GREEN-FUNCTION THEORY OF CHEMISORPTION

by
Sydney G. Davison and Kenneth W. Sulston

Springer

GREEN-FUNCTION THEORY OF CHEMISORPTION

Green-Function Theory of Chemisorption

by
SYDNEY GEORGE DAVISON
University of Waterloo, ON, Canada
and
K.W. SULSTON
University of Prince Edward Island, Charlottetown, Canada

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-4404-6 (HB)
ISBN-13 978-1-4020-4404-5 (HB)
ISBN-10 1-4020-4405-4 (e-books)
ISBN-13 978-1-4020-4405-2 (e-books)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.
www.springer.com

Printed on acid-free paper

[^0]To our first teachers - our parents:
Sarah and Wilfrid Davison
Madalene and Ward Sulston

How can it be that mathematics, being after all a product of human thought independent of experience, is so admirably adapted to the objects of reality?

- Albert Einstein

Contents

Knowledge is one. Its division into subjects is a concession to human weakness.

- Halford J. Mackinder
Preface xiii
Acronyms xvii
George Green (1793-1841) xix
1 Molecular-Orbital Picture 1
1.1 Adatom-Substrate Interaction 2
1.1.1 \mathcal{P}-states 8
1.1.2 \mathcal{N}-states 9
1.2 Adbond Character 12
1.2.1 Homopolar bond 12
1.2.2 Ionic bond 14
1.2.3 Metallic-like bond 16
2 Resolvent Technique 23
2.1 Projection Operators 24
2.2 Perturbation Formulation 25
2.3 Chemisorption on Cyclic Crystal 27
2.3.1 Cyclic crystal 27
2.3.2 Cyclic Green function 28
2.3.3 Model representation 30
3 Dyson-Equation Approach 35
3.1 Dyson Equation 35
3.2 Density of States 36
3.3 Chemisorption on Monatomic Substrate 38
3.3.1 Adatom Green function 39
3.3.2 Adatom self-energy and density of states 40
4 Anderson-Newns-Grimley Model 45
4.1 Second Quantization Formalism 46
4.1.1 Creation and annihilation operators 46
4.1.2 Hamiltonian in c-operator form 48
4.2 ANG Hamiltonian 50
4.3 Hartree-Fock Treatment 52
4.3.1 Perturbed energy 52
4.3.2 Adatom Green function and density of states 55
4.3.3 Adoccupancy and self-consistency 58
4.3.4 Chemisorption energy and charge transfer 61
4.4 Oxygen on III-V Semiconductors 65
4.4.1 Electronic properties of AB-type semiconductor 66
4.4.2 Chemisorption functions 69
4.4.3 Results and discussion 74
5 Supported-Metal Catalysts 75
5.1 Metal-Support Greenian 75
5.2 Substrate Surface Green Function 79
5.3 Chemisorption Properties 82
5.4 H-Ni/ZnO System 86
6 Disordered Binary Alloys 91
6.1 Coherent-Potential Approximation 92
6.2 Alloy Surface Green Function 99
6.3 Adatom Green Function 102
6.4 Chemisorption Properties 105
6.5 $\mathrm{H}-\mathrm{Cu} / \mathrm{Ni}$ and $\mathrm{H}-\mathrm{Au} / \mathrm{Pt}$ Systems 109
7 Electrified Substrates 117
7.1 Wannier-Stark Ladders 117
7.2 Recursive-Green-Function Treatment 123
7.3 Electrochemisorption 129
7.4 H-Ti and H-Cr Systems 133
8 Indirect Adatom Interactions 139
8.1 Adatom Green Function 139
8.2 Chemisorption Functions 144
8.3 Self-consistency and Charge Transfer 148
8.4 Change in Density of States 148
8.5 Chemisorption and Interaction Energies 152
8.5.1 Chemisorption energy 152
8.5.2 Interaction energy 153
8.6 2H-\{ Ti, Cr, Ni, Cu \} Systems 155
Appendices 165
A. Evaluation of $J_{n}(b)$ 165
B. Slater Determinant 167
C. Anticommutation Relations 168
D. Plemelj Formula 171
E. Residues of $g(\varepsilon)$ 172
F. Logarithmic Function 173
G. Range of $\tan ^{-1}$ 173
H. Electronic States of Binary Chain 175
I. Normalization Factor 177
J. Green Function of Infinite Monatomic Chain 178
K. Green Function of Infinite Semiconductor 180
L. Alternate Expression for ΔE 187
M. Analytic Green Function for Electrified Atomic Chain 188
Bibliography 193
Author Index 203
Subject Index 205

Preface

Prefaces are like speeches before the curtain; they make even the most self-forgetful performers seem self-conscious.

- William Allen Neilson

The study of phenomena and processes at the phase boundaries of matter is the realm of the surface scientist. The tools of his trade are drawn from across the spectrum of the various scientific disciplines. It is therefore interesting that, in investigating the properties of such boundaries, the surfacist must transcend the interdisciplinary boundaries between the subjects themselves. In this respect, he harkens back to the days of renaissance man, when knowledge knew no boundaries, and was pursued simply for its own sake, in the spirit of enlightenment.

Chemisorption is a gas-solid interface problem, involving the interaction of a gas atom with a solid surface via a charge-transfer process, during which a chemical bond is formed. Because of its importance in such areas as catalysis and electronic-device fabrication, the subject of chemisorption is of interest to a wide range of surfacists in physics, chemistry, materials science, as well as chemical and electronic engineering. As a result, a vast literature has been created, though, despite this situation, there is a surprising scarcity of books on the subject. Moreover, those that are available tend to be experimentally oriented, such as, Chemisorption: An Experimental Approach (Wedler 1976). On the theoretical side, The Chemisorption Bond (Clark 1974) provides a good introduction, but is limited in not describing the more advanced techniques presently in use. Other treatments confine the discussion of chemisorption to chapters or sections in works of a more
general nature, for example, Concepts in Surface Physics (Desjonquères and Spanjaard 1993). At the advanced level, we have the Theory of Chemisorption (Smith 1980), which addresses a set of topics in chapters contributed by recognized authorities. Perhaps the most balanced treatise is Selected Studies of Adsorption on Metal and Semiconductor Surfaces (Gumhalter, Milun and Wandelt 1990), where both experimental and theoretical aspects are presented on a variety of different topics. However, the level is again for experts in the field, and lacks pedagogical detail. In contrast, the present work attempts to provide a reasonably self-contained book, to bridge the gap between the introductory and advanced texts that are currently available. In level and style, it mirrors the text Basic Theory of Surface States (Davison and Stȩ́licka 1992). Again, a knowledge of quantum mechanics (Merzbacher 1970) and solid-state theory (Kittel 1986) is assumed, since the material covered is intended for senior undergraduate and junior graduate students.

While there are a number of different theoretical approaches to the problem of chemisorption, only one is adopted here, namely, that of the tight-binding Green-function method, which is both powerful and versatile. Moreover, such an approach lends itself well to the pedagogically desirable modellistic treatment of the subject matter in question. Indeed, even with the present-day capabilities of computer simulation and numerical calculation, there is still a need for the model-minded theorists to provide the clarity and insight afforded by analytical solutions of model systems. For, as W. Kohn (1999) stated in his Nobel Prize lecture, "In technological applications, surfaces are generally very imperfect, both structurally and chemically. Nevertheless, concepts developed by idealized surface science have been very important guides for practical applications." A further advantage of the single-method restriction is that it enables attention to be focused on the step-by-step details by which the calculations are performed. In this way, students learn the procedure in a hands-on fashion, and thereby gain confidence to read the current literature on their own. Of course, such a scheme is nothing new, for long ago Aristotle said, "What we have to learn to do, we learn by doing."

Turning to the chapters themselves, the book opens with a brief biographical sketch of George Green, whose famous functions play such a crucial role in exploring the charge-transfer process involved in chemisorption. Chapter 1 provides a straightforward introduction into the research area, by describing the simple molecular-orbital picture, which invokes the tightbinding approximation in explaining the electron localization involved in the formation of the chemisorption states. The foundation of the Green-function method is laid in Chapters 2 and 3, where the aid of projection operators is enlisted in delineating the spaces defining the Green function, whose poles and imaginary part provide the system's eigenenergies and density of states, respectively, within the context of the Dyson equation. The next chapter discusses the very important issue of electron-electron interaction on the adatom, as addressed in the Anderson-Newns-Grimley (ANG) model, and which manifests itself in the self-consistent calculation of the chemisorption energy and adatom charge transfer. Having incorporated the ANG model into the Dyson-equation approach, the power and the versatility of the technique is amply demonstrated by applying it to the calculation of these same quantities in the diverse cases of chemisorption on a variety of widely different substrates. Since the vast majority of chemicals are produced by means of supported catalysts, Chapter 5 deals with the case of metalized semiconductor substrates, which greatly reduce the production costs involved with purely metallic substrates. The success of the coherent-potential approximation, in describing the electronic properties of disordered binary alloys, opens the door to the treatment of chemisorption on these substrates in Chapter 6. Despite its long history, the Stark-ladder effect has only recently received a satisfactory Green-function formulation, which enables the problem of chemisorption on electrified substrates to be investigated in Chapter 7. In contrast to the preceding chapters, Chapter 8 tackles the problem of two atoms interacting with a substrate, where the conduction electrons mediate an indirect interaction between the adatoms. The book closes with an extensive set of Appendices, whose additional explanatory details provide further insight into the matters under consideration.

Over the years, we have greatly benefitted from our collaborations with numerous scientists, many of whom have become our good friends, such as, A.T. Amos, S.M. Bose, B.L. Burrows, R.A. English, F. Flores, E. Ilisca, J. Koutecký, W.K. Liu, Z.L. Mišković, D.W. Schrantz and H. Ueba. For the beautifully prepared manuscript, our grateful thanks and admiration go to Ann Puncher. We also thank Karen Critchley for her skillful rendition of our figures. Throughout the course of this work, we were sustained by the constant support and encouragement of Prudence Davison.

Waterloo
S.G. Davison
Charlottetown
K.W. Sulston

June 2004

ACRONYMS

> In science, each new point of view calls forth a revolution in nomenclature.

- Friedrich Engels

ANG	Anderson-Newns-Grimley
AO	atomic orbital
ATA	average t-matrix approximation
BF	Bessel function
CB	conduction band
CF	continued fraction
CNDO	complete neglect of differential overlap
CPA	coherent-potential approximation
DBA	disordered binary alloy
DOS	density of states
FL	Fermi level
GF	Green function
HFA	Hartree-Fock approximation
LDOS	local density of states
LMTO	linear muffin-tin orbital
MO	molecular orbital
NN	nearest neighbour
TBA	tight-binding approximation
VB	valence band
VCA	virtual crystal approximation
WSL	Wannier-Stark ladder

George Green (1793-1841)

> Progress in science depends on new techniques, new discoveries and new ideas, probably in that order.

- Sydney Brenner

On the map of the scientific world, the city of Nottingham, England, can justly be regarded as the Mecca of mathematical physics, since not one, but two, of its great prophets hailed from that city's domain. Newton was born in the village of Woolsthorpe, a few miles beyond its eastern precincts, on December 25, 1642 - a fitting day for a Messiah of science. Some 150 years later, in the twilight of the 18th century, George Green arrived on the scene.

He was born into a baker's family on July 14, 1793. Later, his father purchased a windmill in Sneinton, then on the outskirts of Nottingham. Despite the early signs of his exceptional mathematical abilities, he received only a year or so of formal education, when he was eight years old. He then became an apprentice in his father's mill, which he eventually inherited. Though he never married, Green had a family of seven children with his partner, Jane Smith (Cannell 1993).

In those moments, when he could escape from the grind of daily life, having access to the facilities of the Nottingham Subscription Library in Bromley House enabled him to become acquainted with the advanced mathematical concepts embodied in the works of the French school of analytical physics, which was only then being established at Cambridge. In 1828, at the age of thirty-five, he published by subscription the paper that immortalized his name. It was entitled, An Essay on the Application of Mathematical

Analysis to the Theories of Electricity and Magnetism, and contained the techniques we now call "Green functions". Being an obscure publication, the article attracted little or no attention, and Green decided he should leave mathematics.

Fortunately, however, one of his subscribers, Sir Edward F. Bromhead, Baronet of Thurlby Hall in Lincolnshire, became his mentor and convinced him to continue his studies. On the death of his father, in 1829, he became comparatively wealthy. Four years later, he sold the business and entered Granville and Caius College, Cambridge, Bromhead's old alma mater. He graduated as the fourth Wrangler in the Tripos of 1837. During his two years of graduate work, he published six more papers on mathematical physics, and was elected a Fellow of Caius College. Sadly, his health now began to fail and he returned to Sneinton, where death overtook him in 1841.

It was only four years later that Lord Kelvin (née William Thomson) came across the Essay. He kindly arranged for it to be reprinted in Crelle's Journal, and enthusiastically promoted Green's work in Britain and Europe. The enormous impact of Green's legacy on today's world of science has been clearly assessed by Freeman Dyson (1993).

In light of the lack of recognition he received during his lifetime, the 1993 celebration of the 200th anniversary of his birth afforded a belated opportunity to pay tribute to the genius of this self-taught man. London rendered him due homage with the dedication of a memorial plaque in Westminster Abbey, Cambridge with a stained-glass window in the Granville and Caius College Hall, and Nottingham with special ceremonies at the restored Green's windmill and Science Centre in Sneinton.

Chapter 1

Molecular-Orbital Picture

Order and simplification are the first steps toward the mastery of a subject - the actual enemy is the unknown.

- Thomas Mann

Adsorption is a process whereby an atom, interacting with a solid, adheres to its surface to become an adsorbed atom, or, more briefly, an adatom. In the language of adsorption, we sometimes call the adatoms the adsorbate and the solid the adsorbent (or substrate). An approximate measure of the strength of the adsorbate-adsorbent interaction is provided by the magnitude of the heat of adsorption (ΔH). For low $\Delta H \sim 5 \mathrm{kcal} / \mathrm{mole}(\sim 0.2 \mathrm{eV})$, say, physical adsorption (physisorption) is said to occur, while, for high $\Delta H \sim 50 \mathrm{kcal} /$ mole ($\sim 2 \mathrm{eV}$), say, chemical adsorption (chemisorption) arises. The former (latter) is a weak (strong) interaction involving no (some) electron transfer. Henceforth, our task will be to study the properties and nature of the chemical bond, formed by the electron charge-transfer process, between the adatom and the substrate.

Although the first quantal studies of atom-surface interactions occurred
in the 1930s (e.g., see Lennard-Jones 1937, Goodwin 1939a), because of World-War II, nearly two decades had to elapse before theoretical surfacists turned their attention to chemisorption again in the latter-half of the 1950s (e.g., see Koutecký 1956, 1957; Grimley 1958). The initial progress, in the post-war years, was reviewed by Grimley (1960), who adopted the straightforward molecular orbital (MO) ${ }^{1}$ approach, which had proved so successful in discussing atomic binding in molecules. It is therefore appropriate for us to follow in Grimley's footsteps and 'paint' the simplest picture of chemisorption with the MO 'brush'. In doing so, we pave the way for the introduction and development of the Green function theory, in the following chapters.

1.1 Adatom-Substrate Interaction

To find the electronic states of the system, we are interested in solving the Schrödinger equation and obtaining the wave functions (MO's) and the energy levels for the entire system, in this case, the adatom and substrate. We model the latter by a chain of identical atoms numbered $0,1, \ldots, N-1$ (large) and denote the former by λ. With each atom, we associate an atomic orbital (AO), $\quad \phi(r, m)$, so that $m=\lambda$ is one set and $m=0,1, \ldots, N-1$ is the other set, giving a total of $(N+1)$ 1-electron AO's in the chemisorption system (Fig. 1.1).

Fig. 1.1. Chemisorption model, where $\alpha_{a}\left(\beta_{a}\right)$ is adatom site (bond) energy, $\alpha_{s}(\alpha)$ surface (chain) atom site energy and β chain bond energy.

In MO theory (Coulson 1961), we assume that the wave function of the k th state of the system may be written as a linear combination of the AO's, i.e.,

$$
\begin{equation*}
\psi_{k}(r)=\sum_{m} c_{k}(m) \phi(r, m) \tag{1.1}
\end{equation*}
$$

which must satisfy the 1-electron Schrödinger equation

$$
\begin{equation*}
H \psi_{k}(r)=E_{k} \psi_{k}(r) \tag{1.2}
\end{equation*}
$$

[^1]H being the effective 1-electron Hamiltonian operator and E_{k} the energy of the k th state. Inserting (1.1) in (1.2) leads to
\[

$$
\begin{equation*}
\sum_{m} H(n, m) c_{k}(m)=E_{k} \sum_{m} S(n, m) c_{k}(m) \tag{1.3}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
S(n, m)=\int \phi^{*}(r, n) \phi(r, m) d r \tag{1.4}
\end{equation*}
$$

is the overlap matrix between the nth and m th AO's and

$$
\begin{equation*}
H(n, m)=\int \phi^{*}(r, n) H \phi(r, m) d r \tag{1.5}
\end{equation*}
$$

If the AO's are taken to be orthonormal, then (1.4) gives ${ }^{2}$

$$
\begin{equation*}
S(n, m)=\delta_{n, m} \tag{1.6}
\end{equation*}
$$

which means that overlap is neglected and (1.3) reduces to

$$
\begin{equation*}
\sum_{m} H(n, m) c_{k}(m)=E_{k} c_{k}(n) \tag{1.7}
\end{equation*}
$$

for the wave-function coefficients $c_{k}(m)$ and the energies E_{k}. In order to make (1.7) tractable, we introduce the tight-binding approximation (TBA) (Davison and Stȩślicka 1996), namely,

$$
\begin{equation*}
H(n, m)=\alpha \delta_{n, m}+\beta\left(\delta_{n+1, m}+\delta_{n-1, m}\right), \quad m \neq 0, \lambda, \tag{1.8}
\end{equation*}
$$

$\alpha(\beta)$ being the site (bond) energy. ${ }^{3}$ Equation (1.7) may now be written as

$$
\begin{equation*}
\left(E_{k}-\alpha\right) c_{k}(n)=\beta\left[c_{k}(n+1)+c_{k}(n-1)\right], \quad n \neq 0, \lambda \tag{1.9}
\end{equation*}
$$

i.e., the Schrödinger equation has been replaced by a second-order difference equation with constant coefficients. Because of their different electronic environments, to those of the chain atoms, the adsorbed and surface atoms at $n=\lambda$ and $n=0$, respectively, are characterized by the different site energies α_{a} and α_{s} (Fig. 1.1). Similarly, the bond between them is

[^2]denoted by β_{a} instead of β. For these atoms, (1.9) yields the boundary conditions for $m=0$ and λ, viz.,
\[

$$
\begin{align*}
\left(E_{k}-\alpha_{s}\right) c_{k}(0) & =\beta c_{k}(1)+\beta_{a} c_{k}(\lambda) \tag{1.10}\\
\left(E_{k}-\alpha_{a}\right) c_{k}(\lambda) & =\beta_{a} c_{k}(0) \tag{1.11}
\end{align*}
$$
\]

In addition, we require the wave function to vanish at the chain end $(m=$ N), so we put

$$
\begin{equation*}
c_{k}(N)=0 \tag{1.12}
\end{equation*}
$$

Since N is large, this condition does not interfere with those near $m=0$.
Having completely specified the chemisorption problem, let us now solve (1.9) subject to the above boundary conditions. Utilizing the translational symmetry of a periodic atomic chain, we define the ladder operators, $L_{ \pm}$, via

$$
\begin{equation*}
L_{ \pm} c_{k}(n)=c_{k}(n \pm 1) \tag{1.13}
\end{equation*}
$$

noting that

$$
\begin{equation*}
L_{+} L_{-}=1 \tag{1.14}
\end{equation*}
$$

Hence, (1.9) may be expressed in the form

$$
\left(E_{k}-\alpha\right) c_{k}(n)=\beta\left(L_{+}+L_{-}\right) c_{k}(n)
$$

which by (1.14) gives

$$
\begin{equation*}
L_{ \pm}^{2}-2 X_{k} L_{ \pm}+1=0 \tag{1.15}
\end{equation*}
$$

with

$$
\begin{equation*}
X_{k}=\left(E_{k}-\alpha\right) / 2 \beta \tag{1.16}
\end{equation*}
$$

being the dimensionless reduced energy. Solving (1.15), we find

$$
\begin{equation*}
L_{ \pm}=X_{k} \pm\left(X_{k}^{2}-1\right)^{\frac{1}{2}} \tag{1.17}
\end{equation*}
$$

On introducing the unknown parameter θ_{k}, by setting

$$
\begin{equation*}
X_{k}=\cos \theta_{k} \tag{1.18}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
L_{ \pm}=e^{ \pm i \theta_{k}} \tag{1.19}
\end{equation*}
$$

so that (1.13) becomes

$$
\begin{equation*}
c_{k}(n \pm 1)=e^{ \pm i \theta_{k}} c_{k}(n), \tag{1.20}
\end{equation*}
$$

where the θ_{k}-values are determined from the boundary conditions. Repeated operations of $L_{ \pm}$on $c_{k}(n)$ leads to the well-known Bloch theorem (1928), i.e.,

$$
\begin{equation*}
c_{k}(n \pm \ell)=L_{ \pm}^{\ell} c_{k}(n)=e^{ \pm i \ell \theta_{k}} c_{k}(n) \tag{1.21}
\end{equation*}
$$

by (1.19). Equation (1.21) suggests that we write the general solution of (1.9) in the form

$$
c_{k}(n)=\left(a e^{i n \theta_{k}}+b e^{-i n \theta_{k}}\right) c_{k}(0)
$$

or as

$$
\begin{equation*}
c_{k}(n)=A \cos n \theta_{k}+B \sin n \theta_{k} . \tag{1.22}
\end{equation*}
$$

Imposing (1.12) on (1.22) leads to

$$
\begin{equation*}
c_{k}(n)=A \frac{\sin (N-n) \theta_{k}}{\sin N \theta_{k}}, \quad n \neq \lambda \tag{1.23}
\end{equation*}
$$

With the aid of (1.16) and (1.18), inserting (1.23) in (1.11) gives

$$
\begin{equation*}
c_{k}(\lambda)=\eta A\left(z_{a}+2 \cos \theta_{k}\right)^{-1} \tag{1.24}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=\beta_{a} / \beta, \quad z_{a}=\left(\alpha-\alpha_{a}\right) / \beta \tag{1.25}
\end{equation*}
$$

are the dimensionless reduced chemisorption parameters for the adbond and adatom, respectively. After some manipulation, (1.16), (1.18), (1.23) and (1.24) in (1.10) lead to the eigenvalue equation for θ_{k}, namely,

$$
\begin{equation*}
\left(z_{a}+2 \cos \theta_{k}\right)\left[z_{s}+\frac{\sin (N+1) \theta_{k}}{\sin N \theta_{k}}\right]=\eta^{2} \tag{1.26}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{s}=\left(\alpha-\alpha_{s}\right) / \beta \tag{1.27}
\end{equation*}
$$

is the dimensionless reduced surface parameter.
For $\beta_{a}=0(\eta=0)$, the adatom is detached from the surface atom (Fig. 1.1), and θ_{k} is given by the zeros of the two terms in brackets on the left-hand side of (1.26). The first (second) term represents the single (N) state(s) contributed by the adatom (substrate) for a total of $(N+1)$ states. The graphical solution of the [term] is displayed in Fig. 1.2 for several values of z_{s} (Goodwin 1939b, Davison and Stȩślicka 1996). Asymptotes occur at
$\theta_{k}=k \pi / N \quad(k=1,2, \ldots, N)$, while the intercepts on the ordinate axes at $\theta_{k}=0$ and π are $\pm\left(1+N^{-1}\right)$, which, for $N \rightarrow \infty$, become ± 1. Thus, for any horizontal line in the range $\left|z_{s}\right| \leq 1$, there are N real roots, giving N real values of θ_{k}.

Fig. 1.2. Graphical solutions of $-z_{s}=\sin (N+1) \theta_{k} / \sin N \theta_{k}$.
These real solutions have reduced energies (1.18) lying in the bulk band $\left|X_{k}\right| \leq 1$ (Fig. 1.3), with delocalized periodic wave functions (1.23) spread along the chain. When $z_{s}>1\left(z_{s}<-1\right)$, a real root disappears at $\theta_{k}=$ $0\left(\theta_{k}=\pi\right)$, and only $(N-1)$ real solutions remain. To account for these lost solutions, it is necessary to take θ_{k} complex and write

$$
\begin{equation*}
\theta_{k}^{c}=\xi_{k}+i \mu_{k}, \quad \mu_{k} \text { real }>0 \tag{1.28}
\end{equation*}
$$

in which case, (1.18) becomes

$$
\begin{equation*}
X_{k}=\cos \xi_{k} \cosh \mu_{k}-i \sin \xi_{k} \sinh \mu_{k} \tag{1.29}
\end{equation*}
$$

However, X_{k} must always be real, so the imaginary part in (1.29) must be zero. Since $\mu_{k}>0, \sinh \mu_{k} \neq 0$, so $\sin \xi_{k}=0$, which means

$$
\begin{equation*}
\xi_{k}=j \pi ; \quad j=0,1, \ldots \tag{1.30}
\end{equation*}
$$

where, to avoid repeated solutions, only $j=0$ and 1 are required, so that the two missing solutions are given by

$$
\begin{equation*}
\theta_{k}^{c}=i \mu_{k} \quad \text { and } \quad \pi+i \mu_{k} \tag{1.31}
\end{equation*}
$$

Fig. 1.3. Reduced-energy spectrum showing in-band variation of $X\left(\theta_{k}\right)=$ $\cos \theta_{k}$ between band edges at $X_{k}= \pm 1$ for $\left|z_{s}\right| \leq 1$ and θ_{k} real. $\mathcal{P}-(\mathcal{N}-)$ localized states appear above (below) band for θ_{k} complex and $\left|z_{s}\right|>1$.

Returning to (1.26), with $\beta_{a} \neq 0(\eta \neq 0)$, we see that it has at least $(N-1)$ real roots, whose corresponding wave functions are delocalized and have reduced energies in the bulk band (1.18) of width $\Delta X_{k}=2$. The remaining two roots may both be real, so that they too lie in the band, and the system supports only delocalized states. If, however, one or both of the remaining roots have θ_{k}-values of the form (1.31), then a new situation arises, which requires further analysis. Inserting (1.31) in (1.18) gives

$$
\begin{equation*}
X_{k}^{ \pm}= \pm \cosh \mu_{k} \gtrless \pm 1 \tag{1.32}
\end{equation*}
$$

which shows that $X_{k}^{+}\left(X_{k}^{-}\right)$is positive (negative) and lies above (below) the bulk-band edge at $X_{k}=1\left(X_{k}=-1\right)$. Since $X_{k}>0\left(X_{k}<0\right)$ for $\theta_{k}^{c}=i \mu_{k}\left(\theta_{k}^{c}=\pi+i \mu_{k}\right)$, a \mathcal{P}-state $(\mathcal{N}$-state $)$ is said to occur at this θ_{k}-value, so that $\operatorname{sgn}\left(X_{k}\right)$ provides a useful means of classifying these states. For N large, we note that

$$
\begin{equation*}
\frac{\sin (N \pm n) \theta_{k}^{c}}{\sin N \theta_{k}^{c}} \rightarrow e^{\mp i n \theta_{k}^{c}} \tag{1.33}
\end{equation*}
$$

in which case, (1.23) and (1.26) become

$$
\begin{equation*}
c_{k}(n)=A e^{i n \theta_{k}^{c}}, \quad n \neq \lambda, \tag{1.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(z_{a}+2 \cos \theta_{k}^{c}\right)\left(z_{s}+e^{-i \theta_{k}^{c}}\right)=\eta^{2} . \tag{1.35}
\end{equation*}
$$

1.1.1 \mathcal{P}-states

When $\theta_{k}^{c}=i \mu_{k}$, the chemisorption system has:

$$
\begin{gather*}
X_{k}=\cosh \mu_{k} \tag{1.36}\\
c_{k}(n)=A e^{-n \mu_{k}}, \quad n \neq \lambda \tag{1.37}\\
c_{k}(\lambda)=\eta A\left(z_{a}+2 \cosh \mu_{k}\right)^{-1} \tag{1.38}\\
\left(z_{a}+2 \cosh \mu_{k}\right)\left(z_{s}+e^{\mu_{k}}\right)=\eta^{2} \tag{1.39}
\end{gather*}
$$

by (1.32), (1.34), (1.24) and (1.35), respectively. Equation (1.37) shows that a \mathcal{P}-state wave function is exponentially damped into the substrate, thus localizing the electron near the surface. The wave function of the chemisorption state localized at the adatom is given in (1.38). The μ_{k}-values for these \mathcal{P}-states are determined by the eigenvalue equation (1.39), and their energies X_{k} (1.36) lie above the energy band of the delocalized states. In particular, for $z_{s}=-2, \quad z_{a}=-4$ and $\eta^{2}=1$, (1.39) reduces to

$$
\begin{equation*}
\left(e^{\mu_{k}}-4\right)\left(e^{\mu_{k}}-2\right)=2 e^{-\mu_{k}} \tag{1.40}
\end{equation*}
$$

Plotting the parabola (broken curve) on the left of (1.40) with the rectangular hyperbola (solid curve) on the right (Fig. 1.4) shows that this cubic equation in $e^{\mu_{k}}$ has three roots given by the intersections p_{1}, p_{2} and p_{3}. However, since $e^{\mu_{k}} \ngtr 1$ at p_{1}, this root is rejected, so (1.40) has two real solutions, p_{2} and p_{3}, whose corresponding μ_{k}-values give rise to two \mathcal{P}-states.

Fig. 1.4. Graphical solutions of (1.40).

1.1.2 \mathcal{N}-states

Here, $\quad \theta_{k}^{c}=\pi+i \mu_{k}$, and the chemisorption equations are:

$$
\begin{gather*}
X_{k}=-\cosh \mu_{k}, \tag{1.41}\\
c_{k}(n)=A(-1)^{n} e^{-n \mu_{k}}, \quad n \neq \lambda, \tag{1.42}\\
c_{k}(\lambda)=\eta A\left(z_{a}-2 \cosh \mu_{k}\right)^{-1} \tag{1.43}\\
\left(z_{a}-2 \cosh \mu_{k}\right)\left(z_{s}-e^{\mu_{k}}\right)=\eta^{2}, \tag{1.44}
\end{gather*}
$$

via the same equations as in $\S 1.1 .1$. We now see that any \mathcal{N}-state wave function (1.42) is a damped oscillatory one, decaying into the substrate, and has an energy $X_{k}(1.41)$ below the bulk-state band. The \mathcal{N}-state μ_{k}-values are provided by (1.44).

As the μ_{k}-values increase, the energy levels of the \mathcal{P} - and \mathcal{N}-states move further from the band edges, while the localization of their wave functions becomes more concentrated.

Since the presence of chemisorption (\mathcal{P} and \mathcal{N}) states gives rise to the formation of localized covalent bonds between the adatom and substrate, we are interested in how the occurrence of localized states is governed by the values of the parameters z_{a}, z_{s} and η, which define the adatom-substrate interaction. Localized states exist, if one or both of (1.39) and (1.44) have real roots μ_{k}, which, since $\cosh \mu_{k} \geq 1$ and $e^{\mu_{k}} \geq 1$, exist for a given η in regions of the $z_{a} z_{s}$-plane depicted by the two hyperbolas

$$
\begin{equation*}
\left(z_{a} \pm 2\right)\left(z_{s} \pm 1\right)=\eta^{2} \tag{1.45}
\end{equation*}
$$

The graphs of (1.45) are drawn in Fig. 1.5 for $\eta^{2}=1$. As can be seen, localized \mathcal{P} - and \mathcal{N}-states occur in the six regions indicated, where \mathcal{P}^{2} denotes two \mathcal{P}-states, $\mathcal{P N}$ means one \mathcal{P}-state and one \mathcal{N}-state, etc. The shaded area represents the region where there are no localized states, i.e., only delocalized bulk states exist, so the effect of the adatom is to introduce an extra delocalized state into the band, and any adatom-chain binding is achieved without the formation of a localized bond. The area of this forbidden region decreases as η^{2} increases, and is only present if $\eta^{2}<2$, i.e., the intersection points A and B coalesce as $\eta^{2} \rightarrow 2$. Conversely, as $\eta \rightarrow 0$, the curves merge with their asymptotes, $z_{a}= \pm 2, \quad z_{s}= \pm 1$, and the shaded region attains its maximum size. Figure 1.5 is reminiscent of a phase diagram of alloy composition in that the composition of states, in the chemisorption system, varies as one crosses the phase boundary curves (1.45). For example, when the point $\left(z_{a}, z_{s}\right)$, lying in the shaded area, moves radially outwards, \mathcal{P} - and/or \mathcal{N}-states emerge from the sea of $(N+1)$ delocalized bulk states, depleting their number accordingly.

In the present model, a maximum of two localized states arises, which depends on the initial assumptions that only one adatom orbital interacts

Fig. 1.5. Localized states existence regions for $\eta^{2}=1$. Reprinted from Grimley (1960) with permission from Elsevier.
with only one band of the substrate's orbitals and that the adatom perturbs the substrate only at its first atom. If the perturbation is extended further into the substrate, by modifying the site energies on its first and second atoms, then a maximum of three localized states appear. The generalization of this situation was discussed by Koutecký (1957) and Grimley (1958).

The above 1-dimensional model may be extended to 3-dimensions, in a straightforward manner, and yields a substrate whose surface is completely covered by adatoms. The TBA again leads to a difference equation and boundary conditions which can be solved directly (Grimley 1960). We do not intend to discuss the 3 -dimensional case here and, instead, direct the reader to the loc. sit. articles. However, in passing, we note that, even when there is no direct interaction between the atoms in the adlayer, an important indirect interaction occurs between them via the substrate by a delocalization of the bonding electrons in directions parallel to the surface (Koutecký 1957, Grimley 1960). This topic is discussed in Chapter 8.

Before leaving this section, we should also mention that the location of the \mathcal{P} - and \mathcal{N}-states, relative to the bulk band, depends on the sign of the bond energy β. If the AO's in the substrate are of s - $(p$ - $)$ symmetry, then $\beta<0(\beta>0)$ and the $\mathcal{P}-(\mathcal{N}-)$ states lie below the bulk $s-(p-)$ band and are
called bonding states, while the $\mathcal{N}-\left(\mathcal{P}_{-}\right)$states above the band are termed antibonding states. Comparing (1.37) with (1.42) shows that the presence of the $(-1)^{n}$ factor in the latter gives rise to nodes between successive substrate atoms. Thus, the wave functions for bonding states are smoother than those for their antibonding counterparts (Grimley 1960).

1.2 Adbond Character

When the combined system of adatom and substrate is in its ground state, so that the lowest energy levels are each doubly occupied with an α - and a β-spin electron, then, if two electrons are in a localized level, a localized surface bond will be formed. However, if the localized level is unoccupied, then an adbond formation will be achieved without localization of the bonding electrons (i.e., only delocalized electrons will be involved in the adbond). In the case of electron localization, the type of adbond is determined by the charge order of the adatom state, namely,

$$
\begin{equation*}
R=\left|c_{k}(\lambda)\right|^{2}\left[\left|c_{k}(\lambda)\right|^{2}+\sum_{n=0}^{N}\left|c_{k}(n)\right|^{2}\right]^{-1} \tag{1.46}
\end{equation*}
$$

Thus, the adbond is classified according to the values of the interaction parameters z_{s}, z_{a} and η.

1.2.1 Homopolar bond

If the wave function of a localized state is such that it is equally likely to find the electron on the adatom as in the substrate, then a purely homopolar adbond exists, when the state in question is doubly occupied. It follows that

$$
\begin{equation*}
\left|c_{k}(\lambda)\right|^{2}=\sum_{n=0}^{N}\left|c_{k}(n)\right|^{2} \tag{1.47}
\end{equation*}
$$

in (1.46), so $\quad R=\frac{1}{2}$, for a homopolar state. If we take the \mathcal{P}-state to be bonding, so that it lies below the bulk band, then (1.37) and (1.38) in (1.47) lead to

$$
\frac{1-e^{-2(N+1) \mu_{k}}}{1-e^{-2 \mu_{k}}}=\frac{\eta^{2}}{\left(z_{a}+2 \cosh \mu_{k}\right)^{2}},
$$

which, for large N, reduces to

$$
\begin{equation*}
\left(z_{a}+2 \cosh \mu_{k}\right)^{2}=\eta^{2}\left(1-e^{-2 \mu_{k}}\right) . \tag{1.48}
\end{equation*}
$$

For known values of z_{a} and η, (1.48) determines μ_{k}, and hence, the energy (1.36) and wave-function coefficients (1.37) and (1.38), while (1.39) gives the corresponding z_{s} value.

On taking $\eta^{2}=1$, and putting

$$
\begin{equation*}
u=e^{\mu_{k}} \geq 1, \quad \mu_{k} \geq 0 \tag{1.49}
\end{equation*}
$$

(1.39) and (1.48) may be written as

$$
\begin{align*}
& \left(u+z_{s}\right)\left(u^{2}+z_{a} u+1\right)=u \tag{1.50}\\
& \left(u^{2}+z_{a} u+1\right)^{2}=\left(u^{2}-1\right) \tag{1.51}
\end{align*}
$$

respectively. Dividing (1.51) by (1.50), and rearranging terms, yields

$$
\begin{equation*}
\left(z_{a}-z_{s}\right) u^{2}+2 u+z_{s}=0 \tag{1.52}
\end{equation*}
$$

whose roots are

$$
\begin{equation*}
u=\left\{-1 \pm\left[1-z_{s}\left(z_{a}-z_{s}\right)\right]^{\frac{1}{2}}\right\} /\left(z_{a}-z_{s}\right) \tag{1.53}
\end{equation*}
$$

From (1.52), we have

$$
\begin{equation*}
z_{s}=u\left(z_{a} u+2\right) /\left(u^{2}-1\right), \tag{1.54}
\end{equation*}
$$

so, for large $z_{s}, u \rightarrow 1$ and $\mu_{k} \rightarrow 0$ by (1.49). Setting $u=1$ in (1.53), and performing some straightforward algebra, shows that

$$
\begin{equation*}
\left(z_{a}-z_{s}\right)\left(z_{a}+2\right)=0 \tag{1.55}
\end{equation*}
$$

i.e., as $\quad \mu_{k} \rightarrow 0$, the asymptotes in the $z_{s} z_{a}$-plane are

$$
\begin{equation*}
z_{a}=z_{s} \quad \text { and } \quad z_{a}=-2 \tag{1.56}
\end{equation*}
$$

By the same token, as μ_{k} increases from zero, u becomes increasingly greater than one, and (1.55) is replaced by the inequality

$$
\begin{equation*}
\left(z_{a}-z_{s}\right)\left(z_{a}+2\right)<0, \tag{1.57}
\end{equation*}
$$

so that we have two possible situations, viz.,

$$
\begin{align*}
& -2<z_{a}<z_{s} \tag{1.58}\\
& -2>z_{a}>z_{s} \tag{1.59}
\end{align*}
$$

In order to plot the existence curve for the homopolar \mathcal{P}-states, in the $z_{a} z_{s}$-plane, we use the following 'recipe'. We take $\eta^{2}=1$, and choose values of z_{a}, so that we can obtain the corresponding μ_{k}-values from (1.48). We then insert these known values of z_{a} and μ_{k} in (1.39) and obtain the required z_{s}-values. With this procedure, the points $\left(z_{a}, z_{s}\right)$ trace out the curves in Fig. 1.6. As can be seen, the two branches each have the asymptotes (1.56). At the point A, the values of $\left(z_{a}, z_{s}\right)$ satisfy (1.58), and correspond to a point in the $\mathcal{P} \mathcal{N}$-region of Fig. 1.5. Thus, one homopolar \mathcal{P}-state exists, whose μ_{k}-value is very small, so its energy level lies just below the bottom of the bulk band. Moreover, its wave function decays slowly into the solid, giving rise to a many-centre homopolar state. As μ_{k} increases, the sample point A moves down the upper branch, the homopolar \mathcal{P}-state energy drops further below the band and the wave function decays more rapidly into the crystal. We now enter the \mathcal{P}^{2}-region of Fig. 1.5, when a second \mathcal{P}-state separates from the top of the band, with a many-centre character, but not a purely homopolar nature. Furthermore, for $\eta=1$, its $c_{k}(\lambda)<0$. Continuing the movement of A down the curve, the energy falls steadily and the wave function loses its many-centre character, eventually becoming a two-centre homopolar state, involving only the adatom and the crystal's surface atom to any extent. The lower branch of the curves in Fig. 1.6 resides entirely in the \mathcal{P}^{2}-region of Fig. 1.5, so two \mathcal{P}-states always exist. However, it is only the one with the higher energy that is purely homopolar. Although it separates from the band with a manycentre character, it becomes an essentially two-centre state for large negative values of z_{s} and z_{a}. Such a state satisfies (1.59).

1.2.2 Ionic bond

Since the existence conditions for homopolar localized states are somewhat stringent, most interaction parameters give rise to states with ionic character,

Fig. 1.6. Existence curves of homopolar \mathcal{P}-states for $\eta^{2}=1$. Reprinted from Grimley (1960) with permission from Elsevier.
to some degree or other, rather than to a purely homopolar state. Depending on the values $c_{k}(\lambda)$ and $c_{k}(n)$ in (1.46), R varies between zero and unity. The extreme cases are:
(a) Cationic state, where $c_{k}(\lambda)=0$ and $\sum_{n}\left|c_{k}(n)\right|^{2} \neq 0$, so that $R=0, \quad$ and the electron is concentrated entirely in the crystal.
(b) Anionic state, here $c_{k}(\lambda) \neq 0$ and $\sum_{n}\left|c_{k}(n)\right|^{2}=0, \quad$ so $\quad R=1$, and the electron is concentrated completely on the adatom.

With the homopolar state $\left(R=\frac{1}{2}\right)$ being the intermediate case between these two extremes, it is taken as the reference state, so that $R<\frac{1}{2} \quad\left(R>\frac{1}{2}\right)$ indicates a cationic (an anionic) state. Returning $\S 1.2 .1$, we see that the left-hand side of the inequalities (1.58) and (1.59), namely, $z_{a}>-2$ and $z_{a}<-2$, derived from (1.48), apply to $R<\frac{1}{2}$ and $R>\frac{1}{2}$, respectively, for $\mu_{k}=0$. Thus, for any other value of μ_{k} along the curve (Fig. 1.6),
cationic (anionic) states exist in the region to the right (left) of the curve. Combining Figs. 1.5 and 1.6 yields Fig. 1.7, where the extra information on the ionic character of the states is now provided. For example, $A \mathcal{P} C \mathcal{N}$ means that there is an anionic \mathcal{P}-state and a cationic \mathcal{N}-state, $A \mathcal{P} C \mathcal{P}$ that there is an anionic \mathcal{P}-state and a cationic \mathcal{P}-state, etc. If \mathcal{P}-states are bonding $(\beta<0)$, then the state written first has the lower energy.

Fig. 1.7. Mapping of anionic (A) and cationic (C) states in $z_{a} z_{s}$-plane for $\eta^{2}=1$. Reprinted from Grimley (1960) with permission from Elsevier.

1.2.3 Metallic-like bond

If the point $\left(z_{a}, z_{s}\right)$ lies in the forbidden region of Fig. 1.5, then the adatomsubstrate interaction results in no localized states being formed. Here, adbonding occurs because the presence of the adatom changes the boundary conditions at the free surface of the solid, in such a way, as to give rise to a general lowering of the energies of the electrons in the system. The electrons are now all delocalized, so that each one contributes to the creation of the adbond. Such a situation is reminiscent of binding in metals, so, for this reason, such adbonds are termed metallic-like.

The change in the total electronic energy, due to the interaction of the adatom with the substrate, is called the chemisorption energy ΔE. In order
to obtain some estimate of ΔE, we return to (1.26), and recall that the zeros of the [term] yields the solutions for the N states in the substrate. Thus, the eigenvalue equation for θ_{k} is

$$
\begin{equation*}
-z_{s}=\frac{\sin (M+1) \theta_{k}}{\sin M \theta_{k}} \tag{1.60}
\end{equation*}
$$

We are interested in the total electronic energy of the substrate chain in the pre-adsorption situation, when $\beta_{a}=0$, so that the adatom is isolated from the chain and no surface states exist, i.e., $\left|z_{s}\right|<1$, and we are only concerned with in-band states, for which θ_{k} is real.

In Fig. 1.2, a small increment ε_{s} in $-z_{s}$ causes a correspondingly small decrement $-\delta_{k}$ in θ_{k}. Thus, (1.60) reads

$$
\begin{equation*}
-z_{s}+\varepsilon_{s}=\frac{\sin (M+1)\left(\theta_{k}-\delta_{k}\right)}{\sin M\left(\theta_{k}-\delta_{k}\right)} \tag{1.61}
\end{equation*}
$$

which, with the aid of trigonometrical identities, (1.60) and the approximations $\cos \delta_{k} \simeq 1$ and $\sin \delta_{k} \simeq \delta_{k}$, leads to

$$
\begin{equation*}
\varepsilon_{s}=z_{s}\left[\left(Z-T^{-1}\right) t+\delta_{k}(Z+t)\right]\left(1-t T^{-1}\right)^{-1} \tag{1.62}
\end{equation*}
$$

where

$$
\begin{equation*}
T=\tan M \theta_{k}, \quad t=\tan M \delta_{k}, \tag{1.63}
\end{equation*}
$$

and

$$
\begin{equation*}
Z=\cot (M+1) \theta_{k} \tag{1.64}
\end{equation*}
$$

Equation (1.60), in conjunction with (1.63) and (1.64), enables the following expressions to be derived, viz.,

$$
\begin{align*}
& T=-\sin \theta_{k}\left(z_{s}+\cos \theta_{k}\right)^{-1} \tag{1.65}\\
& Z=z_{s}^{-1}\left(\sin \theta_{k}-T^{-1} \cos \theta_{k}\right) \tag{1.66}
\end{align*}
$$

Inserting (1.65) in (1.66) yields

$$
\begin{equation*}
Z=\left(z_{s} \cos \theta_{k}+1\right)\left(z_{s} \sin \theta_{k}\right)^{-1} \tag{1.67}
\end{equation*}
$$

Another way of obtaining the ε_{s}-relation is, of course, by straightforward differentiation of (1.60), which results in

$$
\begin{equation*}
\varepsilon_{s}=\delta_{k}\left[M \sin \theta_{k}\left(1+T^{-2}\right)-\left(T^{-1} \cos \theta_{k}-\sin \theta_{k}\right)\right] \tag{1.68}
\end{equation*}
$$

Thus, (1.62) and (1.68) show that

$$
\begin{align*}
z_{s}[(Z T-1) t & \left.+\delta_{k} T(t+Z)\right](T-t)^{-1} \\
& =\delta_{k}\left[M \sin \theta_{k}\left(1+T^{-2}\right)-\left(T^{-1} \cos \theta_{k}-\sin \theta_{k}\right)\right] \tag{1.69}
\end{align*}
$$

Equating the coefficients of like powers of δ_{k}, we have

$$
\begin{array}{ll}
\delta_{k}^{0}: & Z=T^{-1}, \quad T \neq t \\
\delta_{k}^{1}: & z_{s} T(t+Z)(T-t)^{-1}=R \tag{1.71}
\end{array}
$$

where, by (1.70),

$$
\begin{equation*}
R=M \sin \theta_{k}\left(1+Z^{2}\right)-\left(Z \cos \theta_{k}-\sin \theta_{k}\right) \tag{1.72}
\end{equation*}
$$

Eliminating T between (1.70) and (1.71), we arrive at

$$
\begin{equation*}
t=Z^{-1}(1-P)(1+Q)^{-1} \tag{1.73}
\end{equation*}
$$

where, by virtue of (1.72), we find that

$$
\begin{align*}
& P=\frac{\cos \theta_{k}-Z^{-1} \sin \theta_{k}+z_{s}}{M \sin \theta_{k}\left(Z+Z^{-1}\right)} \tag{1.74}\\
& Q=\frac{z_{s} Z^{-2}-\cos \theta_{k}+Z^{-1} \sin \theta_{k}}{M \sin \theta_{k}\left(Z+Z^{-1}\right)} \tag{1.75}
\end{align*}
$$

Since P and Q are both of $O\left(M^{-1}\right)$, equation (1.73) reduces to

$$
\begin{equation*}
t=Z^{-1}+O\left(M^{-1}\right) \tag{1.76}
\end{equation*}
$$

whence, the phase shift is (Baldock 1952, 1953)

$$
\begin{equation*}
\delta_{k}=M^{-1} \tan ^{-1}\left(\frac{z_{s} \sin \theta_{k}}{z_{s} \cos \theta_{k}+1}\right)+O\left(M^{-2}\right) \tag{1.77}
\end{equation*}
$$

by dint of (1.63) and (1.67).
In the ground state, the $M(=N / 2)$ states in the lower-half of the bulk band are doubly occupied, so the total reduced energy for $\theta_{k} \rightarrow\left(\theta_{k}-\delta_{k}\right)$ is

$$
\begin{equation*}
X_{t}=2 \sum_{k} X_{k}=2 \sum_{k} \cos \left(\theta_{k}-\delta_{k}\right) \tag{1.78}
\end{equation*}
$$

by (1.18), the summation being over the occupied orbitals. In view of (1.77), equation (1.78) becomes

$$
\begin{equation*}
X_{t}\left(z_{s}\right)=2 \sum_{k}\left[\cos \theta_{k}+M^{-1} \sin \theta_{k} \tan ^{-1}\left(\frac{z_{s} \sin \theta_{k}}{z_{s} \cos \theta_{k}+1}\right)\right] \tag{1.79}
\end{equation*}
$$

The first summation in (1.79) represents the total reduced energy, $X_{t}^{(1)}$ of the N-chain electrons, whose mean reduced energy of the M-levels in the lower-half band is given by

$$
\begin{equation*}
\bar{X}_{1}=\frac{2}{\pi} \int_{\pi / 2}^{\pi} \cos \theta d \theta=-2 \pi^{-1} \tag{1.80}
\end{equation*}
$$

whence,

$$
\begin{equation*}
X_{t}^{(1)}=2 M \bar{X}_{1}=-2 N \pi^{-1} \tag{1.81}
\end{equation*}
$$

In the second summation, the θ_{k}-values occur at π / N intervals in the range $\pi / 2 \leq \theta_{k} \leq \pi$, so the sum can be converted into an integral, namely,

$$
\begin{equation*}
X_{t}^{(2)}\left(z_{s}\right)=\frac{2 N}{M \pi} \int_{\pi / 2}^{\pi} \sin \theta \tan ^{-1}\left(\frac{z_{s} \sin \theta}{z_{s} \cos \theta+1}\right) d \theta \tag{1.82}
\end{equation*}
$$

Integration by parts, leads to

$$
\begin{align*}
X_{t}^{(2)}\left(z_{s}\right)= & \frac{4}{\pi}\left\{\left[-\cos \theta \tan ^{-1}\left(\frac{z_{s} \sin \theta}{1+z_{s} \cos \theta}\right)\right]_{\pi / 2}^{\pi}\right. \\
& \left.+\int_{\pi / 2}^{\pi} \frac{\cos \theta\left(z_{s}+\cos \theta\right)}{\left(z_{s}+z_{s}^{-1}\right)+2 \cos \theta} d \theta\right\} \tag{1.83}
\end{align*}
$$

where the first term on the right is equal to zero. Equation (1.83) can be cast in the form

$$
\begin{equation*}
X_{t}^{(2)}(b)=b\left(J_{0}+2 z_{s} J_{1}+J_{2}\right) / \pi \tag{1.84}
\end{equation*}
$$

where

$$
\begin{equation*}
b=2\left(z_{s}+z_{s}^{-1}\right)^{-1} \leq 1 \tag{1.85}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{n}(b)=\int_{\pi / 2}^{\pi} \frac{\cos n \theta}{1+b \cos \theta} d \theta \tag{1.86}
\end{equation*}
$$

On evaluating $J_{n}(b)$, as in the Appendices (App. A), (1.84) becomes

$$
\begin{equation*}
X_{t}^{(2)}(b)=2 \pi^{-1}\left\{\left(b^{-1}-z_{s}\right)\left[J_{0}(b)-\pi / 2\right]-1\right\} \tag{1.87}
\end{equation*}
$$

via (A.9) and (A.10). With the aid of (1.85), (A.3) and (A.8), we can express (1.87) as

$$
\begin{equation*}
X_{t}^{(2)}\left(z_{s}\right)=2 \pi^{-1}\left[\left(z_{s}^{-1}+z_{s}\right) \tan ^{-1} z_{s}+z_{s} \pi / 2-1\right] \tag{1.88}
\end{equation*}
$$

Hence, (1.81) and (1.88) in (1.79) yield

$$
\begin{equation*}
X_{t}\left(z_{s}\right)=2 \pi^{-1}\left[\left(z_{s}^{-1}+z_{s}\right) \tan ^{-1} z_{s}+\pi z_{s} / 2-1-N\right] \tag{1.89}
\end{equation*}
$$

which is somewhat different from the Grimley (1960) finding, which was derived for an odd number of electrons (as opposed to the even number here), and where β was taken negative, so that $z_{s} \rightarrow-z_{s}$ by (1.27). The latter point is the reason for the range of integration in (1.82) being $\pi / 2 \leq \theta \leq \pi$, rather than Baldock's $0 \leq \theta \leq \pi / 2$, to correspond to the occupied lower-half of the energy band. Note also that the factor of " 2 ", inadvertently omitted by Grimley, has been replaced in (1.89).

Having analyzed the pre-chemisorption situation, we now address the post-chemisorption one, in which the foreign atom is brought up to the chain end atom at $n=0$. For simplicity, we assume that $\beta_{a}=\beta$ and $\alpha_{s}=\alpha$ (Fig. 1.1), whence, $\eta=1$ (1.25) and $z_{s}=0$ (1.27), so that the interaction parameters lie on the z_{a}-axis in Fig. 1.5. In the case where no localized states are occupied, the total electronic reduced energy of the system is

$$
\begin{equation*}
X_{t}\left(z_{a}\right)=2 \pi^{-1}\left[\left(z_{a}^{-1}+z_{a}\right) \tan ^{-1} z_{a}+\pi z_{a} / 2-1-(N+1)\right] \tag{1.90}
\end{equation*}
$$

i.e., (1.89) with $z_{s} \rightarrow z_{a}$ and $N \rightarrow(N+1)$, as a result of the additional electron from the adatom in the chemisorption system. If γ denotes the reduced energy of the valence electron in the isolated foreign atom, then

$$
\begin{equation*}
\Delta X=X_{t}\left(z_{a}\right)-X_{t}\left(z_{s}\right)-\gamma \tag{1.91}
\end{equation*}
$$

represents the change in the total electronic reduced energy as a result of the interaction of the foreign atom with the chain, i.e., the so-called chemisorption energy. From (1.89), (1.90) and (1.91), we have

$$
\begin{equation*}
\Delta X=-\left(2 \pi^{-1}+\gamma\right)+\Delta X_{s} \tag{1.92}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta X_{s}=2 \pi^{-1}\left[F\left(z_{a}\right)-F\left(z_{s}\right)\right]+\left(z_{a}-z_{s}\right) \tag{1.93}
\end{equation*}
$$

with

$$
\begin{equation*}
F(z)=\left(z+z^{-1}\right) \tan ^{-1} z \tag{1.94}
\end{equation*}
$$

The chemisorption reduced energy in (1.92) appears as the sum of two terms. The first term, being associated with the crystal's mean electron energy and the foreign atom's valence electron energy, represents the energy change arising from the delocalization of the valence electron on the foreign atom. The second term in (1.92) is the surface-energy change caused by the presence of the foreign atom.. Apparently, for chemisorption involving a metallic-like surface bond, the form of (1.92) is quite general. Finally, it should be mentioned that, for a stable adbond to be formed, the chemisorption process must result in a lowering of the electronic energy of the system, thus, $\Delta X<0$. If $\Delta X>0$, no chemisorption occurs.

Chapter 2

Resolvent Technique

> Practical sciences proceed by building up; theoretical sciences by resolving into components.

In the previous chapter, we used the MO approach to cast the Schrödinger equation in the form of a second-order finite-difference equation with constant coefficients (1.9). We were able to solve this equation straightforwardly for the boundary conditions pertaining to a single adatom interacting with a chain-like substrate. We also mentioned that the 3-dimensional situation of a substrate completely covered with adatoms (i.e., an adlayer) could be treated in the same manner, being a direct extension of the single-adatom case (Grimley 1960). However, should we wish to study the problem of a single (or group of) adatom(s) interacting with the free surface of a 3dimensional crystal, then (1.9), and its attending boundary conditions, cannot be solved directly. In this case, it is necessary to describe the limited interaction region by means of projection operators (Löwdin 1962; Yao and Shi 2000) as Koutecký $(1965,1976)$ did in his resolvent formalism (Davison
and Stȩślicka 1996). Thus, this chapter introduces us to the powerful and versatile Green-function methods, which are employed henceforward.

2.1 Projection Operators

As the name implies, the projection operator P projects onto some space p, where P of the system consists of operators P_{i} of the subsystems, so that

$$
\begin{equation*}
P=\sum_{i} P_{i} \tag{2.1}
\end{equation*}
$$

For a non-interacting system, the space p^{o} is composed of subspaces p_{i}^{0}, whose associated operators are assumed to satisfy

$$
\begin{equation*}
P^{0}=\sum_{i} P_{i}^{0}=I \tag{2.2}
\end{equation*}
$$

I being the identity operator, whence, the projection capacity of P^{0} is said to be complete. In addition, if

$$
\begin{equation*}
P_{i}^{0} P_{j}^{0}=0, \quad i \neq j \tag{2.3}
\end{equation*}
$$

then subspaces p_{i}^{0} and p_{j}^{0} will have zero overlap.
In terms of the $\langle b r a| c|k e t\rangle$ notation of Dirac (1958), the Schrödinger equation (1.2) takes the form

$$
\begin{equation*}
H_{0}\left|\psi_{0}\right\rangle=E_{0}\left|\psi_{0}\right\rangle \tag{2.4}
\end{equation*}
$$

in which

$$
\begin{equation*}
\left|\psi_{0}\right\rangle=\sum_{n} c_{n}^{0}\left|\phi_{n}^{0}\right\rangle \tag{2.5}
\end{equation*}
$$

as in (1.1). From (2.5), we have

$$
\left\langle\phi_{m}^{0} \mid \psi_{0}\right\rangle=\sum_{n} c_{n}^{0}\left\langle\phi_{m}^{0} \mid \phi_{n}^{0}\right\rangle
$$

i.e.,

$$
\begin{equation*}
\left\langle\phi_{m}^{0} \mid \psi_{0}\right\rangle=\sum_{n} c_{n}^{0} \delta_{m n}=c_{m}^{0} \tag{2.6}
\end{equation*}
$$

via the orthonormality of $\left|\phi_{n}^{0}\right\rangle$. In view of (2.6), we can write (2.5) as

$$
\begin{equation*}
\left|\psi_{0}\right\rangle=\sum_{n}\left|\phi_{n}^{0}\right\rangle\left\langle\phi_{n}^{0} \mid \psi_{0}\right\rangle, \tag{2.7}
\end{equation*}
$$

whence,

$$
\begin{equation*}
\sum_{n}\left|\phi_{n}^{0}\right\rangle\left\langle\phi_{n}^{0}\right|=I . \tag{2.8}
\end{equation*}
$$

Comparison of (2.2) and (2.8), shows that

$$
\begin{equation*}
P_{n}^{0}=\left|\phi_{n}^{0}\right\rangle\left\langle\phi_{n}^{0}\right| \tag{2.9}
\end{equation*}
$$

is the representation of the projection operator P_{n}^{0} for the subspace p_{n}^{0}.

2.2 Perturbation Formulation

Turning to the question of an interacting system, we define the perturbed Hamiltonian as

$$
\begin{equation*}
H=H_{0}+V, \tag{2.10}
\end{equation*}
$$

where the interaction potential V is viewed as a small perturbation. If E and $|\psi\rangle$ are the corresponding perturbed eigenvalues and eigenfunctions, then (1.2) becomes

$$
\begin{equation*}
H|\psi\rangle=\left(H_{0}+V\right)|\psi\rangle=E|\psi\rangle . \tag{2.11}
\end{equation*}
$$

The perturbed space p falls naturally into two complementary subspaces q and \bar{q}, such that

$$
\begin{equation*}
p=q+\bar{q}, \tag{2.12}
\end{equation*}
$$

q being the space over which V acts and \bar{q} that where it does not. For calculating purposes, it is useful to express p as a subspace of p^{0}, by writing

$$
\begin{equation*}
p=p^{0}-s, \tag{2.13}
\end{equation*}
$$

where s denotes a space removed from p^{0} to form p. In operator language, we now have

$$
\begin{equation*}
\bar{Q} V=V \bar{Q}=0, \tag{2.14}
\end{equation*}
$$

and (Davison and Stȩślicka 1996)

$$
\begin{equation*}
S+Q+\bar{Q}=I \tag{2.15}
\end{equation*}
$$

by dint of (2.2), (2.12) and (2.13). Moreover, removal of the space s implies that

$$
\begin{equation*}
S|\psi\rangle=0 \tag{2.16}
\end{equation*}
$$

while (2.10) gives

$$
S H|\psi\rangle=\left(S H_{0}+S V\right)|\psi\rangle=0
$$

i.e.,

$$
\begin{equation*}
S V=-S H_{0} \tag{2.17}
\end{equation*}
$$

On rearranging, (2.11) can be written as

$$
\begin{equation*}
|\psi\rangle=G V|\psi\rangle \tag{2.18}
\end{equation*}
$$

where the operator

$$
\begin{equation*}
G=\left(E-H_{0}\right)^{-1} \tag{2.19}
\end{equation*}
$$

is known as the resolvent. For analysis purposes, let us now insert the identity operator in (2.18), so that

$$
\begin{equation*}
|\psi\rangle=G I V I|\psi\rangle . \tag{2.20}
\end{equation*}
$$

Substituting (2.15) into (2.20), and using (2.14), (2.16) and (2.17), leads to

$$
\begin{equation*}
|\psi\rangle=G\left(Q V-S H_{0}\right) Q|\psi\rangle . \tag{2.21}
\end{equation*}
$$

As in (2.6), the coefficients are given by

$$
\begin{equation*}
\left\langle\phi_{m}^{0} \mid \psi\right\rangle=\left\langle\phi_{m}^{0}\right| G\left(Q V-S H_{0}\right) Q|\psi\rangle \tag{2.22}
\end{equation*}
$$

where

$$
\begin{align*}
\left\langle\phi_{m}^{0} \mid \psi\right\rangle & \neq 0, \\
& \quad\left|\phi_{m}^{0}\right\rangle \in p \tag{2.23}\\
& \left|\phi_{m}^{0}\right\rangle \in s
\end{align*}
$$

Utilizing (2.5), the non-trivial solutions of (2.22) (i.e., $Q|\psi\rangle \neq 0$) require that

$$
\begin{equation*}
\operatorname{det}_{Q}\left[\left\langle\phi_{m}^{0}\right| G\left(Q V-S H_{0}\right) Q-I\left|\phi_{n}^{0}\right\rangle\right]=0 \tag{2.24}
\end{equation*}
$$

where $m \leq$ order (q). Note that the presence of the S-term in the above enables the initial system to be larger and simpler than the system being studied. Solutions of the secular equation (2.24) provide the perturbed eigenvalues E, whence, $|\psi\rangle$ can be obtained from the linear algebraic equation (2.21).

2.3 Chemisorption on Cyclic Crystal

In order to become acquainted with the resolvent technique, and the use of projection operators, we re-examine the problem treated in §1.1. In doing so, we employ the cyclic crystal, which lends itself well to modelling a noninteracting (or unperturbed) substrate (Davison and Stȩślicka 1996).

2.3.1 Cyclic crystal

A cyclic crystal ${ }^{1}$ consists of a ring of equally spaced atoms formed by joining the ends of a chain of N atoms numbered $n \in[0, N-1]$. Thus, for the k th state, the wave function (2.5) becomes

$$
\begin{equation*}
\left|\psi_{k}^{0}\right\rangle=\sum_{n=0}^{N-1} c_{n k}^{0}\left|\phi_{n}^{0}\right\rangle \tag{2.25}
\end{equation*}
$$

where the coefficients satisfy (1.9), whose solution can be written as (cf. (1.22))

$$
\begin{equation*}
c_{n k}^{0}=A e^{i n \theta_{k}^{0}} . \tag{2.26}
\end{equation*}
$$

The constant A is obtained by means of the normalization condition

$$
\begin{equation*}
\left\langle\psi_{k}^{0} \mid \psi_{k}^{0}\right\rangle=1, \tag{2.27}
\end{equation*}
$$

which, since $\left\langle\phi_{n}^{0} \mid \phi_{n}^{0}\right\rangle=1$, yields

$$
\sum_{n=0}^{N-1} A^{2}=1
$$

via (2.25) and (2.26), whence,

$$
\begin{equation*}
A=N^{-\frac{1}{2}} \tag{2.28}
\end{equation*}
$$

so that (2.25) now reads

$$
\begin{equation*}
\left|\psi_{k}^{0}\right\rangle=N^{-\frac{1}{2}} \sum_{n=0}^{N-1} e^{i n \theta_{k}^{0}}\left|\phi_{n}^{0}\right\rangle . \tag{2.29}
\end{equation*}
$$

[^3]The values of θ_{k}^{0} are found by means of the cyclic boundary condition (Ziman 1965)

$$
\begin{equation*}
c_{0 k}^{0}=c_{N k}^{0} . \tag{2.30}
\end{equation*}
$$

Inserting (2.26) in (2.30), and equating real and imaginary parts, we find

$$
\cos N \theta_{k}^{0}=1, \quad \sin N \theta_{k}^{0}=0
$$

thus,

$$
\begin{equation*}
\theta_{k}^{0}=2 \pi k / N, \quad k=0,1, \ldots, N-1 \tag{2.31}
\end{equation*}
$$

From (1.16) and (1.18), we see that each θ_{k}^{0}-value has a corresponding energy level

$$
\begin{equation*}
E_{k}^{0}=\alpha+2 \beta \cos \theta_{k}^{0} . \tag{2.32}
\end{equation*}
$$

2.3.2 Cyclic Green function

By virtue of (2.8) and (2.19), we can write the resolvent (or Greenian) for k-space as

$$
\begin{equation*}
G\left(E^{0}\right)=\left(E-H_{0}\right)^{-1} \sum_{k}\left|\psi_{k}^{0}\right\rangle\left\langle\psi_{k}^{0}\right|=\sum_{k}\left|\psi_{k}^{0}\right\rangle\left\langle\psi_{k}^{0}\right|\left(E-E_{k}^{0}\right)^{-1} \tag{2.33}
\end{equation*}
$$

via (2.4). Hence, we have the Greenian matrix element

$$
G_{m, N-n}=\sum_{k}\left\langle\phi_{m}^{0} \mid \psi_{k}^{0}\right\rangle\left\langle\psi_{k}^{0} \mid \phi_{N-n}^{0}\right\rangle\left(E-E_{k}^{0}\right)^{-1}
$$

which, by dint of (2.29) and (2.6), reduces to

$$
\begin{equation*}
G_{m, N-n}=N^{-1} \sum_{k} e^{i(m+n) \theta_{k}^{0}}\left(E-E_{k}^{0}\right)^{-1}=G_{m+n} \tag{2.34}
\end{equation*}
$$

since $e^{-i N \theta_{k}^{0}}=1$ by (2.31), which also shows that

$$
\begin{equation*}
\delta \theta_{k}^{0}=\theta_{k+1}^{0}-\theta_{k}^{0}=2 \pi N^{-1} \tag{2.35}
\end{equation*}
$$

Consequently, in the limit of $N \rightarrow \infty$, (2.34) leads to the Green function (GF)

$$
\begin{equation*}
G_{\ell}=(4 \pi \beta)^{-1} \int_{0}^{2 \pi} e^{i \ell \theta}\left(X-X^{0}\right)^{-1} d \theta \tag{2.36}
\end{equation*}
$$

by (1.16), where $\ell=(m+n)$.
Evaluation of (2.36) proceeds via complex integration (Mathews and Walker 1965). With the aid of (1.18), putting (cf. (1.19))

$$
\begin{equation*}
t=e^{i \theta} \tag{2.37}
\end{equation*}
$$

transforms (2.36) into an integral around a unit circle in the complex plane, viz.,

$$
\begin{equation*}
G_{\ell}=i(2 \pi \beta)^{-1} \oint\left[t^{\ell} / F(t)\right] d t \tag{2.38}
\end{equation*}
$$

where (cf. (1.15))

$$
\begin{equation*}
F(t)=t^{2}-2 X t+1 \tag{2.39}
\end{equation*}
$$

whose roots are

$$
\begin{equation*}
t_{1,2}=X \pm\left(X^{2}-1\right)^{1 / 2}, \quad t_{1} t_{2}=1 \tag{2.40}
\end{equation*}
$$

Invoking the theory of residues, (2.38) can be expressed as

$$
\begin{equation*}
\beta G_{\ell}=-\left(R_{1}+R_{2}\right) \tag{2.41}
\end{equation*}
$$

where each residue

$$
\begin{equation*}
R_{j}=\left[\left(t-t_{j}\right) t^{\ell}\left(t-t_{1}\right)^{-1}\left(t-t_{2}\right)^{-1}\right]_{t=t_{j}} \tag{2.42}
\end{equation*}
$$

is at a pole inside the unit circle. Since $X \neq X_{0}$ in (2.36), θ must be complex, i.e. ${ }^{2}$,

$$
\begin{equation*}
\theta \equiv \theta^{ \pm}=\xi \pm i \mu, \tag{2.43}
\end{equation*}
$$

which with (1.18) enables (2.40) to be expressed as

$$
\begin{equation*}
t_{1,2}^{ \pm}=e^{ \pm i(\xi \pm i \mu)} \tag{2.44}
\end{equation*}
$$

whence,

$$
\begin{align*}
& \left|t_{1,2}^{+}\right|=e^{\mp \mu} \lessgtr 1, \tag{2.45}\\
& \left|t_{1,2}^{-}\right|=e^{ \pm \mu} \gtrless 1 \tag{2.46}
\end{align*}
$$

[^4]These conditions show that R_{2} and R_{1}, respectively,lies outside the unit-circle contour and is excluded. Thus, (2.41) and (2.42) give

$$
\begin{align*}
& \beta G_{\ell}^{+}=-R_{1}=t_{1}^{\ell}\left(t_{2}-t_{1}\right)^{-1} \quad \text { for } \quad \theta^{+} \tag{2.47}\\
& \beta G_{\ell}^{-}=-R_{2}=t_{2}^{\ell}\left(t_{1}-t_{2}\right)^{-1} \quad \text { for } \quad \theta^{-}, \tag{2.48}
\end{align*}
$$

which lead to

$$
\begin{equation*}
2 \beta G_{\ell}^{ \pm}= \pm i e^{ \pm i \ell \theta} \csc \theta \tag{2.49}
\end{equation*}
$$

via (1.18) and (2.40).

2.3.3 Model representation

Let us now consider the interaction of an atom A with the zeroth atom of a monatomic cyclic crystal C, as depicted in Fig. 2.1. If the site energy of $A(C)$ is $\alpha_{a}(\alpha)$ and the bond energy of C is β, then in the pre- (post-) chemisorption situation the adbond energy $\beta_{a}=0\left(\beta_{a} \neq 0\right)$.

Fig. 2.1. Atom (A) and cyclic crystal (C) before and after interaction.
Prior to interaction, the unperturbed system consists of its isolated A and C parts, whence, its total k-state wave function is (cf. (2.25))

$$
\begin{equation*}
\left|\psi_{k}\right\rangle=c_{a k}\left|\phi_{a}\right\rangle+\sum_{n=0}^{N-1} c_{n k}\left|\phi_{n}\right\rangle=\sum_{t} c_{t k}\left|\phi_{t}\right\rangle, \quad t=a \quad \text { and } \quad n, \tag{2.50}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle\phi_{a} \mid \phi_{t}\right\rangle=\delta_{a t} . \tag{2.51}
\end{equation*}
$$

Likewise, we have (Koutecký 1976)

$$
\begin{equation*}
G_{A C}=G_{A}+G_{C} \tag{2.52}
\end{equation*}
$$

in which G_{C} is given by (2.33), and

$$
\begin{equation*}
G_{A}=\left|\phi_{a}\right\rangle\left\langle\phi_{a}\right|\left(E-\alpha_{a}\right)^{-1} . \tag{2.53}
\end{equation*}
$$

Returning to (2.22), we see that

$$
\begin{equation*}
\left\langle\phi_{r} \mid \psi\right\rangle=\left\langle\phi_{r}\right| G_{A C} Q V Q|\psi\rangle, \quad r=a \quad \text { or } \quad n, \tag{2.54}
\end{equation*}
$$

since $S=0$. Moreover, V acts over the space q between A and C, whose corresponding projection operator is defined by

$$
\begin{equation*}
Q=\left|\phi_{a}\right\rangle\left\langle\phi_{0}\right|+\left|\phi_{0}\right\rangle\left\langle\phi_{a}\right| . \tag{2.55}
\end{equation*}
$$

Thus, (2.50), (2.52) and (2.55) in (2.54) result in

$$
\begin{align*}
\left\langle\phi_{r}\right| \sum_{t} c_{t}\left|\phi_{t}\right\rangle= & \left\langle\phi_{r}\right|\left(G_{A}+G_{C}\right) \times\left(\left|\phi_{a}\right\rangle\left\langle\phi_{0}\right|\right. \\
& \left.+\left|\phi_{0}\right\rangle\left\langle\phi_{a}\right|\right) V\left(\left|\phi_{a}\right\rangle\left\langle\phi_{0}\right|+\left|\phi_{0}\right\rangle\left\langle\phi_{a}\right\rangle\right) \sum_{t} c_{t}\left|\phi_{t}\right\rangle \tag{2.56}
\end{align*}
$$

After some algebra, using (2.50) and (2.52), we find

$$
\begin{equation*}
\left\langle\phi_{r}\right| \sum_{t} c_{t}\left|\phi_{t}\right\rangle=\beta_{a}\left(G_{r a}^{A C}\left\langle\phi_{0}\right|+G_{r 0}^{A C}\left\langle\phi_{a}\right|\right) \sum_{t} c_{t}\left|\phi_{t}\right\rangle, \tag{2.57}
\end{equation*}
$$

where $\left\langle\phi_{a}\right| V\left|\phi_{a}\right\rangle=\left\langle\phi_{0}\right| V\left|\phi_{0}\right\rangle=0$,

$$
\begin{equation*}
\beta_{a}=\left\langle\phi_{0}\right| V\left|\phi_{a}\right\rangle=\left\langle\phi_{a}\right| V\left|\phi_{0}\right\rangle \tag{2.58}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{r a(0)}^{A C}=\left\langle\phi_{r}\right| G^{A C}\left|\phi_{a(0)}\right\rangle . \tag{2.59}
\end{equation*}
$$

Consequently, in view of (2.50) and (2.51), equation (2.57) gives

$$
\begin{equation*}
c_{a} \delta_{r a}+c_{n} \delta_{r n}=\beta_{a}\left(G_{r a}^{A C} c_{0}+G_{r 0}^{A C} c_{a}\right) \tag{2.60}
\end{equation*}
$$

which, for $r=n$ and $r=a$, yields the simultaneous equations

$$
\begin{align*}
& c_{n}=\beta_{a}\left(G_{n a}^{A C} c_{0}+G_{n 0}^{A C} c_{a}\right), \tag{2.61}\\
& c_{a}=\beta_{a}\left(G_{a a}^{A C} c_{0}+G_{a 0}^{A C} c_{a}\right), \tag{2.62}
\end{align*}
$$

respectively. From (2.62), we have

$$
\begin{equation*}
c_{a}=\beta_{a} G_{a a}^{A C}\left(1-\beta_{a} G_{a 0}^{A C}\right)^{-1} c_{0} \tag{2.63}
\end{equation*}
$$

whereby (2.61) becomes

$$
\begin{equation*}
c_{n}=\beta_{a}\left(G_{n a}^{A C}+\frac{G_{n 0}^{A C} G_{a a}^{A C}}{\beta_{a}^{-1}-G_{a 0}^{A C}}\right) c_{0} . \tag{2.64}
\end{equation*}
$$

However, from (2.33) and (2.50) to (2.53), we see that

$$
\begin{equation*}
G_{n a}^{A C}=G_{a 0}^{A C}=0 \tag{2.65}
\end{equation*}
$$

so that (2.63) and (2.64) reduce to

$$
\begin{equation*}
c_{a}=\beta_{a} G_{a a}^{A C} c_{0} \tag{2.66}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{n}=\beta_{a}^{2} G_{n 0}^{A C} G_{a a}^{A C} c_{0} \tag{2.67}
\end{equation*}
$$

Moreover, because

$$
\begin{equation*}
G_{a a}^{C}=G_{n 0}^{A}=0 \tag{2.68}
\end{equation*}
$$

also, we eventually obtain

$$
\begin{equation*}
c_{a}=\beta_{a} G_{a a}^{A} c_{0} \tag{2.69}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{n}=\beta_{a}^{2} G_{n 0}^{C} G_{a a}^{A} c_{0} \tag{2.70}
\end{equation*}
$$

which, for $n=0$ and $c_{0} \neq 0$, yields

$$
\begin{equation*}
\beta_{a}^{2} G_{a a}^{A} G_{00}^{C}=1 \tag{2.71}
\end{equation*}
$$

Utilizing (1.16), (1.18), (1.25) and (2.53) in (2.69), enables us to reclaim (1.24), viz.,

$$
\begin{equation*}
c_{a}=\eta c_{0}\left(z_{a}+2 \cos \theta\right)^{-1} . \tag{2.72}
\end{equation*}
$$

Meanwhile, from (2.70) we have

$$
\begin{equation*}
c_{n}= \pm i \eta c_{a}(2 \sin \theta)^{-1} e^{ \pm i n \theta} \tag{2.73}
\end{equation*}
$$

via (2.49) and (2.69). We note that (2.73) has the same exponential behaviour with n as (1.34), and that (2.71) is the same eigenvalue equation as that derived from (2.24), and leads to

$$
\begin{equation*}
\left(z_{a}+2 \cos \theta\right)\left(e^{-i \theta}-e^{i \theta}\right)=\eta^{2} \tag{2.74}
\end{equation*}
$$

which is close to (1.35), when $z_{s}=0$, as required for cyclic crystal substrate.
Clearly, the incorporation of the "cut and stick" tailoring feature of projection operators into the resolvent-technique formulation, makes it a particularly adaptable modelling tool. Moreover, it enables the atomic structure of the geometric space to be reflected in the so-called site representation of the GF.

Chapter 3

Dyson-Equation Approach

The aim of research is the discovery of the equations which subsist between the elements of phenomena.

- Ernst Mach

Having introduced GFs into the analysis, let us now proceed to explore ways by which we might exploit their properties to gain further insight into the charge-transfer process involved in chemisorption. Of particular interest, in this regard, is the density of states (DOS), which is accessed by adopting the concept of complex energy in the GF, as was footnoted in §2.3.2.

However, before addressing this issue, we must first develop a means whereby a perturbed GF is expressed in terms of an unperturbed one.

3.1 Dyson Equation

Consider an unperturbed system, whose Hamiltonian (Greenian) is $H_{0}\left(G_{0}\right)$, which is perturbed by a small potential (V), so that the perturbed system Hamiltonian (Greenian) is $H(G)$. As in (2.19), the Greenian operators are defined as

$$
\begin{equation*}
G_{0}=\left(E-H_{0}\right)^{-1}, \quad G=(E-H)^{-1}, \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
H=H_{0}+V \tag{3.2}
\end{equation*}
$$

V being the scattering (or perturbation) potential. With the aid of (3.2), we can write (3.1) as

$$
G=\left(E-H_{0}-V\right)^{-1}=\left(G_{0}^{-1}-V\right)^{-1}
$$

which, on rearranging, gives the Dyson equation (Dyson 1949, Taylor 1970)

$$
\begin{equation*}
G=G_{0}+G_{0} V G . \tag{3.3}
\end{equation*}
$$

By iteration, we see that (3.3) leads to the perturbation expansion

$$
\begin{equation*}
G=G_{0}+G_{0} V G_{0}+G_{0} V G_{0} V G_{0}+\cdots \tag{3.4}
\end{equation*}
$$

while in matrix form (3.3) reads

$$
\begin{equation*}
G(m, n)=G_{0}(m, n)+\sum_{k \ell} G_{0}(m, k) V(k, \ell) G(\ell, n) \tag{3.5}
\end{equation*}
$$

which relates the perturbed and unperturbed GFs via the scattering-potential matrix.

3.2 Density of States

The expression for the DOS is derived by taking the trace of the Greenian $G(E)$ in (3.1), i.e.,

$$
\begin{equation*}
\operatorname{Tr} G(E)=\sum_{j}\left\langle\psi_{j}\right| G\left|\psi_{j}\right\rangle=\sum_{j}\left(E-E_{j}\right)^{-1} \tag{3.6}
\end{equation*}
$$

ψ_{j} being the orthonormal eigenfunctions of H and E_{j} their corresponding eigenvalues. We see that the presence of the pole at $E=E_{j}$ gives rise to a singularity in the integration path of the GF in (3.6), which is avoided by introducing the idea of complex energy (Haken 1976) and taking

$$
\begin{equation*}
E \longrightarrow E+i s \tag{3.7}
\end{equation*}
$$

where $s=0^{+}$, the positive infinitesimal, is eventually taken to zero. ${ }^{1}$ In view of (3.7), we set $\xi_{j}=E-E_{j}$ in the summand of (3.6), and write it as

$$
\frac{1}{\xi_{j}+i s}=\frac{\xi_{j}}{\xi_{j}^{2}+s^{2}}-\frac{i s}{\xi_{j}^{2}+s^{2}}
$$

whereby (3.6) shows that

$$
\begin{equation*}
\operatorname{Im} \operatorname{Tr} G(E)=-\sum_{j} s\left(\xi_{j}^{2}+s^{2}\right)^{-1} \tag{3.8}
\end{equation*}
$$

whose summand has the properties

$$
\lim _{s \rightarrow 0} \frac{s}{\xi_{j}^{2}+s^{2}}=0, \quad \xi_{j} \neq 0
$$

and

$$
\begin{equation*}
\lim _{s \rightarrow 0} \int_{-c}^{c} \frac{s d \xi_{j}}{\xi_{j}^{2}+s^{2}}=\lim _{s \rightarrow 0}\left[\tan ^{-1}\left(\frac{\xi_{j}}{s}\right)\right]_{-c}^{c}=\pi \tag{3.9}
\end{equation*}
$$

Comparing (3.9) with the Dirac δ-function definition, viz.,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta\left(\xi_{j}\right) d \xi_{j}=1 \tag{3.10}
\end{equation*}
$$

shows that

$$
\lim _{s \rightarrow 0} \frac{s}{\xi_{j}^{2}+s^{2}}=\pi \delta\left(\xi_{j}\right)
$$

whereby (3.8) provides the definition

$$
\begin{equation*}
\rho(E)=\sum_{j} \delta\left(E-E_{j}\right)=-\pi^{-1} \operatorname{Im} \operatorname{Tr} G(E) \tag{3.11}
\end{equation*}
$$

for the total energy $D O S$ (Raimes 1972). In the site representation, (3.11) becomes

$$
\begin{equation*}
\rho(E)=-\pi^{-1} I m \sum_{m} G(m, m) \tag{3.12}
\end{equation*}
$$

whence,

$$
\begin{equation*}
\rho_{m}(E)=-\pi^{-1} \operatorname{Im} G(m, m) \tag{3.13}
\end{equation*}
$$

is the local density of states (LDOS) at the m th site.

[^5]
3.3 Chemisorption on Monatomic Substrate

The system we wish to investigate consists of a single atom a interacting with a semi-infinite monatomic chain. The site (bond) energy of the chain is $\alpha(\beta)$, while that of the a-atom is $\alpha_{a}\left(\beta_{a}\right)$. Initially, the substrate is represented by a cyclic chain of N atoms, whose GF is given by (2.49). A semi-infinite chain is then formed by breaking the bond between the $n=0$ and $N-1$ atoms (Fig. 3.1).

Fig. 3.1. Formation of N-atom chain from cyclic chain by breaking bond between $n=0$ and $N-1$ atoms.

Mathematically, this is achieved by means of the Dyson operator equation (3.3), in which $G_{0}(G)$ denotes the Greenian of the cyclic (semi-infinite) chain, and the bond-breaking potential operator is given by

$$
\begin{equation*}
V=-\beta(|0\rangle\langle N-1|+|N-1\rangle\langle 0|) . \tag{3.14}
\end{equation*}
$$

Thus, inserting (3.14) in (3.3), gives

$$
\begin{equation*}
G(0,0)=G_{0}(0,0)-\beta\left[G_{0}(0,0) G(N-1,0)+G_{0}(0, N-1) G(0,0)\right] \tag{3.15}
\end{equation*}
$$

for the GF at the $n=0$ atom of the semi-infinite chain, where, for example, $G(0,0)=\langle 0| G|0\rangle$. We observe that $G(N-1,0)=0$, since it is not contained in space over which G operates (Fig. 3.1), so on rearranging, (3.15) yields

$$
\begin{equation*}
G(0)=G_{0}(0)\left[1+\beta G_{0}(0, N-1)\right]^{-1} \tag{3.16}
\end{equation*}
$$

where, e.g., $G(0) \equiv G(0,0)$. Inserting $G_{\ell=1}^{-}$of (2.49) in (3.16) leads to

$$
\begin{equation*}
\beta G(0)=-i\left(2 \sin \theta-i e^{-i \theta}\right)^{-1} \tag{3.17}
\end{equation*}
$$

which reduces to

$$
\begin{equation*}
\beta G(0)=e^{-i \theta} \tag{3.18}
\end{equation*}
$$

(a)

Fig. 3.2. Schematic representation of chemisorption. (a) Before and (b) after formation of β_{a}-bond between a-atom and $n=0$ atom of N-atom chain.

3.3.1 Adatom Green function

Turning to the chemisorption situation portrayed in Fig. 3.2, we require the potential-bond operator

$$
\begin{equation*}
V=\beta_{a}(|0\rangle\langle a|+|a\rangle\langle 0|), \tag{3.19}
\end{equation*}
$$

to attach the a-atom to the $n=0$ atom of the semi-infinite chain. In this case, inserting (3.19) in (3.3), we find the adatom $G F$ is given by

$$
G_{a}(a)=G(a)+\beta_{a}\left[G(a, 0) G_{a}(a)+G(a) G_{a}(0, a)\right]
$$

which reduces to

$$
\begin{equation*}
G_{a}(a)=\left[1+\beta_{a} G_{a}(0, a)\right] G(a) \tag{3.20}
\end{equation*}
$$

since

$$
\begin{equation*}
G(0, a)=G(a, 0)=0 \tag{3.21}
\end{equation*}
$$

via Fig. 3.2(a). Likewise, we have

$$
G_{a}(0, a)=G(0, a)+\beta_{a}\left[G(0) G_{a}(a)+G(0, a) G_{a}(0, a)\right]
$$

which by (3.21) results in

$$
\begin{equation*}
G_{a}(0, a)=\beta_{a} G(0) G_{a}(a) \tag{3.22}
\end{equation*}
$$

Thus, substituting (3.22) into (3.20), and collecting terms, we have

$$
\begin{equation*}
G_{a}(a)=\left[G^{-1}(a)-\beta_{a}^{2} G(0)\right]^{-1} \tag{3.23}
\end{equation*}
$$

where the GF for the isolated a-atom in Fig. 3.2(a) is

$$
\begin{equation*}
G(a)=\left(E-\alpha_{a}\right)^{-1} . \tag{3.24}
\end{equation*}
$$

On using (3.18) and (3.24), we can write (3.23) as

$$
\begin{equation*}
2 \beta G_{a}(a)=\left\{\left(X-z_{a}\right)-2 \eta^{2}\left[X-i\left(1-X^{2}\right)^{1 / 2}\right]\right\}^{-1} \tag{3.25}
\end{equation*}
$$

where the adatom parameters

$$
\begin{equation*}
z_{a}=\left(\alpha_{a}-\alpha\right) / 2 \beta, \quad \eta=\beta_{a} / 2 \beta \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
X=(E-\alpha) / 2 \beta=\cos \theta \tag{3.27}
\end{equation*}
$$

by dint of (1.16) and (1.18).

3.3.2 Adatom self-energy and density of states

Alternately, by introducing the so-called reduced self-energy

$$
\begin{equation*}
\Sigma(X)=\Lambda(X)-i \Delta(X) \tag{3.28}
\end{equation*}
$$

we can express (3.25) in the concise form

$$
\begin{equation*}
2 \beta G_{a}(a)=[X-\Sigma(X)]^{-1} \tag{3.29}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda(X)=z_{a}+2 \eta^{2} X \tag{3.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta(X)=2 \eta^{2}\left(1-X^{2}\right)^{1 / 2} \tag{3.31}
\end{equation*}
$$

are referred to as the chemical shift and line broadening, respectively, both of which result from the effect of the atom-substrate interaction on the discrete level (i.e., $X=z_{a}$) of the a-atom, as it approaches the substrate surface.

With the aid of (3.28) and (3.29), equation (3.13) gives the adatom DOS as

$$
\begin{equation*}
\rho_{a}(X)=(2 \pi \beta)^{-1}\left\{\Delta\left[(X-\Lambda)^{2}+\Delta^{2}\right]^{-1}\right\} . \tag{3.32}
\end{equation*}
$$

For the system in question, inserting (3.30) and (3.31) in (3.32), and taking $2 \pi \beta=1$, we find

$$
\begin{equation*}
\rho_{a}^{b}(X)=\frac{2 \eta^{2}\left(1-X^{2}\right)^{1 / 2}}{\left[\left(1-2 \eta^{2}\right) X-z_{a}\right]^{2}+4 \eta^{4}\left(1-X^{2}\right)}, \tag{3.33}
\end{equation*}
$$

for $|X|<1$, i.e., states lying inside the band of reduced energies defined by (3.27). The graphs of the adatom DOS curves are drawn in Fig. 3.3 for $z_{a}=0.1$, with $\eta=0.25$ and 0.5 , which are depicted by the solid and dashed lines, respectively. We note that $\rho_{a}^{b}(X)=0$ at the $X= \pm 1$ band edges. When $\eta=0.25, \beta_{a}<\beta$, so the adbond is weaker than the substrate one, and the $\rho_{a}^{b}(X)$-curve assumes a typical Lorentzian-shape with a high, narrow central peak. On increasing η to 0.5 , so that $\beta_{a}=\beta$, the peak broadens and shrinks in height until it vanishes, and the $\rho_{a}^{b}(X)$-curve becomes a low, wide "plateau", which is indicative of the increasing strength of the adatomsubstrate interaction. Note that the changing shape of the DOS curves always proceeds in an area-preserving manner, since

$$
\begin{equation*}
2 \beta \int_{-1}^{1} \rho_{a}^{b}(X) d X=1 \tag{3.34}
\end{equation*}
$$

for the total number of states on the adatom to be unity (Davison and Stȩślicka 1992).

Fig. 3.3. Adatom DOS inside the band for the parameter values specified.
Let us now explore the DOS situation outside the band (i.e., $|X|>1$), where the reduced energy X_{a} of the localized adstate is given by the zeros of the denominator of the GF (3.25), which is written as

$$
\begin{equation*}
2 \beta G_{a}(a)=\left\{\left(X-z_{a}\right)-2 \eta^{2}\left[X-\operatorname{sgn} X\left(X^{2}-1\right)^{1 / 2}\right]\right\}^{-1} \tag{3.35}
\end{equation*}
$$

for $|X|>1$. For illustration purposes, we consider an adstate above the band, and choose $\eta=0.5$. In this case, we find

$$
\begin{equation*}
X_{a}=z_{a}+\left(4 z_{a}\right)^{-1} \tag{3.36}
\end{equation*}
$$

whence, $z_{a}>\frac{1}{2}$ for $X_{a}>1$.
With the aid of (3.36), we can express (3.25) in the form

$$
\begin{equation*}
G_{a}(a)=\left(4 \beta z_{a}\right)^{-1}\left(X_{a}-X\right)^{-1}\left[\left(X-2 z_{a}\right)-i\left(1-X^{2}\right)^{1 / 2}\right], \tag{3.37}
\end{equation*}
$$

whose corresponding DOS via (3.13) is

$$
\begin{equation*}
\rho_{a}^{b}(X)=\left(4 \pi \beta z_{a}\right)^{-1}\left(X_{a}-X\right)^{-1}\left(1-X^{2}\right)^{1 / 2}, \quad|X|<1 \tag{3.38}
\end{equation*}
$$

If X in (3.37) is replaced by $X+i s$, then in the adstate region, we have to $O(s)$ that

$$
\begin{equation*}
G_{a}(a)=\left(4 \beta z_{a}\right)^{-1}(P+i s Q)\left[\left(X_{a}-X\right)-i s\right]^{-1} \tag{3.39}
\end{equation*}
$$

where

$$
\begin{equation*}
P=\left(X-2 z_{a}\right)-\left(X^{2}-1\right)^{1 / 2} \tag{3.40}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=1-X\left(X^{2}-1\right)^{-1 / 2} \tag{3.41}
\end{equation*}
$$

To $O(s)$, equation (3.39) shows that

$$
\begin{equation*}
\operatorname{Im} G_{a}(a)=\frac{s\left[P+Q\left(X_{a}-X\right)\right]}{4 \beta z_{a}\left[\left(X_{a}-X\right)^{2}+s^{2}\right]} \tag{3.42}
\end{equation*}
$$

which, in the limit as $s \rightarrow 0^{+}$, reduces to

$$
\begin{equation*}
\operatorname{Im} G_{a}(a)=0, \quad X \neq X_{a} \tag{3.43}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} G_{a}(a)=P / 4 \beta z_{a} s, \quad X=X_{a} \tag{3.44}
\end{equation*}
$$

On using (3.36) and (3.40), inserting (3.44) in (3.13) gives

$$
\begin{equation*}
\rho_{a}^{b}\left(X_{a}\right)=\left[1-\left(4 z_{a}^{2}\right)^{-1}\right] / 2 \pi \beta s \tag{3.45}
\end{equation*}
$$

To proceed, we consider the function

$$
\begin{equation*}
f(X, s)=\pi^{-1} s\left[\left(X-X_{a}\right)^{2}+s^{2}\right]^{-1} \tag{3.46}
\end{equation*}
$$

which has the properties

$$
\begin{align*}
\lim _{s \rightarrow 0^{+}} f(X, s) & =0, \quad X \neq X_{a} \tag{3.47}\\
& =(\pi s)^{-1}, \quad X=X_{a}
\end{align*}
$$

of the Dirac δ-function. Thus, the adatom DOS (3.45), above the band, can be written as

$$
\begin{equation*}
\rho_{a}^{a}(X)=(2 \beta)^{-1} I_{a} \delta\left(X-X_{a}\right), \tag{3.48}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{a}=1-\left(4 z_{a}^{2}\right)^{-1}, \quad\left|z_{a}\right|>\frac{1}{2} \tag{3.49}
\end{equation*}
$$

is the intensity of the adstate at $X=X_{a}$. The same analysis for $X<1$, $z_{a}<-\frac{1}{2}$ reproduces (3.48) and (3.49) for the adstate at $X=-X_{a}$ below the band.

Fig. 3.4. Adatom DOS showing band and adstate contributions for $\eta=0.5$ and $z_{a}=1$ with $X_{a}=1.25$.

Equations (3.38) and (3.48) are the analytical expressions for the band and adstate contributions to the total reduced-energy spectrum of the adatom DOS, $\rho_{a}(x)$, respectively. Their graphs are displayed in Fig. 3.4 for $2 \beta=1$ and the parameter values indicated. As can be seen, the presence of the large adstate "spike" at $X=X_{a}$ markedly reduces the area under the inband portion of the DOS, in accordance with the sum rule (cf. (3.34))

$$
\begin{equation*}
2 \beta \int_{-\infty}^{\infty}\left(\rho_{a}^{b}+\rho_{a}^{a}\right) d X=1 \tag{3.50}
\end{equation*}
$$

We note that the $\rho_{a}^{b}(X)$-curve attains its maximum value at $X=X_{a}^{-1}$, being given by

$$
\begin{equation*}
\hat{\rho}_{a}^{b}\left(X_{a}^{-1}\right)=\left(2 z_{a}\right)^{-1}\left[X_{a}-\left(2 z_{a}\right)^{-1}\right]^{-1} . \tag{3.51}
\end{equation*}
$$

Moreover, the dichotomy in the adatom DOS distribution provides the adcharge with access to a state localized mainly on the adatom and also to delocalized band states that are spread throughout the whole system.

Chapter 4

Anderson-Newns-Grimley Model

The purpose of models is not to fit the data, but to sharpen the questions.

\author{

- Samuel Karlin
}

One of the problems encountered in formulating a theory of chemisorption is that of overcompleteness (and thus nonorthogonality), which arises because the isolated substrate itself is described by a complete set of states, so that the combined system of substrate and adatom forms an overcomplete set. This issue has been addressed by various authors (Grimley 1970, 1975, Gomer and Schrieffer 1971, Bagchi and Cohen 1974, Paulson and Schrieffer 1975, Bell and Madhukar 1976). The easiest way to handle the difficulty is to incorporate the effect by employing renormalized matrix elements and 1electron energies. Henceforth, we assume orthogonalization has been carried out, so that the effect is not treated explicitly (Kranz 1978).

Another fundamental deficiency in the 1-electron theory is its failure to account for the significant role played by electron-electron interaction in the charge-transfer process. An approximate solution to this difficult many-electron problem appeared towards the end of the sixties (Edwards and Newns 1967, Grimley 1967, Newns 1969), which tackled it by adopting a modified version of the work of Anderson (1961) on dilute magnetic impurities
in metals. The resulting Anderson-Newns-Grimley (ANG) model introduces a new ingredient into the 1-electron Hamiltonian, namely, the intra-atomic electron Coulomb repulsion term on the adatom, which is visualized as an impurity residing on the surface. As a consequence, the chemisorption energy can be calculated in a self-consistent manner.

In order to proceed further, we now introduce the language of manyelectron theory, and the concept of occupation number.

4.1 Second Quantization Formalism

The wave function of a many-electron system can be written as a Slater determinant (see App. B). However, a more convenient notation is provided by using the occupation number representation, whereby the N-electron determinantal function takes the form (March et al. 1967, Raimes 1972)

$$
\begin{equation*}
\Psi_{N}\left(n_{1} \ldots n_{k} \ldots\right)=\left|n_{1} \ldots n_{k} \ldots\right\rangle, \tag{4.1}
\end{equation*}
$$

where n_{k} is the number of electrons in the level k, whose value is either 0 or 1 and

$$
\begin{equation*}
\sum_{k} n_{k}=N \tag{4.2}
\end{equation*}
$$

Equation (4.1) is sometimes referred to as a state vector in Fock space and its use requires that the Hamiltonian be expressed in terms of operators that can act on such vectors.

4.1.1 Creation and annihilation operators

Assuming that all the 1-electron levels are arranged in some definite order, then, since n_{k} is 1 or 0 , we can define the annihilation operator c_{k} by

$$
\begin{gather*}
c_{k}\left|\ldots 1_{k} \ldots\right\rangle=\theta_{k}\left|\ldots 0_{k} \ldots\right\rangle, \tag{4.3}\\
c_{k}\left|\ldots 0_{k} \ldots\right\rangle=0 \tag{4.4}
\end{gather*}
$$

In (4.3), all the occupation numbers remain unchanged, except n_{k}. Likewise, the creation operator c_{k}^{\dagger} is defined by

$$
\begin{equation*}
c_{k}^{\dagger}\left|\ldots 0_{k} \ldots\right\rangle=\theta_{k}\left|\ldots 1_{k} \ldots\right\rangle \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
c_{k}^{\dagger}\left|\ldots 1_{k} \ldots\right\rangle=0 . \tag{4.6}
\end{equation*}
$$

Note that the c-operation in (4.4) (or (4.6)) yields a null result, because an electron can not be destroyed (created), where the k-state is already empty (occupied). In the above equations,

$$
\begin{equation*}
\theta_{k}=(-1)^{\nu_{k}}, \quad \nu_{k}=\sum_{j<k} n_{j}, \tag{4.7}
\end{equation*}
$$

since, if an even (odd) number of states, with $n_{k}=1$, precede the k-level, the sum is an even (odd) number and $\theta_{k}=1\left(\theta_{k}=-1\right)^{1}$. Of course, this reflects the antisymmetric nature of the Slater determinant wave function (App. B).

The above definitions can be expressed more succinctly as:

$$
\begin{align*}
c_{k}\left|\ldots n_{k} \ldots\right\rangle & =\theta_{k} n_{k}\left|\ldots 0_{k} \ldots\right\rangle, \tag{4.8}\\
c_{k}^{\dagger}\left|\ldots n_{k} \ldots\right\rangle & =\theta_{k}\left(1-n_{k}\right)\left|\ldots 1_{k} \ldots\right\rangle . \tag{4.9}
\end{align*}
$$

As shown in App. C, the c-operators satisfy the following set of anticommutation relations:

$$
\begin{align*}
& {\left[c_{\ell}, c_{k}\right]_{+}=0,} \tag{4.10}\\
& {\left[c_{\ell}^{\dagger}, c_{k}^{\dagger}\right]_{+}=0,} \tag{4.11}\\
& {\left[c_{\ell}^{\dagger}, c_{k}\right]_{+}=\delta_{\ell k},} \tag{4.12}
\end{align*}
$$

where

$$
\begin{equation*}
[a, b]_{+}=a b+b a . \tag{4.13}
\end{equation*}
$$

Moreover, as in (C.5),

$$
\begin{equation*}
c_{k}^{\dagger} c_{k}=n_{k} \tag{4.14}
\end{equation*}
$$

is known as the number operator for the 1 -electron state function $|k\rangle$. Equations (4.12) and (4.14) yield the result

$$
\begin{equation*}
c_{k} c_{k}^{\dagger}=1-n_{k} . \tag{4.15}
\end{equation*}
$$

[^6]Recalling $\S 2.1$, we observe that the operator $|i\rangle\langle j|$ gives zero, when it acts on any of the states $|k\rangle$, except that for which $k=j$, when it gives the state $|i\rangle$. Consequently, $|i\rangle\langle j|$ removes an electron from a state whose wave function is $|j\rangle$, and puts it in the state $|i\rangle$. In other words, $|i\rangle\langle j|$ annihilates an electron in the state $|j\rangle$ and creates one in the state $|i\rangle$ (Taylor 1970), which means it is equivalent to the c-operator $c_{i}^{\dagger} c_{j}$.

If we now introduce the vacuum state $|0\rangle$, for which

$$
\begin{equation*}
\langle 0 \mid 0\rangle=1, \quad\langle k \mid 0\rangle=0 \tag{4.16}
\end{equation*}
$$

then we can write

$$
\begin{align*}
|i\rangle\langle j| & =|i\rangle\langle 0 \mid 0\rangle\langle j| \\
& =(|i\rangle\langle 0|)(|0\rangle\langle j|) \\
& =c_{i}^{\dagger} c_{j}, \tag{4.17}
\end{align*}
$$

whereby we obtain

$$
\begin{equation*}
c_{j}=|0\rangle\langle j|, \quad c_{i}^{\dagger}=|i\rangle\langle 0| . \tag{4.18}
\end{equation*}
$$

4.1.2 Hamiltonian in c-operator form

For a free-electron, the Schrödinger equation takes the form

$$
\begin{equation*}
T|\psi\rangle=E|\psi\rangle \tag{4.19}
\end{equation*}
$$

where

$$
\begin{equation*}
T=p^{2} / 2 m \tag{4.20}
\end{equation*}
$$

is the kinetic energy operator, with

$$
\begin{equation*}
\mathbf{p}=-i \hbar \nabla \tag{4.21}
\end{equation*}
$$

Now (4.19) has solutions for an infinite number of energies $E_{u}(u=1,2, \ldots)$, whose corresponding state functions $|u\rangle$, which satisfy

$$
\begin{equation*}
T|u\rangle=E_{u}|u\rangle \tag{4.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle u \mid v\rangle=\delta_{u v} \tag{4.23}
\end{equation*}
$$

form a complete set, so that any other function can be expressed in terms of $|u\rangle$.

In view of (2.8), we can write

$$
\begin{align*}
T & =\sum_{u}|u\rangle\langle u| T \sum_{v}|v\rangle\langle v| \\
& =\sum_{u, v}\langle u| T|v\rangle|u\rangle\langle v|, \tag{4.24}
\end{align*}
$$

which by (4.17) becomes

$$
\begin{equation*}
T=\sum_{u, v} T_{u v} c_{u}^{\dagger} c_{v} \tag{4.25}
\end{equation*}
$$

It is convenient to choose $|u\rangle$, so that $T_{u v}$ has only diagonal elements. One such choice is the plane-wave $e^{i \mathbf{k}_{u} \cdot \mathbf{r}}$, for which (4.20) and (4.21) yield (Taylor 1970)

$$
T_{u v}=\int e^{-i \mathbf{k}_{u} \cdot \mathbf{r}}\left(-\hbar^{2} \nabla^{2} / 2 m\right) e^{i \mathbf{k}_{v} \cdot \mathbf{r}} d \mathbf{r}
$$

i.e., the diagonal form

$$
\begin{equation*}
T_{u v}=\left(\hbar^{2} k_{u}^{2} / 2 m\right) \delta_{u v}=E_{u} \delta_{u v} \tag{4.26}
\end{equation*}
$$

via (4.22).
A similar derivation for the potential energy operator V leads to the result

$$
\begin{equation*}
V=\sum_{u, v} V_{u v} c_{u}^{\dagger} c_{v} \tag{4.27}
\end{equation*}
$$

so the c-operator form of the 1 -electron Hamiltonian is

$$
\begin{equation*}
H=\sum_{u} E_{u} c_{u}^{\dagger} c_{u}+\sum_{u, v} V_{u v} c_{u}^{\dagger} c_{v} \tag{4.28}
\end{equation*}
$$

by (4.25)-(4.27). Note that the annihilation and creation operators always appear in pairs, since a potential cannot remove an electron from one state without putting it back in another.

Turning to the situation where the electrons interact, requires we add to (4.28) a 2-electron repulsion term

$$
\begin{equation*}
W=\frac{1}{2} \sum_{u, v}^{\prime} w\left(\mathbf{r}_{u}, \mathbf{r}_{v}\right) \tag{4.29}
\end{equation*}
$$

where the prime on the summation sign indicates $u \neq v$ and the $\frac{1}{2}$ factor eliminates doubly-counted summands. To express (4.29) in c-operator language, we have to perform some lengthy analysis. Since this is available in the loc. cit. texts, we omit it here, in the interest of brevity, and merely quote the result, viz.,

$$
\begin{equation*}
W=\frac{1}{2} \sum_{i, j, k, \ell} w_{i j k \ell} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{\ell} \tag{4.30}
\end{equation*}
$$

which, being a 2 -electron term, contains two pairs of $c_{u}^{\dagger} c_{v}$ operators, as expected.

In (4.28) and (4.30), we have achieved our aim of expressing the Hamiltonian in the appropriate second quantized form for acting on the state vectors in Fock space.

4.2 ANG Hamiltonian

At this point, we have reached the stage where we can describe the adatomsubstrate system in terms of the ANG Hamiltonian (Muscat and Newns 1978, Grimley 1983). We consider the case of anionic chemisorption (§1.2.2), where a \downarrow-spin electron in the substrate level ε_{k}, below the Fermi level (FL) ε_{F}, "hops over" into the affinity level (A) of the adatom, whose \uparrow-spin electron resides in the lower ionization level (I), as in Fig. 4.1. Thus, the intra-atomic electron Coulomb repulsion energy on the adatom (a) is

$$
\begin{equation*}
U=|I-A| \tag{4.31}
\end{equation*}
$$

and (4.30) reduces to

$$
\begin{equation*}
W=\frac{1}{2} U n_{a \sigma} n_{a,-\sigma} \tag{4.32}
\end{equation*}
$$

via (4.14), where $\sigma=+(-)$ labels the $\uparrow(\downarrow)$ electron spin.

Fig. 4.1. Anionic chemisorption energy-level diagram showing transfer of \downarrow-spin electron from substrate level ε_{k} to affinity level A on adatom, while experiencing Coulomb repulsion U from \uparrow-spin electron in ionization level I. ε_{f} is the substrate Fermi level.

Using (4.28) and (4.32) with (4.14), we can now write the ANG Hamiltonian of the combined adatom-substrate system as

$$
\begin{align*}
H & =\sum_{\sigma}\left\{\left[\varepsilon_{a} n_{a \sigma}+\frac{1}{2} U n_{a \sigma} n_{a,-\sigma}\right]\right. \\
& \left.+\sum_{k}\left[\varepsilon_{k} n_{k \sigma}+\left(V_{a k} c_{a \sigma}^{\dagger} c_{k \sigma}+V_{k a}^{*} c_{k \sigma}^{\dagger} c_{a \sigma}\right)\right]\right\} \tag{4.33}
\end{align*}
$$

where $\varepsilon_{a}(=I)$ is the adatom site energy and k labels the substrate energy levels. The last term in (4.33) is the "hopping term" coupling the adatom states $a \sigma$ with the substrate states $k \sigma$.

Invoking the Hartree-Fock approximation (HFA) (Salem 1966), means that we can replace $U n_{a,-\sigma}$ in (4.33) by an "averaged" self-energy $U\left\langle n_{a,-\sigma}\right\rangle$, whereby an effective adatom level of spin σ is defined by ${ }^{2}$

[^7]\[

$$
\begin{equation*}
\varepsilon_{a \sigma}=\varepsilon_{a}+U\left\langle n_{a,-\sigma}\right\rangle \tag{4.34}
\end{equation*}
$$

\]

$\left\langle n_{a,-\sigma}\right\rangle$ being the adoccupancy of the $-\sigma$ spin state, so (4.33) can be approximated by

$$
\begin{align*}
H=\sum_{\sigma} H^{\sigma} & =\sum_{\sigma}\left\{\varepsilon_{a \sigma} n_{a \sigma}+\sum_{k}\left[\varepsilon_{k} n_{k \sigma}\right.\right. \\
& \left.\left.+\left(V_{a k} c_{a \sigma}^{\dagger} c_{k \sigma}+V_{k a}^{*} c_{k \sigma}^{\dagger} c_{a \sigma}\right)\right]\right\} . \tag{4.35}
\end{align*}
$$

4.3 Hartree-Fock Treatment

4.3.1 Perturbed energy

In the HFA, the Schrödinger equation for the σ-spin ground state is

$$
\begin{equation*}
H^{\sigma} \Phi_{0}^{\sigma}=\varepsilon_{0} \Phi_{0}^{\sigma} \tag{4.36}
\end{equation*}
$$

where the wave function Φ_{0}^{σ} is written as the antisymmetric product (Anderson 1961)

$$
\begin{equation*}
\Phi_{0}^{\sigma}=\prod_{\varepsilon_{m \sigma}<\varepsilon_{F}} c_{m \sigma}^{\dagger}|0\rangle, \tag{4.37}
\end{equation*}
$$

$\varepsilon_{m \sigma}$ being the perturbed 1-electron energy.
If the operator $c_{m \sigma}^{\dagger}$ creates an excitation of energy $\varepsilon_{0}+\varepsilon_{m \sigma}$, then

$$
\begin{equation*}
H^{\sigma} c_{m \sigma}^{\dagger} \Phi_{0}^{\sigma}=\left(\varepsilon_{0}+\varepsilon_{m \sigma}\right) c_{m \sigma}^{\dagger} \Phi_{0}^{\sigma} \tag{4.38}
\end{equation*}
$$

since the excited state $c_{m \sigma}^{\dagger} \Phi_{0}^{\sigma}$ is also an eigenfunction of the spin-dependent Fock Hamiltonian H^{σ}. With the aid of (4.36), equation (4.38) can be expressed as

$$
\begin{equation*}
\left[H^{\sigma}, c_{m \sigma}^{\dagger}\right] \Phi_{0}^{\sigma}=\varepsilon_{m \sigma} c_{m \sigma}^{\dagger} \Phi_{0}^{\sigma} \tag{4.39}
\end{equation*}
$$

in which [,] denotes the commutator defined by

$$
\begin{equation*}
[a, b]=a b-b a \tag{4.40}
\end{equation*}
$$

[^8]The solution of (4.39) is sought by putting (cf. (2.50))

$$
\begin{equation*}
c_{m \sigma}^{\dagger}=\langle m \mid a\rangle_{\sigma} c_{a \sigma}^{\dagger}+\sum_{k}\langle m \mid k\rangle_{\sigma} c_{k \sigma}^{\dagger} \tag{4.41}
\end{equation*}
$$

and commuting it with H^{σ} in (4.35) to give

$$
\begin{align*}
{\left[H^{\sigma}, c_{m \sigma}^{\dagger}\right] } & =\varepsilon_{a \sigma}\left[n_{a \sigma}, c_{m \sigma}^{\dagger}\right]+\sum_{k}\left\{\varepsilon_{k}\left[n_{k \sigma}, c_{m \sigma}^{\dagger}\right]\right. \\
& \left.+\left(V_{a k}\left[c_{a \sigma}^{\dagger} c_{k \sigma}, c_{m \sigma}^{\dagger}\right]+V_{k a}^{*}\left[c_{k \sigma}^{\dagger} c_{a \sigma}, c_{m \sigma}^{\dagger}\right]\right)\right\} \tag{4.42}
\end{align*}
$$

Now, in general, using (4.12) shows that

$$
\begin{equation*}
\left[c_{p \sigma}^{\dagger} c_{q \sigma}, c_{m \sigma}^{\dagger}\right]=c_{p \sigma}^{\dagger} \delta_{q m} \tag{4.43}
\end{equation*}
$$

which in (4.42) leads to

$$
\begin{align*}
& {\left[H^{\sigma}, c_{k \sigma}^{\dagger}\right]=\varepsilon_{k} c_{k \sigma}^{\dagger}+V_{a k} c_{a \sigma}^{\dagger} ; m=k} \\
& {\left[H^{\sigma}, c_{a \sigma}^{\dagger}\right]=\varepsilon_{a \sigma} c_{a \sigma}^{\dagger}+\sum_{k} V_{k a}^{*} c_{k \sigma}^{\dagger} ; m=a} \tag{4.44}
\end{align*}
$$

Meanwhile, (4.41) in (4.39) gives

$$
\begin{align*}
& \left\{\langle m \mid a\rangle_{\sigma}\left[H^{\sigma}, c_{a \sigma}^{\dagger}\right]+\sum_{k}\langle m \mid k\rangle_{\sigma}\left[H^{\sigma}, c_{k \sigma}^{\dagger}\right]\right\} \Phi_{0} \\
& \quad=\varepsilon_{m \sigma}\left(\langle m \mid a\rangle_{\sigma} c_{a \sigma}^{\dagger}+\sum_{k}\langle m \mid k\rangle_{\sigma} c_{k \sigma}^{\dagger}\right) \Phi_{0} \tag{4.45}
\end{align*}
$$

which by (4.44) yields

$$
\begin{align*}
\left(\langle m \mid a\rangle_{\sigma} \varepsilon_{a \sigma}\right. & \left.+\sum_{k}\langle m \mid k\rangle_{\sigma} V_{a k}\right) c_{a \sigma}^{\dagger} \\
& +\sum_{k}\left(\langle m \mid a\rangle_{\sigma} V_{k a}^{*}+\langle m \mid k\rangle_{\sigma} \varepsilon_{k}\right) c_{k \sigma}^{\dagger} \\
& =\left(\langle m \mid a\rangle_{\sigma} c_{a \sigma}^{\dagger}+\sum_{k}\langle m \mid k\rangle_{\sigma} c_{k \sigma}^{\dagger}\right) \varepsilon_{m \sigma} . \tag{4.46}
\end{align*}
$$

On equating the coefficients of $c_{a \sigma}^{\dagger}$ and $c_{k \sigma}^{\dagger}$, we arrive at

$$
\begin{align*}
& \varepsilon_{m \sigma}\langle m \mid a\rangle_{\sigma}=\varepsilon_{a \sigma}\langle m \mid a\rangle_{\sigma}+\sum_{k} V_{a k}\langle m \mid k\rangle_{\sigma}, \tag{4.47}\\
& \varepsilon_{m \sigma}\langle m \mid k\rangle_{\sigma}=\varepsilon_{k}\langle m \mid k\rangle_{\sigma}+V_{k a}^{*}\langle m \mid a\rangle_{\sigma}, \tag{4.48}
\end{align*}
$$

which are the equations of motion for $\langle m \mid a\rangle_{\sigma}$ and $\langle m \mid k\rangle_{\sigma}$, respectively (Andserson 1961).

Forming (4.47) $\langle a \mid m\rangle_{\sigma}$ and $\sum_{k}(4.48)\langle k \mid m\rangle_{\sigma}$ yields

$$
\begin{gather*}
\varepsilon_{m \sigma}\left|\langle m \mid a\rangle_{\sigma}\right|^{2}=\varepsilon_{a \sigma}\left|\langle m \mid a\rangle_{\sigma}\right|^{2}+\sum_{k} V_{a k}\langle m \mid k\rangle_{\sigma}\langle a \mid m\rangle_{\sigma}, \tag{4.49}\\
\sum_{k} \varepsilon_{m \sigma}\left|\langle m \mid k\rangle_{\sigma}\right|^{2}=\sum_{k}\left(\varepsilon_{k}\left|\langle m \mid k\rangle_{\sigma}\right|^{2}+V_{k a}^{*}\langle m \mid a\rangle_{\sigma}\langle k \mid m\rangle_{\sigma}\right), \tag{4.50}
\end{gather*}
$$

respectively. However, since

$$
\begin{equation*}
\left|\langle m \mid a\rangle_{\sigma}\right|^{2}+\sum_{k}\left|\langle m \mid k\rangle_{\sigma}\right|^{2}=1 \tag{4.51}
\end{equation*}
$$

adding (4.49) and (4.50) gives

$$
\begin{equation*}
\varepsilon_{m \sigma}=\varepsilon_{a \sigma}\left|\langle m \mid a\rangle_{\sigma}\right|^{2}+\sum_{k}\left[\varepsilon_{k}\left|\langle m \mid k\rangle_{\sigma}\right|^{2}+\left(V_{a k}\langle m \mid k\rangle_{\sigma}\langle a \mid m\rangle_{\sigma}+h . c .\right)\right] \tag{4.52}
\end{equation*}
$$

where h.c. stands for the hermitian conjugate of the preceding term. Inserting (4.34), and summing over all occupied levels, we obtain

$$
\begin{align*}
\sum_{m, \sigma} \varepsilon_{m \sigma} & =\sum_{m, \sigma}\left[\sum_{q} \varepsilon_{q}\left|\langle m \mid q\rangle_{\sigma}\right|^{2}\right. \\
& \left.+\sum_{k}\left(V_{a k}\langle m \mid k\rangle_{\sigma}\langle a \mid m\rangle_{\sigma}+\text { h.c. }\right)\right] \\
& +U \sum_{\sigma}\left\langle n_{a,-\sigma}\right\rangle \sum_{m}\left|\langle m \mid a\rangle_{\sigma}\right|^{2} \tag{4.53}
\end{align*}
$$

in which q runs over a and k. Taking a closer look at the last summation, we observe that

$$
\begin{align*}
\sum_{m}\left|\langle m \mid a\rangle_{\sigma}\right|^{2} & =\sum_{m}\langle m \mid a\rangle_{\sigma}\langle a \mid m\rangle_{\sigma}=\sum_{m}\langle m \mid a\rangle_{\sigma}\langle 0 \mid 0\rangle\langle a \mid m\rangle_{\sigma} \\
& =\sum_{m}\langle m \sigma| c_{a \sigma}^{\dagger} c_{a \sigma}|m \sigma\rangle=\sum_{m}\langle m \sigma| n_{a \sigma}|m \sigma\rangle=\left\langle n_{a \sigma}\right\rangle \tag{4.54}
\end{align*}
$$

where we have used (4.16) and (4.18). Thus, (4.53) becomes

$$
\begin{align*}
\sum_{m, \sigma} \varepsilon_{m \sigma}=\sum_{m, \sigma} & {\left[\sum_{q} \varepsilon_{q}\left|\langle m \mid q\rangle_{\sigma}\right|^{2}+\sum_{k}\left(V_{a k}\langle m \mid k\rangle_{\sigma}\langle a \mid m\rangle_{\sigma}+\text { h.c. }\right)\right] } \\
& +2 U\left\langle n_{a+}\right\rangle\left\langle n_{a-}\right\rangle \tag{4.55}
\end{align*}
$$

via (4.54).
From (4.33) and (4.34), we see that the ANG Hamiltonian can be written as

$$
\begin{equation*}
H=\sum_{\sigma}\left[\sum_{q} \varepsilon_{q} n_{q \sigma}+\sum_{k}\left(V_{a k} c_{a \sigma}^{\dagger} c_{k \sigma}+h . c .\right)\right]+U\left\langle n_{a-}\right\rangle n_{a+} . \tag{4.56}
\end{equation*}
$$

Hence, in the HF ground-state Φ_{0}, the energy expectation value of the perturbed system is

$$
\begin{align*}
E=\langle & \left.\Phi_{0}|H| \Phi_{0}\right\rangle=\sum_{n, \sigma}\left[\sum_{q} \varepsilon_{q}\left|\langle n \mid q\rangle_{\sigma}\right|^{2}+\sum_{k}\left(V_{a k}\langle n \mid k\rangle_{\sigma}\langle a \mid n\rangle_{\sigma}+h . c .\right)\right] \\
& +U\left\langle n_{a+}\right\rangle\left\langle n_{a-}\right\rangle \tag{4.57}
\end{align*}
$$

by (4.54). Comparing (4.55) with (4.57), reveals that the perturbed energy

$$
\begin{equation*}
E=\sum_{\substack{m, \sigma \\ o c c}} \varepsilon_{m \sigma}-U\left\langle n_{a+}\right\rangle\left\langle n_{a-}\right\rangle, \tag{4.58}
\end{equation*}
$$

where the U-term appears negatively, because it is counted twice in the preceding Fock eigenvalues summation.

4.3.2 Adatom Green function and density of states

In matrix notation, the GF, $G_{q \ell}^{\sigma}$, is defined by

$$
\begin{equation*}
\sum_{q}\left(E-H^{\sigma}\right)_{p q} G_{q \ell}^{\sigma}=\delta_{p \ell} \tag{4.59}
\end{equation*}
$$

where, as in (3.7), we have introduced the concept of complex energy, viz.,

$$
\begin{equation*}
E=\varepsilon+i s, \quad s=0^{+} \tag{4.60}
\end{equation*}
$$

to handle the singularity in the GF matrix $\mathbf{G}^{\sigma}(\varepsilon)$ at the eigenvalue of \mathbf{H}^{σ}.
For $p=\ell=a$, (4.59) becomes

$$
\sum_{q}\left(E-H^{\sigma}\right)_{a q} G_{q a}^{\sigma}=1
$$

i.e., since $q=a$ or k,

$$
\begin{equation*}
\left(E-H^{\sigma}\right)_{a a} G_{a a}^{\sigma}+\sum_{k}\left(E-H^{\sigma}\right)_{a k} G_{k a}^{\sigma}=1 \tag{4.61}
\end{equation*}
$$

With the aid of (4.35), we find

$$
\begin{align*}
\left(E-H^{\sigma}\right)_{a a} & =\langle a| E-H^{\sigma}|a\rangle \\
& =E\langle a \mid a\rangle-\langle a| H^{\sigma}|a\rangle \\
& =E-\varepsilon_{a \sigma} \tag{4.62}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\left(E-H^{\sigma}\right)_{a k} & =E\langle a \mid k\rangle-\langle a| H^{\sigma}|k\rangle \\
& =-V_{a k} . \tag{4.63}
\end{align*}
$$

Thus, (4.62) and (4.63) in (4.61) give

$$
\begin{equation*}
\left(E-\varepsilon_{a \sigma}\right) G_{a a}^{\sigma}-\sum_{k} V_{a k} G_{k a}^{\sigma}=1 \tag{4.64}
\end{equation*}
$$

For $p=k$ and $\ell=a$, (4.59) yields

$$
\left(E-H^{\sigma}\right)_{k a} G_{a a}^{\sigma}+\sum_{k^{\prime}}\left(E-H^{\sigma}\right)_{k k^{\prime}} G_{k^{\prime} a}^{\sigma}=0,
$$

which by (4.35) leads to

$$
-V_{k a}^{*} G_{a a}^{\sigma}+\sum_{k^{\prime}}\left(E-\varepsilon_{k^{\prime}}\right) \delta_{k k^{\prime}} G_{k^{\prime} a}^{\sigma}=0
$$

whence,

$$
\begin{equation*}
G_{k a}^{\sigma}=V_{k a}^{*} G_{a a}^{\sigma}\left(E-\varepsilon_{k}\right)^{-1} \tag{4.65}
\end{equation*}
$$

Inserting (4.65) in (4.64), we arrive at

$$
\begin{equation*}
G_{a a}^{\sigma}(E)=\left[E-\varepsilon_{a \sigma}-\sum_{k}\left|V_{a k}\right|^{2}\left(E-\varepsilon_{k}\right)^{-1}\right]^{-1} \tag{4.66}
\end{equation*}
$$

In view of (4.60) and the Plemelj formula (D.9), the summation in (4.66) can be evaluated by writing

$$
\begin{aligned}
\sum_{k}\left|V_{a k}\right|^{2}\left(\varepsilon-\varepsilon_{k}+i s\right)^{-1} & =\sum_{k}\left|V_{a k}\right|^{2} \int_{-\infty}^{\infty}\left(\varepsilon-\varepsilon^{\prime}+i s\right)^{-1} \delta\left(\varepsilon^{\prime}-\varepsilon_{k}\right) d \varepsilon^{\prime} \\
& =P \int_{-\infty}^{\infty} \sum_{k}\left|V_{a k}\right|^{2}\left(\varepsilon-\varepsilon^{\prime}\right)^{-1} \delta\left(\varepsilon^{\prime}-\varepsilon_{k}\right) d \varepsilon^{\prime} \\
& -i \pi \int_{-\infty}^{\infty} \sum_{k}\left|V_{a k}\right|^{2} \delta\left(\varepsilon^{\prime}-\varepsilon_{k}\right) \delta\left(\varepsilon-\varepsilon^{\prime}\right) d \varepsilon^{\prime}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\sum_{k}\left|V_{a k}\right|^{2}\left(\varepsilon-\varepsilon_{k}+i s\right)^{-1}=\Lambda(\varepsilon)-i \Delta(\varepsilon) \tag{4.67}
\end{equation*}
$$

where the so-called chemisorption functions

$$
\begin{align*}
& \Delta(\varepsilon)=\pi \sum_{k}\left|V_{a k}\right|^{2} \delta\left(\varepsilon-\varepsilon_{k}\right) \tag{4.68}\\
& \Lambda(\varepsilon)=\pi^{-1} P \int_{-\infty}^{\infty}\left(\varepsilon-\varepsilon^{\prime}\right)^{-1} \Delta\left(\varepsilon^{\prime}\right) d \varepsilon^{\prime} \tag{4.69}
\end{align*}
$$

the latter being the Hilbert transform of the spectral density $\Delta(\varepsilon)$. Hence, from (4.66) and (4.67), we see that the adatom $G F$ is

$$
\begin{equation*}
G_{a a}^{\sigma}(\varepsilon)=\left[\varepsilon-\varepsilon_{a \sigma}-\Lambda(\varepsilon)+i \Delta(\varepsilon)\right]^{-1} \tag{4.70}
\end{equation*}
$$

Noting that the Greenian operator

$$
\begin{equation*}
G^{\sigma}(\varepsilon+i s)=\left(\varepsilon+i s-H^{\sigma}\right)^{-1} \tag{4.71}
\end{equation*}
$$

we have

$$
\begin{align*}
\operatorname{Tr} G^{\sigma}(\varepsilon+i s) & =\sum_{m}\langle m| G^{\sigma}|m\rangle_{\sigma} \\
& =\sum_{m}\left(\varepsilon+i s-\varepsilon_{m \sigma}\right)^{-1} \tag{4.72}
\end{align*}
$$

$\varepsilon_{m \sigma}$ being given by (4.52). Equations (D.1), (D.9) and (4.72) show that the energy DOS

$$
\begin{equation*}
\rho^{\sigma}(\varepsilon)=\sum_{m} \delta\left(\varepsilon-\varepsilon_{m \sigma}\right)=-\pi^{-1} \operatorname{Im}\left[\operatorname{Tr} G^{\sigma}(\varepsilon+i s)\right] \tag{4.73}
\end{equation*}
$$

However, using (2.8), we obtain

$$
\begin{align*}
G_{a a}^{\sigma} & =\sum_{m, n}\langle a \mid m \sigma\rangle\langle m \sigma| G^{\sigma}|n \sigma\rangle\langle n \sigma \mid a\rangle \\
& =\sum_{m}|\langle a \mid m \sigma\rangle|^{2}\left(\varepsilon+i s-\varepsilon_{m \sigma}\right)^{-1} \tag{4.74}
\end{align*}
$$

so the projected DOS for the adatom orbital, in terms of the Fock eigenfunctions $|m \sigma\rangle$, is

$$
\begin{align*}
\rho_{a a}^{\sigma}(\varepsilon) & =\sum_{m}|\langle m \sigma \mid a\rangle|^{2} \delta\left(\varepsilon-\varepsilon_{m \sigma}\right) \\
& =-\pi^{-1} \operatorname{Im} G_{a a}^{\sigma}(\varepsilon) \\
& =\frac{\pi^{-1} \Delta(\varepsilon)}{\left[\varepsilon-\varepsilon_{a \sigma}-\Lambda(\varepsilon)\right]^{2}+\Delta^{2}(\varepsilon)}, \tag{4.75}
\end{align*}
$$

via (4.72) to (4.74) and (4.70).

4.3.3 Adoccupancy and self-consistency

In order to evaluate the energies $\varepsilon_{a \sigma}(4.34)$ and $\varepsilon_{m \sigma}(4.52)$, it is necessary to know the adoccupancy, which is given by

$$
\begin{equation*}
\left\langle n_{a \sigma}\right\rangle=\int_{B} \rho_{a a}^{\sigma}(\varepsilon) d \varepsilon+\sum_{\ell}\left\langle n_{a \sigma}\right\rangle_{\ell} \tag{4.76}
\end{equation*}
$$

where the integration is over the occupied bulk band B and the summation is over any localized state below the FL. The summand in (4.76) can be written as

$$
\begin{align*}
\left\langle n_{a \sigma}\right\rangle_{\ell} & =\langle\ell \sigma| n_{a \sigma}|\ell \sigma\rangle=\langle\ell \sigma| c_{a \sigma}^{\dagger} c_{a \sigma}|\ell \sigma\rangle \\
& =\langle\ell \sigma \mid a\rangle\langle 0 \mid 0\rangle\langle a \mid \ell \sigma\rangle \\
& =\langle\ell \sigma \mid a\rangle\langle a \mid \ell \sigma\rangle=|\langle\ell \sigma \mid a\rangle|^{2} \tag{4.77}
\end{align*}
$$

via (4.14), (4.16) and (4.18). From (4.74) and (4.77), we note that

$$
\begin{equation*}
\operatorname{Res} G_{a a}^{\sigma}\left(\varepsilon_{\ell \sigma}\right)=|\langle\ell \sigma \mid a\rangle|^{2}=\left\langle n_{a \sigma}\right\rangle_{\ell} \tag{4.78}
\end{equation*}
$$

whence, the adoccupancy derives from the perturbed Greenian matrix $G_{a a}^{\sigma}$. Furthermore, since $\Delta(\varepsilon)=0$ outside B, (4.70) yields ${ }^{3}$

$$
\begin{equation*}
\operatorname{Res} G_{a a}^{\sigma}\left(\varepsilon_{\ell \sigma}\right)=\left[1-\Lambda^{\prime}\left(\varepsilon_{\ell \sigma}\right)\right]^{-1} \tag{4.79}
\end{equation*}
$$

the prime denoting differentiation. Thus, (4.78) and (4.79) show that (Newns 1969)

$$
\begin{equation*}
\left\langle n_{a \sigma}\right\rangle_{\ell}=\left[1-\Lambda^{\prime}\left(\varepsilon_{\ell \sigma}\right)\right]^{-1} \tag{4.80}
\end{equation*}
$$

Returning to (4.76), we see that the right-hand side depends on $\varepsilon_{a \sigma}$, which in turn is a function of $\left\langle n_{a,-\sigma}\right\rangle$ (4.34). We can express this dependence via the self-consistent equations

$$
\begin{align*}
\left\langle n_{a \sigma}\right\rangle & =N\left(\left\langle n_{a,-\sigma}\right\rangle\right), \tag{4.81}\\
\left\langle n_{a,-\sigma}\right\rangle & =N\left(\left\langle n_{a \sigma}\right\rangle\right)
\end{align*}
$$

which can be combined into the single equation

$$
\begin{equation*}
\left\langle n_{a \sigma}\right\rangle-N\left[N\left(\left\langle n_{a \sigma}\right\rangle\right)\right]=0, \tag{4.82}
\end{equation*}
$$

[^9]

Fig. 4.2. Self-consistency plots of $n_{-\sigma}=N\left(n_{-\sigma}\right)$ (solid line) and $n_{\sigma}=N\left(n_{\sigma}\right)$ (broken line), showing M - and M-solutions at intersections. $n_{\sigma}=n_{-\sigma}=$ 0.73 .
whose numerical solution determines the adoccupancy $\left\langle n_{a \sigma}\right\rangle$. Equation (4.82) always has a non-magnetic (M) solution at $\left\langle n_{a \sigma}\right\rangle=\left\langle n_{a,-\sigma}\right\rangle$ and may (or may not) have magnetic (M) ones for which $\left\langle n_{a \sigma}\right\rangle \neq\left\langle n_{a,-\sigma}\right\rangle$. Typical selfconsistency plots of (4.82) are portrayed in Fig. 4.2.

4.3.4 Chemisorption energy and charge transfer

If a single electron is in $\mathrm{AO}|a\rangle$, the unperturbed ground-state energy of the non-interacting adatom and substrate is

$$
\begin{equation*}
E_{0}=2 \sum_{\substack{k \\ o c c}} \varepsilon_{k}+\varepsilon_{a} \tag{4.83}
\end{equation*}
$$

the factor 2 arising because of spin degeneracy.
As in (1.92), the chemisorption energy is the difference between the electronic energy of the adatom-substrate system before and after the interaction occurs, i.e.,

$$
\begin{equation*}
\Delta E=E-E_{0} \tag{4.84}
\end{equation*}
$$

which by (4.58) and (4.83) leads to

$$
\begin{equation*}
\Delta E=\sum_{\sigma} \Delta E^{\sigma}-\varepsilon_{a}+\varepsilon_{f}-U\left\langle n_{a+}\right\rangle\left\langle n_{a-}\right\rangle, \tag{4.85}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta E^{\sigma}=\sum_{\substack{m \\ o c c}} \varepsilon_{m \sigma}-\sum_{\substack{k \\ o c c}} \varepsilon_{k} \tag{4.86}
\end{equation*}
$$

Since $\left\langle n_{a \sigma}\right\rangle$ is given by (4.76), the problem of finding ΔE reduces to that of calculating ΔE^{σ}.

In order to perform this task, we introduce the function (Newns 1967)

$$
\begin{equation*}
g(\varepsilon)=f^{\prime}(\varepsilon) / f(\varepsilon)=d[\ln f(\varepsilon)] / d \varepsilon \tag{4.87}
\end{equation*}
$$

where $f(\varepsilon)$ is a meromorphic function, which is analytic in a contour C, except at a finite number of poles (Marsden 1973). If $\omega_{+}\left(\omega_{-}\right)$are the zeros (poles) of $f(\varepsilon)$ in the contour C, which are of order r, then, for $\varepsilon \simeq \omega_{ \pm}$, (4.87) gives (App. E)

$$
\begin{align*}
& \left.g(\varepsilon)\right|_{\varepsilon=\omega_{+}} \simeq+r\left(\varepsilon-\omega_{+}\right)^{-1} \tag{4.88}\\
& \left.g(\varepsilon)\right|_{\varepsilon=\omega_{-}} \simeq r\left(\varepsilon-\omega_{-}\right)^{-1} \tag{4.89}
\end{align*}
$$

whence, ${ }^{3}$

$$
\begin{equation*}
\left.\operatorname{Res} g(\varepsilon)\right|_{\varepsilon=\omega_{ \pm}}= \pm r \tag{4.90}
\end{equation*}
$$

Now the function

$$
\begin{equation*}
f(\varepsilon)=\varepsilon-\varepsilon_{a \sigma}-\sum_{k}\left|V_{a k}\right|^{2}\left(\varepsilon-\varepsilon_{k}\right)^{-1} \tag{4.91}
\end{equation*}
$$

in (4.66) has a zero (pole) of order r at an r-fold degenerate perturbed (unperturbed) eigenvalue $\varepsilon_{m \sigma}\left(\varepsilon_{k}\right)$. The graph showing the solutions of $f(\varepsilon)=0$ is drawn in Fig. 4.3 for the 1-band system. The interpolative property of the perturbed eigenvalues lying between the unperturbed ones is observed; the perturbation merely causing a small shift in all the eigenvalues within the unperturbed bands. Addition of the adatom orbital $|a\rangle$ gives rise to eigenvalues outside the bands.

By setting

$$
\begin{equation*}
\Delta E^{\sigma}=(2 \pi i)^{-1} \int_{C} \varepsilon g(\varepsilon) d \varepsilon \tag{4.92}
\end{equation*}
$$

where the contour C contains all the occupied eigenvalues in the complex plane (Fig. 4.4), each occupied unperturbed (perturbed) eigenvalue $\varepsilon_{k}\left(\varepsilon_{m \sigma}\right)$ with degeneracy r contributes $-2 \pi i r \varepsilon_{k}\left(2 \pi i r \varepsilon_{m \sigma}\right)$ to the integral, so the whole integral equals the value of ΔE^{σ} in (4.86) (Whittaker and Watson 1965). To a good approximation, it is immaterial where the right-hand side of C crosses the real axis, since eigenvalues in this region make only a very small contribution.

Fig. 4.3. Graphical solution of $f(\varepsilon)=0$, where $\times(\bullet)$ is unperturbed (perturbed) eigenvalue and $\Sigma(\varepsilon)=\sum_{k}\left|V_{a k}\right|^{2}\left(\varepsilon-\varepsilon_{k}\right)^{-1}$.

Fig. 4.4. Contour C containing occupied unperturbed (\times) and perturbed (\bullet) eigenvalues. $\varepsilon_{0}\left(\varepsilon_{f}\right)$ denotes lower band edge (Fermi Level).

Integrating (4.92) by parts, using (4.87), gives

$$
\begin{equation*}
\Delta E^{\sigma}=(2 \pi i)^{-1}\left[\left.\varepsilon \ln f(\varepsilon)\right|_{c}-\int_{C} \ln f(\varepsilon) d \varepsilon\right] \tag{4.93}
\end{equation*}
$$

whose first term can be reduced to zero, without affecting the value of (4.93) appreciably, by distorting the high-energy end of C, so that it contains an even number of poles and zeros (Whittaker and Watson 1965). Hence, (4.60), (4.91) and (4.93) yield

$$
\begin{equation*}
\Delta E^{\sigma}=-(2 \pi i)^{-1} \int_{C} \ln \left[\varepsilon+i s-\varepsilon_{a \sigma}-\Sigma_{+}(\varepsilon)\right] d \varepsilon \tag{4.94}
\end{equation*}
$$

where

$$
\begin{equation*}
\Sigma_{ \pm}(\varepsilon)=\sum_{k}\left|V_{a k}\right|^{2}\left(\varepsilon \pm i s-\varepsilon_{k}\right)^{-1} \tag{4.95}
\end{equation*}
$$

Following Newns (1969), if we take C (Fig. 4.4) to be the rectangular contour defined by the points $\varepsilon_{0} \pm i s$ and $\pm i s$, then the end portions may be neglected as $s \rightarrow 0^{+}$, and (4.94) becomes ${ }^{4}$

$$
\begin{align*}
\Delta E^{\sigma}= & -(2 \pi i)^{-1}\left\{\int_{\varepsilon_{0}}^{0} \ln \left[\varepsilon-i s-\varepsilon_{a \sigma}-\Sigma_{-}(\varepsilon)\right] d \varepsilon\right. \\
& \left.+\int_{0}^{\varepsilon_{0}} \ln \left[\varepsilon+i s-\varepsilon_{a \sigma}-\Sigma_{+}(\varepsilon)\right] d \varepsilon\right\} \tag{4.96}
\end{align*}
$$

which, on taking $s \rightarrow 0^{+}$and utilizing (D.9) and (4.67), leads to

$$
\begin{align*}
\Delta E^{\sigma}= & -(2 \pi i)^{-1}\left\{\int_{\varepsilon_{0}}^{0} \ln \left[\varepsilon-\varepsilon_{a \sigma}-\Lambda(\varepsilon)-i \Delta(\varepsilon)\right] d \varepsilon\right. \\
& \left.-\int_{\varepsilon_{0}}^{0} \ln \left[\varepsilon-\varepsilon_{a \sigma}-\Lambda(\varepsilon)+i \Delta(\varepsilon)\right] d \varepsilon\right\} \tag{4.97}
\end{align*}
$$

However, from (F.8), we have

$$
\begin{equation*}
\ln (x \pm i y)=\ln |x \pm i y| \pm i \tan ^{-1}(y / x) \tag{4.98}
\end{equation*}
$$

Inserting (4.98) in (4.97), we see that the logarithmic functions cancel out, so that

$$
\begin{equation*}
\Delta E^{\sigma}=\pi^{-1} \int_{\varepsilon_{0}}^{0} \tan ^{-1}\left[\frac{\Delta(\varepsilon)}{\varepsilon-\varepsilon_{a \sigma}-\Lambda(\varepsilon)}\right] d \varepsilon \tag{4.99}
\end{equation*}
$$

[^10]where we take $-\pi<\tan ^{-1}<0$ (App. G). If an occupied localized state $\varepsilon_{\ell \sigma}$ exists below the band B, say, then the contour C should include both the occupied B levels and the isolated pole at $\varepsilon_{\ell \sigma}$. In this case, it is convenient to split C into two parts C_{1} and C_{2}, where C_{1} encloses $\varepsilon_{\ell \sigma}$ and the lowest unperturbed B level at ε_{0}, and C_{2} the remaining occupied B levels $\varepsilon_{m \sigma}$ and ε_{k}. The contribution from C_{1} is $\varepsilon_{\ell \sigma}-\varepsilon_{0}$. The removal of one perturbed and one unperturbed level from the bottom of B does not affect the C_{2} contribution. Thus, (4.99) now becomes
\[

$$
\begin{equation*}
\Delta E^{\sigma}=\varepsilon_{\ell \sigma}-\varepsilon_{0}+\pi^{-1} \int_{\varepsilon_{0}}^{0} \tan ^{-1}\left[\frac{\Delta(\varepsilon)}{\varepsilon-\varepsilon_{a \sigma}-\Lambda(\varepsilon)}\right] d \varepsilon \tag{4.100}
\end{equation*}
$$

\]

which in (4.85) provides the chemisorption energy expression

$$
\begin{align*}
\Delta E= & \sum_{\sigma}\left\{\varepsilon_{\ell \sigma}+\pi^{-1} \int_{\varepsilon_{0}}^{0} \tan ^{-1}\left[\frac{\Delta(\varepsilon)}{\varepsilon-\varepsilon_{a \sigma}-\Lambda(\varepsilon)}\right] d \varepsilon\right\} \\
& -\varepsilon_{a}-U\left\langle n_{a+}\right\rangle\left\langle n_{a-}\right\rangle \tag{4.101}
\end{align*}
$$

where $0<\tan ^{-1}<\pi,{ }^{5}$ when an occupied localized state exists at $\varepsilon_{\ell \sigma}$, but $-\pi<\tan ^{-1}<0$ and $\varepsilon_{\ell \sigma}=0$, if not. It is interesting to note that (4.101) is the same functional form as (1.93), but now contains the adatom electronelectron interaction features.

Lastly, we come to the adatom charge transfer, which is obtained from

$$
\begin{equation*}
\Delta q=\left(\sum_{\sigma}\left\langle n_{a \sigma}\right\rangle-1\right) e \tag{4.102}
\end{equation*}
$$

where e is the electronic charge. When $\Delta q>0(\Delta q<0)$ the transfer is to (from) the adatom from (to) the substrate.

Having formulated the ANG model, in terms of a 1-band metallic substrate, we now apply it to a 2 -band semiconductor.

4.4 Oxygen on III-V Semiconductors

For atomic oxygen, $I=-13.6 \mathrm{eV}$ (Day and Selbin 1962), while $A=-1.48 \mathrm{eV}$ is below the vacuum level of the isolated oxygen atom. Since image-charge

[^11]effects push the A-level below the substrate's FL, in the chemisorbed state (Engel and Gomer 1970), both I and A lie below ε_{f}, so the adsorbate is negatively charged, and we have the anionic chemisorption situation of Fig. 4.1 (Kranz 1978).

4.4.1 Electronic properties of AB-type semiconductor

We can represent a III-V semiconductor substrate by a binary chain of $2 N A$ and B atoms with s - and p-orbitals associated with them, respectively (Fig. 4.5). The site energy at an $A(B)$ atom is $\varepsilon_{A}\left(\varepsilon_{B}\right)$, and the $A-B(B-A)$ bond energy is $-\beta(\beta)$. The adatom a is characterized by the site energy ε_{a} and interacts with the semiconductor surface A-atom at $n=1$ via the bond of energy β^{\prime} (Davison and Huang 1974).

Fig. 4.5. $s p$-orbital model of $A B$-binary semiconductor of $2 N$ atoms interacting with adatom a. Reprinted from Davison and Huang (1974) with permission from Elsevier.

Within the framework of the MO-TBA method (§1.1), the Schrödinger equation for an $A B$-chain can be written as a pair of coupled difference equations, namely, (Davison and Levine 1970)

$$
\begin{array}{lll}
(X-z) c_{n}=c_{n-1}-c_{n+1}, & n & \text { odd } \\
(X+z) c_{n} & =c_{n+1}-c_{n-1}, & n \quad \text { even } \tag{4.104}
\end{array}
$$

where, in reduced notation,

$$
\begin{equation*}
X=\left(\varepsilon_{k}-\bar{\varepsilon}\right) / \beta, \quad \bar{\varepsilon}=\left(\varepsilon_{A}+\varepsilon_{B}\right) / 2, \quad z=\left(\varepsilon_{A}-\varepsilon_{B}\right) / 2 \beta \tag{4.105}
\end{equation*}
$$

ε_{k} being the energy of the electron in the k th state and z the composition parameter. On taking the zero of energy at $\bar{\varepsilon}=\varepsilon_{f}=0$, so that

$$
\begin{equation*}
\varepsilon_{A}=-\varepsilon_{B}=\lambda, \tag{4.106}
\end{equation*}
$$

the solutions of (4.103) and (4.104) become (App. H)

$$
\begin{equation*}
\varepsilon_{k}^{ \pm}= \pm\left(\lambda^{2}+4 \beta^{2} \sin ^{2} k\right)^{1 / 2} \tag{4.107}
\end{equation*}
$$

for a chain of unit atomic spacing, and

$$
\begin{equation*}
|k\rangle=R(k)\left(\sum_{\substack{n \\ \text { odd }}} \sin n k|n\rangle+K \sum_{\substack{n \\ \text { even }}} \cos n k|n\rangle\right), \tag{4.108}
\end{equation*}
$$

where the normalization factor (App. I)

$$
\begin{equation*}
R(k)=2\left[\left(1+|K|^{2}\right)(2 N-1)+2\right]^{-1 / 2} \tag{4.109}
\end{equation*}
$$

with

$$
\begin{equation*}
K=2 i \beta \sin k /\left(\varepsilon_{k}^{ \pm}+\lambda\right) \tag{4.110}
\end{equation*}
$$

from (4.104) and (4.108), and

$$
\begin{equation*}
k=j \pi /(2 N+1) ; \quad j=1,2, \ldots, N \tag{4.111}
\end{equation*}
$$

via the condition that $c_{2 N+1}=0$. For N large, we note that $k \simeq 0$ when $j=1$, and $k \simeq \pi / 2$ when $j=N$. Moreover, we have

$$
d k=\frac{(j+1) \pi}{2 N+1}-\frac{j \pi}{2 N+1}=\frac{\pi}{2 N+1}
$$

whence, in converting a summation into an integral we write

$$
\begin{equation*}
(2 N+1)^{-1} \sum_{k}=\pi^{-1} \int d k \tag{4.112}
\end{equation*}
$$

Turning to the question of the energy DOS, (4.73) gives

$$
\begin{equation*}
\rho(\varepsilon)=\sum_{k} \delta\left(\varepsilon-\varepsilon_{k}^{ \pm}\right) \tag{4.113}
\end{equation*}
$$

which, with the aid of (4.107) and (4.112), can be written as

$$
\begin{equation*}
\rho(\varepsilon)=\pi^{-1}(2 N+1) \int_{0}^{\pi / 2} \delta\left[\varepsilon \pm\left(\lambda^{2}+4 \beta^{2} \sin ^{2} k\right)^{1 / 2}\right] d k \tag{4.114}
\end{equation*}
$$

To evaluate this integral of the Dirac δ-functional, we note that

$$
\begin{align*}
\int_{0}^{\pi / 2} F(k) \delta[f(k)] d k & =\int_{0}^{\pi / 2}\left[F(k) / f^{\prime}(k)\right] \delta[f(k)] f^{\prime}(k) d k \\
& =\left[F(k) / f^{\prime}(k)\right]_{f(k)=0} \tag{4.115}
\end{align*}
$$

Comparing (4.114) and (4.115), we see that

$$
\left.\begin{array}{l}
F(k)=1, \quad f(k)=\varepsilon \pm\left(\lambda^{2}+4 \beta^{2} \sin ^{2} k\right)^{1 / 2} \tag{4.116}\\
f(k)=0 \Rightarrow \varepsilon^{2}-\lambda^{2}=4 \beta^{2} \sin ^{2} k \\
f^{\prime}(k)= \pm 2 \beta^{2} \sin 2 k\left(\lambda^{2}+4 \beta^{2} \sin ^{2} k\right)^{-1 / 2}
\end{array}\right\}
$$

Hence, (4.116) in (4.115) in (4.114) gives

$$
\begin{align*}
\rho(\varepsilon) & = \pm \pi^{-1}(2 N+1)\left[\left(\lambda^{2}+4 \beta^{2} \sin ^{2} k\right)^{1 / 2} / 2 \beta^{2} \sin 2 k\right]_{f(k)=0} \\
& = \pm(2 N+1) \varepsilon / \pi\left[\left(\varepsilon^{2}-\lambda^{2}\right)\left(4 \beta^{2}+\lambda^{2}-\varepsilon^{2}\right)\right]^{1 / 2} \tag{4.117}
\end{align*}
$$

which is real for $\lambda^{2} \leq \varepsilon^{2} \leq \lambda^{2}+4 \beta^{2}$. Figure 4.6 displays the familiar behaviour of $\rho(\varepsilon)$ in the 2-band diagram of a binary semiconductor, the band edges being given by

$$
\begin{equation*}
\varepsilon_{1}^{ \pm}= \pm\left(\lambda^{2}+4 \beta^{2}\right)^{1 / 2}, \quad \varepsilon_{2}^{ \pm}= \pm \lambda \tag{4.118}
\end{equation*}
$$

which correspond to $k=\pi / 2$ and $k=0$ in (4.107), respectively.

Fig. 4.6. Variation of energy DOS curves in valence (VB) and conduction (CB) bands.

4.4.2 Chemisorption functions

(a) Spectral density $\Delta(\varepsilon)^{6}$

Since the adatom a is attached to the substrate A-atom at $j=1$ by the bond β^{\prime} (Fig. 4.5), we have (Newns 1969)

$$
\begin{equation*}
\langle a| H^{\sigma}|j\rangle=\beta^{\prime} \delta_{1 j}, \tag{4.119}
\end{equation*}
$$

i.e., only the matrix element connecting the $\mathrm{AO}|a\rangle$ with the $\mathrm{AO}|1\rangle$ is nonzero. Moreover,

$$
\begin{equation*}
V_{a k}=\langle a| H^{\sigma}|k\rangle=\sum_{j}\langle a| H^{\sigma}|j\rangle\langle j \mid k\rangle, \tag{4.120}
\end{equation*}
$$

by (2.8), so we obtain

$$
\begin{equation*}
V_{a k}=\sum_{j} \beta^{\prime} \delta_{1 j}\langle j \mid k\rangle=R(k) \beta^{\prime} \sin k, \tag{4.121}
\end{equation*}
$$

via (4.119) and (4.108). Thus, (4.68) becomes

$$
\begin{equation*}
\Delta(\varepsilon)=\pi \beta^{\prime 2} \sum_{k} R^{2}(k) \sin ^{2} k \delta\left(\varepsilon-\varepsilon_{k}^{ \pm}\right) \tag{4.122}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta(\varepsilon)=(2 N+1) \beta^{\prime 2} \int_{0}^{\pi / 2} R^{2}(k) \sin ^{2} k \delta\left(\varepsilon-\varepsilon_{k}^{ \pm}\right) d k \tag{4.123}
\end{equation*}
$$

by dint of (4.112).
Inserting (4.109) in (4.123), and using (4.110), we find

$$
\begin{equation*}
\Delta(\varepsilon)=4 \beta^{\prime 2} \int_{0}^{\pi / 2} \frac{\left(\varepsilon_{k}^{ \pm}+\lambda\right)^{2} \sin ^{2} k \delta\left(\varepsilon-\varepsilon_{k}^{ \pm}\right)}{\left(\varepsilon_{k}^{ \pm}+\lambda\right)^{2}+4 \beta^{2} \sin ^{2} k} d k \tag{4.124}
\end{equation*}
$$

for N large. Comparing this with (4.115), reveals

$$
F(k)=\left(\varepsilon_{k}^{ \pm}+\lambda\right)^{2} \sin ^{2} k\left[\left(\varepsilon_{k}^{ \pm}+\lambda\right)^{2}+4 \beta^{2} \sin ^{2} k\right]^{-1}
$$

[^12]which, with (4.116) for $f^{\prime}(k)$, yields
$$
\frac{F(k)}{f^{\prime}(k)}=\frac{\left(\varepsilon_{k}^{ \pm}+\lambda\right)^{2} \sin ^{2} k\left(\lambda^{2}+4 \beta^{2} \sin ^{2} k\right)^{1 / 2}}{2 \beta^{2} \sin 2 k\left[\left(\varepsilon_{k}^{ \pm}+\lambda\right)^{2}+4 \beta^{2} \sin ^{2} k\right]}
$$
i.e.,
\[

$$
\begin{equation*}
\left.\frac{F(k)}{f^{\prime}(k)}\right|_{f(k)=0}=\frac{|\varepsilon+\lambda|}{8 \beta^{2}}\left(\frac{\varepsilon^{2}-\lambda^{2}}{4 \beta^{2}+\lambda^{2}-\varepsilon^{2}}\right)^{1 / 2} \tag{4.125}
\end{equation*}
$$

\]

via (4.116). Hence, (4.124) reduces to (Davison and Huang 1974)

$$
\begin{equation*}
\Delta(\varepsilon)=\frac{\beta^{\prime 2}|\varepsilon+\lambda|}{2 \beta^{2}}\left(\frac{\varepsilon^{2}-\lambda^{2}}{4 \beta^{2}+\lambda^{2}-\varepsilon^{2}}\right)^{1 / 2} \tag{4.126}
\end{equation*}
$$

by virtue of (4.115) and (4.125). In contrast to Fig. 4.6, the graph of $\Delta(\varepsilon)$ is as depicted in Fig. 4.7.

Fig. 4.7. Spectral density curves in VB and CB with $\varepsilon_{f}=0$. Reprinted from Davison and Huang (1974) with permission from Elsevier.
(b) Hilbert transform $\Lambda(\varepsilon)$

For our 2-band system, (4.69) can be written as

$$
\begin{equation*}
\Lambda(\varepsilon)=\pi^{-1} P\left[\int_{\varepsilon_{1}^{-}}^{\varepsilon_{2}^{-}} \frac{\Delta\left(\varepsilon_{-}\right)}{\varepsilon-\varepsilon_{-}} d \varepsilon_{-}+\int_{\varepsilon_{2}^{+}}^{\varepsilon_{1}^{+}} \frac{\Delta\left(\varepsilon_{+}\right)}{\varepsilon-\varepsilon_{+}} d \varepsilon_{+}\right] \tag{4.127}
\end{equation*}
$$

P indicating the Cauchy principal value. Utilizing (4.107), (4.116), (4.118) and (4.126), we obtain

$$
\begin{equation*}
\Lambda(\varepsilon)=\frac{\beta^{\prime 2}}{2 \pi \beta^{2}} P\left[\int_{0}^{\pi / 2} I_{+} d k^{\prime}-\int_{\pi / 2}^{0} I_{-} d k^{\prime}\right] \tag{4.128}
\end{equation*}
$$

where

$$
\begin{align*}
I_{ \pm} & =\frac{\left|\varepsilon_{ \pm}+\lambda\right|}{\left(\varepsilon-\varepsilon_{ \pm}\right)} \frac{\left(\varepsilon_{ \pm}^{2}-\lambda^{2}\right)^{1 / 2}}{\left(4 \beta^{2}+\lambda^{2}-\varepsilon_{ \pm}^{2}\right)^{1 / 2}} \frac{2 \beta^{2} \sin 2 k^{\prime}}{\left(\lambda^{2}+4 \beta^{2} \sin ^{2} k^{\prime}\right)^{1 / 2}} \\
& =\frac{\left|\varepsilon_{ \pm}+\lambda\right|}{\left(\varepsilon-\varepsilon_{ \pm}\right)} \frac{4 \beta^{2} \sin ^{2} k^{\prime}}{\left(\lambda^{2}+4 \beta^{2} \sin ^{2} k^{\prime}\right)^{1 / 2}} . \tag{4.129}
\end{align*}
$$

Substituting (4.129) in (4.128) leads to

$$
\begin{equation*}
\Lambda(\varepsilon)=\frac{2 \beta^{\prime 2}}{\pi} P \int_{0}^{\pi / 2} \frac{A\left(\varepsilon, \varepsilon_{ \pm}\right) \sin ^{2} k^{\prime}}{\left(\lambda^{2}+4 \beta^{2} \sin ^{2} k^{\prime}\right)^{1 / 2}} d k^{\prime} \tag{4.130}
\end{equation*}
$$

where

$$
\begin{align*}
A\left(\varepsilon, \varepsilon_{ \pm}\right) & =\frac{\left|\varepsilon_{+}+\lambda\right|}{\varepsilon-\varepsilon_{+}}+\frac{\left|\varepsilon_{-}+\lambda\right|}{\varepsilon-\varepsilon_{-}} \\
& =\frac{(\varepsilon+\lambda)\left(\varepsilon_{+}-\varepsilon_{-}\right)}{\varepsilon^{2}+\varepsilon_{+} \varepsilon_{-}} \\
& =\frac{2(\varepsilon+\lambda)\left(\lambda^{2}+4 \beta^{2} \sin ^{2} k^{\prime}\right)^{1 / 2}}{\varepsilon^{2}-\left(\lambda^{2}+4 \beta^{2} \sin ^{2} k^{\prime}\right)} \tag{4.131}
\end{align*}
$$

since $\varepsilon_{+}=-\varepsilon_{-}$by (4.107). Hence, (4.131) in (4.130) gives

$$
\begin{equation*}
\Lambda(\varepsilon)=\frac{4 \beta^{\prime 2}(q+1)}{\pi \lambda} P \int_{0}^{\pi / 2} \frac{\sin ^{2} k^{\prime}}{q^{2}-\Gamma^{2}} d k^{\prime} \tag{4.132}
\end{equation*}
$$

where

$$
\begin{align*}
\Gamma & =\left(1+p^{2} \sin ^{2} k^{\prime}\right)^{1 / 2} \tag{4.133}\\
p & =2 \beta / \lambda, \quad q=\varepsilon / \lambda
\end{align*}
$$

After some rearranging, (4.132) gives

$$
\begin{equation*}
\Lambda(\varepsilon)=\frac{\beta^{\prime 2}(\varepsilon+\lambda)}{\pi \beta^{2}}[\Phi(\varepsilon)-\pi / 2] \tag{4.134}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(\varepsilon)=P \int_{0}^{\pi / 2}\left(1-m \sin ^{2} k^{\prime}\right)^{-1} d k^{\prime} \tag{4.135}
\end{equation*}
$$

with

$$
\begin{equation*}
m=p^{2}\left(q^{2}-1\right)^{-1 / 2} \tag{4.136}
\end{equation*}
$$

If we let

$$
t=\tan k^{\prime}
$$

then

$$
d t=\left(1+t^{2}\right) d k^{\prime}, \quad \sin ^{2} k^{\prime}=t^{2}\left(1+t^{2}\right)^{-1}
$$

and (4.135) becomes

$$
\Phi(\varepsilon)=P \int_{0}^{\infty}\left[1+(1-m) t^{2}\right]^{-1} d t
$$

i.e.,

$$
\Phi(\varepsilon)=P\left\{(1-m)^{-1 / 2} \tan ^{-1}\left[(1-m)^{1 / 2} t\right]\right\}_{0}^{\infty}
$$

or

$$
\begin{equation*}
\Phi(\varepsilon)=P\left[\pi / 2(1-m)^{1 / 2}\right] . \tag{4.137}
\end{equation*}
$$

Thus, on inserting (4.137) in (4.134), using (4.136) and (4.133), we arrive at

$$
\Lambda(\varepsilon)= \begin{cases}\frac{\beta^{\prime 2}(\varepsilon+\lambda)}{2 \beta^{2}}\left[\frac{\left(\varepsilon^{2}-\lambda^{2}\right)^{1 / 2}}{\left(\varepsilon^{2}-\lambda^{2}-4 \beta^{2}\right)^{1 / 2}}-1\right], & \varepsilon^{2}>\lambda^{2}+4 \beta^{2}, \tag{4.138}\\ -\frac{\beta^{\prime 2}(\varepsilon+\lambda)}{2 \beta^{2}}, & \lambda^{2}<\varepsilon^{2}<\lambda^{2}+4 \beta^{2}, \\ \frac{\beta^{\prime 2}(\varepsilon+\lambda)}{2 \beta^{2}}\left[\frac{\left(\lambda^{2}-\varepsilon^{2}\right)^{1 / 2}}{\left(\lambda^{2}+4 \beta^{2}-\varepsilon^{2}\right)^{1 / 2}}-1\right], & \varepsilon^{2}<\lambda^{2}\end{cases}
$$

The graph of $\Lambda(\varepsilon)$, in these various ε-regions, is presented in Fig. 4.8.

Fig. 4.8. Graph of Hilbert transform $\Lambda(\varepsilon)$. Solutions (\times) of $\Lambda(\varepsilon)=\varepsilon-\varepsilon_{a \sigma}$ locate localized-state energies $\varepsilon_{\ell \sigma}$. Reprinted from Davison and Huang (1974) with permission from Elsevier.

Since $\Delta(\varepsilon)=0$ outside the bands (Fig. 4.7), the poles of $G_{a a}^{\sigma}(\varepsilon)$ in (4.70) are given by

$$
\begin{equation*}
\varepsilon-\varepsilon_{a \sigma}-\Lambda(\varepsilon)=0 \tag{4.139}
\end{equation*}
$$

whose roots are the localized-state energies $\varepsilon_{\ell \sigma}$ (Fig. 4.8). The intercept of the straight line with the ε-axis provides the value of $\varepsilon_{a \sigma}$. From (4.139) and Fig. 4.8, we see that the existence condition for a localized state above or below the bands or in the gap between them is:

$$
\begin{array}{ll}
\varepsilon_{\ell \sigma}>\varepsilon_{1}^{+}, & \varepsilon_{1}^{+}-\varepsilon_{a \sigma}<\Lambda\left(\varepsilon_{1}^{+}\right), \\
\varepsilon_{\ell \sigma}<\varepsilon_{1}^{-}, & \varepsilon_{1}^{-}-\varepsilon_{a \sigma}>\Lambda\left(\varepsilon_{1}^{-}\right), \\
\varepsilon_{\ell \sigma}>\varepsilon_{2}^{-}, & \varepsilon_{2}^{-}-\varepsilon_{a \sigma}<\Lambda\left(\varepsilon_{2}^{-}\right), \\
\varepsilon_{\ell \sigma}<\varepsilon_{2}^{+}, & \varepsilon_{2}^{+}-\varepsilon_{a \sigma}>\Lambda\left(\varepsilon_{2}^{+}\right), \tag{4.142}
\end{array}
$$

respectively.

4.4.3 Results and discussion

Having established the expressions for the chemisorption functions of an $A B-$ type chain, we can now employ them in calculating ΔE (4.101) and Δq (4.102) for oxygen on narrow-gap III-V semiconductors. Specifically, we are interested in GaSb, InAs and InSb. The choice of narrow-gap substrates ensures that the approximation made regarding the contour C in (4.92) remains valid. Results are presented for the M-case only.

The systems' parameters, used in the numerical calculations, are provided in Table 4.1, where the values of ΔE and Δq for oxygen on the (100) and (111) planes of the various semiconductors are also listed. As can be seen from the table, $|\Delta E(111)|<|\Delta E(100)|$, and larger ΔE are usually associated with wider energy gaps. Thus, the decrease in the energy gap with increasing temperature should, in general, lead to a reduction in ΔE. The positive values of ΔE indicate that chemisorption is not possible on these planes for $\beta^{\prime}=1.2(-2 \beta$ units). The values of Δq are also given in Table 4.1. On increasing β^{\prime}, both ΔE and Δq are found to decrease for the (100) and (111) planes.

Table 4.1. All energies are in $\mathrm{eV} . E G_{0}=$ Energy gap width at $0^{0} K, V B=$ Valence band width, $\phi=$ Work function. $\beta^{\prime}=1.2$ (in -2β units), $\varepsilon_{a}=-8.78$ and $U=12.14$.

Substrate	EG_{0}^{a}	VB^{b}		ϕ^{c}	-2β		ΔE		Δq	
		(100)	(111)		(100)	(111)	(100)	(111)	(100)	(111)
GaSb	0.81	3.2	1.2	4.76	3.58	1.55	-2.46	-0.58	0.38	0.40
InAs	0.42	3.2	1.1	4.90	3.40	1.29	-2.02	+0.37	0.36	0.40
InSb	0.24	3.2	1.1	4.75	3.32	1.21	-2.00	+0.90	0.37	0.40

${ }^{a}$ Long (1968). ${ }^{b}$ Hilsum (1966) ${ }^{c}$ Gobeli and Allen (1966)

Chapter 5

Supported-Metal Catalysts

Chemistry without catalysis would be a sword without a handle, a light without brilliance, a bell without sound.

- Alwyn Mittasch

Among the various types of composite systems, that of the metal-support ranks as one of the most important, because of its crucial role in catalysis. The situation under consideration is that of chemisorption on a thin metal film (the catalyst), which sits on the surface of a semiconductor (the support). The fundamental question concerns the thickness of the film needed to accurately mimic the chemisorption properties of the bulk metal, because metallization of inexpensive semiconductor materials provides a means of fabricating catalysts economically, even from such precious metals as Pt, Au and Ag.

5.1 Metal-Support Greenian

The substrate being modelled is a metal with a semiconductor support, illustrated schematically in Fig. 5.1 (Davison et al 1988). The system has two components: metal and semiconductor. The metal part consists of a finite $(n+1)$-atom chain (or film), occupying atomic sites $m=0$ to $m=n$
inclusive. The atoms have site energy α_{1} and bond energy β_{1}, giving rise to a single d-like energy band. The binary semiconductor support is semi-infinite, occupying atomic sites $m \geq n+1$. The site energies alternate between α_{A} and α_{B}, corresponding to the s - and p-orbitals, respectively, the one at the metal-semiconductor interface being taken as α_{A}, to be specific. The bond energies in the semiconductor are $\pm \beta_{2}$, while that at the interface is γ.

Fig. 5.1. Schematic representation of $\mathrm{Ni} / \mathrm{ZnO}$ system. Ni film, lying between $0 \leq m \leq n$, contains atoms of site energy α_{1} and bond energy β_{1}. Bond of energy γ attaches film to first $(m=n+1) \mathrm{Zn}$ atom in semi-infinite ZnO support, depicted by chain of alternating s - and p-orbitals with corresponding site energies α_{A} and α_{B}, and bond energies $\pm \beta_{2}$. Reprinted from Davison et al (1988) with permission from Elsevier.

To construct the Greenian for the metal-support system described above, we start from the infinite Greenians for the metal and the semiconductor. Dyson's equation is used to obtain the Greenians for the finite or semi-infinite components, and again to "glue" the two components together to produce the Greenian for the composite system.

For convenience, we summarize here the list of Greenians to be employed in the following discussion:
G_{1} : Greenian for infinite metal
g_{1} : Greenian for finite metal
G_{2} : Greenian for infinite semiconductor
g_{2} : Greenian for semi-infinite semiconductor
g_{12} : composite Greenian for metal-semiconductor system

Turning first to the metal film, we let G_{1} be the Greenian for the infinite, one-dimensional metal, and g_{1} its finite counterpart. These two Greenians are connected by the Dyson equation (3.3)

$$
\begin{equation*}
g_{1}=G_{1}+G_{1} V_{1} g_{1} \tag{5.1}
\end{equation*}
$$

where the potential

$$
\begin{align*}
V_{1}= & -\beta_{1}(|0\rangle\langle-1|+|-1\rangle\langle 0|+|n\rangle\langle n+1|+|n+1\rangle\langle n|) \\
& +\left(\alpha_{1}^{\prime}-\alpha_{1}\right)(|0\rangle\langle 0|+|n\rangle\langle n|) \tag{5.2}
\end{align*}
$$

creates a finite chain (of length $n+1$) by cutting the bonds (of energy β_{1}) between the $m=-1$ and $m=0$ atoms, and between the $m=n$ and $m=n+1$ atoms. The potential also modifies the site energies, on the end atoms of the film, from α_{1} to α_{1}^{\prime}. In principle, the α_{1}^{\prime} at $m=0$ may be different from that at $m=n$, but for simplicity we take them to be the same.

The matrix elements of g_{1} are derived in the next section, as required, while those of the infinite Greenian G_{1} are already known (from (2.49) with (2.37) and (2.40)), and can be written as (App. J)

$$
\begin{equation*}
G_{1}(n, m)=t^{|n-m|} G_{1}(0,0), \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{1}(0,0)=t / \beta_{1}\left(1-t^{2}\right) \tag{5.4}
\end{equation*}
$$

with

$$
t= \begin{cases}X \pm\left(X^{2}-1\right)^{1 / 2}, & X \lessgtr \mp 1 \tag{5.5}\\ X-i\left(1-X^{2}\right)^{1 / 2}, & |X|<1\end{cases}
$$

and

$$
\begin{equation*}
X=\left(E-\alpha_{1}\right) / 2 \beta_{1} \tag{5.6}
\end{equation*}
$$

The semiconductor support can be treated in a similar manner (Bose and Foo 1974), since the Greenians G_{2} and g_{2} of the infinite and semi-infinite solids, respectively, are also linked by the Dyson equation, i.e.,

$$
\begin{equation*}
g_{2}=G_{2}+G_{2} V_{2} g_{2} \tag{5.7}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{2}=-\beta_{2}(|n\rangle\langle n+1|+|n+1\rangle\langle n|)+\left(\alpha_{A}^{\prime}-\alpha_{A}\right)|n+1\rangle\langle n+1| . \tag{5.8}
\end{equation*}
$$

The first term in (5.8) cuts the bond between the atoms n and $n+1$, thereby creating a surface at $m=n+1$, the second term perturbs the site energy on the surface atom from α_{A} to α_{A}^{\prime}.

The only element of g_{2} needed here is that at the surface site, namely

$$
\begin{align*}
g_{2}(n+1, n+1) & =G_{2}(n+1, n+1)-\beta_{2} G_{2}(n+1, n) g_{2}(n+1, n+1) \\
& -\beta_{2} G_{2}(n+1, n+1) g_{2}(n, n+1) \\
& +\left(\alpha_{A}^{\prime}-\alpha_{A}\right) G_{2}(n+1, n+1) g_{2}(n+1, n+1) \tag{5.9}
\end{align*}
$$

which derives from (5.7). However, $g_{2}(n, n+1)=0$, because the sites n and $n+1$ lie on opposite sides of the cleaved interface (Kalkenstein and Soven 1971). Thus, (5.9) leads to the desired matrix element at the interface site, viz.,

$$
\begin{align*}
g_{2}(n+1, n+1)= & G_{2}(n+1, n+1)\left[1+\beta_{2} G_{2}(n+1, n)\right. \\
& \left.-\left(\alpha_{A}^{\prime}-\alpha_{A}\right) G_{2}(n+1, n+1)\right]^{-1} \tag{5.10}
\end{align*}
$$

The elements of G_{2} required in (5.10) are (App. K)

$$
\begin{equation*}
G_{2}(n+1, n+1)=\left(E-\alpha_{B}\right) / \beta_{2}^{2}\left(2 z_{ \pm}-p\right) \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{2}(n+1, n)=\beta_{2}\left(1-z_{ \pm}\right) G_{2}(n+1, n+1) /\left(E-\alpha_{B}\right), \tag{5.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|z_{ \pm}\right|=\frac{1}{2}\left|p \pm\left(p^{2}-4\right)^{1 / 2}\right|<1 \tag{5.13}
\end{equation*}
$$

and

$$
\begin{equation*}
p=2-\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right) / \beta_{2}^{2} . \tag{5.14}
\end{equation*}
$$

Knowing g_{1} and g_{2}, the Greenian g_{12} for the composite metal-support system is given by the Dyson equation

$$
\begin{equation*}
g_{12}=g+g V g_{12} \tag{5.15}
\end{equation*}
$$

where

$$
g(\ell, m)= \begin{cases}g_{1}(\ell, m), & 0 \leq \ell, m \leq n \tag{5.16}\\ g_{2}(\ell, m), & \ell, m>n \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
\begin{equation*}
V=\gamma(|n\rangle\langle n+1|+|n+1\rangle\langle n|), \tag{5.17}
\end{equation*}
$$

the potential V connecting the metal film to the semiconductor support by the bond of energy γ.

5.2 Substrate Surface Green Function

In this section, we utilize the Dyson equation (5.15) to develop the surface GF of the composite system. Inserting (5.17) in (5.15), the matrix element

$$
\begin{equation*}
g_{12}(0,0)=g_{1}(0,0)+\gamma g_{1}(0, n) g_{12}(n+1,0) \tag{5.18}
\end{equation*}
$$

for the surface GF, since $g(0, n+1)=0$ from (5.16). The $g_{12}(n+1,0)$ in (5.18) is found from (5.15), i.e.,

$$
\begin{aligned}
g_{12}(n+1,0)= & g(n+1,0)+\gamma g(n+1, n) g_{12}(n+1,0) \\
& +\gamma g(n+1, n+1) g_{12}(n, 0)
\end{aligned}
$$

which reduces to

$$
\begin{equation*}
g_{12}(n+1,0)=\gamma g_{2}(n+1, n+1) g_{12}(n, 0) \tag{5.19}
\end{equation*}
$$

again via (5.16). Another application of (5.15) reveals that

$$
\begin{equation*}
g_{12}(n, 0)=g_{1}(n, 0)+\gamma g_{1}(n, n) g_{12}(n+1,0) \tag{5.20}
\end{equation*}
$$

Equations (5.19) and (5.20) are a pair of coupled equations, whose solution yields

$$
\begin{equation*}
g_{12}(n+1,0)=\gamma g_{1}(n, 0)\left[g_{2}^{-1}(n+1, n+1)-\gamma^{2} g_{1}(n, n)\right]^{-1} \tag{5.21}
\end{equation*}
$$

Substituting (5.21) into (5.18), we arrive at

$$
\begin{align*}
g_{12}(0,0)= & g_{1}(0,0)+\gamma^{2} g_{1}(0, n) g_{1}(n, 0) \\
& \times\left[g_{2}^{-1}(n+1, n+1)-\gamma^{2} g_{1}(n, n)\right]^{-1} \tag{5.22}
\end{align*}
$$

$g_{2}(n+1, n+1)$ being given by (5.10). It now remains to use (5.1) to obtain the 4 elements of g_{1} needed in (5.22).

Using (5.1) and (5.2), the matrix elements of the Greenian g_{1} can be obtained. Specifically,

$$
\begin{align*}
g_{1}(0, n) & =G_{1}(0, n)-\beta_{1}\left[G_{1}(0,-1) g_{1}(0, n)+G_{1}(0, n+1) g_{1}(n, n)\right] \\
& +\left(\alpha_{1}^{\prime}-\alpha\right)\left[G_{1}(0,0) g_{1}(0, n)+G_{1}(0, n) g_{1}(n, n)\right] \tag{5.23}
\end{align*}
$$

where

$$
\begin{equation*}
g_{1}(-1, n)=0=g_{1}(n+1, n) \tag{5.24}
\end{equation*}
$$

because these matrix elements connect sites on opposite sides of broken bonds. Rearranging (5.23) in terms of the unknown GFs $g_{1}(0, n)$ and $g_{1}(n, n)$, we can write

$$
\begin{equation*}
A g_{1}(0, n)+B g_{1}(n, n)=G_{1}(0, n) \tag{5.25}
\end{equation*}
$$

where

$$
\begin{equation*}
A=1+\beta_{1} G_{1}(0,-1)-\left(\alpha_{1}^{\prime}-\alpha_{1}\right) G_{1}(0,0) \tag{5.26}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\beta_{1} G_{1}(0, n+1)-\left(\alpha_{1}^{\prime}-\alpha_{1}\right) G_{1}(0, n) \tag{5.27}
\end{equation*}
$$

Employing (5.1) again, we find

$$
\begin{align*}
g_{1}(n, n) & =G_{1}(n, n)-\beta_{1}\left[G_{1}(n,-1) g_{1}(0, n)+G_{1}(n, n+1) g_{1}(n, n)\right] \\
& +\left(\alpha_{1}^{\prime}-\alpha_{1}\right)\left[G_{1}(n, 0) g_{1}(0, n)+G_{1}(n, n) g_{1}(n, n)\right] \tag{5.28}
\end{align*}
$$

by virtue of (5.24). In the infinite solid, translational symmetry implies that

$$
\begin{equation*}
G_{1}(n, m)=G_{1}(|n-m|) \tag{5.29}
\end{equation*}
$$

so (5.28) can be expressed in the form

$$
\begin{equation*}
B g_{1}(0, n)+A g_{1}(n, n)=G_{1}(n, n) \tag{5.30}
\end{equation*}
$$

The pair of linear equations (5.25) and (5.30) has the solution

$$
\begin{equation*}
g_{1}(0, n)=\left[A G_{1}(0, n)-B G_{1}(n, n)\right]\left(A^{2}-B^{2}\right)^{-1} \tag{5.31}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}(n, n)=\left[A G_{1}(n, n)-B G_{1}(0, n)\right]\left(A^{2}-B^{2}\right)^{-1} \tag{5.32}
\end{equation*}
$$

A parallel application of (5.1) gives rise to the pair of equations

$$
\begin{equation*}
g_{1}(0,0)=\left[A G_{1}(0,0)-B G_{1}(n, 0)\right]\left(A^{2}-B^{2}\right)^{-1} \tag{5.33}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}(n, 0)=\left[A G_{1}(n, 0)-B G_{1}(0,0)\right]\left(A^{2}-B^{2}\right)^{-1} \tag{5.34}
\end{equation*}
$$

which are very similar to (5.31) and (5.32). Examining (5.31)-(5.34), with reference to (5.29), shows that

$$
\begin{equation*}
g_{1}(0,0)=g_{1}(n, n) \tag{5.35}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}(n, 0)=g_{1}(0, n) \tag{5.36}
\end{equation*}
$$

which are not unexpected results, in light of the fact that g_{1} represents an $(n+1)$-atom chain, with reflectional symmetry about its center. In other words, the two end sites ($m=0$ and $m=n$) are physically indistinguishable, so the corresponding GFs relating them should be equal.

Substituting (5.35) and (5.36) into (5.22) gives

$$
\begin{equation*}
g_{12}(0,0)=g_{1}(0,0)+\gamma^{2}\left(g_{1}(n, 0)\right)^{2}\left[g_{2}^{-1}(n+1, n+1)-\gamma^{2} g_{1}(0,0)\right]^{-1} \tag{5.37}
\end{equation*}
$$

which, on inserting (5.33) and (5.34), becomes

$$
\begin{align*}
g_{12}(0,0) & =\left[A G_{1}(0,0)-B G_{1}(n, 0)\right]\left(A^{2}-B^{2}\right)^{-1} \\
& +\gamma^{2}\left[A G_{1}(n, 0)-B G_{1}(0,0)\right]^{2}\left(A^{2}-B^{2}\right)^{-1} \\
& \times\left\{g_{2}^{-1}(n+1, n+1)\left(A^{2}-B^{2}\right)-\gamma^{2}\left[A G_{1}(0,0)-B G_{1}(n, 0)\right]\right\}^{-1} . \tag{5.38}
\end{align*}
$$

With the aid of (5.10), some rearrangement of (5.38) produces an explicit expression for the surface GF, in terms of the infinite GFs, viz.,

$$
\begin{align*}
g_{12}(0,0) & =\left[A G_{1}(0,0)-B G_{1}(n, 0)\right]\left(A^{2}-B^{2}\right)^{-1} \\
& +\gamma^{2} G_{2}(n+1, n+1)\left[A G_{1}(n, 0)-B G_{1}(0,0)\right]^{2}\left(A^{2}-B^{2}\right)^{-1} \\
& \times\left\{\left(A^{2}-B^{2}\right)\left[1+\beta_{2} G_{2}(n+1, n)-\left(\alpha_{A}^{\prime}-\alpha_{A}\right) G_{2}(n+1, n+1)\right]\right. \\
& \left.-\gamma^{2} G_{2}(n+1, n+1)\left[A G_{1}(0,0)-B G_{1}(n, 0)\right]\right\}^{-1} \tag{5.39}
\end{align*}
$$

For present purposes, the surface and interface perturbations are neglected, so that $\alpha_{1}^{\prime}=\alpha_{1}$ and $\alpha_{A}^{\prime}=\alpha_{A}$, thereby reducing (5.26) and (5.27) to

$$
\begin{equation*}
A=1+\beta_{1} G_{1}(0,-1) \tag{5.40}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\beta_{1} G_{1}(0, n+1) \tag{5.41}
\end{equation*}
$$

On setting

$$
\begin{align*}
P & =1+\beta_{2} G_{2}(n+1, n) \tag{5.42}\\
Q & =A G_{1}(0,0)-B G_{1}(n, 0) \tag{5.43}\\
R & =\gamma^{2} G_{2}(n+1, n+1) \tag{5.44}\\
S & =A G_{1}(n, 0)-B G_{1}(0,0) \tag{5.45}
\end{align*}
$$

(5.39) can be rewritten as

$$
\begin{equation*}
g_{12}(0,0)=\frac{P Q\left(A^{2}-B^{2}\right)+R\left(S^{2}-Q^{2}\right)}{\left(A^{2}-B^{2}\right)\left[P\left(A^{2}-B^{2}\right)-R Q\right]} \tag{5.46}
\end{equation*}
$$

After some algebra, we find that

$$
\begin{equation*}
S^{2}-Q^{2}=\left(A^{2}-B^{2}\right)\left[G_{1}^{2}(n, 0)-G_{1}^{2}(0,0)\right] \tag{5.47}
\end{equation*}
$$

so (5.46) simplifies to

$$
\begin{equation*}
g_{12}(0,0)=\frac{P Q+R\left[G_{1}^{2}(n, 0)-G_{1}^{2}(0,0)\right]}{P\left(A^{2}-B^{2}\right)-R Q} \tag{5.48}
\end{equation*}
$$

It should be noted that (5.48), like the more general (5.39), expresses the surface GF in terms of the infinite GFs G_{i} of the two components (the metal and semiconductor support). Since G_{1} and G_{2} have already been derived in (5.3)-(5.4) and (5.11)-(5.12), respectively, our knowledge of the surface GF is now complete.

5.3 Chemisorption Properties

At this point, we can undertake the study of chemisorption on a supported metal. Despite the importance of this process to catalysis, quantummechanical studies have been somewhat scarce. The problem was first investigated by Ruckenstein and Huang (1973), who formulated a general MO
approach to the chemisorption process and demonstrated the effect of the support in modifying the energies of both localized and nonlocalized states. A decade later, Haberlandt and Ritschl (1983) used a semi-empirical complete neglect of differential overlap (CNDO/2) cluster calculation to study the $\mathrm{H}-\mathrm{Ni} / \mathrm{SiO}_{2}$ system. The charge transfer was found to be directed into the support, and to increase with increasing electron affinity of the surface site and with the number of interface bonds. The chemisorption energy of a H atom on a single Ni atom was found to be decreased (in absolute value) by up to 26%, due to the influence of the support.

A few years later, Davison et al (1988) applied the ANG model of chemisorption to supported-metal catalysts. The key parameters were found to be the metal film thickness and the metal-support bond strength. Related papers followed, studying impurity effects (Zhang and Wei (1991), Sun et al (1994b)) and variation with metal substrate (Xie et al (1992)).

Parallel studies were performed by Liu and Davison (1988), who investigated the process of chemisorption on inverse-supported catalysts, where the surface film is a semiconductor and the underlying support is a metal. Again a key parameter was found to be film thickness, and the substrate was observed to behave as either an acceptor or a donor, depending upon that thickness. The lack of charge self-consistency in this work was addressed by Sun et al (1994a), who also studied the effects of thickness and different metal constituents.

A different approach was taken by Hao and Cooper (1994), who used a combination of the film linear muffin-tin orbital (LMTO) method and an ab initio molecular quantum cluster method, to investigate SO_{2} adsorption on a Cu monolayer supported by $\gamma-\mathrm{Al}_{2} O_{3}$. Emphasis here was on the geometry of adsorption sites, with the conclusion that the preferred adsorption site is the $\mathrm{Al}-\mathrm{Al}$ bridging one.

The problem at hand is the application of the ANG model (Chap. 4) to the adatom-metal-support system, which is shown schematically in Fig. 5.2. The adatom (H) at site $m=a$, has electronic energy, $\varepsilon_{a \sigma}(4.34)$ and is connected by a bond of energy β to the surface atom (Ni), at site $m=0$. The support is ZnO , with a Zn atom at the interface site $m=n+1$ (Davison et al 1988).

Fig. 5.2. Schematic representation of $\mathrm{H}-\mathrm{Ni} / \mathrm{ZnO}$ system showing hydrogen adatom a of electronic energy $\varepsilon_{a \sigma}$ with bond energy β attached to Ni surface atom at $m=0$. Reprinted from Davison et al (1988) with permission from Elsevier.

The adatom and surface Greenians are linked, once again, by the Dyson equation

$$
\begin{equation*}
g_{a}=g_{12}+g_{12} V_{a} g_{a} \tag{5.49}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{a}=U\left\langle n_{a,-\sigma}\right\rangle|a\rangle\langle a|+\beta(|a\rangle\langle 0|+|0\rangle\langle a|), \tag{5.50}
\end{equation*}
$$

$U\left\langle n_{a,-\sigma}\right\rangle$ being the averaged self-energy of the adatom, within the HFA. From (5.49), we have

$$
\begin{align*}
g_{a}(a, a)= & g_{12}(a, a)+U\left\langle n_{a,-\sigma}\right\rangle g_{12}(a, a) g_{a}(a, a) \\
& +\beta g_{12}(a, a) g_{a}(0, a), \tag{5.51}
\end{align*}
$$

where $g_{12}(a, 0)=0$, and also

$$
\begin{equation*}
g_{a}(0, a)=\beta g_{12}(0,0) g_{a}(a, a) \tag{5.52}
\end{equation*}
$$

Substituting (5.52) into (5.51) and rearranging yields

$$
\begin{equation*}
g_{a}(a, a)\left[g_{12}^{-1}(a, a)-U\left\langle n_{a,-\sigma}\right\rangle-\beta^{2} g_{12}(0,0)\right]=1 \tag{5.53}
\end{equation*}
$$

Noting that the isolated adatom GF is

$$
\begin{equation*}
g_{12}(a, a)=\left(E-\varepsilon_{a}\right)^{-1} \tag{5.54}
\end{equation*}
$$

and putting

$$
\begin{equation*}
\varepsilon_{a \sigma}=\varepsilon_{a}+U\left\langle n_{a,-\sigma}\right\rangle, \tag{5.55}
\end{equation*}
$$

as in (4.34), reduces (5.53) to the adatom expression

$$
\begin{equation*}
g_{a}(E) \equiv g_{a}(a, a)=\left[E-\varepsilon_{a \sigma}-\beta^{2} g_{12}(0,0)\right]^{-1} \tag{5.56}
\end{equation*}
$$

The general theory of $\S 4.3$ can now be applied, with some modification, due to the fact that the substrate electronic structure consists of discrete states arising from the metal film, in addition to the delocalized band states of the semiconductor. The adatom GF (5.56) can be written as (cf. (4.70))

$$
\begin{equation*}
g_{a}(E)=\left[E-\varepsilon_{a \sigma}-\Lambda(E)+i \Delta(E)\right]^{-1} \tag{5.57}
\end{equation*}
$$

by means of the chemisorption functions

$$
\begin{equation*}
\Lambda(E)=\beta^{2} \operatorname{Re}\left[g_{12}(0,0)\right], \quad \Delta(E)=-\beta^{2} \operatorname{Im}\left[g_{12}(0,0)\right] \tag{5.58}
\end{equation*}
$$

The adatom occupancy is now given by (cf. (4.76) and (4.80))

$$
\begin{equation*}
\left\langle n_{a \sigma}\right\rangle=\int_{\varepsilon_{\ell}}^{\varepsilon_{u}} \rho_{a}(E) d E+\sum_{i}\left[1-\Lambda^{\prime}\left(E_{i}\right)\right]^{-1} \tag{5.59}
\end{equation*}
$$

where the adatom DOS is (cf. (4.75))

$$
\begin{align*}
\rho_{a}(E) & =-\pi^{-1} \operatorname{Im}\left[g_{a}(E)\right] \\
& =\pi^{-1} \Delta(E)\left[\left(E-\varepsilon_{a \sigma}-\Lambda(E)\right)^{2}+\Delta^{2}(E)\right]^{-1} \tag{5.60}
\end{align*}
$$

Furthermore, the summation in the second term of (5.59) is over all discrete states with energies below the $\mathrm{FL} \varepsilon_{f}$, and the integration in the first term is over the VB of the semiconductor.

Here, we examine only the non-magnetic case, so we have

$$
\begin{equation*}
\left\langle n_{a+}\right\rangle=\left\langle n_{a-}\right\rangle \equiv\left\langle n_{a}\right\rangle, \tag{5.61}
\end{equation*}
$$

on dropping the subscript σ, for convenience. The charge transfer from the substrate to the adatom is now given by (cf. (4.102))

$$
\begin{equation*}
\Delta q=\left(2\left\langle n_{a}\right\rangle-1\right) e \tag{5.62}
\end{equation*}
$$

The chemisorption energy expression (4.101) now takes the form

$$
\begin{align*}
\Delta E & =2 \sum_{j=0}^{n}\left[E_{a}(j)-E_{b}(j)\right] \\
& +2 \pi^{-1} \int_{\varepsilon_{\ell}}^{\varepsilon_{u}} \tan ^{-1}\left[\Delta(E) /\left(E-\varepsilon_{a \sigma}-\Lambda(E)\right)\right] d E \\
& -\varepsilon_{a}-U\left\langle n_{a}\right\rangle^{2}, \tag{5.63}
\end{align*}
$$

with $-\pi<\tan ^{-1}<0$ (App. G). In (5.63), $E_{b}(j)$ and $E_{a}(j)$ represent the energy of the j th discrete state of the metal film, before and after chemisorption, respectively. Thus the quantity $E_{a}(j)-E_{b}(j)$ is the energy shift in that state as induced by the chemisorption process. It is noted that, for the parameter values used here, the energy ε_{a}^{*} of the adatom level after chemisorption lies in the semiconductor VB and, hence, its contribution to ΔE is automatically included in the integrated term, and does not require explicit inclusion as in (4.101). With these considerations, the numerical calculations of ΔE and Δq are straightforward.

5.4 H-Ni/ZnO System

Results are presented for the case of a H adatom interacting with a Ni film on a ZnO support. The band structure of the composite system is shown schematically in Fig. 5.3. Relative to the FL as energy zero, the principal parameters have values (in eV): $\alpha_{1}=-1.7, \beta_{1}=0.95, \alpha_{A}=0, \alpha_{B}=-3.4$ and $\beta_{2}=3.755$. The interface interaction parameter γ is approximated as the average of β_{1} and β_{2} for a value of 2.35 , although variation of the results with γ is examined later. With this set of parameters, the Ni d-band lies between 0.2 and -3.6. For thin Ni films (e.g., $n+1=6$, as shown in Fig. 5.3), all Ni energies fall within the ZnO band gap, while, for thicker films, some Ni energies lie in either the VB or CB of $\mathrm{ZnO} .{ }^{1}$

[^13]

Fig. 5.3. Energy band-structure diagram (in eV) of $\mathrm{Ni} / \mathrm{ZnO}$ support and pre-(post-)chemisorbed hydrogen adatom level at $\varepsilon_{a}\left(\varepsilon_{a}^{*}\right)$. VB (shaded) and CB of ZnO are of width 6 . Fermi level $\left(\varepsilon_{f}\right)$, which coincides with lower edge of CB , is taken as zero of energy. 6-layer Ni film has 6 localized levels lying between band edges (dashed lines), which just overlap ZnO energy gap. Reprinted from Davison et al (1988) with permission from Elsevier.

The H atom has parameters $\varepsilon_{a}=-9.74$ and $U=12.9$, with bond energy $\beta=3.75$. The isolated adatom energy ε_{a} is shifted upwards upon chemisorption to ε_{a}^{*}, which is a solution to (cf. (4.139))

$$
\begin{equation*}
E-\varepsilon_{a \sigma}-\Lambda(E)=0 \tag{5.64}
\end{equation*}
$$

i.e., it is the chemisorption state, which arises mathematically as a pole of the adatom GF (5.57). As the energy ε_{a}^{*} overlaps the ZnO valence band, it appears as a broadened spike in the DOS, rather than the more familiar δ-function that occurs when such a state is isolated from the bands.

Using the "reference" value of $\gamma=2.35 \mathrm{eV}$ for the Ni ZnO interface parameter, the charge transfer Δq and chemisorption energy ΔE were calculated for a Ni film of thickness varying from 1 to 6 layers, as listed in Table 5.1. For the case of a single Ni layer, Δq is quite small (0.08), and $\Delta E=-1.166$ has a value about two-fifths of that for pure $\mathrm{Ni}(\Delta E=-2.975 \mathrm{eV})$. Such
behaviour is not surprising, as the thinness of the Ni film allows some charge to be drained away from the surface into the ZnO support, thus weakening the adsorption process.

Table 5.1. Adatom charge transfer Δq and chemisorption energy ΔE for atomic hydrogen on Ni film of $(n+1)$-layers thickness on ZnO support.

$n+1$	$\Delta q(e)$	$\Delta E(\mathrm{eV})$
1	0.08	-1.166
2	0.14	-2.730
3	0.16	-2.933
4	0.16	-2.963
5	0.16	-2.969
6	0.16	-2.974

Increasing the thickness of the Ni film to just 2 layers produces marked changes in the values (increasing Δq to 0.14 and lowering ΔE to -2.730), making them much closer to the values for pure Ni. A 3-layer film leads to Δq having the pure-Ni value of 0.16 and a marginally lower value of ΔE $(=-2.933 \mathrm{eV})$. Further increases in the thickness of the film produce no significant change in Δq and only very small changes in ΔE. The Ni film completely reflects the chemisorption properties of pure Ni , when the film thickness reaches 6 layers.

Fig. 5.4. Dependence of hydrogen chemisorption energy ΔE (solid line) and adatom charge transfer Δq (dashed line) of 2-layer Ni film on interaction parameter γ. Reprinted from Davison et al (1988) with permission from Elsevier.

Since the value of the $\mathrm{Ni}-\mathrm{ZnO}$ interface interaction parameter γ was estimated to be the average of β_{1} and β_{2}, further calculations were done to assess the sensitivity of the results to changes in the value of γ. Fig. 5.4 shows the variation of Δq and ΔE, with γ in the range from 1 to 6 eV for a 2-layer film. (The reference value of γ is 2.35 eV .) In the low- γ region $(1 \leq \gamma \leq 3), \Delta E$ increases quite quickly with increasing γ, while for higher $\gamma(>3 \mathrm{eV})$ the rate of increase in ΔE is much smaller. The decrease of Δq with increasing γ is similar, although the difference in the rate of change between the low- and high- γ regimes is less pronounced. It is significant that, for low γ, the chemisorption properties are closest to those for a pure (semi-infinite) Ni substrate. Increasing the metal-support interface bond γ from 1 eV to 6 eV results in a 6% increase (17% decrease) in $\Delta E(\Delta q)$, indicating that the effect of the support, in this case, is to draw charge from the Ni film into the ZnO support, resulting in less charge being available
for transfer to the adatom, thereby weakening the chemisorption process. It should be noted that these findings are qualitatively in accord with those of Haberlandt and Ritschl (1983). As mentioned earlier, the results of Fig. 5.4 are for a 2-layer film. For a thicker film, the variation in the chemisorption properties with γ should be smaller, due to the fact that the metal-support interface is physically located farther away from the adsorption site.

In conclusion, metal-support substrates provide good examples of composite systems that can be studied efficiently by GF techniques. The key parameter is clearly seen to be the film thickness: it controls the extent to which the metal-support system mimics the chemisorption properties of the pure metal. Also important is the bond strength (γ) between the metal and the support, as it governs the flow of charge between the metal and the support, thus determining the amount of charge available at the surface to partake in chemisorption.

Chapter 6

Disordered Binary Alloys

One of the advantages of being disorderly is that one is constantly making exciting discoveries.

\author{

- A.A. Milne
}

So far, the solids that we have studied have been ordered, in the sense that they possess perfect translational symmetry. However, this "perfection" is really an idealization and, in reality, an actual crystal can be expected to have some sort of disorder, which breaks the long-range periodicity of the lattice. There are a number of ways in which disorder can arise. For instance, interstitial disorder occurs when an impurity atom is placed in the vacant space between two substrate atoms, which remain at their original locations in the lattice. Another situation is that of structural disorder, where the substrate atoms move away from their positions on the perfect lattice. However, the situation of interest in this chapter is that of substitutional disorder. Here, a perfect lattice of one type of atoms (say, A) has some of its members randomly replaced by another type (B). The result is a structurally periodic lattice, but with the constituent atoms A and B randomly placed on the lattice sites. The relative numbers of A and B atoms can be represented by the concentrations c_{A} and c_{B}, with $c_{A}+c_{B}=1$. The randomness of this type of solid introduces a level of difficulty into the theory, that we have not yet encountered.

6.1 Coherent-Potential Approximation

In this section, we consider how to model a bulk (i.e., infinite) substitutionally disordered binary alloy (DBA), in light of its intrinsic randomness. The fact that the DBA lacks periodicity means that the key tool of Bloch's theorem is inapplicable, so specialized methods (Ehrenreich and Schwartz 1976, Faulkner 1982, Yonezawa 1982, Turek et al 1996) must be used.

One early and simple concept is the rigid-band model (Friedel 1958), wherein a fixed DOS is taken to represent an entire class of alloys (such as those composed of 3d transition metals). Individual alloys are distinguished solely by assigning to each a Fermi level, determined by the concentration of valence electrons. Unfortunately, this model is too much of an oversimplification, because, for example, the DOS is chosen empirically, and may not be clearly related to that for any of the constituent metals.

In the virtual-crystal approximation (VCA) (Nordheim 1931), the site energy of an alloy atom is taken to be

$$
\begin{equation*}
\alpha_{v}=c_{A} \varepsilon_{A}+c_{B} \varepsilon_{B} \tag{6.1}
\end{equation*}
$$

where $\varepsilon_{A}\left(\varepsilon_{B}\right)$ is the electronic energy of component $A(B)$. Therefore, α_{v} is the average of the site energies for the constituent atoms, weighted by the corresponding concentrations. Thus, the basic idea of the VCA (6.1) is to replace the random energy at each site by an average one, thereby making the lattice periodic and the calculation of the DOS straightforward. Although this approach may sound reasonable, in principle, it is in fact inadequate in its implementation. The VCA treats the randomness of the alloy too simplistically, and in effect models the solid as if it were ordered. The failure of the VCA is perhaps illustrated most obviously by the fact that it always gives rise to a single energy band (termed the amalgamated band structure). Although some alloys do possess this structure, others do not. For example, Cu-Zn alloy (Ehrenreich and Schwartz 1976) maintains two separate bands, associated with the Cu and Zn 3 d -bands, respectively. This type of band structure is termed persistent, and cannot be produced using the VCA. So, although the VCA might prove satisfactory for some amalgamated-type alloys, it certainly fails as a more comprehensive theory.

A better method is the average t-matrix approximation (ATA) (Korringa 1958), in which the alloy is characterized by an effective medium, which is determined by a non-Hermitean (or "effective") Hamiltonian with complexenergy eigenvalues. The corresponding self-energy is calculated (non-self-
consistently) by means of an average t-matrix, which represents the average scattering of an electron at each site. One fundamental approximation that is made in this approach is the so-called single-site approximation, wherein the scattering from a particular site is assumed to be independent of that from other sites. The ATA is certainly an improvement over the VCA, because, it can predict either the persistent or amalgamated bands. However, the ATA does possess deficiencies, largely due to the lack of self-consistency in the effective potential. For instance, the ATA does not always fix the band edges correctly, and calculated results are also dependent upon the choice of the reference system with respect to which the electron scattering is considered to take place. Consequently, a better approximation was sought.

The improvement came in the form of the coherent-potential approximation (CPA) (Soven 1967, Taylor 1967, Velický et al 1968), which remedied the lack of self-consistency exhibited by the ATA. The crux of this approach is that each lattice site has associated with it a complex self-consistent potential, called a coherent potential (CP). The CP gives rise to an effective medium with the important property that removing that part of the medium belonging to a particular site, and replacing it by the true potential, produces, on average, no further scattering. Because the CPA is used for our discussion of chemisorption on DBA's, its mathematical formulation is given below.

The CPA has proved to be an enormously successful tool in the study of alloys, and has been implemented within various frameworks, such as the TB, linear muffin-tin orbital and Korringa-Kohn-Rostoker (Kumar et al 1992, Turek et al 1996), and is still considered to be the most satisfactory single-site approximation. Efforts to do better than the single-site CPA have focused on multi-site (or cluster) CPA's (see, e.g., Gonis et al 1984, Turek et al 1996), in which a central site and its set of nearest neighbours are embedded in an effective medium. Still, for present purposes, the single-site version of the CPA suffices, and we derive the necessary equations here, within the framework of the TB model.

The derivation of the single-site CPA involves the calculation of an average GF G_{e} for a corresponding effective Hamiltonian H_{e}, with the key requirement being that there is zero average scattering from any particular site. It should be noted that, because H_{e} is non-Hermitean with complex eigenenergies, any putative "average" wave function would necessarily lead to unphysical predictions. Fortunately, an average GF does not suffer from this drawback.

The exact 1-electron Hamiltonian for a DBA can be written as the sum of the Hamiltonian for a translationally invariant solid plus that for the random perturbations, i.e.,

$$
\begin{equation*}
H=\sum_{i, j} w_{i j}|i\rangle\langle j|+\sum_{i} v_{i}|i\rangle\langle i| . \tag{6.2}
\end{equation*}
$$

The first summation incorporates the (non-random) translational invariance, while the second includes random deviations from the lattice on a site-by-site basis. Note that the second summation explicitly indicates that all randomness or disorder is diagonal, not off-diagonal. The corresponding exact GF $G=(\omega-H)^{-1}$ satisfies the matrix equation

$$
\begin{equation*}
\sum_{\ell}\left[\left(\omega-v_{i}\right) \delta_{i \ell}-w_{i \ell}\right] G(\omega ; \ell, j)=\delta_{i j} \tag{6.3}
\end{equation*}
$$

where $\omega=E+i 0$. Since the Hamiltonian

$$
\begin{equation*}
H_{0}=\sum_{i, j} w_{i j}|i\rangle\langle j| \tag{6.4}
\end{equation*}
$$

represents a translationally invariant crystal (which we term the "unperturbed" system), it can be assumed that the corresponding unperturbed GF, satisfying

$$
\begin{equation*}
\sum_{\ell}\left(\omega \delta_{i \ell}-w_{i \ell}\right) G_{0}(\omega ; \ell, j)=\delta_{i j} \tag{6.5}
\end{equation*}
$$

is known. The two GF's are linked by the Dyson equation (3.3), viz.,

$$
\begin{equation*}
G=G_{0}+G_{0} V G \tag{6.6}
\end{equation*}
$$

where

$$
\begin{equation*}
V=\sum_{i} v_{i}|i\rangle\langle i|=H-H_{0} . \tag{6.7}
\end{equation*}
$$

Successive substitution of (6.6) into itself produces

$$
\begin{align*}
G & =G_{0}+G_{0} V G_{0}+G_{0} V G_{0} V G_{0}+\cdots+G_{0}\left(V G_{0}\right)^{n}+\cdots \tag{6.8a}\\
& =G_{0}+G_{0} T G_{0} \tag{6.8b}
\end{align*}
$$

where the t-matrix is

$$
\begin{equation*}
T=V+V G_{0} V+\cdots+V\left(G_{0} V\right)^{n}+\cdots=V+V G_{0} T \tag{6.9}
\end{equation*}
$$

Since G is the exact GF for one of the many possible configurations of the alloy, what we would like to do is to obtain an "average" GF $\langle G\rangle$, where the averaging is over all possible configurations. Performing such a configurational average on (6.8b) gives

$$
\begin{equation*}
\langle G\rangle=G_{0}+G_{0}\langle T\rangle G_{0}, \tag{6.10}
\end{equation*}
$$

where $\left\langle G_{0}\right\rangle=G_{0}$, because this GF represents a translationally invariant crystal. Thus, the problem is reduced to evaluating $\langle T\rangle$.

To determine $\langle T\rangle$, let $V_{n}=v_{n}|n\rangle\langle n|$, so that

$$
\begin{equation*}
V=\sum_{n} V_{n} \tag{6.11}
\end{equation*}
$$

from which (6.8a) becomes

$$
\begin{equation*}
G=G_{0}+G_{0} \sum_{n} V_{n} G_{0}+G_{0} \sum_{n} V_{n} G_{0} \sum_{m} V_{m} G_{0}+\cdots \tag{6.12}
\end{equation*}
$$

If we let t_{n} be the single-site scatterers, with $T_{n}=t_{n}|n\rangle\langle n|$, then we can rearrange G in (6.12) as

$$
\begin{align*}
G=G_{0} & +G_{0} \sum_{n} T_{n} G_{0}+G_{0} \sum_{n} T_{n} G_{0} \sum_{m \neq n} T_{m} G_{0} \\
& +G_{0} \sum_{n} T_{n} G_{0} \sum_{m \neq n} T_{m} G_{0} \sum_{r \neq m} T_{r} G_{0}+\cdots, \tag{6.13}
\end{align*}
$$

where it can be seen that

$$
\begin{align*}
t_{n} & =v_{n}+v_{n} G_{0}(n, n) v_{n}+v_{n} G_{0}(n, n) v_{n} G_{0}(n, n) v_{n}+\cdots \\
& =v_{n}\left[1-v_{n} G_{0}(n, n)\right]^{-1} . \tag{6.14}
\end{align*}
$$

Comparing (6.13) with (6.8b), we see that

$$
\begin{equation*}
T=\sum_{n} T_{n}+\sum_{n} T_{n} G_{0} \sum_{m \neq n} T_{m}+\sum_{n} T_{n} G_{0} \sum_{m \neq n} T_{m} G_{0} \sum_{r \neq m} T_{r}+\cdots \tag{6.15}
\end{equation*}
$$

so taking averages gives

$$
\begin{equation*}
\langle T\rangle=\sum_{n}\left\langle T_{n}\right\rangle+\sum_{n} \sum_{m \neq n}\left\langle T_{n} G_{0} T_{m}\right\rangle+\cdots \tag{6.16}
\end{equation*}
$$

In the single-site approximation, scattering from different sites are taken to be independent, so (6.16) becomes

$$
\begin{equation*}
\langle T\rangle=\sum_{n}\left\langle T_{n}\right\rangle+\sum_{n} \sum_{m \neq n}\left\langle T_{n}\right\rangle G_{0}\left\langle T_{m}\right\rangle+\cdots ; \quad\left\langle T_{n}\right\rangle=\left\langle t_{n}\right\rangle|n\rangle\langle n| . \tag{6.17}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left\langle t_{n}\right\rangle=c_{A} t_{n}^{A}+c_{B} t_{n}^{B} \tag{6.18}
\end{equation*}
$$

since each scatterer must be of type A or B, with respective concentrations c_{A} and c_{B}. Taking all A or all B scatterers to be equivalent, (6.18) simplifies to

$$
\begin{equation*}
\left\langle t_{n}\right\rangle=c_{A} t_{A}+c_{B} t_{B} \tag{6.19}
\end{equation*}
$$

where from (6.14),

$$
\begin{equation*}
t_{X} \equiv t_{n}^{X}=v_{n}^{X}\left[1-v_{n}^{X} G_{0}(n, n)\right]^{-1} \tag{6.20}
\end{equation*}
$$

with $X=A$ or B.
To this point, the formalism has been quite general, and from here we could proceed to derive any one of several single-site approximations (such as the ATA, for example). However, we wish to focus on the desired approach, the CPA. To do so, we recall that our aim is to produce a (translationally invariant) effective Hamiltonian H_{e}, which reflects the properties of the exact Hamiltonian H (6.2) as closely as possible. With that in mind, we notice that the closer the choice of unperturbed Hamiltonian $H_{0}(6.4)$ is to H_{e}, then the smaller are the effects of the perturbation term in (6.7), and hence in (6.10). Clearly, then, the optimal choice for H_{0} is H_{e}. Thus, we have

$$
\begin{equation*}
G_{0}=G_{e} \equiv\langle G\rangle \tag{6.21}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{e}=\left(\omega-H_{e}\right)^{-1} \tag{6.22}
\end{equation*}
$$

In light of the choice giving (6.21), we see that (6.10) implies

$$
\begin{equation*}
\langle T\rangle=0 \tag{6.23}
\end{equation*}
$$

from which (6.17) gives

$$
\begin{equation*}
\left\langle t_{n}\right\rangle=0, \quad \forall \quad n \tag{6.24}
\end{equation*}
$$

Equation (6.24) is the crucial condition of the CPA, whose physical interpretation is that the scattering from a single site of the effective medium is, on average, the same as that for the exact medium. In view of (6.19), the condition (6.24) reduces to

$$
\begin{equation*}
c_{A} t_{A}+c_{B} t_{B}=0 \tag{6.25}
\end{equation*}
$$

with t_{A} and t_{B} given by (6.20), and v_{n}^{A}, v_{n}^{B} yet to be determined.
We are now at the stage where we can specify the Hamiltonians and thus calculate the GF's. Firstly, we take the exact Hamiltonian to be

$$
\begin{equation*}
H=\sum_{n} \varepsilon_{n}|n\rangle\langle n|-\sum_{n} J(|n\rangle\langle n+1|+|n+1\rangle\langle n|), \tag{6.26}
\end{equation*}
$$

where $J=-\beta$ in the notation of Chap. 1, and

$$
\varepsilon_{n}=\left\{\begin{array}{llll}
\varepsilon_{A}, & \text { site } n & \text { occupied by } & A \tag{6.27}\\
\varepsilon_{B}, & \text { site } n & \text { occupied by } & B
\end{array}\right.
$$

with the choice of occupant of site n being random. Secondly, the form for the unperturbed, effective Hamiltonian is taken to be

$$
\begin{equation*}
H_{0}=H_{e}=\sum_{n}\left[\alpha_{v}+\sigma_{n}(E)\right]|n\rangle\langle n|-\sum_{n} J(|n\rangle\langle n+1|+|n+1\rangle\langle n|) \tag{6.28}
\end{equation*}
$$

where α_{v} is the VC site energy (6.1) and $\sigma_{n}(E)$ is the complex, energydependent coherent potential (as yet unknown) on site n. For an infinite (cyclic) alloy, the CP is a site-independent bulk $C P$, i.e., $\sigma_{n}=\sigma_{b}(E)$, and the corresponding effective GF is found to be (App. J, with $J=-\beta$)

$$
\begin{equation*}
G_{e}(n, m)=t^{|n-m|}\left[2 J s\left(\xi^{2}-1\right)^{1 / 2}\right]^{-1} \tag{6.29}
\end{equation*}
$$

from (2.49), (2.40) and (2.37), where

$$
\begin{align*}
t & =\xi+s\left(\xi^{2}-1\right)^{1 / 2} \tag{6.30}\\
\xi & =\left[\alpha_{v}+\sigma_{b}(E)-E\right] / 2 J \tag{6.31}\\
s & = \pm 1 \quad \text { so that } \quad|t|<1 \tag{6.32}
\end{align*}
$$

In light of (6.26) and (6.28), we see that the perturbation $V=H-H_{0}$, from (6.7), can be expressed as

$$
\begin{align*}
V & =\sum_{n}\left[\varepsilon_{n}-\alpha_{v}-\sigma_{n}(E)\right]|n\rangle\langle n| \\
& =\sum_{n}\left[\Delta \eta_{n}-\sigma_{n}(E)\right]|n\rangle\langle n| \tag{6.33}
\end{align*}
$$

where, using (6.1) and (6.27), we see that

$$
\begin{equation*}
\Delta=\varepsilon_{A}-\varepsilon_{B} \tag{6.34}
\end{equation*}
$$

and

$$
\eta_{n}=\left\{\begin{array}{llll}
1-c, & \text { site } & n & \text { occupied by } \tag{6.35}
\end{array} A,\right.
$$

with $c=c_{A}=1-c_{B}$. In other words, we have

$$
\begin{equation*}
v_{n}=\Delta \eta_{n}-\sigma_{n}(E) \tag{6.36}
\end{equation*}
$$

or, more explicitly,

$$
\begin{align*}
v_{n}^{A} & =\Delta(1-c)-\sigma_{n}(E), \tag{6.37a}\\
v_{n}^{B} & =-\Delta c-\sigma_{n}(E), \tag{6.37b}
\end{align*}
$$

Thus, the single-site scatterers (6.20) can be written as

$$
\begin{align*}
t_{A} & =\left[\Delta(1-c)-\sigma_{n}\right]\left\{1-\left[\Delta(1-c)-\sigma_{n}\right] G_{e}(n, n)\right\}^{-1} \tag{6.38a}\\
t_{B} & =\left(-\Delta c-\sigma_{n}\right)\left[1-\left(-\Delta c-\sigma_{n}\right) G_{e}(n, n)\right]^{-1} \tag{6.38b}
\end{align*}
$$

Inserting (6.38) into (6.25) and rearranging produces

$$
\begin{equation*}
\sigma_{n}=\left(\Delta c+\sigma_{n}\right) G_{e}(n, n)\left[\Delta(1-c)-\sigma_{n}\right] \tag{6.39}
\end{equation*}
$$

which is the self-consistency condition for the complex, energy-dependent CP $\sigma_{n}(E)$. In principle, both σ_{n} and c can be taken to vary from site to site, but for a bulk, infinite alloy they should be taken to be site-independent. It is within the context of surface properties that the site dependence becomes important (§6.2).

It should be kept in mind that any GF, and specifically G_{e}, is complex within the energy bands, but is purely real outside them. Equation (6.39) then implies that the same property is attached to the CP, namely, that $\sigma_{n}(E)$ is complex (real) for energies E inside (outside) the bands.

We note that G_{e} in (6.39) depends on σ_{n} through (6.29)-(6.32), so (6.39) is actually quite a complicated relationship for σ_{n} as a function of $E . \sigma_{n}(E)$ can be calculated numerically, by defining the function

$$
\begin{equation*}
f(u)=u-(\Delta c+u) G_{e}(n, n)[\Delta(1-c)-u] \tag{6.40}
\end{equation*}
$$

and then noting that the zeroes $u=\sigma_{n}(E)$ of (6.40) are solutions of (6.39). A technique, such as quadratic interpolation, can be used to find that zero of f satisfying $\operatorname{Im} \sigma_{n}(E) \leq 0$, a condition needed to give a positive DOS.

6.2 Alloy Surface Green Function

In this section, we extend the above formalism to that for an alloy surface within the CPA, which serves as the model for the pre-chemisorption substrate. The model discussed here is based on that of Ueba and Ichimura (1979a,b) and Parent et al (1980). For a comprehensive introduction to alloy surfaces see Turek et al (1996). A feature of surface-alloy models, which is different from bulk ones, is that the CP in layers near the surface is different from that in the bulk, due to the surface perturbation. Moreover, the alloy concentration in the surface layers may be quite different from that in the bulk, a feature known as surface segregation. (See Ducastelle et al 1990 and Modrak 1995 for recent reviews.) We assume that both of these surface effects are confined to the first surface layer only.

The system under consideration consists of an isolated hydrogen-like atom and a DBA with a surface, as shown in Fig. 6.1. Following (6.28), the effective Hamiltonian for this system is

$$
\begin{equation*}
H_{s}=\varepsilon_{a}|0\rangle\langle 0|+\sum_{n=1}^{\infty}\left[\alpha_{n}+\sigma_{n}(E)\right]|n\rangle\langle n|-\sum_{n=1}^{\infty} J(|n\rangle\langle n+1|+|n+1\rangle\langle n|), \tag{6.41}
\end{equation*}
$$

Fig. 6.1. One-dimensional model depicting pre-chemisorption, where $\varepsilon_{m}=$ $\alpha_{m}+\sigma_{m}$, with $m=b$ or s. Reprinted with permission from Sulston et al (1986). Copyright 1986 by the American Physical Society.
where ε_{a} is the electronic energy of the pre-adsorbed atom, α_{n} is the VC electronic energy on the nth substrate atom, $\sigma_{n}(E)$ the CP , and $-J$, the bond strength between nearest-neighbour (NN) atoms in the alloy. In light of the comments in the preceding paragraph, σ_{n} is taken to have its bulk
value σ_{b} at all lattice sites, except the surface one ($n=1$), where it has the value σ_{s}. Similarly, the alloy concentration is assumed to be the same, namely, $c=c_{b}$ in all layers, except the surface one, where it has the value c_{s}. Consequently, the VC electronic energy (6.1) has the values

$$
\alpha_{n}= \begin{cases}c_{s}^{A} \varepsilon_{A}+c_{s}^{B} \varepsilon_{B}=c_{s} \Delta+\varepsilon_{B}, & n=1 \tag{6.42}\\ c_{b}^{A} \varepsilon_{A}+c_{b}^{B} \varepsilon_{B}=c_{b} \Delta+\varepsilon_{B}, & n>1\end{cases}
$$

with Δ given by (6.34). In addition, an extension of the VCA (Foo et al 1971) introduces a concentration dependence into the bond energy, so that

$$
\begin{equation*}
J=c_{b}^{2} J_{A}+2 c_{b}\left(1-c_{b}\right) J_{A B}+\left(1-c_{b}\right)^{2} J_{B} \tag{6.43}
\end{equation*}
$$

where $J_{A}, J_{A B}$ and J_{B} are the $A-A, A-B$ and $B-B$ negative bond energies, respectively.

The Greenian corresponding to the semi-infinite Hamiltonian (6.41), viz.,

$$
\begin{equation*}
G_{s}(E)=\left(E+i 0^{+}-H_{s}\right)^{-1} \tag{6.44}
\end{equation*}
$$

is connected to the infinite Greenian $G_{e}(6.29)$ via the Dyson equation (6.6), i.e.,

$$
\begin{equation*}
G_{s}=G_{e}+G_{e} V_{s} G_{s} \tag{6.45}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{s}=J(|0\rangle\langle 1|+|1\rangle\langle 0|)+\left(\alpha_{s}+\sigma_{s}-\alpha_{b}-\sigma_{b}\right)|1\rangle\langle 1| . \tag{6.46}
\end{equation*}
$$

The first term in (6.46) severs the bonds between the $n=0$ and $n=1$ sites, thereby creating a surface at the $n=1$ site, while the second term perturbs the electronic environment on the surface atom, compared to that in the bulk. Substituting (6.46) into (6.45) and evaluating the matrix element $\langle 1| G_{s}|1\rangle=G_{s}(1,1)$ leads to

$$
\begin{align*}
& G_{s}(1,1)=G_{e}(1,1)+J G_{e}(1,0) G_{s}(1,1)+J G_{e}(1,1) G_{s}(0,1) \tag{6.47}\\
&+\left(\alpha_{s}+\sigma_{s}-\alpha_{b}-\sigma_{b}\right) G_{e}(1,1) G_{s}(1,1)
\end{align*}
$$

However, $G_{s}(0,1)=0$, since sites 0 and 1 are on opposite sides of the cleaved solid. Moreover, from (6.29) we see that $G_{e}(1,0)=t G_{e}(1,1)$, so (6.47) reduces to

$$
\begin{aligned}
& G_{s}(1,1)=G_{e}(1,1)+J t G_{e}(1,1) G_{s}(1,1) \\
&+\left(\alpha_{s}+\sigma_{s}-\alpha_{b}-\sigma_{b}\right) G_{e}(1,1) G_{s}(1,1)
\end{aligned}
$$

which can be rearranged to give

$$
\begin{equation*}
G_{s}(1,1)=\left[G_{e}^{-1}(1,1)-J t-\left(\alpha_{s}+\sigma_{s}-\alpha_{b}-\sigma_{b}\right)\right]^{-1} \tag{6.48}
\end{equation*}
$$

Inserting (6.29), (6.30), (6.42) and simplifying yields the surface $G F$

$$
\begin{equation*}
g_{s}(E)=G_{s}(1,1)=\left[J s\left(\xi^{2}-1\right)^{1 / 2}-\left(c_{s}-c_{b}\right) \Delta-\sigma_{s}+\sigma_{b}-J \xi\right]^{-1} \tag{6.49}
\end{equation*}
$$

The surface CP σ_{s} is found by putting g_{s} in place of G_{e} in the CPA self-consistency equation (6.39), whence

$$
\begin{equation*}
\sigma_{s}=\left(\Delta c_{s}+\sigma_{s}\right) g_{s}(E)\left[\Delta\left(1-c_{s}\right)-\sigma_{s}\right] \tag{6.50}
\end{equation*}
$$

Substituting (6.49) into (6.50) and rearranging gives an explicit form for σ_{s} :

$$
\begin{equation*}
\sigma_{s}(E)=\frac{2 \Delta^{2} c_{s}\left(1-c_{s}\right)}{2 J s\left(\xi^{2}-1\right)^{1 / 2}-2 \Delta\left(1-2 c_{s}\right)+\sigma_{b}-2 c_{s} \Delta+c_{b} \Delta-\varepsilon_{B}+E} \tag{6.51}
\end{equation*}
$$

Note that the evaluation of (6.51) does not require a self-consistency calculation. The bulk CP $\sigma_{b}(E)$ is, as we have seen, calculated self-consistently in (6.39), but once that has been done, the computation of the surface CP $\sigma_{s}(E)$ via (6.51) is straightforward.

The energies E_{s} of any localized surface states (Davison and Stȩślicka 1996) are given by the (real) poles of $g_{s}(E)$ in (6.49); i.e., by the solutions $E=E_{s}$ of

$$
\begin{equation*}
J s\left(\xi^{2}-1\right)^{1 / 2}-\left(c_{s}-c_{b}\right) \Delta-\sigma_{s}+\sigma_{b}-J \xi=0 \tag{6.52}
\end{equation*}
$$

which can be calculated numerically. Since the CP's are real outside the bands (as noted earlier), the surface-state energies E_{s} from (6.52) do turn out to be real. The existence condition for the surface states can be obtained from (6.52), whose rearrangement gives

$$
\begin{equation*}
s\left(\xi^{2}-1\right)^{1 / 2}=J^{-1}\left[\left(c_{s}-c_{b}\right) \Delta+\sigma_{s}-\sigma_{b}\right]+\xi \tag{6.53}
\end{equation*}
$$

which, upon squaring and solving for ξ, shows that

$$
\begin{equation*}
\xi=-\frac{J}{2}\left[\left(c_{s}-c_{b}\right) \Delta+\sigma_{s}-\sigma_{b}\right]^{-1}-\frac{1}{2 J}\left[\left(c_{s}-c_{b}\right) \Delta+\sigma_{s}-\sigma_{b}\right] . \tag{6.54}
\end{equation*}
$$

With the aid of (6.30), adding (6.53) and (6.54) leads to

$$
\begin{equation*}
t=-J\left[\left(c_{s}-c_{b}\right) \Delta+\sigma_{s}-\sigma_{b}\right]^{-1} \tag{6.55}
\end{equation*}
$$

which, by dint of (6.32), provides the surface-state existence condition

$$
\begin{equation*}
\left|\left(c_{s}-c_{b}\right) \Delta+\sigma_{s}(E)-\sigma_{b}(E)\right|>|J| \tag{6.56}
\end{equation*}
$$

Thus, any solution $E=E_{s}$ to (6.52) must satisfy (6.56) to be a valid surfacestate energy.

The last surface property to consider is the surface DOS, which has the form (Davison and Stȩślicka 1996)

$$
\begin{equation*}
\rho_{s}(E)=-\pi^{-1} \operatorname{Im} g_{s}(E), \tag{6.57}
\end{equation*}
$$

g_{s} being given by (6.49). With the surface properties now known, via the GF, they can be used to study those of the chemisorbed system.

6.3 Adatom Green Function

The literature on the theory of DBA chemisorption has been rather sporadic over the years, perhaps because of the complexity of treating a disordered substrate. Van Santen $(1975,1982)$ and van Santen and Sachtler (1977) used a cluster model to study the effects of alloying two metals on a chemisorption bond. It was noted that modification of the d-band structure is a key consideration in determining the impact on chemisorption properties. In another early paper, Moran-Lopez et al (1975) used a TB model with the Bethe-Peierls approximation (an extension of the CPA) to model Ni atoms on $\mathrm{Cu} / \mathrm{Ni}$ alloys. Important factors in the chemisorption process were found to be the alloy concentration, the adatom's position and the strength of the adatom-substrate bond. In the paper, upon which the current section is based, Sulston et al (1986) modelled the chemisorption process by using the ANG theory in conjunction with the CPA. An extension of this work, by Sulston and Bose (1988), incorporated the effects of long-range order. Cong (1994) used a similar model to look at the effects of multi-layer segregation, concluding that these are indeed non-negligible. Closely related work by Zhang (1992a,b), using both the ATA and the CPA, confirmed the importance of surface segregation as a factor in the chemisorption process, and that, in fact, the chemisorption itself may change the surface segregation, the consequence being to stabilize the chemisorption.

Fig. 6.2. One-dimensional model depicting post-chemisorption. Reprinted with permission from Sulston et al (1986). Copyright 1986 by the American Physical Society.

We now investigate a model of the chemisorbed system, consisting of a semi-infinite DBA and a hydrogen-like adatom, as depicted in Fig. 6.2. The adatom, with initial electronic site energy ε_{a}, is attached to the surface atom (at site $n=1$) by a bond of energy γ. Using the HF approximation to the ANG model (§4.3), the effective adatom level of spin σ is shifted to (4.34)

$$
\begin{equation*}
\varepsilon_{a \sigma}=\varepsilon_{a}+U\left\langle n_{a,-\sigma}\right\rangle, \quad \sigma=+\quad \text { or } \quad- \tag{6.58}
\end{equation*}
$$

Here, we consider only the non-magnetic case, so the subscript σ can be omitted, i.e.,

$$
\begin{equation*}
\left\langle n_{a_{+}}\right\rangle=\left\langle n_{a_{-}}\right\rangle=\left\langle n_{a}\right\rangle . \tag{6.59}
\end{equation*}
$$

The only other effect of chemisorption included in the model is the modification of the surface CP from σ_{s} to σ_{c} (while σ_{b} is assumed to be unchanged). One possible effect not included is that of chemisorption-induced changes in the concentrations c_{s} and c_{b} (see, e.g., Modrak 1997) - although potentially important, for simplicity, we ignore this phenomenon.

In light of the above comments, the effective Hamiltonian H_{c} for the chemisorbed system is related to the pre-chemisorption Hamiltonian H_{s} of (6.41) by

$$
\begin{equation*}
H_{c}=H_{s}+V_{c} . \tag{6.60}
\end{equation*}
$$

The perturbation due to chemisorption has the form

$$
\begin{equation*}
V_{c}=\nu|0\rangle\langle 0|+\gamma(|0\rangle\langle 1|+|1\rangle\langle 0|)+\delta|1\rangle\langle 1|, \tag{6.61}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu=U\left\langle n_{a}\right\rangle \tag{6.62}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=\sigma_{c}(E)-\sigma_{s}(E) \tag{6.63}
\end{equation*}
$$

The Greenian G_{c} of H_{c} is related to G_{s} by the Dyson equation, i.e.,

$$
\begin{equation*}
G_{c}=G_{s}+G_{s} V_{c} G_{c} . \tag{6.64}
\end{equation*}
$$

The matrix elements of G_{c} can be found by substituting (6.61) into (6.64). The key elements are those centered on the adatom and the surface atom. Using (6.64), the evaluation of $G_{c}(0,0)=\langle 0| G_{c}|0\rangle$ gives

$$
\begin{equation*}
G_{c}(0,0)=G_{s}(0,0)+\nu G_{s}(0,0) G_{c}(0,0)+\gamma G_{s}(0,0) G_{c}(1,0) \tag{6.65}
\end{equation*}
$$

in which we have taken $G_{s}(0,1)=0$, because there is no bond between the adatom and the surface before chemisorption. The unknown element $G_{c}(1,0)$ is also obtained from (6.64) as

$$
\begin{equation*}
G_{c}(1,0)=\gamma G_{s}(1,1) G_{c}(0,0)+\delta G_{s}(1,1) G_{c}(1,0) \tag{6.66}
\end{equation*}
$$

where again $G_{s}(1,0)=0$. Solving (6.66) for $G_{c}(1,0)$, and inserting the result into (6.65), yields the adatom GF

$$
\begin{equation*}
g_{a}(E)=G_{c}(0,0)=\left\{G_{s}^{-1}(0,0)-\nu-\gamma^{2}\left[G_{s}^{-1}(1,1)-\delta\right]^{-1}\right\}^{-1} \tag{6.67}
\end{equation*}
$$

Noting that the GF for the isolated adatom is

$$
\begin{equation*}
G_{s}(0,0)=\left(E-\varepsilon_{a}\right)^{-1} \tag{6.68}
\end{equation*}
$$

and introducing this, along with (6.62) and (6.63), into (6.67) gives

$$
\begin{align*}
g_{a}(E) & =G_{c}(0,0) \\
& =\left\{E-\varepsilon_{a}-U\left\langle n_{a}\right\rangle-\gamma^{2}\left[G_{s}^{-1}(1,1)-\sigma_{c}+\sigma_{s}\right]^{-1}\right\}^{-1} \tag{6.69}
\end{align*}
$$

where $G_{s}(1,1)=g_{s}(E)$ is just the surface GF (6.49). A similar derivation, starting from (6.64), leads to the matrix element of G_{c} on the surface atom, viz.,

$$
\begin{equation*}
G_{c}(1,1)=\left\{G_{s}^{-1}(1,1)-\delta-\gamma^{2}\left[G_{s}^{-1}(0,0)-\nu\right]^{-1}\right\}^{-1} \tag{6.70}
\end{equation*}
$$

Since the adatom GF $g_{a}(E)$ is purely complex only within the energy band(s), the adatom DOS has the form (4.75)

$$
\begin{equation*}
\rho_{a}(E)=-\pi^{-1} \operatorname{Im} g_{a}(E) . \tag{6.71}
\end{equation*}
$$

Outside the band, the only energies of interest are those energies E_{p} of any localized states of the chemisorbed system. These energies are given by the poles of $g_{a}(E)$ in (6.69), namely, by

$$
\begin{align*}
E_{p}-\varepsilon_{a} & -U\left\langle n_{a}\right\rangle-\gamma^{2}\left[J s\left(\xi^{2}-1\right)^{1 / 2}-\left(c_{s}-c_{b}\right) \Delta\right. \\
& \left.-\sigma_{c}\left(E_{p}\right)+\sigma_{b}\left(E_{p}\right)-J \xi\right]^{-1}=0 \tag{6.72}
\end{align*}
$$

using (6.49). These energies must, of course, be calculated numerically, and are subject to an existence condition analogous to (6.56) for surface states. The condition is derived by first rearranging (6.72) as

$$
\begin{equation*}
J s\left(\xi^{2}-1\right)^{1 / 2}=\Gamma\left(E_{p}\right)+J \xi \tag{6.73}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma\left(E_{p}\right)=\gamma^{2}\left[E_{p}-\varepsilon_{a}-U\left\langle n_{a}\right\rangle\right]^{-1}+\left(c_{s}-c_{b}\right) \Delta+\sigma_{c}\left(E_{p}\right)-\sigma_{b}\left(E_{p}\right) \tag{6.74}
\end{equation*}
$$

Upon squaring, and using $s^{2}=1$ from (6.32), (6.73) can be rearranged as

$$
\begin{equation*}
\xi=-\Gamma\left(E_{p}\right) /(2 J)-J /\left(2 \Gamma\left(E_{p}\right)\right) \tag{6.75}
\end{equation*}
$$

Adding (6.73) and (6.75) gives the quantity t from (6.30):

$$
\begin{equation*}
t \equiv \xi+s\left(\xi^{2}-1\right)^{1 / 2}=-J / \Gamma\left(E_{p}\right) \tag{6.76}
\end{equation*}
$$

From the requirement $|t|<1$ in (6.32), comes the chemisorption-state existence condition

$$
\begin{equation*}
\left|\Gamma\left(E_{p}\right)\right|>|J| \tag{6.77}
\end{equation*}
$$

6.4 Chemisorption Properties

In the previous discussion of the adatom GF, we glossed over the calculation of a couple of important quantities. The evaluation of the CP's σ_{b} and σ_{s} was discussed earlier, but that of σ_{c} was not. Moreover, the computation of the
adatom occupancy $\left\langle n_{a}\right\rangle$ has, so far, been ignored. In fact, both $\sigma_{c}(E)$ and $\left\langle n_{a}\right\rangle$ are linked together, and their simultaneous evaluation is now discussed.

The surface CP $\sigma_{c}(E)$ in the chemisorbed system is determined by a self-consistency condition, which is found by substituting $G_{c}(1,1)$ into the general CPA equation (6.39), to give

$$
\begin{equation*}
\sigma_{c}=\left(\Delta c_{s}+\sigma_{c}\right) G_{c}(1,1)\left[\Delta\left(1-c_{s}\right)-\sigma_{c}\right] \tag{6.78}
\end{equation*}
$$

With the aid of (6.49), substituting (6.70) into (6.78) and simplifying leads to the self-consistency expression for σ_{c} :

$$
\begin{align*}
\sigma_{c}(E)= & \Delta^{2} c_{s}\left(1-c_{s}\right)\left[J s\left(\xi^{2}-1\right)^{1 / 2}-\left(c_{s}-c_{b}\right) \Delta+\sigma_{b}-J \xi\right. \\
& \left.-\gamma^{2}\left(E-\varepsilon_{a}-U\left\langle n_{a}\right\rangle\right)^{-1}-\Delta\left(1-2 c_{s}\right)\right]^{-1} \tag{6.79}
\end{align*}
$$

which clearly shows that the value of the occupation number $\left\langle n_{a}\right\rangle$ must be known in order to evaluate the complex energy-dependent function $\sigma_{c}(E)$. However, we recall from (4.76) and (4.78) that $\left\langle n_{a}\right\rangle$ is given by the selfconsistency condition

$$
\begin{equation*}
\left\langle n_{a}\right\rangle=\int_{\varepsilon_{l}}^{\varepsilon_{f}} \rho_{a}(E) d E+\sum_{p} \operatorname{Res} g_{a}\left(E_{p}\right) \tag{6.80}
\end{equation*}
$$

ε_{l} being the lower band edge. The first term integrates the adatom DOS $\rho_{a}(E)$, given by (6.71), over the occupied part of the band, and the second term sums the residues of g_{a} at the occupied chemisorption states with energy E_{p} (6.72). The residue term is given by the general expression (4.79), from which a (complicated) explicit form can be derived, for computational purposes. However, the important thing to note about (6.80) is that the evaluation of $\left\langle n_{a}\right\rangle$ requires knowledge of $\sigma_{c}(E)$, which appears in $g_{a}(E)$ (6.69) (and hence in $\rho_{a}(E)$). Thus, the calculation of either $\left\langle n_{a}\right\rangle$ or $\sigma_{c}(E)$ requires the value of the other, whence there is a coupling of their self-consistency conditions (6.79) and (6.80), so these must be solved simultaneously. It should be noted that there is an "imbalance" between the two quantities, in that $\sigma_{c}(E)$ is a complex function of energy, whereas $\left\langle n_{a}\right\rangle$ is just a real constant. Consequently, once $\left\langle n_{a}\right\rangle$ has been calculated (self-consistently) for a particular set of parameters, then σ_{c} can be easily evaluated, for any energy, by (6.79) alone.

Once the double self-consistency equations have been solved numerically, it is trivial to calculate the charge transfer (4.102) from the surface to the
adatom. As seen earlier, the adatom initially has a single electron, but, after chemisorption, has occupancy $\left\langle n_{a}\right\rangle$ in each of its two orbitals, so the charge transfer is again

$$
\begin{equation*}
\Delta q=\left(2\left\langle n_{a}\right\rangle-1\right) e \tag{6.81}
\end{equation*}
$$

The final property of interest is the chemisorption energy ΔE, given by (App. L)

$$
\begin{equation*}
\Delta E=2 \Delta E^{\sigma}-U\left\langle n_{a}\right\rangle^{2}+\varepsilon_{a}-\varepsilon_{f} . \tag{6.82}
\end{equation*}
$$

where the 1-electron energy change is

$$
\begin{equation*}
\Delta E^{\sigma}=\int_{-\infty}^{\varepsilon_{f}}\left(E-\varepsilon_{f}\right) \Delta \rho(E) d E \tag{6.83}
\end{equation*}
$$

ε_{f} being the FL. To evaluate ΔE^{σ}, it is necessary to derive the expression for $\Delta \rho$, the change in DOS caused by chemisorption, by means of the Dyson equation (6.64). Evaluating the general element $G_{c}(i, j)=\langle i| G_{c}|j\rangle$, from (6.61) in (6.64), gives

$$
\begin{align*}
G_{c}(i, j)= & G_{s}(i, j)+\nu G_{s}(i, 0) G_{c}(0, j)+\gamma G_{s}(i, 0) G_{c}(1, j) \tag{6.84}\\
& +\gamma G_{s}(i, 1) G_{c}(0, j)+\delta G_{s}(i, 1) G_{c}(1, j)
\end{align*}
$$

which, for $i \neq 0$, reduces to

$$
\begin{equation*}
G_{c}(i, j)=G_{s}(i, j)+\gamma G_{s}(i, 1) G_{c}(0, j)+\delta G_{s}(i, 1) G_{c}(1, j) \tag{6.85}
\end{equation*}
$$

where the unknown elements $G_{c}(0, j)$ and $G_{c}(1, j)$ are found by using a pair of coupled equations from (6.84), namely, (for $j \neq 0$)

$$
\begin{equation*}
G_{c}(0, j)=\nu G_{s}(0,0) G_{c}(0, j)+\gamma G_{s}(0,0) G_{c}(1, j) \tag{6.86}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{c}(1, j)=G_{s}(1, j)+\gamma G_{s}(1,1) G_{c}(0, j)+\delta G_{s}(1,1) G_{c}(1, j) \tag{6.87}
\end{equation*}
$$

The solutions to (6.86) and (6.87) are

$$
\begin{align*}
& G_{c}(0, j)=\gamma G_{s}(0,0) G_{s}(1, j) M^{-1} \tag{6.88}\\
& G_{c}(1, j)=\left[1-\nu G_{s}(0,0)\right] G_{s}(1, j) M^{-1} \tag{6.89}
\end{align*}
$$

where

$$
\begin{equation*}
M=\left[1-\nu G_{s}(0,0)\right]\left[1-\delta G_{s}(1,1)\right]-\gamma^{2} G_{s}(0,0) G_{s}(1,1) \tag{6.90}
\end{equation*}
$$

Putting (6.88) and (6.89) into (6.85), with $i=j>0$, gives

$$
\begin{equation*}
G_{c}(i, i)-G_{s}(i, i)=\left\{\gamma^{2} G_{s}(0,0)+\delta\left[1-\nu G_{s}(0,0)\right]\right\} G_{s}^{2}(i, 1) M^{-1} \tag{6.91}
\end{equation*}
$$

We also note that the adatom GF (6.69) can be rewritten as

$$
\begin{equation*}
G_{c}(0,0)=G_{s}(0,0)\left[1-\delta G_{s}(1,1)\right] M^{-1} \tag{6.92}
\end{equation*}
$$

$G_{s}(0,0)$ and $G_{s}(1,1)$ being known from (6.68) and (6.49), respectively.
With the necessary GF's available, the change in DOS can be constructed as

$$
\begin{equation*}
\Delta \rho=-\pi^{-1} \operatorname{Im}\left\{G_{c}(0,0)-G_{s}(0,0)+\sum_{i=1}^{\infty}\left[G_{c}(i, i)-G_{s}(i, i)\right]\right\} \tag{6.93}
\end{equation*}
$$

Substituting (6.91) and (6.92) into (6.93) and rearranging leads to

$$
\begin{align*}
\Delta \rho= & -\pi^{-1} \operatorname{Im} M^{-1}\left\{G_{s}(0,0)\left[1-\delta G_{s}(1,1)\right]-G_{s}(0,0) M\right. \\
& \left.+\left[\gamma^{2} G_{s}(0,0)+\delta\left[1-\nu G_{s}(0,0)\right]\right] \sum_{i=1}^{\infty} G_{s}^{2}(i, 1)\right\} \tag{6.94}
\end{align*}
$$

It is fairly easy to show, from the Dyson equation (6.45), that the surface GF's satisfy

$$
\begin{equation*}
G_{s}(i, 1)=t^{i-1} G_{s}(1,1), \quad i \geq 1 \tag{6.95}
\end{equation*}
$$

because the bulk GF's $G_{e}(i, 1)$ satisfy an analogous property [c.f. (5.3)]. So the summation in (6.94) evaluates simply as a geometric series, viz.,

$$
\begin{equation*}
\sum_{i=1}^{\infty} G_{s}^{2}(i, 1)=G_{s}^{2}(1,1) \sum_{i=1}^{\infty} t^{2 i-2}=G_{s}^{2}(1,1)\left(1-t^{2}\right)^{-1} \tag{6.96}
\end{equation*}
$$

with convergence guaranteed, because $|t|<1$ from (6.32). Inserting (6.96) into (6.94), and simplifying, yields

$$
\begin{align*}
\Delta \rho= & -\pi^{-1} \operatorname{Im} M^{-1}\left\{\nu G_{s}^{2}(0,0)\left[1-\delta G_{s}(1,1)\right]+\gamma^{2} G_{s}^{2}(0,0) G_{s}(1,1)\right. \\
& \left.+\left[\gamma^{2} G_{s}(0,0)+\delta\left[1-\nu G_{s}(0,0)\right]\right] G_{s}^{2}(1,1) /\left(1-t^{2}\right)\right\} \tag{6.97}
\end{align*}
$$

which, although complicated, is a useable expression for $\Delta \rho$ in the numerical integration of (6.83).

Separating (6.83) for ΔE^{σ} into contributions from inside and outside the band, gives

$$
\begin{equation*}
\Delta E^{\sigma}=E_{p 1}+E_{p 2}-E_{z}-\varepsilon_{a}+\int_{\varepsilon_{l}}^{\omega}\left(E-\varepsilon_{F}\right) \Delta \rho(E) d E \tag{6.98}
\end{equation*}
$$

assuming an amalgamated band structure, and with

$$
\begin{equation*}
\omega=\min \left(\varepsilon_{u}, \varepsilon_{f}\right) \tag{6.99}
\end{equation*}
$$

to deal with the two possibilities of the FL ε_{f} being within or above the band, ε_{u} being the upper band edge. The integral term of (6.98) covers the contribution from the continuous band states, while the other terms deal with the discrete localized states. As in the case for DBA surface states (Parent et al 1980), localized chemisorption states occur in pairs (assuming they exist). These are denoted in (6.98) by $E_{p 1}$ and $E_{p 2}$. As a result of the chemisorption process, σ_{s} is changed to σ_{c}, creating an "intermediate" state of energy E_{z}, which, on completion of the adsorption process, is shifted to $E_{p 2}$. We now know all the quantities required to compute the chemisorption energy (6.82).

6.5 $\quad \mathrm{H}-\mathrm{Cu} / \mathrm{Ni}$ and $\mathrm{H}-\mathrm{Au} / \mathrm{Pt}$ Systems

Turning to the numerical results (Sulston et al 1986), we look at the chemisorption properties of H on $\mathrm{Cu} / \mathrm{Ni}$ and $\mathrm{Au} / \mathrm{Pt}$ alloys, over a range of bulk concentrations. The H parameters used are $\varepsilon_{a}=-14.3 \mathrm{eV}$, measured from the vacuum level, and $U=12.9 \mathrm{eV}$. The pure-metal parameters (Newns 1969 and Nordlander et al 1984) are shown in Table 6.1. Following the concept of the $\mathrm{VCA}, \varepsilon_{f}$ and γ are assigned concentration dependencies, namely,

$$
\begin{equation*}
\varepsilon_{f}=c_{b} \varepsilon_{f}^{A}+\left(1-c_{b}\right) \varepsilon_{f}^{B} \tag{6.100}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma=c_{s} \gamma_{A}+\left(1-c_{s}\right) \gamma_{B} \tag{6.101}
\end{equation*}
$$

The negative bond energy $J_{A B}$, required in (6.43), is approximated by $J_{A B} \approx$ $\left(J_{A}+J_{B}\right) / 2$.

Table 6.1

Parameter	Ni	Cu	Pt	Au
ε_{A}	-6.26	-7.39	-8.54	-8.43
J	0.95	0.675	1.825	1.325
ε_{f}	-4.50	-4.46	-5.6	-4.3
γ	3.75	4.17	4.017	4.605
ΔE	-2.89	2.36	-2.47	-2.25

The system of H chemisorbed on $\mathrm{Cu} / \mathrm{Ni}$ is examined both with and without surface segregation. In the case of $c_{s}=c_{b}$ (i.e., no surface segregation), the curve of ΔE vs c_{b} is shown in Fig. 6.3(a), and is seen to have a monotonic behaviour, which is almost linear for intermediate values of c_{b}. In the dilute limits (c_{b} close to 0 or 1), ΔE is closer to the value for the corresponding pure system than a purely linear relationship would produce, which suggests that the effect of any minority atoms, even near the surface, is cancelled by the averaging process used in the CPA.

However, surface segregation $\left(c_{s} \neq c_{b}\right)$ has a radical effect on ΔE, as can clearly be seen in Fig. 6.3(b). $\mathrm{Cu} / \mathrm{Ni}$ alloys are known (Kelley and Ponec 1981, Ouannasser et al 1997) to have an enriched Cu concentration in the surface layer for all bulk concentrations. As a result, the alloy shows a more Cu -like behaviour than it would if it were non-segregated. In particular, ΔE has a value significantly closer to that for pure Cu than in the case where $c_{s}=c_{b}$, and this occurs at all bulk concentrations c_{b}. The smallest change in ΔE occurs in Cu-rich alloys, which is understandable, because these alloys have mostly Cu in the surface layer anyway, so the effect of surface segregation is relatively small. Thus, surface segregation has a lesser effect in these alloys than in Ni-rich ones, which have mostly Ni in the bulk, but may have a Cu majority in the surface layer. Clearly, then, the concentration c_{s} of the surface layer is the primary parameter in determining the chemisorption properties of the DBA.

Fig. 6.3. ΔE for $\mathrm{H}-\mathrm{Cu} / \mathrm{Ni}$ versus bulk Ni concentration for (a) $c_{s}=c_{b}(+)$, (b) $c_{s} \neq c_{b}(\times)$. Reprinted with permission from Sulston et al (1986). Copyright 1986 by the American Physical Society.

Fig. 6.4. Δq for $\mathrm{H}-\mathrm{Cu} / \mathrm{Ni}$ versus bulk Ni concentration for (a) $c_{s}=c_{b}(+)$, (b) $c_{s} \neq c_{b}(\times)$. Reprinted with permission from Sulston et al (1986). Copyright 1986 by the American Physical Society.

Fig. 6.5. Chemisorption-state energies for $\mathrm{H}-\mathrm{Cu} / \mathrm{Ni}$ with $c_{s}=c_{b}$. After Sulston (1986).

Charge transfer Δq to the adatom, for the case $c_{s}=c_{b}$, is displayed in Fig. 6.4(a). As is evident, the dependence of Δq on c_{b} is virtually linear throughout the range of concentrations. On the other hand, when surface segregation is present (Fig. 6.4b), Δq is lowered and becomes closer to the value for pure Cu (0.05), for all concentrations. Hence, in the segregated case, Δq, like ΔE, reflects the greater concentration of Cu in the surface layer.

Chemisorption-state energies (i.e., solutions of (6.72)) for $c_{s}=c_{b}$ are depicted in Fig. 6.5. Again, the dependence on c_{b} is virtually linear. Two states are found at all concentrations (except $c_{b}=0$ and 1) with their intensities also dependent on c_{b}. In the dilute limits, the intensity of one state goes to zero, leaving only the state associated with the corresponding pure material. A closer study of the intensities shows that each chemisorption state is associated with one of the constituent metals: + with Ni and \times with Cu . Thus, the splitting of surface states in a DBA, observed by Parent et al (1980), is also seen to occur for chemisorption states. The effect of surface segregation on the chemisorption states, as shown in Fig. 6.6, is seen to be the same as for the other chemisorption properties, namely, to produce a more Cu -like behaviour for all c_{b}. The chemisorption states are shifted to lower energies, with the greatest changes occurring for Ni-rich alloys.

Fig. 6.6. Chemisorption-state energies for $\mathrm{H}-\mathrm{Cu} / \mathrm{Ni}$ with $c_{b} \neq c_{s}$. After Sulston (1986).

For H chemisorption on $\mathrm{Au} / \mathrm{Pt}$ alloys, only the case $c_{s}=c_{b}$ was studied by Sulston et al (1986), because of a lack of consistent data on surface segregation. The curve of ΔE versus Au concentration (Fig. 6.7) has more interesting structure than the corresponding one for $\mathrm{Cu} / \mathrm{Ni}$ alloy (Fig. 6.3 a). Specifically, there is an absolute minimum at $c_{b} \approx 0.3$, indicating that H is preferentially adsorbed on $\mathrm{Au} / \mathrm{Pt}$ at the concentration ratio of $3: 7$. Observing (from Table 6.1) that $\varepsilon_{P t}$ and $\varepsilon_{A u}$ only differ by 0.11 eV suggests that the effective electronic energy on an alloy site is not too strongly dependent on c_{b}. As true as this may be, here another factor comes into consideration. Calculations of the width of the occupied part of the band show it to be strongly dependent on c_{b}. Indeed, it turns out that band width as a function of c_{b}, has a maximum at $c_{b} \approx 0.3$ (the value at which ΔE has its minimum), indicating that for this system, the effective band width is an important parameter in the chemisorption process.

Fig. 6.7. ΔE for $\mathrm{H}-\mathrm{Au} / \mathrm{Pt}$ versus bulk Au concentration for $c_{s}=c_{b}$. Reprinted with permission from Sulston et al (1986). Copyright 1986 by the American Physical Society.

Fig. 6.8. Δq for $\mathrm{H}-\mathrm{Au} / \mathrm{Pt}$ versus bulk Au concentration for $c_{s}=c_{b}$. Reprinted with permission from Sulston et al (1986). Copyright 1986 by the American Physical Society.

Fig. 6.9. Chemisorption-state energies for $\mathrm{H}-\mathrm{Au} / \mathrm{Pt}$ with $c_{s}=c_{b}$. After Sulston (1986).

The graph of Δq versus c_{b} is shown in Fig. 6.8, again for $c_{s}=c_{b}$. It displays a monotonically decreasing, but nonlinear behaviour. For concentrations less than the critical value of 0.3 , the curve has a small negative slope, while for $c_{b}>0.3$, the slope, though still negative, is markedly steeper. Generally speaking, one would expect smaller values of Δq (i.e., less charge transfer) to be associated with weaker chemisorption (i.e., smaller $|\Delta E|$). Such is true, in this case, only for $c_{b}>0.3$. For $c_{b}<0.3$, slight decreases in Δq are related to moderate increases in ΔE, contrary to expectation. However, as Fig. 6.9 shows, the chemisorption-state energies are higher (i.e., less negative) for smaller values of c_{b} and, hence, tend to reduce $|\Delta E|$ as c_{b} approaches 0 . Thus, there are competing contributions to $\Delta E: \Delta q$ tending to raise it and E_{p} to lower it, as c_{b} increases. The result is a local minimum, occurring at $c_{b} \approx 0.3$, which is the concentration most favourable to chemisorption.

In conclusion, we have seen that alloys can exhibit a variety of interesting chemisorption properties. The chief parameters determining the behaviour of a system are the concentrations of the various layers, especially the surface one. Other important parameters are the effective electronic energy, the occupied band width, the adatom bond strength and the adatom position.

Chapter 7

Electrified Substrates

Why should electricity not modify the formation and properties of crystals?

- Denis Diderot

As we have seen, the chemisorption properties of the substrate depend on its electronic structure, so that changes in the latter are reflected in the former. In the case of electrified substrates, the strength of the applied electric field governs the substrate modification and, thereby, regulates the chemisorption process in a controllable manner.

7.1 Wannier-Stark Ladders

The study of the effect of electric fields on the properties of solids dates back to Zener's (1934) investigation of electrical breakdown in solid dielectrics. Further pioneering work was carried out by Houston (1940) and Slater (1949), who introduced aperiodic perturbations into the Bloch wave functions. A breakthrough came when James (1949) demonstrated the effect of a linear field on an infinite crystal, by means of the effective-mass approximation, and predicted that the energy spectrum would be quantized into equally-spaced levels. Simultaneously, and independently, Katsura et al (1950) reached the same conclusion via a one-dimensional TB model of an
infinite crystal, with wave functions shown to have Bessel-function (BF) coefficients, and whose energy-dependent order was required to be an integer to satisfy the normalization conditions. Although these two papers were the first to predict the discretization of the energy levels of a solid by an electric field, a more well-known article was that of Wannier (1960), so much so, that the effect is termed the Wannier-Stark ladder (WSL). Pursuant to Wannier's paper, a great many others were published on the topic, some of which, most notably by Zak (1967-69) and Rabinovitch (1970, 1971), cast doubt on the actual existence of a discrete WSL energy spectrum. The controversy was finally settled in favour of the WSL, when Hacker and Obermair (1970) put the results of Katsura et al and Wannier on a rigorous theoretical footing, and Koss and Lambert (1972) observed Wannier levels in their optical absorption experiments on GaAs. Nevertheless, the reservations expressed by Zak, Rabinovitch and others did possess some validity, and demonstrated the necessity for some restrictions on the existence of WSL's (Heinrichs and Jones 1972). In the ensuing years, WSL's have been investigated in a variety of contexts.

Having briefly noted the historical highlights of the WSL effect, we now examine the basic mathematical argument for its existence, namely, the idea that the energy spectrum of an infinite crystal is discretized by an applied field. For the present discussions, we assume that the applied field is linear, with its strength given by its gradient γ.

We consider an atomic chain of spacing a, within the TBA, having the usual site energies

$$
\begin{equation*}
\alpha=\langle n| H_{0}|n\rangle \tag{7.1}
\end{equation*}
$$

and bond energies

$$
\begin{equation*}
\beta=\langle n| H_{0}|n \pm 1\rangle, \tag{7.2}
\end{equation*}
$$

$|n\rangle$ being the AO at site $x=n a$. Thus, in terms of creation and annihilation operators, the Hamiltonian for the chain in the absence of the field is

$$
\begin{equation*}
H_{0}=\sum_{n}\left[\alpha c_{n}^{\dagger} c_{n}+\beta\left(c_{n}^{\dagger} c_{n+1}+c_{n+1}^{\dagger} c_{n}\right)\right] \tag{7.3}
\end{equation*}
$$

Since the field-induced potential is assumed to be linear, and of the form

$$
\begin{equation*}
V(x)=\gamma x \tag{7.4}
\end{equation*}
$$

its matrix elements are

$$
\begin{equation*}
\langle n| V\left|n^{\prime}\right\rangle=n a \gamma \delta_{n, n^{\prime}} \equiv n \Gamma \delta_{n, n^{\prime}}, \quad \Gamma=\gamma a \tag{7.5}
\end{equation*}
$$

where Γ is the potential gradient. Hence, the Hamiltonian, with the applied field, can be written as

$$
\begin{equation*}
H=H_{0}+V=\sum_{n}\left[(\alpha+n \Gamma) c_{n}^{\dagger} c_{n}+\beta\left(c_{n}^{\dagger} c_{n+1}+c_{n+1}^{\dagger} c_{n}\right)\right] \tag{7.6}
\end{equation*}
$$

Recalling that the anticommutation rules for the creation and annihilation operators are (App. C)

$$
\begin{equation*}
\left[c_{n}^{\dagger}, c_{m}\right]_{+}=\delta_{n m}, \quad\left[c_{n}^{\dagger}, c_{m}^{\dagger}\right]_{+}=0 \tag{7.7}
\end{equation*}
$$

we obtain a commutation relation of the form

$$
\begin{equation*}
\left[c_{i}^{\dagger} c_{j}, c_{m}^{\dagger}\right]_{-}=c_{i}^{\dagger}\left[c_{j}, c_{m}^{\dagger}\right]_{+}-\left[c_{i}^{\dagger}, c_{m}^{\dagger}\right]_{+} c_{j}=c_{i}^{\dagger} \delta_{j m} \tag{7.8}
\end{equation*}
$$

Because the creation operators $C^{\dagger}(E)$ for the eigenfunctions of H diagonalize the Hamiltonian, we have

$$
\begin{align*}
E C^{\dagger}(E) & =\left[H, C^{\dagger}(E)\right]_{-} \\
& =\left[H, \sum_{m} a_{m}(E) c_{m}^{\dagger}\right]_{-} \\
& =\left[\sum_{n}\left\{(\alpha+n \Gamma) c_{n}^{\dagger} c_{n}+\beta\left(c_{n}^{\dagger} c_{n+1}+c_{n+1}^{\dagger} c_{n}\right)\right\}, \sum_{m} a_{m}(E) c_{m}^{\dagger}\right]_{-} \\
& =\sum_{n, m} a_{m}(E)\left\{(\alpha+n \Gamma)\left[c_{n}^{\dagger} c_{n}, c_{m}^{\dagger}\right]_{-}+\beta\left[c_{n}^{\dagger} c_{n+1}, c_{m}^{\dagger}\right]_{-}+\beta\left[c_{n+1}^{\dagger} c_{n}, c_{m}^{\dagger}\right]_{-}\right\} \\
& =\sum_{n, m} a_{m}(E)\left[(\alpha+n \Gamma) c_{n}^{\dagger} \delta_{m n}+\beta c_{n}^{\dagger} \delta_{m, n+1}+\beta c_{n+1}^{\dagger} \delta_{m n}\right] \\
& =\sum_{n}\left[(\alpha+n \Gamma) a_{n}+\beta a_{n+1}+\beta a_{n-1}\right] c_{n}^{\dagger} \tag{7.9}
\end{align*}
$$

after reindexing and summing over m. With the c_{n}^{\dagger} 's being independent, equating the corresponding terms on each side of (7.9) gives

$$
\begin{equation*}
a_{n+1}+\frac{\alpha+n \Gamma-E}{\beta} a_{n}+a_{n-1}=0, \tag{7.10}
\end{equation*}
$$

for each n. Equation (7.10) is recognized as the BF recursion relation (Abramowitz and Stegun 1972) for

$$
\begin{equation*}
a_{n}(E)=P_{n-(E-\alpha) / \Gamma}(z) \tag{7.11}
\end{equation*}
$$

where $z=-2 \beta / \Gamma$, and $P_{\mu}(z)=A J_{\mu}(z)+B Y_{\mu}(z)$ is any linear combination of BFs of the first and second kind.

The a_{n} 's are the coefficients of the wave function, so the normalizability condition requires that

$$
\begin{equation*}
\sum_{n}\left|a_{n}(E)\right|^{2}<\infty \tag{7.12}
\end{equation*}
$$

By referring to the properties of BFs (Abramowitz and Stegun 1972), it can be shown that condition (7.12) holds only if $B=0$ and $\mu=n-(E-\alpha) / \Gamma$ is an integer. Thus, $(E-\alpha) / \Gamma$ is also an integer, so that

$$
\begin{equation*}
E \equiv E_{k}=\alpha+k \Gamma, \quad k \quad \text { integer } \tag{7.13}
\end{equation*}
$$

whence,

$$
\begin{equation*}
a_{n}\left(E_{k}\right)=A(-1)^{n-k} J_{n-k}\left(\frac{2 \beta}{\Gamma}\right) \tag{7.14}
\end{equation*}
$$

Equation (7.13) demonstrates the essential point, namely, that the energy spectrum of an infinite chain (under a linear applied field) is not continuous, but is a WSL, exhibiting discrete, evenly-spaced energy levels (see Fig. 7.1).

For a finite, (rather than an infinite) chain under the action of an applied field, it turns out that the energy spectrum forms only an approximate WSL (Heinrichs and Jones 1972). To see this result, we start with the difference equations for a finite TB chain of length m :

$$
\begin{align*}
(\alpha+n \Gamma-E) c_{n}+\beta\left(c_{n+1}+c_{n-1}\right) & =0, \quad n=2, \ldots, m-1 \tag{7.15a}\\
(\alpha+\Gamma-E) c_{1}+\beta c_{2} & =0 \tag{7.15b}\\
(\alpha+m \Gamma-E) c_{m}+\beta c_{m-1} & =0 \tag{7.15c}
\end{align*}
$$

(Here we ignore any possible perturbation to the site energies at the ends of the chain, $n=1$ and $n=m$.) We apply Brillouin-Wigner perturbation theory (Ohanian 1990), whereby the eigenvalue of a non-degenerate state can be expressed as

$$
\begin{align*}
E_{n}=H_{n n} & +\sum_{\ell \neq n} \frac{H_{n \ell} H_{\ell n}}{E_{n}-\varepsilon_{n \ell}} \\
& +\sum_{\substack{\ell, k \neq n \\
\ell \neq k}} \frac{H_{n \ell} H_{\ell k} H_{k n}}{\left(E_{n}-\varepsilon_{n \ell}\right)\left(E_{n}-\varepsilon_{n \ell k}\right)}+\cdots \tag{7.16a}
\end{align*}
$$

with

$$
\begin{align*}
\varepsilon_{n \ell \ldots p q} & =H_{q q}+\sum_{r \neq n, \ell, \ldots, p, q} \frac{H_{q r} H_{r q}}{E_{n}-\varepsilon_{n \ell \ell . \ldots p r}} \\
& +\sum_{\substack{r \neq n, \ell, \ldots, p, q \\
s \neq n, \ell, \ldots, p, q, r}} \frac{H_{q r} H_{r s} H_{s q}}{\left(E_{n}-\varepsilon_{n \ell \ldots p q r}\right)\left(E_{n}-\varepsilon_{n \ell \ldots p q r s}\right)}+\cdots, \tag{7.16b}
\end{align*}
$$

where the terms beyond the interaction range are identically zero. Note, we are using the NN approximation, so that only the first two terms in each of (7.16a) and (7.16b) survive. Specifically, the Hamiltonian has only the following tri-diagonal matrix elements:

$$
\begin{align*}
H_{n n} & =\alpha+n \Gamma, \quad n=1,2, \ldots, m, \tag{7.17a}\\
H_{n r} & =H_{r n}=\beta\left(\delta_{r, n+1}+\delta_{r, n-1}\right), \quad n=2,3, \ldots, m-1, \tag{7.17b}\\
H_{1 r} & =\beta \delta_{r 2}, \tag{7.17c}\\
H_{m r} & =\beta \delta_{r, m-1} . \tag{7.17d}
\end{align*}
$$

Fig. 7.1. Tilted-band picture of WSL energy spectrum showing Wannier wave functions and localization length $L=4 \beta / \Gamma$. Reprinted from Hacker and Obermair (1970) with permission from Springer.

We now let the difference between the energies of the chain and an exact WSL be

$$
\begin{equation*}
\Delta E_{n}=E_{n}-\alpha-n \Gamma \tag{7.18}
\end{equation*}
$$

which, on using (7.16) and (7.17), becomes

$$
\begin{align*}
\Delta E_{n} & =E_{n}-H_{n n} \\
& =\sum_{\ell \neq n} \frac{H_{n \ell} H_{\ell n}}{E_{n}-\varepsilon_{n \ell}} \\
= & \frac{\beta^{2}}{E_{n}-\varepsilon_{n, n+1}}+\frac{\beta^{2}}{E_{n}-\varepsilon_{n, n-1}} \\
= & \frac{\beta^{2}}{\Delta E_{n}-\Gamma-\frac{\beta^{2}}{E_{n}-\varepsilon_{n, n+1, n+2}}}+\frac{\beta^{2}}{\Delta E_{n}+\Gamma-\frac{\beta^{2}}{E_{n}-\varepsilon_{n, n-1, n-2}}} \\
= & \frac{\beta^{2}}{\Delta E_{n}-\Gamma-\quad \frac{\beta^{2}}{\Delta E_{n}-(m-1-n) \Gamma-\frac{\beta^{2}}{\Delta E_{n}-(m-n) \Gamma}}} \\
& +\frac{\beta^{2} \quad}{\Delta E_{n}+\Gamma-\quad} \\
& \quad-\frac{\beta^{2}}{\Delta E_{n}+(n-1) \Gamma-\frac{\beta^{2}}{\Delta E_{n}+n \Gamma}}
\end{align*}
$$

Equation (7.19) is a self-consistent equation for ΔE_{n}, in the form of a sum of a pair of continued fractions (CFs). Although numerical solutions to (7.19) are feasible, we are only concerned with its qualitative features. In particular, we note that an exact WSL occurs when $\Delta E_{n}=0$, which happens only if both CFs contain the same number of terms (apart from the trivial case $\beta=0$). For the infinite chain, this situation is the case for every allowed energy, so an exact WSL is indeed found. But, for a finite chain, $\Delta E_{n}=0$ only for the center state, which thus possesses the exact WSL energy. Therefore, the set of energies for a finite chain form only an approximate WSL.

As we have seen, the electronic structure of an infinite or a finite TB chain under an applied field is fundamentally different from that of the corresponding chain without the field. Consequently, the various properties of
such systems, be they chemisorption or otherwise, are an important subject of study, and can be expected to vary greatly from those of the parent system.

7.2 Recursive-Green-Function Treatment

In this section, we construct the GF for a finite chain with an applied field (Davison et al 1997), by using the CF elements of the recursion method (Haydock 1980) and thereby build the GF atom-by-atom, in a similar way as the causal-surface GF approach (Pendry et al 1991).

The system is defined as a linear chain of m lattice sites (labelled $n=$ $1, \ldots, m$), which are initially taken as isolated from each other (see Fig. 7.2(a)), so that the GF $G_{m, m}$ for this state has simple diagonal elements

$$
\begin{equation*}
G_{m, m}(n, n)=\left(E-\alpha_{n}\right)^{-1}, \quad n=1, \ldots, m, \tag{7.20}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{n}=\langle n| H|n\rangle, \tag{7.21}
\end{equation*}
$$

and all off-diagonal elements are zero, i.e.,

$$
\begin{equation*}
G_{m, m}(n, \ell)=0, \quad n \neq \ell . \tag{7.22}
\end{equation*}
$$

The process used is such that, one-by-one, each atom is connected to the rest of the chain by adding a single bond between it and the neighbouring atom to its immediate right, starting at the right-hand side of the lattice, and moving to the left. Thus, we start by joining the atoms at $n=m-1$ and $n=m$ to form a 2 -atom chain (with all other atoms left isolated). Then, the atom at $n=m-2$ is bonded to the 2-chain, and so on, until all m atoms have been linked (see Fig. 7.2(b)-(d)). The notation used is to let $G_{n, m}$ be the GF for the system at the stage where atoms n to m have been joined to form a $(m-n+1)$-atom chain, while atoms 1 to $n-1$ remain isolated. The goal is to construct the GF $G_{1, m}$ for the entire chain or, more specifically, the element $G_{1, m}(1,1)$, which will be taken as the surface GF for the chemisorption studies of $\S 7.3$.

Fig. 7.2. Diagrammatic representation of process to build chain atom-by-atom. Reprinted from Davison et al (1997) with permission from the Institute of Physics.

Returning to the initial GF (7.20), we now modify the system, by adding a single bond of energy $\beta_{m-1, m}$ between sites $m-1$ and m. We can obtain the GF $G_{m-1, m}$ from $G_{m, m}$ by means of the Dyson equation (3.3)

$$
\begin{equation*}
G_{m-1, m}=G_{m, m}+G_{m, m} V_{m-1, m} G_{m-1, m} \tag{7.23}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{m-1, m}=\beta_{m-1, m}(|m-1\rangle\langle m|+|m\rangle\langle m-1|) . \tag{7.24}
\end{equation*}
$$

Inserting (7.24) into (7.23) leads to

$$
\begin{align*}
G_{m-1, m}(m-1, m-1) & =G_{m, m}(m-1, m-1) \\
& +G_{m, m}(m-1, m-1) \beta_{m-1, m} G_{m-1, m}(m, m-1) \tag{7.25}
\end{align*}
$$

since $G_{m, m}(m-1, m)=0$ by (7.22). The right-hand side of (7.25) contains an unevaluated element of $G_{m-1, m}$, which, via (7.23), can be expressed as

$$
\begin{equation*}
G_{m-1, m}(m, m-1)=G_{m, m}(m, m) \beta_{m-1, m} G_{m-1, m}(m-1, m-1) \tag{7.26}
\end{equation*}
$$

Substituting (7.26) into (7.25) gives

$$
\begin{align*}
& G_{m-1, m}(m-1, m-1)=G_{m, m}(m-1, m-1) \\
& \quad+\beta_{m-1, m}^{2} G_{m, m}(m-1, m-1) G_{m, m}(m, m) G_{m-1, m}(m-1, m-1) \tag{7.27}
\end{align*}
$$

so that

$$
\begin{equation*}
G_{m-1, m}(m-1, m-1)=\frac{G_{m, m}(m-1, m-1)}{1-\beta_{m-1, m}^{2} G_{m, m}(m, m) G_{m, m}(m-1, m-1)} \tag{7.28}
\end{equation*}
$$

Using (7.20), we can write (7.28) as

$$
\begin{equation*}
G_{m-1, m}(m-1, m-1)=\frac{1}{E-\alpha_{m-1}-\beta_{m-1, m}^{2} \frac{1}{E-\alpha_{m}}} \tag{7.29}
\end{equation*}
$$

The above recursive process, for the 2-atom chain, can now be repeated for the 3 -atom case. The Dyson equation analogous to (7.23) is

$$
\begin{equation*}
G_{m-2, m}=G_{m-1, m}+G_{m-1, m} V_{m-2, m} G_{m-2, m} \tag{7.30}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{m-2, m}=\beta_{m-2, m-1}(|m-2\rangle\langle m-1|+|m-1\rangle\langle m-2|) \tag{7.31}
\end{equation*}
$$

(see Fig. 7.2(c)). The method for finding the relevant matrix element is the same as that used to obtain (7.28), yielding

$$
\begin{align*}
& G_{m-2, m}(m-2, m-2) \\
& \quad=\frac{G_{m-1, m}(m-2, m-2)}{1-\beta_{m-2, m-1}^{2} G_{m-1, m}(m-1, m-1) G_{m-1, m}(m-2, m-2)} \tag{7.32}
\end{align*}
$$

From (7.29), and the fact that

$$
\begin{equation*}
G_{m-1, m}(m-2, m-2)=\left(E-\alpha_{m-2}\right)^{-1} \tag{7.33}
\end{equation*}
$$

because it represents an isolated site, (7.32) can be written explicitly as

$$
\begin{equation*}
G_{m-2, m}(m-2, m-2)=\frac{1}{\left(E-\alpha_{m-2}\right)-\frac{\beta_{m-2, m-1}^{2}}{\left(E-\alpha_{m-1}\right)-\frac{\beta_{m-1, m}^{2}}{E-\alpha_{m}}}} \tag{7.34}
\end{equation*}
$$

which can be rearranged into the form of a rational function of E, but we prefer to leave it as a (finite) CF.

The recursive procedure can be applied repeatedly, with one more atom being bonded to the growing chain at each step, producing GF's in CF form similar to those of (7.29) and (7.34). After $(m-1)$ iterations, all m (initially isolated) atoms are joined, and the GF at the $n=1$ site has CF form

$$
\begin{align*}
& G_{1, m}(1,1)=\frac{1}{\left(E-\alpha_{1}\right)-\frac{\beta_{1,2}^{2}}{\left(E-\alpha_{2}\right)-\frac{\beta_{2,3}^{2}}{2}}} \\
& \ddots \\
&-\frac{\beta_{m-2, m-1}^{2}}{\left(E-\alpha_{m-1}\right)-\frac{\beta_{m-1, m}^{2}}{E-\alpha_{m}}} \tag{7.35}
\end{align*}
$$

More compactly, this can be represented in standard CF notation (Lorentzen and Waadeland 1992) as

$$
\begin{equation*}
G_{1, m}(1,1)=\underset{n=1}{m}\left(a_{n} ; b_{n}\right) \tag{7.36}
\end{equation*}
$$

where

$$
\begin{align*}
&{\underset{n=1}{\mathcal{K}}\left(a_{n} ; b_{n}\right)=}^{a_{1}+\frac{a_{2}}{b_{2}+}} \\
& \ddots \\
&+\frac{a_{m-1}}{b_{m-1}+\frac{a_{m}}{b_{m}}} \tag{7.37}\\
&= \frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\cdots,
\end{align*}
$$

with

$$
a_{n}= \begin{cases}1, & n=1 \tag{7.38}\\ -\beta_{n-1, n}^{2}, & n=2, \ldots, m,\end{cases}
$$

and

$$
\begin{equation*}
b_{n}=E-\alpha_{n}, \quad n=1, \ldots, m, \tag{7.39}
\end{equation*}
$$

for our particular case (7.35).
The values of the α_{n} 's and $\beta_{n-1, n}$'s in (7.39) and (7.38), respectively, determine the physical nature of the crystal being modelled by the chain. The simplest case is to take

$$
\begin{equation*}
\alpha_{n}=\alpha, \quad \text { for all } n, \tag{7.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n-1, n}=\beta, \quad \text { for all } n, \tag{7.41}
\end{equation*}
$$

which yields a single-band chain with no applied field. Surface states can also be included by letting α_{1} and/or α_{m} equal $\alpha^{\prime}(\neq \alpha)$. Here, however, we are interested in modelling a solid, subject to an applied field, so that accompanying (7.41) we take (cf. (7.6))

$$
\begin{equation*}
\alpha_{n}=\alpha+n \Gamma . \tag{7.42}
\end{equation*}
$$

For present purposes, we work with the GF in its CF form (7.36), which provides conceptual clarity, as well as computational convenience, due to the ease in evaluating (7.36) recursively. However, other forms for $G_{1, m}(1,1)$ are possible, because, for example, the CF in (7.36) can be rearranged as a rational function of E. Alternatively, for the case of (7.41) and (7.42) it can be shown (App. M) that $G_{1, m}(1,1)$ can be expressed, in terms of Bessel functions J and Y of the first and second kind, respectively, as

$$
\begin{equation*}
G_{1, m}(1,1)=\beta^{-1} \frac{J_{\nu+m+1}(x) Y_{\nu+1}(x)-J_{\nu+1}(x) Y_{\nu+m+1}(x)}{J_{\nu+m+1}(x) Y_{\nu}(x)-J_{\nu}(x) Y_{\nu+m+1}(x)}, \tag{7.43}
\end{equation*}
$$

where

$$
\begin{gather*}
\nu=x X, \tag{7.44}\\
x=-F^{-1}=-2 \beta / \Gamma, \tag{7.45}
\end{gather*}
$$

and, as usual, the reduced energy

$$
\begin{equation*}
X=\frac{E-\alpha}{2 \beta} . \tag{7.46}
\end{equation*}
$$

Regardless of how we may choose to represent the GF, we should note that it is for a finite chain, so that there is a discrete spectrum of m states, whose energies are given by the poles of $G_{1, m}(1,1)$.

The energies for the finite chain are given approximately by those in (7.13) for the infinite case, so as the potential strength Γ increases, the FL

$$
\begin{equation*}
\varepsilon_{f} \approx \alpha+\frac{m}{2} \Gamma \quad(\text { for even } m) \tag{7.47}
\end{equation*}
$$

moves upwards. But, to preserve the integrity of the system, at least one occupied state must remain delocalized across the entire chain, which implies that its energy must remain inside the zero-field band. This condition is guaranteed, if ε_{f} itself stays within the band, i.e.,

$$
\alpha-2|\beta|<\varepsilon_{f}<\alpha+2|\beta|,
$$

which is equivalent to

$$
\begin{equation*}
|m F|<2 \tag{7.48}
\end{equation*}
$$

Thus, for our purposes, the field cannot be taken as being arbitrarily strong, but is limited, according to (7.48), by the length of the chain and, in particular, the allowable strength of the field decreases in inverse proportion to the increasing length of the chain.

Because the spectrum of the chain is discrete, we can express the LDOS, at site n, as

$$
\begin{equation*}
\rho_{n}(X)=\sum_{k} I_{k}^{n}\left(X_{k}\right) \delta\left(X-X_{k}\right) / 2 \beta \tag{7.49}
\end{equation*}
$$

X_{k} being the k-th state reduced energy, whose intensity

$$
\begin{equation*}
I_{k}^{n}\left(X_{k}\right)=\left.2 \beta \operatorname{Res} G_{1, m}(n, n)\right|_{X=X_{k}} \tag{7.50}
\end{equation*}
$$

Plots of the LDOS at the surface $(n=1)$ site of a 100 -atom chain are presented in Fig. 7.3 for various field strengths. For no field, $F=0$ (Fig. 7.3(a)), the LDOS exhibits a discretized version of the semi-elliptical shape, familiar for a surface DOS. For small field strength (Fig. 7.3(b)), an almostlinear region appears in the lower end of the quasi-band. As the field strength increases (Fig. 7.3(c) and (d)), the region spreads across the band, with increasing intensities. In addition, there is a rigid shift in the structure to
slightly higher X_{k}-values, accompanied by an exponential tailing-off of the intensities above the upper band-edge at $X=1$.

Fig. 7.3. LDOS at $n=1$ site of 100 -atom chain. As field increases, semi-elliptical shape is dominated by linear potential. Field strengths are as indicated. Reprinted from Davison et al (1997) with permission from the Institute of Physics.

7.3 Electrochemisorption

The process of chemisorbing an atom onto an electrified substrate is known as electrochemisorption. The initial studies, described here, employed the ANG model (English et al 1997; English and Davison 1998). Later, Davison et al (2001) incorporated the presence of surface states.

In adopting the ANG approach (Chap. 4), only a few modifications are required, which are mainly concerned with the substrate spectrum being discrete rather than continuous. The conceptual set-up is portrayed in Fig. 7.4 .

Fig. 7.4. Chemisorption of adatom of site (bond) energy $\varepsilon_{a}\left(\beta_{a}\right)$ onto electrified chain of length m. Substrate has site (bond) energy $\alpha_{n}(\beta)$, where $\alpha_{n}=\alpha+n \Gamma(n=1, \ldots, m), \Gamma$ being the potential gradient.

The surface GF $g_{s}(1,1) \equiv G_{1, m}(1,1)$ for the m-atom chain is, of course, known from (7.36), with (7.41) and (7.42), to be

$$
\begin{equation*}
g_{s}(1,1)=\frac{1}{E-\alpha-\Gamma}-\frac{\beta^{2}}{E-\alpha-2 \Gamma}-\cdots-\frac{\beta^{2}}{E-\alpha-m \Gamma} \tag{7.51}
\end{equation*}
$$

g_{s} is linked to the adatom GF g_{a} by the Dyson equation

$$
\begin{equation*}
g_{a}=g_{s}+g_{s} V_{a} g_{a} \tag{7.52}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{a}=U\left\langle n_{a,-\sigma}\right\rangle|a\rangle\langle a|+\beta_{a}(|a\rangle\langle 1|+|1\rangle\langle a|), \tag{7.53}
\end{equation*}
$$

$U\left\langle n_{a,-\sigma}\right\rangle$ being the averaged self-energy of the adatom, within the HFA, and β_{a} the adatom-surface bond energy. From (7.52), we obtain

$$
\begin{align*}
g_{a}(a, a) & =g_{s}(a, a)+U\left\langle n_{a,-\sigma}\right\rangle g_{s}(a, a) g_{a}(a, a) \\
& +\beta_{a} g_{s}(a, a) g_{a}(1, a) \tag{7.54}
\end{align*}
$$

7.3. ELECTROCHEMISORPTION

since $g_{s}(a, 1)=0$ and, also from (7.52),

$$
\begin{equation*}
g_{a}(1, a)=\beta_{a} g_{s}(1,1) g_{a}(a, a) \tag{7.55}
\end{equation*}
$$

Substituting (7.55) into (7.54), and using

$$
\begin{equation*}
g_{s}(a, a)=\left(E-\varepsilon_{a}\right)^{-1} \tag{7.56}
\end{equation*}
$$

leads to the adatom GF expression

$$
\begin{equation*}
g_{a}(a, a)=\left[E-\varepsilon_{a \sigma}-\beta_{a}^{2} g_{s}(1,1)\right]^{-1} \tag{7.57}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon_{a \sigma}=\varepsilon_{a}+U\left\langle n_{a,-\sigma}\right\rangle \tag{7.58}
\end{equation*}
$$

Now, mirroring (4.70), we can write (7.57) in the form

$$
\begin{equation*}
g_{a}(a, a)=\left[E-\varepsilon_{a \sigma}-\Lambda(E)+i \Delta(E)\right]^{-1} \tag{7.59}
\end{equation*}
$$

by virtue of the chemisorption functions

$$
\begin{align*}
\Lambda(E) & =\beta_{a}^{2} \operatorname{Re}\left[g_{s}(1,1)\right] \tag{7.60}\\
\Delta(E) & =-\beta_{a}^{2} \operatorname{Im}\left[g_{s}(1,1)\right] \tag{7.61}
\end{align*}
$$

The allowable energies $E_{\ell \sigma}$ of the chemisorbed system (adatom plus chain) are determined as being the (real) poles of $g_{a}(a, a)$, i.e., the $m+1$ solutions of

$$
\begin{equation*}
E_{\ell \sigma}-\varepsilon_{a \sigma}-\Lambda\left(E_{\ell \sigma}\right)=0, \quad \sigma=+\quad \text { or } \quad- \tag{7.62}
\end{equation*}
$$

which are discrete, because of the finiteness of the system. Each of the corresponding eigenstates makes a contribution [cf. (4.80)]

$$
\begin{equation*}
\left\langle n_{a \sigma}\right\rangle_{\ell}=\left[1-\Lambda^{\prime}\left(E_{\ell \sigma}\right)\right]^{-1} \tag{7.63}
\end{equation*}
$$

to the total adatom occupancy, which from (4.76) is given by

$$
\begin{equation*}
\left\langle n_{a \sigma}\right\rangle=\sum_{\ell}\left\langle n_{a \sigma}\right\rangle_{\ell}, \tag{7.64}
\end{equation*}
$$

where the integration in (4.76) now becomes a summation, because all energies are discrete. Equations (7.62) and (7.64) together comprise a selfconsistency condition of the form of (4.81), yielding non-magnetic M (magnetic
$M)$ solutions when $\left\langle n_{a+}\right\rangle$ and $\left\langle n_{a-}\right\rangle$ are equal (unequal). As always, these solutions must be found numerically, and some typical curves of $\left\langle n_{a \sigma}\right\rangle$ versus $\left\langle n_{a,-\sigma}\right\rangle$ are shown in Fig. 7.5 (cf. Fig. 4.2). For $F=0$, both M and M solutions occur, but as F increases, the M solutions are driven towards the M one, eventually coalescing in a single M solution in the limit as $F \rightarrow \infty$. With the adatom occupancy calculated self-consistently, the charge transfer to the adatom is once again given by (4.102).

The chemisorption energy is given by (4.85), viz.,

$$
\begin{equation*}
\Delta E=\sum_{\sigma} \Delta E^{\sigma}-\varepsilon_{a}-U\left\langle n_{a+}\right\rangle\left\langle n_{a-}\right\rangle \tag{7.65}
\end{equation*}
$$

However, because the energy spectrum is discrete, both before and after chemisorption, ΔE^{σ} does not take the form of the energy-integral (4.99), but is instead evaluated via finite sums (4.86) of the energies, i.e.,

$$
\begin{equation*}
\Delta E^{\sigma}=\sum_{\ell \text { occ }} E_{\ell \sigma}-\sum_{n \mathrm{occ}} E_{n}^{0} \tag{7.66}
\end{equation*}
$$

the summations being over the occupied states below the FL at $\varepsilon_{f}=E_{[(m+1) / 2]}^{0}$, with [] denoting integer value, and $\left(E_{n}^{0}\right) E_{\ell \sigma}$ being the (un)perturbed energies in the (pre-) post-chemisorption system, which are found as the poles of $\left(g_{s}(1,1)\right) g_{a}(a, a)$.

Fig. 7.5. Self-consistency curves for $\beta_{a}=\beta$ and F-values indicated. (M) M solutions occur at intersections, where $\left\langle n_{a \sigma}\right\rangle(=) \neq\left\langle n_{a,-\sigma}\right\rangle$. After English (1997).

7.4 $\mathrm{H}-\mathrm{Ti}$ and $\mathrm{H}-\mathrm{Cr}$ Systems

Moving on, we apply the above formalism to the system consisting of a hydrogen adatom and a metal substrate, which is taken to be either Ti or Cr. The solid chain is given a length of $m=100$ atoms, which allows fields of strength up to $|F|=0.02$, according to (7.48). The appropriate parameters (Newns 1969), based on experimental data, are given in Table 7.1.

Table 7.1. Parameters (in eV) for H chemisorbed on Ti and Cr , relative to vacuum level.

	$\mathbf{T i}$	$\mathbf{C r}$
α	-1.82	-5.25
β	2.15	1.525
$\varepsilon_{f}(F=0)$	-3.86	-4.56
ε_{a}	-13.6	-13.6
U	12.9	12.9
β_{a}	3.72	3.75

Looking first at the $\mathrm{H}-\mathrm{Ti}$ system, the self-consistency condition (4.81) has a M solution for all values of F, as well as a pair of M-solutions for all $F \neq 0$. Some typical values of $\left\langle n_{a+}\right\rangle$ and $\left\langle n_{a-}\right\rangle$ are given in Table 7.2. Hence, the charge transfer and chemisorption energy can be calculated, as shown in Fig. 7.6. The $M(M)$ solution is given by the solid (broken) curve. The initial point of reference is, of course, the zero-field situation, where Fig. 7.6 indicates a moderate charge transfer to the adatom and a consequent negative chemisorption energy (so that chemisorption does occur). The question of interest concerns whether implementation of the field serves to strengthen or weaken the chemisorption process (or, perhaps, destabilize it completely). The field modifies the adsorption through two routes: first, by moving the FL (refer to (7.47), where $\Gamma=2 \beta F$) and, second, by altering the adatom occupancy (Table 7.2). When $F>0$, the FL is raised (tending to lower ΔE) and the M-solution $\left\langle n_{a+}\right\rangle=\left\langle n_{a-}\right\rangle$ is increased, raising the effective adatom level $\varepsilon_{a \sigma}$ (cf. (7.58)), which in turn raises ΔE. Under these two competing effects, ΔE remains essentially constant, as seen in Fig. 7.6(a). However, for the M-solution, $\left\langle n_{a+}\right\rangle$ and $\left\langle n_{a-}\right\rangle$ move in opposite directions, thus effectively neutralizing the second route, so the field effect is primarily controlled by the raising of the FL, resulting in the drastic lowering of ΔE shown in Fig. 7.6(a). When $F<0$, the situation is reversed, since the FL is now lowered, which by itself acts to raise ΔE. For the M-solution, $\left\langle n_{a+}\right\rangle=\left\langle n_{a-}\right\rangle$ is again increased with increasing $|F|$, thus tending to raise ΔE via this route, too. Hence, the result is a noticeable raising of ΔE, as seen in Fig. 7.6(a). For the M-solution, the effects of $\left\langle n_{a+}\right\rangle$ and $\left\langle n_{a-}\right\rangle$ again approximately cancel each other, so, although ΔE is still lowered as F becomes more negative, the effect is much less pronounced than when $F>0$. Because the M-solution yields a lower ΔE than the M one, it is the physically desired situation.

Table 7.2. M and M solutions $\left\langle n_{a+}\right\rangle$ and $\left\langle n_{a-}\right\rangle$ of $\mathrm{H}-\mathrm{Ti}$ system.

F	-.020	-.015	-.010	-.005	.000	.005	.010	.015	.020
M	0.546	0.567	0.584	0.607	0.632	0.658	0.687	0.720	0.762
M	0.872	0.794	0.759	0.720	N/A	0.737	0.819	0.909	0.991
M	0.054	0.288	0.381	0.483	N/A	0.574	0.547	0.482	0.424

We note in Fig. 7.6 that both M graphs pass smoothly through $F=0$, whereas those for M exhibit a cusp (labelled as B), which is due to the asymmetry of the occupied levels when $F \neq 0$ (Table 7.2). States shifted above the band are also above the FL, and have only an indirect effect on ΔE, while states shifted below the band are filled, and act to produce a greater field effect.

Fig. 7.6. (a) Variation of $\mathrm{H}-\mathrm{Ti}$ electrochemisorption energy with field strength. Solid (broken) curve represents $M(M)$ solution. (b) Adatom charge transfer versus field strength for $\mathrm{H}-\mathrm{Ti}$. Solid (broken) line depicts M (M) case. Point B locates bifurcation threshold for M-solutions. Reprinted from English and Davison (1998) with permission from Elsevier.

Turning to the $\mathrm{H}-\mathrm{Cr}$ system, some representative values of $\left\langle n_{a+}\right\rangle$ and $\left\langle n_{a-}\right\rangle$ are given in Table 7.3, showing an M-solution exists for all field strengths, while M ones only occur when F is greater than about 0.005 . The difference from the $\mathrm{H}-\mathrm{Ti}$ situation is apparently due to the fact that the Cr band is fuller, as is reflected by the value of ε_{f} relative to α (see Table 7.1). The corresponding graphs of Δq and ΔE are displayed in Fig. 7.7, and both exhibit a bifurcation B at the F-value, where M-solutions first appear. The F-dependence of the M-solution, in both graphs, is similar to that in the $\mathrm{H}-\mathrm{Ti}$ system (Fig. 7.6), and has the same physical explanation. (The exception is the ΔE curve, for $F>0$, which shows a definite trend in ΔE to increase with F, as opposed to the corresponding part of Fig. 7.6(a). In this case, there is less cancellation between competing contributions to ΔE.) With the birth of M-solutions as F increases through 0.005 , the FL is raised, which tends to lower ΔE, while the split between $\left\langle n_{a+}\right\rangle$ and $\left\langle n_{a-}\right\rangle$ maintains $\varepsilon_{a \pm}$ at roughly constant levels, resulting in the lowering of ΔE. Keeping in mind that the lower-energy solution is the physically preferred one, Fig. 7.7 reveals that, for small positive fields, the chemisorption process is slightly suppressed, while for larger field strengths, it is enhanced.

Table 7.3. M and M solutions $\left\langle n_{a+}\right\rangle$ and $\left\langle n_{a-}\right\rangle$ of $\mathrm{H}-\mathrm{Cr}$ system.

F	-.015	-.010	-.005	.000	.005	.010	.015
M	0.574	0.588	0.602	0.616	0.631	0.645	0.656
M	N/A	N/A	N/A	N/A	N/A	0.803	0.962
M	N/A	N/A	N/A	N/A	N/A	0.476	0.335

Fig. 7.7. Variation of: (a) H-Cr electrochemisorption energy; and (b) charge transfer with field strength. Solid (broken) curve depicts M (M) solution. Point B locates bifurcation threshold for M-solutions. Reprinted from English and Davison (1998) with permission from Elsevier.

In conclusion, we have seen that an applied field has the ability to strongly affect the chemisorption process. One trend, clearly observable in both Fig. 7.6(b) and Fig. 7.7(b), is that the sign of F determines whether or not Δq is enhanced by the presence of the field, i.e., Δq is increased (decreased) when F is positive (negative). More variable is the dependence of ΔE on F, due to the variability in the existence (or not) of M solutions, which, when they do occur, represent the more stable interaction. Consequently, the presence of the field may either enhance or suppress the chemisorption process.

Chapter 8

Indirect Adatom Interactions

By indirections find directions out.

- William Shakespeare

Up to now, we have investigated the situation of a single atom chemisorbed onto a surface. However, when two atoms are adsorbed onto a substrate, direct interactions may exist between them, provided their separation is less than a few Angstroms, so that the overlap of their orbitals is considerable. At larger separations, the direct interaction becomes negligible, but indirect interactions may arise between the adatoms through the substrate, because they share the same conduction band electrons. Such substrate-mediated interactions are important in many phenomena, such as the formation of adlayer structures, and can also play a significant role in applications, such as heterogeneous catalysis, where the chemical processes between the reactants take place at the surface of a catalyst.

8.1 Adatom Green Function

The occurrence of the substrate-mediated interaction between adatoms was first predicted in the seminal work by Koutecký (1958), using the resolvent technique, and was later clarified in a review by Grimley (1960), who added significantly to the theory by showing that the interaction energy is long-
range and oscillatory, in the adatom separation d, and is of the form (Grimley 1967a,b)

$$
\begin{equation*}
\Delta W(d)=C d^{-n} \cos \left(2 k_{F} d\right) \tag{8.1}
\end{equation*}
$$

where C is a constant and k_{F} the Fermi momentum of an electron at the surface. n is an unknown integer between 2 and 5 , which is believed to be determined by the effective dimensionality of the electronic states participating in the interaction. Specifically, $n=5(2)$ for the 3(2)-dimensional situation. An extensive discussion of the status of the dimensionality problem, together with the experimental side of the question, can be found in Gumhalter and Brenig (1995a). Later, with Walker (1969), Grimley investigated the effects of the interaction on the heat of adsorption by means of the Anderson model, and with Torrini (1973) calculated the interaction between two hydrogen adatoms on $\mathrm{W}(100)$.

Neglecting Coulomb effects, Einstein and Schrieffer (1973) determined the interaction energy to be about an order of magnitude less than the chemisorption energy of a single adatom and confirmed Grimley's long-range behaviour. An extension of the Einstein and Schrieffer work by Burke (1976) revealed the interaction energy oscillates as a function of the Fermi energy, ε_{F} (adatom separation, d) for fixed $d\left(\varepsilon_{f}\right)$. The inclusion of the direct adatom interaction was found to have a marked effect at small d. Besides the direct interaction, Muda and Hanawa (1974) also took account of the Coulomb repulsion between the adatoms, in their self-consistent Hartree-Fock treatment of pair-interaction effects on the adatom local DOS for H-W(100).

Correlation effects on the indirect interaction have been discussed by Schönhammer et al (1975). The chemisorption energy was found to be (in)sensitive to these effects in the (double-) single-adatom situation. Multiadatom interactions have also been considered (Einstein 1977, Dreysée et al 1986); though insignificant for total interaction energies, they are comparable to more distant neighbour pair interactions. The asymptotic behaviour of the interaction has been established and discussed by Lau and Kohn (1978) and Einstein (1978). In a somewhat different vein, Le Bossé et al (1978, 1979, 1980) studied the indirect-interaction contribution to the binding energy of a diatomic admolecule.

In another interesting development, Gumhalter and Brenig (1995a,b) proposed that, in $\mathrm{H}-\mathrm{Ni}(110)$ and $\mathrm{H}-\mathrm{Cu}(110)$ systems, adatom-induced reconstruction of the surface gives rise to quasi-one-dimensional surface states, which mediate the indirect interaction. The greatly reduced dimensionality
of the surface electronic states gives rise to extremely long-ranged interactions. A comprehensive review of these adsorbate interactions has been given by Einstein (1996) and, more recently, by Merrick et al. (2003). Here, however, we examine the specific case of a pair of hydrogen atoms co-adsorbed on a metal surface, within the framework of the ANG model.
a

ε_{a}
b

- ε_{b}

$-\mathrm{n}-1 \quad-\mathrm{n} \quad-\mathrm{n}+1$

$\mathrm{m}-1 \quad \mathrm{~m} \quad \mathrm{~m}+1$
- •

$-\mathrm{n}-1 \quad-\mathrm{n} \quad-\mathrm{n}+1$

Fig. 8.1. Diagram of chemisorption process. After Schranz (1994).
Consider the situation where two isolated atoms a and b, with electronic energies ε_{a} and ε_{b}, are located above the $-n$ and m sites in a monatomic substrate, with site (bond) energy $\alpha(\beta)$ (see Fig. 8.1(a)). Upon chemisorption
(Fig. 8.1(b)), the electronic energies are shifted to (c.f. (4.34))

$$
\begin{equation*}
\varepsilon_{\lambda \sigma}=\varepsilon_{\lambda}+U\left\langle n_{\lambda,-\sigma}\right\rangle, \quad \lambda=a \quad \text { or } \quad b, \tag{8.2}
\end{equation*}
$$

and the corresponding chemisorption bond energies are β_{a} and β_{b}. Let $H_{0}(H)$ be the Hamiltonian for the system of substrate and adatoms before (after) chemisorption. The two Hamiltonians are related by

$$
\begin{equation*}
H=H_{0}+V \tag{8.3}
\end{equation*}
$$

where V is the perturbation potential

$$
\begin{align*}
V= & U\left\langle n_{a,-\sigma}\right\rangle|a\rangle\langle a|+U\left\langle n_{b,-\sigma}\right\rangle|b\rangle\langle b| \tag{8.4}\\
& +\beta_{a}(|a\rangle\langle-n|+|-n\rangle\langle a|)+\beta_{b}(|b\rangle\langle m|+|m\rangle\langle b|) .
\end{align*}
$$

Taking $G_{0}(G)$ to be the GF corresponding to $H_{0}(H)$, the associated Dyson equation (3.3) is

$$
\begin{equation*}
G=G_{0}+G_{0} V G \tag{8.5}
\end{equation*}
$$

We need to construct the matrix elements of G on the 2 atoms; we explicitly evaluate $G(a, a)$, because the expression for $G(b, b)$ will be the same, except for the interchange of a and b and their respective bonding site indices $-n$ and m.

Substituting (8.4) into (8.5) and taking $\langle a| G|a\rangle=G(a, a)$ produces

$$
G(a, a)=G_{0}(a, a)+\beta_{a} G_{0}(a, a) G(-n, a)+U\left\langle n_{a,-\sigma}\right\rangle G_{0}(a, a) G(a, a)
$$

which rearranges as

$$
\begin{equation*}
\left[G_{0}^{-1}(a, a)-U\left\langle n_{a,-\sigma}\right\rangle\right] G(a, a)=1+\beta_{a} G(-n, a) \tag{8.6}
\end{equation*}
$$

The unknown element $G(-n, a)=\langle-n| G|a\rangle$ is found from (8.5) to be

$$
\begin{equation*}
G(-n, a)=\beta_{a} G_{0}(-n,-n) G(a, a)+\beta_{b} G_{0}(-n, m) G(b, a) \tag{8.7}
\end{equation*}
$$

since $G_{0}(-n, a)=0$, because the sites $-n$ and a are not connected in the pre-chemisorption system (Fig. 8.1(a)). The element $G(b, a)$, required in (8.7), is determined by another application of (8.5) to be

$$
\begin{equation*}
G(b, a)=\beta_{b} G_{0}(b, b) G(m, a)+U\left\langle n_{b,-\sigma}\right\rangle G_{0}(b, b) G(b, a) \tag{8.8}
\end{equation*}
$$

where $G_{0}(b, a)=0$. We use (8.5) again to evaluate $G(m, a)$ in (8.8),i.e.,

$$
\begin{equation*}
G(m, a)=\beta_{a} G_{0}(m,-n) G(a, a)+\beta_{b} G_{0}(m, m) G(b, a) \tag{8.9}
\end{equation*}
$$

utilizing $G_{0}(m, a)=0$. Substituting (8.9) into (8.8), gives

$$
\begin{align*}
G(b, a)= & \beta_{a} \beta_{b} G_{0}(m,-n) G(a, a) \times \\
& {\left[G_{0}^{-1}(b, b)-U\left\langle n_{b,-\sigma}\right\rangle-\beta_{b}^{2} G_{0}(m, m)\right]^{-1}, } \tag{8.10}
\end{align*}
$$

which in (8.7) leads to

$$
\begin{align*}
G(-n, a)= & \beta_{a} G(a, a)\left\{G_{0}(-n,-n)+\beta_{b}^{2} G_{0}(-n, m) G_{0}(m,-n) \times\right. \\
& {\left.\left[G_{0}^{-1}(b, b)-U\left\langle n_{b,-\sigma}\right\rangle-\beta_{b}^{2} G_{0}(m, m)\right]^{-1}\right\} } \tag{8.11}
\end{align*}
$$

so that (8.6) becomes

$$
\begin{equation*}
\left[G_{0}^{-1}(a, a)-U\left\langle n_{a,-\sigma}\right\rangle\right] G(a, a)=1+\Omega G(a, a) \tag{8.12}
\end{equation*}
$$

where the self-energy

$$
\begin{align*}
\Omega= & \beta_{a}^{2}\left\{G_{0}(-n,-n)+\beta_{b}^{2} G_{0}(-n, m) G_{0}(m,-n) \times\right. \\
& {\left.\left[G_{0}^{-1}(b, b)-U\left\langle n_{b,-\sigma}\right\rangle-\beta_{b}^{2} G_{0}(m, m)\right]^{-1}\right\} . } \tag{8.13}
\end{align*}
$$

Hence, (8.12) gives the desired element

$$
\begin{equation*}
G(a, a)=\left[G_{0}^{-1}(a, a)-U\left\langle n_{a,-\sigma}\right\rangle-\Omega\right]^{-1} \tag{8.14}
\end{equation*}
$$

We note that (8.14), with (8.13), shows that $G(a, a)$ (and similarly $G(b, b))$ depends on both occupancies $\left\langle n_{a,-\sigma}\right\rangle$ and $\left\langle n_{b,-\sigma}\right\rangle$ indicating (cf. (4.81)) that the occupancies $\left\langle n_{\lambda \sigma}\right\rangle$ are linked by a quartet of coupled self-consistency equations of the form (4.81). However, for simplicity, we make the reasonable approximation of ignoring this coupling by setting the term $U\left\langle n_{b,-\sigma}\right\rangle$ to 0 in (8.13). Thus, (8.14) expresses the adatom GF $G(a, a)$ entirely in terms of GF's of the pre-chemisorption system. The matrix element $G_{0}(\lambda, \lambda)(\lambda=a$ or b) is that for the isolated atom λ, so is given very simply by

$$
\begin{equation*}
G_{0}(\lambda, \lambda)=\left(E-\varepsilon_{\lambda}\right)^{-1} \tag{8.15}
\end{equation*}
$$

The remaining matrix elements in (8.13) are for the as-yet-unspecified substrate. Once evaluated (see $\S 8.2$), (8.14) can be expressed in terms of the chemisorption functions (cf. (4.70))

$$
\begin{align*}
\Lambda_{2}(E) & =\operatorname{Re}(\Omega) \tag{8.16}\\
\Delta_{2}(E) & =-\operatorname{Im}(\Omega) \tag{8.17}
\end{align*}
$$

as

$$
\begin{equation*}
G(a, a)=\left(E-\varepsilon_{a \sigma}-\Lambda_{2}(E)+i \Delta_{2}(E)\right)^{-1} \tag{8.18}
\end{equation*}
$$

via (8.2) and (8.15), and with the subscript 2 referring to the fact that 2 adatoms are adsorbed on the substrate.

8.2 Chemisorption Functions

We now specify the substrate to be an infinite cyclic monatomic chain with site (bond) energy $\alpha(\beta)$ (see Fig. 8.1(a)). The GF matrix elements are (App. J)

$$
\begin{equation*}
G_{0}\left(\ell_{1}, \ell_{2}\right)=t^{\left|\ell_{1}-\ell_{2}\right|} G_{0}(0,0) \tag{8.19}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{0}(0,0)=t / \beta\left(1-t^{2}\right) \tag{8.20}
\end{equation*}
$$

with

$$
t= \begin{cases}X \pm\left(X^{2}-1\right)^{1 / 2}, & X \lessgtr \mp 1 \tag{8.21}\\ X-i\left(1-X^{2}\right)^{1 / 2}, & |X|<1\end{cases}
$$

and

$$
\begin{equation*}
X=(E-\alpha) / 2 \beta \tag{8.22}
\end{equation*}
$$

With this choice, (8.13) can be written as

$$
\begin{equation*}
\Omega=\beta_{a}^{2} G_{0}(0,0)\left\{1+\beta_{b}^{2} t^{2 d} G_{0}(0,0)\left[E-\varepsilon_{b}-\beta_{b}^{2} G_{0}(0,0)\right]^{-1}\right\} \tag{8.23}
\end{equation*}
$$

where

$$
\begin{equation*}
d=m+n \tag{8.24}
\end{equation*}
$$

denotes the distance between the 2 adatoms (see Fig. 8.1). The chemisorption functions are now determined via (8.16) and (8.17).

It should be noted that the single-adatom chemisorption functions (cf. (4.68) and (4.69)) are recovered by putting $\beta_{b}=0$ in (8.23), namely,

$$
\begin{align*}
\Lambda_{1} & =\operatorname{Re}\left[\beta_{a}^{2} G_{0}(0,0)\right], \tag{8.25}\\
\Delta_{1} & =-\operatorname{Im}\left[\beta_{a}^{2} G_{0}(0,0)\right], \tag{8.26}
\end{align*}
$$

which can also be thought of physically as the situation where the adatom separation d becomes infinite, viz.,

$$
\begin{equation*}
\Lambda_{1}=\lim _{d \rightarrow \infty} \Lambda_{2}, \quad \Delta_{1}=\lim _{d \rightarrow \infty} \Delta_{2} \tag{8.27}
\end{equation*}
$$

The reduced chemisorption functions

$$
\begin{align*}
& \Lambda_{2}(X)=\Lambda_{2}(E) / 2|\beta| \tag{8.28}\\
& \Delta_{2}(X)=\Delta_{2}(E) / 2|\beta| \tag{8.29}
\end{align*}
$$

are depicted in Figs. 8.2 and 8.3 for the $2 \mathrm{H}-\mathrm{Cr}$ system, and several values of d. $\Lambda_{2}(X)$ clearly has a singularity at an X-value outside the band, which is given by the zero of the [term] in (8.23). It is also apparent how the doubleadatom function begins to resemble the single-adatom one, with increasing d. Inside the band, Λ_{2} is an oscillatory function with $2 d-1$ zeroes, and is continuous everywhere, including the band edges. However, the continuity at the band edges disappears in the limit $d \rightarrow \infty$, as the singularities initially outside the band move towards the band edges. Turning to the graphs of $\Delta_{2}(X)$ (Fig. 8.3), we see that the limiting case $(d=\infty)$ exhibits the expected van Hove singularities (Davison and Stȩślicka 1996) at the band edges. For $d<\infty$, these singularities are removed, due to the interaction between the adatoms. Within the band, Δ_{2} is continuous and oscillatory, with d local maxima and $d-1$ local minima, occurring where $\Lambda_{2}=0$.

Fig. 8.2. $\Lambda_{2}(X)$ for $2 \mathrm{H}-\mathrm{Cr}$ with $\left\langle n_{a \sigma}\right\rangle=0.65$, for $d=2,4$, ∞, with $\beta_{a} /|\beta|=1.5$. After $\operatorname{Schranz}(1994)$.

Fig. 8.3. $\Delta_{2}(X)$ for $2 \mathrm{H}-\mathrm{Cr}$ with $\left\langle n_{a \sigma}\right\rangle=0.65$, for $d=2,4, \infty$, with $\beta_{a} /|\beta|=1.5$. After Schranz (1994).

The adatom DOS, within the band, is given as usual by (4.75), viz.,

$$
\begin{equation*}
\rho_{a}^{\sigma}(E)=\frac{\pi^{-1} \Delta_{2}(E)}{\left[E-\varepsilon_{a \sigma}-\Lambda_{2}(E)\right]^{2}+\Delta_{2}(E)^{2}}, \tag{8.30}
\end{equation*}
$$

while outside the band, the density is non-zero only at the localized-state energies $E_{\ell \sigma}$, which are the real poles of (8.18), namely, solutions of

$$
\begin{equation*}
E-\varepsilon_{a \sigma}-\Lambda_{2}(E)=0 \tag{8.31}
\end{equation*}
$$

with corresponding intensities (cf. (4.80))

$$
\begin{equation*}
\left\langle n_{a \sigma}\right\rangle_{\ell}=\left[1-\Lambda_{2}^{\prime}\left(E_{\ell \sigma}\right)\right]^{-1} \tag{8.32}
\end{equation*}
$$

A typical graphical solution of (8.31), for $d=3$, is shown in Fig. 8.4. It is noted that, in most cases of double-adsorption, there are two localized states below the band, compared to just one for single-adsorption. This pair of localized states arises due to a splitting of the doubly-degenerate singleadsorption localized state, and is the precursor to the band of such states that would emerge as more adatoms are added to the system.

Fig. 8.4. $\Lambda_{2}(X)$ and $\left(E-\varepsilon_{a}-U\left\langle n_{a,-\sigma}\right\rangle\right) / 2|\beta|$ vs X, for $d=3$. Intersection of Λ_{2} with line gives pairs of localized states. After Schranz (1994).

8.3 Self-consistency and Charge Transfer

We turn now to the issue of charge self-consistency, which utilizes the theory of $\S 4.3$, slightly modified to deal with the fact that there are now two adatoms. Specifically, the Hamiltonian (4.35) is modified to read as

$$
\begin{equation*}
H=\sum_{\lambda \sigma} \varepsilon_{\lambda \sigma} n_{\lambda \sigma}+\sum_{k \sigma} \varepsilon_{k} n_{k \sigma}+\sum_{k \lambda \sigma}\left(V_{\lambda k} c_{\lambda \sigma}^{\dagger} c_{k \sigma}+V_{k \lambda}^{*} c_{k \sigma}^{\dagger} c_{\lambda \sigma}\right) \tag{8.33}
\end{equation*}
$$

where λ sums over the two adatoms a and b. It is important to note in (8.33) that there is no direct interaction term between the adatoms, so any interactions are indirect, occurring as a consequence of the bonding of each adatom to the substrate.

Following (4.76), the occupancy of each adatom is given by

$$
\begin{equation*}
\left\langle n_{\lambda \sigma}\right\rangle=\int_{B} \rho_{\lambda}^{\sigma}(E) d E+\sum_{\ell}\left\langle n_{\lambda \sigma}\right\rangle_{\ell}, \quad \lambda=a \text { or } b \tag{8.34}
\end{equation*}
$$

where the integration of the adatom DOS (given by (8.30) for $\lambda=a$) is over the energy band and the summation is over the pair of localized-state intensities (8.32). Because the quantities on the right-hand side of (8.34) depend on the occupancies, they are determined by self-consistency equations of the form (4.81). For our purposes, we restrict ourselves to the non-magnetic case, so that we have

$$
\begin{equation*}
\left\langle n_{\lambda \sigma}\right\rangle=N\left(\left\langle n_{\lambda \sigma}\right\rangle\right), \quad \lambda=a \quad \text { or } \quad b . \tag{8.35}
\end{equation*}
$$

As mentioned in $\S 8.1$, the occupancies $\left\langle n_{a \pm}\right\rangle$ and $\left\langle n_{b \pm}\right\rangle$ are in actuality coupled, but we made a simplifying approximation to uncouple them, by setting to zero the appropriate term in (8.13). Solutions to (8.35) can be calculated numerically, after which the total charge transfer is given by (cf. (4.102))

$$
\begin{equation*}
\Delta q=\sum_{\lambda}\left(\sum_{\sigma}\left\langle n_{\lambda \sigma}\right\rangle-1\right) e . \tag{8.36}
\end{equation*}
$$

8.4 Change in Density of States

In order to calculate the energy changes brought about by chemisorption, we first evaluate the corresponding change in the DOS, $\Delta \rho$. We have pursued this notion earlier (in $\S 6.4$), but here we execute it differently, by relating $\Delta \rho$
to the Greenian G_{0} of the pre-adsorption substrate and to the interaction potential V (8.4).

Taking the eigenenergies of the system before (after) chemisorption to be $\varepsilon_{j}^{0}\left(\varepsilon_{j}\right)$, then the change in the DOS is

$$
\begin{equation*}
\Delta \rho=\sum_{j}\left[\delta\left(E-\varepsilon_{j}\right)-\delta\left(E-\varepsilon_{j}^{0}\right)\right] \tag{8.37}
\end{equation*}
$$

which, via (3.6) and (3.11), becomes

$$
\begin{equation*}
\Delta \rho=-\pi^{-1} \operatorname{Im} \sum_{j}\left(\frac{1}{E+i s-\varepsilon_{j}}-\frac{1}{E+i s-\varepsilon_{j}^{0}}\right) \tag{8.38}
\end{equation*}
$$

Choosing the principal branch of the complex logarithm function, we can write (8.38) as

$$
\begin{equation*}
\Delta \rho=-\pi^{-1} \frac{\partial}{\partial E} \operatorname{Im} \ln \left(\prod_{j} \frac{E+i s-\varepsilon_{j}}{E+i s-\varepsilon_{j}^{0}}\right) \tag{8.39}
\end{equation*}
$$

To proceed further, we examine the expression

$$
\begin{align*}
\operatorname{det} & \left\{\left[(E+i s) \mathbf{I}-\mathbf{H}_{0}\right]^{-1}[(E+i s) \mathbf{I}-\mathbf{H}]\right\} \\
& =\operatorname{det}\left[(E+i s) \mathbf{I}-\mathbf{H}_{0}\right]^{-1} \operatorname{det}[(E+i s) \mathbf{I}-\mathbf{H}] \tag{8.40}
\end{align*}
$$

where I represents the identity matrix. Recalling that determinants are invariant under change of basis, it is most convenient to use the orthonormal bases of eigenvectors $\left\{\left|j_{0}\right\rangle\right\}$ and $\{|j\rangle\}$, corresponding to ε_{j}^{0} and ε_{j}, respectively, in which $(E+i s) \mathbf{I}-\mathbf{H}_{0}$ and $(E+i s) \mathbf{I}-\mathbf{H}$ each become diagonal. Thus, (8.40) can be written as

$$
\begin{equation*}
\operatorname{det}\left\{\left[(E+i s) \mathbf{I}-\mathbf{H}_{0}\right]^{-1}[(E+i s) \mathbf{I}-\mathbf{H}]\right\}=\prod_{j} \frac{E+i s-\varepsilon_{j}}{E+i s-\varepsilon_{j}^{0}} \tag{8.41}
\end{equation*}
$$

so that (8.39) becomes

$$
\begin{equation*}
\Delta \rho=-\pi^{-1} \frac{\partial}{\partial E} \operatorname{Im} \ln \operatorname{det}\left\{\left[(E+i s) \mathbf{I}-\mathbf{H}_{0}\right]^{-1}[(E+i s) \mathbf{I}-\mathbf{H}]\right\} \tag{8.42}
\end{equation*}
$$

On noting that $G_{0}=\left[(E+i s) I-H_{0}\right]^{-1}$, and by recalling (8.3), we can write (8.42) as

$$
\begin{equation*}
\Delta \rho=-\pi^{-1} \frac{\partial}{\partial E} \operatorname{Im} \ln \operatorname{det}\left(\mathbf{I}-\mathbf{G}_{0} \mathbf{V}\right) \tag{8.43}
\end{equation*}
$$

Now let us consider $\operatorname{det}\left(\mathbf{I}-\mathbf{G}_{0} \mathbf{V}\right)$ in the AO basis $\{|\lambda\rangle,|\ell\rangle\}$, ordered so that the first four columns and rows are indexed by $a, b,-n$ and m. Thus, from (8.4), the matrix of V in block form is

$$
\mathbf{V}=\left(\begin{array}{c|c}
\mathbf{v}_{1} & \mathbf{0} \tag{8.44}\\
\hline \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

where

$$
\mathbf{v}_{1}=\left(\begin{array}{cccc}
\nu_{a} & 0 & \beta_{a} & 0 \tag{8.45}\\
0 & \nu_{b} & 0 & \beta_{b} \\
\beta_{a} & 0 & 0 & 0 \\
0 & \beta_{b} & 0 & 0
\end{array}\right)
$$

with

$$
\begin{equation*}
\nu_{\lambda}=U\left\langle n_{\lambda,-\sigma}\right\rangle, \quad \lambda=a \quad \text { or } \quad b . \tag{8.46}
\end{equation*}
$$

The matrix of G_{0} can also be written in block form as

$$
\mathbf{G}_{0}=\left(\begin{array}{l|l}
\mathbf{g}_{1} & \mathbf{g}_{2} \tag{8.47}\\
\hline \mathbf{g}_{3} & \mathbf{g}_{4}
\end{array}\right)
$$

whence

$$
\mathbf{I}-\mathbf{G}_{0} \mathbf{V}=\left(\begin{array}{cc}
\mathbf{I}-\mathbf{g}_{1} \mathbf{v}_{1} & \mathbf{0} \tag{8.48}\\
\mathbf{g}_{3} \mathbf{v}_{1} & \mathbf{I}
\end{array}\right)
$$

so that

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{I}-\mathbf{G}_{0} \mathbf{V}\right)=\operatorname{det}\left(\mathbf{I}-\mathbf{g}_{1} \mathbf{v}_{1}\right) \tag{8.49}
\end{equation*}
$$

The matrix \mathbf{g}_{1} has the form

$$
\mathbf{g}_{1}=\left(\begin{array}{cccc}
G_{0}(a, a) & 0 & 0 & 0 \tag{8.50}\\
0 & G_{0}(b, b) & 0 & 0 \\
0 & 0 & G_{0}(-n,-n) & G_{0}(-n, m) \\
0 & 0 & G_{0}(m,-n) & G_{0}(m, m)
\end{array}\right)
$$

which, with (8.45) and (8.49), leads to
$\operatorname{det}\left(\mathbf{I}-\mathbf{G}_{0} \mathbf{V}\right)=\left|\begin{array}{cccc}1-\nu_{a} G_{0}(a, a) & 0 & -\beta_{a} G_{0}(a, a) & 0 \\ 0 & 1-\nu_{b} G_{0}(b, b) & 0 & -\beta_{b} G_{0}(b, b) \\ -\beta_{a} G_{0}(-n,-n) & -\beta_{b} G_{0}(-n, m) & 1 & 0 \\ -\beta_{a} G_{0}(m,-n) & -\beta_{b} G_{0}(m, m) & 0 & 1\end{array}\right|$.

Equation (8.51) can be simplified by performing a cofactor expansion on the first row, and employing (8.13), resulting in

$$
\begin{gather*}
\operatorname{det}\left(\mathbf{I}-\mathbf{G}_{0} \mathbf{V}\right)=G_{0}(a, a) G_{0}(b, b)\left[G_{0}^{-1}(b, b)-\nu_{b}-\beta_{b}^{2} G_{0}(m, m)\right] \times \\
{\left[G_{0}^{-1}(a, a)-\nu_{a}-\Omega\right]} \tag{8.52}
\end{gather*}
$$

Here, the first factor in square brackets represents the adsorption of a single atom at site m. The second factor represents the adsorption of a second atom at site $-n$. Substituting (8.52) into (8.43), and invoking the chemisorption functions (4.68), (4.69), (8.16), (8.17), along with (8.46), results in

$$
\begin{align*}
\Delta \rho= & -\pi^{-1} \frac{\partial}{\partial E} \operatorname{Im} \ln \left\{\left[E-\varepsilon_{b \sigma}-\Lambda_{1}+i \Delta_{1}\right]\left[E-\varepsilon_{a \sigma}-\Lambda_{2}+i \Delta_{2}\right]\right\} \\
& -\pi^{-1} \sum_{\lambda} \frac{\partial}{\partial E} \operatorname{Im} \ln G_{0}(\lambda, \lambda) \tag{8.53}
\end{align*}
$$

The subscripts 1 and 2 on the chemisorption functions refer to single- and double-adsorption, respectively. Note, however, that $\varepsilon_{a \sigma}$ and $\varepsilon_{b \sigma}$ are given by (8.2), where the indicated occupancies are both for the double-chemisorption situation.

Equation (8.53) can be simplified by recalling, from (8.15), that

$$
G_{0}(\lambda, \lambda)=\left(E-\varepsilon_{\lambda}+i s\right)^{-1}
$$

so that

$$
\begin{equation*}
\frac{\partial}{\partial E} \ln G_{0}(\lambda, \lambda)=\frac{-1}{E-\varepsilon_{\lambda}+i s} \tag{8.54}
\end{equation*}
$$

which, via (3.6) and (3.11), leads to

$$
\begin{equation*}
-\pi^{-1} \frac{\partial}{\partial E} \operatorname{Im} \ln G_{0}(\lambda, \lambda)=-\delta\left(E-\varepsilon_{\lambda}\right) \tag{8.55}
\end{equation*}
$$

Also, the principal branch of the logarithm function has the property (App. F)

$$
\begin{equation*}
\operatorname{Im} \ln (x+i y)=\tan ^{-1}\left(\frac{y}{x}\right) \tag{8.56}
\end{equation*}
$$

where

$$
\begin{equation*}
0<\tan ^{-1}(\quad)<\pi \tag{8.57}
\end{equation*}
$$

so that

$$
\begin{equation*}
\operatorname{Im} \ln \left[E-\varepsilon_{\lambda \sigma}-\Lambda_{j}+i \Delta_{j}\right]=\tan ^{-1}\left(\frac{\Delta_{j}}{E-\varepsilon_{\lambda \sigma}-\Lambda_{j}}\right) \tag{8.58}
\end{equation*}
$$

Thus, (8.55) and (8.58) in (8.53) produce the final expression for the change in the DOS, namely,

$$
\begin{align*}
\Delta \rho= & -\pi^{-1} \frac{\partial}{\partial E}\left[\tan ^{-1}\left(\frac{\Delta_{1}(E)}{E-\varepsilon_{b \sigma}-\Lambda_{1}(E)}\right)+\tan ^{-1}\left(\frac{\Delta_{2}(E)}{E-\varepsilon_{a \sigma}-\Lambda_{2}(E)}\right)\right] \\
& -\sum_{\lambda} \delta\left(E-\varepsilon_{\lambda}\right) . \tag{8.59}
\end{align*}
$$

8.5 Chemisorption and Interaction Energies

8.5.1 Chemisorption energy

As defined in Chap. 4, the chemisorption energy is the difference between the initial and final energies of the system. Although we could use the expression (4.85) for ΔE, it is more convenient to work with that of App. L, with a slight modification to account for double adsorption. Specifically, we have

$$
\begin{equation*}
\Delta E=\sum_{\sigma} \Delta E^{\sigma}+\sum_{\lambda}\left(-U\left\langle n_{\lambda+}\right\rangle\left\langle n_{\lambda-}\right\rangle+\varepsilon_{\lambda}-\varepsilon_{f}\right) \tag{8.60}
\end{equation*}
$$

with the one-electron energy change given by

$$
\begin{equation*}
\Delta E^{\sigma}=\int_{-\infty}^{\varepsilon_{f}}\left(E-\varepsilon_{f}\right) \Delta \rho(E) d E \tag{8.61}
\end{equation*}
$$

Using (8.59) for $\Delta \rho$, we can write (8.61) as

$$
\begin{equation*}
\Delta E^{\sigma}=\sum_{\ell}\left(E_{\ell \sigma}-\varepsilon_{f}\right)-\sum_{\lambda}^{\prime}\left(\varepsilon_{\lambda}-\varepsilon_{f}\right)+\int_{B}\left(E-\varepsilon_{f}\right) \Delta \rho(E) d E \tag{8.62}
\end{equation*}
$$

where the primed summation over λ means summing only over unperturbed isolated-atom energies outside the band, and B represents integration over occupied energies inside the band. The third term in (8.62) can be evaluated further, using integration by parts, to produce

$$
\begin{align*}
& \int_{B}\left(E-\varepsilon_{f}\right) \Delta \rho(E) d E=-\sum_{\lambda}^{\prime \prime}\left(\varepsilon_{\lambda}-\varepsilon_{f}\right) \\
& -\left.\pi^{-1}\left(E-\varepsilon_{f}\right)\left[\tan ^{-1}\left(\frac{\Delta_{1}(E)}{E-\varepsilon_{b \sigma}-\Lambda_{1}(E)}\right)+\tan ^{-1}\left(\frac{\Delta_{2}(E)}{E-\varepsilon_{a \sigma}-\Lambda_{2}(E)}\right)\right]\right|_{\varepsilon_{L}} ^{\varepsilon_{f}} \\
& +\pi^{-1} \int_{B}\left[\tan ^{-1}\left(\frac{\Delta_{1}(E)}{E-\varepsilon_{b \sigma}-\Lambda_{1}(E)}\right)+\tan ^{-1}\left(\frac{\Delta_{2}(E)}{E-\varepsilon_{a \sigma}-\Lambda_{2}(E)}\right)\right] d E \tag{8.63}
\end{align*}
$$

where the double-primed summation is over unperturbed isolated-atom energies inside the band. It can be shown that $\Delta_{j}(E)$ vanishes at the band edges, so that the integrated term of (8.63) vanishes. Thus, substituting (8.63) in (8.62) yields

$$
\begin{align*}
\Delta E^{\sigma} & =\sum_{\ell}\left(E_{\ell \sigma}-\varepsilon_{f}\right)-\sum_{\lambda}\left(\varepsilon_{\lambda}-\varepsilon_{f}\right)+\pi^{-1} \int_{B}\left[\tan ^{-1}\left(\frac{\Delta_{1}(E)}{E-\varepsilon_{b \sigma}-\Lambda_{1}(E)}\right)\right. \\
& \left.+\tan ^{-1}\left(\frac{\Delta_{2}(E)}{E-\varepsilon_{a \sigma}-\Lambda_{2}(E)}\right)\right] d E \tag{8.64}
\end{align*}
$$

whereby (8.60) becomes

$$
\begin{align*}
\Delta E & =\sum_{\ell \sigma} E_{\ell \sigma}-\sum_{\lambda}\left(U\left\langle n_{\lambda+}\right\rangle\left\langle n_{\lambda-}\right\rangle+\varepsilon_{\lambda}+\varepsilon_{f}\right) \\
& +\pi^{-1} \sum_{\sigma} \int_{B}\left[\tan ^{-1}\left(\frac{\Delta_{1}(E)}{E-\varepsilon_{b \sigma}-\Lambda_{1}(E)}\right)\right. \\
& \left.+\tan ^{-1}\left(\frac{\Delta_{2}(E)}{E-\varepsilon_{a \sigma}-\Lambda_{2}(E)}\right)\right] d E . \tag{8.65}
\end{align*}
$$

8.5.2 Interaction energy

The interaction energy, ΔW, is the contribution (positive or negative) to ΔE, due to the (indirect) interaction between the two adatoms. In other words, ΔW is the difference between the chemisorption energy ΔE for the doubleadsorption system and the sum of the chemisorption energies $\Delta E_{\lambda}^{(1)}(\lambda=a$ or b) for the two individual single-adsorption systems, i.e.,

$$
\begin{equation*}
\Delta W=\Delta E-\left(\Delta E_{a}^{(1)}+\Delta E_{b}^{(1)}\right) \tag{8.66}
\end{equation*}
$$

Paralleling the derivation of (8.65), we find that

$$
\begin{align*}
\Delta E_{\lambda}^{(1)}= & \sum_{\sigma} E_{\lambda \sigma}^{(1)}-\left(U\left\langle n_{\lambda+}^{(1)}\right\rangle\left\langle n_{\lambda-}^{(1)}\right\rangle+\varepsilon_{\lambda}+\varepsilon_{f}\right) \\
& +\pi^{1} \sum_{\sigma} \int_{B} \tan ^{-1}\left(\frac{\Delta_{1}(E)}{E-\varepsilon_{\lambda \sigma}^{(1)}-\Lambda_{1}(E)}\right) d E \tag{8.67}
\end{align*}
$$

with the superscript (1) denoting single-adsorption, and $E_{\lambda \sigma}^{(1)}$ the adsorptionstate energy for that case. Substituting (8.65) and (8.67) into (8.66) gives
the interaction energy

$$
\begin{align*}
\Delta W & =\sum_{\ell \sigma} E_{\ell \sigma}-\sum_{\lambda \sigma} E_{\lambda \sigma}^{(1)}+U \sum_{\lambda}\left(\left\langle n_{\lambda+}^{(1)}\right\rangle\left\langle n_{\lambda-}^{(1)}\right\rangle-\left\langle n_{\lambda+}\right\rangle\left\langle n_{\lambda-}\right\rangle\right) \\
& +\pi^{-1} \sum_{\sigma} \int_{B} \tan ^{-1}\left(\frac{\Delta_{1}(E)}{E-\varepsilon_{b \sigma}-\Lambda_{1}(E)}\right) d E \\
& +\pi^{-1} \sum_{\sigma} \int_{B} \tan ^{-1}\left(\frac{\Delta_{2}(E)}{E-\varepsilon_{a \sigma}-\Lambda_{2}(E)}\right) d E \\
& -\pi^{-1} \sum_{\lambda \sigma} \int_{B} \tan ^{-1}\left(\frac{\Delta_{1}(E)}{E-\varepsilon_{\lambda \sigma}^{(1)}-\Lambda_{1}(E)}\right) d E \tag{8.68}
\end{align*}
$$

For the case of identical adatoms, considered here, $\varepsilon_{a}=\varepsilon_{b}$. Moreover, the non-magnetic solutions have $\left\langle n_{a+}\right\rangle=\left\langle n_{a-}\right\rangle=\left\langle n_{b+}\right\rangle=\left\langle n_{b-}\right\rangle$, so that (8.68) reduces to

$$
\begin{align*}
\Delta W= & 2\left\{\sum_{\ell} E_{\ell+}-2 E_{a+}^{(1)}+U\left(\left\langle n_{a+}^{(1)}\right\rangle^{2}-\left\langle n_{a+}\right\rangle^{2}\right)\right. \\
& +\pi^{-1} \int_{B} \tan ^{-1}\left(\frac{\Delta_{1}(E)}{E-\varepsilon_{a+}-\Lambda_{1}(E)}\right) d E \\
& +\pi^{-1} \int_{B} \tan ^{-1}\left(\frac{\Delta_{2}(E)}{E-\varepsilon_{a+}-\Lambda_{2}(E)}\right) d E \\
& \left.-2 \pi^{-1} \int_{B} \tan ^{-1}\left(\frac{\Delta_{1}(E)}{E-\varepsilon_{a+}^{(1)}-\Lambda_{1}(E)}\right) d E\right\} \tag{8.69}
\end{align*}
$$

which is the form of the interaction energy we use here. However, many authors (e.g., Grimley 1967a, Einstein and Schrieffer 1973) use a simplified version in which the occupancies for single- and double-adsorption are assumed to be equal, i.e., $\left\langle n_{a+}^{(1)}\right\rangle=\left\langle n_{a+}\right\rangle$, so that the corresponding localizedstate energies also become equal, i.e., $E_{\ell+}=E_{a+}^{(1)}$. In this scenario, (8.69) reads

$$
\begin{align*}
\Delta \widehat{W}= & 2 \pi^{-1} \int_{B}\left[\tan ^{-1}\left(\frac{\Delta_{2}(E)}{E-\varepsilon_{a+}-\Lambda_{2}(E)}\right)\right. \\
& \left.-\tan ^{-1}\left(\frac{\Delta_{1}(E)}{E-\varepsilon_{a+}-\Lambda_{1}(E)}\right)\right] d E \tag{8.70}
\end{align*}
$$

which, under the further assumption that $U \rightarrow 0$, and using (8.56) and the material of $\S 8.2$, can be expressed as

$$
\begin{equation*}
\Delta \widehat{W}=2 \pi^{-1} \int_{B} \operatorname{Im} \ln \left[1-\beta_{a}^{4} G_{0}(-n, m) G_{0}(m,-n) G_{a b}^{-1}\right] d E, \tag{8.71}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{a b}=\left[G_{0}^{-1}(a, a)-\beta_{a}^{2} G_{0}(-n,-n)\right]^{2}=\left[G_{0}^{-1}(b, b)-\beta_{b}^{2} G_{0}(m, m)\right]^{2} . \tag{8.72}
\end{equation*}
$$

8.6 2H-\{ Ti, Cr, Ni, Cu \} Systems

We now look at some results, calculated via the above theory, for a pair of H atoms chemisorbed on several d-band metals (Ti, $\mathrm{Cr}, \mathrm{Ni}, \mathrm{Cu}$). Corresponding results for III-V and sp-hybrid semiconductor substrates have been given by Schranz and Davison (1998, 2000).

First, we describe the various system parameters, primarily adapted from Newns (1969). From the energy dispersion relation (2.32), the bulk states are distributed through a band, centered at α, and with width $W_{b}=4|\beta|$. The Fermi level ε_{f} is taken to be at the center of this band, and is chosen to be the energy zero (so that $\varepsilon_{f}=\alpha \equiv 0$, for all systems). The position of ε_{f}, relative to the vacuum level, is given by the work function ϕ, whence the isolated H adatom level, relative to ε_{f} is

$$
\begin{equation*}
\varepsilon_{\lambda}=\varepsilon_{\lambda}^{\prime}+\phi, \tag{8.73}
\end{equation*}
$$

where $\varepsilon_{\lambda}^{\prime}=-13.6 \mathrm{eV}$ is the H level relative to the vacuum. The Coulomb repulsion for H has the value $U=12.9 \mathrm{eV}$. These parameter values for H chemisorption on $\mathrm{Ti}, \mathrm{Cr}, \mathrm{Ni}$ and Cu are listed in Table 8.1. The difficult-to-estimate coupling parameter β_{a} is studied through a range of values $\beta_{a}=$ $i|\beta| / 3$, where $i=1,2, \ldots, 6$, following Einstein and Schrieffer (1973).

Table 8.1. System parameters for hydrogen chemisorption on $\mathrm{Ti}, \mathrm{Cr}, \mathrm{Ni}$ and Cu . For hydrogen, $\varepsilon_{\lambda}^{\prime}=-13.598 \mathrm{eV}$ and $U=12.9 \mathrm{eV}$.

Substrate	$\phi(\mathrm{eV})$	$W_{b}(\mathrm{eV})$	$\varepsilon_{\lambda}(\mathrm{eV})$
Ti	3.86	8.60	-9.74
Cr	4.56	6.10	-9.04
Ni	4.50	3.80	-9.10
Cu	4.46	2.70	-9.14

The numerical solution of the self-consistency equation (8.35) is rather difficult, so we refer readers to Schranz and Davison (1998) for a few details. However, for illustrative purposes, we present, in Fig. 8.5, a typical graph-

Fig. 8.5. Self-consistency plot of $\left\langle n_{a+}\right\rangle=N\left(\left\langle n_{a-\rangle}\right\rangle\right)$ for adatom spacings of $d=2$ (long dashed), $d=3$ (short dashed), $d=4$ (dotted), $d=5$ (long dash-dotted) and $d=\infty$ (short dash-dotted) for $2 \mathrm{H}-\mathrm{Cr}$ with $\eta=1.667$. Also plotted is line $\left\langle n_{a+}\right\rangle=\left\langle n_{a-}\right\rangle$ (solid line). Inset plot is above plot in range $0.60<\left\langle n_{a \pm}\right\rangle<0.68$. Self-consistent solutions are: $\left\langle n_{a+}\right\rangle=\left\langle n_{a-}\right\rangle=0.664$ $(d=2), 0.629(d=3), 0.653(d=4), 0.632(d=5), 0.648(d=6)$ and $0.637(d=\infty)$. After Schranz (1994).
ical solution to (8.35), for the $2 \mathrm{H}-\mathrm{Cr}$ system, and various values of d. The figure shows clearly that the double-adsorption solutions, associated with even (odd) values of d, asymptotically approach the single-adsorption solution from above (below). This behaviour, as $d \rightarrow \infty$, is a reflection of the mathematical limits (8.27).

Calculations of the chemisorption energy can be examined in two ways: (i) the effect of the choice of metal for a particular β_{a}, and (ii) the effect of β_{a} for a particular metal. The former case is investigated in Fig. 8.6(a), where ΔE is plotted versus adatom separation d, for each of the 4 metals, and for $\eta=\beta_{a} /|\beta|=1.667$. The most obvious feature is the damped oscillatory nature of ΔE as a function of d in agreement with Grimley's interaction law (8.1). Since adatoms tend to occupy the sites that minimize ΔE, we see that $d=3$ is the most favourable adatom separation. Also, by referring to Table 8.1, it can be concluded that, for fixed $\eta, \Delta E$ decreases with increasing bandwidth, which is understandable in light of the fact that the adatom level, broadened by chemisorption (§3.3.2), has a greater overlap with the occupied band for larger W_{b}, leading to a stronger interaction. Turning to case (ii), Fig. 8.6(b) shows ΔE versus d for a Ti substrate and various values of η. The damped, oscillatory behaviour is observed for all η, with the greatest amplitudes occurring for the largest values of η. It is also seen that ΔE decreases as η increases, which is as expected, because the atom-surface bond is being strengthened.

To understand the oscillatory dependence of ΔE on d, it is necessary to look more closely at the interaction energy ΔW because, as (8.66) shows, ΔE is the sum of the two single-atom chemisorption energies (which are independent of d) plus ΔW. Hence, any effect of d on ΔE must arise due to ΔW. Alternatively, one may consider the situation in terms of the adatom wavefunctions, which, as they spread out from each adatom, interfere in either a constructive or destructive fashion, thus creating oscillations in the electron density that are mirrored in the interaction. Since the wavefunctions are in or out of phase, depending on $d, \Delta E$ itself becomes a function of d. As d increases, the overlap of the wavefunctions decreases, and ΔE tends towards $\Delta E_{a}^{(1)}$.

Fig. 8.6. (a) Plot of chemisorption energy (ΔE) vs adatom separation (d) for hydrogen chemisorption on $\mathrm{Ti}, \mathrm{Cr}, \mathrm{Ni}$ and Cu with $\eta=1.667$. (b) ΔE vs d for $2 \mathrm{H}-\mathrm{Ti}$ with $\eta=0.333,0.667,1.000,1.333,1.667$ and 2.000 . After Schranz (1994).

Graphs of ΔW vs d, for the 4 metals and $\eta=1.667$, are displayed in Fig. 8.7(a). As expected, ΔW is a damped, oscillatory function of d. It is also evident that the amplitude of the oscillation increases with the bandwidth of the metal, which has a corresponding effect on ΔE, seen in Fig. 8.6(a). The effect of η on ΔW vs d is shown in Fig. 8.7(b), for a Ti substrate. We see that the amplitude of the oscillations increases with η, which can be explained as due to a stronger bond producing a greater penetration of the adatom orbitals into the substrate, thereby strengthening their interaction. Comparing Figs. 8.6 and 8.7, it is observed that ΔW is approximately an order of magnitude smaller than ΔE, which is in agreement with the finding of Einstein and Schrieffer (1973).

An analysis of the calculated values of ΔW shows that the damping factor in the indirect interaction is d^{-1}, as exemplified in Fig. 8.8, for Cr and Ti substrates and $\eta=1.667$. "Envelope" curves of the form αd^{-1} are shown, where α is chosen, so that the curve passes through the data point corresponding to $d=4$. The fit to d^{-1} is seen to improve as d increases, agreeing with the asymptotic nature of the interaction law.

Fig. 8.7. (a) Plot of interaction energy (ΔW) vs adatom separation (d) for hydrogen chemisorption on $\mathrm{Ti}, \mathrm{Cr}, \mathrm{Ni}$ and Cu with $\eta=1.667$. (b) ΔW vs d for $2 \mathrm{H}-\mathrm{Ti}$ with $\eta=0.333,0.667,1.000,1.333,1.667$ and 2.000 . After Schranz (1994).

Fig. 8.8. Interaction energy ΔW vs adatom separation d for $2 \mathrm{H}-\mathrm{Cr}$ and $2 \mathrm{H}-\mathrm{Ti}$ with $\eta=1.67$. Dashed lines are $\pm \alpha d^{-1}$ curves. After Schranz (1994).

The relative size of the contributions to ΔW in (8.69) can be assessed, by comparing ΔW to $\Delta \widehat{W}$ in (8.71), which neglects the effects of different occupancies and localized-state energies between the single- and doubleadsorption cases. Some typical results are depicted in Fig. 8.9 for a Ti substrate and $\eta=1.667$. The approximation $\Delta \widehat{W}$ is seen to either over- or under-estimate ΔW, at small adatom separations, with the approximation improving as d increases. Consequently, we conclude that the effect of the occupancies and localized-state energies is important only at small adatom separations.

Fig. 8.9. Interaction energy ΔW vs adatom separation d for $2 \mathrm{H}-\mathrm{Ti}$ with $\eta=1.667$. Dashed lines are $\pm \alpha d^{-1}$ curves. Squares represent approximate interaction energy $\Delta \widehat{W}$, neglecting changes in occupancies and localized-state energies. After Schranz (1994).

Lastly, we turn to the charge transfer, Δq, calculated from (8.36). Fig. 8.10 provides representative graphs of Δq vs d for H adsorption on the 4 metals with $\eta=1.667$, and for a Ti substrate with various η. The oscillation of Δq with d can be understood in terms of the solution of the selfconsistency equation, which was demonstrated graphically in Fig. 8.5. Those solutions were seen to be greater (less) than the single-adsorption solution for even (odd) d, and with the double-adsorption solutions approaching that for single-adsorption, in the limit of large d. Therefore, the expectation is indeed that Δq should oscillate about its single-adsorption counterpart, and reach it as $d \rightarrow \infty$.

Fig. 8.10. (a) Charge transfer (Δq) vs adatom separation (d) for hydrogen chemisorption on $\mathrm{Ti}, \mathrm{Cr}, \mathrm{Ni}$ and Cu with $\eta=1.667$. (b) Δq vs d for $2 \mathrm{H}-\mathrm{Ti}$ with $\eta=0.333,0.667,1.000,1.333,1.667$ and 2.000. After Schranz (1994).

Summarizing, it is clear that the indirect interaction between adatoms has a significant effect on the chemisorption properties of the system. Most noticeably, the chemisorption energy has a damped, oscillatory dependence on the adatom separation, as first quantified in (8.1) by Grimley. Thus, multi-atom adsorption occurs preferentially with the atoms at certain sites relative to one another.

Appendices

When you have learned what an explanation really is, then you can go on to more subtle questions.

A. Evaluation of $J_{n}(\boldsymbol{b})$

For $n=0$, evaluation of (1.86), i.e.,

$$
\begin{equation*}
J_{n}(b)=\int_{\pi / 2}^{\pi} \frac{\cos n \theta}{1+b \cos \theta} d \theta \tag{A.1}
\end{equation*}
$$

gives (Gradshteyn and Ryzhik 1980)

$$
J_{0}(b)=\frac{2}{\left(1-b^{2}\right)^{1 / 2}}\left\{\tan ^{-1}\left[\left(\frac{1-b}{1+b}\right)^{1 / 2} \tan (\theta / 2)\right]\right\}_{\pi / 2}^{\pi}
$$

which, since $b=2\left(z_{s}+z_{s}^{-1}\right)^{-1}$ by (1.85), yields

$$
J_{0}\left(z_{s}\right)=2\left(\frac{z_{s}+z_{s}^{-1}}{z_{s}-z_{s}^{-1}}\right)\left\{\tan ^{-1}\left[\left(\frac{z_{s}-1}{z_{s}+1}\right) \tan (\theta / 2)\right]\right\}_{\pi / 2}^{\pi}
$$

However, $0 \leq z_{s} \leq 1$, so

$$
\begin{equation*}
J_{0}\left(z_{s}\right)=-2 \zeta_{s}\left\{\tan ^{-1}\left[-\tau_{s} \tan (\theta / 2)\right]\right\}_{\pi / 2}^{\pi} \tag{A.2}
\end{equation*}
$$

where

$$
\zeta_{s}=\left(z_{s}^{-1}+z_{s}\right)\left(z_{s}^{-1}-z_{s}\right)^{-1}
$$

and

$$
\begin{equation*}
\tau_{s}=\left(1-z_{s}\right)\left(1+z_{s}\right)^{-1} \tag{A.3}
\end{equation*}
$$

Thus, (A.2) gives

$$
\begin{equation*}
J_{0}\left(z_{s}\right)=-2 \zeta_{s}\left(-\pi / 2+\tan ^{-1} \tau_{s}\right) \tag{A.4}
\end{equation*}
$$

If we let

$$
\begin{equation*}
z_{s}=\tan \alpha, \tag{A.5}
\end{equation*}
$$

then we can write

$$
\begin{equation*}
\tau_{s}=\tan (\pi / 4-\alpha)=\tan \phi_{s} \tag{A.6}
\end{equation*}
$$

via (A.3), so that

$$
\begin{equation*}
\phi_{s}=\pi / 4-\alpha=\pi / 4-\tan ^{-1} z_{s} \tag{A.7}
\end{equation*}
$$

by (A.5). Hence, (A.6) and (A.7) in (A.4), result in

$$
\begin{equation*}
J_{0}\left(z_{s}\right)=2 \zeta_{s}\left(\pi / 4+\tan ^{-1} z_{s}\right) \tag{A.8}
\end{equation*}
$$

Knowing $J_{0}(b)$, we can derive expressions for $J_{1}(b)$, and $J_{2}(b)$ in terms of $J_{0}(b)$ (Goodman 1994). From (A.1), we have

$$
b J_{1}+J_{0}=\int_{\pi / 2}^{\pi} \frac{b \cos \theta+1}{1+b \cos \theta} d \theta=\frac{\pi}{2}
$$

so

$$
\begin{equation*}
J_{1}(b)=b^{-1}\left[\pi / 2-J_{0}(b)\right] . \tag{A.9}
\end{equation*}
$$

Likewise, (A.1) shows that

$$
b J_{2}+2 J_{1}+b J_{0}=2 \int_{\pi / 2}^{\pi} \cos \theta d \theta=-2
$$

whence, on rearranging and using (A.9), we obtain

$$
\begin{equation*}
J_{2}(b)=-\frac{2}{b}\left[\left(1+\frac{\pi}{2 b}\right)+\left(\frac{b}{2}-\frac{1}{b}\right) J_{0}(b)\right] . \tag{A.10}
\end{equation*}
$$

B. Slater Determinant

Providing the Hamiltonian H is a sum of 1-electron operators only, i.e.,

$$
\begin{equation*}
H=\sum_{i=1}^{N} H_{i} \tag{B.1}
\end{equation*}
$$

the total wave function Ψ can be expressed as a simple Hartree product

$$
\begin{equation*}
\Psi=\phi_{1}\left(\mathbf{r}_{1}\right) \phi_{2}\left(\mathbf{r}_{2}\right) \cdots \phi_{N}\left(\mathbf{r}_{N}\right) \tag{B.2}
\end{equation*}
$$

each 1-electron function $\phi_{i}\left(\mathbf{r}_{i}\right)$ being an eigenfunction of the corresponding 1electron operator H_{i}. Since any such product, with its electronic coordinates \mathbf{r}_{i} arranged in any order, is equally acceptable and energetically equivalent, a more general solution than (B.2) can be constructed by taking a linear combination of all these products, namely,

$$
\begin{equation*}
\Psi=\sum_{P} c_{P} P\left[\phi_{1}\left(\mathbf{r}_{1}\right) \cdots \phi_{N}\left(\mathbf{r}_{N}\right)\right] \tag{B.3}
\end{equation*}
$$

c_{P} being constants and the summation being over N permutations P of the electronic coordinates (Davison 1969).

In order to satisfy the Pauli principle, however, it is necessary for Ψ in (B.3) to be antisymmetric in the interchange of any pair of electronic coordinates (including spin), which is achieved by taking

$$
\begin{equation*}
c_{P}=(-c)^{p} \tag{B.4}
\end{equation*}
$$

where p is the parity of the permutation P. On separately normalizing $\phi_{i}\left(\mathbf{r}_{i}\right)$, this becomes

$$
\begin{equation*}
c_{P}=(-1)^{p}, \tag{B.5}
\end{equation*}
$$

whence, (B.3) can be written as

$$
\begin{equation*}
\Psi=\sum_{P}(-1)^{p} P\left[\phi_{1}\left(\mathbf{r}_{1}\right) \cdots \phi_{N}\left(\mathbf{r}_{N}\right)\right] \tag{B.6}
\end{equation*}
$$

i.e., the Slater determinant

$$
\Psi=(N!)^{-1 / 2}\left|\begin{array}{c}
\phi_{1}\left(\mathbf{r}_{1}\right) \cdots \phi_{1}\left(\mathbf{r}_{N}\right) \tag{B.7}\\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\phi_{N}\left(\mathbf{r}_{1}\right) \cdots \phi_{N}\left(\mathbf{r}_{N}\right)
\end{array}\right|
$$

or

$$
\begin{equation*}
\Psi=(N!)^{-1 / 2} \operatorname{det}\left[\phi_{k}\left(\mathbf{r}_{i}\right)\right] \tag{B.8}
\end{equation*}
$$

in which $(N!)^{-1 / 2}$ is the normalization constant and $\left[\phi_{k}\left(\mathbf{r}_{i}\right)\right]$ is the matrix of the spin-orbital elements $\phi_{k}\left(\mathbf{r}_{i}\right)$ of the determinant. It is clear that Ψ in (B.7) is antisymmetric, since interchanging any pair of \mathbf{r}_{i} 's, say \mathbf{r}_{1} and \mathbf{r}_{2}, interchanges two columns of the determinant and thereby changes its sign. This is also true for the exchange of any two rows of ϕ_{k} 's.

C. Anticommutation Relations

Consider a fermion collection, where each state is either empty or occupied, i.e., $n \in\{0,1\}$. If the states are ordered, the total wave function can be expressed in terms of the state occupancy (Davydov 1991), namely,

$$
\begin{equation*}
\left|n_{1}, n_{2}, \ldots, n_{k}, \ldots\right\rangle \tag{C.1}
\end{equation*}
$$

Let us now define a creation operator, c_{k}^{\dagger}, such that, if $n_{k}=0$, its operation will yield a wave function with $n_{k}=1$ and, if $n_{k}=1$ already, its operation will give zero, since a fermion can not be created in a state that is occupied. Hence, we have

$$
\begin{equation*}
c_{k}^{\dagger}\left|n_{1}, \ldots, n_{k}, \ldots\right\rangle=(-1)^{\nu_{k}}\left(1-n_{k}\right)\left|n_{1}, \ldots, 1-n_{k}, \ldots\right\rangle, \tag{C.2}
\end{equation*}
$$

the sign being determined by the number of occupied states below k, i.e.,

$$
\begin{equation*}
\nu_{k}=\sum_{m=1}^{k-1} n_{m} \tag{C.3}
\end{equation*}
$$

since fermion wave functions are antisymmetric.
Similarly, we define the hermitean conjugate operator, c_{k}, as an annihilation operator, which produces a wave function with a fermion missing from the k th state, if it was occupied, or zero, if not. Thus, in this case, we have

$$
\begin{equation*}
c_{k}\left|n_{1}, \ldots, n_{k}, \ldots\right\rangle=(-1)^{\nu_{k}} n_{k}\left|n_{1}, \ldots, 1-n_{k}, \ldots\right\rangle \tag{C.4}
\end{equation*}
$$

By combining (C.2) and (C.4), we can construct the number operator for the k th state, viz.,

$$
\begin{equation*}
n_{k}=c_{k}^{\dagger} c_{k} \tag{C.5}
\end{equation*}
$$

which returns the k th state eigenvalue via the eigenvalue equation

$$
\begin{align*}
n_{k}\left|n_{1}, \ldots, n_{k}, \ldots\right\rangle & =n_{k}^{2}\left|n_{1}, \ldots, n_{k}, \ldots\right\rangle \\
& =n_{k}\left|n_{1}, \ldots, n_{k}, \ldots\right\rangle \tag{C.6}
\end{align*}
$$

since n_{k} is 0 or 1 . Because the n_{k} operator has only two possible eigenvalues, it can be represented by a 2×2 matrix,

$$
n_{k}=\left[\begin{array}{ll}
0 & 0 \tag{C.7}\\
0 & 1
\end{array}\right]
$$

with the eigenvectors

$$
\begin{align*}
&|0\rangle_{k}=\left|n_{1}, \ldots, 0, \ldots\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
&|1\rangle_{k}=\left|n_{1}, \ldots, 1, \ldots\right\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right] . \tag{C.8}
\end{align*}
$$

Hence, (C.2) becomes

$$
\begin{equation*}
c_{k}^{\dagger}|0\rangle_{k}=(-1)^{\nu_{k}}|1\rangle_{k}, \quad c_{k}^{\dagger}|1\rangle_{k}=0 \tag{C.9}
\end{equation*}
$$

so that

$$
c_{k}^{\dagger}=(-1)^{\nu_{k}}\left[\begin{array}{ll}
0 & 0 \tag{C.10}\\
1 & 0
\end{array}\right] .
$$

Similarly, we have

$$
c_{k}=(-1)^{\nu_{k}}\left[\begin{array}{ll}
0 & 1 \tag{C.11}\\
0 & 0
\end{array}\right]
$$

which has the required properties

$$
\begin{equation*}
c_{k}|0\rangle_{k}=0, \quad c_{k}|1\rangle_{k}=(-1)^{k}|0\rangle_{k} . \tag{C.12}
\end{equation*}
$$

We can now derive the anticommutation relations.
Let us first treat the operation on a single state, for which the relevant four equations are

$$
\left.\begin{array}{rl}
c_{k} c_{k}^{\dagger}\left|\ldots, n_{k}, \ldots\right\rangle & =\left(1-n_{k}\right)\left|\ldots, n_{k}, \ldots\right\rangle \tag{C.13}\\
c_{k}^{\dagger} c_{k}\left|\ldots, n_{k}, \ldots\right\rangle & =n_{k}\left|\ldots, n_{k}, \ldots\right\rangle \\
c_{k} c_{k}\left|\ldots, n_{k}, \ldots\right\rangle & =n_{k}\left(1-n_{k}\right)\left|\ldots, n_{k}, \ldots\right\rangle=0 \\
c_{k}^{\dagger} c_{k}^{\dagger}\left|\ldots, n_{k}, \ldots\right\rangle & =0
\end{array}\right\}
$$

From these equations, we can assemble the anticommutators (4.13),

$$
\begin{equation*}
\left[c_{k}, c_{k}\right]_{+}=\left[c_{k}^{\dagger}, c_{k}^{\dagger}\right]_{+}=0, \quad\left[c_{k}^{\dagger}, c_{k}\right]_{+}=1 \tag{C.14}
\end{equation*}
$$

Next, we investigate the two states i and j, where $i<j$. Here, we have

$$
\begin{align*}
& c_{i} c_{j}\left|\ldots, n_{i}, \ldots, n_{j}, \ldots\right\rangle=(-1)^{\nu_{j}} n_{j} c_{i}\left|\ldots n_{i}, \ldots, 1-n_{j}, \ldots\right\rangle \\
& \quad=(-1)^{\nu_{j}+\nu_{i}} n_{j} n_{i}\left|\ldots, 1-n_{i}, \ldots, 1-n_{j}, \ldots\right\rangle \tag{C.15}\\
& c_{j} c_{i}\left|\ldots, n_{i}, \ldots, n_{j}, \ldots\right\rangle=(-1)^{\nu_{i}} n_{i} c_{j}\left|\ldots, 1-n_{i}, \ldots, n_{j}, \ldots\right\rangle \\
& \quad=(-1)^{\nu_{i}+\nu_{j}-1} n_{i} n_{j}\left|\ldots, 1-n_{i}, \ldots, 1-n_{j}, \ldots\right\rangle
\end{align*}
$$

since the c_{i} operation first reduces ν_{j} by 1 , but c_{j} leaves ν_{i} unchanged, whence,

$$
\begin{equation*}
\left[c_{i}, c_{j}\right]_{+}=0 \tag{C.16}
\end{equation*}
$$

Again,

$$
\begin{align*}
& c_{i}^{\dagger} c_{j}^{\dagger}\left|\ldots, n_{i}, \ldots, n_{j}, \ldots\right\rangle=(-1)^{\nu_{j}}\left(1-n_{j}\right) c_{i}^{\dagger}\left|\ldots, n_{i}, \ldots, 1-n_{j}, \ldots\right\rangle \\
& \quad=(-1)^{\nu_{j}+\nu_{i}}\left(1-n_{j}\right)\left(1-n_{i}\right)\left|\ldots, 1-n_{i}, \ldots, 1-n_{j}, \ldots\right\rangle \tag{C.17}\\
& c_{j}^{\dagger} c_{i}^{\dagger}\left|\ldots, n_{i}, \ldots, n_{j}, \ldots\right\rangle=(-1)^{\nu_{i}}\left(1-n_{i}\right) c_{j}^{\dagger}\left|\ldots, 1-n_{i}, \ldots, n_{j}, \ldots\right\rangle \\
& \quad=(-1)^{\nu_{i}+\nu_{j}-1}\left(1-n_{i}\right)\left(1-n_{j}\right)\left|\ldots, 1-n_{i}, \ldots, 1-n_{j}, \ldots\right\rangle
\end{align*}
$$

so that

$$
\begin{equation*}
\left[c_{i}^{\dagger}, c_{j}^{\dagger}\right]_{+}=0, \quad i<j \tag{C.18}
\end{equation*}
$$

Lastly,

$$
\begin{gather*}
c_{i}^{\dagger} c_{j}\left|\ldots, n_{i}, \ldots, n_{j}, \ldots\right\rangle=(-1)^{\nu_{j}} n_{j} c_{i}^{\dagger}\left|\ldots, n_{i}, \ldots, 1-n_{j}, \ldots\right\rangle \\
=(-1)^{\nu_{i}+\nu_{j}} n_{j}\left(1-n_{i}\right)\left|\ldots, 1-n_{i}, \ldots, 1-n_{j}, \ldots\right\rangle \tag{C.19}\\
c_{j} c_{i}^{\dagger}\left|\ldots, n_{i}, \ldots, n_{j}, \ldots\right\rangle=(-1)^{\nu_{i}}\left(1-n_{i}\right) c_{j}^{\dagger}\left|\ldots, 1-n_{i}, \ldots, n_{j}, \ldots\right\rangle \\
\quad=(-1)^{\nu_{i}+\nu_{j}-1}\left(1-n_{i}\right) n_{j}\left|\ldots, 1-n_{i}, \ldots, 1-n_{j}, \ldots\right\rangle
\end{gather*}
$$

which lead to

$$
\begin{equation*}
\left[c_{i}^{\dagger}, c_{j}\right]_{+}=0, \quad i<j \tag{C.20}
\end{equation*}
$$

When $i>j$, (C.15) to (C.20) yield the same results, so we obtain

$$
\begin{equation*}
\left[c_{i}, c_{j}\right]_{+}=\left[c_{i}^{\dagger}, c_{j}^{\dagger}\right]_{+}=0, \quad\left[c_{i}^{\dagger}, c_{j}\right]_{+}=\delta_{i j} \tag{C.21}
\end{equation*}
$$

or any i and j.

D. Plemelj Formula

In view of (4.60), on putting

$$
\begin{equation*}
\varepsilon^{\prime}=\varepsilon-\varepsilon_{k} \tag{D.1}
\end{equation*}
$$

the summands denominator in (4.66) becomes

$$
\begin{equation*}
\frac{1}{\varepsilon^{\prime} \pm i s}=\frac{\varepsilon^{\prime} \mp i s}{\varepsilon^{\prime 2}+s^{2}}=\frac{\varepsilon^{\prime}}{\varepsilon^{\prime 2}+s^{2}} \mp \frac{i s}{\varepsilon^{\prime 2}+s^{2}} \tag{D.2}
\end{equation*}
$$

The first term on the right-hand side (RHS) of (D.2) gives

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \int_{-\infty}^{\infty} \frac{\varepsilon^{\prime} d \varepsilon^{\prime}}{\varepsilon^{\prime 2}+s^{2}}=\lim _{s \rightarrow 0^{+}}\left[\int_{-\infty}^{-s}+\int_{s}^{\infty}+\int_{-s}^{s}\right] \frac{\varepsilon^{\prime} d \varepsilon^{\prime}}{\varepsilon^{\prime 2}+s^{2}} \tag{D.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \int_{-\infty}^{\infty} \frac{\varepsilon^{\prime} d \varepsilon^{\prime}}{\varepsilon^{\prime 2}+s^{2}}=P \int_{-\infty}^{\infty} \frac{d \varepsilon^{\prime}}{\varepsilon^{\prime}} \tag{D.4}
\end{equation*}
$$

where P denotes the Cauchy principal value, and the third term on the RHS of (D.3) is zero, because the integrand is odd.

From the second term on the RHS of (D.2), we have

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \frac{s}{\varepsilon^{2}+s^{2}}=0, \quad \text { when } \quad \varepsilon^{\prime} \neq 0 \tag{D.5}
\end{equation*}
$$

Moreover, we can write

$$
\begin{equation*}
\int_{-c}^{c} \lim _{s \rightarrow 0^{+}} \frac{s d \varepsilon^{\prime}}{\varepsilon^{\prime 2}+s^{2}}=\lim _{s \rightarrow 0^{+}}\left[\tan ^{-1}\left(\frac{c}{s}\right)-\tan ^{-1}\left(-\frac{c}{s}\right)\right]=\pi \tag{D.6}
\end{equation*}
$$

Contrasting this with the Dirac δ-function definition, viz.,

$$
\begin{equation*}
\int_{-c}^{c} \delta\left(\varepsilon^{\prime}\right) d \varepsilon^{\prime}=1 \tag{D.7}
\end{equation*}
$$

shows that

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \frac{s}{\varepsilon^{\prime 2}+s^{2}}=\pi \delta(\varepsilon) \tag{D.8}
\end{equation*}
$$

Equations (D.4) and (D.8) with (D.2) reveal that

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \int_{-\infty}^{\infty} \frac{d \varepsilon^{\prime}}{\varepsilon^{\prime} \pm i s}=P \int_{-\infty}^{\infty} \frac{d \varepsilon^{\prime}}{\varepsilon^{\prime}} \mp i \pi \int_{-\infty}^{\infty} \delta\left(\varepsilon^{\prime}\right) d \varepsilon^{\prime} \tag{D.9}
\end{equation*}
$$

which, in shorthand form, is written as

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \frac{1}{\varepsilon^{\prime} \pm i s}=P\left(\frac{1}{\varepsilon^{\prime}}\right) \mp i \pi \delta\left(\varepsilon^{\prime}\right) \tag{D.10}
\end{equation*}
$$

it being understood that both sides are to appear in an integrand, which may also be multiplied by a well-behaved function $f\left(\varepsilon^{\prime}\right)$ (Raimes 1972).

E. Residues of $g(\varepsilon)$

Consider the function

$$
\begin{equation*}
g(\varepsilon)=f^{\prime}(\varepsilon) / f(\varepsilon) \tag{E.1}
\end{equation*}
$$

where $f(\varepsilon)$ is given by (4.91) and the contour C encloses all the $z \operatorname{eros}\left(\omega_{+}\right)$and the poles $\left(\omega_{-}\right)$of f corresponding to occupied perturbed $\left(\varepsilon_{m}\right)$ and unperturbed $\left(\varepsilon_{k}\right)$ energies, respectively.

If the order of the zero corresponding to ω_{+}is $r=r_{+}$, then we can expand $f(\varepsilon)$ near $\varepsilon=\omega_{+}$, and write

$$
\begin{equation*}
f(\varepsilon)=a_{r}\left(\varepsilon-\omega_{+}\right)^{r}+a_{r+1}\left(\varepsilon-\omega_{+}\right)^{r+1}+\cdots \tag{E.2}
\end{equation*}
$$

which on differentiating gives

$$
\begin{equation*}
f^{\prime}(\varepsilon)=r a_{r}\left(\varepsilon-\omega_{+}\right)^{r-1}+(r+1) a_{r+1}\left(\varepsilon-\omega_{+}\right)^{r}+\cdots \tag{E.3}
\end{equation*}
$$

Whence, we have

$$
g(\varepsilon)=\frac{f^{\prime}(\varepsilon)}{f(\varepsilon)}=\frac{r a_{r}\left(\varepsilon-\omega_{+}\right)^{r-1}+\cdots}{a_{r}\left(\varepsilon-\omega_{+}\right)^{r}+\cdots}
$$

or

$$
\begin{equation*}
g(\varepsilon) \simeq r\left(\varepsilon-\omega_{+}\right)^{-1} \tag{E.4}
\end{equation*}
$$

so

$$
\begin{equation*}
\left.\operatorname{Res} g(\varepsilon)\right|_{\varepsilon=\omega_{+}}=r_{+} \tag{E.5}
\end{equation*}
$$

By the same token, if the pole ω_{-}has order $r=r_{-}$, then we have the expansion

$$
\begin{equation*}
f(\varepsilon)=b_{-r}\left(\varepsilon-\omega_{-}\right)^{-r}+b_{-r+1}\left(\varepsilon-\omega_{-}\right)^{-r+1}+\cdots \tag{E.6}
\end{equation*}
$$

in which case

$$
\begin{equation*}
f^{\prime}(\varepsilon)=-r b_{-r}\left(\varepsilon-\omega_{-}\right)^{-r-1}+(-r+1) b_{-r+1}\left(\varepsilon-\omega_{-}\right)^{-r}+\cdots \tag{E.7}
\end{equation*}
$$

resulting in

$$
\begin{equation*}
\left.\operatorname{Res} g(\varepsilon)\right|_{\varepsilon=\omega_{-}}=-r_{-} \tag{E.8}
\end{equation*}
$$

F. Logarithmic Function

Let

$$
\begin{equation*}
w=\ln z, \tag{F.1}
\end{equation*}
$$

where

$$
\begin{equation*}
w=u \pm i v, \quad z=x \pm i y \tag{F.2}
\end{equation*}
$$

From (F.1), we find

$$
\begin{equation*}
z=e^{w} \tag{F.3}
\end{equation*}
$$

so (F.1) and (F.2) in (F.3) yields

$$
\begin{equation*}
e^{u}(\cos v \pm i \sin v)=x \pm i y \tag{F.4}
\end{equation*}
$$

Thus, equating real and imaginary parts gives

$$
\begin{equation*}
x=e^{u} \cos v, \quad y=e^{u} \sin v \tag{F.5}
\end{equation*}
$$

which lead to

$$
\begin{equation*}
\tan v=y / x, \quad x^{2}+y^{2}=e^{2 u} \tag{F.6}
\end{equation*}
$$

or

$$
\begin{equation*}
u=\ln \left(x^{2}+y^{2}\right)^{1 / 2}=\ln |z| \tag{F.7}
\end{equation*}
$$

by (F.2). Substituting (F.6) and (F.7) in (F.2), using (F.1), we obtain

$$
\begin{equation*}
w=\ln (x \pm i y)=\ln |x \pm i y| \pm i \tan ^{-1}(y / x) \tag{F.8}
\end{equation*}
$$

G. Range of $\tan ^{-1}$

As was pointed out by Newns (1967), for (4.99) to be complete, it is necessary to specify the range of the multi-valued function $\tan ^{-1}$.

First, we note that, if the unperturbed semi-infinite metal substrate has no surface states, then $\Delta(\varepsilon)=0$ outside the energy band. However, from (4.70), we see that poles may then occur in $G_{a a}^{\sigma}(\varepsilon)$ at energies given by the solutions of

$$
\begin{equation*}
\varepsilon-\varepsilon_{a \sigma}-\Lambda(\varepsilon)=0 \tag{G.1}
\end{equation*}
$$

which is the condition for localized states. Although (G.1) is of no significance in the band, when $\Delta(\varepsilon) \neq 0$, it does, however, imply a singularity in the argument of $\tan ^{-1}$ in (4.99), if satisfied for ε in the band. Consequently, it
is necessary to consider the roots of (G.1) (Fig. G.1) in discussing the value of $\tan ^{-1}$ in (4.99).

Fig. G.1. Diagrams showing $\Delta(\varepsilon)$ and $\Lambda(\varepsilon)$ curves along with localizedstate solutions (o) of $\varepsilon-\varepsilon_{a \sigma}-\Lambda(\varepsilon)=0$. After Newns (1967).

Consider the case where no localized (occupied) state occurs below the band, as in Fig. 4.4. As can be seen in Figs. G.1(c) and (d), the $\tan ^{-1}$ argument (ξ) starts off negative at the bottom of the band $\left(\varepsilon_{0}\right)$. If the FL is near ε_{0}, then ΔE^{σ} should be small, so that ξ is small, and must be taken in the range at and below zero. As expected, ΔE^{σ} is then negative. If the integrand falls below $-\pi / 2$, as when no localized states exist above or below the band (Fig. G.1d), then a singularity in ξ occurs. Since no sudden change can take place in ΔE^{σ} as the FL crosses over a root of (G.1), $\tan ^{-1}$ must be taken in the range $-\pi / 2$ to $-\pi$, when ξ becomes positive. Hence, $\tan ^{-1}$ in (4.99) goes smoothly away from zero in the negative direction, in the region 0 to $-\pi$, provided there is no localized state below the band.

When a localized state $\varepsilon_{\ell \sigma}$ does appear below the band, the contour C may be taken round all the eigenvalues between ε_{f} and ε_{0}, where the lowest
eigenvalue is now an unperturbed one (Fig. G.2). From its definition (4.86), ΔE^{σ} must include an additional term for the energy difference between $\varepsilon_{\ell \sigma}$ and an eigenvalue just outside C at ε_{f}, which is zero. Comparison of Figs. 4.4 and G. 2 reveals that the sign of the contribution to ΔE^{σ} is opposite to

Fig. G.2. Contour C around unperturbed (\times) and perturbed (•) band states with localized state at $\varepsilon_{\ell \sigma}$ below lower band edge ε_{0} with ε_{f} being FL.
that in (4.99), whose derivation proceeds exactly as before. It is evident from Fig. G.1(a) and (b) that ξ is initially positive at ε_{0}, whence, $\tan ^{-1}$ must now vary smoothly, going away from zero in the positive direction, in the range 0 to π.

H. Electronic States of Binary Chain

Solutions of (4.103) and (4.104) are sought by putting (Davison and Levine 1970)

$$
\begin{array}{lll}
c_{n}=u^{n}, & n & \text { odd }, \\
c_{n}=v^{n}, & n & \text { even }, \tag{H.2}
\end{array}
$$

whereby we have

$$
\begin{array}{lll}
(X-z) u^{n}=v^{n-1}-v^{n+1}, & n & \text { odd } \\
(X+z) v^{n}=u^{n+1}-u^{n-1}, & n & \text { even. } \tag{H.4}
\end{array}
$$

From (H.4), we obtain

$$
\begin{equation*}
v^{n}=\frac{u^{n+1}-u^{n-1}}{X+z} \tag{H.5}
\end{equation*}
$$

which in (H.3) leads to the characteristic equation in u, viz., the quartic

$$
\begin{equation*}
u^{4}+\gamma u^{2}+1=0 \tag{H.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=X^{2}-z^{2}-2 \tag{H.7}
\end{equation*}
$$

On choosing

$$
\begin{equation*}
\gamma=-2 \cos 2 k \tag{H.8}
\end{equation*}
$$

equation (H.7) gives

$$
\begin{equation*}
X= \pm\left(z^{2}+4 \sin ^{2} k\right)^{1 / 2} \tag{H.9}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\varepsilon_{k}^{ \pm}= \pm\left(\lambda^{2}+4 \beta^{2} \sin ^{2} k\right)^{1 / 2} \tag{H.10}
\end{equation*}
$$

via (4.105) and (4.106).
Returning to (H.6), we see that the roots are given by

$$
\begin{equation*}
u^{2}=\left[-\gamma \pm\left(\gamma^{2}-4\right)^{1 / 2}\right] / 2 \tag{H.11}
\end{equation*}
$$

which, by means of (H.8), shows that

$$
\begin{equation*}
u^{n}=e^{ \pm i n k} \tag{H.12}
\end{equation*}
$$

Inserting (H.12) in (H.5), we find

$$
\begin{equation*}
v^{n}=K e^{ \pm i n k} \tag{H.13}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\frac{2 i \beta \sin k}{\varepsilon_{k}^{ \pm}+\lambda} \tag{H.14}
\end{equation*}
$$

via (4.105) and (4.106).

I. Normalization Factor

The normalization of (4.108) requires that

$$
\begin{equation*}
\langle k \mid k\rangle=1 \tag{I.1}
\end{equation*}
$$

which is subject to the AO orthonormality condition

$$
\begin{equation*}
\left\langle n_{i} \mid n_{j}\right\rangle=\delta_{i j} . \tag{I.2}
\end{equation*}
$$

With the aid of (I.2), inserting (4.108) in (I.1) gives

$$
\begin{equation*}
R^{2}\left(\sum_{n_{1}} \sin ^{2} n_{1} k+|K|^{2} \sum_{n_{2}} \cos ^{2} n_{2} k\right)=1 \tag{I.3}
\end{equation*}
$$

in which $n_{1}\left(n_{2}\right)=n$ odd (even). From (I.3), we have

$$
\begin{align*}
& R^{2}\left[\sum_{n} \sin ^{2} n k-\sum_{n_{2}} \sin ^{2} n_{2} k+|K|^{2} \sum_{n_{2}}\left(1-\sin ^{2} n_{2} k\right)\right]=1 \\
& \quad R^{2}\left[\sum_{n=1}^{2 N} \sin ^{2} n k+|K|^{2} \sum_{n=1}^{N} 1-\left(1+|K|^{2}\right) \sum_{n_{2}} \sin ^{2} n_{2} k\right]=1 \tag{I.4}
\end{align*}
$$

Since (Jolley 1961)

$$
\begin{equation*}
\sum_{n=1}^{2 N} \sin ^{2} n k=N-\frac{\cos (2 N+1) k \sin 2 N k}{2 \sin k} \tag{I.5}
\end{equation*}
$$

(I.4) becomes

$$
\begin{align*}
& R^{2}\left\{N-\frac{\cos (2 N+1) k \sin 2 N k}{2 \sin k}+N|K|^{2}\right. \\
& \left.\quad-\left(1+|K|^{2}\right)\left[\frac{N}{2}-\frac{\cos 2(N+1) k \sin 2 N k}{2 \sin 2 k}\right]\right\}=1 \\
& R^{2}\left[\frac{N}{2}\left(1+|K|^{2}\right)-\frac{\cos (2 N+1) k \sin 2 N k}{2 \sin k}\right. \\
& \left.\quad+\left(1+|K|^{2}\right) \frac{\cos 2(N+1) k \sin 2 N k}{2 \sin 2 k}\right]=1 \tag{I.6}
\end{align*}
$$

For (4.111), we can write (I.6) as

$$
\begin{aligned}
& R^{2}\left\{\frac{N}{2}\left(1+|K|^{2}\right)-\frac{\cos j \pi \sin [2 N j \pi /(2 N+1)]}{2 \sin [j \pi / 2(2 N+1)]}\right. \\
& \left.\quad+\left(1+|K|^{2}\right) \frac{\cos [2(N+1) j \pi /(2 N+1)] \sin [2 N j \pi /(2 N+1)]}{2 \sin [2 j \pi /(2 N+1)]}\right\}=1 \\
& R^{2}\left\{\frac{N}{2}\left(1+|K|^{2}\right)-\frac{(-1)^{j} \sin [j \pi-j \pi /(2 N+1)]}{2 \sin [j \pi /(2 N+1)]}\right. \\
& \left.\quad+\left(1+|K|^{2}\right) \frac{\cos [j \pi+j \pi /(2 N+1)] \sin [2 N j \pi /(2 N+1)]}{2 \sin [2 j \pi /(2 N+1)]}\right\}=1
\end{aligned}
$$

which reduces to

$$
\begin{aligned}
& R^{2}\left\{\frac{N}{2}\left(1+|K|^{2}\right)+\frac{1}{2}\right. \\
& \left.\quad+\left(1+|K|^{2}\right)(-1)^{j} \frac{\cos [j \pi /(2 N+1)] \sin [j \pi-j \pi /(2 N+1)]}{2 \sin [2 j \pi /(2 N+1)]}\right\}=1
\end{aligned}
$$

or

$$
R^{2}\left[\frac{1}{2} N\left(1+|K|^{2}\right)+\frac{1}{2}-\frac{1}{4}\left(1+|K|^{2}\right)\right]=1
$$

whence, we find that

$$
\begin{equation*}
R=2\left[\left(1+|K|^{2}\right)(2 N-1)+2\right]^{-1 / 2} \tag{I.7}
\end{equation*}
$$

For a monatomic substrate, $|K|=1$, so

$$
\begin{equation*}
R=N^{-1 / 2} \tag{I.8}
\end{equation*}
$$

as expected.

J. Green Function of Infinite Monatomic Chain

In this appendix, we rewrite the elements of the infinite GF $\left(G_{0}\right)$ of the monatomic crystal in a more detailed form than Ueba (1980). It follows immediately from (2.49) and (2.37) that

$$
\begin{equation*}
G_{\ell_{1}-\ell_{2}}^{c} \equiv G_{0}\left(\ell_{1}, \ell_{2}\right)=t^{\left|\ell_{1}-\ell_{2}\right|} G_{0}(0,0) \tag{J.1}
\end{equation*}
$$

Moreover, from (2.43) comes

$$
\begin{equation*}
G_{0}^{c} \equiv G_{0}(0,0)=\beta^{-1}\left(t_{2}-t_{1}\right)^{-1}=t / \beta\left(1-t^{2}\right) \tag{J.2}
\end{equation*}
$$

where t is chosen according to (2.40), so that $|t|<1$. To see which specific sign is required, we must look at the different energy regions separately. To be specific, we assume that $\beta>0$.
(i) If $E>\alpha+2 \beta$, then $X>1$, so we see that $|t|<1$ requires that

$$
\begin{equation*}
t=X-\left(X^{2}-1\right)^{1 / 2}, \quad \text { for } \quad X>1 \tag{J.3}
\end{equation*}
$$

(ii) Similarly, if $E>\alpha-2 \beta$, then $X<-1$, and the condition $|t|<1$ implies that

$$
\begin{equation*}
t=X+\left(X^{2}-1\right)^{1 / 2}, \quad \text { for } \quad X<-1 \tag{J.4}
\end{equation*}
$$

(iii) Inside the band, where $|X|<1$, we take

$$
\begin{equation*}
X=\frac{E-\alpha}{2 \beta} \rightarrow \frac{E+i s-\alpha}{2 \beta}=X+i \hat{s}, \tag{J.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{s}=\frac{s}{2 \beta}=0^{+} . \tag{J.6}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
X^{2} \rightarrow(X+i \hat{s})^{2} \approx X^{2}+2 i X \hat{s}, \quad \text { to } \quad \mathrm{O}(\hat{s}) \tag{J.7}
\end{equation*}
$$

and, hence,

$$
\begin{equation*}
\left(1-X^{2}\right)^{1 / 2} \rightarrow\left(1-X^{2}-2 i X \hat{s}\right)^{1 / 2} \approx\left(1-X^{2}\right)^{1 / 2}-i \hat{s} X\left(1-X^{2}\right)^{-1 / 2} \tag{J.8}
\end{equation*}
$$

on performing a binomial expansion to $\mathrm{O}(\hat{s})$. Now set

$$
\begin{equation*}
t=X+\sigma i\left(1-X^{2}\right)^{1 / 2} \tag{J.9}
\end{equation*}
$$

with $\sigma= \pm 1$, so that $|t|<1$. To determine the correct value of σ, we insert (J.8) in (J.9), and obtain

$$
\begin{equation*}
t \approx\left[X+\sigma \hat{s} X\left(1-X^{2}\right)^{-1 / 2}\right]+i\left[\sigma\left(1-X^{2}\right)^{1 / 2}+\hat{s}\right] \tag{J.10}
\end{equation*}
$$

From (J.10) comes

$$
\begin{align*}
|t|^{2} & \approx\left[X+\sigma \hat{s} X\left(1-X^{2}\right)^{-1 / 2}\right]^{2}+\left[\sigma\left(1-X^{2}\right)^{1 / 2}+\hat{s}\right]^{2} \\
& \approx 1+2 \sigma \hat{s}\left(1-X^{2}\right)^{-1 / 2}+\mathrm{O}\left(\hat{s}^{2}\right) \tag{J.11}
\end{align*}
$$

which reveals that $|t|^{2}<1$ (and, hence, $|t|<1$) only if $\sigma=-1$. Thus,

$$
\begin{equation*}
t=X-i\left(1-X^{2}\right)^{1 / 2}, \quad \text { for } \quad|X|<1 \tag{J.12}
\end{equation*}
$$

For $\beta<0$, it is straightforward to show that the sign of t in (J.3) and (J.4) is unchanged, while it switches to " + " in (J.12).

If, in general, we write

$$
\begin{equation*}
t=X+\sigma\left(X^{2}-1\right)^{1 / 2} \tag{J.13}
\end{equation*}
$$

with $\sigma= \pm 1$ according to (J.3), (J.4) or (J.12) as appropriate, then

$$
\begin{equation*}
t^{-1}=X-\sigma\left(X^{2}-1\right)^{1 / 2} \tag{J.14}
\end{equation*}
$$

and we can recast (J.2) in the form

$$
\begin{equation*}
G_{0}(0,0)=\left[-2 \beta \sigma\left(X^{2}-1\right)^{1 / 2}\right]^{-1} \tag{J.15}
\end{equation*}
$$

K. Green Function of Infinite Semiconductor

In contrast to the concise account of Bose and Foo (1974), here, a detailed derivation is provided of the matrix elements of the Greenian for an infinite semiconductor, modelled as a 1-dimensional chain, with s-orbitals on the (even) A sites and p-orbitals on the (odd) B sites (see Fig. K.1). The site energies on the even (odd) sites are taken to be $\alpha_{A}\left(\alpha_{B}\right)$ and the bond energies to be $\pm \beta_{2}$, resulting in a Hamiltonian of the form

$$
\begin{align*}
H= & \sum_{k} \alpha_{A}|2 k\rangle\langle 2 k|+\sum_{k} \alpha_{B}|2 k+1\rangle\langle 2 k+1| \\
& +\sum_{k} \beta_{2}(|2 k\rangle\langle 2 k-1|+|2 k-1\rangle\langle 2 k|) \\
& -\sum_{k} \beta_{2}(|2 k\rangle\langle 2 k+1|+|2 k+1\rangle\langle 2 k|) . \tag{K.1}
\end{align*}
$$

Fig. K.1. Infinite 1-dimensional chain of alternating s - and p-orbitals, with site energies α_{A} and α_{B}, respectively, and bond energies $\pm \beta_{2}$. Reprinted with permission from Bose and Foo (1974). Copyright 1974 by the American Physical Society.

Consequently, the Greenian matrix equation is

$$
\begin{equation*}
\sum_{\ell}\left(E \delta_{i \ell}-H_{i \ell}\right) G(\ell, j)=\delta_{i j} \tag{K.2}
\end{equation*}
$$

where

$$
H_{i \ell}= \begin{cases}\alpha_{A}, & \ell=i \quad \text { even, } \tag{K.3}\\ \alpha_{B}, & \ell=i \text { odd, } \\ \beta_{2}, & \ell=i+1, i \quad \text { odd; or } \quad \ell=i-1, i \text { even } \\ -\beta_{2}, & \ell=i+1, i \quad \text { even; or } \quad \ell=i-1, i \quad \text { odd. }\end{cases}
$$

Putting $i=j=2 k$ in (K.2) gives

$$
\begin{equation*}
\left(E-\alpha_{A}\right) G(2 k, 2 k)+\beta_{2}[G(2 k+1,2 k)-G(2 k-1,2 k)]=1 \tag{K.4}
\end{equation*}
$$

while $i=j=2 k-1$ yields

$$
\left(E-\alpha_{B}\right) G(2 k-1,2 k-1)+\beta_{2}[G(2 k-2,2 k-1)-G(2 k, 2 k-1)]=1 .(\mathrm{K} .5)
$$

Also, $i=j-1=2 k$ provides

$$
\begin{equation*}
\left(E-\alpha_{A}\right) G(2 k, 2 k+1)+\beta_{2}[G(2 k+1,2 k+1)-G(2 k-1,2 k+1)]=0 \tag{K.6}
\end{equation*}
$$

and $i=j+1=2 k$ gives

$$
\begin{equation*}
\left(E-\alpha_{A}\right) G(2 k, 2 k-1)+\beta_{2}[G(2 k+1,2 k-1)-G(2 k-1,2 k-1)]=0 \tag{K.7}
\end{equation*}
$$

Similarly, $i=j-1=2 k-1$ results in

$$
\begin{equation*}
\left(E-\alpha_{B}\right) G(2 k-1,2 k)+\beta_{2}[G(2 k-2,2 k)-G(2 k, 2 k)]=0 \tag{K.8}
\end{equation*}
$$

and $i=j+1=2 k-1$ produces

$$
\begin{equation*}
\left(E-\alpha_{B}\right) G(2 k-1,2 k-2)+\beta_{2}[G(2 k-2,2 k-2)-G(2 k, 2 k-2)]=0 \tag{K.9}
\end{equation*}
$$

From translational symmetry and reflectional anti-symmetry considerations, we obtain the relationships:

$$
\begin{align*}
G(2 k, 2 k) & =G(2 k-2,2 k-2), \\
G(2 k+1,2 k+1) & =G(2 k-1,2 k-1), \\
G(m, m+1) & =G(m+1, m) \\
G(m, m+1) & =-G(m, m-1) \tag{K.10}\\
G(m-1, m) & =-G(m, m+1) \\
G(m-2, m) & =G(m, m+2)=G(m+2, m)
\end{align*}
$$

with m either even or odd. In particular, we see that

$$
G(2 k+1,2 k)=-G(2 k-1,2 k)=G(2 k-2,2 k-1)
$$

so (K.4) and (K.5) lead to

$$
\begin{equation*}
G(2 k-1,2 k-1)=\frac{E-\alpha_{A}}{E-\alpha_{B}} G(2 k, 2 k) . \tag{K.11}
\end{equation*}
$$

Inserting (K.8) and (K.9) in (K.4), and using (K.10), we obtain

$$
\begin{equation*}
\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right) G(2 k, 2 k)+2 \beta_{2}^{2}[G(2 k-2,2 k)-G(2 k, 2 k)]=E-\alpha_{B} \tag{K.12}
\end{equation*}
$$

We now assume (and verify below) that there exists a relationship of the form

$$
\begin{equation*}
G(2 k-2,2 k)=z G(2 k, 2 k) \tag{K.13}
\end{equation*}
$$

for some z (presumably a function of energy E). Equation (K.13) in (K.12) yields

$$
\begin{equation*}
G(2 k, 2 k)\left[\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)+2 \beta_{2}^{2}(z-1)\right]=E-\alpha_{B} \tag{K.14}
\end{equation*}
$$

Likewise, (K.6) and (K.7) in (K.5) gives

$$
\begin{align*}
& \left(E-\alpha_{B}\right) G(2 k-1,2 k-1) \\
& \quad+\frac{2 \beta_{2}^{2}}{E-\alpha_{A}}[G(2 k+1,2 k-1)-G(2 k-1,2 k-1)]=1 \tag{K.15}
\end{align*}
$$

Following (K.13), we have

$$
\begin{equation*}
G(2 k+1,2 k-1)=z G(2 k-1,2 k-1) \tag{K.16}
\end{equation*}
$$

so that (K.15) becomes

$$
\begin{equation*}
G(2 k-1,2 k-1)\left[\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)+2 \beta_{2}^{2}(z-1)\right]=E-\alpha_{A} \tag{K.17}
\end{equation*}
$$

We note that (K.14) and (K.17) together are consistent with (K.11). Using (K.16) and (K.13) in (K.7) and (K.8), respectively, gives

$$
\begin{equation*}
\left(E-\alpha_{A}\right) G(2 k, 2 k-1)+\beta_{2} G(2 k-1,2 k-1)(z-1)=0 \tag{K.18a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(E-\alpha_{B}\right) G(2 k-1,2 k)+\beta_{2} G(2 k, 2 k)(z-1)=0 \tag{K.18b}
\end{equation*}
$$

which are seen to be equivalent from (K.10) and (K.11).
Putting $i=j-2=2 k$ in (K.2) yields

$$
\begin{equation*}
\left(E-\alpha_{A}\right) G(2 k, 2 k+2)+\beta_{2}[G(2 k+1,2 k+2)-G(2 k-1,2 k+2)]=0 \tag{K.19}
\end{equation*}
$$

which, by (K.10), (K.13) and (K.16), results in

$$
\begin{equation*}
\left(E-\alpha_{A}\right) z G(2 k, 2 k)+\beta_{2}(1-z) G(2 k-1,2 k)=0 \tag{K.20}
\end{equation*}
$$

By eliminating $G(2 k-1,2 k)$ from (K.18b) and (K.20), we arrive at

$$
-\frac{\beta_{2} G(2 k, 2 k)(z-1)}{E-\alpha_{B}}=\frac{\left(E-\alpha_{A}\right) z G(2 k, 2 k)}{\beta_{2}(z-1)},
$$

which on rearranging becomes

$$
\beta_{2}^{2}(z-1)^{2}=-\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right) z
$$

or

$$
\begin{equation*}
z^{2}-p z+1=0 \tag{K.21}
\end{equation*}
$$

where

$$
\begin{equation*}
p=2-\frac{\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)}{\beta_{2}^{2}} \tag{K.22}
\end{equation*}
$$

Equation (K.21) is the condition determining possible values of z, in order that the assumptions (K.13) and (K.16) be consistent. Solving (K.21) leads to two possible values of z, namely,

$$
\begin{equation*}
z_{ \pm}=\frac{1}{2}\left(p \pm \sqrt{p^{2}-4}\right) \tag{K.23}
\end{equation*}
$$

which are real or complex, depending on the value of p and, hence, on the energy. We explore later which solution of (K.23) is the correct one in each energy region. But, for now, we note that, when $|p|>2, z$ is real, and consequently all the GFs are real, indicating that this regime corresponds to regions outside the energy bands. Conversely, for $|p|<2, z$ is complex and the GFs are also complex, so these energies lie inside the bands.

The forms of the various GFs can now be determined. Equation (K.14) with (K.22) and (K.23) gives

$$
\begin{align*}
G(2 k, 2 k) & =\left(E-\alpha_{B}\right) / \beta_{2}^{2}\left(2 z_{ \pm}-p\right) \tag{K.24a}\\
& =\left(E-\alpha_{B}\right) / \beta_{2}^{2}\left(\pm \sqrt{p^{2}-4}\right) . \tag{K.24b}
\end{align*}
$$

Similarly, from (K.17), or more directly from (K.11), comes

$$
\begin{align*}
G(2 k-1,2 k-1) & =\left(E-\alpha_{A}\right) / \beta_{2}^{2}\left(2 z_{ \pm}-p\right) \tag{K.25a}\\
& =\left(E-\alpha_{A}\right) / \beta_{2}^{2}\left(\pm \sqrt{p^{2}-4}\right) \tag{K.25b}
\end{align*}
$$

With the aid of (K.11), equation (K.18a) yields

$$
\begin{align*}
G(2 k, 2 k-1) & =\beta_{2}\left(1-z_{ \pm}\right) G(2 k-1,2 k-1) /\left(E-\alpha_{A}\right), \tag{K.26a}\\
& =\beta_{2}\left(1-z_{ \pm}\right) G(2 k, 2 k) /\left(E-\alpha_{B}\right) . \tag{K.26b}
\end{align*}
$$

All other GFs can be found easily using (K.10), (K.13) and (K.16). The forms (5.11) and (5.12) take $2 k-1 \rightarrow n$.

Returning to the question of the correct sign of z in (K.23), we first, concentrate on the regions outside the energy bands, where (as previously pointed out) $|p|>2$ and z is real. The correct value of z in (K.23) is the one such that $|z|<1$, which is a requirement to guarantee that GFs of the
form $G(n, n \pm m)$ remain bounded, for large m, under repeated application of (K.13) or (K.16). Substituting (K.22) in (K.23), we examine

$$
\begin{align*}
\left|z_{ \pm}\right|= & \frac{1}{2}\left|p \pm \sqrt{p^{2}-4}\right| \\
= & \left\lvert\, 1-\frac{\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)}{2 \beta_{2}^{2}}\right. \\
& \left. \pm \frac{\left|\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)\right|}{2 \beta_{2}^{2}}\left[1-\frac{4 \beta_{2}^{2}}{\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)}\right]^{1 / 2} \right\rvert\, \tag{K.27}
\end{align*}
$$

(i) Above or below bands

Here, $|E|$ is large enough, so that either $E>\alpha_{A, B}$ or $E<\alpha_{A, B}$, and we are in the regime where $p<-2$, whence,

$$
1-\frac{\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)}{2 \beta_{2}^{2}}<-1
$$

and

$$
\frac{\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)}{2 \beta_{2}^{2}}>0 .
$$

Hence,

$$
\begin{align*}
1 & -\frac{\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)}{2 \beta_{2}^{2}} \\
& -\frac{\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)}{2 \beta_{2}^{2}}\left[1-\frac{4 \beta_{2}^{2}}{\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)}\right]^{1 / 2}<-1 \tag{K.28}
\end{align*}
$$

Thus, referring to (K.27) and (K.28), we see that $\left|z_{-}\right|>1$, so we conclude that $\left|z_{+}\right|<1$, since $z_{+} z_{-}=1$. Consequently, in this case,

$$
\begin{equation*}
z=z_{+}=\frac{1}{2}\left(p+\sqrt{p^{2}-4}\right) \tag{K.29}
\end{equation*}
$$

is the required solution to (K.21).

(ii) In band gap

The energy E now lies between the band-gap edges α_{A} and α_{B}, so that

$$
\frac{\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)}{2 \beta_{2}^{2}}<0
$$

and $p>2$. We therefore have

$$
\begin{align*}
1 & -\frac{\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)}{2 \beta_{2}^{2}} \\
& +\frac{\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)}{2 \beta_{2}^{2}}\left[1-\frac{4 \beta_{2}^{2}}{\left(E-\alpha_{A}\right)\left(E-\alpha_{B}\right)}\right]^{1 / 2}>1 . \tag{K.30}
\end{align*}
$$

Equations (K.27) and (K.30) show that $\left|z_{+}\right|>1$ and, hence, $\left|z_{-}\right|<1$, giving us

$$
\begin{equation*}
z=z_{-}=\frac{1}{2}\left(p-\sqrt{p^{2}-4}\right) \tag{K.31}
\end{equation*}
$$

as the required solution of (K.21) in this situation.

(iii) Inside bands

For energies lying within the bands, we have $p^{2}-4<0$, so the complex solutions for z in (K.23) take the form

$$
\begin{equation*}
z=\frac{1}{2}\left(p \pm i \sqrt{4-p^{2}}\right) \tag{K.32}
\end{equation*}
$$

where the sign of the radical must be chosen so as to give a positive DOS. From (K.24b) and (K.25b), these are

$$
\begin{equation*}
\rho_{2 k}(E)= \pm \frac{E-\alpha_{B}}{\pi \beta_{2}^{2} \sqrt{4-p^{2}}} \tag{K.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{2 k-1}(E)= \pm \frac{E-\alpha_{A}}{\pi \beta_{2}^{2} \sqrt{4-p^{2}}} \tag{K.34}
\end{equation*}
$$

The band-gap edges are at α_{A} and α_{B}, which implies that the DOS's in (K.33) and (K.34) are positive for $E>\alpha_{A, B}\left(E<\alpha_{A, B}\right)$, i.e., in the upper (lower) band, where the sign is chosen to be $+(-)$, i.e., solution $z_{+}\left(z_{-}\right)$is chosen in (K.23).

L. Alternate Expression for ΔE

The expression (4.101) is sometimes difficult to work with in practice, specifically, with regard to the integrated term. An alternate expression, which may be easier to implement, utilizes the change in DOS wrought by chemisorption. Its derivation is presented here.

The change in one-electron energy (including that on the adatom) produced by chemisorption is (c.f. (4.86))

$$
\begin{align*}
\Delta E^{\sigma} & =\sum_{m} \varepsilon_{m}-\sum_{k^{\prime}} \varepsilon_{k^{\prime}}, \quad k^{\prime} \in\{k, a\} \\
& =\sum_{m} \int_{-\infty}^{\varepsilon_{f}^{\prime}} E \delta\left(E-\varepsilon_{m}\right) d E-\sum_{k^{\prime}} \int_{-\infty}^{\varepsilon_{f}} E \delta\left(E-\varepsilon_{k^{\prime}}\right) d E \tag{L.1}
\end{align*}
$$

using the definition of the Dirac δ-function, and taking $\varepsilon_{f}\left(\varepsilon_{f}^{\prime}\right)$ to be the FL of the pre-(post-) chemisorption system. The total DOS's for the system, before and after chemisorption, are defined as

$$
\begin{equation*}
\rho_{0}(E)=\sum_{k^{\prime}} \delta\left(E-\varepsilon_{k^{\prime}}\right), \quad \rho(E)=\sum_{m} \delta\left(E-\varepsilon_{m}\right) \tag{L.2}
\end{equation*}
$$

respectively. Conservation of the number of electrons implies that

$$
\begin{equation*}
\int_{-\infty}^{\varepsilon_{f}^{\prime}} \rho(E) d E=\int_{-\infty}^{\varepsilon_{f}} \rho_{0}(E) d E \tag{L.3}
\end{equation*}
$$

Using (L.2) and (L.3) in (L.1) gives

$$
\begin{align*}
\Delta E^{\sigma}= & \int_{-\infty}^{\varepsilon_{f}^{\prime}} E \rho(E) d E-\int_{-\infty}^{\varepsilon_{f}} E \rho_{0}(E) d E \\
& -\varepsilon_{f}\left[\int_{-\infty}^{\varepsilon_{f}^{\prime}} \rho(E) d E-\int_{-\infty}^{\varepsilon_{f}} \rho_{0}(E) d E\right] \\
= & \int_{\varepsilon_{f}}^{\varepsilon_{f}^{\prime}}\left(E-\varepsilon_{f}\right) \rho(E) d E+\int_{-\infty}^{\varepsilon_{f}}\left(E-\varepsilon_{f}\right) \rho(E) d E \\
& -\int_{-\infty}^{\varepsilon_{f}}\left(E-\varepsilon_{f}\right) \rho_{0}(E) d E \\
\approx & \int_{-\infty}^{\varepsilon_{f}}\left(E-\varepsilon_{f}\right) \Delta \rho(E) d E, \tag{L.4}
\end{align*}
$$

where $\Delta \rho=\rho-\rho_{0}$ is the change in total DOS upon chemisorption, and $\varepsilon_{f}^{\prime}, \varepsilon_{f}$ are assumed close enough so that the integral with those limits can be neglected. Hence, the total chemisorption energy can be written as (c.f. (4.85))

$$
\begin{equation*}
\Delta E=\sum_{\sigma} \Delta E^{\sigma}-U\left\langle n_{a+}\right\rangle\left\langle n_{a-}\right\rangle+\varepsilon_{a}-\varepsilon_{f} \tag{L.5}
\end{equation*}
$$

The Fermi energy ε_{f} (adatom energy ε_{a}) appears negatively (positively) in (L.5), because it is counted twice in the first term of (L.5), via (L.1).

M. Analytic Green Function for Electrified Atomic Chain

An alternative analytic form of the chain GF can be found from (7.35), which with (7.41) and (7.42) can be written as (Davison et al 1997)

$$
\begin{equation*}
G_{1, m}(1,1)=\frac{1}{E-\alpha-\Gamma}-\frac{\beta^{2}}{E-\alpha-2 \Gamma}-\cdots-\frac{\beta^{2}}{E-\alpha-m \Gamma} \tag{M.1}
\end{equation*}
$$

Dividing the top and bottom of each term in the CF by β leads to

$$
\begin{equation*}
G_{1, m}(1,1)=\beta^{-1}\left(\frac{1}{Z_{1}}-\frac{1}{Z_{2}}-\cdots-\frac{1}{Z_{m}}\right) \tag{M.2}
\end{equation*}
$$

where

$$
\begin{equation*}
Z_{n}=2(X-n F)=(E-\alpha-n \Gamma) / \beta \tag{M.3}
\end{equation*}
$$

In CF notation,

$$
\begin{equation*}
-\beta G_{1, m}(1,1)={\underset{n=1}{\mathcal{K}}}_{\mathcal{K}_{n}}\left(a_{n} ; b_{n}\right) \tag{M.4}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n}=-1, \quad b_{n}=Z_{n} \tag{M.5}
\end{equation*}
$$

For each $n=1, \ldots, m$, we define

$$
\begin{equation*}
S_{n}(w)=\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots+\frac{a_{n-1}}{b_{n-1}}+\frac{a_{n}}{b_{n}+w}, \tag{M.6}
\end{equation*}
$$

and note that $S_{m}(0)$ is just the required quantity (M.4). Moreover, we have

$$
\begin{equation*}
S_{1}(w)=\frac{a_{1}}{b_{1}+w} \tag{M.7}
\end{equation*}
$$

as well as the recursion relation

$$
\begin{equation*}
S_{n}(w)=S_{n-1}\left(\frac{a_{n}}{b_{n}+w}\right) \tag{M.8}
\end{equation*}
$$

By (M.3), the TB difference equation (7.15a), i.e.,

$$
\begin{equation*}
(\alpha+n \Gamma-E) c_{n}+\beta\left(c_{n+1}+c_{n-1}\right)=0 \tag{M.9}
\end{equation*}
$$

can be rewritten as

$$
Z_{n} c_{n}=c_{n+1}+c_{n-1},
$$

or as

$$
\begin{equation*}
c_{n+1}=b_{n} c_{n}+a_{n} c_{n-1} \tag{M.10}
\end{equation*}
$$

via (M.5). This recursion relation motivates similar definitions for a pair of useful sequences, viz.,

$$
\begin{equation*}
A_{n}=b_{n} A_{n-1}+a_{n} A_{n-2} \quad \text { with } \quad A_{-1}=1, A_{0}=0 \tag{M.11}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n}=b_{n} B_{n-1}+a_{n} B_{n-2} \quad \text { with } \quad B_{-1}=0, B_{0}=1 \tag{M.12}
\end{equation*}
$$

from which we see that

$$
\begin{equation*}
A_{1}=a_{1}, \quad B_{1}=b_{1} . \tag{M.13}
\end{equation*}
$$

Equations (M.12) to (M.13) show that

$$
\begin{equation*}
\frac{A_{1}+A_{0} w}{B_{1}+B_{0} w}=\frac{a_{1}}{b_{1}+w}=S_{1}(w) \tag{M.14}
\end{equation*}
$$

by reference to (M.7). We can now prove a more general relationship by induction, for suppose we have

$$
\begin{equation*}
\frac{A_{n-1}+A_{n-2} w}{B_{n-1}+B_{n-2} w}=S_{n-1}(w), \quad \text { for some } \quad n \geq 1 \tag{M.15}
\end{equation*}
$$

then

$$
\begin{align*}
\frac{A_{n}+A_{n-1} w}{B_{n}+B_{n-1} w} & =\frac{\left(b_{n} A_{n-1}+a_{n} A_{n-2}\right)+A_{n-1} w}{\left(b_{n} B_{n-1}+a_{n} B_{n-2}\right)+B_{n-1} w} \quad \text { by (M.11) and (M.12) } \\
& =\frac{\left(b_{n}+w\right) A_{n-1}+A_{n-2} a_{n}}{\left(b_{n}+w\right) B_{n-1}+B_{n-2} a_{n}} \\
& =\frac{A_{n-1}+A_{n-2} \frac{a_{n}}{b_{n}+w}}{B_{n-1}+B_{n-2} \frac{a_{n}}{b_{n}+w}} \\
& =S_{n-1}\left(\frac{a_{n}}{b_{n}+w}\right) \quad \text { via (M.15) } \\
& =S_{n}(w) \quad \text { using (M.8). } \tag{M.16}
\end{align*}
$$

From (M.14) and (M.16), we conclude that

$$
\begin{equation*}
S_{n}(w)=\frac{A_{n}+A_{n-1} w}{B_{n}+B_{n-1} w} \quad \forall n \geq 1 \tag{M.17}
\end{equation*}
$$

For (M.10) to (M.12) to be expressed in the form of the BF relation (Abramowitz and Stegun 1972), viz.,

$$
\begin{equation*}
\mathcal{C}_{\mu-1}(x)+\mathcal{C}_{\mu+1}(x)=\frac{2 \mu}{x} \mathcal{C}_{\mu}(x) \tag{M.18}
\end{equation*}
$$

in which

$$
\begin{equation*}
\frac{2 \mu}{x}=Z_{n+1}=2[X-(n+1) F] \tag{M.19}
\end{equation*}
$$

and \mathcal{C} denotes the BF J or Y of integer order, requires

$$
\begin{equation*}
x F=-1 \tag{M.20}
\end{equation*}
$$

and

$$
\begin{equation*}
x X=\nu=\text { integer }, \tag{M.21}
\end{equation*}
$$

so that (M.19) reads

$$
\begin{equation*}
\mu=\nu+n+1 \tag{M.22}
\end{equation*}
$$

Thus, both A_{n} and B_{n} can be written as linear combinations of BFs, i.e.,

$$
\begin{align*}
& A_{n}=\alpha_{1} J_{\nu+n+1}+\alpha_{2} Y_{\nu+n+1} \tag{M.23}\\
& B_{n}=\beta_{1} J_{\nu+n+1}+\beta_{2} Y_{\nu+n+1}
\end{align*}
$$

Inserting (M.23) in the initial conditions (M.11), we find

$$
\begin{align*}
A_{0} & =\alpha_{1} J_{\nu+1}+\alpha_{2} Y_{\nu+1}=0 \rightarrow \alpha_{2}=-\alpha_{1} \frac{J_{\nu+1}}{Y_{\nu+1}} \\
A_{-1} & =\alpha_{1} J_{\nu}+\alpha_{2} Y_{\nu}=1 \rightarrow Y_{\nu+1}=\alpha_{1}\left(J_{\nu} Y_{\nu+1}-J_{\nu+1} Y_{\nu}\right) \tag{M.24}
\end{align*}
$$

Because the BFs J_{ν} and Y_{ν} are linearly independent, the Wronskian

$$
\begin{equation*}
W=J_{\nu} Y_{\nu+1}-J_{\nu+1} Y_{\nu} \neq 0 \tag{M.25}
\end{equation*}
$$

whence,

$$
\begin{equation*}
\alpha_{1}=Y_{\nu+1} / W, \quad \alpha_{2}=-J_{\nu+1} / W \tag{M.26}
\end{equation*}
$$

Similarly, (M.23) in the initial conditions (M.12) produces

$$
\begin{align*}
B_{-1} & =\beta_{1} J_{\nu}+\beta_{2} Y_{\nu}=0 \rightarrow \beta_{2}=-\beta_{1} \frac{J_{\nu}}{Y_{\nu}} \tag{M.27}\\
B_{0} & =\beta_{1} J_{\nu+1}+\beta_{2} Y_{\nu+1}=1 \rightarrow Y_{\nu}=-\beta_{1} W
\end{align*}
$$

which by (M.25) gives

$$
\begin{equation*}
\beta_{1}=-Y_{\nu} / W, \quad \beta_{2}=J_{\nu} / W \tag{M.28}
\end{equation*}
$$

The required quantity

$$
\begin{equation*}
S_{m}(0)=\frac{A_{m}}{B_{m}} \tag{M.29}
\end{equation*}
$$

in (M.17), is obtained via (M.23), (M.26) and (M.28). Hence, with the aid of (M.4), we have

$$
\begin{align*}
G_{1, m}(1,1) & =-\beta^{-1} S_{m}(0) \\
& =\beta^{-1} \frac{J_{\nu+m+1}(x) Y_{\nu+1}(x)-J_{\nu+1}(x) Y_{\nu+m+1}(x)}{J_{\nu+m+1}(x) Y_{\nu}(x)-J_{\nu}(x) Y_{\nu+m+1}(x)} . \tag{M.30}
\end{align*}
$$

Bibliography

> All that mankind has done, thought, gained, or been, it is all lying in magic preservation in the pages of books.

- Thomas Carlyle

Abramowitz, A. and Stegun, I.A. (eds.) (1972), Handbook of Mathematical Functions, U.S. Department of Commerce, Washington, D.C.

Anderson, P.W. (1961), Phys. Rev. 124, 41.
Bagchi, A. and Cohen, M.H. (1974), Phys. Rev. B 9, 4103; 13, 5351.
Baldock, G.R. (1952), Proc. Cambridge Phil. Soc., 48, 457.
Baldock, G.R. (1953), Proc. Phys. Soc. A66, 2.
Bell, B. and Madhukar, A. (1976), Phys. Rev. B. 14, 4281.
Bloch, F. (1928), Z. Physik 52, 555.
Bose, S.M. and Foo, E.N. (1974), Phys. Rev. B. 10, 3534.
Burke, N.R. (1976), Surf. Sci. 58, 349.
Cannell, D.M. (1993), George Green, Mathematician and Physicist 1793-1841, Athlone Press, London.

Clark, A. (1974), The Chemisorption Bond, Academic Press, New York.

Cong, S.L. (1994), Surf. Sci. 320, 55.
Coulson, C.A. (1961), Valence, Oxford University Press, London.
Davison, S.G. (1969), in Physical Chemistry, (eds. H. Eyring, D.J. Henderson and W. Jost), Vol. III, Academic Press, New York.

Davison, S.G. and Levine, J.D. (1970), in Solid State Physics, (eds. H. Ehrenreich, F. Seitz and D. Turnbull), Vol. 25, Academic Press, New York. Russian translation by A.Y. Belenky (ed. D.A. Kirzhnits) Mir, Moscow, 1973, in commemoration of Igor Tamm's death in 1971.

Davison, S.G. and Huang, Y.S. (1974), Solid State Comm. 15, 863.
Davison, S.G., Bose, S.M. and Sulston, K.W. (1988), Surf. Sci. 200, 265.

Davison, S.G. and Stȩślicka, M. (1996), Basic Theory of Surface States, Clarendon Press, Oxford.

Davison, S.G., English, R.A., Mišković, Z.L., Goodman, F.O., Amos, A.T. and Burrows, B.L. (1997), J. Phys.: Cond. Matt. 9, 6371.

Davison, S.G., Sulston, K.W., Mišković, Z.L. and Goodman, F.O. (2001), Prog. Surf. Sci. 67, 259.

Davydov, A.S. (1991), Quantum Mechanics, Pergamon, Oxford.
Day, M.C. and Selbin, J. (1962), Theoretical Inorganic Chemistry, Reinhold, New York.

Desjonquères, M.C. and Spanjaard, D. (1993), Concepts in Surface Physics, Springer-Verlag, Berlin.

Dirac, P.A.M. (1958), The Principles of Quantum Mechanics, Oxford University Press, London.

Dreysée, H., Tomansek, D. and Bennemann, K.H. (1986), Surf. Sci. 173, 538.

Ducastelle, F., Legrand, B. and Treglia, G. (1990), Prog. Theo. Phys. Suppl. 101, 159.

Dyson, F.J. (1949), Phys. Rev. 75, 1736.
Dyson, F.J. (1993), Physics World 5, No. 8, 33.
Edwards, D.M. and Newns, D.M. (1967), Phys. Lett. A. 24, 236.
Ehrenreich, H. and Schwartz, L.M. (1976), in Solid State Physics, (eds. H. Ehrenreich, F. Seitz and D. Turnbull), Vol. 31, Academic Press, New York.

Einstein, T.L. and Schrieffer, J.R. (1973), Phys. Rev. B 7, 3629.
Einstein, T.L. (1977), Phys. Rev. B 16, 3411.
Einstein, T.L. (1978), Surf. Sci. 75, L161.
Einstein, T.L. (1996), in Handbook of Surface Science, Vol. 1 (ed. W.N. Unertl), Ch. 11.

Engel, T. and Gomer, R. (1970), J. Chem. Phys. 52, 1832.
English, R.A. (1997), Ph.D. Thesis, University of Waterloo.
English, R.A., Davison, S.G., Mišković, Z.L., Goodman, F.O., Amos, A.T. and Burrows, B.L. (1997), Prog. Surf. Sci. 54, 241.

English, R.A. and Davison, S.G. (1998), Surf. Sci. 397, 251.
Faulkner, J.S. (1982), Prog. Mat. Sci. 27, 1.
Foo, E.N., Amar, H. and Ausloss, M. (1971), Phys. Rev. B 4, 3350.
Foo, E.N. and Davison, S.G. (1976), Surf. Sci. 55, 274.
Friedel, J. (1958), Nuovo Cimento Suppl. [10], 7, 287.
Gobeli, G.W. and Allen, F.G. (1966), in Semiconductors and Semimetals, (eds. R.F. Willardson and A.C. Beer), Vol. 2, p. 275, Academic Press, New York.

Gomer, R. and Schrieffer, J.R. (1971), Surf. Sci. 25, 315.
Gonis, A., Stocks, G.M., Butler, W.H. and Winter, H. (1984), Phys. Rev. B 29, 555.

Gonis, A. (1992), Green Functions for Ordered and Disordered Systems, North Holland, Amsterdam.

Goodman, F.O. (1994), private communication.
Goodwin, E.T. (1939a), Proc. Cambridge Phil. Soc. 35, 474.
Goodwin, E.T. (1939b), Proc. Cambridge Phil. Soc. 35, 221.
Gradshteyn, I.S. and Ryzhik, I.M. (1980), Table of Integrals, Series, and Products, Academic Press, San Diego.

Grimley, T.B. (1958), Proc. Phys. Soc. 72, 103.
Grimley, T.B. (1960), Adv. Catalysis 12, 1.
Grimley, T.B. (1967a), Proc. Phys. Soc. 90, 751.
Grimley, T.B. (1967b), Proc. Phys. Soc. 92, 776.
Grimley, T.B. (1970), J. Phys. C 3, 1934.
Grimley, T.B. (1975), Prog. Surf. Memb. Sci. 9, 71.
Grimley, T.B. (1983), in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, (eds. D.A. King and D.P. Woodroff), Vol. 2, Chap. 5, North Holland, Amsterdam.

Grimley, T.B. and Torrini, M. (1973), J. Phys. C 6, 868.
Grimley, T.B. and Walker, S.M. (1969), Surf. Sci. 14, 395.
Gumhalter, B. and Brenig, W. (1995a), Prog. Surf. Sci. 48, 39.
Gumhalter, B. and Brenig, W. (1995b), Surf. Sci. 336, 326.
Gumhalter, B, Milun, M. and Wandelt, K. (1990), Selected Studies of Adsorption on Metal and Semiconductor Surfaces, Forschungszentrum Jülich GmBH.

Haberlandt, H. and Ritschl, F. (1983), J. Phys. Chem. 87, 3244.
Hacker, K. and Obermair, G. (1970), Z. Phys. 234, 1.

Haken, H. (1976), Quantum Field Theory of Solids, North Holland, Amsterdam.

Hao, Y.G. and Cooper, B.R. (1994), Surf. Sci. 312, 250.
Haydock, R. (1980), in Solid State Physics, (eds. H. Ehrenreich, F. Seitz and D. Turnbull), Vol. 35, Academic Press, New York.

Heinrichs, J. and Jones, R.O. (1972), J. Phys. C 5, 2149.
Hilsum, C. (1966), in Semiconductors and Semimetals, (eds. R.F. Willardson and A.C. Beer), Vol. 6, p. 6, Academic Press, New York.

Houston, W.V. (1940), Phys. Rev. 57, 184.
James, H.M. (1949), Phys. Rev. 76, 1611.
Jolley, L.B.W. (1961), Summation of Series, Dover, New York, p. 82.
Kalkenstein, D. and Soven, P. (1971), Surf. Sci. 26, 85.
Katsura, S., Hatta, T. and Morita, A. (1950), Sci. Rep. Tôhuku Imp. Univ. 35, 19.

Kelley, M.J. and Ponec, V. (1981), Prog. Surf. Sci. 11, 139.
Kittel, C. (1986), Introduction to Solid State Physics, Wiley, New York.
Kohn, W. (1999), Rev. Mod. Phys. 71, S59.
Korringa, J. (1958), J. Phys. Chem. Solids 7, 252.
Koss, R.W. and Lambert, L.M. (1972), Phys. Rev. B. 5, 147.
Koutecký, J. (1956), Z. Elektrochem. 60, 835.
Koutecký, J. (1957), Phys. Rev. 108, 13.
Koutecký, J. (1958), Trans. Faraday Soc. 54, 1038.
Koutecký, J. (1965), Adv. Chem. Phys. 9, 85.
Koutecký, J. (1976), Prog. Surf. Memb. Sci. 11, 1.

Kranz, H. (1978), Ph.D. Thesis, University of Toronto.
Kumar, V., Anderson, O.K. and Mookerjee, A. (eds.) (1992), Methods of Electronic Structure Calculations, World Scientific, Singapore.

Lau, K.H. and Kohn, W. (1978), Surf. Sci. 75, 69.
LeBossé, J.C., Lopez, J. and Rousseau-Violet, J. (1978), Surf. Sci. 72, 125.

LeBossé, J.C., Lopez, J. and Rousseau-Violet, J. (1979), Surf. Sci. 81, L329.

LeBossé, J.C., Lopez, J. and Rousseau-Violet, J. (1980), J. Phys. C 13, 1139.

Lennard-Jones, J.E. (1937), Proc. Roy. Soc. A 163, 101.
Liu, W.K. and Davison, S.G. (1988), Theo. Chim. Acta 74, 251.
Long, D. (1968), Energy Bands in Semiconductors, Interscience, New York, p. 111.

Lorentzen, L. and Waadeland, H. (1992), Continued Fractions with Applications, North Holland, Amsterdam.

Löwdin, P.-O. (1962), J. Math. Phys. 3, 969.
March, N.H., Young, W.H. and Sampanthar, S. (1967), The ManyBody Problem in Quantum Mechanics, Cambridge University Press, Cambridge.

Marsden, J.E. (1973), Basic Complex Analysis, Freeman, San Francisco.

Mathews, J. and Walker, R.L. (1965), Mathematical Methods of Physics, Benjamin, New York.

Merrick, M.L. Luo, W., and Fichthorn, K.A. (2003), Prog. Surf. Sci. 72, 117.

Merzbacher, E. (1970), Quantum Mechanics, Wiley, New York.

Modrak, P. (1995), Prog. Surf. Sci. 49, 227.
Modrak, P. (1997), Surf. Sci. 380, L491.
Moran-Lopez, J.L., Kerker, G. and Bennemann, K.H. (1975), Surf. Sci. 57, 540.

Muda, Y. and Hanawa, T. (1974), Japan J. Appl. Phys. Suppl. 2, Pt. 2, 867 .

Muscat, J.P. and Newns, D.M. (1978), Prog. Surf. Sci. 9, 1.
Newns, D.M. (1967), Ph.D. Thesis, University of London.
Newns, D.M. (1969), Phys. Rev. 178, 1123.
Newns, D.M. (1974), private communication.
Nordheim, L. (1931), Ann. Phys. (Leipzig) [5] 9, 607, 641.
Nordlander, P. Holloway, S. and Norskov, J.K. (1984), Surf. Sci. 136, 59.

Ohanian, H.C. (1990), Principles of Quantum Mechanics, PrenticeHall, Englewood Cliffs, New Jersey.

Ouannasser, S. Wille, L.T. and Dreyssé, H. (1997), Phys. Rev. B. 55, 14245.

Parent, L.G. Ueba, H. and Davison, S.G. (1980), Phys. Lett. A. 78, 474.

Paulson, R.H. and Schrieffer, J.R. (1975), Surf. Sci. 48, 329.
Pendry, J.B., Prêtre, A., Rous, P.J. and Martin-Moreno, L. (1991), Surf. Sci. 244, 160.

Rabinovitch, A. (1970), Phys. Lett. A. 33, 403.
Rabinovitch, A. (1971), Phys. Rev. B. 4, 1017.
Raimes, S. (1972), Many-Electron Theory, North Holland, Amsterdam.
Ruckenstein, E. and Huang, Y.S. (1973), J. Catalysis 30, 309.

Salem, L. (1966), The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York.

Schönhammer, K. Hartung, V. and Brenig, W. (1975), Z. Phys. B. 22, 143.

Schranz, D.W. (1994), Ph.D. Thesis, University of Waterloo.
Schranz, D.W. and Davison, S.G. (1998), Int. J. Quantum Chem. 67, 377.

Schranz, D.W. and Davison, S.G. (2000), J. Mol. Struct. (Theo. Chem.) 501-502, 465.

Slater, J.C. (1949), Phys. Rev. 76, 1592.
Smith, J.R. (ed.) (1980), Theory of Chemisorption, Springer-Verlag, Berlin.

Soven, P. (1967), Phys. Rev. 156, 809.
Sulston, K.W. (1986), Ph.D. Thesis, University of Waterloo.
Sulston, K.W., Davison, S.G. and Liu, W.K. (1986), Phys. Rev. B 33, 2263.

Sulston, K.W. and Bose, S.M. (1988), Phys. Rev. B 38, 1784.
Sun, Q., Xie, J.J. and Zhang, T. (1994a), Phys. Stat. Sol. (b) 185, 373.

Sun, Q., Xie, J.J. and Zhang, T. (1994b), Solid State Comm. 91, 691.
Taylor, D.W. (1967), Phys. Rev. 156, 809.
Taylor, P.L. (1970), A Quantum Approach to the Solid State, PrenticeHall, Englewood Cliffs, New Jersey.

Turek, I., Drchal, V., Kudrnovsky, J., Sob, M. and Weinberger, P. (1996), Electronic Structure of Disordered Alloys, Surfaces and Interfaces, Kluwer, Boston.

Ueba, H. (1980), Phys. Stat. Sol. (b) 99, 763.

Ueba, H. and Ichimura, S. (1979a), J. Chem. Phys. 70, 1745.
Ueba, H. and Ichimura, S. (1979b), Phys. Stat. Sol. (b) 92, 307.
Van Santen, R.A. (1975), Surf. Sci. 53, 35.
Van Santen, R.A. and Sachtler, W.M.H. (1977), Surf. Sci. 63, 358.
Van Santen, R.A. (1982), Recueil 101-4, 121.
Velický, B., Kirkpatrick, S. and Ehrenreich, H. (1968), Phys. Rev. 175, 747.

Wannier, G. (1960), Phys. Rev. 117, 432.
Wedler, G. (1976), Chemisorption: An Experimental Approach, Butterworths, London.

Whittaker, E.T. and Watson, G.N. (1965), A Course of Modern Analysis, Cambridge University Press, London, p. 119.

Xie, J.J., Zhang, T. and Lu, W.C. (1992), Solid State Comm. 82, 467.
Yao, D. and Shi, J. (2000), Am. J. Phys. 68, 278.
Yonezawa, F. (1982), in The Structure and Property of Matter, (ed. T. Matsubara), Springer-Verlag, New York.

Zak, J. (1967), Phys. Rev. Lett. 19, 1385.
Zak, J. (1968), Phys. Rev. 168, 686.
Zak, J. (1968) Phys. Rev. Lett. 20, 1477.
Zak, J. (1969), Phys. Rev. 181, 1366.
Zener, C. (1934), Proc. Roy. Soc. (Lond.) 145, 523.
Zhang, T. and Wei, S.Y. (1991), Appl. Surf. Sci. 48-49, 139.
Zhang, H. (1992a), Surf. Sci. 269-70, 331.
Zhang, H. (1992b), J. Phys.: Cond. Matt. 4, L529.
Ziman, J.M. (1965), Principles of the Theory of Solids, Cambridge University Press, Cambridge.

Author Index

Abramowitz, A., 119, 120, 190
Allen, F.G., 74
Anderson, P.W., 45, 46, 52, 140
Bagchi, A., 45
Baldock, G.R., 18
Bell, B., 45
Bloch, F., 5
Bose, S.M., 77, 102, 180, 182
Burke, N.R., 140
Cohen, M.H., 45
Cong, S.L., 102
Cooper, B.R., 83
Coulson, C.A., 2
Davison, S.G., $3,5,23,25,27,41,66$, $70,73,75,76,83,84,87,89$, 101, 102, 123, 124, 129, 135, $137,145,155,156,175,188$
Davydov, A.S., 168
Day, M.C., 65
Dirac, P.A.M., 24, 37, 43, 68, 171, 187
Ducastelle, F., 99
Dyson, F.J., 35, 36, 38, 77, 78, 79, 84, 94, 100, 104, 107, 108, 124, $125,130,142$

Edwards, D.M., 45
Ehrenreich, H., 92
Einstein, T.L., 140, 141, 154, 155, 159
Engel, T., 66

English, R.A., 129, 133, 135, 137
Faulkner, J.S., 92
Foo, E.N., 77, 100, 180, 182
Friedel, J., 92
Gobeli, J., 74
Gomer, R., 45, 66
Gonis, A., 93
Goodman, F.O., 166
Goodwin, E.T., 2, 5
Gradshteyn, I.S., 165
Grimley, T.B., 2, 11, 12, 15, 16, 20, $23,45,46,50,139,140,154$, 164
Gumhalter, B., 140
Haberlandt, H., 83, 90
Hacker, K., 118, 121
Haken, H., 36
Hao, Y.G., 83
Haydock, R., 123
Heinrichs, J., 118
Hilsum, C., 74
Houston, W.V., 117
Huang, Y.S., 66, 70, 73, 82
James, H.M., 117
Jolley, L.B.W., 177
Jones, R.O., 2, 118, 120
Kalkenstein, D., 78

Katsura, S., 118
Kelley, M.J., 110
Korringa, J., 92
Koss, R.W., 118
Kranz, H., 45, 66
Kumar, V., 93
Lambert, L.M., 118
Lau, K.H., 140
Lennard-Jones, J.E., 2
Levine, J.D., 66, 175
Liu, W.K., 83
Long, D., 74
Lorentzen, L., 126
March, N.H., 46
Marsden, J.E., 59, 61
Merrick, M.L., 141
Modrak, P., 99, 103
Moran-Lopez, J.L., 102
Muda, Y., 140
Muscat, J.P., 50
Newns, D.M., 45, 46, 50, 59, 61, 64, $65,69,109,133,155,173,174$
Nordheim, L., 92
Nordlander, P., 109
Ohanian, H.C., 120
Ouannasser, S., 110
Parent, L.G., 99, 109, 113
Paulson, R.H., 45
Pendry, J.B., 123
Ponec, V., 110
Rabinovitch, A., 118
Raimes, S., 37, 46, 172
Ruckenstein, E., 82

Sachtler, W.M.H., 102
Salem, L., 51
Schranz, D.W., 141, 146, 147, 155, 156, 158, 160, 161, 162, 163
Schwartz, L.M., 92
Slater, J.C., 46, 47, 117, 167
Soven, P., 78
Stegun, I.A., 119, 120, 190
Sulston, K.W., 99, 102, 103, 109, 111, $112,113,114,115$
Sun, Q., 83
Taylor, D.W., 93
Taylor, P.L., 36, 48, 49
Turek, I., 92, 93, 99
Ueba, H., 178
Van Santen, R.A., 102
Walker, R.L., 29
Walker, S.M., 140
Wannier, G., 118
Watson, G.N., 62
Wei, S.Y., 83
Whittaker, E.T., 62, 64
Xie, J.J., 83
Yonezawa, F., 92
Zak, J., 118
Ziman, J.M., 28

Subject Index

AB-type semiconductor
elewctronic properties of, 66
adatom, 1, 5. See also chemisorption; disordered binary alloys
adatom-substrate interaction, 29
N-states, 9
P-states, 8
charge transfer, 89
chemisorption energy, 88
density of states, 40,55
Green function, 39, 102, 139
self-energy, 40
surface Greenians, 84
adatom interactions, indirect. See indirect adatom interactions
adbond character, 12-16
homopolar bond, 12-14
existence curve, 14
many-centre homopolar state, 14
two-centre homopolar state, 14
ionic bond, 14-16
anionic state, 15
cationic state, 15
localized surface bond, 12
metallic-like bond, 16
adoccupancy, 52
and self-consistency, 58
adsorption, 1
adatom, 1
adsorbate, 1
adsorbent, 1
electron charge-transfer process, 1
chemical bond, 1
N-state, 7
P-state, 7
types
chemisorption, 1
physisorption, 1
adstate region, 42
alloy surface Green function, 99. See also disordered binary alloys
analytic Green function
for electrified atomic chain, 188
Anderson-Newns-Grimley (ANG) model, 45-74, 83
Hartree-Fock approximation (HFA), 52-65
adatom Green function, 5558
adoccupancy, 58
charge transfer, 61, 65
chemisorption energy, 61
density of states, 55-58
perturbed energy, 52
self-consistency, 58
spin-unrestricted, 51
oxygen on III-V semiconductors, 65
AB-type semiconductor, 6668
chemisorption functions, 69
second quantization formalism, 46
annihilation operators, 46-48
creation operators, 46-48
Hamiltonian in c-operator form, 48
ANG Hamiltonian, 50, 55
adatom substrate system, 50
Hartree-Fock approximation, 51
hopping term, 51
anionic state, 15. See also cationic state
annihilation operators, 46-48
antibonding states, 12. See also bonding states
anticommutation relations, 47, 168170
atomic chain, electrified. See electrified atomic chain
atomic orbital (AO), 2. See also molecular orbital
antibonding states, 12
bonding states, 12
orthonormal, 3
average t-matrix approximation (ATA), 92

Bessel-function (BF), 118
binary alloys
coherent-potential approximation, 92-98
disordered. See disordered binary alloys
structural disorder, 91
substitutional disorder, 91
binary chain
electronic states of, 175
Bloch theorem, 5, 92
bond
homopolar, 12
ionic, 14
metallic-like, 16
bonding states, 12. See also antibonding states
Brillouin-Wigner perturbation, 120
bulk band, 6
cationic state, 15. See also anionic state
Cauchy principal value, 71
CFs. See continued fractions
charge transfer, 61, 89, 148
chemisorption energy, 88
vs adatom separation, 163
chemical shift, 41
chemisorption, $1,2,21,27,38,152$. See also adsorption; monatomic substrate
adatom density of states, 40
adatom Green function, 39
adatom self-energy, 40
adatom site, 2
charge-transfer process, 35
chemical shift, 41
cyclic crystal, 27
cyclic Green function, 28
energy, 16, 20, 61, 65, 140, 152
and charge transfer, 61
meromorphic function, 61
vs. adatom separation, 158
function, 57, 69, 144
double-adsorption, 151
Hilbert transform, 70
single-adsorption, 151
spectral density, 69, 70
line broadening, 41
mean reduced energy, 19
model representation, 30
N-states, 9-12
perturbation, 103
post-chemisorption, 20
properties, 82-86, 105
reduced energy, 21
state, 8,87
surface segregation, 102
surface-energy change, 21
system
P-state wave function, 8-9
total electronic reduced energy, 20
coherent potential (CP), 93, 97
coherent-potential approximation (CPA), 92, 93. See also disordered binary alloys
multi-site, 93
single-site, 93
continued fractions, 122
c-operator form
Hamiltonian, 48-50
Coulomb (resonance) integral, 3
creation operator, 46, 119, 168
anticommutation relations, 4648
density of states, 55
Hamiltonian, 48-50
perturbed energy, 52
self-consistency, 58
cyclic crystal, 27-28
cyclic Green function, 28
DBA. See disordered binary alloy
density of states (DOS), 35-37, 40, 55. See also Dyson-equation approach
adatom, 40
change in, 148
determinant, Slater, 167
dimensionless reduced
chemisorption parameters, 5
energy, 4
surface parameter, 5
disorder
structural, 91
substitutional, 91
disordered binary alloys, 91-109
adatom Green function, 102
alloy surface Green function, 99
chemisorption properties, 105
coherent-potential approximation, 92
$\mathrm{H}-\mathrm{Au} / \mathrm{Pt}$ systems, 109
$\mathrm{H}-\mathrm{Cu} / \mathrm{Ni}$ systems, 109
double-adsorption system
occupancies, 154
Dyson-equation approach, 35-44, 84
chemisorption on monatomic substrate, 38
adatom density of states, 40
adatom Green function, 39
adatom self-energy, 40
density of states, 36-37
Dyson equation, 35
eigenvalue equation, 5, 17, 32
P-states, 8
eigenfunctions, Fock, 58
electrified atomic chain
analytic Green function for, 188
electrified substrates, 117-133
electrochemisorption, 129
H-Cr systems, 133
H-Ti systems, 133
recursive-Green-function treatment, 123
Wannier-Stark ladders, 117
electrochemisorption, 129. See also electrified substrates
electron charge-transfer process, 1. See also adsorption
energy band-structure diagram, 87
fermion, 168
Fock eigenfunctions, 58
forbidden region, 10
Green function (GF), 24, 28, 33.
See also disordered binary alloys; supported-metal catalysts
adatom, 39, 139
alloy surface, 99
analytic, 188
of infinite monatomic chain, 178
of infinite semiconductor, 180
recursive, 123
substrate surface, 2, 79-82
Greenian, 35, 36, 57
Dyson's equation, 76
matrix element, 28
metal-support, 75-79
h.c. See Hermitian conjugate

Hamiltonian
Anderson-Newns-Grimley (ANG) model, 50, 55
adatom substrate system, 50
Hartree-Fock approximation, 51
hopping term, 51
in c-operator form, 48
Hartree-Fock approximation (HFA), 52-65. See also Anderson-Newns-Grimley model
adatom Green function, 55-58
adoccupancy, 58
charge transfer, 61, 89, 148
chemisorption energy, 88
vs adatom separation, 163
chemisorption energy, 61
density of states, 55-58
perturbed energy, 52
self-consistency, 58
spin-unrestricted, 51
$\mathrm{H}-\mathrm{Au} / \mathrm{Pt}$ systems, 109. See also disordered binary alloys
$\mathrm{H}-\mathrm{Cr}$ systems, 133. See also electrified substrates
$\mathrm{H}-\mathrm{Cu} / \mathrm{Ni}$ systems, 109. See also disordered binary alloys
Hermitean conjugate, 54, 168
Hilbert transform
of spectral density, 57
$\mathrm{H}-\mathrm{Ni} / \mathrm{ZnO}$ system, 86. See also
supported-metal catalysts
ZnO band gap, 86
homopolar bond, 12
existence curve, 14
many-centre homopolar state, 14
two-centre homopolar state, 14
hopping term, 51
H-Ti systems, 133. See also electrified substrates
hydrogen chemisorption energy, 89
identity operator, 24
in-band states, 17
indirect adatom interactions, 139155
$2 \mathrm{H}-\{\mathrm{Ti}, \mathrm{Cr}, \mathrm{Ni}, \mathrm{Cu}\}$ systems, 155
adatom Green function, 139
charge transfer, 148
chemisorption energy, 152
chemisorption functions, 144
density of states, 148
interaction energy, 153
self-consistency, 148
infinite monatomic chain
Green function of, 178
infinite semiconductor
Green function of, 180
interacting system
perturbed Hamiltonian, 25
interaction energies, 152, 153
interstitial disorder, 91
ionic bond, 14-16
anionic state, 15
cationic state, 15
kinetic energy operator, 48
Kronecker delta-function, 3
ladder operators, 4
line broadening, 41
linear muffin-tin orbital (LMTO), 83
local density of states (LDOS), 37
localized states, 10
localized surface bond, 12
logarithmic function, 173
many-centre homopolar state, 14. See also homopolar bond
metal supported catalysts, 75-90
chemisorption properties, $82-$ 86

H-Ni/ZnO System, 86-90
metallic-like bond, 16
metallization, 75
metal-support Greenian, 75. See also supported-metal catalysts
molecular orbital theory, 2
adatom-substrate interaction, $2-$ 9
N-states, 9
P-states, 8
adbond character, 12-16
homopolar bond, 12
ionic bond, 14
metallic-like bond, 16
atomic orbitals, 2
antibonding states, 12
bonding states, 12
orthonormal, 3
Bloch theorem, 5
chemisorption system, 8
dimensionless reduced surface parameter, 5
eigenvalue equation, 5
Green function theory, 2
Hamiltonian operator, 3
ladder operators, 4
overlap matrix, 3
Schrödinger equation, 2
tight-binding approximation, 3
wave-function coefficients, 3
monatomic chain, infinite. See infinite semiconductor
monatomic substrate
chemisorption on, 38
adatom Green function, 39
adatom self-energy, 40
density of states, 40
multiadatom interactions, 140
nearest-neighbour (NN), 99
normalization factor, 177
N-state
wave function, 9
number operator, 47
operators
annihilation, 46-48
creation, 46-48, 119, 168
anticommutation relations, 4648
density of states, 55
Hamiltonian, 48-50
perturbed energy, 52
self-consistency, 58
Hamiltonian, 3
identity, 24
kinetic energy, 48
ladder, 4
number, 47
potential energy, 49
projection, 23-25
overlap matrix, 3
Pauli principle, 167
perturbation formulation, 25
Brillouin-Wigner, 120
interaction potential, 25
perturbed energy, 52-65
physisorption, 1. See also adsorption
Plemelj formula, 57, 171
post-chemisorption, 103
potential energy operator, 49
projection operators, 23-25
P-state, 7, 8. See also N-state
quantization formalism, second. See second quantization formalism
recursive-Green-function treatment, 123. See also electrified substrates
reduced self-energy, 40
reduced-energy spectrum, 7
resolvent technique, 23-30
chemisorption, 27
cyclic crystal, 27
cyclic Green function, 28-30
model representation, 30
cyclic crystal substrate, 33
model representation, 30-33
operator, 26
perturbation formulation, 2526
projection operators, 24-25
rigid-band model, 92
Schrödinger equation, 2
second quantization formalism, 46-
50. See also Anderson-

Newns-Grimley model
ANG Hamiltonian, 50
annihilation operators, 46
creation operators, 46
Hamiltonian in c-operator form, 48
occupation number, 46
Slater determinant, 46
state vector, 46
second quantized form, 50
self-consistency condition, 98, 148
self-energy, adatom, 40
semiconductor
AB-type
electronic properties of, 66
infinite. See infinite semiconductor
oxygen on, 65
AB-type semiconductor, 66
chemisorption functions, 69
single-adsorption system, 153. See also double-adsorption system
occupancies, 154
single-site approximation, 93, 96
single-site scatterers, 98
site (bond) energy, 3
Slater determinant, 167
state occupancy, 168
structural disorder, 91
substitutional disorder, 91
substrate
electrified, 117-133
in-band states, 17
total electronic energy, 17
substrate surface Green function, 79. See also supported-metal catalysts
supported-metal catalysts, 75
chemisorption properties, 82
$\mathrm{H}-\mathrm{Ni} / \mathrm{ZnO}$ system, 86
metal-support Greenian, 75
substrate surface Green function, 79
surface segregation, 99, 102, 110
tight-binding approximation (TBA), 3
t-matrix approximation, 92
total reduced energy, 18
virtual-crystal approximation (VCA), 92

Wannier-Stark ladder (WSL), 118
Bessel-function (BF), 117
effective-mass approximation, 117
wave-function coefficients, 3

[^0]: All Rights Reserved
 © 2006 Springer
 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

[^1]: ${ }^{1}$ The name molecular orbital was coined by Robert S. Mulliken.

[^2]: ${ }^{2}$ The Kronecker delta-function $\delta_{n, m}=1(0)$ for $n=m(n \neq m)$.
 ${ }^{3}$ Also called the Coulomb (resonance) integral.

[^3]: ${ }^{1}$ An infinite crystal can be represented by a finite one, by either allowing $N \rightarrow \infty$, or by imposing periodic boundary conditions at each end. Another way is to construct a cyclic crystal.

[^4]: ${ }^{2}$ In (2.43), μ must be small, because a cyclic crystal supports only delocalized states, so the poles at $X \neq X^{0}$ are located close to the unit-circle contour. This observation is connected with the notion of complex energy (§3.2), since, for μ small, (2.43) in (1.18) shows that $X^{ \pm} \sim X \mp i \mu$.

[^5]: ${ }^{1}$ More precisely, $s=0^{+}$is understood as the $\lim _{s \rightarrow 0^{+}}$.

[^6]: ${ }^{1}$ The adopted sign convention is simply that which leaves the sign of the determinant unchanged when a 1 -electron function is destroyed or created in the first position (i.e.,first row). The plus or minus sign arises from moving a given 1 -electron function to the first position to be destroyed, or from the first position to its correctly ordered one when it has been created.

[^7]: ${ }^{2}$ Equation (4.34) is sometimes called the spin-unrestricted HFA, because it allows solutions in which self-consistent adatom orbitals of opposite spin have different energies

[^8]: $\left(\varepsilon_{a+} \neq \varepsilon_{a-}\right.$, i.e., $\left.\left\langle n_{a+}\right\rangle \neq\left\langle n_{a-}\right\rangle\right)$, as opposed to the spin-restricted HFA, where orbitals are restricted to the same energy (i.e., $\varepsilon_{a+}=\varepsilon_{a-},\left\langle n_{a+}\right\rangle=\left\langle n_{a-}\right\rangle$).

[^9]: ${ }^{3}$ From complex variable theory (Marsden 1973), for $f(z)=g(z) / h(z), \underset{z=a}{\operatorname{Res} f(z)=}$ $g(a) / h^{\prime}(a)$.

[^10]: ${ }^{4}$ Note also, when $\alpha=\varepsilon_{f}=0$ in (1.16) and (1.18), $\varepsilon_{\theta}=2 \beta \cos \theta$, so $\varepsilon_{0}=2 \beta(<0)$.

[^11]: ${ }^{5}$ This amounts to introducing a contribution of $-\pi^{-1} \int_{\varepsilon_{0}}^{0} \pi d \varepsilon$ into (4.100), which removes the $-\varepsilon_{0}$ term (Newns 1974).

[^12]: ${ }^{6}$ Sometimes called the "weighted DOS".

[^13]: ${ }^{1}$ Note, as successive Ni atoms are added to the film, their energy levels gradually fill up the semiconductor band gap. Thus, eventually the 2-band support appears as a 1-band metal to the H adatom, and metallization of the semiconductor has been achieved.

