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How can it be that mathematics, being after all a product of human
thought independent of experience, is so admirably adapted to the
objects of reality?

— Albert Einstein
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Preface

Prefaces are like speeches before the cur-
tain; they make even the most self-forgetful
performers seem self-conscious.

— William Allen Neilson

The study of phenomena and processes at the phase boundaries of mat-
ter is the realm of the surface scientist. The tools of his trade are drawn
from across the spectrum of the various scientific disciplines. It is therefore
interesting that, in investigating the properties of such boundaries, the sur-
facist must transcend the interdisciplinary boundaries between the subjects
themselves. In this respect, he harkens back to the days of renaissance man,
when knowledge knew no boundaries, and was pursued simply for its own
sake, in the spirit of enlightenment.

Chemisorption is a gas-solid interface problem, involving the interac-
tion of a gas atom with a solid surface via a charge-transfer process, during
which a chemical bond is formed. Because of its importance in such areas as
catalysis and electronic-device fabrication, the subject of chemisorption is of
interest to a wide range of surfacists in physics, chemistry, materials science,
as well as chemical and electronic engineering. As a result, a vast litera-
ture has been created, though, despite this situation, there is a surprising
scarcity of books on the subject. Moreover, those that are available tend to
be experimentally oriented, such as, Chemisorption: An Experimental Ap-
proach (Wedler 1976). On the theoretical side, The Chemisorption Bond
(Clark 1974) provides a good introduction, but is limited in not describing
the more advanced techniques presently in use. Other treatments confine
the discussion of chemisorption to chapters or sections in works of a more

xiii



general nature, for example, Concepts in Surface Physics (Desjonquères and
Spanjaard 1993). At the advanced level, we have the Theory of Chemisorp-
tion (Smith 1980), which addresses a set of topics in chapters contributed by
recognized authorities. Perhaps the most balanced treatise is Selected Stud-
ies of Adsorption on Metal and Semiconductor Surfaces (Gumhalter, Milun
and Wandelt 1990), where both experimental and theoretical aspects are
presented on a variety of different topics. However, the level is again for
experts in the field, and lacks pedagogical detail. In contrast, the present
work attempts to provide a reasonably self-contained book, to bridge the
gap between the introductory and advanced texts that are currently avail-
able. In level and style, it mirrors the text Basic Theory of Surface States
(Davison and Stȩślicka 1992). Again, a knowledge of quantum mechanics
(Merzbacher 1970) and solid-state theory (Kittel 1986) is assumed, since the
material covered is intended for senior undergraduate and junior graduate
students.

While there are a number of different theoretical approaches to the
problem of chemisorption, only one is adopted here, namely, that of the
tight-binding Green-function method, which is both powerful and versatile.
Moreover, such an approach lends itself well to the pedagogically desirable
modellistic treatment of the subject matter in question. Indeed, even with
the present-day capabilities of computer simulation and numerical calcula-
tion, there is still a need for the model-minded theorists to provide the clar-
ity and insight afforded by analytical solutions of model systems. For, as
W. Kohn (1999) stated in his Nobel Prize lecture, “In technological applica-
tions, surfaces are generally very imperfect, both structurally and chemically.
Nevertheless, concepts developed by idealized surface science have been very
important guides for practical applications.” A further advantage of the
single-method restriction is that it enables attention to be focused on the
step-by-step details by which the calculations are performed. In this way,
students learn the procedure in a hands-on fashion, and thereby gain confi-
dence to read the current literature on their own. Of course, such a scheme
is nothing new, for long ago Aristotle said, “What we have to learn to do,
we learn by doing.”

xiv PREFACE



Turning to the chapters themselves, the book opens with a brief bio-
graphical sketch of George Green, whose famous functions play such a cru-
cial role in exploring the charge-transfer process involved in chemisorption.
Chapter 1 provides a straightforward introduction into the research area,
by describing the simple molecular-orbital picture, which invokes the tight-
binding approximation in explaining the electron localization involved in the
formation of the chemisorption states. The foundation of the Green-function
method is laid in Chapters 2 and 3, where the aid of projection operators is
enlisted in delineating the spaces defining the Green function, whose poles
and imaginary part provide the system’s eigenenergies and density of states,
respectively, within the context of the Dyson equation. The next chapter
discusses the very important issue of electron-electron interaction on the
adatom, as addressed in the Anderson-Newns-Grimley (ANG) model, and
which manifests itself in the self-consistent calculation of the chemisorption
energy and adatom charge transfer. Having incorporated the ANG model
into the Dyson-equation approach, the power and the versatility of the tech-
nique is amply demonstrated by applying it to the calculation of these same
quantities in the diverse cases of chemisorption on a variety of widely differ-
ent substrates. Since the vast majority of chemicals are produced by means
of supported catalysts, Chapter 5 deals with the case of metalized semicon-
ductor substrates, which greatly reduce the production costs involved with
purely metallic substrates. The success of the coherent-potential approxi-
mation, in describing the electronic properties of disordered binary alloys,
opens the door to the treatment of chemisorption on these substrates in
Chapter 6. Despite its long history, the Stark-ladder effect has only recently
received a satisfactory Green-function formulation, which enables the prob-
lem of chemisorption on electrified substrates to be investigated in Chapter
7. In contrast to the preceding chapters, Chapter 8 tackles the problem of
two atoms interacting with a substrate, where the conduction electrons me-
diate an indirect interaction between the adatoms. The book closes with
an extensive set of Appendices, whose additional explanatory details provide
further insight into the matters under consideration.
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ACRONYMS

In science, each new point of view calls
forth a revolution in nomenclature.

— Friedrich Engels

ANG Anderson-Newns-Grimley
AO atomic orbital
ATA average t-matrix approximation
BF Bessel function
CB conduction band
CF continued fraction
CNDO complete neglect of differential overlap
CPA coherent-potential approximation
DBA disordered binary alloy
DOS density of states
FL Fermi level
GF Green function
HFA Hartree-Fock approximation
LDOS local density of states
LMTO linear muffin-tin orbital
MO molecular orbital
NN nearest neighbour
TBA tight-binding approximation
VB valence band
VCA virtual crystal approximation
WSL Wannier-Stark ladder
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George Green (1793-1841)

Progress in science depends on new tech-
niques, new discoveries and new ideas,
probably in that order.

— Sydney Brenner

On the map of the scientific world, the city of Nottingham, England, can
justly be regarded as the Mecca of mathematical physics, since not one, but
two, of its great prophets hailed from that city’s domain. Newton was born
in the village of Woolsthorpe, a few miles beyond its eastern precincts, on
December 25, 1642 – a fitting day for a Messiah of science. Some 150 years
later, in the twilight of the 18th century, George Green arrived on the scene.

He was born into a baker’s family on July 14, 1793. Later, his father pur-
chased a windmill in Sneinton, then on the outskirts of Nottingham. Despite
the early signs of his exceptional mathematical abilities, he received only a
year or so of formal education,when he was eight years old. He then became
an apprentice in his father’s mill, which he eventually inherited. Though he
never married, Green had a family of seven children with his partner, Jane
Smith (Cannell 1993).

In those moments, when he could escape from the grind of daily life,
having access to the facilities of the Nottingham Subscription Library in
Bromley House enabled him to become acquainted with the advanced math-
ematical concepts embodied in the works of the French school of analytical
physics, which was only then being established at Cambridge. In 1828, at
the age of thirty-five, he published by subscription the paper that immortal-
ized his name. It was entitled, An Essay on the Application of Mathematical
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Analysis to the Theories of Electricity and Magnetism, and contained the
techniques we now call “Green functions”. Being an obscure publication, the
article attracted little or no attention, and Green decided he should leave
mathematics.

Fortunately, however, one of his subscribers, Sir Edward F. Bromhead,
Baronet of Thurlby Hall in Lincolnshire, became his mentor and convinced
him to continue his studies. On the death of his father, in 1829, he became
comparatively wealthy. Four years later, he sold the business and entered
Granville and Caius College, Cambridge, Bromhead’s old alma mater. He
graduated as the fourth Wrangler in the Tripos of 1837. During his two years
of graduate work, he published six more papers on mathematical physics, and
was elected a Fellow of Caius College. Sadly, his health now began to fail
and he returned to Sneinton, where death overtook him in 1841.

It was only four years later that Lord Kelvin (née William Thomson)
came across the Essay. He kindly arranged for it to be reprinted in Crelle’s
Journal, and enthusiastically promoted Green’s work in Britain and Europe.
The enormous impact of Green’s legacy on today’s world of science has been
clearly assessed by Freeman Dyson (1993).

In light of the lack of recognition he received during his lifetime, the 1993
celebration of the 200th anniversary of his birth afforded a belated opportu-
nity to pay tribute to the genius of this self-taught man. London rendered
him due homage with the dedication of a memorial plaque in Westminster
Abbey, Cambridge with a stained-glass window in the Granville and Caius
College Hall, and Nottingham with special ceremonies at the restored Green’s
windmill and Science Centre in Sneinton.

xx GREEN (1793-1841)



Chapter 1

Molecular-Orbital Picture

Order and simplification are the first steps
toward the mastery of a subject – the actual
enemy is the unknown.

— Thomas Mann

Adsorption is a process whereby an atom, interacting with a solid, adheres
to its surface to become an adsorbed atom, or, more briefly, an adatom. In
the language of adsorption, we sometimes call the adatoms the adsorbate
and the solid the adsorbent (or substrate). An approximate measure of the
strength of the adsorbate-adsorbent interaction is provided by the magnitude
of the heat of adsorption (∆H). For low ∆H ∼ 5 kcal/mole (∼ 0.2 eV),
say, physical adsorption (physisorption) is said to occur, while, for high
∆H ∼ 50 kcal/mole (∼ 2 eV), say, chemical adsorption (chemisorption)
arises. The former (latter) is a weak (strong) interaction involving no (some)
electron transfer. Henceforth, our task will be to study the properties and
nature of the chemical bond, formed by the electron charge-transfer process,
between the adatom and the substrate.

1 

Although the first quantal studies of atom-surface interactions occurred
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in the 1930s (e.g., see Lennard-Jones 1937, Goodwin 1939a), because of
World-War II, nearly two decades had to elapse before theoretical surfacists
turned their attention to chemisorption again in the latter-half of the 1950s
(e.g., see Koutecký 1956, 1957; Grimley 1958). The initial progress, in the
post-war years, was reviewed by Grimley (1960), who adopted the straight-
forward molecular orbital (MO)1 approach, which had proved so successful in
discussing atomic binding in molecules. It is therefore appropriate for us to
follow in Grimley’s footsteps and ‘paint’ the simplest picture of chemisorp-
tion with the MO ‘brush’. In doing so, we pave the way for the introduction
and development of the Green function theory, in the following chapters.

1.1 Adatom-Substrate Interaction

To find the electronic states of the system, we are interested in solving the
Schrödinger equation and obtaining the wave functions (MO’s) and the en-
ergy levels for the entire system, in this case, the adatom and substrate. We
model the latter by a chain of identical atoms numbered 0, 1, . . . , N − 1
(large) and denote the former by λ. With each atom, we associate an atomic
orbital (AO), φ(r,m), so that m = λ is one set and m = 0, 1, . . . , N − 1
is the other set, giving a total of (N +1) 1-electron AO’s in the chemisorp-
tion system (Fig. 1.1).

Fig. 1.1. Chemisorption model, where αa(βa) is adatom site (bond) energy,
αs(α) surface (chain) atom site energy and β chain bond energy.

In MO theory (Coulson 1961), we assume that the wave function of the
kth state of the system may be written as a linear combination of the AO’s,
i.e.,

ψk(r) =
∑

m

ck(m)φ(r,m) , (1.1)

which must satisfy the 1-electron Schrödinger equation

Hψk(r) = Ekψk(r) , (1.2)

1The name molecular orbital was coined by Robert S. Mulliken.
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H being the effective 1-electron Hamiltonian operator and Ek the energy
of the kth state. Inserting (1.1) in (1.2) leads to

∑

m

H(n,m)ck(m) = Ek

∑

m

S(n,m)ck(m) , (1.3)

where

S(n,m) =

∫
φ∗(r, n)φ(r,m)dr (1.4)

is the overlap matrix between the nth and mth AO’s and

H(n,m) =

∫
φ∗(r, n)Hφ(r,m)dr . (1.5)

If the AO’s are taken to be orthonormal, then (1.4) gives2

S(n,m) = δn,m , (1.6)

which means that overlap is neglected and (1.3) reduces to

∑

m

H(n,m)ck(m) = Ekck(n) (1.7)

for the wave-function coefficients ck(m) and the energies Ek. In order to
make (1.7) tractable, we introduce the tight-binding approximation (TBA)
(Davison and Stȩślicka 1996), namely,

H(n,m) = αδn,m + β(δn+1,m + δn−1,m), m �= 0, λ , (1.8)

α (β) being the site (bond) energy.3 Equation (1.7) may now be written as

(Ek − α)ck(n) = β[ck(n + 1) + ck(n − 1)], n �= 0, λ , (1.9)

i.e., the Schrödinger equation has been replaced by a second-order difference
equation with constant coefficients. Because of their different electronic en-
vironments, to those of the chain atoms, the adsorbed and surface atoms
at n = λ and n = 0, respectively, are characterized by the different
site energies αa and αs (Fig. 1.1). Similarly, the bond between them is

2The Kronecker delta-function δn,m = 1(0) for n = m(n �= m).
3Also called the Coulomb (resonance) integral.
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denoted by βa instead of β. For these atoms, (1.9) yields the boundary
conditions for m = 0 and λ, viz.,

(Ek − αs)ck(0) = βck(1) + βack(λ) , (1.10)

(Ek − αa)ck(λ) = βack(0) . (1.11)

In addition, we require the wave function to vanish at the chain end (m =
N), so we put

ck(N) = 0 . (1.12)

Since N is large, this condition does not interfere with those near m = 0.
Having completely specified the chemisorption problem, let us now solve

(1.9) subject to the above boundary conditions. Utilizing the translational
symmetry of a periodic atomic chain, we define the ladder operators, L±,
via

L±ck(n) = ck(n ± 1) , (1.13)

noting that
L+L− = 1 . (1.14)

Hence, (1.9) may be expressed in the form

(Ek − α)ck(n) = β(L+ + L−)ck(n) ,

which by (1.14) gives
L2
± − 2XkL± + 1 = 0 , (1.15)

with
Xk = (Ek − α)/2β (1.16)

being the dimensionless reduced energy. Solving (1.15), we find

L± = Xk ± (X2
k − 1)

1
2 . (1.17)

On introducing the unknown parameter θk, by setting

Xk = cos θk , (1.18)

we obtain
L± = e±iθk , (1.19)

so that (1.13) becomes

ck(n ± 1) = e±iθkck(n) , (1.20)
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where the θk-values are determined from the boundary conditions. Repeated
operations of L± on ck(n) leads to the well-known Bloch theorem (1928),
i.e.,

ck(n ± 	) = L�
±ck(n) = e±i�θkck(n) , (1.21)

by (1.19). Equation (1.21) suggests that we write the general solution of
(1.9) in the form

ck(n) = (aeinθk + be−inθk)ck(0)

or as
ck(n) = A cos nθk + B sin nθk . (1.22)

Imposing (1.12) on (1.22) leads to

ck(n) = A
sin(N − n)θk

sin Nθk

, n �= λ . (1.23)

With the aid of (1.16) and (1.18), inserting (1.23) in (1.11) gives

ck(λ) = ηA(za + 2 cos θk)
−1 , (1.24)

where
η = βa/β , za = (α − αa)/β (1.25)

are the dimensionless reduced chemisorption parameters for the adbond and
adatom, respectively. After some manipulation, (1.16), (1.18), (1.23) and
(1.24) in (1.10) lead to the eigenvalue equation for θk, namely,

(za + 2 cos θk)

[
zs +

sin(N + 1)θk

sin Nθk

]
= η2 , (1.26)

where
zs = (α − αs)/β, (1.27)

is the dimensionless reduced surface parameter.
For βa = 0 (η = 0), the adatom is detached from the surface atom

(Fig. 1.1), and θk is given by the zeros of the two terms in brackets on the
left-hand side of (1.26). The first (second) term represents the single (N)
state(s) contributed by the adatom (substrate) for a total of (N +1) states.
The graphical solution of the [term] is displayed in Fig. 1.2 for several values
of zs (Goodwin 1939b, Davison and Stȩślicka 1996). Asymptotes occur at
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θk = kπ/N (k = 1, 2, . . . , N), while the intercepts on the ordinate axes at
θk = 0 and π are ±(1 + N−1), which, for N → ∞, become ±1.
Thus, for any horizontal line in the range | zs | ≤ 1, there are N real
roots, giving N real values of θk.

Fig. 1.2. Graphical solutions of −zs k k

.

These real solutions have reduced energies (1.18) lying in the bulk band
| Xk | ≤ 1 (Fig. 1.3), with delocalized periodic wave functions (1.23) spread
along the chain. When zs > 1(zs < −1), a real root disappears at θk =
0(θk = π), and only (N − 1) real solutions remain. To account for these
lost solutions, it is necessary to take θk complex and write

θc
k = ξk + iµk, µk real > 0 , (1.28)

in which case, (1.18) becomes

Xk = cos ξk cosh µk − i sin ξk sinh µk . (1.29)

However, Xk must always be real, so the imaginary part in (1.29) must be
zero. Since µk > 0, sinh µk �= 0, so sin ξk = 0, which means

ξk = jπ; j = 0, 1, . . . , (1.30)

where, to avoid repeated solutions, only j = 0 and 1 are required, so
that the two missing solutions are given by

θc
k = iµk and π + iµk . (1.31)

= sin(N + 1)θ / sin Nθ .
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Fig. 1.3. Reduced-energy spectrum showing in-band variation of X(θk) =
cos θk between band edges at Xk = ±1 for |zs| ≤ 1 and θk real. P − (N−)
localized states appear above (below) band for θk complex and |zs| > 1.

Returning to (1.26), with βa �= 0(η �= 0), we see that it has at least
(N − 1) real roots, whose corresponding wave functions are delocalized and
have reduced energies in the bulk band (1.18) of width ∆Xk = 2. The
remaining two roots may both be real, so that they too lie in the band,
and the system supports only delocalized states. If, however, one or both of
the remaining roots have θk-values of the form (1.31), then a new situation
arises, which requires further analysis. Inserting (1.31) in (1.18) gives

X±
k = ± cosh µk

>
< ± 1 , (1.32)

which shows that X+
k (X−

k ) is positive (negative) and lies above (below)
the bulk-band edge at Xk = 1(Xk = −1). Since Xk > 0(Xk < 0) for
θc

k = iµk(θ
c
k = π+iµk), a P-state (N -state) is said to occur at this θk-value,

so that sgn(Xk) provides a useful means of classifying these states. For N
large, we note that

sin(N ± n)θc
k

sin Nθc
k

→ e∓inθc
k , (1.33)
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and

(za + 2 cos θc
k)(zs + e−iθc

k) = η2 . (1.35)

1.1.1 P-states

When θc
k = iµk, the chemisorption system has:

Xk = cosh µk , (1.36)

ck(n) = Ae−nµk , n �= λ , (1.37)

ck(λ) = ηA(za + 2 cosh µk)
−1 , (1.38)

(za + 2 cosh µk)(zs + eµk) = η2 , (1.39)

by (1.32), (1.34), (1.24) and (1.35), respectively. Equation (1.37) shows that
a P-state wave function is exponentially damped into the substrate, thus
localizing the electron near the surface. The wave function of the chemisorp-
tion state localized at the adatom is given in (1.38). The µk-values for these
P-states are determined by the eigenvalue equation (1.39), and their energies
Xk (1.36) lie above the energy band of the delocalized states. In particular,
for zs = −2, za = −4 and η2 = 1, (1.39) reduces to

(eµk − 4)(eµk − 2) = 2e−µk . (1.40)

Plotting the parabola (broken curve) on the left of (1.40) with the rectangular
hyperbola (solid curve) on the right (Fig. 1.4) shows that this cubic equation
in eµk has three roots given by the intersections p1, p2 and p3. However,
since eµk /> 1 at p1, this root is rejected, so (1.40) has two real solutions,
p2 and p3, whose corresponding µk-values give rise to two P-states.

in which case, (1.23) and (1.26) become

ck(n) = Aeinθc
k , n �= λ , (1.34)
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Fig. 1.4. Graphical solutions of (1.40).

1.1.2 N -states

Here, θc
k = π + iµk, and the chemisorption equations are:

Xk = − cosh µk , (1.41)

ck(n) = A(−1)ne−nµk , n �= λ, (1.42)

ck(λ) = ηA(za − 2 cosh µk)
−1, (1.43)

(za − 2 cosh µk)(zs − eµk) = η2, (1.44)

via the same equations as in §1.1.1. We now see that any N -state wave
function (1.42) is a damped oscillatory one, decaying into the substrate, and
has an energy Xk (1.41) below the bulk-state band. The N -state µk-values
are provided by (1.44).
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As the µk-values increase, the energy levels of the P- and N -states move
further from the band edges, while the localization of their wave functions
becomes more concentrated.

Since the presence of chemisorption (P and N ) states gives rise to the
formation of localized covalent bonds between the adatom and substrate, we
are interested in how the occurrence of localized states is governed by the
values of the parameters za, zs and η, which define the adatom-substrate
interaction. Localized states exist, if one or both of (1.39) and (1.44) have
real roots µk, which, since cosh µk ≥ 1 and eµk ≥ 1, exist for a given
η in regions of the zazs-plane depicted by the two hyperbolas

(za ± 2)(zs ± 1) = η2 . (1.45)

The graphs of (1.45) are drawn in Fig. 1.5 for η2 = 1. As can be seen,
localized P- and N -states occur in the six regions indicated, where P2

denotes two P-states, PN means one P-state and one N -state, etc. The
shaded area represents the region where there are no localized states, i.e.,
only delocalized bulk states exist, so the effect of the adatom is to introduce
an extra delocalized state into the band, and any adatom-chain binding is
achieved without the formation of a localized bond. The area of this forbidden
region decreases as η2 increases, and is only present if η2 < 2, i.e., the
intersection points A and B coalesce as η2 → 2. Conversely, as η → 0,
the curves merge with their asymptotes, za = ±2, zs = ±1, and the shaded
region attains its maximum size. Figure 1.5 is reminiscent of a phase diagram
of alloy composition in that the composition of states, in the chemisorption
system, varies as one crosses the phase boundary curves (1.45). For example,
when the point (za, zs), lying in the shaded area, moves radially outwards,
P- and/or N -states emerge from the sea of (N +1) delocalized bulk states,
depleting their number accordingly.

In the present model, a maximum of two localized states arises, which
depends on the initial assumptions that only one adatom orbital interacts
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Fig. 1.5. Localized states existence regions for η2 = 1.

with only one band of the substrate’s orbitals and that the adatom perturbs
the substrate only at its first atom. If the perturbation is extended further
into the substrate, by modifying the site energies on its first and second
atoms, then a maximum of three localized states appear. The generalization
of this situation was discussed by Koutecký (1957) and Grimley (1958).

The above 1-dimensional model may be extended to 3-dimensions, in a
straightforward manner, and yields a substrate whose surface is completely
covered by adatoms. The TBA again leads to a difference equation and
boundary conditions which can be solved directly (Grimley 1960). We do
not intend to discuss the 3-dimensional case here and, instead, direct the
reader to the loc. sit. articles. However, in passing, we note that, even when
there is no direct interaction between the atoms in the adlayer, an important
indirect interaction occurs between them via the substrate by a delocalization
of the bonding electrons in directions parallel to the surface (Koutecký 1957,
Grimley 1960). This topic is discussed in Chapter 8.

Before leaving this section, we should also mention that the location of
the P- and N -states, relative to the bulk band, depends on the sign of the
bond energy β. If the AO’s in the substrate are of s-(p-)symmetry, then
β < 0(β > 0) and the P-(N -) states lie below the bulk s-(p-) band and are

 Reprinted from
Grimley (1960) with permission from Elsevier.
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called bonding states, while the N -(P-) states above the band are termed
antibonding states. Comparing (1.37) with (1.42) shows that the presence
of the (−1)n factor in the latter gives rise to nodes between successive
substrate atoms. Thus, the wave functions for bonding states are smoother
than those for their antibonding counterparts (Grimley 1960).

1.2 Adbond Character

When the combined system of adatom and substrate is in its ground state, so
that the lowest energy levels are each doubly occupied with an α- and a β-spin
electron, then, if two electrons are in a localized level, a localized surface bond
will be formed. However, if the localized level is unoccupied, then an adbond
formation will be achieved without localization of the bonding electrons (i.e.,
only delocalized electrons will be involved in the adbond). In the case of
electron localization, the type of adbond is determined by the charge order
of the adatom state, namely,

R =| ck(λ) |2
[
| ck(λ) |2 +

N∑

n=0

| ck(n) |2
]−1

. (1.46)

Thus, the adbond is classified according to the values of the interaction pa-
rameters zs, za and η.

1.2.1 Homopolar bond

If the wave function of a localized state is such that it is equally likely to
find the electron on the adatom as in the substrate, then a purely homopolar
adbond exists, when the state in question is doubly occupied. It follows that

| ck(λ) |2=
N∑

n=0

| ck(n) |2 (1.47)

in (1.46), so R = 1
2
, for a homopolar state. If we take the P-state to be

bonding, so that it lies below the bulk band, then (1.37) and (1.38) in (1.47)
lead to

1 − e−2(N+1)µk

1 − e−2µk
=

η2

(za + 2 cosh µk)2
,
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which, for large N , reduces to

(za + 2 cosh µk)
2 = η2(1 − e−2µk) . (1.48)

For known values of za and η, (1.48) determines µk, and hence, the
energy (1.36) and wave-function coefficients (1.37) and (1.38), while (1.39)
gives the corresponding zs value.

On taking η2 = 1, and putting

u = eµk ≥ 1, µk ≥ 0 , (1.49)

(1.39) and (1.48) may be written as

(u + zs)(u
2 + zau + 1) = u , (1.50)

(u2 + zau + 1)2 = (u2 − 1) , (1.51)

respectively. Dividing (1.51) by (1.50), and rearranging terms, yields

(za − zs)u
2 + 2u + zs = 0 , (1.52)

whose roots are

u = {−1 ± [1 − zs(za − zs)]
1
2}/(za − zs) . (1.53)

From (1.52), we have

zs = u(zau + 2)/(u2 − 1) , (1.54)

so, for large zs, u → 1 and µk → 0 by (1.49). Setting u = 1 in (1.53),
and performing some straightforward algebra, shows that

(za − zs)(za + 2) = 0 , (1.55)

i.e., as µk → 0, the asymptotes in the zsza-plane are

za = zs and za = −2 . (1.56)

By the same token, as µk increases from zero, u becomes increasingly
greater than one, and (1.55) is replaced by the inequality

(za − zs)(za + 2) < 0 , (1.57)
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so that we have two possible situations, viz.,

−2 < za < zs , (1.58)

−2 > za > zs . (1.59)

In order to plot the existence curve for the homopolar P-states, in the
zazs-plane, we use the following ‘recipe’. We take η2 = 1, and choose
values of za, so that we can obtain the corresponding µk-values from
(1.48). We then insert these known values of za and µk in (1.39) and
obtain the required zs-values. With this procedure, the points (za, zs)
trace out the curves in Fig. 1.6. As can be seen, the two branches each have
the asymptotes (1.56). At the point A, the values of (za, zs) satisfy
(1.58), and correspond to a point in the PN -region of Fig. 1.5. Thus, one
homopolar P-state exists, whose µk-value is very small, so its energy level
lies just below the bottom of the bulk band. Moreover, its wave function
decays slowly into the solid, giving rise to a many-centre homopolar state.
As µk increases, the sample point A moves down the upper branch,
the homopolar P-state energy drops further below the band and the wave
function decays more rapidly into the crystal. We now enter the P2-region
of Fig. 1.5, when a second P-state separates from the top of the band, with
a many-centre character, but not a purely homopolar nature. Furthermore,
for η = 1, its ck(λ) < 0. Continuing the movement of A down the
curve, the energy falls steadily and the wave function loses its many-centre
character, eventually becoming a two-centre homopolar state, involving only
the adatom and the crystal’s surface atom to any extent. The lower branch
of the curves in Fig. 1.6 resides entirely in the P2-region of Fig. 1.5, so two
P-states always exist. However, it is only the one with the higher energy
that is purely homopolar. Although it separates from the band with a many-
centre character, it becomes an essentially two-centre state for large negative
values of zs and za. Such a state satisfies (1.59).

1.2.2 Ionic bond

Since the existence conditions for homopolar localized states are somewhat
stringent, most interaction parameters give rise to states with ionic character,
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Fig. 1.6. Existence curves of homopolar P -states for η2 = 1.

to some degree or other, rather than to a purely homopolar state. Depending
on the values ck(λ) and ck(n) in (1.46), R varies between zero and
unity. The extreme cases are:

(a) Cationic state, where ck(λ) = 0 and
∑

n

|ck(n)|2 �= 0, so that

R = 0, and the electron is concentrated entirely in the crystal.

(b) Anionic state, here ck(λ) �= 0 and
∑

n

|ck(n)|2 = 0, so R = 1,

and the electron is concentrated completely on the adatom.

With the homopolar state (R = 1
2
) being the intermediate case between

these two extremes, it is taken as the reference state, so that R < 1
2

(R > 1
2
)

indicates a cationic (an anionic) state. Returning §1.2.1, we see that the
left-hand side of the inequalities (1.58) and (1.59), namely, za > −2 and

 Reprinted
from Grimley (1960) with permission from Elsevier.

za < −2, derived from (1.48), apply to R < 1
2

and R > 1
2
, respectively,

for µk = 0. Thus, for any other value of µk along the curve (Fig. 1.6),



16 CHAPTER 1. MOLECULAR-ORBITAL PICTURE

cationic (anionic) states exist in the region to the right (left) of the curve.
Combining Figs. 1.5 and 1.6 yields Fig. 1.7, where the extra information
on the ionic character of the states is now provided. For example, APCN
means that there is an anionic P-state and a cationic N -state, APCP
that there is an anionic P-state and a cationic P-state, etc. If P-states are
bonding (β < 0), then the state written first has the lower energy.

Fig. 1.7. Mapping of anionic (A) and cationic (C) states in zazs-plane for
η2 from Elsevier.

1.2.3 Metallic-like bond

If the point (za, zs) lies in the forbidden region of Fig. 1.5, then the adatom-
substrate interaction results in no localized states being formed. Here, ad-
bonding occurs because the presence of the adatom changes the boundary
conditions at the free surface of the solid, in such a way, as to give rise to a
general lowering of the energies of the electrons in the system. The electrons
are now all delocalized, so that each one contributes to the creation of the
adbond. Such a situation is reminiscent of binding in metals, so, for this
reason, such adbonds are termed metallic-like.

The change in the total electronic energy, due to the interaction of the
adatom with the substrate, is called the chemisorption energy ∆E. In order

= 1. Reprinted from Grimley (1960) with permission
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to obtain some estimate of ∆E, we return to (1.26), and recall that the zeros
of the [term] yields the solutions for the N states in the substrate. Thus,
the eigenvalue equation for θk is

−zs =
sin(M + 1)θk

sin Mθk

. (1.60)

We are interested in the total electronic energy of the substrate chain in the
pre-adsorption situation, when βa = 0, so that the adatom is isolated from
the chain and no surface states exist, i.e., |zs| < 1, and we are only concerned
with in-band states, for which θk is real.

In Fig. 1.2, a small increment εs in −zs causes a correspondingly small
decrement −δk in θk. Thus, (1.60) reads

−zs + εs =
sin(M + 1)(θk − δk)

sin M(θk − δk)
, (1.61)

which, with the aid of trigonometrical identities, (1.60) and the approxima-
tions cos δk � 1 and sin δk � δk, leads to

εs = zs

[
(Z − T−1)t + δk(Z + t)

]
(1 − tT−1)−1, (1.62)

where
T = tan Mθk, t = tan Mδk, (1.63)

and
Z = cot(M + 1)θk. (1.64)

Equation (1.60), in conjunction with (1.63) and (1.64), enables the following
expressions to be derived, viz.,

T = − sin θk(zs + cos θk)
−1, (1.65)

Z = z−1
s (sin θk − T−1 cos θk). (1.66)

Inserting (1.65) in (1.66) yields

Z = (zs cos θk + 1)(zs sin θk)
−1. (1.67)

Another way of obtaining the εs-relation is, of course, by straightforward
differentiation of (1.60), which results in

εs = δk

[
M sin θk(1 + T−2) − (T−1 cos θk − sin θk)

]
. (1.68)
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Thus, (1.62) and (1.68) show that

zs

[
(ZT − 1)t + δkT (t + Z)

]
(T − t)−1

= δk

[
M sin θk(1 + T−2) − (T−1 cos θk − sin θk)

]
. (1.69)

Equating the coefficients of like powers of δk, we have

δ0
k : Z = T−1, T �= t, (1.70)

δ1
k : zsT (t + Z)(T − t)−1 = R, (1.71)

where, by (1.70),

R = M sin θk(1 + Z2) − (Z cos θk − sin θk). (1.72)

Eliminating T between (1.70) and (1.71), we arrive at

t = Z−1(1 − P )(1 + Q)−1, (1.73)

where, by virtue of (1.72), we find that

P =
cos θk − Z−1 sin θk + zs

M sin θk(Z + Z−1)
, (1.74)

Q =
zsZ

−2 − cos θk + Z−1 sin θk

M sin θk(Z + Z−1)
. (1.75)

Since P and Q are both of O(M−1), equation (1.73) reduces to

t = Z−1 + O(M−1), (1.76)

whence, the phase shift is (Baldock 1952, 1953)

δk = M−1 tan−1

(
zs sin θk

zs cos θk + 1

)
+ O(M−2), (1.77)

by dint of (1.63) and (1.67).
In the ground state, the M(= N/2) states in the lower-half of the bulk

band are doubly occupied, so the total reduced energy for θk → (θk − δk) is

Xt = 2
∑

k

Xk = 2
∑

k

cos(θk − δk), (1.78)
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by (1.18), the summation being over the occupied orbitals. In view of (1.77),
equation (1.78) becomes

Xt(zs) = 2
∑

k

[
cos θk + M−1 sin θk tan−1

(
zs sin θk

zs cos θk + 1

)]
. (1.79)

The first summation in (1.79) represents the total reduced energy, X
(1)
t of

the N -chain electrons, whose mean reduced energy of the M -levels in the
lower-half band is given by

X1 =
2

π

∫ π

π/2

cos θ dθ = −2π−1, (1.80)

whence,
X

(1)
t = 2MX1 = −2Nπ−1. (1.81)

In the second summation, the θk-values occur at π/N intervals in the range
π/2 ≤ θk ≤ π, so the sum can be converted into an integral, namely,

X
(2)
t (zs) =

2N

Mπ

∫ π

π/2

sin θ tan−1

(
zs sin θ

zs cos θ + 1

)
dθ. (1.82)

Integration by parts, leads to

X
(2)
t (zs) =

4

π

{[
− cos θ tan−1

(
zs sin θ

1 + zs cos θ

)]π

π/2

+

∫ π

π/2

cos θ(zs + cos θ)

(zs + z−1
s ) + 2 cos θ

dθ

}
, (1.83)

where the first term on the right is equal to zero. Equation (1.83) can be
cast in the form

X
(2)
t (b) = b(J0 + 2zsJ1 + J2)/π, (1.84)

where
b = 2(zs + z−1

s )−1 ≤ 1, (1.85)

and

Jn(b) =

∫ π

π/2

cos nθ

1 + b cos θ
dθ. (1.86)

On evaluating Jn(b), as in the Appendices (App. A), (1.84) becomes

X
(2)
t (b) = 2π−1

{
(b−1 − zs) [J0(b) − π/2] − 1

}
, (1.87)
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via (A.9) and (A.10). With the aid of (1.85), (A.3) and (A.8), we can express
(1.87) as

X
(2)
t (zs) = 2π−1

[
(z−1

s + zs) tan−1 zs + zsπ/2 − 1
]
. (1.88)

Hence, (1.81) and (1.88) in (1.79) yield

Xt(zs) = 2π−1
[
(z−1

s + zs) tan−1 zs + πzs/2 − 1 − N
]
, (1.89)

which is somewhat different from the Grimley (1960) finding, which was
derived for an odd number of electrons (as opposed to the even number here),
and where β was taken negative, so that zs → −zs by (1.27). The latter point
is the reason for the range of integration in (1.82) being π/2 ≤ θ ≤ π, rather
than Baldock’s 0 ≤ θ ≤ π/2, to correspond to the occupied lower-half of
the energy band. Note also that the factor of “2”, inadvertently omitted by
Grimley, has been replaced in (1.89).

Having analyzed the pre-chemisorption situation, we now address the
post-chemisorption one, in which the foreign atom is brought up to the chain
end atom at n = 0. For simplicity, we assume that βa = β and αs = α
(Fig. 1.1), whence, η = 1 (1.25) and zs = 0 (1.27), so that the interaction
parameters lie on the za-axis in Fig. 1.5. In the case where no localized
states are occupied, the total electronic reduced energy of the system is

Xt(za) = 2π−1
[
(z−1

a + za) tan−1 za + πza/2 − 1 − (N + 1)
]
, (1.90)

i.e., (1.89) with zs → za and N → (N + 1), as a result of the additional
electron from the adatom in the chemisorption system. If γ denotes the
reduced energy of the valence electron in the isolated foreign atom, then

∆X = Xt(za) − Xt(zs) − γ (1.91)

represents the change in the total electronic reduced energy as a result of the
interaction of the foreign atom with the chain, i.e., the so-called chemisorp-
tion energy. From (1.89), (1.90) and (1.91), we have

∆X = −(2π−1 + γ) + ∆Xs, (1.92)

where
∆Xs = 2π−1 [F (za) − F (zs)] + (za − zs), (1.93)
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with
F (z) = (z + z−1) tan−1 z. (1.94)

The chemisorption reduced energy in (1.92) appears as the sum of two terms.
The first term, being associated with the crystal’s mean electron energy and
the foreign atom’s valence electron energy, represents the energy change aris-
ing from the delocalization of the valence electron on the foreign atom. The
second term in (1.92) is the surface-energy change caused by the presence
of the foreign atom.. Apparently, for chemisorption involving a metallic-like
surface bond, the form of (1.92) is quite general. Finally, it should be men-
tioned that, for a stable adbond to be formed, the chemisorption process must
result in a lowering of the electronic energy of the system, thus, ∆X < 0. If
∆X > 0, no chemisorption occurs.



Chapter 2

Resolvent Technique

Practical sciences proceed by building up;
theoretical sciences by resolving into com-
ponents.

— Thomas Aquinas

In the previous chapter, we used the MO approach to cast the Schrödinger
equation in the form of a second-order finite-difference equation with con-
stant coefficients (1.9). We were able to solve this equation straightforwardly
for the boundary conditions pertaining to a single adatom interacting with
a chain-like substrate. We also mentioned that the 3-dimensional situation
of a substrate completely covered with adatoms (i.e., an adlayer) could be
treated in the same manner, being a direct extension of the single-adatom
case (Grimley 1960). However, should we wish to study the problem of
a single (or group of) adatom(s) interacting with the free surface of a 3-
dimensional crystal, then (1.9), and its attending boundary conditions, can-
not be solved directly. In this case, it is necessary to describe the limited
interaction region by means of projection operators (Löwdin 1962; Yao and
Shi 2000) as Koutecký (1965, 1976) did in his resolvent formalism (Davison
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and Stȩślicka 1996). Thus, this chapter introduces us to the powerful and
versatile Green-function methods, which are employed henceforward.

2.1 Projection Operators

As the name implies, the projection operator P projects onto some space p,
where P of the system consists of operators Pi of the subsystems, so that

P =
∑

i

Pi. (2.1)

For a non-interacting system, the space po is composed of subspaces p0
i , whose

associated operators are assumed to satisfy

P 0 =
∑

i

P 0
i = I, (2.2)

I being the identity operator, whence, the projection capacity of P 0 is said
to be complete. In addition, if

P 0
i P 0

j = 0, i �= j, (2.3)

then subspaces p0
i and p0

j will have zero overlap.
In terms of the 〈bra|c|ket〉 notation of Dirac (1958), the Schrödinger

equation (1.2) takes the form

H0|ψ0〉 = E0|ψ0〉, (2.4)

in which
|ψ0〉 =

∑

n

c0
n|φ0

n〉, (2.5)

as in (1.1). From (2.5), we have

〈φ0
m|ψ0〉 =

∑

n

c0
n〈φ0

m|φ0
n〉,

i.e.,

〈φ0
m|ψ0〉 =

∑

n

c0
nδmn = c0

m, (2.6)
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via the orthonormality of |φ0
n〉. In view of (2.6), we can write (2.5) as

|ψ0〉 =
∑

n

|φ0
n〉〈φ0

n|ψ0〉, (2.7)

whence, ∑

n

|φ0
n〉〈φ0

n| = I. (2.8)

Comparison of (2.2) and (2.8), shows that

P 0
n = |φ0

n〉〈φ0
n| (2.9)

is the representation of the projection operator P 0
n for the subspace p0

n.

2.2 Perturbation Formulation

Turning to the question of an interacting system, we define the perturbed
Hamiltonian as

H = H0 + V, (2.10)

where the interaction potential V is viewed as a small perturbation. If E
and |ψ〉 are the corresponding perturbed eigenvalues and eigenfunctions, then
(1.2) becomes

H|ψ〉 = (H0 + V )|ψ〉 = E|ψ〉. (2.11)

The perturbed space p falls naturally into two complementary subspaces
q and q̄, such that

p = q + q̄, (2.12)

q being the space over which V acts and q̄ that where it does not. For
calculating purposes, it is useful to express p as a subspace of p0, by writing

p = p0 − s, (2.13)

where s denotes a space removed from p0 to form p. In operator language,
we now have

Q̄V = V Q̄ = 0, (2.14)

and (Davison and Stȩślicka 1996)

S + Q + Q̄ = I, (2.15)
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by dint of (2.2), (2.12) and (2.13). Moreover, removal of the space s implies
that

S|ψ〉 = 0, (2.16)

while (2.10) gives
SH|ψ〉 = (SH0 + SV )|ψ〉 = 0,

i.e.,
SV = −SH0. (2.17)

On rearranging, (2.11) can be written as

|ψ〉 = GV |ψ〉, (2.18)

where the operator
G = (E − H0)

−1 (2.19)

is known as the resolvent. For analysis purposes, let us now insert the identity
operator in (2.18), so that

|ψ〉 = GIV I |ψ〉. (2.20)

Substituting (2.15) into (2.20), and using (2.14), (2.16) and (2.17), leads to

|ψ〉 = G(QV − SH0)Q|ψ〉. (2.21)

As in (2.6), the coefficients are given by

〈φ0
m|ψ〉 = 〈φ0

m|G(QV − SH0)Q|ψ〉, (2.22)

where

〈φ0
m|ψ〉 �= 0, |φ0

m〉 ∈ p,

= 0, |φ0
m〉 ∈ s.

(2.23)

Utilizing (2.5), the non-trivial solutions of (2.22) (i.e., Q|ψ〉 �= 0) require that

det
Q

[
〈φ0

m|G(QV − SH0)Q − I|φ0
n〉
]

= 0, (2.24)

where m ≤ order (q). Note that the presence of the S-term in the above
enables the initial system to be larger and simpler than the system being
studied. Solutions of the secular equation (2.24) provide the perturbed eigen-
values E, whence, |ψ〉 can be obtained from the linear algebraic equation
(2.21).
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2.3 Chemisorption on Cyclic Crystal

In order to become acquainted with the resolvent technique, and the use of
projection operators, we re-examine the problem treated in §1.1. In doing
so, we employ the cyclic crystal, which lends itself well to modelling a non-
interacting (or unperturbed) substrate (Davison and Stȩślicka 1996).

2.3.1 Cyclic crystal

A cyclic crystal1 consists of a ring of equally spaced atoms formed by joining
the ends of a chain of N atoms numbered n ∈ [0, N − 1]. Thus, for the kth
state, the wave function (2.5) becomes

|ψ0
k〉 =

N−1∑

n=0

c0
nk|φ0

n〉, (2.25)

where the coefficients satisfy (1.9), whose solution can be written as (cf.
(1.22))

c0
nk = Aeinθ0

k . (2.26)

The constant A is obtained by means of the normalization condition

〈ψ0
k|ψ0

k〉 = 1, (2.27)

which, since 〈φ0
n|φ0

n〉 = 1, yields

N−1∑

n=0

A2 = 1,

via (2.25) and (2.26), whence,

A = N− 1
2 , (2.28)

so that (2.25) now reads

|ψ0
k〉 = N− 1

2

N−1∑

n=0

einθ0
k |φ0

n〉. (2.29)

1An infinite crystal can be represented by a finite one, by either allowing N → ∞, or
by imposing periodic boundary conditions at each end. Another way is to construct a
cyclic crystal.
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The values of θ0
k are found by means of the cyclic boundary condition

(Ziman 1965)
c0
0k = c0

Nk. (2.30)

Inserting (2.26) in (2.30), and equating real and imaginary parts, we find

cos Nθ0
k = 1, sin Nθ0

k = 0,

thus,
θ0

k = 2πk/N, k = 0, 1, . . . , N − 1. (2.31)

From (1.16) and (1.18), we see that each θ0
k-value has a corresponding energy

level
E0

k = α + 2β cos θ0
k. (2.32)

2.3.2 Cyclic Green function

By virtue of (2.8) and (2.19), we can write the resolvent (or Greenian) for
k-space as

G(E0) = (E − H0)
−1
∑

k

|ψ0
k〉〈ψ0

k| =
∑

k

|ψ0
k〉〈ψ0

k|(E − E0
k)

−1, (2.33)

via (2.4). Hence, we have the Greenian matrix element

Gm,N−n =
∑

k

〈φ0
m|ψ0

k〉〈ψ0
k|φ0

N−n〉(E − E0
k)

−1,

which, by dint of (2.29) and (2.6), reduces to

Gm,N−n = N−1
∑

k

ei(m+n)θ0
k(E − E0

k)
−1 = Gm+n (2.34)

since e−iNθ0
k = 1 by (2.31), which also shows that

δθ0
k = θ0

k+1 − θ0
k = 2πN−1. (2.35)

Consequently, in the limit of N → ∞, (2.34) leads to the Green function
(GF)

G� = (4πβ)−1

∫ 2π

0

ei�θ(X − X0)−1dθ, (2.36)
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by (1.16), where 	 = (m + n).
Evaluation of (2.36) proceeds via complex integration (Mathews and

Walker 1965). With the aid of (1.18), putting (cf. (1.19))

t = eiθ (2.37)

transforms (2.36) into an integral around a unit circle in the complex plane,
viz.,

G� = i(2πβ)−1

∮ [
t�/F (t)

]
dt, (2.38)

where (cf. (1.15))
F (t) = t2 − 2Xt + 1, (2.39)

whose roots are
t1,2 = X ± (X2 − 1)1/2, t1t2 = 1. (2.40)

Invoking the theory of residues, (2.38) can be expressed as

βG� = −(R1 + R2), (2.41)

where each residue

Rj =
[
(t − tj)t

�(t − t1)
−1(t − t2)

−1
]
t=tj

(2.42)

is at a pole inside the unit circle. Since X �= X0 in (2.36), θ must be complex,
i.e.2,

θ ≡ θ± = ξ ± iµ, (2.43)

which with (1.18) enables (2.40) to be expressed as

t±1,2 = e±i(ξ±iµ), (2.44)

whence,

|t+1,2| = e∓µ ≶ 1, (2.45)

|t−1,2| = e±µ ≷ 1. (2.46)

2 In (2.43), µ must be small, because a cyclic crystal supports only delocalized states,
so the poles at X �= X0 are located close to the unit-circle contour. This observation is
connected with the notion of complex energy (§3.2), since, for µ small, (2.43) in (1.18)
shows that X± ∼ X ∓ iµ.
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These conditions show that R2 and R1, respectively,lies outside the unit-circle
contour and is excluded. Thus, (2.41) and (2.42) give

βG+
� = −R1 = t�1(t2 − t1)

−1 for θ+, (2.47)

βG−
� = −R2 = t�2(t1 − t2)

−1 for θ−, (2.48)

which lead to
2βG±

� = ±ie±i�θcscθ, (2.49)

via (1.18) and (2.40).

2.3.3 Model representation

Let us now consider the interaction of an atom A with the zeroth atom of
a monatomic cyclic crystal C, as depicted in Fig. 2.1. If the site energy
of A(C) is αa(α) and the bond energy of C is β, then in the pre- (post-)
chemisorption situation the adbond energy βa = 0(βa �= 0).

Fig. 2.1. Atom (A) and cyclic crystal (C) before and after interaction.

Prior to interaction, the unperturbed system consists of its isolated A
and C parts, whence, its total k-state wave function is (cf. (2.25))

|ψk〉 = cak|φa〉 +
N−1∑

n=0

cnk|φn〉 =
∑

t

ctk|φt〉, t = a and n, (2.50)

where
〈φa|φt〉 = δat. (2.51)
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Likewise, we have (Koutecký 1976)

GAC = GA + GC , (2.52)

in which GC is given by (2.33), and

GA = |φa〉〈φa|(E − αa)
−1. (2.53)

Returning to (2.22), we see that

〈φr|ψ〉 = 〈φr|GACQV Q|ψ〉, r = a or n, (2.54)

since S = 0. Moreover, V acts over the space q between A and C, whose
corresponding projection operator is defined by

Q = |φa〉〈φ0| + |φ0〉〈φa|. (2.55)

Thus, (2.50), (2.52) and (2.55) in (2.54) result in

〈φr|
∑

t

ct|φt〉 = 〈φr|(GA + GC) × (|φa〉〈φ0|

+ |φ0〉〈φa|)V (|φa〉〈φ0| + |φ0〉〈φa〉)
∑

t

ct|φt〉, (2.56)

After some algebra, using (2.50) and (2.52), we find

〈φr|
∑

t

ct|φt〉 = βa(G
AC
ra 〈φ0| + GAC

r0 〈φa|)
∑

t

ct|φt〉, (2.57)

where 〈φa|V |φa〉 = 〈φ0|V |φ0〉 = 0,

βa = 〈φ0|V |φa〉 = 〈φa|V |φ0〉, (2.58)

and
GAC

ra(0) = 〈φr|GAC |φa(0)〉. (2.59)

Consequently, in view of (2.50) and (2.51), equation (2.57) gives

caδra + cnδrn = βa(G
AC
ra c0 + GAC

r0 ca), (2.60)

which, for r = n and r = a, yields the simultaneous equations

cn = βa(G
AC
na c0 + GAC

n0 ca), (2.61)

ca = βa(G
AC
aa c0 + GAC

a0 ca), (2.62)
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respectively. From (2.62), we have

ca = βaG
AC
aa (1 − βaG

AC
a0 )−1c0, (2.63)

whereby (2.61) becomes

cn = βa

(
GAC

na +
GAC

n0 GAC
aa

β−1
a − GAC

a0

)
c0. (2.64)

However, from (2.33) and (2.50) to (2.53), we see that

GAC
na = GAC

a0 = 0, (2.65)

so that (2.63) and (2.64) reduce to

ca = βaG
AC
aa c0, (2.66)

and
cn = β2

aG
AC
n0 GAC

aa c0. (2.67)

Moreover, because
GC

aa = GA
n0 = 0 (2.68)

also, we eventually obtain
ca = βaG

A
aac0, (2.69)

and
cn = β2

aG
C
n0G

A
aac0, (2.70)

which, for n = 0 and c0 �= 0, yields

β2
aG

A
aaG

C
00 = 1. (2.71)

Utilizing (1.16), (1.18), (1.25) and (2.53) in (2.69), enables us to reclaim
(1.24), viz.,

ca = ηc0(za + 2 cos θ)−1. (2.72)

Meanwhile, from (2.70) we have

cn = ±iηca(2 sin θ)−1e±inθ, (2.73)

via (2.49) and (2.69). We note that (2.73) has the same exponential behaviour
with n as (1.34), and that (2.71) is the same eigenvalue equation as that
derived from (2.24), and leads to

(za + 2 cos θ)(e−iθ − eiθ) = η2, (2.74)
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which is close to (1.35), when zs = 0, as required for cyclic crystal substrate.
Clearly, the incorporation of the “cut and stick” tailoring feature of pro-

jection operators into the resolvent-technique formulation, makes it a partic-
ularly adaptable modelling tool. Moreover, it enables the atomic structure
of the geometric space to be reflected in the so-called site representation of
the GF.



Chapter 3

Dyson-Equation Approach

The aim of research is the discovery of
the equations which subsist between the el-
ements of phenomena.

— Ernst Mach

Having introduced GFs into the analysis, let us now proceed to explore
ways by which we might exploit their properties to gain further insight into
the charge-transfer process involved in chemisorption. Of particular interest,
in this regard, is the density of states (DOS), which is accessed by adopting
the concept of complex energy in the GF, as was footnoted in §2.3.2.

However, before addressing this issue, we must first develop a means
whereby a perturbed GF is expressed in terms of an unperturbed one.

3.1 Dyson Equation

Consider an unperturbed system, whose Hamiltonian (Greenian) is H0(G0),
which is perturbed by a small potential (V ), so that the perturbed system
Hamiltonian (Greenian) is H(G). As in (2.19), the Greenian operators are
defined as

G0 = (E − H0)
−1, G = (E − H)−1, (3.1)

 
35 
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where
H = H0 + V, (3.2)

V being the scattering (or perturbation) potential. With the aid of (3.2), we
can write (3.1) as

G = (E − H0 − V )−1 = (G−1
0 − V )−1,

which, on rearranging, gives the Dyson equation (Dyson 1949, Taylor 1970)

G = G0 + G0V G. (3.3)

By iteration, we see that (3.3) leads to the perturbation expansion

G = G0 + G0V G0 + G0V G0V G0 + · · · , (3.4)

while in matrix form (3.3) reads

G(m, n) = G0(m, n) +
∑

k�

G0(m, k)V (k, 	)G(	, n), (3.5)

which relates the perturbed and unperturbed GFs via the scattering-potential
matrix.

3.2 Density of States

The expression for the DOS is derived by taking the trace of the Greenian
G(E) in (3.1), i.e.,

TrG(E) =
∑

j

〈ψj|G|ψj〉 =
∑

j

(E − Ej)
−1 (3.6)

ψj being the orthonormal eigenfunctions of H and Ej their corresponding
eigenvalues. We see that the presence of the pole at E = Ej gives rise to a
singularity in the integration path of the GF in (3.6), which is avoided by
introducing the idea of complex energy (Haken 1976) and taking

E −→ E + is, (3.7)
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where s = 0+, the positive infinitesimal, is eventually taken to zero.1 In view
of (3.7), we set ξj = E − Ej in the summand of (3.6), and write it as

1

ξj + is
=

ξj

ξ2
j + s2

− is

ξ2
j + s2

,

whereby (3.6) shows that

Im Tr G(E) = −
∑

j

s(ξ2
j + s2)−1, (3.8)

whose summand has the properties

lim
s→0

s

ξ2
j + s2

= 0, ξj �= 0,

and

lim
s→0

∫ c

−c

sdξj

ξ2
j + s2

= lim
s→0

[
tan−1

(
ξj

s

)]c

−c

= π. (3.9)

Comparing (3.9) with the Dirac δ-function definition, viz.,
∫ ∞

−∞
δ(ξj)dξj = 1, (3.10)

shows that
lim
s→0

s

ξ2
j + s2

= πδ(ξj),

whereby (3.8) provides the definition

ρ(E) =
∑

j

δ(E − Ej) = −π−1Im Tr G(E), (3.11)

for the total energy DOS (Raimes 1972). In the site representation, (3.11)
becomes

ρ(E) = −π−1Im
∑

m

G(m, m), (3.12)

whence,
ρm(E) = −π−1Im G(m, m) (3.13)

is the local density of states (LDOS) at the mth site.

1More precisely, s = 0+ is understood as the lim
s→0+

.
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3.3 Chemisorption on Monatomic Substrate

The system we wish to investigate consists of a single atom a interacting with
a semi-infinite monatomic chain. The site (bond) energy of the chain is α(β),
while that of the a-atom is αa(βa). Initially, the substrate is represented by a
cyclic chain of N atoms, whose GF is given by (2.49). A semi-infinite chain
is then formed by breaking the bond between the n = 0 and N − 1 atoms
(Fig. 3.1).

Fig. 3.1. Formation of N -atom chain from cyclic chain by breaking bond
between n = 0 and N − 1 atoms.

Mathematically, this is achieved by means of the Dyson operator equa-
tion (3.3), in which G0(G) denotes the Greenian of the cyclic (semi-infinite)
chain, and the bond-breaking potential operator is given by

V = −β(|0〉〈N − 1| + |N − 1〉〈0|). (3.14)

Thus, inserting (3.14) in (3.3), gives

G(0, 0) = G0(0, 0) − β[G0(0, 0)G(N − 1, 0) + G0(0, N − 1)G(0, 0)], (3.15)

for the GF at the n = 0 atom of the semi-infinite chain, where, for example,
G(0, 0) = 〈0|G|0〉. We observe that G(N −1, 0) = 0, since it is not contained
in space over which G operates (Fig. 3.1), so on rearranging, (3.15) yields

G(0) = G0(0) [1 + βG0(0, N − 1)]−1 , (3.16)
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where, e.g., G(0) ≡ G(0, 0). Inserting G−
�=1 of (2.49) in (3.16) leads to

βG(0) = −i(2 sin θ − ie−iθ)−1, (3.17)

which reduces to
βG(0) = e−iθ. (3.18)

Fig. 3.2. Schematic representation of chemisorption. (a) Before and (b)
after formation of βa-bond between a-atom and n = 0 atom of N -atom chain.

3.3.1 Adatom Green function

Turning to the chemisorption situation portrayed in Fig. 3.2, we require the
potential-bond operator

V = βa(|0〉〈a| + |a〉〈0|), (3.19)

to attach the a-atom to the n = 0 atom of the semi-infinite chain. In this
case, inserting (3.19) in (3.3), we find the adatom GF is given by

Ga(a) = G(a) + βa[G(a, 0)Ga(a) + G(a)Ga(0, a)],

which reduces to
Ga(a) = [1 + βaGa(0, a)]G(a), (3.20)
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since
G(0, a) = G(a, 0) = 0, (3.21)

via Fig. 3.2(a). Likewise, we have

Ga(0, a) = G(0, a) + βa [G(0)Ga(a) + G(0, a)Ga(0, a)] ,

which by (3.21) results in

Ga(0, a) = βaG(0)Ga(a). (3.22)

Thus, substituting (3.22) into (3.20), and collecting terms, we have

Ga(a) =
[
G−1(a) − β2

aG(0)
]−1

, (3.23)

where the GF for the isolated a-atom in Fig. 3.2(a) is

G(a) = (E − αa)
−1. (3.24)

On using (3.18) and (3.24), we can write (3.23) as

2βGa(a) =
{
(X − za) − 2η2[X − i(1 − X2)1/2]

}−1
, (3.25)

where the adatom parameters

za = (αa − α)/2β, η = βa/2β, (3.26)

and
X = (E − α)/2β = cos θ, (3.27)

by dint of (1.16) and (1.18).

3.3.2 Adatom self-energy and density of states

Alternately, by introducing the so-called reduced self-energy

Σ(X) = Λ(X) − i∆(X), (3.28)

we can express (3.25) in the concise form

2βGa(a) = [X − Σ(X)]−1 , (3.29)
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where
Λ(X) = za + 2η2X, (3.30)

and
∆(X) = 2η2(1 − X2)1/2, (3.31)

are referred to as the chemical shift and line broadening, respectively, both of
which result from the effect of the atom-substrate interaction on the discrete
level (i.e., X = za) of the a-atom, as it approaches the substrate surface.

With the aid of (3.28) and (3.29), equation (3.13) gives the adatom DOS
as

ρa(X) = (2πβ)−1
{
∆[(X − Λ)2 + ∆2]−1

}
. (3.32)

For the system in question, inserting (3.30) and (3.31) in (3.32), and taking
2πβ = 1, we find

ρb
a(X) =

2η2(1 − X2)1/2

[(1 − 2η2)X − za]2 + 4η4(1 − X2)
, (3.33)

for |X| < 1, i.e., states lying inside the band of reduced energies defined by
(3.27). The graphs of the adatom DOS curves are drawn in Fig. 3.3 for
za = 0.1, with η = 0.25 and 0.5, which are depicted by the solid and dashed
lines, respectively. We note that ρb

a(X) = 0 at the X = ±1 band edges.
When η = 0.25, βa < β, so the adbond is weaker than the substrate one,
and the ρb

a(X)-curve assumes a typical Lorentzian-shape with a high, narrow
central peak. On increasing η to 0.5, so that βa = β, the peak broadens
and shrinks in height until it vanishes, and the ρb

a(X)-curve becomes a low,
wide “plateau”, which is indicative of the increasing strength of the adatom-
substrate interaction. Note that the changing shape of the DOS curves always
proceeds in an area-preserving manner, since

2β

∫ 1

−1

ρb
a(X)dX = 1, (3.34)

for the total number of states on the adatom to be unity (Davison and
Stȩślicka 1992).
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Fig. 3.3. Adatom DOS inside the band for the parameter values specified.

Let us now explore the DOS situation outside the band (i.e., |X| > 1),
where the reduced energy Xa of the localized adstate is given by the zeros of
the denominator of the GF (3.25), which is written as

2βGa(a) =
{
(X − za) − 2η2[X − sgn X(X2 − 1)1/2]

}−1
, (3.35)

for |X| > 1. For illustration purposes, we consider an adstate above the band,
and choose η = 0.5. In this case, we find

Xa = za + (4za)
−1, (3.36)

whence, za > 1
2

for Xa > 1.
With the aid of (3.36), we can express (3.25) in the form

Ga(a) = (4βza)
−1(Xa − X)−1

[
(X − 2za) − i(1 − X2)1/2

]
, (3.37)

whose corresponding DOS via (3.13) is

ρb
a(X) = (4πβza)

−1(Xa − X)−1(1 − X2)1/2, |X| < 1. (3.38)

If X in (3.37) is replaced by X + is, then in the adstate region, we have to
O(s) that

Ga(a) = (4βza)
−1(P + isQ) [(Xa − X) − is]−1 , (3.39)

Fig. 3. .3 Adatom  DOS  inside the band for the parameter values specified. 
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where
P = (X − 2za) − (X2 − 1)1/2, (3.40)

and
Q = 1 − X(X2 − 1)−1/2. (3.41)

To O(s), equation (3.39) shows that

Im Ga(a) =
s[P + Q(Xa − X)]

4βza[(Xa − X)2 + s2]
, (3.42)

which, in the limit as s → 0+, reduces to

Im Ga(a) = 0, X �= Xa, (3.43)

and
Im Ga(a) = P/4βzas, X = Xa. (3.44)

On using (3.36) and (3.40), inserting (3.44) in (3.13) gives

ρb
a(Xa) =

[
1 − (4z2

a)
−1
]
/2πβs. (3.45)

To proceed, we consider the function

f(X, s) = π−1s
[
(X − Xa)

2 + s2
]−1

, (3.46)

which has the properties

lim
s→0+

f(X, s) = 0, X �= Xa

= (πs)−1, X = Xa

(3.47)

of the Dirac δ-function. Thus, the adatom DOS (3.45), above the band, can
be written as

ρa
a(X) = (2β)−1Iaδ(X − Xa), (3.48)

where
Ia = 1 − (4z2

a)
−1, |za| > 1

2
(3.49)
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is the intensity of the adstate at X = Xa. The same analysis for X < 1,
za < −1

2
reproduces (3.48) and (3.49) for the adstate at X = −Xa below the

band.

Fig. 3.4. Adatom DOS showing band and adstate contributions for η = 0.5
and za = 1 with Xa = 1.25.

Equations (3.38) and (3.48) are the analytical expressions for the band
and adstate contributions to the total reduced-energy spectrum of the adatom
DOS, ρa(x), respectively. Their graphs are displayed in Fig. 3.4 for 2β = 1
and the parameter values indicated. As can be seen, the presence of the
large adstate “spike” at X = Xa markedly reduces the area under the in-
band portion of the DOS, in accordance with the sum rule (cf. (3.34))

2β

∫ ∞

−∞
(ρb

a + ρa
a)dX = 1. (3.50)

We note that the ρb
a(X)-curve attains its maximum value at X = X−1

a , being
given by

ρ̂b
a(X

−1
a ) = (2za)

−1
[
Xa − (2za)

−1
]−1

. (3.51)

Moreover, the dichotomy in the adatom DOS distribution provides the ad-
charge with access to a state localized mainly on the adatom and also to
delocalized band states that are spread throughout the whole system.



Chapter 4

Anderson-Newns-Grimley
Model

The purpose of models is not to fit the data,
but to sharpen the questions.

— Samuel Karlin

One of the problems encountered in formulating a theory of chemisorp-
tion is that of overcompleteness (and thus nonorthogonality), which arises
because the isolated substrate itself is described by a complete set of states,
so that the combined system of substrate and adatom forms an overcomplete
set. This issue has been addressed by various authors (Grimley 1970, 1975,
Gomer and Schrieffer 1971, Bagchi and Cohen 1974, Paulson and Schrieffer
1975, Bell and Madhukar 1976). The easiest way to handle the difficulty is
to incorporate the effect by employing renormalized matrix elements and 1-
electron energies. Henceforth, we assume orthogonalization has been carried
out, so that the effect is not treated explicitly (Kranz 1978).

Another fundamental deficiency in the 1-electron theory is its failure
to account for the significant role played by electron-electron interaction
in the charge-transfer process. An approximate solution to this difficult
many-electron problem appeared towards the end of the sixties (Edwards
and Newns 1967, Grimley 1967, Newns 1969), which tackled it by adopting a
modified version of the work of Anderson (1961) on dilute magnetic impurities

45 
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in metals. The resulting Anderson-Newns-Grimley (ANG) model introduces
a new ingredient into the 1-electron Hamiltonian, namely, the intra-atomic
electron Coulomb repulsion term on the adatom, which is visualized as an im-
purity residing on the surface. As a consequence, the chemisorption energy
can be calculated in a self-consistent manner.

In order to proceed further, we now introduce the language of many-
electron theory, and the concept of occupation number.

4.1 Second Quantization Formalism

The wave function of a many-electron system can be written as a Slater de-
terminant (see App. B). However, a more convenient notation is provided
by using the occupation number representation, whereby the N -electron de-
terminantal function takes the form (March et al. 1967, Raimes 1972)

ΨN(n1 . . . nk . . .) = |n1 . . . nk . . .〉, (4.1)

where nk is the number of electrons in the level k, whose value is either 0 or
1 and ∑

k

nk = N. (4.2)

Equation (4.1) is sometimes referred to as a state vector in Fock space and
its use requires that the Hamiltonian be expressed in terms of operators that
can act on such vectors.

4.1.1 Creation and annihilation operators

Assuming that all the 1-electron levels are arranged in some definite order,
then, since nk is 1 or 0, we can define the annihilation operator ck by

ck| . . . 1k . . .〉 = θk| . . . 0k . . .〉, (4.3)

ck| . . . 0k . . .〉 = 0. (4.4)

In (4.3), all the occupation numbers remain unchanged, except nk. Likewise,
the creation operator c†k is defined by

c†k| . . . 0k . . .〉 = θk| . . . 1k . . .〉, (4.5)
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c†k| . . . 1k . . .〉 = 0. (4.6)

Note that the c-operation in (4.4) (or (4.6)) yields a null result, because an
electron can not be destroyed (created), where the k-state is already empty
(occupied). In the above equations,

θk = (−1)νk , νk =
∑

j<k

nj, (4.7)

since, if an even (odd) number of states, with nk = 1, precede the k-level, the
sum is an even (odd) number and θk = 1(θk = −1)1. Of course, this reflects
the antisymmetric nature of the Slater determinant wave function (App. B).

The above definitions can be expressed more succinctly as:

ck| . . . nk . . .〉 = θknk| . . . 0k . . .〉, (4.8)

c†k| . . . nk . . .〉 = θk(1 − nk)| . . . 1k . . .〉. (4.9)

As shown in App. C, the c-operators satisfy the following set of
anticommutation relations:

[c�, ck]+ = 0, (4.10)

[c†�, c
†
k]+ = 0, (4.11)

[c†�, ck]+ = δ�k, (4.12)

where
[a, b]+ = ab + ba. (4.13)

Moreover, as in (C.5),
c†kck = nk (4.14)

is known as the number operator for the 1-electron state function |k〉. Equa-
tions (4.12) and (4.14) yield the result

ckc
†
k = 1 − nk. (4.15)

1The adopted sign convention is simply that which leaves the sign of the determinant
unchanged when a 1-electron function is destroyed or created in the first position (i.e.,first
row). The plus or minus sign arises from moving a given 1-electron function to the first
position to be destroyed, or from the first position to its correctly ordered one when it has
been created.
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Recalling §2.1, we observe that the operator |i〉〈j| gives zero, when it
acts on any of the states |k〉, except that for which k = j, when it gives the
state |i〉. Consequently, |i〉〈j| removes an electron from a state whose wave
function is |j〉,and puts it in the state |i〉. In other words, |i〉〈j| annihilates
an electron in the state |j〉 and creates one in the state |i〉 (Taylor 1970),
which means it is equivalent to the c-operator c†icj.

If we now introduce the vacuum state |0〉, for which

〈0|0〉 = 1, 〈k|0〉 = 0, (4.16)

then we can write

|i〉〈j| = |i〉〈0|0〉〈j|
= (|i〉〈0|) (|0〉〈j|)
= c†icj, (4.17)

whereby we obtain
cj = |0〉〈j|, c†i = |i〉〈0|. (4.18)

4.1.2 Hamiltonian in c-operator form

For a free-electron, the Schrödinger equation takes the form

T |ψ〉 = E|ψ〉, (4.19)

where
T = p2/2m (4.20)

is the kinetic energy operator, with

p = −i�∇∇∇. (4.21)

Now (4.19) has solutions for an infinite number of energies Eu(u = 1, 2, . . .),
whose corresponding state functions |u〉, which satisfy

T |u〉 = Eu|u〉 (4.22)

and
〈u|v〉 = δuv, (4.23)
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form a complete set, so that any other function can be expressed in terms of
|u〉.

In view of (2.8), we can write

T =
∑

u

|u〉〈u|T
∑

v

|v〉〈v|

=
∑

u,v

〈u|T |v〉|u〉〈v|, (4.24)

which by (4.17) becomes

T =
∑

u,v

Tuvc
†
ucv. (4.25)

It is convenient to choose |u〉, so that Tuv has only diagonal elements. One
such choice is the plane-wave eiku·r, for which (4.20) and (4.21) yield (Taylor
1970)

Tuv =

∫
e−iku·r(−�

2∇2/2m)eikv ·rdr,

i.e., the diagonal form

Tuv = (�2k2
u/2m)δuv = Euδuv, (4.26)

via (4.22).
A similar derivation for the potential energy operator V leads to the

result
V =

∑

u,v

Vuvc
†
ucv, (4.27)

so the c-operator form of the 1-electron Hamiltonian is

H =
∑

u

Euc
†
ucu +

∑

u,v

Vuvc
†
ucv (4.28)

by (4.25)-(4.27). Note that the annihilation and creation operators always
appear in pairs, since a potential cannot remove an electron from one state
without putting it back in another.

Turning to the situation where the electrons interact, requires we add to
(4.28) a 2-electron repulsion term

W = 1
2

∑′

u,v

w(ru, rv), (4.29)
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where the prime on the summation sign indicates u �= v and the 1
2

factor
eliminates doubly-counted summands. To express (4.29) in c-operator lan-
guage, we have to perform some lengthy analysis. Since this is available in
the loc. cit. texts, we omit it here, in the interest of brevity, and merely quote
the result, viz.,

W = 1
2

∑

i,j,k,�

wijk�c
†
ic

†
jckc�, (4.30)

which, being a 2-electron term, contains two pairs of c†ucv operators, as ex-
pected.

In (4.28) and (4.30), we have achieved our aim of expressing the Hamil-
tonian in the appropriate second quantized form for acting on the state vectors
in Fock space.

4.2 ANG Hamiltonian

At this point, we have reached the stage where we can describe the adatom-
substrate system in terms of the ANG Hamiltonian (Muscat and Newns 1978,
Grimley 1983). We consider the case of anionic chemisorption (§1.2.2), where
a ↓-spin electron in the substrate level εk, below the Fermi level (FL) εF ,
“hops over” into the affinity level (A) of the adatom, whose ↑-spin electron
resides in the lower ionization level (I), as in Fig. 4.1. Thus, the intra-atomic
electron Coulomb repulsion energy on the adatom (a) is

U = |I − A|, (4.31)

and (4.30) reduces to
W = 1

2
Unaσna,−σ (4.32)

via (4.14), where σ = +(−) labels the ↑ (↓) electron spin.
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Fig. 4.1. Anionic chemisorption energy-level diagram showing transfer of
↓-spin electron from substrate level εk to affinity level A on adatom, while
experiencing Coulomb repulsion U from ↑-spin electron in ionization level I.
εf is the substrate Fermi level.

Using (4.28) and (4.32) with (4.14), we can now write the ANG Hamil-
tonian of the combined adatom-substrate system as

H =
∑

σ

{
[εanaσ + 1

2
Unaσna,−σ]

+
∑

k

[εknkσ + (Vakc
†
aσckσ + V ∗

kac
†
kσcaσ)]

}
, (4.33)

where εa(= I) is the adatom site energy and k labels the substrate energy
levels. The last term in (4.33) is the “hopping term” coupling the adatom
states aσ with the substrate states kσ.

Invoking the Hartree-Fock approximation (HFA) (Salem 1966), means
that we can replace Una,−σ in (4.33) by an “averaged” self-energy U〈na,−σ〉,
whereby an effective adatom level of spin σ is defined by2

2Equation (4.34) is sometimes called the spin-unrestricted HFA, because it allows so-
lutions in which self-consistent adatom orbitals of opposite spin have different energies
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εaσ = εa + U〈na,−σ〉, (4.34)

〈na,−σ〉 being the adoccupancy of the −σ spin state, so (4.33) can be approx-
imated by

H =
∑

σ

Hσ =
∑

σ

{
εaσnaσ +

∑

k

[εknkσ

+ (Vakc
†
aσckσ + V ∗

kac
†
kσcaσ)]

}
. (4.35)

4.3 Hartree-Fock Treatment

4.3.1 Perturbed energy

In the HFA, the Schrödinger equation for the σ-spin ground state is

HσΦσ
0 = ε0Φ

σ
0 , (4.36)

where the wave function Φσ
0 is written as the antisymmetric product (Ander-

son 1961)

Φσ
0 =

∏

εmσ<εF

c†mσ|0〉, (4.37)

εmσ being the perturbed 1-electron energy.
If the operator c†mσ creates an excitation of energy ε0 + εmσ, then

Hσc†mσΦσ
0 = (ε0 + εmσ)c†mσΦσ

0 , (4.38)

since the excited state c†mσΦσ
0 is also an eigenfunction of the spin-dependent

Fock Hamiltonian Hσ. With the aid of (4.36), equation (4.38) can be ex-
pressed as

[Hσ, c†mσ]Φσ
0 = εmσc†mσΦσ

0 , (4.39)

in which [ , ] denotes the commutator defined by

[a, b] = ab − ba. (4.40)

(εa+ �= εa−, i.e., 〈na+〉 �= 〈na−〉), as opposed to the spin-restricted HFA, where orbitals
are restricted to the same energy (i.e., εa+ = εa−, 〈na+〉 = 〈na−〉).
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The solution of (4.39) is sought by putting (cf. (2.50))

c†mσ = 〈m|a〉σc†aσ +
∑

k

〈m|k〉σc†kσ (4.41)

and commuting it with Hσ in (4.35) to give

[Hσ, c†mσ] = εaσ[naσ, c†mσ] +
∑

k

{
εk[nkσ, c†mσ]

+ (Vak[c
†
aσckσ, c†mσ] + V ∗

ka[c
†
kσcaσ, c

†
mσ])
}

(4.42)

Now, in general, using (4.12) shows that

[
c†pσcqσ, c†mσ

]
= c†pσδqm, (4.43)

which in (4.42) leads to

[Hσ, c†kσ] = εkc
†
kσ + Vakc

†
aσ ; m = k,

[Hσ, c†aσ] = εaσc
†
aσ +

∑

k

V ∗
kac

†
kσ ; m = a.

(4.44)

Meanwhile, (4.41) in (4.39) gives

{
〈m|a〉σ[Hσ, c†aσ] +

∑

k

〈m|k〉σ[Hσ, c†kσ]
}

Φ0

= εmσ

(
〈m|a〉σc†aσ +

∑

k

〈m|k〉σc†kσ

)
Φ0, (4.45)

which by (4.44) yields

(
〈m|a〉σεaσ +

∑

k

〈m|k〉σVak

)
c†aσ

+
∑

k

(〈m|a〉σV ∗
ka + 〈m|k〉σεk) c†kσ

=

(
〈m|a〉σc†aσ +

∑

k

〈m|k〉σc†kσ

)
εmσ. (4.46)
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On equating the coefficients of c†aσ and c†kσ, we arrive at

εmσ〈m|a〉σ = εaσ〈m|a〉σ +
∑

k

Vak〈m|k〉σ, (4.47)

εmσ〈m|k〉σ = εk〈m|k〉σ + V ∗
ka〈m|a〉σ, (4.48)

which are the equations of motion for 〈m|a〉σ and 〈m|k〉σ, respectively (And-
serson 1961).

Forming (4.47) 〈a|m〉σ and
∑

k

(4.48) 〈k|m〉σ yields

εmσ |〈m|a〉σ|2 = εaσ |〈m|a〉σ|2 +
∑

k

Vak〈m|k〉σ〈a|m〉σ, (4.49)

∑

k

εmσ |〈m|k〉σ|2 =
∑

k

(
εk |〈m|k〉σ|2 + V ∗

ka〈m|a〉σ〈k|m〉σ
)
, (4.50)

respectively. However, since

|〈m|a〉σ|2 +
∑

k

|〈m|k〉σ|2 = 1, (4.51)

adding (4.49) and (4.50) gives

εmσ = εaσ |〈m|a〉σ|2 +
∑

k

[
εk |〈m|k〉σ|2 + (Vak〈m|k〉σ〈a|m〉σ + h.c.)

]
, (4.52)

where h.c. stands for the hermitian conjugate of the preceding term. Insert-
ing (4.34), and summing over all occupied levels, we obtain

∑

m,σ

εmσ =
∑

m,σ

[∑

q

εq |〈m|q〉σ|2

+
∑

k

(Vak〈m|k〉σ〈a|m〉σ + h.c.)

]

+ U
∑

σ

〈na,−σ〉
∑

m

|〈m|a〉σ|2 , (4.53)

in which q runs over a and k. Taking a closer look at the last summation,
we observe that
∑

m

|〈m|a〉σ|2 =
∑

m

〈m|a〉σ〈a|m〉σ =
∑

m

〈m|a〉σ〈0|0〉〈a|m〉σ

=
∑

m

〈mσ|c†aσcaσ|mσ〉 =
∑

m

〈mσ|naσ|mσ〉 = 〈naσ〉, (4.54)
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where we have used (4.16) and (4.18). Thus, (4.53) becomes

∑

m,σ

εmσ =
∑

m,σ

[
∑

q

εq |〈m|q〉σ|2 +
∑

k

(Vak〈m|k〉σ〈a|m〉σ + h.c.)

]

+ 2U〈na+〉〈na−〉, (4.55)

via (4.54).
From (4.33) and (4.34), we see that the ANG Hamiltonian can be written

as

H =
∑

σ

[
∑

q

εqnqσ +
∑

k

(
Vakc

†
aσckσ + h.c.

)
]

+ U〈na−〉na+. (4.56)

Hence, in the HF ground-state Φ0, the energy expectation value of the per-
turbed system is

E = 〈Φ0|H|Φ0〉 =
∑

n,σ

[
∑

q

εq |〈n|q〉σ|2 +
∑

k

(Vak〈n|k〉σ〈a|n〉σ + h.c.)

]

+ U〈na+〉〈na−〉, (4.57)

by (4.54). Comparing (4.55) with (4.57), reveals that the perturbed energy

E =
∑

m,σ
occ

εmσ − U〈na+〉〈na−〉, (4.58)

where the U -term appears negatively, because it is counted twice in the
preceding Fock eigenvalues summation.

4.3.2 Adatom Green function and density of states

In matrix notation, the GF, Gσ
q�, is defined by

∑

q

(E − Hσ)pqG
σ
q� = δp�, (4.59)

where, as in (3.7), we have introduced the concept of complex energy, viz.,

E = ε + is, s = 0+ (4.60)
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to handle the singularity in the GF matrix Gσ(ε) at the eigenvalue of Hσ.
For p = 	 = a, (4.59) becomes

∑

q

(E − Hσ)aqG
σ
qa = 1,

i.e., since q = a or k,

(E − Hσ)aaG
σ
aa +

∑

k

(E − Hσ)akG
σ
ka = 1. (4.61)

With the aid of (4.35), we find

(E − Hσ)aa = 〈a|E − Hσ|a〉
= E〈a|a〉 − 〈a|Hσ|a〉
= E − εaσ. (4.62)

Similarly,

(E − Hσ)ak = E〈a|k〉 − 〈a|Hσ|k〉
= −Vak. (4.63)

Thus, (4.62) and (4.63) in (4.61) give

(E − εaσ)Gσ
aa −

∑

k

VakG
σ
ka = 1. (4.64)

For p = k and 	 = a, (4.59) yields

(E − Hσ)kaG
σ
aa +

∑

k′

(E − Hσ)kk′Gσ
k′a = 0,

which by (4.35) leads to

−V ∗
kaG

σ
aa +

∑

k′

(E − εk′)δkk′Gσ
k′a = 0,

whence,
Gσ

ka = V ∗
kaG

σ
aa(E − εk)

−1. (4.65)
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Inserting (4.65) in (4.64), we arrive at

Gσ
aa(E) =

[
E − εaσ −

∑

k

|Vak|2(E − εk)
−1

]−1

. (4.66)

In view of (4.60) and the Plemelj formula (D.9), the summation in (4.66)
can be evaluated by writing

∑

k

|Vak|2(ε − εk + is)−1 =
∑

k

|Vak|2
∫ ∞

−∞
(ε − ε′ + is)−1δ(ε′ − εk)dε′

= P

∫ ∞

−∞

∑

k

|Vak|2(ε − ε′)−1δ(ε′ − εk)dε′

− iπ

∫ ∞

−∞

∑

k

|Vak|2δ(ε′ − εk)δ(ε − ε′)dε′,

i.e., ∑

k

|Vak|2(ε − εk + is)−1 = Λ(ε) − i∆(ε), (4.67)

where the so-called chemisorption functions

∆(ε) = π
∑

k

|Vak|2δ(ε − εk), (4.68)

Λ(ε) = π−1P

∫ ∞

−∞
(ε − ε′)−1∆(ε′)dε′, (4.69)

the latter being the Hilbert transform of the spectral density ∆(ε). Hence,
from (4.66) and (4.67), we see that the adatom GF is

Gσ
aa(ε) = [ε − εaσ − Λ(ε) + i∆(ε)]−1 . (4.70)

Noting that the Greenian operator

Gσ(ε + is) = (ε + is − Hσ)−1, (4.71)

we have

Tr Gσ(ε + is) =
∑

m

〈m|Gσ|m〉σ

=
∑

m

(ε + is − εmσ)−1, (4.72)
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εmσ being given by (4.52). Equations (D.1), (D.9) and (4.72) show that the
energy DOS

ρσ(ε) =
∑

m

δ(ε − εmσ) = −π−1Im [Tr Gσ(ε + is)] . (4.73)

However, using (2.8), we obtain

Gσ
aa =

∑

m,n

〈a|mσ〉〈mσ|Gσ|nσ〉〈nσ|a〉

=
∑

m

|〈a|mσ〉|2(ε + is − εmσ)−1, (4.74)

so the projected DOS for the adatom orbital, in terms of the Fock eigenfunc-
tions |mσ〉, is

ρσ
aa(ε) =

∑

m

|〈mσ|a〉|2δ(ε − εmσ)

= −π−1Im Gσ
aa(ε)

=
π−1∆(ε)

[ε − εaσ − Λ(ε)]2 + ∆2(ε)
, (4.75)

via (4.72) to (4.74) and (4.70).

4.3.3 Adoccupancy and self-consistency

In order to evaluate the energies εaσ (4.34) and εmσ (4.52), it is necessary to
know the adoccupancy, which is given by

〈naσ〉 =

∫

B

ρσ
aa(ε)dε +

∑

�

〈naσ〉�, (4.76)

where the integration is over the occupied bulk band B and the summation is
over any localized state below the FL. The summand in (4.76) can be written
as

〈naσ〉� = 〈	σ|naσ|	σ〉 = 〈	σ|c†aσcaσ|	σ〉
= 〈	σ|a〉〈0|0〉〈a|	σ〉
= 〈	σ|a〉〈a|	σ〉 = |〈	σ|a〉|2, (4.77)
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via (4.14), (4.16) and (4.18). From (4.74) and (4.77), we note that

Res Gσ
aa(ε�σ) = |〈	σ|a〉|2 = 〈naσ〉�, (4.78)

whence, the adoccupancy derives from the perturbed Greenian matrix Gσ
aa.

Furthermore, since ∆(ε) = 0 outside B, (4.70) yields3

Res Gσ
aa(ε�σ) = [1 − Λ′(ε�σ)]

−1
, (4.79)

the prime denoting differentiation. Thus, (4.78) and (4.79) show that (Newns
1969)

〈naσ〉� = [1 − Λ′(ε�σ)]
−1

. (4.80)

Returning to (4.76), we see that the right-hand side depends on εaσ,
which in turn is a function of 〈na,−σ〉 (4.34). We can express this dependence
via the self-consistent equations

〈naσ〉 = N (〈na,−σ〉) ,

〈na,−σ〉 = N (〈naσ〉) ,
(4.81)

which can be combined into the single equation

〈naσ〉 − N [N(〈naσ〉)] = 0, (4.82)

3From complex variable theory (Marsden 1973), for f(z) = g(z)/h(z), Res
z=a

f(z) =

g(a)/h′(a).
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Fig. 4.2. Self-consistency plots of n−σ = N(n−σ) (solid line) and nσ = N(nσ)
(broken line), showing M - and M -solutions at intersections. nσ = n−σ =
0.73.
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whose numerical solution determines the adoccupancy 〈naσ〉. Equation (4.82)
always has a non-magnetic ( M ) solution at 〈naσ〉 = 〈na,−σ〉 and may (or
may not) have magnetic (M) ones for which 〈naσ〉 �= 〈na,−σ〉. Typical self-
consistency plots of (4.82) are portrayed in Fig. 4.2.

4.3.4 Chemisorption energy and charge transfer

If a single electron is in AO |a〉, the unperturbed ground-state energy of the
non-interacting adatom and substrate is

E0 = 2
∑

k
occ

εk + εa, (4.83)

the factor 2 arising because of spin degeneracy.
As in (1.92), the chemisorption energy is the difference between the elec-

tronic energy of the adatom-substrate system before and after the interaction
occurs, i.e.,

∆E = E − E0, (4.84)

which by (4.58) and (4.83) leads to

∆E =
∑

σ

∆Eσ − εa + εf − U〈na+〉〈na−〉, (4.85)

where
∆Eσ =

∑

m
occ

εmσ −
∑

k
occ

εk. (4.86)

Since 〈naσ〉 is given by (4.76), the problem of finding ∆E reduces to that of
calculating ∆Eσ.

In order to perform this task, we introduce the function (Newns 1967)

g(ε) = f ′(ε)/f(ε) = d [ln f(ε)] /dε, (4.87)

where f(ε) is a meromorphic function, which is analytic in a contour C,
except at a finite number of poles (Marsden 1973). If ω+(ω−) are the zeros
(poles) of f(ε) in the contour C, which are of order r, then, for ε � ω±,
(4.87) gives (App. E)

g(ε)
∣∣∣
ε=ω+

� +r(ε − ω+)−1, (4.88)

g(ε)
∣∣∣
ε=ω−

� r(ε − ω−)−1, (4.89)
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whence,3

Res g(ε)
∣∣∣
ε=ω±

= ±r. (4.90)

Now the function

f(ε) = ε − εaσ −
∑

k

|Vak|2(ε − εk)
−1 (4.91)

in (4.66) has a zero (pole) of order r at an r-fold degenerate perturbed (un-
perturbed) eigenvalue εmσ(εk). The graph showing the solutions of f(ε) = 0
is drawn in Fig. 4.3 for the 1-band system. The interpolative property of the
perturbed eigenvalues lying between the unperturbed ones is observed; the
perturbation merely causing a small shift in all the eigenvalues within the un-
perturbed bands. Addition of the adatom orbital |a〉 gives rise to eigenvalues
outside the bands.

By setting

∆Eσ = (2πi)−1

∫

C

εg(ε)dε, (4.92)

where the contour C contains all the occupied eigenvalues in the complex
plane (Fig. 4.4), each occupied unperturbed (perturbed) eigenvalue εk(εmσ)
with degeneracy r contributes −2πirεk (2πirεmσ) to the integral, so the
whole integral equals the value of ∆Eσ in (4.86) (Whittaker and Watson
1965). To a good approximation, it is immaterial where the right-hand side
of C crosses the real axis, since eigenvalues in this region make only a very
small contribution.
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Fig. 4.3. Graphical solution of f(ε) = 0, where ×(•) is unperturbed (per-

turbed) eigenvalue and Σ(ε) =
∑

k

|Vak|2(ε − εk)
−1.

Fig. 4.4. Contour C containing occupied unperturbed (×) and perturbed
(•) eigenvalues. ε0(εf ) denotes lower band edge (Fermi Level).
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Integrating (4.92) by parts, using (4.87), gives

∆Eσ = (2πi)−1

[
ε ln f(ε)

∣∣
c
−
∫

C

ln f(ε)dε

]
, (4.93)

whose first term can be reduced to zero, without affecting the value of (4.93)
appreciably, by distorting the high-energy end of C, so that it contains an
even number of poles and zeros (Whittaker and Watson 1965). Hence, (4.60),
(4.91) and (4.93) yield

∆Eσ = −(2πi)−1

∫

C

ln [ε + is − εaσ − Σ+(ε)] dε, (4.94)

where
Σ±(ε) =

∑

k

|Vak|2(ε ± is − εk)
−1. (4.95)

Following Newns (1969), if we take C (Fig. 4.4) to be the rectangular
contour defined by the points ε0 ± is and ±is, then the end portions may be
neglected as s → 0+, and (4.94) becomes4

∆Eσ = −(2πi)−1

{∫ 0

ε0

ln[ε − is − εaσ − Σ−(ε)]dε

+

∫ ε0

0

ln[ε + is − εaσ − Σ+(ε)]dε

}
, (4.96)

which, on taking s → 0+ and utilizing (D.9) and (4.67), leads to

∆Eσ = −(2πi)−1

{∫ 0

ε0

ln[ε − εaσ − Λ(ε) − i∆(ε)]dε

−
∫ 0

ε0

ln[ε − εaσ − Λ(ε) + i∆(ε)]dε

}
. (4.97)

However, from (F.8), we have

ln(x ± iy) = ln |x ± iy| ± i tan−1(y/x). (4.98)

Inserting (4.98) in (4.97), we see that the logarithmic functions cancel out,
so that

∆Eσ = π−1

∫ 0

ε0

tan−1

[
∆(ε)

ε − εaσ − Λ(ε)

]
dε, (4.99)

4Note also, when α = εf = 0 in (1.16) and (1.18), εθ = 2β cos θ, so ε0 = 2β(< 0).
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where we take −π < tan−1 < 0 (App. G). If an occupied localized state ε�σ

exists below the band B, say, then the contour C should include both the
occupied B levels and the isolated pole at ε�σ. In this case, it is convenient
to split C into two parts C1 and C2, where C1 encloses ε�σ and the lowest
unperturbed B level at ε0, and C2 the remaining occupied B levels εmσ and
εk. The contribution from C1 is ε�σ − ε0. The removal of one perturbed
and one unperturbed level from the bottom of B does not affect the C2

contribution. Thus, (4.99) now becomes

∆Eσ = ε�σ − ε0 + π−1

∫ 0

ε0

tan−1

[
∆(ε)

ε − εaσ − Λ(ε)

]
dε, (4.100)

which in (4.85) provides the chemisorption energy expression

∆E =
∑

σ

{
ε�σ + π−1

∫ 0

ε0

tan−1

[
∆(ε)

ε − εaσ − Λ(ε)

]
dε

}

− εa − U〈na+〉〈na−〉, (4.101)

where 0 < tan−1 < π,5 when an occupied localized state exists at ε�σ, but
−π < tan−1 < 0 and ε�σ = 0, if not. It is interesting to note that (4.101) is
the same functional form as (1.93), but now contains the adatom electron-
electron interaction features.

Lastly, we come to the adatom charge transfer, which is obtained from

∆q =

(
∑

σ

〈naσ〉 − 1

)
e, (4.102)

where e is the electronic charge. When ∆q > 0(∆q < 0) the transfer is to
(from) the adatom from (to) the substrate.

Having formulated the ANG model, in terms of a 1-band metallic sub-
strate, we now apply it to a 2-band semiconductor.

4.4 Oxygen on III-V Semiconductors

For atomic oxygen, I = −13.6eV (Day and Selbin 1962), while A = −1.48eV
is below the vacuum level of the isolated oxygen atom. Since image-charge

5This amounts to introducing a contribution of −π−1

∫ 0

ε0

πdε into (4.100), which re-

moves the −ε0 term (Newns 1974).
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effects push the A-level below the substrate’s FL, in the chemisorbed state
(Engel and Gomer 1970), both I and A lie below εf , so the adsorbate is
negatively charged, and we have the anionic chemisorption situation of Fig.
4.1 (Kranz 1978).

4.4.1 Electronic properties of AB-type semiconductor

We can represent a III-V semiconductor substrate by a binary chain of 2N A
and B atoms with s- and p-orbitals associated with them, respectively (Fig.
4.5). The site energy at an A(B) atom is εA(εB), and the A − B(B − A)
bond energy is −β(β). The adatom a is characterized by the site energy εa

and interacts with the semiconductor surface A-atom at n = 1 via the bond
of energy β′ (Davison and Huang 1974).

Fig. 4.5. sp-orbital model of AB-binary semiconductor of 2N atoms in-
teracting with adatom a.
permission from Elsevier.

Within the framework of the MO-TBA method (§1.1), the Schrödinger
equation for an AB-chain can be written as a pair of coupled difference
equations, namely, (Davison and Levine 1970)

(X − z)cn = cn−1 − cn+1, n odd, (4.103)

(X + z)cn = cn+1 − cn−1, n even, (4.104)

where, in reduced notation,

X = (εk − ε̄)/β, ε̄ = (εA + εB)/2, z = (εA − εB)/2β, (4.105)

εk being the energy of the electron in the kth state and z the composition
parameter. On taking the zero of energy at ε̄ = εf = 0, so that

εA = −εB = λ, (4.106)

Reprinted from Davison and Huang (1974) with
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the solutions of (4.103) and (4.104) become (App. H)

ε±k = ±(λ2 + 4β2 sin2 k)1/2, (4.107)

for a chain of unit atomic spacing, and

|k〉 = R(k)




∑

n
odd

sin nk|n〉 + K
∑

n
even

cos nk|n〉



 , (4.108)

where the normalization factor (App. I)

R(k) = 2
[
(1 + |K|2)(2N − 1) + 2

]−1/2
, (4.109)

with
K = 2iβ sin k/(ε±k + λ), (4.110)

from (4.104) and (4.108), and

k = jπ/(2N + 1); j = 1, 2, . . . , N, (4.111)

via the condition that c2N+1 = 0. For N large, we note that k � 0 when
j = 1, and k � π/2 when j = N . Moreover, we have

dk =
(j + 1)π

2N + 1
− jπ

2N + 1
=

π

2N + 1
,

whence, in converting a summation into an integral we write

(2N + 1)−1
∑

k

=
N→∞

π−1

∫
dk. (4.112)

Turning to the question of the energy DOS, (4.73) gives

ρ(ε) =
∑

k

δ(ε − ε±k ), (4.113)

which, with the aid of (4.107) and (4.112), can be written as

ρ(ε) = π−1(2N + 1)

∫ π/2

0

δ
[
ε ± (λ2 + 4β2 sin2 k)1/2

]
dk. (4.114)
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To evaluate this integral of the Dirac δ-functional, we note that
∫ π/2

0

F (k)δ[f(k)]dk =

∫ π/2

0

[F (k)/f ′(k)] δ[f(k)]f ′(k)dk

= [F (k)/f ′(k)]f(k)=0 . (4.115)

Comparing (4.114) and (4.115), we see that

F (k) = 1, f(k) = ε ± (λ2 + 4β2 sin2 k)1/2,

f(k) = 0 ⇒ ε2 − λ2 = 4β2 sin2 k,

f ′(k) = ±2β2 sin 2k(λ2 + 4β2 sin2 k)−1/2.





(4.116)

Hence, (4.116) in (4.115) in (4.114) gives

ρ(ε) = ±π−1(2N + 1)
[
(λ2 + 4β2 sin2 k)1/2/2β2 sin 2k

]
f(k)=0

= ±(2N + 1)ε/π
[
(ε2 − λ2)(4β2 + λ2 − ε2)

]1/2
, (4.117)

which is real for λ2 ≤ ε2 ≤ λ2+4β2. Figure 4.6 displays the familiar behaviour
of ρ(ε) in the 2-band diagram of a binary semiconductor, the band edges being
given by

ε±1 = ±(λ2 + 4β2)1/2, ε±2 = ±λ, (4.118)

which correspond to k = π/2 and k = 0 in (4.107), respectively.

Fig.
(CB) bands.

4.6. Variation of energy DOS curves in valence (VB) and conduction
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4.4.2 Chemisorption functions

(a) Spectral density ∆(ε)6

Since the adatom a is attached to the substrate A-atom at j = 1 by the bond
β′ (Fig. 4.5), we have (Newns 1969)

〈a|Hσ|j〉 = β′δ1j, (4.119)

i.e., only the matrix element connecting the AO |a〉 with the AO |1〉 is non-
zero. Moreover,

Vak = 〈a|Hσ|k〉 =
∑

j

〈a|Hσ|j〉〈j|k〉, (4.120)

by (2.8), so we obtain

Vak =
∑

j

β′δ1j〈j|k〉 = R(k)β′ sin k, (4.121)

via (4.119) and (4.108). Thus, (4.68) becomes

∆(ε) = πβ′2
∑

k

R2(k) sin2 k δ(ε − ε±k ), (4.122)

or

∆(ε) = (2N + 1)β′2
∫ π/2

0

R2(k) sin2 k δ(ε − ε±k )dk, (4.123)

by dint of (4.112).
Inserting (4.109) in (4.123), and using (4.110), we find

∆(ε) = 4β′2
∫ π/2

0

(ε±k + λ)2 sin2 k δ(ε − ε±k )

(ε±k + λ)2 + 4β2 sin2 k
dk, (4.124)

for N large. Comparing this with (4.115), reveals

F (k) = (ε±k + λ)2 sin2 k
[
(ε±k + λ)2 + 4β2 sin2 k

]−1
,

6Sometimes called the “weighted DOS”.
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which, with (4.116) for f ′(k), yields

F (k)

f ′(k)
=

(ε±k + λ)2 sin2 k(λ2 + 4β2 sin2 k)1/2

2β2 sin 2k[(ε±k + λ)2 + 4β2 sin2 k]
,

i.e.,

F (k)

f ′(k)

∣∣∣∣
f(k)=0

=
|ε + λ|
8β2

(
ε2 − λ2

4β2 + λ2 − ε2

)1/2

, (4.125)

via (4.116). Hence, (4.124) reduces to (Davison and Huang 1974)

∆(ε) =
β′2|ε + λ|

2β2

(
ε2 − λ2

4β2 + λ2 − ε2

)1/2

, (4.126)

by virtue of (4.115) and (4.125). In contrast to Fig. 4.6, the graph of ∆(ε)
is as depicted in Fig. 4.7.

Fig. 4.7. Spectral density curves in VB and CB with εf = 0. Reprinted

(b) Hilbert transform Λ(ε)
For our 2-band system, (4.69) can be written as

Λ(ε) = π−1P

[∫ ε−2

ε−1

∆(ε−)

ε − ε−
dε− +

∫ ε+
1

ε+
2

∆(ε+)

ε − ε+

dε+

]
, (4.127)

from Davison and Huang (1974) with permission from Elsevier.
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P indicating the Cauchy principal value. Utilizing (4.107), (4.116), (4.118)
and (4.126), we obtain

Λ(ε) =
β′2

2πβ2
P

[∫ π/2

0

I+dk′ −
∫ 0

π/2

I−dk′

]
, (4.128)

where

I± =
|ε± + λ|
(ε − ε±)

(ε2
± − λ2)1/2

(4β2 + λ2 − ε2
±)1/2

2β2 sin 2k′

(λ2 + 4β2 sin2 k′)1/2

=
|ε± + λ|
(ε − ε±)

4β2 sin2 k′

(λ2 + 4β2 sin2 k′)1/2
. (4.129)

Substituting (4.129) in (4.128) leads to

Λ(ε) =
2β′2

π
P

∫ π/2

0

A(ε, ε±) sin2 k′

(λ2 + 4β2 sin2 k′)1/2
dk′, (4.130)

where

A(ε, ε±) =
|ε+ + λ|
ε − ε+

+
|ε− + λ|
ε − ε−

=
(ε + λ)(ε+ − ε−)

ε2 + ε+ε−

=
2(ε + λ)(λ2 + 4β2 sin2 k′)1/2

ε2 − (λ2 + 4β2 sin2 k′)
, (4.131)

since ε+ = −ε− by (4.107). Hence, (4.131) in (4.130) gives

Λ(ε) =
4β′2(q + 1)

πλ
P

∫ π/2

0

sin2 k′

q2 − Γ2
dk′, (4.132)

where

Γ = (1 + p2 sin2 k′)1/2,

p = 2β/λ, q = ε/λ.
(4.133)

After some rearranging, (4.132) gives

Λ(ε) =
β′2(ε + λ)

πβ2
[Φ(ε) − π/2] , (4.134)
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where

Φ(ε) = P

∫ π/2

0

(1 − m sin2 k′)−1dk′, (4.135)

with

m = p2(q2 − 1)−1/2. (4.136)

If we let
t = tan k′,

then
dt = (1 + t2)dk′, sin2 k′ = t2(1 + t2)−1,

and (4.135) becomes

Φ(ε) = P

∫ ∞

0

[
1 + (1 − m)t2

]−1
dt,

i.e.,
Φ(ε) = P

{
(1 − m)−1/2 tan−1

[
(1 − m)1/2t

]}∞
0

,

or
Φ(ε) = P

[
π/2(1 − m)1/2

]
. (4.137)

Thus, on inserting (4.137) in (4.134), using (4.136) and (4.133), we arrive
at

Λ(ε) =






β′2(ε + λ)

2β2

[
(ε2 − λ2)1/2

(ε2 − λ2 − 4β2)1/2
− 1

]
, ε2 > λ2 + 4β2,

−β′2(ε + λ)

2β2
, λ2 < ε2 < λ2 + 4β2,

β′2(ε + λ)

2β2

[
(λ2 − ε2)1/2

(λ2 + 4β2 − ε2)1/2
− 1

]
, ε2 < λ2

.

(4.138)
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The graph of Λ(ε), in these various ε-regions, is presented in Fig. 4.8.

Fig. 4.8. Graph of Hilbert transform Λ(ε). Solutions (×) of Λ(ε) = ε− εaσ

locate localized-state energies ε�σ

with permission from Elsevier.

Since ∆(ε) = 0 outside the bands (Fig. 4.7), the poles of Gσ
aa(ε) in (4.70)

are given by
ε − εaσ − Λ(ε) = 0, (4.139)

whose roots are the localized-state energies ε�σ (Fig. 4.8). The intercept of
the straight line with the ε-axis provides the value of εaσ. From (4.139) and
Fig. 4.8, we see that the existence condition for a localized state above or
below the bands or in the gap between them is:

ε�σ > ε+
1 , ε+

1 − εaσ < Λ(ε+
1 ), (4.140)

ε�σ < ε−1 , ε−1 − εaσ > Λ(ε−1 ), (4.141)

ε�σ > ε−2 , ε−2 − εaσ < Λ(ε−2 ),

ε�σ < ε+
2 , ε+

2 − εaσ > Λ(ε+
2 ),

(4.142)

. Reprinted from Davison and Huang (1974)
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respectively.

4.4.3 Results and discussion

Having established the expressions for the chemisorption functions of an AB-
type chain, we can now employ them in calculating ∆E (4.101) and ∆q
(4.102) for oxygen on narrow-gap III-V semiconductors. Specifically, we are
interested in GaSb, InAs and InSb. The choice of narrow-gap substrates en-
sures that the approximation made regarding the contour C in (4.92) remains
valid. Results are presented for the M -case only.

The systems’ parameters, used in the numerical calculations, are pro-
vided in Table 4.1, where the values of ∆E and ∆q for oxygen on the (100)
and (111) planes of the various semiconductors are also listed. As can be
seen from the table, |∆E(111)| < |∆E(100)|, and larger ∆E are usually as-
sociated with wider energy gaps. Thus, the decrease in the energy gap with
increasing temperature should, in general, lead to a reduction in ∆E. The
positive values of ∆E indicate that chemisorption is not possible on these
planes for β′ = 1.2 (−2β units). The values of ∆q are also given in Table
4.1. On increasing β′, both ∆E and ∆q are found to decrease for the (100)
and (111) planes.

Table 4.1. All energies are in eV. EG0 = Energy gap width at 00K, V B =
Valence band width, φ = Work function. β′ = 1.2 (in −2β units), εa = −8.78
and U = 12.14.

Substrate EGa
0 VBb φc −2β ∆E ∆q

(100) (111) (100) (111) (100) (111) (100) (111)
GaSb 0.81 3.2 1.2 4.76 3.58 1.55 -2.46 -0.58 0.38 0.40
InAs 0.42 3.2 1.1 4.90 3.40 1.29 -2.02 +0.37 0.36 0.40
InSb 0.24 3.2 1.1 4.75 3.32 1.21 -2.00 +0.90 0.37 0.40

aLong (1968). bHilsum (1966) cGobeli and Allen (1966)



Chapter 5

Supported-Metal Catalysts

Chemistry without catalysis would be a
sword without a handle, a light without
brilliance, a bell without sound.

— Alwyn Mittasch

Among the various types of composite systems, that of the metal-support
ranks as one of the most important, because of its crucial role in catalysis.
The situation under consideration is that of chemisorption on a thin metal
film (the catalyst), which sits on the surface of a semiconductor (the sup-
port). The fundamental question concerns the thickness of the film needed
to accurately mimic the chemisorption properties of the bulk metal, because
metallization of inexpensive semiconductor materials provides a means of
fabricating catalysts economically, even from such precious metals as Pt, Au
and Ag.

5.1 Metal-Support Greenian

The substrate being modelled is a metal with a semiconductor support, il-
lustrated schematically in Fig. 5.1 (Davison et al 1988). The system has
two components: metal and semiconductor. The metal part consists of a
finite (n + 1)-atom chain (or film), occupying atomic sites m = 0 to m = n

75 



76 CHAPTER 5. SUPPORTED-METAL CATALYSTS

inclusive. The atoms have site energy α1 and bond energy β1, giving rise to a
single d-like energy band. The binary semiconductor support is semi-infinite,
occupying atomic sites m ≥ n + 1. The site energies alternate between αA

and αB, corresponding to the s- and p-orbitals, respectively, the one at the
metal-semiconductor interface being taken as αA, to be specific. The bond
energies in the semiconductor are ±β2, while that at the interface is γ.

Fig. 5.1. Schematic representation of Ni/ZnO system. Ni film, lying between
0 ≤ m ≤ n, contains atoms of site energy α1 and bond energy β1. Bond of
energy γ attaches film to first (m = n + 1) Zn atom in semi-infinite ZnO
support, depicted by chain of alternating s- and p-orbitals with corresponding
site energies αA and αB, and bond energies ±β2. Reprinted from Davison et

To construct the Greenian for the metal-support system described above,
we start from the infinite Greenians for the metal and the semiconductor.
Dyson’s equation is used to obtain the Greenians for the finite or semi-infinite
components, and again to “glue” the two components together to produce
the Greenian for the composite system.

For convenience, we summarize here the list of Greenians to be employed
in the following discussion:

G1: Greenian for infinite metal

g1: Greenian for finite metal

G2: Greenian for infinite semiconductor

g2: Greenian for semi-infinite semiconductor

g12: composite Greenian for metal-semiconductor system

al (1988) with permission from Elsevier.
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Turning first to the metal film, we let G1 be the Greenian for the infinite,
one-dimensional metal, and g1 its finite counterpart. These two Greenians
are connected by the Dyson equation (3.3)

g1 = G1 + G1V1g1, (5.1)

where the potential

V1 = − β1 (|0〉〈−1| + | − 1〉〈0| + |n〉〈n + 1| + |n + 1〉〈n|)
+ (α′

1 − α1) (|0〉〈0| + |n〉〈n|) . (5.2)

creates a finite chain (of length n + 1) by cutting the bonds (of energy β1)
between the m = −1 and m = 0 atoms, and between the m = n and m = n+1
atoms. The potential also modifies the site energies, on the end atoms of the
film, from α1 to α′

1. In principle, the α′
1 at m = 0 may be different from that

at m = n, but for simplicity we take them to be the same.
The matrix elements of g1 are derived in the next section, as required,

while those of the infinite Greenian G1 are already known (from (2.49) with
(2.37) and (2.40)), and can be written as (App. J)

G1(n,m) = t|n−m|G1(0, 0), (5.3)

where
G1(0, 0) = t/β1(1 − t2), (5.4)

with

t =

{
X ± (X2 − 1)1/2, X ≶ ∓1,

X − i(1 − X2)1/2, |X| < 1,
(5.5)

and
X = (E − α1)/2β1. (5.6)

The semiconductor support can be treated in a similar manner (Bose
and Foo 1974), since the Greenians G2 and g2 of the infinite and semi-infinite
solids, respectively, are also linked by the Dyson equation, i.e.,

g2 = G2 + G2V2g2, (5.7)

where

V2 = −β2 (|n〉〈n + 1| + |n + 1〉〈n|) + (α′
A − αA)|n + 1〉〈n + 1|. (5.8)
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The first term in (5.8) cuts the bond between the atoms n and n+1, thereby
creating a surface at m = n + 1, the second term perturbs the site energy on
the surface atom from αA to α′

A.
The only element of g2 needed here is that at the surface site, namely

g2(n + 1, n + 1) = G2(n + 1, n + 1) − β2G2(n + 1, n)g2(n + 1, n + 1)

− β2G2(n + 1, n + 1)g2(n, n + 1)

+ (α′
A − αA)G2(n + 1, n + 1)g2(n + 1, n + 1), (5.9)

which derives from (5.7). However, g2(n, n + 1) = 0, because the sites n and
n + 1 lie on opposite sides of the cleaved interface (Kalkenstein and Soven
1971). Thus, (5.9) leads to the desired matrix element at the interface site,
viz.,

g2(n + 1, n + 1) = G2(n + 1, n + 1)

[
1 + β2G2(n + 1, n)

− (α′
A − αA)G2(n + 1, n + 1)

]−1

. (5.10)

The elements of G2 required in (5.10) are (App. K)

G2(n + 1, n + 1) = (E − αB)/β2
2(2z± − p), (5.11)

and
G2(n + 1, n) = β2(1 − z±)G2(n + 1, n + 1)/(E − αB), (5.12)

where

|z±| =
1

2
|p ± (p2 − 4)1/2| < 1, (5.13)

and
p = 2 − (E − αA)(E − αB)/β2

2 . (5.14)

Knowing g1 and g2, the Greenian g12 for the composite metal-support
system is given by the Dyson equation

g12 = g + gV g12, (5.15)

where

g(	, m) =






g1(	, m), 0 ≤ 	, m ≤ n,

g2(	, m), 	, m > n,

0, otherwise,

(5.16)
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and
V = γ(|n〉〈n + 1| + |n + 1〉〈n|), (5.17)

the potential V connecting the metal film to the semiconductor support by
the bond of energy γ.

5.2

In this section, we utilize the Dyson equation (5.15) to develop the surface
GF of the composite system. Inserting (5.17) in (5.15), the matrix element

g12(0, 0) = g1(0, 0) + γg1(0, n)g12(n + 1, 0), (5.18)

for the surface GF, since g(0, n + 1) = 0 from (5.16). The g12(n + 1, 0) in
(5.18) is found from (5.15), i.e.,

g12(n + 1, 0) = g(n + 1, 0) + γg(n + 1, n)g12(n + 1, 0)

+ γg(n + 1, n + 1)g12(n, 0),

which reduces to

g12(n + 1, 0) = γg2(n + 1, n + 1)g12(n, 0), (5.19)

again via (5.16). Another application of (5.15) reveals that

g12(n, 0) = g1(n, 0) + γg1(n, n)g12(n + 1, 0). (5.20)

Equations (5.19) and (5.20) are a pair of coupled equations, whose solution
yields

g12(n + 1, 0) = γg1(n, 0)
[
g−1
2 (n + 1, n + 1) − γ2g1(n, n)

]−1
. (5.21)

Substituting (5.21) into (5.18), we arrive at

g12(0, 0) = g1(0, 0) + γ2g1(0, n)g1(n, 0)

×
[
g−1
2 (n + 1, n + 1) − γ2g1(n, n)

]−1
, (5.22)

g2(n + 1, n + 1) being given by (5.10). It now remains to use (5.1) to obtain
the 4 elements of g1 needed in (5.22).

Substrate Surface Green Function
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Using (5.1) and (5.2), the matrix elements of the Greenian g1 can be
obtained. Specifically,

g1(0, n) = G1(0, n) − β1

[
G1(0,−1)g1(0, n) + G1(0, n + 1)g1(n, n)

]

+ (α′
1 − α)

[
G1(0, 0)g1(0, n) + G1(0, n)g1(n, n)

]
, (5.23)

where
g1(−1, n) = 0 = g1(n + 1, n), (5.24)

because these matrix elements connect sites on opposite sides of broken
bonds. Rearranging (5.23) in terms of the unknown GFs g1(0, n) and g1(n, n),
we can write

Ag1(0, n) + Bg1(n, n) = G1(0, n), (5.25)

where
A = 1 + β1G1(0,−1) − (α′

1 − α1)G1(0, 0), (5.26)

and
B = β1G1(0, n + 1) − (α′

1 − α1)G1(0, n). (5.27)

Employing (5.1) again, we find

g1(n, n) = G1(n, n) − β1 [G1(n,−1)g1(0, n) + G1(n, n + 1)g1(n, n)]

+ (α′
1 − α1) [G1(n, 0)g1(0, n) + G1(n, n)g1(n, n)] , (5.28)

by virtue of (5.24). In the infinite solid, translational symmetry implies that

G1(n,m) = G1 (|n − m|) , (5.29)

so (5.28) can be expressed in the form

Bg1(0, n) + Ag1(n, n) = G1(n, n). (5.30)

The pair of linear equations (5.25) and (5.30) has the solution

g1(0, n) = [AG1(0, n) − BG1(n, n)] (A2 − B2)−1, (5.31)

and
g1(n, n) = [AG1(n, n) − BG1(0, n)] (A2 − B2)−1. (5.32)
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A parallel application of (5.1) gives rise to the pair of equations

g1(0, 0) = [AG1(0, 0) − BG1(n, 0)] (A2 − B2)−1, (5.33)

and
g1(n, 0) = [AG1(n, 0) − BG1(0, 0)] (A2 − B2)−1, (5.34)

which are very similar to (5.31) and (5.32). Examining (5.31)-(5.34), with
reference to (5.29), shows that

g1(0, 0) = g1(n, n), (5.35)

and
g1(n, 0) = g1(0, n), (5.36)

which are not unexpected results, in light of the fact that g1 represents an
(n + 1)-atom chain, with reflectional symmetry about its center. In other
words, the two end sites (m = 0 and m = n) are physically indistinguishable,
so the corresponding GFs relating them should be equal.

Substituting (5.35) and (5.36) into (5.22) gives

g12(0, 0) = g1(0, 0) + γ2(g1(n, 0))2
[
g−1
2 (n + 1, n + 1) − γ2g1(0, 0)

]−1
, (5.37)

which, on inserting (5.33) and (5.34), becomes

g12(0, 0) = [AG1(0, 0) − BG1(n, 0)] (A2 − B2)−1

+ γ2 [AG1(n, 0) − BG1(0, 0)]2 (A2 − B2)−1

×
{
g−1
2 (n + 1, n + 1)(A2 − B2) − γ2 [AG1(0, 0) − BG1(n, 0)]

}−1
.

(5.38)

With the aid of (5.10), some rearrangement of (5.38) produces an explicit
expression for the surface GF, in terms of the infinite GFs, viz.,

g12(0, 0) = [AG1(0, 0) − BG1(n, 0)] (A2 − B2)−1

+ γ2G2(n + 1, n + 1) [AG1(n, 0) − BG1(0, 0)]2 (A2 − B2)−1

×
{

(A2 − B2) [1 + β2G2(n + 1, n) − (α′
A − αA)G2(n + 1, n + 1)]

− γ2G2(n + 1, n + 1) [AG1(0, 0) − BG1(n, 0)]

}−1

. (5.39)
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For present purposes, the surface and interface perturbations are ne-
glected, so that α′

1 = α1 and α′
A = αA, thereby reducing (5.26) and (5.27)

to
A = 1 + β1G1(0,−1), (5.40)

and
B = β1G1(0, n + 1). (5.41)

On setting

P = 1 + β2G2(n + 1, n), (5.42)

Q = AG1(0, 0) − BG1(n, 0), (5.43)

R = γ2G2(n + 1, n + 1), (5.44)

S = AG1(n, 0) − BG1(0, 0), (5.45)

(5.39) can be rewritten as

g12(0, 0) =
PQ(A2 − B2) + R(S2 − Q2)

(A2 − B2)[P (A2 − B2) − RQ]
. (5.46)

After some algebra, we find that

S2 − Q2 = (A2 − B2)
[
G2

1(n, 0) − G2
1(0, 0)

]
, (5.47)

so (5.46) simplifies to

g12(0, 0) =
PQ + R[G2

1(n, 0) − G2
1(0, 0)]

P (A2 − B2) − RQ
. (5.48)

It should be noted that (5.48), like the more general (5.39), expresses the
surface GF in terms of the infinite GFs Gi of the two components (the metal
and semiconductor support). Since G1 and G2 have already been derived in
(5.3)-(5.4) and (5.11)-(5.12), respectively, our knowledge of the surface GF
is now complete.

5.3 Chemisorption Properties

At this point, we can undertake the study of chemisorption on a suppor-
ted metal. Despite the importance of this process to catalysis, quantum-
mechanical studies have been somewhat scarce. The problem was first in-
vestigated by Ruckenstein and Huang (1973), who formulated a general MO
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approach to the chemisorption process and demonstrated the effect of the
support in modifying the energies of both localized and nonlocalized states.
A decade later, Haberlandt and Ritschl (1983) used a semi-empirical com-
plete neglect of differential overlap (CNDO/2) cluster calculation to study
the H-Ni/SiO2 system. The charge transfer was found to be directed into
the support, and to increase with increasing electron affinity of the surface
site and with the number of interface bonds. The chemisorption energy of a
H atom on a single Ni atom was found to be decreased (in absolute value)
by up to 26%, due to the influence of the support.

A few years later, Davison et al (1988) applied the ANG model of
chemisorption to supported-metal catalysts. The key parameters were found
to be the metal film thickness and the metal-support bond strength. Related
papers followed, studying impurity effects (Zhang and Wei (1991), Sun et al
(1994b)) and variation with metal substrate (Xie et al (1992)).

Parallel studies were performed by Liu and Davison (1988), who inves-
tigated the process of chemisorption on inverse-supported catalysts, where
the surface film is a semiconductor and the underlying support is a metal.
Again a key parameter was found to be film thickness, and the substrate was
observed to behave as either an acceptor or a donor, depending upon that
thickness. The lack of charge self-consistency in this work was addressed
by Sun et al (1994a), who also studied the effects of thickness and different
metal constituents.

A different approach was taken by Hao and Cooper (1994), who used a
combination of the film linear muffin-tin orbital (LMTO) method and an ab
initio molecular quantum cluster method, to investigate SO2 adsorption on a
Cu monolayer supported by γ−Al2O3. Emphasis here was on the geometry
of adsorption sites, with the conclusion that the preferred adsorption site is
the Al−Al bridging one.

The problem at hand is the application of the ANG model (Chap. 4)
to the adatom-metal-support system, which is shown schematically in Fig.
5.2. The adatom (H) at site m = a, has electronic energy, εaσ (4.34) and is
connected by a bond of energy β to the surface atom (Ni), at site m = 0.
The support is ZnO, with a Zn atom at the interface site m = n+1 (Davison
et al 1988).
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Fig. 5.2. Schematic representation of H-Ni/ZnO system showing hydrogen
adatom a of electronic energy εaσ with bond energy β attached to Ni surface
atom at m = 0.
Elsevier.

The adatom and surface Greenians are linked, once again, by the Dyson
equation

ga = g12 + g12Vaga, (5.49)

where
Va = U〈na,−σ〉|a〉〈a| + β (|a〉〈0| + |0〉〈a|) , (5.50)

U〈na,−σ〉 being the averaged self-energy of the adatom, within the HFA. From
(5.49), we have

ga(a, a) = g12(a, a) + U〈na,−σ〉g12(a, a)ga(a, a)

+ βg12(a, a)ga(0, a), (5.51)

where g12(a, 0) = 0, and also

ga(0, a) = βg12(0, 0)ga(a, a). (5.52)

Substituting (5.52) into (5.51) and rearranging yields

ga(a, a)
[
g−1
12 (a, a) − U〈na,−σ〉 − β2g12(0, 0)

]
= 1. (5.53)

Noting that the isolated adatom GF is

g12(a, a) = (E − εa)
−1, (5.54)

Reprinted from Davison et al (1988) with permission from
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and putting
εaσ = εa + U〈na,−σ〉, (5.55)

as in (4.34), reduces (5.53) to the adatom expression

ga(E) ≡ ga(a, a) =
[
E − εaσ − β2g12(0, 0)

]−1
. (5.56)

The general theory of §4.3 can now be applied, with some modification, due
to the fact that the substrate electronic structure consists of discrete states
arising from the metal film, in addition to the delocalized band states of the
semiconductor. The adatom GF (5.56) can be written as (cf. (4.70))

ga(E) = [E − εaσ − Λ(E) + i∆(E)]−1 , (5.57)

by means of the chemisorption functions

Λ(E) = β2Re [g12(0, 0)], ∆(E) = −β2Im [g12(0, 0)]. (5.58)

The adatom occupancy is now given by (cf. (4.76) and (4.80))

〈naσ〉 =

∫ εu

ε�

ρa(E)dE +
∑

i

[1 − Λ′(Ei)]
−1

, (5.59)

where the adatom DOS is (cf. (4.75))

ρa(E) = −π−1Im [ga(E)]

= π−1∆(E)
[
(E − εaσ − Λ(E))2 + ∆2(E)

]−1
. (5.60)

Furthermore, the summation in the second term of (5.59) is over all discrete
states with energies below the FL εf , and the integration in the first term is
over the VB of the semiconductor.

Here, we examine only the non-magnetic case, so we have

〈na+〉 = 〈na−〉 ≡ 〈na〉, (5.61)

on dropping the subscript σ, for convenience. The charge transfer from the
substrate to the adatom is now given by (cf. (4.102))

∆q = (2〈na〉 − 1) e. (5.62)
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The chemisorption energy expression (4.101) now takes the form

∆E = 2
n∑

j=0

[Ea(j) − Eb(j)]

+ 2π−1

∫ εu

ε�

tan−1
[
∆(E)

/
(E − εaσ − Λ(E))

]
dE

− εa − U〈na〉2, (5.63)

with −π < tan−1 < 0 (App. G). In (5.63), Eb(j) and Ea(j) represent the
energy of the jth discrete state of the metal film, before and after chemisorp-
tion, respectively. Thus the quantity Ea(j)−Eb(j) is the energy shift in that
state as induced by the chemisorption process. It is noted that, for the para-
meter values used here, the energy ε∗a of the adatom level after chemisorption
lies in the semiconductor VB and, hence, its contribution to ∆E is automat-
ically included in the integrated term, and does not require explicit inclusion
as in (4.101). With these considerations, the numerical calculations of ∆E
and ∆q are straightforward.

5.4 H-Ni/ZnO System

Results are presented for the case of a H adatom interacting with a Ni film
on a ZnO support. The band structure of the composite system is shown
schematically in Fig. 5.3. Relative to the FL as energy zero, the principal
parameters have values (in eV): α1 = −1.7, β1 = 0.95, αA = 0, αB = −3.4
and β2 = 3.755. The interface interaction parameter γ is approximated as
the average of β1 and β2 for a value of 2.35, although variation of the results
with γ is examined later. With this set of parameters, the Ni d-band lies
between 0.2 and -3.6. For thin Ni films (e.g., n + 1 = 6, as shown in Fig.
5.3), all Ni energies fall within the ZnO band gap, while, for thicker films,
some Ni energies lie in either the VB or CB of ZnO.1

1Note, as successive Ni atoms are added to the film, their energy levels gradually fill up
the semiconductor band gap. Thus, eventually the 2-band support appears as a 1-band
metal to the H adatom, and metallization of the semiconductor has been achieved.
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Fig. 5.3. Energy band-structure diagram (in eV) of Ni/ZnO support and
pre-(post-)chemisorbed hydrogen adatom level at εa(ε

∗
a). VB (shaded) and

CB of ZnO are of width 6. Fermi level (εf ), which coincides with lower edge
of CB, is taken as zero of energy. 6-layer Ni film has 6 localized levels ly-
ing between band edges (dashed lines), which just overlap ZnO energy gap.

The H atom has parameters εa = −9.74 and U = 12.9, with bond
energy β = 3.75. The isolated adatom energy εa is shifted upwards upon
chemisorption to ε∗a, which is a solution to (cf. (4.139))

E − εaσ − Λ(E) = 0, (5.64)

i.e., it is the chemisorption state, which arises mathematically as a pole of
the adatom GF (5.57). As the energy ε∗a overlaps the ZnO valence band,
it appears as a broadened spike in the DOS, rather than the more familiar
δ-function that occurs when such a state is isolated from the bands.

Using the “reference” value of γ = 2.35 eV for the Ni-ZnO interface para-
meter, the charge transfer ∆q and chemisorption energy ∆E were calculated
for a Ni film of thickness varying from 1 to 6 layers, as listed in Table 5.1.
For the case of a single Ni layer, ∆q is quite small (0.08), and ∆E = −1.166
has a value about two-fifths of that for pure Ni (∆E = −2.975 eV). Such

Reprinted from Davison et al (1988) with permission from Elsevier.
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behaviour is not surprising, as the thinness of the Ni film allows some charge
to be drained away from the surface into the ZnO support, thus weakening
the adsorption process.

Table 5.1. Adatom charge transfer ∆q and chemisorption energy ∆E for
atomic hydrogen on Ni film of (n + 1)-layers thickness on ZnO support.

n + 1 ∆q(e) ∆E (eV)
1 0.08 −1.166
2 0.14 −2.730
3 0.16 −2.933
4 0.16 −2.963
5 0.16 −2.969
6 0.16 −2.974

Increasing the thickness of the Ni film to just 2 layers produces marked
changes in the values (increasing ∆q to 0.14 and lowering ∆E to −2.730),
making them much closer to the values for pure Ni. A 3-layer film leads to
∆q having the pure-Ni value of 0.16 and a marginally lower value of ∆E
(= −2.933 eV). Further increases in the thickness of the film produce no
significant change in ∆q and only very small changes in ∆E. The Ni film
completely reflects the chemisorption properties of pure Ni, when the film
thickness reaches 6 layers.
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Fig. 5.4. Dependence of hydrogen chemisorption energy ∆E (solid line)
and adatom charge transfer ∆q (dashed line) of 2-layer Ni film on interac-

Elsevier.

Since the value of the Ni-ZnO interface interaction parameter γ was
estimated to be the average of β1 and β2, further calculations were done to
assess the sensitivity of the results to changes in the value of γ. Fig. 5.4
shows the variation of ∆q and ∆E, with γ in the range from 1 to 6 eV for
a 2-layer film. (The reference value of γ is 2.35 eV.) In the low-γ region
(1 ≤ γ ≤ 3), ∆E increases quite quickly with increasing γ, while for higher
γ (> 3 eV) the rate of increase in ∆E is much smaller. The decrease of
∆q with increasing γ is similar, although the difference in the rate of change
between the low- and high-γ regimes is less pronounced. It is significant
that, for low γ, the chemisorption properties are closest to those for a pure
(semi-infinite) Ni substrate. Increasing the metal-support interface bond γ
from 1 eV to 6 eV results in a 6% increase (17% decrease) in ∆E (∆q),
indicating that the effect of the support, in this case, is to draw charge from
the Ni film into the ZnO support, resulting in less charge being available

tion parameter γ. Reprinted from Davison et al (1988) with permission from
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for transfer to the adatom, thereby weakening the chemisorption process. It
should be noted that these findings are qualitatively in accord with those of
Haberlandt and Ritschl (1983). As mentioned earlier, the results of Fig. 5.4
are for a 2-layer film. For a thicker film, the variation in the chemisorption
properties with γ should be smaller, due to the fact that the metal-support
interface is physically located farther away from the adsorption site.

In conclusion, metal-support substrates provide good examples of com-
posite systems that can be studied efficiently by GF techniques. The key
parameter is clearly seen to be the film thickness: it controls the extent to
which the metal-support system mimics the chemisorption properties of the
pure metal. Also important is the bond strength (γ) between the metal
and the support, as it governs the flow of charge between the metal and the
support, thus determining the amount of charge available at the surface to
partake in chemisorption.



Chapter 6

Disordered Binary Alloys

One of the advantages of being disorderly
is that one is constantly making exciting
discoveries.

— A.A. Milne

So far, the solids that we have studied have been ordered, in the sense
that they possess perfect translational symmetry. However, this “perfection”
is really an idealization and, in reality, an actual crystal can be expected
to have some sort of disorder, which breaks the long-range periodicity of
the lattice. There are a number of ways in which disorder can arise. For
instance, interstitial disorder occurs when an impurity atom is placed in the
vacant space between two substrate atoms, which remain at their original
locations in the lattice. Another situation is that of structural disorder, where
the substrate atoms move away from their positions on the perfect lattice.
However, the situation of interest in this chapter is that of substitutional
disorder. Here, a perfect lattice of one type of atoms (say, A) has some of its
members randomly replaced by another type (B). The result is a structurally
periodic lattice, but with the constituent atoms A and B randomly placed on
the lattice sites. The relative numbers of A and B atoms can be represented
by the concentrations cA and cB, with cA + cB = 1. The randomness of this
type of solid introduces a level of difficulty into the theory, that we have not
yet encountered.

91 
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6.1 Coherent-Potential Approximation

In this section, we consider how to model a bulk (i.e., infinite) substitution-
ally disordered binary alloy (DBA), in light of its intrinsic randomness. The
fact that the DBA lacks periodicity means that the key tool of Bloch’s theo-
rem is inapplicable, so specialized methods (Ehrenreich and Schwartz 1976,
Faulkner 1982, Yonezawa 1982, Turek et al 1996) must be used.

One early and simple concept is the rigid-band model (Friedel 1958),
wherein a fixed DOS is taken to represent an entire class of alloys (such as
those composed of 3d transition metals). Individual alloys are distinguished
solely by assigning to each a Fermi level, determined by the concentration of
valence electrons. Unfortunately, this model is too much of an oversimplifi-
cation, because, for example, the DOS is chosen empirically, and may not be
clearly related to that for any of the constituent metals.

In the virtual-crystal approximation (VCA) (Nordheim 1931), the site
energy of an alloy atom is taken to be

αv = cAεA + cBεB, (6.1)

where εA(εB) is the electronic energy of component A(B). Therefore, αv

is the average of the site energies for the constituent atoms, weighted by
the corresponding concentrations. Thus, the basic idea of the VCA (6.1)
is to replace the random energy at each site by an average one, thereby
making the lattice periodic and the calculation of the DOS straightforward.
Although this approach may sound reasonable, in principle, it is in fact
inadequate in its implementation. The VCA treats the randomness of the
alloy too simplistically, and in effect models the solid as if it were ordered.
The failure of the VCA is perhaps illustrated most obviously by the fact
that it always gives rise to a single energy band (termed the amalgamated
band structure). Although some alloys do possess this structure, others do
not. For example, Cu-Zn alloy (Ehrenreich and Schwartz 1976) maintains
two separate bands, associated with the Cu and Zn 3d-bands, respectively.
This type of band structure is termed persistent, and cannot be produced
using the VCA. So, although the VCA might prove satisfactory for some
amalgamated-type alloys, it certainly fails as a more comprehensive theory.

A better method is the average t-matrix approximation (ATA) (Korringa
1958), in which the alloy is characterized by an effective medium, which is
determined by a non-Hermitean (or “effective”) Hamiltonian with complex-
energy eigenvalues. The corresponding self-energy is calculated (non-self-
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consistently) by means of an average t-matrix, which represents the average
scattering of an electron at each site. One fundamental approximation that is
made in this approach is the so-called single-site approximation, wherein the
scattering from a particular site is assumed to be independent of that from
other sites. The ATA is certainly an improvement over the VCA, because, it
can predict either the persistent or amalgamated bands. However, the ATA
does possess deficiencies, largely due to the lack of self-consistency in the
effective potential. For instance, the ATA does not always fix the band edges
correctly, and calculated results are also dependent upon the choice of the
reference system with respect to which the electron scattering is considered
to take place. Consequently, a better approximation was sought.

The improvement came in the form of the coherent-potential approxima-
tion (CPA) (Soven 1967, Taylor 1967, Velický et al 1968), which remedied
the lack of self-consistency exhibited by the ATA. The crux of this approach
is that each lattice site has associated with it a complex self-consistent poten-
tial, called a coherent potential (CP). The CP gives rise to an effective medium
with the important property that removing that part of the medium belong-
ing to a particular site, and replacing it by the true potential, produces, on
average, no further scattering. Because the CPA is used for our discussion
of chemisorption on DBA’s, its mathematical formulation is given below.

The CPA has proved to be an enormously successful tool in the study
of alloys, and has been implemented within various frameworks, such as the
TB, linear muffin-tin orbital and Korringa-Kohn-Rostoker (Kumar et al 1992,
Turek et al 1996), and is still considered to be the most satisfactory single-site
approximation. Efforts to do better than the single-site CPA have focused on
multi-site (or cluster) CPA’s (see, e.g., Gonis et al 1984, Turek et al 1996),
in which a central site and its set of nearest neighbours are embedded in
an effective medium. Still, for present purposes, the single-site version of
the CPA suffices, and we derive the necessary equations here, within the
framework of the TB model.

The derivation of the single-site CPA involves the calculation of an av-
erage GF Ge for a corresponding effective Hamiltonian He, with the key
requirement being that there is zero average scattering from any particular
site. It should be noted that, because He is non-Hermitean with complex
eigenenergies, any putative “average” wave function would necessarily lead
to unphysical predictions. Fortunately, an average GF does not suffer from
this drawback.
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The exact 1-electron Hamiltonian for a DBA can be written as the sum of
the Hamiltonian for a translationally invariant solid plus that for the random
perturbations, i.e.,

H =
∑

i,j

wij|i〉〈j| +
∑

i

vi|i〉〈i|. (6.2)

The first summation incorporates the (non-random) translational invariance,
while the second includes random deviations from the lattice on a site-by-site
basis. Note that the second summation explicitly indicates that all random-
ness or disorder is diagonal, not off-diagonal. The corresponding exact GF
G = (ω − H)−1 satisfies the matrix equation

∑

�

[(ω − vi)δi� − wi�] G(ω; 	, j) = δij, (6.3)

where ω = E + i0. Since the Hamiltonian

H0 =
∑

i,j

wij|i〉〈j| (6.4)

represents a translationally invariant crystal (which we term the “unper-
turbed” system), it can be assumed that the corresponding unperturbed
GF, satisfying ∑

�

(ωδi� − wi�)G0(ω; 	, j) = δij, (6.5)

is known. The two GF’s are linked by the Dyson equation (3.3), viz.,

G = G0 + G0V G, (6.6)

where
V =

∑

i

vi|i〉〈i| = H − H0. (6.7)

Successive substitution of (6.6) into itself produces

G = G0 + G0V G0 + G0V G0V G0 + · · · + G0(V G0)
n + · · · (6.8a)

= G0 + G0TG0 (6.8b)

where the t-matrix is

T = V + V G0V + · · · + V (G0V )n + · · · = V + V G0T. (6.9)
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Since G is the exact GF for one of the many possible configurations of the
alloy, what we would like to do is to obtain an “average” GF 〈G〉, where the
averaging is over all possible configurations. Performing such a configura-
tional average on (6.8b) gives

〈G〉 = G0 + G0〈T 〉G0, (6.10)

where 〈G0〉 = G0, because this GF represents a translationally invariant
crystal. Thus, the problem is reduced to evaluating 〈T 〉.

To determine 〈T 〉, let Vn = vn|n〉〈n|, so that

V =
∑

n

Vn, (6.11)

from which (6.8a) becomes

G = G0 + G0

∑

n

VnG0 + G0

∑

n

VnG0

∑

m

VmG0 + · · · . (6.12)

If we let tn be the single-site scatterers, with Tn = tn|n〉〈n|, then we can
rearrange G in (6.12) as

G = G0 + G0

∑

n

TnG0 + G0

∑

n

TnG0

∑

m�=n

TmG0

+ G0

∑

n

TnG0

∑

m�=n

TmG0

∑

r �=m

TrG0 + · · · ,
(6.13)

where it can be seen that

tn = vn + vnG0(n, n)vn + vnG0(n, n)vnG0(n, n)vn + · · ·
= vn [1 − vnG0(n, n)]−1 .

(6.14)

Comparing (6.13) with (6.8b), we see that

T =
∑

n

Tn +
∑

n

TnG0

∑

m�=n

Tm +
∑

n

TnG0

∑

m�=n

TmG0

∑

r �=m

Tr + · · · (6.15)

so taking averages gives

〈T 〉 =
∑

n

〈Tn〉 +
∑

n

∑

m�=n

〈TnG0Tm〉 + · · · . (6.16)



96 CHAPTER 6. DISORDERED BINARY ALLOYS

In the single-site approximation, scattering from different sites are taken to
be independent, so (6.16) becomes

〈T 〉 =
∑

n

〈Tn〉 +
∑

n

∑

m�=n

〈Tn〉G0〈Tm〉 + · · · ; 〈Tn〉 = 〈tn〉|n〉〈n|. (6.17)

Note that
〈tn〉 = cAtAn + cBtBn (6.18)

since each scatterer must be of type A or B, with respective concentrations
cA and cB. Taking all A or all B scatterers to be equivalent, (6.18) simplifies
to

〈tn〉 = cAtA + cBtB, (6.19)

where from (6.14),

tX ≡ tXn = vX
n

[
1 − vX

n G0(n, n)
]−1

(6.20)

with X = A or B.
To this point, the formalism has been quite general, and from here we

could proceed to derive any one of several single-site approximations (such as
the ATA, for example). However, we wish to focus on the desired approach,
the CPA. To do so, we recall that our aim is to produce a (translationally
invariant) effective Hamiltonian He, which reflects the properties of the exact
Hamiltonian H (6.2) as closely as possible. With that in mind, we notice
that the closer the choice of unperturbed Hamiltonian H0 (6.4) is to He, then
the smaller are the effects of the perturbation term in (6.7), and hence in
(6.10). Clearly, then, the optimal choice for H0 is He. Thus, we have

G0 = Ge ≡ 〈G〉, (6.21)

where
Ge = (ω − He)

−1. (6.22)

In light of the choice giving (6.21), we see that (6.10) implies

〈T 〉 = 0, (6.23)

from which (6.17) gives
〈tn〉 = 0, ∀ n. (6.24)
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Equation (6.24) is the crucial condition of the CPA, whose physical inter-
pretation is that the scattering from a single site of the effective medium is,
on average, the same as that for the exact medium. In view of (6.19), the
condition (6.24) reduces to

cAtA + cBtB = 0, (6.25)

with tA and tB given by (6.20), and vA
n , vB

n yet to be determined.
We are now at the stage where we can specify the Hamiltonians and thus

calculate the GF’s. Firstly, we take the exact Hamiltonian to be

H =
∑

n

εn|n〉〈n| −
∑

n

J(|n〉〈n + 1| + |n + 1〉〈n|), (6.26)

where J = −β in the notation of Chap. 1, and

εn =

{
εA, site n occupied by A,

εB, site n occupied by B,
(6.27)

with the choice of occupant of site n being random. Secondly, the form for
the unperturbed, effective Hamiltonian is taken to be

H0 = He =
∑

n

[αv + σn(E)] |n〉〈n| −
∑

n

J (|n〉〈n + 1| + |n + 1〉〈n|) , (6.28)

where αv is the VC site energy (6.1) and σn(E) is the complex, energy-
dependent coherent potential (as yet unknown) on site n. For an infinite
(cyclic) alloy, the CP is a site-independent bulk CP, i.e., σn = σb(E), and the
corresponding effective GF is found to be (App. J, with J = −β)

Ge(n,m) = t|n−m|[2Js(ξ2 − 1)1/2]−1, (6.29)

from (2.49), (2.40) and (2.37), where

t = ξ + s(ξ2 − 1)1/2, (6.30)

ξ = [αv + σb(E) − E]/2J, (6.31)

s = ±1 so that |t| < 1. (6.32)

In light of (6.26) and (6.28), we see that the perturbation V = H −H0,
from (6.7), can be expressed as

V =
∑

n

[εn − αv − σn(E)] |n〉〈n|

=
∑

n

[∆ηn − σn(E)] |n〉〈n|, (6.33)
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where, using (6.1) and (6.27), we see that

∆ = εA − εB (6.34)

and

ηn =

{
1 − c, site n occupied by A,

−c, site n occupied by B,
(6.35)

with c = cA = 1 − cB. In other words, we have

vn = ∆ηn − σn(E), (6.36)

or, more explicitly,

vA
n = ∆(1 − c) − σn(E), (6.37a)

vB
n = −∆c − σn(E), (6.37b)

Thus, the single-site scatterers (6.20) can be written as

tA = [∆(1 − c) − σn] {1 − [∆(1 − c) − σn]Ge(n, n)}−1 , (6.38a)

tB = (−∆c − σn) [1 − (−∆c − σn)Ge(n, n)]−1 . (6.38b)

Inserting (6.38) into (6.25) and rearranging produces

σn = (∆c + σn)Ge(n, n)[∆(1 − c) − σn], (6.39)

which is the self-consistency condition for the complex, energy-dependent CP
σn(E). In principle, both σn and c can be taken to vary from site to site,
but for a bulk, infinite alloy they should be taken to be site-independent. It
is within the context of surface properties that the site dependence becomes
important (§6.2).

It should be kept in mind that any GF, and specifically Ge, is complex
within the energy bands, but is purely real outside them. Equation (6.39)
then implies that the same property is attached to the CP, namely, that
σn(E) is complex (real) for energies E inside (outside) the bands.

We note that Ge in (6.39) depends on σn through (6.29)-(6.32), so (6.39)
is actually quite a complicated relationship for σn as a function of E. σn(E)
can be calculated numerically, by defining the function

f(u) = u − (∆c + u)Ge(n, n)[∆(1 − c) − u], (6.40)

and then noting that the zeroes u = σn(E) of (6.40) are solutions of (6.39).
A technique, such as quadratic interpolation, can be used to find that zero
of f satisfying Im σn(E) ≤ 0, a condition needed to give a positive DOS.
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6.2 Alloy Surface Green Function

In this section, we extend the above formalism to that for an alloy surface
within the CPA, which serves as the model for the pre-chemisorption sub-
strate. The model discussed here is based on that of Ueba and Ichimura
(1979a,b) and Parent et al (1980). For a comprehensive introduction to alloy
surfaces see Turek et al (1996). A feature of surface-alloy models, which is
different from bulk ones, is that the CP in layers near the surface is differ-
ent from that in the bulk, due to the surface perturbation. Moreover, the
alloy concentration in the surface layers may be quite different from that in
the bulk, a feature known as surface segregation. (See Ducastelle et al 1990
and Modrak 1995 for recent reviews.) We assume that both of these surface
effects are confined to the first surface layer only.

The system under consideration consists of an isolated hydrogen-like
atom and a DBA with a surface, as shown in Fig. 6.1. Following (6.28), the
effective Hamiltonian for this system is

Hs = εa|0〉〈0|+
∞∑

n=1

[αn +σn(E)]|n〉〈n|−
∞∑

n=1

J(|n〉〈n+1|+ |n+1〉〈n|), (6.41)

Fig. 6.1. One-dimensional model depicting pre-chemisorption, where εm =
αm + σm, with m = b or s. Reprinted with permission from Sulston et al
(1986). Copyright 1986 by the American Physical Society.

where εa is the electronic energy of the pre-adsorbed atom, αn is the VC
electronic energy on the nth substrate atom, σn(E) the CP, and −J , the
bond strength between nearest-neighbour (NN) atoms in the alloy. In light
of the comments in the preceding paragraph, σn is taken to have its bulk
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value σb at all lattice sites, except the surface one (n = 1), where it has
the value σs. Similarly, the alloy concentration is assumed to be the same,
namely, c = cb in all layers, except the surface one, where it has the value cs.
Consequently, the VC electronic energy (6.1) has the values

αn =

{
cA
s εA + cB

s εB = cs∆ + εB, n = 1,

cA
b εA + cB

b εB = cb∆ + εB, n > 1,
(6.42)

with ∆ given by (6.34). In addition, an extension of the VCA (Foo et al
1971) introduces a concentration dependence into the bond energy, so that

J = c2
bJA + 2cb(1 − cb)JAB + (1 − cb)

2JB, (6.43)

where JA, JAB and JB are the A−A, A−B and B−B negative bond energies,
respectively.

The Greenian corresponding to the semi-infinite Hamiltonian (6.41), viz.,

Gs(E) = (E + i0+ − Hs)
−1, (6.44)

is connected to the infinite Greenian Ge (6.29) via the Dyson equation (6.6),
i.e.,

Gs = Ge + GeVsGs, (6.45)

where
Vs = J (|0〉〈1| + |1〉〈0|) + (αs + σs − αb − σb)|1〉〈1|. (6.46)

The first term in (6.46) severs the bonds between the n = 0 and n = 1
sites, thereby creating a surface at the n = 1 site, while the second term
perturbs the electronic environment on the surface atom, compared to that
in the bulk. Substituting (6.46) into (6.45) and evaluating the matrix element
〈1|Gs|1〉 = Gs(1, 1) leads to

Gs(1, 1) = Ge(1, 1) + JGe(1, 0)Gs(1, 1) + JGe(1, 1)Gs(0, 1)

+ (αs + σs − αb − σb)Ge(1, 1)Gs(1, 1).
(6.47)

However, Gs(0, 1) = 0, since sites 0 and 1 are on opposite sides of the cleaved
solid. Moreover, from (6.29) we see that Ge(1, 0) = tGe(1, 1), so (6.47)
reduces to

Gs(1, 1) = Ge(1, 1) + JtGe(1, 1)Gs(1, 1)

+ (αs + σs − αb − σb)Ge(1, 1)Gs(1, 1),
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which can be rearranged to give

Gs(1, 1) =
[
G−1

e (1, 1) − Jt − (αs + σs − αb − σb)
]−1

. (6.48)

Inserting (6.29), (6.30), (6.42) and simplifying yields the surface GF

gs(E) = Gs(1, 1) =
[
Js(ξ2 − 1)1/2 − (cs − cb)∆ − σs + σb − Jξ

]−1
. (6.49)

The surface CP σs is found by putting gs in place of Ge in the CPA
self-consistency equation (6.39), whence

σs = (∆cs + σs)gs(E) [∆(1 − cs) − σs] . (6.50)

Substituting (6.49) into (6.50) and rearranging gives an explicit form for σs:

σs(E) =
2∆2cs(1 − cs)

2Js(ξ2 − 1)1/2 − 2∆(1 − 2cs) + σb − 2cs∆ + cb∆ − εB + E
.

(6.51)
Note that the evaluation of (6.51) does not require a self-consistency calcu-
lation. The bulk CP σb(E) is, as we have seen, calculated self-consistently
in (6.39), but once that has been done, the computation of the surface CP
σs(E) via (6.51) is straightforward.

The energies Es of any localized surface states (Davison and Stȩślicka
1996) are given by the (real) poles of gs(E) in (6.49); i.e., by the solutions
E = Es of

Js(ξ2 − 1)1/2 − (cs − cb)∆ − σs + σb − Jξ = 0, (6.52)

which can be calculated numerically. Since the CP’s are real outside the
bands (as noted earlier), the surface-state energies Es from (6.52) do turn
out to be real. The existence condition for the surface states can be obtained
from (6.52), whose rearrangement gives

s(ξ2 − 1)1/2 = J−1 [(cs − cb)∆ + σs − σb] + ξ, (6.53)

which, upon squaring and solving for ξ, shows that

ξ = −J

2
[(cs − cb)∆ + σs − σb]

−1 − 1

2J
[(cs − cb)∆ + σs − σb] . (6.54)

With the aid of (6.30), adding (6.53) and (6.54) leads to

t = −J [(cs − cb)∆ + σs − σb]
−1 , (6.55)
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which, by dint of (6.32), provides the surface-state existence condition

|(cs − cb)∆ + σs(E) − σb(E)| > |J |. (6.56)

Thus, any solution E = Es to (6.52) must satisfy (6.56) to be a valid surface-
state energy.

The last surface property to consider is the surface DOS, which has the
form (Davison and Stȩślicka 1996)

ρs(E) = −π−1Im gs(E), (6.57)

gs being given by (6.49). With the surface properties now known, via the
GF, they can be used to study those of the chemisorbed system.

6.3 Adatom Green Function

The literature on the theory of DBA chemisorption has been rather sporadic
over the years, perhaps because of the complexity of treating a disordered
substrate. Van Santen (1975, 1982) and van Santen and Sachtler (1977) used
a cluster model to study the effects of alloying two metals on a chemisorp-
tion bond. It was noted that modification of the d-band structure is a key
consideration in determining the impact on chemisorption properties. In
another early paper, Moran-Lopez et al (1975) used a TB model with the
Bethe-Peierls approximation (an extension of the CPA) to model Ni atoms
on Cu/Ni alloys. Important factors in the chemisorption process were found
to be the alloy concentration, the adatom’s position and the strength of the
adatom-substrate bond. In the paper, upon which the current section is
based, Sulston et al (1986) modelled the chemisorption process by using the
ANG theory in conjunction with the CPA. An extension of this work, by
Sulston and Bose (1988), incorporated the effects of long-range order. Cong
(1994) used a similar model to look at the effects of multi-layer segregation,
concluding that these are indeed non-negligible. Closely related work by
Zhang (1992a,b), using both the ATA and the CPA, confirmed the impor-
tance of surface segregation as a factor in the chemisorption process, and
that, in fact, the chemisorption itself may change the surface segregation,
the consequence being to stabilize the chemisorption.
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Fig. 6.2. One-dimensional model depicting post-chemisorption. Reprinted

Physical Society.

We now investigate a model of the chemisorbed system, consisting of a
semi-infinite DBA and a hydrogen-like adatom, as depicted in Fig. 6.2. The
adatom, with initial electronic site energy εa, is attached to the surface atom
(at site n = 1) by a bond of energy γ. Using the HF approximation to the
ANG model (§4.3), the effective adatom level of spin σ is shifted to (4.34)

εaσ = εa + U〈na,−σ〉, σ = + or − . (6.58)

Here, we consider only the non-magnetic case, so the subscript σ can be
omitted, i.e.,

〈na+〉 = 〈na−〉 = 〈na〉. (6.59)

The only other effect of chemisorption included in the model is the modifica-
tion of the surface CP from σs to σc (while σb is assumed to be unchanged).
One possible effect not included is that of chemisorption-induced changes in
the concentrations cs and cb (see, e.g., Modrak 1997) – although potentially
important, for simplicity, we ignore this phenomenon.

In light of the above comments, the effective Hamiltonian Hc for the
chemisorbed system is related to the pre-chemisorption Hamiltonian Hs of
(6.41) by

Hc = Hs + Vc. (6.60)

The perturbation due to chemisorption has the form

Vc = ν|0〉〈0| + γ (|0〉〈1| + |1〉〈0|) + δ|1〉〈1|, (6.61)

with permission from Sulston et al (1986). Copyright 1986 by the American
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where
ν = U〈na〉 (6.62)

and
δ = σc(E) − σs(E). (6.63)

The Greenian Gc of Hc is related to Gs by the Dyson equation, i.e.,

Gc = Gs + GsVcGc. (6.64)

The matrix elements of Gc can be found by substituting (6.61) into
(6.64). The key elements are those centered on the adatom and the surface
atom. Using (6.64), the evaluation of Gc(0, 0) = 〈0|Gc|0〉 gives

Gc(0, 0) = Gs(0, 0) + νGs(0, 0)Gc(0, 0) + γGs(0, 0)Gc(1, 0), (6.65)

in which we have taken Gs(0, 1) = 0, because there is no bond between the
adatom and the surface before chemisorption. The unknown element Gc(1, 0)
is also obtained from (6.64) as

Gc(1, 0) = γGs(1, 1)Gc(0, 0) + δGs(1, 1)Gc(1, 0), (6.66)

where again Gs(1, 0) = 0. Solving (6.66) for Gc(1, 0), and inserting the result
into (6.65), yields the adatom GF

ga(E) = Gc(0, 0) =
{
G−1

s (0, 0) − ν − γ2[G−1
s (1, 1) − δ]−1

}−1
. (6.67)

Noting that the GF for the isolated adatom is

Gs(0, 0) = (E − εa)
−1, (6.68)

and introducing this, along with (6.62) and (6.63), into (6.67) gives

ga(E) = Gc(0, 0)

=
{
E − εa − U〈na〉 − γ2[G−1

s (1, 1) − σc + σs]
−1
}−1

, (6.69)

where Gs(1, 1) = gs(E) is just the surface GF (6.49). A similar derivation,
starting from (6.64), leads to the matrix element of Gc on the surface atom,
viz.,

Gc(1, 1) =
{
G−1

s (1, 1) − δ − γ2[G−1
s (0, 0) − ν]−1

}−1
. (6.70)
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Since the adatom GF ga(E) is purely complex only within the energy
band(s), the adatom DOS has the form (4.75)

ρa(E) = −π−1Im ga(E). (6.71)

Outside the band, the only energies of interest are those energies Ep of any
localized states of the chemisorbed system. These energies are given by the
poles of ga(E) in (6.69), namely, by

Ep − εa − U〈na〉 − γ2[Js(ξ2 − 1)1/2 − (cs − cb)∆

− σc(Ep) + σb(Ep) − Jξ]−1 = 0, (6.72)

using (6.49). These energies must, of course, be calculated numerically, and
are subject to an existence condition analogous to (6.56) for surface states.
The condition is derived by first rearranging (6.72) as

Js(ξ2 − 1)1/2 = Γ(Ep) + Jξ, (6.73)

where

Γ(Ep) = γ2[Ep − εa − U〈na〉]−1 + (cs − cb)∆ + σc(Ep) − σb(Ep). (6.74)

Upon squaring, and using s2 = 1 from (6.32), (6.73) can be rearranged as

ξ = −Γ(Ep)/(2J) − J/(2Γ(Ep)). (6.75)

Adding (6.73) and (6.75) gives the quantity t from (6.30):

t ≡ ξ + s(ξ2 − 1)1/2 = −J/Γ(Ep). (6.76)

From the requirement |t| < 1 in (6.32), comes the chemisorption-state exis-
tence condition

|Γ(Ep)| > |J |. (6.77)

6.4 Chemisorption Properties

In the previous discussion of the adatom GF, we glossed over the calculation
of a couple of important quantities. The evaluation of the CP’s σb and σs was
discussed earlier, but that of σc was not. Moreover, the computation of the
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adatom occupancy 〈na〉 has, so far, been ignored. In fact, both σc(E) and
〈na〉 are linked together, and their simultaneous evaluation is now discussed.

The surface CP σc(E) in the chemisorbed system is determined by a
self-consistency condition, which is found by substituting Gc(1, 1) into the
general CPA equation (6.39), to give

σc = (∆cs + σc)Gc(1, 1) [∆(1 − cs) − σc] . (6.78)

With the aid of (6.49), substituting (6.70) into (6.78) and simplifying leads
to the self-consistency expression for σc:

σc(E) = ∆2cs(1 − cs)
[
Js(ξ2 − 1)1/2 − (cs − cb)∆ + σb − Jξ

− γ2(E − εa − U〈na〉)−1 − ∆(1 − 2cs)
]−1

,
(6.79)

which clearly shows that the value of the occupation number 〈na〉 must be
known in order to evaluate the complex energy-dependent function σc(E).
However, we recall from (4.76) and (4.78) that 〈na〉 is given by the self-
consistency condition

〈na〉 =

∫ εf

εl

ρa(E)dE +
∑

p

Res ga(Ep), (6.80)

εl being the lower band edge. The first term integrates the adatom DOS
ρa(E), given by (6.71), over the occupied part of the band, and the second
term sums the residues of ga at the occupied chemisorption states with en-
ergy Ep (6.72). The residue term is given by the general expression (4.79),
from which a (complicated) explicit form can be derived, for computational
purposes. However, the important thing to note about (6.80) is that the
evaluation of 〈na〉 requires knowledge of σc(E),which appears in ga(E) (6.69)
(and hence in ρa(E)). Thus, the calculation of either 〈na〉 or σc(E) requires
the value of the other, whence there is a coupling of their self-consistency con-
ditions (6.79) and (6.80), so these must be solved simultaneously. It should
be noted that there is an “imbalance” between the two quantities, in that
σc(E) is a complex function of energy, whereas 〈na〉 is just a real constant.
Consequently, once 〈na〉 has been calculated (self-consistently) for a partic-
ular set of parameters, then σc can be easily evaluated, for any energy, by
(6.79) alone.

Once the double self-consistency equations have been solved numerically,
it is trivial to calculate the charge transfer (4.102) from the surface to the
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adatom. As seen earlier, the adatom initially has a single electron, but, after
chemisorption, has occupancy 〈na〉 in each of its two orbitals, so the charge
transfer is again

∆q = (2〈na〉 − 1)e. (6.81)

The final property of interest is the chemisorption energy ∆E, given by
(App. L)

∆E = 2∆Eσ − U〈na〉2 + εa − εf . (6.82)

where the 1-electron energy change is

∆Eσ =

∫ εf

−∞
(E − εf )∆ρ(E)dE, (6.83)

εf being the FL. To evaluate ∆Eσ, it is necessary to derive the expression
for ∆ρ, the change in DOS caused by chemisorption, by means of the Dyson
equation (6.64). Evaluating the general element Gc(i, j) = 〈i|Gc|j〉, from
(6.61) in (6.64), gives

Gc(i, j) = Gs(i, j) + νGs(i, 0)Gc(0, j) + γGs(i, 0)Gc(1, j)

+ γGs(i, 1)Gc(0, j) + δGs(i, 1)Gc(1, j),
(6.84)

which, for i �= 0, reduces to

Gc(i, j) = Gs(i, j) + γGs(i, 1)Gc(0, j) + δGs(i, 1)Gc(1, j), (6.85)

where the unknown elements Gc(0, j) and Gc(1, j) are found by using a pair
of coupled equations from (6.84), namely, (for j �= 0)

Gc(0, j) = νGs(0, 0)Gc(0, j) + γGs(0, 0)Gc(1, j), (6.86)

and

Gc(1, j) = Gs(1, j) + γGs(1, 1)Gc(0, j) + δGs(1, 1)Gc(1, j). (6.87)

The solutions to (6.86) and (6.87) are

Gc(0, j) = γGs(0, 0)Gs(1, j)M
−1, (6.88)

Gc(1, j) = [1 − νGs(0, 0)] Gs(1, j)M
−1, (6.89)
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where

M = [1 − νGs(0, 0)] [1 − δGs(1, 1)] − γ2Gs(0, 0)Gs(1, 1). (6.90)

Putting (6.88) and (6.89) into (6.85), with i = j > 0, gives

Gc(i, i) − Gs(i, i) =
{
γ2Gs(0, 0) + δ[1 − νGs(0, 0)]

}
G2

s(i, 1)M−1. (6.91)

We also note that the adatom GF (6.69) can be rewritten as

Gc(0, 0) = Gs(0, 0) [1 − δGs(1, 1)] M−1, (6.92)

Gs(0, 0) and Gs(1, 1) being known from (6.68) and (6.49), respectively.
With the necessary GF’s available, the change in DOS can be constructed

as

∆ρ = −π−1Im

{
Gc(0, 0) − Gs(0, 0) +

∞∑

i=1

[Gc(i, i) − Gs(i, i)]

}
. (6.93)

Substituting (6.91) and (6.92) into (6.93) and rearranging leads to

∆ρ = −π−1Im M−1
{

Gs(0, 0)[1 − δGs(1, 1)] − Gs(0, 0)M

+
[
γ2Gs(0, 0) + δ[1 − νGs(0, 0)]

] ∞∑

i=1

G2
s(i, 1)

}
.

(6.94)

It is fairly easy to show, from the Dyson equation (6.45), that the surface
GF’s satisfy

Gs(i, 1) = ti−1Gs(1, 1), i ≥ 1, (6.95)

because the bulk GF’s Ge(i, 1) satisfy an analogous property [c.f. (5.3)]. So
the summation in (6.94) evaluates simply as a geometric series, viz.,

∞∑

i=1

G2
s(i, 1) = G2

s(1, 1)
∞∑

i=1

t2i−2 = G2
s(1, 1)(1 − t2)−1 (6.96)

with convergence guaranteed, because |t| < 1 from (6.32). Inserting (6.96)
into (6.94), and simplifying, yields

∆ρ = −π−1Im M−1
{

νG2
s(0, 0)[1 − δGs(1, 1)] + γ2G2

s(0, 0)Gs(1, 1)

+
[
γ2Gs(0, 0) + δ[1 − νGs(0, 0)]

]
G2

s(1, 1)/(1 − t2)
}

, (6.97)
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which, although complicated, is a useable expression for ∆ρ in the numerical
integration of (6.83).

Separating (6.83) for ∆Eσ into contributions from inside and outside the
band, gives

∆Eσ = Ep1 + Ep2 − Ez − εa +

∫ ω

εl

(E − εF )∆ρ(E)dE, (6.98)

assuming an amalgamated band structure, and with

ω = min(εu, εf ), (6.99)

to deal with the two possibilities of the FL εf being within or above the
band, εu being the upper band edge. The integral term of (6.98) covers the
contribution from the continuous band states, while the other terms deal
with the discrete localized states. As in the case for DBA surface states
(Parent et al 1980), localized chemisorption states occur in pairs (assuming
they exist). These are denoted in (6.98) by Ep1 and Ep2. As a result of the
chemisorption process, σs is changed to σc, creating an “intermediate” state
of energy Ez, which, on completion of the adsorption process, is shifted to
Ep2. We now know all the quantities required to compute the chemisorption
energy (6.82).

6.5 H-Cu/Ni and H-Au/Pt Systems

Turning to the numerical results (Sulston et al 1986), we look at the chemisorp-
tion properties of H on Cu/Ni and Au/Pt alloys, over a range of bulk con-
centrations. The H parameters used are εa = −14.3 eV, measured from the
vacuum level, and U = 12.9 eV. The pure-metal parameters (Newns 1969
and Nordlander et al 1984) are shown in Table 6.1. Following the concept of
the VCA, εf and γ are assigned concentration dependencies, namely,

εf = cbε
A

f + (1 − cb)ε
B

f (6.100)

and
γ = csγA + (1 − cs)γB. (6.101)

The negative bond energy JAB, required in (6.43), is approximated by JAB ≈
(JA + JB)/2.
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Table 6.1

Parameter Ni Cu Pt Au

εA -6.26 -7.39 -8.54 -8.43

J 0.95 0.675 1.825 1.325

εf -4.50 -4.46 -5.6 -4.3

γ 3.75 4.17 4.017 4.605

∆E -2.89 2.36 -2.47 -2.25

The system of H chemisorbed on Cu/Ni is examined both with and with-
out surface segregation. In the case of cs = cb (i.e., no surface segregation),
the curve of ∆E vs cb is shown in Fig. 6.3(a), and is seen to have a monotonic
behaviour, which is almost linear for intermediate values of cb. In the dilute
limits (cb close to 0 or 1), ∆E is closer to the value for the corresponding
pure system than a purely linear relationship would produce, which suggests
that the effect of any minority atoms, even near the surface, is cancelled by
the averaging process used in the CPA.

However, surface segregation (cs �= cb) has a radical effect on ∆E, as can
clearly be seen in Fig. 6.3(b). Cu/Ni alloys are known (Kelley and Ponec
1981, Ouannasser et al 1997) to have an enriched Cu concentration in the
surface layer for all bulk concentrations. As a result, the alloy shows a more
Cu-like behaviour than it would if it were non-segregated. In particular, ∆E
has a value significantly closer to that for pure Cu than in the case where
cs = cb, and this occurs at all bulk concentrations cb. The smallest change in
∆E occurs in Cu-rich alloys, which is understandable, because these alloys
have mostly Cu in the surface layer anyway, so the effect of surface segrega-
tion is relatively small. Thus, surface segregation has a lesser effect in these
alloys than in Ni-rich ones, which have mostly Ni in the bulk, but may have
a Cu majority in the surface layer. Clearly, then, the concentration cs of
the surface layer is the primary parameter in determining the chemisorption
properties of the DBA.
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Fig. 6.3. ∆E for H-Cu/Ni versus bulk Ni concentration for (a) cs = cb(+),
(b) cs �= cb

right 1986 by the American Physical Society.
(×). Reprinted with permission from Sulston et al (1986). Copy-

+
+

+
+

+

+

+

+

+

+

0.0 0.2 0.4 0.6 0.8 1.0
-3.0

-2.8

-2.6

-2.4

-2.2

Cu Nicb

∆E
(b)

(a)

+



112 CHAPTER 6. DISORDERED BINARY ALLOYS

Fig. 6.4. ∆q for H-Cu/Ni versus bulk Ni concentration for (a) cs = cb(+),
(b) cs �= cb(×). Copy-
right 1986 by the American Physical Society.

Fig. 6.5.Chemisorption-state energies for H-Cu/Ni with cs= cb. After Sulston
(1986).

Reprinted with permission from Sulston et al (1986).
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Charge transfer ∆q to the adatom, for the case cs = cb, is displayed in
Fig. 6.4(a). As is evident, the dependence of ∆q on cb is virtually linear
throughout the range of concentrations. On the other hand, when surface
segregation is present (Fig. 6.4b), ∆q is lowered and becomes closer to the
value for pure Cu (0.05), for all concentrations. Hence, in the segregated
case, ∆q, like ∆E, reflects the greater concentration of Cu in the surface
layer.

Chemisorption-state energies (i.e., solutions of (6.72)) for cs = cb are
depicted in Fig. 6.5. Again, the dependence on cb is virtually linear. Two
states are found at all concentrations (except cb = 0 and 1) with their in-
tensities also dependent on cb. In the dilute limits, the intensity of one state
goes to zero, leaving only the state associated with the corresponding pure
material. A closer study of the intensities shows that each chemisorption
state is associated with one of the constituent metals: + with Ni and × with
Cu. Thus, the splitting of surface states in a DBA, observed by Parent et al
(1980), is also seen to occur for chemisorption states. The effect of surface
segregation on the chemisorption states, as shown in Fig. 6.6, is seen to be
the same as for the other chemisorption properties, namely, to produce a
more Cu-like behaviour for all cb. The chemisorption states are shifted to
lower energies, with the greatest changes occurring for Ni-rich alloys.

Fig. 6.6. Chemisorption-state energies for H-Cu/Ni with c s�= cb . After

Sulston (1986).
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For H chemisorption on Au/Pt alloys, only the case cs = cb was stud-
ied by Sulston et al (1986), because of a lack of consistent data on surface
segregation. The curve of ∆E versus Au concentration (Fig. 6.7) has more
interesting structure than the corresponding one for Cu/Ni alloy (Fig. 6.3
a). Specifically, there is an absolute minimum at cb ≈ 0.3, indicating that H
is preferentially adsorbed on Au/Pt at the concentration ratio of 3:7. Ob-
serving (from Table 6.1) that εPt and εAu only differ by 0.11 eV suggests that
the effective electronic energy on an alloy site is not too strongly dependent
on cb. As true as this may be, here another factor comes into consideration.
Calculations of the width of the occupied part of the band show it to be
strongly dependent on cb. Indeed, it turns out that band width as a function
of cb, has a maximum at cb ≈ 0.3 (the value at which ∆E has its minimum),
indicating that for this system, the effective band width is an important pa-
rameter in the chemisorption process.

Fig. 6.7. ∆E for H-Au/Pt versus bulk Au concentration for cs = cb.

American Physical Society.
Reprinted with permission from Sulston et al (1986). Copyright 1986 by the
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Fig. 6.8. ∆q for H-Au/Pt versus bulk Au concentration for cs = cb.

American Physical Society.

Fig. 6.9. Chemisorption-state energies for H-Au/Pt with cs = cb. After
Sulston (1986).

Reprinted with permission from Sulston et al (1986). Copyright 1986 by the



116 CHAPTER 6. DISORDERED BINARY ALLOYS

The graph of ∆q versus cb is shown in Fig. 6.8, again for cs = cb.
It displays a monotonically decreasing, but nonlinear behaviour. For con-
centrations less than the critical value of 0.3, the curve has a small negative
slope, while for cb > 0.3, the slope, though still negative, is markedly steeper.
Generally speaking, one would expect smaller values of ∆q (i.e., less charge
transfer) to be associated with weaker chemisorption (i.e., smaller |∆E|).
Such is true, in this case, only for cb > 0.3. For cb < 0.3, slight decreases
in ∆q are related to moderate increases in ∆E, contrary to expectation.
However, as Fig. 6.9 shows, the chemisorption-state energies are higher (i.e.,
less negative) for smaller values of cb and, hence, tend to reduce |∆E| as cb

approaches 0. Thus, there are competing contributions to ∆E: ∆q tending
to raise it and Ep to lower it, as cb increases. The result is a local mini-
mum, occurring at cb ≈ 0.3, which is the concentration most favourable to
chemisorption.

In conclusion, we have seen that alloys can exhibit a variety of interesting
chemisorption properties. The chief parameters determining the behaviour of
a system are the concentrations of the various layers, especially the surface
one. Other important parameters are the effective electronic energy, the
occupied band width, the adatom bond strength and the adatom position.



Chapter 7

Electrified Substrates

Why should electricity not modify the for-
mation and properties of crystals?

— Denis Diderot

As we have seen, the chemisorption properties of the substrate depend
on its electronic structure, so that changes in the latter are reflected in the
former. In the case of electrified substrates, the strength of the applied
electric field governs the substrate modification and, thereby, regulates the
chemisorption process in a controllable manner.

7.1 Wannier-Stark Ladders

The study of the effect of electric fields on the properties of solids dates
back to Zener’s (1934) investigation of electrical breakdown in solid dielec-
trics. Further pioneering work was carried out by Houston (1940) and Slater
(1949), who introduced aperiodic perturbations into the Bloch wave func-
tions. A breakthrough came when James (1949) demonstrated the effect
of a linear field on an infinite crystal, by means of the effective-mass ap-
proximation, and predicted that the energy spectrum would be quantized
into equally-spaced levels. Simultaneously, and independently, Katsura et al
(1950) reached the same conclusion via a one-dimensional TB model of an
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infinite crystal, with wave functions shown to have Bessel-function (BF) co-
efficients, and whose energy-dependent order was required to be an integer
to satisfy the normalization conditions. Although these two papers were the
first to predict the discretization of the energy levels of a solid by an electric
field, a more well-known article was that of Wannier (1960), so much so, that
the effect is termed the Wannier-Stark ladder (WSL). Pursuant to Wannier’s
paper, a great many others were published on the topic, some of which, most
notably by Zak (1967-69) and Rabinovitch (1970, 1971), cast doubt on the
actual existence of a discrete WSL energy spectrum. The controversy was
finally settled in favour of the WSL, when Hacker and Obermair (1970) put
the results of Katsura et al and Wannier on a rigorous theoretical footing,
and Koss and Lambert (1972) observed Wannier levels in their optical ab-
sorption experiments on GaAs. Nevertheless, the reservations expressed by
Zak, Rabinovitch and others did possess some validity, and demonstrated
the necessity for some restrictions on the existence of WSL’s (Heinrichs and
Jones 1972). In the ensuing years, WSL’s have been investigated in a variety
of contexts.

Having briefly noted the historical highlights of the WSL effect, we now
examine the basic mathematical argument for its existence, namely, the idea
that the energy spectrum of an infinite crystal is discretized by an applied
field. For the present discussions, we assume that the applied field is linear,
with its strength given by its gradient γ.

We consider an atomic chain of spacing a, within the TBA, having the
usual site energies

α = 〈n|H0|n〉, (7.1)

and bond energies
β = 〈n|H0|n ± 1〉, (7.2)

|n〉 being the AO at site x = na. Thus, in terms of creation and annihilation
operators, the Hamiltonian for the chain in the absence of the field is

H0 =
∑

n

[
αc†ncn + β(c†ncn+1 + c†n+1cn)

]
. (7.3)

Since the field-induced potential is assumed to be linear, and of the form

V (x) = γx, (7.4)

its matrix elements are

〈n|V |n′〉 = naγδn,n′ ≡ nΓδn,n′ , Γ = γa, (7.5)
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where Γ is the potential gradient. Hence, the Hamiltonian, with the applied
field, can be written as

H = H0 + V =
∑

n

[
(α + nΓ)c†ncn + β(c†ncn+1 + c†n+1cn)

]
. (7.6)

Recalling that the anticommutation rules for the creation and annihilation
operators are (App. C)

[
c†n, cm

]
+

= δnm,
[
c†n, c†m

]
+

= 0, (7.7)

we obtain a commutation relation of the form
[
c†icj, c

†
m

]
− = c†i

[
cj, c

†
m

]
+
−
[
c†i , c

†
m

]
+
cj = c†iδjm. (7.8)

Because the creation operators C†(E) for the eigenfunctions of H diagonalize
the Hamiltonian, we have

EC†(E) = [H,C†(E)]−

=

[
H,
∑

m

am(E)c†m

]

−

=

[
∑

n

{
(α + nΓ)c†ncn + β(c†ncn+1 + c†n+1cn)

}
,
∑

m

am(E)c†m

]

−

=
∑

n,m

am(E)
{

(α + nΓ)[c†ncn, c†m]− + β[c†ncn+1, c
†
m]− + β[c†n+1cn, c†m]−

}

=
∑

n,m

am(E)
[
(α + nΓ)c†nδmn + βc†nδm,n+1 + βc†n+1δmn

]

=
∑

n

[(α + nΓ)an + βan+1 + βan−1] c
†
n, (7.9)

after reindexing and summing over m. With the c†n’s being independent,
equating the corresponding terms on each side of (7.9) gives

an+1 +
α + nΓ − E

β
an + an−1 = 0, (7.10)

for each n. Equation (7.10) is recognized as the BF recursion relation
(Abramowitz and Stegun 1972) for

an(E) = Pn−(E−α)/Γ(z), (7.11)
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where z = −2β/Γ, and Pµ(z) = AJµ(z) + BYµ(z) is any linear combination
of BFs of the first and second kind.

The an’s are the coefficients of the wave function, so the normalizability
condition requires that ∑

n

|an(E)|2 < ∞. (7.12)

By referring to the properties of BFs (Abramowitz and Stegun 1972), it can
be shown that condition (7.12) holds only if B = 0 and µ = n − (E − α)/Γ
is an integer. Thus, (E − α)/Γ is also an integer, so that

E ≡ Ek = α + kΓ, k integer, (7.13)

whence,

an(Ek) = A(−1)n−kJn−k

(
2β

Γ

)
. (7.14)

Equation (7.13) demonstrates the essential point, namely, that the energy
spectrum of an infinite chain (under a linear applied field) is not continuous,
but is a WSL, exhibiting discrete, evenly-spaced energy levels (see Fig. 7.1).

For a finite, (rather than an infinite) chain under the action of an applied
field, it turns out that the energy spectrum forms only an approximate WSL
(Heinrichs and Jones 1972). To see this result, we start with the difference
equations for a finite TB chain of length m:

(α + nΓ − E)cn + β(cn+1 + cn−1) = 0, n = 2, . . . , m − 1, (7.15a)

(α + Γ − E)c1 + βc2 = 0, (7.15b)

(α + mΓ − E)cm + βcm−1 = 0. (7.15c)

(Here we ignore any possible perturbation to the site energies at the ends
of the chain, n = 1 and n = m.) We apply Brillouin-Wigner perturbation
theory (Ohanian 1990), whereby the eigenvalue of a non-degenerate state can
be expressed as

En = Hnn +
∑

��=n

Hn�H�n

En − εn�

+
∑

�,k �=n
��=k

Hn�H�kHkn

(En − εn�)(En − εn�k)
+ · · · , (7.16a)
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with

εn�...pq = Hqq +
∑

r �=n,�,...,p,q

HqrHrq

En − εn�...pqr

+
∑

r �=n,�,...,p,q
s�=n,�,...,p,q,r

HqrHrsHsq

(En − εn�...pqr)(En − εn�...pqrs)
+ · · · , (7.16b)

where the terms beyond the interaction range are identically zero. Note, we
are using the NN approximation, so that only the first two terms in each
of (7.16a) and (7.16b) survive. Specifically, the Hamiltonian has only the
following tri-diagonal matrix elements:

Hnn = α + nΓ, n = 1, 2, . . . , m, (7.17a)

Hnr = Hrn = β(δr,n+1 + δr,n−1), n = 2, 3, . . . , m − 1, (7.17b)

H1r = βδr2, (7.17c)

Hmr = βδr,m−1. (7.17d)

Fig. 7.1. Tilted-band picture of WSL energy spectrum showing Wannier
wave functions and localization length L = 4β/Γ. Reprinted from Hacker
and Obermair (1970) with permission from Springer.

We now let the difference between the energies of the chain and an exact
WSL be

∆En = En − α − nΓ, (7.18)

which, on using (7.16) and (7.17), becomes
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∆En = En − Hnn

=
∑

��=n

Hn�H�n

En − εn�

=
β2

En − εn,n+1

+
β2

En − εn,n−1

=
β2

∆En − Γ − β2

En−εn,n+1,n+2

+
β2

∆En + Γ − β2

En−εn,n−1,n−2

=
β2

∆En − Γ−
...

− β2

∆En − (m − 1 − n)Γ − β2

∆En − (m − n)Γ

+
β2

∆En + Γ−
...

− β2

∆En + (n − 1)Γ − β2

∆En + nΓ

(7.19)

Equation (7.19) is a self-consistent equation for ∆En, in the form of a sum of a
pair of continued fractions (CFs). Although numerical solutions to (7.19) are
feasible, we are only concerned with its qualitative features. In particular, we
note that an exact WSL occurs when ∆En = 0, which happens only if both
CFs contain the same number of terms (apart from the trivial case β = 0).
For the infinite chain, this situation is the case for every allowed energy, so
an exact WSL is indeed found. But, for a finite chain, ∆En = 0 only for the
center state, which thus possesses the exact WSL energy. Therefore, the set
of energies for a finite chain form only an approximate WSL.

As we have seen, the electronic structure of an infinite or a finite TB
chain under an applied field is fundamentally different from that of the cor-
responding chain without the field. Consequently, the various properties of
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such systems, be they chemisorption or otherwise, are an important subject
of study, and can be expected to vary greatly from those of the parent system.

7.2 Recursive-Green-Function Treatment

In this section, we construct the GF for a finite chain with an applied field
(Davison et al 1997), by using the CF elements of the recursion method
(Haydock 1980) and thereby build the GF atom-by-atom, in a similar way
as the causal-surface GF approach (Pendry et al 1991).

The system is defined as a linear chain of m lattice sites (labelled n =
1, . . . , m), which are initially taken as isolated from each other (see Fig.
7.2(a)), so that the GF Gm,m for this state has simple diagonal elements

Gm,m(n, n) = (E − αn)−1, n = 1, . . . , m, (7.20)

where
αn = 〈n|H|n〉, (7.21)

and all off-diagonal elements are zero, i.e.,

Gm,m(n, 	) = 0, n �= 	. (7.22)

The process used is such that, one-by-one, each atom is connected to the
rest of the chain by adding a single bond between it and the neighbouring
atom to its immediate right, starting at the right-hand side of the lattice,
and moving to the left. Thus, we start by joining the atoms at n = m−1 and
n = m to form a 2-atom chain (with all other atoms left isolated). Then,
the atom at n = m − 2 is bonded to the 2-chain, and so on, until all m
atoms have been linked (see Fig. 7.2(b)-(d)). The notation used is to let
Gn,m be the GF for the system at the stage where atoms n to m have been
joined to form a (m − n + 1)-atom chain, while atoms 1 to n − 1 remain
isolated. The goal is to construct the GF G1,m for the entire chain or, more
specifically, the element G1,m(1, 1), which will be taken as the surface GF for
the chemisorption studies of §7.3.
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Fig. 7.2. Diagrammatic representation of process to build chain atom-
by-atom. Reprinted from Davison et al (1997) with permission from the
Institute of Physics.

Returning to the initial GF (7.20), we now modify the system, by adding
a single bond of energy βm−1,m between sites m − 1 and m. We can obtain
the GF Gm−1,m from Gm,m by means of the Dyson equation (3.3)

Gm−1,m = Gm,m + Gm,mVm−1,mGm−1,m, (7.23)

where
Vm−1,m = βm−1,m (|m − 1〉〈m| + |m〉〈m − 1|) . (7.24)

Inserting (7.24) into (7.23) leads to

Gm−1,m(m − 1, m − 1) = Gm,m(m − 1, m − 1)

+ Gm,m(m − 1, m − 1)βm−1,mGm−1,m(m, m − 1),
(7.25)
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since Gm,m(m − 1, m) = 0 by (7.22). The right-hand side of (7.25) contains
an unevaluated element of Gm−1,m, which, via (7.23), can be expressed as

Gm−1,m(m, m − 1) = Gm,m(m, m)βm−1,mGm−1,m(m − 1, m − 1). (7.26)

Substituting (7.26) into (7.25) gives

Gm−1,m(m − 1, m − 1) = Gm,m(m − 1, m − 1)

+ β2
m−1,mGm,m(m − 1, m − 1)Gm,m(m, m)Gm−1,m(m − 1, m − 1),

(7.27)

so that

Gm−1,m(m−1, m−1) =
Gm,m(m − 1, m − 1)

1 − β2
m−1,mGm,m(m, m)Gm,m(m − 1, m − 1)

. (7.28)

Using (7.20), we can write (7.28) as

Gm−1,m(m − 1, m − 1) =
1

E − αm−1 − β2
m−1,m

1
E−αm

. (7.29)

The above recursive process, for the 2-atom chain, can now be repeated
for the 3-atom case. The Dyson equation analogous to (7.23) is

Gm−2,m = Gm−1,m + Gm−1,mVm−2,mGm−2,m, (7.30)

where

Vm−2,m = βm−2,m−1 (|m − 2〉〈m − 1| + |m − 1〉〈m − 2|) (7.31)

(see Fig. 7.2(c)). The method for finding the relevant matrix element is the
same as that used to obtain (7.28), yielding

Gm−2,m(m − 2, m − 2)

=
Gm−1,m(m − 2, m − 2)

1 − β2
m−2,m−1Gm−1,m(m − 1, m − 1)Gm−1,m(m − 2, m − 2)

.

(7.32)

From (7.29), and the fact that

Gm−1,m(m − 2, m − 2) = (E − αm−2)
−1, (7.33)
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because it represents an isolated site, (7.32) can be written explicitly as

Gm−2,m(m − 2, m − 2) =
1

(E − αm−2) −
β2

m−2,m−1

(E − αm−1) −
β2

m−1,m

E − αm

, (7.34)

which can be rearranged into the form of a rational function of E, but we
prefer to leave it as a (finite) CF.

The recursive procedure can be applied repeatedly, with one more atom
being bonded to the growing chain at each step, producing GF’s in CF form
similar to those of (7.29) and (7.34). After (m−1) iterations, all m (initially
isolated) atoms are joined, and the GF at the n = 1 site has CF form

G1,m(1, 1) =
1

(E − α1) −
β2

1,2

(E − α2) −
β2

2,3

. . .

−
β2

m−2,m−1

(E − αm−1) −
β2

m−1,m

E − αm

. (7.35)

More compactly, this can be represented in standard CF notation (Lorentzen
and Waadeland 1992) as

G1,m(1, 1) =
m

K
n=1

(an; bn), (7.36)

where
m

K
n=1

(an; bn) =
a1

b1 +
a2

b2 +
.. .

+
am−1

bm−1 +
am

bm

=
a1

b1 +
a2

b2 +
a3

b3 +
· · · , (7.37)
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with

an =

{
1, n = 1

−β2
n−1,n, n = 2, . . . , m,

(7.38)

and
bn = E − αn, n = 1, . . . , m, (7.39)

for our particular case (7.35).
The values of the αn’s and βn−1,n’s in (7.39) and (7.38), respectively,

determine the physical nature of the crystal being modelled by the chain.
The simplest case is to take

αn = α, for all n, (7.40)

and
βn−1,n = β, for all n, (7.41)

which yields a single-band chain with no applied field. Surface states can
also be included by letting α1 and/or αm equal α′(�= α). Here, however,
we are interested in modelling a solid, subject to an applied field, so that
accompanying (7.41) we take (cf. (7.6))

αn = α + nΓ. (7.42)

For present purposes, we work with the GF in its CF form (7.36), which
provides conceptual clarity, as well as computational convenience, due to the
ease in evaluating (7.36) recursively. However, other forms for G1,m(1, 1)
are possible, because, for example, the CF in (7.36) can be rearranged as
a rational function of E. Alternatively, for the case of (7.41) and (7.42) it
can be shown (App. M) that G1,m(1, 1) can be expressed, in terms of Bessel
functions J and Y of the first and second kind, respectively, as

G1,m(1, 1) = β−1 Jν+m+1(x)Yν+1(x) − Jν+1(x)Yν+m+1(x)

Jν+m+1(x)Yν(x) − Jν(x)Yν+m+1(x)
, (7.43)

where
ν = xX, (7.44)

x = −F−1 = −2β/Γ, (7.45)

and, as usual, the reduced energy

X =
E − α

2β
. (7.46)
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Regardless of how we may choose to represent the GF, we should note
that it is for a finite chain, so that there is a discrete spectrum of m states,
whose energies are given by the poles of G1,m(1, 1).

The energies for the finite chain are given approximately by those in
(7.13) for the infinite case, so as the potential strength Γ increases, the FL

εf ≈ α +
m

2
Γ (for even m) (7.47)

moves upwards. But, to preserve the integrity of the system, at least one
occupied state must remain delocalized across the entire chain, which implies
that its energy must remain inside the zero-field band. This condition is
guaranteed, if εf itself stays within the band, i.e.,

α − 2|β| < εf < α + 2|β|,

which is equivalent to
|mF | < 2. (7.48)

Thus, for our purposes, the field cannot be taken as being arbitrarily strong,
but is limited, according to (7.48), by the length of the chain and, in par-
ticular, the allowable strength of the field decreases in inverse proportion to
the increasing length of the chain.

Because the spectrum of the chain is discrete, we can express the LDOS,
at site n, as

ρn(X) =
∑

k

In
k (Xk)δ(X − Xk)/2β, (7.49)

Xk being the k-th state reduced energy, whose intensity

In
k (Xk) = 2β Res G1,m(n, n)

∣∣∣
X=Xk

. (7.50)

Plots of the LDOS at the surface (n = 1) site of a 100-atom chain are
presented in Fig. 7.3 for various field strengths. For no field, F = 0 (Fig.
7.3(a)), the LDOS exhibits a discretized version of the semi-elliptical shape,
familiar for a surface DOS. For small field strength (Fig. 7.3(b)), an almost-
linear region appears in the lower end of the quasi-band. As the field strength
increases (Fig. 7.3(c) and (d)), the region spreads across the band, with
increasing intensities. In addition, there is a rigid shift in the structure to
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slightly higher Xk-values, accompanied by an exponential tailing-off of the
intensities above the upper band-edge at X = 1.

Fig. 7.3. LDOS at n = 1 site of 100-atom chain. As field increases,
semi-elliptical shape is dominated by linear potential. Field strengths are
as indicated. Reprinted from Davison et al (1997) with permission from the
Institute of Physics.

7.3 Electrochemisorption

The process of chemisorbing an atom onto an electrified substrate is known
as electrochemisorption. The initial studies, described here, employed the
ANG model (English et al 1997; English and Davison 1998). Later, Davison
et al (2001) incorporated the presence of surface states.
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In adopting the ANG approach (Chap. 4), only a few modifications are
required, which are mainly concerned with the substrate spectrum being
discrete rather than continuous. The conceptual set-up is portrayed in Fig.
7.4.

Fig. 7.4. Chemisorption of adatom of site (bond) energy εa(βa) onto elec-
trified chain of length m. Substrate has site (bond) energy αn(β), where
αn = α + nΓ(n = 1, . . . , m), Γ being the potential gradient.

The surface GF gs(1, 1) ≡ G1,m(1, 1) for the m-atom chain is, of course,
known from (7.36), with (7.41) and (7.42), to be

gs(1, 1) =
1

E − α − Γ−
β2

E − α − 2Γ− · · ·−
β2

E − α − mΓ
. (7.51)

gs is linked to the adatom GF ga by the Dyson equation

ga = gs + gsVaga, (7.52)

where
Va = U〈na,−σ〉|a〉〈a| + βa (|a〉〈1| + |1〉〈a|) , (7.53)

U〈na,−σ〉 being the averaged self-energy of the adatom, within the HFA, and
βa the adatom-surface bond energy. From (7.52), we obtain

ga(a, a) = gs(a, a) + U〈na,−σ〉gs(a, a)ga(a, a)

+ βags(a, a)ga(1, a), (7.54)
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since gs(a, 1) = 0 and, also from (7.52),

ga(1, a) = βags(1, 1)ga(a, a). (7.55)

Substituting (7.55) into (7.54), and using

gs(a, a) = (E − εa)
−1, (7.56)

leads to the adatom GF expression

ga(a, a) =
[
E − εaσ − β2

ags(1, 1)
]−1

(7.57)

where
εaσ = εa + U〈na,−σ〉. (7.58)

Now, mirroring (4.70), we can write (7.57) in the form

ga(a, a) = [E − εaσ − Λ(E) + i∆(E)]−1 , (7.59)

by virtue of the chemisorption functions

Λ(E) = β2
aRe [gs(1, 1)], (7.60)

∆(E) = −β2
aIm [gs(1, 1)]. (7.61)

The allowable energies E�σ of the chemisorbed system (adatom plus
chain) are determined as being the (real) poles of ga(a, a), i.e., the m + 1
solutions of

E�σ − εaσ − Λ(E�σ) = 0, σ = + or −, (7.62)

which are discrete, because of the finiteness of the system. Each of the
corresponding eigenstates makes a contribution [cf. (4.80)]

〈naσ〉� = [1 − Λ′(E�σ)]
−1

(7.63)

to the total adatom occupancy, which from (4.76) is given by

〈naσ〉 =
∑

�

〈naσ〉�, (7.64)

where the integration in (4.76) now becomes a summation, because all en-
ergies are discrete. Equations (7.62) and (7.64) together comprise a self-
consistency condition of the formof (4.81), yieldingnon-magneticM (magnetic
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M) solutions when 〈na+〉 and 〈na−〉 are equal (unequal). As always, these
solutions must be found numerically, and some typical curves of 〈naσ〉 versus
〈na,−σ〉 are shown in Fig. 7.5 (cf. Fig. 4.2). For F = 0, both M and M
solutions occur, but as F increases, the M solutions are driven towards the
M one, eventually coalescing in a single M solution in the limit as F → ∞.
With the adatom occupancy calculated self-consistently, the charge transfer
to the adatom is once again given by (4.102).

The chemisorption energy is given by (4.85), viz.,

∆E =
∑

σ

∆Eσ − εa − U〈na+〉〈na−〉. (7.65)

However, because the energy spectrum is discrete, both before and after
chemisorption, ∆Eσ does not take the form of the energy-integral (4.99),
but is instead evaluated via finite sums (4.86) of the energies, i.e.,

∆Eσ =
∑

� occ

E�σ −
∑

n occ

E0
n, (7.66)

the summations being over the occupied states below the FL at εf = E0
[(m+1)/2],

with [ ] denoting integer value, and (E0
n)E�σ being the (un)perturbed ener-

gies in the (pre-) post-chemisorption system, which are found as the poles of
(gs(1, 1))ga(a, a).
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Fig. 7.5. Self-consistency curves for βa = β and F -values indicated. (M )
M solutions occur at intersections, where 〈naσ〉(=) �= 〈na,−σ〉. After English
(1997).

7.4 H-Ti and H-Cr Systems

Moving on, we apply the above formalism to the system consisting of a
hydrogen adatom and a metal substrate, which is taken to be either Ti or
Cr. The solid chain is given a length of m = 100 atoms, which allows fields of
strength up to |F | = 0.02, according to (7.48). The appropriate parameters
(Newns 1969), based on experimental data, are given in Table 7.1.
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Table 7.1. Parameters (in eV) for H chemisorbed on Ti and Cr, relative to
vacuum level.

Ti Cr
α -1.82 -5.25
β 2.15 1.525

εf (F = 0) -3.86 -4.56
εa -13.6 -13.6
U 12.9 12.9
βa 3.72 3.75

Looking first at the H-Ti system, the self-consistency condition (4.81)
has a M solution for all values of F , as well as a pair of M -solutions for all
F �= 0. Some typical values of 〈na+〉 and 〈na−〉 are given in Table 7.2. Hence,
the charge transfer and chemisorption energy can be calculated, as shown in
Fig. 7.6. The M (M) solution is given by the solid (broken) curve. The
initial point of reference is, of course, the zero-field situation, where Fig. 7.6
indicates a moderate charge transfer to the adatom and a consequent negative
chemisorption energy (so that chemisorption does occur). The question of
interest concerns whether implementation of the field serves to strengthen
or weaken the chemisorption process (or, perhaps, destabilize it completely).
The field modifies the adsorption through two routes: first, by moving the
FL (refer to (7.47), where Γ = 2βF ) and, second, by altering the adatom
occupancy (Table 7.2). When F > 0, the FL is raised (tending to lower ∆E)
and the M -solution 〈na+〉 = 〈na−〉 is increased, raising the effective adatom
level εaσ (cf. (7.58)), which in turn raises ∆E. Under these two competing
effects, ∆E remains essentially constant, as seen in Fig. 7.6(a). However, for
the M -solution, 〈na+〉 and 〈na−〉 move in opposite directions, thus effectively
neutralizing the second route, so the field effect is primarily controlled by
the raising of the FL, resulting in the drastic lowering of ∆E shown in Fig.
7.6(a). When F < 0, the situation is reversed, since the FL is now lowered,
which by itself acts to raise ∆E. For the M -solution, 〈na+〉 = 〈na−〉 is again
increased with increasing |F |, thus tending to raise ∆E via this route, too.
Hence, the result is a noticeable raising of ∆E, as seen in Fig. 7.6(a). For
the M -solution, the effects of 〈na+〉 and 〈na−〉 again approximately cancel
each other, so, although ∆E is still lowered as F becomes more negative, the
effect is much less pronounced than when F > 0. Because the M -solution
yields a lower ∆E than the M one, it is the physically desired situation.
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Table 7.2. M and M solutions 〈na+〉 and 〈na−〉 of H-Ti system.

F -.020 -.015 -.010 -.005 .000 .005 .010 .015 .020

M 0.546 0.567 0.584 0.607 0.632 0.658 0.687 0.720 0.762

M 0.872 0.794 0.759 0.720 N/A 0.737 0.819 0.909 0.991

M 0.054 0.288 0.381 0.483 N/A 0.574 0.547 0.482 0.424

We note in Fig. 7.6 that both M graphs pass smoothly through F = 0,
whereas those for M exhibit a cusp (labelled as B), which is due to the
asymmetry of the occupied levels when F �= 0 (Table 7.2). States shifted
above the band are also above the FL, and have only an indirect effect on
∆E, while states shifted below the band are filled, and act to produce a
greater field effect.

Fig. 7.6. (a) Variation of H-Ti electrochemisorption energy with field
strength. Solid (broken) curve represents M (M) solution. (b) Adatom
charge transfer versus field strength for H-Ti. Solid (broken) line depicts M

from English and Davison (1998) with permission from Elsevier.
(M) case. Point B locates bifurcation threshold for M -solutions. Reprinted
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Turning to the H-Cr system, some representative values of 〈na+〉 and
〈na−〉 are given in Table 7.3, showing an M -solution exists for all field
strengths, while M ones only occur when F is greater than about 0.005.
The difference from the H-Ti situation is apparently due to the fact that the
Cr band is fuller, as is reflected by the value of εf relative to α (see Table
7.1). The corresponding graphs of ∆q and ∆E are displayed in Fig. 7.7, and
both exhibit a bifurcation B at the F -value, where M -solutions first appear.
The F -dependence of the M -solution, in both graphs, is similar to that in
the H-Ti system (Fig. 7.6), and has the same physical explanation. (The
exception is the ∆E curve, for F > 0, which shows a definite trend in ∆E
to increase with F , as opposed to the corresponding part of Fig. 7.6(a). In
this case, there is less cancellation between competing contributions to ∆E.)
With the birth of M -solutions as F increases through 0.005, the FL is raised,
which tends to lower ∆E, while the split between 〈na+〉 and 〈na−〉 maintains
εa± at roughly constant levels, resulting in the lowering of ∆E. Keeping in
mind that the lower-energy solution is the physically preferred one, Fig. 7.7
reveals that, for small positive fields, the chemisorption process is slightly
suppressed, while for larger field strengths, it is enhanced.

Table 7.3. M and M solutions 〈na+〉 and 〈na−〉 of H-Cr system.

F -.015 -.010 -.005 .000 .005 .010 .015

M 0.574 0.588 0.602 0.616 0.631 0.645 0.656

M N/A N/A N/A N/A N/A 0.803 0.962

M N/A N/A N/A N/A N/A 0.476 0.335
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Fig. 7.7. Variation of: (a) H-Cr electrochemisorption energy; and (b)
charge transfer with field strength. Solid (broken) curve depicts M (M)
solution. Point B locates bifurcation threshold for M -solutions.

In conclusion, we have seen that an applied field has the ability to
strongly affect the chemisorption process. One trend, clearly observable in
both Fig. 7.6(b) and Fig. 7.7(b), is that the sign of F determines whether
or not ∆q is enhanced by the presence of the field, i.e., ∆q is increased
(decreased) when F is positive (negative). More variable is the depen-
dence of ∆E on F , due to the variability in the existence (or not) of M -
solutions, which, when they do occur, represent the more stable interaction.
Consequently, the presence of the field may either enhance or suppress the
chemisorption process.

Reprinted
from English and Davison (1998) with permission from Elsevier.



Chapter 8

Indirect Adatom Interactions

By indirections find directions out.

— William Shakespeare

Up to now, we have investigated the situation of a single atom chemiso-
rbed onto a surface. However, when two atoms are adsorbed onto a substrate,
direct interactions may exist between them, provided their separation is less
than a few Angstroms, so that the overlap of their orbitals is considerable.
At larger separations, the direct interaction becomes negligible, but indirect
interactions may arise between the adatoms through the substrate, because
they share the same conduction band electrons. Such substrate-mediated
interactions are important in many phenomena, such as the formation of
adlayer structures, and can also play a significant role in applications, such as
heterogeneous catalysis, where the chemical processes between the reactants
take place at the surface of a catalyst.

8.1 Adatom Green Function

The occurrence of the substrate-mediated interaction between adatoms was
first predicted in the seminal work by Koutecký (1958), using the resolvent
technique, and was later clarified in a review by Grimley (1960), who added
significantly to the theory by showing that the interaction energy is long-

139 



140 CHAPTER 8. INDIRECT ADATOM INTERACTIONS

range and oscillatory, in the adatom separation d, and is of the form (Grimley
1967a,b)

∆W (d) = Cd−n cos(2kF d), (8.1)

where C is a constant and kF the Fermi momentum of an electron at the
surface. n is an unknown integer between 2 and 5, which is believed to be
determined by the effective dimensionality of the electronic states partici-
pating in the interaction. Specifically, n = 5(2) for the 3(2)-dimensional
situation. An extensive discussion of the status of the dimensionality prob-
lem, together with the experimental side of the question, can be found in
Gumhalter and Brenig (1995a). Later, with Walker (1969), Grimley investi-
gated the effects of the interaction on the heat of adsorption by means of the
Anderson model, and with Torrini (1973) calculated the interaction between
two hydrogen adatoms on W(100).

Neglecting Coulomb effects, Einstein and Schrieffer (1973) determined
the interaction energy to be about an order of magnitude less than the
chemisorption energy of a single adatom and confirmed Grimley’s long-range
behaviour. An extension of the Einstein and Schrieffer work by Burke (1976)
revealed the interaction energy oscillates as a function of the Fermi energy,
εF (adatom separation, d) for fixed d (εf ). The inclusion of the direct adatom
interaction was found to have a marked effect at small d. Besides the direct
interaction, Muda and Hanawa (1974) also took account of the Coulomb re-
pulsion between the adatoms, in their self-consistent Hartree-Fock treatment
of pair-interaction effects on the adatom local DOS for H-W(100).

Correlation effects on the indirect interaction have been discussed by
Schönhammer et al (1975). The chemisorption energy was found to be
(in)sensitive to these effects in the (double-) single-adatom situation. Multi-
adatom interactions have also been considered (Einstein 1977, Dreysée et al
1986); though insignificant for total interaction energies, they are comparable
to more distant neighbour pair interactions. The asymptotic behaviour of the
interaction has been established and discussed by Lau and Kohn (1978) and
Einstein (1978). In a somewhat different vein, Le Bossé et al (1978, 1979,
1980) studied the indirect-interaction contribution to the binding energy of
a diatomic admolecule.

In another interesting development, Gumhalter and Brenig (1995a,b)
proposed that, in H-Ni(110) and H-Cu(110) systems, adatom-induced recon-
struction of the surface gives rise to quasi-one-dimensional surface states,
which mediate the indirect interaction. The greatly reduced dimensionality
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of the surface electronic states gives rise to extremely long-ranged interac-
tions. A comprehensive review of these adsorbate interactions has been given
by Einstein (1996) and, more recently, by Merrick et al. (2003). Here, how-
ever, we examine the specific case of a pair of hydrogen atoms co-adsorbed
on a metal surface, within the framework of the ANG model.

Fig.

Consider the situation where two isolated atoms a and b, with electronic
energies εa and εb, are located above the −n and m sites in a monatomic sub-
strate, with site (bond) energy α (β) (see Fig. 8.1(a)). Upon chemisorption

8.1. Diagram of chemisorption process. After Schranz (1994).
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(Fig. 8.1(b)), the electronic energies are shifted to (c.f. (4.34))

ελσ = ελ + U〈nλ,−σ〉, λ = a or b, (8.2)

and the corresponding chemisorption bond energies are βa and βb. Let H0 (H)
be the Hamiltonian for the system of substrate and adatoms before (after)
chemisorption. The two Hamiltonians are related by

H = H0 + V, (8.3)

where V is the perturbation potential

V = U〈na,−σ〉|a〉〈a| + U〈nb,−σ〉|b〉〈b|
+ βa (|a〉〈−n| + | − n〉〈a|) + βb (|b〉〈m| + |m〉〈b|) .

(8.4)

Taking G0(G) to be the GF corresponding to H0(H), the associated Dyson
equation (3.3) is

G = G0 + G0V G. (8.5)

We need to construct the matrix elements of G on the 2 atoms; we explicitly
evaluate G(a, a), because the expression for G(b, b) will be the same, except
for the interchange of a and b and their respective bonding site indices −n
and m.

Substituting (8.4) into (8.5) and taking 〈a|G|a〉 = G(a, a) produces

G(a, a) = G0(a, a) + βaG0(a, a)G(−n, a) + U〈na,−σ〉G0(a, a)G(a, a),

which rearranges as

[
G−1

0 (a, a) − U〈na,−σ〉
]
G(a, a) = 1 + βaG(−n, a). (8.6)

The unknown element G(−n, a) = 〈−n|G|a〉 is found from (8.5) to be

G(−n, a) = βaG0(−n,−n)G(a, a) + βbG0(−n,m)G(b, a), (8.7)

since G0(−n, a) = 0, because the sites −n and a are not connected in the
pre-chemisorption system (Fig. 8.1(a)). The element G(b, a), required in
(8.7), is determined by another application of (8.5) to be

G(b, a) = βbG0(b, b)G(m, a) + U〈nb,−σ〉G0(b, b)G(b, a), (8.8)
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where G0(b, a) = 0. We use (8.5) again to evaluate G(m, a) in (8.8),i.e.,

G(m, a) = βaG0(m,−n)G(a, a) + βbG0(m, m)G(b, a), (8.9)

utilizing G0(m, a) = 0. Substituting (8.9) into (8.8), gives

G(b, a) = βaβbG0(m,−n)G(a, a)×
[
G−1

0 (b, b) − U〈nb,−σ〉 − β2
b G0(m, m)

]−1
,

(8.10)

which in (8.7) leads to

G(−n, a) = βaG(a, a)

{
G0(−n,−n) + β2

b G0(−n,m)G0(m,−n)×

[
G−1

0 (b, b) − U〈nb,−σ〉 − β2
b G0(m, m)

]−1
}

,

(8.11)

so that (8.6) becomes
[
G−1

0 (a, a) − U〈na,−σ〉
]
G(a, a) = 1 + ΩG(a, a), (8.12)

where the self-energy

Ω = β2
a

{
G0(−n,−n) + β2

b G0(−n,m)G0(m,−n)×

[
G−1

0 (b, b) − U〈nb,−σ〉 − β2
b G0(m, m)

]−1
}

. (8.13)

Hence, (8.12) gives the desired element

G(a, a) =
[
G−1

0 (a, a) − U〈na,−σ〉 − Ω
]−1

. (8.14)

We note that (8.14), with (8.13), shows that G(a, a) (and similarly G(b, b))
depends on both occupancies 〈na,−σ〉 and 〈nb,−σ〉 indicating (cf. (4.81)) that
the occupancies 〈nλσ〉 are linked by a quartet of coupled self-consistency
equations of the form (4.81). However, for simplicity, we make the reasonable
approximation of ignoring this coupling by setting the term U〈nb,−σ〉 to 0 in
(8.13). Thus, (8.14) expresses the adatom GF G(a, a) entirely in terms of
GF’s of the pre-chemisorption system. The matrix element G0(λ, λ) (λ = a
or b) is that for the isolated atom λ, so is given very simply by

G0(λ, λ) = (E − ελ)
−1. (8.15)
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The remaining matrix elements in (8.13) are for the as-yet-unspecified sub-
strate. Once evaluated (see §8.2), (8.14) can be expressed in terms of the
chemisorption functions (cf. (4.70))

Λ2(E) = Re(Ω), (8.16)

∆2(E) = −Im(Ω), (8.17)

as
G(a, a) = (E − εaσ − Λ2(E) + i∆2(E))−1, (8.18)

via (8.2) and (8.15), and with the subscript 2 referring to the fact that 2
adatoms are adsorbed on the substrate.

8.2 Chemisorption Functions

We now specify the substrate to be an infinite cyclic monatomic chain with
site (bond) energy α (β) (see Fig. 8.1(a)). The GF matrix elements are (App.
J)

G0(	1, 	2) = t|�1−�2|G0(0, 0), (8.19)

where
G0(0, 0) = t/β(1 − t2), (8.20)

with

t =

{
X ± (X2 − 1)1/2, X <> ∓ 1,

X − i(1 − X2)1/2, |X| < 1,
(8.21)

and
X = (E − α)/2β. (8.22)

With this choice, (8.13) can be written as

Ω = β2
aG0(0, 0)

{
1 + β2

b t
2dG0(0, 0)

[
E − εb − β2

b G0(0, 0)
]−1
}

, (8.23)

where
d = m + n (8.24)

denotes the distance between the 2 adatoms (see Fig. 8.1). The chemisorp-
tion functions are now determined via (8.16) and (8.17).
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It should be noted that the single-adatom chemisorption functions (cf.
(4.68) and (4.69)) are recovered by putting βb = 0 in (8.23), namely,

Λ1 = Re[β2
aG0(0, 0)], (8.25)

∆1 = −Im[β2
aG0(0, 0)], (8.26)

which can also be thought of physically as the situation where the adatom
separation d becomes infinite, viz.,

Λ1 = lim
d→∞

Λ2, ∆1 = lim
d→∞

∆2. (8.27)

The reduced chemisorption functions

Λ2(X) = Λ2(E)/2|β|, (8.28)

∆2(X) = ∆2(E)/2|β|, (8.29)

are depicted in Figs. 8.2 and 8.3 for the 2H-Cr system, and several values of
d. Λ2(X) clearly has a singularity at an X-value outside the band, which is
given by the zero of the [term] in (8.23). It is also apparent how the double-
adatom function begins to resemble the single-adatom one, with increasing
d. Inside the band, Λ2 is an oscillatory function with 2d − 1 zeroes, and is
continuous everywhere, including the band edges. However, the continuity
at the band edges disappears in the limit d → ∞, as the singularities initially
outside the band move towards the band edges. Turning to the graphs of
∆2(X) (Fig. 8.3), we see that the limiting case (d = ∞) exhibits the expected
van Hove singularities (Davison and Stȩślicka 1996) at the band edges. For
d < ∞, these singularities are removed, due to the interaction between the
adatoms. Within the band, ∆2 is continuous and oscillatory, with d local
maxima and d − 1 local minima, occurring where Λ2 = 0.
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Fig. 8.2. Λ2(X) for 2H-Cr with 〈naσ〉 = 0.65, for d = 2, 4,∞, with
βa/ | β |= 1.5. After Schranz(1994).

Fig. 8.3. ∆2(X) for 2H-Cr with 〈naσ〉 = 0.65, for d = 2, 4,∞, with

aβ / | β |= 1.5. After Schranz (1994).
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The adatom DOS, within the band, is given as usual by (4.75), viz.,

ρσ
a(E) =

π−1∆2(E)

[E − εaσ − Λ2(E)]2 + ∆2(E)2
, (8.30)

while outside the band, the density is non-zero only at the localized-state
energies E�σ, which are the real poles of (8.18), namely, solutions of

E − εaσ − Λ2(E) = 0, (8.31)

with corresponding intensities (cf. (4.80))

〈naσ〉� = [1 − Λ′
2(E�σ)]

−1
. (8.32)

A typical graphical solution of (8.31), for d = 3, is shown in Fig. 8.4. It
is noted that, in most cases of double-adsorption, there are two localized
states below the band, compared to just one for single-adsorption. This pair
of localized states arises due to a splitting of the doubly-degenerate single-
adsorption localized state, and is the precursor to the band of such states
that would emerge as more adatoms are added to the system.

Fig. 8.4. Λ2(X) and (E − εa −U〈na,−σ〉)/2|β| vs X, for d = 3. Intersection
of Λ2 with line gives pairs of localized states. After Schranz (1994).
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8.3 Self-consistency and Charge Transfer

We turn now to the issue of charge self-consistency, which utilizes the theory
of §4.3, slightly modified to deal with the fact that there are now two adatoms.
Specifically, the Hamiltonian (4.35) is modified to read as

H =
∑

λσ

ελσnλσ +
∑

kσ

εknkσ +
∑

kλσ

(Vλkc
†
λσckσ + V ∗

kλc
†
kσcλσ), (8.33)

where λ sums over the two adatoms a and b. It is important to note in
(8.33) that there is no direct interaction term between the adatoms, so any
interactions are indirect, occurring as a consequence of the bonding of each
adatom to the substrate.

Following (4.76), the occupancy of each adatom is given by

〈nλσ〉 =

∫

B

ρσ
λ(E)dE +

∑

�

〈nλσ〉�, λ = a or b, (8.34)

where the integration of the adatom DOS (given by (8.30) for λ = a) is over
the energy band and the summation is over the pair of localized-state inten-
sities (8.32). Because the quantities on the right-hand side of (8.34) depend
on the occupancies, they are determined by self-consistency equations of the
form (4.81). For our purposes, we restrict ourselves to the non-magnetic case,
so that we have

〈nλσ〉 = N(〈nλσ〉), λ = a or b. (8.35)

As mentioned in §8.1, the occupancies 〈na±〉 and 〈nb±〉 are in actuality cou-
pled, but we made a simplifying approximation to uncouple them, by setting
to zero the appropriate term in (8.13). Solutions to (8.35) can be calculated
numerically, after which the total charge transfer is given by (cf. (4.102))

∆q =
∑

λ

(
∑

σ

〈nλσ〉 − 1

)
e. (8.36)

8.4 Change in Density of States

In order to calculate the energy changes brought about by chemisorption, we
first evaluate the corresponding change in the DOS, ∆ρ. We have pursued
this notion earlier (in §6.4), but here we execute it differently, by relating ∆ρ
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to the Greenian G0 of the pre-adsorption substrate and to the interaction
potential V (8.4).

Taking the eigenenergies of the system before (after) chemisorption to
be ε0

j (εj), then the change in the DOS is

∆ρ =
∑

j

[
δ(E − εj) − δ(E − ε0

j)
]
, (8.37)

which, via (3.6) and (3.11), becomes

∆ρ = −π−1Im
∑

j

(
1

E + is − εj

− 1

E + is − ε0
j

)
. (8.38)

Choosing the principal branch of the complex logarithm function, we can
write (8.38) as

∆ρ = −π−1 ∂

∂E
Im ln

(
∏

j

E + is − εj

E + is − ε0
j

)
. (8.39)

To proceed further, we examine the expression

det
{
[(E + is)I − H0]

−1 [(E + is)I − H]
}

= det [(E + is)I − H0]
−1 det [(E + is)I − H] , (8.40)

where I represents the identity matrix. Recalling that determinants are in-
variant under change of basis, it is most convenient to use the orthonormal
bases of eigenvectors {|j0〉} and {|j〉}, corresponding to ε0

j and εj, respec-
tively, in which (E + is)I − H0 and (E + is)I − H each become diagonal.
Thus, (8.40) can be written as

det
{
[(E + is)I − H0]

−1 [(E + is)I − H]
}

=
∏

j

E + is − εj

E + is − ε0
j

, (8.41)

so that (8.39) becomes

∆ρ = −π−1 ∂

∂E
Im ln det

{
[(E + is)I − H0]

−1[(E + is)I − H]
}

. (8.42)

On noting that G0 = [(E + is)I − H0]
−1, and by recalling (8.3), we can write

(8.42) as

∆ρ = −π−1 ∂

∂E
Im ln det(I − G0V). (8.43)
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Now let us consider det(I−G0V) in the AO basis {|λ〉, |	〉}, ordered so
that the first four columns and rows are indexed by a, b,−n and m. Thus,
from (8.4), the matrix of V in block form is

V =

(
v1 000

000 000

)
, (8.44)

where

v1 =





νa 0 βa 0
0 νb 0 βb

βa 0 0 0
0 βb 0 0



 , (8.45)

with
νλ = U〈nλ,−σ〉, λ = a or b. (8.46)

The matrix of G0 can also be written in block form as

G0 =

(
g1 g2

g3 g4

)
, (8.47)

whence

I − G0V =

(
I − g1v1 000

g3v1 I

)
, (8.48)

so that
det(I − G0V) = det(I − g1v1). (8.49)

The matrix g1 has the form

g1 =





G0(a, a) 0 0 0
0 G0(b, b) 0 0
0 0 G0(−n,−n) G0(−n,m)
0 0 G0(m,−n) G0(m, m)



 , (8.50)

which, with (8.45) and (8.49), leads to

det(I−G0V) =

∣∣∣∣∣∣∣∣

1 − νaG0(a, a) 0 −βaG0(a, a) 0
0 1 − νbG0(b, b) 0 −βbG0(b, b)

−βaG0(−n,−n) −βbG0(−n,m) 1 0
−βaG0(m,−n) −βbG0(m, m) 0 1

∣∣∣∣∣∣∣∣
.

(8.51)
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Equation (8.51) can be simplified by performing a cofactor expansion on the
first row, and employing (8.13), resulting in

det(I − G0V) = G0(a, a)G0(b, b)
[
G−1

0 (b, b) − νb − β2
b G0(m, m)

]
×

[
G−1

0 (a, a) − νa − Ω
]
. (8.52)

Here, the first factor in square brackets represents the adsorption of a single
atom at site m. The second factor represents the adsorption of a second atom
at site −n. Substituting (8.52) into (8.43), and invoking the chemisorption
functions (4.68), (4.69), (8.16), (8.17), along with (8.46), results in

∆ρ = −π−1 ∂

∂E
Im ln {[E − εbσ − Λ1 + i∆1][E − εaσ − Λ2 + i∆2]}

− π−1
∑

λ

∂

∂E
Im ln G0(λ, λ). (8.53)

The subscripts 1 and 2 on the chemisorption functions refer to single- and
double-adsorption, respectively. Note, however, that εaσ and εbσ are given by
(8.2), where the indicated occupancies are both for the double-chemisorption
situation.

Equation (8.53) can be simplified by recalling, from (8.15), that

G0(λ, λ) = (E − ελ + is)−1,

so that
∂

∂E
ln G0(λ, λ) =

−1

E − ελ + is
, (8.54)

which, via (3.6) and (3.11), leads to

−π−1 ∂

∂E
Im ln G0(λ, λ) = −δ(E − ελ). (8.55)

Also, the principal branch of the logarithm function has the property (App.
F)

Im ln(x + iy) = tan−1
(y

x

)
, (8.56)

where
0 < tan−1( ) < π, (8.57)

so that

Im ln[E − ελσ − Λj + i∆j] = tan−1

(
∆j

E − ελσ − Λj

)
. (8.58)
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Thus, (8.55) and (8.58) in (8.53) produce the final expression for the change
in the DOS, namely,

∆ρ = −π−1 ∂

∂E

[
tan−1

(
∆1(E)

E − εbσ − Λ1(E)

)
+ tan−1

(
∆2(E)

E − εaσ − Λ2(E)

)]

−
∑

λ

δ(E − ελ). (8.59)

8.5 Chemisorption and Interaction Energies

8.5.1 Chemisorption energy

As defined in Chap. 4, the chemisorption energy is the difference between the
initial and final energies of the system. Although we could use the expression
(4.85) for ∆E, it is more convenient to work with that of App. L, with a
slight modification to account for double adsorption. Specifically, we have

∆E =
∑

σ

∆Eσ +
∑

λ

(−U〈nλ+〉〈nλ−〉 + ελ − εf ), (8.60)

with the one-electron energy change given by

∆Eσ =

∫ εf

−∞
(E − εf )∆ρ(E)dE. (8.61)

Using (8.59) for ∆ρ, we can write (8.61) as

∆Eσ =
∑

�

(E�σ − εf ) −
∑′

λ

(ελ − εf ) +

∫

B

(E − εf )∆ρ(E)dE, (8.62)

where the primed summation over λ means summing only over unperturbed
isolated-atom energies outside the band, and B represents integration over
occupied energies inside the band. The third term in (8.62) can be evaluated
further, using integration by parts, to produce∫

B

(E − εf )∆ρ(E)dE = −
∑′′

λ

(ελ − εf )

− π−1(E − εf )

[
tan−1

(
∆1(E)

E − εbσ − Λ1(E)

)
+ tan−1

(
∆2(E)

E − εaσ − Λ2(E)

)] ∣∣∣∣∣

εf

εL

+ π−1

∫

B

[
tan−1

(
∆1(E)

E − εbσ − Λ1(E)

)
+ tan−1

(
∆2(E)

E − εaσ − Λ2(E)

)]
dE,

(8.63)
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where the double-primed summation is over unperturbed isolated-atom ener-
gies inside the band. It can be shown that ∆j(E) vanishes at the band edges,
so that the integrated term of (8.63) vanishes. Thus, substituting (8.63) in
(8.62) yields

∆Eσ =
∑

�

(E�σ − εf ) −
∑

λ

(ελ − εf ) + π−1

∫

B

[
tan−1

(
∆1(E)

E − εbσ − Λ1(E)

)

+ tan−1

(
∆2(E)

E − εaσ − Λ2(E)

)]
dE, (8.64)

whereby (8.60) becomes

∆E =
∑

�σ

E�σ −
∑

λ

(U〈nλ+〉〈nλ−〉 + ελ + εf )

+ π−1
∑

σ

∫

B

[
tan−1

(
∆1(E)

E − εbσ − Λ1(E)

)

+ tan−1

(
∆2(E)

E − εaσ − Λ2(E)

)]
dE. (8.65)

8.5.2 Interaction energy

The interaction energy, ∆W , is the contribution (positive or negative) to ∆E,
due to the (indirect) interaction between the two adatoms. In other words,
∆W is the difference between the chemisorption energy ∆E for the double-
adsorption system and the sum of the chemisorption energies ∆E

(1)
λ (λ = a

or b) for the two individual single-adsorption systems, i.e.,

∆W = ∆E − (∆E(1)
a + ∆E

(1)
b ). (8.66)

Paralleling the derivation of (8.65), we find that

∆E
(1)
λ =

∑

σ

E
(1)
λσ − (U〈n(1)

λ+〉〈n
(1)
λ−〉 + ελ + εf )

+ π1

∑

σ

∫

B

tan−1

(
∆1(E)

E − ε
(1)
λσ − Λ1(E)

)
dE, (8.67)

with the superscript (1) denoting single-adsorption, and E
(1)
λσ the adsorption-

state energy for that case. Substituting (8.65) and (8.67) into (8.66) gives
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the interaction energy

∆W =
∑

�σ

E�σ −
∑

λσ

E
(1)
λσ + U

∑

λ

(〈n(1)
λ+〉〈n

(1)
λ−〉 − 〈nλ+〉〈nλ−〉)

+ π−1
∑

σ

∫

B

tan−1

(
∆1(E)

E − εbσ − Λ1(E)

)
dE

+ π−1
∑

σ

∫

B

tan−1

(
∆2(E)

E − εaσ − Λ2(E)

)
dE

− π−1
∑

λσ

∫

B

tan−1

(
∆1(E)

E − ε
(1)
λσ − Λ1(E)

)
dE. (8.68)

For the case of identical adatoms, considered here, εa = εb. Moreover, the
non-magnetic solutions have 〈na+〉 = 〈na−〉 = 〈nb+〉 = 〈nb−〉, so that (8.68)
reduces to

∆W = 2

{∑

�

E�+ − 2E
(1)
a+ + U(〈n(1)

a+〉2 − 〈na+〉2)

+ π−1

∫

B

tan−1

(
∆1(E)

E − εa+ − Λ1(E)

)
dE

+ π−1

∫

B

tan−1

(
∆2(E)

E − εa+ − Λ2(E)

)
dE

− 2π−1

∫

B

tan−1

(
∆1(E)

E − ε
(1)
a+ − Λ1(E)

)
dE

}
, (8.69)

which is the form of the interaction energy we use here. However, many
authors (e.g., Grimley 1967a, Einstein and Schrieffer 1973) use a simpli-
fied version in which the occupancies for single- and double-adsorption are
assumed to be equal, i.e., 〈n(1)

a+〉 = 〈na+〉, so that the corresponding localized-

state energies also become equal, i.e., E�+ = E
(1)
a+. In this scenario, (8.69)

reads

∆Ŵ = 2π−1

∫

B

[
tan−1

(
∆2(E)

E − εa+ − Λ2(E)

)

− tan−1

(
∆1(E)

E − εa+ − Λ1(E)

)]
dE, (8.70)
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which, under the further assumption that U → 0, and using (8.56) and the
material of §8.2, can be expressed as

∆Ŵ = 2π−1

∫

B

Im ln
[
1 − β4

aG0(−n,m)G0(m,−n)G−1
ab

]
dE, (8.71)

where

Gab =
[
G−1

0 (a, a) − β2
aG0(−n,−n)

]2
=
[
G−1

0 (b, b) − β2
b G0(m, m)

]2
. (8.72)

8.6 2H-{ Ti, Cr, Ni, Cu } Systems

We now look at some results, calculated via the above theory, for a pair of H
atoms chemisorbed on several d-band metals (Ti, Cr, Ni, Cu). Corresponding
results for III-V and sp-hybrid semiconductor substrates have been given by
Schranz and Davison (1998, 2000).

First, we describe the various system parameters, primarily adapted from
Newns (1969). From the energy dispersion relation (2.32), the bulk states
are distributed through a band, centered at α, and with width Wb = 4|β|.
The Fermi level εf is taken to be at the center of this band, and is chosen
to be the energy zero (so that εf = α ≡ 0, for all systems). The position of
εf , relative to the vacuum level, is given by the work function φ, whence the
isolated H adatom level, relative to εf is

ελ = ε′λ + φ, (8.73)

where ε′λ = −13.6 eV is the H level relative to the vacuum. The Coulomb
repulsion for H has the value U = 12.9 eV. These parameter values for H
chemisorption on Ti, Cr, Ni and Cu are listed in Table 8.1. The difficult-
to-estimate coupling parameter βa is studied through a range of values βa =
i|β|/3, where i = 1, 2, . . . , 6, following Einstein and Schrieffer (1973).

Table 8.1. System parameters for hydrogen chemisorption on Ti, Cr, Ni
and Cu. For hydrogen, ε′λ = −13.598 eV and U = 12.9 eV.

Substrate φ (eV) Wb (eV) ελ (eV)

Ti 3.86 8.60 -9.74

Cr 4.56 6.10 -9.04

Ni 4.50 3.80 -9.10

Cu 4.46 2.70 -9.14
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The numerical solution of the self-consistency equation (8.35) is rather
difficult, so we refer readers to Schranz and Davison (1998) for a few details.
However, for illustrative purposes, we present, in Fig. 8.5, a typical graph-

Fig. 8.5. Self-consistency plot of 〈na+〉 = N(〈na−〉) for adatom spacings

of d = 2 (long dashed), d = 3 (short dashed), d = 4 (dotted), d = 5 (long
dash-dotted) and d = ∞ (short dash-dotted) for 2H-Cr with η = 1.667. Also
plotted is line 〈na+〉 = 〈na−〉 (solid line). Inset plot is above plot in range
0.60 < 〈na±〉 < 0.68. Self-consistent solutions are: 〈na+〉 = 〈na−〉 = 0.664
(d = 2), 0.629 (d = 3), 0.653 (d = 4), 0.632 (d = 5), 0.648 (d = 6) and
0.637 (d = ∞). After Schranz (1994).
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ical solution to (8.35), for the 2H-Cr system, and various values of d. The
figure shows clearly that the double-adsorption solutions, associated with
even (odd) values of d, asymptotically approach the single-adsorption solu-
tion from above (below). This behaviour, as d → ∞, is a reflection of the
mathematical limits (8.27).

Calculations of the chemisorption energy can be examined in two ways:
(i) the effect of the choice of metal for a particular βa, and (ii) the effect of βa

for a particular metal. The former case is investigated in Fig. 8.6(a), where
∆E is plotted versus adatom separation d, for each of the 4 metals, and for
η = βa/|β| = 1.667. The most obvious feature is the damped oscillatory
nature of ∆E as a function of d in agreement with Grimley’s interaction law
(8.1). Since adatoms tend to occupy the sites that minimize ∆E, we see
that d = 3 is the most favourable adatom separation. Also, by referring to
Table 8.1, it can be concluded that, for fixed η, ∆E decreases with increasing
bandwidth, which is understandable in light of the fact that the adatom level,
broadened by chemisorption (§3.3.2), has a greater overlap with the occupied
band for larger Wb, leading to a stronger interaction. Turning to case (ii),
Fig. 8.6(b) shows ∆E versus d for a Ti substrate and various values of η.
The damped, oscillatory behaviour is observed for all η, with the greatest
amplitudes occurring for the largest values of η. It is also seen that ∆E
decreases as η increases, which is as expected, because the atom-surface bond
is being strengthened.

To understand the oscillatory dependence of ∆E on d, it is necessary to
look more closely at the interaction energy ∆W because, as (8.66) shows, ∆E
is the sum of the two single-atom chemisorption energies (which are indepen-
dent of d) plus ∆W . Hence, any effect of d on ∆E must arise due to ∆W .
Alternatively, one may consider the situation in terms of the adatom wave-
functions, which, as they spread out from each adatom, interfere in either a
constructive or destructive fashion, thus creating oscillations in the electron
density that are mirrored in the interaction. Since the wavefunctions are in
or out of phase, depending on d, ∆E itself becomes a function of d. As d
increases, the overlap of the wavefunctions decreases, and ∆E tends towards
∆E

(1)
a .
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Fig. 8.6. (a) Plot of chemisorption energy (∆E) vs adatom separation (d)
for hydrogen chemisorption on Ti, Cr, Ni and Cu with η = 1.667. (b) ∆E
vs d for 2H-Ti with η = 0.333, 0.667, 1.000, 1.333, 1.667 and 2.000. After
Schranz (1994).
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Graphs of ∆W vs d, for the 4 metals and η = 1.667, are displayed in Fig.
8.7(a). As expected, ∆W is a damped, oscillatory function of d. It is also
evident that the amplitude of the oscillation increases with the bandwidth
of the metal, which has a corresponding effect on ∆E, seen in Fig. 8.6(a).
The effect of η on ∆W vs d is shown in Fig. 8.7(b), for a Ti substrate.
We see that the amplitude of the oscillations increases with η, which can be
explained as due to a stronger bond producing a greater penetration of the
adatom orbitals into the substrate, thereby strengthening their interaction.
Comparing Figs. 8.6 and 8.7, it is observed that ∆W is approximately an
order of magnitude smaller than ∆E, which is in agreement with the finding
of Einstein and Schrieffer (1973).

An analysis of the calculated values of ∆W shows that the damping
factor in the indirect interaction is d−1, as exemplified in Fig. 8.8, for Cr
and Ti substrates and η = 1.667. “Envelope” curves of the form αd−1 are
shown, where α is chosen, so that the curve passes through the data point
corresponding to d = 4. The fit to d−1 is seen to improve as d increases,
agreeing with the asymptotic nature of the interaction law.
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Fig. 8.7. (a) Plot of interaction energy (∆W ) vs adatom separation (d)
for hydrogen chemisorption on Ti, Cr, Ni and Cu with η = 1.667. (b) ∆W
vs d for 2H-Ti with η = 0.333, 0.667, 1.000, 1.333, 1.667 and 2.000. After
Schranz (1994).



8.6. 2H-{ TI, CR, NI, CU } SYSTEMS 161

Fig. 8.8. Interaction energy ∆W vs adatom separation d for 2H-Cr and
2H-Ti with η = 1.67. Dashed lines are ±αd−1

The relative size of the contributions to ∆W in (8.69) can be assessed,

by comparing ∆W to ∆Ŵ in (8.71), which neglects the effects of differ-
ent occupancies and localized-state energies between the single- and double-
adsorption cases. Some typical results are depicted in Fig. 8.9 for a Ti
substrate and η = 1.667. The approximation ∆Ŵ is seen to either over- or
under-estimate ∆W , at small adatom separations, with the approximation
improving as d increases. Consequently, we conclude that the effect of the
occupancies and localized-state energies is important only at small adatom
separations.

curves. After Schranz (1994).
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Fig. 8.9. Interaction energy ∆W vs adatom separation d for 2H-Ti with
η = 1.667. Dashed lines are ±αd−1 curves. Squares represent approximate
interaction energy ∆Ŵ , neglecting changes in occupancies and localized-state

Lastly, we turn to the charge transfer, ∆q, calculated from (8.36). Fig.
8.10 provides representative graphs of ∆q vs d for H adsorption on the 4
metals with η = 1.667, and for a Ti substrate with various η. The oscil-
lation of ∆q with d can be understood in terms of the solution of the self-
consistency equation, which was demonstrated graphically in Fig. 8.5. Those
solutions were seen to be greater (less) than the single-adsorption solution
for even (odd) d, and with the double-adsorption solutions approaching that
for single-adsorption, in the limit of large d. Therefore, the expectation is
indeed that ∆q should oscillate about its single-adsorption counterpart, and
reach it as d → ∞.

energies. After Schranz (1994).
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Fig. 8.10. (a) Charge transfer (∆q) vs adatom separation (d) for hydrogen
chemisorption on Ti, Cr, Ni and Cu with η = 1.667. (b) ∆q vs d for 2H-Ti
with η = 0.333, 0.667, 1.000, 1.333, 1.667 and 2.000. After Schranz (1994).
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Summarizing, it is clear that the indirect interaction between adatoms
has a significant effect on the chemisorption properties of the system. Most
noticeably, the chemisorption energy has a damped, oscillatory dependence
on the adatom separation, as first quantified in (8.1) by Grimley. Thus,
multi-atom adsorption occurs preferentially with the atoms at certain sites
relative to one another.



Appendices

When you have learned what an explana-
tion really is, then you can go on to more
subtle questions.

— Richard Feynman

A. Evaluation of Jn(b)Jn(b)Jn(b)

For n = 0, evaluation of (1.86), i.e.,

Jn(b) =

∫ π

π/2

cos nθ

1 + b cos θ
dθ, (A.1)

gives (Gradshteyn and Ryzhik 1980)

J0(b) =
2

(1 − b2)1/2

{
tan−1

[(
1 − b

1 + b

)1/2

tan(θ/2)

]}π

π/2

,

which, since b = 2(zs + z−1
s )−1 by (1.85), yields

J0(zs) = 2

(
zs + z−1

s

zs − z−1
s

){
tan−1

[(
zs − 1

zs + 1

)
tan(θ/2)

]}π

π/2

.

However, 0 ≤ zs ≤ 1, so

J0(zs) = −2ζs

{
tan−1 [−τs tan(θ/2)]

}π

π/2
, (A.2)
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where
ζs = (z−1

s + zs)(z
−1
s − zs)

−1,

and
τs = (1 − zs)(1 + zs)

−1. (A.3)

Thus, (A.2) gives

J0(zs) = −2ζs(−π/2 + tan−1 τs). (A.4)

If we let
zs = tan α, (A.5)

then we can write
τs = tan(π/4 − α) = tan φs, (A.6)

via (A.3), so that
φs = π/4 − α = π/4 − tan−1 zs, (A.7)

by (A.5). Hence, (A.6) and (A.7) in (A.4), result in

J0(zs) = 2ζs(π/4 + tan−1 zs). (A.8)

Knowing J0(b), we can derive expressions for J1(b), and J2(b) in terms
of J0(b) (Goodman 1994). From (A.1), we have

bJ1 + J0 =

∫ π

π/2

b cos θ + 1

1 + b cos θ
dθ =

π

2
,

so
J1(b) = b−1[π/2 − J0(b)]. (A.9)

Likewise, (A.1) shows that

bJ2 + 2J1 + bJ0 = 2

∫ π

π/2

cos θ dθ = −2,

whence, on rearranging and using (A.9), we obtain

J2(b) = −2

b

[(
1 +

π

2b

)
+

(
b

2
− 1

b

)
J0(b)

]
. (A.10)
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B. Slater Determinant

Providing the Hamiltonian H is a sum of 1-electron operators only, i.e.,

H =
N∑

i=1

Hi, (B.1)

the total wave function Ψ can be expressed as a simple Hartree product

Ψ = φ1(r1)φ2(r2) · · ·φN(rN), (B.2)

each 1-electron function φi(ri) being an eigenfunction of the corresponding 1-
electron operator Hi. Since any such product, with its electronic coordinates
ri arranged in any order, is equally acceptable and energetically equivalent,
a more general solution than (B.2) can be constructed by taking a linear
combination of all these products, namely,

Ψ =
∑

P

cP P [φ1(r1) · · ·φN(rN)], (B.3)

cP being constants and the summation being over N permutations P of the
electronic coordinates (Davison 1969).

In order to satisfy the Pauli principle, however, it is necessary for Ψ
in (B.3) to be antisymmetric in the interchange of any pair of electronic
coordinates (including spin), which is achieved by taking

cP = (−c)p, (B.4)

where p is the parity of the permutation P . On separately normalizing φi(ri),
this becomes

cP = (−1)p, (B.5)

whence, (B.3) can be written as

Ψ =
∑

P

(−1)pP [φ1(r1) · · ·φN(rN)], (B.6)

i.e., the Slater determinant

Ψ = (N !)−1/2

∣∣∣∣∣∣

φ1(r1) · · ·φ1(rN)
. . . . . . . . . . . . . . . . .
φN(r1) · · ·φN(rN)

∣∣∣∣∣∣
, (B.7)
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or
Ψ = (N !)−1/2 det[φk(ri)], (B.8)

in which (N !)−1/2 is the normalization constant and [φk(ri)] is the matrix
of the spin-orbital elements φk(ri) of the determinant. It is clear that Ψ in
(B.7) is antisymmetric, since interchanging any pair of ri’s, say r1 and r2,
interchanges two columns of the determinant and thereby changes its sign.
This is also true for the exchange of any two rows of φk’s.

C. Anticommutation Relations

Consider a fermion collection, where each state is either empty or occupied,
i.e., n ∈ {0, 1}. If the states are ordered, the total wave function can be
expressed in terms of the state occupancy (Davydov 1991), namely,

|n1, n2, . . . , nk, . . .〉. (C.1)

Let us now define a creation operator, c†k, such that, if nk = 0, its
operation will yield a wave function with nk = 1 and, if nk = 1 already,
its operation will give zero, since a fermion can not be created in a state that
is occupied. Hence, we have

c†k|n1, . . . , nk, . . .〉 = (−1)νk(1 − nk)|n1, . . . , 1 − nk, . . .〉, (C.2)

the sign being determined by the number of occupied states below k, i.e.,

νk =
k−1∑

m=1

nm, (C.3)

since fermion wave functions are antisymmetric.
Similarly, we define the hermitean conjugate operator, ck, as an annihi-

lation operator, which produces a wave function with a fermion missing from
the kth state, if it was occupied, or zero, if not. Thus, in this case, we have

ck|n1, . . . , nk, . . .〉 = (−1)νknk|n1, . . . , 1 − nk, . . .〉. (C.4)

By combining (C.2) and (C.4), we can construct the number operator for the
kth state, viz.,

nk = c†kck, (C.5)
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which returns the kth state eigenvalue via the eigenvalue equation

nk|n1, . . . , nk, . . .〉 = n2
k|n1, . . . , nk, . . .〉

= nk|n1, . . . , nk, . . .〉, (C.6)

since nk is 0 or 1. Because the nk operator has only two possible eigenvalues,
it can be represented by a 2 × 2 matrix,

nk =

[
0 0
0 1

]
, (C.7)

with the eigenvectors

|0〉k = |n1, . . . , 0, . . .〉 =

[
1
0

]
,

|1〉k = |n1, . . . , 1, . . .〉 =

[
0
1

]
.

(C.8)

Hence, (C.2) becomes

c†k|0〉k = (−1)νk |1〉k, c†k|1〉k = 0, (C.9)

so that

c†k = (−1)νk

[
0 0
1 0

]
. (C.10)

Similarly, we have

ck = (−1)νk

[
0 1
0 0

]
, (C.11)

which has the required properties

ck|0〉k = 0, ck|1〉k = (−1)k|0〉k. (C.12)

We can now derive the anticommutation relations.
Let us first treat the operation on a single state, for which the relevant

four equations are

ckc
†
k| . . . , nk, . . .〉 = (1 − nk)| . . . , nk, . . .〉

c†kck| . . . , nk, . . .〉 = nk| . . . , nk, . . .〉
ckck| . . . , nk, . . .〉 = nk(1 − nk)| . . . , nk, . . .〉 = 0

c†kc
†
k| . . . , nk, . . .〉 = 0.





(C.13)
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From these equations, we can assemble the anticommutators (4.13),

[ck, ck]+ = [c†k, c
†
k]+ = 0, [c†k, ck]+ = 1. (C.14)

Next, we investigate the two states i and j, where i < j. Here, we have

cicj| . . . , ni, . . . , nj, . . .〉 = (−1)νjnjci| . . . ni, . . . , 1 − nj, . . .〉
= (−1)νj+νinjni| . . . , 1 − ni, . . . , 1 − nj, . . .〉, (C.15)

cjci| . . . , ni, . . . , nj, . . .〉 = (−1)νinicj| . . . , 1 − ni, . . . , nj, . . .〉
= (−1)νi+νj−1ninj| . . . , 1 − ni, . . . , 1 − nj, . . .〉,

since the ci operation first reduces νj by 1, but cj leaves νi unchanged, whence,

[ci, cj]+ = 0. (C.16)

Again,

c†ic
†
j| . . . , ni, . . . , nj, . . .〉 = (−1)νj(1 − nj)c

†
i | . . . , ni, . . . , 1 − nj, . . .〉

= (−1)νj+νi(1 − nj)(1 − ni)| . . . , 1 − ni, . . . , 1 − nj, . . .〉, (C.17)

c†jc
†
i | . . . , ni, . . . , nj, . . .〉 = (−1)νi(1 − ni)c

†
j| . . . , 1 − ni, . . . , nj, . . .〉

= (−1)νi+νj−1(1 − ni)(1 − nj)| . . . , 1 − ni, . . . , 1 − nj, . . .〉,

so that
[c†i , c

†
j]+ = 0, i < j. (C.18)

Lastly,

c†icj| . . . , ni, . . . , nj, . . .〉 = (−1)νjnjc
†
i | . . . , ni, . . . , 1 − nj, . . .〉

= (−1)νi+νjnj(1 − ni)| . . . , 1 − ni, . . . , 1 − nj, . . .〉 (C.19)

cjc
†
i | . . . , ni, . . . , nj, . . .〉 = (−1)νi(1 − ni)c

†
j| . . . , 1 − ni, . . . , nj, . . .〉

= (−1)νi+νj−1(1 − ni)nj| . . . , 1 − ni, . . . , 1 − nj, . . .〉,

which lead to
[c†i , cj]+ = 0, i < j. (C.20)

When i > j, (C.15) to (C.20) yield the same results, so we obtain

[ci, cj]+ = [c†i , c
†
j]+ = 0, [c†i , cj]+ = δij, (C.21)

or any i and j.
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D. Plemelj Formula

In view of (4.60), on putting

ε′ = ε − εk, (D.1)

the summands denominator in (4.66) becomes

1

ε′ ± is
=

ε′ ∓ is

ε′2 + s2
=

ε′

ε′2 + s2
∓ is

ε′2 + s2
. (D.2)

The first term on the right-hand side (RHS) of (D.2) gives

lim
s→0+

∫ ∞

−∞

ε′dε′

ε′2 + s2
= lim

s→0+

[∫ −s

−∞
+

∫ ∞

s

+

∫ s

−s

]
ε′dε′

ε′2 + s2
, (D.3)

or

lim
s→0+

∫ ∞

−∞

ε′dε′

ε′2 + s2
= P

∫ ∞

−∞

dε′

ε′
, (D.4)

where P denotes the Cauchy principal value, and the third term on the RHS
of (D.3) is zero, because the integrand is odd.

From the second term on the RHS of (D.2), we have

lim
s→0+

s

ε′2 + s2
= 0, when ε′ �= 0. (D.5)

Moreover, we can write
∫ c

−c

lim
s→0+

sdε′

ε′2 + s2
= lim

s→0+

[
tan−1

(c

s

)
− tan−1

(
−c

s

)]
= π. (D.6)

Contrasting this with the Dirac δ-function definition, viz.,
∫ c

−c

δ(ε′)dε′ = 1, (D.7)

shows that
lim

s→0+

s

ε′2 + s2
= πδ(ε). (D.8)

Equations (D.4) and (D.8) with (D.2) reveal that

lim
s→0+

∫ ∞

−∞

dε′

ε′ ± is
= P

∫ ∞

−∞

dε′

ε′
∓ iπ

∫ ∞

−∞
δ(ε′)dε′, (D.9)
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which, in shorthand form, is written as

lim
s→0+

1

ε′ ± is
= P

(
1

ε′

)
∓ iπδ(ε′), (D.10)

it being understood that both sides are to appear in an integrand, which may
also be multiplied by a well-behaved function f(ε′) (Raimes 1972).

E. Residues of g(ε)g(ε)g(ε)

Consider the function
g(ε) = f ′(ε)/f(ε), (E.1)

where f(ε) is given by (4.91) and the contour C encloses all the zeros (ω+) and
the poles (ω−) of f corresponding to occupied perturbed (εm) and unperturbed
(εk) energies, respectively.

If the order of the zero corresponding to ω+ is r = r+, then we can
expand f(ε) near ε = ω+, and write

f(ε) = ar(ε − ω+)r + ar+1(ε − ω+)r+1 + · · · , (E.2)

which on differentiating gives

f ′(ε) = rar(ε − ω+)r−1 + (r + 1)ar+1(ε − ω+)r + · · · . (E.3)

Whence, we have

g(ε) =
f ′(ε)

f(ε)
=

rar(ε − ω+)r−1 + · · ·
ar(ε − ω+)r + · · · ,

or
g(ε) � r(ε − ω+)−1, (E.4)

so
Res g(ε)

∣∣
ε=ω+

= r+. (E.5)

By the same token, if the pole ω− has order r = r−, then we have the
expansion

f(ε) = b−r(ε − ω−)−r + b−r+1(ε − ω−)−r+1 + · · · , (E.6)

in which case

f ′(ε) = −rb−r(ε − ω−)−r−1 + (−r + 1)b−r+1(ε − ω−)−r + · · · (E.7)

resulting in
Res g(ε)

∣∣
ε=ω−

= −r−. (E.8)
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F. Logarithmic Function

Let
w = ln z, (F.1)

where
w = u ± iv, z = x ± iy. (F.2)

From (F.1), we find
z = ew (F.3)

so (F.1) and (F.2) in (F.3) yields

eu(cos v ± i sin v) = x ± iy. (F.4)

Thus, equating real and imaginary parts gives

x = eu cos v, y = eu sin v, (F.5)

which lead to
tan v = y/x, x2 + y2 = e2u, (F.6)

or
u = ln(x2 + y2)1/2 = ln |z|, (F.7)

by (F.2). Substituting (F.6) and (F.7) in (F.2), using (F.1), we obtain

w = ln(x ± iy) = ln |x ± iy| ± i tan−1(y/x). (F.8)

G. Range of tan−1tan−1tan−1

As was pointed out by Newns (1967), for (4.99) to be complete, it is necessary
to specify the range of the multi-valued function tan−1.

First, we note that, if the unperturbed semi-infinite metal substrate has
no surface states, then ∆(ε) = 0 outside the energy band. However, from
(4.70), we see that poles may then occur in Gσ

aa(ε) at energies given by the
solutions of

ε − εaσ − Λ(ε) = 0, (G.1)

which is the condition for localized states. Although (G.1) is of no significance
in the band, when ∆(ε) �= 0, it does, however, imply a singularity in the
argument of tan−1 in (4.99), if satisfied for ε in the band. Consequently, it
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is necessary to consider the roots of (G.1) (Fig. G.1) in discussing the value
of tan−1 in (4.99).

Fig. G.1. Diagrams showing ∆(ε) and Λ(ε) curves along with localized-
state solutions (o) of ε − εaσ − Λ(ε) = 0. After Newns (1967).

Consider the case where no localized (occupied) state occurs below the
band, as in Fig. 4.4. As can be seen in Figs. G.1(c) and (d), the tan−1

argument (ξ) starts off negative at the bottom of the band (ε0). If the FL
is near ε0, then ∆Eσ should be small, so that ξ is small, and must be taken
in the range at and below zero. As expected, ∆Eσ is then negative. If the
integrand falls below −π/2, as when no localized states exist above or below
the band (Fig. G.1d), then a singularity in ξ occurs. Since no sudden change
can take place in ∆Eσ as the FL crosses over a root of (G.1), tan−1 must be
taken in the range −π/2 to −π, when ξ becomes positive. Hence, tan−1 in
(4.99) goes smoothly away from zero in the negative direction, in the region
0 to −π, provided there is no localized state below the band.

When a localized state ε�σ does appear below the band, the contour C
may be taken round all the eigenvalues between εf and ε0, where the lowest
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eigenvalue is now an unperturbed one (Fig. G.2). From its definition (4.86),
∆Eσ must include an additional term for the energy difference between ε�σ

and an eigenvalue just outside C at εf , which is zero. Comparison of Figs.
4.4 and G.2 reveals that the sign of the contribution to ∆Eσ is opposite to

Fig. G.2. Contour C around unperturbed (×) and perturbed (•) band
states with localized state at ε�σ below lower band edge ε0 with εf being FL.

that in (4.99), whose derivation proceeds exactly as before. It is evident from
Fig. G.1(a) and (b) that ξ is initially positive at ε0, whence, tan−1 must now
vary smoothly, going away from zero in the positive direction, in the range 0
to π.

H. Electronic States of Binary Chain

Solutions of (4.103) and (4.104) are sought by putting (Davison and Levine
1970)

cn = un, n odd, (H.1)

cn = vn, n even, (H.2)

whereby we have

(X − z)un = vn−1 − vn+1, n odd, (H.3)

(X + z)vn = un+1 − un−1, n even. (H.4)
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From (H.4), we obtain

vn =
un+1 − un−1

X + z
, (H.5)

which in (H.3) leads to the characteristic equation in u, viz., the quartic

u4 + γu2 + 1 = 0, (H.6)

where
γ = X2 − z2 − 2. (H.7)

On choosing
γ = −2 cos 2k, (H.8)

equation (H.7) gives
X = ±(z2 + 4 sin2 k)1/2, (H.9)

i.e.,
ε±k = ±(λ2 + 4β2 sin2 k)1/2, (H.10)

via (4.105) and (4.106).
Returning to (H.6), we see that the roots are given by

u2 =
[
−γ ± (γ2 − 4)1/2

]
/2, (H.11)

which, by means of (H.8), shows that

un = e±ink. (H.12)

Inserting (H.12) in (H.5), we find

vn = Ke±ink, (H.13)

where

K =
2iβ sin k

ε±k + λ
, (H.14)

via (4.105) and (4.106).

176



I. Normalization Factor

The normalization of (4.108) requires that

〈k|k〉 = 1, (I.1)

which is subject to the AO orthonormality condition

〈ni|nj〉 = δij. (I.2)

With the aid of (I.2), inserting (4.108) in (I.1) gives

R2

(
∑

n1

sin2 n1k + |K|2
∑

n2

cos2 n2k

)
= 1, (I.3)

in which n1(n2) = n odd (even). From (I.3), we have

R2

[
∑

n

sin2 nk −
∑

n2

sin2 n2k + |K|2
∑

n2

(1 − sin2 n2k)

]
= 1,

R2

[
2N∑

n=1

sin2 nk + |K|2
N∑

n=1

1 − (1 + |K|2)
∑

n2

sin2 n2k

]
= 1. (I.4)

Since (Jolley 1961)

2N∑

n=1

sin2 nk = N − cos(2N + 1)k sin 2Nk

2 sin k
, (I.5)

(I.4) becomes

R2

{
N − cos(2N + 1)k sin 2Nk

2 sin k
+ N |K|2

− (1 + |K|2)
[
N

2
− cos 2(N + 1)k sin 2Nk

2 sin 2k

]}
= 1,

R2

[
N

2
(1 + |K|2) − cos(2N + 1)k sin 2Nk

2 sin k

+ (1 + |K|2)cos 2(N + 1)k sin 2Nk

2 sin 2k

]
= 1. (I.6)

APPENDICES 177



APPENDICES

For (4.111), we can write (I.6) as

R2

{
N

2
(1 + |K|2) − cos jπ sin[2Njπ/(2N + 1)]

2 sin[jπ/2(2N + 1)]

+ (1 + |K|2)cos[2(N + 1)jπ/(2N + 1)] sin[2Njπ/(2N + 1)]

2 sin[2jπ/(2N + 1)]

}
= 1,

R2

{
N

2
(1 + |K|2) − (−1)j sin[jπ − jπ/(2N + 1)]

2 sin[jπ/(2N + 1)]

+ (1 + |K|2)cos[jπ + jπ/(2N + 1)] sin[2Njπ/(2N + 1)]

2 sin[2jπ/(2N + 1)]

}
= 1,

which reduces to

R2

{
N

2
(1 + |K|2) +

1

2

+ (1 + |K|2)(−1)j cos[jπ/(2N + 1)] sin[jπ − jπ/(2N + 1)]

2 sin[2jπ/(2N + 1)]

}
= 1,

or

R2

[
1

2
N(1 + |K|2) +

1

2
− 1

4
(1 + |K|2)

]
= 1,

whence, we find that

R = 2
[
(1 + |K|2)(2N − 1) + 2

]−1/2
. (I.7)

For a monatomic substrate, |K| = 1, so

R = N−1/2, (I.8)

as expected.

J. Green Function of Infinite Monatomic Chain

In this appendix, we rewrite the elements of the infinite GF (G0) of the
monatomic crystal in a more detailed form than Ueba (1980). It follows
immediately from (2.49) and (2.37) that

Gc
�1−�2

≡ G0(	1, 	2) = t|�1−�2|G0(0, 0). (J.1)

178



Moreover, from (2.43) comes

Gc
0 ≡ G0(0, 0) = β−1(t2 − t1)

−1 = t/β(1 − t2), (J.2)

where t is chosen according to (2.40), so that |t| < 1. To see which specific
sign is required, we must look at the different energy regions separately. To
be specific, we assume that β > 0.

(i) If E > α + 2β, then X > 1, so we see that |t| < 1 requires that

t = X − (X2 − 1)1/2, for X > 1. (J.3)

(ii) Similarly, if E > α − 2β, then X < −1, and the condition |t| < 1
implies that

t = X + (X2 − 1)1/2, for X < −1. (J.4)

(iii) Inside the band, where |X| < 1, we take

X =
E − α

2β
→ E + is − α

2β
= X + iŝ, (J.5)

where
ŝ =

s

2β
= 0+. (J.6)

Thus,
X2 → (X + iŝ)2 ≈ X2 + 2iXŝ, to O(ŝ), (J.7)

and, hence,

(1 − X2)1/2 → (1 − X2 − 2iXŝ)1/2 ≈ (1 − X2)1/2 − iŝX(1 − X2)−1/2, (J.8)

on performing a binomial expansion to O(ŝ). Now set

t = X + σi(1 − X2)1/2, (J.9)

with σ = ±1, so that |t| < 1. To determine the correct value of σ, we insert
(J.8) in (J.9), and obtain

t ≈
[
X + σŝX(1 − X2)−1/2

]
+ i[σ(1 − X2)1/2 + ŝ]. (J.10)
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From (J.10) comes

|t|2 ≈
[
X + σŝX(1 − X2)−1/2

]2
+ [σ(1 − X2)1/2 + ŝ]2

≈ 1 + 2σŝ(1 − X2)−1/2 + O(ŝ2), (J.11)

which reveals that |t|2 < 1 (and, hence, |t| < 1) only if σ = −1. Thus,

t = X − i(1 − X2)1/2, for |X| < 1. (J.12)

For β < 0, it is straightforward to show that the sign of t in (J.3) and
(J.4) is unchanged, while it switches to “+” in (J.12).

If, in general, we write

t = X + σ(X2 − 1)1/2, (J.13)

with σ = ±1 according to (J.3), (J.4) or (J.12) as appropriate, then

t−1 = X − σ(X2 − 1)1/2, (J.14)

and we can recast (J.2) in the form

G0(0, 0) =
[
−2βσ(X2 − 1)1/2

]−1
. (J.15)

K. Green Function of Infinite Semiconductor

In contrast to the concise account of Bose and Foo (1974), here, a detailed
derivation is provided of the matrix elements of the Greenian for an infinite
semiconductor, modelled as a 1-dimensional chain, with s-orbitals on the
(even) A sites and p-orbitals on the (odd) B sites (see Fig. K.1). The site
energies on the even (odd) sites are taken to be αA(αB) and the bond energies
to be ±β2, resulting in a Hamiltonian of the form

H =
∑

k

αA|2k〉〈2k| +
∑

k

αB|2k + 1〉〈2k + 1|

+
∑

k

β2 (|2k〉〈2k − 1| + |2k − 1〉〈2k|)

−
∑

k

β2 (|2k〉〈2k + 1| + |2k + 1〉〈2k|) . (K.1)
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Fig. K.1. Infinite 1-dimensional chain of alternating s- and p-orbitals, with
site energies αA and αB, respectively, and bond energies ±β2. Reprinted

Physical Society.

Consequently, the Greenian matrix equation is
∑

�

(Eδi� − Hi�)G(	, j) = δij, (K.2)

where

Hi� =






αA, 	 = i even,

αB, 	 = i odd,

β2, 	 = i + 1, i odd; or 	 = i − 1, i even,

−β2, 	 = i + 1, i even; or 	 = i − 1, i odd.

(K.3)

Putting i = j = 2k in (K.2) gives

(E − αA)G(2k, 2k) + β2 [G(2k + 1, 2k) − G(2k − 1, 2k)] = 1, (K.4)

while i = j = 2k − 1 yields

(E−αB)G(2k−1, 2k−1)+β2 [G(2k − 2, 2k − 1) − G(2k, 2k − 1)] = 1. (K.5)

Also, i = j − 1 = 2k provides

(E − αA)G(2k, 2k + 1) + β2 [G(2k + 1, 2k + 1) − G(2k − 1, 2k + 1)] = 0,
(K.6)

and i = j + 1 = 2k gives

(E − αA)G(2k, 2k − 1) + β2 [G(2k + 1, 2k − 1) − G(2k − 1, 2k − 1)] = 0.
(K.7)
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Similarly, i = j − 1 = 2k − 1 results in

(E − αB)G(2k − 1, 2k) + β2 [G(2k − 2, 2k) − G(2k, 2k)] = 0, (K.8)

and i = j + 1 = 2k − 1 produces

(E−αB)G(2k−1, 2k−2)+β2 [G(2k − 2, 2k − 2) − G(2k, 2k − 2)] = 0. (K.9)

From translational symmetry and reflectional anti-symmetry considera-
tions, we obtain the relationships:

G(2k, 2k) = G(2k − 2, 2k − 2),

G(2k + 1, 2k + 1) = G(2k − 1, 2k − 1),

G(m, m + 1) = G(m + 1, m),

G(m, m + 1) = −G(m, m − 1),

G(m − 1, m) = −G(m, m + 1),

G(m − 2, m) = G(m, m + 2) = G(m + 2, m),

(K.10)

with m either even or odd. In particular, we see that

G(2k + 1, 2k) = −G(2k − 1, 2k) = G(2k − 2, 2k − 1),

so (K.4) and (K.5) lead to

G(2k − 1, 2k − 1) =
E − αA

E − αB

G(2k, 2k). (K.11)

Inserting (K.8) and (K.9) in (K.4), and using (K.10), we obtain

(E − αA)(E − αB)G(2k, 2k) + 2β2
2 [G(2k − 2, 2k) − G(2k, 2k)] = E − αB.

(K.12)
We now assume (and verify below) that there exists a relationship of the

form
G(2k − 2, 2k) = zG(2k, 2k) (K.13)

for some z (presumably a function of energy E). Equation (K.13) in (K.12)
yields

G(2k, 2k)
[
(E − αA)(E − αB) + 2β2

2(z − 1)
]

= E − αB. (K.14)
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Likewise, (K.6) and (K.7) in (K.5) gives

(E − αB)G(2k − 1, 2k − 1)

+
2β2

2

E − αA

[G(2k + 1, 2k − 1) − G(2k − 1, 2k − 1)] = 1. (K.15)

Following (K.13), we have

G(2k + 1, 2k − 1) = zG(2k − 1, 2k − 1), (K.16)

so that (K.15) becomes

G(2k − 1, 2k − 1)
[
(E − αA)(E − αB) + 2β2

2(z − 1)
]

= E − αA. (K.17)

We note that (K.14) and (K.17) together are consistent with (K.11). Using
(K.16) and (K.13) in (K.7) and (K.8), respectively, gives

(E − αA)G(2k, 2k − 1) + β2G(2k − 1, 2k − 1)(z − 1) = 0 (K.18a)

and
(E − αB)G(2k − 1, 2k) + β2G(2k, 2k)(z − 1) = 0, (K.18b)

which are seen to be equivalent from (K.10) and (K.11).
Putting i = j − 2 = 2k in (K.2) yields

(E − αA)G(2k, 2k + 2) + β2 [G(2k + 1, 2k + 2) − G(2k − 1, 2k + 2)] = 0,
(K.19)

which, by (K.10), (K.13) and (K.16), results in

(E − αA)zG(2k, 2k) + β2(1 − z)G(2k − 1, 2k) = 0. (K.20)

By eliminating G(2k − 1, 2k) from (K.18b) and (K.20), we arrive at

−β2G(2k, 2k)(z − 1)

E − αB

=
(E − αA)zG(2k, 2k)

β2(z − 1)
,

which on rearranging becomes

β2
2(z − 1)2 = −(E − αA)(E − αB)z,

or
z2 − pz + 1 = 0, (K.21)
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where

p = 2 − (E − αA)(E − αB)

β2
2

. (K.22)

Equation (K.21) is the condition determining possible values of z, in order
that the assumptions (K.13) and (K.16) be consistent. Solving (K.21) leads
to two possible values of z, namely,

z± =
1

2

(
p ±
√

p2 − 4
)

, (K.23)

which are real or complex, depending on the value of p and, hence, on the
energy. We explore later which solution of (K.23) is the correct one in each
energy region. But, for now, we note that, when |p| > 2, z is real, and
consequently all the GFs are real, indicating that this regime corresponds to
regions outside the energy bands. Conversely, for |p| < 2, z is complex and
the GFs are also complex, so these energies lie inside the bands.

The forms of the various GFs can now be determined. Equation (K.14)
with (K.22) and (K.23) gives

G(2k, 2k) = (E − αB)
/
β2

2(2z± − p) (K.24a)

= (E − αB)
/
β2

2

(
±
√

p2 − 4
)

. (K.24b)

Similarly, from (K.17), or more directly from (K.11), comes

G(2k − 1, 2k − 1) = (E − αA)
/
β2

2(2z± − p) (K.25a)

= (E − αA)
/
β2

2

(
±
√

p2 − 4
)

. (K.25b)

With the aid of (K.11), equation (K.18a) yields

G(2k, 2k − 1) = β2(1 − z±)G(2k − 1, 2k − 1)
/
(E − αA), (K.26a)

= β2(1 − z±)G(2k, 2k)
/
(E − αB). (K.26b)

All other GFs can be found easily using (K.10), (K.13) and (K.16). The
forms (5.11) and (5.12) take 2k − 1 → n.

Returning to the question of the correct sign of z in (K.23), we first,
concentrate on the regions outside the energy bands, where (as previously
pointed out) |p| > 2 and z is real. The correct value of z in (K.23) is the
one such that |z| < 1, which is a requirement to guarantee that GFs of the

184



form G(n, n ± m) remain bounded, for large m, under repeated application
of (K.13) or (K.16). Substituting (K.22) in (K.23), we examine

|z±| =
1

2

∣∣∣p ±
√

p2 − 4
∣∣∣

=

∣∣∣∣1 − (E − αA)(E − αB)

2β2
2

± |(E − αA)(E − αB)|
2β2

2

[
1 − 4β2

2

(E − αA)(E − αB)

]1/2∣∣∣∣. (K.27)

(i) Above or below bands

Here, |E| is large enough, so that either E > αA,B or E < αA,B, and we are
in the regime where p < −2, whence,

1 − (E − αA)(E − αB)

2β2
2

< −1,

and
(E − αA)(E − αB)

2β2
2

> 0.

Hence,

1 − (E − αA)(E − αB)

2β2
2

− (E − αA)(E − αB)

2β2
2

[
1 − 4β2

2

(E − αA)(E − αB)

]1/2

< −1. (K.28)

Thus, referring to (K.27) and (K.28), we see that |z−| > 1, so we conclude
that |z+| < 1, since z+z− = 1. Consequently, in this case,

z = z+ =
1

2

(
p +
√

p2 − 4
)

(K.29)

is the required solution to (K.21).
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(ii) In band gap

The energy E now lies between the band-gap edges αA and αB, so that

(E − αA)(E − αB)

2β2
2

< 0,

and p > 2. We therefore have

1 − (E − αA)(E − αB)

2β2
2

+
(E − αA)(E − αB)

2β2
2

[
1 − 4β2

2

(E − αA)(E − αB)

]1/2

> 1. (K.30)

Equations (K.27) and (K.30) show that |z+| > 1 and, hence, |z−| < 1, giving
us

z = z− =
1

2

(
p −
√

p2 − 4
)

, (K.31)

as the required solution of (K.21) in this situation.

(iii) Inside bands

For energies lying within the bands, we have p2 − 4 < 0, so the complex
solutions for z in (K.23) take the form

z =
1

2

(
p ± i

√
4 − p2

)
, (K.32)

where the sign of the radical must be chosen so as to give a positive DOS.
From (K.24b) and (K.25b), these are

ρ2k(E) = ± E − αB

πβ2
2

√
4 − p2

, (K.33)

and

ρ2k−1(E) = ± E − αA

πβ2
2

√
4 − p2

. (K.34)

The band-gap edges are at αA and αB, which implies that the DOS’s in
(K.33) and (K.34) are positive for E > αA,B(E < αA,B), i.e., in the upper
(lower) band, where the sign is chosen to be +(−), i.e., solution z+(z−) is
chosen in (K.23).
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L. Alternate Expression for ∆E∆E∆E

The expression (4.101) is sometimes difficult to work with in practice, specifi-
cally, with regard to the integrated term. An alternate expression, which may
be easier to implement, utilizes the change in DOS wrought by chemisorption.
Its derivation is presented here.

The change in one-electron energy (including that on the adatom) pro-
duced by chemisorption is (c.f. (4.86))

∆Eσ =
∑

m

εm −
∑

k′

εk′ , k′ ∈ {k, a}

=
∑

m

∫ ε′f

−∞
Eδ(E − εm)dE −

∑

k′

∫ εf

−∞
Eδ(E − εk′)dE (L.1)

using the definition of the Dirac δ-function, and taking εf (ε
′
f ) to be the FL

of the pre-(post-) chemisorption system. The total DOS’s for the system,
before and after chemisorption, are defined as

ρ0(E) =
∑

k′

δ(E − εk′), ρ(E) =
∑

m

δ(E − εm), (L.2)

respectively. Conservation of the number of electrons implies that

∫ ε′f

−∞
ρ(E)dE =

∫ εf

−∞
ρ0(E)dE. (L.3)

Using (L.2) and (L.3) in (L.1) gives

∆Eσ =

∫ ε′f

−∞
Eρ(E)dE −

∫ εf

−∞
Eρ0(E)dE

− εf

[∫ ε′f

−∞
ρ(E)dE −

∫ εf

−∞
ρ0(E)dE

]

=

∫ ε′f

εf

(E − εf )ρ(E)dE +

∫ εf

−∞
(E − εf )ρ(E)dE

−
∫ εf

−∞
(E − εf )ρ0(E)dE

≈
∫ εf

−∞
(E − εf )∆ρ(E)dE, (L.4)
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where ∆ρ = ρ − ρ0 is the change in total DOS upon chemisorption, and
ε′f , εf are assumed close enough so that the integral with those limits can
be neglected. Hence, the total chemisorption energy can be written as (c.f.
(4.85))

∆E =
∑

σ

∆Eσ − U〈na+〉〈na−〉 + εa − εf . (L.5)

The Fermi energy εf (adatom energy εa) appears negatively (positively) in
(L.5), because it is counted twice in the first term of (L.5), via (L.1).

M. Analytic Green Function for Electrified

AtomicChain

An alternative analytic form of the chain GF can be found from (7.35), which
with (7.41) and (7.42) can be written as (Davison et al 1997)

G1,m(1, 1) =
1

E − α − Γ−
β2

E − α − 2Γ− · · ·−
β2

E − α − mΓ
. (M.1)

Dividing the top and bottom of each term in the CF by β leads to

G1,m(1, 1) = β−1

(
1

Z1−
1

Z2−
· · ·−

1

Zm

)
, (M.2)

where
Zn = 2(X − nF ) = (E − α − nΓ)/β. (M.3)

In CF notation,

−βG1,m(1, 1) =
m

K
n=1

(an; bn), (M.4)

where
an = −1, bn = Zn. (M.5)

For each n = 1, . . . , m, we define

Sn(w) =
a1

b1 +
a2

b2 +
· · ·

+
an−1

bn−1 +
an

bn + w
, (M.6)

and note that Sm(0) is just the required quantity (M.4). Moreover, we have

S1(w) =
a1

b1 + w
, (M.7)
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as well as the recursion relation

Sn(w) = Sn−1

(
an

bn + w

)
. (M.8)

By (M.3), the TB difference equation (7.15a), i.e.,

(α + nΓ − E)cn + β(cn+1 + cn−1) = 0, (M.9)

can be rewritten as
Zncn = cn+1 + cn−1,

or as
cn+1 = bncn + ancn−1, (M.10)

via (M.5). This recursion relation motivates similar definitions for a pair of
useful sequences, viz.,

An = bnAn−1 + anAn−2 with A−1 = 1, A0 = 0, (M.11)

and
Bn = bnBn−1 + anBn−2 with B−1 = 0, B0 = 1, (M.12)

from which we see that
A1 = a1, B1 = b1. (M.13)

Equations (M.12) to (M.13) show that

A1 + A0w

B1 + B0w
=

a1

b1 + w
= S1(w), (M.14)

by reference to (M.7). We can now prove a more general relationship by
induction, for suppose we have

An−1 + An−2w

Bn−1 + Bn−2w
= Sn−1(w), for some n ≥ 1, (M.15)
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then

An + An−1w

Bn + Bn−1w
=

(bnAn−1 + anAn−2) + An−1w

(bnBn−1 + anBn−2) + Bn−1w
by (M.11) and (M.12)

=
(bn + w)An−1 + An−2an

(bn + w)Bn−1 + Bn−2an

=
An−1 + An−2

an

bn+w

Bn−1 + Bn−2
an

bn+w

= Sn−1

(
an

bn + w

)
via (M.15)

= Sn(w) using (M.8). (M.16)

From (M.14) and (M.16), we conclude that

Sn(w) =
An + An−1w

Bn + Bn−1w
∀n ≥ 1. (M.17)

For (M.10) to (M.12) to be expressed in the form of the BF relation
(Abramowitz and Stegun 1972), viz.,

Cµ−1(x) + Cµ+1(x) =
2µ

x
Cµ(x), (M.18)

in which
2µ

x
= Zn+1 = 2[X − (n + 1)F ], (M.19)

and C denotes the BF J or Y of integer order, requires

xF = −1, (M.20)

and
xX = ν = integer, (M.21)

so that (M.19) reads
µ = ν + n + 1. (M.22)

Thus, both An and Bn can be written as linear combinations of BFs, i.e.,

An = α1Jν+n+1 + α2Yν+n+1,

Bn = β1Jν+n+1 + β2Yν+n+1.
(M.23)
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Inserting (M.23) in the initial conditions (M.11), we find

A0 = α1Jν+1 + α2Yν+1 = 0 → α2 = −α1
Jν+1

Yν+1

,

A−1 = α1Jν + α2Yν = 1 → Yν+1 = α1(JνYν+1 − Jν+1Yν). (M.24)

Because the BFs Jν and Yν are linearly independent, the Wronskian

W = JνYν+1 − Jν+1Yν �= 0, (M.25)

whence,
α1 = Yν+1/W, α2 = −Jν+1/W. (M.26)

Similarly, (M.23) in the initial conditions (M.12) produces

B−1 = β1Jν + β2Yν = 0 → β2 = −β1
Jν

Yν

,

B0 = β1Jν+1 + β2Yν+1 = 1 → Yν = −β1W,

(M.27)

which by (M.25) gives

β1 = −Yν/W, β2 = Jν/W. (M.28)

The required quantity

Sm(0) =
Am

Bm

, (M.29)

in (M.17), is obtained via (M.23), (M.26) and (M.28). Hence, with the aid
of (M.4), we have

G1,m(1, 1) = −β−1Sm(0)

= β−1 Jν+m+1(x)Yν+1(x) − Jν+1(x)Yν+m+1(x)

Jν+m+1(x)Yν(x) − Jν(x)Yν+m+1(x)
. (M.30)
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