137)

The variation of ΠN
c yields
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CN
c = −

∫

Γc

1
2
[
( δp1

N + δp2
N ) gN + ( p1

N + p2
N ) δgN

]
dA +

∫

Γc

εN gN δgN dA .

(8.138)
The discretization now starts from the definition of the contact pressures

(6.44)

pγ
N = nγ · C

γ [ε(uγ)]nγ = Nγ T Eγ
ne∑

I=1

Bγ
I uI . (8.139)

Eγ is the constitutive matrix of body Bγ and Bγ
I is defined in (7.82) for the

current configuration, but can also be applied to geometrically linear problems
when the current coordinate is replaced by the coordinate of the reference
configuration. The vector which describes the projection of the stress field at
the boundary in the normal direction Nγ is defined by

Nγ T = 〈n2
1 , n2

2 , n2
3 , 2n1n2 , 2n2n3 , 2n1n3 〉γ . (8.140)

It contains the components of the normal vector nγ . Equation (8.139) now
has to be used within the variational formulation to enforce the constraints.
Hence we have to insert this expression into (6.45). In this form an integration
over the master surface is needed, which has to take into account the shape
function of both sides on the contact interface.

We will restrict ourselves here to the two-dimensional case and bilinear
interpolation functions for the finite elements at the contact interface, see
Figure 8.20. The numerical integration will be performed using a two-point
Gauss rule for each master segment which is sufficient for linear shape func-
tions. Hence one only has to evaluate the integral in (8.138) at two points,
as shown in Figure 8.20 for one of the points ξq. For this integration the gap
function gN at each Gauss point ξq has to be evaluated. gN is obtained as the
distance between the point x1(ξq) = (1 − ξq)x1

1 + ξq x1
2 and the intersection

of the normal at ξq with the boundary of the slave surface. This leads to the
condition

x1(ξq) + gN n1(ξq) = (1 − ζPq)x2
1 + ζPq x2

2 = x2(ζPq) . (8.141)

The multiplication of this equation with the tangent vector related to the mas-
ter surface e1

T = x1
2−x1

1 yields an equation for the location of the intersection
point in terms of the local coordinate ζPq related to the slave surface.

ζPq =
[x1(ξq) − x2

1 ] · e1
T

(x2
2 − x2

1 ) · e1
T

. (8.142)

Note that the term with the gap function drops out. In the same way, one
obtains the distance gN ,

gN q =
1

‖n1 ‖ [x2(ζPq) − x1(ξq) ] · n1 , (8.143)
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where, for generality, it is not assumed that n1 is a unit vector. Hence n1 can
be defined simply by n1 = e3 × e1

T in terms of the tangent e1
T to the master

surface.
Now the contact pressures at the Gauss point ξq on the master surface

and its projection ζPq on the slave surface can be defined with (8.139) as

p1
N = N1 T E1

ne∑
I=1

B1
I(ξq)u

1
I = N1 T E1 B̄

1
q u1 ,

p2
N = N2 T E2

ne∑
I=1

B2
I(ζPq)u

2
I = N2 T E2 B̄

2
Pq u2 . (8.144)

The same also follows for the variations of the contact pressures, which yields

δp1
N = N1 T E1

ne∑
I=1

B1
I(ξq)η1

I = N1 T E1 B̄
1
q η1 ,

δp2
N = N2 T E2

ne∑
I=1

B2
I(ζPq)η2

I = N2 T E2 B̄
2
Pq η2 . (8.145)

This result can now be inserted into (8.138), which leads for a two-point
Gauss rule for one contact segment as defined in Figure 8.20 to

CN
c e =

2∑
q=1

{
−1

2

[ (
η1 T B̄

1 T
q E1 N1 + η2 T B̄

2 T
Pq E2 N2

)
gN q

− δgN

(
N1 T E1 B̄

1
q u1 + N2 T E2B̄

2
Pq u2

)]

Fig. 8.20. Two-dimensional contact discretization for Nitsche method.
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+ εN gN q δgN q

}
Jq Wq , (8.146)

where Jq = detJΓ (ξq) is the Jacobian of the surface transformation from
the global coordinates to the local coordinates evaluated at the Gauss point
ξq. gN q is defined in (8.143), from which δgN q follows as

δgN q =
1

‖n1 ‖
[
(1 − ζPq)η2

1 + ζPq η2
2 − (1 − ξq)η1

1 − ξq η1
2

]
· n1 . (8.147)

The quantity Wq in (8.146) denotes the weighting factor for the Gauss inte-
gration rule (which for two points is unity). Note that in the above equation,
one has to change the notation according to the segment which is defined by
the intersection of the normal at the Gauss point and the slave surface, see
Figure 8.20. Here the projection from the second Gauss point may intersect
with a different element of the slave surface.

With the introduction of a matrix form for gN q and δgN q

gN q = 〈u2
1 ,u2

2 ,u1
1 ,u1

2 〉

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − ζPq) n1

‖n1 ‖

ζPq
n1

‖n1 ‖

−(1 − ξq) n1

‖n1 ‖

−ξq
n1

‖n1 ‖

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= u 12 T N 12
q ,

δgN q = 〈η2
1 ,η2

2 ,η1
1 ,η1

2 〉

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − ζPq) n1

‖n1 ‖

ζPq
n1

‖n1 ‖

−(1 − ξq) n1

‖n1 ‖

−ξq
n1

‖n1 ‖

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= η 12 T N 12
q , (8.148)

one can rewrite equation (8.146) as

CN
c e = −1

2

2∑
q=1

[ (
η1 T B̄

1 T
q E1 N1 + η2 T B̄

2 T
Pq E2 N2

)
N 12 T

q u 12

− η 12 T N 12
q

(
N1 T E1 B̄

1
q u1 + N2 T E2B̄

2
Pq u2

)]
Jq Wq

+
2∑

q=1

εN η 12 T N 12
q N 12 T

q u 12 Jq Wq . (8.149)

This equation can be recast in matrix form, leading to

CN
c e =

2∑
q=1

〈η1 ,η2 ,η12 〉Rc q , (8.150)

with the contact residual
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Rc q =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2 B̄

1 T
q E1 N1 gN q

− 1
2 B̄

2 T
Pq E2 N2 gN q

εN N 12
q gN q − 1

2 N 12
q

(
N1 T E1 B̄

1
q u1 + N2 T E2B̄

2
Pq u2

)

⎫⎪⎪⎬
⎪⎪⎭

Jq Wq .

(8.151)
The linearization of this linear residual term yields the contact tangent con-
tribution for each Gauss point:

Kc q = −1
2

⎡
⎢⎣

0 0 B̄
1 T
q E1 N1 N 12 T

q

0 0 B̄
2 T
Pq E2 N2 N 12 T

q

N 12
q N1 T E1B̄

1
q N 12

q N2 T E2B̄
2
Pq −2 εN N 12

q N 12 T
q

⎤
⎥⎦ Jq Wq .

(8.152)
Note that the stabilization due to the penalty method adds a term on the
diagonal of the matrix.

With these matrices the contact formulation using the Nitsche method
is completed. The method can also be applied to higher order interpolations.
In that case, one has to iteratively find the intersection of the normal vector
at the Gauss points with the slave surface. Also, the normal vector is then
no longer constant within the master segment. However, the main approach
does not change, and the structure of the matrices which are obtained at a
Gauss point is the same as in (8.152). For further details see Zavarise and
Wriggers (2006).

A formulation for three-dimensional problems can be derived in an analo-
gous way. The integration then has to be performed again with respect to the
master surface. In that case, it is more complicated to compute the intersec-
tion of the normal vectors at the Gauss points with the discretization of the
slave surface. However, this is more a technical difficulty than a conceptual
one.

To show the features of the Nitsche method, we consider a simple example
with two elastic blocks. The dimension of the blocks are, respectively 2× 0.25
and 2×0.75 units (see Figure 8.21); the meshes of the two blocks do not match
in the interface, as depicted in Figure 8.21. The foundation and the block have
been divided, respectively, into 11×3 elements and 99×9 elements. The upper
and lower sides are clamped and a downward displacement of 0.02 units is
imposed at the upper side. Material constants are: E = 108 units, ν = 0.0.

Fig. 8.21. Mesh of two elastic blocks with 11 × 3 and 99 × 9 elements.
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Table 8.1. Residual norm for non-matching meshes with uniform pressure

# Gauss Penalty εN = 109
Nitsche-no-penalty Nitsche+Penalty

2 0.182E-02 0.768E-15 0.191E-16
5 0.182E-02 0.715E-15 0.284E-16
20 0.182E-02 0.496E-15 0.296E-16

A plane stress model is assumed. Results are collected in Table 8.1. These
show that the Nitsche method is able to improve the penetration residual
norm. This norm is introduced to monitor the accuracy of the solutions by
computing a

‖gN‖ =

√∑nc

i=1 g2
Ni

nc
, (8.153)

where nc is the number of active contact points. As can be seen, the best
result is obtained using a non-zero penalty term. The stress field is perfectly
uniform, i.e. no disturbance of the stress field is generated at the interface for
all the cases.

Next a non-uniform, linearly varying displacement field is applied to the
problem shown in Figure 8.21. In this case, the global performance of the
methods is still the same. However, a small disturbance of the stress field
takes place in this case if the Nitsche method is used with a zero penalty
value, as depicted in Figure 8.22. It also has to be noticed that the reduction of
the residual norm ‖gN‖ with a non-zero penalty value is still remarkable (see
Table 8.2). As a general rule, we can say that the Nitsche method permits
us to achieve a better residual of the penetrations.

Fig. 8.22. Mesh and vertical normal stress for example with non-uniform loading.
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Table 8.2. Residual norm for matching mesh with non-uniform loading

Penalty εN = 109
Nitsche-no-penalty Nitsche+Penalty

0.105E-02 0.296E-04 0.118E-04

A more general example has been developed to check the performance of
the methods. For this purpose, two contacting blocks with curved contact
surfaces are considered. The lower block has been discretized with 31 × 8
elements, and the upper one with 51 × 24 elements. Due to the parabolic
shape of the surfaces, only the first node on the left is initially in contact, see
Figure 8.23. The material data of the upper block is E = 107 units, ν = 0.0,
whereas the lower block assumes the same material parameters as given in
the previous example. A downward uniform displacement of 0.02 units was
applied.

Looking at the residual norms collected in Table 8.3, we again find a very
good improvement in the solution achieved also in the previous examples.
The Nitsche discretization scheme converges again with and without penalty
stabilization. The vertical stresses are shown in Figure 8.24 for the case of the
Nitsche discretization without penalty stabilization.

It is also easy to see that the Nitsche method produces a less local change
of the penetration along the contact surface. Thus the penetration is in this
case not load dependent as in the penalty method, see Figure 8.25.

Table 8.3. Residual norm for example with curved surfaces

Penalty εN = 109
Nitsche-no-penalty Nitsche + Penalty

0.198E-2 0.141E-4 0.133E-4

Fig. 8.23. Two blocks with curved surfaces.
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Fig. 8.24. Vertical stresses.

Fig. 8.25. Penetration along the contact surface.
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Discretization, Large Deformation Contact

For the general case of contact including large deformations (see Figure 9.1)
the active part of the contact interface Γc, where gN ≤ 0, has to be determined
during the solution process. Currently, in finite deformations, most algorithms
rely on discretizations which are based on nodes on the boundary of the bodies.
Thus, the algorithm has to find the active contact constraints denoted by
JA ∈ JC , where gN = 0 is fulfilled. JC are all possible contact nodes on the
contact surface. In finite deformations this task requires an extensive contact
search, which is discussed in more detail in Section 10.1.

The most frequently used discretization is the so-called node-to-segment
approach. Here arbitrary sliding of a node over the entire contact area is al-
lowed. Early implementations can be found in Hallquist (1979) or Hughes et al.
(1977) and have been extended to more general cases, Hallquist et al. (1985),
Bathe and Chaudhary (1985) and Wriggers et al. (1990). Now many finite el-
ement codes also include self-contact, e.g. see Hallquist et al. (1992). Also the
idea of contact segments proposed by Simo et al. (1985), has been followed up
and applied to problems involving large deformations, see Papadopoulos and
Taylor (1992). During the last few years considerable mortar type discretiza-
tion techniques were developed for finite deformation contact problems, see
e.g. Puso (2004), Puso and Laursen (2004a), Fischer and Wriggers (2005) and
Fischer and Wriggers (2006).

In this section we discuss discretization techniques for large deformation
contact, where sliding of a contacting node or element over several elements
of the other body is also allowed. To describe such a process properly, we
introduce the master-slave concept in the current configuration in which a
discrete slave point, denoted by the subscript s in the following, with coor-
dinate x2

s comes into contact with a master segment, described by x1. The
master segment will be a line in two-dimensional situations and a surface in
three-dimensional contact problems. The line or surface describing the master
segment is usually parameterized by convective coordinates ξ; see Appendix
B for the definition. This approach is well known from beam or shell the-
ory. A parameterization of the master segment with convective coordinates,
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Fig. 9.1. Discretization for large deformation contact.

x1 = x1(ξ), is also very close to the standard isoparametric formulation, see
Chapter 7. However, when we discuss the C1-continuous approximation of the
contact surface, then the surface parameterization is not identically with the
isoparametric interpolation of the underlying finite elements.

REMARK 9.1: When the discretization of contact surfaces is considered, one

has to distinguish between the contact of two deformable bodies or the contact of a

deformable body with a rigid obstacle. At first glance, it seems that the latter case is

simply a special case of the first problem, which is true. But due to the fact that the

surface description of a rigid obstacle can be given once and for all by the correct

geometrical model, this knowledge can be used within the discretization process.

A formulation based on CAD-surfaces was developed in Hansson and Klarbring

(1990), see also Heegaard and Curnier (1993), which includes applications to biome-

chanics. Williams and Pentland (1992) considered so-called superquadrics to specify

the geometry of contacting objects, and Wriggers and Imhof (1993) formulated the

contact problem with a rigid obstacle using splines.

9.1 Two-dimensional Node-to-Segment Contact
Discretization

The first formulation for finite sliding of a slave point over a master surface
leads to a relatively simple element which is commonly included in nonlinear
finite element codes. This discretization is called a node-to-segment (NTS)
contact element, and is widely used in nonlinear finite element simulations of
contact problems. Due to its importance, we consider this contact element in
detail.

Kinematics. The kinematical relations can be directly computed using
the equations stated in Chapter 4. We assume that the discrete slave point (s)
with coordinate x2

s comes into contact with the master segment (1)–(2) defined
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Fig. 9.2. Node-to-segment contact element.

by the nodal coordinates x1
1 and x1

2, see Figure 9.2. With the interpolation for
the master segment (contact surface of body B1 based on the introduction of
the surface coordinate ξ along the master surface

x̂1(ξ) = x1
1 + (x1

2 − x1
1) ξ , (9.1)

one can easily compute the tangent vector of the segment leading to

ā1
1 = x̂1(ξ),ξ = (x1

2 − x1
1) . (9.2)

It is connected to a normalized base vector a1
1 by a1

1 = ā1
1 / l, with l =‖

x1
2 − x1

1 ‖ being the current length of the master segment. With the unit
tangent vector a1

1 the unit normal to the segment (1)–(2) can be defined as
n1 = e3 × a1

1.
ξ̄ and gNs are given by the solution of the minimal distance problem, i.e.

by the projection of the slave node xs in (s) onto the master segment (1)–(2):

ξ̄ =
1
l
(x2

s − x1
1) · a1

1 and gNs = [x2
s − (1 − ξ̄)x1

1 − ξ̄ x1
2 ] · n1 . (9.3)

From these equations and the local continuous formulation (4.29), we directly
compute the variation of the gap function δgN on the straight master segment
(1)–(2)

δgNs = [ η2
s − (1 − ξ̄)η1

1 − ξ̄ η1
2 ] · n1 . (9.4)

In the case of tangential sliding or stick, we have to distinguish between
two different states, which are discussed below. For stick we introduce the
relative tangential movement by

gst
Ts =

ξ̄∫

ξ0

l dξ = ( ξ̄ − ξ0 ) l , (9.5)
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where ξ0 characterizes the stick point on the master segment and ξ̄ is the
current projection defined in (9.3)1. Note that for an exact solution using the
Lagrange multiplier formulation gst

Ts has to be zero, which means ξ̄ = ξ0. In
the case of the penalty method, gst

Ts is the relative tangential motion which
is controlled by the penalty stiffness, see Section 6.3.2. The variation of (9.5)
yields the discrete form of the variation of the tangential gap

δgst
Ts = l δξ̄ + (ξ̄ − ξ0) δl . (9.6)

The variation of ξ̄ can be obtained using (4.31). For a straight segment this
leads to

H̄11 = (a11 + gNs b11) =⇒ H̄11 = a11 = l2 ,

R̄1 = [η2 − η̂1(ξ̄) ] · ā1
1 + gNs n̄1 · η̂1

,ξ(ξ̄) , (9.7)

which leads to

δξ̄ =
1
l2

{
[η2 − η̂1(ξ̄) ] · ā1

1 + gNs n1 · η̂1
,ξ(ξ̄)

}
. (9.8)

Using these relations the variation of gst
Ts for the NTS-element with δ l =

[η1
2 − η1

1 ] · a1
1 and η̂1(ξ) = η1

2 + ξ (η1
2 − η1

1) is given by

δgst
Ts = [ η2

s−(1−ξ̄)η1
1−ξ̄ η1

2 ]·a1
1 +

gNs

l
[η1

2−η1
1 ]·n1+

gTs

l
[η1

2−η1
1 ]·a1

1 . (9.9)

In the case of slip we no longer remain at the point ξ0, and thus compute the
relative tangential velocity from (4.24), and obtain

δgsl
Ts = δξ̄ l = [ η2

s − (1 − ξ̄)η1
1 − ξ̄ η1

2 ] · a1
1 +

gNs

l
[η1

2 − η1
1 ] · n1 , (9.10)

which differs from (9.9) by the last term. Equations (9.4), (9.9) and (9.10)
characterize the main kinematical relations of the contact element in Figure
9.2.

REMARK 9.2: A similar approach which was based on pure geometrical con-
siderations and hence started directly from the right side of (9.5) was applied in
Zavarise and Taylor (1996) and Wriggers (1999); however, these authors use (9.9)
instead of (9.10) for slip. It can be shown that this leads to an incorrect distribution
of the tangential force in the contact interface, and hence the differentiation made
in (9.9) and (9.10) is necessary. By using the definition gTs = (ξ̄−ξ0) l in (9.9), after
some algebra one can obtain

δgst
Ts = δξ̄ l = [ η2

s − (1 − ξ0) η1
1 − ξ0 η1

2 ] · a1
1 +

gNs

l
[η1

2 − η1
1 ] · n1 , (9.11)

which means that the tangential force acts on the master segment at ξ0 and not at
ξ̄. This is correct for the stick case, since x2

s is not allowed to move in the tangential
direction. For the Lagrange multiplier method the projection we obtain is ξ̄ = ξ0;
only in the case of the penalty approach does the tangential gap depicted here occur.
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Fig. 9.3. Distribution of tangential contact forces for slip and stick.

However, for slip the tangential force has to be acting at the position given by the
current position ξ̄. Both facts are illustrated in Figure 9.3 for the node-to-segment
element defined in Figure 9.2. The figures show the distribution of the tangential
forces in the node-to-segment contact element for the stick and slip cases according
to (9.11) and (9.10). Note that some forces occur in the normal direction. This
stems from the fact that the couple (TTS gNS) due to the gap distance gNs has to
be equilibrated.

It should be observed that the difference in using (9.9) or (9.10) is not significant
as long as the time or load steps in an incremental solution procedure are small.

Contact residual. In what follows we compute the contribution of the
node-to-segment element to the weak form (6.40). The basic formulation for
this discretization is analogous to the node-to-node element. Thus we as-
sume that we know the normal force PNs = pNs As and the tangential force
TTs = tTs As at the discrete contact point (s) of the contact element under
consideration, where As denotes the area of the contact element. Both forces,
PNs and TTs, can be obtained from the constitutive relations discussed in
Sections 5.1 and 5.2. This leads to

∫
Γc

( pN δgN + tT δgT ) dΓ ≈
nc∑

s=1

(PNs δgNs + TTs δgTs ) , (9.12)

where we need to distinguish between stick and slip in the second term. In
practice we compute the normal force PNs either from equation (5.12) or from
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the penalty update pNs = ε gNs multiplied by the area of the contact element.
For the tangential force TTs we have to perform an algorithmic update, as we
shall discuss in Section 10.5.2.

Thus, the contributions of one contact element take the form

δgNs PNs + δgTs TTs (9.13)

for the discrete contact point (s) with the mechanical relative (Lie-type) vari-
ations analogous to (9.4) and (9.9). This equation can now be cast into a
matrix formulation. For the normal part (9.13)1 we set for the variation (9.4)
of the penetration

δgNs = ηT
s Ns . (9.14)

With the same notation we can express the variation (9.9) and (9.10) of the
tangential gap for stick

δgst
Ts = ηT

s

(
Ts +

gNs

l
N0 s +

gTs

l
T0 s

)
= ηT

s T st
s , (9.15)

and for slip
δgsl

Ts = ηT
s

(
Ts +

gNs

l
N0 s

)
= ηT

s T sl
s . (9.16)

In these equations the following vectors have been used:

ηs = ( η2
s η1

1 η1
2 )T

, (9.17)

Ns =

⎧⎨
⎩

n1

−(1 − ξ̄) n1

−ξ̄ n1

⎫⎬
⎭

s

, N0s =

⎧⎨
⎩

0
−n1

n1

⎫⎬
⎭

s

, (9.18)

and

Ts =

⎧⎨
⎩

a1
1

−(1 − ξ̄) a1
1

−ξ̄ a1
1

⎫⎬
⎭

s

, T0s =

⎧⎨
⎩

0
−a1

1

a1
1

⎫⎬
⎭

s

. (9.19)

Thus, the virtual mechanical work of the contact element can be written in
the matrix formulation ηT

s Gc
s with the contact element residual

Gc
s = PNs N s + TTs T̃ s , (9.20)

where T̃s stands either for stick or slip, see (9.15) or (9.16).
A pure displacement formulation of the contact problem is possible by

expressing PNs either through (5.12) or (5.10), or by the penalty relation
PNs = εN gNs. This is in contrast to the Lagrange multiplier technique,
where PNs = λNs. But we observe that this discretization can be applied to
both methods.

REMARK 9.3: In the case of the Uzawa algorithm (see Section 6.3.8) within
the augmented Lagrange method, we have to replace PN s in (9.20) in case of
frictionless contact for the standard update technique by
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P new
Ns = P̄ old

Ns + εN gnew
Ns , (9.21)

and when using a constitutive model according to (6.67) by

P new
Ns = P̄ old

Ns + εN { gnew
Ns − [ ζ − d(P old

Ns ) ] } , (9.22)

where gN s is given by (9.4).

Linearization normal contact. Often a Newton–Raphson iteration
is used to solve the global set of equations. In that case linearization of (9.20)
is needed to achieve quadratic convergence near the solution point. The lin-
earization of the contact contribution will be discussed here for the case of
the Lagrange multiplier and penalty methods. These linearizations were de-
rived first in Wriggers and Simo (1985). Within the Lagrange multiplier
approach, the starting equation for the NTS-element is for frictionless contact

PNs δgNs + δPNs gNs , (9.23)

where PNs stands for the Lagrange multiplier. Linearization of this expres-
sion yields

ΔPNs δgNs + PNs ΔδgNs + δPNs ΔgNs . (9.24)

Since δgNs is given in (9.4) and ΔgNs has the same structure as δgNs,

ΔgNs = [ Δu2
s − (1 − ξ̄)Δu1

1 − ξ̄ Δu1
2 ] · n1 , (9.25)

we only have to compute ΔδgNs. The terms which depend upon the displace-
ments in (9.4) are ξ̄ and n1, and we have to compute the linearizations of
these quantities. The linearization of ξ̄ is equivalent to δξ̄, just the variations
η have to be exchanged by the displacement increments Δu:

Δξ̄ =
1
l

[ Δu2
s − (1 − ξ̄)Δu1

1 − ξ̄ Δu1
2 ] · a1

1 +
gNs

l2
[Δu1

2 − Δu1
1 ] · n1 . (9.26)

To obtain the linearization of n1 we start from the following expression:

n1 = e3 × a1
1 =⇒ Δn1 = e3 × Δa1

1 , (9.27)

where e3 is the unit base vector perpendicular to the two-dimensional plane.
The linearization of the unit tangent vector follows from (9.2) by a straight-
forward computation:

Δa1
1 = Δ[

1
l

(x1
2 − x1

1)]=
1
l
(Δu1

2 − Δu1
1 ) − 1

l2
(x1

2 − x1
1 ) [a1

1 · (Δu1
2 − Δu1

1 )]

=
1
l

[1 − a1
1 ⊗ a1

1 ] (Δu1
2 − Δu1

1 ) , (9.28)

where the term [1− a1
1 ⊗ a1

1 ] can be rewritten with the definition of the unit
tensor 1 = a1

1 ⊗ a1
1 + n1 ⊗ n1. Hence
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Δa1
1 =

1
l
[n1 ⊗ n1 ] (Δu1

2 − Δu1
1 ) , (9.29)

and with (9.27), we finally obtain

Δn1 = −1
l
[a1

1 ⊗ n1 ] (Δu1
2 − Δu1

1 ) . (9.30)

These results can now be used to derive the expression for ΔδgNs

ΔδgNs = −Δξ̄ (η1
2 − η1

1 ) · n1 + [ η2
s − (1 − ξ̄)η1

1 − ξ̄ η1
2 ] · Δn1

= −1
l

[ Δu2
s − (1 − ξ̄)Δu1

1 − ξ̄ Δu1
2 ] · a1

1 (η1
2 − η1

1 ) · n1

−gNs

l2
(η1

2 − η1
1 ) · n1 (Δu1

2 − Δu1
1 ) · n1 (9.31)

−1
l

[ η2
s − (1 − ξ̄)η1

1 − ξ̄ η1
2 ] · a1

1 (Δu1
2 − Δu1

1 ) · n1 ,

which is symmetric with respect to variation and linearization. Using the
matrices in (9.18), (9.19) and introducing ΔuT

s = {Δu2
s ,Δu1

1 ,Δu1
2 }, we can

state the matrix form of ΔδgNs

ΔδgNs = ηT
s KΔδ Δus , (9.32)

with
KΔδ = −1

l
[N0s TT

s + Ts NT
0s +

gNs

l
N0s NT

0s ] . (9.33)

Using this result, we can establish the matrix form of (9.24) for the Lagrange

multiplier method

〈ηT
s , δPNs 〉KLM

s

{
Δus

ΔPNs

}
with KLM

s =
[

PNs KΔδ Ns

NT
s 0

]
. (9.34)

In the case of the penalty method, equation (9.24) reduces with PNs =
εN gNs to

εN ΔgNs δgNs + εN gNs ΔδgNs , (9.35)

which yields the matrix form

K p
Ns = εN

[
Ns NT

s − gNs

l

(
N0s TT

s + Ts NT
0s +

gNs

l
N0s NT

0s

) ]
. (9.36)

All matrices in (9.33) to (9.36) are defined in (9.18) and (9.19).

REMARK 9.4

1. Note that in a geometrically linear case, all terms which are multiplied by gNs

vanish. This gives the simple matrix KLM p
Ns = εN Ns NT

s .
2. When using a Lagrange multiplier method for the linear case the term

PNs KΔδ disappears in (9.34), which also leads to a simple matrix structure.
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3. The terms multiplied by GNs may be omitted in (9.36) in nonlinear compu-
tations in the first stages of a Newton iteration. This is because quadratic
convergence only occurs in the standard algorithm once the contact area is al-
ready known correctly, which results from the fact of non-differentiability of the
gap function. Hence one does not need the full tangent in the first iterations,
especially since the terms containing gNs can become quite large during the first
iteration steps and might even lead to divergence for large incremental steps.

Linearization for stick. In the same way, the linearizations are obtained
for the tangential stick and slip parts. The point of departure in the case of
stick is the same as for frictionless contact, only the variables are changed.
For the Lagrange multiplier formulation this leads with λTs = TTs to

ΔTTs δgst
Ts + TTs Δδgst

Ts + δTTs Δgst
Ts . (9.37)

Again, the first and last terms contain known quantities where, according to
(9.9), the linearization of the relative tangential gap is given by

Δgst
Ts = [ Δu2

s − (1− ξ0)Δu1
1 − ξ0 Δu1

2 ] ·a1
1 +

gNs

l
[Δu1

2 −Δu1
1 ] ·n1 . (9.38)

The linearization of the variation δgst
Ts is now obtained after some algebra:

Δδgst
Ts =

1
l

[ η2
s − (1 − ξ0)η1

1 − ξ0 η1
2 ] · [n1 ⊗ n1 ] (Δu1

2 − Δu1
1 )

+
1
l

[ Δu2
s − (1 − ξ0)Δu1

1 − ξ0 Δu1
2 ] · [n1 ⊗ n1 ] (η1

2 − η1
1 )

−gst
Ts

l2
(η1

2 − η1
1 ) · [n1 ⊗ n1 ] (Δu1

2 − Δu1
1 ) (9.39)

−gNs

l2
(η1

2 − η1
1 ) · [n1 ⊗ a1

1 + a1
1 ⊗ n1 ] (Δu1

2 − Δu1
1 ) ,

or in matrix form
Δδgst

Ts = ηT
s K st

Δδ us , (9.40)

with

K st
Δδ =

1
l

(Nξ0 NT
0s + N0s NT

ξ0 ) − gst
Ts

l2
N0s NT

0s −
gNs

l2
(N0s TT

0s + T0s NT
0s ) .

(9.41)
Here the matrix Nξ0 has the same structure as Ns, only the surface coordinate
ξ̄ in (9.18) is exchanged by ξ0.

The matrix form of (9.37) for the Lagrange multiplier method is com-
puted analogous to (9.34), and leads to

〈ηT
s , δPTs 〉KLM

Ts

{
Δus

ΔPTs

}
with KLM

Ts =
[

TTs K st
Δδ T st

s

(T st
s )T 0

]
. (9.42)

In the case of the penalty method, equation (9.37) reduces with PTs =
εT gst

Ts to
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εT Δgst
Ts δgst

Ts + εT gst
Ts Δδgst

Ts , (9.43)

which yields the matrix form for pure stick:

K st
Ts = εT

{
[T st

s (T st
s )T +

gst
Ts

l

[
Nξ0 NT

0s + N0s NT
ξ0

−gNs gst
Ts

l2
(T0s NT

0s + N0s TT
0s ) − (gst

Ts)
2

l2
N0s NT

0s

]}
. (9.44)

Note that the tangent matrices for the Lagrange multiplier and the penalty
method are symmetric.

In (9.44) all terms containing gNs and gTs disappear in a geometrically
linear situation, which yields Kst lin

Ts = εT Ts TT
s . Within the Lagrange mul-

tiplier approach also, only Ts is used in (9.42) for small deformations; fur-
thermore, the tangent Kst

Δδ is zero.

Linearization for slip. The slip case starts from a constitutive equation
for the tangential stress. Hence we have to linearize only the term TTs δgsl

Ts,
which yields

ΔTTs δgsl
Ts + TTs Δδgsl

Ts , (9.45)

where ΔTTs may be computed according to Section 10.5.2 for a given tan-
gential contact law of Section 5.2. Here we state the results for classical
Coulomb’s law. For more complex constitutive models in the contact in-
terface, see Section 10.5.2. According to (10.126), Coulomb’s law yields the
tangential stress TT n+1 = μPN n+1 sign T tr

T n+1 at time tn+1. The lineariza-
tion of TT n+1 with respect to the displacement field is given for the penalty
method by

ΔTT n+1 = μΔPN n+1 sign T tr
T n+1 + μPN n+1Δ

(
sign T tr

T n+1

)
= μ εNΔgN n+1 sign T tr

T n+1 , (9.46)

where the linearization of the last term in (10.126) disappears in a two-
dimensional formulation, since the signum function “sign” is piecewise con-
stant. Using (9.18) the matrix of the incremental tangential stress is given
by

ΔTT n+1 = μ εN sign T tr
T n+1 NT

s n+1 Δus . (9.47)

The linearization of Δδgsl
Ts is performed analogous to (9.39). It will be

stated here only in matrix form

Δδgsl
Ts = ηT

s K sl
Δδ Δus , (9.48)

with

K sl
Δδ =

1
l

(Ns NT
0s+N0s NT

s −T0s TT
s )− gNs

l2
(N0s TT

0s+2T0s NT
0s ) . (9.49)
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Using these results, the matrix form for the slip case can be stated for the
contacting node (s) as

K sl
Ts = TTs K sl

Δδ + μ εN sign T tr
T n+1 T sl

s NT
s . (9.50)

Note that this matrix is unsymmetric, which corresponds to the non-associativity
of Coulomb’s frictional law.

9.2 Alternative Discretization for the Two-dimensional
NTS-Contact

In Remark 6.3 an alternative formulation was proposed which can be ap-
plied for frictional contact. It yields, for stick and slip, a matrix form which
has fewer terms and hence can be implemented in a more efficient way. The
new formulation includes frictionless contact as a limiting case, which will be
shown at the end of this section. The main idea will be presented here for
Coulomb’s law, which is commonly applied for frictional contact. Instead of
using the return mapping procedure applied in the previous section, we base
the formulation on the following observation:

1. The slave node lies within the friction cone in the case of stick. Mathe-
matically this is described by the slip function

fs = ‖ tT ‖ − μ pN < 0 .

2. The slave node moves on the boundary of the friction cone when sliding,
which leads to the equation

fs = ‖ tT ‖ − μ pN = 0 .

Fig. 9.4. Moving friction cone.
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This feature is depicted in Figure 9.4, where the friction cone is drawn at time
steps tn and tn+1 for a sliding condition.

Stick case. The discretization is based on the NTS discussed in the last
section. Following (6.34) the weak contribution for one slave node s is given
for stick by

Cst
s = t · (η2

s − η1
m0 ) = t · (η2

s − (1 − ξ0)η1
1 − ξ0 η1

2 ) , (9.51)

where t = ε (x2
s−x1

m0 ) is the total contact force. x2
s and x1

m0 = x1
m(ξ0) are the

current positions of the slave and master node, respectively, see Figure 9.5. We
let ξ0 denote the position of the first contact of the slave node with the master
surface or the last position after sliding at time tn: ξ0 = ξn. This position is
fixed with respect to the surface coordinate, and thus the coordinate ξ does
not change during the deformation as long as stick conditions are present.
The master node x1

m0 is related to the first contact in this segment, before

Fig. 9.5. Alternative form of node-to-segment contact element.

any sliding appears: x1
m0 = x1

m(ξn). This position does not change on the
master surface. Hence the force due to stick is given for the time step tn+1 by

tn+1 = ε (x2
s n+1 − x1

m0 n ) = ε (x2
s n+1 − (1 − ξn)x1

1 n+1 − ξn x1
2 n+1 ) . (9.52)

ε = εN = εT is the penalty parameter used to enforce the constraint conditions
for normal contact and stick. We note that the penalty parameter cannot be
viewed as a constitutive parameter in this case, see also Section 5.2.4. This
results from the fact that the same parameter is also chosen for the approach
of the contact surfaces in the normal direction, and the constitutive laws for
normal and tangential contact are usually not the same.

Inserting (9.52) into (9.51) leads to the virtual mechanical work of the
NTS-contact element for stick. It can be written in the matrix formulation
ηT

s Gst
s with the contact element residual

Gst
s = Bs n tn+1 with Bs n =

⎧⎨
⎩

1
−(1 − ξn)1

−ξn 1

⎫⎬
⎭ , (9.53)
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where ηs is defined in (9.17), and 1 is a 2 × 2 unit matrix. Since in stick
conditions only the tangential force depends upon the current position vectors
and the fixed coordinate ξn, the linearization of the discrete weak contribution
ηT

s Gc
s of the slave node yields a simple expression for the tangent matrix:

K c
Ts = εBs n BT

s n . (9.54)

Note the K c
Ts is symmetric1. When comparing this result with formulation

(9.44) of the previous section, it is immediately clear that formulation (9.54)
is much simpler. It is interesting to note that one can show the equivalence
of formulation (9.54) and (9.44) together with (9.36). One only has to choose
εN = εT = ε in (9.36) and (9.44).

Slip case. In the case of frictional sliding, the Coulomb slip condition fs,
see (5.25), has to be evaluated. This is performed by computing the normal
and tangential components of t from the stick (trial) state

ttr
n+1 = εgs n = ε (x2

s n+1 − x1
m n ) , (9.55)

leading to

ttr
T n+1 = (1 − n1

n+1 ⊗ n1
n+1) t

tr
n+1 , (9.56)

pN n+1 = ttr
n+1 · n1

n+1 . (9.57)

These values are now inserted in to the slip condition

f tr
s = ‖ ttr

T n+1 ‖ − μ pN n+1 ≤ 0 . (9.58)

In case this inequality is fulfilled, the slave node s remains in stick condition
and hence within the slip cone related to ξn in Figure 9.4.

For f tr
s > 0 sliding occurs, and the unknown position xm(ξn+1) has to be

computed from the condition that xs now lies on the boundary of the slip
cone. For a geometric description see Figure 9.6.

One can see for Coulomb’s law that xm(ξn+1) results from the solution
of

(x2
s n+1 − x1

m(ξn+1) ) · [ ζ a1
1 n+1 + μn1

n+1 ] = 0 , (9.59)

with x1
m(ξn+1) = (1 − ξn+1)x1

1 + ξn+1 x1
2. ζ = sign (ttr

T n+1) is the value
(ζ = ±1) of the signum function depending on the slip direction. ζ has to
be introduced to acknowledge that the slave node lies on different boundaries
of the cone for the two slip directions, which also changes the orthogonality
condition (9.59). As the solution point ξn+1 moves with the friction cone, this
approach is called the moving cone algorithm.

Since (9.59) is linear in ξ, it can be solved directly, leading to

1 In three dimensions the formulation is identical with (9.53) and (9.54), only 1 is
a 3 × 3 matrix.
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ξn+1 =
1

l2n+1

(x2
s n+1 − x1

1 n+1) · (ζ a1
1 n+1 + μn1

n+1) , (9.60)

with l2n+1 = a1
1 n+1 · a1

1 n+1 and a1
1 n+1 = x1

2 n+1 − x1
1 n+1. This result can be

introduced into (9.55), which yields the total force due to frictional sliding
(including the component for the normal pressure):

tn+1 = ε [x2
s n+1 − (1 − ξn+1)x1

1 n+1 − ξn+1 x1
2 n+1 ] . (9.61)

Inserting this result into (9.53) yields the discrete contribution to the weak
formulation for a slave node in sliding contact. The weak form for frictional
sliding is now

Csl
s = tn+1 ·

[
η2

s − (1 − ξn+1)η1
1 − ξn+1 η1

2

]
, (9.62)

where the variation now has to be evaluated at the current point ξn+1. The
matrix form of the contact residual can be stated according to (9.53) as

Gsl
s = Bs n+1 tn+1 with Bs n+1 =

⎧⎨
⎩

1
−(1 − ξn+1)1

−ξn+1 1

⎫⎬
⎭ . (9.63)

The differences to the stick case in (9.53) are that one has to use the force
(9.61) and evaluate the matrix Bs at the current position ξn+1.

The linearization of the residual involves linearization of the force (9.61)
and linearization of ξn+1 in the variation

ΔCsl
s = Δtn+1 ·

[
η2

s − (1 − ξn+1)η1
1 − ξn+1 η1

2

]
− tn+1 · (η1

2 − η1
1 )Δξn+1 .

(9.64)
Since the surface coordinate depends upon the deformation, one obtains

Δtn+1 = ε [Δu2
s n+1−(1−ξn+1)Δu1

1 n+1−ξn+1 Δu1
2 n+1−a1

1 n+1 Δξ ] . (9.65)

Contrary to the classical formulation, one has to derive the linearization of ξ,
which yields

Fig. 9.6. Geometry in the case of friction for moving-cone NTS-element.
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Δξ =
1
l2

[
(Δu2

s − (1 − ξ)Δu1
1 − ξΔu1

2) · (ζ a1
1 + μn1)

+ (x2
s − (1 − ξ)x1

1 − ξ x1
2) · (ζ Δa1

1 + μΔn1)
]

. (9.66)

In this equation the subscript n + 1 has been omitted for a more compact
presentation; note that all variables and vectors have to be evaluated with
respect to tn+1. Furthermore, the definitions Δa1

1 = Δu1
2 − Δu1

1 and Δn1 =
e3 × Δa1

1 were used. To implement this formulation in a finite element code
a matrix representation of equations (9.65) and (9.66) is needed. For this
purpose the following matrices are introduced:

BC =

⎧⎨
⎩

0
−1
1

⎫⎬
⎭ , (9.67)

and

M = ζ 1 + μEN

m1 = ζ a1
1 + μn1 (9.68)

gs = xs − (1 − ξ)x1 − ξ x2

with

EN =
[

0 −1
1 0

]
, (9.69)

where the matrix EN represents the cross product needed to compute the
normal n.

Introducing the last definitions in (9.65) finally yields a matrix expression
for the incremental stress due to sliding:

Δtn+1 = ε

[
BT

s − 1
l2

{
[a1

1 ⊗ m1 ]BT
s − [a1

1 ⊗ gs ]MBT
C

}]
n+1

Δu ,

(9.70)
where Δu is defined in the same manner as the variation η. Note that all
matrices have to be evaluated at time tn+1. This result can now be introduced
into the linearization of the weak form (9.64), which yields the non-symmetric
matrix

Ksl
T s n+1=ε

{
Bs [1 − 1

l2
a1

1 m1 T ]BT
s (9.71)

− 1
l2

(
Bs [a1

1 gT
s M ]BT

C + BC [gs m1 T ]BT
s + BC [gs gT

s M ]BT
C

)}
n+1

.

Also, the matrix in (9.71) is far less complex than the matrix used in the
standard NTS-element (see last section). All matrices [·] in (9.71) are 2 × 2
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matrices while the B-matrices Bs and BC have size 2 × 6.

Frictionless case. By setting the friction coefficient in (9.59) to zero,
from (9.60) as the limit case with ζ = 1, one obtains

ξf
n+1 =

1
l2n+1

(x2
s n+1 − x1

1 n+1) · a1
1 n+1 , (9.72)

which is equivalent to (9.3). Inserting this result into (9.61) leads to the total
force, which has only components in the normal direction,

tn+1 = ε [x2
s n+1 − (1 − ξf

n+1)x
1
1 n+1 − ξf

n+1 x1
2 n+1 ] , (9.73)

and to the weak form for frictionless sliding for the node s

Cf
s = tn+1 ·

[
η2

s − (1 − ξf
n+1)η1

1 − ξf
n+1 η1

2

]
, (9.74)

where the variation has to be evaluated at the current point ξf
n+1. The matrix

form of the contact residual

Gsl
s = Bs n+1 tn+1 with Bs n+1 =

⎧⎨
⎩

1
−(1 − ξf

n+1)1
−ξf

n+1 1

⎫⎬
⎭ (9.75)

is equivalent to (9.63), hence the same formulation can be used; only the
projection stemming from (9.59) is different.

The linearization of the residual follows from (9.74) with (9.73) as

ΔCsl
s = Δtn+1 ·

[
η2

s − (1 − ξf
n+1)η1

1 − ξf
n+1 η1

2

]
− tn+1 · (η1

2 − η1
1 )Δξf

n+1 .

(9.76)
Again, we can use the results (9.65) and (9.66) for ζ = 1 and μ = 0 to obtain
the final tangent as

Kf
Ts=εBs

[
1 − 1

l2
a1

1 a1 T
1

]
BT

s (9.77)

− 1
l2

[
BC gs gT

s BT
C + Bs a1

1 gT
s BT

C + BC gs a1 T
1 BT

s

]
.

All quantities have to be evaluated at time tn+1. The matrix in (9.77) is not
more complex than the tangent (9.36) which is used in the standard NTS-
element (see the last section). Note, that the first linear term in (9.77) only
depends on the normal direction, since in the two-dimensional case one can
write for the unit tensor 1 = 1

l2 (a1
1⊗a1

1+n1⊗n1 ), and hence (1− 1
l2 a1

1 a1 T
1 ) =

1
l2 n1 n1 T . The term l appears here in the denominator since a1

1 and n1 are not
unit vectors. By using the tangent Kf

Ts, no switch to the standard formulation
has to be made in the frictionless case when the moving cone approach is
applied. Equation (9.77) can also be obtained directly from (9.71) with ζ = 1
and μ = 0. Finally, we note that the tangent in (9.77) is symmetric.
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9.3 Three-dimensional Contact Discretization

Discretizations for the contact of three-dimensional objects were first devel-
oped for explicit finite element codes like DYNA3D. The derivation of im-
plicit formulations is more recent, especially the consistent linearization for
use within Newton’s method. The matrix form for the frictionless three-
dimensional case of node-to-surface discretizations was developed in Parisch
(1989). A formulation for the case including friction was presented in Peric
and Owen (1992), which relied on an approximation of the tangent matrix.
A fully consistent linearization for a continuum-based approach to contact
problems was derived in Laursen and Simo (1993b) and also in Parisch and
Lübbing (1997). The formulation for friction was extended for large slip in
Agelet de Saracibar (1997).

We should like to state the discrete form here based on the continuous
formulation given in Section 6.3. The matrices are developed for three and
four node master segments. In this section we denote by a superscript 1 the
quantities belonging to the master surface of body B1. Furthermore, quantities
related to the slave node which comes into contact with the master surface
are denoted by the superscript 2, body B2.

During finite deformations within the contact surface, a node of the con-
tacting body (slave-node) eventually slides over several elements of the other
body (master surface). We thus have to consider three different possible geo-
metrical situations:

1. Slave-node contacts the surface of the master element (NTS).
2. Slave-node contacts an edge of the master element (NTE).
3. Slave-node contacts a vertex (node) of the master element (NTV).

These situations are depicted in Figure 9.7. For (NTS) situations we develop
the associated contact residuals and tangent stiffness matrices for frictional
contact. Matrices for the (NTE) and (NTV) cases are only derived for fric-
tionless contact.

Fig. 9.7. NTS, NTE and NTV contact.
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9.3.1 Node-to-surface contact element

Many discretizations of solids are based on hexahedral elements. Within such a
finite element model the master segment is given by a four-node isoparametric
surface element which comes into contact with one slave node x2, see Figure
9.8. Thus, we can also denote this contact discretization as a five-node contact
element. The interpolation of the master surface yields

x1 =
∑

I

NI(ξ1 , ξ2)x1
I , (9.78)

with the standard interpolation functions, see also (7.24),

NI =
1
4
(1 − ξ1

I ξ1)(1 − ξ2
I ξ2) . (9.79)

The gap function is given by equation (4.6). In this equation we have to
compute the convective coordinates ξ̄1 and ξ̄2 to obtain the minimum distance
defining the gap gN

gN =
[
x2 − x1

(
ξ̄1, ξ̄2

)]
· n̄1 . (9.80)

Since in general the deformed master surface is not flat (it is a hyperbolic sur-
face in the case of the four-node isoparametric interpolation), the coordinates

Fig. 9.8. Geometry of the five-node contact element.
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ξ̄ = (ξ̄1 , ξ̄2) cannot be computed from a closed form expression. To find the
minimum distance point related to the slave node, an iterative process has to
be applied. To do that, the following nonlinear system of equations for ξ1 and
ξ2 will be solved locally for each slave node x2:

[
x2 − x1 (ξ)

]
· x1

,α (ξ) =

[
x2 −

4∑
I=1

NI (ξ)x1
I

]
·

4∑
K=1

NK,α (ξ)x1
K = 0 . (9.81)

Using as a starting value the solution for a flat surface, one can apply New-

ton’s method. The associated linearization leads to a linear system of equa-
tions for an iteration step i for Δξβ

i+1 = ξβ
i+1 − ξβ

i :

2∑
β=1

[
4∑

I=1

4∑
J=1

NI,αNJ,β x1
I · x1

J−
4∑

K=1

NK,αβ x1
K ·

(
x2−

4∑
L=1

NLx1
L

)]
Δξβ

i+1

=
(
x2−

4∑
M=1

NMx1
M

)
·

4∑
N=1

NN,α x1
N ,

(9.82)

where all shape functions NI and their derivatives have to be evaluated at
ξα
i , known from the previous step. The solution of (9.81) yields the closest

point ξ̄ of the slave node to the master surface. With these coordinates the
gap function (9.80) has to be evaluated. In the case of contact (gN ≤ 0) the
slave node contributes to the weak form.

Again we have to distinguish between frictionless contact and slip and
stick in the tangential direction. We start here with the stick part, which
is derived according to Section 9.2, since this leads to the most simple and
efficient formulation. Here the total gap function gs,

gs = x2 − x1(ξ0) , (9.83)

is used which is evaluated at the fixed stick point ξ0. The coordinates ξ0

are obtained from (9.81) when node s contacts the master surface for the
first time. Otherwise, ξ0 follows from the previous time step ξ0 = ξn. The
variation of gs is given by

δgs = η2 − η1(ξ0) , (9.84)

and we can compute the weak form

Cst
c =

∫

Γc

t · δg dA =
nc∑

s=1

t · δgs As =
nc∑

s=1

As ηT
s Gst

s (9.85)

with
ηT

s = 〈η2 ,η1
1 ,η1

2 ,η1
3 ,η1

4 〉 . (9.86)

The vector ηs denotes the variations of the displacements related to the con-
tact nodes of the sth contact element, where s stands for the slave node xs and
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m for the four nodes describing the master element x1
1, ..., x1

4. Furthermore,
the vector Gst

s can be expressed in matrix form as

Gst
s = Bs t with Bs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
−N1(ξ0)1
−N2(ξ0)1
−N3(ξ0)1
−N4(ξ0)1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (9.87)

where 1 is a 3 × 3 unit matrix. Again the linearization is simple, since ξ0 is
fixed and hence does not depend upon the displacement field. Analogous to
Section 9.2, the linearization is given for the penalty formulation as

ΔCst
c =

nc∑
s=1

As ηT
s ΔG st

s =
nc∑

s=1

As ηT
s K st

s Δus with K st
s = εBs BT

s .

(9.88)
In the case of sliding we could either apply the alternative form, developed
in Section 9.2, or the classical approach which split the contributions in the
contact interface into normal and tangential parts. For more generality con-
cerning the frictional laws, we use the second possibility. With that we start
from the weak form

Cc =
∫

Γc

(tN δgN + tT · δgsl
T ) dA ≈

nc∑
s=1

[
tNs(ξ̄) δgNs(ξ̄) + tTs · δgsl

Ts(ξ̄)
]

As ,

(9.89)
see also (6.28). As is the surface associated with the slave nodes. It is deter-
mined by a projection procedure from the current master surface Γc. In index
notation, for the tangential part we obtain tTs · δgsl

Ts(ξ̄) = tT s α δξ̄α. The
variations δgN (ξ̄) and δξ̄α can be found in (4.29) and (4.30) together with
(4.22).

Based on that, we obtain the discretization for the five-node contact ele-
ment:

C sl
c =

ns∑
s=1

As ηT
s Rs . (9.90)

The vector Rs depends only upon the contact contribution. It is given by

Rs = tNs Ns − tT s α Dα
s , (9.91)

with the vectors

Ns =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n̄1
c

−N1 n̄1

−N2 n̄1

−N3 n̄1

−N4 n̄1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (9.92)

and
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Dα
s = Hαβ [Tβ − gNsNβ ] , (9.93)

where

Tβ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

āα

−N1 āβ

−N2 āβ

−N3 āβ

−N4 āβ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,Nβ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
−N1,β n̄1

−N2,β n̄1

−N3,β n̄1

−N4,β n̄1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (9.94)

and Hαβ = [Hαβ ]−1 with Hαβ = āαβ + gNsb̄αβ . To derive this result one has
to use ξ̄ = (ξ̄1, ξ̄2) from (9.82) and δξα from (4.19), see also (4.30).

For the contact pressure tNs in (9.91) we can either use the Lagrange

multiplier λN or the pressure related to the penalty method,

tNs = εN gNs. (9.95)

The frictional stresses tTα follow from (10.121) and (10.126):

tTα =

{
ttrTα for f tr

s ≤ 0
μ|tN | ttr

T α

||ttr
T
|| for f tr

s > 0 , (9.96)

with the components of the trial tangential stresses ttrTα within time step n+1

ttrTα n+1 = tTn · aα n+1 + εT āαβ Δξβ
n+1 with Δξβ

n+1 = ξβ
n+1 − ξβ

n . (9.97)

With this the residual vector is determined. For a finite element solution where
the Newton–Raphson method is used, we also need the linearizations of
the contact contribution. These are derived in Section 4.3, 6.5 for the relative
deformations in the contact interface. These results can be applied to linearize
the contact stresses, as shown in Sections 9.1 and 9.2.

Based on these results, we can state the discretization of the tangent matrix
for the contact contribution in the case of slip as follows:

ΔCsl
c (x,η) · Δu ≈

nc∑
s=1

As (ηs)
T K sl

s Δus . (9.98)

The terms Δus denote the increments of the contact node displacements re-
lated to slave node s

ΔuT
s = 〈Δu2 ,Δu1

1 ,Δu1
2 ,Δu1

3 ,Δu1
4 〉 . (9.99)

Now we have to define some vectors and matrices to state the matrix form of
the contact tangent:

Tαβ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
−N1,β āα

−N2,β āα

−N3,β āα

−N4,β āα

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, T̂αβ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

āα,β

−N1 āα,β

−N2 āα,β

−N3 āα,β

−N4 āα,β

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,Nαβ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
−N1,αβ n̄1

−N2,αβ n̄1

−N3,αβ n̄1

−N4,αβ n̄1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(9.100)
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E =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
−N11
−N21
−N31
−N41

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, Êα =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0̂
−N1,α1
−N2,α1
−N3,α1
−N4,α1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (9.101)

With this the contact tangent matrix K sl
s for the three-dimensional node-to-

segment (slave to master) element yields, according to (9.98),

K sl
s = εNNs Ns

T + εN gNsΔ(δgNs)︸ ︷︷ ︸ − ΔtTαδξα︸ ︷︷ ︸ − tTαΔ(δξα)︸ ︷︷ ︸ .

= KNs − K sl
T s1 − K sl

T s2

(9.102)

The part due to normal contact can be formulated as

KNs = εN

{
NsN

T
s + gN

[
NαDαT

s + aβαTα

(
NT

β − D γT
s (n̄1 · āβ,γ

)]}
.

(9.103)
The tangent matrix due to frictional contact for slip is described by two parts:
(K sl

T s1) and (K sl
T s2). For the first matrix we obtain

K sl
T s1=tTαHαη

[
(Tηβ + Tβη + T̂ηβ)D βT + D β(TT

ηβ + TT
βη + T̂

T

ηβ)

−
(
āη · āβ,γ + āβ · āη,γ + āη,β · āγ + gN n̄1 · āη,βγ

)
D βD γT

−EET
,η − E,ηE

T + gNN̂ηβD βT + gND βN̂
T

ηβ

]
, (9.104)

and for the second part we have

K sl
T s2 =μDα

{
−εN

ttrTα

||ttr
T ||N

T +
|tN |
||ttr

T ||
[
−εT aβα D βT

+εT Δξβ
n+1

(
TT

βα + TT
αβ − (aα,ϑ · aβ + aα · aβ,ϑ)DϑT

)]

+
|tN |

||ttr
T ||3 ttrTαttrβ

T

[
ttr
T · Δu,β − εT Δξγ

n+1

(
TT

βγ + TT
γβ

)
(9.105)

+ DϑT
(
ttr
T · aβ,ϑ + εT aϑβ + εT Δξγ

n+1 (aγ,ϑ · aβ + aγ · aβ,ϑ)
)]}

.

With this the matrix form of the five-node contact element is given for fric-
tional contact. The formulation is quite complicated, which stems from the
necessity to use convective coordinates for the description of contact.

9.4 Three-Node Master Segment for Frictionless Contact

The discretization of the master surface by three-node elements yields simpler
equations, since the surface is always flat. The geometric description of such
an element is depicted in Figure 9.9. The tangent vectors can be defined as
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ā1 = x1
2 − x1

1 and a1 =
x1

2 − x1
1

‖x1
2 − x1

1‖

ā2 = x1
3 − x1

1 and a2 =
x1

3 − x1
1

‖x1
3 − x1

1‖
. (9.106)

aα are unit vectors. Note that the tangent vectors do not depend upon ξ
when defined in this way. This also means that a closed form expression can
be derived for the closest point projection (4.2) when using (9.81):

[
x2 − x1

(
ξ̄
)]

· āα =

[
x2 −

3∑
I=1

NI

(
ξ̄
)
x1

I

]
· āα = 0 . (9.107)

These two equations can be solved directly for ξ̄1 and ξ̄2 when the isopara-
metric shape functions (7.22) are applied for the interpolation. This yields the
equation system

[
ā1 · ā1 ā1 · ā2

ā2 · ā1 ā2 · ā2

] {
ξ̄1

ξ̄2

}
=

{
(x2 − x1

1) · ā1

(x2 − x1
1) · ā2

}
. (9.108)

We should like to state here the formulation related to the penalty method.
A three-node frictionless contact element using the Lagrange multiplier
method can be developed according to the general formulation in Section
6.3.1 and the discretization techniques in 8.2 and 8.3. Let us recall that for
frictionless contact the penalty method is given by (6.33) as

Cc =
∫

Γc

εN gN δgN dA , (9.109)

with the local gap function (4.7) gNs = [x2 − x̄1(ξ) ] · n̄1 and its variation, see
(4.29)

δgNs = [η2 − η̄1(ξ) ] · n̄1 . (9.110)

The linearization of the contact contribution yields (see Section 6.5)

Fig. 9.9. NTS-contact element, definition of contact normal.
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ΔCc = εN

∫

Γc

(ΔgNs δgNs + gNs ΔδgNs) dA (9.111)

with
Δ(δgNs) = −η̄1

,α · Δξ̄α + [η2 − η̄1(ξ) ] · Δn̄1 , (9.112)

where the differentiation of the variation η̄1 with respect to ξα yields, for the
interpolation (7.22),

η̄1
,1 = η1

2 − η1
1 and η̄1

,2 = η1
3 − η1

1 .

The normal of the master surface is perpendicular to the tangent vectors,
hence we derive

Δn̄1 = Δ
ā1 × ā2

‖ā1 × ā2‖
= −āαāαβ(Δāβ · n̄1) = −āαβ [aα ⊗ n̄1 ]Δāβ . (9.113)

Furthermore, the linearization of the tangent vectors āα yields

Δā1 = Δu2 − Δu1 and Δā2 = Δu3 − Δu1 .

Note that āα,β · n̄1
c which represents the curvature is zero, since the surface

of the three-node element is flat. Using these results, the linearization of the
gap variation follows:

Δ(δgNs) = −Δξ̄α η̄1
,α · n̄1 − āαβ (η2 − η̄1) · [aα ⊗ n̄1 ]Δāβ (9.114)

for the three-node master surface discretization. The linearization of ξ̄α can be
computed from (4.19). For the flat three-node master surface we have b̄αβ = 0,
and for the linearization of ξ̄α we obtain

Δξ̄α = āαβ
[
(Δu2 − Δū1) · āβ + gNsn̄1 · Δāβ

]
. (9.115)

Combining (9.114) and (9.115) finally yields the linearization of the contact
contribution:

ΔCc =
∫

Γc

εN {(η2 − η̄1) · [ n̄1 ⊗ n̄1 ] (Δu2 − Δū1)

− gNs

[
η̄1

,α · (n̄1 ⊗ āα) · (Δu2 − Δū1) + (η2 − η̄1) · (āα ⊗ n̄1) · ū1
,α

]

−g2
Ns āαβ η̄1

,α · (n̄1 ⊗ n̄1) · ū1
,β } dA .

(9.116)
Here the contravariant base vectors āβ āαβ = āα were introduced to shorten

notation. Note that (9.116) is symmetric in Δu and η.
The residual vector and the tangent stiffness matrix for the three-node

frictionless contact element can be stated using the following matrices:
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Ns =

⎧⎪⎪⎨
⎪⎪⎩

n̄1

−N1 n̄1

−N2 n̄1

−N3 n̄1

⎫⎪⎪⎬
⎪⎪⎭

, Nα =

⎧⎪⎪⎨
⎪⎪⎩

0
−N1,α n̄1

−N2,α n̄1

−N3,α n̄1

⎫⎪⎪⎬
⎪⎪⎭

, Tα =

⎧⎪⎪⎨
⎪⎪⎩

āα

−N1 āα

−N2 āα

−N3 āα

⎫⎪⎪⎬
⎪⎪⎭

, (9.117)

and

ηs =

⎧⎪⎪⎨
⎪⎪⎩

η2

η1
1

η1
2

η1
3

⎫⎪⎪⎬
⎪⎪⎭

, Δus =

⎧⎪⎪⎨
⎪⎪⎩

Δu2

Δu1
1

Δu1
2

Δu1
3

⎫⎪⎪⎬
⎪⎪⎭

. (9.118)

Then the contact in the normal direction contributes to the residual by

Cc ≈
nc∑

s=1

ηT
s Rs , (9.119)

with the contact force
Rs = εNA gNs Ns . (9.120)

It is assumed that the parameter εNA = εN As contains the area As surround-
ing the slave node. Thus fN = tN As = εNA gNs represents the reaction force
of the slave-node due to penetration.

Finally, the contribution of the contact element to the tangent stiffness
matrix is given by

ΔCc ≈
nc∑

s=1

ηT
s Ks Δus , (9.121)

with the tangent matrix related to one slave-node

Ks=εNA

{
NsN

T
s − gNs

[
N1T

T
1 + N2T

T
2 + T1N

T
1 + T2N

T
2

+gNs

(
a11N1N

T
1 + a12(N1N

T
2 + N2N

T
1 ) + a22N2N

T
2

)]}
.

(9.122)

The tangential stiffness matrix for normal contact Ks is symmetric. It has the
same structure as the tangent matrix (9.36) in the two-dimensional case for
frictionless contact.

9.4.1 Matrices for Node-To-Edge (NTE) elements

In certain situations, when the slave node xs slides from one master element
to the next during the deformation process, it comes in contact with the edge
lying between the master elements. The discretization needed in such a case
differs from the previous sections. This is mainly due to the fact that the cross
product of the two base vectors cannot be used to define the normal on the
edge, since the edge lies between two surfaces which have different tangents.
Therefore, we compute the normal from the penetration function, see (4.2),
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n̄1 =
x̄1 − x2

‖x̄1 − x2‖ =
1

g+
N

( x̄1 − x2 ) , (9.123)

with the gap function g+
N = ‖x̄1 − x2‖ and x̄1 = (1 − ξ̄)x1

1 + ξ̄ x1
2. This is

shown graphically in Figure 9.10. Based on these definitions, we derive the
variation of the gap function g+

N ,

δg+
N =

1
g+

N

( x̄1 − x2 ) · ( η̄1 + x̄1
,ξ δξ − η2 ) . (9.124)

The term containing δξ disappears in this result, since the first term in the
scalar product is the normal vector, see (9.123). This result has to be inserted
into the weak form of the contact contribution for ne edge elements. It leads
in the case of the penalty method to

Cc =
∫

Γc

εN g+
N δg+

N dA ≈
ne∑

s=1

εNA ( x̄1 − x2 ) · ( η̄1 − η2 ) , (9.125)

which can be stated in matrix form as

Cc ≈
ne∑

s=1

ηT
s Rs with Rs = εNA Xs , (9.126)

with the vectors

Xs =

⎧⎨
⎩

−( x̄1 − x2 )
N1(ξ̄) ( x̄1 − x2 )
N2(ξ̄) ( x̄1 − x2 )

⎫⎬
⎭ and η T

s = 〈η2 ,η1
1 ,η1

2 〉 ,

where 1 is a 2 × 2 matrix.
The linearization of (9.125) yields

Fig. 9.10. NTE-contact element, definition of contact normal.
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ΔCc=
ne∑

s=1

εNA [ (Δū1 + x̄1
,ξ Δξ − Δx2 ) · ( η̄1 + x̄1

,ξ δξ − η2 )

(x̄1 − x2) · ( η̄1
,ξ Δξ + Δū1

,ξ δξ + x̄1
,ξξ δξΔξ + x̄1

,ξ Δδξ ) ] . (9.127)

In this equation the term x̄1
,ξξ is zero for a straight edge; furthermore, (x̄1−x2)

shows in the direction of the normal vector hence (x̄1−x2)·x̄1
,ξ = 0. With these

results the last two terms in (9.127) disappear. Once δξ and Δξ are known, the
matrix form of the linearization can be stated. Both result from the condition
x̄1

,ξ · (x̄1 − x2) = 0. The variation or linearization of this expression yields

Δξ = − 1
l2

[
(Δū1 − Δu2) · ā + (x̄1 − x2) · Δū1

,ξ

]
,

δξ = − 1
l2

[
(η̄1 − η2) · ā + (x̄1 − x2) · η̄1

,ξ

]
. (9.128)

To derive the final form of the linearizations the last two equations have to
be combined

ΔCc =
ne∑

s=1

εNA (Δū1 − Δu2 ) · ( η̄1 − η2 )

−εNA

l2
{
[(x̄1 − x2) · η̄1

,ξ + (η̄1 − η2) · ā ] (9.129)

[(x̄1 − x2) · Δū1
,ξ + (Δū1 − Δu2) · ā]

}
.

By introducing the matrices

1s =

⎧⎨
⎩

−1
N1(ξ̄) 1
N2(ξ̄) 1

⎫⎬
⎭ , Ts =

⎧⎨
⎩

−ā
N1(ξ̄) ā
N2(ξ̄) ā

⎫⎬
⎭ , Xm =

⎧⎨
⎩

0
N1(ξ̄) (x̄1 − x2)
N2(ξ̄) (x̄1 − x2)

⎫⎬
⎭

and
ΔuT

s = 〈Δu2 ,Δu1
1 ,Δu1

2 〉 ,

a compact form of the tangent stiffness for NTE-contact can be stated:

Ks = εNA

[
1s 1T

s − 1
l2

(Ts + Xm ) (Ts + Xm )T
]
. (9.130)

9.4.2 Matrices for Node-To-Node (NTV) elements

If a slave node is close to a vertex node of the master surface then it might
be algorithmically useful to formulate the contact as a node-to-node contact.
In that case, the contact normal n1 is given by (see Figure 9.11)

n1 =
x1 − x2

‖x1 − x2‖ (9.131)



252 9 Discretization, Large Deformation Contact

as in the node-to-edge case. Note, however, that one does not have to distin-
guish between x̄1 and x1, since the projection (9.107) returns to the vertex
node xm. The gap function and its variation can be stated as for the note-to-
edge element:

g+
N = ‖x1 − x2 ‖ ,

δg+
N =

1
g+

N

(x1 − x2 ) · (η1 − η2 ) . (9.132)

Thus; the residual vector for nv vertices being in contact has the same form
as for the NTE element, see (9.125),

Cc ≈
nv∑

s=1

εNA (x1 − x2 ) · (η1 − η2 ) . (9.133)

The matrix form can thus be computed:

Cc ≈
nv∑

s=1

ηT
s Rs with Rs = εNA Xs , (9.134)

with

Xs =
{
−(x1 − x2 )

(x1 − x2 )

}
and ηs =

{
η2

η1

}
.

The linearization of the residuum follows according to equation (9.127) by
setting δξ̄ = Δξ̄ = 0:

ΔCc ≈
nv∑

s=1

εNA (η1 − η2 ) · (Δu1 − Δu2 ) =
nv∑

s=1

ηT
s Ks us , (9.135)

with uT
s = 〈Δu2 ,Δu1 〉. Thus the tangential stiffness has the simple form

Ks = εNA 1s 1T
s , with 1s = 〈−1 , 1 〉T , (9.136)

where 1T = 〈 1 , 1 , 1 〉.

Fig. 9.11. NTV-contact element, definition of contact normal.
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9.5 Mortar Discretization for Large Deformations

The mortar method has successfully been applied during the last five years
for the solution of linear and nonlinear contact problems. Hence some possible
nonlinear versions will be derived in this section.

9.5.1 Introduction

As already discussed in Section 8.4.2, the mortar method allows the coupling
of generally nonconforming sub-domains although the sub-domains are inde-
pendently discretized, see Figure 9.12. The matching conditions between the
nonconforming meshes are enforced by a so-called mortar function which is
defined on the intersection of the boundaries of the sub-domains.

The mortar method relies on the weak formulation of the contact con-
straints leading for frictional contact to

Cc =
∫

Γc

(λN δgN + δλN gN + tT · δgT ) dΓ . (9.137)

In this integral the finite element discretizations for the contact boundary
have to be inserted. After that a numerical integration scheme will be applied
to compute the integral. Since we are dealing with non-matching meshes there
exist different possibilities to compute contact integrals like (9.137).

Here we will describe the finite element discretization of the contact con-
tributions within a mortar type method for large deformations after that

Fig. 9.12. Discretization of the continuous contact surface Γc.
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different integration methods are explored. Finally some examples are pre-
sented to depict the advantages of the mortar method with respect to the
node-to-segment formulations discussed in the previous sections e.g. Section
9.1.

We will restrict ourselves to two-dimensional formulations to keep the for-
mulation simple. Discretization schemes for three-dimensional mortar meth-
ods can be found e.g. in Puso and Laursen (2003), Puso (2004), Puso and
Laursen (2004a) and Puso and Laursen (2004b).

9.5.2 Mortar discretization for finite deformations

Since the surfaces of contacting bodies, as shown in Figure 9.12, are generally
discretized by nonconforming meshes, the contact surfaces consist of differ-
ent surface segments that do not match. The surfaces are approximated by
different number of segments

Γnm
c ≈

ns⋃
s=1

Γnm
cs

Γm
c ≈

M⋃
m=1

Γm
cm

(9.138)

where the superscripts m and nm stand for mortar and non-mortar surfaces,
respectively. It is obvious that the discretizations of Γnm

c and Γm
c are not

equal. Hence it is convenient to introduce a common contact interface Γh
c for

the discretization of the contact surface Γc. Generally the reference surface
is defined by the non-mortar surface Γh

c = Γnm
c . Using this definition the

contact virtual work can be approximated by

Cc =
∫

Γ nm
c

(λN δgN + δλN gN + tT · δgT ) dΓ

=
ns⋃

s=1

∫

Γ nm
cs

(λN h δgN h + δλN h gN h + tT h · δgT h ) dΓ . (9.139)

In this variational form the contribution of the mortar side has to be consid-
ered which is a non trivial task.

The displacements and coordinates in each segment, defined in (9.138),
are given by the following discretizations:

On the non-mortar segment Γnm
cs

: unm
s (ζ) =

N∑
i=1

Nnm
i (ζ)unm

si ,

Xnm
s (ζ) =

N∑
i=1

Nnm
i (ζ)Xnm

si ,

On the mortar segment Γm
cm

: um
m(ξ) =

N∑
i=1

Nm
i (ξ)um

mi ,

Xm
m(ξ) =

N∑
i=1

Nm
i (ξ)Xm

si .

(9.140)
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The current coordinates follow from xnm
s = Xnm

s + unm
s and xm

m = Xm
m +

um
m and N denotes the approximation order which is N = 2 for the linear

approximation and N = 3 for the quadratic approximation.
Each segment then is characterized by two associated element nodes for

the linear and three nodes for the quadratic approximation. These nodes are
also used for the discretization of the solids.

Using a Lagrange multiplier formulation the multipliers are defined on
the discrete non-mortar surface:

On the non-mortar segment Γnm
cs

: λNs
(ζ) =

N∑
i=1

Mnm
i (ζ)λNsi

. (9.141)

The shape functions Nnm
i (ζ), Nm

i (ξ) and Mnm
i (ζ) are specified in the follow-

ing sections with respect to the different mortar element discretizations. The
discrete element-wise local coordinates are ζ ∈ [0, 1] and ξ ∈ [0, 1] which are
defined within the respective surface segment of the non-mortar and mortar
side.

The contribution of each contact segment is based on (9.139). The inte-
gration will be carried out using a numerical quadrature scheme. This leads
for the frictionless case to

Cc s =
∫

Γ nm
cs

(λN h δgN h + δλN h gN h ) dΓ

=
np∑

p=1

[ λN (ζp) δgN (ζp) + δλN (ζp) gN (ζp) ] ‖anm
0 p ‖wp (9.142)

where ζp is a quadrature point and wp is the weighting point which has to
be chosen according to the quadrature rule being applied, see e.g. Appendix
A. Since the integral is evaluated with respect to the initial configuration,
‖anm

0 p ‖ = Xnm
,ζ (ζp) is the normal of the tangent vector of the non-mortar seg-

ment which is constant for linear shape functions. Note that the gap function
gN depends not only on ζp but also on the projection ξp = ξ(ζp) which has to
be computed according to the discretization scheme, see next sections.

Enforcement of contact constraints. Lagrange multiplier and penalty
approaches need different schemes for the enforcement of the contact con-
straints. This is motivated by the illustrations in Figure 9.13 and discussed in
the following.

Penalty method. Within the penalty method the contact pressure is
computed from pN = εN gN , hence the normal gap and the contact stress are
proportional: gN ∼ pN . Thus a local point wise enforcement of the contact
constraints is reasonable and Gauss points where separation occurs do not
contribute to the weak form, see Figure 9.13, top right.

The constraint enforcement using the average gap within one segment
would allow tractions and separations within parts of a mortar type element,



256 9 Discretization, Large Deformation Contact

Fig. 9.13. Enforcement of contact constraints.

see Figure 9.13, top left. This leads to numerical problems as was observed in
several test computations, see Fischer (2005).

Lagrange multiplier method. In the Lagrange multiplier approach
λN and gN are fully independent and only coupled via the global solution
system by the contact constraints. The distribution of the normal gap can
be discontinuous because the projection of non-mortar Gauss points onto
different mortar segments within one mortar element. Furthermore the La-

grange multiplier is approximated by continuous shape functions between
the independent degrees of freedom of the multipliers at the active mortar type
element nodes. Hence a point-wise enforcement of the contact constraints is
not consistent with the weak enforcement of the contact constraints, see Fig-
ure 9.13 bottom. Thus the average enforcement of the contact constraints has
to be selected for Lagrange multiplier method.

In the following we will develop a Lagrange multiplier mortar technique
for frictionless nonlinear contact problems based on linear and quadratic finite
element approximations. For the frictional contact quadratic shape functions
are applied to solve contact problems using mortar type methods based on
a penalty scheme. This yields generally more robust solution behaviour than
using Lagrange multipliers. This is due to the fact that one has to switch
from Lagrange multipliers in the stick phase to tangential stresses related
to the frictional constitutive equation in the slip phase.

9.5.3 Linear approximation for the frictionless case

Within the finite element approximation the contact area is discretized using
linear interpolations for the displacements unm and the coordinates Xnm on
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the non-mortar surface within a discrete contact segment Γnm
cs

as already
introduced in (9.140) and (9.141) with N = 2.

For the Lagrange multipliers λN the following linear shape functions are
used

Mnm
1 ( ζ ) = 2 − 3 ζ Mnm

2 ( ζ ) = −1 + 3 ζ . (9.143)

Together with the linear interpolation functions of the displacement field

Nnm
1 ( ζ ) = 1 − ζ Nnm

2 ( ζ ) = ζ

Nm
1 ( ξ ) = 1 − ξ Nm

2 ( ξ ) = ξ
(9.144)

the shape functions in (9.143) build a dual base. This choice of shape func-
tions was already discussed in Section 8.4.2 for the case of small deformations.
As in the linear case one can exploit the duality to construct efficient solu-
tion schemes, see e.g. Wohlmuth (2000b). However, when standard solvers
are applied for the solution of the global equation systems then the dual dis-
cretization for the Lagrange multipliers has no advantages and one can also
choose the same shape functions as for the displacements.

Within the mortar approach the weak form (9.139) is discretized by in-
troducing segments with linear geometry approximation on both contacting
surfaces, see figure 9.14. Based on the weak form (9.139) one has to compute
the gap gN and its variation. The gap has to be formulated in a continuous
way throughout a contact segment. Thus for every non-mortar coordinate ζ
one has to compute the mortar coordinate ξ̄ which is associated with the
minimum distance: min ‖xnm(ζ) − xm(ξ̄)‖, see (4.2). The weak form contri-
butions have then to be integrated for each segment. This is usually done by
a numerical integration scheme. Here we will apply the Gauss quadrature.
Since the non-mortar surface is defined as reference surface for the integra-
tion, Gauss points are defined on the segments referring to the non-mortar
surface. Due to this we only have to compute the gap at the quadrature points

Fig. 9.14. Gauss point projection from the non-mortar to the mortar surface, linear
approximation, Γc = Γ nm

c holds with 1 to 5 contact segments
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of the non-mortar surface ζp and its minimum distance projection ξ̄p, which
will be denoted in the following by ξp.

In general, a projection of any point xnm of a segment belonging to the
non-mortar surface onto mortar surface segment has to be computed. This can
lead to a discontinuous distribution of the normal gap within a mortar element
since the normal vector can change from one mortar segment to the next.
Figure 9.14 depicts the minimum distance projection for a for a quadrature
using three Gauss points in each non-mortar surface segment. We will denote
by (xnm

sp ,xm
mp) = (xnm

s (ζp),xm
m(ξp)) a pair of current coordinates related to

the minimum distance. With the notation provided in Figure 9.15 we obtain
the relation

xnm
sp = xnm

s1 + ζp (xnm
s2 − xnm

s1 ) = xm
m1 + ξp (xm

m2 − xm
m1) + gNp

nm
m (9.145)

which connects the points xnm
s (ζp) and xm

m(ξp) at one Gauss point. Due to
the linear interpolation the tangent and normal vector are constant within
each surface segment. They are defined by

am
m = xm

m2 − xm
m1 anm

s = xnm
s2 − xnm

s1

nm
m =

e3 × am
m

‖e3 × am
m‖ nnm

s =
e3 × anm

s

‖e3 × anm
s ‖ .

(9.146)

Before equation (9.145) can be set up, the associated segments s and m in
(9.145) must be determined by a local search. For that one has to compute
for every xnm

sp = xnm(ζp) the closest nodal point xm(ξp) on Γm
c . This can be

done in closed form by computing

ξp =
1
l2m

[xnm(ζp) − xm
m1] · (xm

m2 − xm
m1 ) (9.147)

Fig. 9.15. Mortar element in the current configuration with projection at the Gauss

points.
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with lm = ‖xm
m2−xm

m1 ‖. Secondly one has to check in which of the associated
segments (s − 1) or s the value of ξp fulfills the inequality 0 ≤ ξp ≤ 1. Based
on this, the normal gap at the Gauss point p belonging to a mortar element
e is given by

gNp
= (xnm

1 + ζp anm − xm
1 − ξp am) · nm

= (xnm
1 + ζp anm − xm

1 ) · nm
(9.148)

where the indices s and m are neglected since the association of the vectors
with the mortar and non-mortar side is clear. The value of the Lagrange

multiplier at the quadrature point p is given by

λNp
= λN1 (2 − 3 ζp) + λN2 (−1 + 3 ζp) (9.149)

for the dual base interpolation, see the shape functions given in (9.143). By
applying the standard shape functions for the discretization of the Lagrange

multiplier one obtains at a quadrature point

λNp
= λN1 (1 − ζp) + λN2 ζp . (9.150)

Now we will provide the quantities which have to be computed at each
quadrature point ζp. For this all contributions to the nodes of one mortar seg-
ment, see Figure 9.15, are combined within one matrix form. For the discrete
normal gap at a quadrature point gNp

and the Lagrange multiplier λNp
,

needed in (9.142), we obtain

gNp
= [xnm(ζp) − xm(ξp) ] · nm(ξp) = wT

p Bp nm p λNp
= wT

p Mp .
(9.151)

Here the matrix Bp and the vector Mp are given by

Bp =

⎡
⎢⎢⎢⎢⎢⎢⎣

Nnm
1 (ζp)1

Nnm
2 (ζp)1

−Nm
1 (ξp)1

−Nm
2 (ξp)1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

Mp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0

Mnm
1 (ζp)

Mnm
2 (ζp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.152)

where 1 is a 2× 2 unit matrix. The vector wp contains the nodal coordinates
of the current configuration and the Lagrange multipliers

wT
p =

[
xnmT

1 , xnmT

2 , xmT

1 , xmT

2 , λN1 , λN2

]
. (9.153)

The normal vector (9.146) has to be evaluated at ξp, it is defined by nm p and
follows with the discrete tangent vector am p from
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nm p =
e3 × am p

‖e3 × am p‖
, am p = BT

p,ξ wp , Bp,ξ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

Nm
1,ξ

(ξp)1
Nm

2,ξ
(ξp)1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.154)

where 0 is a 2 zero matrix.
Based on these definitions the variation of the gap function and the La-

grange multiplier in (9.142) can be easily defined

δgNp
= ηT

p Bp nm p , δλNp
= ηT

p Mp (9.155)

where the vector of the nodal variations is given by

ηT
p = [ηnm

2 , ηnm
1 , ηm

2 ,ηm
1 , δλN1 , δλN2 ] . (9.156)

With these definitions, the contact distributions of one mortar segment can
be written, based on (9.142), as

Cc s =
np∑

p=1

[ λN (ζp) δgN (ζp) + δλN (ζp) gN (ζp) ] l0 nm wp

=
np∑

p=1

[
ηT

p (Bp nm p MT
p + Mp nT

m p BT
p )wp

]
l0 nm wp (9.157)

where l0 nm = ‖anm
0 p ‖ = ‖Xnm

2 −Xnm
1 ‖ is constant for linear shape functions.

Thus the residual vector for the Lagrange multiplier mortar method follows
for a quadrature point within one mortar segment as

GL
s =

[
Bp nm p MT

p + Mp nT
m p BT

p

]
wp l0 nm wp . (9.158)

The next step is to compute the tangent matrix associated with this residual.
For that the linearizations of the Lagrange multiplier, the gap function
and its variation are needed, see e.g. Section 9.1. For this we need also the
linearization of the surface coordinates ξ and ζ because both depend upon
the current coordinates. For the case of linear shape functions the second
derivative of the position vector vanishes such that the discrete terms �(δgN ),
δξ and �ξ given in Section 6.5.1 simplify

δξ =
1

ām

[
(ηnm − η̄m) · ām + gN n̄m · η̄m

,ξ

]

�ξ =
1

ām

[
(�unm − �ūm) · ām + gN n̄m · �ūm

,ξ

]

�(δgN ) =
(
−η̄m

,ξ �ξ −�ūm
,ξ δξ

)
· n̄m +

gN

ām
η̄m

,ξ · (n̄m ⊗ n̄m)�ūm
,ξ .

(9.159)
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Here the vectors with a bar denote the evaluation of this vector at the pro-
jection point (9.147). Using the matrix formulation one obtains

�(δgNp
) = ηT

p

[
− 1

‖am p‖2

(
Bp,ξ nm p aT

m p BT
p + Bp am p nT

m p BT
p,ξ

+gNp
Bp,ξ nm p nT

m p BT
p,ξ

)]
�wT

p .

(9.160)

Based on this result the tangent matrix for the frictionless Lagrange multi-
plier formulation can be stated as for each quadrature point

KL
N cp

=

[
Bp nm p MT

p + Mp nT
m p BT

p

−
(

Bp,ξ nm p aT
m p BT

p + Bp am p nT
m p BT

p,ξ

+gNp
Bp,ξ nm p nT

m p BT
p,ξ

)
λNp

‖am p‖2

]
l0 nm wp .

(9.161)

Note that the same formulation can also be applied for a penalty approach.
This is in the strong sense no mortar method, but still enforces the penalty
constraint in a weak sense and not point wise as in the node-to-segment formu-
lation. Since the gap function and its variation does not change in the penalty
formulation, we can use all matrices derived before to state the discretization
for the ’mortar’ penalty method. The weak form of the contact contribution
is now given by, see (9.142),

Cpen
c s =

∫

Γ nm
cs

εN gN h δgN h dΓ = εN

np∑
p=1

gN (ζp) δgN (ζp) ‖anm
0 p ‖wp (9.162)

The only difference is that the matrices Bp and Bp,ξ have now only 8 entries
since the Lagrange multipliers are not present. Hence we can define

BP
p =

⎡
⎢⎢⎣

Nnm
1 (ζp)1

Nnm
2 (ζp)1

−Nm
1 (ξp)1

−Nm
2 (ξp)1

⎤
⎥⎥⎦ and BP

p,ξ =

⎡
⎢⎢⎣

0
0

Nm
1,ξ

(ξp)1
Nm

2,ξ
(ξp)1

⎤
⎥⎥⎦ . (9.163)

With these definitions the residual for one quadrature point within a mortar
segment follows immediately for the penalty method from (9.162) as

GP
s = εN

[
BP

p nm p nT
m p BP

p

T
]

wp l0 nm wp . (9.164)

The associated tangent is given by
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KP
N cp

= εN

[
BP

p nm p nT
m p BP

p

T

−
(
BP

p,ξ nm p aT
m p BP

p

T
+ BP

p am p nT
m p BP

p,ξ

T

+ gNp
BP

p,ξ nm p nT
m p BP

p,ξ

T
)

gNp

‖am p‖2

]
l0 nm wp .

(9.165)

Further discussion of discretization schemes for nonlinear two-dimensional
problems are contained in Laursen and Meng (2005) for frictional contact.

9.5.4 Quadratic approximation for the frictionless case

It is not possible to use quadratic approximations of the contact surface within
the node-to-segment approach since constant normal stresses cannot be trans-
mitted in the contact surface. The mortar approach leads to a consistent way
to apply higher order interpolations for contact problems. With this approach
it is possible to obtain higher orders of convergence but also one can approx-
imate the contact surface in a more smooth way by the higher order inter-
polation functions. (for smooth C1 contact interpolations, see Section 9.6).

The quadratic interpolation of the spatial geometry and the Lagrange

multiplier is given by (9.140) and (9.141) with N = 3. The Lagrange mul-
tipliers are approximated by

Mnm
1 (ζ) = 5ξ2 − 6ξ +

3
2

,

Mnm
2 (ζ) = 5ξ2 − 4ξ +

1
2

,

Mnm
3 (ζ) = −10ξ2 + 10ξ − 1 ,

(9.166)

which build a dual base with respect to the standard quadratic shape func-
tions, see (8.129). The standard shape functions are given by

Nnm
1 (ζ) = (2ζ − 1) (ζ − 1) , Nm

1 (ξ) = (2ξ − 1) (ξ − 1) ,

Nnm
2 (ζ) = ζ (2ζ − 1) , Nm

2 (ξ) = ξ (2ξ − 1) ,

Nnm
3 (ζ) = −4ζ (ζ − 1) , Nm

3 (ξ) = −4ξ (ξ − 1) .

(9.167)

The determination of a mortar surface segment related a non mortar side
by xnm

ep = xnm
r (ζp) is more time consuming when compared to the linear

approximation. This is due to the fact that for the quadratic interpolation
the normal as well as the tangent vector changes with the surface coordi-
nate ξ. Therefore ξp cannot be computed in closed form like for the linear
interpolation, see (9.147). Hence an iterative procedure based on Newton’s
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Initialize: set i = 0, ξp = 0
LOOP over Newton iterations: i = 1,...,convergence

Compute:
dpi = d(ξpi) = wT

p Bpi am pi

Check for convergence: dpi ≤ TOL ⇒ STOP, set ξp = ξpi

Compute:
dpi,ξ

= −aT
m pi

am pi
+ wT

p Bpi cm pi
; (cm pi

is given in (9.170)6)

Compute:

ξpi+1 = ξpi − dpi

dpi,ξ

END LOOP

method will be applied. The vectors which are needed in this computation are
explicitly stated in (9.170).

For a value ξp ∈ [0, 1] the projection lies within the segment which can be
m−1 or m. Figure 9.16 depicts the result of the above procedure for a number
of six Gauss points which is applied within each non-mortar segment.

Within the quadratic approximation the vectors of the current coordinates
and its variations have 15 entries for the Lagrange multiplier approach and
12 entries when the penalty method is selected. We define the current position
vector by

wT
p =

(
xnmT

1 , xnmT

2 , xnmT

3 , xmT

1 , xmT

2 , xmT

3

∣∣λN1 , λN2 , λN3

)
(9.168)

and its variation by

ηT
p =

(
ηnmT

1 , ηnmT

2 , ηnmT

3 , ηmT

1 , ηmT

2 , ηmT

3

∣∣ δλN1 , δλN2 δλN3

)
. (9.169)

Fig. 9.16. Gauss point projection from the non-mortar to the mortar surface,
quadratic approximation
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Displacements, up, position vector of the initial configuration, Wp, and lin-
earizations, Δwp have the same matrix form. With these relations the tangent
and normal vectors can be defined as well as the gap function and the La-

grange multipliers

am p = Bp,ξ
T wp , nm p =

e3 × am p

‖e3 × am p‖
,

anm
0p = Bp,ζ

T Wp ,

gNp
= wT

p Bp nm p , λNp
= wT

p Mp ,

cm p = Bp,ξξ
T wp .

(9.170)

The last term cm p is missing in the linear approximation since it is zero. The
matrices used above are stated in detail below

Bp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nnm
1 (ζp)1

Nnm
2 (ζp)1

Nnm
3 (ζp)1

−Nm
1 (ξp)1

−Nm
2 (ξp)1

−Nm
3 (ξp)1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bp,ξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

Nm
1,ξ

(ξp)1
Nm

2,ξ
(ξp)1

Nm
3,ξ

(ξp)1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bp,ξξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

Nm
1,ξξ

(ξp)1
Nm

2,ξξ
(ξp)1

Nm
3,ξξ

(ξp)1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Mep =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0
0

Mnm
1 (ζp)

Mnm
2 (ζp)

Mnm
3 (ζp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bp,ζ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nnm
1,ζ

(ζp)1
Nnm

2,ζ
(ζp)1

Nnm
3,ζ

(ζp)1
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.171)
The residual vector stemming from the weak form (9.157) has exactly the

same form as for the linear interpolations, One only has to use the matrices
(9.171) in (9.158) and to exchange the constant length l0 nm by the noncon-
stant length element ‖anm

0p ‖ which has to be evaluated at the Gauss point
ζp. This is also true for the penalty approach were one has to use the posi-
tion vector (9.168) and the matrices (9.171) without the parts related to the
Lagrange multipliers.
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For the application of Newton’s method, the linearization of the residual
vector has to be computed. This differs for quadratic interpolations from the
linear interpolation since the second derivatives of the shape functions are
non-zero. Hence the linearization of the variation of the gap function δgNep

yields

�(δgNp
) = ηT

p

[
− Bp,ξ nmp aT

mp BT
p − Bp amp nT

mp BT
p,ξ

−gNp
Bp,ξ nmp nT

mp BT
p,ξ −

cmp nT
mp

‖ap‖2
Bp amp aT

mp BT
ep]

�wep

‖amp‖2 − gNp
cmpnT

mp

.

(9.172)

The above relation follows from a lengthy derivation using the continuous form
(6.125). Based on this result the tangent matrix for the Lagrange multiplier
formulation is given by

KL
N cp

=

[
Bp nmp MT

p + Mp nT
mp BT

p

−
[
Bp,ξ nmp aT

mp BT
p + Bp amp nT

mp BT
p,ξ

+gNep
Bp,ξ nmp nT

mp BT
p,ξ +

cmp nT
mp

‖amp‖2
Bp amp aT

mp BT
p]

λNp

‖amp‖2 − gNp
cmpnT

mp

]
‖anm

0p ‖wp .

(9.173)

For the penalty method one derives

KP
N cp

= εN

[
Bp nmp nT

mp BT
p

−
[
Bp,ξ nmp aT

mp BT
p + Bp amp nT

mp BT
p,ξ

+gNep
Bp,ξ nmp nT

mp BT
p,ξ +

cmp nT
mp

‖amp‖2
Bp amp aT

mp BT
p]

gNp

‖amp‖2 − gNp
cmpnT

mp

]
‖anm

0p ‖wp .

(9.174)

These tangent matrices have more terms than the tangent matrices related
to the linear approximation. The additional terms represent the curvature of
the mortar segment.

9.5.5 Numerical examples for frictionless contact

Contact of an elastic ring. In the first example the contact between an
elastic ring undergoing finite deformations and a rigid surface is considered.
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The elastic ring is assembled by an outer and inner ring of the same thickness
t consisting of different materials. The inner ring is 100 times stiffer than
the outer ring. The data regarding the material parameters as well as the
geometry are provided in Figure 9.17. Neo-Hooke material is assumed.

A total vertical displacement of u = 60 UL is applied to the ring at its
top ends. To initialize contact with the foundation, the first increment is
chosen to be u = 20 UL, afterwards the displacement is applied within 80
load steps each with u = 0.5 UL. The computation is performed for both,
Lagrange and penalty formulation. The latter with a penalty parameter of
(εN = 105 UF/UL3). Four Gauss points per non-mortar segment are used
for the discretization with linear shape functions. The ring is assumed to
be the non-mortar body, it is discretized by 64×2 elements. The foundation
(mortar body) consists of 52×10 elements. During the loading process, the
contact changes, due to the finite deformations, from one to two spots. Up to
time step 60, both Lagrange and penalty formulation show identical results,
but for large prescribed displacements the stress distribution as well as the
deformations differ according to the formulation. This is visible in the third
line in Figure 9.18 and also in the scale for the minimum and maximum
vertical stress. In the final state, the ring lifts off in the middle. For the two
Gauss points closest to the symmetry axis, the maximum gap is stated in
Table 9.1. It is obviously larger when using the penalty method, see also Fig.
9.18. Refinement of the finite element mesh yields an increase of the lift-off for
both formulations but the difference between the formulations decreases. The
reason for the different results stems from the fact that the penalty method
introduced an elastic layer with stiffness εN between the contacting bodies.
Due to the nearly exact fulfillment of the geometrical contact constraints when
using the Lagrange multiplier formulation (the absolute value of the gap is
non zero since the contact constraints are fulfilled in a weak sense), it can be

Fig. 9.17. Composite elastic ring in contact with a foundation
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Fig. 9.18. Vertical stress distribution and deformation state, left column: penalty
formulation, right column: Lagrange multiplier formulation

concluded, that the results based on the Lagrange multiplier formulation
are more accurate.

max. lift-off max |gN |
in UL in UL

64×2, 52×10 elements Lagrange 10.24 10−6

Penalty 13.92 10−3

100×6, 60×20 elements Lagrange 15.24 10−7

Penalty 16.28 10−3

Table 9.1: Change of deformations with mesh refinement

In Figure 9.19 the total reaction force is plotted versus the number of finite
elements. We observe that both formulations, based on the penalty and La-

grange multiplier method, converge to the same reference solution when us-
ing linear shape functions or quadratic shape functions. However the quadratic
interpolations need a lot less elements for the same accuracy of the solution.
This reflects the higher order of convergence which can be expected when
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Fig. 9.19. Vertical reaction force for the final deformation state plotted against the
number of degrees of freedom

using higher order interpolations are applied. Therefore a much fine finite ele-
ment mesh has to be usedchosen within the linear formulations. Furthermore
we note, that the node-to-segment element has nearly the same accuracy as
the linear mortar formulations. Further examples and comparisons concerning
mortar interpolations for frictionless contact undergoing finite deformations
can be found in Fischer and Wriggers (2005) and Fischer (2005).

Disc in a disc. The second example is concerned with the contact of a
disc in a disc where large compressions occur at the contact interface. A solid
disc with radius r = 0.6 UL, Es = 2000 UF/UL2 and νs = 0.3 is placed within
a less stiff hollow disc with the material parameters Eh = 1000 UF/UL2 and
νh = 0.0. The inner radius of the hollow disc is ri = 0.7 UL and the outer
radius is ro = 2.0 UL. Neo-Hooke material is assumed for both discs. The
discretization is depicted in Figure 9.20 a). Linear shape functions are applied
within a penalty and a Lagrange multiplier solution method. The inside of
the hollow disc represents the non-mortar surface. This example was discussed
in Puso and Laursen (2004a) for the three-dimensional case.

At all nodes of the inner solid disc the same displacement is prescribed in
vertical direction, up to a maximum displacement v = 1.125 UL. The total
displacement is applied in 50 load increments. The hollow disc is fixed at the
outside.



9.5 Mortar Discretization for Large Deformations 269

Fig. 9.20. a) Initial configuration of the disc in disc problem; b) Lagrange multi-
plier formulation; c) penalty formulation with εN = 106 UF/UL 3

During the loading process the inside of the hollow disc undergoes large
deformations. Thus the inner disc looses its circular form. The deformation
states for two different load increments are depicted in Figure 9.20 b) and c),
respectively.

One can observe that the mesh of the hollow disc is strongly distorted in the
area of maximum contact pressure. However it is important to mention that
the contact formulation is able to represent the nonlinear effects, particularly
the large changes of size and position of the contact area. However, the penalty
formulation leads to relatively high penetrations in the final loading stage, see
Figure 9.20 c). This effect is not that much visible when using the Lagrange
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multiplier method because this method fulfills the contact constraint in a weak
sense.

Thus, the mortar discretization can be applied successfully to problems
undergoing finite deformations. This holds as well for the Lagrange mul-
tiplier approach as for the penalty regularization. If the accuracy of stresses
and deformations in the contact area are of higher interests, an adaptive mesh
refinement should be used to refine the mesh accordingly, see Chapter 14 for
details.

9.5.6 Quadratic Approximation for the Frictional Case

This contact element is based on the frictionless contact formulation with
quadratic shape functions as stated in the previous section. When friction is
present, additionally tangential forces have to be transmitted at the contact
interface. As in the Section 9.1, we have to distinguish the case of stick and
slip in which the tangential forces have to be computed in different ways. Since
the formulation is simpler, we will apply here the moving friction cone (MFC)
approach, see Section 9.2, in which no split of the gap vector in tangential
and normal direction is performed in the stick phase. Hence the coordinate
ξp associated with ζp changes due to slip in such a way that vector gsl lies on
the boundary of the friction cone, see Figure 9.4 and 9.21. In case of stick ξ
does not change and hence can be regarded as a fixed value. We assume that
the frictional algorithm, see Section 10.5.2, is written for a time increment
Δtn+1 = tn+1 − tn where tn denotes the time of the converged previous solu-
tion. Hence the subscript n+1 is introduced for quantities which are evaluated
at the actual time step tn+1 and n represents quantities at the previous time
step tn.

The displacements in each non-mortar and mortar surface segment are
approximated by the standard quadratic shape functions given in (9.167) and
the penalty method is used to model the contact constraints.

To differentiate between stick and slip case the slip condition (5.25) has be
evaluated. When stick occurs (fs < 0), the tangential stress ‖tT ‖ is smaller
than the stress limit μ | tN | provided by the Coulomb model. This situation
can also be expressed by the moving cone description where the non-mortar
point xnm lies within this cone as depicted by vector gst at the current time
tn+1, see Figure 9.21 a). In this case the traction vector can be obtained as

t = tst
n+1 = εgn+1(ξn) = ε

[
xnm

n+1 − xm
n+1(ξn)

]
. (9.175)

In case of sliding we have fs ≥ 0. As the name ’slip’ implies, the non-
mortar point xnm slides on the mortar surface while the connection between
xnm

n+1 and xm
n+1(ξn) and the point of projection ξ0 = ξn changes. Hence a

new position ξn+1 has to be computed at the time tn+1. It is analogous to
the idea that the friction cone moves with the non-mortar point xnm, see
figure 9.21 b), which guarantees that xnm lies on the cone boundary. For
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Fig. 9.21. Geometry for the description of the moving friction cone

the solution of the frictional contact problem we will employ the predictor-
corrector algorithm presented in Wriggers (1987), Giannokopoulos (1989) and
Wriggers et al. (1990). The algorithm for the determination of the stick/slip
state is subdivided into two parts

1. Check whether slip occurs by using (5.25). Here the so called trial values
stemming from the stick response have to be inserted.

2. In case of slip, compute ξn+1 by a projection, see figure 9.21 b). Since the
contact surface is curved there is no closed form solution for the projection.

For this algorithm the slip function fs has to be evaluated. Hence we have to
determine the trial tangential and normal components of the traction vector
in (9.175) by

ttrN n+1 = tn+1(ξn) · nm
n+1(ξn) , (9.176)

ttr
T n+1 = [ ām

n+1(ξn) ⊗ ām
n+1(ξn) ]tn+1(ξn) with ām

n+1(ξn) =
am

n+1(ξn)
‖am

n+1(ξn)‖ .

These values are now inserted in

fs n+1 = ‖ ttr
T n+1 ‖ − μ | tN

tr
n+1 | (9.177)

at the actual time tn+1. If fs n+1 < 0, then the point under investigation is
in stick mode and the resulting traction at the contact interface is given by
(9.175). With this and the virtual gap vector δg = ηnm

n+1 −ηm
n+1(ξn) the weak

form can be written for one segment as

Gst
c =

∫

Γs

tst · δg dΓ . (9.178)

Due to the fact that tst and δg are evaluated at ξn which is fixed, the lin-
earization of this weak contribution is with (9.175) simply
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ΔGst
c = ε

∫

Γs

[
ηnm

n+1 − ηm
n+1(ξn)

]
·
[
Δxnm

n+1 − Δxm
n+1(ξn)

]
dΓ . (9.179)

This integral will be evaluated numerically, hence by using the matrix notation
developed in the previous section we can write for the residual vector of a
mortar segment

Gst
s = ε

np∑
p=1

Bp BT
p wp ‖anm

0p ‖wp (9.180)

with
wT

p =
(
xnmT

1 , xnmT

2 , xnmT

3 , xmT

1 , xmT

2 , xmT

3

)
(9.181)

and

Bp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Nnm
1,ξ

(ξn)1
Nnm

2,ξ
(ξn)1

Nnm
3,ξ

(ξn)1
Nm

1,ξ
(ξn)1

Nm
2,ξ

(ξn)1
Nm

3,ξ
(ξn)1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (9.182)

In case of sliding, the surface parameter ξn+1 has to be determined, see Figure
9.21, from

fs n+1 = ‖ ttr
T n+1(ξn+1) ‖ − μ | tN

tr
n+1(ξn+1) | = 0 . (9.183)

After inserting (9.175) in equation (9.183) one obtains

gT n+1 sign(gT n+1) − μ sign(gN n+1) gN n+1 = 0 (9.184)

with
gN n+1 = gn+1(ξn+1) · nm

n+1(ξn+1) (9.185)

and

gT n+1 = gn+1(ξn+1) · am
n+1(ξn+1)

‖am
n+1(ξn+1)‖

. (9.186)

Now a Newton iteration, analogous to the one used in Section 9.5.4, has to
be applied to compute ξn+1. Details can be found in Fischer and Wriggers
(2005). Once ξn+1 is known, the weak form of the slip part can stated

Gsl
c =

∫

Γs

tsl · δg dΓ (9.187)

Now tst and δg are evaluated at ξn+1 which depends on the deformation. This
leads to the residual vector for one mortar segment

Gsl
s = ε

np∑
p=1

Bp BT
p wp ‖anm

0p ‖wp (9.188)
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where now the matrix Bp, see (9.182), has to be evaluated at ξn+1. Due to the
fact that all quantities depend now on ξn+1 the linearization is more complex
than in the stick case. After lengthy computations, see Fischer and Wriggers
(2005), one obtains for the tangent matrix at one quadrature point in case of
sliding

Kc
sl
p = ε

[
Bp BT

p +
1

Rp

[
Bp,ξ BT

p wp + Bp am p

]

[ [
aT

m p − μsN 0sT 0‖am p‖nT
m p

]
BT

p

+wp BT
p

[
1 +

μ sN 0sT 0

‖am p‖
[
am p nT

m p − nm p aT
m p

]]

Bp,ξ
T

]]
‖anm

0p ‖wp

(9.189)

where scalar Rp is defined by

Rp =
[
wT

p Bp cmp − ‖amp‖2
]

+
μ sN 0sT 0

‖amp‖
wT

p Bp

[
amp nT

mp − nmp aT
mp

]
cmp .

(9.190)

Here sN 0 and sT 0 are sign functions which denote the slip directions. These
quantities are evaluated from

sN 0 = sign [wp Bp(ξn)nm p(ξn) ] sT 0 = sign
[
wp Bp(ξn)

am p(ξn)
‖am p(ξn)‖

]

(9.191)
at the starting value ξn of the time increment.

Note that quadratic shape functions for geometry, gap function and its
variation are each of polynomial order 2 and ‖anm

0 p ‖ is of order 1. Thus, in case
of matching grids a polynomial of order N = 5 occurs in (9.187) which can be
integrated exactly by np = 3 Gauss points. The situation changes when the
meshes do not match any longer, see Figure 9.16. Then np = 6 Gauss points
are in most cases sufficient for the integration. However for coarse meshes
more integration point might be necessary. Further investigations regarding
the formulation can be found in in Fischer and Wriggers (2006).

9.5.7 Numerical examples for frictional contact

Press-fit problem. The application of the standard node-to-segment contact
element can cause loss of convergence or can lead to high distortions of con-
tinuum elements due to interlocking. This effects occur when the discretized
contact surfaces include corners or high curvatures. The weak mortar formu-
lation can reduce such effects, particularly when shape functions of higher
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Fig. 9.22. Press-fit problem

order are used within the finite element approximation. Due to the higher
order approximation of the geometry the contact surface is smoothed. Fur-
thermore the weak enforcement of the constraint conditions due to the mortar
approach also avoids highly concentrated forces. Hence it is possible to com-
pute such examples as shown in figure 9.22 without distortion of single finite
elements.

The example describes a press-fit process where a rectangular, rubber-
like cube is pressed through a steel channel. For both work pieces elastic
Neo-Hooke material is assumed. The constitutive parameters are provided
in Figure 9.22. An initial penetration of 1 mm between cube and channel is
applied in order to introduce an initial normal pressure. The pressing process
is modelled by prescribing an uniform displacement in 70 time steps at the left
edge of the cube. Within the computation a horizontal maximum displacement
of 130 cm is reached. Friction is modelled with the law of Coulomb and a
frictional coefficient of μ = 0.1. Because of symmetry only one half of the
system is modelled, see Figure 9.23 a). The cube represents the non-mortar
side and the mortar side is given by the steel channel.

Figure 9.24 depicts the horizontal reaction force plotted against time. The
following differences can be observed when comparing the behaviour and re-
sults of the node-to-segment and the mortar type element:

1. The NTS-element can only be used with a relatively small penalty parame-
ter ε = 400 MPa/mm within a standard penalty strategy. Otherwise the
computation diverges due to ill-conditioning. Choosing such small para-
meter leads to a large penetration, especially after the cube is completely

Fig. 9.23. Discretization for the press-fit problem
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Fig. 9.24. Total horizontal reaction computed with the NTS-element and mortar
element formulation for the mesh shown in Fig. 9.23 a).

within the narrow part of the channel (between time step 60 and 70). Due
to this, the results do not match the more realistic values obtained with
the mortar type element which can be combined with a higher penalty pa-
rameter ε = 103 MPa/mm. This can be seen in Figure 9.24 which shows
higher reaction forces due to the increased penalty value, see also remark
6.4 in Section 6.3.2. Note that this problem can be solved by using an
augmented Uzawa scheme, see Box 12 in Section 10.4.

2. Whenever a new slave node slides over the second (right) edge of the
steel channel the result obtained with the node-to-segment element de-
picts jumps. The sudden drop of the reaction force is caused by a loss
of contact at this slave node. In a later stage of sliding the node comes
again in contact and the reaction force increases again until another node
comes into the same situation. The number of jumps as well as their size
decrease when the mortar element is used for contact discretization. The
remaining jumps stem from the discretization which is quadratic but not
C1-continuous.
A special contact formulation with a smooth C1- interpolation of the
contact surface, see Section 9.6 and Wriggers et al. (2001), can improve
the results, but it is based on a NTS formulation and thus coupling with
higher order solid elements is not possible in a consistent way.

In this example the mortar segment is integrated by a Gauss quadrature
with 20 integration points. The use of fewer integration points, e.g. 6 per
segment, leads to more oscillations, because the meshes are quite coarse.

A very smooth graph, even smoother than the one obtained for a C1-
interpolation in Wriggers et al. (2001), can be obtained by a small modification
of the mesh. This is depicted in Figure 9.23 b). The contact surface is smoothed
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Fig. 9.25. Total horizontal reaction force obtained by the mortar element formula-
tion for the mesh shown in Fig. 9.23 b).

by moving the vertexes of the elements away from the corners of the channel.
Now the jumps in the horizontal reaction force vanish completely, as shown
in figure 9.25. This result was computed by using 6 Gauss points per mortar
segment.

Ironing problem. In this example both contacting bodies undergo finite
deformations. A block is pressed into an elastic slab with a maximum vertical
displacement of u = 1.0 UL. In the next step this block is moved to the right
with a maximum horizontal displacement of v = 10 UL. Both displacements
are prescribed at the top of the upper block. The vertical displacement is
applied in 10 time steps within t = 0.0 T and t = 1.0 T. After that the
horizontal displacement is prescribed within 500 time steps between t = 1.0
T and t = 2.0 T.

Fig. 9.26. Initial configuration of the ironing problem
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Fig. 9.27. Computed total reaction forces versus time with mortar type element,
quadratic shape functions

The slab is fixed at its bottom and is ten times softer than the upper block.
For both bodies Neo-Hooke material is assumed. The constitutive parameters
are provided in Figure 9.26. Also the geometry data are given in this figure.
The slab is discretized by 50 × 8 quadratic 9-node-elements and the block by
6 × 3 elements of the same type. The frictional coefficient is μ = 0.3 and the
penalty parameter ε = 1010UF/UL3.

The slab is defined as non-mortar surface. 20 Gauss points are applied
within a segment for the numerical integration. Figure 9.27 depicts a graph
of the reaction forces in horizontal and vertical direction computed at the
top of the upper block and plotted against time. As long as the block is
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Fig. 9.28. Computation of reaction forces with the NTS-element in comparison to
the results in figure 9.27
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pressed into the slab, the two curves are smooth and both bodies stick globally
together. When the horizontal movement starts, both the vertical and the
horizontal reaction forces increase until the limit is reached where sliding
starts. Afterwards the vertical reaction force is nearly constant. In contrast to
this, the horizontal reaction force oscillates. This happens, because, when the
block slides, the mesh of the slab has to ”flow” around the right corner of the
block. This yields a non-smooth behaviour as in the previous example. These
oscillations of the horizontal reaction force depend on the discretization, but
mesh refinement can only reduce the amplitude of oscillation.

When the same problem is computed with the NTS-element one can ob-
serve less oscillations but with much higher amplitudes, see Figure 9.28. Note
that for the same number of degrees of freedom the computation diverges
around time step t = 1.2 T when using the NTS contact discretization. Thus,
the mortar type method with quadratic shape function is more robust and
also yields smoother results, as shown. Whenever a Gauss point changes its
position due to the friction cone projection at the right edge of the upper
block an oscillation can be observed, but it is much smaller than the ampli-
tude using the NTS-element. Here oscillations occur with position changes of
slave nodes.

Fig. 9.29. Deformed configurations for the ironing problem at t = 1.0T, t = 1.5 T
and t = 2.0 T
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The deformed meshes of the computation using the mortar finite element
method are depicted in Figure 9.29 for three different time steps. One can
observe the finite deformations involved in the ironing process.

This example shows that the Gauss point-wise fulfillment of the contact
constraints yields in case of the mortar method a much smoother transfer
of contact stresses when compared to the NTS-element. Due to the weak
enforcement of the constraints abrupt changes in the contact stresses and
related reaction forces can be reduced considerably.

9.6 Smooth Contact Discretization

Contact problems undergoing finite deformations are often associated with
a large amount of sliding within the contact interface. If the discretizations,
discussed in the sections above, are applied, then from one segment to the
adjacent one there is no continuity in the normal vector. Thus in the corner
between two segments the normal is not uniquely defined, which needs special
algorithmic treatment (see also the last two sections). Furthermore, this jump
in the normal directions might lead to convergence problems, especially when
parts of the master surface change their curvature drastically. These cases
often appear in forming tools, for example, see Figure 9.30. In such cases
the discretization yields sharp corners. Hence it can be that the movement
of the upper body locks in a corner, which then yields incorrect results or a
non-convergent solution.

Undefined or not uniquely defined normal vectors can be locally treated as
special cases, as in Heegaard and Curnier (1993) and Bittencourt and Creus
(1998). Furthermore, the normal can be averaged as in Papadopoulos and

Fig. 9.30. Non-smooth and smooth surface interpolations.
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Taylor (1992) and Wang and Nakamachi (1999). Also, as described in Liu
et al. (1999), a continuous normal change with the normal vector that is not
perpendicular to the contact surface can be introduced.

To overcome the above-mentioned problems, discretizations have recently
been derived which allow for a smooth sliding of contacting nodes on the mas-
ter surface. This leads to discretizations in which higher order interpolations
are used to describe the master surface of the contacting bodies. Treatment
of 2D- and 3D-smooth contact between deformable bodies can be found for
special discretizations in Eterovic and Bathe (1991), Pietrzak (1997), Padman-
abhan and Laursen (2001) or Wriggers et al. (2001), for example. Within this
approach, a Hermitian, Spline or Bézier interpolation is used to discretize
the master surface. This leads to a C1 or even C2 continuous interpolation of
the surface. The latter is not needed for a smooth normal field, but might be
important when the contact problem involves dynamics, and thus accelera-
tions are present which can jump at the segment interfaces if the interpolation
is not C2 continuous. Let us note that these interpolations lead in general to
a more robust behaviour of the iterative solution algorithms for contact.

The special case of the contact of a body with a rigid obstacle is treated in
Wriggers and Imhof (1993) or Heegaard and Curnier (1993). In such a case,
various C1 surfaces can be defined resulting directly from CAD models; see
also Heege and Alart (1996) or Hansson and Klarbring (1990).

Disretizations which lead to smooth node-to-segment contact elements are
discussed below. There are different possibilities to derive such contact ele-
ments which depend upon the choice of interpolation of the master surface. We
concentrate first on two-dimensional interpolations using Hermitian, Spline
and Bézier polynomials. Also, to make the derivations clearer, only the fric-
tionless case is discussed first for Hermite and Bézier interpolations. For
these discretizations all matrices are derived explicitly. After that, frictional
contact is considered, though the matrices are not stated explicitly. They have
been automatically coded by a Mathematica package AceGen designed by J.
Korelc, e.g. see Korelc and Wriggers (1997) or Wriggers et al. (1999).

9.6.1 Hermite interpolation for frictionless contact

Again, we consider the contact of one slave node xs with a master segment
x1(ξ). However, this time the master segment is C1 continuous. In this sec-
tion a cubic Hermitian interpolation is chosen to interpolate the master sur-
face following Taylor and Wriggers (1999). When applying a cubic Hermitian
polynomial, then four nodes are necessary for the interpolation, see Figure
9.31. Using the penalty method, the energy related to a contact constraint,
see (6.31), is enforced for each slave node

Πε ≈
nc∑

s=1

εN

2
g2

Ns
As . (9.192)
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Fig. 9.31. Smooth node-to-segment contact element.

Here nc is the number of active constraints and As is an area related to the
contact node s. Note that the penalty term can be written as

Πε ≈
nc∑

s=1

εN

2
gNs

n̄1 · gNs
n̄1 As

=
nc∑

s=1

εN

2
(x2

s − x̄1) · (x2
s − x̄1)As , (9.193)

where now the normal no longer appears. The variation of this expression
yields

Cc ≈
nc∑

s=1

εN (η2
s − η̄1 − x̄1

,ξ δξ) · (x2
s − x̄1)As . (9.194)

Again, since (x2
s− x̄1) = gNs

n̄1, the third term in the first bracket disappears,
and for the variation of Πε we have

Cc ≈
nc∑

s=1

εN (η2
s − η̄1) · (x2

s − x̄1)As . (9.195)

The linearization ΔCc starts from (9.194), and leads to the symmetric form

ΔCc ≈
nc∑

s=1

εN As

[
(η2

s − η̄1 − x̄1
,ξ δξ) · (Δu2

s − Δū1 − ū1
,ξ Δξ)

− (x2
s − x̄1) · (Δη̄1 + η̄1

,ξ Δξ + Δū1
,ξ δξ + x̄1

,ξξ · n̄1 δξΔξ )
]

,(9.196)

where the term Δη̄1 results from the special Hermitian interpolation, see be-
low. Expression (9.196) can be put into a mixed form by using vector notation.
After collecting terms, we arrive at

ΔCc =
nc∑

s=1

εN As {〈ηs , η̄1 , δξ 〉

⎡
⎣ I −I −x̄1

,ξ

−I I z̄1

−x̄1 T
,ξ z̄1 T Hξξ

⎤
⎦
⎧⎨
⎩

Δu2
s

Δū1

Δξ

⎫⎬
⎭

−(x2
s − x̄1)T Δη̄1 } , (9.197)
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Fig. 9.32. C1 continuous interpolation of contact surface.

where the abbreviations

Hξξ = (x̄1
,ξ)

T x̄1
,ξ − gNs

(n̄1)T x̄1
,ξξ

z̄1 = x̄1
,ξ − gNs

n̄1

have been used. Since the variation (9.195) does not depend upon δξ, we can
use a static condensation to eliminate Δξ in (9.197). This yields

ΔCc =
nc∑

s=1

εAs[〈ηs , η̄1 〉A(ξ̄)
{

Δu2
s

Δū1

}
− (x2

s − x̄1)T Δη̄1] , (9.198)

where the matrix

A(ξ̄) =
[

I − H−1
ξξ x̄1

,ξ x̄1 T
,ξ −I + H−1

ξξ x̄1
,ξ z̄1 T

−I + H−1
ξξ z̄1 x̄1 T

,ξ I − H−1
ξξ z̄1 z̄1 T

]
(9.199)

has been introduced.
Now we have to discretize the master surface of body B1, which then yields

the matrix form for the smooth contact element. An interpolation which pro-
vides a normal field that does not have jumps when going from one segment
to the next has to be C1 continuous. This is provided by the Hermitian inter-
polation. For the cubic Hermitian polynomials we need four nodal points on
the master surface (see Figure 9.32) to define the interpolation. This interpo-
lation will be defined on the master segment between the nodes x1 and x2.
To obtain continuous tangents from one segment to the next we define the
tangent vectors t1 = x2 − x0 and t2 = x3 − x1.

Let us further introduce a tangent and a normal vector. Both form the
local frame, for the segment under consideration:

t0 = x2 − x1 and n0 = −e3 × t0 = Tt0 , (9.200)
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where e3 is the unit base vector perpendicular to the plane; thus, the cross
product can be expressed by the skew matrix T

T =
[

0 1
−1 0

]
. (9.201)

Based on these definitions, we can introduce the surface interpolation as a
linear interpolation between nodes 1 and 2 and a cubic Hermitian interpolation
with respect to the local frame

x1(ξ) = N1(ξ)x1 + N2(ξ)x2 + w(ξ)n0 , (9.202)

where the cubic interpolation is given by w(ξ) = H1(ξ)B1 + H2(ξ)B2. Nα(ξ)
being the standard linear shape functions and Hα(ξ) are the Hermitian poly-
nomials, defined as

N1(ξ) =
1
2

(1 − ξ) , N2(ξ) =
1
2

(1 + ξ) ,

H1(ξ) =
1
4

(ξ2 − 1)(ξ − 1) , H2(ξ) =
1
4

(ξ2 − 1)(ξ + 1) . (9.203)

The value Bα is given in terms of the tangent vectors tα as

Bα =
1
2

tT
α n0

tT
α t0

, (9.204)

and denotes the angle between the tangent tα and the local frame defined by
(t0 ,n0). Now we can summarize the interpolation of the surface within the
segment between nodes 1 and 2 as

x1(ξ) =
2∑

α=1

[ Nα(ξ)xα + Hα(ξ)Bα n0] . (9.205)

Based on this interpolation, the closest point projection of the slave node x2
s

onto the master surface can be computed, which yields x̄1 = x1(ξ̄), and is
needed to define the gap function. Contrary to the linear node-to-segment
element in Section 9.1, here one has to solve the following nonlinear equation:

[x2
s − x1(ξ̄) ] · x1

,ξ(ξ̄) = 0 . (9.206)

Equation (9.206) is a polynomial of fifth order in ξ which is solved using
Newton’s method, as described for the three-dimensional case in (9.82). For
this algorithm, the derivative of x(ξ) with respect to the surface coordinate ξ
is needed, and is hence given next:

x1(ξ) ,ξ =
1
2

(x2 − x1) +
2∑

α=1

Hα ,ξ
(ξ)Bα n0 . (9.207)
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A good starting value for (9.206) is obtained by the projection of the slave
node onto t0, which can be computed explicitly:

ξ̄ =
1
l2

[ 2xs − (x2 + x1) ] · (x2 − x1 ) with l2 = (x2 − x1 ) · (x2 − x1 ) .

Now we have to express the variation and linearization of the gap associ-
ated with one slave node xs. The variation of x1(ξ) yields

η1(ξ) =
2∑

α=1

[ Nα(ξ)ηα + Hα(ξ) ( δBα n0 + Bα δn0)] . (9.208)

By exploiting the structure of δBα =
1
2

δ

(
tT
α n0

tT
α t0

)
we arrive at the final form:

δBα =
1

2 tT
αt0

[
(tT

α TT − Bα tT
α ) δt0 + (nT

0 − Bα tT
0 ) δtα

]
. (9.209)

Now we write the variation of Bα in matrix form. For this we define

p
(α)
1 =

Hα

2 tT
α t0

[Ttα − Bα tα ] ,

p
(α)
2 =

Hα

2 tT
α t0

[n0 − Bα t0 ] , (9.210)

and obtain

δBα = 〈 δt0 , δtα 〉
{

p
(α)
1

p
(α)
2

}
. (9.211)

Since δt0 = η2 − η1 and with (9.208), (9.209) and (9.210), the variation
(η2

s − η̄1) needed in (9.195) can be expressed in matrix form as (η2
s − η̄1) =

ηT
s Bs(ξ̄), where

ηT
s Bs(ξ̄) = ηT

s

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I
−N1(ξ̄) I +

∑
α [Hα(ξ̄)BαTT − p

(α)
1 nT

0 ]
−N2(ξ̄) I −

∑
α [Hα(ξ̄)BαTT − p

(α)
1 nT

0 ]
p

(1)
2 nT

0

p
(2)
2 nT

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (9.212)

with ηT
s = 〈ηs ,η1 ,η2 , δt1 , δt2 〉. Thus, the matrix form of the variation of

the penalty energy Πε in (9.192) of all contact contributions for the active
contact constraints in (9.195) is finally given by

Cc =
nc∑

s=1

εAs ηT
s Bs(ξ̄) (x2

s − x̄1) . (9.213)

The linearization follows with (9.212) from (9.198), as
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ΔCc

nc∑
s=1

εN As

[
ηT

s Bs(ξ̄)A(ξ̄)BT
s (ξ̄)Δus − (x2

s − x̄1)T Δη̄1
]

, (9.214)

where ΔuT
s = 〈Δus ,Δu1 ,Δu2 ,Δt1 ,Δt2 〉. The last term has to be derived

as a function of the unknown variables. Note that in (9.214) the linearization

Δ(x2
s − x̄1) = (Δu2

s − Δū1) = BT
s (ξ̄)Δus

has been used according to (9.212).
The last term in (9.214) results from the linearization of the variation

(9.208) with regard to the variables. This yields

(x2
s − x̄1)T Δη̄1 = (x2

s − x̄1)T
2∑

α=1

Hα(ξ) [ ΔδBα n0 + ΔBα δn0 + δBα Δn0] .

(9.215)
In this expression, the term δBα is already known and ΔBα has the same
structure. Thus, the term which has to be investigated in detail is ΔδBα:

ΔδBα = Δ

{
1

2 tT
αt0

[
(tT

α T − Bα tT
α ) δt0 + (nT

0 − Bα tT
0 ) δtα

]}
. (9.216)

Using the results already obtained in (9.211), and by defining the matrices

m
(α)
11 = − Hα

2tT
α t0

[Ttα tT
α + tα tT

α TT − 2Bα tα tT
α ] ,

m
(α)
12 =

Hα

2tT
α t0

[n0 tT
α − t0 tT

α TT − 2Bα t0 tT
α ] , (9.217)

m
(α)
22 =

Hα

2tT
α t0

[n0 tT
0 + t0 nT

0 − 2Bα t0 tT
0 ] ,

we arrive at

Hα ΔδBα = 〈 δt0 , δtα 〉Mα

{
Δt0

Δtα

}
. (9.218)

In this expression the matrix Mα has the structure

M(α) =
1

2 tT
α t0

[
m

(α)
11 −Ha (BαI − T) − m

(α)T

12

−Hα (BαI − TT ) − m
(α)
12 −m

(α)
22

]
.

(9.219)
Furthermore, let us define with (9.210) the 2 × 2 matrices which are needed
to describe the last two terms in (9.215):

P
(α)
1 = T (x2

s − x̄1)p(α)T

1 ,

P
(α)
2 = T (x2

s − x̄1)p(α)T

2 . (9.220)

Now all terms have been derived, and the final matrix form of the linearization
can be stated:
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(x2
s − x̄1)T Δη = 〈 δt0 , δt1 , t2 〉M

⎧⎨
⎩

Δt0

Δt1

Δt2

⎫⎬
⎭ . (9.221)

Here the matrix M is given, with (9.219) and (9.220), as

M =

⎡
⎢⎣
∑2

β=1(M
(β)
11 + P

(β)
1 + P

(β)T

1 ) P
(1)
2 + M

(1)
12 P

(2)
2 + M

(2)
12

P
(1)T

2 + M
(1)
21 M

(1)
22 0

P
(2)T

2 + M
(2)
21 0 M

(2)
22

⎤
⎥⎦ .

(9.222)
Finally, we have to express the vectors t0 , t1 and t2 in terms of the nodal
values x0 ,x1 ,x2 and x3. For this we define the transformation

⎧⎨
⎩

δt0

δt1

δt2

⎫⎬
⎭ =

⎡
⎣0 0 −I I 0

0 −I 0 I 0
0 0 −I 0 I

⎤
⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηs

η0

η1

η2

η3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (9.223)

where ηs has been added for completeness since it is already used in (9.214).
This transformation can now be applied in (9.221), and together with (9.222)
yields the final matrix form for the linearization of the normal gap in (9.214).

9.6.2 Bezier interpolation for frictionless contact

In the next discretization we use, the contact constraint is enforced for each
slave node and the master surface is discretized using Bézier polynomials.
Note that the derivation of the residual and tangent again follows the deriva-
tions performed in the previous chapters. These can be applied within any
kind of surface interpolation for the segment. Thus, we can also use such
formulations for C1 and for C2 continuous interpolations.

The Bézier polynomials which are introduced here to obtain a continuous
normal field are cubic functions. As the Hermitian functions these are defined
by four points on the master surface, though in a different manner, see Figure
9.33. The Bézier interpolation for the segment described by nodes 1 and 2
yields

x1(ξ) = B1(ξ)x1 + B2(ξ)x1+ + B3(ξ)x2− + B4(ξ)x2 , (9.224)

where the Bézier interpolation functions are defined as

B1(ξ) = 1
8 ( 1 − ξ )3 , B2(ξ) = 3

8 ( 1 − ξ )2 ( 1 + ξ ) ,

B3(ξ) = 3
8 ( 1 − ξ ) ( 1 + ξ )2 , B4(ξ) = 1

8 ( 1 + ξ )3 .
(9.225)

Observe that the interpolation lies in the convex hull spanned by the nodes
x1 ,x1+ ,x2− and x2, see Figure 9.33.
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Our main requirement for the interpolation is that the tangent vectors of
adjacent segments have to be equal to maintain C1 continuity over segment
boundaries. This condition can be applied to compute the interior points of
the segment x1+ ,x2−. By defining the tangent vectors at nodes 1 and 2 as in
the previous section, we obtain

t1 =
α

2
(x2 − x0) and t2 =

α

2
(x3 − x1) . (9.226)

Now we take the derivative of (9.224) and evaluate this at the end points
ξ = −1 and ξ = +1. By setting this equal to the tangent vectors tα, we
obtain

x1+ = x1 −
α

2
(x2 − x0) ,

x2− = x2 +
α

2
(x3 − x1) . (9.227)

The parameter α specifies how far nodes x1+ and x2− are away from nodes
x1 and x2, respectively. For different α the shape of the surface interpolation
changes. In the limit for α → 0 we obtain an almost flat segment, however
the corner region between adjacent segments is still C1 continuous. Since the
shape of the surface changes during the finite deformation process, α might
be adapted within the calculation. However, a good choice for α is α = 1

3 , see
also Pietrzak (1997).

With (9.227) we can rewrite the interpolation (9.224). This leads to

x1(ξ) =
3∑

i=0

B̄i(ξ)xi , (9.228)

with

B̄0(ξ) =
α

2
B2(ξ) ,

Fig. 9.33. C1 continuous Bézier interpolation of contact surface.
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B̄1(ξ) = B1(ξ) + B2(ξ) −
α

2
B3(ξ) ,

B̄2(ξ) = B3(ξ) + B4(ξ) −
α

2
B2(ξ) , (9.229)

B̄3(ξ) =
α

2
B3(ξ) .

Now we compute the first and second derivatives of x1(ξ) with respect to the
surface coordinate ξ for later use:

x1
,ξ(ξ) =

3∑
i=0

B̄i ,ξ
(ξ)xi ,

x1
,ξξ(ξ) =

3∑
i=0

B̄i ,ξξ
(ξ)xi . (9.230)

The expression for the variation of the gap (4.29) using this interpolation is
now

δgNs
=

[
ηs −

3∑
i=0

B̄i(ξ̄)ηi

]
· n̄1 , (9.231)

which is easily expressed in matrix form as

δgNs
= η̂T

s Bn(ξ̄) = 〈ηT
s ,ηT

0 ,ηT
1 ,ηT

2 ,ηT
3 〉

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n̄1

−B̄0(ξ̄) n̄1

−B̄1(ξ̄) n̄1

−B̄2(ξ̄) n̄1

−B̄3(ξ̄) n̄1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (9.232)

Thus the residuum connected with the smooth Bézier formulation can be
stated. For frictionless contact based on (9.12) for the penalty method, it
yields

Cc ≈
nc∑

s=1

η̂T
s [ εN As gNs

Bn(ξ̄) ] . (9.233)

The linearization of (9.233) is derived next. Let us recall that it is given
by

ΔCc ≈
nc∑

s=1

εN As ( δgNs ΔgNs + gNs ΔδgNs ) . (9.234)

In this expression the linearization of the variation of the gap function is
needed. It can be derived from (6.126):

ΔδgN=−( η̄1
,ξΔξ + Δū1

,ξ δξ + x̄1
,ξξ Δξ δξ ) · n̄1 (9.235)

+gN n̄1 · ( η̄1
,ξ + x̄1

,ξξ δξ ) ā11(Δū1
,ξ + x̄1

,ξξ δξ ) · n̄1 .
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To specify this for the Bézier interpolation, we have to express δξ, see (4.21),
and Δξ, see (6.119), in matrix form as well as η̄1

,ξ and Δū1
,ξ. All these quanti-

ties were derived in Section 6.5.1. Let us first compute the normal component
of the variation:

η̄1
,ξ · n̄1 = η̂T

s Bn ,ξ(ξ̄) = 〈ηT
s ,ηT

0 ,ηT
1 ,ηT

2 , δηT
3 〉

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
B̄0 ,ξ(ξ̄) n̄1

B̄1 ,ξ(ξ̄) n̄1

B̄2 ,ξ(ξ̄) n̄1

B̄3 ,ξ(ξ̄) n̄1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (9.236)

Note that the same structure can be used for computation of the normal
component of Δū1

,ξ. Furthermore, we define the matrix form of (η2
s− η̄1) · x̄1

,ξ,
which is needed to compute δξ, see (4.32):

(η2
s − η̄1) · x̄1

,ξ = η̂T
s Bt(ξ̄) = 〈ηT

s ,ηT
0 ,ηT

1 ,ηT
2 ,ηT

3 〉

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̄1
,ξ

−B̄0(ξ̄) x̄1
,ξ

−B̄1(ξ̄) x̄1
,ξ

−B̄2(ξ̄) x̄1
,ξ

−B̄3(ξ̄) x̄1
,ξ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(9.237)
The matrix form of the variation of the surface coordinate follows with (9.237)
and (9.236) from (4.32):

δξ = η̂T
s

{
H−1

ξξ

[
Bt(ξ̄) + gNs

Bn ,ξ(ξ̄)
] }

= η̂T
s Bξ(ξ̄) , (9.238)

where H−1
ξξ = ( x̄1

,ξ · x̄1
,ξ − gNs

n̄1 · x̄1
,ξξ )−1. Again, the same structure can be

used for the linearization Δξ̄.
The matrix form of the linearization of the gap function (9.235) can be

expressed with (9.236) and (9.238). Thus, for (9.234) with b̄1
ξξ = x̄1

,ξξ · n̄1, we
finally obtain

ΔCc≈
nc∑

s=1

εN As η̂T
s {Bn(ξ̄)Bn(ξ̄)T

− gNs
[Bn ,ξ(ξ̄)Bξ(ξ̄)T + Bξ(ξ̄)Bn ,ξ(ξ̄)T + b̄1

ξξ Bξ(ξ̄)Bξ(ξ̄)T (9.239)

− gNs

‖ x̄1
,ξ ‖2

[Bn ,ξ(ξ̄) + b̄1
ξξ Bξ(ξ̄)] [Bn ,ξ(ξ̄) + b̄1

ξξ Bξ(ξ̄) ]T ] }Δūs ,

which denotes the tangent matrix of the smooth Bézier formulation for fric-
tionless contact. Observe that the formulation for the Bézier contact element
is much simpler than that for the Hermitian element, which needs special
treatment of the rotation Bα within the linearization.

Example. As an example of both formulations, the rotation of a shaft
in a cylindrical bearing is considered. The geometry is shown in Figure 9.34.
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Fig. 9.34. Cylindrical bearing.

The shaft is modelled by an elastic constitutive equation with modulus of
compression K = 1.75 · 105 MPa and shear modulus G = 8.08 · 104 MPa. The
cylindrical tube is characterized by an elastic constitutive equation as well,
with the same material data. The radius of the cylindrical shaft is RC = 70
mm. The tube is defined by the radii RT1 = 70.1 mm and RT2 = 100 mm.
The load is applied in two steps. First a radial displacement δ is prescribed at
the outer boundary of the tube such that contact between the tube and the
shaft occurs. After that, the shaft is rotated for ϕ = 360o. The finite element
mesh is depicted in Figure 9.35.

Fig. 9.35. Finite element mesh of rotating shaft.
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Fig. 9.36. Angular moment for smooth (SNTS) interpolation with different values
of ᾱ.

For this problem a non-smooth interpolation yields unsatisfactory results;
since the reaction, here the angular moment is used, oscillates very much, it is
not shown here. Even when the Hermitian or Bézier interpolations are used,
an oscillation occurs which is depicted in Figure 9.36 (here the value ᾱ = 1−α
was used to describe the position of the points x1+ and x2−). This oscillation
stems from the choice of parameter α in (9.227), only for α = 1

3 ≡ ᾱ = 2
3

the same good solution is obtained as for the Hermitian interpolation. The
reason for this is that α influences the geometrical description of the surface.
It is smooth for any value of α, though the best approximation for a constant
curvature which is associated with a circular shaft is only obtained for a special
value of α.

9.6.3 Bezier interpolation for frictional contact

To show that there is a certain variety in choosing the boundary discretiza-
tion for continuous contact formulations, we introduce for the frictional C1

interpolation another discretization. It is based only on two segments, as de-
scribed in Wriggers et al. (1999), instead of the three used in the previous
section, see Figure 9.37. This leads to a description of the master surface by
only three nodes, which then results in a four-node contact element when the
slave node is added. The bandwidth associated with the smooth four-node
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Fig. 9.37. Contact discretization using a three-node master element.

contact element is smaller than for the five-node contact element in Section
9.6.2, which yields smaller global equation systems for contact problems.

The geometric description of the contact surfaces is different for four and
five node contact elements. When the four-node element is constructed fol-
lowing Figure 9.37, then the surface lies inside the polygon spanned by the
straight segments. Hence, not all nodes describing the boundary of the finite
element mesh are part of the surface used to establish the contact constraints;
see node x2 in Figures 9.37 and 9.38. In the case of the five-node discretization,
all nodes are part of the contact surface, see Figures 9.32 or 9.33. We note
that in the limit case, for contact elements with le → 0, both discretizations
converge to the correct surface.

To develop the matrix formulation for the four node contact element, we
define two interpolating polynomials (see Figure 9.39) by two mid-nodes (mid
point between two master surface nodes) and two tangent vectors. Mid-nodes
m12 and m23 represent end-points of the polynomial while the tangent vec-
tors, x2 −x1 and x3 −x2 are defined by a line between master surface nodes.
The so defined geometry, when also applied in the same way for the neigh-
bouring segments, ensures C1 continuity between adjacent contact segments,
and hence C1 continuity on the entire master contact surface. For each active
contact segment, two interpolations are evaluated (in Figure 9.39 this would

Fig. 9.38. Finite element discretization using the four-node smooth contact element.
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Fig. 9.39. Description of the “active segment”, nodal coordinates and nodal dis-
placements.

be the interpolation defined by m12 and m23 and the interpolation defined by
m23 and m34). The polynomial which has the minimum distance to the slave
node xs has to be chosen as the active one. It is used for calculation of the
contact residual and the associated tangent matrix. For simplicity, we suppose
that the first polynomial defined by m12 and m23 is closer to the slave node,
thus all vectors and matrices are described with respect to this interpolation.
Evaluation of all quantities for the second interpolation is similar as for the
first one. According to Figure 9.39, active segment nodes are represented by
indices 2 and 3, while neighbouring segment nodes are represented by indices
1 and 4. The slave node xs is represented in the following derivations by index
5. With this notation we can define the nodal displacement vector for a single
two-dimensional contact element as

u = {u11, u21, u12, u22, u13, u23, u14, u24, u15, u25} , (9.240)

where the first index describes the direction with respect to a cartesian coor-
dinate system { e1 , e2 , e3 }. The second index is the nodal number. With the
nodal displacement vector we obtain a relation between the current configu-
ration x and the initial configuration X of a body, i.e. x = X + u.

Now two C1 cubic Bézier curves x1 (ξ) can be stated in terms of Bernstein
polynomials:

Bm
i (ξ) =

(
m
i

)
ξi (1 − ξ)m−i

i = 0 , . . . ,m , (9.241)

where m is the order of the polynomial. For the case m = 3, the surface is
parameterized by
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x1 (ξ) = b0 B3
0 (ξ) + b1 B3

1 (ξ) + b2 B3
2 (ξ) + b3 B3

3 (ξ) , (9.242)

where the explicit form of the polynomials is given by (9.225). Vectors bi

are the Bézier points that define the polygon. The Bézier curve is always
lying inside the polygon. This property is called the convex hull property of
Bézier curves, e.g. see Farin (1993), which ensures numerical stability of the
interpolation.

When interpolation (9.242) is applied to discretize the contact segments,
the end points b0 and b3 are defined by the mid-nodes (see Figure 9.40). The
Bézier points b1 and b2 have to be positioned on the tangents x2 − x1 and
x3 − x2, respectively. However, the distance from the end points b0 and b3

is still arbitrary and can vary. The choice of this distance plays an important
role in the description of rolling contact, and will be discussed in detail at the
end of this section; see also the example in the last section.

For simplicity, let points b1 and b2 be defined by quarter-nodes, i.e. the
points between nodes and mid-nodes. This choice ensures C1-continuity, see
Farin (1993).

In the case of rolling contact of cylindrical objects we have to consider
circular cross-sections which move on a given surface, such as wheels or tyres.
Smoothing of the contact discretization is then absolutely necessary, since
sliding and rolling of such bodies are significantly influenced by the contact
surface geometry. The element based on the cubic Bézier interpolation shows
a strong sensitivity with respect to the location of the second b1 and the
third b2 Bézier point (quarter-nodes; see Figure 9.40). To obtain an optimal
surface discretization, for the moment we define the positions of these Bézier

points as variable (see Figure 9.41) using the parameter α ∈ [ 0, 1 ]:

b1 = b0 + (x2 − b0) α , (9.243)
b2 = x2 + (b3 − x2) (1 − α) . (9.244)

For a circular cross-section, when only a small number of elements is used,
special care has to be taken when choosing α, since otherwise the circular

Fig. 9.40. Bézier interpolation and points.
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Fig. 9.41. Definition of the parameter α for variable Bézier points.

geometry might be very poorly represented, see also Figure 9.36. Different
possibilities can be explored to obtain a better approximation of the geometry
in the case of the Bézier interpolation:

1. When all master segments have the same length, the parameter α can be
computed from the requirement that the point x1 (ξ = 1/2) for a Bézier
interpolation should be the same as the point x1 (ξ = 1/2) for a Hermite
interpolation. This results in parameter α = 2/3, which is completely
independent from the problem geometry. It is easy to see that in this
case, Bézier and Hermitian interpolation coincide. Note, however, that
this is only valid for the case of master segments with equal length.

2. Another way of computing the parameter α is based on the requirement
that the radius, defined as the distance from the circle centre C to the
point on the polynomial (Figure 9.41), has to be the same for points
x (ξ = 0) and x (ξ = 1/2) . This approximates the curvature of the inter-
polation pointwise. It yields a Bézier interpolation which is closer to the
ideal arc shape than the interpolation with α = 2/3. In this formula-
tion, in comparison with the previous one, the parameter α depends upon
the geometry, and has to be re-calculated for different surface geometries.
This is especially inconvenient, hence in finite deformation problems the
geometry description has to be defined based on the current configuration.

3. Finally, one can approximate the curvature of the contact element by an
average procedure. This means that the average curvature of the contact
segment interpolation has to be equal to the radius of curvature 1/R given
by the real geometry. This yields the integral



296 9 Discretization, Large Deformation Contact

R ≈ 1
S

∫

Γe

‖x1
,ξξ‖ dΓ , (9.245)

where x1
,ξξ is the second derivative of the Bézier interpolation with re-

spect to the path parameter ξ, and S denotes the length of the segment.
The evaluation of this integral using an interpolation with (9.243) and
(9.244) yields, for each contact segment, a value for α. Again, α depends
upon the current geometry.

The significance of smoothing the circular geometry, as well as the correct
choice of parameter α, is demonstrated further by means of the examples
below.

Now we derive the residual vector and the tangent matrix associated with
the contact element described. The normal gap function is defined in (4.6). For
the tangential gap we have to distinguish between the stick and slip phases
with the relative tangential displacements given in (4.14) and (4.22). The
stick condition was stated in (9.5) for the node-to-segment element with linear
segment geometry which cannot be used here in this form. Instead, we have
to compute the path on the surface, see Figure 9.42. As the cubic Bézier

polynomial is defined explicitly, the path length given with (4.26) by

s
(
ξ̄
)

=

ξ̄∫

0

‖x1
,ξ(ξ) ‖ dξ =

ξ̄∫

0

√(
∂ x1

1 (ξ)
∂ ξ

)2

+
(

∂ x1
2 (ξ)

∂ ξ

)2

dξ, (9.246)

where x1
i represents the ith component of the vector x1 (ξ). There is no explicit

analytical solution of the integral (9.246), hence numerical (e.g. Gauss) inte-
gration has to be applied. This leads to the definition of the relative tangential
gap function:

Δgst
T n+1 = [ s(ξn+1) − s(ξn) ]a1(ξn+1) . (9.247)

Considering the fact that the tangential stress vector is a function of the
displacement un+1 and the parameter ξn+1, one has to use the chain rule to
derive the expression for ith component of the residual vector related to the

Fig. 9.42. Sliding path of the slave node on the master surface.



9.6 Smooth Contact Discretization 297

displacement ui n+1. For stick with a tangential contact stress computed from
the elastic part (see (5.21)) this yields

{
R st

n+1

}
i
= εN gNn+1

[
∂ gN n+1

∂ui n+1
+

∂ gN n+1

∂ ξn+1

∂ξn+1

∂ ui n+1

]
+

+ttr
T n+1 ·

[
∂Δgst

T n+1

∂ui n+1
+

∂Δgst
T n+1

∂ξn+1

∂ξn+1

∂ui n+1

]
, (9.248)

where index i has the range i = 1, . . . , 10. One can show, based on the ex-
pression for gN in (4.7), that ∂gN / ∂ξ is equal to zero, and hence it can be
neglected in (9.248). However from a formal point of view, the latter result
is not known a priori. Hence it was included when we used the Mathemat-
ica package AceGen Korelc (1997) for the automatic derivation of matrix
formulae. The partial derivative of the path parameter with respect to the
displacements is given by

∂ξn+1

∂ui n+1
= −

∂
∥∥rn+1

(
ξn+1

)∥∥
∂ui n+1

/
∂
∥∥rn+1

(
ξn+1

)∥∥
∂ ξn+1

. (9.249)

The tangent matrix is obtained by the linearization of the residual vector

{
Kst

n+1

}
ij

=
∂
{
R st

n+1

}
i

∂uj n+1
+

∂
{
R st

n+1

}
i

∂ξn+1

∂ξn+1

∂ uj n+1
, (9.250)

where index j = 1, . . . , 10. In the finite element code, when calculating the
contact contribution of a single slave node, the residual vector is calculated
for every iteration within the current time interval.

When sliding occurs, the residual vector is obtained by inserting the tan-
gential stress stemming from the time integration of Coulomb’s law, (10.126),
into (6.33):

{
R sl

n+1

}
i
= εN gN n+1

[
∂gN n+1

∂ui n+1
+

∂gNn+1

∂ξn+1

∂ξn+1

∂ui n+1

]
+

+tsl
T n+1 ·

[
∂gsl

T n+1

∂ui n+1
+

∂gsl
T n+1

∂ξn+1
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. (9.251)

The tangent matrix then follows as

{
Ksl

n+1

}
ij

=
∂
{
R sl

n+1

}
i

∂uj n+1
+

∂
{
R sl

n+1

}
i

∂ξn+1

∂ξn+1

∂uj n+1
. (9.252)

For Coulomb’s frictional law the relative tangential gap follows from (10.127)
for the slip case, and is given by



298 9 Discretization, Large Deformation Contact

gsl
T n+1 = gsl

T n +
1
cT

( ‖ ttr
t n+1 ‖ − μ pN n+1 )ntr

T n+1 ,

which has to be inserted into (9.251). Equations (9.248), (9.250), (9.251) and
(9.252) provide the basis for the automatic code generation using AceGen.

Continuity of history variables between adjacent segments in the
slip case. For both polynomial formulations described in the previous sec-
tions, C1 continuity of adjacent interpolations is ensured. In the frictionless
case, where no history variables are needed, there is no influence on the resid-
ual vector and the tangent matrix if sliding occurs over several adjacent in-
terpolations and segments. For frictional problems, where path length and
traction vector are history variables, extra considerations are needed when
sliding of the slave node over adjacent segments and interpolations occurs.

According to Figure 9.43, let an interpolation which is defined between
nodes x1 and x3 be called the first interpolation. Furthermore, an interpolation
which is defined between x2 and x4 is called the second interpolation. For
both interpolations the path length is calculated via the integral from zero
to ξn+1. Let the path length for the first interpolation be denoted by the
symbol sI

n+1

(
ξn+1

)
, and the path length for the second interpolation by the

symbol sII
n+1

(
ξn+1

)
. These values are calculated according to equation (9.246)

for each iteration, and saved as a variable which describes the history of the
sliding path of the slave node.

The history variable sn

(
ξn

)
that represents the path length for the last

converged state is constant during the iterations within a time increment. If,
within the same active segment, the slave node slides from the first interpo-

Fig. 9.43. Description of the path length modification.
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lation to the second, or vice versa, then the path length sn+1

(
ξn+1

)
used in

equation (9.247) has to be modified. The following possibilities have to be
considered when updating the history variable describing the path length:

1. If sliding from the first to the second interpolation occurs, then sn+1

(
ξn+1

)
,

used for calculation of
(
sn+1

(
ξn+1

)
− sn

(
ξn

))
, is modified according to

sn+1

(
ξn+1

)
= sII

n+1

(
ξn+1

)
+ sI

n+1 (ξn+1 = 1) . (9.253)

2. If, within the same active segment, the slave node slides from the second to
the first interpolation, then the path length sn+1

(
ξn+1

)
has to be modified

according to

sn+1

(
ξn+1

)
= sI

n+1

(
ξn+1

)
− sI

n+1 (ξn+1 = 1) . (9.254)

3. If there is no sliding between interpolations of the same active segment,
then for the first interpolation we set

sn+1

(
ξn+1

)
= sI

n+1

(
ξn+1

)
, (9.255)

or for the second interpolation,

sn+1

(
ξn+1

)
= sII

n+1

(
ξn+1

)
. (9.256)

4. If the slave node slides between two adjacent segments, there is no need
for a modification of the current path length sn+1

(
ξn+1

)
. Hence equa-

tions (9.255) and (9.256) are used. For such a case, procedures described
by (9.253) and (9.254) could be activated unnecessarily. This can hap-
pen, for example, when an interpolation that was the second one for the
active segment changes to the first interpolation, and vice versa. To sup-
press the use of procedures (9.253) and (9.254) in such a case, another
additional history variable (switch) is introduced to monitor whether an
active master segment number has changed or not.

As mentioned before, history variables which need to be used in the next time
steps are not influenced by modifications (9.253) and (9.254).

9.6.4 Three-dimensional contact discretization

In the last few years, several groups have worked on the design of three-
dimensional finite contact elements based on smooth surface interpolations.
It is a well known fact from finite element formulations based on Kirch-

hoff plate theory that elements which fulfil C1 continuity are very hard to
design. This is also true for triangular as well as for quadrilateral elements.
Hence, the generation of C1 smooth surfaces is not as straightforward as in
two-dimensional applications (see the previous sections). However, there are
different possibilities to construct C1 continuous surface approximations; some
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Fig. 9.44. Eight neighbouring surfaces for brick elements.

will be discussed in the following. Before doing so, we stress that these approx-
imations discretize contact surfaces in the current configuration which are not
known a priori, since we want to allow for finite deformations and sliding. For
rigid surfaces it is much simpler to develop a smooth surface interpolation.
Here all CAD tools can be applied immediately; for such interpolations, see
Wriggers and Imhof (1993), Heegaard and Curnier (1993), Heege and Alart
(1996) or Hansson and Klarbring (1990).

For the C1 interpolation of the current surface geometry, the approaches
were developed for triangular and hexahedral surface meshes.

Interpolations based on hexahedral elements were developed in, for exam-
ple, Pietrzak (1997), Pietrzak and Curnier (1997) and Dalrymple (1999). Basi-
cally, a tensor product representation of one-dimensional Bézier or Hermite

polynomials is used to interpolate the master surfaces in the contact interface.
In that case, a three-dimensional quadrilateral Bézier surface of the order m
is defined in explicit form, see Farin (1993), as

x
(
ξ1 , ξ2

)
=

m∑
i=0

m∑
j=0

bi,j Bm
i

(
ξ1
)

Bm
j

(
ξ2
)

. (9.257)

Bm
i

(
ξ1
)

and Bm
j

(
ξ2
)

are the Bernstein polynomials which depend upon
the convective surface coordinates ξ1 and ξ2. They have already been defined
in equation (9.241) for one-dimensional applications. This definition needs a
discretization in which the quadrilateral contact surface has to be surrounded
by eight neighbouring quadrilateral contact surfaces, as shown in Figure 9.44.
Hence a structured mesh must be provided for the contact analysis. Thus,
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smoothing of hexahedral elements by (9.257) has a limitation since automatic
mesh generation for arbitrary three-dimensional bodies does not lead to such
a regular form of the mesh.

Hence this approach cannot easily handle a case related to an unstructured
mesh, as shown in Figure 9.45. For such cases, a smooth interpolation could
be developed, but this would lead in general to a special treatment of different
patches with, for example, 5, 6, 7 or 8 adjacent elements, and therefore would
lead to very complex coding.

The use of the tetrahedral elements (Figure 9.46) in the finite element
analysis of bodies with complex geometry has a significant advantage that
more robust automatic mesh generators exist. This is also true for re-meshing
when compared with programs for hexahedral elements. The interpolation
of the contact surface for triangular elements is based in Krstulovic-Opara
et al. (2002) on the three adjacent elements, as shown in Figure 9.47. The
C1 continuous discretization presented is based on a smoothing of the active
triangular contact surface (i.e. master surface where contact occurs) by using
six quartic Bézier surfaces. All six quartic Bézier surfaces are C1 continuous
with respect to each other, thus there are no jumps in surface normal field
between these surfaces. However, directly at the vertices of the element the
C1 continuity is lost pointwise.

The formulation of the sliding path for the frictional problems becomes
complex for such surfaces. To overcome this problem, a mapping of the current
solution in the last converged configuration is used in Krstulovic-Opara et al.
(2002). In the last converged configuration a cubic curve is introduced as an
approximation of the path length. Such a definition of sliding, which was first
developed in Agelet de Saracibar (1997), enables the description of sliding
for the cases of large steps, i.e. sliding of a slave node over several segments
during one loading step.

Due to the high order interpolation of the surface by quartic Bézier inter-
polations, the variations and linearizations of geometrical quantities like the
normal and relative tangential gap are very complicated. Thus, a general sym-
bolic description of all the relations needed to derive the contact element was

Fig. 9.45. Interpolation with less than eight neighbouring surfaces.
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Fig. 9.46. Triangular contact surfaces for the tetrahedral element.

applied. It was used in Krstulovic-Opara et al. (2002) to be able to introduce
the linearization of the contact residual on a high abstract mathematical level.
For this task a computer algebra system for symbolic derivation, automatic
differentiation and code generation was used to numerically generate the pro-
posed element routines. The system consists of two major components: () the
Mathematica package AceGen that automatically derives formulae and gener-
ated general code, see Korelc (1997) and Korelc (2000a)), and (b) the Math-
ematica package Computational Templates Korelc (2000b), with prearranged
modules for creation of the finite element codes. For a detailed treatment of
these subjects the reader should consult the references cited.

In conclusion, research work for a better and simpler way to represent
smooth surfaces is still needed. Some ideas, based on patchwise formulations
and subdivisions which were proposed in Cirak et al. (2000) for thin shells,
could be a step in the right direction for contact analysis with smooth surface
interpolations.

Fig. 9.47. Tetrahedral contact element.
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9.7 Numerical Examples

The interpolations derived above have been implemented in the current ver-
sion of the finite element analysis program FEAP, see Zienkiewicz and Taylor
(1989). To show the performance of the two different smooth contact dis-
cretizations, we compare the smooth approach with the node-to-segment con-
tact formulation developed in Section 9.1 for straight segments.

9.7.1 The sheet/plate rolling simulation

The advantage of the smooth contact elements is evident when this discretiza-
tion is applied within sheet/plate metal forming simulations using a La-

grange formulation. This is particularly true when deformations and stresses
of the roller are not of primary interest. In such a situation, smoothing of the
cylindrical roller, here defined as the master surface, enables a reduction in the
required number of elements needed for discretization of the roller. In Figure
9.48 the geometry of a sheet/plate forming process is shown. A displacement
is applied on the horizontal plate. The fixed steel roller of diameter 140 mm
rotates around its axis. The plate has a size of 478 × 85 mm. It is supported
in the vertical direction on its lower edge. Since we only want to show the
usefulness of the smooth contact discretization, both parts are modelled by a
hyperelastic constitutive law of the neo-Hooke type. The material behaviour
of the roller is modelled with a bulk modulus of K = 1.75 · 105 MPa and a
shear modulus of G = 8.08 · 104 MPa. The plate is characterized by a bulk
modulus of K = 55.6 MPa and a shear modulus of G = 3.4 MPa. The cylinder
is discretized by the relatively coarse mesh, as depicted in Figure 9.49. The
overlapping between roller and plate is assumed to be approximately Δ ≈ 5
mm.

The contact is modelled using the simple node-to-segment (NTS), the
Hermite node-to-segment, and the Bézier node-to-segment contact element,
with the parameter α = 0.65444. This parameter is evaluated from the re-
quirement for the same distance between the circles centre and the points
n+1x

(
n+1ξ = 0

)
and n+1x

(
n+1ξ = 1/2

)
.

Fig. 9.48. Problem description.
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Fig. 9.49. Finite-element-model.

Note that there is a difference in the master surface geometry between the
standard and smooth node-to-segment elements due to the different surface
approximations (see Figures 9.2 and 9.40). Hence, when the reactions for the
central cylinder node are computed, there is a difference in the reaction forces
due to the differences in the master surface geometry of both approaches.
Thus, we only compare the horizontal reaction at the central node of the
roller, which has to be zero in the case of rolling.

Figure 9.50 shows the horizontal reaction force. We observe that the so-
lution of using smooth discretization is much better than that obtained with
the standard node-to-segment element.

Fig. 9.50. Horizontal reactions for the central node.
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Fig. 9.51. Description of the rolling wheel problem.

9.7.2 Simulation of a sliding and rolling wheel

This example of a disk which is put on a plane with a given contact initial
velocity in the horizontal direction is suggested as a benchmark test for two-
dimensional contact elements with friction. It has the advantage that the
analytical solution is known.

Here a disk with radius r, density ρ, Coulomb friction coefficient μ, and
elasticity parameters for a neo-Hooke material is put on a flat surface under
gravity loading. When the initial velocity v0 for all points of the disk is applied,
the disk starts to slide without rolling. Within the sliding process the disk
starts to roll until finally pure rolling occurs, see Figure 9.51.

The analytical solution yields the time tR and distance lR after pure rolling
starts:

tR =
1
3

v0

μ g
lR =

5
18

v2
0

μ g
. (9.258)

With a frictional coefficient of μ = 0.3, the gravitational acceleration g = 9.81
m/s, and an initial velocity of v0 = 1 m/s, it follows from equation (9.258)
that the length and time, when pure rolling starts, are lR = 0.094 m and
tR = 0.113 s.

The FE simulation of the sliding/rolling disk is performed for a steel disk
with radius r = 0.04 m, density ρ = 7850 kg/m3, frictional coefficient μ =
0.3 and elasticity parameters K = 1.75 105 MPa, G = 8.08 104 MPa. The
dynamical problem is solved using the Newmark method (see Section 10.2.2)
with parameters β = 0.25 and γ = 0.5. Figure 9.52 shows the discretization
for the disk and the plane surface, and different stages of the sliding/rolling
motion of the disk.
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Figures 9.53 and 9.54 show the horizontal velocities of the master nodes
at the surface and the central nodes of the disk. The time when pure rolling
starts can be detected from these diagrams by comparison with the results
of the analytical solution. Once the horizontal velocity of a master node is
zero, while the velocity of the opposite master node (here plotted with the
same grey scale) is as twice as big as the velocity of the central node (dashed
line), pure rolling starts. From Figure 9.53 we obtain the result that pure
rolling occurs at the distance lR = 0.124 m for the straight NTS contact. The
overall solution behaviour for this discretization is characterized by jumps and
non-physical separations from the base surface.

Figure 9.54 depicts the response for smooth discretization using Hermite

and Bézier interpolations, the latter with α = 2/3. In these simulations pure
rolling started at lR = 0.099 m which is close to the analytical solution in
(9.258).

As can be observed by comparing Figures 9.53 and 9.54, the straight con-
tact element discretization leads to erroneous results, whereas the smooth
interpolation yields better results, close to the analytical solution.

Both examples presented demonstrate the importance of contact surface
smoothing in certain applications. Sudden normal changes, that are common
for the standard node-to-segment contact formulations, introduce significant
errors in the finite element discretization of contact phenomena, especially
when rolling is concerned.

In comparison with the Hermite interpolation in Section 9.6.1, the
Bézier approach in Section 9.6.2 is simpler. However, one has to bear in
mind that the parameter α has to be chosen within the Bézier approach for
special cases, as discussed in Section 9.6.3.

Fig. 9.52. FE simulation of rolling disk with contact.
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Fig. 9.53. Straight node-to-segment (NTS) frictional contact element.

Fig. 9.54. Smooth Hermite and Bézier (α = 2/3) frictional contact elements.
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Solution Algorithms

In this chapter we consider algorithms which are essential for the treatment
of contact problems. These are applied to the discretized problem, which are
derived using the formulations in Chapters 6, 7 and 8.

The algorithms for detecting contact are of utmost importance, since in
complex engineering applications like a car crash or fragmentation of brittle
materials, contact occurs at non-predictable places on the surfaces of the
bodies involved. In such situations, contact search has to be performed in every
time or load step of the numerical simulation. Additionally, when fractured
materials are considered, many new contact surfaces are generated due to
the splitting of elements into pieces once fracture occurs. All together, these
simulations require complex software which has to be designed to be most
efficient. This is necessary since the number of operations needed to check
O(N) surfaces of a discretized domain is O(N2). If such a check has to be
carried out at each iteration step, then the search will dominate the overall
time for the computation. Hence algorithms have to be developed which reduce
the frequency of the search and its complexity.

In general, we have to distinguish between global and local algorithms:

• global algorithms
1. contact search
2. solution of the variational inequalities

• local algorithms
1. contact detection
2. update of constitutive equations and stresses.

The global algorithms are related to purely geometrical considerations when
the contact search has to be done. There are many different approaches for
contact detection which will be discussed in Section 10.1.

In Sections 10.2 and 10.3 solution methods for non-constraint and con-
straint problems are discussed. Here, several aspects related to the design of
solution methods have to be considered. These are associated with
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• the existence of solutions in the domain of interest, and
• the number of solutions in that domain.

The theoretical analysis can be found in the mathematical literature. For gen-
eral results regarding unconstraint problems, see Vainberg (1964) or Ortega
and Rheinboldt (1970). Associated results for contact problems are reported
in Hlavacek et al. (1988), Kikuchi and Oden (1988) or Curnier et al. (1992).

The approximation of the solution has to be computed by using adequate
algorithms. A direct solution of the equation system resulting from the finite
element discretization G(u) = 0 under the inequality constraints C(u) ≥ 0
due to contact is not possible, due to the nonlinearity of the problem. Hence,
iterative algorithms are needed which can be distinguished in the following
manner:

• methods based on linearizations,
• minimization methods, or
• reduction methods which yield simpler nonlinear equations.

Before one chooses an algorithm, one has to check the following questions in
order to obtain a fast, efficient and robust scheme:

• Does the algorithm converge to the solution?
• How fast is convergence? Does the rate of convergence depend upon the

problem size?
• How efficient is the algorithm?

– number of operations within an iteration,
– total number of iterations, and
– memory used.

The first question is related to the global convergence properties of the algo-
rithm. It is essential for the user of such a scheme, since he needs a robust
and reliable tool for the solution of his problem. In contact mechanics this
is a not completely solved problem, especially when implicit methods are ap-
plied to friction problems. However, the other questions raised are essential,
in the sense that most of the engineering problems are represented by a three-
dimensional discretization which leads to very large number of unknowns. In
this respect, the memory used is relevant to keep the process in the CPU, and
hence avoid time consuming access to the hard disk. Furthermore, one should
apply solution methods which only need O(N) operations in order to keep the
solution times to a minimum. All these aspects define a vivid research field in
which new fast algorithms are constructed based on different mathematical
approaches and computer architectures. One cannot, therefore, conclude that
an optimal solution procedure exists at the moment for contact problems.

The bandwidth of global algorithms for the solution of variational inequal-
ities is very broad. We should like to mention the simplex method, mathemati-
cal programming, active set strategies using Lagrange multipliers, sequential
quadratic programming, penalty and augmented Lagrange techniques, as
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well as barrier methods. The basis for these different methods with regard to
continuum mechanics has been given in Chapter 6. All these techniques have
advantages and disadvantages concerning efficiency, accuracy or robustness,
and thus have to be applied according to the problem at hand. In Section 10.2
we discuss methods to solve unconstraint problems or problems with equality
constraints which are applied within the global algorithms for the solution
of variational inequalities. Thereafter, in Section 10.3, we sketch some of the
global algorithms which are mainly applied to contact problems.

Local algorithms have to be employed once the global contact search has
found possible contact partners. A more accurate local search has to be car-
ried out in order to find the correct faces and elements in contact, and in
the case of contact, the correct projection of nodes onto the surface of the
contacting partner has to be determined. The latter algorithms have already
been described in Chapter 8. The local contact search will be discussed in
Section 10.1.2. The update algorithms for the contact stresses, especially the
tangential stresses due to friction, have been settled. In this case, the so-called
projection methods or return mapping schemes yield the most efficient and
robust treatment. Due to the fact that an algorithmic tangent operator can be
constructed, this technique can be incorporated into a Newton–Raphson

scheme; see Section 10.5 for further details.
Furthermore, algorithms also have to be devised for coupled problems,

which may be necessary in the case of thermo-mechanical coupling or for
fluid-structure interaction problems. Algorithms for coupled problems, like
staggered schemes, depend upon the type of coupling, and thus have to be
designed with special care regarding robustness and efficiency. Algorithms for
thermo-mechanical contact problems can be found in Section 11.5.

10.1 Contact Search

One of the biggest problems in computational contact mechanics is the search
for contact between solids. This is especially true when the problem is such
that the solids can break, and hence during the solution process several thou-
sands of discrete elements will originate from the initial set up. Examples for
these types of dynamic and impact problems can be found in Munjiza and
Owen (1993), Munjiza et al. (1995), Camacho and Ortiz (1996) or Kane et al.
(1999). In such cases, as also in discrete element or rigid body simulations,
most of the computing time has to be devoted to the search, since these com-
putations are usually based on explicit techniques. Thus, fast algorithms for
the detection of contact are needed. The most recent methods are presented in
the overview paper by Williams and O’Connor (1999), see also the references
therein.

Static contact problems with large deformations also need fast and reli-
able search algorithms, since contact areas are not known a priori and can
change within a load step considerably. Furthermore, self-contact has to be



312 10 Solution Algorithms

included, too. The search for an active set of contact constraints is not triv-
ial in this case, since a surface point of a body may contact any portion of
the surface of another body. Such a point can even come into contact with a
part of the surface of its own body. Thus the search for the correct contact
location eventually needs considerable effort, depending on the problem. An
implementation where each node of a surface is checked against each element
surface in the mesh is too exhaustive and computationally inefficient, thus
refined algorithms have to be constructed. This is especially true when the
contact of more then two bodies has to be considered, or when self-contact
is possible. A relatively simple situation is depicted in Figure 10.1 (a), where
four different finite element discretizations might come into contact. One can
immediately observe that it does not make sense to check the contact of one
node against each node on the surface of the other discretizations. This effect
is even more pronounced in the set of spheres shown in Figure 10.1 (b). Here
the possible contact partners of the black sphere have to be found. It is clear
that only the spheres in the vicinity of the black sphere should be checked.
One thus has to search for the neighbouring objects first, and then perform
the local search for real contact.

Thus, in general, contact search has to be split into two phases:

(I) the spatial search for objects/finite elements which might possibly come
into contact; and

(II)the determination of pairs of objects/finite elements which actually inter-
sect and hence are in contact (contact detection).

In phase (I) one orders the finite elements lying on the surface of the solid
by a sorting algorithm. As discussed in Williams and O’Connor (1995) it is
sufficient in this phase to represent the objects by a coarse description, e.g.
bounding boxes or surrounding spheres, see Figure 10.2. The main point when
using such simple descriptions is that one can use these to design fast and
inexpensive (computationally efficient) sort and search routines. Within the

Fig. 10.1. (a) Discrete contact FEM, (b) Discrete contact spheres.
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Fig. 10.2. Bounding box and surrounding sphere of an object.

global search a hierarchical structure can be set up to find out which bodies,
part of the bodies, surfaces or parts of the surfaces are able to come into
contact within a given time step or displacement increment, e.g. see Zhong
and Nilsson (1989), Zhong (1993) or Williams and O’Connor (1995).

One of the first implementations, applied within the finite element method
to find solutions to large deformation contact problems, see Benson and Hal-
lquist (1990), was called the bucket search. The space is subdivided into cells
or buckets, as shown in Figure 10.3. Only the grey bucket is searched, which
leads with careful coding to a scheme with O(N) operations.

Up to now, several different methods have been developed, and applied to
determine the possible contact partners. Recently, a considerable impact has
come from discrete finite element methods where several thousand particles
have to be included in the contact search. Methods like space cell decompo-
sition have been considered by Belytschko and Neal (1991); a combination
with the binary tree search can be found in Munjiza et al. (1995); whereas
Williams and O’Connor (1995) rely on heapsort algorithms for the global
search. More advanced algorithms are the NBS algorithm, see Munjiza and
Andrews (1998), the alternating digital tree method from Bonnet and Peraire
(1991), a space filling curve technique, see Diekmann et al. (2000), or the
Double-Ended Spatial Sorting (DESS) algorithm constructed in Perkins and
Williams (1995).

Fig. 10.3. Bucket search for contact.



314 10 Solution Algorithms

In phase (II) the intersection of the objects is checked, and when inter-
section occurs the actual contact point, the associated penetration and the
local slip are determined using equations (4.3), (4.7) and (4.19). In the special
case of contact between a deformable and a rigid body, the rigid body can
be described by implicit functions such as superquadrics, see Williams and
Pentland (1992). This leads to a simple and efficient contact check for points
lying on the surface of the deformable body. For the special case of cylinders
or ellipses, see also Hallquist et al. (1992). However, the evaluation of func-
tions describing the superquadrics involves the computation of trigonometric
or exponential functions, and is thus expensive. Other representations have
therefore been constructed which are based on discrete functions, see Williams
and O’Connor (1999). Other methods are the node-to-segment algorithm, see
Hallquist (1979), or the pinball technique by Belytschko and Neal (1991).

Now we discuss some techniques which can be applied for the spatial search
in phase (I) and the contact detection in phase (II).

10.1.1 Spatial search, phase (I)

In the spatial search we have to distinguish between problems in which the
evaluation of the deformation is slow or predictable, and cases where arbi-
trary deformations occur. In the first problem class, we distinguish for finite
elements the cases of small deformations and large deformations:

• The problem involves only small deformations. Hence, the position of the
solids does not change much, and we can use a linear description for the
contact kinematics and assume that the topology of the system is fixed,
see Figure 8.1. Therefore, all possible connections and neighbouring pairs
are known, and only contact detection is necessary, which itself can be
evaluated in an efficient way.

• Large deformation occurs with a smooth movement of a contact point over
adjacent elements of the contacting body. In that case (see Figure 10.4)
we have to use spatial search to locate the neighbouring segment to a slave
node s which has changed during the iteration from segment I to K.

In the second problem class we always have to check possible contact for the
present deformation state; see the simple situation depicted in Figure 10.4.

Fig. 10.4. Large sliding of a node over a surface.
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This means every object/finite element has to be checked against every other
object/finite element. When the contact problem is discretized by N finite
elements, the order of contact checks is N2. Associated algorithms result,
even for not too large numbers of N , in very slow algorithms, and thus are
called exhaustive algorithms. Hence one has to construct fast algorithms for
this task. The following schemes have been developed to date:

• Grid cell algorithms, based on a subdivision of the space which contains
the discrete solids (simulation space) into uniform cells, see Figure 10.5(a).
This algorithm type works well when the elements are equally distributed
within the cells. If clustering of the elements in a few cells occurs, then this
algorithm has no advantages. A variant of this algorithm is to use adaptive
grids which accounts for the heterogeneity of the element distribution in

Fig. 10.5. Different sorting strategies.
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space, see Figure 10.5(c). However, in this scheme, the cost of computing
the adaptive grid is not negligible.

• A fast method for spatial search is the octree method, which again is
based on a grid of rectilinear cells, see Figure 10.5(b), but in this case
only cells which contain finite elements are kept in the structure of the
tree. As pointed out in Williams and O’Connor (1999), the time for search
depends upon the first construction of the octree. With special techniques
like balancing the tree branches and minimization of the octree depth, one
can reduce the search time, see e.g. Knuth (1973). The time to create such
an octree is O(N log N) operation, and its evaluation time is of the same
order.

• Another method developed by Williams and O’Connor (1995) is the spatial
heapsort algorithm, in which a list of the elements is sorted by increasing
co-ordinates along the axes of the simulation space. This algorithm is often
combined with body-based cells, see Figure 10.5(d). It has a performance
in time of the order O(N log N) when it is used to sort an unordered
set of N elements. The advantages of this algorithm are that no special
data structure is required, it is insensitive to the spatial distribution of
the object/elements, and it only needs an array of O(N) elements to store
the necessary data. Thus, it requires about 10 times less storage than the
octree method, and less effort is needed to implement it.

• Recently, algorithms have been developed in Perkins and Williams (1995)
which are insensitive to the object size. These algorithms are thus very well
suited for discrete finite element analysis in which the size of the finite
element chunk broken off is not predictable beforehand. The associated
algorithm has a performance of O(N log N), where N defines the number
of objects which can come into contact.

10.1.2 Contact detection, phase (II)

Several cases have to be distinguished when algorithms for contact detection
are constructed. These include contact between rigid bodies, between a rigid
body and deformable bodies, and between deformable bodies. Since geomet-
rical contact conditions have to be formulated with respect to the current
configuration (see Chapter 4) different algorithms apply to the cases men-
tioned. Here the case of contact between rigid bodies will not be considered;
associated formulations may be found in Pfeiffer and Glocker (1996).

Contact between rigid and deformable bodies. In this case, one has
to find a mathematical model for the rigid body. This body then also defines
the contact normal, hence it will be used as master body or reference body.
One possibility to describe rigid objects is given by an implicit function as
introduced below:

f (X,Y,Z ) =
(

X − X0

R1

)n1

+
(

Y − Y0

R2

)n2

+
(

Z − Z0

R3

)n3

− 1 = 0 . (10.1)
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Fig. 10.6. Representation of bodies by superquadrics for different exponents n.

Some cases of bodies resulting from (10.1) are shown in Figure 10.6 for
n1 = n2 = n3 = n and R1 = R2 = R3 = 1. Observe that quite a vari-
ety of different shapes can be created. Due to the construction of the implicit
function (10.1), the local contact check as to whether a point (slave node)
xs = {xs , ys , zs }T is inside or outside of the rigid body just follows from a
pure function evaluation: f (xs , ys , zs ). Point xs is outside the rigid body for
f > 0 and inside for f < 0. In the case f = 0, the contacting point lies on the
surface of the rigid body. The normal related to the surface of the rigid body
is easily obtained by

n =
gradf

| gradf | . (10.2)

It can be used to define the local components of the contact stresses in the
contact interface for the point xs by evaluating n at xs.

Another implicit superquadric for the description of rigid bodies is pre-
sented in Hogue (1998). In that paper a generalization is also provided which
allows the representation of arbitrary geometries by a discrete function repre-
sentation. In the general situation the surface of a body is discretized into a
grid of nodes. In between the nodes superquadrics are applied to describe the
surface, which leads to a representation that is both discrete and analytical.

Contact between deformable bodies. We assume that the global
search was successful, and lead to two neighbouring finite element meshes Ω1

and Ω2. Now situations, as depicted in Figure 10.7 for the two-dimensional
case, have to be investigated in which two bodies can possibly be in contact
but it is not clear which slave node contacts which master segment. There are
several possibilities to deal with this problem. One approach which also works
in the two- and three-dimensional case is described in Benson and Hallquist
(1990). It splits the detection of local contact for a given slave node xs (see
Figure 10.7) into three different phases, which consist of
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1. Identification of the closest master node x1
k for xs. This can be performed

locally by searching for the minimum distance of master nodes x1
k on

surface ∂Ω1 to the slave node xs as mink=1,...,c+1 ‖xs − x1
k ‖. In Figure

10.7 the result of this search for all nodes x1
k of the master surface is node

x1
i .

2. Check all finite elements which are adjacent to x1
i and determine the ele-

ment face which contains the projection x̄1, see (4.3). In the case depicted
we obtain the side defined by a1

i .
3. Compute the convective coordinates ξ̄ of the projection using the algo-

rithms stated in Chapter 9 for different discretizations.

Details of actual implementations can be found in Benson and Hallquist
(1990). Note that determination of the closest master node and search for
the associated elements in phases 1 and 2 is local in nature when appropri-
ately implemented. Hence the algorithms are of the O(N)-type. The effort
which one has to spend in phase 3 depends upon the contact discretization.
For the node-to-segment discretization in two dimensions, a closed form solu-
tion is obtained, see (9.3). The same also holds for three dimensions when the
master surface is interpolated using linear triangles, see (9.107). In all other
cases, a Newton iteration has to be applied to find ξ̄, e.g. see (9.82).

Note that in phase 2 of the procedure stated above, we can have situations
in which the projection onto the master surface is not uniquely defined, see also
Remark 4.1. Such a situation is depicted in Figure 10.8, where a projection of
the slave node xs onto two master surfaces, x1

i —x1
i−1 or x1

i+1—x1
i , is possible.

This yields two different values of the gap function: gi−1 and gi+1. In cases
like that, one has to decide within the algorithm which master segment is the
correct one. This can be done by trial and error methods, or by smoothing
of the local segment geometry by a C1 function, as described in Section 9.6.
Another sound way to tackle this problem is to apply strategies known from

Fig. 10.7. Contact detection for the two-dimensional case
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Fig. 10.8. Non-unique projection to master surface.

optimization theory which have already been successfully used in multi-surface
plasticity, e.g. see Laursen and Govindjee (1994).

A different method for the detection of penetration is described in Kane
et al. (1999) for finite element discretizations using a triangulation of the bod-
ies. The idea is based on the fact that the interiors of two deformed boundary
segments intersect in case of penetration. This observation can be cast for
two-dimensional problems into a mathematical formulation by computing the
area of the boundary pairs. This area check results in negative areas when pen-
etration occurs. Hence, the contact constraint (4.6) can be put in the form

As ≥ 0 . (10.3)

In the case of a linear segment, defined in Section 9.1, the area can be com-
puted for a counter-clockwise numbering of surface nodes by

As =
[(x2

i − x1
k) × (x2

i − x2
i+1)] · [(x1

k+1 − x1
k) × (x1

k+1 − x2
i+1)]

[(x2
i − x2

i+1) × (x1
k+1 − x1

k)] · e3
, (10.4)

where x2
i , x

2
i+1, x

1
k and x1

k+1 are the coordinates describing the deformed con-
figuration of the intersection segments, see Figure 10.9. The segments which
have to be tested are again found by methods derived for the spatial search,
see Section 10.1.1. We note that the area can also be used as a constraint
function, as has been proposed in Kane et al. (1999), since As ≥ 0 excludes
possible penetrations. Since the denominator of (10.4) is always positive, the
authors noted that the polynomial constraint function

gAs = [(x2
i − x1

k) × (x2
i − x2

i+1)] · [(x1
k+1 − x1

k) × (x1
k+1 − x2

i+1)] (10.5)

could be employed instead of (10.4), which yields much simpler constraint
equations, and hence is algorithmically advantageous.

In the case of three-dimensional applications, the intersection of boundary
faces has to be considered, which leads to a volume check. Explicit formulas
for this check can be found in Kane et al. (1999) who also use the inequality
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Fig. 10.9. Detection of local contact by area check

constraint Vs ≥ 0 for three-dimensional contact problems.

REMARK 10.1: In some applications it is possible that a body comes into contact

with itself. This is depicted in Figure 10.10, where the straight line is bent over, and

hence the last node x1
N in the deformed configuration comes into contact with the

segment associated with node x1
i . Thus we have a master node which in the deformed

configuration has to be treated like a slave node. Such behaviour, which is called self-

contact, often occurs in crash simulations or in large deformation analysis of rubber

bearings. In that case, the global search has to be extended such that contact of

one surface with itself can be detected. This is more complicated than the standard

Fig. 10.10. Self-contact of a line.



10.2 Solution Methods for Unconstrained Nonlinear Problems 321

contact detection between two different bodies. Associated algorithms can be found

in Benson and Hallquist (1990).

10.2 Solution Methods for Unconstrained Nonlinear
Problems

Some of the contact formulations stated in Chapter 6 reduce the variational
inequalities to variational equations. This means that within an iterative step
of the solution of the variational inequality, one can apply solution meth-
ods which were developed for unconstrained problems. These are discussed in
this section. Since most applications in engineering also require the consider-
ation of nonlinear effects such as finite deformations or nonlinear constitutive
relations, one needs solution methods which can cope with these different
phenomena. In case finite element discretizations are used to approximate
the physical problem, the discretization process leads to a discrete system
of nonlinear equations, see (7.53). In the following, we distinguish between
time-independent and time-dependent problems.

In the following we discuss several algorithmic aspects for unconstraint
problems, which are often also basis for the solution of constraint problems.

10.2.1 Algorithms for time-independent problems

Finite element approximations using the interpolations described in Chapter
7 lead to the above-mentioned system of nonlinear equations. For the con-
struction of nonlinear solution algorithms, we rewrite (7.53):

G(u, κ) = R(u) − κP = 0 , u ∈ R
N . (10.6)

The scaling factor κ, also known as the load parameter, was introduced to
be able to apply the load stepwise. Usually, the scaling factor is a problem
given quantity, but it can also be useful to view κ as additional variable when
special algorithms are used to follow a highly nonlinear load path.

To solve (10.6) by an iterative method, the following standard schemes for
unconstrained problems can be applied:

- fix point method,
- Newton–Raphson method,
- Quasi-Newton methods, and
- arc-length methods.

From the list of algorithms, given above, we only state the Newton–

Raphson method. The other methods are discussed in detail in the literature,
e.g. see Matthies and Strang (1979), Luenberger (1984) or Bazaraa et al.
(1993) for quasi-Newton methods, and Riks (1972), Keller (1977), Ramm
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(1981), Crisfield (1981), Riks (1984), Schweizerhof and Wriggers (1986), Wag-
ner and Wriggers (1988), Wagner (1991) or Crisfield and Shi (1991) for the
arc-length methods. Overviews are given in Bathe (1996) or Crisfield (1997).

In all algorithms a sequence of linear equation systems has to be solved
within the iterations. Hence equation solvers have a major contribution to the
efficiency of the algorithms. While classical direct methods are still sufficient
for two-dimensional problems, one has to apply iterative solvers like conjugate
gradient schemes, multi-grid techniques or refined sparse-direct solvers for
large three-dimensional problems, e.g. see Hackbusch (1991), Schwetlick and
Kretschmar (1991), Axelsson (1994), Duff et al. (1989), Kickinger (1996),
Boersma and Wriggers (1997), Wriggers and Boersma (1998) and Davis and
Duff (1999).

The method which is used most frequently for the solution of nonlinear
systems of equations is the Newton–Raphson method. It starts from a
Taylor series expansion of (10.6) at a known state uk,

G (uk + Δu, κ̄ ) = G (uk, κ̄ ) + D G (uk, κ̄ )Δu + r (uk, κ̄ ) . (10.7)

The load parameter κ̄ reflects the load level for which the solution has to
be computed. D G · Δu is the directional derivative which is obtained by
linearization of G at uk; for details see Chapters 7 or 9. The linearization of
G yields a matrix, also known as a Hesse, Jacobi or tangent matrix. It will
be abbreviated by KT (see Chapter 7). By neglecting the second order term
defined by vector r in (10.7), one can derive the iterative algorithms, stated
in Box 1, to solve (10.6) for a given load increment at level κ = κ̄.

The algorithm is graphically described in Figure 10.11 for the simplified
equation R̂(u) − κ̄ = 0. The convergence rate of this method is characterized
by the inequality ‖uk+1 − u ‖ ≤ C ‖uk − u ‖2, where u is solution of (10.6),
e.g. see (Isaacson and Keller (1966). This behaviour manifests the quadratical
convergence rate of the Newton–Raphson method in the vicinity of the
solution. Since the quadratic rate of convergence is obtained only locally, one
has to enhance the algorithms so that they also becomes globally convergent.
However, this cannot be achieved in all cases. Possible methods which yield
globally convergent schemes are line search techniques, e.g. see Luenberger

Initialize algorithm: set u0 = uk

LOOP over iterations : i = 0, .., convergence
Solve: KT (ui) Δui+1 = −G (ui, κ̄)
update displacements: ui+1 = ui + Δui+1

Check for convergence: ‖G (ui+1, κ̄) ‖ ≤ TOL ⇒ STOP
END LOOP

Box 1. Newton–Raphson algorithm.
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Fig. 10.11. Newton–Raphson method.

(1984), Crisfield (1991) or Crisfield (1997), or the arc-length approach, which
was discussed above.

10.2.2 Algorithms for time-dependent problems

The discrete form of equations of motion for a solid were derived in Chapter
7, leading to

Mü(t) + R [u(t), t] = P(t) , (10.8)

where M is the mass matrix, R [u(t), t] represents the stress divergence
term and P(t) contains the time-dependent applied loads. u(t) is the time-
dependent solution. To simplify notation, we omit the reference to time de-
pendency in the following equations.

By also including damping (for the background see e.g. Hughes (1987),
Bathe (1996) or Zienkiewicz and Taylor (2000a)) the discrete equations of
motions are given by

Mü + Cu̇ + R (u) = P . (10.9)

This equation can be transformed into a first order algebraic differential equa-
tion by introducing as independent variables u̇ = v and ü = v̇. This leads
to

u̇ = v ,

v̇ = M−1 [P − Cv − R (u) ] . (10.10)

To describe the algorithms we introduce the letter a for accelerations ü and
the letter v for velocities u̇. With this the balance of momentum (10.9) has
the discrete form at time tn+1:

Man+1 + Cvn+1 + R (un+1) = Pn+1 . (10.11)
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The subscript (..)n+1 means that the quantity has to be evaluated at time
tn+1.

For the final definition of an initial value problem, we need to introduce
the initial conditions for displacements and velocities ū and v̄, respectively,
at time t = t0 (often we assume t0 = 0):

u0 = ū ,

v0 = v̄ . (10.12)

The choice of the time integration procedure to determine the motion of a
body u(t) depends upon the problem at hand. These are explicit and implicit
methods. They have the following general properties:

• Explicit time integration methods are easy to implement, since the solu-
tion at time tn+1 depends only upon known variables at tn. These methods
are extremely efficient when the mass matrix in (10.8) is approximated by a
lumped mass matrix which is diagonal. Explicit methods are conditionally
stable, which means that the time step size is governed by the Courant

criterion.
• Implicit time integration schemes approximate time derivatives by quan-

tities which also depend upon the last time step tn and upon the still
unknown values at time tn+α. These methods require a solution of a non-
linear equation at each time step. They are much more expensive, since
they have to be combined with, for example, the Newton–Raphson pro-
cedures discussed in the last section. However, implicit schemes can be
constructed so that they are unconditionally stable, and hence can be ap-
plied with a far bigger time step than explicit schemes.

The time step size depends strongly upon the physical process which is sim-
ulated. In case shock waves are present (e.g. in car-crash or penetration sim-
ulations) then a small time step is necessary. This naturally leads to the use
of explicit codes. Large time steps are sufficient when the response of a struc-
ture is governed by the low frequency modes, like standard vibration problems.

Explicit time integration. In finite element analysis of time-dependent
problems, the central difference scheme is mostly applied. In this algorithm
the velocities v and the accelerations a at time tn are approximated by

vn =
un+1 − un−1

2Δt
,

an =
un+1 − 2un + un−1

(Δt)2
. (10.13)

Insertion of this value into (10.9) at time tn yields, with

M (un+1 − 2un + un−1) +
Δt

2
C (un+1 − un−1) + (Δt)2R (un) = (Δt)2 Pn ,

(10.14)
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a system of equations for the unknown displacements un+1 at time tn+1:(
M +

Δt

2
C

)
un+1 = (Δt)2 [Pn −R (un)] +

Δt

2
Cun−1 + M (2un − un−1) .

(10.15)
In this system M and C do not change, and hence can be computed once and
for all at the beginning of the simulation. Also, the triangularization of the
coefficient matrix M+ Δt

2 C has to be calculated only once. All nonlinearities
only enter via the vector R (un) on the right-hand side. In case M and C are
diagonal matrices, the factorization of M+ Δt

2 C is trivial. Hence, only vector
operations are needed to evaluate (10.15).

The definition of the starting values for explicit schemes requires special
treatment since at time t0 values for u−1 are needed which have to be de-
termined from the initial conditions u0 and v0. By using a Taylor series
expansion at time t−1, we obtain

u−1 = u0 − Δtv0 +
(Δt)2

2
a0 . (10.16)

Here the accelerations at t0 follow from (10.11):

a0 = M−1 [−Cv0 − R (u0) + P0 ] . (10.17)

A variation of the explicit scheme can be found in Wood (1990). The
following approximations for displacements and velocities are used:

un+1 = un + Δtvn +
(Δt)2

2
an

vn+1 = vn +
1
2

Δt (an + an+1 ) , (10.18)

together with equation (10.11) to determine the accelerations. This leads to
the equation system

(
M +

Δt

2
C

)
an+1 = Pn+1 − R

(
un + Δtvn +

(Δt)2

2
an

)
− Δt

2
Can .

(10.19)
Its right-hand side depends, besides the known loading function P, only upon
vectors which have to be evaluated at time tn. Thus the initial conditions
(10.12) can be applied directly when starting the algorithm. Displacements
and velocities follow after the solution of (10.19) from (10.18). In (10.19) the
same coefficient matrix appears as in (10.15).

For linear problems the following estimate is valid for the critical time step
size (Courant criterion):

Δt ≤ TN

π
. (10.20)

The value TN characterizes the smallest period of the finite element discretiza-
tion which can be estimated on an element basis, e.g. see Bathe (1982). For
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nonlinear problems an estimation for the critical time step can be found in,
for example, Belytschko et al. (1976):

Δt ≤ δ
h

cL
. (10.21)

This estimate depends upon the characteristic length of the smallest element
h, the wave speed of a compression wave in the solid cL (in a linear elastic
medium we have cL = 3 K (1−ν)

ρ (1+ν) with modulus of compression K, Poisson

ratio ν and density ρ). The constant δ (0.2 < δ < 0.9) is a reduction factor
which has to be chosen empirically for the problem.

Implicit time integration. Among many integration schemes the New-

mark method is the most well known to solve the equation of motion (10.9),
see Newmark (1959). It is based on the following approximations of displace-
ments and velocities at time tn+1:

un+1 = un + Δtvn +
(Δt)2

2
[ (1 − 2β)an + 2β an+1 ]

vn+1 = vn + Δt [ (1 − γ)an + γ an+1 ] . (10.22)

Here the displacements and velocities depend upon values at time tn, but also
on the accelerations at time tn+1. The parameters β and γ are constants which
could be chosen freely. However, they determine the order and accuracy of the
method, and thus have to be chosen with care. The intervals from which one
can choose the parameters are 0 ≤ β ≤ 0.5 and 0 ≤ γ ≤ 1 , e.g. see Hughes
(1987). Note that the explicit central difference scheme (10.18) follows for the
parameter set γ = 0.5 and β = 0.

The accelerations an+1 follow from (10.11) when the approximations of
displacements un+1 and velocities vn+1 (see (10.22)) are inserted. This leads
to a nonlinear algebraic system of equations for an+1:

(M + γ ΔtC )an+1 + R (an+1 ,un ,vn ,an) = Pn+1 − Ḡ (un ,vn ,an) .
(10.23)

All terms which result from inserting (10.22) into (10.11) are combined in
Ḡ. Equation (10.23) can now be solved with, for example, the Newton–

Raphson scheme. Once the accelerations are known, the displacements and
velocities follow from (10.22).

Often the Newmark method is formulated with displacements as primary
variables. Solving (10.22) for an+1 and vn+1 yields

an+1 = α1 (un+1 − un) − α2 vn − α3 an ,

vn+1 = α4 (un+1 − un) + α5 vn + α6 an , (10.24)

with the following definition of the constants:
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α1 =
1

β (Δt)2
, α2 =

1
β Δt

, α3 =
1 − 2β

2β
,

α4 =
γ

β Δt
, α5 =

(
1 − γ

β

)
, α6 =

(
1 − γ

2β

)
Δt .

(10.25)

Inserting (10.24) into the balance of momentum (10.11) leads to a nonlinear
algebraic equation for the unknown displacements un+1:

G (un+1) = M [ α1 (un+1 − un) − α2 vn − α3 an ]
+C [ α4 (un+1 − un) + α5 vn + α6 an ] (10.26)
+R (un+1) − Pn+1 = 0 .

When using Newton’s method to solve this equation for the displacements
at time tn+1, by introducing the tangential stiffness matrix

KT (ui
n+1) =

∂R

∂un+1

∣∣∣∣
ui

n+1

, (10.27)

one can state the following algorithm (see also Box 1):
[
α1 M + α4 C + KT (ui

n+1)
]

Δui+1
n+1 = −G (ui

n+1) ,

ui+1
n+1 = ui

n+1 + Δui+1
n+1 . (10.28)

This iteration has to be performed with respect to index i in each time step
tn+1. As the initial value for the next time step the converged displacement
from the previous time step u0

n+1 = un is used. The iteration is stopped when
the criterion stated in Box 1 is fulfilled.

For linear problems one can analyse the Newmark method with respect
to accuracy and stability; results can be found in Hughes (1987) or Wood
(1990). For parameters γ ≤ 0.5, the accuracy of Newmark’s method is of
the order O(Δt2). Often one wishes to damp out higher frequency responses.
This can be done using parameters γ > 0.5, however this leads to a reduction
of the order of accuracy. Hence methods have been developed which retain the
order but have the damping properties, see e.g. Hilber et al. (1977) or Wood
et al. (1981). The latter method changes the momentum equation (10.11) as
follows:

(1 − α)Man+1 + αMan + Cvn+1 + R (un+1) − Pn+1 = 0 , (10.29)

while retaining the approximations for displacements and velocities (10.22).
The method in Hilber et al. (1977) was developed for linear elasto-

dynamical problems. It introduces a different momentum equation in which
the displacements are weighted. Its nonlinear extension yields, instead of
(10.29),

Man+1+(1−α) [Cvn+1−Pn+1]+α [Cvn−Pn]+R [(1−α)un+1+αun)] = 0 .
(10.30)
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Again, the displacements and velocities are computed at time tn+1 according
to (10.22). However, this method requires an evaluation of the residual vector
R at the intermediate time tn+α = (1 − α) tn+1 + α tn. This turns out to be
nontrivial when complex nonlinear constitutive equations are considered. The
method damps high frequencies for 0.5 < α < 1.

From a continuum mechanics point of view, all integration schemes should
be constructed such that they fulfil the basic laws, e.g. momentum, moments
of momentum and conservation of energy. However, this is not the case for all
schemes. Due to the fact that considerable effort has been put into the develop-
ment of integration schemes which preserve the above-mentioned conservation
laws. Formulations can be found in Simo and Tarnow (1992), Crisfield (1997),
Sansour et al. (1997) or Betsch and Steinmann (2000), for instance.

10.3 Global Solution Algorithms for Contact

The efficient and robust solution of contact problems mainly relies on, besides
a good discretization of the contact interface, the algorithmic part. Here a
wide diversity of possible methods can be applied which have advantages and
disadvantages with respect to different problems.

Algorithms which are applied in many standard finite element programs
are related either to the penalty method or to the Lagrange multiplier
method; see also Sections 6.3.2 and 6.3.1, respectively. Often the first approach
is implemented mainly due to its simplicity. When proper estimates for the
penalty parameters are known, see e.g. Nour-Omid and Wriggers (1987) or
update formulas provided in Bertsekas (1984), then penalty schemes provide
robust algorithms for many applications. The penalty method is mostly com-
bined with an active set strategy. The global set of equations is given in (9.20)
and (9.36). However, often the Lagrange multiplier method provides better
and more stable results in confined situations when a process is deformation
driven; see also Remark 6.4.

Algorithms for solving variational inequalities are given by mathemati-
cal programming, active set strategies or sequential quadratic programming
methods, to name only a few. Each of these methods is well known from op-
timization theory, e.g. see Luenberger (1984), Bertsekas (1984) or Bazaraa
et al. (1993). The application of mathematical programming for the solution
of contact problems can be found in Conry and Seireg (1971), Panagiotopou-
los (1975), Klarbring (1986), Klarbring and Björkman (1988) or Holmberg
(1990), for example. The sequential quadratic programming approach has
been considered by Barthold and Bischoff (1988), and with application to
large strain elasticity by Björkman et al. (1995), recently also within contact-
impact analysis, see Raous (1999) or Kane et al. (1999).

New algorithms which are based on iterative methods that can be ap-
plied in a parallel computing environment are currently in development. Iter-
ative methods for single processor computers based on multi-grid techniques
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can be found in Belsky (1993), Hoppe and Kornhuber (1994) or Kornhuber
(1997), for instance. Other methods which apply conjugated gradient type
iterative solvers are discussed in Heinstein and Laursen (1999). Several con-
tact algorithms were developed for multi-processor machines using multi-grid
techniques, e.g. see Schöberl (1998) or Kornhuber and Krause (2000). An-
other approach is pursued in Wohlmuth (2000a) and Krause and Wohlmuth
(2002), who apply a Dirichlet–Neumann solver for contact problems in
combination with mortar techniques.

In the following sections, different global solution algorithms for contact
problems will be discussed, starting with the most common ones for frictionless
contact.

10.3.1 Basic notation

For the discussion of different algorithms the following matrix notation is
introduced. As derived before, the weak form of the equilibrium equations for
the solid coming into contact is given by

δuT G(u) = δuT [R(u) − P ] = 0 , (10.31)

where u is the global displacement vector and δu denotes a vector containing
the variations. Note that we do not distinguish between the two or more
different bodies which come into contact to shorten the notation. R(u) is the
matrix form of the stress divergence term, and vector P contains the loading
terms, where we have assumed that the loads are conservative and hence do
not depend upon the deformation. This scalar equation yields, for arbitrary
variations δu, the vector form

G(u) = R(u) − P = 0 . (10.32)

The linearization of (10.31) at a given deformation state ū leads to the ex-
pression

δuT G(ū) + δuT KT (ū)Δu (10.33)

with the tangential stiffness matrix KT ; for details see Chapter 7.
Since the algorithms have to be designed for contact problems, the con-

tact constraints also have to be expressed in a general form depending on
the formulation stated in Section 6.3. A detailed description of how contact
constraints are incorporated into finite element discretization schemes can be
found in Chapters 8 and 9 for small and large deformations, respectively. Here
a matrix formulation is stated which will stand for the contact constraints,
and which has to be specialized according to the derivations in Chapters 8
and 9 for specific discretizations. JC denotes all possible contact contributions
which can be special segments, nodes or elements in the contact interface. For
these different cases, a general equation describing the constraint inequality
for normal contact will be introduced according to Chapter 9 as follows:
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G c
s (u) ≥ 0 , ∀s ∈ JC . (10.34)

The single contributions for nodes or segments s are all combined in the
matrix Gc(u). Note that this constraint equation is nonlinear with respect to
the deformation. In the case of a linear dependence on the displacement field,
we can express (10.34) for normal contact as

G cL
s (u) = Ns u − gX ≥ 0 ∀s ∈ JC , (10.35)

where Ns stands for the normal vector associated with the node or segment
s. All contributions of a node or segment will be assembled in the vector
G cL(u) = Nu − GX .

The contact problem can now be stated as follows. Find the correct defor-
mation u and the number of active contact constraints s ∈ JA such that

R(u) − P = 0 and G c
s (u) ≥ 0 (10.36)

is fulfilled.
Any continuum problem with hyperelastic material can be formulated as

a minimization problem. This is based on the fact that the total potential
energy assumes a minimum at the solution point

Π(u) → MIN . (10.37)

In general, the solution has to be computed for a given set of equality con-
straints which represent the boundary conditions. In the case of contact the
minimization is restricted by the contact constraints (10.34); see also Sections
2.1 or 6.1. Hence, we have the problem

Minimize Π(u)

subject to G c(u) ≥ 0 .
(10.38)

As already described in previous chapters, one can now incorporate the
constraint equations using the Lagrange multiplier or penalty methods, see
(6.26) and (6.31), respectively. This leads in matrix notation to the formula-
tion of a saddle point problem

ΠLM (u ,Λ) = Π(u) + ΛT G c(u) → STAT, (10.39)

together with the Kuhn–Tucker–Karush conditions

G c(u) ≥ 0 , Λ ≤ 0 , G c(u)Λ = 0 (10.40)

in the case of the Lagrange multiplier method. For the penalty formulation
a minimization problem

ΠP (u) = Π(u) +
ε

2
G c(u)T G c(u) → MIN (10.41)
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can be stated. In the latter case it was assumed that a known set of active
constraint JA is given which fulfil (10.34). This choice of a set of active con-
straints is used later in the iterative algorithm to solve (10.38).

The variation of (10.39) yields

δΠLM = δΠ + δΛT G c(u) + δuT C c(u)T Λ = 0 , (10.42)

where C c(u) δu is the matrix form of δG c(u), since the variation of a non-
linear constraint is always linear in δu. For details on how the matrix C c(u)
is constructed for different discretizations, see Chapter 9. From (10.42) the
nonlinear equation system

G(u) + C c(u)T Λ = 0

G c(u) = 0 (10.43)

follows for arbitrary variations. In the same notation, for the penalty formu-
lation (10.41) we obtain

δΠP = δΠ + ε δuT C c(u)T G c(u) = 0 . (10.44)

Here the nonlinear equation system

G(u) + εC c(u)T G c(u) = 0 (10.45)

results, which can be applied to obtain a solution for a given set of active
constraints.

Linearizations of both formulations are needed in the following algorithms.
Using the notation of the previous chapters, we can derive the linearization
at a fixed state (ū , Λ̄) for the Lagrange multiplier method

Δ
[
δΠLM (ū , Λ̄)

]
= Δ [ δΠ(ū) ] + δΛT C c(ū)Δu + δuT C c(ū)T ΔΛ

+δuT K c
T (ū , Λ̄)Δu . (10.46)

For arbitrary du and δΛ, equation (10.46) yields the linearized system of
equations according to (10.33):

[
KT (ū) + K c

T (ū , Λ̄) C c(ū)T

C c(ū) 0

] {
Δu
ΔΛ

}
= −

{
G(ū) + C c(ū)T Λ̄

G c(ū)

}
.

(10.47)
All matrices have already been defined in this section besides the matrix
K c

T (ū , Λ̄), which stems from the linearization of the last term in (10.42) with
respect to the displacement field; for details see Chapter 9. Note that for a
linear problem, equation (10.47) reduces to

[
KT NT

N 0

] {
u
Λ

}
= −

{
−P

G cL(ū)

}
, (10.48)

where the linear constraints are given in (10.35).
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By introducing w = {u ,Λ }T , equation (10.47) can be recast as

KLM
T (w̄)Δw = −GLM (w̄) , (10.49)

which simplifies the notation.
For the discretized weak form (10.44), stemming from the penalty method,

the linearization leads to

Δ
[
δΠP (ū)

]
= Δ [ δΠ(ū) ] + ε δuT

[
C c(ū)T C c(ū) + K cP

T (ū)
]

Δu ,

(10.50)
which results in the linearized equation system at the known displacement
state ū:[
KT (ū) + ε

(
K cP

T (ū) + C c(ū)T C c(ū)
) ]

Δu = −
[
G(ū) + C c(ū)T G c (ū)

]
.

(10.51)
Again, the matrix K cP

T (ū), which stems from the linearization of C(u) in
(10.44), disappears in linear problems. Furthermore, we can combine all ma-
trices and vectors in (10.51) to simplify notation:

KP
T (ū)Δu = −GP (ū) . (10.52)

The structures of the matrices introduced in (10.47) and (10.51) are pre-
sented for different discretizations in Chapter 7 for solids and in Chapter 9
for contact contributions.

In many applications the contact region is small compared to the domain
of the structure. This fact can be used within contact algorithms to reduce the
computational effort. Here we wish to state the reduction for linear analysis.
In such cases the equilibrium equation (10.48) can be rearranged as

⎡
⎣ KII KIC 0

KT
IC KCC NT

0 N 0

⎤
⎦

⎧⎨
⎩

uI

uC

Λ

⎫⎬
⎭ =

⎧⎨
⎩

PI

PC

−G cL(ū)

⎫⎬
⎭ , (10.53)

where C ∈ JC denotes all possible contact nodes and I are the remaining
nodes of the finite element discretization. The displacements uI depend only
indirectly upon Λ, hence they can be eliminated from (10.53) by static con-
densation, which yields a full but smaller system of equations

[
K̂CC NT

N 0

] {
uC

Λ

}
=

{
P̂C

−G cL(ū)

}
, (10.54)

with

K̂CC = KCC − KT
IC K−1

II KIC ,

P̂C = PC − KT
IC K−1

II PI .



10.3 Global Solution Algorithms for Contact 333

The Schur complement K̂CC is obtained at an intermediate step of the
Gauss elimination process when solving (10.53). Therefore its evaluation re-
quires no additional computational effort. The advantage of static condensa-
tion is that a smaller system of equations has to be solved during the contact
iteration. This static condensation process, here applied for the Lagrange

multiplier method, can also be used within the penalty approach.

10.3.2 Dual formulation

There are many algorithms known in optimization which start from a dual
formulation of the minimization problem (10.38). To develop the dual form
we start from the Lagrange multiplier formulation with the assumption of
a linear problem. By assuming that the Lagrange multipliers are known,
one can solve (10.48), which then reduces to the problem that the gradient of
(10.43) has to vanish:

KT u + NT Λ = P . (10.55)

Then a dual problem can now be defined as

Maximize 1
2 uT KT u − PT u + ΛT (Nu − GX)

subject to KT u + NT Λ = P and Λ ≤ 0 .
(10.56)

Now (10.55) can be pre-multiplied by u which yields

−uT KT u = ΛT Nu − PT u . (10.57)

This result can be inserted into (10.56) to simplify the maximization problem:

Maximize − 1
2 uT KT u − GT

XΛ

subject to KT u + NT Λ = P and Λ ≤ 0 .
(10.58)

In standard applications the stiffness matrix KT is positive definite. Then we
can solve (10.55) for u,

u = −K−1
T (NT Λ − P ) , (10.59)

and introduce this result into (10.58), leading to the dual problem

Maximize − 1
2 ΛT DΛ + ΛT d − 1

2P
T K−1

T P

subject to Λ ≤ 0 .
(10.60)

The definitions of matrix D and vector d are as follows:

D = NK−1
T NT , (10.61)

d = GX − NK−1
T P . (10.62)



334 10 Solution Algorithms

Note that the last term in (10.60) is constant, and hence can be neglected in
many cases.

The same procedure can now be applied to the incremental form (10.47)
stemming from the nonlinear problem. By assuming that the Lagrange mul-
tipliers are known, one can solve (10.47) at a fixed state ( ū , Λ̄ ):
[
KT (ū) + K c

T (ū , Λ̄)
]
Δu + C c(ū)T ΔΛ + [G(ū) + C c(ū)T Λ̄ ] = 0 , (10.63)

and with K̂T (ū) = KT (ū) + K c
T (ū , Λ̄) and Ĝ(ū , Λ̄) = G(ū) + C c(ū)T Λ̄

obtain the dual problem

Maximize 1
2 ΔuT K̂T (ū , Λ̄)Δu + Ĝ(ū , Λ̄)T Δu + ΔΛT C c(ū)

subject to K̂T (ū , Λ̄)Δu + C c(ū)T ΔΛ = −Ĝ(ū , Λ̄)
and (Λ̄ + ΔΛ) ≤ 0 ,

(10.64)

which yields, by using the same manipulation which leads to (10.57), the
incremental maximization problem:

Maximize − 1
2 ΔuT K̂T (ū , Λ̄)Δu

subject to K̂T (ū , Λ̄)Δu + C c(ū)T ΔΛ = −Ĝ(ū , Λ̄)
and (Λ̄ + ΔΛ) ≤ 0 .

(10.65)

The solution of (10.63) with respect to the incremental displacements yields

Δu = −K̂T (ū , Λ̄)−1 [C c(ū)T ΔΛ + Ĝ(ū , Λ̄) ] . (10.66)

This result can be inserted into (10.65), which then yields the incremental
dual problem

Maximize − 1
2 ΔΛT D(ū , Λ̄)ΔΛ + ΔΛT d(ū , Λ̄)

− 1
2Ĝ(ū , Λ̄)T K̂T (ū , Λ̄)−1 Ĝ(ū , Λ̄)

subject to Λ̄ + ΔΛ ≤ 0 .

(10.67)

Here the definition of the matrix D(ū , Λ̄) and the vector d(ū , Λ̄), which now
depend upon the state ū, have been used:

D(ū , Λ̄) = C c(ū) K̂T (ū , Λ̄)−1 C c(ū)T , (10.68)

d(ū , Λ̄) = −C c(ū) K̂T (ū , Λ̄)−1 Ĝ(ū , Λ̄) . (10.69)

Hence for a given state (ū , Λ̄) we can set up an incremental dual problem
which uses the tangent matrix evaluated at ū , Λ̄. Note that the constant last
term in (10.68) can be omitted in most algorithms. The dual problem yields
Lagrange multipliers which can then be used to compute the associated
incremental displacements from (10.66). This result can be applied within an
iterative algorithm to solve the fully nonlinear problem. Algorithms based on
the primal and dual formulations are discussed in the following sections.
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10.3.3 Penalty method

The most widely used method to solve contact problems is the penalty
method. This is because only the primal displacement variables enter the
formulation; see Section 6.3.2 for the continuum formulation and Chapters 8
and 9 for the associated discretization techniques.

The algorithm for the penalty method can be summarized for frictionless
contact in Box 2. Usually, the solution of Gc(u) = 0 is performed by a
Newton–Raphson iteration, leading to

KP
T (uk

i )Δuk+1
i = −GP (uk

i ) (10.70)
uk+1

i = uk
i + Δuk+1

i ,

where KP
T (uk

i ) is the tangent matrix resulting from the linearization of
GP (uk

i ). The iteration index k is related to the Newton loop to solve
GP (ui) = 0 in Box 2. Often the active set strategy, stated in Box 2, is
accelerated in such a way that the update of the active set of contact con-
straints is performed within each step in the Newton iteration. In this case
the iteration (10.71) yields

KP
T (ui)Δui+1 = −GP (ui) (10.71)

ui+1 = ui + Δui+1 ,

which is considerably faster.

REMARK 10.2

1. Both procedures might not converge for all cases, and thus have to be applied
with care. The problem which occurs is called jamming in the optimization
literature. Jamming, also known as zig-zagging, means that the algorithm jumps
in consecutive iterations between two values. One possibility to avoid this is to
keep a contact constraint active as long as the new active set is not a subset of
the old active set. This will be changed once the new active set is a subset of
the old active set, or the increment Δui+1 is zero for the active set; see also the
quadratic programming algorithm in Box 9.

Initialize algorithm: set u1 = 0 , εN = ε0
LOOP over iterations : i = 1, .., convergence

Check for contact: gNsi ≤ 0 → active node, segment or element
Solve:GP (ui) = G(ui) + εN C c(ui)

T G c(ui) = 0
Check for convergence: ‖GP (ui)‖ ≤ TOL ⇒ STOP

END LOOP
Eventually update penalty parameter: εN

Box 2. Contact algorithm using the penalty method.
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2. Within the algorithm of Box 2 an increase of the penalty parameter is necessary
when the final result shows visible penetration, and thus does not fulfil the
constraint equation gN = 0 in a correct way; see the example in Section 6.4,
Figure 6.5. On the other hand, a penalty parameter which has been chosen
too large can lead to ill-conditioning of the equation system, and thus has to be
reduced to avoid this. One possibility for the choice of εN is to relate the penalty
parameter to the bulk modulus of the contacting bodies. Ill-conditioning can be
so bad that it affects the direct solver, but it is even worse when the solution of
the incremental equation system in Box 2 is performed by an iterative solution
method in which the condition number of the tangent matrix might change
drastically during the solution process. In such a case, special pre-conditioners
have to be applied, e.g. see Schöberl (1997b), Klawonn (1998) or Dostal (1999).
However, since it is quite hard to estimate the penalty parameter for all cases,
it makes sense to apply the augmented Lagrange technique.
One estimate for the choice of the penalty parameter was reported in Nour-
Omid and Wriggers (1987), which relies on an error analysis taking into account
roundoff errors as well as errors due to the penalty approach. It leads to the
simple formula for finite element discretizations of continuum problems:

εN ≤ kmin√
N t

, (10.72)

where N is the number of unknowns of the equation system, kmin is the small-
est stiffness coefficient in the tangent matrix which is modified by εN , and t
represents the roundoff error which is ≈ 10−17 for double precision analysis.

3. In the case of frictional contact problems, the algorithm works as described in
Box 2. The only difference is that the local algorithm to integrate the consti-
tutive behaviour due to friction is applied within the Newton loop to obtain
GP (ui) = 0 for a given set of active constraints.

4. Frictionless problems can be solved under certain circumstances using quite
large steps. This is even true when the contacting bodies undergo finite defor-
mations. The problem here is, that in the first iteration step, large penetrations
can occur which then lead to a large contribution of the terms multiplied by gN

in the contact tangents, see e.g. (9.36), (9.103), (9.122) or (9.165). These large
contributions can lead to divergence of the numerical solution scheme, as de-
scribed in Box2. Some strategies which can be applied in such cases are reported
in Zavarise and Taylor (1997).

.

10.3.4 Lagrange multiplier method

Another method which is applied to solve contact problems is the Lagrange

multiplier method. This method fulfils the contact constraints exactly, but by
introducing additional variables, the Lagrange multipliers (see Section 6.3.1
for the continuum formulation, and again Chapters 8 and 9 for associated
discretization techniques).

One algorithm for the Lagrange multiplier method is stated in Box 3 for
frictionless contact, where the notation introduced in (10.49) was used. The
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solution of GLM (w) = 0 is obtained by the Newton–Raphson iteration,
leading to

KLM (wk
i )Δwk+1

i = −GLM (wk
i ) (10.73)

wk+1
i = wk

i + Δwk+1
i ,

where the structure of the tangent matrix KLM
T (wk

i ) can be found in (10.47).
The iteration index k is related to the Newton loop to solve GLM (wi) = 0
in Box 3. An acceleration of the solution procedure can be obtained by the
following iteration in Box 3:

KLM (wi)Δwi+1 = −GLM (wi) (10.74)
wi+1 = wi + Δwi+1 ,

which at each iteration step includes the change of constraints and hence is
faster than the basic algorithm in Box 3. Remarks 10.2.1 and 10.2.3 also ap-
ply here. One should note, however, that this procedure does not guarantee
convergence of the method. A more reliable but slower algorithm is discussed
in Section 10.3.8, see Box 9.

REMARK 10.3: When using the Lagrange multiplier approach, one has to take
special care for rigid body modes which can occur in one or more contacting bodies.
In such cases the following procedures can be employed to side-step this difficulty,
which leads to singular tangent matrices:

1. Introduction of as many springs in the finite element model as there are rigid
body modes. The spring stiffness has to be as soft as possible to avoid an
influence of the stiffness on the overall solution.

2. Solve the problem using specified displacements instead of applied forces. This
approach only works if the force is applied on the body with rigid body modes.

3. Replace zero diagonal elements in D which appear during the factorization of
KT in LDLT by a small number of the order of required accuracy for the
problem. This, in fact, removes the rigid body modes.

Initialize algorithm: set w1 = 0
LOOP over iterations : i = 1, .., convergence

Check gap: gNsi ≤ 0 → active node, segment or element
Check pressure: λNsi ≥ 0 → node, segment or element not active
Solve:GLM (wi) = 0
Check for convergence: ‖GLM (wi)‖ ≤ TOL ⇒ STOP

END LOOP

Box 3. Contact algorithm for the Lagrange multiplier approach.
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10.3.5 Augmented Lagrange method, Uzawa algorithm

A combination of the penalty and the Lagrange multiplier techniques leads
to the so-called augmented Lagrange methods, which try to combine the
merits of both approaches. A general discussion of these techniques can be
found in Glowinski and Le Tallec (1984), and with special attention also to
inequality constraints in Bertsekas (1984) and Pietrzak and Curnier (1999). A
matrix formulation for frictionless contact follows from the augmented func-
tional (6.58) in Section 6.3.8:

ΠAM (u) = Π(u) + ΛT G c(u) +
εN

2
G c(u)T G c(u) − 1

2 εN
λT λ , (10.75)

where Λ contains all contributions related to contact nodes fulfilling λs m+1 =
λs m+εN gNs ≤ 0, and λ is related to the nodes with λs m+1 > 0. As discussed
in Section 6.3.8, this mixture with the perturbed Lagrange method ensures
C1 differentiability of the functional (10.75).

Its variation with respect to displacements and Lagrange multipliers
yields the nonlinear equation system

G(u) + ΛT C c(u) + εN C c(u)T G c(u) = 0
G c(u) = 0 (10.76)

− 1
εN

λ = 0 .

As in the previous sections, we can employ Newton’s method to solve (10.76),
which leads to the incremental equation system at the state (um ,Λm ):

⎡
⎣ K̂T + εNC c T C c C c T 0

C c 0 0
0 0 − 1

εN
I

⎤
⎦

m

⎧⎨
⎩

Δu
ΔΛ
Δλ

⎫⎬
⎭

m+1

= −

⎧⎨
⎩

Ĝ
G c

− 1
εN

λ

⎫⎬
⎭

m

.

(10.77)
Here all dependencies of the matrix elements with respect to u and Λ have
been omitted to shorten notation. This system of equations can, together with
(10.76), be used within a Newton type algorithm, as discussed in Box 3. It
can be seen from (10.77) that the last term in (10.75) affects the Lagrange

multiplier λ so that it is zero in the next iteration step when λs m+1 > 0 was
detected.

Augmented Lagrange techniques are usually applied together with
Uzawa type algorithms, see Bertsekas (1984), Glowinski and Le Tallec (1984),
which lead to an inner loop for the contact and an outer loop for the update of
the Lagrange parameters. This iteration procedure increases the total num-
ber of iterations, but yields an algorithm which can be implemented easily. For
applications of augmented Lagrange techniques to contact problems within
the finite element method, see Wriggers et al. (1985) and Simo and Laursen
(1992), or for a symmetrical treatment of the frictional part Laursen and Simo
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(1993a) or Zavarise et al. (1995). In the case of “high contact precision”, when
constitutive interface laws are employed, special augmented Lagrange tech-
niques are needed, since often ill-conditioning of the problem may occur, see
Wriggers and Zavarise (1993a).

The matrix formulation of the Uzawa algorithm for frictionless contact
problems starts from the augmented Lagrange functional with constant La-

grange multipliers Λ̄

ΠUA(u) = Π(u) + Λ̄
T

G c(u) +
εN

2
G c(u)T G c(u) → MIN . (10.78)

The new Lagrange multiplier is computed at the solution point of ΠUA(u , Λ̄k)
within the augmentation loop over the loop index k (see also Box 4) using the
first order update formula

λ̄s k+1 = λ̄s k + min[ εN gNs(uk+1) , λ̄s k ] , (10.79)

which is written for the Lagrange parameter of the contact nodes or contact
segments s. This update is visualized in Figure 10.12. Here the update process
for the Lagrange multiplier in the normal direction is considered. One can
observe that λN k approaches the correct value of the Lagrange multiplier
for gN k → 0 in the updating procedure. Note that the slope of the linear
relation between gN and λN is εN . From this, it is clear that the convergence
behaviour of the outer augmentation loop in Box 4 does strongly depend upon
the penalty parameter.

The variation of (10.78) only needs to be performed with respect to dis-
placements

GUA(u , Λ̄) = G(u) + Λ̄
T

C c(u) + εN C c(u)T G c(u) = 0 . (10.80)

For a known fixed Lagrange multiplier Λ̄, Newton’s method is used to
solve the nonlinear problem (10.80). This results after linearization in the
equation system at the state (ui , Λ̄ )

Fig. 10.12. Schematic update process of Lagrange multiplier.
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Initialize algorithm: set u0 = 0 , Λ̄0 = 0 , εN = εN 0

LOOP over augmentations: k = 1, .., convergence
LOOP over iterations : i = 1, .., convergence

Solve:GUA(ui , Λ̄k) = 0
Check for convergence: ‖GUA(ui)‖ ≤ TOL ⇒ END LOOP

END LOOP
LOOP over contact nodes : s = 1, .., nc

Update: λ̄s k+1 according to (10.79)
Update: εN k+1 according to (10.82)
Check for convergence: ‖gNs(ui)‖ ≤ TOL ⇒ STOP

END LOOP
END LOOP

Box 4. Uzawa algorithm.

[
K̂T (ui , Λ̄) + εN [C c(ui)]T C c(ui)

]
Δui+1 = −Ĝ

UA
(ui , Λ̄) . (10.81)

The global augmented Lagrange algorithm is shown in Box 4. Here we
again use the discrete formulation (9.20) and (9.36), which has to be adjusted
to incorporate the fixed Lagrange parameters Λ̄Ns; see (9.13) for the node-
to-segment discretization. Hence, the vector GUA contains all contributions
of the active contact element s.

Let us note that it is standard practice in augmented Lagrange iterations
to update the penalty number εN in order to obtain good convergence, see
Bertsekas (1984). This is due to the fact that a small penalty parameter leads
to very slow convergence, since the update formula (10.79) is of first order and
the contact forces due to a small penalty number are small. Thus, it makes
sense to increase the penalty parameter within a contact element s according
to an update scheme, see Bertsekas (1984). The update scheme with a starting
value for εN 0 being computed from (10.72), for example, yields

εN n+1 =
{

10 · εN n for | gN (un+1) | > 1
4 · | gN (un) |

εN n for [ gN (un+1) | ≤ 1
4 · | gN (un) | . (10.82)

In relation (10.82) a stopping criterion for the update of the penalty parame-
ter has also been introduced to avoid ill-conditioning of the equation system
(10.81).

10.3.6 Partitioning method

Since the number of displacement unknowns is usually much higher than the
unknowns related to the Lagrange multipliers, it is advantageous to reformu-
late contact problems such that the unknowns are only the Lagrange multi-
pliers. This can be achieved easily for geometrically linear elasticity problems
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by a substructuring method, see Section 10.3.2. However, when a numerical
simulation of contact problems involving large strains and inelastic materials
has to be considered, only an incremental dual formulation can be established,
since the matrix from the Schur complement depends upon the deformation.

When the Lagrange multiplier method in Section 10.3.4 is used, special
care has to be taken during the factorization due to zero elements on the
diagonal of the coefficient matrix. Furthermore, since the contact problem is
nonlinear, the iteration in Box 3 has to be applied and the factorization has
to be carried out in each Newton step. Here a method will be stated which
takes advantage of the fact that the part of the coefficient matrix associated
with the degrees of freedom that do not come into contact remains unchanged
during the iteration process. This is, of course, only true for elastic structures
with small deformations which will be considered first. However, a nonlinear
version of this approach can also be developed.

From the dual formulation in (10.60) a system of equations for the un-
known Lagrange multipliers can be derived:

NK−1
T NT Λ = −GX + NK−1

T P . (10.83)

Furthermore, from (10.59) we obtain an equation for the unknown displace-
ments u

u = K−1
T (P − NT Λ ) , (10.84)

which still depends upon the Lagrange multipliers.
The matrix NK−1

T NT in (10.83) is symmetric, positive definite and full.
The size of this matrix depends upon the number of nodes s ∈ JA that are
actually in contact, which is in general much smaller than the total number
of degrees of freedom N . The system of equations (10.83) may be solved
using direct procedures. However, this approach requires the evaluation of

Initialize algorithm: use initial approximation for Λ0 and compute
p0 = r0 = NK−1

T (P−NT Λ ) −GX

ρ0 = rT
0 r0

LOOP for k = 0, 1, .., until convergence
dk = NK−1

T NT pk

αk = ρk / (dT
k pk)

Λk+1 = Λk + αk pk

rk+1 = rk − αk dk

ρk+1 = rT
k+1 rk+1

Check for convergence: ρk+1 ≤ TOL ⇒ END LOOP
pk+1 = rk+1 + ρk+1 / ρk pk

END LOOP

Box 5. cg-algorithm for evaluating the contact forces.
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Let ū, Λ̄, N̄ and set
u0 = ū and N0 = N̄
LOOP for i = 0, 1, .., until convergence

Determine all active contact constraints from (10.35)
pi = −GX + Ni ui

If ‖pi‖ ≤ TOL ‖p0‖ ⇒ END LOOP
Solve: Ni K

−1
T NT

i Λi+1 = pi

If and element of Λi+1 is positive reset it to zero
Δui+1 = K−1

T NT
i Λi+1

ui+1 = u0 + Δui+1

END LOOP
ū ← ui, Λ̄ ← Λi, N̄ ← Ni

Box 6. Inner contact iteration.

the coefficient matrix which is not known explicitly. Therefore, an iterative
method was advocated in Wriggers and Nour-Omid (1984), which does not
need computation of the elements of the coefficient matrix. Since the matrix is
positive definite, the conjugate gradient method (cg-method) can be employed,
which is described in Box 5. The step where dk is computed is the most
costly one. Here a triangular factorization KT = LDLT can be used together
with the static condensation procedure in (10.54) to minimize the number of
operations.

The contact algorithm is now designed in such a way that an inner and an
outer iteration are performed. It is thus possible to solve a general problem
with material and geometrical nonlinearities. In the inner iteration the set
of active contact constraints and the Lagrange multipliers are determined
based on the dual formulation. This task is performed for a given state of
the outer iteration with displacements ū, Lagrange multipliers Λ̄, and a set
of contact constraints N̄. The inner iteration scheme is described in Box 6,
where the solution of the equation system in the inner iteration is obtained
with the cg-method. This iteration yields, with Ni, the contact conditions and
the Lagrange multipliers Λ̄ which have to be enforced in the next Newton

step in the outer iteration. Note that, in the case of a geometrically nonlinear
problem, we have to exchange equation (10.35) by (10.34), and to use the
tangent matrix KT evaluated at the current state of the outer iteration.

Vector Ni depends upon the normal vectors of the master surfaces at the
projection points of the slave nodes. In large deformation problems, the change
of these normal vectors has to be considered. However, since the state within
a Newton step is fixed we can neglect the change of the normals in the inner
iteration in Box 6.

The outer iteration considers all nonlinearities related to material and/or
geometry within a modified Newton scheme which incorporates the inner
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Start from the initial approximation ū0, Λ̄0 and N̄0

LOOP for m = 0, 1, .., until convergence
Compute residual force Gm = R(ūm) −P in (10.36)
If ‖Gm + N̄m Λ̄m‖ ≤ TOL ‖G0‖ ⇒ END LOOP
Solve: KT (ūm) Δūm+1 = −Gm − N̄m Λ̄m

ūm+1 = ūm + Δūm+1

Perform inner iteration, see Box 6.
END LOOP

Box 7. Outer contact iteration.

iteration. Hence, the outer iteration is not needed for a geometrically linear
elastic problem. In that case, the iteration terminates in the first loop for
m = 0. The outer contact iteration is stated in Box 7. In case rigid body
motions of one of the contacting bodies is possible, we refer to the methods
discussed in Remark 10.3.

Note that the inner-outer iteration does not require more triangular fac-
torizations than the standard Newton method. In many practical cases, the
algorithm described in Boxes 6 and 7 will need fewer factorizations of the
tangent matrix.

The following example shows the performance of the inner-outer iteration
when compared with the standard penalty approach in Section 10.3.3. Figure
10.13 depicts a finite element mesh of a thick circular beam which is discretized
by 120 plane stress finite elements. The modulus of elasticity is chosen as
E = 1000 and Poisson’s ratio is ν = 0.3. In the undeformed configuration
the beam is in contact at its centre with the rigid surface. A displacement
of ū = 0.8 is applied at both ends of the model. The contact area therefore
changes from the middle of the beam, where we observe uplifting, to its ends.
The algorithm has to capture this behaviour. The problem is solved using
the partitioning method with one outer and six inner iterations. Only one
outer iteration is needed, since the problem is geometrically linear. Also, the
penalty method was applied to analyse this problem. Table 10.1 shows the

Fig. 10.13. Finite-element-model of contact problem.
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Table 10.1. Influence of penalty parameter on convergence

Penalty Parameter Iterations Max. Penetration

101 4 5.27 × 10−2

102 5 2.73 × 10−2

103 6 7.09 × 10−3

104 8 9.24 × 10−4

106 8 9.28 × 10−6

108 8 9.29 × 10−8

number of iterations and the gaps computed for different penalty parameters.
The optimal penalty parameter, obtained from equation (10.72), is εN = 108.
Here optimality refers to accuracy in fulfillment of the constraint equation; see
the last column in Table 10.1. For applications where a lower accuracy may
be sufficient, a smaller penalty number can translate into fewer iterations; see
the second column in Table 10.1.

10.3.7 SQP method

Successive quadratic programming methods employ Newton’s method or
quasi-Newton methods to solve the Kuhn–Tucker conditions of a contact
problem. These methods are also known as sequential or recursive quadratic
programming (SQP methods).

In the process of the successive quadratic programming, a subproblem is
solved which can be stated as the minimization of a quadratic approximation
of the nonlinear contact problem

min Π(u) subject to gNs ≥ 0 ∀s ∈ JC , (10.85)

where a linear approximation of the constraints is used. The method can
thus be described as a projected Lagrange approach. The algorithm is con-
structed so that a series of quadratic programming subproblems is solved
successively. Hence, this algorithm relies on fast and robust methods for gener-
ating solutions for the quadratic program, see Goldfarb and Idnani (1983). The
sequential quadratic programming approach was derived in Spellucci (1985).
Other variants of SQP-algorithms may be found in e.g. Schittkowski (1992).

Based on the derivation in Section 10.3.2, the quadratic approximation of
(10.85) yields the quadratic program

QP(ū , Λ̄) : Minimize 1
2 ΔuT K̂T (ū , Λ̄)Δu + Ĝ(ū , Λ̄)T Δu + Π(ū)

subject to Gc (ū) + Cc (ū)Δu ≥ 0 ,
(10.86)

where all matrices and vectors are defined according to equation (10.64). The
values (ū , Λ̄) represent a known state within the iterative solution procedure.
Δu is the increment of the displacement. Since this problem represents a
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Start from the initial approximation u0, Λ0

LOOP for m = 0, 1, .., until convergence
Solve: QP(um , Λm) → Δum+1 and Λm+1

If ‖Δum+1‖ ≤ TOL ⇒ END LOOP
um+1 = um + Δūm+1

END LOOP

Box 8. Basic SQP-algorithm.

second order approximation of the Lagrange function Π(u) + Gc(u)T Λ,
quadratic convergence can be expected when the iteration starts close to the
solution point.

With these preliminary remarks, the SQP algorithm can be derived. It is
stated in Box 8. Here the fact is used that if Δum+1 solves QP(um ,Λm) with
the Lagrange multipliers Λm+1 and if Δum+1 = 0 , then the computed dis-
placements and Lagrange multipliers fulfil the Kuhn–Tucker conditions
of the original problem (10.85).

Several variants of the SQP method are used in applications. The first is to
approximate the tangent matrix K̂T (ū , Λ̄) by a quasi-Newton scheme like
the BFGS update, e.g. see Matthies and Strang (1979), Luenberger (1984)
or Bertsekas (1984). This avoids costly computations of the tangent matrix
which have to be performed in the algorithm in Box 8 m-times. However,
it is well known that the convergence of the algorithm is only superlinear.
Other variants were developed for sparse matrices, see Bartholomew-Biggs and
Hernandez (1995) or see the overview paper by Murray (1997). Versions with
respect to contact analysis can also be found in Björkman et al. (1995), who
employed special diagonalization methods to obtain separable subproblems
for the dual problem.

A possible disadvantage of the SQP method in the version stated in Box
8 is the fact that convergence is only guaranteed when the algorithm starts
close to the solution point. Often this condition is not matched in practical
applications. To obtain a more robust method one can introduce a merit
function. One choice of this function could be

M(u) = min Π(u) + μ

nc∑
s=1

min [ 0, gNs ] . (10.87)

The merit function is then applied to find the scalar parameter γm ≥ 0 in the
update of the displacements um+1 = um + γm Δum+1 in Box 8 by minimiza-
tion of M(um + γm Δum+1). This procedure is called line search. It is also
used for nonlinear unconstraint problems like (10.6) to obtain a global con-
vergence of, for example, the Newton method. Here the line search has to be
performed with respect to a non-differentiable function, hence only methods
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which do not need derivatives like the Golden Section Method or Fibonacci

search can be employed, e.g. see Luenberger (1984) or Bazaraa et al. (1993).

10.3.8 Active set method for quadratic program

The quadratic program in (10.86) with inequality constraints is solved by
an active set method. In most applications the tangent matrix K̂T is positive
definite, which then leads to a relatively simple solution strategy. This method
will be described next. We assume that in iteration m a deformation state um

is given that satisfies all contact constraints of the active set of contact nodes
s ∈ J m

A (feasible solution). Hence Gc(um) is zero in the linearized contact
constraint equation in (10.86). The quadratic program is then defined by

Minimize 1
2 ΔuT

m+1 K̂T (um ,Λm)Δum+1 + Ĝ(um ,Λm)T Δum+1

subject to C c(um)Δum+1 = 0 , ∀s ∈ J m
A ,

(10.88)

which has only equality constraints. The vector C c(um) contains equality
constraints associated with the active contact nodes s; see also (10.34). The
solution of this problem is obtained from the linear system

[
K̂T (um ,Λm) C c(um)T

C c(um) 0

] {
Δum+1

Λm+1

}
= −

{
Ĝ(um ,Λm)

0

}
, (10.89)

which can be solved using an efficient linear solver for this type of problem.
The active set strategy is described in Box 9. If in step 3 of the algorithm

a new inequality constraint is satisfied, then the node associated with this
constraint has to be added to the working set of contact constraints. This
defines the new working set J m+1

A . The same procedure is used in step 5,
where the contact node associated with the maximum Lagrange multiplier
lmax is deleted form the old working set, leading to J m+1

A .

Start with a feasible solution u0 and a working set J 0
A

LOOP for m = 0, 1, .., until convergence
1. Solve (10.89). If Δum+1 = 0 then go to 5.

2. Compute: γm+1 = min
s∈J m

A

[
1 ,

Gc
s(um) − [C c

s (um)]T um

[C c
s (um)]T Δum

]

3. If γm+1 < 1 then J m
A → J m+1

A

4. Set um+1 = um + γm+1 Δum+1 → END LOOP
5. Compute: λmax = max

s∈J m
A

(λm s),

If λmax ≤ 0 → STOP else J m
A → J m+1

A

END LOOP

Box 9. Active set strategy for quadratic programming.
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It can be shown that the algorithm terminates within a finite number of
iteration steps since there is only a finite number of working sets, e.g. the max-
imum number of contact nodes. This also means that, for three-dimensional
problems with a large number of possible contact nodes, many iterations might
be needed to solve the problem. Thus special algorithms for solving (10.89)
are needed which avoid the computation of the inverse of the system matrix in
(10.89), or its factorization. More refined versions for the solution of quadratic
programming methods based on the above formulation can be found in Stoer
(1971), Gill and Murray (1978), or in the overview by Spellucci (1993). A
method which starts from the dual formulation of the quadratic program-
ming problem (for the derivation see Section 10.3.2) is described in Goldfarb
and Idnani (1983).

10.3.9 Linear complementary problem

Other methods which are well known in optimization theory are based on the
formulation of contact with and without friction as a Linear Complementary
Problem (LCP), e.g. see Luenberger (1984) or Bazaraa et al. (1993). Appli-
cations to contact problems can be found in Björkman (1991) or Björkman
et al. (1995). Its theoretical framework for contact mechanics is provided in
Klarbring (1999).

The method is based on solving the Karush–Kuhn–Tucker optimality
conditions of the dual problem. For a linear elasticity problem we depart from
(10.60), whereas a general nonlinear problem relies on the dual formulation
(10.68). The latter is defined on the tangent space at the known solution
point (ū , Λ̄). Hence, for the general nonlinear case we have to use the LCP
algorithm within an iterative method, which leads to a similar structure used
in the SQP method, where the QP problem is solved successively. Due to this
structure, we will describe the LCP method only for the linear case, since the
nonlinear case based on (10.68) is straightforward.

Let us recall the dual problem (10.60)

π(Λ) = −1
2

ΛT DΛ − ΛT d , (10.90)

where the sign for the Lagrange multiplier has been changed for convenience.
This also changes the direction of the inequality: Λ ≥ 0. The optimality
conditions for (10.90) can be stated as

DΛ + d ≥ 0 ,

Λ ≥ 0 , (10.91)
ΛT [DΛ + d ] = 0 .

This set of equations is now recast in the form of a linear complementary
problem,

w = d + DΛ ≥ 0 , Λ ≥ 0 , wT Λ = 0 . (10.92)
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The new variable w which is introduced to convert the inequalities to equali-
ties is called a slack variable. Solution of (10.92) can be obtained with standard
algorithms. Here we should like to mention the principal pivot algorithm by
Cottle and Dantzig (1968) and Lemke’s method, e.g. see Cottle et al. (1992).

Further application and extension of the general LCP method can be found
in Kanno et al. (2005) who formulated a second-order cone complementarity
problem for the solution of three-dimensional frictional contact problems. Al-
gorithms of this form can be also viewed as extensions of the second-order
cone programming, see e.g. Kanno et al. (2002) and Hayashi et al. (2005).
These methods have some features in common with the so-called bi-potential
method developed by De Saxe and Feng (1991a) and Hijaj et al. (2004).

10.3.10 Contact algorithm of Dirichlet–Neumann type

Domain decomposition methods are increasingly being applied to the nu-
merical simulation of large engineering problems which do not fit on single
processor computers, and hence have to be solved in a parallel computing
environment. Parallel computers need data exchange between the processors.
Since the contact area changes during an incremental solution procedure, the
data structure for the exchange of data also has to be modified. It can thus
be advantageous to construct an algorithm which employs a strategy in which
the bodies coming into contact are treated separately. Such an algorithm was
developed in Krause and Wohlmuth (2002). It is based on a nonlinear block
Gauss–Seidel method as an iterative solver. From the engineering point
of view, it can be interpreted as a Dirichlet–Neumann algorithm for the
nonlinear contact problem.

With the notation in Section 10.3.1, we derive the algorithm. The basic
idea is that one applies on body B1 the surface tractions which were computed
from a contact problem for body B2 with a fixed deformed state of body B1.

Set initial values: v0 = 0, t0 = 0
Choose damping parameters: ωD ∈ ] 0 , 1 ] and ωN ∈ ] 0 , 1 ]
LOOP for m = 0, 1, .., until convergence

Solve NP: K1 u1
m+1 = P1 − tm

Transfer displacement: vm+1 = (1 − ωD)vm + ωD Qu1
m+1

Solve contact problem: 1
2
u 2 T

m+1K
2 u 2

m+1 − u 2 T
m+1 P 2 → MIN

subject to N 1(vm+1)u 2
m+1 + G 1

X(vm+1) ≥ 0
Compute residual: R 2

m+1 = K 2 u 2
m+1 −P 2

Transfer boundary tractions: tm+1 = (1 − ωN ) tm + ωN QT R 2
m+1

END LOOP

Box 10. Dirichlet–Neumann contact algorithm with different iteration stages.
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Fig. 10.14. Contact algorithm using a Dirichlet–Neumann technique.

This algorithm is described in Box 10 for the case of a linear elasticity problem
with constant stiffness matrices K1 and K 2 and given load vectors P1 and
P 2 for bodies B1 and B2, respectively.

The constraint condition N 1(vm+1)u 2
m+1 +G 1

X(vm+1) ≥ 0 is formulated
with respect to the deformed surface of body B1. This reflects the dependency
of the matrix containing the normal vectors N 1 and the initial gap vector G 1

X

on the current displacement vm+1.
The matrix Q is introduced into the algorithm to transfer the boundary

displacements and surface tractions of the finite element mesh of body B1

to the mesh of body B2 in case these meshes do not match at the contact
interface. The structure of matrix Q depends upon the applied discretization
scheme. The associated formulations can be found, for example, for the node-
to-segment contact in Section 9.1, and for mortar techniques in Section 8.4.2.
The iterative behaviour is depicted in Figure 10.14. Note that for ωD = 1, a

choice of ωN = 1 does not lead to a convergent scheme, since the solution iter-
ates between the first two solutions. Numerical tests in Krause and Wohlmuth
(2002) show that ωN = ωD = 0.7 yields an algorithm with good convergence
behaviour. A more refined algorithm of this type can be found in Wohlmuth
and Krause (2004).

This algorithm can also be applied to frictional contact problems. The only
change is that the one-sided contact problem in Box 10 has to be solved for
frictional contact. For that task the algorithms described in Section 10.4 can
be applied.

10.3.11 Contact algorithm based on projected gradients

Lately new development has been presented in the mathematical literature
in which a new type of contact algorithms, based on iterative solution meth-
ods, was developed for large finite element systems. These algorithms provide
powerful pre-conditioning schemes for contact problems in combination wit
FETI methods. Solved finite discretizations include several millions of total
unknowns and about 100.000 unilateral constraints and show that such algo-
rithms can successfully be applied to very large systems.
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The basic algorithmic idea will be presented in this section. For detailed
mathematical analysis, application within FETI- methods and associated dual
formulations, see Dostal (2005) and Dostal and Horak (2004).

The basic idea was derived in Dostal and Schöberl (2005) which combines
the algorithms developed in Schöberl (1998), based on gradient projections,
and Dostal (2003), based on proportioning algorithms. It will be presented
here for the linear case, but can also be applied to incremental problems
within a Newton iteration of a nonlinear contact problem.

Starting from the constraint minimum principle (10.38) we can define the
gradient of Π for the linear case by, see (10.32),

G(u) = Ku − P . (10.93)

The Kuhn-Tucker-Karush conditions are then given by

Gc
i (u) = gi =⇒ Gi(u) ≥ 0 and Gc

i (u) > gi =⇒ Gi(u) = 0 (10.94)

where Gc
i (u) = Ni u denotes a constraint equation for a body contacting a

rigid obstacle, i = 1, . . . , nc are the number of constraint equations and Gi are
the components of vector G(u) in (10.93). Let us now distinguish between the
active set of constraints JA where Gc

i (u) = gi and its complement JF where
Gc

i (u) �= gi.
Following Dostal and Schöberl (2005) one can define a projected gradient

as the sum of a free gradient a and a truncated gradient b

p(u) = a(u) + b(u) (10.95)

where the components are given by

ai(u) =
{

Gc
i (u) for i ∈ JF

0 for i ∈ JA

bi(u) =
{

0 for i ∈ JF

Gc
i (u)− for i ∈ JA

(10.96)

with Gc
i (u)− = min[Gi , 0 ]. With this definition the Kuhn-Tucker-Karush

conditions are satisfied if p(u) = 0.
Furthermore one can introduce a projection onto the constraint space,

Ωc = {u : Nu ≥ g }, by

PΩc
[u] = g + (u − g)+ (10.97)

where the vector (u − g )+ has the entries (ui − gi)+ = max[ (ui − gi) , 0 ].
Now an algorithm can be derived which basically consists of three different

types of steps which depend on the state of the iteration (the iteration counter
is k). These are

1. Expansion step, in which the current active is enlarged by
uk+1 = PΩc

[uk − ᾱ a(uk)] with a fixed step length ᾱ.
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Starting values: r = Ku0 −P , q = a(u0)
LOOP for k = 0, 1, .., until convergence
IF ‖b(uk) ‖ ≤ Γ ã(uk)T a(uk)
THEN (trial conjugate gradient step)

αCG = rT q /qT Kq and y = uk − αCG q
αf = max[α : uk − αq ∈ Ωc ]
IF αCG ≤ αf

THEN (conjugate gradient step)
uk+1 = y
r = r− αCG Kq
γ = a(y)T Kq /qT Kq and q = a(y) − γ q

ELSE (expansion step)

uk+ 1
2 = uk − αf q and r = r− αf Kq

uk+1 = PΩc [u
k+ 1

2 + ᾱa(uk+ 1
2 )]

r = Kuk+1 −P and q = a(uk+1)
ENDIF

ELSE (proportioning step)
d = b(uk) and αCG = rT d /dT Kd
uk+1 = uk − αCG d
r = r−−αCG Kd and q = a(uk+1)

ENDIF
If ‖p(uk+1)‖ ≤ TOL then STOP
ENDLOOP

Box 11. Reduced gradient projection algorithm.

2. Proportioning step, in which nodes are removed from the active set.
3. Conjugate gradient step to perform a minimization within the known

active set JA.

With these preliminary remarks and introduced notation an iterative algo-
rithm, based on the conjugate gradient method, is stated in Box 11.

There are several constants which have to be defined in Box 11. The termi-
nation tolerance TOL depends on the problem, but basically can be selected
as in the Uzawa algorithm in Box 4. The parameter ᾱ is a fixed step length
which depends on the norm of the inverse of the stiffness matrix ‖K−1‖.
Since this is not known one has to estimate this value. The parameter Γ
can be usually chosen to Γ = 1. Additionally a reduced free gradient ã was
introduced which has the entries ãi(u) = min[ (ui − gi) / ᾱ , αi] and the prop-
erty PΩc

[u − ᾱ a(u)] = u − ᾱ ã(u). For mathematical details, see Dostal and
Schöberl (2005).

This algorithm can only be applied to elastic bodies coming into contact
with a rigid obstacle. Otherwise the projection properties are lost. Hence in
case of multi body contact one has to apply this algorithm within the dual
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formulation of the problem, as was shown in Dostal and Horak (2004), since
the appearing Lagrange multipliers are bounded by λ ≤ 0.

10.3.12 Algorithm for dynamic contact

Dynamical contact problems are often associated with short process times of
only several microseconds, as in the case of car impacts or fragmentation of
solids due to blast loading. In such cases, it is advisable to use explicit integra-
tion schemes. However, there are also time-dependent engineering problems
which require implicit algorithmic schemes, such as earthquake analysis or the
vibration of machines. In general, we can state the equations of motions as

Ma + R (u) − P + Gc(u) = 0 . (10.98)

All terms have been defined previously, e.g. see (10.8) and Section 10.3.1.
Algorithms for frictionless and frictional contact-impact have been devel-

oped over the last decade in e.g. Hughes et al. (1976), Laursen and Chawla
(1997), Armero and Petocz (1998), Armero and Petocz (1999) and Laursen
and Love (2002) using implicit time integration schemes. But explicit methods
are also well established for contact-impact analysis, and have a long history,
starting with the HEMP-hydrocode. Associated algorithms have been imple-
mented in explicit finite element codes such as DYNA3D or PRONTO3D.
For the theoretical background and numerous applications see Hallquist et al.
(1985), Benson and Hallquist (1990), Carpenter et al. (1991), Hallquist et al.
(1992) or Heinstein et al. (2000). New algorithms were developed for smooth-
ing the surfaces in contact-impact problems using least-square approximations
of the gap function, see Belytschko et al. (2002). Explicit predictor-corrector
type algorithms were constructed for contact problems with smooth and non-
smooth surface geometries, see e.g. Cirak and West (2005), which provide
energy and momentum conservation.

Explicit scheme.When using explicit time integration methods for solv-
ing contact problems one can apply the penalty or Lagrange multiplier
method. Using the penalty method would lead simply to a scheme in which
one has to add to the equation system (10.15) on the right hand side the
contact contributions due to the penalty method, see Box 2. In case that
the penalty springs are stiff compared to the surrounding stiffness of the fi-
nite elements the Courant criterion (10.20) will lead to small time steps.
An application of the Lagrange multiplier method cannot be constructed
without modifications, since there is no mass associated with the Lagrange

multipliers and hence (10.15) has no solution.
By performing an unconstraint predictor step and then fulfilling the con-

tact constraint at time tn+1 as a corrector step one can construct different
predictor-corrector schemes which fulfill the constraints either in terms of the
gap or the gap rate. A first variant of such method was stated in Taylor
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Fig. 10.15. Decoupling of minimization problems for lumped mass matrices

and Flanagan (1989) which was also discussed in Benson (1992) and Hein-
stein et al. (2000). The idea here is to fulfill the rate of the constraint ġN = 0.
This leads to an additional systems of equations from which the Lagrangian

multipliers can be computed

Gc
n M−1 Gc T

n λn =
1

Δt
Gc

n

[
u̇n− 1

2
+ ΔtM−1 (Pn − R(un))

]
. (10.99)

Here matrix Gc represents the contact constraints, see e.g. (10.34), λ are the
Lagrange multipliers. Within this formulations it has been assumed that gap
and gap rate lead to the same matrix Gc since displacements and velocities
are interpolated by the same shape functions. Usually the equation system
(10.99) is solved iteratively.

In Carpenter et al. (1991) a predictor step for all gaps is computed
g∗s n+1 = gs n + Δt ġ∗

s n+ 1
2
. With these results the Lagrange multipliers can

be computed from

Gc
n+1 M−1 Gc T

n+1 λn =
1

Δt2
Gc(x∗

n+1) (10.100)

where x∗
n+1 denotes the current trial deformation state including the predicted

gap state, see above. From this result the displacement corrector follows as

uc
n+1 = −Δt2 M−1 Gc T

n+1 λn (10.101)

Note that the set of equations leading to the Lagrange multipliers have to
be assembled for the different connected patches within the contact interface,
see Figure 10.15.

Explicit-implicit scheme. Here we should like to state in more detail an
algorithm which has been developed recently by Kane et al. (1999). It relies
on geometric arguments and employs the relation of contact algorithms to
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the well known radial return algorithms used in elastoplastic finite element
analysis. Hence, these authors advocate a scheme which treats the contact
force system in an implicit manner while using either implicit or explicit ap-
proximations for the terms in the equation of motions which are not affected
by contact. Hence the algorithm can be viewed as an explicit/implicit one.

The accelerations are therefore split into two parts, reflecting the contact
and internal forces,

a = aint + acon . (10.102)

Using (10.98), we obtain these two accelerations as

aint = M−1 [P − R(u) ] ,

acon = −M−1 Gc(u) . (10.103)

The approximations (10.22) can now be modified slightly by accounting for
the split (10.102) as

un+1 = un + Δtvn + (Δt)2
[
(1 − 2β)aint

n + β aint
n+1

]
+

(Δt)2

2
acon

n+1

vn+1 = vn + Δt
[
(1 − γ)aint

n + γ aint
n+1

]
+ Δtacon

n+1 . (10.104)

By using the abbreviation

ûn+1 = un + Δtvn + (Δt)2 (1 − 2β)aint
n , (10.105)

evaluated at tn, (10.104)1 can be written as

un+1 = ûn+1 + (Δt)2
[

β aint
n+1 +

1
2

acon
n+1

]
, (10.106)

which then yields, together with (10.98) and (10.103), a nonlinear algebraic
system of equations for the unknown displacements un+1:

M (un+1−ûn+1 )+(Δt)2 β [R (un+1) − P ]+
(Δt)2

2
Gc(un+1) = 0 . (10.107)

The solution of this problem has to be computed by taking into account
the contact constraints. Hence any of the methods discussed in the previous
sections can be applied. Note that, once un+1 is known, we can compute the
accelerations related to the internal forces from (10.103) and the acceleration
due to contact from (10.106). Finally, the velocities follow from (10.104).

In Kane et al. (1999), the variational structure of equation (10.107) is
investigated. By introducing the functional

Π(un+1) =
1

(Δt)2
(un+1−ûn+1)T M (un+1−ûn+1)+2β

[
W (un+1) − uT

n+1P
]

(10.108)
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with the strain energy W (un+1) (see (3.68)), one can write the nonlinear
constraint minimization problem:

min Π(un+1) subject to gNs ≥ 0 . (10.109)

It can be solved using a sequential quadratic programming technique, as de-
scribed in Section 10.3.7.

In the case of an explicit solution of the dynamic problem, the functional
(10.108) simplifies to

Π(un+1) =
1

(Δt)2
(un+1 − ûn+1 )T M (un+1 − ûn+1 ) , (10.110)

which leads to a reduction of the complexity of the task (10.109) to the solution
of a quadratic programming problem.

A considerable simplification of the constraint minimization problems oc-
curs for diagonal mass matrices. In that case, the coupling of all degrees of
freedom vanishes, which leads to a number of local optimization problems.
These can be set up on the basis of the global/local search algorithms.

As can be seen in Figure 10.15, one has to look for disjoint groups of
intersecting segments which define the local problem. These problems only
consist of a few unknowns, and can be solved separately with great efficiency.

10.4 Global Algorithms for Friction

Many algorithm have been devised in the last twenty years for the solution
of contact problems with friction. This is due to the practical importance of
friction when engineering structures have to be designed. Engineering finite
element models are becoming increasingly refined, which means that fewer
simplifications in the mechanical modelling are made and thus inequality con-
straints are included. Hence, good algorithms for friction are today even more
important.

One of the major difficulties in the numerical simulation of contact prob-
lems with friction lies in the fact that the constitutive equations for frictional
contact are non-smooth and hence not differentiable at all points. Therefore,
non-standard methods have to be applied for contact with friction. Basically,
we can distinguish methods which rely on so-called trial-and-error methods,
methods developed by engineers which stem from algorithms used in the the-
ory of plasticity and mathematical programming methods from optimization.
We note that the last two approaches are based on mathematical principles.

In early treatments, often the trial-and-error methods were applied to-
gether with small deformation assumptions. Due to the fact that solutions
of frictional contact can exhibit features such as non-uniqueness and even
non-existence of the solution the trial-and-error methods are not reliable for
a broad class of frictional problems. However successful applications can be
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found in the literature, e.g. see Fredriksson (1976) or Valliappan et al. (1984),
who used an explicit technique for computation of the frictional forces in finite
element applications.

The major break through in terms of convergence behaviour and reliability
of the solution algorithms came with the application of the return mapping
schemes – known from elasto-plasticity, see Simo and Taylor (1985), – to fric-
tional problems. Its first application can be found in Wriggers (1987) or Gian-
nokopoulos (1989) for geometrically linear problems. This approach provides
the possibility to develop algorithmic tangent matrices which are needed to
achieve quadratic convergence within Newton-type iterative schemes. Due to
the non-associativity of the frictional slip these matrices are non-symmetrical.
For the case of large deformations, associated formulations have been devel-
oped in Ju and Taylor (1988) for a regularized Coulomb friction law, and
in Wriggers et al. (1990) for different frictional laws formulated in terms of
non-associated plasticity. A three-dimensional formulation can be found in
Laursen and Simo (1993b) who also developed an algorithmic symmetrization
Laursen and Simo (1993a), see also Zavarise et al. (1995). However, other
methods like yield-limited Lagrange multiplier formulations were employed
also for frictional contact, see Jones and Papadopoulos (2000).

Mathematical programming methods were applied in Alart and Curnier
(1991) within the augmented Lagrange multiplier technique; see also Sec-
tion 6.3.8 for the theoretical background. The idea is here to construct a
method which is still C1 differentiable to be able to use Newton’s method.
Related augmented Lagrange methods were also developed independently
by De Saxe and Feng (1991b), Simo and Laursen (1992) and Zavarise et al.
(1995). Another closely related approach was introduced by Pang (1990), with
the construction of Newton methods for so-called B-differentiable equation
systems. In Christensen et al. (1998) it is shown that the frictional contact
problem is B-differentiable, and hence the system of equations can be solved
by an extended Newton method. An iterative algorithm based on a Gauss–

Seidel scheme can be found in Jourdan et al. (1998). Other possible ap-
proaches like interior point methods or barrier methods were investigated in
Kloosterman et al. (2001) and Christensen et al. (1998).

Here we describe an algorithm which is implemented in many standard
finite element codes for the solution of frictional contact problems. The for-
mulation for frictional contact problems can be found in different sections.
Section 4.2 contains the definition of the relative sliding and stick from the
geometry point of view. Section 5.2 includes the constitutive equations for fric-
tion, and Section 6.3.2 summarizes different weak formulations with regard to
solution methods. Discretizations for contact with frictions are presented in
Section 8.2 for the geometrical linear case, and in Sections 9.1 and 9.3.1 for
finite deformations.

For a generalization of contact with friction, the following notation is in-
troduced which is based on the matrices introduced in Section 10.3.1. In the
case of friction, two different states have to be considered. In the stick case
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the tangential traction forces follow as reactions from the constraint equa-
tions of no tangential slip at the contact interface. Contrary, in slip mode the
tangential frictional forces have to be obtained from the constitutive law for
frictional slip. Therefore we have to distinguish two different states. Let us
introduce two sets, one in which contact nodes s in sliding conditions are con-
tained, Fsl, and another one which holds the contact nodes s being in stick,
Fst. Note that we have the condition Fsl ∩ Fst = ∅. Both sets together form
the total set of all active nodes being in contact Fsl ∪ Fst = JA.

With this notation we can introduce the weak form of equilibrium for all
nodes s ∈ JA which are in frictional contact:

Gf (u) = G(u) + εC c(u)T G c(u) + tT
T (u)CT (u) = 0 , (10.111)

where tT (u) is the vector of friction forces which contains s ∈ JA elements.
The sth component depends upon the stick or slip state at time tn+1 as
follows:

tTs =
{

εT (gT n+1 − gsl
T n ) ∈ Fst for stick,

μ pN n+1 ntr
T n+1 ∈ Fsl for slip; (10.112)

see the algorithm in Box 13 in Section 10.5.2. The linearization of (10.111) at
a given state ū yields, according to (10.50), the tangent matrix

K f
T (ū) =

[
KT (ū) + K cPT

T (ū) + εC c(ū)T C c(ū) + F(ū)CT (ū)
]

, (10.113)

in which K cPT
T contains the contributions stemming from the linearization of

C c(u) and CT (u) in (10.111); for details of the derivation, see Section 6.5
and Chapter 9.

The vector F(u) contains the linearizations of the tangential stresses in
(10.112). For the stick case this leads, together with CT (u), to a symmet-
ric contribution to the tangent stiffness matrix, whereas for the slip state a
nonsymmetric matrix is obtained, e.g. see Section 9.1. The latter situation
requires a non-symmetric equation solver for frictional contact.

Now we can state an iterative algorithm which is based on the penalty
method given in Section 10.3.3; see also Box 2. The algorithm is summarized in
Box 12 for a load increment within the global solution. This algorithm can also
be devised for the Lagrange multiplier method. In that case, the Lagrange

multiplier method is often only formulated for the normal direction whereas
in the tangential direction the treatment of the interface law as introduced in
(10.112) is applied.

We note that the algorithm in Box 12 works quite efficiently, as has been
shown in Laursen and Simo (1993b) or Agelet de Saracibar (1997). One prob-
lem in this approach is that the friction forces in stick depend upon the reg-
ularization parameter or penalty value εT , see (10.112). The effect of too
small a number for that parameter can be the determination of a stick in-
stead of a sliding state. This behaviour can eventually lead to results which
are physically questionable, as in problems where stick-slip effects occur in
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the contact interface. One way to solve this modelling problem is the use of
a large number for the tangential stiffness (penalty parameter εT ). However,
often a large number cannot be chosen for εT , since then the problem becomes
ill-conditioned or the robustness of the iterative procedure in Box 12 is lost.

To overcome this problem an Uzawa-type algorithm can be applied in
which a Lagrange multiplier in tangential direction is introduced, e.g. see
Alart and Curnier (1991), Laursen and Simo (1993a), Zavarise et al. (1995)
or Pietrzak and Curnier (1997). In this formulation the following change of
the weak form in (10.111) is made:

GfA(u) = G(u) + [ Λ̄N + εC c(u)T ]G c(u) + [ Λ̄T + tT
T (u) ]CT (u) = 0 .

(10.114)
Here the new variables Λ̄N and Λ̄T are the fixed Lagrange multipliers in
the normal and tangential directions, respectively, as introduced in Sections
6.3.8 and 10.3.5. The global iteration procedure with an inner Newton and
outer augmentation loop is described in Box 13. Due to the fact that in the
inner Newton loop the update formulas for the frictional forces from Box
13 are used, the tangent matrix is non-symmetric, as in the penalty method
given in Box 12.

The update of the normal Lagrange multipliers Λ̄N in Box 13 is per-
formed as described in Section 10.3.5, see (10.79). Special care has to be
taken when the tangential Lagrange multiplier update is performed, since
the update has to fulfil the Karush–Kuhn–Tucker conditions (5.28), and
with this the slip rule (5.25) in the case of Coulomb friction or (5.30) in
more general cases, respectively. Using the update algorithm derived in Sec-
tion 10.5.2, the Lagrange multipliers in the tangential direction are given
with (10.121)1 and (10.123)1 by

λ̄k+1
T n+1 = λ̄k

T n+1 + εT (Δgk
T n+1 − λnk+1

T n+1 ) (10.115)

for the time step tn+1. The parameter λ describes the slip increment and
nk+1

T n+1 the slip direction.

Initialize algorithm: set u1 = 0
LOOP over iterations : i = 1, .., convergence

Check for contact: gNsi ≤ 0 → active node, segment or element.
IF i = 1, set all active nodes to state stick Fst = JA.
ELSE update frictional forces, using (10.112) or Box 13.
Solve:G f (ui) = 0 using Newton’s method
Check for convergence: ‖G f (ui)‖ ≤ TOL ⇒ STOP

END LOOP

Box 12. Frictional contact algorithm using the penalty method.
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A variant of this algorithm which was developed in Laursen and Simo
(1993a) yields a symmetrical tangent matrix. It can be derived by using the
Lagrange multipliers λ̄k

N in the update of the local friction forces in Box 13,
instead of the actual normal force tkN = 〈 λ̄k

N + εN gk
N 〉. Since λk

N is constant
during the iteration in the inner Newton loop, it does not contribute to
the linearization. But it is this term, as shown for example in Section 9.1 (see
(9.47)) which is responsible for the non-symmetric tangent. Hence the tangent
matrix becomes symmetrical. This approach is numerically more efficient,
though in some cases it is not as robust as the scheme described in Box 12.

10.5 Local Integration of Constitutive Equations in the
Contact Area

In general, we have to distinguish three cases of constitutive equations in the
contact interface. These are related to the normal and the tangential behav-
iour. For the normal contact a mere function evaluation – as for finite elasticity
– can be used to obtain the contact pressure for a given approach. Even if
the micromechanical derivation of the contact compliance involves plastic de-
formations, the constitutive equations for the normal pressure require only a
pure function evaluation in terms of the approach; see (5.10) or (5.12) . This is
theoretically not satisfactory, but up to now – due to the extremely complex
behaviour in the contact interface – it is the only reasonable method for the
macroscopic description of normal contact compliance.

In the following sections we discuss the integration of the local constitutive
equations at the contact interface for adhesion and friction.

Initialize algorithm: set u1 = 0 , Λ̄
1
N = Λ̄

1
T = 0

LOOP over augmentations : k = 1, .., convergence
LOOP over iterations : i = 1, .., convergence

Check for contact: gNsi ≤ 0 → active node, segment.
IF i = 1, set all active nodes to state stick Fst = JA.
ELSE update frictional forces, using (10.112) or Box 13.

Solve:G fA(ui , Λ̄
k
N , Λ̄

k
T ) = 0 using Newton’s method

Convergence: ‖G fA(ui , Λ̄
k
N , Λ̄

k
T )‖ ≤ TOL ⇒ STOP

END LOOP
Update Lagrange multipliers
Λ̄

k+1
N = 〈 Λ̄

k
N + εN G c(ui) 〉

Λ̄
k+1
T ⇐ Λ̄

k
T , see (10.115)

END LOOP

Box 13. Frictional contact algorithm using the Uzawa algorithm.
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10.5.1 Evolution of adhesion

A different situation occurs when adhesion is present in the interface. In such
cases, the constitutive behaviour is given by, for example, (5.63) and (5.66);
see Section 5.4. Hence the evolution equation

β̇ = −1
η

(w − CN g2
N β) (10.116)

has to be integrated in the case of w − CN g2
N β < 0. A Euler backward

algorithm leads, within the time step Δtn+1 = tn+1 − tn, to

βn+1 = βn − Δtn+1

η
(w − CN g2

N n+1 βn+1) . (10.117)

This equation can be solved for the new adhesion intensity βn+1,

βn+1 =
(

1 − Δtn+1

η
CN g2

N n+1

)−1

(βn − Δtn+1

η
w ) . (10.118)

To compute the normal contact stress pN in the adhesive zone, the current
value of the adhesion intensity has to be used in (5.63), which yields

pN n+1 = CN gN n+1

(
1 − Δtn+1

η
CN g2

N n+1

)−2

(βn − Δtn+1

η
w )2 .

(10.119)
This represents a nonlinear function of the normal gap, and hence needs to be
linearized with respect to gN n+1 within a Newton type solution algorithm.

10.5.2 Friction laws

The situation is again different for friction. Here one has to solve an evolu-
tion equation for the frictional slip (see Section 5.2.4), which is coupled with
the slip condition fs, and hence coupled with an inequality. This constitu-
tive formulation needs special algorithms. In early finite element applications,
explicit schemes were often applied which might not converge in some cases.
Another method which is now standard for numerical simulations involving
friction is related to the possibility to recast the frictional interface laws in
terms of non-associated plasticity.

The algorithmic update of the tangential stress tT n+1 and dissipation
Ds

n+1 is performed by the return algorithm based on an objective (backward
Euler) integration of the evolution equation for the plastic slip, e.g. see
Wriggers (1987), Ju and Taylor (1988), Giannokopoulos (1989), Wriggers et al.
(1990). The results can be summarized as follows: integration of (4.22) gives
the increment of the total slip within the time step Δtn+1:

ΔgT n+1 = ( ξ̄α
n+1 − ξ̄α

n )āα n+1 . (10.120)
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The total slip gT n+1 = gT n + ΔgT n+1 has to be decomposed into an elastic
and a plastic part, see (5.20). From this we can compute the elastic trial state
from (5.22) and evaluate the slip criterion (5.25) at time tn+1:

ttr
T n+1 = cT (gT n+1 − gs

T n ) = tT n + cT ΔgT n+1 ,

f tr
s n+1 = ‖ttr

T n+1‖ − μ pN n+1 . (10.121)

Here the vector tT n = cT (gT n − gs
T n ) is the tangent traction vector of the

last increment at tn. A value of the slip criterion which fulfils (f tr
s n+1 ≤ 0)

indicates stick. Hence no friction takes place, and we have to use the elastic
relation (5.21). For f tr

s n+1 > 0 sliding occurs in the tangential direction, and a
return mapping of the trial tractions to the slip surface has to be performed.
This return mapping procedure is derived from the time integration algorithm.
In case the implicit Euler scheme is applied to approximate (5.27), we obtain

gs
T n+1 = gs

T n + λnT n+1 with nT n+1 =
tT n+1

‖tT n+1‖
,

gv n+1 = gv n + λ . (10.122)

With the standard arguments regarding the projection schemes, e.g. see Simo
and Taylor (1985) or Wriggers (1987), we obtain

tT n+1 = ttr
T n+1 − λ cT nT n+1 ,

nT n+1 = ntr
T n+1 with ntr

T n+1 =
ttr
T n+1

‖ttr
T n+1‖

. (10.123)

The multiplication of (10.123) by nT n+1 yields the condition from which λ
can be computed:

κ(λ) = ‖ ttr
T n+1‖ − ĝs(pN n+1 , θ , gv n+1) − cT λ = 0 , (10.124)

where ĝs is in general a nonlinear function of λ. Thus we need an iterative
scheme to solve κ(λ). In such circumstances, Newton’s method is usually
applied. Knowing λ, the stress update follows from (10.123) and the frictional
slip from (10.122).

In the case of Coulomb’s model, ĝs = μ pN n+1 does not depend upon λ,
and one can solve (10.124) directly for λ,

λ =
1
cT

( ‖ ttr
T n+1 ‖ − μ pN n+1 ) . (10.125)

The projection of the trial stresses ttr
T n+1 which do not fulfil the slip condition

(10.124) is graphically depicted in Figure 10.16 for the two-dimensional case.
As can be seen, the quantity of ttr

T n+1 which overshoots the tangent stress
that is allowed according to Coulomb’s law, μ pN n+1, is used to correct the
stresses leading to tT n+1. Furthermore, the increase of the slip (inelastic) part
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of the relative tangential motion gs
T n+1 is shown graphically. The role of the

stick (elastic) part is obvious from Figure 10.16.
Once λ is known, the frictional stresses follow from (10.123) and the total

frictional slip from (10.122), which yields the explicit results for Coulomb’s

model:

tT n+1 = μ pN n+1 ntr
T n+1 , (10.126)

gs
T n+1 = gs

T n +
1
cT

( ‖ ttr
t n+1 ‖ − μ pN n+1 )ntr

T n+1 . (10.127)

This update completes the local integration algorithm for the frictional inter-
face law.

For Coulomb’s law an alternative update procedure which is based on
geometric arguments was proposed in Section 9.2 for large sliding within large
deformation processes. This so-called moving cone algorithm, which directly
computes the total force at the contact interface, can be efficiently applied
instead of the algorithm stated in Box 13. However, at present it is only ad-
vantageous to use the moving cone method for the classical law of Coulomb.

The dissipation due to the plastic slip follows from (5.23) as

Ds
n+1 = tT n+1 · ġs

T n+1 ,

where the relative tangential slip has to be approximated by the implicit
Euler scheme

ġs
T ν+1 =

1
Δtn+1

(gs
T n+1 − gs

T n ) . (10.128)

This approximation for the relative tangential slip velocity yields, with (10.122)1,
in general

Fig. 10.16. Projection of trial stress onto the slip surface.
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Ds
n+1 =

{
0 for f trial

s n+1 ≤ 0,
tT n+1 · (λ /Δtn+1 )ntrial

T n+1 otherwise, (10.129)

and for Coulomb’s law with (10.127)2

Ds
n+1 =

{
0 for f trial

s n+1 ≤ 0,
tT n+1 · ( ttrial

T n+1 − tT n+1 )/cT Δtn+1 otherwise.
(10.130)

The general algorithm which was derived above can be summarized as in
Box 14. This algorithm has to be applied within the general solution algo-
rithm in Box 12 to obtain the friction forces for the new time increment at
time tn+1. Furthermore, the tangent matrices associated with the implicit in-
tegration scheme have to be derived. For the node-to-surface contact elements,
the associated tangents can be found in Sections 8.2, 9.1 and 9.3.1.

As an explicit example of how to treat the more general form (10.124), the
constitutive equation for friction between soil and concrete is considered. The
friction law is defined in (5.54) and (5.55). Again the return mapping algo-
rithm is used to fulfil the inequality restriction for the slip surface fs ≤ 0, and
an implicit Eulerian integration for the time discretization. Time discretiza-
tion of (5.54) and (5.55) yields

tT n+1 = εT pa7
N n+1

(
gT n+1 − gs

T n+1

)
gs

T n+1 = gs
T n + γn+1

tT n+1
||tT n+1||

wn+1 = wn + γn+1

fs n+1 = ||tT n+1|| − pa6
N n+1 μ(wn+1) ,

(10.131)

with γn+1 = λn+1Δt.
For calculation of the tangential stresses tT n+1, first the elastic trial-

stresses are calculated, assuming stick,

ttr
T n+1 = εT pa7

N n+1 (gT n+1 − gp
T n) = tT n + εT pa7

N n+1 (gT n+1 − gT n) .
(10.132)

Starting values: gT n+1 , gs
T n , pN n+1

Compute trial state: ttr
T n+1 = cT (gT n+1 − gs

T n )
Check:f tr

s n+1 = ‖ttr
T n+1‖ − μ pN n+1

If f tr
s n+1 ≤ 0 STOP

Else if f tr
s n+1 > 0 perform return mapping

Solve for λ: ‖ ttr
T n+1‖ − ĝs(pN n+1 , θ , gv n+1) − cT λ = 0

Update slip state: gs
T n+1 = gs

T n + λnT n+1

gv n+1 = gv n + λ
Compute new friction force: tT n+1 = cT (gT n+1 − gs

T n+1 )

Box 14. Local integration of friction law.
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Inserting this result into the slip function (5.55) yields

f tr
s = ||ttr

T n+1|| − pa6
N n+1μ(wn) . (10.133)

For f tr
s < 0 no sliding occurs, hence the assumed stick condition is valid and

no further computations are needed. For sliding (f tr
s ≥ 0) a projection on the

slip surface fs = 0 has to be performed. Evaluation of (10.131) and (10.132)
using tT

||tT || = ttr
T

||ttr
T
|| leads to

tT n+1 = ttr
T n+1

(
1 − εT

pa7
N n+1

||ttr
T n+1||

(wn+1 − wn)
)

(10.134)

fs n+1 = ||ttr
T n+1|| − εT pa7

N n+1(wn+1 − wn) − pa6
N n+1μ(wn+1) = 0 ,

with
μ(w) = a1w

1 + a2w + a3w
2 + a4 arctan(a5w) ,

ttr
T n+1 = tT n + εT pa7

N n+1 (gT n+1 − gT n) .
(10.135)

wn+1 can now be calculated iteratively using (10.1342). Inserting wn+1 into
(10.1341) leads to the tangential stresses tT n+1 at the current time tn+1.
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Thermo-mechanical Contact

In the case of thermo-mechanical contact problems two fields – deformation
and temperature – interact, and thus have to be considered within the formu-
lation. In the general setting these fields are coupled, since the constitutive
parameters depend upon the temperature. Furthermore, the evolution of the
thermal field is related to the deformation, and heat can be generated by dissi-
pative mechanisms like plastic deformations or frictional forces. Applications
of thermo-mechanical coupled processes include the cooling of electronic de-
vices, shrink fitting problems, screw connections under temperature loading,
and frictional heating in rubber or hot metal forming problems. The technical
importance of these models has recently raised interest in these phenomena,
thus many contributions can be found in the literature.

Let us note that the movement of skis or skates on snow or ice is also related
to thermo-mechanical contact. There a thin water film occurs during motion,
and as a lubricant reduces the frictional coefficient considerably between skates
and ice. This effect stems from frictional heating due to dissipation. Since this
mechanism no longer works at a temperature range below minus 35o Celsius,
one then observes a high coefficient of friction, like sand, and skis no longer
glide with the usual ease.

In this chapter only research which is directly related to the numerical
treatment of contact problems within the finite element method is discussed.
In cases where thermo-mechanical contact has to be considered, a “high con-
tact precision” formulation must be applied to account correctly for the pres-
sure dependency of the heat conduction in the contact area. This is due to the
fact that the heat conduction depends upon the approach of the two rough
surfaces being in contact, see Section 3.3. In this context, models have been
discussed for the constitutive behaviour in the normal direction on the basis
of statistical methods, e.g. see Cooper et al. (1969) or Song and Yovanovich
(1987). A finite element treatment for thermo-mechanical contact problems
can be found in Zavarise (1991), Zavarise et al. (1992b) or Wriggers and
Zavarise (1993b), and in combination with frictional heating in Wriggers and
Miehe (1992) or , Zavarise et al. (1995). Also, other contact phenomena like
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wear, e.g. see Johannson and Klarbring (1993), need special constitutive laws
which have to be developed in the interface.

From the algorithmic side, a global iterative procedure is used for a station-
ary thermo-mechanical process. These so-called monolithic schemes can also
be applied in transient processes. Here, however, staggered schemes, which
treat the deformation and temperature fields separately, can also be compu-
tationally more advantageous, see Wriggers and Miehe (1992) or Agelet de
Saracibar (1998) for thermo-mechanical contact, and Simo and Miehe (1992)
for thermo-mechanical problems without contact.

11.1 Equations for the Continuum

For the description of the continuum we need kinematical relations, equilib-
rium and constitutive equations. All these are well known, hence we only
state the equations which are needed to analyse bodies which are subjected
to thermo-elastic deformations.

11.1.1 Kinematical relations, multiplicative split

Let B ⊂ R
3 be the reference configuration of the body of interest. Denote by

ϕ the deformation map, and let F = Gradϕ be the deformation gradient.
For the thermo-mechanical problem a multiplicative split of the deformation
gradient (3.6) is made,

F = Fe Fθ , (11.1)

where the indices e and θ indicate the elastic and the purely thermal part of
the local deformation, respectively. This general split can be specified more
by the introduction of a split of the deformation gradient F in a volume
preserving F̂ and a volumetric part J

1
3 1, which yields

F = J
1
3 F̂ ; with det F̂ = 1 . (11.2)

With the classical assumptions of pure volumetric thermal deformations, F̂θ =
1, the following multiplicative split is derived, which is basis for the subsequent
derivations,

J = Je Jθ , F̂ = F̂e , (11.3)

where
Fe = J

1
3

e F̂e , Fθ = J
1
3

θ 1 . (11.4)

The right Cauchy–Green tensor associated with thermoelastic deformations
is then defined by

C = FT F = (Je Jθ)
2
3 F̂

T
F̂ . (11.5)

Alternatively, the left Cauchy–Green tensor in the current configuration is
given by

b = FFT = (Je Jθ)
2
3 F̂ F̂

T
. (11.6)
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11.1.2 Thermoelastic constitutive law

Constitutive equations for both bodies which come into contact have to be
defined. These describe the material behaviour for the mechanical response
and the thermal conductivity. The constitutive equations can be different
for each of the contacting bodies. In this section only hyperelastic response
functions are considered. Since they are assumed to have the same structure
for each of the materials, one can drop the superscript α which is a pointer
to body Bα to simplify notation. More advanced material descriptions which
include finite strain plasticity or visco-elasticity can be found in Simo and
Miehe (1992) or Reese (2001).

As a model equation for nonlinear constitutive behaviour isotropic finite
elasticity is used. It leads to a nonlinear response function for the stresses,
and can be derived from a strain energy function W (b), see Section 3.4.1.
The simplest example for hyperelasticity is the compressible Neo-Hookian
model which can be applied for rubber materials undergoing moderately large
strains, for instance. A possible extension of the associated free Helmholtz

energy for the thermo-elastic case yields (see Miehe (1988) or Wriggers et al.
(1992))

W (Je, b̂e, θ) =
1
2

μ ( Î
be

− 3 ) +
1
2

K (ln Je)2 + T (θ) . (11.7)

Based on equation (3.75) from (11.7) one obtains a constitutive equation for
the Kirchhoff stresses τ and the thermo-elastic entropy ηe,

τ = 2be
∂W

∂be
= K ln Je 1 + μdev b̂e and ηe = −∂W

∂θ
. (11.8)

K is the bulk modulus and μ the shear modulus.
Following Lu and Pister (1975) and Miehe (1988), the volumetric thermal

contribution to the total deformation can be written as

Jθ = e3 αt(θ−θ0) . (11.9)

Here αt stands for the linear thermal expansion coefficient, and θ − θ0 is the
increase of the absolute temperature from a given reference temperature θ0.
Using this constitutive equation, the elastic volume change can be computed
via equation (11.3)1:

Je = J e−3 αt(θ−θ0) . (11.10)

Kirchhoff stresses in (11.8) can be related to second Piola–Kirchhoff

stresses via S = F−1 τ F−T . Furthermore, the connection to the first Piola–

Kirchhoff stress which enters the local equilibrium equation, when formu-
lated with respect to the reference configuration, can be made via P = FS.

To describe the heat conduction within the solid body, the classical law of
Fourier is assumed for isotropy. It relates the Kirchhoff heat flux vector
q, defined in the current configuration, to the temperature gradient as follows:
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q = −k grad θ , (11.11)

where k > 0 is the heat conduction coefficient. With respect to the undeformed
configuration, we obtain Q = −k Grad θ.

11.2 Constitutive Equations for Thermo-mechanical
Contact

For mechanical contact all relations which were developed in Chapter 4 for
the contact geometry can be used as well as the contact weak formulation and
discretization in Sections 6.3 and 8.

The temperatures of the two surfaces Γα are assumed to be given as func-
tions of placement and time in the spatial configuration: θα = θα(xα , t). In
the contact interface one can then use the geometrical relation (4.6) which
defines the projection of a point on surface Γ 2 onto Γ 1 to find the location
x̄1, at which θ̄1 is given.

The heat flux in the contact zone also needs a constitutive equation for
its determination. In cases where thermo-mechanical contact has to be con-
sidered, a “high contact precision” formulation must be applied to correctly
account for the pressure dependency of the heat conduction in the contact
area. We assume the following structure for the constitutive equation for the
heat flux, see Figure 11.1:

qN = q̂N (θ1, θ2, pN ) = ĥ (θ1, θ2, pN ) ( θ2 − θ̄1 ) , (11.12)

where θα are the temperatures of both contact surfaces. θ̄1 is defined by the
closest point projection used for the static normal contact; see above and
equation (4.2).

The heat transfer coefficient ĥ (θ1, θ2, pN ) depends upon the surface tem-
peratures and the contact pressure. The latter is needed for stability rea-
sons, e.g. see Section 2.3. Thus we have to find a pressure-dependent model
which describes the heat flux in the contact interface. From a micromechanical
viewpoint, the heat conduction depends upon the approach of the two rough
surfaces in contact. In this context, models have been discussed for the consti-
tutive behaviour in the normal direction on the basis of statistical methods,
e.g. see Cooper et al. (1969) or Song and Yovanovich (1987).

Due to the technical impossibility of obtaining perfectly plane surfaces, the
real contact area is always limited and corresponds to a series of spots (see
Figure 11.3). Determination of the true contact area is fundamental for the
modelling of mechanical and thermal phenomena. In detail, it is necessary to
determine the number of spots in contact, their distribution and their medium
size. All these parameters depend upon the applied apparent contact pressure.

The problem can be represented using correlation formulae generated by
the fitting of experimental data, or using a theoretical approach. Here a mi-
croscopic plastic model by Song and Yovanovich (1987) has been adapted for
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Fig. 11.1. Heat flux in the contact interface.

the development of the macroscopic thermal contact law. Different techniques
for computation of the thermal contact resistance, taking into account the de-
pendence on various parameters have been proposed. The resistance is mainly
due to the low percentage of surface area which is really in contact. The pres-
ence of a reduced set of spots surrounded by micro-cavities characterizes the
contact zone, hence heat exchange is possible by heat conduction through the
spots, heat conduction through the gas contained in the cavities and radiation
between micro-cavity surfaces.

All these results yield a homogenized constitutive relation for the thermo-
mechanical behaviour in the contact interface, see Figure 11.2. The assump-
tion that the mentioned mechanisms act in parallel is well accepted, which
leads to the following relationship for the thermal contact resistance R of a
representative area element Aa:

1
R

=
1

Rspots
+

1
Rgas

+
1

Rradiation
(11.13)

or in terms of the conductivity ĥ,

ĥ = ĥs + ĥg + ĥr . (11.14)

The constitutive relations for heat conductance all depend upon variables
which change during the analysis. A nonlinear dependence with regard to the

Fig. 11.2. Homogenization of the constitutive data.
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Fig. 11.3. Conductance through spots in the contact interface.

pressure pN and the surface temperatures θα has to be considered. Thus, in
general, we can write for the contact conductivity

ĥ = hc( pN , θ1 , θ2) . (11.15)

11.2.1 Heat conductance through spots

Considering the contribution of i spots with area Asi (see Figure 11.3 and
11.4 (a)), the thermal resistance of a representative area Aa is first analysed
(see Figure 11.4); the knowledge of the number of spots then permits us
to compose these resistances in parallel. Around each spot a heat flux tube
having a narrowing in the contact zone is considered (see Fig 11.4 (b)).
The solution of the heat conduction equation involves some difficulties, thus
auxiliary hypotheses are used, and the solution is determined using series
expansion. Various shapes of narrowing have been studied and comparisons
with experimental tests Shai and Santo (1982) show the best correspondence

Fig. 11.4. (a) Statistical model, (b) Spot resistance model.
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for the flat disk narrowing model, see Figure 11.4 (b). This model is now
well accepted. By combining a mechanical contact model, like (5.10), which
gives the representative inner and outer radii of the spots, with the thermal
resistance model, a complicated relationship has been obtained in Cooper
et al. (1969) by averaging over the area Aa. Since the relationship involves
integrals of exponential functions, no closed form solution is available. This
leads to the development of a simpler model, see Yovanovich (1981).

The additional effect of taking into account the hardness variation with
the mean planes approach has been suggested in Song and Yovanovich (1987),
which yields

ĥs =
1.25k∗m̄

σ

[
pN

c1

(
1.6177

106σ

m̄

)−c2
] 0.95

1+0.0711c2

, (11.16)

where c1 and c2 are experimental constants governing the hardness variation,
and k∗ = 2 k1 k2/(k1 + k2) is the harmonic mean thermal conductivity, which
depends upon the conductivities k1 and k2 of the materials in contact. Two
geometric constants are involved; m̄, the mean absolute asperity slope, and
σ the rms surface roughness. These constants have to be extrapolated from
experimental data. Finally, pN is the apparent mechanical contact pressure.
We note that the interface laws thus derived are obtained from a curve fitting
of a sophisticated theoretical model. Hence, it is not just a simple curve fitting
of some particular experimental results.

A simplified model for a pressure-dependent heat conduction through the
spots in the contact interface can be given in terms of the Vickers hardness
Hv, the thermal resistance coefficient hs0 and an exponent ω:

ĥs(pN ) = hs0

(
pN

Hv

)ω

. (11.17)

This relation only depends upon three parameters which follow from experi-
ments.

11.2.2 Heat conductance through gas

As far as the contribution of the gas, contained in the micro-cavities, to the
heat conductance is concerned, interesting reviews of the proposed models are
available in Madhusudana and Fletcher (1981). Due to the reduced height of
the cavities, convective movements are strongly limited, and thermal exchange
takes place mainly by conduction, like in solid materials. Hence thermal con-
ductance can be calculated as

ĥg =
kg

d + g1 + g2
, (11.18)

where kg is the gas conductivity, and d is the effective height of the cavity
which corresponds to the mean plane distance. Terms g1 and g2 are intro-
duced to reproduce the nonlinear surface effect and the temperature surface
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Fig. 11.5. Conductance through gas in the contact interface.

discontinuity. These additional distances can be obtained by employing the
kinetic theory of gases, e.g. see Kennard (1938). We obtain

g1 + g2 = Gpc
Tg

pg
. (11.19)

Here Gpc is a constant collecting various fixed parameters describing the phys-
ical properties of the gas, Tg is the current gas temperature and pg denotes
the current gas pressure. The explicit expression for the constant Gpc is given
below:

g1 + g2 =
(

2 − α1

α1
+

2 − α2

α2

)
2 γ

γ + 1
1

Pr
Λ0

pg0

T0
, (11.20)

where α1 and α2 are experimental coefficients related to the surfaces Γ 1 and
Γ 2, respectively. γ = cp

cv
indicates the specific heat ratio, Pr is the Prandtl

number, and Λ0 is the mean free path calculated at reference temperature T0

and reference gas pressure pg0.
The basic relation (11.19) is adopted by a great number of authors, who

propose different techniques to calculate the effective height d of the cavity.
However, only a few models account for the reduction of cavity height un-
der increasing contact pressure which is included in (11.18). According to
the mechanical model previously considered, see Cooper et al. (1969), the
dependence of the effective height from the mechanical pressure is given in
Yovanovich (1981), and yields

d = 1.363σ

[
− ln

(
5.589

pN

He

)]0.5

, (11.21)

where He is the micro hardness distribution. Again, the relationship (11.21) is
a high precision curve fitting of the original theoretical equation. Thus (11.19)
and (11.21) complete the derivation of a thermal conductance for the gas, and
can be inserted into (11.18).
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Within this approach the mechanical stiffness and thermal contact con-
ductivities have been calculated based on the assumption that the contacting
asperities undergo plastic deformations. Relations that consider pure elastic
deformations of the contacting asperities have also been formulated, e.g. see
Greenwood and Williamson (1966), and a wide class of problems characterized
by smooth surfaces can be studied within that hypothesis.

11.2.3 Heat conductance by radiation

Another way to transmit heat from one surface to the other is by electromag-
netic radiation. This works in a vacuum as well as in a medium. However,
when this medium is a liquid the amount of heat transferred by radiation is
often negligible. When the medium is a gas then radiation can be of impor-
tance. Hence this effect also has to be considered within the contact interface
when a general relation for heat conduction should be established. As shown
in Figure 11.6, both surfaces generate radiation waves. The basic relation for
the heat flux due to radiation is given in terms of the Stefan–Boltzmann

law
qr = F12 σn

[
(θ2)4 − (θ1)4

]
, (11.22)

where F12 is the mutual radiation factor of the surfaces Γ 1 and Γ 2 on both
sides of the contact interface, σn is the Stefan–Boltzmann constant and
θα represent the temperatures of the two surfaces, e.g. see Boley and Weiner
(1997). This leads, with the form of the heat conductance equation for radia-
tion (11.12)

qr = hr(θ1 , θ2) ( θ2 − θ̄1 ) ,

to the heat conductance coefficient for radiation

hr = F12 σn

[
(θ2)2 + (θ̄1)2

]
( θ2 + θ̄1 ) , (11.23)

which depends in a nonlinear way upon the surface temperatures.
Usually, one has to compute view factors according to the geometry of the

surface. Here the assumption has been made that the surfaces are flat and

Fig. 11.6. Conductance through gas in the contact interface.
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parallel, which is sufficient when the aspect ratio of the asperities is not too
high, or when this relation is used as a regularization of the thermal contact
conductivity.

Often the radiation effects between the surfaces of the micro-cavities can
be neglected, because the small difference of temperature greatly reduces this
effect. However the radiation effect might be important to regularize the jump
in the thermal resistance between status gap open and status gap closed, e.g.
see Wriggers and Zavarise (1993b). Disregarding the radiation effect can lead
to an unstable algorithm when the contact pressure is very small.

11.3 Initial Value Problem for Thermo-mechanical
Contact

In the previous sections we have discussed contact geometry and constitu-
tive equations associated with the contact interface. Let us now formulate
the initial-boundary-value problem for nonlinear thermoelasticity combined
with thermo-mechanical frictional contact for two bodies. For a more simple
presentation, all relations are formulated with respect to the initial configu-
ration of the contacting bodies. Furthermore, to obtain a compact structure
we introduce locally at the material point Xγ of body Bγ a vector of primary
variables at time t,

Zγ(Xγ , t) =

⎧⎨
⎩

ϕγ(Xγ , t)
Vγ(Xγ , t)
θγ(Xγ , t)

⎫⎬
⎭ , (11.24)

which contains the configuration ϕγ , the material velocity Vγ and the material
temperature θγ . The superscript γ = 1, 2 is characterizes the body B1 or B2.

Locally at points Xγ ∈ Γ γ
c of the contact surfaces a vector of history

variables
H(Xγ , t) = { gs

T (Xγ , t) } (11.25)

is defined, which contains the plastic tangential slip gs
T . Other internal vari-

ables in the domains Bγ do not appear, since only thermoelastic constitutive
response is considered.

The thermo-mechanical initial-boundary-value problem is governed by the
local field equations in the domains Bγ :

∂

∂t
ϕγ = vγ + 0

∂

∂t
Vγ =

1
ργ
0

DIVPγ +
1
ργ
0

b̄ + 0

∂

∂t
θγ = 0 − 1

cγ
DIVQγ +

1
cγ

Sγ ,

(11.26)

which represent the definition of the material velocity, see (3.28), the balance
of linear momentum, see (3.49), and the balance of internal energy in form
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of the temperature evolution equation following from (3.53). Pγ is the first
Piola–Kirchhoff stress tensor, Qγ denotes the material heat flux vector
and Sγ is a heat source which describes in the framework of thermoelasticity
the Gough–Joule coupling effect. The field equations (11.26) form a coupled
first order evolution system for the primary variable vector Zγ introduced
above. Hence one can write in short notation

∂

∂t
Zγ = Â

γ
(Zγ ) , (11.27)

where the nonlinear evolution operator Â represents the right-hand side of
(11.26). In this equation one has to introduce the thermoelastic constitutive
equations in the domains Bγ , which describe the dependency of stress, heat
flux and the heat source on Zγ :

Pγ = P̂
γ

(Zγ ) ,

Qγ = Q̂
γ

(Zγ ) , (11.28)
Sγ = Ŝγ (Zγ ) .

Note that usually, instead of stating a constitutive equation for the first
Piola–Kirchhoff stress Pγ , one introduces a constitutive equation for the
second Piola–Kirchhoff stress Sγ , which is related to Pγ via Pγ = Fγ Sγ .

Next initial conditions for the primary and history variables are given for
a time interval [tn, t]:

Zγ(Xγ , tn) = Zγ
n(Xγ) and Hγ(Xγ , tn) = Hγ

n(Xγ) . (11.29)

Boundary conditions for the deformation are given on Γ γ
ϕ ⊂ ∂Bγ and for

the temperature on Γ γ
Θ ⊂ ∂Bγ :

ϕγ(Xγ , t) = ϕ̄γ(Xγ , t) on Γ γ
ϕ ,

θγ(Xγ , t) = θ̄γ(Xγ , t) on Γ γ
Θ . (11.30)

For the traction vector, boundary conditions are prescribed on Γ γ
t ⊂ ∂Bγ ,

and for the heat flux vector on Γ γ
q ⊂ ∂Bγ :

tγ (Xγ , t ) = t̄ γ (Xγ , t ) on Γ γ
t ,

Qγ (Xγ , θγ
t , t ) = Q̄γ (Xγ , θγ

t , t ) on Γ γ
q . (11.31)

The initial-boundary-value problem is completed by the thermo-mechanical
constitutive equations on the current slave contact surface ϕ1(Γ 1

c ):

pN = p̂N ( Z1,2, H, )
tT = t̂T ( Z1,2, H, )
qN = q̂N ( Z1,2, H, )
Ds = D̂s ( Z1,2, H, ) , (11.32)
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for the contact pressure pN , the contact tangential stress tT , the contact heat
flux qN and the frictional dissipation Ds. Z1,2 is introduced here to point
out that at the contact surface, fields of both bodies interact, and thus have
an input to the associated constitutive relation. Furthermore, we have the
evolution equation for the plastic slip, see (5.27), with the structure

∂

∂t
H = λ Ê ( Z1,2, H ) with Ê =

∂f̂s

∂tT
, (11.33)

which is constrained by the Kuhn–Tucker loading-unloading conditions

λ ≥ 0 ; f̂s ( Z1,2, H ) ≤ 0 ; λ f̂s ( Z1,2, H ) = 0 . (11.34)

Finally, the contact conditions for the normal contact, see (5.2),

gN ≥ 0 ; p̂N ( Z1,2, H ) ≤ 0 ; gN pN ( Z1,2, H ) = 0 , (11.35)

completes the formulation of a coupled thermo-mechanical initial-boundary-
value problem.

For formulation of the weak form of a pure mechanical and thermo-
mechanical contact problem, we have to discuss only the additional terms
due to contact in detail. The equations describing the behaviour of the bodies
coming into contact do not change. For completeness, the weak forms for the
bodies coming into contact are stated next.

11.4 Weak Forms in Thermo-mechanical Analysis

In the case of thermo-mechanical contact problems, two fields – deformation
and temperature – interact, and thus have to be considered within the formu-
lation. In the general setting these fields are coupled because the constitutive
parameters depend upon the temperature; the evolution of the thermal field
is related to the deformation and heat can be generated by dissipative mech-
anisms like plastic deformations or frictional forces.

In the coupled thermo-mechanical analysis one has to extend the weak
form (6.20) for mechanical contact to the coupled case. The weak forms are
stated here for a known active set, so that instead of an inequality we can
write an equality for the weak form. This yields, in analogy to (6.24), two
weak forms in which mechanical and thermal variables are coupled:

GM (ϕγ , ηγ , θγ) =
2∑

γ=1

⎡
⎢⎣

∫

Bγ

τ γ · ∇Sηγ dV −
∫

Γ γ
σ

ηγ · t̄γ
da

⎤
⎥⎦

+
∫

ϕ1(Γ 1
c )

[ δgN pN + δ gT · tT ] da = 0 . (11.36)
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ηγ denotes the mechanical test function defined on the current configuration,
also known as the virtual displacement. The second term in (11.36) describes
the contributions due to contact with the variations of the normal gap, see
(4.29), and the variations of the relative tangential displacement in the contact
interface, see (4.30). The first term in (11.36) contains the standard domain
contributions with the Kirchhoff stress tensor τ γ . It is integrated with
respect to the initial configuration, whereas the integration of the contact
terms has to be performed with respect to the current configuration.

The weak form of the thermal contribution takes the form

GT (θγ , ϑγ ,ϕγ)=−
∫

ϕ1(Γ 1
c )

[ (ϑ2 − ϑ1 ) qN +
1
2

(ϑ1 + ϑ2 )Ds ] da +

2∑
γ=1

⎡
⎢⎣

∫

Bγ

{ ∇ϑγ · qγ−ϑγ (Sγ − cγ θ̇γ ) } dV −
∫

ϕγ(Γ γ
q )

ϑγ q̄γ da

⎤
⎥⎦ = 0 . (11.37)

Here ϑγ denotes the thermal test function defined on the current configuration,
also called the virtual temperature. In the integral concerned with the contact
interface, one can see two contributions. The first is due to the heat conduction
in the contact area. The second term stems from the frictional heating which
is generated by the frictional dissipation, e.g. see (5.23). In a finite element
computation, the dissipation can be computed together with the stress update
of the tangential stresses, see Section 10.5.

11.5 Algorithmic Treatment

The main solution strategies for coupled problems are monolithic schemes
where equations (11.36) and (11.37) are solved together as a coupled system
for the different variables (here deformation and temperature). In large three-
dimensional problems this is related to the large number of variables, which
is not very efficient. Thus, other strategies known as staggered schemes were
developed in which the different variables are computed separately within a
given time step (see Wood (1990) for an overview).

Global solution algorithms for coupled thermo-mechanical analysis have
been formulated in Argyris and Doltsinis (1981), Miehe (1988), Doltsinis
(1990), Simo and Miehe (1992), Agelet de Saracibar (1998) or Lewis and
Schrefler (2000), among others. In what follows, the staggered scheme pro-
posed in Simo and Miehe (1992) and for contact in Wriggers and Miehe (1994)
is adopted. This scheme is based on an operator split of the global thermo-
mechanical evolution operator discussed in Section 11.3. Such a strategy yields
an algorithmic decoupling of the thermo-mechanical equations within a time
step on the basis of subproblems which are in the frictionless case both sym-
metric.
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The central idea is a split of the evolution operator Â
γ

into its natural
mechanical and thermal parts, as indicated in equation (11.26):

Â
γ
(Zγ) = Â

γ

M (Zγ) + Â
γ

T (Zγ) . (11.38)

Within the time step Δtn+1 = tn+1 − tn, this split defines two subproblems:

(M):
∂

∂t
Z̄γ = Â

γ

M (Z̄γ) and (T):
∂

∂t
Zγ = Â

γ

T (Zγ) ; (11.39)

a purely mechanical subproblem (M) at frozen temperature along with the
mechanical initial and boundary conditions in (11.30)–(11.31) followed by a
purely thermal subproblem (T) at frozen configuration along with the ther-
mal initial and boundary conditions in (11.30)–(11.31). Both subproblems
are constrained by the evolution of the plastic variables (11.32). We consider
the quasistatic problem and integrate both phases (11.39) with the backward
Euler algorithm. Hence, the algorithmic counterpart ALGOM for the mechan-
ical subproblem (M) takes the form

DIV P̂
γ
(ϕγ

n+1; θ
γ
n) = 0 and vγ

n+1 = 1
Δtn+1

(ϕγ
n+1 − ϕγ

n) (11.40)

in Bγ at frozen thermal primary variable θγ
n.

The thermal subproblem (T) obtains the algorithmic form ALGOT

cγ

Δtn+1
(θγ

n+1 − θγ
n) = −DIV Q̂

γ
(θγ

n+1;ϕ
γ
n+1) + Ŝγ(θγ

n+1;ϕ
γ
n+1,v

γ
n+1) (11.41)

in Bγ at frozen mechanical primary variables ϕγ
n+1,v

γ
n+1.

Thus, we first solve within a time step Δtn+1 the mechanical problem
(11.40) for the actual configuration field ϕγ

n+1. Next we compute the actual
temperature field θγ

n+1 by solving the thermal problem (11.41). The overall
global thermo-mechanical solution algorithm within a typical time step can be
regarded as a composition ALGOTM = ALGOT ◦ ALGOM of the two subal-
gorithms ALGOT and ALGOM . Thus, the operator split algorithm results in
an algorithmic decoupling of the coupled thermo-mechanical equations within
the time interval. The split (11.39) was proposed as a coupling algorithm by
Argyris and Doltsinis (1981), and applied for thermo-mechanical contact by
Wriggers and Miehe (1994). It is characterized by an isothermal deformation
predictor followed by a heat conduction corrector. Within the work of Ar-
gyris and Doltsinis (1981), this algorithm has been interpreted as a one-pass
Gauss–Seidel scheme in terms of the variables ϕ and θ.

This algorithm now has to be incorporated in the weak forms (11.36) and
(11.37), which are the basis for the finite element method. Since this is again
a standard procedure, we do not derive this here explicitly.

11.6 Discretization Techniques

Here we discuss two discretizations for thermo-mechanical contact. The first
formulation is for frictionless problems with small deformations, hence the
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linear theory is valid and a node-to-node discretization, as already discussed
in Section 8.2 can be applied. The associated finite element formulation can
be found in Wriggers and Zavarise (1993b). For the case of large slip in the
contact interface, as can be observed in tyre contact or in metal forming
processes, one has to use a discretization for large slip as presented in Section
9.1. Furthermore, friction has to be included in the analysis.

11.6.1 Node-to-node contact element

In the case of a node-to-node contact discretization, the constraint equation
for contact is formulated for each nodal pair, see Figure 8.4.

The geometrical contact constraint condition for the normal contact (4.1)
can be formulated for one finite element nodal pair I as

gN I = x2
Ik − x1

Ik = (X2
Ik + u2

Ik) − (X1
Ik + u1

Ik) ≥ 0 , (11.42)

where k is the local direction of the normal in the contact interface (x2
I ·n1

I =
xIk). This has been introduced to simplify notation. xα refers to the current
and Xα to the initial configuration.

The temperature jump in the contact interface at node I is given by

gθ I = θ2
I − θ1

I , (11.43)

with the current temperature θa at the two bodies Bα. The temperature of
the gas inside the micro-cavities is computed as the mean temperature of both
surfaces,

Tg I =
1
2

(θ2
I + θ1

I ) . (11.44)

Fig. 11.7. Node-to-node thermal contact element.
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The variation of (11.42) is simply

δgN I = η2
Ik − η1

Ik . (11.45)

In the same way one derives the variations of gθ I and Tg I

δgθ I = ϑ2
I − ϑ1

I ,

δTg I =
1
2

(ϑ2
I + ϑ1

I) . (11.46)

Due to its simplicity, and assuming that the contact constraint is active for
nc nodes, we can express the integrals (11.36) and (11.37) for the contact
contributions in the weak form by a sum over all active contact nodes.

Since the normal contact has to be expressed in the case of thermo-
mechanical contact by a constitutive equation, one has to use the formulation
of Section 6.3.4. With this one approximates equations (11.36) and (11.37),
leading for the contact part to

Ĝc
M =

∫

Γc

δgN pN da −→
nc∑

I=1

pN I δgN I AI , (11.47)

Ĝc
T =

∫

Γc

(ϑ2 − ϑ1 ) qNda −→
nc∑

I=1

qN I δgθ I AI . (11.48)

The area Ai is associated with the contact point i, see Figure 8.4. For com-
putation of the approach due to a mechanical applied pressure in the contact
interface, equation (5.12) will be used. This yields a nonlinear relation between
the contact pressure and geometrical approach defined in (5.9):

pN = cN ( gN ) . (11.49)

Note that the constitutive equation for the contact pressure does not depend
upon the temperature in the case of frictionless contact.

The heat flux qN in the contact interface is assumed to be governed by
equations (11.16) for the spot conductance and (11.18) for the gas conduc-
tance, leading to the general form of (11.15) for the heat conductance in the
contact interface: hc( θ1 , θ2 , pN ). Hence, with (11.12) one obtains

qN = hc(θ1 , θ2 , pN ) ( θ2 − θ1 ) = hc(Tg , pN ) ( θ2 − θ1 ) . (11.50)

Since the heat conduction in the contact interface depends upon the contact
pressure, coupling of thermal and mechanical variables is present.

Now, to complete the formulation for the thermo-mechanical contact ele-
ment, the matrices

ϑI =
{

ϑ2
I

ϑ1
I

}
, ηI =

{
η2

Ik

η1
Ik

}
, CI =

{
1
−1

}
, E =

{
1
1

}
(11.51)
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are introduced (see also Section 8.2 for the purely mechanical case). With this
the weak form of the contact contributions follows from (11.48), together with
(11.49) and (11.50), as

Ĝc
M =

nc∑
I=1

ηT
I cN (gN I)CI AI , (11.52)

Ĝc
T =

nc∑
I=1

ϑT
I hc(θ1, θ2, pN ) ( θ2 − θ1 )CI AI . (11.53)

These terms are nonlinear in the geometrical approach gN and the tempera-
tures θα. The linearization of (11.53) yields the tangent operator which has
to be used within a Newton type solution procedure, see Section 10.3. For
the linearization around a state ḡN and θ̄α, one derives

D GM · ΔgN =
nc∑

I=1

ηT
I

∂cN

∂gN

∣∣∣∣
ḡN

AI CI CT
I ΔuI

D GT · ΔgN =
nc∑

I=1

ϑT
I

∂hc

∂gN

∣∣∣∣
ḡN

(θ̄2 − θ̄1)AI CI CT
I ΔuI (11.54)

D GT · Δθ =
nc∑

I=1

ϑT
I

[
hc CI CT

I +
1
2

∂hc

∂Tg

∣∣∣∣
T̄g

(θ̄2 − θ̄1)CI ET

]
AI ΔθI ,

with the increments of the displacements and temperatures

ΔuI =
{

Δu2
Ik

Δu1
Ik

}
, ΔθI =

{
Δθ2

I

Δθ1
I

}
. (11.55)

The combination of all contributions from (11.55) then results in the tangent
matrix for contact within the thermo-mechanical analysis using node-to-node
elements

nc∑
I=1

〈ηT
I ,ϑI〉Kc

I

{
ΔuI

ΔθI

}
, (11.56)

with the explicit form of the tangent matrix

Kc
I =

⎡
⎢⎣

∂cN

∂gN
CI CT

I 0

∂hc

∂gN
(θ̄2 − θ̄1)CI CT

I hc CI CT
I +

1
2

∂hc

∂Tg
(θ̄2 − θ̄1)CI ET

⎤
⎥⎦ AI .

(11.57)
Note that this matrix is not symmetric. Hence a solver for a non-symmetric
matrix system has to be applied, even in the case of frictionless heat transfer.
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REMARKS 11.1:

1. A linear constitutive relation for the contact pressure as used in the standard
penalty formulation, see Section 6.3.2, the term ∂cN / ∂gn yields the penalty
parameter and one recovers the penalty formulation, see also (8.27).

2. If no gas is contained in the micro cavities, or if the dependence of the conduc-
tivity through the gas is negligible, then the heat conductance in the interface
only depends upon the contact pressure hc(θ

α , pN ) −→ hs(gN ). For this case,
the last submatrix in (11.57) becomes symmetric and takes the form hc CI CT

I .
3. When a staggered scheme is applied in which one first solves the mechanical

and then the thermal part, as discussed in Section 11.5, then the coupling term
in (11.57) vanishes, since the pressure is fixed when solving the thermal part of
the coupled problem.

11.6.2 Node-to-segment contact element

Node-to-segment contact elements are used for large deformation contact. For
thermo-mechanical contact such elements have been developed by Zavarise
(1991), Zavarise et al. (1992b) or Wriggers and Miehe (1994) for different con-
stitutive equations in the contact interface. In this section only the contribu-
tions due to the thermal and coupled thermo-mechanical parts of the contact
will be considered, since the purely mechanical NTS-element has been stated
in Section 9.1.

Again, the projection of the slave node x2
s onto the master segment (1)–

(2) is needed, see Figure 11.8. The coordinates denoting the surface of the
master segment are given by a linear interpolation x̂1

t (ξ) = x1
1 + ξ (x1

2 − x1
1).

The evaluation of (9.3) yields the surface coordinate ξ̄n+1, which denotes the
minimum distance point on the master segment.

In the same way, the interpolation for the temperature on the master
element surface yields

θ̂1
t (ξ) = ( 1 − ξ ) θ1

1 − ξ θ1
2, (11.58)

with the the nodal values θ1
1 and θ1

2.

Fig. 11.8. Node-to-segment thermal contact element.
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In what follows we formulate the constitutive relationships for the normal
force PN , tangential force TT , the discrete heat flux QN and the discrete
dissipation Dp at the discrete slave node of the contact element under con-
sideration. Assume that ξ̄n+1 and gN n+1 are known from the exploitation of
(9.3).

With this one can compute analogous to (5.12), the normal force at the
slave node

PNs n+1 = CN ( gN n+1 )m. (11.59)

The algorithmic update of the tangential force is performed by the return
algorithm as described in Section 10.5. Note that only one component appears
in the two-dimensional case. The return algorithm then leads for Coulomb’s

friction law, with (10.126), to

TT n+1 =
{

T trial
T n+1 for f trial

s n+1 ≤ 0,
T trial

T n+1 (μPN n+1/ |T trial
T n+1| ) otherwise.

(11.60)

Using (10.129), the frictional dissipation is obtained by

Dp
n+1 =

{
0 for f trial

s n+1 ≤ 0,
TT n+1 (T trial

T n+1 − TT n+1 )/CT Δtn+1 otherwise, (11.61)

where CT denotes the tangential stiffness in the contact interface.
Finally, the discrete heat flux takes the form analogous to (11.17)

QN n+1 = HSo

[
PN n+1/ln+1

H

]ε

[ θ2
s n+1 − (1 − ξ̄n+1) θ1

1 n+1 − ξ̄n+1 θ1
2 n+1 ] .

(11.62)
Here ln+1 is the current length of the master segment (ln+1 = ‖x1

2 n+1 −
x1

1 n+1 ‖).
The contributions of the thermo-mechanical contact in the mechanical and

thermal weak forms (11.36) and (11.37) take the form

Gc
M = δgN n+1 PN n+1 − δgT n+1 TT n+1 , (11.63)

Gc
T = δgQ n+1 QN n+1 − δgD n+1 Dp

n+1 , (11.64)

for the discrete slave node with the mechanical variations analogous to (9.4)
and (9.9) and thermal variations (see interpolation (11.58))

δgQ n+1 = [ ϑ2
s − (1 − ξ̄n+1)ϑ1

1 − ξ̄n+1 ϑ1
2 ] , (11.65)

δgD n+1 = [ ϑ2
s + (1 − ξ̄n+1)ϑ1

1 + ξ̄n+1 ϑ1
2 ]/2 . (11.66)

These equations can now be cast into a matrix formulation. For the mechanical
part, this is given in (9.14) and (9.15). Thus, the virtual mechanical work of
the contact element (11.63) can be written in the matrix formulation Gc

M =
uT · Rc

M n+1 with the mechanical contact element residual
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Rc
M n+1 = PN n+1 Nn+1 − TT n+1 T̂n+1 . (11.67)

In this equation the contact normal force PN n+1 follows from (11.59), whereas
the tangential force TT n+1 is given by the return algorithm (11.60). Due to
this approach, a pure displacement formulation of the contact problem is
possible, which is in contrast to the Lagrangian multiplier technique which
is often used to enforce the non-penetration condition. For a global algorithmic
treatment using Newton’s method, we have to linearize equation (11.67). The
associated formulation for this discretization can be found in Wriggers et al.
(1990).

The matrix formulation of the thermal part (11.64) is similar to the me-
chanical part. As a consequence of the global operator split algorithm dis-
cussed in Section 11.5, and the assumed simplified constitutive equation, the
thermal part is linear.

A formulation completely analogous to that of the mechanical part yields
the matrix representation Gc

T = ϑ · Rc
T n+1 for the virtual thermal work

(11.64), with the thermal contact element residual

Rc
T n+1 = QN n+1 Hn+1 −Dp

n+1 H0 n+1) . (11.68)

Here we have introduced the matrices

ϑ = ( ϑ2
s ϑ1

1 ϑ1
2 )T

,

and

Hn+1 =

⎧⎨
⎩

1
−(1 − ξ̄)

−ξ̄

⎫⎬
⎭

n+1

, H0 n+1 =
1
2

⎧⎨
⎩

1
(1 − ξ̄)

ξ̄

⎫⎬
⎭

n+1

, (11.69)

for the matrix formulation of the thermal variations (11.65) and (11.66). In
(11.68) the discrete contact heat flux QN n+1 follows from (11.62), whereas
the frictional dissipation Dp

n+1 is given by the return algorithm (11.61). The
nodal contact contribution (11.67) and (11.68) have to be added to the global
system of equations.

Which terms of the contact contributions have to be linearized now de-
pends upon the global algorithm used to solve the thermo-mechanical contact
problem.

11.7 Examples

Two examples are discussed here to show the performance of the node-to-
segment contact formulation for thermo-mechanical problems. Both problems
exhibit finite deformations which are modelled by assuming the thermo-elastic
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constitutive equation based on the Helmholtz energy (11.7) and Fourier’s

law (11.11). For the analysis two different strategies could be followed: the fully
coupled or the staggered schemes. The latter are based on the operator split
technique, described in detail in Section 11.5. In the fully coupled analysis, all
coupling terms are taken into account implicitly, whereas the staggered scheme
takes care of the coupling terms explicitly. Here fully coupled treatment is
used for both examples. The time integration which is necessary to solve the
non-stationary second example is performed by an implicit Euler scheme.

All examples are solved using the finite element software FEAP, see
Zienkiewicz and Taylor (2000a). In this code all extensions related to thermo-
mechanical contact analysis, which were discussed in the previous chapters,
are implemented. The meshes are generated by the software tool DOMESH
developed by Rank et al. (1993).

11.7.1 Heat transfer at finite deformations

The first example discusses heat transfer through a changing contact surface
when finite deformations are present. The problem is depicted in Figure 11.9,
which consists of a ring and a foundation. The contact is assumed to be
frictionless. During the analysis steady state conditions are assumed for the
different loading steps. The material parameters for the mechanical part are
E = 1000, ν = 0.3. For the thermal part the heat conductivity coefficient is
given with k = 100, and the heat capacity is c = 1. The thermal expansion
coefficient has the value α = 0.0001. The reference temperature is zero.

In the contact interface we assume frictionless contact. The parameters
in the pressure-dependent interface law for the heat conductance (11.17) are
given as thermal resistance coefficient hc0 = 1.0, Vickers hardness Hv =

Fig. 11.9. Elastic ring in contact with a foundation.
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Fig. 11.10. Normal heat flux versus contact force.

3.0, and ω = 1.5. A temperature T̄ and a displacement ū are prescribed
at the top of the ring. Eighty load steps were performed with a prescribed
displacement of ū = 0.5, see Figure 11.9. In Figure 11.10 the resulting heat
flux in the contact interface is plotted versus the total contact force. The heat
flux increases in a nonlinear way with respect to the normal contact force.
This is related to the change in the contact surface from one contact area in
the middle of the ring to two different contact areas at its sides. Furthermore,
the contact pressure increases due to the loading process, which increases the
prescribed displacement. As a result, a temperature distribution occurs in ring
and foundation which depends heavily on the contact pressure at the contact
interface and the deformed configuration of the ring, see Figure 11.11.

11.7.2 Frictional heating at finite deformations

In the next example the frictional contact of a tyre section with a road is
investigated. This is a problem in which the temperature field, generated by
friction, depends upon the time, leading to non-stationary heat conduction
problem. However, we assume that the process is slow enough that no inertia
forces have to be included in the mechanical part of the weak forms. Again,
finite deformations are assumed. The analysis is performed in different steps.
First the gas pressure in the tyre is increased up to a certain value (inflation
of the tyre). Then the tyre is pressed against the road surface, and finally,
the tyre is moved with a prescribed velocity at its top horizontally across the
road.

The mesh is shown in Figure 11.12 in the undeformed configuration. The
mechanical material properties for the tyre are E = 1000 and ν = 0.3. The
heat conductivity coefficient is k = 5 and the heat capacity is chosen as c = 1.
The thermal coefficient is α = 0.0001 and the reference temperature is zero.
The road material has only a different modulus of elasticity E = 10000.
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Heatflux
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Fig. 11.11. Elastic ring in contact with a foundation.

In the contact interface we assume frictional contact with Coulomb’s law
and a friction coefficient of μ = 0.5. The parameters in the pressure-dependent
interface law for the heat conductance (11.17) are given as thermal resistance
coefficient hc0 = 1.0, Vickers hardness Hv = 3.0, and ω = 1.5. The internal
pressure in the tyre is P = 0.1. The prescribed horizontal velocity at the top
has a value of 7.

During the deformation process, which was computed using 1500 time
steps, frictional sliding occurs in the contact interface, leading to frictional
heating. Thus a heat flux is generated in the contact interface.

To show the general behaviour of the heat transfer mechanism in this
problem, the local heat flux qP

N is measured in point P denoted in Figure
11.12. This quantity is plotted versus the process time in Figure 11.13. It can
be seen that no heat flux occurs in the initial phase (0 ≤ t < 50) when the
tyre is pressed onto the road surface.

During the tangential movement, a positive heat flux with decreasing ten-
dency is observed within 50 ≤ t < 300, which means the heat flows into the
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Fig. 11.12. Elastic tyre in contact with a road.

road surface. This can also be observed in the first two Figures 11.14, which
depict the deformed configurations of the tyre and the temperature distribu-
tions at time t = 150 and t = 250, respectively. At time t = 300 the horizontal
movement is stopped, which leads to a jump in the heat flux. Now heat flows
back from the road into the tyre (see the last two temperature states at t = 350

Fig. 11.13. Heat flux at point P versus time.
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and t = 400 in Figure 11.14). At t = 700 steady state conditions are reached,
and hence the heat flux at point P tends to zero.
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Temp

Fig. 11.14. Temperature distribution in road and tyre due to frictional heating.
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Beam Contact

Many engineering problems involve contact of beams undergoing large dis-
placement. These include robot parts, woven fabrics or racquet strings. In
such cases the beams are either already in contact in the initial configuration,
like woven fabrics, or they come into contact during the motion which can
happen when parts of robots are moving. The contact formulations discussed
in the previous chapters are usually developed for two- or three-dimensional
solids. However, the contact between beams has some specialities which are
related to the description of the beam as a one-dimensional curve in space.
Thus, the formulation of the kinematical contact conditions is different, and
hence will be derived in this chapter in detail.

Since the underlying theories for beams in three-dimensional space are very
complex we will not describe these here. The interested reader should consult
Simo (1985), Simo and Vu-Quoc (1986), Crisfield (1990) or Gruttmann et al.
(2000) for finite element formulations of beams undergoing large deflections
and rotations.

12.1 Kinematics

In this section we describe the kinematical relations which have to be used
when contact between two beams occurs. The beams are mathematically
described by curves in the three-dimensional space. Therefore, we have to
consider basically the contact between two curves. This leads locally to one
contact point as long as the beams are not parallel and have a smooth con-
vex cross-section. We now derive the kinematical relations for the contact
of two curves in space. Most of the formulation is based on Wriggers and
Zavarise (1997), Zavarise and Wriggers (2000) and Litewka and Wriggers
(2002a), which consider the contact of beams in three-dimensional space for
the frictionless and frictional cases.
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12.1.1 Normal contact

Figure 12.1 depicts the geometrical situation of two crossing beams in space.
We parameterize the reference curve (beam axis) of beams Bξ and Bζ by the
convective coordinates ξ and ζ. For simplicity, we assume that the beams have
a circular cross-section with radii rξ and rζ . A more advanced treatment in
which rectangular cross-sections are considered can be found in Litewka and
Wriggers (2002a), however the general formulation does not change because
of that. Thus we proceed here with the more simple case of circular cross-
sections. The geometrical setup for rectangular beams is discussed in Remark
12.1. With the notation introduced, the position of a point of the beam axis
is given in the deformed configuration by

ϕ(B)ξ : xξ(ξ) and ϕ(B)ζ : xζ(ζ) . (12.1)

The contact condition for normal contact can be computed similar to the
minimum distance problem (4.2). However, now we search for the minimum
distance between the two beams. Thus, we do not fix a point at one beam as
in Section 4.1, but search the minimum distance regarding both parameters
ξ and ζ as variables. This leads to

d(ξ, ζ) = min
ξ ,ζ

‖xξ(ξ) − xζ(ζ)‖ = ‖xξ(ξ̄) − xζ(ζ̄)‖ = ‖x̄ξ − x̄ζ‖ , (12.2)

where ξ̄ and ζ̄ denote the position of points on the two beam axes which have
a minimum distance, see Figure 12.2. Since the contact occurs on the beam
surface, we can introduce the gap function

gN = d − ( rξ + rζ ) (12.3)

Fig. 12.1. Geometry of contacting beams.
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Fig. 12.2. Minimum distance of contacting beams.

to measure the minimum distance where the radii of the cross-sections have
to be subtracted from the distance function d. Penetration takes place for
negative values of gN . Hence, the contact condition for the beams can be
written analogous to (4.6) as

gN ≥ 0 . (12.4)

The minimum problem (12.2) is in general for arbitrary curves a nonlinear
problem. The minimum distance is computed from the two conditions

d

dξ
d̂(ξ, ζ) =

xξ(ξ) − xζ(ζ)
‖ xξ(ξ) − xζ(ζ) ‖ · xξ

,ξ(ξ) = 0 ,

d

dζ
d̂(ξ, ζ) = − xξ(ξ) − xζ(ζ)

‖ xξ(ξ) − xζ(ζ) ‖ · xζ
,ζ(ζ) = 0 , (12.5)

which represent a nonlinear system of equations for the two unknown positions
ξ̄ and ζ̄, see Figure 12.2. The solution of this system of equations is provided
by Newton’s method leading to the incremental system of equations

A(ξ , ζ)
{

Δξ
Δζ

}
= −

{
[xξ(ξ) − xζ(ζ)] · xξ

,ξ(ξ)
[xζ(ζ) − xξ(ξ)] · xζ

,ζ(ζ)

}
, (12.6)

with

A(ξ , ζ) =
[
xξ

,ξ · x
ξ
,ξ + [xξ − xζ ] · x,ξξ −xξ

,ξ · x
ζ
,ζ

−xξ
,ξ · x

ζ
,ζ xζ

,ζ · x
ζ
,ζ + [xζ − xξ] · xζ

,ζζ

]
. (12.7)

The nonlinear system (12.5) might have several or no solutions. Here we as-
sume that a unique solution of (12.5) exists. Hence the multiple solution cases
are not considered here, although one has to take these into account in the
algorithmic treatment within the finite element program.
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For straight beams the curvature terms xξ
,ξξ and xζ

,ζζ disappear, and the
tangent vectors xξ

,ξ and xζ
,ζ are constant. Then (12.5) reduces to two linear

equations for ξ̄ and ζ̄, which can be solved directly. This solution can also
be used as a starting point when Newton’s method (see (12.6)) has to be
applied for curved beams.

Note that (12.6) can also be applied to compute the variations and lin-
earizations of ξ and ζ which will be needed in later sections for derivation of
the weak form and its linearization.

Once the solution of (12.5) is known, we can define the normal vector by

n̄ = n(ξ̄ , ζ̄) =
x̄ξ − x̄ζ

‖ x̄ξ − x̄ζ ‖ , (12.8)

which is normal to both beams at the minimum distance point (ξ̄ , ζ̄). In the
later sections concerning beam contact, we assume that the beams are straight
to avoid too complex derivations. This assumption also goes well with the fi-
nite element method, since there beams for large deformation problems are in
most cases based on straight elements. Thus, locally the assumption is then
valid.

REMARK 12.1 : In the case of rectangular beams the definition of the gap func-
tion is more elaborate, since contact can occur at different edges of the beam cross-
section. This is depicted in Figure 12.3 for the case of edge to edge contact. Contrary
to the contact of beams with a circular cross-section, the normal contact force is ec-
centric with respect to the beam axes r1 and r2, and hence a torsional moment is
generated by the normal contact force with respect to rc1 and rc2. This is also the

Fig. 12.3. Gap definition for beams with rectangular cross-sections.
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Fig. 12.4. Gap definition for beams with rectangular cross-sections.

case for a force due to friction, which leads to additional bending moments in the
beam around rc1 and rc2.

However, as shown in Figure 12.4, the situation can become even more complex
in the case of the contact of beams with rectangular cross-sections, since besides the
pointwise contact, described in Figure 12.4.1, other configurations can occur. These
are a line contact of one edge to a surface on the beam, see Figure 12.4.2, and an
area contact of the surface of one beam to the surface of the other beam, see Figure
12.4.3. Within the contact analysis we assume, according to classical beam theory,
that cross-sections of contacting beams do not undergo any deformation, i.e. they
remain plane rectangles, although not necessarily perpendicular to the respective
beam axes as the shear deformation is allowed within a beam element. We can
exclude the fourth configuration in Figure 12.4.4, since this would involve large
finite strains in the beam model. Such a model will not be pursued here, based on
the fact that for such cases a fully three-dimensional discretization is more adequate.

12.1.2 Tangential contact

In the case of the tangential contact, we have to consider the fact that the
contact point also slides on beam Bξ as well as on beam Bζ , in general. Again,
we can compute the sliding distance from the integral (4.16); this leads to two
integrals which describe the total sliding distance for beam Bξ and for Bζ in
the current configuration:
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gξ
T =

t∫

t0

‖ ξ̇ x̄ξ
,ξ ‖ dt and gζ

T =

t∫

t0

‖ ζ̇ x̄ζ
,ζ ‖ dt . (12.9)

Here we have to integrate with respect to the time, see also Section 4.2. Again,
for straight beams the tangent vectors are constant, and the integrals in (12.9)
can be evaluated exactly. We obtain in this case

gξ
T = [ ξ(t) − ξ(t0) ] lξ and gζ

T = [ ζ(t) − ζ(t0) ] lζ , (12.10)

where lξ and lζ denote the beam length of ϕ(B)ξ and ϕ(B)ζ , respectively.
The relative velocity of the contact point is now given with respect to both

beams as ξ̇ x̄ξ
,ξ and ζ̇ x̄ζ

,ζ . This means that both beams slide relative to each
other.

12.2 Variation of the Gap in Normal and Tangential
Directions

The normal gap for two beams in contact was given with (12.2) and (12.3) by

gN = ḡN − ( rξ + rζ ) = ‖xξ(ξ̄) − xζ(ζ̄)‖ − ( rξ + rζ ) . (12.11)

The variation of the normal gap follows with this definition as

δgN = δḡN =
1

‖x̄ξ − x̄ζ‖ ( x̄ξ − x̄ζ ) · ( η̄ξ − η̄ζ ) .

Using the definition of the normal, see (12.8), we obtain a similar result as for
the continuum case, see (4.29):

δgN = ( η̄ξ − η̄ζ ) · n̄ . (12.12)

For a straight beam the tangential gap was formulated in (12.10), leading
to

gξ
T = [ ξ(t) − ξ(t0) ] lξ and gζ

T = [ ζ(t) − ζ(t0) ] lζ . (12.13)

The variation of these two equations yields

δgξ
T = lξ δξ + [ ξ(t) − ξ(t0) ] δlξ ,

δgζ
T = lζ δζ + [ ζ(t) − ζ(t0) ] δlζ . (12.14)

In these equations the variations of the convective coordinates ξ and ζ are
missing. Also, we have to compute the variation of lengths lξ and lζ . The
latter task can be accomplished by assuming that both lengths l are given for
a straight beam by
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Fig. 12.5. Two straight beams with initial gap.

lξ = ‖xξ
2 − xξ

1 ‖ and lζ = ‖xζ
2 − xζ

1 ‖ , (12.15)

where xξ
i and xζ

i are the end points of both beams (in a finite element dis-
cretization these will, for example, be the element nodes), see Figure 12.5.
With these definitions we compute

δlξ = tξ · (ηξ
2 − ηξ

1 ) with tξ =
xξ

2 − xξ
1

‖xξ
2 − xξ

1 ‖
,

δlζ = tζ · ( η̄ζ
2 − η̄ζ

1 ) with tζ =
xζ

2 − xζ
1

‖xζ
2 − xζ

1 ‖
. (12.16)

The derivation of δξ and δζ is more complex. For this we start from the
condition that the gap vector is orthogonal to the beam tangents at the closest
point, see (12.5):

(x̄ξ − x̄ζ ) · x̄ξ
, ξ = 0 ,

( x̄ζ − x̄ξ ) · x̄ζ
, ζ = 0 .

The variation of the first equation yields

( η̄ξ + x̄ξ
, ξ δξ − η̄ζ − x̄ζ

, ζ δζ ) · x̄ξ
, ξ + (x̄ξ − x̄ζ ) · ( η̄ξ

, ξ + x̄ξ
, ξξ δξ ) = 0 .

The same relation can be written down for the second equation above. This
then leads to a system of equations for both variations,

[
āξξ + ḡN bξξ āξζ

āξζ āζζ − ḡN bζζ

] {
δξ
δζ

}
= −b̄ , (12.17)

with

āξξ = x̄ξ
, ξ · x̄

ξ
, ξ , b̄ξξ = n̄ · x̄ξ

, ξξ ,

āζζ = x̄ζ
, ζ · x̄

ζ
, ζ , b̄ζζ = n̄ · x̄ζ

, ζζ . (12.18)
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Here definitions (12.11) and (12.8) have been used. The right-hand side in
(12.17) is given by

b̄ =
{

( η̄ξ − η̄ζ ) · x̄ξ
, ξ + (x̄ξ − x̄ζ ) · η̄ξ

, ξ

( η̄ζ − η̄ξ ) · x̄ζ
, ζ + (x̄ζ − x̄ξ ) · η̄ζ

, ζ

}
. (12.19)

For the contact of straight beams, as shown in Figure 12.5, several terms in
(12.18) and (12.19) disappear. These are the second derivatives of the posi-
tion vectors with respect to the parameters ξ and ζ. Furthermore, the first
derivative yields a constant vector, leading to

η̄ξ
, ξ = η̄ξ

2 − η̄ξ
1 and η̄ζ

, ζ = η̄ζ
2 − η̄ζ

1 . (12.20)

Using this, for the coefficients of Ā we obtain

āξξ = (lξ)2 , āξζ = lξ lζ tξζ and āζζ = (lζ)2 , (12.21)

where the definition tξζ = tξ ·tζ with the unit tangent vectors from (12.16) was
used. Furthermore, for the right hand-side of (12.17) with definitions (12.11)
and (12.8), we obtain

b̄ =
[

lξ 0
0 lζ

] ⎧⎨
⎩

( η̄ξ − η̄ζ ) · tξ +
ḡN

lξ
(η̄ξ

2 − η̄ξ
1 ) · n̄

( η̄ζ − η̄ξ ) · tζ − ḡN

lζ
(η̄ζ

2 − η̄ζ
1 ) · n̄

⎫⎬
⎭ = L b̂ . (12.22)

With these relations for straight beams, equation (12.17) can now be solved
for δξ and δζ: {

δξ
δζ

}
=

1
1 − t2ξζ

[
1
lξ

1
lξ

tξζ
1
lζ

tξζ
1
lζ

]
b̂ . (12.23)

We observe that this system of equations does not have a solution for tξ·tζ = 1,
which means that both beams are parallel. This case has to be excluded here,
and needs special treatment. On the other hand, the equation system (12.23)
decouples for tξζ = 0, which is equivalent to a perpendicular position of the
beams.

Finally, we can insert this result together with (12.16) into (12.14), and
obtain for the variations of the tangential gap

{
δgξ

T

δgζ
T

}
=

1
1 − t2ξζ

[
1 tξζ

tξζ 1

]
b̂ +

{
[ξ(t) − ξ(t0)] tξ · (η̄ξ

2 − η̄ξ
1)

[ζ(t) − ζ(t0)] tζ · (η̄ζ
2 − η̄ζ

1)

}
.

(12.24)
Note that relation (12.23) can also be used to compute the time derivatives

ξ̇ and ζ̇. One only has to exchange the variations η̄ξ and η̄ζ by the velocities
vξ and vζ , respectively.
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12.3 Contact Contribution to Weak Form

Within the finite element analysis the weak form expression for the beam
contact is needed. Since contact takes place at only one point, as described in
the previous section, the contribution of contact to the general weak forms of
a beam is given by

GB
c = FN δgN + FT · δgT +

2∑
j=1

GB
j , (12.25)

where FN is the normal contact force and FT is the force in tangential di-
rection of the contacting beam axes. The weak contribution of the beams,
GB

J , is not considered here in detail; associated formulations can be found in
Bathe and Bolourchi (1979), Simo (1985), Simo and Vu-Quoc (1986), Crisfield
(1990) or Gruttmann et al. (2000) for large deflections and rotations. The nor-
mal force FN is either computed using the Lagrange multiplier method or
approximated by the penalty approach. The variation of the gap gN follows
from (12.12). The force vector in the tangential direction of the beams has the
two components, FT = F ξ

T tξ + F ζ
T tζ , with the unit base vectors defined in

(12.16). Since the tangent force acts in reality on the surface of the beam, with
this definition we have neglected the bending moments due to the eccentricity
of the tangent force with respect to the beam axis. Such terms are considered
in Litewka and Wriggers (2002b). The variation of the tangential gap δgT is
given by (12.24), such that the scalar product in (12.25) can be written as

FT · δgT = F ξ
T δgξ

T + F ζ
T δgζ

T . (12.26)

The tangential force FT follows in the case of friction from a constitutive
relation in the contact interface; see Section 5.2 for different possibilities. Here
for simplicity we use Coulomb’s law. However, other models for friction can
also be applied in the same way.

Let us assume that the normal force FN is given by either a Lagrange

multiplier method FN = λN or by the penalty method FN = εN gN . Using
the relations derived in Section 10.5.2 for Coulomb friction, the following
expressions are obtained for the frictional forces F ξ

T and F ζ
T :

stick: F st α
T = εT gα ζ

T slip: F sl α
T = μFN sign(Fα tr

T n+1) . (12.27)

The superscript α stands here either for ξ or for ζ. The trial values Fα tr
T n+1 for

the tangential forces are computed from

Fα tr
T n+1 = εT gst α

T = ε ( gα
T n+1 − gsl α

T n ) , (12.28)

with the total relative tangential deformation gα
T n+1 at time tn+1 and the

relative tangential slip gsl α
T n at time tn.
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For the application of Newton’s method, the linearization of the weak
form (12.25) is necessary. This leads to

ΔGB
c = ΔFN δgN +FN ΔδgN +ΔFT ·δgT +FT ·ΔδgT +

2∑
j=1

ΔGB
j . (12.29)

In this equation one has to linearize the force components and also the vari-
ation of normal and tangential gaps. The linearization of the normal force
yields

ΔFN = εN ΔgN with ΔgN = (Δuξ − Δuζ ) · n̄ , (12.30)

where the linearization of the normal gap is computed in the same way as the
variation, see (12.12). For the tangential force one has to distinguish between
the stick and slip phases. In the stick phase the linearization leads to

ΔF st α
T = εT Δgst α

T . (12.31)

Again, the linearization of the tangential gap has to be computed in the
same way as for its variation, see (12.24). In the slip phase, (12.27) has to be
linearized

ΔF sl α
T = μΔFN sign(Fα tr

T n+1) + μFN Δsign(Fα tr
T n+1)

= μ εN ΔgN sign(F α tr
T n+1) . (12.32)

Note that the linearization of the second term is zero.
The linearization of the variation of normal, ΔδgN , and tangential gap,

ΔδgT , is straightforward, though quite involved, and hence leads to complex
expressions which will not be reproduced here. The associated formulas can
be found for the normal gap in Wriggers and Zavarise (1997), and for the
tangential gap in Zavarise and Wriggers (2000).

12.4 Finite Element Formulation

The weak form now has to be derived in matrix form for discretization of
the contact contribution. Assuming straight beam elements which are formu-
lated using the Timoshenko beam theory, one can simply use linear shape
functions for all variables. The simplest approximation, adopted here, is the
assumption of a linear function of the current coordinates in the deformed
beam element. This leads to

xα = Xα + uα =
2∑

I=1

NI(α)xα with NI(α) =
1
2

(1 + αI α) , (12.33)

where again, α stands for ξ or ζ. The same ansatz is made for the variations
ηξ and ηζ .
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Now the matrix form of the variation of the normal and tangential gaps
has to be derived to discretize (12.25). From (12.12), with ηξ = 1

2 (1− ξ)ηξ
1 +

1
2 (1 + ξ)ηξ

2 and ηζ = 1
2 (1 − ζ)ηζ

1 + 1
2 (1 + ζ)ηζ

2, we obtain the contribution
of the normal force FN in nc contact points to the weak form:

GN =
nc∑

c=1

ηT
s GN c FN c , (12.34)

with

ηT
c = 〈ηξ

1 ,ηξ
2 ,ηζ

1 ,ηζ
2 , 〉 and GN c =

⎧⎪⎨
⎪⎩

1
2 (1 − ξ̄) n̄
1
2 (1 + ξ̄) n̄
1
2 (1 − ζ̄) n̄
1
2 (1 + ζ̄) n̄

⎫⎪⎬
⎪⎭ , (12.35)

where ξ̄ and ζ̄ are the convected coordinates which define the contact point c
in the beams.

For the contribution of the tangential forces to the weak form, the matrices
follow from (12.24) and (12.26). By introducing

Tc =
1

1 − t2ξζ

[
1 tξζ

tξζ 1

]
, (12.36)

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2
(1 − ξ̄) tξ − gN

lξ
n − 1

2 (1 − ξ̄) tζ

1
2
(1 + ξ̄) tξ +

gN

lξ
n − 1

2 (1 + ξ̄) tζ

− 1
2 (1 − ζ̄) tξ 1

2
(1 − ζ̄) tζ +

gN

lζ
n

− 1
2 (1 + ζ̄) tξ 1

2
(1 + ζ̄) tζ − gN

lζ
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12.37)

and

Bc =

⎡
⎢⎣
−(ξ̄ − ξ0) tξ 0

(ξ̄ − ξ0) tξ 0
0 −(ζ̄ − ζ0) tζ

0 (ζ̄ − ζ0) tζ

⎤
⎥⎦ , (12.38)

for the pair of contact points, c, the weak form for the tangential contact force
can be stated as

GT =
nc∑

c=1

ηT
c GT c FT c with GT c = Ac Tc + Bc . (12.39)

The tangential contact force is here defined as the vector FT
T = 〈F ξ

T , F ζ
T 〉,

and ηc is the variation of the nodal point values of both beams, as defined in
(12.35).
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The matrix form of the linearization of the fully nonlinear case will not be
reported here. It can be found for the frictionless case in Wriggers and Zavarise
(1997), and for the case with friction in Zavarise and Wriggers (2000), for a
beam with circular cross-sections. The complete matrix formulation for rectan-
gular cross-sections is provided in Litewka and Wriggers (2002a) and Litewka
and Wriggers (2002b) for frictionless and frictional contact, respectively.

In the case of a small deformation response, one can disregard the con-
tribution of the linearization of the gap function ΔδgN and ΔδgT and the
dependency of As on the normal gap gN . In this case, the tangent matrix for
normal contact can be stated for the penalty method with (12.30) as follows:

KN
T c = εN GN c GT

N c . (12.40)

For the tangential contributions one has to distinguish the stick phase, which
yields a symmetric matrix, and the slip phase, resulting in a non-symmetric
matrix. The tangent matrix for stick follows from (12.31):

Kstick
T c = εT GT c GT

T c (12.41)

where in GT c the gap distance gN has to be set to zero. In the slip case
one has to start from (12.32), which is stated for only one component of the
friction force. Furthermore, we have to distinguish between sliding in the ξ
direction and stick in ζ, sliding in the ζ direction and stick in ξ, or sliding in
both directions. The latter case leads to the non-symmetric tangent matrix

Kslip
T c = μ εN GT c Sc GT

N c , (12.42)

with the diagonal matrix

Sc =
[

sign(F ξ tr
T n+1) 0
0 sign(F ζ tr

T n+1)

]
. (12.43)

12.5 Contact Search for Beams

The search for contact in the beam is different from the contact search routines
used for two- and three-dimensional solid problems. This stems from the fact
that the typical distinction in slave and master elements is not needed. The
search is based on the following assumptions:

• contact between beams is pointwise (this excludes beams in parallel con-
tact),

• cross-sections of the contacting beams do not deform, and
• contact occurs along the edges of beams; for special cases see Remark 12.1.

The first step of contact search is to find the pair of finite beam elements which
is closest to each other. This step is carried out by considering the mid points
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Fig. 12.6. First stage of contact search – a pair of closest elements.

xIC
1 and xJC

2 of the beams (see Figure 12.6) in the current configuration. The
mid points are defined by

xIC
1 =

1
2

(xI
1 + xI+1

1 ) , xJC
2 =

1
2

(xJ
2 + xJ+1

2 ) . (12.44)

Now the pair of beams which fulfils dmin = minI,J ‖xIC
1 −xJC

2 ‖ is selected as
possible contact pair. This preliminary search yields a rough location of the
contact point. However, it does not necessarily mean that the actual contact
point will be associated with the determined elements.

A complete search which takes into account the local conditions (12.2) is
only performed if

dmin ≤ 1
2

(Lζ + Lξ ) , (12.45)

where Lζ = min(lζ , dζ) and Lξ = min(lξ , dξ) are the minimum of beam
lengths IC and JC, see definition (12.15), and the maximal diagonal of the
beam cross-sections: dζ and dξ. This condition means that an imaginary sphere
has been drawn around the mid point of the elements, and only if the two
spheres of the beams intersect then a local search makes sense. Such a search
strategy is similar to the pin-ball algorithm for solids, discussed in Belytschko
and Neal (1991).

If (12.45) is fulfilled, then one has to compute the minimum distance in
the next step using the local conditions (12.2). In case (12.2) yields a pair of
coordinates (ζ̄ , ξ̄) with −1 ≤ ζ̄ ≤ 1 and −1 ≤ ξ̄ ≤ 1, see definition (12.33),
then the correct element pair in which contact takes place has been found.
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Otherwise, the local condition (12.2) has to be investigated for the neighbour-
ing elements.

REMARK 12.2: For large incremental steps, one has to take care that the beams
do not cross each other without contact having been detected. To prevent such cases,
the following procedure can be used in which two distance vectors are introduced:

dn = xIC
1 n − xJC

2 n and dn+1 = xIC
1 n+1 − xJC

2 n+1 , (12.46)

where n + 1 denotes the current and n the previous time step in the incremental
loading process. One can now distinguish the following cases:

dn · dn+1 > 0 =⇒ axes did not cross

dn · dn+1 < 0 =⇒ axes have crossed

dn · dn+1 = 0 =⇒ 90o rotation.

This procedure works for incremental steps in which the beams do not rotate more

than 90 degrees. However, the latter case is quite unusual, and if it occurs a reduction

of the incremental step has to be used.

12.6 Examples

Two examples are discussed which also include a comparison with three-
dimensional discretizations of beam contact. In the first example, frictionless
contact of three beams is considered, whereas the second example shows the
behaviour of beams in frictional contact. These examples are also discussed in
Litewka and Wriggers (2002a) and Litewka and Wriggers (2002b), and involve
the contact of beams with rectangular cross-sections.

12.6.1 Three beams in frictionless contact

We consider three beams which come into contact during the deformation
process. The beams have an initial configuration as shown in Figure 12.7.
One beam is fixed at its upper and lower end, and is moved by a prescribed
displacement in a negative X-direction between the other two crossed beams
(crossing angle 11.5o) which are clamped at their ends. Furthermore, the tips
of the crossed beams undergo prescribed displacements in the Z-direction,
as shown in Figure 12.7. The beam elements are described in Litewka and
Wriggers (2002a), and the references therein.

The beams are discretized using 10 beam elements each. All beams have
the same data concerning the constitutive behaviour which are stated in the
following. Modulus of elasticity: E = 2 × 104, Poisson ratio: ν = 0.3, beam
length: L = 100, and width of the quadratic cross section b = 5. The initial
gap between the crossed beams is gN 0 = 1. The penalty method is applied
with a penalty parameter of ε = 2.4 · 103 between the crossed beams and
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Fig. 12.7. Initial configuration of the contacting beams.

Fig. 12.8. Load deflection curve for frictionless beam contact.
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Fig. 12.9. Deformed configuration at four stages of the deformation process.

ε = 1.25 · 104 between the “free” beam and the other ones. The choice of
the penalty parameters was dictated by the requirement that the penetration
due to the penalty method should be kept under 1% of the size of the beam
cross-section.

The prescribed displacement of Δ1 = Δ2 = 100 for both ends of the “free”
beam and Δ3 = Δ4 = 10 for the tip deflection of the crossed beams is ap-
plied within 80 loading steps of ΔT = 0.0125. Contact between “free” beam
and crossed ones starts at T = 0.3625, which is marked by the dot in the
load-deflection curve shown in Figure 12.8. An increase of the reaction force
associated with the upper end of the “free” beam occurs at the end of the
process. This is reflected in the deformation of the beams; see Figure 12.9,
which depicts the deformation process by showing four stages of the deforma-
tion process. One can observe that the beams undergo large displacements and
rotations. Within all increments, quadratic convergence is achieved leading to
an average of three iterations per step.

12.6.2 Two beams in contact with friction

Two beams as shown in Figure 12.10 are considered to compare the fric-
tional response computed with beams to the same analysis based on a three-
dimensional contact analysis using solid elements. Beam 2 is a cantilever beam
which is clamped at the right end. Beam 1 has constrained rotations about
the Y -axis at its ends, as well as the constraints resulting from the symmetry
with respect to plane X−Z. The following data are used: dimensions of Beam
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Fig. 12.10. Initial and deformed configuration at four stages of the deformation
process for different values of the friction coefficient.

1: (5 × 5 × 100), dimensions of Beam 2: (10 × 10 × 100), Young’s moduli:
E1 = E2 = 3 · 104, Poisson’s ratios: ν1 = ν2 = 0.17, initial gap: gN 0 = 0.5,
penalty parameters: εN = 2.5 · 104 and εT = 2.5 · 102. Both beams are dis-
cretized using 10 elements. The vertical and horizontal displacements of both
ends of Beam 1 are applied in 50 increments using Δt = 0.02. The analysis is
performed for the frictionless case and two frictional cases with a Coulomb

friction coefficient of μ = 0.5 and μ = 1.0.
Table 12.1 presents the convergence rates and friction status for four se-

lected stages of the process. These stages are also depicted in Figure 12.10.
The solution shows in a clear way the influence of friction, which is reflected in
the deformation of Beam 1. This beam sticks at first and then starts to slide
along Beam 2. All cases are characterized by very good convergence rate with
3 – 5 iterations per step, which is an outcome of the application of Newton’s

method with a consistent linearization of the residual term in Section 12.4.
The results were compared to a full three-dimensional contact analysis using
solid elements. To this end, the program ABAQUS was used. The 8-node brick
elements C3D8 were chosen to discretize beam 2 with a 2 × 2 × 20 element
mesh. For Beam 1 the number of elements was doubled in the X direction,
leading to a discretization with 2 × 2 × 40 brick elements.

The lower surface of Beam 1, which has the finer mesh, was taken as the
slave surface. Comparison of the displacement components ux and uz at the
centre point B of Beam 1 is depicted in Figure 12.11 for the frictionless case
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Table 12.1. Convergence study and friction status

T 0.25 0.5 0.75 1.00

μ = 0.0 Status of beam 2 slip slip slip slip
Status of beam 1 slip slip slip slip
Number of iterations 3 3 3 3

μ = 0.5 Status of beam 2 slip slip slip slip
Status of beam 1 stick stick stick stick
Number of iterations 3 3 3 3

μ = 1.0 Status of beam 2 stick slip slip slip
Status of beam 1 stick stick stick stick
Number of iterations 5 5 3 3

and for the case with frictional coefficient μ = 1.0. The comparison shows
excellent results for the frictionless case where the difference between both
models does not exceed 0.6% for the calculated displacements. The results
for friction depict discrepancies. However, in our opinion a maximum of 10%
difference in the case of large friction (μ = 1.0) can be considered as evidence
of very good performance of the beam model when compared with full three-

Fig. 12.11. Comparison of beam to three-dimensional analysis for μ = 0 and μ =
1.0.
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dimensional analysis. Note the change in the character of the behaviour of
displacement component ux. For the frictionless case it is practically linear,
while for the increasing friction its nonlinearity becomes more pronounced as
the sliding is increasingly limited by increasing frictional force.
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Computation of Critical Points with Contact
Constraints

The postcritical behaviour of contact problems cannot be studied in general
by using standard path-following methods like the arc-length schemes given
by Riks (1972) and others. These methods work well for applications where
pure snap-through appears, even if contact takes place during the deformation
process, e.g. see Simo et al. (1986) and Tschöpe et al. (2003). Besides the
snap-through behaviour of structures, bifurcation can dominate the response,
especially for shell structures. In the case of bifurcation, special algorithms
like branch-switching or related techniques have to be employed if secondary
branches have to be computed, e.g. see Riks (1984) or Wagner and Wriggers
(1988).

An example for bifurcation within a contact problem is given by the buck-
ling of a Euler beam which can come into contact with rigid obstacles, see
Figure 13.1. In this case, path-following algorithms with branch-switching and
contact formulations have to be modified since several post-critical solutions
are possible due to different active contact constraints. These lead to solutions
which are associated with different branches. In general, constraints associ-
ated with contact are inequalities. Thus, special techniques have to be used
to incorporate contact constraints into the formulation.

An interesting aspect is the computation of critical points of a structure
when contact constraints are present.

Fig. 13.1. Buckling of a beam under the presence of contact constraints.
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In Simo et al. (1986) results of a buckling analysis with unilateral contact
using arc-length procedures are published. Due to the emerging inequality
constraints, the underlying mathematics is rather complex. Related literature
is restricted mainly to unilateral contact problems with rigid obstacles, see
Huy and Werner (1986), Endo et al. (1984) or Klarbring and Björkman (1992).
In those papers, the mathematics of path following and critical points with
inequality constraints originating from unilateral contact problems is studied.
Klarbring and Björkman (1992) describe the occurrence of end points in these
cases, where the equilibrium path ends. Those points are not real critical
points, in the sense that the stiffness matrix is not singular.

13.1 Inequality Constraints for Contact

Let us assume that the structure is already discretized. In this case the con-
straint equations are given by nodal values. In this context (see Chapter 4)
the gap or penetration gs associated with a typical slave node s is indicated
by the inequality

gs = (x2
s − x̄1

1) · n̄1 ≥ 0, ∀s ∈ JC . (13.1)

n̄1 denotes the normal to a master segment as defined in Chapter 8, x2
s defines

the current position of the slave node, and x̄1
1 defines the projection of the

slave node x2
s onto the current position of the master segment. Inequality

(13.1) has to be checked for all candidate contact nodes s which are contained
in the finite set JC of possible contact nodes. In general, this set of nodes is
given by all nodes lying on the surface of the contacting bodies. For gs ≤ 0
the constraint equation for a node s becomes active (s ∈ JA), otherwise the
constraint is inactive (s ∈ JI) with JC = JA ∪ JI and JA ∩ JI = ∅.

It should be noted that equation (13.1) is valid for the general contact of
two or more bodies; see Section 4.1 for a detailed description. Here and in
the following, only the case of frictionless contact is considered. The standard
penalty method can be applied to enforce constraint (13.1), and the following
term has to be appended to the discretized form of total potential energy
functional Π (e.g. see Section 6.3.2 equation (6.32)):

Πc(v) =
ε

2

nc∑
s=1

g2
s , ∀s ∈ JA , (13.2)

with the penalty parameter ε → ∞ and nc being the number of slave nodes in
contact. It should be noted that only the active constraints are incorporated
in (13.2). The variation of (13.2) yields an additional term to the residual
vector R

Rc = ε

nc∑
s=1

gsNs, ∀s ∈ JA. (13.3)
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Here, Ns denotes the distribution of the reaction forces in the master element;
see Chapter 8 for details. Thus the replacement of inequality (13.1) by the
penalty term (13.3) yields the discretized weak form for frictionless contact:

Gc(u, λ) = R(u) + Rc − λP = 0 , (13.4)

which is basis for the following study of stability problems with contact.

13.2 Calculation of Stability Points

In this chapter special algorithms for the detection of bifurcation or limit
points are summarized. A criterion for stability is that the second derivative of
the potential energy Π becomes zero. This is equivalent to saying detKT i = 0,
where in the discrete case KT i = ∂G

∂u

∣∣∣
i

is the Hessian or tangent matrix at
a known state ui. For detKT i > 0 the equilibrium path is stable, and for
detKT i < 0 it is unstable.

From the mathematical standpoint, different possibilities exist to calculate
singular points G(v, λ) = 0. One can, for example, use the system

G(u, λ,φ) =

⎧⎨
⎩

G(u, λ)
KT (v, λ)φ
l (φ) − 1

⎫⎬
⎭ = 0. (13.5)

This extended system has been introduced by Werner and Spence (1984)
for the calculation of limit and symmetrical bifurcation points, for instance.
In equation (13.5), l denotes some normalizing functional which prevents the
trivial solution φ = 0. Extended systems like (13.5) are associated with 2n
unknowns, which seem to considerably increase the numerical effort.

The treatment of bifurcation problems, especially the calculation of sec-
ondary branches, requires additional considerations. Near stability points the
associated eigenvalue problem has to be solved in order to calculate the num-
ber of existing branches.

Since the contact constraints are represented by inequalities, we have to
solve an inequality eigenvalue problem, which here is represented by the lin-
earized eigenvalue problem contained in (13.5),

KT (u)φ ≥ ω φ ∀u, φ ∈ V , (13.6)

where V = {u | gs(u) ≥ 0, ∀s ∈ JC}. To solve this linearized eigenvalue
problem we make use of a result obtained by Huy and Werner (1986) for
linear variational eigenvalue inequalities.

Each eigensolution (u, ω) of the eigenvalue inequality (13.6) is a solution
of the eigenvalue equality

(KT (u) − ω 1 ) φ = 0 ∀u, φ ∈ W , (13.7)

where W = {u | gs(u) = 0, ∀s ∈ JA} is a subspace of V being defined by
the active constraints.
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13.3 Extended System with Contact Constraints

To compute singular points in the presence of contact constraints when fric-
tionless contact is assumed, one can apply algorithms which are based on the
idea of the extended system. These are described in detail in Wriggers et al.
(1988) and Wriggers and Simo (1990), for example. Applying the extended
system procedure for the system defined in (13.5) yields, with the tangent
matrix KTc = KT + Kc:⎡

⎢⎣
KTc 0 −P

[KTc φ],v KTc [KTc φ],λ

0T φT

‖φ‖ 0

⎤
⎥⎦
⎧⎨
⎩

Δu
Δφ
Δλ

⎫⎬
⎭ = −

⎧⎨
⎩

GS(u) + GC(u)
KTc(u)φ
‖φ‖ − 1

⎫⎬
⎭ .

(13.8)
Here Kc is the matrix notation for the derivatives of the contact terms Gc with
respect to the displacements (Kc = ∂Gc

∂v ). The penalty method was chosen to
incorporate the contact inequality constraints in the equation system G. The
vector Gc consists of penalty terms that are subjected to the changes in the
active set as described in the previous sections. It can be thought of as two
strategies for the choice of the active set. The first is a constant verification
and reorganization of the active set after each iteration step. The second pos-
sibility is a change of the active set only after convergence has been achieved.
The first time a constraint becomes active the active set is formed and held
fixed until the iteration converges. Thereafter, the active set is verified and
changes are made accordingly. The whole process is repeated until the final
convergence, where no changes in the active set are necessary. Compared to
the first strategy, this means a higher computational effort caused by the ad-
ditional iteration loop. On the other hand, the iteration process might become
more stable by this second approach as changes in the active set occur less
frequently.

The partitioning algorithm can be used without major difficulties for the
solution of equation system (13.8); see Box 14. The numerical derivative that
is used to compute the vectors h1 and h2 deserves special attention:

h1 ≈ 1
ε

[KTc(u + εφ) ΔuP − P ] ,

h2 ≈ 1
ε

[KTc(u + εφ) ΔuG + GS(u) + Gc(u)] . (13.9)

The tangent matrices Kc(u) and Kc(u+ εφ) in (13.9) can differ substantially
if the displacement values u and u + εφ cause a change in the active set. The
result is that the structure of the matrix Kc is no longer the same. To prevent
this, the assembly of Kc(u + εφ) is made based on the active set used for
Kc(u). In other words, when the numerical derivative is computed, no new
search for the closest master segment of each slave node is performed. The
active set is not changed either. The disadvantage is that penetration can
occur, or that adhesive forces are applied for a degree of freedom in the active
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Solve:

[KTc (vi)] Δui+1
P = P

[KTc (ui)] Δui+1
G = −GS(ui) −Gc(u

i)(ui)

Compute:

hi
1 =

1

ε

[
(KTc (ui + εφi) Δui+1

P + −P
]

hi
2 =

1

ε

[
(KTc (ui + εφi) Δui+1

G + GS(ui) + Gc(u
i)
]

Solve:

[KTc (vi)] Δφi+1
1 = −hi

1

[KTc (ui)] Δφi+1
2 = −hi

2

Compute increments:

Δλi+1 =
− φiT

Δφi+1
2 + ‖φi‖

φiT
Δφi+1

1

Δui+1 = Δλi+1 Δui+1
P + Δui+1

G

Update:

λi+1 = λi + Δλi+1

ui+1 = ui + Δui+1 ,

φi+1 = ΔλiΔφi+1
1 + Δφi+1

2

Box 14 Partitioning algorithm for the extended system with contact.

set whose gap was closed but now becomes open. But taking into account the
order of magnitude of εφ with ε = 10−7, these effects are negligible.

13.4 Examples

In this section only the extended system will be studied for various continuum
mechanical contact problems. All the examples of this section were computed
with the finite element program FEAP, where the contact algorithm of Section
10.3.3 and the extended system procedure of Section 13.3 were implemented.
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Fig. 13.2. Block pressing on clamped arch.

13.4.1 Block pressing on arch

A block pressing on an arch is the next example with contact. The geometrical
and material data are to be seen in Figure 13.2. The block is loaded with a
unit load in all the nodes, except for the corner nodes, where half of the load
is specified. The block is located on top of the arch.

The discretization of the arch is 20 layers with 400 elements each, and
the block has 11 layers with 300 elements each. Besides the arch in Figure
13.2 that is clamped, the example was also computed with a hinged arch. A
sideways movement of the block is prevented by fixating the x-displacements
of the upper corner nodes of the block.

Fig. 13.3. Equilibrium path for the block pressing on a clamped arch.
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Fig. 13.4. One step predictions for the block pressing on a clamped arch.

Figure 13.3 shows the equilibrium path and the typical behaviour of a
clamped arch with two limit points. The extended system yields for the
given discretization the exact coordinates with L1 : (uy;λ) = (−35.35; 12.54)
and L2 : (uy;λ) = (−80.95; 9.46). The symmetric deformation of the arch
is given in the smaller pictures. The one step predictions in Figure 13.4 are
quite good; the curve goes through both points. A comparison of one step
prediction with Figure 13.4 confirms the convergence radius of the extended
system computations.

Changing the boundary conditions for the arch in such a way that the
ends are hinged enables bifurcation of the equilibrium path, see Figure 13.5.
The extended system has no problem in locating the bifurcation point B1 :

Fig. 13.5. Equilibrium path for the block pressing on a hinged arch.
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Fig. 13.6. One step predictions for the block pressing on a hinged arch.

(uy;λ) = (−23.88; 11.11) and the limit point L1 : (uy;λ) = (−38.69; 123.05).
The scaled up secondary path deformation associated with the eigenvector in
B1 can be seen in Figure 13.5. The good results of the one step prediction
(Figure 13.6) are in accordance with the convergence radius of the extended
system.

A further interesting load case of this example is the hinged arch with
the block on top of it and a unit displacement prescribed in the upper centre
node of the block. The equilibrium path in Figure 13.7 has no limit point,
only the bifurcation point B1 : (uy;Fy) = (−25.78;−3435) is left. Fy is the

Fig. 13.7. Equilibrium path for the hinged arch with displacement boundary con-
ditions
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Fig. 13.8. One step predictions for the hinged arch with displacement boundary
conditions

reaction force in the upper centre node of the block. In Figure 13.8, the one
step prediction for this load case is given.

13.4.2 Two arches

The next example is the structure of Figure 13.9 with two arches. The lower
arch is clamped, and the sideways movement (x-direction) of the upper arch
is prevented by the boundary conditions in the corner nodes, where the unit
loads are applied.

Since only four node elements with linear shape functions are used, the
question arises as to whether the elimination chosen is sufficient for a proper
computation of the structure. Therefore, a convergence test with different

Fig. 13.9. Outline of the two arches.
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Fig. 13.10. Equilibrium path of the two arches structure for different discretiza-
tions.

discretizations is carried out to see how many elements are necessary. Figure
13.10 shows the results for the three discretizations with 1800, 14, 000 and
30, 000 elements. The curves demonstrate that there is practically no difference
between the 14, 000 and the 30, 000 element curve, so 14, 000 elements can be
considered as sufficient for this example.

Fig. 13.11. Equilibrium path with critical points.
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Fig. 13.12. One step prediction for the two arches structure.

Looking in detail at the equilibrium path of Figure 13.11 reveals four
critical points. Two bifurcation points with B1 : (uy;λ) = (−0.85; 17.21) and
B2 : (uy;λ) = (−4.77; 75.94); and two limit load points with L1 : (uy;λ) =
(−12.94; 108.83) and L2 : (uy;λ) = (−47.73; 42.14) are found. The deformed
arches and the secondary path deformation, respectively, are depicted in the
small pictures next to each critical point.

A comparison of these results with the one step prediction in Figure 13.12
clearly demonstrates the switching of the prediction from one critical point to
another. Again, the similarity of convergence radius of the extended system
and the one step prediction curve is apparent.
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Adaptive Finite Element Methods for Contact
Problems

In this chapter we focus on a relatively new method in the area of finite el-
ement techniques which ensures a successive improvement of the numerical
solution via an adaptive mesh refinement. The main idea is depicted in Fig-
ure 14.1. It shows the basic ingredients of an adaptive method for contact
problems. Part 1 is the determination of the contact, part 2 a solution of the
problem with a given mesh, and finally, the adaptive process in part 3 leads
to an automatic mesh refinement of the discretization. Thus the objective of
adaptive techniques is to obtain a mesh which is optimal, in the sense that
the computational costs involved are minimal under the constraint that the
error in the finite element solution is beyond a certain limit. Since the com-
putational effort can somehow be linked to the number of unknowns of the

Fig. 14.1. Adaptive process for contact problems.
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finite element mesh, the task is to find a mesh with a minimum number of
unknowns or nodes for a given error tolerance.

The adaptive finite element method will be formulated here first for fric-
tionless contact problems in linear elasticity. For this class of problem it is still
possible to develop mathematically sound error estimators. Since standard
contact applications often include friction, we will also derive an error indica-
tor for frictional contact, and discuss its extension in the case of large deforma-
tions. Furthermore error indicators will be developed for thermo-mechanical
contact problems.

Basically, one has two different possibilities to derive error estimators
which can be applied within adaptive methods to refine the finite element
mesh. These are the residual-based error estimators and projection or defect
correction methods, which rely on super convergence properties. Both tech-
niques will be discussed first for geometrically linear problems, and then in
the presence of large deformations.

Let u denote the exact solution and let uh be the discrete finite element
solution. Now we can define the error in the displacement field by

eu = u − uh . (14.1)

In the same way, the error in the stress field can be defined as

eσ = σ − σh . (14.2)

During the last ten years, research activities have been focused on adap-
tive techniques that provide a discretization which is accurate and reliable.
Adaptive techniques rely on indicators and/or estimators which are able to
predict the error given in (14.1) or (14.2). These quantities display the error
distribution of the finite element solution (e.g. see Johnson (1987) and refer-
ences therein). Based on the error distribution, a new refined mesh can then
be constructed which yields a better approximate solution.

The methods rely on error estimators which have been developed so far in
different versions. Estimators which are most frequently used for elastic prob-
lems in solid mechanics are residual-based error estimators, e.g. see Babuska
and Rheinboldt (1978) or Johnson and Hansbo (1992), or error estimators
which use superconvergence properties, e.g. see Zienkiewicz and Zhu (1987).

For frictionless contact problems, a priori error estimators have been de-
rived for linear elastic bodies, e.g. see Kikuchi and Oden (1988) or Hlavacek
et al. (1988). An adaptive method for problems with unilateral constraints
has been developed by Lee et al. (1991) who treated as an example a free sur-
face flow problem. In Wriggers et al. (1994), a residual-based error estimator
has been developed following an approach pursued by Johnson and Hansbo
(1992) for unilateral membrane problems. However, as shown in Wriggers and
Scherf (1998), the Z2 error indicators, due to Zienkiewicz and Zhu (1991),
can also be applied to contact problems. The advantages and disadvantages
of residual-based error estimators and Z2 indicators have been discussed in
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Wriggers and Scherf (1998) for frictionless contact. Due to this discussion,
we give here an overview including residual-based error estimators, projec-
tion based error indicators and error indicators based on dual methods. The
residual-based error measures will be also employed as indicators for contact
with friction.

14.1 Contact problem and discretization

Assume that two bodies come into contact. In that case, the non-penetration
condition is given by (4.6) as gN ≥ 0. Let us recall the variational inequality
(6.10)

a(u,v − u) ≥ f(v − u) ,

which describes the frictionless contact problem in the case of small deforma-
tions. The problem (P) is now to find u ∈ K such that (6.10) is fulfilled for
all v ∈ K with

K = {v ∈ V | (v2 − v̄1) · n̄1 + GN ≥ 0 on Γc}

where V is the space of variations or test functions. Due to the inequality
constraint on the displacement field, this problem is nonlinear.

Different solution techniques can be applied to solve this problem; we
just mention here the Lagrange multiplier approach, the penalty method
or augmented Lagrange techniques. For the rest of the section we focus on
the penalty method for the solution of (P); its mathematical background is
described in Luenberger (1984). This technique replaces (P) by an uncon-
straint problem (Pε) with regard to the contact constraint (4.1) as follows:
Find uε ∈ V such that

a(uε,v) + c−(uε,v) = f(v) ∀v ∈ V , (14.3)

where V, a(uε,v) and f(v) are defined as above, and

c−(uε,v) =
∫

Γc

ε u−
εN vN dΓ . (14.4)

u−
εN has already been defined in (4.12) and vN = v·n̄1. The penalty parameter

ε is a positive constant. It can be shown, see Kikuchi and Oden (1988), that
the solution of (Pε) will converge to the solution of (P) as ε tends to infinity.

To discretize (Pε), we divide Ω into non-overlapping finite elements T of
diameter hT , and introduce a standard finite element space

Vh = {v ∈ V | v ∈ C(Ω), v|T ∈ [P (T )]2, ∀T} , (14.5)

where P (T ) is a space of polynomials of degree pT on T , and pT is a positive
integer. The discrete finite element problem (Ph) for (Pε) is now: Find uh ∈
Vh such that

a(uh,v) + c−(uh,v) = f(v) ∀v ∈ Vh . (14.6)
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14.2 Residual Based Error Estimator for Frictionless
Contact

Error estimators have been derived for frictionless contact problems of linear
elastic bodies, e.g. see Kikuchi and Oden (1988) or Hlavacek et al. (1988). In
this section, we follow the approach which was developed in Johnson (1991) for
the unilateral membrane problem, and extend it to the case of elastic bodies,
see Carstensen et al. (1999). For this purpose a penalty regularization is used
to approximate the constraint problem by an unconstrained one. Thereafter,
an error estimator is formulated which is an extension of the error estimator
in Babuska and Miller (1987).

Let uε and uh denote the exact penalty solution of (Pε) and the discrete
finite element solution of (Ph), respectively. With

e = uε − uh (14.7)

we define an error measure as follows:

r = α‖∇e‖2
L2(Ω) + c−(e, e) , α > 0 . (14.8)

Due to the ellipticity of a(e, e), e.g. see Johnson and Hansbo (1992), we can
estimate

r ≤ a(e, e) + c−(e, e) . (14.9)

By subtracting (14.6) from (14.3), we derive the condition

a(e,v) + c−(e,v) = 0 ∀v ∈ Vh . (14.10)

Adding (14.10) with v = uh − w to the right side of (14.9), we obtain

r ≤ a(e,uε − w) + c−(e,uε − w) . (14.11)

Inserting (14.7) and rearranging terms provides

r ≤ a(uε,uε−w)+c−(uε,uε−w)−a(uh,uε−w)−c−(uh,uε−w) . (14.12)

The first two terms on the right side of inequality (14.12) are, according to
(14.3), equal to f(uε − w).

Next we choose w = Ihuε, where Ih is a projection onto Vh (the nodal
interpolation if uε is smooth), and find that uε − w = e − Ihe. Elementwise
integration by parts of the third term under consideration of the constitutive
equation then leads to

r ≤
∑
T

∫

T

b̂ · (e − Ihe) dΩ +
∑

∂T⊆Γσ

∫

∂T

t̂ · (e − Ihe) dΓ

+
∑
T

∫

T

divσh · (e − Ihe) dΩ +
∑
∂T

∫

∂T

(−σhn) · (e − Ihe) dΓ

−
∑

∂T⊆Γc

∫

∂T

ε u−
N h(e − Ihe)N dΓ . (14.13)
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The last part denotes the contribution due to the penalization of the contact
constraint equation. Here we have defined the normal projection (e− Ihe)N =
(e − Ihe) · n̄1.

We now introduce Γi as the set of faces of elements which are not contained
in Γ . Thus we can write

r ≤
∑
T

∫

T

(divσh + b̂) · (e − Ihe) dΩ

+
∑

∂T⊆Γi

∫

∂T

1
2 [−σhn] · (e − Ihe) dΓ +

∑
∂T⊆Γσ

∫

∂T

(t̂ − σhn) · (e − Ihe) dΓ

+
∑

∂T⊆Γc

∫

∂T

(−σhn) · (e − Ihe) dΓ−
∑

∂T⊆Γc

∫

∂T

ε u−
hn(e − Ihe)N dΓ .(14.14)

The square brackets denote the jump of a function over the element interfaces.
Using the symmetry of the inner product (e− Ihe)N , (14.14) can be rewritten
as

r ≤
∑
T

∫

T

(divσh + b̂) · (e − Ihe) dΩ

+
∑

∂T⊆Γi

∫

∂T

1
2 [−σhn] · (e − Ihe) dΓ +

∑
∂T⊆Γσ

∫

∂T

(t̂ − σhn) · (e − Ihe) dΓ

+
∑

∂T⊆Γc

∫

∂T

(−ε u−
hnn̄1 − σhn) · (e − Ihe) dΓ . (14.15)

The right side of (14.15) can be estimated with the absolute value, and there-
fore

r ≤
∑
T

|
∫

T

(div σh + b̂) · (e − Ihe) dΩ |

+
∑

∂T⊆Γi

|
∫

∂T

1
2 [σhn] · (e − Ihe) dΓ | +

∑
∂T⊆Γσ

|
∫

∂T

(t̂ − σhn) · (e − Ihe) dΓ |

+
∑

∂T⊆Γc

|
∫

∂T

(ε u−
hnn̄1 + σhn) · (e − Ihe) dΓ | . (14.16)

Using the Cauchy–Schwarz inequality and an estimate for the interpo-
lation error (e − Ihe), we obtain

r ≤ C

{∑
T

h2
T ‖divσh + b̂‖2

L2(T )

+
∑

∂T⊆Γi

hT ‖ 1
2 [σhn]‖2

L2(∂T ) +
∑

∂T⊆Γσ

hT ‖t̂ − σhn‖2
L2(∂T )
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+
∑

∂T⊆Γc

hT ‖ε u−
hnn̄1 + σhn‖2

L2(∂T )

⎫⎬
⎭

1
2

‖∇e‖L2(Ω) , (14.17)

where C is a positive constant. Division of (14.17) by ‖∇e‖L2(Ω) provides the
error estimator

α‖∇e‖L2(Ω) +
c−(e, e)

‖∇e‖L2(Ω)
≤ C

{∑
T

h2
T ‖div σh + b̂‖2

L2(T )

+
∑

∂T⊂Γi

hT ‖ 1
2 [σhn ]‖2

L2(∂T ) +
∑

∂T⊆Γσ

hT ‖t̂ − σhn‖2
L2(∂T )

+
∑

∂T⊆Γc

hT ‖ε u−
hnn̄1 + σhn‖2

L2(∂T )

⎫⎬
⎭

1
2

. (14.18)

Inequality (14.18) yields an upper bound for the error, which consists of two
parts: an error in the strain components; and an error resulting from the not
exactly fulfilled contact constraint (4.6).

The error is bounded by the deviation of the discrete solution from equi-
librium and the element size. The first and the third terms of the right-hand
side contribute to the error bound if local equilibrium is violated. Further, the
term −ε u−

hN n̄1 can be interpreted as the contact pressure on Γc. Therefore,
the second and fourth terms also correspond to a deviation from the equilib-
rium condition.

REMARK 14.1: There are different constants which are related to each of the

contributions in (14.17). Thus, using only one constant is not optimal for error con-

trol. However, a good estimation of these different constants needs additional effort.

Two different techniques have to be mentioned in this context. The first is related to

the computation of eigenvalue problems to estimate C, e.g. see Johnson and Hansbo

(1992). The second approach uses the sequence of meshes which is generated within

the adaptive refinement process. In this case, the last generated meshes can be used

to estimate the constant C.

So far we have estimated the error in the displacement field. However,
it is also interesting to find an error measure for the stresses. According to
Johnson and Hansbo (1992) the following residual-based error estimator for
linear elastic problems can be found in for the stresses:

‖σ − σh ‖2
E−1 ≤ ‖hC1 R1(σh) ‖2

L2(Ω) + ‖hC2 R2(σh) ‖2
L2(Ω) , (14.19)

where the quantities are defined on the finite element as follows:

R1(σh) = |R1(σh) | = |div σh + b̂ | on T (14.20)
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R2(σh) = max
S∈∂T

sup
S

1
2hT

| [σh nS ] | on ∂T (14.21)

or R2(σh) =
1

hT
( t̂ − σh n ) on ∂T ∩ Γσ . (14.22)

Here Ω denotes the discretized region, hT is a characteristic length of an
element, T is the area of a finite element and ∂T its surface. The norm ‖·‖E−1

in (14.19) is the complementary energy norm (written in stress space)

‖σ − σh ‖2
E−1 =

∫

Ω

(σ − σh ) · C
−1
0 [σ − σh ] dΩ . (14.23)

In Wriggers et al. (1994) an additional term for the error associated with
contact has been introduced

R3(σh,u) = | εN gN− n̄1 − th| on ∂T ∩ Γc , (14.24)

where the term on the right side corresponds to the local equilibrium in the
contact interface. The term εN gN− n̄q can be interpreted as the contact pres-
sure on Γc.

Adding (14.24) to equation (14.19) leads for the linear elastic contact prob-
lem to the following a posteriori error estimate:

‖σ − σh ‖2
E−1 ≤

3∑
k=1

‖hCk Rk(σh) ‖2
L2(Ω) . (14.25)

A thorough mathematical derivation of the a posteriori error estimator can
be found in Carstensen et al. (1999). Within the finite element discretization,
equation (14.25) has to be evaluated on the element domain, which yields

‖σ − σh ‖2
E−1 ≤ C

∑
T

[ET (hT ,uh, b̂T )]2. (14.26)

ET can be computed for each element in the finite element mesh as follows:

E2
T=h2

T

∫

T

|divσh + b̂ |2dΩ + hT

∫

∂T∩Ω

1
2
| [th] |2dΓ (14.27)

+ hT

∫

∂T∩Γσ

| t̂ − th |2 dΓ + hT

∫

∂T∩Γc

| εN gN− n̄1 − th|2 dΓ . (14.28)

Inequality (14.26) yields an upper bound for the error which is bounded by the
deviation of the discrete solution from equilibrium and the element size. The
first and third terms on the right-hand side contribute to the error bound if
the local equilibrium and the traction boundary conditions, respectively, are
violated. In (14.28) we have introduced the stress vector th = σh n. Local
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equilibrium requires that [th] = 0, which is associated with the second term
where [th] describes the jumps of the tractions over the interface. The fourth
term has already been discussed above.

The error estimator described above yields a measure between the exact
penalty solution of (14.3) and its finite element approximation (14.6). What
is really needed is the error between the exact solution of (6.10) and the
approximate finite element solution (14.6). So far there are no computable
error bounds for contact problems in elasticity. But we can make use of a
result derived by Kikuchi and Oden (1988) to change the penalty parameter
in such a way that an optimal convergence rate of the method is achieved.
To this purpose, we state the result of Kikuchi and Oden (1988) which was
derived for a perturbed Lagrange formulation of the contact problem

‖u − uεh ‖1 + | pN − pN εh |∗ ≤ C3 h + C4 ε−1
N h−1/2. (14.29)

From this equation it is clear that an optimal convergence rate can be obtained
for εN ≈ h−3/2, h being the characteristic length of an element. According to
this relation, we develop now the following update at iteration k + 1 for the
penalty parameter in the contact interface:

εN k+1 = εN 0

(
hk+1

h0

)− 3
2

,

where εN 0 and h0 are the starting values at the beginning of the adaptive
iteration.

14.3 Error Indicator for Contact Based on Projection

Another possibility to derive an error estimator for elastic contact prob-
lems starts directly from the complementary elastic energy norm (14.23). A
simple, but in many cases efficient, error estimator is now provided by the
superconvergent-stress-recovery technique which is due to Zienkiewicz and
Zhu (1987). The equivalence of such error measures with the residual-based
error estimators of the last section has been shown in Verfürth (1996). The idea
to derive these error estimators is based on the fact that many finite element
meshes have superconvergence properties, which means that there are points
in which the stresses are approximated with higher accuracy. By using a pro-
jection procedure, the stresses σ∗ can be computed from the superconvergent
points. It should be noted in passing that the stress-recovery error estimators
also work well if the sampling points are not superconvergence points, see
Babuska et al. (1994). An especially efficient projection technique is provided
by the lumped L2 projection, which is described in detail in Zienkiewicz and
Taylor (1989). In general, the projection procedures assume that the projected
stresses do not have jumps, which needs some special considerations in the
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contact interface (see below). Denoting by P a projection operator, from σ∗

we obtain ∫

Ω

P [σ∗ − σh ] dΩ = 0 , (14.30)

and can then compute an approximation of the error using (14.23):

‖σ − σh ‖2
E−1 ≤

∫

Ω

(σ∗ − σh ) · C
−1
0 [σ∗ − σh] dΩ . (14.31)

This error estimator can be evaluated in an efficient way, and has been shown
to be robust, see Babuska et al. (1994). Within the recovery scheme a simple
polynomial expansion σ∗

i = pa of each component of the improved stress
tensor σ∗ is applied. p contains appropriate polynomial terms, for instance
p = [1, x, y, z]T for a patch of linear 3D-Tetrahedra and a is a set of unknown
parameters. A least square fit minimization

n∑
s=1

(σh
is
− σ∗

i )2 −→ MIN (14.32)

leads to the linear equation system
n∑

s=1

[p ⊗ p ]a =
n∑

s=1

p σh
is

(14.33)

which has to be solved for every tensor component i. Here s are the sampling
points within a patch assembly.

The stress recovery on contact boundaries needs some special consider-
ations, since the contact stresses are continuous but not smooth across the
contact interface. Local equilibrium requires that stress jumps vanish on on
Γc :

[[ pN ]] = 0 with pN = n1 · σ n1

[[ tTα]] = 0 with tTα = a1
α · σ n1

(14.34)

For frictionless problems the tangential traction components must be zero,
which yields tTα ≡ 0 on Γc .

This information will be used during the recovery process of the stresses
to consider the contact conditions implicitly. For this purpose, we search for
the closest node I on Γ 1

c related to node K of Γ 2
c , see Fig. 14.2. All elements,

connected to node K, define the standard patch while all elements, connected
to node I, define an extended patch.

Next a least square minimization is performed with respect to the standard
patch as well as to the extended patch∑

s

(σh
s − Ps as) · (σh

s − Ps as) −→ MIN

∑
e

(σh
e − Pe ae) · (σh

e − Pe ae) −→ MIN
(14.35)
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Fig. 14.2. Extended patch system for stress recovery on Γc. ⊗: sampling point
standard patch , •: sampling point extended patch

where the indices s and e denote values in the standard and the extended
patch, respectively.

Note, that within the SPR-procedure on Γc a polynomial expansion of the
complete stress tensor

σ∗ = [σ∗
xx, σ∗

yy, σ∗
zz, σ

∗
xy, σ∗

yz, σ
∗
zx]T

is computed and has the form

σ∗ = Pa with P(6×24) = diag[p ] . (14.36)

The continuity requirement of p∗N across Γc (14.34) can be formulated as

N · (P̄s as − P̄e ae) = 0 on Γc , with N = n1 ⊗ n1 (14.37)

and analogously for the tractions t∗α

Tα · (P̄s as − P̄e ae) = 0 on Γc , with Tα = n1 ⊗ a1
α (α = 1, 2). (14.38)

For frictionless contact t∗α must vanish and thus

Tα · (P̄s as) = 0 ∧ Tα · (P̄e ae) = 0 on Γc . (14.39)

Note that in the last three equations the scalar product between the dyads
N and Tα and the approximation of σ∗ = Pa yields in total three scalar
equation which enforce the jump conditions (14.34). In what follows we will
consider the frictionless case.

Bars in (14.37), (14.38) and (14.39) mark values which are evaluated at
nodes ∈ Γc. To enforce the boundary conditions (14.37) and (14.39) within
the minimization (14.35) we apply a penalty regularization and arrive at
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∑
s

(σh
s − Ps as)2 + εN [N · (P̄s as − P̄e ae)]2 +

+εT

2∑
α=1

[Tα · P̄s as ]2 −→ MIN

∑
e

(σh
e − Pe ae)2 + εN [N · (P̄s as − P̄e ae)]2 +

+
2∑

α=1

[Tα · P̄e ae ]2 −→ MIN

(14.40)

Finally the coupled linear equation system
[∑

s

Ps ⊗ Ps + εN P̄s (N ⊗ N) P̄s + εT

2∑
α=1

P̄s (Tα ⊗ Tα) P̄s

]
as =

∑
s

Ps σh
s +

[
εN P̄s (N ⊗ N) P̄e

]
ae

[∑
e

Pe ⊗ Pe + εN P̄e (N ⊗ N) P̄e + εT

2∑
α=1

P̄e (Tα ⊗ Tα) P̄e

]
ae =

∑
e

Pe σh
e +

[
εN P̄e (N ⊗ N) P̄s

]
as

(14.41)
has to be solved to obtain the unknown parameter as and ae. Once parameter
as and ae are known, the projected stresses σ∗ follow from (14.36). With these
stresses the error measure (14.31) can be evaluated and used for the adaptive
refinement of the finite element mesh. On can furthermore define an error
within each element by evaluation of (14.31) for a specific element T

E2
T =

∫

T

(σ∗ − σh ) · C
−1
0 [σ∗ − σh] dΩ . (14.42)

REMARK 14.2: So far the error estimators have been developed for small elastic
deformations. In the case of large elastic strains, there is no mathematically sound
basis. However, it should be noted that existence results exist for polyconvex ma-
terials, e.g. see the overview in Ciarlet (1988). These results have been extended
to contact problems in Ciarlet (1988), Kikuchi and Oden (1988) and Curnier et al.
(1992). Thus there is at least an existence result available for contact problems. The
question of uniqueness, also needed for the derivation of error estimators, can of
course not be solved, since problems undergoing large elastic deformations may also
exhibit material as geometrical instabilities (e.g. limit points or bifurcations).

If we now formulate all equations associated with the variational inequality in

the tangent space of a given deformation map, and exclude within this configuration
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instabilities, then the information from these incremental equations can be used for

an error estimate within the incremental step. This means that we can exchange

the stresses in (14.31) by the appropriate nonlinear stress measures when using

the residual-based error estimator. If we employ the error estimator based on the

superconvergent recovery technique, then additionally the incremental constitutive

tensors have to be used in (14.31) to compute the error.

14.4 Error Estimators based on Dual Principles

The adaptive mesh refinement strategies described in the previous sections are
based on a posteriori error estimates in the global energy or L2 norm involving
local residuals or postprocessed stresses of the computed solution. However,
for practical purposes, the energy or L2 norm may be of minor importance.
In general, the variables of interest are displacements or stresses at some
particular points. Recently procedures for the estimation of various kinds of
local error functionals have been introduced in a general framework by Becker
and Rannacher (1996) or Rannacher and Suttmeier (1997). This approach is
developed here for contact problems involving large elastic strains. The error
estimator is evaluated by solving the set of equations for an additional right-
hand side, and applying the classical error estimators (based on residuals or
superconvergent patch recovery). The combination of the discretization errors
for the initial and the dual problems gives the desired error quantity. The
formal approach is given in the following.

14.4.1 Displacement error control

As for residual norm error estimators, the starting point is again the differen-
tial equation for the discretization error e = u − uh:

Lx̂(u − uh) = Lx̂e = b − Lx̂uh = R1 , (14.43)

with the formal differential operator L and the element internal residuals R1.
With η denoting the test functions and a( , ) as defined above, we obtain

the weak form

a(e,η) =
∑
T

⎧⎨
⎩

∫

ΩT

(div τ̂h + f̄) · η dΩ +
∫

∂T∩Γσ

(t̄ − τ̂hn) · η dΓ +
∫

∂T∩Ω

1
2

[th] · η dΓ

⎫⎬
⎭ .

(14.44)
The first integral represents the virtual work done by element internal resid-
uals whereas the second term represents the virtual work done by jumps in
the tractions at the force boundaries.

For edges apart from the structure boundaries, the jumps in the tractions
of both neighbouring elements are the edge residuals represented in the third
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term. The jumps are split by a factor of 1/2 into the two elements sharing the
edge considered.

For simplicity, we use R1 and R2 containing internal and jump residuals,
respectively:

a(e,η) =
∑
T

{(R1,η)ΩT
+ (R2,η)ΓT

} , (14.45)

To estimate the error of a specific displacement in the component i at
point x = x̄, we additionally consider the following dual problem:

div τ (G) + δi(x̄) = 0 , (14.46)

or in weak form
a(G,η) = (δi,η) , (14.47)

where δi is the Dirac delta (unit point load vector) in the direction i, and G
denotes the Green’s function.

Applying the principle of Betti–Maxwell to the error problem (14.45)
and the dual problem (14.47) yields the following relation:

(e, δi) =
∑
T

{(R1,G)ΩT
+ (R2,G)ΓT

} . (14.48)

The term on the left-hand side is the work of a unit load with the error function
e and is equal to the error ei(x̄) of the ith component of the displacement at
point x̄.

Now inserting G in equation (14.45) instead of the test function η, the
local error can be expressed by the bilinear form

ei(x̄) = a(e,G) . (14.49)

Of course, the solution of the dual problem is not known, but it can also be
computed numerically based on the same discretization. It is simply another
load case.

Using the Galerkin orthogonality with Gh as the finite element approx-
imation of G

ei(x̄) = a(e,G − Gh) (14.50)

and applying the Cauchy–Schwarz inequality, the local error is estimated
by the error energy a(e, e) of the primal problem (14.45) weighted by the error
energy a(G − Gh,G − Gh) of the dual problem (14.47):

e2
i (x̄) ≤ a(e, e) a(G − Gh,G − Gh) . (14.51)

The second term serves as the weighting function and filters out the influ-
ence of the overall residuals over the displacement error of interest. Inequality
(14.51) can be computed element wise, applying the estimators (residual-based
or post-processed) described in the previous sections on the primal and dual
problems, respectively:
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e2
i (x̄) ≤

∑
T

a(e, e)T a(G − Gh,G − Gh)T . (14.52)

For instance, a(e, e)T and a(G − Gh,G − Gh)T are computed by applying
the stress-recovery error estimator:

a(e, e)T =
∫

ΩT

( τ ∗(uh) − τ (uh) ) · C
−1 [ τ ∗(uh) − τ (uh) ] dΩ (14.53)

and

a(G − Gh,G − Gh)T =
∫

ΩT

( τ ∗(Gh) − τ (Gh) ) · C−1 [ τ ∗(Gh) − τ (Gh) ] dΩ .

(14.54)
With the same arguments as in the previous section, the stresses required

to evaluate (14.53), (14.54) are obtained from the solution of the corresponding
linear problems.

Therefore, we compute τ̄ (ϕh) and τ̄ ∗(ϕh) from the increase of displace-
ments of a perturbed loading state λ̂ + ελ in the vicinity of the current equi-
librium point (ϕ̂h, λ̂).

In the same way, τ (Gh) and τ ∗(Gh) are obtained from the increase of dis-
placements by applying δi as an additional small load on the current loading
state. Since, for a small load, we will not observe any change in the size of the
contact area, this procedure is also consistent with the assumption that the
contact area Γh

c does not change when δi is applied.

REMARK 14.3: Although the internal energy of an elastic structure loaded by

point loads is infinite, the error for the displacement of a specific finite element node

can be computed simply by applying a nodal force in the dual problem. The smear-

ing effect of elements with finite length leads to the simplest way of regularization

bounding the energy.

14.4.2 Stress error control

Errors for stress variables at a specific point x̄ can be estimated in a straight-
forward manner using the same concept as in the previous section. In contrast
to the local displacement error control, a discontinuity on the related displace-
ment variable must be applied in the dual problem:

div τ (z) +
∂

∂xj
δi(x̄) = 0 . (14.55)

Applying again the reciprocal theorem, and subsequently the Galerkin or-
thogonality, the error in the displacement gradient or respective stress value
can be computed by
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Fig. 14.3. Dual problem for contact pressure.

(
e,

∂

∂xj
δi

)
=

∂ei(x̄)
∂xj

=
∑
T

{(R1, z)ΩT
+ (R2, z)ΓT

} = a(e, z−zh) . (14.56)

To apply a discontinuity to an individual displacement in two or three di-
mensions, some sort of regularization must be applied. The simplest way in the
finite element method is to substitute the displacement jump by equilibrated
forces acting at two neighbouring nodes to point x̄.

The above described concept for local quantities can easily be extended
to arbitrary integral variables like reaction forces or pressure quantities on a
contact interface. In order to estimate the error in boundary reactions, the
displacement discontinuity can be imitated by a line load in the vicinity of
the boundary (see Figure 14.3).

14.5 Adaptive Mesh Refinement Strategy

Based on knowledge of the error distribution, a refined mesh can be con-
structed which yields a better approximate solution. In general, there are
several possibilities to obtain refined meshes. One approach is called the hi-
erarchial method, where elements of an existing mesh are subdivided at parts
where the error measure indicates it. Another method is to define an error
density function and to use this for the generation of a completely new refined
mesh. To obtain an optimal mesh, which means we want the error to be of
the same order in all mesh parts, it is desirable to design the mesh such that
the error contributions of the elements are equi-distributed over the mesh.

The object of an adaptive algorithm is usually stated as a nonlinear op-
timization problem: construct a mesh such that the associated FEM-solution
satisfies

‖σ − σh ‖E−1 ≤ C
∑
T

[ET (hT ,uh, b̂T )]2 ≤ TOL , (14.57)
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with TOL being a given tolerance. Furthermore, the expense to compute uh

or σh should be nearly minimal. The measure ET can be either

E2
T 1 = E2

T from equation (14.28), (14.58)
E2

T 2 = ‖e‖C
T from equation (14.42), or (14.59)

E2
T 3 = e2

i (x̄) from equation (14.52). (14.60)

As a measure of computational work, the total number of degrees of freedom
is chosen. Since the exact solution u is not known, we demand that the error
contributions of all elements yields

∑
T

E2
Tk

≤ TOL , (14.61)

which guarantees that (14.57) is fulfilled, k being 1, 2 or 3, depending on
the choice of error estimator. Here the constant C appearing in (14.26) has
been included in TOL for convenience when the error measure ET 1 is used.
Equation (14.61) serves as a stopping criterion in the adaptive process. To
minimize the number of degrees of freedom during refinement, we require
that the mesh is an optimal mesh, i.e. that the error E2

T is equally distributed
between elements (see Figure 14.4). Ideally, we then have for the elements
I, J K

EI = EJ = EK . (14.62)

With this requirement, for the error contribution of all elements we can write
∑
T

E2
Tk

= N E2
I . (14.63)

Fig. 14.4. Equi-distributed error in finite element mesh.
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N denotes the number of elements in the mesh, and EI the error which is now
associated with all elements according to (14.62). Finally, (14.61) together
with (14.57) yields the refinement criterion,

E2
Tk

≤ TOL

N
. (14.64)

Now we state the overall algorithm of the h-adaptive method for contact
problems. The algorithm includes the following steps:

1. Set initial values: l = 0, λ0 = 0, Δλ, i = 0
2. Generation of start mesh: Mi

3. Loop over load increments : λl+1 = λl + Δλ
a) IF λl+1 > λmax =⇒ STOP
b) Iteration loop to solve contact problem
c) Mesh optimization

• Compute E2
Tk

• IF
∑

E2
Tk

< TOL =⇒ GOTO 3.
• IF E2

Tk
> TOL/N =⇒ refine element T

• Set i = i + 1
• Generate new mesh Mi

– Delaunay triangularization
– Smoothing, if necessary

• Interpolate displacement and history variables of the new mesh
• GOTO 3 (b)

The new mesh is assumed to be generated by a Delaunay triangular-
ization, but different generation techniques like the advancing front method
or others can also be applied (see Sloan (1993) or Rank et al. (1993) for
two-dimensional mesh generation or Schöberl (1997a) for a three-dimensional
meshing tool).

A meshing procedure which combines the Delaunay triangularization and
a subdivision techniques for the generation of meshes consisting of quadrilat-
eral elements is described next. This approach was also used to generate the
meshes of the examples in Sections 11.7.

In the proposed procedure the recursive region splitting is applied for mesh
generation (Figure 14.5). The region which has to be discretized is subdivided
recursively. Within the procedure the nodes are positioned based on a density
function. This defines the local element size on the basis of the error indication.
The element generation then follows by a Delaunay-triangularization, e.g.
see Sloan (1993).

The triangular mesh can now be transformed into a mesh consisting com-
pletely of quadrilaterals. To achieve this goal, two neighbouring triangles are
combined and subdivided into four quadrilaterals. The left over single trian-
gles are then subdivided into three quadrilaterals, as depicted in Figure 14.6.
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Fig. 14.5. Recursive region splitting.

It should be noted that when a background density function is applied to
define the local element size, distorted element geometries cannot be avoided.
To avoid this, a relaxation of the nodes can be applied to improve the shape
of the elements; see Rank et al. (1993) for details.

Fig. 14.6. Conversion: triangular to a quadrilateral mesh.
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14.6 Numerical Examples

In this section we discuss two examples in which different error indicators
and estimators are compared. Furthermore, an example which exhibits large
strains is considered. All computations were performed by using the finite el-
ement program FEAP, which is described in Zienkiewicz and Taylor (1989).
The adaptive meshes for quadrilaterals were constructed with mesh genera-
tors developed in Bank (1990) and Rank et al. (1993). Mesh refinements for
triangular elements are based on the algorithm described in Sloan (1993). The
three-dimensional meshes were created using the mesh generator described in
Schöberl (1997a).

14.6.1 Hertzian contact problem

In this example we apply all error estimation procedures, described within
the previous section, to solve the well known Hertzian problem of an elastic
cylinder (Young’s modulus E = 7000, Poisson’s ratio ν = 0.3) contacting a
planar rigid surface. The cylinder has a radius of r = 1, and is loaded by an
overall load of F = 100.

For this problem an exact solution for the contact pressure can be obtained
analytically:

pmax =

√
F

π r

E

(1 + ν)(1 − ν)
.

Hence we compare the results computed by the adaptive methods directly
to the exact solution. To omit problems related to a point load in elasticity,
the load is distributed over a small surface on top of the cylinder. In order
to simulate the rigid surface we set Young’s modulus to E = 100000 and
Poisson’s ratio to ν = 0.45 in the finite element model. The initial mesh is
depicted in Figure 14.7a.

Fig. 14.7. (a) Starting mesh: 258 elements, (b) and mesh refinement: local error
estimator.
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Fig. 14.8. Convergence behaviour.

As the locally controlled error quantity we use the maximum contact pres-
sure within the method based on duality. Hence, equilibrated vertical forces
are applied centrally on the contact interface.

Three different error measures were applied to perform the adaptive com-
putation. These are the residual-based error estimator due to Johnson and
Hansbo (1992) (see Section 14.2), the Z2 indicator of Zienkiewicz and Zhu
(1987) (see Section 14.3), and a local error estimator developed in Rannacher
and Suttmeier (1997) (see Section 14.4).

Fig. 14.9. Mesh refinement: Z2 error indicator.
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Fig. 14.10. Mesh refinement: residual-based error estimator.

All error measures have been enhanced to include contact, see Wriggers
et al. (2000). For the local error estimator, the error measure chosen was the
maximal contact pressure. Due to (14.56), we then have to apply to equili-
brated force systems in the contact interface. Pictures 14.7(b) and 14.9 to
14.10 show meshes which were obtained using the different error measures.
The final mesh refinement belongs to the converged solution.

The maximum contact pressure is depicted in Figure 14.8 for the different
adaptive strategies. It is compared with the analytical solution of pmax =
494, 83. It is clearly visible that the local error estimator leads a solution which
converges very fast, since it only needs half the number of elements than the
other methods. One can also see that this error estimator, by design, yields
only a refinement where needed, whereas the other two error measures take
the complete solution into account and also refine close to the concentrated
load at the top of the disk. Thus if only the pressure is of interest, the local
error estimator provides the most efficient method. However, if one does not
know where maximal values will appear in the structure then one has to look
for a method which takes all errors in the domain into account. Hence the
residual-based or the Z2-indicator are preferable.

14.6.2 Crossing tubes

In this example we consider two crossing rubber tubes (see Figure 14.11) with
the material data E = 3000 and ν = 0.3. Each tube has a length of L = 100
mm, an outer radius of ro = 50 mm and an inner radius of ri = 30 mm. Due
to symmetry, a one fourth model is used. The tube is fixed at one end and
loaded so that both tubes come into contact. The undeformed state is depicted
in Figure 14.11. The deformed state can be found in Figure 14.12. The mesh
adaption is performed with respect to the global error energy norm and with
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Fig. 14.11. Initial geometry.

a prescribed relative error tolerance of ηerr = 15 %. It leads at the given
deformation state to the adapted mesh shown in Figure 14.13. We see a very
fine mesh developed in the contact zone. That this refinement is necessary
can be observed from the stress field. The principal stresses are reported for
the initial mesh and the adapted mesh in Figures 14.14 and 14.15.

14.6.3 Fractal interface

The approximations of the fractal interfaces are combined with a penalty
regularization based on the minimization of the potential energy after some
appropriate transformations are performed. For this type of contact problem,
there are often asperities with corners on the interfaces which lead to possible
stress concentrations. Furthermore, the convergence of a finite element solu-
tion under a sufficient discretization cannot be determined from the outset.

An adaptive finite element strategy appears to be suitable for such a kind of
contact problem, in that it possesses the properties of automatically adjusting

Fig. 14.12. One fourth of the model, initial mesh.
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Fig. 14.13. Adapted mesh.

Fig. 14.14. σI , initial mesh.

Fig. 14.15. σI , adapted mesh.

the mesh sizes both in the interior of bodies and at the contact zone. Here
we use the residual-based error estimator for adaptive analysis. An in-depth
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Fig. 14.16. Finite elasticity with a fractal interface.

treatment of the underlying mathematical structure can be found in Hu et al.
(2000).

Let us consider the structure of Figure 14.16 with a fractal boundary. This
example was first proposed in Panagiotopoulos et al. (1992), although the
solution did not include adaptive mesh refinement. The system is subjected
to a gravity load in its plane. Large traction loads on the upper boundary
enforce the fractal part to be in contact with the rigid support AB. The body
has been discretized by triangular elements. Finite elasticity, using a Neo-
Hookian constitutive equation (see Section 3) and geometrical nonlinearity are
assumed. The modulus of elasticity is E = 2.1 × 109 N/m2 and the Poisson’s
ratio ν = 0.33. The thickness of the plate is taken to be 0.05 m. We study the
planfication of the fractal surface and the corresponding variations of stress
and displacement fields.

The fractal boundary is defined to be the attractor of the Iterated Function
System IFS (see also Section 5.7) {R

2; w1, w2}, where

w1

{
x
y

}
=

[
0.40 0.0
−0.04 0.60

] {
x
y

}
+

{
0.0
0.0

}

and

w2

{
x
y

}
=

[
0.60 0.0
0.04 0.80

] {
x
y

}
+

{
1.0
−0.1

}
.

We must note here that the above relations describe the IFS on the assump-
tion that the coordinates of the point C are (x, y) = (0.0, 0.0). With this
IFS we calculate the approximations of the fractal interfaces. Note that the
stress and displacements fields of the fractal interface become insignificant
after the fifth iteration. This is because the Hausdorff distance between the
approximation f5 and the attractor f is very small, i.e. the approximation f5

sufficiently approximates the attractor f .
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Fig. 14.17. Initial mesh.

Fig. 14.18. Second mesh refinement.

Fig. 14.19. Stress σ33 distribution for the initial mesh.

The load is applied in one increment on the initial mesh shown in Fig-
ure 14.17. After that, the load is kept constant during the refinement stages.
Figure 14.18 depicts the mesh of the second refinement, which shows a con-
centration of the discretization along the fractal contact surface. The vertical
stresses are reported in Figures 14.19 and 14.20 for the initial and refined
mesh, respectively.

The whole algorithm proved to be stable, although the complicated inter-
faces introduced by the approximation of the fractal interface do not offer an
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Fig. 14.20. Stress σ33 distribution for the second mesh refinement.

ideal framework for a unilateral contact problem. The complexity of the higher
order approximations of the fractal interface caused an increase in the com-
puting time. It is also important to note that the approximation of the fractal
contact boundary Γc does not considerably affect the stress and displacement
fields inside the body. Of course, this is compatible with St. Venant’s prin-
ciple of classical elastostatics, which actually holds for classical boundaries
and for bilateral boundary conditions. The numerical results are quite reli-
able concerning the consideration of possible stress concentration, which can
be seen by comparing Figures 14.19 and 14.20. Indeed, the action of external
and re-entrant corners in each approximation has been appropriately taken
into account by increasing the number of elements around the singular point.

14.7 Error Indicator for Frictional Problems

In the previous section, additional terms for the error associated with normal
contact have been introduced for frictionless contact. Now we want to establish
the same sort of error indicators for contact with friction. Here the mathemat-
ical theory is not developed in so much detail, e.g. see Hlavacek et al. (1988),
although several attempts to estimate the errors a posteriori, e.g. see Lee and
Oden (1994). However, for general applications, involving finite deformations,
error estimators are still missing. Thus, in the case of frictional contact we
use error measures which indicate the error in the contact interface. Again,
we can base the error computations on either residual error measures or error
indicators based on superconvergence properties. Both will be developed in
the following.

Residual error indicator. Let us recall the residual error estimator for
frictionless contact for geometrical linear problems (14.24):

R3(σh,uh) = | εN g−N h n̄1 − th| on ∂T ∩ Γc , (14.65)



14.7 Error Indicator for Frictional Problems 449

which corresponds to the local equilibrium in the contact interface. The term
εN g−N h n̄1 can be interpreted as the contact pressure on Γc. The stress vector
is given by th = σh n̄1.

According to (14.24), we can now introduce an error measure for the fric-
tional part of the contact in the same way:

R4(σh,uh) = | tT n+1 h − th| on ∂T ∩ Γc . (14.66)

In this relation, the frictional stress tT n+1 h is computed via the update for-
mula (10.121) or (10.122).

Adding (14.24) and (14.66) to equation (14.25) yields the following error
indicator for the contact problem:

‖σ − σh ‖2
E−1 ≤ ‖hC1 R1(σh) ‖2

L2(Ω) +
4∑

k=2

‖hCk Rk(σh) ‖2
L2(∂Ω) . (14.67)

Within the finite element discretization, equation (14.67) has to be evaluated
on the element domain, which yields

‖σ − σh ‖2
E−1 ≤ C

∑
T

[ET (hT ,uh, b̂T )]2. (14.68)

ET can be computed for each element in the finite element mesh as follows
(see (14.28) in Section 14.2 and Wriggers et al. (1994)):

E2
T = h2

T

∫

T

|divτh + b̂ |2dΩ + hT

∫

∂T∩Ω

1
2
| [th] |2dΓ (14.69)

+hT

∫

∂T∩Γσ

| t̂ − th |2 dΓ + hT

∫

∂T∩Γc

| εN g−N h n̄1 + tT n+1 h − th|2 dΓ .

Since frictional processes are path-, and with this, time-dependent, an esti-
mation for the magnitude of the time step used to integrate the frictional
constitutive equations (10.120) to (10.122) is still missing. In this study we
neglect this fact, and prescribe the time steps from outside the adaptive algo-
rithm.

Error indicator based on super patch recovery. Now we also state
the error indicator which can be derived using the superconvergence properties
of the projected stress values at the boundary. As before, we can define the
projected stresses by any procedure at the nodes, see Figure 14.2. With this
we obtain the stress tensor at the node mα, see (14.30):

P(σωm α
) −→ σ∗

m α .

The normal and tangential components of the stress vector then follow by
enforcing the boundary conditions (14.37) and (14.38) within the minimization
(14.35).
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As in the case of frictionless contact, we can now apply a penalty regular-
ization to fulfill conditions (14.34and arrive at

∑
s

(σh
s − Ps as)2 + εN [N · (P̄s as − P̄e ae)]2 +

+ εT

2∑
α=1

[Tα · (P̄s as − P̄e ae)]2 −→ MIN

∑
e

(σh
e − Pe ae)2 + εN [N · (P̄s as − P̄e ae)]2 +

+ εT

2∑
α=1

[Tα · (P̄s as − P̄e ae)]2 −→ MIN

(14.70)

Here the matrices and vectors are defined as in Section 14.3. Minimization
yields the coupled linear equation system

[∑
s

Ps ⊗ Ps + εN P̄s (N ⊗ N) P̄s + εT

2∑
α=1

P̄s (Tα ⊗ Tα) P̄s

]
as =

∑
s

Ps σh
s +

[
εN P̄s (N ⊗ N) P̄e + εT

2∑
α=1

P̄s (Tα ⊗ Tα) P̄e

]
ae

[∑
e

Pe ⊗ Pe + εN P̄e (N ⊗ N) P̄e + εT

2∑
α=1

P̄e (Tα ⊗ Tα) P̄e

]
ae =

∑
e

Pe · σh
e +

[
εN P̄e (N ⊗ N) P̄s + εT

2∑
α=1

P̄e (Tα ⊗ Tα) P̄s

]
as

(14.71)
which has to be solved to obtain the unknown parameter as and ae, the
projected stresses σ∗ follow then from (14.36).

The error within the whole domain including contact is computed from
the sum over all elements T , with Ω being the union of all elements. Thus
with (14.31) we have for a specific element T

E2
T =

∫

T

(σ∗ − σh ) · C
−1
0 [σ∗ − σh] dΩ . (14.72)

Due to the solution of (14.70) the normal and tangential contact stress due
to contact are included in this error measure.

14.7.1 Adaptive strategies

As discussed before, we state the adaptive method as a nonlinear optimization
problem: construct a mesh such that the associated FEM solution satisfies
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‖eσ‖ = ‖σ − σh ‖E−1 = ‖u − uh‖E ≤ C
∑
T

E2
T ≤ TOL , (14.73)

with TOL being a given tolerance. Furthermore, the expense of computing uh

or τh should be minimal. The measure ET in (14.73) can be defined according
to (14.69) or (14.72).

Since the optimal mesh changes with the deformation, the data of the
current state of the structure has to be transferred from one mesh to the
other in order to achieve an optimal usage of the computational resources.

In the last section, mesh refinement techniques were applied which are
based on evolving meshes during deformation. As a criterion for re-meshing,
the relative error

η =
(

‖eτ‖2

‖eτ‖2 + ‖τ‖2

) 1
2

(14.74)

can be introduced. The error control now works so that this relative error has
to be limited to a prescribed tolerance ηtol. To obtain a mesh fulfilling the
required tolerance η ≤ ηtol, the element size is locally predicted, leading to an
equally distributed error in the finite element mesh. The element sizes hnew

are then computed from
he

new = he
old

em

‖eτ‖e
, (14.75)

with
‖eτ‖e ≤ em = ηtol[(‖eτ‖2 + ‖τh‖2)/nel]

1
2 . (14.76)

In contact problems with friction the history variables are present, such as
the plastic slip (e.g. see the algorithm in Box 13) which have to be transferred
to the new mesh. Thus we have to use special strategies within a nonlinear
adaptive process.

If history independent problems are considered, the transfer can be done
without problems by projecting the deformation to the new mesh and iterating
the nodal values to equilibrium. If history dependent problems, like frictional
contact or inelasticity, are considered, internal variables have to be transferred.
Such a process, described in Section 14.7.2, cannot be performed without loss
of accuracy.

To avoid such a new source of error due to the transfer of state variables,
a second strategy can be proposed in which no transfer of variables is needed.
Here, for every re-meshing the computation starts again from the first load
step. The density of the elements for a new mesh can be defined by the smallest
local element size which is obtained during computation over all load steps
k = 1, ..., kmax:

he = min
k=1 ...kmax

{he
k} . (14.77)

The procedure ends if the finite element solution for the adapted mesh is
below the prescribed tolerance at all load steps regarding ηk ≤ ηtol, ∀k. This
refinement strategy ensures that the local element size is smaller every load
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step than the element size defined by the average error of a single load step
em. Obviously, (14.77) does not lead to optimal meshes, in the sense that
the local element size is as small for an actual load step within the complete
process.

14.7.2 Transfer of history variables

If an adaptive procedure of evolving meshes is considered, the variables of the
finite element formulation have to be transmitted to the new mesh. These are
the nodal u and internal variables in the solid, like plastic strains, or at the
contact surface, like frictional slip, i = (Ep,gs

T ) which have to be updated
in each load step. Note that the transfer of the available data u ,Ep ,gs

T , . . .
leads in general to an inconsistent dependence of these data on each other in
the new mesh.

Several procedures for the history data transfer are possible, e.g. see Ortiz
and Quigley (1991) and Lee and Bathe (1994). The procedure which is applied
here for the transfer of the inner variables is described in Figure 14.21. The in-
ternal variables are projected via the procedures discussed in Section 14.3 onto
the nodes in the old mesh (left picture in Figure 14.21). Nodal and internal
variables are then transmitted to the nodes in the new mesh (middle picture
in Figure 14.21). Finally, the internal variables are interpolated to the Gauss

points (see right picture in Figure 14.21). This procedure is also applied at the
contact interface. In that case we have to interpolate data related to a curve
in two-dimensional, and related a surface in three-dimensional, problems. The
displacements at the contact interface can be obtained by interpolating the
displacements from the element nodes. This is usually achieved by isopara-
metric interpolations of the adjacent finite elements. However, an improved
interpolation can be obtained using higher order polynomials, e.g. Hermite

polynomials as discussed in Section 9.6.1. In contact formulations, like the
node-to-segment elements, the constitutive data related to the contact inter-
face are stored as nodal values. In that case, the first step in Figure 14.21 can
be omitted within the history transfer.

Fig. 14.21. Transfer of history variables.
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More generally, an arbitrary field variable Φ can be interpolated within
the source domain Ωs and the target domain Ωt by

φs(x) =
ns∑

I=1

NI(x)Φs
I ∈ Ωs , φt(x) =

nt∑
K=1

NK(x)Φt
K ∈ Ωt (14.78)

with the shape functions NI , the nodal values ΦI and the number of nodal
points ns and nt. The projection of the source variables on to the target grid
can be formulated as a minimization problem: Find nt nodal values Φt

K that
minimizes the error norm W

W =
∫

Ω

F [φq(x) − φz(x)] dΩ → MIN (14.79)

where F is a specific function. Commonly a L2-norm of the form

W =
∫

Ω

[φq(x) − φz(x)]2 dΩ

is used. The necessary condition for a minimum of W

∂W

∂Φt
K

= 0 (14.80)

leads to a nt × nt equation system which has to be solved in order to satisfy
(14.79). In the following we will select the error norm

W =
∫

Ω

λ(x) ||φs(x) − φt(x)|| dΩ . (14.81)

By the introduction of the Dirac function δ(x) the weighting function λ(x)
is constructed in such a way that the error field has to be evaluated only at
nodal points xt

λ(x) =
1
nt

nt∑
K=1

δ(x − xt
K) .

With this ansatz the minimization problem (14.79) reduced to

W =
nt∑

K=1

||φs(xt
K) − φt(xt

K)|| =
nt∑

K=1

||φs(xt
K) − Φt

K || → MIN . (14.82)

Condition (14.80) leads to a simple formula for the calculation of the unknown
nodal values Φt

K on the target grid

Φt
K = φs(xt

K) =
nt∑

K=1

NK(xt
K)Φs

K for K = 1, ..., nt . (14.83)



454 14 Adaptive Finite Element Methods for Contact Problems

The shape functions NK in (14.83) are only different from zero for a parent
element that includes xt

K , see Figure 14.22. This is the case if

ξs(xt
K) ∈ [−1; 1] × [−1; 1] (14.84)

holds, where ξ are the local coordinates of the iso-parametric mapping

ξ ∈ [−1; 1] × [−1; 1] → x(ξ) =
nel∑
I=1

NI(ξ)xe
I (14.85)

Once the parent element and its target coordinates ξ̄
s(xt

K) are found the
unknown nodal value Φt

K is given by

Φt
K =

nel∑
I=1

NI [ξ̄
s(xt

K)]Φs
I . (14.86)

In order to determine the target coordinates ξ̄
s(xt

K) the mapping (14.85)
must be inverted. Since an analytical solution is not possible one has to apply
a Newton–scheme that solves xt

K −
∑nel

I=1 NI(ξs)xs
I = 0 iteratively.

Some nodes xt
K may exist that are outside of the domain Ωs, see Figure 14.22.

Such nodes are projected with a closest-point-projection on to the boundary
Γ s of Ωs.

The consideration of friction, wear or frictional heating requires the calcu-
lation of the frictional dissipation dfric in the contact interface according to
(5.23). This is done in the framework of a predictor-corrector algorithm, see
Section 10.5.2.

Fig. 14.22. Data projection source grid to target grid
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The latter one requires the projection of primal variables and history vari-
ables, i.e. the plastic slip gs

T of the previous time step. In order to calculate
the frictional dissipation according to (5.23) the tangential stress tTα and the
plastic slip rate ˙̄ξ

sα
.

The quantity gs
T = ξ̄s αaα, denoting frictional sliding, is defined referring

to the basis aα which is in general different in the source mesh and in the
target mesh. With the relation

gs
T = ξ̄s α

source asource
α = ξ̄s α

source aα
β atarget

α (14.87)

the plastic slip can be transformed from the basis as
α of the source mesh to

the basis atarget
α of the target mesh, where aα

β = aα
source ·atarget

β are the metric
coefficients. With this and the projection of ξ̄s α from the source grid to the
target grid, as described above, the data transfer of the considered problem
is complete.

Independent of the choice of transfer procedure, an error in the transferred
data cannot be avoided. This error stems from two sources: the transfer error
itself, and from the fact that the data in the old mesh are already affected
by the discretization error. Therefore, after transfer the discrete weak form of
equilibrium is in general violated Gh+1(utrans, itrans) �= 0. By iterating the
nodal variables u to equilibrium with the Newton–Raphson scheme for a
fixed set of active contact constraints,

Gh+1(uh+1, itrans) = 0 , (14.88)

the current state in the new mesh is obtained. It should be mentioned here that
the tangential stiffness matrix KT computed with these transferred values can
be badly conditioned, especially in the case of large strains. In addition, we
may also have a large residuum, hence the solution of (14.88) is not easy to
achieve, and may require considerably more iterations than usual. Particularly
for sheet metal forming simulations, this can be a severe problem. In this
context, the transfer of the current state makes the iteration to equilibrium
even more difficult.

In the numerical equilibrium state of the new mesh (14.88), the strains
differ in general from those of the old mesh, whereas the internal variables
itrans remain fixed after transformation to the new mesh. As a consequence,
smaller strains can occur in the new mesh, and hence the stresses can also be
reduced considerably.

14.7.3 Numerical examples

In this section two different problems are discussed. The first is associated
with frictional contact and large elastic deformations, and the second considers
finite inelastic strains with contact. Both computations were performed using
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a two versions of FEAP. The version, used for the first example, had mesh
generation tools directly integrated which were needed for the adaptive finite
element analysis. In the second version the error indicators were computed
and used in an external mesh generater to determine the new adapted mesh,
for more details see Wriggers (2006).

Rubber sealing. We consider the problem of a sealing which is in fric-
tional contact with a rigid part. The sealing consists of an elastic block which
is pressed into two almost rigid parts, fixed at the straight edges. The block is
driven into the rigid parts by a prescribed displacement at the bottom. The
problem and its initial mesh are depicted in Figure 14.23. The error due to the
time history is not considered here. Thus, error indication is based on the error
measure given in (14.69) for stationary problems. Error computation is only
performed at specific load steps in the complete load history, which are chosen
heuristically from engineering observations of the stress fields. As can be seen
from Figure 14.27 by the jumps of the displacements in the 1-direction, the

Fig. 14.23. Problem with initial mesh.

Fig. 14.24. (a) First refined mesh, (b) Second refined mesh.
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Fig. 14.25. Third refined mesh.

mesh is refined at times t = 0.5, t = 0.6, t = 0.8, t = 0.9 and t = 1.0. Refined
meshes which are obtained at t = 0.9 are depicted in Figures 14.24 and 14.25.
These show clearly that the main refinement takes place close to the contact
interface, hence the last term in (14.69) governs the error indication.

Figure 14.26 shows the contribution of the tangential stress. This has been
confirmed by a reference solution using a uniformly refined mesh with over
16,000 degrees of freedom. We see that the adaptive method is more efficient,
since it needs only about 5000 degrees of freedom, and hence fewer unknowns,
to arrive at the same result. This is also confirmed by Figure 14.27, which
shows the evolution of a characteristic displacement in the contact area. Note
that the displacements depict jumps from one mesh to the next, which move
the new displacements close to the reference solution. Such behaviour is not
observed when finite deformations of elasto-plastic solids are treated.

Fig. 14.26. Tangential stress in contact zone,
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Fig. 14.27. Evolution of vertical displacement.

Deep drawing of a sheet. The process of deep drawing of a sheet is sim-
ulated as illustrated in Figure 14.28, where the grey sheet is located between
a punch and a die. The sheet is discretized by shell elements for finite strain
plasticity as described in Wriggers et al. (1996) and Eberlein and Wriggers
(1999). The following geometrical data describe the geometry of the problem

Fig. 14.28. Deep drawing of a sheet.
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Fig. 14.29. NURBS-description of the tools.

(see Figure14.28): the thickness of the sheet which is t = 0.7, and the length
and height of the sheet which are assumed to be L = 160 and H = 140. The
material data of the sheet are Young’s modulus E = 110000, Poisson’s

ν = 0.3, yield stress σY = 200 and linear hardening parameter h = 1200.
The rigid tools, punch, blank holder and die are described with special

smooth Bézier interpolation, leading to NURBS-surfaces, see Figure 14.29.
The contact is formulated using a frictionless penalty method. The discretiza-
tion was derived in Section 9.3.1.

Fig. 14.30. Vertical applied contact force and relative error ηΨ of the deep drawing
of the sheet.
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Fig. 14.31. Last mesh in the final configuration with TOL = 10%.

In the simulation, the die and blank holder are positioned near each other
with a distance of d = 0.1. The punch is pushed after the first touch towards
the sheet in intervals of Δu = 0.05, until it has reached the final position of
u = 50.0.

The adaptive procedure for this type of contact problem was developed in
Han and Wriggers (2002) based on results obtained in Wriggers and Scherf
(1995). Large plastic strains occur in the deformation process, and hence large
errors due to transfer of the current state are expected, see Section 14.7.2.
Therefore, the strategy without transfer is preferable, which computed the
errors within a complete computation of the entire load history based on a
fixed mesh. After that, the whole process is recalculated using a refined mesh
based on the previous error computation.

The adaptive simulations are performed such that the error is limited by
15% and 10% for the relative measure given in (14.74). Again, meshes are
chosen within the adaptive procedure which fulfil the tolerance in the first
load. The sum over the vertical contact forces of the die, and the relative
error of the simulations with respect to η are plotted against the total punch
displacement u in Figure 14.30. Two adaptive re-meshing steps for the sheet
were needed to limit the error within the prescribed tolerances of 15% and
10%, respectively. In Figure 14.31 the last mesh of the final configuration which
fulfils the prescribed tolerance of 10% is shown.
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14.8 Adaptive methods for thermo-mechanical contact

In this section an adaptive method is described which can be applied to
thermo-mechanical contact problems. Non-stationary heat conduction is con-
sidered as well as heating due to frictional sliding and nonlinear heat conduc-
tion through the contact interface.

The weak form of this problem was derived in Section 11.4. It consists of
two coupled forms for the mechanical and the thermal part

GM (uγ , ηγ , θγ) = 0
GT (θγ , ϑγ ,uγ) = 0 (14.89)

with the displacements uγ , the temperature θγ and the corresponding test
functions ηγ and ϑγ of the bodies Bγ .

For both coupled forms the error will be computed based on projection
methods, as discussed in Section 14.3. For this the special projection scheme
provided in (14.35) has to include also the heat flux and the frictional dissi-
pation at the contact interface. Additionally an error indicator for the time
discretization is developed in which the projection method is applied to a
time-space algorithm. Further details can be found in Rieger and Wriggers
(2004).

14.8.1 Staggered solution scheme with independent spatial grids

The key idea to solve the fully coupled equation system (14.89) efficiently is
the introduction of an additive operator split. In Armero and Simo (1992) it
was shown that only an isentropic operator split preserves the contractivity
property of the full problem. This leads to an unconditionally stable staggered
algorithm. Regardless of this fact, the classical isothermal operator split is
applied which was already discussed in Section 11.5. Within this algorithm
the mechanical subproblem is solved first at constant temperature neglecting
heat conduction . This step is followed by the solution of the thermal heat
conduction problem at a fixed mechanical configuration.

Here this solution algorithm is extended such that the spatial discretiza-
tion of the thermal and the mechanical sub-domain is defined independently.
Within this scheme a-posteriori error estimation controls the grid density of
both sub-domains independently. Thus, each mesh can be optimized with re-
spect to its specific solution gradient. The coupling between the two grids is
established by the formal projection operators

P u
s→ t = {ut , ξ̄s

t−1}Ωs → {ut , ξ̄s
t−1}Ωt

P θ
t→ s = {θt}Ωt → {θt}Ωs

(14.90)

which project the primal variables u and θ from the source-domain Ωs to the
target-domain Ωt and vice versa. Formally the scheme, depicted in Figure
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Fig. 14.32. Staggered solution scheme with independent spatial discretization

14.32, is applied iteratively until convergence within the current time step t
is achieved.

In order to discretize the nonlinear variational problem (14.89) the stan-
dard finite-element approach is used. Details on the matrix formulation of the
residual and tangent operators which are needed to apply Newton’s incre-
mental solution scheme were provided in Chapter 11.

Usually the time derivatives arising in (14.89) are approximated by differ-
ential quotients of the form

θ̇h t =
1
hτ

(θ h
n+1 − θ h

n ) , ξ̇sα
t =

1
hτ

(ξsα
n+1 − ξsα

n ) (14.91)

where hτ = tn+1 − tn denotes the time step size.
In order to construct a projection based indicator that estimates the time

discretization error, we state a time-space finite element formulation where
the time axis t ∈ [0, T ] is approximated by means of a finite-element ansatz.
The main idea of this approach was initially proposed in Hulme (1972) for
nonlinear initial boundary value problems and has been applied for nonlin-
ear elasto-dynamics in e.g. Betsch and Steinmann (2001). For the considered
thermo-elastic contact problem the formulation will be modified in a sufficient
way. For this the thermal variational problem GT in (14.89) and (11.37) has
to be reformulated. With the definition of the variable z

z =
∫

ϕ1(Γ 1
c )

ϑ ρ c θ dv −
∫

∂Bc

1
2

(ϑ1 + ϑ2 )dWfric da (14.92)
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and the function H(z)

H(z) =
∫

ϕ1(Γ 1
c )

grad ϑ · (−q)dv−
∫

∂Btq

ϑ(−q̂N )da+
∫

∂Bc

qhc(ϑ2 −ϑ1) da (14.93)

the variational equation GT in (11.37) can be rewritten as a ordinary first
order differential equation

ż + H(z) = 0 for 0 < t < T

with z(0) = z0 .
(14.94)

The infinitesimal frictional work dWfric in (14.92) is defined according to the
frictional dissipation in (5.23)

dfric =
dWfric

dt
=

−dξ̄sα tTα

dt
.

Next we state the time discretization of (14.94). For this a partition 0 =
t0 < t1 < ... < tn+1 = T of I = [0, T ] is split into time intervals In = (tn, tn+1)
of length hτ = tn+1 − tn. Within the sub-interval In the transformation

α(t) =
t − tn

hτ
(14.95)

is introduced which defines a parametric mapping to a master element with
the local coordinate α. With dt = hτ dα and the abbreviation d(·)/dα = (·)′

the finite element formulation of the initial value problem in (14.94) yields

1∫

0

δzh [z′h + hτ H(zh)] dα = 0 ,

with zh(0) = zn .

(14.96)

Here zn denotes the algorithmic approximation to z at time tn from the previ-
ous time step. The trial functions z are represented by the polynomial ansatz

zh(α) =
k+1∑
J=1

NJ (α) zJ (14.97)

where the nodal shape functions NJ (α) coincide with Lagrange polynomials
of degree k such that NI(αJ ) = δIJ and zJ = zh(αJ ) are the nodal values of
zh. Accordingly, the global approximation to z remains continuous. The test
functions δz are represented by a reduced polynomial ansatz of the form

δzh(α) =
k∑

I=1

ÑI(α) δzI (14.98)



464 14 Adaptive Finite Element Methods for Contact Problems

with reduced shape functions ÑI(α) of polynomial order k − 1. Inserting
(14.97) and (14.98) into (14.96) yields to the algebraic equation system

k∑
I=1

k+1∑
J=1

1∫

0

ÑIN
′

J dα zJ +
k∑

I=1

hτ

1∫

0

ÑIH(z) dα = 0 . (14.99)

For our purposes we choose a polynomial degree of k = 1, hence the shape
functions are given by

N1(α) = 1 − α , N2(α) = α , Ñ1 = 1 ,

and (14.99) reduces to

z2 − z1 + hτ

1∫

0

H(zh) dα = 0 . (14.100)

The integral in (14.100) is evaluated using a two point Gauss integration.

14.8.2 Error measures for the coupled problem

Note that since the considered transient problem is path- and time-dependent,
also time discretization errors occur depending on the amount of time steps
used to integrate the governing equations. In this study we formulate an
time discretization error indicator based on the super-convergent projection
method.

Spatial discretization errors. Let us first define the following L2-norms

‖∇eu ‖2
L2(B) =

∫

B

(σ − σh )2 dv , ‖∇e θ ‖2
L2(B) =

∫

B

(q − qh )2 dv (14.101)

as a measure of the spatial discretization error in u and ϑ and the L2-norm

‖∇ez ‖2
L2(In−1)

=
∫

In

( ż − żh )2 dt . (14.102)

as a measure of the time discretization error in z.
Since the exact solution for (14.89) is unknown we approximate σ and q

in (14.101) by the recovered gradients σ∗ and q∗, and the time derivative ż in
(14.102) by its recovered analogue ż∗, respectively. The error norm in (14.102)
is related to the last time step In since ż∗ cannot be computed in the current
time step but in the following increment.

According to the momentum of balance on the contact boundary we re-
quire the improved stresses to be continuous across the interface, see also
Section 14.3,
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[[t∗N ]] = 0 , [[t∗Tα]] = 0 on Γc . (14.103)

The principle of conservation of energy requires the influx of heat due to con-
duction qhc from one side of the contact boundary to be equal and opposite to
that flowing off from the opposite side. Hence we can formulate the require-
ment [[q∗hc]] = 0 where the simple model for the heat flux across the contact
interface (11.17) is used. In case of friction the resulting outward normal heat-
flux q on ∂Bs

c and ∂Bm
c is the sum of the conducted heat flux qhc and a heat

source due to the frictional dissipation dfric

q(i) = q
(i)
hc − 1

2
dfric on ∂Bi

c (i = s,m) . (14.104)

The frictional dissipation is given in terms of the plastic slip rate ˙̄ξ
s α

and the
tangential stress vector tT by, see also (5.23),

dfric = − ˙̄ξ
s α

aα · tT = − ˙̄ξ
s α

tTα . (14.105)

Based on these relations the total heat flux can be written at the contact
interface as

[[q∗ · n]] = −dfric on Γc . (14.106)

In each sub-domain Ωs and Ωe a polynomial expansion for the stress tensor is
obtained according to (14.36) and the expansion q∗

s = Pq
s ·aq

s and q∗
e = Pq

e ·aq
e

of the complete heat flux vector (here for the two-dimensional case)

q∗ = [ q∗x , q∗y ]T

is performed. The unconstrained minimization problems were already de-
scribed in Section 14.3 together with the additional constraints due to me-
chanical contact. Here we will only discuss the additional terms due to non-
stationary thermal problem

∑
i=s,e

∫
Ωi

(qh i − q∗
i )

2 dΩ +
∫

Γ s
c

εN [n1 · (qh s − q∗
s) + dfric]2 dΓ

+
∫

Γ e
c

εN [n1 · (qh e − q∗
e) + dfric]2 dΓ −→ MIN

(14.107)

with N = n1 ⊗ n1 and T1 = n1 ⊗ a1
1. The minimization problems (14.107)

and (14.35) lead to two linear systems of equations which are coupled in the
unknowns aσ

e , aσ
e and aq

e, aq
e, respectively. With these solutions the heat flux

q∗ is known and the error measures (14.101) can be evaluated (the same holds
for the mechanical error computation, here the solution of (14.41) together
with (14.101) leads the error estimation).

Super-convergent Patch Recovery on the time axis. Within the
patch of two time steps Tn ∪ Tn+1, see Figure 14.33, we apply a linear poly-
nomial expansion of the improved time gradient ż∗
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Fig. 14.33. Time patch (left) and time-discretization error (right)

ż∗(t) = pτ (t) · aτ with pτ (t) = [ 1 , t ] . (14.108)

The least square minimization problem
∫

Tn∪Tn+1

[ żh(t∗) − ż∗(t) ]2 dt → MIN (14.109)

together with the super-convergent time-points

t∗1 =
1
2

[ tn + tn−1 ] , t∗2 =
1
2

[ tn+1 + tn ] .

yields the linear equation system
∫

Tn∪Tn+1

pτ ⊗ pτ dt aτ =
∫

Tn∪Tn+1

pτ żh dt . (14.110)

Its solution is aτ . Knowing this solution the error measure (14.102) can be
computed.

14.8.3 Adaptive method for the coupled problem

Spatial adaptivity. As discussed before, we will state the adaptive method
as a nonlinear optimization problem in which a u-mesh (Ωu) and a θ-mesh
(Ωθ) have to be constructed such that the associated FEM–solutions satisfy

ηu =
||∇eu||2L2(Ωu)

||∇eu||2L2(Ωu) + ||∇uh||2L2(Ωu)

≤ ηTol
u

η θ =
||∇e θ||2L2(Ωθ)

||∇e θ||2L2(Ωθ)
+ ||∇θh||2L2(Ωθ)

≤ ηTol
θ (14.111)
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where ηu and ηθ are the relative errors in the mechanical and thermal mesh,
respectively, and ηTol

u and ηTol
θ are given tolerances. Furthermore the require-

ment for an optimal meshes means that the element error is equally distributed
between all nu

el, respectively all nθ
el elements in the adapted mesh. This leads

to
nu

el∑
T=1

||∇eu||2L2(Ωu
T

) = nu
el ēu ,

nθ
el∑

T=1

||∇e θ||2L2(Ωθ
T

) = nθ
el ēθ

where

ēu =
ηTol

u

nu
el

(||∇eu||2L2(Ωu) + ||∇uh||2L2(Ωu))

ēθ =
ηTol

θ

nθ
el

(||∇eθ||2L2(Ωθ) + ||∇θh||2L2(Ωθ))

are the average element errors for the mechanical and the thermal mesh,
respectively. Based on this result the new local element sizes can be predicted

hu
new = hu

old

(
ēu

||∇eu||L2(ΩT )

) 1
p

, hθ
new = hθ

old

(
ēθ

||∇e θ||L2(ΩT )

) 1
p

where p is the polynomial order.

Time Adaptivity. According to (14.111) the relative time discretization
error in the time-interval Tn = tn − tn−1, see Figure 14.33, is defined as

ητ
n =

‖∇ez ‖2
L2(In)

‖∇ez ‖2
L2(In) + ‖ żh ‖2

L2(In)

. (14.112)

From the requirement
ητ

n ≤ ητ
Tol (14.113)

the new time step size can be predicted

hτ,new
n = hτ,old

n

ητ
Tol

ητ
n

which is used to re-compute the time step Tn if condition (14.113) is violated.

14.8.4 Example

Sliding of a rubber tyre on a surface is considered. In the initial configuration
the rubber tyre is loaded by an internal pressure pi and by a vertical force of
2Fv. Due to that it comes into contact with the flat surface, see Figure 14.34.
For simplicity the tyre is modelled without the belt, bead apex core and rim
flange. The material data of the tyre and the ground are stated in Table 14.1.
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Fig. 14.34. Initial mesh and loads

The real contact situation on the rim flange is replaced by a prescribed
velocity v̄, which results in a tangential movement of the tyre. The rim flange
and the lower end of the ground have a prescribed relative temperature of
ϑ̄ = 0K. All other boundaries with exception of the contact zone are supposed
to have adiabatic conditions.

After an initial phase of sticking the tyre slides tangentially over the ground
and is heated due to frictional dissipation in the contact zone. At the end of
the sliding movement the tyre snaps back elastically to its final position. The
history of the loading process is schematically depicted in Figure 14.35. The
adaptive algorithm starts for the mechanical subproblem with a prescribed
relative error tolerance of η̄u = 15% at t = t1. The thermal sub-problem
is not solved until t = t2 since frictional heating is initiated not until then.

Tyre Ground

Bulk modulus K 333 N/mm2 3333 N/mm2

Shear modulus μ 35 N/mm2 3846 N/mm2

Thermal expansion α 0.1 · 10−3 K−1 0.1 · 10−4 K−1

Thermal conductivity k 0.2 N/sK 0.2 N/sK

Heat capacity cp 0.2 · 10−3 mm2/s2K 0.4 · 10−3 mm2/s2K

Density ρ0 1.0 · 10−9 Ns2/mm4 3.0 · 10−9 Ns2/mm4

Friction coefficient μ 0.4

Interfacial Parameter hc0 150 N/sK

Interfacial Parameter Hv 100 N/mm2

Interfacial Parameter ε 1.5

Table 14.1. Material- and Interfacial Data
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Fig. 14.35. Load-History: internal pressure and tangential movement

After that its adaptive solution is performed with a given error tolerance of
η̄θ = 15%.

Figure 14.36 depicts the indicated relative error for the mechanical and
the thermal mesh within the staggered solution scheme. Once the prescribed
tolerance is exceeded for one sub-problem a new adapted mesh is generated.
One can see that the error computation for the mechanical sub-problem stops
at t4 when the tangential movement is finished. The thermal sub-problem
has still to be solved until the heat conduction becomes stationary. One can
observe by the spacing of the dots that the adaptive time step control enlarged
the time increment during this solution period.

Some adapted meshes are depicted in Figure 14.37. These depict a signifi-
cant grid concentration in both, the mechanical and thermal mesh evolution.
This behaviour of the adaptive scheme is due to the complex solution gradient
starting from the contact area, see temperature field and effective heat flux
q eff =

√
qi qi in Figure 14.38.

Fig. 14.36. Indicated relative error ηu (left) and ηθ (right)
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It can also be observed that the global progressive mesh optimization for
both subproblems develops quite different, although the error tolerances are
identical.

Fig. 14.37. Evolution of adapted mechanical and thermal meshes



14.8 Adaptive methods for thermo-mechanical contact 471

Fig. 14.38. Temperature (left) and effective heat flux q eff (right)



A

Gauss integration rules

In finite element computations we always have to evaluated integrals, e.g. the
weak form or the tangent matrices. These integrations can be performed on
the element level, see Section 8.3, or as for example in the mortar or Nitsche

discretization schemes for contact on segment level, see Sections 8.4 and 8.4.3.
Since isoparametric elements are usually employed for the discretization, an
exact integration is no longer possible. Thus we need numerical integration.
These are usually performed on the reference element Ω�, see Chapter 7.
Here we focus especially on contact problems, hence the integration rules are
only stated up to two dimensions. These are needed in Chapter 8. For three-
dimensional rules applied for three-dimensional solids we refer to Zienkiewicz
and Taylor (2000b) or Dhatt and Touzot (1985).

A.1 One-dimensional Integration

Since integration is carried out in finite element analysis in the reference con-
figuration, ξ ∈ [−1 ,+1], all values have to be transformed to this configura-
tion: ∫

(X)

g(X) dX =

+1∫

−1

g(ξ)
dX

dξ
dξ =

+1∫

−1

g(ξ)Je(ξ) dξ . (A.1)

g(ξ) is the function which has to be integrated and Je is the Jacobian of the
transformation to the reference configuration which can be computed using
the isoparametric map defined in Section 7.1 by

Je =
dX

dξ
=

n∑
I=1

∂NI(ξ)
∂ξ

XI , (A.2)

where NI are the shape functions and XI are the nodal coordinates. The
integration will be done numerically, since the product g(ξ)Je(ξ) is in general
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Table A.1. One-dimensional Gauss integration

np p ξp Wp

1 1 0 2

2 1 1 /
√

3 1

2 1 /
√

3 1

3 1 −
√

3 / 5 5 / 9

2 0 8 / 9

3 +
√

3 / 5 5 / 9

no longer a polynomial. Hence, the integral (A.1) will be approximated by the
sum

+1∫

−1

g(ξ)Je(ξ) dξ ≈
np∑

p=1

g(ξp)Je(ξp)Wp . (A.3)

Wp are weighting factors and ξp denote the coordinates of the evaluation
points. The locations ξp and the weighting factors Wp are stated in Table A.1
up to the order of np = 3 for a Gauss integration.

Polynomials of order p = 2np − 1 are integrated exactly by np evaluation
points. These rules can be used for two-dimensional contact elements, e.g. see
Section 8.3.

A.2 Two-dimensional Integration

For evaluation of the weak form in (3.59) which is valid for two-dimensional
problems, or for evaluation of the contact element (8.60) or (8.65), we need an
integration of the interpolation functions and its derivatives over the element
domain Ωe. For this purpose, it is advantageous to transform the integral to
the ξ–η coordinate system in the reference element Ω�:

∫

(Ωe)

g(X) dA =
∫

(Ω�)

g(ξ) det Je(ξ) d � =

+1∫

−1

+1∫

−1

g(ξ , η) det Je dξ dη . (A.4)

Integration over Ω� is performed by a numerical quadrature formula, since
the product g(ξ) det Je(ξ) does in general not yield a polynomial. Thus, we
obtain

+1∫

−1

+1∫

−1

g(ξ , η) det Je dξ dη ≈
np∑

p=1

g(ξp , ηp) det Je(ξp , ηp)Wp . (A.5)
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Table A.2. Two-dimensional Gauss quadrature for rectangular elements

m np p ξp ηp Wp Position of points

1 1 1 0 0 4

3 4 1 −1 /
√

3 −1 /
√

3 1

2 +1 /
√

3 −1 /
√

3 1

3 −1 /
√

3 +1 /
√

3 1

4 +1 /
√

3 +1 /
√

3 1

5 9 1 −
√

3 / 5 −
√

3 / 5 25 / 81

2 0 −
√

3 / 5 40 / 81

3 +
√

3 / 5 −
√

3 / 5 25 / 81

4 −
√

3 / 5 0 40 / 81
5 0 0 64 / 81

6 +
√

3 / 5 0 40 / 81

7 −
√

3 / 5 +
√

3 / 5 25 / 81

8 0 +
√

3 / 5 40 / 81

9 +
√

3 / 5 +
√

3 / 5 25 / 81

The weighting factors Wp and the coordinates of the quadrature points ξp

and ηp are contained in Table A.2 for a Gauss quadrature up to a number
of np = 3 × 3 points. These integration rules are exact for polynomials up
to the order i + k ≤ m. We note that the integration rules follow from the
one-dimensional integration rules via a product formula. Usually, Gauss rules
are applied in finite element computations due to their accuracy. Thus we do
not discuss other rules here. More quadrature rules can be found in Dhatt
and Touzot (1985), for example.

The transformation to the reference element is different for triangular el-
ements. In general, we obtain the following relation:

∫

(Ωe)

g(X) dA =

1∫

0

1−ξ∫

0

g(ξ , η) det Je dη dξ, (A.6)

which again can be evaluated using the quadrature rule

1∫

0

1−ξ∫

0

g(ξ , η) det Je dη dξ ≈
np∑

p=1

g(ξp , ηp) det Je(ξp , ηp)Wp . (A.7)

Table A.3 contains the associated quadrature points and weighting factors for
an element with side length 1. The formulas are exact for polynomials ξk ηl
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Table A.3. Two-dimensional Gauss quadrature for triangular elements

m np p ξp ηp Wp Position of points

1 1 1 1 / 3 1 / 3 1 / 2

2 3 1 1 / 2 1 / 2 1 / 6
2 0 1 / 2 1 / 6

3 1 / 2 0 1 / 6

2 3 1 1 / 6 1 / 6 1 / 6
2 2 / 3 1 / 6 1 / 6

3 1 / 6 2 / 3 1 / 6

3 4 1 1 / 3 1 / 3 -27 / 96
2 1 / 5 1 / 5 25 / 96

3 3 / 5 1 / 5 25 / 96
4 1 / 5 3 / 5 25 / 96

up to the order m (with m ≥ k + l). Again, different quadrature rules with
different quadrature points or higher accuracy can be found in Zienkiewicz
and Taylor (1989) or Dhatt and Touzot (1985), for example.
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Convective Coordinates

Frequently, in computational solid mechanics a special parameterization of the
bodies under investigation is performed using convective coordinates. This is
also convenient to formulate the contact constraint equations for finite defor-
mations, see Chapter 4. This is because the deformed surface of a body which
has to be considered for the set up of contact constraints can be described
best by convective coordinates.

The three-dimensional as well as two-dimensional formulation of a surface
will be stated here using convective coordinates. These can be viewed as co-
ordinates which are attached to the body, and thus deform with the body, as
shown in Figure B.1. In general, the idea is to write the cartesian coordinates
{XA} and {xi} as functions of the convective coordinates {Θj}, j = 1 , 2 , 3,

XA = X̂A (Θ1, Θ2, Θ3) , xi = x̂i (Θ1, Θ2, Θ3) , (B.1)

which can then be applied to formulate the equation for a solid in convective
coordinates. In compact form we state X = X̂ (Θj) and x = x̂ (Θj). If we
want to describe a surface using such coordinates, then only two coordinates
are necessary, as will be shown later.

A tangent vector to the coordinate lines in a point X in B is computed via

Gj =
∂X
∂Θj

= X, j . (B.2)

Assuming sufficient smoothness, the same holds for a point which is described
by ϕ (X, t) in ϕ(B):

gj =
∂ϕ (X, t)

∂Θj
= ϕ, j . (B.3)

Using the chain rule, together with (B.2) and (B.3),

gj =
∂ϕ (X, t)

∂X
∂X
∂Θj

= FGj (B.4)

follows. This means that the tangent vectors have the same transformation
rule as the line elements dx and dX, see equation (3.5). With (B.4) we obtain
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Fig. B.1. Convective coordinates in B and ϕ(B).

the following form of the deformation gradient:

F = gi ⊗ Gi . (B.5)

The tangent vectors are covariant vectors which are connected to the con-
travariant vectors via gi · gk = δ k

i . Using equation (B.4), we observe

FGi · AGk = δ k
i −→ A = F−T , (B.6)

with the transformation tensor A = F−T for the contravariant base vectors.
Hence, it is relatively easy to apply the pull back operation and the push

forward in the convective setting. The four possible transformations are

gi = FGi Gi = F−1 gi

gi = F−T Gi Gi = FT gi . (B.7)

Since covariant and contravariant base vectors denote the base for vectors and
tensors, equations (B.7) can be applied for pull back and push forward oper-
ations. As an example, we consider the push forward Green–Lagrangian

strain tensor, which yields the transformation (3.22)

E =
1
2

(gik − Gik)Gi ⊗ Gk (B.8)

=
1
2

(gik − Gik)FT gi ⊗ FT gk = FT

[
1
2

(gik − Gik)gi ⊗ gk

]
F .

For contact one has to describe the surface S of the bodies in contact.
This can be done by embedding the contact surface into a three-dimensional
continuum. In general we can describe, like in shell theory, the deformation
of the continuum surrounding the contact surface by



B Convective Coordinates 479

ϕ(ξ1 , ξ2 , ξ , t) = ϕS(ξα , t) + ξ n(ξα , t) with ξ ∈ [−h

2
,+

h

2
] (B.9)

where ξα, the Greek index α has values of 1 and 2, are the convective coor-
dinates and ϕS describes the deformed surface of a solid . The normal vector
n is perpendicular to the surface and describes together with h the expansion
into the third direction. Note that this is not needed for the description of the
surface which is given by ϕS alone.

The same procedure also holds for the initial or reference configuration:

X(ξ1 , ξ2 , ξ , t) = XS(ξα , t) + ξ N(ξα , t) (B.10)

where N is the normal vector of the initial surface. The covariant base vectors
with regard to the surface description in the initial configuration introduced
above are (B.2)

Gα(ξ1 , ξ2 , t) =
∂X
∂ξα

= XS,α + ξ N,α = Aα + ξ N,α

G3(ξ1 , ξ2 , t) =
∂X
∂ξ

= N (B.11)

where Aα = ∂XS

∂ξα are vectors tangent to the surface S. These can be used to
compute the normal vector

N(ξ1 , ξ2 , t) =
A1(ξ1 , ξ2 , t) × A2(ξ1 , ξ2 , t)

‖A1(ξ1 , ξ2 , t) × A2(ξ1 , ξ2 , t) ‖ . (B.12)

In the current configuration, the covariant base vector a given by

gα(ξ1 , ξ2 , t) =
∂ϕ

∂ξα
= aα + ξ n,α

g3(ξ
1 , ξ2 , t) =

∂ϕ

∂ξ
= n (B.13)

where the tangent vectors follow from (B.9) in the same way as in (B.11):

aα(ξ1 , ξ2 , t) =
∂ϕS

∂ξα
= ϕS,α . (B.14)

The normal vector is defined by the cross product

n(ξ1 , ξ2 , t) =
a1(ξ1 , ξ2 , t) × a2(ξ1 , ξ2 , t)

‖a1(ξ1 , ξ2 , t) × a2(ξ1 , ξ2 , t) ‖ . (B.15)

Note that
aα · n = 0 and n · n = 1 (B.16)

Now one can define the metric tensor aαβ and the curvature tensor bαβ of the
deformed surface as follows:
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aαβ = aα · aβ ,

bαβ = bβα = −aα · n,β = aα ,β · n . (B.17)

Using the metric tensor, one can introduce the contravariant base vectors

aα = aαβ aβ with aαβ aβγ = δα
γ . (B.18)

With these relations one can rewrite the deformation gradient in (B.5)

F = (aα + ξ n,α ) ⊗ Gα + n ⊗ N (B.19)

which yields for ξ = 0 the deformation gradient related to the surface

FS = aα ⊗ Aα + n ⊗ N (B.20)

A vector v which lies in the tangent plane can be stated either with respect
to the covariant or contravariant base,

v = vα aα = vα aα with vα aαβ = vβ . (B.21)

For an arbitrary three-dimensional vector w, one has the representation

w = wα aα + w3 n = wα aα + w3 n , (B.22)

where w3 = w3 and 〈a1 ,a2 ,n 〉 are the base vectors.
The derivative of a vector w with respect to the convective coordinates

yields
∂w
∂ξβ

= w,β = wα
,β aα + wα aα ,β + w3

,β n + w3 n,β . (B.23)

The derivatives of the base vectors 〈a1 ,a2 ,n 〉 with respect to the convective
coordinates have to be considered here, since the base vectors are not constant
on arbitrary surfaces. The derivation of the base vectors can be expressed using
the Christoffel tensors, Γ δ

αβ , and the metric and curvature tensors from
(B.17):

aα ,β = Γ δ
αβ aδ + bαβ n with Γ δ

αβ = aα ,β · aδ , (B.24)

n,α = −bβ
α aβ with bβ

α = aαδ bδβ . (B.25)

This leads to

w,β =
(
wα

,β + wδ Γα
δβ − w3 bα

β

)
aα +

(
w3

,β + wα bαβ

)
n . (B.26)

However, as we usually approximate the surfaces in this book either by the
isoparametric formulation or by other functions (e.g. Bézier polynomials; see
Section 9.6), we can compute the derivatives in (B.23) directly in the finite
element discretization process. Hence, the Christoffel tensors Γ δ

αβ and the
curvature tensors βαβ and bα

β do not have to be computed explicitly; for details
see Eringen (1962).
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When using the convective description, the following conditions can be
applied to simplify the formulations:

d

dt
[aα · n] = ȧα · n + aα · ṅ = 0 ,

d

dt
[n · n] = n · ṅ = 0 , (B.27)

d

dt
[aα · aβ ] = aα · ȧβ + ȧα · aβ = 0 . (B.28)

To model the frictional response, one has to introduce the differential of
the arc-length ds of a curve Θα(t) (the sliding distance) on the surface. It is
given by

ds =
√

aαβ Θ̇α Θ̇β dt . (B.29)

The arc-length s between two parameter values t0 and t1 follows from

s =

t1∫

t0

√
aαβ Θ̇α Θ̇β dt . (B.30)



C

Parameter Identification for Friction Materials

A parameter identification is needed when experimental data of friction tests
have to be fitted to an existing constitutive relation for friction.

The identification of the friction material parameters is based on the min-
imization of a least squares functional. For this purpose, the following opti-
mization problem is regarded:

∑
i

(
tT i − t̃T i

)2 → Min , (C.1)

with the experimental results t̃T i and the tangential stresses tT i evaluated
using the new frictional law depending on the material parameters aj .

A requirement for a minimum of this functional is
∑

i

(
tT i − t̃T i

) dtT i

daj
= 0 . (C.2)

To evaluate (C.2), it is necessary to calculate the frictional stresses as well
as their derivatives with respect to the material parameters. Depending on
the type of problem, (C.2) leads either to a linear system of equations for the
unknown parameter values or to a nonlinear one. In the latter case, a New-

ton type procedure has to be applied to solve this equation. The necessary
ingredients for the case of frictional contact are provided next.

To obtain the frictional stresses and their derivatives, the following fric-
tional law in a general form, including hardening (here only the two-dimensional
case is considered), is used:

linear elastic (stick) law: tT = εT ge
T = εT ( gT − gp

T )
slip rule ġp

T = λ ∂fs

∂tT

hardening ẇ = λr(tT , w)
Kuhn–Tucker conditions fs ≤ 0, λ ≥ 0, fsλ = 0 .

(C.3)

In this set of equations the slip function fs and the hardening function r(tT , w)
still have to be specified; for examples see Section 5.2. Here, for demonstration
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purposes, a special choice is made for the slip function:

fs = | tT | − tN

[
a1w

1 + a2w + a3w2
+ a4 arctan(a5w)

]
, (C.4)

and the hardening function
r = 1 , (C.5)

leading to
slip rule ġp

T = λ ∂fs

∂tT
= λsign(tT )

hardening ẇ = λr(tT , w) = λ .
(C.6)

To solve the parameter identification problem, a time discretization, according
to Section 10.5, first has to be carried out:

γ = λΔt (C.7)

tT n+1 = εT (gT n+1 − gp
T n+1)

gp
T n+1 = gp

T n + γn+1
∂fs

∂tT

wn+1 = wn + γn+1 r(tT , w) .

(C.8)

This result can be transformed into a nonlinear system of equations with three
unknowns tT n+1, wn+1 and γn+1:

R =

⎧⎨
⎩

fs n+1

−wn+1 + wn + γn+1r(tT , w)
tT n+1

εT
− gT n+1 + gp

T n + γn+1
∂fs

∂tT

⎫⎬
⎭ = 0 . (C.9)

For the special choice of the slip function (C.4), this yields

R =

⎧⎨
⎩

fs n+1

−wn+1 + wn + γn+1
tT n+1

εT
− gT n+1 + gp

T n + γn+1sign(tT n+1)

⎫⎬
⎭ = 0. (C.10)

To obtain the frictional stress tT , R = 0 is solved with Newton’s method:

HΔφi+1 = −R
φi+1 = φi + Δφi+1 .

(C.11)

with R from (C.9) or (C.10) and

φ =

⎧⎨
⎩

tT n+1

wn+1

γn+1

⎫⎬
⎭ . (C.12)

The tangent matrix H is given by

H =

⎡
⎢⎣

∂fs

∂tT

∂fs

∂w 0
γ ∂r

∂tT
−1 + γ ∂r

∂w r
1

εT
+ γ ∂2fs

∂t2
T

γ ∂2fs

∂tT ∂w
∂fs

∂tT

⎤
⎥⎦ (C.13)
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for R from (C.9), and results in

H =

⎡
⎢⎣

sign tT −tN

(
a1(1−a3w2)

(1+a2w+a3w2)2 + a4a5
1+a2

5w2

)
0

0 −1 1
1

εT
0 sign tT

⎤
⎥⎦ (C.14)

for R from (C.10).
Now the derivatives of the frictional stresses with respect to the material

parameters ai of the frictional law have to be calculated.
The total differentiation of R with respect to the material parameters

yields
dR
daj

=
∂R

∂φn+1

dφn+1

daj
+

∂R
∂φn

dφn

daj
+

∂R
∂aj

. (C.15)

Here dφ / daj are the sensitivities of the variables φ (C.12) from the frictional
law. Note that the sensitivities of the last time step have to be taken into
account in (C.15), because of the history dependence of the frictional law.

(C.15) yields an equation system for the derivatives of the frictional stresses
with respect to the material parameters dφn+1 / daj :

H φ̂j n+1 = − ∂R
∂aj

− ∂R
∂φn

dφn

daj
(C.16)

with

φ̂j n+1 =

⎧⎪⎨
⎪⎩

dtT n+1
daj

dwn+1
daj

dγn+1
daj

⎫⎪⎬
⎪⎭ . (C.17)
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abrasive wear, 106
accelerations, 325
accumulated sliding distance, 92
active constraints, 414
active set strategy, 117
adaptive methods, 426

coupled problems, 464
dual error estimators, 436
friction, 451
mesh refinement, 439
projection methods, 432, 469
residual-based error measures, 428
staggered solution, 464
time error, 468
transfer of history variables, 454, 455

adhesion, 102, 361
algorithm, 361
friction, 103
normal contact, 102
time integration, 361
viscosity, 102

approach of two bodies, 74
arc-length, 483
asperities, 72
augmented Lagrange method, 127, 340

barrier method, 126
beam contact, 393

contact condition, 395
contact search, 404
Coulomb friction, 401
discretization, 402
gap function, 394

normal vector, 396
slip path, 397
tangent matrix, 404
tangential gap, 400
variation, 398
weak form, 401

Bezier interpolation, 288
BFGS update, 347
bifurcation, 413
block Gauss–Seidel method

nonlinear, 350
body force, 38
boundary lubrication, 100
bounding box, 314
bucket search, 315

Cauchy stress, 46, 71
Cauchy theorem, 38
central difference scheme, 326
Christoffel tensor, 482
closest point projection, 229, 244, 285
coating, 87
condition for stick, 62
contact

bars, 18
bifurcation, 413
finite strains, 116

contact algorithms
active set method, 348
Dirichlet–Neumann method, 350
dynamic contact, 354
Lagrange multiplier method, 338
linear complementary problem, 349
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partitioning method, 342
penalty method, 336, 359
SQP method, 346
Uzawa method, 340, 359

contact conductivity, 371
contact constraints, 186

continuous, 60
discrete, 190, 196, 202, 210, 321, 331

contact discretization
large deformation, 228
small deformation, 185

contact element
Bezier interpolation, 288
Hermitian interpolation, 284
node-to-edge, 252
node-to-node, 190, 253, 381
node-to-segment, 384
node-to-surface, 243, 248
segment-to-segment, 208
smooth interpolation, 282
surface-to-surface, 196

contact interface
fractal surface, 107
gas conductance, 373
heat conduction, 370
heat flux, 468
micromechanical approach, 72
radiation, 375
spot conductance, 372

contact normal, 59
contact search, 313

beam contact, 404
area check, 321
bounding box, 315
grid cell algorithm, 317
heapsort algorithm, 318
node-to-segment, 320
non-uniqueness, 320
octree method, 317
spatial search, 316
superquadrics, 318

contact segments, 208
intermediate line, 211
residual, 212
tangent matrix, 213

contact terms
linearization, 142

contact-impact, 354
continuum element

three-dimensional, 170, 180
two-dimensional, 176

contravariant basis, 482
contravariant vectors, 480
convective coordinates, 479, 481
Coulomb friction, 77, 78, 126, 194, 239,

299, 389, 401
dynamic law, 79
integration, 363
regularization, 79

Coulomb law, 14
Coulomb–Orowan friction law, 86
Courant criterion, 326, 327
covariant vectors, 480
critical points

contact, 413
extended system, 415

cross-constraint method, 130
curvature tensor, 64, 481

debonding, 102
deformation gradient, 33, 170, 368
Delaunay triangularization, 441
density, 38
direct constraint elimination, 122, 213
Direct elimination method, 135
directional derivative, 50

contravariant basis, 51
covariant basis, 51

discretized equations
dynamics, 174

dissipation rate, 106
distance function, 59
dual formulation, 334
dynamic friction coefficient, 78

eigenvalue problem, 415
equation of motions, 324
error estimators

dual principles, 436
residual-based, 428

error indicators
friction, 451
superconvergence, 432, 452

Euler backward scheme
friction, 362

existence, 114, 116
explicit time integration, 326
extended system, 415
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feasible solution, 348
Fourier law, 369
fractal contact interface, 107, 448
fractal graph, 108
fractal interpolation function, 108
friction, 14

anisotropic law, 85
augmented Lagrange method, 128
bench mark test, 307
Coulomb–Orowan law, 86
dissipation, 82, 364
elastic-plastic approach, 81
homogenization, 94
metal-forming, 86
moving cone, 237, 364
path, 63
penalty method, 359
polymer, 88
rubber, 88
Shaw law, 87
slip increment, 362
soil, 91
symmetric treatment, 360
time integration, 357
time integration for soil, 365
uniqueness, 114
Uzawa algorithm, 359

friction coefficient, 78, 91, 92
material pairings, 78

friction cone, 272
frictional dissipation, 468
frictionless

augmented Lagrange method, 127
frictionless contact, 71, 248, 252, 253,

282, 288, 415

gap, 12, 58, 59, 414
non penetration condition, 60
penetration function, 60

gap function, 60, 186, 190, 196, 210,
220, 229, 244

mortar method, 261
gas, 374
Gauss integration, 220

mortar element, 275
one-dimensional, 476
two-dimensional, 476

grid cell algorithm, 317

heapsort algorithm, 318
heat conductance, 382
heat conduction

gas, 373
radiation, 375
spots, 372

heat flux, 370
contact interface, 468

heat flux vector, 377
Hertz–Signorini–Moreau conditions, 71
high contact precicion, 72
high contact precision, 340
history data transfer, 455

friction, 457
history dependent problems, 454
Holm–Archard law, 105
homogenization, 94
hyperelastic material, 44, 153

Neo-Hookian, 45
rate form, 46

ill-conditioning, 340
augmented Lagrange method, 129

impact, 25
implicit time integration, 326

friction, 362
incremental elasticity tensor, 54
incremental hyperelastic constitutive

equation, 46
initial stress, 54
initial value problem

thermo-mechanical contact, 376
interior point method, 126
intersection check, 315
isoparametric elements, 160

computation of gradients, 162
deformations, 161
one-dimensional shape functions, 163
quadrilateral elements, 166
three-dimensional interpolation, 167
triangular elements, 165
two-dimensional shape functions, 165

iterated function system, 107

jamming, 337

Kuhn–Tucker–Karush conditions, 13,
15, 71

Lagrange multiplier
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algorithm, 338
mortar method, 259

Lagrange multiplier method, 118, 133,
187, 332

Lagrange multipliers, 16
Lame constants, 45
large deformation

contact, 228
large sliding, 228
line search, 347
linear complementary problem, 349
linearization, 142

constitutive equations, 52
normal gap, 144
normal vector, 144
stick case, 148
strain measures, 51
surface coordinate, 143
tangential part, 147
variation of gap function, 250
weak form, 53, 333

load parameter, 323
local balance of momentum, 40, 114
low contact precision, 70
lubrication, 76, 99

elasto-hydrodynamic, 99
viscosity coefficient, 101

mass matrix, 172, 187, 325
mathematical programming, 117
mean plane distance, 74, 131
merit function, 347
metric tensor, 64, 481
micromechanical approach, 72
minimization problem, 331
minimum distance, 58, 229, 244, 285
mortar method, 188, 213, 351

finite deformations, 255
friction, 272
frictionless, 257
gap function, 261
linear interpolation, 259
penalty formulation, 263
quadratic interpolation, 264
residual vector, 262
small deformations, 215
tangent matrix, 263
weak form, 257

moving cone algorithm, 240, 364

moving friction cone, 237

Newmark method, 328
Newton method, 49, 174, 324, 326, 358,

363, 383, 395, 485
linearization, 53

Nitsche method, 123, 136, 188, 219
node-to-edge element, 252
node-to-node element, 190, 253, 381

friction, 194
frictionless, 190
Lagrange multipliers, 191
penalty method, 192
thermo-mechanical contact, 382

node-to-segment element, 228, 237, 282,
351, 384

Bezier, 288
friction, 231, 293
Hermite, 282
Lagrange multiplier, 234, 235
linearization, 234
penalty method, 234
variation, 229

node-to-surface element
quad, 243
triangle, 249

nominal stress, 71
non-matching grids, 188, 207
non-penetration condition, 60
normal contact

constitutive equation, 74, 129
non penetration condition, 71
statistical model, 74

normal vector, 59, 481
numerical derivative, 416

octree method, 317
operator split

thermo-mechanical contact, 379
operator split algorithm, 380

parallel computers, 350
parameter identification, 93, 94, 485
penalty method, 17, 120, 134, 190, 249,

282, 290, 332, 336, 414
mortar approach, 263

penalty parameter, 120, 337
estimation, 337

penetration, 59, 414
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penetration function, 60, 120
perturbed Lagrange formulation, 125,

204, 208
ploughing, 77
polymer

friction, 88
friction coefficient, 91

potential energy, 43
contact, 117

projection tensor, 71

quadratic program, 348
quadratic program , 346
quadratic shape functions

mortar method, 264

radiation, 375
rate of wear, 106
recursive region splitting, 441
reference configuration, 32
relative error, 454
relative tangential velocity, 64, 83, 194
representative volume element, 94
residual

initial configuration, 172
residual1current configuration, 182
return mapping, 237, 313, 362
Reynolds equation, 100
rolling contact, 154

creepage, 157
gap definition, 155
non-penetration condition, 155
tangential relative gap velocity, 155
weak stick condition, 156

rotated frame
acceleration, 150
Green strains, 151
velocity, 150

rotating reference frame, 149
rubber

friction, 88

Schur complement, 334
segment

mortar method, 260
self-affine surfaces, 89
self-contact, 314, 323
sequential quadratic programming, 346
Shaw friction law, 87

Signorini problem, 113
slack variable, 349
slip, 15, 63

criterion, 82, 84, 93, 362
linearization, 236
moving cone, 239
tangential gap, 232
velocity, 64

smooth contact discretization, 282
Bezier, 288
friction, 293
frictionless, 282
Hermite, 282
three-dimensional, 303

smooth contact discretization,rigid
surface, 302

snap-through, 413
spatial configuration, 32
spatial search, 314, 316
spot, 372
SQP method, 346
stability, 415
staggered solution, 379
static condensation, 334
statistical contact laws, 73
stick, 15, 62

alternative description, 238
linearization, 235
tangential gap, 232

stick condition, 77
strain energy, 43, 44, 117
strain tensors

Almansi strains, 35, 52
Green–Lagrangian strains, 35, 42, 51,

170
left Cauchy–Green tensor, 35, 368
right Cauchy–Green tensor, 34, 35,

52, 368
stress divergence, 172
stress power, 39, 41
stress tensor

1. Piola–Kirchhoff stresses, 40
2. Piola–Kirchhoff stresses, 40, 41, 45,

52, 53, 171
Cauchy stresses, 38
Kirchhoff stresses, 40, 45, 54, 369

surface hardness, 75
surface loads, 173
surface roughness, 72
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surface-to-surface element, 196
isoparametric interpolation, 197
Lagrange multipliers, 198
penalty method, 200
perturbed Lagrange, 201

surrounding spheres, 314

tangent matrix
beam contact, 404
contact segments, 213
current configuration, 184
extended system, 416
frictionless, 242, 291
initial configuration, 176
initial stresses, 175
node-to-node element, 196
penalty method, 192
slip, 236, 241, 248, 299
stick, 235, 238, 299
thermo-mechanical contact, 383

tangent matrix1initial stress matrix,
183

tangent vector, 59, 479, 481
tangential micro displacements, 81
tangential relative displacement, 63
tangential relative velocity, 64
thermal contact resistance, 371
thermal expansion coefficient, 369
thermo-elasticity

Helmholtz energy, 369
kinematical split, 368

thermo-mechanical contact, 21, 367
adaptive methods, 464
frictional dissipation, 466
gas conductance, 373
heat conduction, 370
initial value problem, 376
multiplicative split, 368
node-to-node element, 381
node-to-segment element, 384
operator split, 379
radiation, 375
spot conductance, 372
staggered solution, 379, 464

time integration, 466
weak form, 378

time error
adaptive methods, 470

time integration, 324
contact, 354
thermo-mechanical contact, 466

time integration, explicit, 326
time integration,implicit, 328
total sliding distance, 65
transfer of history variables, 455
transfer of state variables, 454
tribology, 5, 76

uniqueness, 114
unstructured meshes, 207
Uzawa algorithm, 129, 340, 359

symmetric version, 360
update formula, 129, 341

variation
deformation gradient, 41
gap, 66
gap function, 229, 249
Green–Lagrange strain, 42, 171
normal gap, 66, 290, 398
surface coordinate, 67, 286
tangential gap, 66, 229, 400

variational inequality, 12, 113, 116, 313,
435

velocities, 325
viscoelastic material, 153

weak form, 53
beam contact, 401
contact, 116, 117
thermo-mechanical contact, 378

wear, 104
abrasive, 105, 106
adhesive, 105
corrosive, 105
rate, 106
surface fatigue, 105

wear coefficient, 105




