

INTEGRITY AND INTERNAL CONTROL IN
INFORMATION SYSTEMS VI

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World Computer
Congress held in Paris the previous year. An umbrella organization for societies working in
information processing, IFIP’s aim is two-fold: to support information processing within its
member countries and to encourage technology transfer to developing nations. As its mission
statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical organization
which encourages and assists in the development, exploitation and application of
information technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates through
a number of technical committees, which organize events and publications. IFIP’s events range
from an international congress to local seminars, but the most important are:

The IFIP World Computer Congress, held every second year;
Open conferences;
Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and contributed
papers are presented. Contributed papers are rigorously refereed and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may be
invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working group and
attendance is small and by invitation only. Their purpose is to create an atmosphere conducive to
innovation and development. Refereeing is less rigorous and papers are subjected to extensive
group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World Computer
Congress and at open conferences are published as conference proceedings, while the results of
the working conferences are often published as collections of selected and edited papers.

Any national society whose primary activity is in information may apply to become a full member
of IFIP, although full membership is restricted to one society per country. Full members are
entitled to vote at the annual General Assembly, National societies preferring a less committed
involvement may apply for associate or corresponding membership. Associate members enjoy the
same benefits as full members, but without voting rights. Corresponding members are not
represented in IFIP bodies. Affiliated membership is open to non-national societies, and
individual and honorary membership schemes are also offered.

INTEGRITY AND
INTERNAL CONTROL
IN INFORMATION
SYSTEMS VI

IFIP TC11 / WG11.5 Sixth Working Conference on
Integrity and Internal Control in Information Systems (IICIS)
13–14 November 2003, Lausanne, Switzerland

Edited by

Sushil Jajodia
George Mason University
Fairfax, Virginia, USA

Leon Strous
De Nederlandsche Bank NV
Amsterdam, The Netherlands

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 1-4020-7901-X
Print ISBN: 1-4020-7900-1

©2004 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Boston

CONTENTS

Preface

Acknowledgements

Part one. Refereed papers

1. Remote Integrity Checking
Yves Deswarte, Jean-Jacques Quisquater, Ayda Saïdane

2. Automated Checking of SAP Security Permissions
Sebastian Höhn, Jan Jürjens

3. A Formal Analysis of a Digital Signature Architecture
David Basin, Kunihiko Miyazaki, Kazuo Takaragi

4. Using Parameterized UML to Specify and Compose Access
Control Models
Indrakshi Ray, Na Li, Dae-Kyoo Kim, Robert France

5. Enforcing Integrity in Multimedia Surveillance
Naren B. Kodali, Csilla Farkas, Duminda Wijesekera

6. A Learning-based Approach to Information Release Control
Claudio Bettini, X. Sean Wang, Sushil Jajodia

7. Information Security Governance using ISO 17799 and COBIT
Elmari Pretorius, Basie von Solms

8. Tracing Attacks and Restoring Integrity with LASCAR
Alexandre Aellig, Philippe Oechslin

9. A Secure Multi-sited Version Control System
Indrajit Ray, Junxing Zhang

10. Integration of Integrity Constraints in Database Federations
Herman Balsters, Bert de Brock

11. Reducing Disruption in Time-Tabled Condition Monitoring
Binling Jin, Suzanne M. Embury

vii

ix

1

13

31

49

67

83

107

115

125

143

159

A Service Oriented System Based Information Flow Model
for Damage Assessment
Yanjun Zuo, Brajendra Panda

An Efficient OODB Model for Ensuring the Integrity of
User-defined Constraints
Belal Zaqaibeh, Hamidah Ibrahim, Ali Mamat, Md. Nasir Sulaiman

Part two. Invited papers

From Security Culture to Effective E-security Solutions
Solange Ghernaouti-Hélie

vi Integrity and Internal Control in Information Systems

Consistent Query Answering: Recent Developments and Future
Directions
Jan Chomicki

Role of Certification in Meeting Organisation Security Requirements
William List

Part three. Panel session

Grand Challenges in Data Integrity and Quality
Bhavani Thuraisingham

Index of contributors

Index of keywords

12.

13.

14.

15.

16.

17.

177

195

209

219

241

249

255

257

PREFACE

The development and integration of integrity and internal control
mechanisms into information system infrastructures is a challenge for
researchers, IT personnel and auditors. Since its beginning in 1997, the IICIS
international working conference has focused on the following questions:

what precisely do business managers need in order to have confidence in
the integrity of their information systems and their data and what are the
challenges IT industry is facing in ensuring this integrity;
what are the status and directions of research and development in the area
of integrity and internal control;
where are the gaps between business needs on the one hand and research /
development on the other; what needs to be done to bridge these gaps.

This sixth volume of IICIS papers, like the previous ones, contains
interesting and valuable contributions to finding the answers to the above
questions. We want to recommend this book to security specialists, IT
auditors and researchers who want to learn more about the business concerns
related to integrity. Those same security specialists, IT auditors and
researchers will also value this book for the papers presenting research into
new techniques and methods for obtaining the desired level of integrity.

It is the hope of all who contributed to IICIS 2003 that these proceedings
will inspire readers to join the organizers for the next conference on integrity
and internal control in information systems. You are invited to take the
opportunity to contribute to next year’s debate with colleagues and submit a
paper or attend the working conference. Check the websites given below
regularly for the latest information.

We thank all those who have helped to develop these proceedings and the
conference. First of all, we thank all the authors who submitted papers as
well as the keynote and invited speakers, and those who presented papers
and participated in the panel. Finally, we would like to thank all conference
participants, IFIP and the sponsors and supporters of this conference.

January 2004

Sushil Jajodia
Leon Strous

viii Integrity and Internal Control in Information Systems

Still available:

IICIS 2002:

IICIS 2001:

IICIS 1999:

IICIS 1998:

IICIS 1997:

Integrity and internal control in information systems V
ed. Michael Gertz
ISBN 1-4020-7473-5
Integrity, internal control and security in information systems:
Connecting governance and technology
ed. Michael Gertz, Erik Guldentops, Leon Strous
ISBN 1-4020-7005-5
Integrity and internal control in information systems: Strategic
views on the need for control
ed. Margaret E. van Biene-Hershey, Leon Strous
ISBN 0-7923-7821-0
Integrity and internal control in information systems
ed. Sushil Jajodia, William List, Graeme McGregor, Leon Strous
ISBN 0-412-84770-1
Integrity and internal control in information systems: Volume 1,
Increasing the confidence in information systems
ed. Sushil Jajodia, William List, Graeme McGregor, Leon Strous
ISBN 0-412-82600-3

Websites:

IFIP TC-11 Working group 11.5 IICIS 2004
http://www.cs.colostate.edu/~iicis04/

IFIP TC-11 Working group 11.5
http://csis.gmu.edu/faculty/Tc11_5.html

IFIP TC-11
http://www.ifip.tu-graz.ac.at/TC11

IFIP
http://www.ifip.org

ACKNOWLEDGEMENTS

Conference chairs:
Stefano Spaccapietra, Swiss Federal Institute of Techn., Lausanne, CH
Serge Vaudenay, Swiss Federal Institute of Technology, Lausanne, CH

Programme Committee:
Co-Chairs:

Sushil Jajodia, George Mason University, USA
Leon Strous, De Nederlandsche Bank, The Netherlands

Members/reviewers:
David Basin, ETH Zürich, Switzerland
Sabrina de Capitani di Vimercati, University of Milan, Italy
Michael Gertz, University of California at Davis, USA
Erik Guldentops, University of Antwerp, Belgium
Klaus Kursawe, IBM, Switzerland
Detlef Kraus, SRC, Germany
William List, William List & Co., UK
Refik Molva, Eurecom, France
David Naccache, GEMPLUS, France
Philippe Oechslin, EPF Lausanne, Switzerland
Indrakshi Ray, Colorado State University, USA
Arnie Rosenthal, The MITRE Corporation, USA
Adrian Spalka, University of Bonn, Germany
Bhavani Thuraisingham, NSF, USA

Organizing Committee
Christelle Vangenot (chair)
Marlyse Taric (secretariat)

Swiss Federal Institute of Technology, Lausanne, Switzerland

REMOTE INTEGRITY CHECKING
How to Trust Files Stored on Untrusted Servers

Yves Deswarte*, Jean-Jacques Quisquater**, Ayda Saïdane*
* LAAS-CNRS, France
** Université Catholique de Louvain, Belgium

Abstract: This paper analyzes the problem of checking the integrity of files stored on
remote servers. Since servers are prone to successful attacks by malicious
hackers, the result of simple integrity checks run on the servers cannot be
trusted. Conversely, downloading the files from the server to the verifying host
is impractical. Two solutions are proposed, based on challenge-response
protocols.

Key words: file integrity checking, intrusion detection, challenge-response protocols.

1. INTRODUCTION

The integrity of files stored on servers is crucial for many applications
running on the Internet. A recent example has shown that Trojan Horses can
be largely distributed in security critical software, due to a successful attack
on one server [CERT 2002]. This kind of damage could have been hindered
if this particular software distribution was secured by digital signatures (as is
currently done for some other software distribution on the Internet). In other
cases, damage may vary from web page defacing to circulation of false
information, maliciously modified execution of remote services or diverse
frauds in electronic commerce. The detection of such wrong behavior can be
more difficult than for software distribution, since in most cases it is not
possible to just check a signature on a content. The current state of the
Internet security is such that most servers are vulnerable to dedicated attacks
and in most cases the detection of such attacks happens several hours, days

2 Integrity and Internal Control in Information Systems

or weeks after the real attacks have occurred (one or two days in the case
cited above). Indeed, new vulnerabilities are discovered frequently on most
commercial operating systems and applications, and current intrusion
detection systems do not detect or misidentify a too large proportion of
attacks, in particular when the attacks are new and slow [Green et al. 1999].

It is thus of tremendous importance for system administrators to check
frequently that no critical file has been modified on the servers they manage.
The classical way to do so is to reboot the server from a secure storage (a
CDROM for instance) and then to launch locally (from the secure storage) a
program to compute cryptographic checksums (using one-way hash
functions) on the critical files and compare the results with reference
checksums stored on a secure storage. Tripwire1 is a well-known example of
such programs. It is important to reboot the system from a secure storage
since a malicious hacker could have installed and launched a program on the
server which, for instance, could modify the disk drive handler to return the
original file content to the integrity checking program instead of a modified
version actually stored on the disk. Some viruses and Trojan horses are using
such stealth techniques. This is also why such a program has to be run
locally, after a secure reboot, before any insecure application (which could
have been modified by a hacker) is run.

Such a technique is impractical in most Internet server systems:
This task requires a lot of time: halting operational applications; halting
the system in a safe way; rebooting form a CDROM; running the
integrity checking program on all critical files; restarting the operational
applications. This is hardly compatible with 24/7 operation required from
most Internet servers and, anyway, would be too costly if run frequently.
Competent system administrators are a scarce resource, and thus most
servers are managed remotely: it would be impractical for the
administrators to go to each server to execute this routine task in a secure
way.
Running remotely an integrity check program is inefficient, since it is

impossible to be sure if the program that is run is the original one and not a
fake, if the reference checksums are the correct ones2, and if the operating
system has not been modified for some stealth operation.

Conversely, it is impractical for the administrator to download all critical
files to his local host, to compute locally the checksums and then to compare
the results with reference checksums: this would cause too much overhead
on the network and on the administrator host, as soon as the numbers of files

2
Tripwire® is a registered trademark of Tripwire, Inc.
The reference checksums can be signed, but then the integrity of the signature verification
key must be also checked.

1

Remote Integrity Checking 3

and of servers are high, the mean file length is large, and this task has to be
run frequently.

This paper proposes two solutions to this problem. The first one,
described in Section 2, is a challenge-response protocol using conventional
methods, which lead to some engineering trade-offs. Section 3 presents
another protocol, based on a modular exponentiation cryptographic
technique, to solve this problem in a more elegant way, but at the price of
more complex computations. These solutions are then compared to
alternative solutions and related work.

2. A CONVENTIONAL CHALLENGE-RESPONSE
PROTOCOL

2.1 General approach

In this solution, the administrator’s host (called hereafter the verifier)
sends periodically a request to the server for it to compute a checksum on a
file (specified as a request parameter) and return the result to the verifier.
The verifier then compares the returned result with a locally-stored reference
checksum for the same file.

A naïve implementation of this protocol would be inefficient: a malicious
attacker could precompute the checksums on all files he intends to modify,
store these checksums, and then modify the checksum computation program
to retrieve the original checksum rather than compute it. The attacker can
then modify any file, while remaining able to return the expected checksums
when requested by the verifier. This protocol has to be modified to guarantee
the freshness of the checksum computation.

This can be achieved by adding a challenge C in the request parameters.
With this new protocol, the server has to compute a response R depending
on the challenge. More precisely, instead of a checksum computed as the
result of a one-way hash function on the content of the file, the response
must be computed as the hash of the challenge concatenated with the file
content:

Of course, the challenge must be difficult to guess for the attacker. In
particular it must be changed at each request. But then the verifier cannot
simply compare the response with a reference checksum. A solution would
be to maintain a copy of all the original files on the verifier and run the same
response computation on the verifier as on the server. But this is impractical

4 Integrity and Internal Control in Information Systems

if the numbers of files and of servers are high and the mean file length is
large.

A better solution would be for the verifier to use two functions f and
of which at least one of them is kept secret3, such that is a one-way hash
function, and f is such that:

Unfortunately, we have not found (yet) functions f, and satisfying
this property.

To workaround this problem, a finite number N of random challenges can
be generated off-line for each file to be checked, and the corresponding
responses computed off-line too. The results are then stored on the verifier.
At each integrity check period, one of the N challenges is sent to the server
and the response is compared with the precomputed response stored on the
verifier. In order to guarantee that a different challenge is issued at each
request, and thus that an attacker cannot predict which will be the next
challenge(s), the server has to be rebooted periodically4 so that:

A possible way for the attacker to circumvent this freshness checking
could be to keep copies of both the original and the modified files. But this
should be easy to detect, either by checking the integrity of the concerned
directories and system tables, or by intrusion detection sensors tuned to
detect this specific abnormal behavior.

The table of precomputed responses, stored on the verifier, is thus
composed of N entries with, for each entry, a challenge and the expected
corresponding response. It is possible to reduce the size of the table, by
exploiting a technique presented in [Lamport 1981]: rather than generating a
specific random number as a challenge for each entry, only one random
number is generated for a file, and each challenge is computed as

for each i from (N-1) to 1 (by step of -1). The precomputed response
table contains only the N expected responses, the last challenge and the

3

4

At least or f must be kept secret, because if both were public, it would be easy for the
attacker to precompute all needed (File) and then dynamically compute the expected
response f (C, (File)).
Our current implementation exploits the fact that the servers are periodically rebooted
(e.g., once a day), as a measure for software rejuvenation [Huang et al. 1995]: at reboot all
files and programs are restored from a secure copy. This would erase any Trojan horse
implemented previously by a malicious hacker, as well as any table of precomputed
responses he could have built with previous challenges.

Remote Integrity Checking 5

number N. The challenges are sent in the increasing order from to
each challenge being dynamically computed by the verifier:

2.2 A practical example: integrity checking for a
distributed web server

The above protocol has been implemented in a distributed, intrusion-
tolerant web server [Valdes et al. 2002]. The system consists of a set of
verifiers managing and monitoring a bank of web servers (see Figure 1).

The challenge-response protocol is launched periodically by each verifier
to check each server and each other verifier. This protocol is used for three
purposes:

6 Integrity and Internal Control in Information Systems

As a heart beat: since this protocol is launched periodically on each
proxy, if a proxy does not receive a challenge from another proxy for a
time greater than the period, it can raise an alarm.
To check the liveness of the servers and other proxies: if, after emitting a
challenge, a proxy does not receive a response within some delay, it can
raise an alarm.
To check the integrity of some files, directories or tables located on
remote servers and proxies.
The challenge-response protocol (CRP) was created to check the integrity

of some files which are not modified during normal operation, such as
sensitive system files (e.g., boot files and OS code files) or security-critical
files (e.g., /etc/passwd on a UNIX system). The role of a web server is to
produces HTML documents that could be static files (web pages) or
dynamically produced (by CGI or ASP scripts) from static data (e.g., a read-
only database). So CRP checks important HTML files, scripts and system
and security files. It can also check the identity of sensitive active processes
on the machine (e.g., httpd, security processes, etc.).

If the server is rebooted periodically for “software rejuvenation”, there is
a relation between the frequency of the CRP, the duration of one CRP
exchange, the number of files to be checked, and the number of servers:

If the server is rebooted periodically for “software rejuvenation”, there is
a relation between the frequency of the CRP, the duration of one CRP
exchange, the number of files to be checked, and the number of servers:

Considering n the number of the checked files, f the frequency of CRP
(f< 1/d, d being the duration of one CRP exchange), and N the number of
challenges per file, the relation is:

There is a minimal value of 1/f that corresponds to the maximal value of
the duration of an execution of CRP which is related to a request on the
biggest checked file. The next table gives examples of the performance of
CRP (when using MD5 as hash function, on Pentium III, 600 Mhz):

So if we consider that the biggest file to check is about 2 Mbytes, we
must choose a value of 1/f> 0,66 sec.

Remote Integrity Checking 7

The following table gives the size of the precomputed response table for
different values of n, 1/f and N, considering 4 servers and a reboot frequency
of one per 24 hours.

3. A SOLUTION BASED ON THE PROTOCOL OF
DIFFIE-HELLMAN

We here describe a generic solution based on the well-known
cryptographic protocol of Diffie-Hellman for key exchange [Diffie &
Hellman 1976].

Let:
m denotes the value of the file to be remotely verified on a server; it is an
integer,
N, a RSA modulus, with two prime factors or more, of length of around
1024 bits; this value is public, that is, considered as known by everybody
including any malicious hacker with a lot of computing power,
phi(N) = L is secret and only known by the verifier; this function is the
Euler function (if N=pq, then L = (p-1)(q-1)),
a, an element between 2 and N-2, randomly chosen and public.

The protocol is the following one:
the verifier stores the following precomputed value

this computation is easy thanks to the knowledge of L (the theorem of
Euler allows us to replace the exponent m by the short value (m mod L)
of length around 1024 bits, independent of the length of the protected
file) and using, if necessary, the Chinese remainder theorem using the
knowledge of the prime factors;
the verifier chooses a random value r (the domain is the same as a) and
sends the following value A as a challenge to the server with the file to be
verified:

8 Integrity and Internal Control in Information Systems

the server computes

and sends B to the verifier,
the verifier computes in parallel

and verifies if B = C thanks to the equation (10).

It is easy to see that the next equation (10) is correct by using the
equations (6) and (9),

The security of the protocol follows from the security of the Diffie-Hellman
protocol. The freshness of computation (8) on the whole file is guaranteed
by the random selection of r by the server. Another paper will describe a lot
of optimisations of this generic protocol.

4. DISCUSSION

In this section, we discuss how an attacker can defeat the proposed
solutions and compare these solutions with conventional signature schemes.

To defeat our solutions, a hacker could save each file before modifying
them. In that case, the hacked server would serve modified files to innocent
users while still being able to compute fresh responses by using the saved
file copies. But counter-measures can easily prevent and/or detect the saving
of critical files:

To prevent the hacker to copy the files, the server file system can be
dimensioned in such a way that there would be no room for critical file
copies.
It is easy for a host-based intrusion detection system to discriminate the
file copying from the normal server behavior. Moreover, the challenge-
response protocol can be applied not only to data files, but also to
directories, and even system tables, which stay mostly static on,
dedicated servers. This would make the hacker’s job much more
complex.
An alternative, conventional way to check file integrity consists in

signing every file by using a private owner’s key, while each user would be

Remote Integrity Checking 9

able to check the file integrity by retrieving the corresponding public key
through a public key infrastructure. But this solution, while well adapted for
software distribution, presents many drawbacks for other applications:

It is not directly applicable to web services: the replies to http requests
are generally not a simple file content, and even when it is the case, the
integrity checks would have to be integrated in browsers, with all the
complexity associated with PKI management.
A hacker could still replace the current copies of the files with obsolete
copies with their original signatures.
It would not solve the remote server management problem: the
administrator would still have to retrieve the contents of all the files to
check their integrity.

5. RELATED WORK

Tripwire® [Kim & Spafford 1993] is the most famous file integrity
checker. It has been designed to monitor a set of files and directories for any
changes according to signatures previously stored. Tripwire proposes a set of
signature functions (MD5, MD4, MD2, Snefru and SHA). By default, MD5
and Snefru are stored and checked for each file but the selection-mask can
be customized and any of these functions can be selected. The user must first
generate, offline, a configuration file containing the list of the files to be
monitored and constitute a database of signatures corresponding to this
configuration file. When running, Tripwire scans periodically the file system
for added or deleted files in the directories specified in the configuration file,
and computes the signatures of the monitored files to compare them with the
signatures stored in the database. As previously stated, this approach cannot
be directly applied to check the integrity of files stored on a remote server: a
corrupted server can store locally the signatures of monitored files before
modifying them and, on request by the verifier, return these signatures
instead of freshly computed ones.

The SOFFIC project (Secure On-the-Fly File Integrity Checker) is
carried out at UFRGS (Brasil) [Serafim & Weber 2002]. Their goal is to
create a framework for intercepting file system calls and checking the
correctness of any request to access a file (read/write/execute). It should be
able to deny access to illegally modified files and to protect itself against
tampering. The SOFFIC is implemented as a patch to the Linux kernel so the
majority of its components resides in the kernel. The idea is to generate off-
line hashes for all the files to be checked (Hash List) and generate a list of
non-checked files (Trusted File List). Each time a user process attempts to
access a file (which is not in the Trusted File List), SOFFIC is activated to

10 Integrity and Internal Control in Information Systems

grant or deny the access: the access is denied if the hash stored in the Hash
List differs from the hash computed on-the-fly. For writable files, a new
hash is computed after modification.

Rather than modifying the kernel, it is possible to insert a middleware
layer between the application software and the system kernel. This solution
is more portable and easier to maintain than kernel modifications. Jones
[Jones 1993] has proposed to implement this approach by Interposing
Agents that control all or parts of the system interface. These agents can be
used to implement monitors to check the correctness of system calls, in
particular for accessing files. Fraser et al. propose a similar approach, based
on software wrappers, to augment the security functionality of COTS
software [Fraser et al. 1999]. Such wrappers could be used to protect kernel
and critical system files from non-authorized changes.

All these approaches suffer the same problems as Tripwire: if a server is
corrupted, its kernel can be modified or the middleware can be bypassed to
remove all integrity checks.

6. CONCLUSION

In this paper, we proposed two methods for remote file integrity
checking. The first one is based on a table of multiple challenges and
precomputed responses for each file to be checked, the response being
computed by the hash of the challenge concatenated with the content of the
file. The freshness of the response computation by the server is guaranteed
by the fact that a challenge is never reused before reboot of the server. With
the second method, a single value is precomputed and stored on the verifier
for each file to be checked, and the challenge is generated randomly. This
second method requires more computation (modular exponentiation instead
of a hash on the content of the file), but does not require a large table to be
stored by the verifier. Many optimizations are possible on the second method
to reduce the computation cost, and they will be presented in a future article,
with performance comparison with the first method.

ACKNOWLEDGEMENTS

This research was initiated during collaboration between LAAS-CNRS
and SRI International, partially supported by DARPA under contract number
N66001-00-C-8058. The views herein are those of the authors and do not
necessarily reflect the views of SRI International or DARPA. We are deeply

Remote Integrity Checking 11

grateful to our SRI International colleagues for the fruitful cooperation on
this project, and for their help in improving this paper.

REFERENCES

[CERT 2002] CERT Advisory CA-2002-24, Trojan Horse OpenSSH Distribution, August 1,
2002.

[Diffie & Hellman 1976] W. Diffie and M.E. Hellman, “New Directions in Cryptography”,
IEEE Transactions in Information Theory, 22(1976), pp. 644-654.

[Fraser et al. 1999] T. Fraser, L. Badger and M. Feldman, “Hardening COTS Software With
Generic Software Wrappers”, Proc. of IEEE Symposium on Security and Privacy, 1999,
pp. 2-16.

[Green et al. 1999] John Green, David Marchette, Stephen Northcutt, Bill Ralph, “Analysis
Techniques for Detecting Coordinated Attacks and Probes”, in Proc. 1st USENIX
Workshop on Intrusion Detection and Network Monitoring, Santa Clara, California, USA,
April 9-12, 1999, available at:
<http://www.usenix.org/publications/library/proceedings/detection99/full_papers/green/green_html/>

[Huang et al. 1995] Y. Huang, C. Kintala, N. Kolettis, N.D. Fulton, “Software Rejuvenation:
Analysis, Module and Applications”, in Proc. 25th IEEE Symposium on Fault Tolerant
Computing Conference (FTCS-25), Pasadena, CA, USA, June 1995, pp. 381-390.

[Jones 1993] M. Jones, “Interposition Agents: Transparently Interposing User Code at the
System Interface”, Proc. 14th ACM Symp. on Operating Systems Principles, Operating
Systems Review, 27[5], December 1993, pp. 80-93.

[Kim & Spafford 1993] G.H. Kim and E.H. Spafford, The Design and Implementation of
Tripwire: a File System Integrity Checker, Technical Report CSD-TR-93-071, Computer
Science Dept, Purdue University, 1993.

[Lamport 1981] Leslie Lamport, “Password Authentication with Insecure Communication”,
Comunications of the ACM, 24(11), pp. 770-772, November 1981.

[Serafim & Weber 2002] Vinícius da Silveira Serafim and Raul Fernando Weber, The
SOFFIC Project, < http://www.inf.ufrgs.br/~gseg/projetos/the_soffic_project.pdf>.

[Valdes et al. 2002] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy,
H. Saïdi, V. Stavridou and T. Uribe, “An Adaptative Intrusion-Tolerant Server
Architecture”, in Proc. 10th International Workshop on Security Protocols, Cambridge
(UK), April 2002, to appear in Springer LNCS Series.

AUTOMATED CHECKING OF SAP SECURITY
PERMISISONS

Sebastian Höhn
Software & Systems Engineering, Informatics, TU Munich, Germany
hoehn@in.tum.de

Jan Jürjens
Software & Systems Engineering, Informatics, TU Munich, Germany
juerjens@in.tum.de
http://www.jurjens.de/jan

Abstract: Configuring user security permissions in standard business applications (such
as SAP systems) is difficult and error-prone. There are many examples of
wrongly configured systems that are open to misuse by unauthorized parties.

To check permission files of a realistic size in a medium to large organization
manually can be a daunting task which is often neglected.

We present research on construction of a tool which automatically checks the
SAP configuration for security policy rules (such as separation of duty). The
tool uses advanced methods of automated software engineering: The permis-
sions are given as input in an XML format through an interface from the SAP
system, the business application is described ba a diagram modeled with stan-
dard UML CASE (Computer-Aided Software Engineering) - tools and output
as XMI, and our tool checks the permissions against the rules using an ana-
lyzer written in Prolog. Because of its modular architecture and its standard-
ized interfaces, the tool can be easily adapted to check security constraints in
other kinds of application software (such as firewall or other access control
configurations).

Key words: integrity and internal control in financial systems, automated configuration
review, security restraints

14 Integrity and Internal Control in Information Systems

1. INTRODUCTION

The management and configuration of security-related resources in stan-
dard business applications is one of the most important tasks in mission-
critical departments. There is not only the potential of a negative impact of
public disclosure of confidential information and a resulting loss of faith
among customers, but the threat of direct financial losses. Computer
breaches are a real threat as a study by the Computer Security Institute
shows:

Ninety percent of the respondents detected computer security breaches
within the last twelve months.
Forty-four percent of them were willing and/or able to quantify their
losses. These 223 firms reported $455,848,000 in financial losses
[Pow02].
It is important to realize that the existence of security mechanisms itself

does not provide any level of security unless they are properly configured.
That this is actually the case is often non-trivial to see. One example is the
rule of “separation-of-duty”, meaning that a certain transaction should only
be performed jointly among two distinct employees (for example, granting a
large loan). Difficulties arise firstly from the inherent dynamics of permis-
sion assignment in real-life applications, for example due to temporary dele-
gation of permissions (for example to vacation substitutes). Secondly, they
arise from the sheer size of data that has to be analyzed (in the case of the
large German bank, which motivated the current work, some 60,000 data
entries). A manual analysis of the security-critical configurations through
system administrators on a daily basis is thus practically impossible, which
might result in security weaknesses in practice. This observation motivated
the current research which has been initialized in cooperation with a large
German bank and their security consulting partner. The goal was to develop
a tool which can be used to automatically check security permissions against
given rules in a specific application context (such as the separation of duty
rule in the banking sector). The tool should in particular be applied to ana-
lyze the SAP security permissions of the bank at hand. The current paper
reports on the design and development of this tool.
The permissions are given as input in an XML format through an interface
from the SAP system, the business application is described by a diagram
modeled with standard UML CASE-tools and output as XMI, and our tool
checks the permissions against the rules using an analyzer written in Prolog.
Because of it’s modular architecture and it’s standardized interfaces, the tool
can be easily adapted to check constraints in other kinds of application soft-
ware (such as firewalls or other access control configurations).

Automated Checking of SAP Security Permisisons 15

In the next section, we explain the task the tool is supposed to solve in more
detail (including the format of permissions and rules to be supported), as
well as the architecture of and the underlying concepts and important design
decisions regarding the tool. Section 3 explains the actual analysis performed
in the tool at the hand of some examples. We close with a discussion of re-
lated work and a conclusion.

2. AUTOMATED ANALYSIS OF SECURITY RULES

2.1 The Goals

As explained above, the correct configuration of secure business applications
is a challenging task. So there is a need for automated tool-support. The tool
presented here takes a detailed description of the relevant data structure of
the business application, the business data, and some rules written by the
administrator. Using this information, the tool checks whether the rules hold
for the given configuration. If the rules do not hold this is written to the gen-
erated security-report. The tool should be able to accomplish the following
specific tasks:

It should read the configuration from the business application.
It should automatically generate a report of possible weaknesses.
It should provide a flexible configuration of the report’s data.
It should be easily configurable for different business applications.
It should be able to check large-scale databases.
The checking should be based on freely configurable rules.

Two other goals are particularly important to enable use of the tool beyond
the specific task of checking SAP permissions of the SAP installation at
hand: it has to be easy to integrate the tool with different business applica-
tions, and the rules that have to be checked need to be very flexible.

2.2 Architecture

The tool mainly consists of three parts. They store the information describ-
ing the relevant data structure of the business application, define the rules
and evaluate the rules. An additional part is needed to import the data from
the business application (such as the SAP system). As in our example this is
the user data and some structural information about transactions.
The complete separation of the tool and the business application provides
additional security and privacy: Firstly, by separating the tool from the busi-
ness application, there is no way the tool could add any weaknesses to this
security-critical part of the company’s IT-system. The tool does not interact

16 Integrity and Internal Control in Information Systems

with the system at all, the only interaction the tool requires is data export.
When the tool has completed it’s task, there is a list of proposals for the ad-
ministrator to review. So it is the administrator’s task to decide whether he
will follow the proposal or not. So there is no way the tool itself could add
any weaknesses to the system.

Secondly, this way it can be made sure that only the information needed for
the analysis is exported to a foreign tool, which is important privacy matters.
Both aspects should facilitate adoption of the tool.
The information itself is completely stored in XML. The business applica-
tion’s data has to be exported to XML files. In the specific application of the
tool – the analysis of SAP security permissions – this task is outside the
scope of the current paper.
The data structure of the business application is defined by UML class dia-
grams. Any case tool capable of saving XMI data can thus be used to do the
modeling. The modeling in the current project will be done manually, be-
cause that will add some additional security (misconfiguration could result in
a wrong model which will not be recognized as wrong then) and it is rather
easily done. The complexity of the creation of this model depends one the
size of the system. In SAP you can think about one diagram for each data
table and the associations between these tables. Rules are stored in XML.

Automated Checking of SAP Security Permisisons 17

There is a graphical user interface in development which will help with the
creation of rules.

2.3 The Business Application as a Model

Following conventions published by the Object Management Group (OMG)
as “the classical four layer meta-model framework”[Obj02], software sys-
tems can be modeled particularly flexibly in an approach based on several
layers of information (see Figure 2). Throughout the description of the ana-
lyzer there will be several types of information that fit into different layers
on OMG’s meta-model framework. In this framework there are UML models
on layer 1 (M1) and application data on layer 0 (M0) (see Meta-object facil-
ity, pp. 2-2 to 2-3.
According to this separation of “model” and “information” the analyzer
needs two distinct types of data. First it needs “metadata” which is the de-
scription of the data structure of the business application itself and is given
as an UML model of the application. This is what sometimes is called the
“structure of the business” application and it is on level M1. On the other
hand the analyzer needs to know about the data itself, this is what is called
“instance data” and it is information on level M1.

To illustrate the separation of data on layer M1 and data on layer M0 we
consider an example. Assume there is “some” user-data in the business ap-
plication. Every user has a name and a password. To formally describe the
meaning of “some” in the expression “some user-data” there is a “model”
that tells the tool about the class user and it’s attributes name and password.
This is done with an UML model and is data on level M1. When the tool
checks the rules and needs to evaluate information of some special user e.g.
“John”, it needs what is called “information” in the “meta-model frame-
work”. This information is called “instance-data” and it is given as XML
documents (this is, as the analyzer uses it, placed on layer M0)[Obj02].

18 Integrity and Internal Control in Information Systems

2.4 Permissions

To associate permissions for transactions via roles to users in role based ac-
cess control (RBAC), the tool uses UML class diagrams. These diagrams can
be directly used to give this information, and we do not need to introduce
any additional features. The tool reads the class diagram and evaluates
classes and associations.
In general, the analyzer is not restricted to such an RBAC model or to any
specific model at all. It is capable of evaluating rules on any class diagram
that has the connection attributes assigned as names of the associations and
the direction of associations defined by the navigable flag. The analyzer
evaluates the model as a graph with classes as nodes and associations as
edges, where edges are directed. As we will see later, for the evaluation of
rules, we need to require that there must be a path between the two classes
involved in that rule, and there must be instance data so that the connecting
attributes of each class match.
To explain this in more detail, we consider the example in Figure 3: the class
diagram assigning permissions to users consists of the classes user, role,
transaction, and permission, with attributes as in Figure 3. There is an asso-
ciation role_id between user and role, an association role_id between role
and transaction, and an association transaction_id between transaction and
permission. The analyzer uses this model to automatically find a user’s per-
missions.
Note that when assigning a permission p to a user u via a role r, and the user
u also happens to have another role then (of course) it is not admissible to
conclude that any user with the role should also be granted the permis-
sion p. In that sense, assigning permissions to users via roles is “uni-
directional”. In the class diagrams defining permissions, this is specified by
using the “navigable” flag of UML class diagrams. This flag is an attribute
of an association’s endpoint. If this flag is set to “true” at the endpoint of a
class c (signified by an arrow at that side of the association), our rule-
analyzer may associate information from the other end of the association
with c. If it is set to “false”, this information may not be evaluated. This way
our tool may gather the permissions with respect to transactions granted to a
given user by traversing the class diagram along the associations in the navi-
gable directions permitting a “flow of information”. This way the tool “col-
lects” all users that have a given role, but does not recursively collect all us-
ers that have any of the roles that a given user has (as explained above).

Automated Checking of SAP Security Permisisons 19

To know how the elements in the application are connected there must be
some kind of ID that can be evaluated at both sides of the connection. As in
the short example above the user would have some kind of “role-id” in his
user data, and a role would have the same id. The application retrieves the
user’s “role-id” and finds the role with the same id. To express that mecha-
nism in our static UML class diagram, there is an association between the
classes that exchange information. The user-class would be associated with
the role-class, so the tool knows there is some kind of interaction (i.e., the
application is able to find a user’s role). To enable the search of information
the analyzer implicitly adds an additional attribute to either class at the asso-
ciation’s endpoints. These new attributes are assigned the association’s name.

20 Integrity and Internal Control in Information Systems

2.5 Instance Data

Besides the structural data elements explained above, we need so-called “in-
stance data”. Here an instance may, for example, be a real user of the sys-
tem. This information is very important for most of the rules one would like
to evaluate. There are, of course, rules that do not need instance data (if one
is checking the UML data structure model itself for some constraints, for
example), but in general there will be instance data. It is read by the analyzer
from additional XML files (for an example see Figure 4), containing a tag
for every class, and within that tag another tag for each attribute. The ana-
lyzer is able to generate the XML-Schema file for an UML model specified
by the user, because the contents of the instance file depends on the model of
the business application.

2.6 Rules

As defined in the previous section, the business application data structure is
represented by a class diagram, that is, a directed graph together with the
data from the business application. These two pieces make up a rather com-
plex graph whose structure can be seen in Figure 5 as an example. One can
see that for every user in the business application data structure, a node is
added. The model gives the tool the information that there is a connection
between user and role, but in the graph in Figure 5 there are only edges be-
tween certain users and certain roles. It shows that there is an edge between
user john and role users, because there is the attribute role that instantiates it.
There is no edge between user john and role admins, because john does not
have admins in his roles. This is the graph that the analyzer uses to analyze
the rules.
Rules in this paper consist of the following elements:

a name (used as a reference in the security report)
the type of the rule, which can be either of PROHIBITION or
PRECONDITION (meaning that the condition given in the sub-rule de-
fined below should either not be fulfilled, or be fulfilled)
a message (printed in the report if the rule fails)
a priority level (to build a hierarchy of importance, so that less important
rules can be turned off easily - typical values may include DEBUG,
INFO, WARNING, ERROR, FATAL, or a numerical value)
a sub-rule, which defines a path in the analyzer’s graph and a set of con-
straints, as defined below

A sub-rule has the following elements:
the head, which is the starting point of the path in the analyzer’s graph
defined by the sub-rule

Automated Checking of SAP Security Permisisons 21

the target, which is the target of that path
a list of constraints, which defines conditions that the path has to satisfy

Here a constraint consists of the following elements:
element, the node that has to be checked
condition, to be checked on that node

We consider the following example: If it has to be ensured that a certain
user, say john, does not have the role admins assigned, the following pa-
rameters would be set for the rule:

name check user roles
type PROHIBITION
message check user for given roles
priority ERROR = 4

In this example, we have a single sub-rule.
head user
target role
constraint head.user.name = param.user.name
constraint target.role.name = param.role.name

This rule has two parameters that the user has to provide when generating
the report, indicated by the keyword param: the user-name john and the role
admins. A suitable XML document that provides these parameters for every
rule is expected as input.
The evaluation of this example rule is as follows: The analyzer attempts to
find the head of the rule (i.e. “user: john”) in the analyzer’s graph. After-
wards, it tries to find a path to the target (i.e. “role: admins”). If that suc-
ceeds it prints the given message in the security report.
The separation between the rule itself and the two parameters
(param.user.name and param.role.name) is introduced to make editing more
comfortable: One does not need to edit a rule for every user and every role
that has to be checked.
With the help of these elements rather powerful rules can be defined. To the
analyzer the model is a graph representing the business application data

22 Integrity and Internal Control in Information Systems

structure. The head and the target represent nodes within that graph. For ex-
ample, head could be user and target could be role. With that definition there
should exist a path between head and target. If it does not, the rule fails. If
that path exists, the analyzer will try to fill that path with valid data from the
given instance-data. That means that for a valid connection from head to tar-
get, every association along that path is instantiated with a discrete entry
from the business application’s data. If there is no valid instantiation, the rule
fails. If there is one, the constraints are checked. Every instantiated element
will be examined, and if one of the conditions fails, the rule fails. Otherwise,
it succeeds.
To make the rules more expressive, a rule can consist of several sub-rules,
where a sub-rule does not have the additional type, message and level attrib-
utes. This way the analyzer is powerful enough to check rules such as
separation of duty, for example by using the sub-rules:

check for distinct role A,
check for distinct role B and
ensure that no user has both of them.

For a rule to succeed, each of the sub-rules has to succeed.
The type is given to distinguish between preconditions and prohibitions,
meaning that either the success or failure of that rule is reported. So it is
conveniently possible to define states that must be fulfilled for every con-
figuration and to define states that may not appear within a configuration.
For example, it may be vital for a system to have the password set for the
super-user account. Conversely, for separation of duty, it would be forbidden
for the same user to have two exclusive roles. A template system prints out
the messages with any of the instance’s attributes in a freely configurable
manner. So it is possible to insert values from the violating instance to the
message, for example as: “there is no password for user Joe”. Only with such
a feature the messages become readable and thus the tool easily usable by a
human user.

Automated Checking of SAP Security Permisisons 23

3. EVALUATING RULES

We use Prolog for the evaluation of the rules. Prolog seems particularly suit-
able, because it was specifically designed for such a task. In our experience
it is also sufficiently efficient for a real-life application. To evaluate the effi-
ciency of Prolog we implemented some simple tests with randomly gener-
ated clauses. These clauses were generated such that they had the same
structure as the ones generated by the analyzer. We then could evaluate
rules, with a database of up to several million clauses in seconds. So it
seems, that Prolog will do for the project, were according to our business
partners 60.000 entries are generated. If there really will be far more than
several millions of clauses, one could think about batch processing.
The advantage of using Prolog is that we can concentrate on the essential
problems specific to the rules without having to solve the hard problems of
finding the instances along the paths.

3.1 Translating rules to Prolog clauses

First of all the data structure of the business application is defined in Prolog.
For this each class from the model describing the business application is
converted to a predicate with an argument for each attribute. A class user (U)
with two Attributes (name (n), role-id (r)) gives the following expression:

U(n,r).

24 Integrity and Internal Control in Information Systems

To evaluate an expression like “the user’s role”, we need an additional predi-
cate for each association. The “connecting” predicates have the following
form: Assume there is a predicate U(n, r) and a predicate R(m, r). Then the
connection C(n, m, r) is given by the following term:

That means that there is a user n in role m if there is a user n and a role m
such that the role-id r is the same. These predicates can be extended to paths
with any number of intermediate nodes, because Prolog evaluates all predi-
cates to true, and the provided connecting attributes match, as in the follow-
ing example:

Note that the tool could be modified to eliminate the arguments not needed
to determine the existence of a path. However, it is convenient to be able to
include this additional information in the report.
After the structure is added, the instance will be added, too. For every class
several predicates are created. In Prolog syntax that’s what it looks like:

user(john,500).

With the above Prolog-clauses in place, the analyzer can ask for instantia-
tions of the rules.
A short remark regarding the efficiency of the analysis: The “connecting”
predicates are added only when a rule needs them. If one would insert every
possible connection from every imaginable head to every target, there were
up to n(n – 1) of these connections. But to evaluate m sub-rules one would
need at most m of these connections. Thus a connection is only added when
a sub-rule implies it, reducing the number of connections in general signifi-
cantly.

3.2 Evaluating Separation of Duty in SAP systems

We use an example configuration from [Sch03] to explain how separation of
duty in SAP systems can be evaluated by the rules. First of all, the structure
of the business application needs to be defined. For simplicity it will be as-
sumed that the structure looks like the one presented in Figure 3. It certainly
is just a very small part of the SAP security concept but as an example, it
will be sufficient.

Automated Checking of SAP Security Permisisons 25

There are three employees: Karen, Susan and John. Karen and Susan are just
employees in any department, and John is a purchasing agent at the com-
pany. To have separation of duty, Karen may create a purchase and Susan
may release that purchase to John. John may order the desired goods at some
supplier firm. With that in place the Prolog rules would be very straight for-
ward:

user(Karen, 1)
role(create-purchase, 1)

To have separation of duty in place there are two exclusive roles, which may
not be assigned to the same user: “create-purchase” and “release-purchase”.
John just places the orders, he does not do any supervision here. The first
sub-rule must have the head “user” and the target “role”. The second sub-
rule must have the same head and target but it needs a condition:

rulel.user.name = rule2.user.name

The type of that rule is PROHIBITION, the other attributes do not matter for
this example. What does the tool do now? It has created the predicates and
inserted the users and the role from the instance files. Afterwards it searches
the paths for the rule:

user_role(name, role_id, rname) :- user(name, role_id), role(name,
role_id).

With that predicate the rule can be evaluated to:

user_role_rule(name, role_id1, role_id2) :- user_role(name1, role_id1,
X), user_role(name2, role_id2, Y), name1 = name2.

Now Prolog can be asked for

26 Integrity and Internal Control in Information Systems

user_role_rule(X, create-purchase, release-purchase).

and Prolog calculates the correct answer. In the example from Table 1 there
is no solution to the predicate, because there is only Karen for role “create-
purchase” and Susan for role “release-purchase”, and user Karen is not equal
to user Susan.
Although this example is very simple, it serves as a demonstration of how
the rules can be used. In a real application, the path from user to role might
contain several nodes or one might not know the roles that have to be exclu-
sive, just the permissions, so one could exclude permissions contained in
roles with several hundreds of entries each.
Note that we do not currently aim to treat object-based permissions, but re-
main at the class level. While it should be possible to extend our approach in
that direction, it is beyond the scope of the current investigation. In particu-
lar, this applies to a special kind of separation-of-duty specific to SAP sys-
tems: The system can be configured to require more than one user with a
certain role to start a transaction. Since the checks needed to enforce this
requirement are performed within the SAP system, it would not make sense
to repeat them as well at the analysis level. But one should note, that this
“internal” separation-of-duty differs form what is presented in our examples.
It is often useful to have separation-of-duty throughout different depart-
ments, so that the internal one is not sufficient (i.e. if there is some kind of
revision after the transaction was performed).

3.3 SAP Transactions

Another example for a use of the rules to improve security is, when the
transactions are also part of the data structure. Because of the design of the
SAP system (which may seem surprising from a security point of view),
there are no security checks performed when a transaction calls another one.
By this transitivity, it is very difficult in large systems to see who can exe-
cute a transaction. The permission to execute a transaction includes the per-
mission to execute every transaction called by the first one and there does
not seem to be a possibility to disable this feature. Thus creating a transac-
tion in SAP is a permission that gives access to everything. One should no-
tice that an employee who is allowed to create a transaction and execute it,
can execute any transaction by calling it from his self-created one.
If access needs to be restricted to some transactions, it is therefore not suffi-
cient to ensure that the permission is given only in the roles associated with
that transaction, and that only the users allowed to execute that transaction
are assigned those roles. It has to be ensured furthermore that there is no
transaction calling the restricted one, because SAP would not perform secu-

Automated Checking of SAP Security Permisisons 27

rity checks there and one would not prevent execution of the restricted trans-
action.
To do so, one may model the transactions with its sub-transactions as part of
the analyzer’s model. Then the tool creates rules to check whether permis-
sions grant any user additional rights that are not part of his role. It is usually
not advisable to report every transaction that can be executed without ex-
plicit permission. Because of the error-prone design, there will be a lot of
transactions that are meant to be called implicitly. But the possibility to
check for some very “dangerous” transactions (in particular the ones for
changing permissions and roles) is a great enhancement of security. This
would be improved even more if there was a way to automatically create the
data that represents the dependencies of the transactions. We aim to inquire
the possibilities to do so.

3.4 Use-Case to Check SAP Permissions

The SAP database is used to generate the information necessary for the rules.
An employee creates an UML model describing the SAP system. We use the
CASE tool Poseidon for UML to do so. These two documents describe the
business application. With these documents in place one can create the rules.
For creating the rules there is a graphical user interface but the XML files
necessary can be edited manually, too.
When all the documents are prepared, the rules can check the rules automati-
cally. After the rules has finished the checks, the user can read the security-
report and start reconfiguring the business application in order to fulfill all
the conditions contained in his rule-set.
The security report is formatted as defined by the templates that are part of
the analyzer. The analyzer writes a freely configurable HTML file for review
with a web browser.

3.5 Further applications

The analyzer can not only be used to check SAP systems, it can be used to
check most configurations of large scale applications. The modular archi-
tecture makes it easy to adapt to a new application. One needs to define the
application’s structure in UML, then the instance data must be converted to
proper XML files, corresponding to the XML Schema provided by the tool’s
schema generator. Afterwards, the rules have to be defined. There the
graphical user interface can be used, or the XML files can be written manu-
ally or generated by any tool fitting the needs of the application. Then the
report can be generated by the analyzer.

28 Integrity and Internal Control in Information Systems

With that open architecture, we hope to establish a tool for a wide range of
rule-checking tasks of configuration files. Our main focus of application is
security, but there are other fields where one could use the analyzer,

4. RELATED WORK

One approach to analyzing security configurations is called “Configuration
Review Test” [Pol92]. As far as we know there is no implementation of
these tests that uses rules for this purpose. Existing tools for this approach
check some conditions of specific applications, mostly operating systems.
These tools are designed to check for certain security weaknesses, common
to a number of systems. Compared to this specific tools, the open architec-
ture presented in the current paper is new for configuration review tests. We
consider it a useful new idea for tool-supported security checks. The ana-
lyzer presented here could also replace some of the more specific tools, by
adding some applications that collect all the information necessary to check,
for example, operating system’s configurations.
Penetration tests are commonly used to assess the security of a system
[Wei95]. In our view, they are complementary to our approach: On the one
hand, penetration tests would profit from the information gathered by the
analyzer’s report. On the other hand, the analyzer presented here does not
warn about weaknesses in the software itself (such as programming errors or
buffer overflows), but it reports configuration errors. To have a penetration
test reveal the errors, the analyzer is designed to check for, one would have
to try out every possible transaction. This is usually impractical because
there are too many of them. Also, when performed on a live system, the
penetration test would be rather invasive.
There are several recent approaches using UML for security analysis, in-
cluding [Jür02], [Jür03], and [LBD02], and several contributions in
[JCF+02]. More generally, there has been a lot of work on formulating secu-
rity requirements in object-oriented data models (see for example [JKS95]
and the references there). Other approaches using logic programming for
access control analysis include [BdVS02]. [RS01] uses SQL to administer
permissions for distributed data. Compared to that approach, our tool can not
only be applied to data bases, but more generally to security configurations.
[GAR03] uses a model-checker to analyze Linux configurations.

Automated Checking of SAP Security Permisisons 29

5. CONCLUSION

The analyzer introduced in this paper is capable of reading the business ap-
plications configuration as an UML model and a XML file, therefore it can
be easily configured for a wide variety of business applications. The rules
used for checking are rather flexible and powerful. While the tool uses a
template system for it’s report the layout of that report can be freely adopted
to any form required.
Misconfiguration of security mechanisms is a major source of attacks in
practice. The current work aims to address this issue by providing automated
tool-support for checking SAP security permissions. The tool allows one to
formulate rules (such as separation-of-duty) that the permissions are sup-
posed to satisfy. It enables one to check automatically that the permissions
actually implement the rules even in situations where this is difficult, labori-
ous, and error-prone to perform by hand, because of dynamic changes and
the size of the data volumes involved.
Because of its modular architecture and its standardized XML interfaces, the
tool can be easily adapted to check security constraints in other kinds of ap-
plication software (such as firewall or other access control configurations).
By making use of standardized mechanisms (such as UML) for specifying
the rules, it should be easily learnt to use.
The analysis engine currently exists in a prototype version; development of a
product based on it (including the interface to the SAP system) is currently
under negotiation. We tested the prototype with example business applica-
tions (including some XML test data), including a performance evaluation
for large datasets (1,000,000 entries). Hence we can be confident that the
tool can be built into an industry-strength application if the market analysis
will turn out positive.
One of the advantages of the current work in comparison to other possible
approaches to the problem is the possibility to link the analysis of the SAP
permissions with an analysis of a business process model given as a UML
activity diagram, which is work in progress [Alt03].
More information on the analyzer and on how to obtain a license can be
found at http://www4.in.tum.de/~umlsec.

REFERENCES

[AJP95]

[Alt03]

M. Abrams, S. Jajodia, and H. Podell, editors. Information security: an inte-
grated collection of essays. IEEE Computer Society Press, 1995.

E. Alter. SAP permissions and business processes. Master’s thesis, TU Munich,
2003. In preparation.

30 Integrity and Internal Control in Information Systems

[BdVS02]

[GAR03]

[JCF+02]

[JHC02]

[JKS95]

[Jür02]

[Jür03]

[LBD02]

[Obj02]

[Pol92]

[Pow02]

[RS01]

[Sch03]

[Wei95]

P. Bonatti, S. De Capitani di Vimercati, and P. Samarati. An algebra for com-
posing access control policies. ACM Transactions on Information and System
Security, 5(1):1-35, February 2002.

J. D. Guttman, A. L. Herzog, and J. D. Ramsdell. Information flow in operating
systems: Eager formal methods. In Workshop on Issues in the Theory of Secu-
rity (WITS’03). IFIP WG 1.7, ACM SIGPLAN and GI FoMSESS, 2003.

J. Jürjens, V. Cengarle, E. Fernandez, B. Rumpe, and R. Sandner, editors. Criti-
cal Systems Development with UML, number TUM-I0208 in TUM technical
report, 2002. UML’02 satellite workshop proceedings.

J.-M. Jézéquel, H. Hussmann, and S. Cook, editors. UML 2002 - The Unified
Modeling Language, volume 2460 of Lecture Notes in Computer Science,
Automated Checking of SAP Security Permissions 21 Dresden, Sept. 30 - Oct.
4 2002. Springer-Verlag, Berlin. 5th International Conference.

S. Jajodia, B. Kogan, and R. Sandhu. A multilevel-secure object-oriented data
model. In Abrams et al. [AJP95].

J. Jürjens. UMLsec: Extending UML for secure systems development. In
Jezequel et al. [JHC02], pages 412-425.

J. Jürjens. Secure Systems Development with UML. Springer-Verlag, Berlin,
2003. In preparation.

T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-based modeling
language for model-driven security. In Jézéquel et al. [JHC02].

Object Management Group. Meta-object facility, version 1.4. In OMG Specifi-
cations. OMG, April 2002.

W. Timothy Polk. Automated tools for testing computer systems vulnerability.
In NIST Special Publications. National Institute of Standards and Technology,
December 1992.

Richard Power. 2002 CSI/FBI computer crime and security survey. Technical
report, Computer Security Institute, Spring 2002.

A. Rosenthal and E. Sciore. Administering permissions for distributed data:
Factoring and automated inference. In IFIP11.3 Conf. on Data and Application
Security, 2001.

Marillyn Aidong Schwaiger. Tool-supported analysis of business processes and
SAP permissions, 2003. Study project, TU Munich. In preparation.

C. Weissman. Penetration testing. In Abrams et al. [AJP95], chapter 11, pages
269-296.

A FORMAL ANALYSIS OF A DIGITAL
SIGNATURE ARCHITECTURE *

David Basin
ETH Zurich
basin@inf.ethz.ch

Kunihiko Miyazaki
Hitachi Systems Development Laboratory
kunihiko@sdl.hitachi.co.jp

Kazuo Takaragi
Hitachi Systems Development Laboratory
takara@sdl.hitachi.co.jp

We report on a case study in modeling and validating an architec-
ture for administrating digital signatures. The signature architecture is
based on the secure operating system DARMA (Hitachi’s Dependable
Autonomous Realtime Manager), which is used to control the interaction
between different subsystems, running on different operating platforms.
In particular, DARMA is used to ensure data integrity by separating

*This research project is partially sponsored by Telecommunications Advancement Organi-
zation of Japan (TAO).

Abstract We report on a case study in applying formal methods to model and
validate an architecture for administrating digital signatures. We use
a process-oriented modeling language to model a signature system im-
plemented on top of a secure operating system. Afterwards, we use the
Spin model checker to validate access control and integrity properties.
We describe here our modeling approach and the benefits gained from
our analysis.

Keywords: Formal methods, model checking, data integrity, security architectures.

1. Introduction

user API functions, which run on a potentially open system (e.g., con-
nected to the Internet), from those that actually manipulate signature-
relevant data, which run on a separate, protected system. The overall
architecture should ensure data-integrity, even when the open system is
compromised or attacked. We investigate the use of formal methods to
validate that this is indeed the case.

More abstractly, we investigate how formal methods can be applied
to model and validate the integrity and internal control of an industrial-
scale information system. In our study, the architecture modeled is quite
complex, involving multiple operating systems and processes communi-
cating between them, which carry out security-critical tasks. A full-scale
verification of a particular implementation would not only be imprac-
tical, the results would be too specialized. The key here is to find the
right level of abstraction to create a model suitable for establishing the
security properties of interest.

In our case, which is typical for many data-integrity problems, the rel-
evant security properties concern restricting access to data (e.g., pass-
words and signatures), where a user’s ability to carry out operations
depends on past actions, for example, whether the user has been au-
thenticated. Abstractly, these properties correspond to predicates on
traces (i.e. sequences) of system events, which suggests building an event-
oriented system model that focuses on processes, relevant aspects of their
internal computation, and their communication.

Concretely, we model the signature architecture as a system of com-
municating processes, abstracting away the operational details of the
different operating systems as well as functional details like the exact
computations performed by different cryptographic primitives. The re-
sulting model describes how processes can interact and semantically de-
fines a set of event traces. We formalize security properties as (temporal)
properties of these traces and verify them using the SPIN model checker
[4].

Our application of model checking to validate data integrity properties
of a security architecture is, to our knowledge, new. Of course, model
checking is the standard technique used to verify control-oriented sys-
tems [3, 9] and is widely used in hardware and protocol verification. Our
work shares with security protocol verification approaches like [10–11] an
explicit model of an attacker, where attacker actions can be interleaved
with those of honest agents. Our work is also related to the use of model
checkers to validate software and architectural specifications [2, 6, 16]
and it shares the same problem: the main challenge is to create good
abstractions during modeling that help overcome the large, or infinite,
state spaces associated with the model.

32 Integrity and Internal Control in Information Systems

The signature architecture is based on two ideas. The first is that of
a hysteresis signature [14], which is a cryptographic approach designed
to overcome the problem that for certain applications digital signatures
should be valid for very long time periods. Hysteresis signatures address
this problem by chaining signatures together in a way that the signature
for each document signed depends on (hash values computed from) all
previously signed documents. These chained signatures constitute a sig-
nature log and to forge even one signature in the log an attacker must
forge (breaking the cryptographic functions behind) a chain of signa-
tures.

The signature system must read the private keys of users from key
stores, and read and update signature logs. Hence, the system’s security
relies on the confidentiality and integrity of this data. The second idea
is to protect these using a secure operating platform. For this purpose,
Hitachi’s DARMA system [1] is used to separate the user’s operating
system (in practice, Windows) from a second operating system used to
manage system data, e.g., Linux. This technology plays a role analogous
to network firewalls, but here the two systems are protected by control-
ling how functions in one system can call functions in the other. In this
way, one can precisely limit how users access the functions and data for
hysteresis signatures that reside in the Linux operating system space.

Our model is based on Hitachi documentation, which describes the
signature architecture using diagrams (like Figures 1 and 2) and natural
language text, as well as discussions with Hitachi engineers.

A Formal Analysis of a Digital Signature Architecture 33

Organization. In Section 1.2 we present the signature architecture
and its requirements. Afterwards, in Sections 1.3 and 1.4, we show how
both the system and its requirements can be formalized and rigorously
analyzed. Finally, in Section 1.5, we draw conclusions and consider
directions for future work.

2. The Signature Architecture

2.1 Overview

2.2 Functional Units and Dataflow

The signature architecture is organized into five modules, whose high-
level structure is depicted in Figure 1. The first module contains the
three signature functions that execute in the user operating system
space. We call this the “Windows-side module” to reflect the (likely)
scenario that they are part of an API available to programs running
under the Windows operating system. These functions are essentially

34 Integrity and Internal Control in Information Systems

proxies. When called, they forward their parameters over the DARMA
module to the corresponding function in the second, protected, operating
system, which is here called the “Linux-side module”, again reflecting
a likely implementation. There are two additional modules, each also
executing on the second (e.g., Linux) operating system, which package
data and functions for managing access control and sessions.

To create a hysteresis signature, a user application takes the following
steps on the Windows side:

The user application calls AuthenticateUserW to authenticate the
user and is assigned a session identifier.

The application calls GenerateSignatureW to generate a hysteresis
signature.

The application calls LogoutW to logout, ending the session.

1

2

3

As explained above, each of these functions uses DARMA to call the cor-
responding function on the Linux side. DARMA restricts access from the
Windows side to only these three functions. The Linux functions them-
selves may call any other Linux functions, including those of the Access
Controller, which controls access to data (private keys, signature logs,
and access control lists). The Access Controller in turn uses functions
provided by the Session Manager, which manages session information
(SessionID, etc.), as depicted in Figure 2.

The Hitachi documentation provides an interface description for each
of these 16 functions. As a representative example, Figure 3 presents
the description of AuthenticateUserL.

A Formal Analysis of a Digital Signature Architecture 35

2.3 Requirements

The Hitachi documentation states three properties that the signature
architecture should fulfill.

The signature architecture must authenticate a user before the user
generates a hysteresis signature.

The signature architecture shall generate a hysteresis signature
using the private key of an authenticated user.

The signature architecture must generate only one hysteresis sig-
nature per authentication.

In Section 1.4, we will show how to model properties like these in tem-
poral logic.

1

2

3

Abstraction is the key to creating a formal model of the signature
architecture. One possibility is to build a data model by formalizing the
system data and the functions computed. Alternatively, we can focus on
the dynamics of the system and build a process or event-oriented model.

We take the latter approach. One reason is that data and func-
tions play a limited role in the system description. For example, the
architecture description is abstract to the particulars of which crypto-
graphic functions are used to hash or sign messages (i.e., those of the
Keymate/Crypto API referred to in AuthenticateUser in Figure 3). A
second reason is that the properties to be verified are event oriented and
have a temporal flavor. They formalize that whenever certain events
take place then other events have (or have not) also taken place. This
suggests the use of temporal logic for formalizing properties and model
checking for property verification.

There are two additional design decisions involved in creating our
model, which are representative of the decisions arising in modeling any
security architecture. First, we cannot completely abstract away data
since control depends on data. In particular, the actions processes take
depend on the values of keys, session identifiers, hash values, etc. The
solution is to abstract large (or infinite) data domains into finite sets,
and abstract functions over data to functions over the corresponding
finite sets. The difficult part here is finding an abstraction that respects
the properties of the functions acting on data. We will describe our
approach to this in Section 1.3.3.

Second, to show that the security properties hold when the system is
executed in a hostile environment, we must explicitly model the powers
of an attacker. Here we adapt a common approach used in modeling se-
curity protocols [8, 12]: In addition to formalizing the system itself, we
also formalize how different kinds of users can use the system. That is,
we formalize (in Section 1.3.3) both normal “honest” users, who use the
system as it is intended, and attackers who use the system in perhaps
unintended ways and attempt to exploit and break into the system. The
overall system model is built from submodels that define processes for
each of the different subsystems together with the processes that model
the normal users and the attacker. We then prove that the desired secu-
rity properties hold of the system, even given all the possible malicious
actions that can be taken by the attacker.

We have used the Spin model checker to formalize and check our
model. Spin is a generic model checker that supports the design and

36 Integrity and Internal Control in Information Systems

3. Modeling the Signature Architecture

3.1 Process Modeling

A Formal Analysis of a Digital Signature Architecture 37

verification of distributed systems and algorithms. Spin’s modeling lan-
guage is called PROMELA (PROcess MEtaLAnguage), which provides a
C-like notation for formalizing processes, enriched with process-algebra
like primitives for expressing parallel composition, communication, and
the like. Properties may be expressed in a linear-time temporal logic
(LTL) and Spin implements algorithms for LTL model checking. Due
to space restrictions, we will introduce Spin constructs as needed, on-
the-fly. For a detailed description of Spin, the reader should consult
[4–5].

3.2 Functions and Function Calls

As suggested by Figures 1 and 2, we can model the signature archi-
tecture in terms of five modules that communicate with each other in
restricted ways. We will model each such module as a PROMELA pro-
cess, where each process communicates with other processes over chan-
nels. A PROMELA channel is a buffer of some declared size that holds
data of specified types. For each function in a module, we define two
channels: one for modeling function calls and the other for modeling the
return of computed values. This is depicted in Figure 4, which names
the channels used for passing data between processes. All channels are
declared to have size zero. According to the semantics of PROMELA,
this means that communication on these channels is synchronous: the
process sending data on a channel and the process receiving data from
the channel must rendezvous, i.e., carry out their actions simultaneously.

As the figure shows, between Windows and DARMA we have just one
calling channel wd and one returning channel dw.1 This reflects that we
have only one function in the Darma interface. This function is called

1Note that we ignore channels for calling the Windows functions since the functions that
actually call AuthenticateUserW, GenerateSignatureW, and LogoutW fall outside the scope
of our model, i.e., we do not consider who calls them, or how the caller uses the return values.

We now explain our formalization of the powers and actions of both
ordinary users and system attackers.

The description of the signature architecture in Section 1.2 describes
how the system is intended to be used by normal users. As we will see,
it is a simple matter to translate this description into a user model.

The Hitachi documentation, describes, in part, the powers of an at-
tacker, in particular that he cannot access functions on the Linux side.
This is a starting point for our formalization of an attacker model, but it
leaves many aspects open, for example, whether an attacker can operate
“within” the system as a legitimate user with a valid password, or if he
is an outsider, without these abilities. Moreover, it is unspecified what
the attacker knows, or can guess or feasibly compute.

One achieves the strongest security guarantees by proving the safety of
a system in the face of the most general and powerful attacker possible.
Hence, we model an attacker who cannot only function as a legitimate
user of the system, but can also call functions in unintended ways, with
arbitrary parameters. Moreover, he knows, or can guess or compute, the
names of other users, messages, and message hashes, and of course he
knows his own password. However, we assume he can neither guess the
passwords nor the session identifiers of other users. (If either of these
were the case, then forging signatures would be trivial.)

We summarize these assumptions as follows:

38 Integrity and Internal Control in Information Systems

by marshaling (i.e., packaging) the function arguments together, includ-
ing the name of the function to be called on the Linux side. We model
this by putting all these arguments on the channel. For example, the
expression wd!AuthUser,username,password (which occurs in our model
of a normal user, given shortly), models that the function Authenti-
cateUserW calls Darma, instructing Darma to call AuthenticateUserL
with the arguments username and password.

3.3 User Modeling

The attacker can call AuthenticateUserW, GenerateSignatureW,
and LogoutW in any order.

The attacker is also a legitimate user with a user name and a
password.

The attacker knows the names of all users, and can guess messages
and message hashes.

The attacker can only give his (good) password or a bad guessed
password.

1

2

3

4

A Formal Analysis of a Digital Signature Architecture 39

In our model, we define sets of objects, namely finite intervals of nat-
ural numbers, for modeling the different kinds of objects in the problem
domain: names, messages, hash values, and passwords. The key idea is
to partition these sets into those things that are known by the attacker
(or can be guessed or computed) and those that are not. For example,
there is a set of user names, formalized by the set of natural numbers
{MIN_username, ..., MAX_username}. We model that the spy knows,
or can guess, any of these names by allowing him to guess any number in
this set. However, we partition the ranges corresponding to passwords
and session identifiers so that the attacker can only guess “bad” ones,
which are ones that are never assigned to normal users. However, the
attacker also has a “good” password, which allows him to use the system
as a normal user and generate a good session identifier. Figure 5 depicts
this partitioning, with the concrete values that we later use when model
checking. For example, the good passwords are {1, 2}, where 2 repre-
sents the attacker’s password. He can only guess passwords in the range
{2,3}, where 3 models a bad password, i.e., one that does not belong to
any normal user. As he cannot guess the password 1, he cannot use the
system (e.g., to generate a signature) as any user other than himself.

Given this abstraction, it is now a simple matter to model the actions
of normal users and the attacker.

The attacker cannot guess a good SessionID, i.e., one used by
other users.

5

6 Generated SessionIDs are always good.

Normal Users. Figure 6 shows our model2 of a normal user, which
directly models the steps that a normal user takes when using the sig-
nature architecture.

In lines 4 and 5 we model different possibilities for who uses the sys-
tem and their messages. The macro setrandom lower,upper) uses non-
deterministic choice to set to a value, lower upper. Hence these
lines set the user name and password to those of a normal user, chosen
nondeterministically from the predefined ranges.

Afterwards, the user generates a hysteresis signature. On line 8, the
user calls Darma on the wd channel, specifying the execution of the
Linux-side user authentication function, along with his username and
password. On line 9, the result, a session identifier (whose value is
greater than zero when authentication is successful), is returned on the
dw channel.

On lines 11–12, a message from the space of possible messages is non-
deterministically selected and its message hash is computed. We model
Hash simply as the identity function. Although this does not reflect the
functional requirements of a real hash function, in particular, that it is
a one-way function, it is adequate for establishing the stipulated prop-
erties of our process model, which only rely on passwords and session

2Model excerpts are taken verbatim from our PROMELA model, with the exception of pretty
printing, line numbering, and minor simplifications for expository purposes.

40 Integrity and Internal Control in Information Systems

identifiers being unguessable. On line 14, the user calls Darma on the
wd channel, instructing Darma to generate a signature with the session
identifier returned from the previous round of authentication and a mes-
sage hash. The generated signature is returned on line 15. Note that
the return value can also indicate an error, e.g., if the session identifier
was invalid.

Lines 17–18 model the user logging out, which invalidates his session
identifier.

A Formal Analysis of a Digital Signature Architecture 41

The Attacker. Figure 7 shows the PROMELA process that formal-
izes our attacker model. Here we see that the attacker can guess an
arbitrary user name and message hash (lines 5–6). However, in accor-
dance with the guessing model depicted in Figure 5, he can only guess
one good password (Max_Good_Password), which allows him to log in as
a normal user, or bad passwords (line 7). Similarly, he can only guess
bad session identifiers (line 8).

Afterwards, we use a do/od loop with nondeterministic choice to
model the attacker repeatedly calling Darma (on the wd channel) with

these guessed values, in any order he likes. Alternatively, as modeled by
the last four actions, he can guess new values at any point in time.

This example again illustrates the power of nondeterminism in a
process-oriented modeling language. As with the user model, we use
it to leave open which values are taken on by variables. This models a
system where these variables can take on any value from the specified
sets at system runtime. In addition, we use nondeterminism to describe
the different possible actions that can be carried out by a user, while
allowing the actions to be ordered in any way. The result is a succinct
description of a general, powerful attacker. Of course, formalizations
like this, which involve substantial nondeterminism, will typically lead
to verification problems with large states spaces. But this can be seen
as a feature, not a bug: model checkers can often search the resulting
state spaces much quicker and more accurately than humans can.

42 Integrity and Internal Control in Information Systems

3.4 Function Modeling

The majority of our PROMELA model describes the 16 functions
contained in the system modules. As a representative function, we return
to AuthenticateUserL, first described in Section 1.2.2.

Figure 8 shows the part of the PROMELA process that models Au-
thenticate UserL (this module also contains definitions for the other Linux-
side functions). This directly models the three steps explained in Sec-
tion 1.2.2: calculate a hash value (lines 2–7), authenticate the user (lines
9–10), and return the session identifier (line 13).

Here we have a simple example of how creating a rigorous specifi-
cation forces us to make all definitions explicit. Step 1 of the textual
explanation states “If [hash value calculation is] successful, go to Step 2
...”. But the Boolean predicate “successful” isn’t defined. Such omis-

sions arise frequently. In this example, it is easy to determine what is
intended by reading other parts of the specification. Here we formalize
success by stating that a HashFunctionErr is generated when the pass-
word hash is less than or equal to zero, and the operation is successful
otherwise. In general, not all ambiguities are so easily resolved. One of
the benefits of using a formal specification language is that we are forced
to be unambiguous at all times; PROMELA contains a syntax checker
and automatically detects undefined symbols.

A Formal Analysis of a Digital Signature Architecture 43

3.5 Putting It All Together

We build the overall model by composing in parallel the processes
defined above. Namely, we compose the two processes formalizing the
Windows-side module (as used by normal users and by the attacker) and
the processes for the remaining modules. This is depicted in Figure 9.
Note that we associate an identifier lsm with the process executing the
Linux-side module. This will be used during verification to refer to
particular labels in an invocation of the LinuxSideModule process, as
described in the next section.

4. Verification

We now describe how we use Spin to show that our model has the in-
tended properties. To do this, we formalize “bad” behavior (by formal-
izing and negating “good” behavior) as temporal logic formulae. Spin
converts, on-the-fly, our PROMELA model of the system and the tempo-
ral logic formula to automata (reducing model checking to an automata-
theoretic problem as described in [15]), and then constructs and searches
the resulting product automaton. If Spin finds a trace accepted by this
automaton, the trace explains how the system allows the bad behavior.
Alternatively, if Spin succeeds in showing, by exhaustive analysis of the
state space, that no errors exists, then the model is verified with respect
to the property.

As an example, we formalize the first of the three properties described
in Section 1.2.3. Our first requirement states that the signature archi-
tecture must authenticate a user before the user generates a signature.
The bad property is therefore the negation of this. Informally:

Second, we must eliminate the two quantifiers over sets. Since these
sets are finite, we can replace each quantifier by finitely many disjunc-
tions, i.e., the formula session. can be expanded to

where are the finitely many model represen-
tatives of session identifiers.

The resulting property is automatically verified by Spin in 2 hours of
computation time on a 450 MHz UltraSparc II workstation. In doing so,

44 Integrity and Internal Control in Information Systems

The signature architecture generates a signature for
an unauthenticated user.

To formalize this as a temporal property, observe that to generate a
signature, we first require a valid session identifier, which is the result of
a successful user authentication. Suppose that UAS(uname,sID) denotes
that the user uname is authenticated with the session identifier sID and
that GHSS(sID) represents that the signature architecture has generated
a hysteresis signature with the session identifier sID (greater than zero).
This can be formalized in PROMELA as follows.

#define UAS(uname,sID) (LinuxSideModule[lsm]@DONE_AuthL
&& username_LINUX == uname && sessionID_LINUX == sID)

#define GHSS(sID) (LinuxSideModule[lsm]@DONE_GensigL
&& signature_LINUX > 0 && sessionID_LINUX == sID)

In these definitions, we reference labels (using @) in our PROMELA
model to formalize that processes have reached certain points in their
execution, and we use predicates on variables to express conditions on
the system state.

We can now express the above informally stated property as

This is not yet a formula of linear-time temporal logic. First, “before”
is not a standard LTL operator. However it can be expressed using
the LTL operator “until”, written as infix U, by defining A before B as

U A, i.e., A occurs before B if and only if holds until A. In
our case

It took approximately one man-month to build and analyze the sig-
nature architecture. This included considering alternative designs and
studying different ways of specifying the requirements. The resulting
model is 647 lines of PROMELA.

Although the formal analysis did not expose any design errors, the
process itself was still quite valuable. During the formalization, we un-
covered numerous ambiguities and omissions in the Hitachi documen-
tation, such as missing cases and undefined values. For example, as
described in Section 1.3.3, we needed to explicitly formalize implicit as-
sumptions on the environment. Indeed, one reason why verification was
successful is that, during the modeling process itself, we uncovered and
fixed these oversights and omissions. Moreover, the discipline involved
in creating the formal model improved our understanding of the design
and helped us identify better solutions. This process of sharpening and
improving a design is often one of the major benefits of using formal
methods.

As a concrete result, we have produced a verified model. It serves
as unambiguous documentation, with a well-defined mathematical se-
mantics, for subsequent system development. It also provides a starting
point for formally certifying the signature architecture with respect to
standards like the Common Criteria.

As future work, we would like to explore the possibility of under-
taking a full scale verification, perhaps as part of such a certification.
An important step here would be to formally verify the correctness
of the abstractions used, i.e., that the verification of our small finite
model entails the verification of the corresponding infinite state system
with unbounded numbers of interacting users and infinite data domains.
Techniques based on data-independence, such as those of [7, 13], may
help automate this task. It would also be interesting to supplement our
process model with a data model that formalizes the properties of the
signature architecture functions. Although this is not required for ver-
ifying the three requirements examined here, this would be necessary
to go beyond treating cryptography as a “black box”, e.g., to reason
about the adequacy of different cryptographic mechanisms. This would
also provide a more complete (formal) documentation of the design and
provide a starting point for code verification.

A Formal Analysis of a Digital Signature Architecture 45

it builds a product automaton with over 20 million states and searches
over 70 million transitions. The formalization and verification of the
other two properties is similar.

5. Discussion

References

Toshiaki Arai, Tomoki Sekiguchi, Masahide Satoh, Taro Inoue, Tomoaki Naka-
mura, and Hideki Iwao. Darma: Using different OSs concurrently based on nano-
kernel technology. In Proc. 59th-Annual Convention of Information Processing
Society of Japan, volume 1, pages 139–140. Information Processing Society of
Japan, 1999. In Japanese.

W. Chan, R. J. Anderson, P. Beanie, S. Burns, F. Modugno, D. Notkin, and
J. D. Reese. Model checking large software specifications. IEEE Transactions
on Software Engineering, 24(7):498–520, July 1998.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
1999.

Gerard J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279–295, 1997.

G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
1991.

Daniel Jackson and Kevin Sullivan. COM revisited: tool-assisted modelling of
an architectural framework. In ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 149–158. ACM Press, 2000.

Gavin Lowe. Towards a completeness result for model checking of security
protocols. In PCSFW: Proceedings of The 11th Computer Security Foundations
Workshop, pages 96–105. IEEE Computer Society Press, 1998.

Gawin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Proceedings of TACAS’96, LNCS 1055, pages 147–166. Springer,
Berlin, 1996.

K.L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic Publishers, 1993.

C. Meadows. The NRL protocol analyzer: an overview. Journal of Logic Pro-
gramming, 26(2):113–131, 1996.

J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using Murphi. In Proceedings of IEEE Symposium on Security and
Privacy, pages 141–153, 1997.

46 Integrity and Internal Control in Information Systems

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Lawrence C. Paulson. The inductive approach to verifying cryptographic pro-
tocols. Journal of Computer Security, 6:85–128, 1998.

A. W. Roscoe and Philippa J. Broadfoot. Proving security protocols with
model checkers by data independence techniques. Journal of Computer Security,
7(1):147–190, 1999.

Seiichi Susaki and Tsutomu Matsumoto. Alibi establishment for electronic sig-
natures. Information Processing Society of Japan, 43(8):2381–2393, 2002. In
Japanese.

M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. Journal of Computer and System Sciences, 32:183–221, 1986.

Jeannette Wing and Mandana Vaziri-Farahani. A case study in model checking
software systems. Science of Computer Programming, 28:273–299, 1997.

A Formal Analysis of a Digital Signature Architecture 47

[12]

[13]

[14]

[15]

[16]

USING PARAMETERIZED UML TO SPECIFY
AND COMPOSE ACCESS CONTROL MODELS

Indrakshi Ray, Na Li, Dae-Kyoo Kim, Robert France
Department of Computer Science, Colorado State University

Abstract: Situations can arise in which organizations have to merge policies that are
based on different access control frameworks, such as Role Based Access
Control (RBAC) and Mandatory Access Control (MAC). Integrating policies
requires addressing the following question: How will the integration impact
access to protected resources? In particular, one needs to determine that the
integration does not result in security breaches or unavailability of resources.
A way of addressing these concerns is to model the access control frameworks,
compose the models, and analyze the resulting model to identify problems. In
this paper we outline a technique for modeling and composing access control
policy frameworks. Specifically, we model RBAC and MAC using a variant of
the Unified Modeling Language (UML) and show how to compose the models.
The composed model can be used as a base for defining access control policies
in a military domain.

Key words: Mandatory Access Control, Role-Based Access Control, Unified Modeling
Language

1. INTRODUCTION

An access control framework provides a set of rules, concepts, and
guidelines for defining access control policies. Two popular frameworks are
Role Based Access Control (RBAC) and Mandatory Access Control (MAC).
Situations can arise in which organizations have to merge policies that are
based on different access control frameworks. In such cases one needs to
ensure that unauthorized persons are not inadvertently given access to
protected resources, and that authorized persons are not denied access to
resources as a result of emergent properties of the merged policies.

50 Integrity and Internal Control in Information Systems

In this paper we propose a modeling approach that can be used to
describe the effect of composing policies developed under different
frameworks. In the approach the frameworks involved are modeled and the
resulting models are composed to produce a hybrid model. The hybrid model
can then be analyzed to uncover undesirable emergent properties that can
potentially prevent authorized access or allow unauthorized access.

The variant of the Unified Modeling Language (UML) [10] is used to
specify access control frameworks. A number of reasons motivated the use
of the UML. First, the UML is a de-facto industry standard for modeling
software artifacts. Second, the graphical nature of the UML and its use of
widely understood concepts make it relatively easy to use and understand.
Third, the graphical notation allows one to more easily detect inconsistencies
and other problems in model.

In our modeling approach, access control frameworks are specified by
generic models that describe the family of access control behaviors and
structures that conform to the rules defined in the framework. A framework
is described by a set of UML template models. Instantiation of a template
model results in a UML model that describes an application-specific policy
that conforms to the framework.

Composition of access control models results in a hybrid access control
(HAC) model that is also expressed in the template form. To compose two
access control models we first determine (1) the elements in the two models
that will be merged, (2) the elements that will appear “as is” in the composed
model and (3) the elements that will be modified or omitted in the composed
model. We also determine the application domain specific constraints that
affect the hybrid model. This information is then used to compose the
models to produce the HAC for a given domain. In this paper we illustrate
our approach by integrating the hierarchical RBAC framework and the MAC
framework for a military domain.

The rest of the paper is organized as follows. Section 2 gives an overview
of RBAC and MAC and shows how one can model them using template
forms of UML diagrams. Section 3 describes how the models can be
composed to produce a hybrid access control model. Section 4 describes
some of the related work in this area, and Section 5 concludes the paper.

2. MODELING RBAC AND MAC

In this section we give an overview of the UML, RBAC and MAC, and
illustrate how RBAC and MAC can be modeled using template forms of
UML diagrams. The UML is a standard modeling language maintained by
the Object Management Group (OMG) (See http://www.omg.org/uml for

Using parameterized UML to specify and compose access control models 51

details). The UML defines notations for building many diagrams that each
presents a particular view of the artifact being modeled. In this paper we
utilize the following diagram types:

Class Diagram: A class diagram depicts the static structural aspects of an
artifact being modeled. It describes the concepts and the relationships
between them. Relationships are expressed using associations and
generalizations/specializations. Concepts are described in terms of their
properties, where a property can be represented by an attribute, a behavioral
unit (an operation), or a relationship with another concept.

Interaction Diagram: An interaction diagram describes a behavioral
aspect of an artifact being modeled. Specifically, it describes how instances
of the concepts described in a class diagram collaborate in order to
accomplish behavioral goals. The UML has two interchangeable forms of
interaction diagrams: collaboration diagrams show both the interactions and
the supporting instance structure; sequence diagrams show only the
interactions. In this paper we use collaboration diagrams because they
capture more information.

Examples of these diagrams will be described when used in this paper.

2.1 Role-Based Access Control

RBAC [1] is used to protect information objects (henceforth referred to
as objects) from unauthorized users. To achieve this goal, RBAC specifies
and enforces different kinds of constraints. Depending on the nature of the
constraints present in a specific RBAC, the RBAC will use one or more of
the following components: Core RBAC, Hierarchical RBAC, Static
Separation of Duty Relations, and Dynamic Separation of Duty Relations.

Core RBAC embodies the essential aspects of RBAC. The constraints
specified by Core RBAC are present in any RBAC application. The Core
RBAC requires that users (human) be assigned to roles (job function), roles
be associated with permissions (approval to perform an operation on an
object), and users acquire permissions by being members of roles. The Core
RBAC does not place any constraint on the cardinalities of the user-role
assignment relation or the permission-role association. Core RBAC also
includes the notion of user sessions. A user establishes a session during
which he activates a subset of the roles assigned to him. Each user can
activate multiple sessions; however, each session is associated with only one
user. The operations that a user can perform in a session depend on the roles
activated in that session and the permissions associated with those roles.

Hierarchical RBAC adds constraints to Core RBAC for supporting role
hierarchies. Hierarchies help in structuring the roles of an organization. Role
hierarchies define an inheritance relation among the roles in terms of
permissions and user assignments. In other words, role r1 inherits role r2

52 Integrity and Internal Control in Information Systems

only if all permissions of r2 are also permissions of r1 and all users of r1 are
also users of r2. There are no cardinality constraints on the inheritance
relationship. The inheritance relationship is reflexive, transitive and anti-
symmetric.

Static Separation of Duty Relations (SSD) are necessary to prevent
conflict of interests that arise when a user gains permissions associated with
conflicting roles (roles that cannot be assigned to the same user). SSD
relations are specified for any pair of roles that conflict. The SSD relation
places a constraint on the assignment of users to roles, that is, membership in
one role that takes part in an SSD relation prevents the user from being a
member of the other conflicting role. The SSD relationship is symmetric, but
it is neither reflexive nor transitive. SSD may exist in the absence of role
hierarchies (referred to as SSD RBAC), or in the presence of role hierarchies
(referred to as hierarchical SSD RBAC). The presence of role hierarchies
complicates the enforcement of the SSD relations: before assigning users to
roles not only should one check the direct user assignments but also the
indirect user assignments that occur due to the presence of the role
hierarchies.

Dynamic Separation of Duty Relations (DSD RBAC) aims to prevent
conflict of interests as well. The DSD relations place constraints on the roles
that can be activated within a user’s session. If one role that takes part in a
DSD relation is activated, the user cannot activate the other conflicting role
in the same session.

In this paper we do not consider the constraints specified by DSD RBAC
relations. We use hierarchical SSD to explain our ideas. In other words, our
model comprises the following components: Core RBAC, hierarchical
RBAC and SSD RBAC. A model of hierarchical SSD RBAC is shown in
Fig. 1.

The hierarchical SSD RBAC (Fig. 1) consists of: 1) a set of users
(USERS) where a user is an intelligent autonomous agent, 2) a set of roles
(ROLES) where a role is a job function, 3) a set of objects (OBS) where an
object is an entity that contains or receives information, 4) a set of operations
(OPS) where an operation is an executable image of a program, and 5) a set
of permissions (PRMS) where a permission is an approval to perform an
operation on objects. The cardinalities of the relationships are indicated by
the absence (denoting one) or presence of arrows (denoting many) on the
corresponding associations. For example, the association of user to session is
one-to-many. All other associations shown in the figure are many-to-many.
The association labeled Role Hierarchy defines the inheritance relationship
among roles. The association labeled SSD specifies the roles that conflict
with each other.

Using parameterized UML to specify and compose access control models 53

The constraint in hierarchical SSD is given below (see [1] for formal
definition): users cannot be assigned to roles that are involved in an SSD
relation. In the following sections we give a graphical approach by which
such constraint violations can be easily detected.

2.2 Modeling RBAC using Parameterized UML

In this section we specify the hierarchical SSD RBAC in terms of UML
class diagram templates. A class diagram template consists of parameterized
class elements, for example, parameterized class attributes, class operations,
and relationships. A parameterized class is a class descriptor with parameters.
It defines a family of classes where each class is obtained by binding the
parameters to actual values.

Fig. 2 shows a class diagram template describing the hierarchical SSD
RBAC. In the diagram, we use a symbol “|” to indicate parameters to be
bound. This is not standard UML: we use this notation instead of the
parameter list notation defined in the UML standard because it is more
concise when there are many parameters involved. Each class template
consists of two parts: one part consists of attribute templates that produce
class attributes when instantiated, and the other part consists of operation
templates that produce class operations when instantiated.

The RBAC template consists of the following parameterized classes:
User, Role, Session, Permission, Object, Operation. The class template User
has one attribute template named UserID. The behavior of the class template
User is described by the operation templates CreateSession (creates a new
session), DeleteSession (deletes an existing session), AssignRole (assigns a
new role to the user) and DeassignRole (removes an existing role from the
user). Typically there are many other User RBAC behaviors that can be
described by operation templates. To keep the diagram simple, we do not
show all of them. One operation template not shown in the figure is

54 Integrity and Internal Control in Information Systems

GetRoles (returns the roles assigned to the user). The class templates Role,
Session, and Permission are similarly specified.

Association templates, such as UserAssignment and SessionRoles
produce associations between instantiations of the class templates they link.
An association template consists of multiplicity parameters (one at each end)
that yield association multiplicities (integer ranges) when instantiated. A
UserSessions link is created by the CreateSession operation in an
instantiation of the RBAC model; this link gets deleted by the corresponding
DeleteSession operation. The operation AssignRole creates a
UserAssignment link; the DeassignRole removes this link. The operations
GrantPermission and RevokePermission are responsible for creating and
deleting, respectively, the link PermAssignment. An SSD link is created by
the AddSSDRole operation; this link is deleted by the DeleteSSDRole
relation. The operation AddInheritance adds a link RoleHierarchy;
DeleteInheritance deletes this link. For lack of space, we do not show the
full specification of each operation. Pre- and postcondition templates in the
operation template CreateSession is given below:
context |User :: |CreateSession(|s: |Session)

post: result = |s and |s.oclIsNew() = true and self.|Session includes(|s)

Using parameterized UML to specify and compose access control models 55

The constraints in the bottom left corner of Fig. 2 impose restrictions on
the cardinalities of the associations. For example, {|o.lowerbound = 1}
restricts an association that is an instance of ExecuteOn to having a
multiplicity of at least one at the association end Object. The multiplicity “1”
of UserSessions association end on User is strict: a session can only be
associated with one user.

We can specify constraints using the Object Constraint Language (OCL)
in class diagram templates (as is done in Fig. 2). Alternatively, one can
express valid and invalid structures using object diagram templates. For
example, Fig. 5 shows an object diagram template specification that
illustrates the violation of the constraint of the hierarchical SSD RBAC. Fig.
5(a) shows that there cannot be a policy in which two roles r2 and r3

56 Integrity and Internal Control in Information Systems

connected by a hierarchy are also involved in an SSD relation. Fig. 5(b)
specifies that there cannot be a policy in which two roles r2, r3 that are in an
SSD relation have the same senior role r1. Presence of such patterns
indicates a problem with the specification.

The class diagram templates do not specify the interactions between
operations. Collaboration diagram templates are used for this purpose. Fig. 3
shows interactions involving the operations AddActiveRole and
DropActiveRole in the class template Session. For example, the
AddActiveRole causes the invocation of the operations GetRoles in User. If
the role to be activated r is included in the result, then a new link is
established between the session and the new role r. DropActiveRole causes
this link to be deleted. The details of CheckAccess operation in Session
appears in Fig. 4.

2.3 Mandatory Access Control

The Mandatory Access Control framework that we use is adapted from
the Bell-Lapadula model [8]. The Bell-Lapadula model is defined in terms of
a security structure (L, L is the set of security levels, and is the
dominance relation between these levels. The main components of this
model are objects, users, and subjects. Objects contain or receive
information. Each object in the Bell-Lapadula model is associated with a
security level which is called the classification of the object. User, in this
model, refers to human beings. Each user is also associated with a security
level that is referred to as the clearance of the user. Each user is associated
with one or more subjects. Subjects are processes that are executed on behalf
of some user logged in at a specific security level. The security level
associated with a subject is the same as the level at which the user has
logged in.

The mandatory access control policies in the Bell-Lapadula model are
specified in terms of subjects and objects. The policies for reading and
writing objects are given by the Simple Security and Restricted-
Properties.

Simple Security Property: A subject S may have read access to an
object O only if the security level of the subject L(S) dominates the
security level of the object L(O), that is, L(S) L(O).
Restricted- Property: A subject S may have write access to an
object O only if the security level of the subject L(S) equals the
security level of the object L(O), that is, L(O) = L(S).

The static structural aspects of the MAC are described in the class
diagram template shown in Fig. 6. The write and read operations prohibited
by MAC are shown using object diagram templates in Fig. 7 and Fig. 8. The

Using parameterized UML to specify and compose access control models 57

behavior of the CheckAccess operation is described by the collaboration
diagram template shown in Fig. 9.

3. HYBRID ACCESS CONTROL: HAC

In this section we show how RBAC and MAC can be composed. The
following steps identify how the composition of access control models takes
place. Later in Section 3.1 we show how the application domain causes
modification to the hybrid model.

Step 1 Identify the entities in each of the access control frameworks.
Step 2 Compare the definition of an entity in one model to that of another
in the second model, and determine which represent similar concepts and
which represent dissimilar concepts.
Step 3 Matched entities (those representing similar concepts as
determined in the previous step) are merged in the composed model.
Step 4 Dissimilar entities that must be present in the composed model are
added “as is” to the composed model, or are modified (as determined in
step 2). Access model entities that have been identified for elimination are
not added to the composed model.
We make the following observations about the elements in MAC and

RBAC.
User, Object, Operation are used in both the models and they each
refer to the same concepts (see Section 2).
Subject (used in MAC) and Session (used in RBAC) refer to the
same concept [9].
SecurityLevel appears in one model (MAC) but not in the other
(RBAC).

Based on the above observations, we apply our algorithm to generate the
hybrid access control model.

1.

2.

The User elements are merged in the two models. The structural
feature templates are identical in both RBAC and MAC. The MAC
specifies only one operation CreateSubject for User. The merged
element includes the behavioral feature template from the element in
RBAC and also those of MAC. The merged element appears in the
hybrid model and we refer to it as User.
The elements Object and Operation in both the models are identical.
Each of these elements is added to the hybrid model.

58 Integrity and Internal Control in Information Systems

3.

4.

The element SecurityLevel (present in MAC but not RBAC) is added
to the hybrid model.
The elements Session and Subject refer to the same concept. These
elements are merged. Since Subject is associated with SecurityLevel,
the merged element is now associated with a security level. The
merged element is referred to as Session in the hybrid model.
Comparing these two elements in the two models, we see that RBAC
Session has behavioral feature templates, such as, AddActiveRoleand
DropActiveRole that are not present in Subject. These behavioral
feature templates are added in the Sessionelement of HAC. Both
Subject and Session have CheckAccess and InvokeOperation. These
operations if different must be merged. The CheckAccess operation in
HAC is changed to reflect this. The collaboration diagram template of
CheckAccess appears in Fig. 12. The merging of Subject and Session
also affects other model elements. For instance, consider the class
template User in HAC. From Step 1, the operations of User are
CreateSession, DeleteSession, AssignRole, DeassignRole, and
CreateSubject. Since Subject and Session are merged, we need to
have only one operation called CreateSession (because the merged
entity in HAC is called Session). Moreover, the CreateSession of

Using parameterized UML to specify and compose access control models 59

RBAC must be changed because now the security level also has to be
passed as a parameter. The collaboration diagram templates of
CreateSession in RBAC, CreateSubject in MAC, and CreateSession
in HAC are given in Fig. 10.

The class diagram template of this HAC is shown in Fig. 11.

60 Integrity and Internal Control in Information Systems

3.1 Military Domain Requirement

The HAC shown in Fig. 11 may be suitable for applications, such as, an
academic environment, that do not require any additional domain-specific
constraints. For others, we may need to modify the hybrid model to
incorporate the application domain specific constraints. Consider, for
example, the military environment. The concept of Role in the military
environment is associated with security levels [7]. For example, the role
CentralCommander is associated with a security level of TopSecret. The
roles JointPlanner, ArmyLogisticsOfficer are associated with a security level
of Secret etc. To capture this association, we add an additional link to Fig.
11 in order to get the HAC for the military domain in Fig. 15 (the additional
link is shown as a dark line in the figure).

Roles being associated with security levels have other implications. For
example, whenever a user is assigned to a role, the security level of the User
must dominate the security level of the Role. In other words the AssignRole
operation in the class User needs to be changed. Similarly, the roles that can
be activated in a session must be the roles whose security levels are the same
as the security level of the session. The AddActiveRole must be modified to
check this additional precondition.

These additional constraints modify the HAC in the following way.
An association is established between Role and SessionLevel.
The operation AssignRole now must check that the security level of
the User must dominate the security level of the Role. The operation
AddActiveRole must be changed to check that the security level of
the role activated must be equal to the level of the Session. To
observe the change in the operation AddActiveRole, compare the
AddActiveRole in RBAC (Fig. 3) with that of the AddActiveRole in
HAC (Fig. 13).

The collaboration diagram templates in Fig. 14 show the AssignRole
operations in RBAC and HAC.

Merging access control frameworks may result in conflicts. For example,
RBAC may allow a specific role r1 at security level s2 to write an object at
the same security level. Because of role hierarchy the senior role r2 at
security Level s1 (where s1 dominates s2) is also allowed to write on that
object. However, this behavior is prohibited by MAC. Fig. 16 describes
some undesirable patterns that indicate a presence of conflict in the hybrid
model.

Using parameterized UML to specify and compose access control models 61

4. RELATED WORK

Several researchers have looked into integrating the mandatory access
control and role-based access control models. Osborn [6] examines the
interaction between RBAC and MAC. The author discusses the possible
structures of role graphs that do not violate the constraints imposed by MAC.

In their approach when a subject is assigned to a role, the subject can
perform all the privileges in the role, the possible structures that ensure that
no violations of secrecy can occur are discussed. Their research shows that
the combination of the structure imposed by the role graphs and the MAC
rules means that the possible structure of a role graph in which roles are
assignable to subjects without violating MAC rules is greatly restricted.

62 Integrity and Internal Control in Information Systems

Nyanchama and Osborn [5] discuss the realization of MAC in role-based
protection systems.

Using parameterized UML to specify and compose access control models 63

Phillips et al. [7] examine the unification of MAC and RBAC into a
security model and enforcement framework for distributed applications. In
their work, RBAC is extended to include MAC to ensure that the clearance
of users playing roles meets or exceeds classification of resources, services,
and methods being utilized. A role is assigned a classification, the authorized
user must possess a classification greater than or equal to the role
classification.

Researchers [4,2] have also investigated extending UML for representing
access control. Lodderstedt et al. [4] propose SecureUML and define a
vocabulary for annotating UML-based models with information relevant to
access control. Jurgens [2] model security mechanisms based on the multi-
level classification of data in a system using an extended form of the UML
called UMLsec. The UML tag extension mechanism is used to denote
sensitive data. Statechart diagrams model the dynamic behavior of objects,
and sequence diagrams are used to model protocols.

64 Integrity and Internal Control in Information Systems

Using parameterized UML to specify and compose access control models 65

5. CONCLUSION

The need to integrate different kinds of access control frameworks arise
when organizations using these frameworks need to work together in a
collaborative environment. In this paper we show how to model these
frameworks in a form that allows for easy composition, how to compose
these models, and identify conflicts arising because of the composition.

A lot of work still remains to be done. The integration process, presented
in this paper, is done manually. We plan to develop tools that will automate,
in part, this composition process. The tool can compare the elements in the
different models based on their structural and behavioral specifications and
aid the user in resolving conflicts. Other types of conflict, such as mismatch
in multiplicity parameters, mismatch in the specification of operations, that
occur during the integration process can also be automatically detected by
tools.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

D.F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST
Standard for Role-Based Access Control. ACM Transactions on Information and Systems
Security, 4(3), August 2001.
Jan J-urjens. UMLsec: Extending UML for Secure Systems Development. In UML2002,
2002.
C. E. Landwehr, C. L. Heitmeyer, and J. McLean. A security model for military message
systems. In ACM Transactions on Computer Systems 2(3): 198-222, August, 1984.
Torsten Lodderstedt, David Basin, and Jürgen Doser. SecureUML: A UML-Based
Modeling Language for Model-Driven Security. In 5th International Conference on the
Unified Modeling Language, 2002.
Matunda Nyanchama and Sylvia Osborn. Modeling Mandatory Access Control in Role-
Based Security Systems. In IFIP Workshop on Database Security, 1995.
Sylvia Osborn. Mandatory access control and role-based access control revisited. In
Proceedings of the Second Workshop on Role-Based Access Control, 1997.
C. E. Phillips, S. A. Demurjian, and T. C. Ting. Toward information assurance in
dynamic coalitions. In Proceedings of the IEEE Workshop on Information Assurance,
United States Military Academy, West Point, NY, June 2002.
R. Sandhu and P. Samarati. Access Control: Principles and Practice. In IEEE
Communications, Volumn 32, Number 9, September, 1994.
Ravi Sandhu. Role-Based Access Control. In Advances in Computers, volume 46.
Academic Press, 1998.
The Object Management Group (OMG). Unified Modeling Language. Version 1.4, OMG,
http://www.omg.org, September 2001.

ENFORCING INTEGRITY IN MULTIMEDIA
SURVEILLANCE†

2Naren B. Kodali, 3Csilla Farkas and 1Duminda Wijesekera
1Center for Secure Information Systems, 2George Mason University. 3Department of Computer
Science and Engineering, University of South Carolina..

In this paper, we propose a secure distribution model for multimedia
surveillance data, where different locations of the monitored facilities may
have different security requirements. We propose a multilevel security
framework, wherein the surveillance data streams are classified according to
the sensitivity of the location of the surveillance devices, and users (guards)
have corresponding security clearances. Guards monitor live multimedia feeds
emanating from surveillance devices placed throughout the facility. Our
position is that during normal mode of operation, guards are allowed to access
only those multimedia streams for which they have the proper authorizations.
However, in an emergency, guards may receive pre-computed emergency
instructions and/or cover stories. We show how to compose multilevel secure
SMIL documents, compute views for each security classification, enforce
integrity, confidentiality and access control, and deliver the secure views to
handheld devices while

1. INTRODUCTION

Modern physical surveillance and monitoring systems depend on electronic
instruments [12,13,14] where monitored areas such as command and control centers
and missile storage facilities of a military base or traffic controller units of airports

Abstract:

Keywords: Physical surveillance, SMIL, Secure multimedia, Multi Level Security

† This work was partially supported by the National Science Foundation under grants
CCS-0113515 and 0112874.

are accessible only to predefined groups of people. It naturally follows that
disclosure of live surveillance records of such facilities must follow the access
restrictions of the physical facilities. For example, in an airport location, passengers
and employees can enter common areas, like ticketing and waiting areas. However,
secured areas, like luggage transport, are available for airport employees only. The
highest security areas, such as the air traffic control room, are accessible to
specialized personnel only. Our aim is to ensure that people who are not authorized
to access a physical location should not be able to view the surveillance data of that
location. We also ensure that the integrity of the data is preserved during transit.
However, during emergency operations controlled dissemination of sensitive data
may become necessary in order to obtain support services and/or to prevent panic. It
has been shown, that during crisis people require clear instructions for cooperation.
However, these instructions should not release unauthorized information or reveal
the existence of such information. Therefore, it is necessary to develop methods and
tools to allow selective access to surveillance feeds during normal and emergency
operations. This dual-mode operation calls for issues of integrity to be
consummately addressed. This paper proposes a framework to do so using
appropriately secured Synchronized Multimedia Integration Language (SMIL) [3]
formatted multimedia compositions.

68 Integrity and Internal Control in Information Systems

Our proposal is to integrate monitoring and communication in a secure surveillance
system that enforces access control restrictions on datwhile providing maximum
availability. Our main contribution is the development of a framework to express
multimedia compositions with their rich runtime semantics, techniques to enforce
integrity and access control, and the use of cover stories to disseminate relevant
material to users with lower clearance levels during emergencies. For simplicity, we
assume a multilevel security classification of physical areas and their corresponding
surveillance data. People accessing these facilities have varying levels of security
clearances. Employees and visitors are allowed to enter or view the surveillance
feeds of a particular location (e.g., via broadcasts) only if they have appropriately
cleared. We enforce that requirement during normal operations for guarding
personnel. The main difference between a traditional Multilevel Secure (MLS)
system and MLS for live surveillance feeds is that surveillance systems require the
appropriate dissemination of classified information. We propose that our multimedia
surveillance system be equipped with a semantically rich, pre-orchestrated
multimedia cover story repository, so that in emergencies cover stories can be
released to subject with lower levels of clearances.

Our model provides an integrated solution to manage surveillance devices and to
collect audiovisual evidence for forensic analysis. We use an XML-based
multimedia composition language referred to as SMIL, adapted for multi-level
physical surveillance. The reason for selecting XML is guided by recent industrial

The multimedia community has its own XML-like language known as SMIL [3] to
compose presentations using stored and/or live sources. Unlike XML tags, SMIL
associates explicit meaning to some of its tags, which is crucial to ensure that the
semantics of the captured scene is appropriately presented at the display. Further,
human perception associates a meaning to integrated audio-video sequences.
Maintaining data integrity is crucial in conveying the intended meaning. We enrich
existing proposals [4,8] for securing multimedia data by incorporating operational
semantics of information. We show how non-emergency and emergency operations
of a MLS facility can be composed as a SMIL document enriched with proposed
extensions. We take such a composition and construct views authorized for different
security classes. We refer to these constructs as MLS normal forms of a SMIL
document with appropriate security decorations. Then, given the runtime
characteristics of an operational platform, we show how to generate an view
appropriate for that runtime, which we call a display normal form of a SMIL
document. We then encrypt media streams and transmit them to intended recipients
under normal and emergency operating conditions.

The rest of the paper is organized as follows. Section 2 provides our running
example used to explain the application scenario and our solution. Section 3,
describes related work. Section 4 describes SMIL. Section 5, describes the required
static preprocessing, runtime activities including encryption and resource
management are explained in Section 6. Section 7 concludes the paper.

Figure 1 shows a hypothetical research facility with varying levels of sensitivity.
Assume that the area enclosed by the innermost rectangle ABCD contains weapons
with highest degree of sensitivity and is accessible (and therefore guarded by)
personnel with the highest level of clearance, say top secret (TS). The area between
the rectangles PQRS and ABCD is classified at medium level of sensitivity and
therefore requires personnel with secret (S) security clearances. The area external to
PQRS contains least sensitive material, and can be accessed by unclassified
personnel, like visitors and reporters. We classify the areas into Top-Secret (TS),

Enforcing integrity in multimedia surveillance 69

trends. First, many browsers and off-the-shelf display and communication devices
are becoming XML compliant [12,14]. Second, mobile communication and usage of
XML formatted data becomes faster and more prevalent [11,12] than in the past.
Third, toolkit support is available to integrate XML compliant services [10,13,14],
Therefore, with the right technological framework, our solution is portable to a wide
range of general-purpose mobile multimedia devices such as those available in
automobile navigation systems and hand-held PDA’s.

2. RUNNING EXAMPLE

70 Integrity and Internal Control in Information Systems

Secret (S) and Unclassified (UC) security levels with application domains, e.g., Dom
as categories. Security labels form a lattice structure. For simplicity, we omit the
application domain and use TS, S, and UC as security labels. The area inside ABCD
is TS, the area inside of PQRS, but outside of ABCD is S, and the area outside

3. RELATED WORK

A distributed architecture for multi-participant and interactive multimedia that
enables multiple users to share media streams within a networked environment is
presented in [1], In this architecture, multimedia streams originating from multiple
sources can be combined to provide media clips that accommodate look-around
capabilities. MLS systems provide controlled information flow based on the security
classification of objects (e.g., data items) and subjects (e.g., users) of the MLS
system (e.g., applications running in behalf of a user) where data is allowed to flow
only from low security levels to higher security levels [15]. Although our approach
to provide controlled information flow in real-time multimedia systems is based in
concepts similar to MLS, the developed methods and techniques are also applicable
in other security models, like Role-Based or Discretionary Access Control models
[15,16]. Regulating access to XML formatted text documents has been actively
researched in the past few years offering many solutions. Bertino et al. [4,5], have

PQRS is UC. Employees, guards, support services personnel, and general public
have TS • S • UC clearances, where • corresponds to the dominance relation
defined in MLS systems. As depicted in Figure 1, an area with higher level of
sensitivity is a sub-part of areas with all lower levels of sensitivities. Therefore, a
guard with top-secret clearance may be used in the secret or unclassified area, but
not vice versa. For electronic surveillance purposes, cameras and microphones are
situated throughout the facility. Multimedia streams emanating from these devices
are used to continuously monitor the facility. We propose a design where all
multimedia data is transmitted to a centralized control facility and then directed to
handheld devices of appropriate security personnel.

Damiani et al. [6,7] developed an access control model where the tree structure of
XML documents is exploited using XPATH expressions at different levels of
granularity. They also propose an access control model [7] with complex
information filters using stereo video graphics (SVG) to render maps of physical
facilities for controlled dissemination of sensitive data within an image. Bertino at
al. [4] provides a security framework to model access control in video databases.
They provide security granularity, where objects are sequences of frames or
particular objects within frames. The access control model is based on he concepts
of security objects, subjects, and the permitted access modes. The proposed model
provides a general framework of the problem domain, although no explanation is
offered as to how access control objects to be released are formalized and enforced.

SMIL constructs for synchronizing media are <seq>, <excl> and <par>. They are
used to hierarchically specify synchronized multimedia compositions. The <seq>
element plays the child elements one after another in the specified sequential order.
<excl> specifies that its children are played one child at a time, but does not impose
any order. The <par> element plays all children elements as a group, allowing
parallel play out. For example, the SMIL specification <par><video
src=camera1><audio src = microphone1></par> specify that media sources
camera1 and microphone1 are played in parallel.In SMIL, the time period that a
media clip is played out is referred to as its active duration. For parallel play to be
meaningful, both sources must have equal active durations. The <switch> construct
allows one to switch between alternatives compositions listed among its
components. These alternatives are chosen based on the values taken by some
specified attributes. For example, <switch> <audio src=“stereo.wav”

src=“mono.wav” systemBitrate plays
stereo.wav when the SMIL defined attribute systemBitrate is at least 25 and
mono.wav otherwise. We use this construct to specify our surveillance application.
In order to do so, we define two custom attributes customTestMode that can take

Enforcing integrity in multimedia surveillance 71

developed Author-X, a Java based system to secure XML documents that enforces
access control policies at various granularities and corresponding user credentials.

4. SMIL

SMIL [3] is an extension to XML developed by W3C to author presentations,
allowing multimedia components such as audio, video, text and images to be
integrated and synchronized. SMIL has syntactic constructs for timing and
synchronization. In this section, we explain those SMIL constructs, that are relevant
and how they can be used to specify a multimedia document satisfying the
application needs stated in Section 2.

values “normal” and “emergency” and customTestSecurity that take any value from
(“TS”,“S”,“UC”). The first attribute is encodes the operating mode (normal or
emergency) and the second encoding the security level of streams (top secret, secret
or unclassified). SMIL also requires that every application-defined attribute (custom
attribute in SMIL terminology) have a title and a default value.
Figure 2 shows a simplified example of a SMIL specification for surveillance. The
custom attribute customTestMode has values “Normal” and “Emergency”. Since the
value of customTestMode is hidden, this attribute in each corresponding stream
cannot be changed. The second part of the file consists of a switch statement where
media streams connected by <par> constructs. Notice that the <switch> statement
consists of two sections where first begins with the line <par customTestMODE=
“Normal”> and the second begins with the line <par customTestMODE=
“Emeregency”>. That specifies that the streams inside be shown under normal and
emergency operating conditions. In this example, each area has a camera and a
microphone to record audio and video streams to be transmitted to appropriate
guards. They are named CameraTS1.rm, CamerU1.wav etc. The security
classification of each source is identified by the application defined SMIL attribute
customTestSecurity. For example, <video src=“CameraTS1.rm” channel=“video1”
customTestSecurity=“TS”/> specifies that the video source named CameraTS1.rm
has the TS security level. The intent being that this source is to be shown only to
top-secret guards. As the second half of Figure 2 shows, there are three audio-visual
cover stories named CoverstoryTS-to-S1.rm to CoverstoryS-to-UC1.wav are shown
with the appropriate security level specified with the attribute customTestSecurity.
The main composition is encoded using a <switch> statement that is to be switched
based on the operating mode (normal or emergency).

We assume that the source document specifies the security label of each source
and that MLS policies are used to ensure that guards are permitted to view only
those multimedia sources that are dominated by the guards’ security clearances. For
this, we preprocess a given MLS multimedia document and produce views that are
permitted to be viewed by guards for each security classification. Then, we
separately encrypt and broadcast multimedia documents for each category, to the
appropriate locations by efficient use of bandwidth. In order to achieve this
objective, we first transform every SMIL document with proposed security and
mode attributes to three SMIL documents, where all security labels in each
document consists of solely one customTestSecurity attribute, namely the one that is
appropriate to be seen by guards with the label value. We now formally state and
prove that this can be done for an arbitrary SMIL document with our security labels.

72 Integrity and Internal Control in Information Systems

5. STATIC PREPROCESSING TO ENFORCE MLS

As stated in Definition 1, a SMIL specification in MLSNF is one that is parallel
composition of at most three specifications, where each specification belongs to one
security class, that are said to be the views corresponding to the respective security

Enforcing integrity in multimedia surveillance 73

Definition 1 (MLS Normal Form)
We say that a SMIL specification S is in Multi Level Secure Normal Form

(MLSNF) if it is of one of the following forms:
It is of the form <par> Cts(S) Cs(S) Cu (S) Cud(S) Cod</par> where all
attributeTestSecurity attributes in Cts(S), Cs(S), Cu(S) are respectively TS, S
and U. In addition, Cud(S) has no attributeTestSecurity and Cod(S) has two
different values set for attributeTestSecurity.
It is of the for <par> Cts(S) Cs(S) Cu (S) Cud(S) Cod(S)</par> with one or two
components of <par> may be missing. Here Cts(S), Cs(S) and Cu(S), Cud(S)
Cod(S) satisfy requirements stated above.
It is of the form Cts(S), Cs(S), Cu(S), Cud(S), Cod(S) where Cts(S), Cs(S),
Cu(S), Cud(S) and Cod(S) satisfy requirements stated above.

We say that Cts(S), and Cs(S) and Cu(S) are respectively the top secret, secret and
unclassified views of the specification S. Cud(S) is the view with missing security
classifications and Cod(S) is the view with contradictory security classifications.

1.

2.

3.

In attempting to create views from an arbitrary SMIL document, one encounters two
undesirable situations. The first is the missing security classifications resulting in a
non-null Cud(S) or a contradictory security classification due to over specification.
An example under specified SMIL specification is <audio src= “myAudio.wav”>,
and an example contradictory specification is <video src= “myMovie.rm”
attributeTestSecurity=TS attributeTestSecurity=S>. Thus, it is tempting to avoid
such situations by applying completeness and conflict resolution policies [17]
designed to be used in XML formatted texts and databases. Because SMIL
hierarchies are not due to inheritances and instead they are syntactic constructs for
media synchronization, blindly applying such policies to resolve under and over
specification of SMIL documents destroys the synchronized play out semantics of
media streams. Here, we use the neutral policy of discarding under and over
specified fragments Cud(S) and Cod(S) of a SMIL specification S. We now give an
algorithm that transforms a given SMIL document into its MLSNF.

74 Integrity and Internal Control in Information Systems

classes. The latter two cases are degenerate cases of case 1 where one or more views
of the specification become null.

Algorithm 1:toMLSNF (Conversion to a Normal Form)
1. If S is a media stream (such as <video ...> or <audio ...>) with possibly an

attributeTestSecurity attribute. Then:
If attributeTestSecurity=TS, then Cts(S)=S, and

and
If attributeTestSecurity=S, then Cs(S)=S, and
If attributeTestSecurity=U, then and Cu(S)=S.
If attributeTestSecurity does not exists in S, then

and Cud(S)=S
If there is more than one instance of attributeTestSecurity in S then

and Cod(S)=S.

a.

b.

e.

c.
d.

2. If S is <seq>S1 S2</seq> then,
Cts(S)=<seq>Cts(S1) Cts(S2) </seq>
Cs(S)=<seq>Cs(S1) Cs(S2) </seq>
Cu(S)=<seq>Cu(S1) Cu(S2) </seq>
Cud(S)=<seq>Cud(S1) Cud(S2) </seq>
Cod(S)=<seq>Cod(S1) Cod(S2) </seq>

a.
b.
c.
d.
e.

3. Similarly when, S is <par>S1 S2</par> , and S is <switch>S1 S2</switch>
However, if either of Cx(Si) are empty for some x and i

then Cx(Si) in the right hand sides above must be substituted by NULL(Si)
where NULL(Si) is defined as <type src=empty.type, attributeTestSecurity=Y,
dur=Z type> where Z and Y are respectively durations and the attributeTestSecurity
attribute values appearing in Si.

In this section, we provide a simple operational semantics for media streams and
SMIL documents constructed using <par>, <seq> and <switch> commands. The
sole objective of this exercise is to show that Algorithm 1 transforms a SMIL
document to a collection of ones that remain invariant with respect to this semantics.
The latter is referred to as semantic equivalence [18]. Following customary practices
in programming language semantics, our operational semantics and the proof of
semantic equivalence is inductive in nature. Our semantics is only applicable to our
application scenario and syntactic constructs, and its extension to other purposes and
constructs form our ongoing work.
Definition 2 (Timed Display Instance)
We say that a quadruple (S, T-begin, T-end, Security Set) is a timed display instance
provided that:

Enforcing integrity in multimedia surveillance 75

Then let MLSNF(S) = <par>Cts(S) Cs(S) Cu(S) Cud(S) Cod(S)</par>.

We now have to ensure that Algorithm 1 preserves semantics. That is, top secret,
secret and unclassified viewers of a specification S will view Cts(S), Cs(S) and
Cu(S) respectively. This proof is standard, if we have a formal operational semantics
for SMIL. While providing such semantics is not difficult, it does not exist yet.
Therefore, while we are in the process of developing formal semantics for SMIL, we
provide a preliminary operational semantics for the purposes of showing that our
algorithms work as expected.

5.1 A Preliminary Operational Semantics for SMIL

S is a basic media element with a finite active duration
T-begin T-end are arithmetic expressions of a single real variable t satisfying
T-end=T-begin + D.
Security set a subset of {TS, S, U} consisting of attributeTestSecurity attribute
values of S.
We say that a set of timed display instances is a timed display set provided that
there is at least one timed display element with t as its T-begin value.
Taken as expressions containing the variable t, the smallest T-begin value of a
timed display set is said to be the origin of the timed display set. We use the
notation O(TDI) for the origin of the timed display set TDI.
Taken as expressions containing the variable t, the largest T-begin value of a
timed display set is said to be the end of the timed display set. We use the
notation E(TDI) for the end of the timed display set TDI.

The following two elements tdi_1 and tdi_2 are examples of timed display
instances.

tdi-1 = (<video, src= “myVideo.rm”, dur=5, attributeTestSecurity=TS>, t, t+7,
{TS})
tdi-2 = (<audio, src= “myAudio.rm”, dur=10, attributeTestSecurity=U>, t+7,
t+17, {U})

Therefore, {tdi-1,tdi-2} is timed display set with its origin t and end t+17. The
intent here is to consider TDI={tdi-1,tdi-2} as a possible playout of the SMIL

1.
2.

3.

4.

5.

6.

1.

2.

specification <seq><video, src= “myVideo.rm”, dur=5, attributeTestSecurity=TS>,
<audio, src= “myAudio.rm”, dur=10, attributeTestSecurity=U> </seq> that begin at
an arbitrary but thereafter fixed time t and ends at t+17. Now we describe some
algebraic operations on timed display sets that are necessary to complete the
definition of our operational semantics of SMIL. The first is that of origin
substitution defined as follows.
Definition 3 (Algebra of Timed Display Sets 1: Substitution)

Suppose TDS is a timed display set with the formal time variable t and s is any
arithmetic expression possibly containing other real valued variables. Then TDS(s/t)
is the notation for the timed display set obtained by syntactically substituting all
timing values (that is T-begin and T-end values) of elements of TDI.
For the example TDI given prior to Definition 3, TDI(2t+7/t) consists of (tdi-
1(2t+7/t),tdi-2(2t+7/t)} where tdi-1(2t+7/t) and tdi-2(2t+7/t) are defined as:

76 Integrity and Internal Control in Information Systems

1.
2.
3.

[[<seq> S1 S2</seq>]] = [[S1]] U [[S2]](end([[S1]])/t)
[[<par> S1 S2</par>]] = [[S1]] U [[S2].

tdi-1(2t+7/t) = (<video, src= “myVideo.rm”, dur=5, attributeTestSecurity=TS>,
2t+7, 2t+21, {TS})
tdi-2(2t+7/t) = (<audio, src= “myAudio.rm”, dur=10, attributeTestSecurity=U>,
2t+21, 2t+31, {U})

1.

2.

The reason for having Definition 3 is that in order to provide formal semantics
for the <seq> operator, it is necessary to shift the second child of the <seq> by the
time duration of its first child and repeat this procedure for all of <seq>’s children.
To exemplify the point, the first example the TDI={tdi-1,tdi-2} is infact {tdi-1} U
TDI’(t+7/t) where TDI’ is given by tdi’ = (<audio, src = “myAudio.rm”, dur=10,
attributeTestSecurity = U>, t, t+10, {U}). We are now ready to obtain operational
semantics for SMIL specifications.
Definition 4 (Basis Mapping)
Suppose M is the set of basic media elements of S. Then any mapping [[]] from M
to a set of Timed Display Instances TDI is said to be a basis mapping for a
denotation iff all T-begin elements of M have the same value t, where t is a real
variable. Then we say that [[]] is a basis mapping parameterized by t.
Lemma 1 (Existence of basis mappings) A set M of basic media streams with time
durations has a basis mapping.
Proof:
For each media stream m= <type, src= “...”, dur=value, attributeTestSecurity= “...”
type>, in M, let [[M]] map to (m, t, t+value, {Att Values}). Then [[]] is a basis
mapping.
We now use a basis mapping to define operational semantics of any SMIL
specification S as follows.
Definition 5 (Operational Semantics for SMIL) Suppose S is a SMIL specification
and [[]] is a basis mapping for the basic media elements B of S with the formal
parameter t. Then we inductively extend [[]] to S as follows.

We now say that the extended mapping [[]] is a semantic mapping parameterized by
t. To the best of our knowledge, the informal semantics given the SMIL
specification is abstractly captured by our operational semantics provided we can
evaluate the attribute of the switch. This can be easily formalized using customary
practices of program language semantics, and is therefore omitted here for brevity.

Enforcing integrity in multimedia surveillance 77

4. [[<switch> S1 S2 </switch>]] = [[S1]] if S1 satisfies the attribute of the switch.
= [[S2]] otherwise if S2 satisfies the attribute of the switch.
= otherwise.

On rewriting the example in Figure 2 in the MLS Normal form we create at the
different views for each of the following cases each represented as a separate SMIL
document. In the Figure 3 below, we have the format of such a specification
denoting the entire structure of a “Top-Secret” view in the normal mode and a
“Secret” view in the emergency mode.

6. RUNTIME BEHAVIOR OF THE MLS SYSTEM.

78 Integrity and Internal Control in Information Systems

In the most general case, a SMIL specification in MLSNF is of the form <par> Cts
Cs Cu Cod Cud </par> where Cts Cs Cu Cod and Cud respectively have top secret,
secret, unclassified, over specified and under specified security levels. How one
resolves under specification and over specification is a matter of policy, and is not
addressed in this paper. Independently, Cts, Cs, Cu are to be shown to guard with
top secret, secret, and unclassified clearances. In addition, in order to respond to
emergencies, these specifications have a mode switch encoded using the custom
attribute attributeTestMode. As seen in Figure 3, this attribute is to be evaluated at
the beginning of a <switch> statement. That is unsatisfactory for intended purposes,
because after this switch statement is executed, the operating mode could vary many
times. Because the <switch> is evaluated only once, the SMIL specification is now
oblivious to such changes in application situations. In the next section, we show how
to rewrite a SMIL document with one <switch> statement for changing a mode to
another SMIL document that evaluates the attributeTestMode at regular intervals.
Although in theory any system could switch its operating mode in an arbitrarily
small time intervals, practical considerations limits this interval. This minimum
switching granularity may depend upon many parameters such as hardware,
software. Therefore, given a switching delay D, we rewrite the given SMIL
document so that the mode attribute attributeTestMode re-evaluated every D time
units. How that is done is discussed in the next section.

6.1 Informal Display Normal Form

The following SMIL specification in Figure 4 has the same structure as the
specification in Figure 2 and Figure3.If we want to break up this specification so
that the attributeTestMode is tested each D units of time and the switch reevaluated,
then the code can be translated as follows (right hand side of Figure 4).

Notice that the outer <par> construct specifies that enclosing specification be
 executed for duration of D time units and repeated indefinitely. However, the outer
<par> construct has only one element, namely the switch. Therefore, the <switch>
construct is executed for infinitely many times, and each time the attributeTestMode
is tested. Given a SMIL specification with the attributeTestMode specified in the

As explained, any given SMIL specification S for surveillance is statically translated
into its MLS normal form MLSNF(S). Then, when the runtime provides D,
MLSNF(S) is translated into its display normal form, say DNF(MLSNF(S),D). Then
the runtime takes each the set of streams within the switch that has duration of D,
evaluates the switch, and depending upon the mode, encrypts and transmits either
the streams corresponding to normal operating mode or those that correspond to the
emergency operating mode. The figure 5 shows the display normal form for the
SECRET VIEW and briefly discusses mode evaluation procedures.

The initial setting of the mode is taken from the value of the defaultState attribute. If
no default state is explicitly defined, a value of false is used. The URI (Controller
Choice) is checked to see if a persistent (Normal, Emergency) is defined instead of
the default. As with predefined system test attributes, this evaluation will occur in
an implementation-defined manner. The value will be (re) evaluated dynamically, as
described above

Enforcing integrity in multimedia surveillance 79

form where the switch is reevaluated every D time units is said to be in display
normal for the attribute attribbuteTestMode and time duration D. We have now
informally shown that every SMIL document where the attribbuteTestMode is used
in the stated form can be translated into its display normal form.

We stress the informal nature of our argument because of our commitment to the
specified operational semantics. Our translation into display normal form is not
semantically equivalent under semantics provide in definition 6. However, we intend
to enhance the semantics so that this construction will preserve semantic
equivalence in our future work.

6.2 Dynamic Runtime Activity.

Mobile handheld viewing devices [14] that have embedded SMIL players are the
recipients. A smartcard, which enforces access control, is embedded into the display
device [9]. Each display device has a unique smartcard depending on the
classification of the guard that utilizes it and his classification and any other rules set
by the controller. A decryption key associated with the privileges of the guard is also
embedded in the smartcard. When a display device receives an encrypted SMIL
document, the smartcard decrypts the appropriate segment depending on the
available decryption key. We encrypt each view in the document as shown in Figure
6 with a unique Symmetric Key using the standard XML Encryption Specification.
An inbuilt Cryptix Parser that is programmed in firmware (or in software) to handle
the decryption process would enable selective decryption of the appropriate view
based on the access privileges as defined in the smartcard.

The Figure 6 depicted above shows the encryption tags applied to the display normal
form of the secret view [Figure5] to achieve confidentiality. With encryption, we
guarantee that nobody tampers the stream in transit even if there is mediate stream
acquisition.

We have provided a model for audio-video surveillance of multi-level secured
facilities during normal and pre-envisioned emergencies. We enhanced the SMIL
specification with security decorations to satisfy MLS constraints during normal
operations and provide controlled declassification during emergencies while
maintaining the integrity and confidentiality of the data in transit. Then we showed
how to transform such a SMIL composition to its MLS normal form that preserves
runtime semantics intended by SMIL constructs while creating views compliant with

80 Integrity and Internal Control in Information Systems

6.4. The Confidentiality and Integrity Enforcing Encryption Model

7. CONCLUSIONS

MLS requirements. Given the delay characteristics of a runtime, we show how to
transform a SMIL document in MLS normal form so that the operating mode can be
switched with the minimum delay while respecting runtime semantics of SMIL. Our
ongoing work extends this basic framework to incorporate richer multimedia
semantics as well as diverse security requirements such as non-repudiation of media
evidence, and incorporate them in SMIL metamodels. Finally, this paper focuses on
confidentiality issues. However, it is also important to address source authentication
issues, which along with the development of a prototype system are part of our
future work.

[1] B. K. Schmidt “An Architecture for Distributed, Interactive, Multi-Stream, Multi-
Participant Audio and Video”. Technical Report No CSL-TR-99-781, Stanford Computer
Science Department.

[2] D. Wijesekera and J.Srivastava, “Quality of Service Metrics for Multimedia” in
Multimedia Tools and Applications, Vol 2, No3 1996, pp. 127-166.

[3] J. Ayers et al. “Synchronized Multimedia Integration Language (SMIL 2.0)”. World Wide
Web Consortium (W3C). http://www.w3.org/TR/smil20/ (August 2001).

[4] E.Bertino, M.A. Hammad ,W.G. Aref and A.K. Elmagarmid “An access control model
for video database systems” in Conference on Info and Knowledge Management, 2000

[5] E. Bertino, E. Ferrari S. Castano “Securing XML Documents with Author-X” in IEEE
Internet Computing, vol 5,no3 May/June 2001

[6] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, “Securing XML
Documents,” in Proc. of EDBT2000), Konstanz, Germany, March 27-31, 2000..

[7] E. Damiani, S. De Capitani di Vimercati, E. Fernandez-Medina, P. Samarati “An Access
Control System for SVG Documents” in Proc. IFIP WG11.3 , DBSEC ’02.

[8] E.Damiani, S. De Capitani di Vimercati “Securing XML-Based Multimedia Content”
Security and privacy in the Age of Uncertainty, Pages 61-72.

[9] N.Kodali, D.Wijesekera“Regulating Access to SMIL formatted Pay-per-view Movies” in
Workshop on XML Security, 2002.
[10] The Triclops Camera at http://www.ptgrey.com/products/triclopsSDK/triclops.pdf
[11] Alpha works Suite :XML http://www.alphaworks.ibm.com/xml
[12] Spymake Integrated Surveillance Tools
at http://www.spymakeronline.com/catalogue/surveillance.html
[13] Mobile VCMS™ - Field Data Collection System at

http://www.acrcorp.com:8080/acr_vcms/mobile
[14] E. Ekudden, U.Horn, M.Melander and J.Olin“On-demand mobile media—A rich service

experience for mobile users” Erricson.com White papers.
[15] D. Elliot Bell and Leonard J.LaPadula Secure computer systems: Mathematical

foundations. Technical Report 2547 (Volume I), MITRE, March 1973.
[16] Sandhu, R. S., Coyne, E. J., Feinstein, H. L. and Youman, C. E. “Role-based access

control models” In IEEE Computer, 1998
[17] S. Jajodia, P. Samarati, V. S. Subrahmanian, “A logical language for expressing

authorizations,” Proc. IEEE Symp. on Security and Privacy, Oakland, 1997, pages 31-42
[18] K. Mulmuley “Full Abstraction and Semantic Equivalence,” ACM Doctoral Dissertation

Award 1986, The MIT Press, Cambridge. MA, London, England, 1987

REFERENCES

Enforcing integrity in multimedia surveillance 81

A LEARNING-BASED APPROACH TO
INFORMATION RELEASE CONTROL

Claudio Bettini
DICO, University of Milan, Italy, and
Center for Secure Information Systems, George Mason University, Virginia
bettini@dico.unimi.it

X. Sean Wang
Department of Computer Science, University of Vermont, Vermont, and
Center for Secure Information Systems, George Mason University, Virginia
xywang@cs.uvm.edu

Sushil Jajodia
Center for Secure Information Systems, George Mason University, Viginia
jajodia@gmu.edu

Abstract: Controlled release of information from an organization is becoming important
from various considerations: privacy, competitive information protection,
strategic data control, and more. In most organizations, data protection is
afforded only by using access control. However, it can be argued that access
control suffers from at least two problems. First, effective access control
assumes a perfect categorization of information (“who can access what”),
which is increasingly difficult in a complex information system. Second,
access control is not effective against insider attacks, where users with
legitimate access rights send out sensitive information, either with malicious
intent or by accident. Information release control is viewed as complementary
to access control, and aims at restricting the outgoing information flow at the
boundary of information systems. This paper presents an architectural view of
a release control system. The system emphasizes the role of automated

84 Integrity and Internal Control in Information Systems

learning for release control constraints. This has resulted from the realization
that the most difficult task of effective release control is how the release
control constraints are specified. In a learning-based system, data mining and
machine learning techniques are employed to generate release control
constraints from samples provided by the security officer. The system applies
continuous learning to adjust the release control constraints to reduce both
mistakenly released and mistakenly restricted documents. This paper also
provides a specific example on how to learn keyword-based release control
constraints.

Keywords: Data protection, Release control

1. INTRODUCTION

Release control refers to the process of checking the output data
generated upon a user request to determine if the information is appropriate
for release across a security boundary. Nowadays, organizations have vast
amounts of information that is shared with other organizations or even the
general public. Such sharing takes the form of public web pages, financial
reports, technical white papers, biographies of personnel, etc. Furthermore,
the knowledge workers of the organizations send out messages for
collaboration purposes. Such information sharing needs to be done in a
controlled fashion, taking into account security and other considerations.

For information security, a number of aspects have been considered in
the literature. These aspects include (1) secure communication, (2) perimeter
control, (3) reliable authentication, (4) authorization to information cells
(such as files, relational tables, columns in tables, and XML nodes), and (5)
partitioning of the information into cells. According to Wiederhold [Wie00],
aspect (5) is often under-emphasized and requires a highly reliable
categorization of all information to those cells. It is in the management of
that categorization where many failures occur. In other words, if some
information is miss-categorized, which is highly likely in a complex
organization, it is possible for the sensitive information to be released to
unauthorized users.

A more serious threat to sensitive information comes from careless or
malicious insiders, individuals or organizational entities with authorized
access to the system. This type of threats are potentially very damaging since
the access control rules (on which organizations rely heavily) are not
effective. Insider threats need to be countered using several different
methods, from intrusion analysis to information forensics. An important tool
to counter such threats is release control, which blocks the information at the
gate from “inside” to “out side.”

A Learning-Based Approach to Information Release Control 85

In addition to the aforementioned security considerations, some legal
concerns of information release need to be addressed. Depending on the
category of information, an organization may wish to append disclaimers,
copyright and other legal notices, and even watermarks. Release control can
be used to address this problem.

Release control thus needs to become an important component for
securing and managing information of an organization. From a technical
perspective, the release control system is best done by separating “release
control constraints”, which state what need be controlled, from “checking
algorithms”, which monitor the outgoing data against these constraints. This
separation allows more convenient management of the release control
system to fit the ever-changing organizational security and legal needs, and
allows more opportunities for the introduction of new checking algorithms.

In view of the aforementioned technical considerations, for an effective
and efficient release control system, at least two issues need to be considered
carefully. The first is how the release constraints are established and refined,
and the second is how the checking of the outgoing information can be done
efficiently and in a meaningful way.

In this paper, we present an architectural view of the release control
system and then focus on the first issue. One relevant source for coming up
with release constraints is clearly the data store. Indeed, in addition to the
ability of simply adding release constraints derived from experience or high-
level requirements, security officers may query the data store to determine
what needs to be controlled at the release point. We call this the “manual”
method. For example, access control rules are usually adopted to restrict the
access to the data store [JSSS01]. When some data have restricted access, it
is likely that the release of such data should be checked. In addition,
information that might be inferred through integrity constraints from
restricted data should also be automatically added to the release constraints
store. Furthermore, data that are similar to such restricted data may also need
to be checked at the release point. Due to the involved complexity of these
tasks, “automated tools” are necessary.

We introduce an automated learning approach to help acquire release
control constraints. In a learning-based approach, the security office can give
an initial sample set of documents, including both “cleared for release”
documents and “restricted” documents. The system will try to learn an initial
set of release control constraints from the given sample set. As the time goes
by, when more and more documents are released and restricted (some of the
releasing and restricting are certified by the security officer), the learning
process will periodically adjust the release control constraints to do a better
job: reducing the mistakenly released documents as well as the mistakenly
restricted documents. In this paper, we outline such a learning based system

86 Integrity and Internal Control in Information Systems

architecture, and provide a specific example for learning release control
constraints.

The remainder of the paper is organized as follows. In Section 2, we give
a formal foundation for specifying release control constraints. We also give a
language that can be used to represent release control constraints on XML
documents. In Section 3, we outline an architecture for release control and
emphasize the role of learning in the whole architecture. In Section 4, we
give a specific example of learning keyword-based release control
constraints. We discuss related work in Section 5 and conclude the paper in
Section 6.

2. FORMAL FRAMEWORK

For a uniform treatment, we assume the data to be checked before release
is in XML format (the underlying data may be a table resulting from a
database query, semistructured data or a full text document). The data are
checked against a number of release constraints.

2.1 Release Constraints

A release constraint (RC) is a pair where R is a matching rule
and CI a set of controlled items.

Each RC is evaluated against the data being released and it prevents its
release if satisfied. Formally, each RC gives a mapping that assigns each
document with a label in {Restrict, Release}. A document Doc can be
released if for each release constraint RC, RC(Doc)=Release, i.e., in the data,
the controlled items do not appear in the way given by the corresponding
matching rules.

The set CI of controlled items is a set of tuples of the form
where are variable symbols and their values. Values can

range over several simple domains (including integer, string, Boolean, etc.)
or even complex domains (admitting single-valued, multi-valued, or possibly
structured attribute values). Variable symbols may actually denote attribute
names as well as paths in the document structure. In the simplest case,
variable symbols are omitted and each tuple is a list of keywords.

Syntactically, the attribute part A of each pair can be specified by an
XPath expression, while the value part a can be specified by a regular
expression if it is a string (e.g., to denote any word starting with a certain
prefix) or, in the case it is a numerical value, it can be specified by a simple
condition (op k) with and k being a number (e.g., to
denote all values greater than or equal to a certain constant).

A Learning-Based Approach to Information elease Control 87

The matching rule R specifies how a document should be checked against
the controlled items. As an example, when the data to be checked are
answers from a database query, they can be represented as a sequence of
tuples. Then, a simple matching rule may check if one of these tuples
contains the attribute values specified in one of the tuples in the set of
controlled items. In the case of data containing unstructured text, the rule
may specify, for example, that the words in each tuple of the set of
controlled items should not appear together in any k-words portion of the
text, where k is a parameter defined by the specific rule. In other words, the
set of controlled items essentially lists the pairs attribute-value involved in a
release constraint, while the matching rule specifies their relationships.

Example 1. Consider a corporate database that includes data about
Employee’s salaries and assume an internal policy prohibits the release of
the salary of Mr. Woo. The administrator will set up a RC with

and R equal to the simple rule on
relational query results checking all the query results being released for
tuples containing the attribute values specified in CI. In this case, the system
will check each tuple returned, as part of a database query result, making
sure the values Woo and 75,000 do not appear in it.

Note that this is a conceptual model of RCs. In practice, controlled items
will have compact representations, in the form of SQL queries, general
XQuery expressions including predicates, strings with metacharacters or
other representations.

The above formal model can be easily extended to represent overriding
constraints by allowing negative terms in control items (in the form
For example, in protection software, among all documents rejected because
containing the word ‘chip’, those in which the occurrence of ‘chip’ is always
part of the sequence ‘chocolate chip’ should be released. This can be
modeled by the above extension.

2.2 A language for matching rules on XML documents

In this subsection, we focus on the problem of representing matching rule
when the data to be checked in contained in XML documents. We design a
language that has the following expressiveness properties, which we
consider necessary for our task.

The language should be able to express the maximum distance between
all pairs of values as a pre-determined upper bound. In terms of XML

88 Integrity and Internal Control in Information Systems

this may be the number of edges in the XML tree that separate the nodes
storing the values.
The language should be able to express the presence of certain nodes
(with particular labels, semantic tagging, degree, type, e.g., leaf, root,
etc.) in the path between the pair of nodes for which we consider the
distance in the XML structure.
The language should be able to express relationships between nodes.
Example of relationships include the difference in depth in the XML
tree, the difference in the semantic tagging possibly attached to the
nodes, the presence of a common ancestor with a specific tag,
relationships between node attributes, etc.
The language should be able to discriminate the order of the values in
the XML structure. The order may be particularly relevant in overriding.
In our chocolate-chip example above, the word ‘chocolate’ must appear
before the word ‘chip’.

Following the above requirements, we represent each matching rule as a
conjunction of a cardinality rule and one or more node-relation rules.1

A cardinality rule has the form NumVar k where k is a positive integer
and NumVal is a language keyword denoting the number of different values
specified in the controlled items that should be observed in the document.
Hence, a cardinality rule specifies that the number of these values must be at
least k, not considering negative terms in the controlled items representing
overriding conditions. If no cardinality rule is given, a default cardinality
rule is assumed with k=1; this is the most conservative choice.

Example 2. Given a set of controlled items a
cardinality rule NumVar 2 would restrict any document that would contain
at least 2 of the positive controlled items; i.e., either and or
and or and but not containing In the case of XML
documents by containment of A:a we mean the presence of a node/attribute
identified by A and having text/value a.

A node-relation rule is represented by a Boolean
node formula. A node formula is recursively defined from a set of atomic
distance formulas and atomic node formulas by applying the standard
conjunction and negation operators as well as quantification on nodes.
Existential quantification has the form: where N is a node
appearing in the path P of the XML tree and F(N) is a node formula. Paths
can be defined as explained below for atomic distance formulas. Since

1 Alternative matching rules (disjunctive behavior) can be established by adding more release
control rules with the same controlled items.

A Learning-Based Approach to Information Release Control 89

negation is allowed, universal quantification and disjunction are implicitly
part of the language.

An atomic distance formula has the form:
op where are paths in the XML document tree

and op is in {<,=,>, },
op k , where P is a path in the XML document tree, and k is a

non-negative integer.
The notation stands for the length of path P in the XML tree of the
document. For example, the root node of an XML document is easily
characterized by having a path of length ‘0’.

Paths P are either among which denote the paths from
the root of the XML tree to the nodes associated with a subset of values

among the controlled items, or they can be paths obtained from
them by applying the following operators:

(Path Intersection)
(Path Difference)

(Path Prefix of length k)
(Path Suffix of length k)

Each atomic node formula compares a node property with a constant value
or with the property of a different node. The set of atomic node formulas
includes the following:

Comparison of attribute values
op where op is

in {<,=,>, (applies only if the attribute has a numeric
value).
AttrValue(N,attrName) op k, where k is an integer and op is in
{<,=,>, (applies only if the attribute has a numeric
value).

rel where rel is
in {=, substr,...} (applies only if the attribute has a string
value).
AttrValue(N,attrName) rel string, where string is any string and
rel is in {=, substr,...} (applies only if the attribute has a string
value). For example, using conjunction, this can be used to check
if a set of nodes has the same attribute value.

Comparison of node meta properties
op where op is in {<,=,>, and

Order() is not an attribute, but a function assigning a unique
value to each node in the XML tree, according to a specific order
(e.g., preorder). This may be used to check if a certain word
appears before or after another one in the document.

90 Integrity and Internal Control in Information Systems

Tag(N) rel string, where string is any string and rel is in
{=, substr,...}. For example, using conjunction, this can also
check if a set of nodes has the same tag <Table>.
Degree(N) op k, where Degree(N) denotes the number of children
of N in the tree, k is a non-negative integer and op is in
{<,=,>, As an example, a leaf node can be characterized
by having degree ‘0’.

Example 3. The following matching rule
:AttrValue(N, “attrName”) superstring “relString”

is satisfied if either the parent node or the parent of the parent node of
has a value for the attribute “attrName” which contains the string
“relString”. Note that is identified by testing whether it contains one of
the values in the controlled items.

Note that paths in atomic distance formulas can be considered constants
when a specific XML document is considered. This is different from nodes
in atomic node formulas that can be both constants and variables. Indeed,
they are constants if the nodes are among the ones corresponding to the
values in the controlled items, and variables otherwise. If they are
variables they will appear in the node formula under quantification.

A Learning-Based Approach to Information Release Control 91

3. RELEASE CONTROL ARCHITECTURE

The architecture we are proposing is based on three basic component: (i) the
flow of documents that are going to be released, (ii) a Data Store from which
the documents are extracted/derived, and (iii) a Release Control System
monitored by a security officer. Figure 1 illustrates these components and
their internal structure, ignoring at this level the machinery needed for the
learning process.

3.1 The Basic Components

The Data Store can include different types of data sources like standard
relational databases, XML or other document type repositories. Documents
to be released may be obtained through queries on different data sources in
the Data Store as well as through access to internet/intranet services.
Databases in the Data Store as well as other sources can be assumed to be
protected by usual access control systems.

The main modules in the Release Control System are the Release
Constraints Store and the Matching Module. The first module is the
repository of release constraints and includes constraints explicitly inserted
by the security officer, constraints derived from the data store with processes
guided by the security officer, and constraints derived from examples of
restricted and released documents by a learning process, which will be
explained later in this section. An example of derivation of constraints from
the data store is using the information about access control rules in order to
derive sensible associations of terms directly or indirectly bounded to items
whose access is forbidden by those rules. Ontologies and thesauri can also be
used to derive new release constraints by identifying “semantic” similarities
to the given ones. Optimization modules (not depicted in the figure) will also
operate on the Release Constraints Store. For example, the set of Release
Constraints can be reduced considering the subsumption relationships along
the hierarchies of matching rules and controlled items. As an example if
says that each tuple in the outgoing data should not contain the strings Woo
and 75k, and says that the string Woo should not appear anywhere in the
outgoing data, can be disregarded.

Given a set of release constraints in the Release Constraints Store, the
Matching Module is responsible for checking each one of them against the
outgoing documents, and for blocking the release of those for which any of
the constraints is satisfied. Since we assume documents in XML form, the
module must contain a matching algorithm with a XML parsing component.
A basic version of the algorithm may consider an explicit listing of
controlled items in each release constraint, and hence, it will perform

92 Integrity and Internal Control in Information Systems

keyword-based matching. Clearly, appropriate indexing on the keywords
appearing in the release constraints will be necessary, so that all applicable
release constraints are efficiently selected upon reading one of the sensitive
keyword in the outgoing data. Efficient techniques should also be devised in
order to keep track of the current position within the list of controlled items
in each release constraint. More sophisticated versions of the algorithm will
consider working with compact representations of the controlled items
(possibly in the form of queries).

3.2 Integration of a Learning Module

While the security officer in some cases may be able to explicitly provide
both controlled items and associated matching rules, we believe there are a
large number of documents to be restricted for which only more vague
criteria are available. For this reason, our framework proposes the
integration in the above architecture of a Learning Module that has the main
goal of learning release constraints. In particular, in this paper we will show
how the learning component can generate specific matching rules starting
from controlled items, some domain knowledge, and a training set
containing documents already marked as restricted or released.

In principle, given a sufficiently large training set of positive and
negative examples we may ask a learning algorithm to derive controlled
items and matching rules accordingly to the syntax described above. In
practice, this is not a realistic requirement: the learning process, and, in
particular, the extraction of features from the examples must be guided by
some knowledge about the specific domain. One possibility is to start with a
possible set of “critical” correlated keywords from the security officer and
with a set of parameterized matching rules. For example, the security officer
may consider the distance of two keywords in a document to be a relevant
criterion, while the number of occurrences of keywords not to be a relevant
one. In this case, the upper bound on the “distance” becomes a parameter to
be tuned by the learning process.

The main issue is how to choose appropriate parameterized rules so that
the algorithm may minimize the rate of mistakenly released and mistakenly
restricted documents by tuning the parameters. In order to illustrate the
general idea in the specific context of our matching rules, we give an
example, by considering only cardinality rules. As we have observed in
Section 2.2, the default and most conservative cardinality rule
NumVal k is obtained by using k=1. The value of k may actually be used
as a parameter in the learning process. For example, from the training set it
may be observed that all correctly restricted documents contain at least 2
terms of the controlled items, while many mistakenly restricted ones contain

A Learning-Based Approach to Information Release Control 93

only one. The value of k may then be raised to 2. Of course, there are several
hypotheses on the document corpus and on the learning algorithm (including
the size of the training set) that should hold to preserve a correct behavior of
the system while reducing its mistakes.

In the context of security, it may be desirable to implement a learning
process that preserves the following “conservativeness” property:

All documents that have been certified as restricted by the security
officer will be restricted by the system.

Preserving this property implies that any derivation of new rules or
refinement of existing rules must lead to a global set of release constraints
that is still able to correctly classify documents that are known to be
restricted.

Figure 2 depicts the Learning Module and its integration in the overall
architecture, including a Monitoring Tool that will be discussed below..

3.3 The Learning Module

The learning module has two main functionalities:
It derives release constraints for the initial set-up of the system. As
mentioned above, performing this task requires a training set of
documents marked to be restricted or released, approved by the
security officer; it also requires some domain knowledge, possibly
in the form of controlled items and/or parametric rules. We impose
that the rules obtained by the learning algorithm will preserve the
conservativeness property, i.e., the system using these rules would
correctly restrict at least all documents marked to be restricted in

94 Integrity and Internal Control in Information Systems

the training set. The algorithms and strategies involved in this task
under specific assumptions are described in Section 4.
It helps refining the system behavior upon the identification during
system operation of mistakenly released and mistakenly restricted
documents. This task is based on the assumption that the security
officer monitors the system behavior and provides feedback to the
learning module by dividing samples of the processed documents
in four categories: correctly restricted (CRes), correctly released
(CRel), mistakenly restricted (MRes), and mistakenly released
(MRel). It can be considered a form of online learning since the
process may automatically start once a large enough set of these
samples becomes available.2 There are essentially two approaches
to perform this task: (i) Re-applying the learning process used in
the initial set-up considering as the training set the new samples as
well as all documents whose classification has been verified in the
past by the security officer. When the set becomes too large, many
strategies are possible, including, for example, the use of a sliding
time window for the past, or of a “least recently used” strategy. The
rules obtained through this process replace the previous ones. (ii)
Refining the current rules using only the new set of CRes, CRel,
MRes, and MRel documents. This is potentially a more efficient
approach, but details on how it can be done are very dependent on
the learning algorithm.

3.4 The Monitoring Tool

A critical system will have a huge number of documents flowing through
it, and specific strategies must be devised to monitor its behavior in order to
provide feedback to the learning module. The most trivial strategy consists
of periodically extracting samples and forwarding them to the security
officer, but it is likely to be unsatisfactory, since any significant frequency of
sampling involves an unsustainable amount of work for the security officer.

In our architecture we propose to introduce a monitoring tool that filters
the documents based on a “similarity” metric so to drastically reduce the
number of documents to be examined by the security officer. Note that in
principle the tool should be applied both to restricted documents to identify
potentially mistakenly restricted ones, and to released documents to identify
potentially mistakenly released ones. However, while mistakenly restricted
documents may have other ways to be recognized (e.g. feedback from users
whose requests have been refused) and are less critical, the problem is

2 Actually, considering the conservativeness property, even a single example of mistakenly
released document can be useful to refine the rules.

A Learning-Based Approach to Information Release Control 95

serious for released ones. Also, each restricted document is associated with
the release constraint (controlled items and matching rules) that has
prevented its release. When the security officer examines the document this
association can help recognizing the reason for the sensitivity and, in case of
a mistaken restriction may lead to drop or explicitly modify a rule. Released
documents on the other side have no attached information. Our focus is on
tools to detect potentially mistakenly released documents.

The monitoring tool considers “similarity” of released documents to
restricted ones based on the closeness of the document to the classification
threshold. This technique is still based on learning and details really depend
on the specific learning algorithm, but, intuitively, it works as follows:
essential features of documents to be restricted and to be released can be
represented by numerical values, and an n-dimensional boundary that
separates the two types of documents can be found. Then, a document being
examined has the same features computed and the closeness to this boundary
can be evaluated. Intuitively, documents that are close to the boundary are
similar both to restricted and released ones. The monitoring tool should rank
the documents according to their closeness to the boundaries, so that the
security officer can dynamically and asynchronously examine them.

The monitoring tool also uses other techniques to identify potential MRel
documents:

The use of ontologies and thesauri to substitute words or structures
with those appear in controlled items.
The explicit relaxation of some of the rules. For example, increase
distance (for distance based condition), decrease cardinality, allow
regular expression in the string literals, dropping rules by making
them always satisfied (e.g., indefinite order, infinite distance).

Intuitively, the application of these techniques, as well as of the learning
based one, should be guided by the goal of identifying a very small fraction
of the released documents. This is both required due to the limited resources
and, more importantly, by the implicit assumption that security officer
policies are quite conservative: it is more likely that few restricted
documents have been incorrectly released.

These components of the architecture operate asynchronously with
respect to the main Release Constraint System.

4. LEARNING FOR KEYWORD-BASED RELEASE
CONTROL CONSTRAINTS

As we mentioned in our discussion of the release control system
architecture (Section 3), learning for the purpose of obtaining specific

96 Integrity and Internal Control in Information Systems

release control constraints plays an essential role. We also mentioned that
domain experts or security officers should guide the learning by giving
relevant features that the learning process should focus on. In this section,
we study, in more detail, such a feature-based learning when keywords-
based release control constraints are considered.

In general, a feature-based learning requires that domain experts provide
certain domain knowledge to the task of learning. The domain knowledge
specifies what types of features are important for the task at hand. A learning
mechanism is to identify the specific features, within the given types, that
can be used to distinguish between different sets of documents.

We believe this approach is rather useful in practice. Indeed, in
information retrieval techniques, features of texts are routinely used in
deciding the relevance of documents. For example, text appearing in subject
line, or title, or abstract, may be more important than that appearing in the
body of a document. However, the features used in information retrieval are
usually “hard coded” into the information retrieval systems. This may be
reasonable for documents that do not have much of structure. When a
document is represented in XML, features of various types need to be
considered.

Often, specific domains of applications determine the features that are
important in XML documents. For example, in applications where
documents are structured as a hierarchical tree (e.g., parts contain chapters,
chapters contain sections, and section contain paragraphs), it is important to
talk about contents belonging to a particular level of the hierarchy (e.g., two
sections of the same chapter). Hence, it is important for the domain experts
to specify certain ‘generic’ types of features that are important for the
domain.

For release control, the above discussion about domain-specific feature
implies the following strategy for generating release control rules. Step 1, the
domain experts specify certain type of features that are important. Step 2, the
learning system discovers the conditions on the features for the release
control purpose. In the following, we illustrate this approach on keyword-
based release control.

4.1 Keyword-based features

In this approach, we assume the controlled items are simply keywords,
and a feature specifies the particular relationship based on particular ways of
appearance of these keywords in a document. The “particular ways” of
appearance is a type of feature given by a domain expert. We codify such
features by using the notion of a feature function.

A Learning-Based Approach to Information Release Control 97

Formally, we define a feature function as a function f such that, given an
XML document Doc and m nodes of Doc, it returns a tuple of n values, i.e.,

Note that the functions we define are on the nodes of XML documents.
We still call them keyword-based since we will use the appearance of
keywords to determine which nodes in the XML document to consider, as
we will show later.

Example 4. The following are three example features:
Distance feature: dist(Doc, where D is an integer
parameter, and dist(Doc, is defined as

and means the
path from the root of the XML document Doc to node This feature
extracts the distance between the two nodes when the document tree
is viewed as a graph.
Least common ancestor feature: lca(Doc, where T is the
tag of the node defined by Here T is a
string and is the path from the root of Doc to node This
feature extracts the tag value of the lowest (in terms of the node level)
common ancestor of the two given nodes.
Ordering: ocd(Doc, where R Here,
R is one of the relational comparison symbols. This feature gives the
order relationship between two nodes.

In the above examples, each feature function only returns one value (more
specifically, a tuple with one value in it).

The above feature functions can naturally be used for specifying
conditions on the appearance of keywords in XML documents. For example,
given two keywords and we want to talk about the appearance of
them within certain distance in an XML document. To do this, we only need
to specify a condition involving the distance of the nodes that “contain”
and respectively.

More formally, we define the notion of occurrences of keywords in an
XML document as follows: Given a set of keywords and a
document Doc, an m-occurrence of in Doc, where m is an integer no
greater than the number of elements in is a partial mapping occ from

to the nodes of Doc such that contains for each i=1,..., n if
is defined, and the number of with defined is exactly m.

Here, “contains” means either an attribute of has the value or the
value of is exactly To simplify the presentation, in the following,
we use “contains” to mean that the value of the node is exactly the keyword.

98 Integrity and Internal Control in Information Systems

Example 5. In the XML document in Figure 3, there are seven 2-
occurrences of {“A”, “B”, Note that in the tree representation of the
XML document in Figure 3, we only show the node values in the XML tree.
Other information of the XML documents is omitted. The labels within the
nodes (within the circle) are meant to identify the nodes for presentation
purpose, and are not part of the XML documents.

A partial occurrence occ of in Doc is said to be a maximum one if occ
is defined on the maximum number of keywords in among all such partial
occurrences.

Now we are ready to extract keyword-based features from XML
documents. Assume the feature function takes the form f(Doc,

Then the features extracted from the document via function
f is the set of n-tuples given as follows: is one such n-tuple if and
only if there exists an m-occurrence occ of in Doc such that f(Doc,

A Learning-Based Approach to Information Release Control 99

Example 6. Given the distance feature function and the set of keywords
the set of features extracted from the XML document in

Figure 3 is {(2)}. The distance feature of the same keywords extracted from
the XML document in Figure 4 is {(2), (4)}.

Together with a set of keywords (used as controlled items), a Boolean
condition based on the features extracted via feature functions can be used as
a release control constraint. More specifically, given a document, we extract
the features using the feature functions, and then test the Boolean condition
on the features. If anyone of the specific features satisfies the condition, we
should block the release of the document.

Example 7. Suppose a release control constraint specifies the distance
between keywords and to be less than 3. Then, none of the
documents in Figures 3&4 can be released since each one contains at least
one occurrence with distance 2. Suppose another release control constraint
specifies the lowest common ancestor of keywords and to have
value “B”. Then the document in Figure 3 cannot be released while that in
Figure 4 can be.

4.2 Learning for keyword-based release control
constraints

A security officer can certainly set up a set of release control constraints
by giving a set of keywords and a condition on the keyword-based features
(extracted from a set of feature functions). In a practical system, however, it
is more likely that system need to learn from a set of examples to establish
the specific release control constraints. In this subsection, we will show how
this may be done for keyword-based release control constraints.

As mentioned earlier, we assume that (1) a set of feature extraction
functions are set up by domain experts as the likely types of features to be
concerned by the release control constraints; (2) the security officer gives a
collection of keyword sets to be controlled, and (3) a set of documents is
provided as learning samples (i.e., the documents either cleared for release
or restricted by the security officer). Given (1), (2) and (3) above, the task of
learning is to give a set of release control constraints by specifying
conditions on the feature values extracted by the feature functions. We now
outline a method to do this. The key issue is to convert this learning problem
to one where traditional learning algorithms can apply.

Assume is the set of keywords we are concerned with. For each feature
function f(Doc, we create the following attributes (as
in a relational database schema): For each i, i=1, ..., n, and each subset

100 Integrity and Internal Control in Information Systems

(of size m) of we get an attribute name We use a
relational schema of all such attributes. Furthermore, we add a document ID
as an extra attribute to the relational schema.

dist[D, is the same as dist[D, we can omit one if we already
have the other. Another example is that if we know ocd[R, then we
implicitly know ocd[R, and we can omit one of these two attributes.
From this reasoning, we can reduce the number of attributes in the example
to nine (in addition to the document ID attribute).

By using the training samples, we set up feature tuples in the above
relational schema as follows. Given an XML document Doc and a maximum
occurrence occ of in Doc, we generate a tuple as follows: For attribute

it gets a null value if the number of keywords that occ is
defined on is less than m; otherwise, the attribute gets the corresponding
value from

Example 9. Consider keyword set and the XML document
in Figure 3. Consider the occurrence in the document such that is
mapped to to and to Then the value for dist[D, is 2,
while the value for ocd[R, is “<”.

In the above method, each occurrence of a set of keywords in an XML
document sets up a feature tuple in the given relational schema.

Given a set of documents and a set of keywords, we can set up a set of
feature tuples for each occurrence of keywords in each document. When we
have a set of documents that need to be restricted (determined by the security
officer), then the tuples obtained by that document form a set of “restricted”
feature tuples. When we have a set of documents that can be released, the
tuples obtained by that document form a set of “releasing” feature tuples.
Note, however, that there is an apparent difference in the semantics of the

Example 8. Consider the keyword set and the three features
given in Example 4. Then we have the following 18 attributes (in addition to
the document ID attribute):

Of course, certain relationships between the parameters may lead to a
reduction of the number of attributes. For example, since the value for

A Learning-Based Approach to Information Release Control 101

feature tuples in the above two sets. In the “restricted” set of feature tuples, a
document needs to be restricted even if only one tuple (among all those that
belong to the same document) is “dangerous”.

Example 10. Suppose we want to restrict a document from being released
when the keywords and appear within distance 3. In this case,
both XML documents in Figures 3&4 should be restricted. However, not all
the distance features of and in Figure 4, namely 2 and 4, satisfy
the restricting constraint.

By reducing the learning task to two sets of feature tuples as given above,
we can now apply any traditional learning algorithm [Mit97, Qui96]. In
general, the learning algorithm will produce a classification condition on the
parameter values. That is, given a feature tuple in the given relational
schema, the classification condition gives either restrict or release. For each
document, if any of its feature tuple results in the value restrict, then the
document should be restricted from release. This classification condition will
be used as the matching rule in a release control constraint and the
corresponding keywords will be the controlled items.

5. RELATED WORK

The concept of information release control has been explicitly introduced
recently in [Wie00, Mon01, RW01], but a general formal framework does
not currently exist.

Some form of control over outgoing data has been performed since a long
time in different contexts, but it has been mostly based on basic filtering
tools, and heuristics have been directly coded into programs. An attempt to
specify rules in a high level language is represented by Felt [Swa94] which,
among its features, provides language statements to identify words, or parts
of words in documents and to drop or substitute these words. Restricting
rules are then compiled into a program for automatic matching. Despite we
are not aware of any structured formal framework for release control as the
one we are proposing, we should mention the very active research field of
information filtering which also includes publication/subscription systems.

An information filtering system is an information system designed for
unstructured or semistructured data [BC92], as opposed to typical database
applications that work with highly structured data. With respect to the
general information retrieval paradigm, in which a large body of data has to
be searched against a specific user search criteria, in information filtering it
is usually the case that there are a large number of specifications about

102 Integrity and Internal Control in Information Systems

information needs of a large number of people and/or tasks, and they all
have to be matched against the same text data, in most cases dynamically
produced and distributed by some data sources. Publication/subscription
systems (see, e.g., [FJL+01] and [ASS+99]) are an instance of information
filtering applications. For example, consider the task of sending to each user
subscribing to a news service the subset of the daily news specified in his/her
profile. The analogy with our work is quite clear: the set of release
constraints can be considered a set of subscriptions, and any matching
against the outgoing data leads to a specific action, which usually is
preventing the release of the data. Despite this analogy, our goal is to deal
with a more heterogeneous set of data that includes also structured data
resulting from database queries.

Some work has been done specifically on XML documents filtering for
publication/subscription systems [AF00, DFFT02, PFJ+01]. We are
considering the algorithms and techniques proposed in this area for their
adaptation to implement the matching module of our architecture. However,
it is still not clear if the algorithms can be adapted to our language for
matching rules and if they are compatible with the specific requirements that
a security application imposes.

Alternative approaches for the matching module are represented by
continuous query techniques [CCC+02, CDTW00, MSHR02].

Our work is also related to what is commonly known as Internet filtering
software. Filtering or blocking software restricts access to Internet content
through a variety of means. It may scan a Web site’s content based on
keywords, phrases or strings of text. It may also restrict access based on the
source of the information or through a subjective ratings system assigned by
an anonymous third party. Mostly, this software has been focused on
blocking pornographic content, and it has not been considered very
successful until now, either for under-blocking or over-blocking Internet
content. This is partly due to the way blocking criteria have been devised
and partly from the inherent complexity of the task. Despite some aspects are
very related, we are considering several issues about the treatment of
structured and semi-structured data while the data considered by these
systems is usually unstructured, or the structure it has it is totally unknown.
Regarding our learning-based approach, the general techniques to learn the
release constraints from a training set of positive and negative examples are
well known [Qui96, Mit97]. Learning has been extensively applied in text
categorization and text filtering [Seb02], but efforts to study and apply
learning techniques for the categorization and filtering of XML documents
have just recently started and pose many open questions. We plan to
investigate further the problem of learning release constraints and of refining

A Learning-Based Approach to Information Release Control 103

the constraints considering, in particular, recent statistical learning
approaches [CST00].

Regarding our intention of integrating keyword-based techniques with
text categorization algorithms, we will take into account the results of the
Genoa Technology Integration Experiment [Mon01] performed as part of a
DARPA project on boundary control. In the experiment keyword-based and
NLP (Natural Language Processing) techniques were compared in their
accuracy on a concrete experimental scenario; the experiment involved a
corpus of heterogeneous documents that had to be controlled for the release
of potentially sensitive information for terrorist attacks. (The scenario
referred in particular to the Aum Shinrikyo Japanese cult that bombed the
Japanese metro system with an anthrax pathogen.)

Finally, a large amount of work has been done in the past decade on word
sense disambiguation (see, e.g., [Les86]), and ontology-based reasoning
(see, e.g., [GL02]) which are important issues for any content-based
document management application and, in particular, for a more accurate
release control. An example of use of word sense disambiguation and natural
language processing in boundary control, limited to text documents, is the
Genoa Technology Integration Experiment [Mon01] performed as part of a
DARPA project on boundary control. In our case ontology-based reasoning
is used to add relevant rules and/or feature functions over XML documents.

6. CONCLUSION

In this paper, we presented an architecture for controlled information
release. We emphasized on the automated learning (for release control
constraints) in the whole infrastructure for release control. We formalized
the release control constraints and presented a learning strategy for keyword-
based release control constraints.

The above release control system can be useful in a traditional data
system, such as database system, FTP directories, and web sites. More recent
applications, such as web services, can also benefit from release control.
Web services [New02] are an emerging paradigm for internet computing
heavily based on XML and on the SOAP protocol. Web services present to
the network a standard way of interfacing with back-end software systems,
such as DBMS, .NET, J2EE, CORBA objects, adapters to ERP packages,
and others. While standards are currently under definition for authentication
and authorization, as well as for encryption, controlling the information that
is released through a web service to the general internet or to a restricted
subset of cooperating processes will be one of the major issues that will also
probably affect the success of the new paradigm. While the major objectives

104 Integrity and Internal Control in Information Systems

of the proposed project are not to develop a specific technology for web
services, we envision a very interesting integration of the technologies that
may emerge from our results into a web service architecture.

Content-based firewall is another interesting application of our release
control system. Current firewall systems are mostly based on selecting
incoming and outgoing packets based on source/destination IP and port
numbers. Filtering software based on dirty-word checking or virus
identification in some cases have been integrated. The content analysis is
however quite primitive both in the definition of the filtering criteria and in
the matching algorithms. We advocate an approach that incorporates the
release control into firewall systems to allow more advanced monitoring on
the contents that are released through the firewall.

ACKNOWLEDGEMENTS

This work was supported by the NSF under grant IIS-0242237. The
work of Bettini was also partly supported by Italian MIUR (FIRB “Web-
Minds” project). The work of Wang was also partly supported by NSF
Career Award 9875114. The authors would like to thank Nicolò Cesa-
Bianchi of the University of Milan for insightful discussions on
computational learning techniques.

REFERENCES

[AF00] Mehmet Altinel and Michael J. Franklin. Efficient filtering of XML documents for
selective dissemination of information. In Proceedings of 26th International Conference
on Very Large Data Bases, pages 53—64, USA, 2000.

[ASS+99] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and Tushar
D. Chandra. Matching events in a content-based subscription system. In Proceedings of
the Eighteenth Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 53—62, May 1999.

[BC92] N. J. Belkin and W. B. Croft. Information Filtering and Information Retrieval: Two
Sides of the Same Coin? Communications of the ACM, 35(12):29—38, December 1992.

[CCC+02] Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring
streams – A new class of data management applications. In Proceedings of the 28th
International Conference on Very Large DataBases (VLDB), pages 215—226, 2002.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: a
scalable continuous query system for Internet databases. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data: May 16—18, 2000, Dallas,
Texas, pages 379—390, 2000.

[CST00] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Machines (and
other kernel-based learning methods), Cambridge University Press, UK, 2000.

A Learning-Based Approach to Information Release Control 105

[DFFT02] Yanlei Diao, Peter Fischer, Michael Franklin, and Raymond To. Yfilter: Efficient
and scalable filtering of xml documents. In Proceedings of the International Conference
on Data Engineering (ICDE), pages 341—342, 2002.

[FJL+01] Francoise Fabret, H. Arno Jacobsen, Francois Llirbat, Joao Pereira, Kenneth A.
Ross, and Dennis Shasha. Filtering algorithms and implementation for very fast
Publish/Subscribe systems. In Proceedings of ACM International Conference on
Management of Data (SIGMOD), pages 115—126, 2001.

[GL02] Michael Gruninger and Jintae Lee. Ontology: applications and design.
Communications of the ACM, 45(2):39—41, February 2002.

[JSSS01] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian.
Flexible support for multiple access control policies. ACM Transactions on Database
Systems, 26(2):214—260, June 2001.

[Les86] Michael E. Lesk. Automated sense disambiguation using machine-readable
dictionaries: How to tell a pinecone from an ice cream cone. In Proceedings of the
SIGDOC Conference, 1986.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[Mon01] Eric Monteith. Genoa TIE, advanced boundary controller experiment. In 17th

Annual Computer Security Applications Conference. ACM, 2001.
[MSHR02] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar Raman.

Continuously adaptive continuous queries over streams. In Proceedings of the 2002 ACM
SIGMOD international conference on Management of data (SIGMOD), pages 49—60,
2002.

[New02] Eric Newcomer. Understanding Web Services. Addison Wesley, 2002.
[PFJ+01] Joao Pereira, Francoise Fabret, H. Arno Jacobsen, Francois Llirbat, and Dennis

Shasha. Webfilter: A high-throughput XML-based publish and subscribe system. In
Proceedings of the 27th International Conference on Very Large Data Bases (VLDB),
pages 723—725, September 2001.

[Qui96] J. R. Quinlan. Learning decision tree classifiers. ACM Computing Surveys,
28(1):71—72, March 1996.

[RW01] Arnon Rosenthal and Gio Wiederhold. Document release versus data access
controls: Two sides of a coin? In Proceedings of the Tenth International Conference on
Information and Knowledge Management (CIKM), pages 544—546, November 5—10,
2001.

[Seb02] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
Computing Surveys, 34(1):1—47, 2002.

[Swa94] V. Swarup. Automatic generation of high assurance security guard filters. In Proc.
NIST-NCSC National Computer Security Conference, pages 123—141, 1994.

[Wie00] Gio Wiederhold. Protecting information when access is granted for collaboration. In
Proc. of Data and Application Security, Development and Directions, IFIP TC11/ WG11.3
Fourteenth Annual Working Conference on Database Security, pages 1—14, 2000,

Information Security Governance using ISO 17799
and COBIT

Elmari Pretorius

KPMG, Rand Afrikaans University – Johannesburg, South Africa

Prof. Basie von Solms

Rand Afrikaans University – Johannesburg, South Africa

Abstract: This paper discusses a project in which a mapping between ISO 17799 and
COBIT’s section DS 5 is being created. The purpose of this mapping is to
synchronize these two documents to a certain extent, to make it easier to use
both in an integrated way for information security governance and
management.

Key words: ISO 17799, COBIT, Information Security Management, Information Security
Governance

1. INTRODUCTION

In the last few years, Information Security had been moving very strongly
towards the use of documents and guidelines based on so called Best
Practices, Open Standards and Codes of Practice for governing and
managing information security.

This can be seen as a very positive move, as it shows that a certain amount
of maturity is being established in these areas.

108 Integrity and Internal Control in Information Systems

Two documents that are playing an increasing role in this aspect are the
ISO/IEC 17799 Code of Practice for Information Security Management, and
Control Objectives for Information and related Technology, better known as
COBIT. Section DS 5 of COBIT relates specifically to information security.

In many cases ISO 17799 is being used within IT departments as a guide for
information security management, while COBIT DS 5 is used more by
auditors for information security auditing. Furthermore, COBIT is raising its
profile as an IT governance tool, and not only as an auditing tool.

In its role as an IT governance tool, COBIT can therefore be seen as being
used on a strategic level, indicating the ‘what’ as far as governance is
concerned. On the other hand, ISO 17799 can be seen more as being used on
a lower level, specifying the ‘how’ as far as information security
management is concerned.

Because of the wider use of these 2 documents (ISO 17799 and COBIT
DS5), in many cases a need for synchronization between these two
documents arise, in the sense that a mapping between the detailed control
objectives of DS5 and the counter measures introduced by 17799, are
beneficial.

This makes it easier in using COBIT DS5 for Information Security
Governance and auditing, and implementing lower level counter measures
based on ISO 17799.

Such a mapping will indicate which DS 5 detailed control objectives are
mapped to which ISO 17799 controls, and vice versa.

Another angle that can prove to be beneficial for Information Security
management and governance is a mapping of a company’s Information
Security policy to either ISO 17799 or COBIT DS5, or both. Such a
mapping will indicate “compliance” areas within the policy document, and
also highlight the “non-compliance” areas, and assist with the alignment of a
company’s IS policy to the ISO and COBIT frameworks.

This project will result in a database containing the mapping of ISO 17799
to COBIT, COBIT to ISO 17799, and a test case of a company Information
Security mapping to the ISO and COBIT documents. A user interface will
allow access from either the ISO 17799 side, or from the COBIT DS 5 side.

The purpose of this paper is to discuss these mappings, and to give an
example of some of the results.

Information security governance using ISO 17799 and Cobit 109

2. WHAT IS ISO 17799

ISO 17799 can be regarded as a comprehensive catalogue of “the best things
to do in Information Security”. Because it is a code, it is made up of best
practice recommendations, which can be applied to fit each organisation’s
specific requirements.

Since ISO 17799 sets out the requirements for an Information Security
Management System (ISMS), it helps to identify, reduce and manage the
wide spectrum of threats to which information is commonly subjected.

ISO 17799 is organised into ten major domains, each covering a different
topic or area. These domains are:

Security policy;

Organising information security;

Asset classification;

Personnel security;

Physical and environmental security;

Communications and operations management;

Access control;

Systems development and maintenance;

Business Continuity Management; and

Compliance.

Each of these domains is divided into security control areas that can be
applied to improve an organisation’s information security. Each control area
then has its own objective, and one or more controls to assist in achieving
this objective.

ISO 17799’s biggest exposure is to the IS manager. IT departments often
use it as a foundation to build its Information security environment on.

110 Integrity and Internal Control in Information Systems

3. WHAT IS COBIT?

The keystone of the COBIT framework is that control in IT is approached by
looking at information as being the result of the combined application of IT
related resources that need to be managed by IT processes, and by looking at
information that is needed to support the business objectives or
requirements.

COBIT presents IT activities in a manageable and logical structure and
documents good practice across this structure. COBIT’s good practices will
help optimise information investments and provide a benchmark to be
measured against when things go wrong.

COBIT’s structure groups IT process into four broad groups:

1

2

3

4

Planning and organisation;

Acquisition and Implementation;

Delivery and Support; and

Monitoring.

It then defines high-level Business control objectives for these processes,
and supports these with Detailed control objectives.

COBIT’s biggest exposure is to the IS auditor (IA). Management and IA’s
often use it as a foundation to build IT audits on.

4. INFORMATION SECURITY POLICIES

The information security policy document is considered to be a control that
is common best practice in any information security environment. This
policy as a control, applies to most organisations and in most environments,
and can provide a good starting point for implementing effective and
efficient information security management.

An information security policy provides management with direction and
support for information security management in accordance with the
organisation’s business objectives and requirements, and the relevant
regulatory and legislative information.

Information security governance using ISO 17799 and Cobit 111

To be effective an information security policy should be effectively
communicated to all relevant personnel, and guidance on compliance to the
policy should be provided.

It is crucial for an organisation to adopt a structured framework for policy
definition, using a process that enables policies to be derived from the
organisation’s business requirements.

Failure to develop a meaningful information security policy, or developing a
policy that does not cover all risks posed to the organisation in the
information security environment, could expose the organisation to
potentially catastrophic breaches. From this it is important to ensure that all
risk areas within the information security environment, applicable to the
specific organisation, is mitigated by an effective and comprehensive
information security policy.

5. USING THE MAPPING

It is envisaged that the resultant database (mapping) can be used for different
purposes.

5.1 Suppose the IT Department of Company X has based their information
security policy and counter measures on ISO 17799. The Information
Security Manager now wants to see which DS 5 detailed control objectives
are covered by the ISO 17799 counter measures he/she had installed or
implemented. The mapping will immediately provide an answer.

5.2 An internal auditor of Company X wants to audit the company’s IT
Department’s information security using DS 5. The auditor can now, using
the mapping, see which of the detailed control objectives specified in DS 5
are implemented through ISO 17799, used by the Department.

Both these uses basically allow IT people, using ISO 17799, and auditors,
using DS 5, to ‘speak the same language’ and compare apples with apples.

Maybe it will even allow IT people and internal auditors to become friends!

112 Integrity and Internal Control in Information Systems

6. MAPPING EXAMPLE: ACCESS CONTROL MAP

The following is an example of the proposed mapping. This example covers
Access control as an objective, and was mapped from ISO to COBIT.

6.1 Objectives covered by both ISO and COBIT

6.1.1 Business requirements for access control (Section 10.1 of ISO
17799)

ISO objective: Control access to information. Access to information and
business process should be controlled on the basis of business and security
req.

ISO control: 10.1.1 ACCESS CONTROL POLICY: Business
requirements for access control should be defined and documented.

Link to COBIT control objective: 5.2 Identification, Authentication
and Access

Motivation for link between ISO and COBIT: Both ISO’s and
COBIT’s controls and objectives for access control state that specific
procedures need to be in place and that these procedures must be
documented, in order to keep access mechanisms effective.

6.2 Objectives only covered by ISO

6.2.1 Network access control (Section 10.4 of ISO 17799)

ISO objective: Protection of networked services. Access to both internal
and external networked services should be controlled

ISO control: 10.4.8 NETWORK ROUTING CONTROL: For shared
networks, routing controls should be implemented to ensure that computer
connections and information flows do not breach the access control policy of
the business applications.

Link to COBIT control objective: No apparent link to COBIT

Information security governance using ISO 17799 and Cobit 113

Motivation for link between ISO and COBIT: COBIT deals with access
control in a broad manner, and although it seems that it’s access control
objectives cover all areas of access, it does not have a control objective
specific to network access control.

6.3 Objectives only covered by COBIT

6.3.1 Firewall architecture and connections with public networks

COBIT objective: Adequate firewalls should be operative to protect
against denial of service attacks and any unauthorised access to internal
resources

COBIT control: Firewalls

Link to ISO control objective: No apparent link to ISO
Motivation for above link between ISO and COBIT: ISO doesn’t have

a specific objective referring to firewalls and the use of it, while COBIT has
a specific control objective dedicated only to firewalls.

7. CONCLUSION

Besides synchronising the two frameworks, the use of the mapping will also
reduce confusion and deviations that exist between IT and Audit. The fact
that the mapping can provide IT and Audit with the links at the touch of a
button, means that a lot of time can be saved when auditing and setting up
the Information Security environment. In addition the “IS policy alignment
tool” can prove to be beneficial in the drafting and reviewing of a company’s
policy with regards to the ISO 17799 and COBIT DS5 frameworks.

REFERENCES

ISO / IEC 17799:“Code of Practice for Information Security Management”
COBIT - Audit Guidelines, edition

1.
2.

TRACING ATTACKS AND RESTORING
INTEGRITY WITH LASCAR

Alexandre Aellig, Philippe Oechslin
LASEC EPFL

Abstract: We present a novel method to trace the propagation of intrusions or malicious
code in networked systems. Our solution is aimed at large numbers of loosely
managed workstations typical of a research environment as found in CERN.
The system tags events which have a potential to become harmful. On a given
machine all processes that results from the tagged event are marked with the
same tag and the tag is carried on to others machines if a tagged process
establishes a connection. Tag creation logs are stored in a central database.
When an intrusion is detected at a later time, all machines and processes that
may have lost their integrity due to this incident can easily be found. This
leads to a quick and effective restoration of the system. Our implementation of
the system is designed to incur very little overhead on the machines and
integrates easily with many flavors of the Linux operating system on any type
of hardware.

Key words: Recovery, Intrusion Propagation, Intrusion Detection

1. INTRODUCTION

Undesired intrusions are always a problem but intrusions in large groups
of workstations are particularly serious. This is especially true if the
workstations are managed by their users or many groups rather than by a
single central entity. An intrusion showing up at a given workstation may be
the result of the compromise of various intermediate machines. All implied
machines may not show the same symptoms with some compromised
machines not showing any symptoms at all. Cleaning up all machines that
show symptoms is thus not enough. Malicious code may still be lingering

116 Integrity and Internal Control in Information Systems

deep in a machine and strike again when all other machines have been
restored. Restoring all systems is not an option when there are too many
machines or too many managers.

2. THE LARGE SCALE ATTACK RECORDER
(LASCAR)

The large scale attack recorder provides a mean to find out exactly which
machines have been hit by a given attack. LASCAR is divided into three
parts, the recorder, the database and the analysis tool. The recorder consists
in a module loaded on every hosts of the workstation cluster. This module
tracks all the events in each workstation and logs the needed information to
the central integrity database. Two types of events are logged by the
recorder: process events and network events. The analysis tool parses all the
events in the integrity database and reconstructs all propagation paths within
and between the workstations. Once a potential integrity breach has been
detected, the analysis tool is able to trace back the origin and the evolution of
the breach in the cluster protected by LASCAR. In particular, it can
determine which are the corrupted machines in the cluster and visualize the
path and the propagation of the attack.

Tracing attacks and restoring integrity with LASCAR 117

2.1 Existing Work

Our approach of recording the propagation of suspicious activities across
processes and workstation is quite unique. Previous work that is related to
our approach includes:

The EMERALD system [2] is an advanced intrusion detection
system aimed at large scale networks. It is composed of classical
IDS systems distributed on all elements of the network and of an
intelligent method to merge and correlate all information
gathered. It is a heavy system in the sense that complex statistics
have to be gathered in many places of the network and it suffers
from typical shortcoming of IDS, namely that they generate false
alarms and that they are not able to detect new classes of attacks
that were not imagined by their conceivers. Our contribution is
much more lightweight and humble, in the sense that we do not
actually detect attacks but we gather evidence for later damage
assessment and integrity restoration when some other system or
person has detected an attack.
For database security it has been proposed (e.g. in [1]) to tag data
in order to indicate whether it is correct, damaged to some extend
or even unsafe to use. The tags propagate when datasets are
combined in calculations. The advantage of the method is similar
to our case: In case of loss of integrity only the damaged data
needs to be reconstructed rather than the whole database.
In [3] the propagation of intrusions across multiple workstations
is formally stuidied. The results of the paper could allow us to
find out the intrinsic properties of an intrusion by matching our
data to the mathematical models.

2.2 Tagging inside a workstation

Inside every machines of the LASCAR cluster, the recorder monitors
network and processes activities. Using the Linux Kernel modules (LKM)
ability to intercept system calls, it can log every incoming or outgoing
connection on the machine and every new listening socket or session id
(SID) change.

When the machine receives an incoming connection, LASCAR checks
whether this connection is considered as trusted or not. In the latter case, the
recorder logs the event and tag the process handling this connection with a
“suspicious” flag. This flag indicates that the corresponding process is

118 Integrity and Internal Control in Information Systems

launched by an untrusted connection and thus can be potentially dangerous
for the machine integrity. All child processes on the machine will
automatically inherit this flag. In order to limit the volume of information
logged, the recorder does not log every new process that inherits a
“suspicious” flag but only processes that are created within a new session. A
new session is typically created when a user launches a process in the
background or when multiple interactive sessions are run in different
windows. Lastly, the recorder logs all outgoing connections which are
established by flagged processes.

A suspicious activity (and a potential loss of integrity) can thus be traced
on the machine from the point where it entered the system up to all points
where connections were made to other machines.

2.3 Tagging on the network

The previous method can be generalized to the entire LASCAR cluster.
However in this case, the “suspicious” flag must now be remotely
transmitted amongst machines of the LASCAR cluster.

The simplest way of propagating the flag is to set a bit in the IP header of
the packets transmitted by a flagged process. This could for example be one
of the Type Of Service (TOS) bits which are not usually used within a local
network. (An alternative would be the “evil bit” suggested in [4] published
on april fools day this year). The best way of using such a bit would be to
use the default value of the bit for the flagged processes and to use a non-
default value for all other processes. Thus, packets providing from machines
not running the LASCAR recorder would automatically appear as
suspicious. Since connections from outside the cluster are considered
suspicious anyway and administrator privileges are required to set IP header
bits, only machines within the cluster where the administrator account has
been compromised could avoid logging by resetting the bit. A more secure
approach would be to use a set of bits to carry the result of a cryptographic
calculation. For example, the calculation of the IP packet ID field (16 bits)
could include a secret key owned by the LASCAR recorder. Finally, to
prevent manipulation of the flag in transit or creation of spoofed packets, the
IPsec protocol could be used to authenticate all packets in a
cryptographically secure way.

In summary, an incoming connection will be logged by the recorder only
if it comes from a machine outside the LASCAR cluster or if its IP header
indicate that the connection was generated by a process previously marked
as “suspicious”. All connections internal to the cluster and originating from
clean processes won’t be logged by LASCAR.

Tracing attacks and restoring integrity with LASCAR 119

3. EXPERIMENTAL RESULTS

To illustrate the behavior of LASCAR we have chosen two scenarios that
have been recorded by our implementation of LASCAR: a normal user
activity and a computer worm.

3.1 Normal user activity

Figure 2 shows an output of LASCAR analyzer generated from the
integrity database. It shows the connection of a user to the LASCAR cluster
composed by lasecpc12, lasecpc15 and lasecpc16. The user launches an
xterm window and from that window he connects to two other machines,
maybe to launch two calculations. In the original session he starts the lynx
browser to access a web site on the Internet (198.133.219.25)

Lasecpc12 receives the incoming ssh connection from an outside host at
the IP address 128.178.73.68. It logs the connection attempt and its two
subsequent sessions: xterm and lynx. We see that each session then
connects to others machines.

120 Integrity and Internal Control in Information Systems

Lasecpc15 and lasecpc16 consider the incoming ssh connections as
untrusted, even though they come from a machine inside the cluster. Indeed,
connections were launched by sessions that were carrying the “suspicious”
flag.

3.2 Computer worm behavior

The second example illustrates the evolution of a computer worm inside
a cluster where machines are exposed to a common vulnerability of the
secure shell program (SSH) on port 22. In this case, the worm enters through
an external connection and corrupts a first machine of the cluster. It then
tries to initiate each time two outgoing connections to replicate itself To
simulate a work behavior we have manually connected a host by ssh and
recursively opened two new sessions to random hosts from every ssh
session.

With the help of LASCAR, we are able to trace back the evolution of the
worm replication inside the cluster. In particular, we see that machines
lasecpc15 and lasecpc16 are infected twice. When the attack has been
detected, the LASCAR analyzer provides an exhaustive description of the
attack path and scope with the id of the machines involved. This allows
cluster administrators to quarantine only the corrupted machines of the
cluster. In particular, the analysis of the propagation path may identify
machines that have been infected but are not showing any symptoms of
infection.

Tracing attacks and restoring integrity with LASCAR 121

4. IMPLEMENTATION DETAILS

LASCAR has been implemented on Linux using Linux Kernel Modules
(LKM). These modules allow administrators to load and unload features on
the fly inside the operating system kernel. LKM was the ideal solution for
LASCAR since it combines the power and speed of being directly integrated
into the kernel together with the flexibility of an independent program.
Similar solutions are available on others UNIX systems.

The first implementation of the recorder was made specifically for the
CERN network as a connection logger. After further research it has evolved
to the actual LASCAR. Two functionalities were needed in order to

122 Integrity and Internal Control in Information Systems

implement the recorder: interception and modification of the connections
and tagging of processes.

When a network event occurs or a new session is created, the
corresponding system call is intercepted and LASCAR output is generated
accordingly. The output can be customized, but it contains at least minimal
security information such as connection IP addresses, ports numbers and
processes info (session id, process id, user id) for the LASCAR analyzer. In
the case of a process, we set a “suspicious” flag on the process called by the
incoming connection. Every child process then automatically inherits this
flag.

All the logs generated by the recorder are forwarded by the logging
daemon to a remote integrity database, which centralize the logs of the
LASCAR cluster needed by the analyzer to generate graphs of the LASCAR
reports as shown in section 3. The analyzer currently uses timestamps to link
the events between different machines (e.g. an outgoing connection and the
matching incoming connection on another machine), since the concept of
flagging trough TOS bits has not yet been implemented. Additionally, it has
the ability, as a forensic tool, to regenerate graphs of a whole attack based on
several criteria or to perform some basic intrusion detection using a blacklist.

5. DISCUSSION: LASCAR AND INTRUSION
DETECTION

LASCAR is not an intrusion detection tool by itself. Its main function is
to record traces of potential intrusions. Still, it can provide basic intrusion
detection capabilities.

5.1 The suspicion criteria or identifying the potential
troublemakers:

LASCAR only tags potentially harmful connections and processes. To do
so it must have some criteria to identify potential harmfulness. In our case
the criteria simply is the fact that a connection origins in a machine outside
the cluster. This reflects the belief that the malicious activity that we want to
trace enters the cluster from the internet, either because an attacker is
targeting the cluster or because the attack propagates automatically and
arbitrarily hits the cluster. If desired, the tagging criteria could be extended
to include any process that acquires root privileges. More complex criteria
could be made available by running a complete intrusion detection system on
each workstation and using its output. The important point about our
approach is that there is no need for such a complicated way of finding

Tracing attacks and restoring integrity with LASCAR 123

potentially harmful connections or processes. Indeed, we could even try to
tag and log all connections and processes. The use of the suspicion criteria
only serves to relieve the load on workstations and the main database.

5.2 The detection criteria or finding out when you have
been hit:

Tagging and logging is only one part of LASCAR. The other part is the
analysis of the gathered information in order to identify the machines that
have lost integrity. To start an analysis we first need to know that we have
been attacked. The most evident way of detecting an attack is when its first
symptoms become visible (e.g. data loss, deterioration of service). Of course
it would be more useful to detect an attack when it first appears. This is the
goal of all intrusion detection systems. Alas, there is no way yet to build an
IDS which will catch intrusions early and will not create a large number of
false alarms. In a large setting like ours the amount of false alarms could be
prohibitive. This is why we resort to logging suspicious activity such that
when an attack is later confirmed we can go back and quickly get rid of its
effects. Still, we have built a very pragmatic IDS capability into LASCAR.
A criteria for attack detection used at CERN is a blacklist of IP addresses of
servers hosting malicious code. Although not every attack will generate a
connection to these addresses, any process that connects to the addresses of
the black list must be malicious. Since connections made by potentially
harmful processes are logged by LASCAR anyway, attempts to connect to
addresses from the black list can be signaled with no overhead.

5.3 Using LASCAR as an IDS tool by itself:

The graphs that can be created from data gathered by LASCAR describe
the propagation behavior of potentially harmful code or actions. This data
contains metrics which are closely related to malicious activity and which
could lead to an IDS system that would not have the high false alarm rates of
other known systems. Interesting metrics would be the maximum depth in a
propagation tree (how many times a suspicious activity has jumped to a next
workstation), the maximum out degree of nodes in the trees (e.g. how many
different workstations an activity has jumped to from a single workstation)
or simply the number of nodes in a graph (how many machines at all have
been hosts to the same activity).

124 Integrity and Internal Control in Information Systems

6. CONCLUSIONS

Using a combination of process and connection tagging we have been
able to create a system that can record the propagation of an activity through
a cluster of machine and trace back all machines and processes that
contributed to a loss of integrity. This information makes it possible to
completely retrace the propagation of an attack and to eradicate
compromised malicious code and compromised systems without having to
restore large numbers of unconcerned hosts. Our system is particularly well
suited for large networks of loosely managed systems as found in academic
or research environments.

REFERENCES

1.

2.

3.

4.

P. Ammann, S. Jajodia, C. D. McCollum, and B. T. Blaustein,
“Surviving information warfare attacks on databases,” Proc. IEEE
Symp. on Research in Security and Privacy, Oakland, Calif., May
1997, pages 31-42.
Peter G. Neumann and Phillip A. Porras. Experience with
EMERALD to date. In Proceedings of the 1st Workshop on
Intrusion Detection and Network Monitoring. 1999, USENIX,
pages 73–80.
Sotiris Nikoletseas, Grigorios Prasinos, Paul G. Spirakis, and
Christos D. Zaroliagis. Attack propagation in networks. In ACM
Symposium on Parallel Algorithms and Architectures, pages 67–
76, 2001.
S. Bellovin, The Security Flag in the IPv4 Header, RFC 3514,
Internet Engineering Task Force, April 2003

A SECURE MULTI-SITED VERSION CONTROL
SYSTEM

Indrajit Ray and Junxing Zhang
Computer Science Department, Colorado State University

The software development process is increasingly taking the form of a
collaborative effort among several teams which are hosted at widely dispersed
sites networked over the Internet. In this model of software development,
multi-sited version control systems play a very important role to maintain the
revision history of software and facilitate software evolution. In this paper we
look into the security requirements of such multi-sited version control systems.
We identify the security deficiencies in current systems and propose a new
framework for secure multi-sited version control.

A version control system is used to maintain the revision history of
software and facilitate software evolution. When software evolves it
produces many revisions. A version control system stores these revisions,
organizes them into meaningful structures that conform to software
development principles, and provide operations to work with the different
versions so that the integrity of the different versions of the software is
independently ensured. A multi-sited version control (MVC) system is a
version control system that operates at multiple sites to coordinate the
software development effort of several teams that are collaborating with
each other to develop a single piece of software. Even at the same
geographical location such a system is useful to allow independent groups to
work with the same development data, to enable interoperation in a
heterogeneous environment, or to be a backup mechanism.

Abstract:

Key words: revision control, versions, software development, collaboration, integrity

1. INTRODUCTION

Version control systems were being used even when software
development was primarily an individual effort. During that time the security
of such systems was not of a major concern. This was because the data in the
system was not shared. Later when version control systems became “team-
ware” to share data among team members, security became somewhat more
important. Still it was not considerably so; teams were located at the same
site and the data sharing happened over a company’s proprietary network.
Since multi-sited version control system appeared, security concerns have
become critical. This is because the data in the system now needs to be
shared among multiple sites that are connected by open networks.
Development teams may want to protect proprietary technologies from
competitors. More important perhaps, is the need to ensure the integrity of
the different revisions submitted over the Internet by different teams and the
non-repudiation of their origin. This is particularly true about in the Open
Source community. The various teams within this community generally do
not care about the confidentiality of their software due to their commitment
to the open source model; however they do need to ensure the integrity and
non-repudiation of their code, and their developers do submit the contributed
code via Internet.

In this work we propose a new secure multi-sited version control (MVC)
system that can be easily implemented using COTS components. We utilize
the Directory Information Tree (DIT) structure of X.500 directories [1, 2] to
represent the MVC data model, network model and user account
management model. Next we propose a novel authorization scheme for the
MVC system that is based on integrating the access control list model [13]
with the role-based access control model [12]. To support this new access
model we propose to extend the Lightweight Directory Access Protocol
(LDAP) [8, 9, 10, 15]. Finally we utilize the Simple Authentication and
Security Layer (SASL) protocol [7] to solve the authentication problem and
protect data confidentiality and integrity in the MVC system.

The rest of the paper is organized as follows. In section 2 we discuss
some of the more well-known multi-sited version control systems to identify
their security deficiencies. Section 3 develops the model for our multi-sited
version control system. Section 4 describes our MVC framework. Finally we
conclude in section 5.

There are a number of version control systems available today both
commercial as well as open-source. The most widely used among them are
ClearCase [14] (by the erstwhile Rational Software Corporation now owned

126 Integrity and Internal Control in Information Systems

2. RELATED WORK

by IBM), the UNIX Source Code Control System (SCCS) [16], the GNU
Revision Control System (RCS) [17] and the Open Group’s Concurrent
Versions Systems (CVS) [11]. These differ from in each other mostly in
terms of functionality and convenience. However, none of these systems
were explicitly designed with security in mind. Consequently each of them
have at least one of the following security deficiencies – (i) authentication
deficiencies, (ii) authorization flaws, (iii) confidentiality and integrity
problems and (iv) user account management problems – and cannot be used,
without consequences, as multi-sited version control systems. In the
following we discuss these deficiencies in more details.

Authentication Deficiencies - Most MVC systems use the native
operating systems’ authentication mechanisms for local access. This causes a
dependency on the operating systems. Also remote access authentication
varies among different systems. ClearCase doesn’t have any support for
remote access authentication, so do not SCCS and RCS. CVS supports
several remote authentication mechanisms. Some of them are rather weak for
authentication over open networks – such as connecting with rsh (which
requires a machine at one site completely trust other machines at other sites)
and simple password based authentication. Other remote authentication
mechanisms that CVS supports, like authentication with GSSAPI [5] and
Kerberos [6], are considerably stronger but are more suitable for
authentication within a single administrative domain than over the Internet.

Authorization Flaws – We categorize authorization flaws into (a)
missing dimensions, (b) encapsulation failures, (c) inconsistent controls, (d)
write and checkout problems and (e) authorization coordination failure.

A secure multi-sited version control system 127

Missing Dimensions – The most common authorization flaw is the
authorization granularity is not as fine as the granularity of
accessible objects. For example, CVS doesn’t have access control at
the version tree layer at all although it does support branches.
ClearCase has controls at all three layers, but it doesn’t control
access at the version level.
Encapsulation Failure – Many systems require users to check the
permissions of the internal devices. SCCS, RCS, CVS users need to
check the permission of data repository directories and even their
subdirectories. ClearCase users need to check the permission of
virtual workspace devices; in many cases these devices are not on
the same machines where workspaces are used. Because these
systems take internal attributes as the external attributes, users have
to understand their internal mechanisms. This often confuses them
and makes systems hard to use.
Inconsistent Controls – Some systems are inconsistent in controlling
different permissions. ClearCase doesn’t control read and execute

access at branch level, but it does control the write access (checkout,
checkin, and uncheckout) at the branch level.
Write and Checkout Problems – Some systems (ClearCase, for
example) do not treat the write permission in the same way as the
checkout permission; instead they use the checkout permission to
replace the write permission. The problem with this approach is that
users cannot determine from the access control lists of files in the
virtual workspace, who can change the content of the files or
directories (elements). This is against the design purpose of using
the virtual workspace to simulate the work environment in a file
system.
Authorization Coordination Failure – Some systems (CVS, for
example) do not have an authorization coordination mechanism; so
they use one central data repository to represent the whole repository
family. This approach can’t support local access model. Since every
operation has to be done remotely, it incurs lots of resource
overhead. ClearCase has the coordination scheme, but because it
doesn’t support remote access model it can only use the passive
access mode of the scheme. More details will be discussed in the
proposed framework.

The proposed MVC system is defined in terms of four different
parameters (i) the data model, (ii) the network model, (iii) the access model
and (iv) the user management model. We discuss each in details beginning
with the data model.

The Data Model – The MVC system data model defines how the data is
stored in the system. The data model defines four components – (i) data
elements, (ii) data repository, (iii) data repository family and (iv) virtual
workspace. We use the X.500 directories [1] to represent the data model.

128 Integrity and Internal Control in Information Systems

Confidentiality and Integrity Problems – None of the four systems
encrypt the messages exchanged in any manner by default for remote access.
CVS has the provision for encrypting messages but does not do this without
special configuration. This is a serious security problem; not only is the data
in the messages endangered, attackers can also plant malicious code or data
in the packets to damage the confidentiality and integrity of the importing
data repositories.

User Account Management Concern – All current systems rely on the
operating system to provide the network-wide database of user and group
names. This causes a dependency on the operating system and undermines
interoperability if the system needs to run in a heterogeneous environment.

3. MODELS OF THE MVC SYSTEM

A data element is a unit of data that is stored in the system. It can have
different granularities. The smallest data element in the version control
system is a version. A version is a particular revision of a file or directory.
Versions of one line of development form a linear sequence called a branch.
Branches are used to separate different development efforts and allow
parallel development. For example, one branch may contain all the versions
used to add a new feature to the software; another branch may be composed
of the versions contributing to a software bug fixing. Branches of the same
file or directory are organized into a version tree. Every tree has one main
branch (called main), which represents the principal line of development.
Files and directories are called elements. Unlike in a file system file and
directory elements in a version control system are not flat. They have the
version tree structure. Like in a file system, however, file and directory
elements are also located somewhere in a directory tree.

A data repository is used to store different versions of files and
directories. It also holds the derived data and meta-data associated with
them. Data repositories at multiple sites form a data repository family. The
data repository family stores data relevant to a single project – that is, the
data elements in the repository family are all semantically related.

A virtual workspace is an environment where users can have access to a
set of versions selected from the data repository. The versions are selected
via a user-defined filter, which is a part of the environment. Most virtual
workspace is used by one user for individual development. Some are shared
by several users for integration or integration testing.

The data model is illustrated by an example in figure 1. In this figure, the
directory element “/home/junxing” has one branch and two versions on this
branch, 0 and 1. Version 1 contains a file element named “Hello.c”. This
element has four branches: main, bug102, feature23 and Linux_port. Each of
its branches has several versions to store the revision history of a separate
development line. As the diagram shows in the MVC system each element is
represented as a version tree no matter it is a directory or file. The contents
of directory versions indicate the sub directory and file elements they
include. The directory tree is organized in this way just as it is designed in a
file system.

A secure multi-sited version control system 129

130 Integrity and Internal Control in Information Systems

The Network Model – The MVC system network model defines who
accesses and/or manages the different versions of the data that are stored in
the entire system. It comprises of servers and clients connected over a local
area network at local sites, a number of which participate in the same MVC
system.

We define a local site to be one that is responsible for one and only one
data repository. The MVC system comprises of a number of such local
sights. From the point of view of a local site, other local sites are called
remote sites. Each local site consists of one server machine and several
client machines that are connected in a local area network. A local site is
under a single administrative control. The server at the local site maintains
the data repository. The clients manage the virtual workspaces and accept
and respond to users’ requests. The clients also communicate with local or
remote servers to retrieve, add, delete or update versions, meta-data and/or
derived data.

A secure multi-sited version control system 131

A specific data repository at a server holds only one copy of the data.
This copy has the latest local revision changes. However, it may not have the
latest, up-to-date revision changes from other sites. In order to get the latest
changes, repositories must be synchronized with each other. To synchronize
the data at the local site with data at remote sites, each server communicates
periodically with servers at remote sites. We adopt a peer-to-peer model for
such server-server communication.

The network model for the MVC system is shown in figure 2.

The Access Model – The access model defines how the MVC system
controls access to different versions in the data repository family. The access
is of two types – local access and remote access. If a client contacts a local
server, then this is a local access. For a local access a user must access the
versions in a data repository via a virtual workspace. She needs to specify
which versions of the files she wants to access. This is done by defining
rules in the filter of a virtual workspace. We use a SQL like syntax for
defining such rules. An example of such a rule on the data model shown in
figure 1 is as follows.

SELECT Hello.c /main/LATEST

This rule will select the version numbered 4 (the latest version) on the
main branch of Hello.c.

We define a well-formed rule to be one that retrieves only one version of
any element. The virtual workspace is usable only after such well-formed
rules are defined. When the user requests an operation on a file or directory
element, the client that manages the workspace contacts a server to apply the
operation to the version of the element selected by the filter. If the user
wants to operate on a different version or on more than one version, she
explicitly gives the version name in the request.

Sometimes the local server does not have the permissions to execute
certain operations on the specified version. In this case a remote server has
to be contacted; either the client can directly contact the remote server that
has the permission to complete this request, or the client can request the
local server to contact the relevant remote server. Now a server typically has
to handle multiple client requests. So it is more efficient for a local server to
gather together multiple client requests to access a remote server, and
schedule it in a batch mode than to handle each client request as it comes.
One the other hand, if we allow a client to directly access the relevant remote
server then the client will be serviced promptly. For this reason we choose to
have the client contact the remote server directly in the MVC system. This is
termed as remote client-server access. The only time a local server needs to
communicate with remote servers is to synchronize data in the containing
repositories. This is called remote server-server access.

Access to different versions is achieved by executing a set of atomic
operations. These are (i) get, (ii) checkout, (iii) check-in, and (iv) un-
checkout.

132 Integrity and Internal Control in Information Systems

Get – Get is the action of getting the copy of a version from the data
repository to a virtual workspace.
Checkout – Checkout is the action of locking a branch in the data
repository for adding a new version. This prevents other users from
checking the same branch out, though they are not restricted from
getting versions in the branch.
Check-in – Check-in is the action of adding a new version to the
branch locked by a checkout and then releasing the lock.
Un-checkout – Un-checkout is the action of releasing the lock
created by a checkout without adding a new version.

Check-in, checkout and un-checkout all are essentially write transactions.
Checkout starts the transaction, check-in commits it, and un-checkout rolls
back the transaction. The definition of checkout operation implies that a
branch cannot be checked out by a user if it has already been checked out by

another one. However, the data model of the repository family indicates that
the local repository may not know if a branch has been checked out at other
sites because it does not have the latest revision changes at other sites. This
means the authorization need be coordinated among sites. A check-in or un-
checkout operation is based on a previous checkout operation. The user who
can check in or un-checkout a branch must be the one who checked it out.
Optionally the system may allow others who are in charge of the branch or
its contents, to execute the operation when the user is unavailable.

Checkin, checkout and un-checkout all require permissions similar to
write permissions. The execute permission has additional connotation when
it is applied to the objects in a MVC system. The execute permission of
directory elements, file elements and branches is the permission to list or
search their included objects, while the execute permission of versions is to
run operations defined in owners’ data. This is because owners’ data is
contained in files in a file system, but it is kept in versions in a MVC system.

A user is authorized at three layers in order to access a particular version.
The first layer consists of virtual workspaces. Here the user needs
permissions to operate on the temporary copies of versions she selected from
the data repository. The second layer is the directory tree. Here she needs the
permission to operation on the directory structure. The third layer is the
version tree. Here she needs the permission to access a particular version on
a specific branch, which presents a development line.

The authorization granularity is decided by the granularity of accessible
objects. In the workspace layer the accessible objects are just virtual
workspaces. In the directory tree layer the accessible objects are the data
repository and elements (directories and files). In the version tree layer the
accessible objects are branches and versions.

Finally, although in the local access model the MVC system may not
need strong encryption mechanisms to ensure data confidentiality, they are
needed for integrity and non-repudiation of data origin; strong cryptographic
techniques are indispensable in the remote access model.

The User Account Management Model – This model defines how user
account information is maintained across the entire MVC system. Every user
in the system belongs to a primary site. All changes to user account
information are made at the server at the primary site. To meet the
requirements of parallel development at multiple sites, the account
information at the primary site must be available at all sites and be
consistent. This is achieved by a remote server-server access.

A secure multi-sited version control system 133

The MVC system stores information about version trees; thus it is natural
to use another tree structure to implement the system. We use the Directory
Information Tree (DIT) of X.500 directories to represent the system tree
structure. The structure is defined X.500 schemas according to RFC 2252
specifications, which is based on BNF (Backus-Naur Form meta-language).
For lack of space we show the declarations for only the security related
elements. Since X.500 is used, each schema element for a project must have
a globally unique Object Identifier (OID)1. For this discussion, the OIDs
under 1.1 are used. This is in keeping with the conventions of ASN.1. Each
element has at least one textual name. To reduce the potential for name
clashes, the name prefix “mvc” is used in the convention. The following is
an example of these definitions for a project eduColostate.

objectIdentifier eduColostateOID 1.1 ; Organization OID

134 Integrity and Internal Control in Information Systems

4. THE PROPOSED MVC SYSTEM

The proposed MVC system is developed by adopting and/or extending
widely industry standards and COTS components.

We use X.500 directories [1] to represent the data model, network model
and user account management model of the MVC system.
We extend the Lightweight Directory Access Protocol (LDAP) [8,
9, 10] to support the access model of the MVC system. In
particular, we develop the get, checkin, checkout and un-checkout
operations as extensions to LDAP.
We develop a novel authorization scheme for the MVC system by
borrowing from and integrating the concepts of access control lists,
role-based access control and the concept of mastership.
We adopt the Simple Authentication and Security Layer (SASL)
[7] protocol to address the authentication problems in the MVC
system. This protocol also helps to protect data confidentiality and
integrity in the MVC system by virtue of its built in strong
cryptographic techniques.

2.

3.

4.

In the following we briefly discuss how we implement each of the above
modules of the MVC system.

4.1 X.500 schemas for Data, Network and User Account
Management Models

1 OIDs are basically strings of numbers. They are commonly found in protocols described by
ASN.1. The formal definitions of OIDs come from ITU-T Rec. X.208 (ASN.1). OIDs are
allocated in a hierarchical manner and managed by the IANA. For private experiments and
research purposes the OIDs under the 1.1 branch are typically used.

The Data Model – The data elements, data repository, data repository
family and virtual workspace are all defined as object classes in X.500
directories. The type definition of the data element version is given in the
following schema. Its object Id is derived by appending 1 to the object Id of
“mvcObjClass”. Its name is “mvcVersion”. It has a text description and
inherited from the superior object class “top”. Each instance of this class
must have five attributes: “mvcUserId”, “mvcGroupId”, “mvcUserPermission”,
“mvcGroupPermission” and “mvcOtherPermission”. These attributes are
introduced in the authorization scheme section. Other data model
components can be defined similarly. For lack of space we omit them from
here.

A secure multi-sited version control system 135

objectIdentifier mvc eduColostateOID: 1 ; Name prefix and Application OID
objectIdentifier mvcObjClass mvc: 1 ; MVC object class

objectclass

The Network Model – To conform to the MVC network model, each
MVC site should have one server sub tree and multiple client sub trees. The
server sub tree is composed of data model components: version, branch,
element, data repository and data repository family. The client sub tree
consists of one root element and several workspace elements. The root
element is used to organize workspace elements and identify the client. Its
type doesn’t concern the MVC security, so the definition is not given here.

The User Account Management Model – User account management
service required by MVC systems are represented using user schemas
defined in RFC 2256. Since these are very well defined and standardized we
do not discuss them here.

(
mvcObjClass:1
NAME ‘mvcVersion’
DESC ‘Data Version Type’
SUP top
MUST (

mvcUserId $
mvcGroupId $
mvcUserPermission $
mvcGroupPermission $
mvcOtherPermission

)
); Version Class

The MVC framework uses X.500 directories to represent the MVC
system structures. LDAP is the access protocol to X.500 directories. Thus it
is reasonable to support the access model of the MVC system by extending
LDAP in the secure framework. Another advantage gained by extending
LDAP is the convenient access to SASL. Since SASL is the association
security services of LDAP, the framework can use it directly instead of
building a new one from scratch.

The MVC framework uses a special operation in LDAPv3 support the
extension. This operation is defined in order to allow additional operations to
be defined for services not available elsewhere in LDAP protocol. It is
described in ASN.1 (Abstracted Syntax Notation 1) [3, 4], and is typically
transferred using a subset of ASN.1 Basic Encoding Roles. The special
operation that we use is as follows.

Problems with authorization are often caused by the intention to reuse the
authorization scheme of a native operating system. To avoid them, we
provide the MVC system with its own authorization scheme. Due to the
system’s special requirements, this scheme combines three authorization

136 Integrity and Internal Control in Information Systems

4.2 LDAP Extensions to Support the Access Model

The MVC access model operations get, checkout, check-in and un-
checkout, are implemented using the above LDAP extended operation
definition.

4.3 Authorization Scheme for the MVC System

ExtendedRequest ::= [APPLICATION 23]
SEQUENCE

{
requestName [0] LDAPOID,
requestValue [1] OCTET STRING OPTIONAL

}

ExtendedResponse ::= [APPLICATION 24]
SEQUENCE

{
COMPONENTS OF LDAPResult,
responseName [10] LDAPOID OPTIONAL,
response [11] OCTET STRING OPTIONAL

}

mechanisms: ACL (Access Control List), RBAC (Role Based Access
Control) and mastership.

Access Control List – ACL is used as the basic authorization
mechanism. There are two reasons to use ACL. Firstly, MVC systems are
object centralized and subject distributed systems. Secondly,it makes
simulating file systems easier. Most file systems use ACL, so if the MVC
system also uses ACL it will be easier for it to translate the permissions of a
specific version in the data repository into the permissions of the
corresponding file in the virtual workspace. ACL is defined as attribute types
in the following LDAP/X.500 schema. In the first line of the schema the
object Id of “mvcAttType” is created by appending 2 to the object Id of
“mvc”. There are two attribute types. One is used to represent the user Id,
and another is for the user permission. Their object Ids are created by
extending the Id of “mvcAttType”. They use the matching rule of numeric
strings. They have the syntax of integers. And they may only hold one single
value. Similarly the group Id, group permission and other’s permission can
be defined. These definitions consist of an ACL implementation in X.500
directories.

A secure multi-sited version control system 137

objectIdentifier mvcAttType mvc:2 ; MVC attribute type
attributetype

(
mvcAttType: 1
NAME ‘mvcUid’
DESC ‘User Id’
EQUALITY numericStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE

) ; User Id Type

attributetype
(

mvcAttType:2
NAME ‘mvcUperm’
DESC ‘User Permission’
EQUALITY numericStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE

) ; User Permission Type

In the data model design, every object class has mandatory attributes of
ACL attribute types. This means that every object in the MVC system is in

138 Integrity and Internal Control in Information Systems

Role Based Access Control – ACL is not enough to meet the MVC
system’s authorization requirements. Operations such as checkin and un-
checkout require the system to check if the requestor has certain relationship
with the user who executed the corresponding checkout operation. This kind
of requirements calls for Role Based Access Control. This mechanism
makes use of the attribute types and object classes defined in the schema
below.

attributetype attributetype

objectclass

The above types and classes are used to build RBAC trees. A RBAC tree
is a directory information sub tree that has only a root and leaves. The root is
an entry of “ mvcOperationRoles” type. It has an “mvcOperationId” attribute
that identifies the operation. The leaves are entries of “mvcRoleUsers ” type.
Each of them has an “mvcUids” attribute that includes all user Ids in the
role. RBAC trees are used to implement RBAC. One operation such as
checkout creates and inserts a RBAC tree to the checked out branch. Another
operation such as checkin or un-checkout examines the RBAC tree in the
target branch. If there is no such tree or the requestor Id can’t be found in the

ACL control, so the system’s access control granularity is as fine as the
accessible objects.

(
mvcAttType:6

NAME ‘mvcOperationId’

DESC ‘Operation Id’

EQUALITY numericStringMatch

SYNTAX

1.3.6.1.4.1.1466.115.121.1.27

SINGLE-VALUE

); Operation Id Type

objectclass

(
mvcObjClass:6

NAME ‘mvcOperationRoles’

DESC ‘Roles can execute the

Operation’

SUP top

MUST mvcOperationId
); Roles allowed for an operation

(
mvcAttType:7

NAME ‘mvcUids’

DESC ‘User Id List’

EQUALITY numericStringMatch

SYNTAX

1.3.6.1.4.1.1466.115.121.1.27

); User Id List Type

(
mvcObjClass:7

NAME ‘mvcRoleUsers’

DESC ‘Users in the Role’

SUP top

MUST mvcUids

); User Ids in a role

Mastership – is introduced in the MVC system to coordinate the
authorization among multiple sites. This is needed because changes made at
different sites can potentially conflict when they are imported into one data
repository; the authorization must be coordinated to prevent conflicts from
happening. Mastership is “site based access control”. It ensures that only one
site in a repository family has the permission to change a controlled object
(e.g. branch) at any given time. This exclusive permission to modify ensures
that no parallel changes can be made to controlled objects; thus conflicts are
avoided. Users at sites that do not have mastership-permission of an object
have two access modes to make changes. The active mode allows one to
modify the object using remote access model at the site that has the
permission. The passive mode allows one to request the mastership-
permission to be transferred to the local site. This scheme is made possible
by the following attribute types and object classes:

A secure multi-sited version control system 139

tree, the operation fails; otherwise the operation is executed and the RBAC
tree is deleted.

attributetype

(
mvcAttType:8

NAME ‘MVC Mastership’
DESC ‘Master Site Id’

EQUALITY numericStringMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27

SINGLE-VALUE

); A type used to define attributes that identify the sites that have the

mastership-permissions of the controlled objects

objectclass

(
mvcObjClass:8

NAME ‘MVC MastershipObject’

DESC ‘Mastership Container’

SUP top

MUST MVCMastership

); A class used to define entries that hold the attribute of the previous type.

Simple Authentication and Security Layer protocol is used to provide
both strong authentication mechanisms needed in the remote access model
and regular mechanisms required in the local access model of the MVC
system. To ensure secure remote access, the MVC system imposes the
following requirements to LDAP configuration: Remote MVC operations
are allowed only when SASL mechanisms whose Security Strength Factor
(SSF) are greater than 1, are in effect. Remote MVC operations are allowed
only when mechanisms that are able to negotiate a security layer are in force.
To ensure secure remote access, the mechanisms that support the security
layer negotiates a privacy protection layer after the successful authentication
for remote MVC operations. There are no mandatory configuration
requirements for the local access model.

In this paper we look into multi-sited version control systems. Such
systems are very important in distributed collaborative environments where
many development teams work together on a large software system and the
system goes over several versions before being finally available. We identify
the security requirements of multi-sited version control systems in general.
We observe that it is more important that such systems ensure the integrity
of the software versions rather than their confidentiality. We then identify
the security deficiencies in current implementations of multi-sited version
control systems. We propose a new framework for secure multi-sited version
control. The specific contributions include:

140 Integrity and Internal Control in Information Systems

4.4 Authentication, Confidentiality and Integrity
Measures

5. CONCLUSION

Using X.500 directories and extending LDAP v3 to provide version
control service at multiple sites.
The application of SASL to improve the security of MVC systems.
The application of the concept of mastership in the remote access model
so that conflicts due to concurrent access is eliminated.
An authorization scheme combining ACL, RBAC and mastership.

The paper also uses the LDAP extension for Internet Domain Name
service as the reference for extending the protocol.

ISO/IEC 9594-1, “X.500 The Directory: Overview of Concepts,
Models and Services”, International Standards Organization, 1993.
ISO/IEC 9594-2, “X.501 The Directory: Models”, International
Standards Organization, 1993.
ITU-T Rec. X.680, “Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation”, International Telecommunication
Union, 1994.
ITU-T Rec. X.690, “Specification of ASN.1 Encoding Rules: Basic,
Canonical and Distinguished Encoding Rules”, International
Telecommunication Union, 1994.
J. G. Meyers, “Simple Authentication and Security Layer (SASL)”,
RFC 2222, Network Working Group, The Internet Society, October
1997.
M. Wahl, “A Summary of the X.500(96) User Schema for Use with
LDAPv3”, RFC 2256, Network Working Group, The Internet
Society, December 1997.
M. Wahl, A. Coulbeck, T. Howes and S. Kille, “Lightweight
Directory Access Protocol (V3): Attribute Syntax Definitions”, RFC
2252, Network Working Group, The Internet Society, December
1997.
M. Wahl, T. Howes and S. Kille, “Lightweight Directory Access
Protocol (v3)”, RFC 2251, Network Working Group, The Internet
Society, December 1997.
P. Cederqvist, et al. “Version Management with CVS”, The Open
Group, Available from http://www.cvshome.org/docs/manual/cvs-
1.11.6/cvs.html
R. Sandhu, “Role-Based Access Control”, in Advances in
Computers, volume 48, M. Zerkowitz editor, Academic Press, 1998.
R. Sandhu and P. Samarati, “Access Control: Principles and
Practice”, IEEE Communications, 32(9), 1994.
Rational Software Corporation, “Rational® ClearCase Multisite®

Documentation”, October 2001.
S. Kille, M. Wahl, A. Grimstad, R. Huber and S. Sataluri, “Using
Domains in LDAP/X.500 Distinguished Names”, RFC 2247,
Network Working Group, The Internet Society, January 1998.
Unix SCCS, “Source Code Control System”, The Regents of the
University of California, 1986.
W. F. Tichy, “RCS – A System for Version Control”, Software –
Practice and Experience, 15(7), 1985.

A secure multi-sited version control system 141

REFERENCE:

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Integration of Integrity Constraints in Database
Federations

Herman Balsters, Bert de Brock
University of Groningen, Faculty of Management and Organization, P.O. Box 800, 9700
AV Groningen, The Netherlands, {h.balsters, e.o.de.brock}@bdk.rug.nl

A database federation provides for tight coupling of a collection of
heterogeneous legacy databases into a global integrated system. A major
problem in constructing database federations concerns maintaining quality and
consistency of data on the global level of the federation. In particular, the
integration of integrity constraints within component legacy databases into a
single global schema is a process that is prone to incompleteness and
inconsistency. Moreover, additional inter-database constraints between the
various component legacy databases often also have to be taken into account
to complete the integration process. Our approach to coupling of component
databases into a global, integrated system is based on the concept of
mediation. Our major result is that mediation in combination with a so-called
integration isomorphism integrates component schemas without loss of
constraint information; i.e., integrity constraints available at the component
level remain intact after integration on the global level of the federated
database. Our approach to integration also allows for specification of
additional inter-database constraints between the various component legacy
databases. We therefore can handle consistency not only on the local level of
component databases, but also consistency on the global level between the
various component databases. We shall describe a general semantic
framework for specification of database federations based on the UML data
model. This data model will prove to offer an elegant and powerful framework
for analysis and design of database federations, including integration of
integrity constraints.

Abstract:

Key words: Databases, distribution, integrity control, legacy systems, systems integration,
semantics, consistency, data modeling, object-orientation, UML

Modern information systems are often distributed in nature. Data and
services are often spread over different component systems wishing to
cooperate in an integrated setting. Cooperation of component systems in one
integrated information system is becoming more and more important since
information is often spread over different databases in one organization (or
even spread over different organizations). Such information systems
involving integration of cooperating component systems are called federated
information systems; if the component systems are all databases then we
speak of a federated database system ([ShL90]). This tendency to build
integrated, cooperating systems is often encountered in applications found in
EAI (Enterprise Application Integration), which typically involve several,
usually autonomous, component systems (data and service repositories),
with the desire to query and update information on a global, integrated level.
In this paper we will address the situation where the component systems are
so-called legacy systems; i.e. systems that are given beforehand and which
are to interoperate in an integrated single framework in which the legacy
systems are to maintain as much as possible their respective autonomy.

A major obstacle in designing interoperability of legacy systems is the
heterogeneous nature of the legacy components involved. This
heterogeneity is caused by the design autonomy of their owners in
developing such systems. We are faced with major problems when trying to
maintain data quality and data consistency in the integration process. Many
of these problems deal with integration of the schemas of the component
databases involved, and in particular with resolving consistency conflicts
rising from integrity constraints ruling within the component databases.

To address the problem of interoperability the term mediation has been
defined [Wie95]. A database federation can be seen as a special kind of
mediation, where all of the data sources are (legacy) databases, and the
mediator offers a mapping to a (virtual) DBMS-like interface. In our paper
we will consider a tightly-coupled approach to database mediation, in
which a global integrated schema of the federation is maintained. We base
our approach on the “Closed World Assumption” (CWA, [Rei84]), where
the integrated database is to hold -in some manner- the “union” of the data
in the underlying component databases. The user of the federated system
will be offered the impression that he is working with a monolithic
homogeneous database system, while in fact this system basically resembles
an interface, mapping interactions on the federated level to actions on the
existing local database components. More precisely, the federated database
will consist of an integrated database view on top of the existing legacy
database components. We concentrate on problems concerning integration of

144 Integrity and Internal Control in Information Systems

1. INTRODUCTION

component legacy schemas on the level of the mediator. Schema integration
requires the definition of relationships between schema elements of
component systems. Detection and definition of such relationships can be
heavily complicated by so-called semantic heterogeneity [DKM93,Ver97].
Semantic heterogeneity refers to disagreement about the meaning,
interpretation, or intended use of related data. In this paper we will focus on
the UML/OCL data model to tackle the problem of integrating semantic
heterogeneity. UML/OCL offers a high-level specification language and is
equipped with a unique combination of high expressiveness with a large
degree of precision. Also, UML is the de facto standard language for
analysis and design in object-oriented frameworks, and is being employed
more and more for analysis and design of information systems, in particular
information systems based on databases and their applications. OCL
([WK03, OCL2.0]) complements UML by providing a language for formally
expressing integrity constraints of a model. In this paper, we will assume
that component databases -e.g. relational databases - can somehow be
modeled in the UML/OCL-framework ([BP98]).

The paper describes a particular mediating system integrating component
schemas without loss of constraint information; i.e., no loss of constraint
information available at the component level may take place as result of
integrating on the level of the virtual federated database. Furthermore, we
will show how to deal with integrity constraints not only within, but also
between various component databases (the so-called inter-database
constraints). Integration conflicts are treated in a tightly-coupled
environment, and are resolved by introducing a so-called integration
isomorphism ([Bal03]).

The paper is concluded by a description of general design principles for
database federations.

Recently, researchers have investigated possibilities of UML as a
modeling language for (relational) databases. [BP98] describes in length
how this process can take place, concentrating on schema specification
techniques. [DH99, DHL01] investigate further possibilities by employing
OCL for specifying integrity constraints and business rules within the
context of relational databases. The idea is that OCL provides expressiveness
in terms of relatively abstract set definitions that should prove to be
sufficient to capture the general notion of (relational) database view. In the
more specific context of relational databases and OCL, [DH99] offers a

Integration of integrity constraints in database federations 145

2. UML/OCL AS A SPECIFICATION LANGUAGE
FOR DATABASES

framework for representing integrity constraints within the relational data
model ([GUW02]). Our application area is focused on Federated Databases,
where legacy databases are to interoperate by employing a so-called
mediating system. This mediating system can be considered as an integration
of a set of certain database views defined on the component legacy database
systems. In particular, we will concentrate on data representations in the
UML data model, and employ OCL as a language for expressing
accompanying constraint specifications, both on the component level and on
the global level of a federation.

An important notion in modeling databases is that of a database view. To
illustrate this notion, consider the case that we have a class called Emp1 with
attributes nm1 (of type String) and sal1 (of type Integer), indicating the
name and salary of an employee object belonging to class Emp1. In UML,
this can be represented as follows

Now consider the case where we want to add a class, say Emp2, which is
defined as a class whose objects are completely derivable from objects
coming from class Emp1. The calculation is performed in the following
manner. Assume that the attributes of Emp2 are nm2 and sal2
respectively (indicating name and salary attributes for Emp2 objects), and
assume that for each object e1:Emp1 we can obtain an object e2:Emp2 by
stipulating that e2.nm2=e1.nm1 and e2.sal2=(100 * e1.sal1). By definition
the total set of instances of Emp2 is the set obtained from the total set of
instances from Emp1 by applying the calculation rules as described above.
Hence, class Emp2 is a view of class Emp1 (showing all salaries in cents),
in accordance with the concept of a view as known from the relational
database literature. In UML terminology ([BP98]), we can say that Emp2 is
a derived class, since it is completely derivable from other already existing
class elements in the model description containing model type Emp1.

We will now show how to faithfully describe Emp2 as a derived class in
UML/OCL (version 2.0) in such a way that it satisfies the requirements of a
(relational) view. First of all, we must satisfy the requirement that the set of
instance of class Emp2 is the result of a calculation applied to the set of
instances of class Emp1. The basic idea is that we introduce a (database-)
class called DB that has an association to class Emp1, and that we define
within the context of the database DB an attribute called Emp2. A database
object will reflect the actual state of the database, and the system class DB

146 Integrity and Internal Control in Information Systems

Integration of integrity constraints in database federations 147

will only consist out of one object in any of its states. Hence the variable self
in the context of the class DB will always denote the actual state of the
database that we are considering. In the context of this database class we can
then define the calculation obtaining the set of instances of Emp2 by taking
the set of instances of Emp1 as input.

context DB
def: Emp2: Set(Tupletype{nm2:String, sal2: Integer}) =

(self.Emp1 -> collect(e:Emp1 |
Tuple{nm2=e.nm1, sal2=(100*e.sal1)}))-> asSet

where the slash-prefix of Emp2 indicates that Emp2 is a derived table. Since
in practice such a graphical representation could give rise to rather large box
diagrams (due to lengthy type definitions), we will use the following
(slightly abused) graphical notation (2) to indicate this derived class

The intention is that these two graphical representations are to be
considered equivalent; i.e., graphical representation (2) is offered as a
diagrammatical convention with the sole purpose that it be formally
equivalent (translatable) to graphical representation (1). Full details
regarding representations of database views in UML/OCL can be found in
[Bal03b].

In this way, we explicitly specify Emp2 as the result of a calculation
performed on the base class Emp1. Graphically, we could represent Emp2 as
follows

We can also consider a complete collection of databases by looking at so-
called component frames, where each (labeled) component is an autonomous
database system (typicaly encountered in legacy environments). As an
example consider a component frame consisting of two separate component
database systems: the Client-Relationship-Management (CRM)-database
DB1, and the Sales-database DB2 below

DB1 consists of two classes. For example, Pers is the class of
employees responsible for management of client resource; part indicates
that employees are allowed to work part time; hnr indicates house number;
telint indicates internal telephone number; acc-manager indicates the
employee (account manager) that is responsible for some client’s account.
The rest of the features of DB1 speak for themselves. We furthermore
assume that database DB1 has the following integrity constraints

context Client inv:

Client.allInstances --> isUnique (c: Client | c.clno)

148 Integrity and Internal Control in Information Systems

3. COMPONENT FRAMES

context Pers inv:

Pers.allInstances --> isUnique (p: Pers | p.prsno)

sal <= 1500

telint >= 1000 and telint <= 9999

Informally, these integrity constraints state that
Persons have unique prsno-values;
their salaries may not exceed 1500 dollars;

Integration of integrity constraints in database federations 149

The second database is the so-called Sales-database DB2

Most of the features of DB2 also speak for themselves. We offer a short
explanation of some of the less self-explanatory aspects: Emp is the class of
employees responsible for management of client order; func indicates that
an employee has a certain function within the organization; Ord-manager
indicates the employee (account manager) that is responsible for some
client’s order. We assume that this second database has the following
integrity constraints:

context Order inv:

Order.allInstances --> isUnique (c: Order | c.ordno)

Order.allInstances --> forall(c: Order | c.ord-manager.func =

‘Sales’)

their (internal) telephone numbers have values between 1000 and
9999
Clients have unique clno-values

context Emp inv:

Emp.allInstances --> isUnique (p: Emp | p.eno)

sal >= 1000

tel.size <= 16

Informally, these integrity constraints state that
Employees have unique eno-values;
their salaries are at least 1000 euros;
their telephone numbers consist of strings of no more than 16
characters
Orders have unique ordno-values;
employees managing some order must have ‘sales’ as func-value

150 Integrity and Internal Control in Information Systems

We can now place the two databases DB1 and DB2 without confusion
into one component frame EX-CF as seen below

4. SEMANTIC HETEROGENEITY

We are faced with major problems when trying to maintain data quality,
data completeness and data consistency in the integration process. Many of
these problems deal with integration the schemas of the component
databases involved, and in particular with resolving consistency conflicts
rising from integrity constraints ruling within (and possibly between) the
component databases. The problems we are facing when trying to integrate
the data found in legacy component frames are well-known and are
extensively documented (cf. [ShL90]). We will focus on one of the large
categories of integration problems coined as semantic heterogeneity (cf.
[Ver97]). Semantic heterogeneity deals with differences in intended meaning
of the various database components. Integration of the source database
schemas into one encompassing schema can be a tricky business due to:
homonyms (solved by mapping same name occurrences to different names);
synonyms (mapping different names to one common name); different
representations (data conversion to a common value); default values (adding
default values for new attributes); missing attributes (adding new attributes
in order to discriminate between certain class objects); absent subclasses
(creation of a common superclass and subsequent accompanying subclasses).

By homonyms we mean that certain names may be the same, but actually
have a different meaning (different semantics). Conflicts due to homonyms
are resolved by mapping two same name occurrences to different names in
the integrated model. In the sequel, we will refer to this solution method as
hom. Synonyms, on the contrary, refer to certain names that are different,
but have in fact the same semantics. Synonyms are treated analogously, by
mapping two different names to one common name; this solution method is
refered to by syn.

In the integration process, one often encounters the situation where two
attributes have the same meaning, but that their domain values are
differently represented. For example, the two attributes sal in the Pers and
the Emp class of databases DB1 and DB2, respectively, both indicate the
salary of an employee, but in the first case the salary is represented in the
currency dollars ($), while in the latter case the currency is given in euros
(). What we can do, is to convert the two currencies to a common value
(e.g. $, invoking a function convertTo$). Applying a conversion function to
map to some common value in the integration process, is indicated by conv.

Sometimes an attribute in one class is not mentioned in another class, but
it could be added there by offering some suitable default value for all objects
inside the second class. As an example, consider the attribute part in the
class Pers (in DB1): it could also be added to the class Emp (in DB2) by
stipulating that the default value for all objects in Emp will be 5 (indicating
full-time employment). Applying this principle of adding a default value in
the integration process, is indicated by def.

The integration of two classes often calls for the introduction of some
additional attribute, necessary for discriminating between objects originally
coming from these two classes. This will sometimes be necessary to be able
to resolve seemingly conflicting constraints. As an example, consider the
classes Pers (in DB1) and Emp (in DB2). Class Pers has as a constraint that
salaries are less than 1500 (in $), while class Emp has as a constraint that
salaries are at least 1000 (in). These two constraints seemingly conflict
with each other, obstructing integration of the Pers and the Emp class to a
common class, say PERS. However, by adding a discriminating attribute
dep indicating whether the object comes from the CRM or from the SLS
department, one can differentiate between two kinds of employees and state
the constraint on the integrated level in a suitable way. Applying the
principle of adding a discriminating attribute to differentiate between two
kinds of objects inside a common class in the integration process, will be
indicated by diff. The situation of a missing attribute mostly goes hand in
hand with the introduction of appropriate subclasses. For example,
introduction of the discriminating attribute dep (as described above), entails
introduction of two subclasses, say CRM and SLS of the common superclass
PERS, by listing the attributes, operations, and constraints that are specific to
CRM- or SLS-objects inside these two newly introduced subclasses.
Applying the principle of adding new subclasses in the integration process,
is indicated by sub.

We note that in [Ver97] the problems regarding semantic interoperability
were analyzed in a high-level object-oriented langauage called TM
([BBZ93], specifically tailored for object-oriented analysis and design of

Integration of integrity constraints in database federations 151

152 Integrity and Internal Control in Information Systems

databases. In [BS98] this approach using TM was further pursued, providing
a basis for automatic verification of transaction correctness in OO databases.

5. THE INTEGRATED DATABASE

We now offer our construction of a virtual database EX-DBINT,
represented in terms of a derived class in UML/OCL. The database we
describe below, intends to capture the integrated meaning of the features
found in the component frame described earlier

We have introduced a superclass PERS with two subclasses CRM and
SLS. A subclass inherits all of the attributes of a superclass, and possibly
also includes (e.g., the class SLS) attributes of its own. Furthermore, this
database has the following integrity constraints:

context PERS inv:

PERS.allInstances ->

forall(p1, p2: PERS | (p1.dep=p2.dep and p1.pno=p2.pno)

implies p1=p2)

PERS.allInstances ->

forall(p:PERS |

(p.oclIsTypeOf(SLS) implies (p.sal >= 1000.convertTo$ and

part=5)) and (p.oclIsTypeOf(CRM) implies p.sal <= 1500))

Conflict 1: Classes Emp and Pers in EX-CF have partially overlapping
attributes, but Emp has no attribute part yet, and one still needs to
discriminate between the two kinds of class objects (due to specific integrity
constraints pertaining to the classes Emp and Pers). Our solution in DBINT
is based on applying syn + def + diff + sub: map to common class name
(PERS); add a default value (to the attribute part); add an extra
discriminating attribute (dep); introduce suitable subclasses (CRM and
SLS).

Conflict 2: Attributes prsno and eno intend to have the same meaning (a
key constraint, entailing uniquely identifying values for employees, for
Emp- and Pers-objects). Our solution in DBINT is therefore based on
applying syn + diff (map to common attribute name (pno); introduce extra
discriminating attribute (dep)) and enforce uniqueness of the value
combination of the attributes pno and dep.

Conflict 3: Attributes sal (in Pers) and sal (in Emp) partially have
the same meaning (salaries), but the currency values are different. Our
solution is based on applying conv (convert to a common value).

Integration of integrity constraints in database federations 153

tel.size <= 16

context CLNT inv:

Clnt.allInstances --> isUnique (c: CLNT | c.clno)

context ORD inv:

Order.allInstances --> isUnique (o: ORD | o.ordno)

ord-manager.func = ‘Sales’

Informally, the integrity constraints on the PERS-class state that
PERS-objects have unique values for the combination of attributes
(dep,pno)
If a PERS-object is also a SLS-object, then its salary is at least the
dollar-equivalent of 1000 euros
If a PERS-object is also a CRM-object, then its salary is at most
1500 dollars
Its telephone number consists of strings of at most 16 characters

In order to control the quality, completeness, and consistency of the data,
we shall now carefully analyze the specification of this (integrated) database
EX-DBINT, and check whether it captures the intended meaning of
integrating the classes in the component frame EX-CF and resolves potential
integration conflicts.

Conflict 4: The attribute combination of street and hnr (in Pers)
partially has the same meaning as addr in Emp (both indicating address
values), but the domain values are differently formatted. Our solution is
therefore based on applying syn + conv (map to common attribute name and
convert to common value).

Conflict 5: Attributes telint (internal telephone number) and tel
(general telephone number) partially have the same meaning, but the domain
values are differently formatted. Our solution is therefore based on applying
syn + conv (map to common attribute name and convert to a common
format).

This principle is also known as the Closed World Assumption for
integrated databases (CWA-INT, cf. [Hull97]), and is a direct extension of
the CWA first introduced in [Rei84] for monolithic databases. In [Bal03] we
offer a mathematical basis for CWA-INT, by introducing a so-called
integration isomorphism, which aims at correctly mapping elements of the
component frame CF to the integrated database DBINT. In [Bal03] we
furthermore offer an elaborate description of a UML/OCL model containing
a class, called the mediator, explicitly relating CF to DBINT, as depicted
below

Our construction of the mediator class closely reflects the basic ideas of
mediation as first described in [Wie95]. Further elaboration on our
construction of such a mediator class (and the accompanying integration
isomorphism) is beyond the scope of this paper; the interested reader is
refered to [Bal03] for more details.

154 Integrity and Internal Control in Information Systems

6. INTEGRATING BY MEDIATION

Our strategy to integrate a collection of legacy databases is based on the
following principle:

An integrated database is intended to hold exactly the “union ”
of the data in the source databases in the component frame CF

Additional information analysis might reveal the following two wishes
regarding the consistency of data in the component frame EX-CF:

Integration of integrity constraints in database federations 155

7. INTER-DATABASE (OR COMPONENT-FRAME)
CONSTRAINTS

Nobody is registered as working for both the CRM and Sales
department; i.e., these departments have no employees in
common
Client numbers in the Sales database should also be present in the
CRM database

(1)

(2)

This entails that certain integrity constraints should be added, and in this
case on the level of the class EX-CF, since these integrity constraints hold
between two databases DB1 and DB2. Such integrity constraints are called
inter-database constraints, or component-frame constraints. We now offer a
specification of the two inter-database constraints mentioned above. We first
offer some appropriate abbreviations (using a so-called let-construct), and
then offer the two constraint specifications.

The following constraint states that there are no common prsno- and
eno-values, and that each clno-value in the Order class corresponds to some
clno-value in the Client class in the context of the class EX-CF

context EX-CF inv:

let Pers-nrs = ((self.CRM.Pers.allInstances ->

collect (p:Pers | p.prsno)) -> asSet)

let Emp-nrs = ((self.Sales.Emp.allInstances ->

collect (e:Emp | e.eno)) -> asSet)

let Cl-nrs = ((self.CRM.Client.allInstances ->

collect (c:Client | c.clno)) -> asSet)

let Ord-nrs = ((self.Sales.Order.allInstances ->

collect (o:Order | o.clno)) -> asSet)

in

(Pers-nrs->Intersect(Emp-nrs)) -> isEmpty and (1)

Ord-nrs -> forall(o:Integer | (Cl-nrs -> exists(c:Integer |

o=c))) (2)

We are now, of course, also faced with the obligation to suitably
introduce these inter-database constraints in the integrated database DBINT.
This can now be done in a straightforward manner, as illustrated below for
the first constraint

As the examples offered above illustrate, OCL offers a powerful means
to specify inter-database constraints in a very general manner in the context
of our approach.

This section concerns a discussion on methodology, in which we attempt
to move from specific examples to a general approach in constructing a
database federation from a collection of legacy databases, in order to
maintain quality, completeness, and consistency of the data.

We adopt the following strategy to integrate a collection of legacy
databases (collected in a component frame) into a virtual integrated
database: (1) create a tightly-coupled architecture of the federated system,
and (2) abide to the principle of the Closed World Assumption of Database
Integration (CWA-INT). CWA-INT is established by supplying an
integration isomorphism, mapping from the component frame to the virtual
integrated database ([Bal03]).

In practice, fulfilling this strategy can often be a challenging demand, but
without eventually realizing both aspects, the resulting federated database
will fall short due to incorrect query results and inadequate constraint
integration (resulting in loss of completeness and/or consistency).

We now offer some heuristics concerning the realization of the
isomorphic mapping from component frame to integrated database. The
construction of this isomorphic mapping from the component frame to the
virtual integrated database cannot –in principle- be determined beforehand in
algorithmic terms. By this we aim to say that given some set of conflicts in
moving from the components to the integrated federated schema, it is usually
an illusion to state that there exists an indisputable algorithm determining
how those conflicts are resolved. On the contrary, establishing the

156 Integrity and Internal Control in Information Systems

context EX-DBINT inv:

let X = (self.CRM.allInstances -> collect(c:CRM | c.pno))

-> asSet

let Y = (self.SLS.allInstances -> collect(s:SLS| s.pno))

-> asSet

in

(X->Intersect(Y)) -> isEmpty

Informally, this constraint states that there are no pno-values common to
the CRM-class and the SLS-class.

8. HEURISTICS: FROM SPECIFIC EXAMPLES TO
A GENERAL APPROACH

specification of a suitable integration isomorphism usually, in terms of a
formal specification (cf. [Bal03]), demonstrates the mostly ad hoc nature of
resolving the conflicts at hand, reflecting the need for a business semantics
to reach an eventual solution. For example, the resolution of the conflict of
the currencies dollar ($ in DB1) and euro (in DB2), deciding which
currency is to be taken on the common integrated level is basically ad hoc,
and has to be offered by the business. In general, the process of constructing
the formal specification of an isomorphism between the component frame
and the virtual integrated database constantly has to be guided by knowledge
of relevant business semantics.

Equipped with knowledge of relevant business semantics, we can
proceed by following a short step-by-step guideline (constituting a
heuristics, not an algorithm) for constructing a virtual integrated database
from a collection of legacy databases, as described below:

[AB01] Akehurst, D.H., Bordbar, B.; On Querying UML data models with OCL; «UML»
2001 4th Int. Conf., LNCS 2185, Springer, 2001

Integration of integrity constraints in database federations 157

Specify the details of the Component Frame CF
Analyse semantic heterogeneity: detect conflicts due to Homonyms,
Synonyms, Different representations, Default Values, Missing
Attributes, and Subclassing
Construct an integrated schema DBINT (applying the principles of
syn, hom, conv, def, diff, and sub)
Introduce a mediator class
Enforce CWA-INT, by constructing an integration isomorphism
(via the mediator class) between CF and DBINT
Add possible inter-database constraints in CF, and incorporate
them into DBINT

1.
2.

3.

4.
5.

6.

This guideline –though systematic- is not algorithmic in nature. Applying
the principles set out in this guideline will often demand the necessary
creativity from the database modeler in close cooperation with a business
expert, who has sufficient knowledge of the specific business domain. Apart
from these challenges (which apply to most modeling methodologies), our
guideline can offer a powerful methodology in moving from a collection of
legacy systems to a correctly integrated database system maintaining quality,
completeness, and consistency of the involved data.

REFERENCES

[Bal03] Balsters, H.; Object-oriented modeling and design of database federations; SOM
Report, University of Groningen, 2003

[Bal03b] Balsters, H. ; Modelling database views with derived classes in the UML/OCL-
framework ; UML-conference, San Francisco, LNCS 2863, Springer, 2003

[BB01] Balsters, H., de Brock, E.O.; Towards a general semantic framework for design of
federated database systems; SOM Report 01A26, University of Groningen, 2001

[BBZ93] Balsters, H., de By, R.A., Zicari, R.; Sets and constraints in an object-oriented data
model; Proc. 7th ECOOP, LNCS 707, Springer 1993.

[BP98] Blaha, M., Premerlani, W.; Object-oriented modeling and design for database
applications; Prentice Hall, 1998

[BS98] Balsters, H., Spelt, D.; Automatic verification of transactions on an object-oriented
database, Int. Workshop on Database Programming Languages, LNCS 1369, Springer,
1998.

[DH99] Demuth, B., Hussmann, H.; Using UML/OCL constraints for relational database
design; «UML»'99: Int. Conf., LNCS 1723, Springer, 1999

[DHL01] Demuth, B., Hussmann, H., Loecher, S.; OCL as a specification language for
business rules in database applications; «UML» 2001, 4th Int. Conf., LNCS 2185,
Springer, 2001

[DKM93]P. Drew, R. King, D. McLeod, M. Rusinkievicz, A. Silberschatz; Workshop on
semantic heterogeneity and interoperation in multidatabase systems; SIGMOD RECORD 22,
1993

[GUW02] Garcia-Molina, H., Ullman, J.D., Widom, J.; Database systems Prentice Hall,
2002

[Hull97] Hull, R.; Managing Semantic Heterogeneity in Databases; ACM PODS’97, ACM
Press 1997.

[OCL2.0] Response to the UML 2.0 OCL RfP, Revised Submission, Version 1.6, January
6, 2003

[Rei 84] Reiter, R.; Towards a logical reconstruction of relational database theory. In:
Brodie, M.L., Mylopoulos, J., Schmidt, J.W.; On conceptual modeling; Springer Verlag,
1984

[ShL90] A.P. Sheth, J.A. Larson; Federated database systems for managing distributed and
heterogeneous and autonomous databases; ACM Computing surveys 22,1990

[Ver97] M. Vermeer; Semantic interoperability for legacy databases. Ph.D.-thesis, University of
Twente, 1997.

[Wie95] G. Wiederhold; Value-added mediation in large-scale information systems FIP Data
Semantics (DS-6), 1995

[WK03] Warmer, J.B., Kleppe, A.G.; The object constraint language, ed.; Addison
Wesley, 2003

158 Integrity and Internal Control in Information Systems

REDUCING DISRUPTION IN TIME-
TABLED CONDITION MONITORING

Binling Jin and Suzanne M. Embury
Department of Computer Science,
University of Manchester,
Oxford Road, Manchester M13 9PL
United Kingdom

{bjin, sembury}@cs.man.ac.uk

Condition monitoring typically has a high processing overhead and can
thus disrupt the processing of business transactions by the monitored
systems. Time-tabled condition monitoring aims to overcome this dis-
advantage by allowing the system owners to specify the times at which
condition monitoring may take place, and the times when the system
is too busy with revenue generating (or otherwise mission critical) pro-
cessing. Unfortunately, however, when this approach is applied to a
distributed system, the complex interactions between the component
sites during monitoring mean that some interference with normal busi-
ness processing does occur. In this paper, we present five methods for
reducing this interference at the expense of the accuracy of the results
of condition monitoring. We describe the outcome of an experimental
evaluation that has helped us to characterise each method in terms of its
effect on disruption and accuracy. We conclude by presenting heuristics
to help in choosing which method to adopt in a given situation.

Abstract

Keywords: Condition monitoring, distributed query evaluation, integrity monitor-
ing.

Introduction

Organisations are becoming increasingly dependent on their informa-
tion systems (ISs) in supporting many key business functions. In ad-
dition to the traditional uses of information in facilitating and guiding
the day-to-day operations of the business, it is also being applied in
other contexts, such as marketing, customer relationship management
and strategic decision making. However, access to information comes
with an associated cost. Execution of queries and transactions (espe-
cially in high volumes) can require non-negligible amounts of time. Be-

160 Integrity and Internal Control in Information Systems

cause of this, the number and variety of these longer term applications of
data that can be supported by a company’s ISs are limited by the amount
of processing resources that can be spared from the task of managing
mission critical/revenue generating business processes.

One solution to this problem is to replicate the data in a new infor-
mation system (e.g. a data warehouse [1]) but this is expensive, both in
terms of the initial set-up and the continued maintenance of the repli-
cated data. Few applications will warrant the expense of full replication,
even though they may be very worthwhile and of potential value to the
organisation.

However, less drastic solutions are also possible. The owner of an IS
may be reluctant to allow unlimited access by a new application (since
it may interfere with the rate at which revenue generating transactions
can be processed, for example). However, he or she may be more willing
to release some processing resources, on the proviso that control over
exactly when this happens and for how long remains in his or her hands.
For example, the manager of a busy IS may be very reluctant to take on
additional processing burdens during office hours, but may be happy to
allow a new application access to the data between the hours of 3.00am
and 5.00am, once the business of the day has been concluded and the
backup procedures have run to completion.

Time-tabled condition monitoring (TTCM) is a method of tracking
the state of conditions expressed over a distributed information system
(DIS) that attempts to make use of these less-heavily-loaded time peri-
ods. It allows the owner of each component system (or portion of data)
to specify when that system is available for processing queries relating
to condition monitoring. Effectively, the system owner provides a time-
table (of arbitrary length) that states when the system is busy with
other, more important tasks, and when it is free to undertake work for
the TTCM engine. The aim is to allow the long term monitoring of
conditions over distributed systems without also disrupting the normal
business processing rates at the component ISs [11].1

The price to be paid for the resulting lack of disruption is that the
record of the data items that satisfy the condition over time will not
be accurate. Since the TTCM engine must wait until the component
systems are free for use, some changes in conditions will not be detected
until after they have occurred. If a change is short-lived, it may not be

1 Although at present there is little demand for distributed condition monitoring in industry,
we have focused on distribution as this is the more general case, with centralised systems
being the special case. Moreover, with the recent rise of data sharing technologies such as
the Grid, we believe that the need to monitor conditions that span several distinct systems
will grow.

Reducing Disruption in Time-Tabled Condition Monitoring 161

detected at all. At one end of this spectrum, we have the situation where
the owner is so concerned about disruption to the system that he or she
forbids all condition monitoring. Naturally, the levels of accuracy in
this case will be very poor. Similarly, we can achieve extremely accurate
results if we are not concerned about how much disruption we cause
to other forms of information processing on the system in question (for
example, monitoring the conditions as soon as updates occur, using an
active rule mechanism).

Ideally, of course, we would like to maximise the accuracy of the re-
sults while also minimising the amount of disruption that occurs at each
site. In our previous work, we have explored the use of temporal logic
techniques for increasing accuracy, and have characterised them accord-
ing to the degree of disruption they impose on the DIS [12]. However, the
ability to trade disruption for better accuracy is only half of the story.
In order to allow full control over the TTCM system, we also need to
provide the system administrator with ways to reduce disruption at the
expense of poorer accuracy. It is this latter form of control that we turn
our attention in this paper.

The remainder of the paper is organised as follows. In Section 1, we
discuss the various approaches to condition monitoring proposed in the
literature and the means by which researchers have attempted to limit
the processing overheads they impose. Next, in Section 2, we describe
the TTCM approach in more detail and pinpoint the causes of disruption
and inaccuracy within it. Section 3 presents the five different methods
we have proposed for reducing disruption, and characterises them in
terms of their expected effects on both disruption and accuracy. The
results of an experimental evaluation of the five methods are discussed
in Section 4, while Section 5 concludes.

1. Approaches to Condition Monitoring

The term condition monitoring refers to the continuous scrutiny of an
IS in order to discover whether any data items exist within it that satisfy
a particular condition. In some cases, the purpose of this scrutiny is to
raise a warning when some undesirable or illegal condition has arisen
(for example, monitoring of medical equipment). In other cases, the
properties of data items which satisfy the condition are recorded, along
with the times at which they were entered into and removed from the
IS, in order to analyse long term trends (for example, in fraud detection
and quality control). In this paper, we are concerned with this second
kind of condition monitoring.

162 Integrity and Internal Control in Information Systems

Experience has shown that condition monitoring can be highly ex-
pensive in terms of the processing resources it demands. Since the mon-
itoring is continuous, we must re-evaluate the query that searches for
matches with the condition every time a (relevant) update occurs. To
make matters worse, since updates happen most frequently during pe-
riods of peak business activity, condition monitoring imposes its worst
overheads at times when processing resources can least be spared.

A number of researchers have studied the problem of reducing the
overheads of condition monitoring. The most common approach is to
evaluate the condition query incrementally relative to each update that
occurs, rather than repeating the work of checking data items that can-
not possibly have been affected by the change [4, 14, 16, 19, 20]. Another
common approach focuses on avoiding unnecessary recomputation of un-
changed parts of the condition view by materialising it (either in whole
or in part) [2, 5, 8, 17, 18].

Efficiency is an even greater concern when the condition to be mon-
itored is distributed across several databases, because of the significant
overheads imposed by the need to ship data sets between sites. Most
proposals for improvements to distributed condition monitoring have
therefore focussed on reducing the costs of data communications. For
example, Mazumdar [13] proposed a technique for reducing the number
of sites involved in the distributed query evaluation, on the grounds that
this would also reduce the need for data shipping. Other authors (e.g.
[10, 9, 15]) have focused on the more fundamental problem of how to
keep the data sets that must be communicated between sites small and
manageable.

All the methods described above assume that accuracy of condition
monitoring is paramount and therefore that conditions should be checked
immediately when data is updated (or transactions committed). Even
taking into account the efficiency measures we have mentioned, the over-
head imposed by immediate condition monitoring is too great for many
system owners to feel that the benefits are worth the resultant costs.
In some cases, however, we may be prepared to accept some limited re-
duction in accuracy, if by that means we can reduce the disruption to
key business functions. A small number of authors have considered this
line of argument, and have proposed a periodic approach to condition
monitoring, in which condition re-evaluation is not triggered by each
and every update [3, 6, 7]. Instead, the conditions may be monitored
at some frequency set by the user (e.g. every hour or after every 100
transactions) or perhaps only when the user requests the current value.

These methods provide system owners with some measure of con-
trol over the resources that are given over to condition monitoring, but

Reducing Disruption in Time-Tabled Condition Monitoring 163

only in a rather coarse-grained fashion. Moreover, they do not con-
sider the additional problems raised by distributed condition monitor-
ing, where each component site imposes its own constraints on resource
usage. Time-tabled condition monitoring (TTCM) takes the notion of
periodic monitoring a stage further, in allowing the owner of each site in-
volved in distributed condition monitoring to specify exactly when that
system can perform work on behalf of the TTCM system and for how
long [11]. The TTCM system then attempts to choose an optimal plan
for distributing the work of query evaluation to the component sites, in
such a way that accuracy of the results will be maximised. However,
because of the complex interactions between the timetables specified by
the individual sites, it is not always possible to avoid all disruption at all
sites. In the following section, we will present a more detailed descrip-
tion of the workings of TTCM and outline the causes of this unwanted
disruption.

2. Time-Tabled Condition Monitoring

Figure 1 shows example timetables for a DIS consisting of three com-
ponent sites (and). A fourth site is also shown, representing
the TTCM system itself (where the results of condition monitoring are
recorded). The blank periods at each site indicate times when condition
monitoring queries may be evaluated by that site, while the shaded areas
indicate periods when the system is busy with other work.

When a query is submitted to the TTCM system for monitoring, it is
translated into an execution plan, which describes how the work of each
of the operators within the query are to be allocated across the various
sites of the system. By implication, therefore, the execution plan also
determines which data sets will have to be shipped between sites for con-

164 Integrity and Internal Control in Information Systems

dition monitoring to take place. Each site maintains an operation queue,
which indicates the operations that are due for re-evaluation at that site.
Operations are ordered within the queue according to decreasing length
of time between their last evaluation and the most recent update to their
input relations. As well as the usual relational algebra operations, op-
eration queues may also include ship operations (which request that a
local relation be transmitted to another site) and load operations (which
request that data shipped from a remote site be loaded into a local rela-
tion). The final results of condition re-evaluation are sent to the TTCM
site, as a set of timestamped tuples, where they are recorded for future
analysis.

The reasons for the inaccuracy of the results from TTCM should now
be clear. Data items which satisfy the condition will often be introduced
into the IS during the periods when it is busy with normal business pro-
cessing (i.e. when update rates are high). The TTCM system, however,
must wait until the next free period before it can begin the work that
will detect the satisfaction of the condition. Therefore, the timestamp
that will be associated with the new data item will be later than the
time of its actual entry into the system. Similarly, when updates to a
data item mean that it no longer satisfies the monitored condition, the
timestamp recorded by TTCM for its removal will also be inaccurate. It
is even possible that the presence of data items that satisfy the condition
may be missed altogether, if they are removed again before the TTCM
system has a chance to identify them. In our previous work [12], we have
shown that it is possible to reduce these inaccuracies by the inclusion of
temporal reasoning in the query evaluation process, but some inaccuracy
will still remain.

The causes of disruption, on the other hand, are less obvious to the
casual observer. By disruption in this context we mean a reduction in
the amount of non-condition monitoring work that the component sites
are able to undertake while TTCM is in operation. If the timetables
for TTCM have been set accurately by the system owners, and very
little business processing occurs during the periods marked as “free”
for TTCM, then we would expect TTCM to have no negative effect
on the transaction rates exhibited by the monitored system. Yet our
experiences have shown that such disruption does occur.

Why should this be so? On investigation, we discovered that the
problem arises due to the complex interactions between the component
systems, each of which may be operating to a different timetable for the
purposes of TTCM. We can distinguish two significant forms of disrup-
tion:

Reducing Disruption in Time-Tabled Condition Monitoring 165

Direct Disruption, which is caused when a ship operation arrives
at its destination site during a busy period for that site (Figure 2).
Although the receiving site would not attempt to load the shipped
data into the database (since TTCM is not enabled during busy
periods), there is still some small amount of overhead involved in
handling the receipt of the data and storing it locally on disk for
later processing.

Indirect Disruption, which is caused when a component system
that is performing normal business processing (i.e. is in a busy
period) needs to access data held at another site that is currently
engaged in TTCM. In such a case, the processing of the transaction
at the busy site will be delayed until the site which holds the data
completes its current TTCM operation (Figure 3).

166 Integrity and Internal Control in Information Systems

3. Methods for Reducing Disruption

One way to combat the disruption inherent in TTCM is to make a
careful choice of the allocation of work to the various sites. However,
such an approach cannot adapt to the local conditions that occur at
runtime. The alternative is to modify the way in which TTCM opera-
tions are executed by each individual site, so that each site has available
the complete context in which to make decisions about the best way to
avoid disruption. We will now present five run-time strategies for re-
ducing disruption in this way, and will discuss how far each of them can
help to avoid disruption and what effect they each have on the accuracy
of the final TTCM results.

Method 1: Ship Data Only When Both Sites are Free. The
first method is aimed at reducing direct disruption. As we have seen,
this form of disruption results when data is shipped to a site at which
the workload is high. This suggests the simple expedient of delaying
ship operations until the destination site has entered a free period and is
ready to receive the data. Where this can be done, the direct disruption
should be completely eliminated.

The main advantages of this approach is that it is very simple and
straightforward to implement. The only information required to deter-
mine whether to ship data or not is the timetable of the destination site,
which can be cached locally for easy access. The main disadvantage is
the effect on accuracy, which is likely to be significant unless both sites
involved in the ship operation have many free periods in their timeta-
bles. If they do not, then there is a chance that the shipment of data
may have to be delayed for a very long time until the timetables of the
sending and the receiving site happen to coincide.

Method 2: Ship Data via a Free Intermediate Site. The
second method is a variant on the first. It aims to reduce delays in
shipping data while still eliminating the direct disruption. As with the
first method, method 2 begins by examining the timetables of the send-
ing and receiving sites and calculating the next time at which both will
be free. However, it also looks for a third site that can potentially be
used as an intermediate holding site for the data while waiting for the
destination site to become free. Once again, data is only shipped when
both sites involved are free for TTCM. The difference this time is that
we have two ship operations to consider: the transfer from the sending
site to the intermediate site, and the transfer from the intermediate site
to the destination site. If the use of an intermediate site will cause the

Reducing Disruption in Time-Tabled Condition Monitoring 167

data to arrive at the destination site sooner than with method 1, then
the necessary ship operations are inserted into the operation queues at
the source site and the intermediate sites.

Since delays in evaluation are the cause of inaccuracy, where there are
several candidate intermediate sites, we choose the one that will result
in the earliest arrival time for the data at the destination site. In a
complex system, with very few free periods, it might also be worthwhile
to consider the use of multiple intermediate sites, although we have not
explored this option ourselves (since the search space size grows rapidly
with the number of hops considered and the anticipated benefits are not
all that great).

There is also the added complication that, using this method, it is
possible that an older version of the relation might arrive at the desti-
nation site after the arrival of a newer version (which has travelled by a
different route). However, this problem can be solved by shipping times-
tamps with each version of the relation, so that the destination site can
check whether the data that has just arrived is more recent than that
received previously or not.

The advantage of this method is that it should result in more accurate
condition monitoring than method 1, while having much the same effect
on disruption. The disadvantage is that it is slightly more complicated
to implement.

Method 3: Monitor Conditions Periodically. This third method
aims to reduce indirect disruption by cutting down on the number of
times that condition monitoring operations are performed during TTCM.
The rationale for this is that if the TTCM is issuing fewer queries then
there will be more bandwidth available for handling requests for data
from other (busy) sites.

Ideally, we would prevent only those executions of operations that do
not result in any new information regarding the data items that satisfy
the condition. For example, suppose during a free period at site the
relation is shipped twice to the destination site (This could happen
if was updated just after the first ship operation had been completed,
for example.) However, at the time of the first ship, is busy and it
does not process the new set of tuples for until after the second ship
operation has occurred. In this case, the first ship operation was a waste
of time, because its results were not used by the TTCM system.

Unfortunately, identifying such redundant operations before they oc-
cur is impossible because we do not know when the next update to the
input relations of each operation will occur. We must therefore adopt
some more artificial mechanism for determining how often each oper-

168 Integrity and Internal Control in Information Systems

ation can productively be re-evaluated. Since the majority of updates
occur during busy periods, one approach is to re-evaluate each operation
only when some site in the system has changed its status from busy to
free. However, we also need to take into account changes that are made
as a result of TTCM itself, so we should also be prepared to re-evaluate
operations when a site changes from free back to busy again.

This strategy is best explained by an example. Figure 4 shows the
timetables of three sites involved in condition monitoring. Initially, all
the sites are busy but soon site becomes free and begins to process the
operations in its queue. If an operation op is evaluated when becomes
free at time then, under this method, we will artificially block its re-
evaluation until time when one of the other sites changes its state
from busy to free. The vertical lines in Figure 4 indicate the times after
which operations may be re-evaluated thanks to a change in the status
of some site or other.

In general, one would expect this method to have only a limited effect
on disruption, since it is still possible for an operation to be evaluated
many times during any one free period. However, by the same token,
the negative effects on accuracy can also be expected to be limited, since
the condition is still being monitored on a regular basis. Moreover, al-
though this method was designed with the intention of reducing indirect
disruption, it should also show some beneficial effects in terms of direct
disruption, since the number of ship operations executed during any one
free period may also be reduced.

Method 4: Monitor Conditions once per Free Period. If
method 3 is expected to have only a limited effect on disruption, then
an obvious way to improve it is to impose a more stringent criterion for
re-evaluation that further reduces the frequency with which operations

Reducing Disruption in Time-Tabled Condition Monitoring 169

are executed. Method 4 does exactly this by ensuring that each operation
is executed at most once in each free period.

The principal advantage of this method is its simplicity. However, its
beneficial effects could also be significant, especially in systems which
have a high update rate and/or timetables containing many long periods
of free time. By the same token, we would expect to see a corresponding
reduction in accuracy of condition monitoring with this method.

Method 5: Monitor Conditions During Global Free Periods.
The final method aims to reduce both types of disruption, by taking the
rather drastic step of only performing condition monitoring work when
all sites are free at the same time. If our understanding of the causes of
the disruptive effects of TTCM is correct then this method should elim-
inate both direct and indirect disruption completely. However, unless
the timetables for all systems include an unusually high proportion of
overlapping free time, this method is also expected to have an extremely
severe effect on the accuracy of condition monitoring.

4. Experimental Evaluation

Having implemented the five methods within the TTCM system, we
next undertook an experimental evaluation to determine whether our
predictions as to their effectiveness were correct. In order to do this, it
was necessary to define quantitative measures of the two characteristics
of interest: namely, disruption and accuracy. We define the disruption
of a method in terms of its effect on the total number of business trans-
actions that are processed over the course of an experiment. We refer
to the number of transactions executed during an experiment as the
TransactionNumber.

We define the inaccuracy of a method to be equivalent to the total
amount of time during the experiment for which the condition monitor-
ing system has recorded a false positive or a false negative result for the
condition. A false positive result occurs when the condition monitoring
systems states that, for some period of time, the condition was true,
when in fact it was false. Similarly, a false negative result occurs when
the condition monitoring system states that the condition was false when
it was in reality true. By totalling up the length of time during which
an inaccurate result was recorded, we can gain some indication of the
inaccuracy inherent in the condition monitoring method used.

In order to measure these quantities when the methods were in action
within the TTCM system, we developed a simple order handling system,
distributed over three sites. We also developed an experimental frame-
work which allowed us to execute transactions against the database and

170 Integrity and Internal Control in Information Systems

record the actual state of the monitored condition, while using one of
our methods to record the state of the condition as seen by the TTCM
system for comparison. Each run of the system lasted for a period of 12
hours.

We used this experimental framework to assess the benefits and costs
of each of the five methods presented above. In order to provide up-
per and lower baselines against which to compare our methods, we also
measured the disruption and inaccuracy in two extreme cases. Lower
bounds were provided by measuring the effects of running the basic
TTCM evaluation method, which executes the condition monitoring op-
erations during free periods without making any additional attempt to
control disruption. For convenience, we refer to this as method 0.

The upper bounds were found by executing the sequence of business
transactions with TTCM switched off (method 6). The results of this
process gave us the maximum number of transactions that could be pro-
cessed during the 12 hour period of the experiment. Similarly, since no
condition monitoring was taking place, the record of the data items that
satisfy the condition will be empty. The inaccuracy of an empty TTCM
result does not tell us what the maximum possible level of inaccuracy
is since, for many data items, an empty condition satisfaction record is
an entirely accurate result. However, it does give a useful benchmark
figure against which to compare the inaccuracy that results from the
other methods, since it is almost certainly going to be worse than trying
to perform some kind of TTCM, however limited.

Since the success of each individual method is dependent upon the
exact form of the timetable in use at any one time, we have performed
two sets of experiments with two different sets of timetables, so that we
could get some initial idea of the stability of our results. The key factor
in determining how hard or how easy it is to avoid disruption seems to
be the ratio of:

the average length of the free periods over all sites (AvgLength-
LFP), to

the average cost of condition monitoring for each site (AvgCostCM).

The two sets of experiments use timetables which were deliberately de-
signed to give very different values for the ratio of these two quantities
(AvgLengthLFP/AvgCostCM = 17 and = 2.5). Figures 5 and 6 il-
lustrate the results in each case. In the graphs, inaccuracy is given in
terms of minutes, while transaction number is a simple count of the
transactions that were completed.

As we predicted, method 5 does indeed result in the least disruption,
coming close to the upper bound in terms of the number of transactions

Reducing Disruption in Time-Tabled Condition Monitoring 171

that could be executed. However, this benefit comes at a heavy cost in
inaccuracy, which is four to six times the inaccuracy of the basic TTCM
method (method 0).

Both methods 1 and 2 have a positive effect on disruption and a sur-
prisingly small negative effect on accuracy. On the basis of these results,
there is very little to choose between them, which perhaps suggests that
the extra complications of method 2 are not worth the time and trouble
it takes to implement them.

Methods 3 and 4 are both extremely successful when AvgLength-
LFP/AvgCostCM is higher; that is, when the free periods are signifi-
cantly longer than the amount of time required to check the condition
as a whole. The number of transactions that can be processed when
using these methods is almost as high as that when no condition moni-
toring is taking place. In addition, there is a surprisingly small effect on
inaccuracy, with the amount of false positives and false negatives being

172 Integrity and Internal Control in Information Systems

scarcely larger than the lower baseline figure itself. However, neither
method is very successful in the context of a lower value for AvgLength-
LFP/AvgCostCM.

This is reasonable. When the free periods are only just long enough
to allow the execution of one TTCM operation, then attempts to reduce
the frequency of execution of those operations is unlikely to make much
of a difference on the overall outcome. Effectively, in this experiment
set, methods 3 and 4 were operating very much like the basic TTCM
evaluation strategy; hence the limited improvement in disruption and
the low levels of increased inaccuracy.

5. Conclusions

We have presented five different methods for reducing the disruption
caused by time-tabled condition monitoring, and have outlined how we
have evaluated their varying effectiveness using our experimental frame-

Reducing Disruption in Time-Tabled Condition Monitoring 173

work. None of the methods emerges as a clear winner from this evalu-
ation. Either the positive effect on disruption is limited or else there is
a substantial negative effect on the accuracy of the results. Methods 3
and 4 performed excellently in the first experiment, but were much less
successful in the second. Presumably, it would be possible to construct
scenarios in which each of these methods could perform well. The ques-
tion as to which method to use in practice, therefore, depends in part on
the particular characteristics of the DIS to which TTCM is to be applied
and in part on whether lack of disruption or high accuracy is of most
importance to the owners of the system.

For example, if absence of disruption is the key priority, and accuracy
is considered to be of secondary importance, then method 5 is the obvi-
ous choice. It will eliminate almost all the disruption, but the results of
condition monitoring will contain many phantoms and omissions. If, on
the other hand, accuracy of results is a major concern, over and above
disruption, then the basic TTCM method should be adopted.

More typically, however, system owners will be looking to achieve a
compromise between accuracy and disruption. In such a case, perhaps
the best approach is to try to determine the principal causes of disruption
within the system and to choose the most appropriate method for reduc-
ing it. In addition, system owners should take into account the charac-
teristics of their workload timetables and the conditions that are to be
monitored and thus determine the value of AvgLengthLFP/AvgCostCM
for their system. If this value is high (say, greater than 10) then there
is a good chance that methods 3 and 4 may be effective in reducing
disruption without too serious an effect on disruption. Otherwise, these
methods should probably be avoided. Tables 1 and 2 summarise our
recommendations for choosing a specific method based on system char-
acteristics and stakeholder priorities.

174 Integrity and Internal Control in Information Systems

Acknowledgments

The authors wish to thank Mark Greenwood and Ben Senior for their
helpful discussions and suggestions on the work described in this paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

R. Barquin, and H. Edelstein. Building, Using, and Managing the Data Ware-
house. Prentice Hall, 1997.

Philip A. Bernstein, Barbara T. Blaustein, and Edmund M. Clarke. Fast mainte-
nance of semantic integrity assertions using redundant aggregate data. In Sixth
International Conference on Very Large Data Bases, October 1-3, 1980, Mon-
treal, Quebec, Canada, Proceedings, pages 126–136. IEEE Computer Society,
1980.

Stephanie J. Cammarata, Prasadram Ramachandra, and Darrell Shane. Ex-
tendeing a relational database with deferred referential integrity checking and
intelligent joins. In James Clifford, Bruce G. Lindsay, and David Maier, editors,
Proceedings of the 1989 ACM SIGMOD International Conference on Manage-
ment of Data, Portland, Oregon, May 31 - June 2, 1989, pages 88–97. ACM
Press, 1989.

Stefano Ceri and Jennifer Widom. Deriving production rules for constraint
maintainance. In Dennis McLeod, Ron Sacks-Davis, and Hans-Jörg Schek,
editors, 16th International Conference on Very Large Data Bases, August 13-
16, 1990, Brisbane, Queensland, Australia, Proceedings, pages 566–577. Morgan
Kaufmann, 1990.

Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok
Shim. Optimizing queries with materialized views. In Philip S. Yu and Ar-
bee L. P. Chen, editors, Proceedings of the Eleventh International Conference
on Data Engineering, March 6-10, 1995, Taipei, Taiwan, pages 190–200. IEEE
Computer Society, 1995.

Latha S. Colby, Timothy Griffin, Leonid Libkin, Inderpal Singh Mumick, and
Howard Trickey. Algorithms for deferred view maintenance. In H. V. Jagadish
and Inderpal Singh Mumick, editors, Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, Montreal, Quebec, Canada,
June 4-6, 1996, pages 469–480. ACM Press, 1996.

Reducing Disruption in Time-Tabled Condition Monitoring 175

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Armin B. Cremers and G. Doman. Aim - an integrity monitor for the database
system ingres. In Mario Schkolnick and Costantino Thanos, editors, 9th Inter-
national Conference on Very Large Data Bases, October 31 - November 2, 1983,
Florence, Italy, Proceedings, pages 167–170. Morgan Kaufmann, 1983.

Stefan Grufman, Fredrik Samson, Suzanne M. Embury, Peter M. D. Gray, and
Tore Risch. Distributing semantic constraints between heterogeneous databases.
In Alex Gray and Per-Åke Larson, editors, Proceedings of the Thirteenth Inter-
national Conference on Data Engineering, April 7-11, 1997 Birmingham U.K,
pages 33–42. IEEE Computer Society, 1997.

Ashish Gupta. Partial Information Based Integrity Constraint Checking, PhD.
Thesis. Stanford University, USA, 1994.

Ashish Gupta and Jennifer Widom. Local verification of global integrity con-
straints in distributed databases. In Peter Buneman and Sushil Jajodia, editors,
Proceedings of the 1993 ACM SIGMOD International Conference on Manage-
ment of Data, Washington, D.C., May 26-28, 1993, pages 49–58. ACM Press,
1993.

Binling Jin and Suzanne M. Embury. Non-intrusive assessment of organisational
data quality. In E.M. Pierce and R. Katz-Haas, editors, The 6th International
Conference on Information Quality (IQ-2002), Cambridge, MA, USA, Novem-
ber 2001, pages 398–411, 2001.

Binling Jin and Suzanne M. Embury. Increasing the accuracy of time-tabled con-
dition monitoring. In Integrity and Internal Control in Information Systems V,
IFIP TC11/WG11.5 Fifth Working Conference on Integrity and Internal Con-
trol in Information Systems (IICIS), November 11-12, 2002, Bonn, Germany,
volume 251 of IFIP Conference Proceedings, pages 21–35. Kluwer, 2003.

Subhasish Mazumdar. Optimizing distributed integrity constraints. In Song C.
Moon and Hideto Ikeda, editors, Proceedings of the 3rd International Conference
on Database Systems for Advanced Applications (DASFAA), Daejeon, Korea,
April 6-8, 1993, volume 4 of Advanced Database Research and Development
Series, pages 327–334. World Scientific, 1993.

Jean-Marie Nicolas. Logic for improving integrity checking in relational
databases. Acta Informatica, 18(3):227–253, 1982.

Xiaolei Qian. Distribution design of integrity constraints. In Larry Kerschberg,
editor, Expert Database Systems, Proceedings From the Second International
Conference, Vienna, Virginia, USA, April 25-27, 1988, pages 205–226. Ben-
jamin Cummings, 1989.

Xiaolei Qian and Gio Wiederhold. Incremental recomputation of active rela-
tional expressions. IEEE Transactions on Knowledge and Date Engineering,
3(3):337–341, September 1991.

Eric Simon and Patrick Valduriez. Design and implementation of an extendible
integrity subsystem. In Beatrice Yormark, editor, SIGMOD’84, Proceedings of
Annual Meeting, Boston, Massachusetts, June 18-21, 1984, pages 9–17. ACM
Press, 1984.

Divesh Srivastava, Shaul Dar, H. V. Jagadish, and Alon Y. Levy. Answering
queries with aggregation using views. In T. M. Vijayaraman, Alejandro P.
Buchmann, C. Mohan, and Nandlal L. Sarda, editors, VLDB’96, Proceedings

176 Integrity and Internal Control in Information Systems

[19]

[20]

of 22th International Conference on Very Large Data Bases, September 3-6,
1996, Mumbai (Bombay), India, pages 318–329. Morgan Kaufmann, 1996.

Michael Stonebraker. Implementation of integrity constraints and views by
query modification. In W. Frank King, editor, Proceedings of the 1975 ACM
SIGMOD International Conference on Management of Data, San Jose, Califor-
nia, May 14-16, 1975, pages 65–78. ACM Press, 1975.

Jennifer Widom, Roberta Cochrane, and Bruce G. Lindsay. Implementing set-
oriented production rules as an extension to starburst. In Guy M. Lohman,
Amílcar Sernadas, and Rafael Camps, editors, 17th International Conference
on Very Large Data Bases, September 3-6, 1991, Barcelona, Catalonia, Spain,
Proceedings, pages 275–285. Morgan Kaufmann, 1991.

A SERVICE ORIENTED SYSTEM BASED
INFORMATION FLOW MODEL FOR DAMAGE
ASSESSMENT

Yanjun Zuo and Brajendra Panda
Department of Computer Science and Computer Engineering
University of Arkansas, Fayetteville, AR 72701
Email: {yzuo,bpanda}@uark.edu
Phone: (479) 575-2067, Fax: (478) 575-5339

The process of damage assessment and recovery in case of an information
attack is time consuming. Any delay during recovery process may lead to
system unavailability and is unacceptable in many time-critical applications.
In this research we have developed a model to reduce this delay and aid in
prompt assessment of damage, which is essential for faster recovery. In case of
an attack notification, the goal of this model is to identify the affected data
items quickly without having to evaluate too many data items and then make
the unaffected data items available as soon as possible. This model can be
used along with other intrusion detection mechanisms.

Information flow, damage assessment

1. INTRODUCTION

Damage assessment and recovery are time consuming processes. They
could lead to denial-of-service in some situations and that is unacceptable.
Any uncertainty in intrusion response can make the situation worse [3].
Some of the recent developments on damage assessment and recovery from
information attacks are ([6], [8], [7], [10], [11], [13]). This paper focuses on

Abstract:

Key words:

achieving faster damage assessment by analyzing the patterns of information
flow within an organization (or closely related organizations), which we call
a domain. A very common situation in a domain is the time lag between the
moment when an attack took place and the time when the attack is actually
detected. During this period, any other legitimate programs or transactions
may still read damaged data items and use their values to update other data
items, thus, affecting latter. In database systems, damage may also spread
via other means as discussed in [1] and [4]. Before the recovery process it is
necessary to make accurate evaluations to determine the sets of data items
that have been damaged or the sets that are clean so that clean sets of data
items can be made available to user while feeding the damaged sets to
recovery module. This can effectively reduce system down time after an
attack. The approach presented in this paper employs a simple method to
make preliminary damage assessment and can be used with other intrusion
response systems.

A domain is an abstract entity, which is made up of multiple units. A
unit, denoted by U, is a multi-service entity involved in multiple types of
services in a domain. Each type of service is associated with and supported
by a set of relevant data items distributed in multiple units. A unit could be a
business department, a functional office, or a service center within an
organization. Each of these units communicates with other units in the same
domain and share information with them. We consider each unit to consist of
multiple abstract entities, called service groups (SGs). For the service group
in unit U, which is involved in the type of service S, we denote it as
Each SG owns and manipulates a group of relevant data items, which are
involved only in that type of service. There may be a public group
corresponding to a unit in the domain, which is kept in a public group area
and is available for SGs of that unit. Each public group owns and
manipulates public data items for the corresponding unit. That public group
area in the domain keeps all public groups for all units. Figure 1 shows the
structure of a domain, which consists of units and a public
group area containing public group 1 for unit 1, public group 2
for unit 2, and so on. Figure 2 illustrates the typical structure of a unit U,
which has multiple service groups involved in service

Data items in public groups can only be updated by authorized
administrators in controlled environments. Within a domain any data item in
a unit is only owned and manipulated by one service group (SG) and each
service group corresponds to only one service type. Information in each
public group (PG) may be released to the corresponding SGs of the unit or

178 Integrity and Internal Control in Information Systems

1.1 The Data Model

available for other PGs of units under administrative control. However, no
information flow is allowed between any two SGs of the same unit.

1.2 Separation of Service Data Items

The concepts of domain, unit and service group separate data items in a
social network based on their services. Instead of grouping data items based
on conflict of interests as done in the Chinese Wall Security Policy [2], our
model separates data items based on relevant types of services provided in a
domain. This restriction of possible information flows not only prevents
manipulations of unnecessary data items but also helps perform quick
damage assessment in case of an attack. The following examples would
clarify the idea. Consider a domain such as a national administrative system,
which consists of government bodies at federal, state, and city levels. Each
government agency can be viewed as a unit. Each unit provides social
services and manipulates data items related to military and civil sectors.
There may be no (at least no need to allow) information flow from military
sector to civil sector for each government unit. For those information
needed by both sectors, a public group can be set up in the public group area
within the domain. Information flow could happen from a civil service
group in a state government unit to civil service groups in other state, federal
or city government units, or vice versa. As another example consider a
supply chain, which consists of wholesalers, retailers, customers, and
vendors. Each component in this domain can be viewed as a unit. A

A Service Oriented System Based Information Flow Model For Damage Assessment 179

wholesaler unit may have different service groups, each of which handles
different product lines. For each product line, it has business connections
with some vendors in that industry. There is no need to allow information
flow between different service groups in this whole seller unit, say, from
food group to baby cloth group. Common information such as financial
data, or human resources data, can be retrieved from public group. The last
example is about an academic body such as a university or a college, which
consists of academic departments, administrative offices, and other agents.
If we view each academic department as a unit, then it may have multiple
abstract SGs, such as student academic group, faculty administrative group,
computing facility group, and others. The department unit may keep
administrative data such as faculty payroll information separated from
student academic records and computer lab information from faculty
research projects.

The following definitions would be useful in explanation of the damage
assessment model. The first definition has been taken from [9] with slight
modification.

Definition 1: Data item a “can-influence” data item b if a is allowed to
be used to update b. This permission to update is determined by the SG of
the unit, which owns a, based on the SG’s functional roles and policies or
mutual agreements of relevant units. This relationship is denoted as
If b also can-influence a, we denote the relationship as

Definition 2: “can-influence” if a data item of
can-influence a data item of where and are two units within
one domain and S is a type of service. This relationship is denoted as

It must be ensured that this type of relationship only
exists between SGs involved in the same type of service.

Property 1: It is obvious that does not influence and
does not influence We denote these as

and respectively.
Definition 3: We use the representation for

actual information flow from to Moreover, when there is
two way information flow between and we use the symbol

180 Integrity and Internal Control in Information Systems

2. DAMAGE ASSESSMENT MODEL

Information flow has the following characteristics:

Non-commutative:

1)

2)

Reflexive:

For those data items involved in the same type of service as the damaged
one, a probability graph can be used to make quick damage assessments.
We recognize the dynamic nature of a domain in a time span. Given a type
of service S, each unit (or SG) may change its policies dynamically affecting
the “can-influence” relationships with SGs of other units. A static period t
for S refers to the time duration when no unit (or SG) changes its “can-
influence” policies and the domain is in a static period. A time period refers
to a static time period in the following sections unless stated otherwise. An
evaluation time period for S is the time range from the time point when the
attack started (as detected) until its effects were stopped (usually the time
when the damage assessment process begins). During this period, legitimate
transactions may still read dirty data.

Definition 4: A probability graph for a given type of service S in a time
period is a directed graph representing can-influence relationships among
SGs of different units in a domain involved in S. It is denoted as A
node in a probability graph denotes an SG of a unit and an edge represents
can-influence relationship between the two connected nodes. An edge can
be unidirectional or bi-directional. An unit has no more than one SG as a
node in a probability graph for a given service type S and static time period

Figures 3(a) and (b) show two probability graphs for the static time
period and respectively.

A Service Oriented System Based Information Flow Model For Damage Assessment 181

3) Transitive: and

While the “can-influence” relationship is a direct reflection of units’
functional polices, the “information flow” relationship is the actual
functional activity between two SGs. For example, if unit provides
certain type of service S in a domain and allows unit to use its data items
related to that service, then a “can-influence” relationship exists between the
corresponding two SGs of and respectively. When unit actually
updates its data items using information from unit then the information
flow takes place (via SGs).

2.1 Probability Graph Analysis

In this model, we assume the attack has been detected by using some
intrusion detection methods. The separation of service data items facilitates
the speedup of the damage assessment process. If we can determine the
service group, which a damaged data item belongs to, then any other data
items belonging to different type of services can be made free and available
to users.

2.1.1 Probability Graph

182 Integrity and Internal Control in Information Systems

A cumulative probability graph reflects any possible “can-influence”
relationships among units during a cumulative time period t for a given
service type. It is calculated based on the probability graphs in each time
period (these time periods are continuous). Figure 4 represents such a
cumulative probability graph for the evaluation time period t, where and
are continuous and t has the same starting time as and the same ending
time as which is the end time of spreading of damage.

If we can effectively reduce the evaluation time period (e.g., detect the
intrusion earlier), then the cumulative probability graph may be simpler. On
the other hand, if a domain is less dynamic in term of changes of “can-

Definition 5: Pt(S) is a cumulative probability graph for an evaluation
period t for a given type of service S and
based on the following rules:

Period are continuous, and t has the
same beginning time as and the same ending time as
If a node node set, where or then

node set;
If an edge edge set, where or then

edge set.

1)

2)

3)

influence” relationships, then the needs to accumulate probability graphs
could also be reduced (or eliminated).

Definition 6: If G’ is a sub graph of G (where G and G’ are built based
on the same time period), then the graph(s) G-G’ contains only the nodes in
G but not in G’. Further, all edges in G except those with a vertex in G’ are
still in G-G’. If a node N is in G, and {N} denotes a single-node graph, G-
{N} will be the result if we delete N from G.

Property 2: If we consider graph accumulation as a special operation of
graph “addition”, as denoted as then

Definition 7: A critical node in a probability graph or an information
flow graph (see section 2.2) is a specific connecting point, removal of which
may divide the graph into multiple connected graphs (the original graph is
no longer connected). In Figure 4, nodes 5, 7, and 9 are critical nodes. A
critical node in this paper is similar to an articulation point in a graph as
described in [12]. Critical nodes in a graph can be found using the
corresponding algorithm presented in [5]. But not every probability graph or

A Service Oriented System Based Information Flow Model For Damage Assessment 183

184 Integrity and Internal Control in Information Systems

an information flow graph has critical nodes. If there is a cycle in a graph
visiting every node, then this graph has no critical node.

Definition 8: A distance of a critical node in a probability graph or an
information flow graph is the number of nodes along the shortest path from
the node (SG), which contains the initially detected damaged data item(s), to
that critical node.

All the critical nodes for a given graph form a critical node set, denoted as
CNS. We record CNS in increasing order. In Figure 4, the distance of node
5 from node1 (source of the damage) is 2, the distance of node 7 is 3, and the
distance of node 9 is also 3. So CNS = {5, 7,9} or {5,9,7}.

Definition 9: A sector is a connected graph formed by nodes as obtained
after the removal of a critical node from a probability graph. Several sectors
may be resulted after removal of one critical node. The sector, which
contains the initially known damaged data item, is called dirty sector. Figure
5 depicts two sectors produced after removal of critical node N9 from the
graph shown in Figure 4. Sector 1 will be marked as a dirty sector if we
identify the initially detected damaged data in N1, for example.

For any critical node, if we can determine it is free of damage, then
all of the nodes it “can-influence” can be ensured not damaged. If the
considered critical node cannot be eliminated, we then pick up the next
critical node with smallest distance value and perform the same evaluation.

For every critical node two logs are maintained: release log and update
log. An entry in each log for a critical node has two fields, namely, SG_id
and timestamp. However, these fields mean differently for the two logs. We
use an example of a service group, sg, to clarify these concepts.

For sg’s update log, the first field, “SG_id”, represents the ID of an SG,
from which a data item was read earliest or latest by sg. We consider the
possible earliest time since a base point when the domain has no damaged
data item for the given type of service (e.g., organization startup time, or the
last time when the intrusion was detected and cleaned). Before an entry is
added, if there has been no more than one entry for the SG in sg’s update
log, then the new entry is inserted. Otherwise, overwrite the most recent
entry for the SG.

For sg’s release log, the “SG_id” field represents the ID of an SG, into
which a data item in sg flows most recently. Before an entry is added, if
there is already an entry for the SG, then overwrite that entry using the most
recent timestamp.

The second field, “timestamp” records the moment when the information
flow takes place for each recorded entry in both release and update logs. The
complete format for this field should be
year:month:date:hour:minute:second. This paper uses the format
hour:minute for simplicity.

Property 3: A node N*’s update log always keeps the earliest and the
most recent time for incoming information flows from each other SGs (if
there is only one entry for the SG, the earliest and the most recent time are
the same). N*’s release log only keeps the most recent outgoing information
flow from N* for each other node.

For each SG, we don’t keep information flow for each individual
data item. Rather we keep information for communications among SGs. An
example is given in Table 1 to show the update log for node N9 based on
Figure 4 and 5 as well as actual information flow records. In addition, we
assume that an attack was detected as taking place at 11:00.

A Service Oriented System Based Information Flow Model For Damage Assessment 185

2.1.2 Evaluation of a Critical Node

It is possible for a critical node to be quickly assessed to determine
whether it contains damaged data items without reading all other nodes in a
probability graph. This could be done by several means, such as by carefully
studying the legitimate transactions and calculating the “should-be” values
for data items in that critical node. Then comparisons can be made to decide
the cleanness of that critical node. This paper introduces a method to
determine whether any data item in a critical node has been damaged
without analyzing other nodes.

2.1.2.1 Release Log and Update Log

Based on the analysis for a critical node, there are two cases as discussed
below in analyzing the probability graph (we use node N5 in Figure 4 as an
example).

Case1: If we cannot evaluate any data item in N5 as damage free or we
can determine at least one data item in N5 has been damaged, we will then
move to the next critical node, such as N7.

Case 2: If we can determine that no data item in N5 was damaged during
the evaluation time t, this will lead us to remove the critical node N5 (along
with all its edges) resulting in two sectors as shown in Figure 5. Since sector
2 is not the dirty sector, we can determine all data items in sector 2 are clean.
For sector 1, which contains the source of damaged data item, if it still
contains critical nodes and one of these critical nodes has not been evaluated,
then the same procedure is applied to that critical node. If there is no
unevaluated critical node in the dirty sector, we stop. Next we present an
algorithm that evaluates a probability graph to identify the damage.

186 Integrity and Internal Control in Information Systems

2.1.2.2 Latest In-flow Timestamp
As mentioned previously, if a critical node N* in a probability graph or an

information flow graph, G, is removed, several sectors are formed. In G,
some nodes of a sector have incoming and outgoing edges from and/or to
N*. We are interested in finding one parameter related to a sector s for N*
as follow. Latest in-flow timestamp from s to N* is the largest timestamps
in N*’s update log entries, which are associated with any node in s. This
value represents the time for the most recent read operation by N* from a
node in s. Based on Table 1 and Figures 4 and 5, L(in, N9, Sector 1) =
max{7:00, 10:10, 9:00} = 10:10. Since this time is earlier than the time
when the attack took place, which is 11:00, we can determine for sure that
N9 is damage free. This way, preliminary assessment of a critical node is
done.

2.1.2.3 Algorithm to Evaluate a Probability Graph

CNS: a set of all ordered critical nodes in G based on their distance
values

iNode = CNS[0]; //assigns the first node in CNS to an initial critical
node to be analyzed

ESet={}; //ESet holds only evaluated critical nodes. Initially it is empty
FreeSet={}; //FreeSet holds all of the nodes which are determined free

of damage
G: the cumulative probability graph for an evaluation period t
(All the above variables have global scopes for the algorithm)

A Service Oriented System Based Information Flow Model For Damage Assessment 187

Algorithm 1

Eval_Prob_Graph(G, iNode)
{
1 If iNode is Null then exit //no critical node
2 If iNode is damage free, then

2.1 Add iNode to ESet
2.2 Obtain sectors if iNode is removed from G
2.3 For each in

2.3.1 if is not the dirty sector, then
2.3.1.1 Put all nodes of into FreeSet
2.3.1.2 Put all critical nodes of into ESet

2.3.2 else // is the dirty sector
2.3.2.1 If any node N in has only an incoming edge from

iNode, put N into FreeSet
2.3.2.2
2.3.2.3
2.3.2.4 Let Nod is the critical node in with smallest

distance value
2.3.2.5 Call Eval_Prob_Graph(G, Nod)

3 else //iNode can not be determined damage free
3.1 Add iNode to Eset
3.2 Find next critical node Node in CNS but not in Eset (if no such

node, set
Node = Null)

3.3 INode = Node
3.4 Call Eval_Prob_Graph(G, iNode)

} //end of Eval_Prob_Graph()

If any nodes are left with at least one critical node after the analysis of
probability graph, then an information flow graph should be built and
analyzed. Although probability graphs for each time period can be built well
ahead of time, a cumulative probability graph for an evaluation period
should be calculated whenever an attack is detected. This cumulative

probability graph reflects possible information flows in this domain during
the period between attacks took place and the attacking effects are stopped.
Furthermore, we are only interested in part of this cumulative probability
graph. When an attack took place and some data items in an SG are detected
as damaged, this cumulative probability graph can eliminate any node,
which has no direct or indirect information flow from the damaged SG. For
example, if node A has only an outgoing edge, which is towards the
damaged SG node, it can be eliminated from this cumulative probability
graph.

188 Integrity and Internal Control in Information Systems

2.2 Information Flow Graph Analysis

In this section, we analyze an information flow graph, which could be
built after a probability graph.

2.2.1 Information Flow Graph

Definition 10: An information flow graph for a given type of service S
in an evaluation period t is a directed graph representing actual information
flow related to S in a domain. It is denoted as IFt(S). A node in an
information flow graph represents an SG and an edge represents information
flow relationship between the two connected nodes. An edge can be
unidirectional or bi-directional. An information flow graph is created based
on actual information flow records kept by the domain. A critical node can
be defined and found for an information flow graph in the same way as that
for a probability graph.

Consider the information flow graph in Figure 6 obtained by assuming
that the critical node N9 in Figure 4 is determined damage free. Figure 7
shows three sectors if the critical node, N5, is removed from the graph in
Figure 6.

Property 4: An information flow graph is a sub graph of the
corresponding probability graph.

Property 5: Any critical node that remains in an information flow graph
cannot be evaluated to be damage free.

Property 6: For a critical node N* in an information flow graph G’, L(in,
N*, DS) > st, where DS is the dirty sector after removal of N* from G’, and
st is the time when an attack was made. If this is not hold, then N* is
damage free as shown in section 2.1.

Elimination of nodes based on critical nodes in an information flow graph
is a complex process. An efficient analysis of the information flow and
timestamp at each step is required to identify any clean nodes, if there are
any.

A Service Oriented System Based Information Flow Model For Damage Assessment 189

2.2.2 Analysis of an Information Flow Graph

An example of release log and update log for node N5 related to Figure 6
is given in Table 2 and Table 3 respectively.

In section 2.1, we discussed the concept “latest in-flow timestamp from s
to N*”, where s is a sector, which consists of multiple nodes, and N* is a
critical node. We discuss other two concepts, “earliest in-flow timestamp
from s to N* since the attack” and “latest out-flow timestamp from N* to s”.

“Earliest in-flow timestamp from s to N* since the attack” is the smallest
timestamp value (earliest time) in N*’s update log entries associated with an
SG in s, which is later than the time when the attack occurred. It is denoted
as E(in, N*, s). This parameter represents the earliest time when N* read a
data item from an SG in s after the attack occurred. Related to Figures 6 and
7, E(in, N5, Sector 1) = min{12:00, 13:15, 14:00, 15:30} = 12:00, where
{12:00, 13:15, 14:00, 15:30} is the set of all timestamps related to nodes in
Sector 1 in Table 3 and the timestamp is later than the time of occurrence of
attack (which is 11:00 as mentioned in 2.1).

Latest out-flow timestamp from N* to s is the largest timestamp value in
N*’s release log entries, which are associated with an SG in s. It is denoted
as L(out, N*, s). This parameter represents the latest time when N* wrote a
data item to one SG in s. Related to Figures 6 and 7, L(out, N5, Sector 2) =
max{10:10} = 10:10, where {10:10} is the set of all timestamps related to
nodes in Sector 2 in Table 2. Similarly, L(out, N5, Sector 3) = max{l 1:15,
12:30) = 12:30, where {11:15, 12:30} is the set of all timestamps related to
nodes in Sector 3 as shown in Table 2. Similar concepts can be applied to a
node N relative to the critical node N*, such as E(in, N*, N) and L(out, N*,
N).

There are two steps to analyze the sectors in Figure 7. The first step is to
analyze a sector s as a whole. Relative to the critical node N*, if the latest
read time for all nodes in s from N* is still earlier than the earliest write time
from a node of the dirty sector to N*, we can guarantee that all nodes in s are
clean. In Figures 6 and 7, since L(out, N5, Sector 2) = 10:10 and E(in, N5,
Sector 1) = 12:00 as we calculated above, hence L(out, N5, Sector 2) < E(in,
N5, Sector 1) and all nodes in Sector 2 are damage free. Hence, node N6
can be released (N6 is the only node in Sector 2). Because L(out, N5, Sector
3) > E(in, N5, Sector 1), however, we can’t eliminate any node in Sector 3 at
this time.

The second step follows if step 1 fails for a sector and it attempts to
evaluate individual node in a sector. Any node, N, in a sector with a sole
incoming edge from N* (in term of the original information flow graph), is
analyzed first. If there is no such node, the analysis stops. If L(out, N*, N)
< E(in, N*, DS), where DS is the dirty sector, then node N is determined free
of damage. Then node N and all of its outgoing edges within that sector can
be removed. Consider sector 3 in Figure 7. Since L(out, N5, N7) =11:15
found in Table 2 and E(in, N5, Sector 1) = 12:00 as calculated before, thus
L(out, N5, N7) < E(in, N5, Sector1). So node N7 is damage free. Hence

190 Integrity and Internal Control in Information Systems

N7 and its outgoing edges (from N7 to N8 and from N7 to N15) can be
removed. For any other node in the considered sector, if it has only one
incoming edge and that edge is from the removed node (in term of the
original information flow graph), it can also be removed. Hence, node N15
in Figure 7 can be removed. However, we cannot remove N8 since N8 also
has another incoming edge from N5 in addition to N7. Since L(out, N5, N8)
= 12:30 found in Table 2 and E(in, N5, Sector 1) = 12:00 from Table 3,
L(out, N5, N8) > E(in, N5, Sector 1). We cannot remove N8 during the
information flow graph analysis. After this step, only node N8 is left in
Sector 3. N8 (and its incoming edge from N5) should be forwarded for
analysis by other means such as using information flow based on data items
instead of SGs.

From the above example, we can deduce that for any “information flow
chain”,
N1’ N2’ ... Nk’ in the information flow graph, if
N1’ can be removed, then N2’, ..., Nk’ can also be removed (such as N5,
N7, N15 in Figure 7 as discussed above). The algorithm to analyze an
information flow graph is given below.

A Service Oriented System Based Information Flow Model For Damage Assessment 191

Algorithm 2
CNS’: a set of all ordered critical nodes in G’ based on their distance

values
iNode’ = CNS’[0]; //assigns the first node in CNS’ to the initial critical

node to be analyzed
ESet’={}; //ESet holds the critical nodes already evaluated. Initially it

is empty
FreeSet’={}; //FreeSet holds all of the nodes which are determined free

of damage
G’: the information flow graph for an evaluation period t
(All of the above variables have global scopes for the algorithm)

Eval_IF_Graph(G’, iNode’)
{

1 If iNode == Null then exit //no critical node
2 Add iNode into ESet’
3 Obtain sector if iNode is removed from G’
4 Let = DS and DS is the dirty sector (1<= n <=k)
5 For each in

5.1 If (E(in, iNode’, DS) > L (out, iNode’,))
5.1.1 Add all nodes of to FreeSet’
5.1.2 Add all critical nodes of to ESet’

5.2 Else
5.2.1 For any node where N has only one incoming

edge in G’, which is from iNode’

192 Integrity and Internal Control in Information Systems

5.2.1.1 If (E(in, iNode’, DS) > L(out, iNode’, N))
5.2.1.1.1 Add N to FreeSet’

5.2.1.1.2 If there is a chain in with nodes N, N1,..., Nt
and information only flows from N to N1, N1 to
N2, ... and Nt-1 to Nt

5.2.1.1.2.1 Add N1, N2 …, Nt to FreeSet’
5.2.1.1.2.2 = – {N, N1, N2 …, Nt}
5.2.1.1.2.3 If any element N’ in (N1, N2, ..., Nt} is a

critical node
5.2.1.1.2.3.1 Add N’to ESet’

5.2.1.1.3 else = – {N}
5.3 G’ = G’ –

6 For any critical node Node in CNS’ but not in Eset’ (if no such
node, set Node = NULL)

6.1 iNnode’ = Node
6.2 Call Eval_IF_Graph(G’, iNode’)

} //end of Eval_Graph(G’, iNode’)

3. USING THE MODEL

The goal of this model is to reduce the “denial of service” and free as
many data items as possible in a timely manner. The general guideline to
use this model is described below.

3.1 Preconditions

(a) Probability graphs for time periods where
are continuous in time line, i.e., without any time gap between

two time periods. Usually, ends at the time when the spread of damage is
stopped.

(b) An evaluation time period and t has the same
beginning time as and the same ending time as

(c) The damaged data items are identified in a node, such as N1 (SG).
(d) Each critical node (SG) keeps an update and a release log for a time

period covering t.

3.2 The Procedure to Use this Model

(a) Identify the type of service that the damaged data item is involved in.
All the data items in SGs that are involved in other types of services are put
into set FreeSet1. If the damaged data item is in a PG, then multiple
probability graphs might be needed to make accurate assessment.

Any data items in a node of FreeSet1, FreeSet2, or FreeSet3 are
guaranteed to be free of damage and then can be available to users
immediately. Evaluating the set T is beyond the scope of this model and
other methods should be used to analyze it.

The effects of this model are largely dependent on the structure of a
domain. If there are some “central points” in the probability (and/or
information flow) graph and information flow tends to be in one direction,
then the model has a good chance to eliminate large sets of data items, which
are free of damages, at the earliest. In many cases, organizations have such
structures with a central point, which acts as a critical node. Evaluating this
central point often can release sets of nodes that are damage free.

This model requires that there is no information flow across the boundary
of multiple service groups (SGs) of the same domain. If several SGs must
share information, we can either fuse them together into a bigger SG, or put
the shared data items in the public group kept in one area of that domain.

We are thankful to Dr. Robert L. Herklotz for his support, which made
this work possible. This work was supported in part by US AFOSR under
grant F49620-01-10346.

A Service Oriented System Based Information Flow Model For Damage Assessment 193

(b) For the service type that the damaged data item is related to, build the
cumulative probability graph G for the time period t based on

Call Eval_Prob_Graph() algorithm to generate FreeSet2.
(c) Nodes in G – {all nodes of FreeSet2} are used to generate an

information flow graph G’ based on actual information flow information.
Call Eval_IF_Graph() algorithm to generate FreeSet3. A set T = G’ –

{all nodes of FreeSet3} is left.

3.3 Post Conditions

4. CONCLUSIONS

ACKNOWLEDGEMENTS

P. Amman, S. Jajodia, C. D. McCollum, and B. Blaustein, “Surviving
Information Warfare Attacks on Databases”, In Proceedings of the
1997 IEEE Symposium on Security and Privacy, May 1997.
D. Brewer and M. Nash, “The Chinese Wall Security Policy”, In
Proceedings of the 1989 IEEE Symposium on Security and Privacy, pp.
206-214, May 1989.
C.A, Carver, J. M. D. Hill, and U. W. Pooch, “Limiting Uncertainty in
Intrusion Response”, in Proceedings of the 2001 IEEE Workshop on
Information Assurance and Security, United States Military Academy,
West Point, June 2001.
R. Graubart, L. Schlipper, and C. McCollum, “Defending Database
Management Systems Against Information Warfare Attacks”,
Technical report, The MITRE Corporation, 1996.
E. Horowitz, S. Sahni, S. Rajasekaran, “Computer Algorithms/C++”,
Computer Science Press, pp. 329-336, 1998.
S. Jajodia, C. D. McCollum, and P. Amman, “Trusted Recovery”,
Communications of the ACM, 42(7), pp. 71-75, July 1999.
P. Liu and X. Hao, “Efficient Damage Assessment and Repair in
Resilient Distributed Database Systems”, In Proceedings of the 15th
Annual IFIP WG 11.3 Working Conference on Database and
Application Security, July 2001.
P. Liu, P. Ammann, and S. Jajodia, “Rewriting Histories: Recovering
from Malicious Transactions”, Distributed and Parallel Databases, 8(1),
pp. 7-40, January 2000.
B. Panda, S. Tripathy, “Data Dependency Based Logging for Defensive
Information Warfare”, Proceedings of the 2000 ACM Symposium on
Applied Computing.
B. Panda and J. Giordano, “Reconstructing the Database After
Electronic Attacks”, Database Security XII: Status and Prospects, S.
Jajodia (editor), Kluwer Academic Publishers, 1999.
P. Ragothaman, and B. Panda, “Modeling and Analyzing Transaction
Logging Protocols for Effective Damage Assessment”, In Proceedings
of the Annual IFIP WG 11.3 Working Conference on Data and
Application Security, King’s College, University of Cambridge, UK,
July 2002.
R. Sedgewick, “Algorithms”, Addison Wesley, pp. 324-330.
R. Sobhan and B. Panda, “Reorganization of Database Log for
Information Warfare Data Recovery”, In Proceedings of the
Annual IFIP WG 11.3 Working Conference on Database and
Application Security, Niagara on the Lake, Ontario, Canada, July 15-
18, 2001.

194 Integrity and Internal Control in Information Systems

REFERENCES

[12]
[13]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

AN EFFICIENT OODB MODEL FOR ENSURING
THE INTEGRITY OF USER-DEFINED
CONSTRAINTS

Belal Zaqaibeh1, Hamidah Ibrahim2, Ali Mamat2, and Md Nasir Sulaiman2

1Faculty of Information Technology, Multimedia University, 63100 Malaysia,
2Faculty of Computer Science and Information Technology, University Putra Malaysia

Abstract: In this paper, a new structural model is proposed to ease the checking of the
integrity constraints in an object-oriented database system. The structure
accepts declarative global specification of constraints including user-defined
constraint, and an efficient representation that permits localized constraints
checking. A new method called “Detection” is added to the structure to check
the status of violation of the relations in an object-oriented database. The new
approach is demonstrated using ALICE rule.

The notion of the constraints is used to define the connectivity between objects
required for the valid expression of constraint and rule conditions. The event
in Integration Rules (IRules) that defines the active behavior of an application
specifies an operation to be monitored, such as modifying a data value. The
semantic analysis process applies a concept known as object-centered
conditions during the compilation of ALICE rules to detect semantically
incorrect rules at compile time.

Keywords: Constraint, Maintenance, Object-Oriented Database, ALICE, Inter-Object
Constraint.

1. INTRODUCTION

Object-oriented databases are rapidly gaining popularity, and show a
promise of supplanting relational databases. It is imperative that explores the
maintenance of integrity in object-oriented databases. By virtue of object

196 Integrity and Internal Control in Information Systems

orientation, some integrity constraints are represented naturally and
maintained for free in an object-oriented database, the system type and the
object class hierarchy will directly captured. Typical example of this sort is
the constraint that every employee is a person and that every child of a
person is a person. Other forms of integrity constraints apply to a single
object, and clearly belong as part of an object class specification. An
example of such a constraint for a person object is that years-of-schooling
must be at least 5 years old.

As known, the integrity constraints that involve the monitoring of user
updates on data items in a single object called as intra-object constraint. The
following example shows the domain constraints that specify legal values in
a particular domain: Sex in [F, M]. In other hand the integrity constraints that
involve objects from more that one class known as inter-object constraints.
For example of inter-object constraints is the association between student
and course classes is expressed as each student must register in at least three
courses, it will be represented as count (student.course) >= 3, assuming that
course in student is a data structure that holds the object identifiers of the
courses taken by the particular student.

Traditionally, integrity constraints in object-oriented database systems
are maintained by rolling back any transaction that produces an inconsistent
state for the intra-object constraint, or disallowing or modifying operations
that may produce an inconsistent state for the inter-object constraint. An
alternative approach is to provide automatic repair of inconsistent states
using production rules. For each constraint, a production rule is used to
detect constraint violation and to initiate database operations that restore
consistency. The maintenance system consists of a set of constraint services
with different solving capabilities and complexity. Each service can be
connected to maintain constraint relationships independently.

Object-Oriented Database Systems (OODBs) have been designed to
support large complex programming projects. OODBs divide the definition
and maintenance of all structures into inheritance encapsulated method, with
information shared between classes kept to a minimum, since maintenance
required code in multiple classes. The monitor specific state is changed in
instances of the external classes. This is in contrast with relational database
systems, which were designed to provide a large data repository accessible
to the user through a general purpose, and declarative-style query language.
Declarative query languages are well suited to handling arbitrary queries
presented by an end user, but they introduce a burdensome impedance
mismatch when embedded within application code. A language for the
expression of Integration Rules (IRules) is an important part of an Object-
Oriented Database Management System (OODBMS) that defines the active

An efficient OODB model for ensuring the integrity of user-defined constraints 197

behavior of an application [7,11]. The event in an IRules specifies an
operation or a situation to be monitored, such as modifying a data value.

2. PRELIMINARIES

The collection objects are the elements that allow an object to contain
multiple values of a single property. The collection objects identified by the
proposed standard including set that contains an unordered group of objects
of the same type, no duplicates are allowed so this will help to reduce the
number of constraints checking when an event happens, bag contains an
unordered group of objects of the same type, duplicates are allowed, list is
an ordered group of objects of the same type, array is an ordered group of
objects of the same type that can be accessed by position, and dictionary is
like an index [1, 3, 7]. Collection objects are made up of ordered keys, each
of them is paired with a single value. From the collection objects a search
can be performed using the keys to find the full information about any object
in the database. Those keys are known as Object Identifiers (OID). OID is an
internal database identifier for each individual object and this might include
the page number and the offset from the beginning of the page for the file in
which the object is stored [2, 3, 7].

The major types of classes used in object-oriented are control classes
which manage data and have visible output, it controls the operational flow
of the program [1, 2, 7]. Entity classes are used to create objects that manage
data. Most object-oriented programs have at least one entity class from
which many objects are created. In fact, in its simplest sense, the object-
oriented data model is built from the representation of relationships between
objects created from entity objects [2, 11]. Container classes existed to
“contain” or manage, multiple objects that created from the same type of
class [2]. Because they gather objects together, they are also known as
aggregations.

Entity integrity normally enforced through the use of a primary key or
unique index [2, 3]. However, it may at times be possible to have a unique
primary key for a tuple (row) a relation and still have duplicate data in its’
fields. This simply means that in any given relation, every tuple is unique. In
a properly normalized, relational database, it is of particular importance to
avoid duplicate tuples in a relation because users will expect that when a
tuple is updated, there are no other tuples that contain the same data.

In the domain integrity the values in any given column fall within an
accepted range [2, 3]. It is important to make sure that the data entered into
a relation is not only correct, but also appropriate for the columns it is
entered into. The validity of a domain may be as broad as specifying only a

198 Integrity and Internal Control in Information Systems

data type (text, numeric, etc.) or as narrow as specifying just a few available
values. Referential integrity, here is the foreign key value points to valid
rows in the referenced table or points to, a related tuple in another relation. It
is absolutely imperative that referential integrity constraints be enforced [6,
8]. While it is possible that foreign key values may be null, it should never
be invalid. If a value of foreign key is entered, it must reference a valid row
in the related relation.

There are two models that deal with object-oriented database; Abstract
Data Type (ADT) and Object-oriented System Model (OSM). The proposed
approach is built on OSM because it has some similar features to formal
syntax and semantics based on a temporal, first-order logic and it allows for
multitude of expressive, and high-level view [2].

3. OUR CONSTRAINTS DOMAIN

In general there are two types of integrity constraints: static constraint
and dynamic constraint. The static constraints are known and controlled by
the OODBMS in addition to some dynamic constraints. Most of the dynamic
constraints are complicated and unpredictable because it depends on the
users needs. Figure 1 shows that the subclass employee inherits classes and
details from manager and secretary in which both inherited from their
superclass name.

An efficient OODB model for ensuring the integrity of user-defined constraints 199

4. RELATED WORK

The most relevant researches on expression capabilities for active rule
languages that are designed to maintain the database integrity. High
Performance ACtive DBMS (HiPAC) is one of the first projects to
extensively address active database issues and it is proposed for coupling [7,
9]. Active DBMS allows rules to be fired and executed automatically. One
of the first occurrences of active capabilities was the use of ON conditions.
Triggers and assertions are used to maintaining integrity constraints [5].

ARIEL rules are based on the relational data model extended with a
production rule system. Rules in ARIEL are triggered based on specific
events or pattern matching, as in expert systems. Rule condition testing in
ARIEL is implemented by use of a variation of the Rete algorithm to
improve performance [5, 7, 9].

The Object Database and Environment (ODE) represents some of the
more efforts in the development of active rule languages [5]. Unlike most of
the other systems, it supports a rule language within an OODB, the
expression of constraints which are triggered by database updates, and the
expression of rules triggered by condition monitoring [9].

STARBURST also represents one of the more developments in active
rule languages [9]. Conditions in STARBURST are expressed by use of SQL
with additional syntax for the expression of events, conditions, actions, and
rule priorities.

Based on the active rule languages described above, a summary of the
basic features associated is presented in the Table 1.

200 Integrity and Internal Control in Information Systems

Assertion Language for Integrity Constraint Expression (ALICE) is an
expression active rule language that is designed to maintain constraints over
the expression of complex database.

5. OVERVIEW OF ALICE

ALICE was developed as a declarative constraint language for the
expression of complex and for stating constraints in an object-oriented
environment, and logic-based constraints in an object-oriented environment.
As in an object model, it assumes that the existence of objects with unique
object identifiers. Objects of a similar type are organized into classes, which
are organized into ISA relationships; one class is a subclass of another class.
If an object is an instance of a subclass, then the object must also be an
instance of all of its superclasses [5,7]. The immediate subclasses of a
superclass can be specified as disjoint subclasses as a way of imposing
additional constraints on the classes in which an object participates.

Each class is described through the use of property definitions.
Properties can be single or multi-valued. Inverse property relationships are
also supported. As additional semantic detail, properties can be specified as
required (no null values) and/or unique (establishing a one-to-one
relationship between an object and its property values). A subclass inherits
all of the property definitions of its superclasses [4, 5, 7].

ALICE provides a tool for expressing generalized, logic-based
constraints against an object-oriented schema. In addition, its constraints are
analyzed by a constraint explanation tool (CONTEXT) and are subsequently
transformed into active database rules. The rules generated by CONTEXT
provide a way to recover from constraint violations at execution time and
also provide tools for translating constraints into active database rules [7, 9].

An efficient OODB model for ensuring the integrity of user-defined constraints 201

An important aspect of ALICE is representing a rule language that can be
applied within an object-oriented model of data. Figure 2 shows the syntax
of ALICE rule.

ALICE is strictly a constraint language [7, 9]. It cannot be used to
directly express constraints in rule form, and does not support the expression
of rules in general. It is restricted to the expression of static constraints
among objects. The condition expression capabilities of ALICE are also
limited because the original work on ALICE focused on the mapping of
ALICE constraints to first-order logic [7, 9]. Also it does not support the
expression of transition constraints or the use of external functions for
complex conditions.

6. METHODOLOGY

The proposed structure exhibits some properties as it provides the
capability to represent complicated relationships as it is based on a generic
object system, so that some special relationships can be specified and
maintained uniquely such as the relationships between domains and tasks. It
can also maintain relationships between a set of distributed objects. This
object model makes it possible to implement concurrent or distributed
maintenance services. When the sets of objects or the constraints
relationships of different types are completely independent, the constraints
can be maintained by multiple processes simultaneously. This improves
performance, which makes the new model constraint system easy to extend
and can be integrated with any existing or specialized constraint services.

For example, assume that some information about two types of
employees in a company is needed. The first type is a manager with (ID,
name, classification ID, classification description, and classification date).
The second type is a secretary with (ID, name, classification ID, birthday,
and recruiting agent). Figure 3 shows the data definition language of the
above example.

202 Integrity and Internal Control in Information Systems

An efficient OODB model for ensuring the integrity of user-defined constraints 203

As shown earlier in Figure 3, the two reserved words OBJECT and
BODY are used to declare the relations (Name, Secretary, and Manager).
OBJECT considers as a class that contains the declaration of the attributes of
the relations Name, Secretary, and Manager. BODY considers as a relevant
container that contains methods and constraints. Class Name contains three
attributes (First_name, Last_name, and Middle_init) and two methods, in
our example we just assigned initial values but it could be function or
procedure. Class Secretary contains the attributes (Classes, Birthday, Agent,
S_Name.First_name, S_Name.Last_name, and S_Name.Middle_init) and a
method Details. Class Manager contains the attributes (Classes,
Class_description, Class_date, M_Name.First_name, M_Name.Last_name,
and M_Name.Middle_init).

The previous code appears as an efficient way to declare different types
of objects in OODB. The problem is not easy to detect the violation of the
database and check the integrity of the data because it’s very difficult to
detect all constraints that appear as a result of composite inheritance. The
integrity constraints in OODBSs are maintained by rolling back any
transaction that produces an inconsistent state, or disallowing or modifying
operations that may produce an inconsistent state. Maintaining the violation
of constraints needs to know which constraint violates the database and what
is the covered solution. So it is suggested that an efficient way to help in
maintaining the constraints when any violation or inconvenient
circumstances appears.

Our suggested model is illustrated in Figure 4, is says that to combine all
related attributes together under the reserve word ATTRIBUTE, same thing
with METHOD and CONSTRAINT in one class. We added another method
called Detection to express the status of the database.

Figure 5 shows the grammar of the suggested model, notice here the
reserved word Detection should be hidden from the user because it will be
declared by the OODBMS automatically for every class when puts the class

204 Integrity and Internal Control in Information Systems

declaration. An initial value zero will be assigned to the Detection and the
OODBMS changes its value depending on the database status.

The access of the specifier CONSTRAINT is declared the relationships
and the constraints on the attributes of a class or between classes when
inherit a subclass from a superclass. So the method Detection will contain
the code that refers to the constraints status. The initial value is proposed to
be zero to say that is no violation, and if an unexpected error happens then a
code should be assigned to the Detection method.

By using the “Detection” the status of the constraints can be checked at
any time. The constraints are separated from the methods and the attributes.
The constraints will be maintained or at least a message can be displayed
about any error may appear as a result of data violation, then gives the
programmer the choice to modify the constraints or refine the class members
to avoid the violation.

7. IMPLEMENTATION

Using our proposed model the relation will be recreated as shown in
Figure 6 the relation has been created to replace the code that was shown
earlier in Figure 3.

An efficient OODB model for ensuring the integrity of user-defined constraints 205

206 Integrity and Internal Control in Information Systems

Referring to the example in Figure 6, two subclasses Manager and
Secretary are inherited from the superclass Name. Employee inherited from
Manager and Secretary. The composite inheritance for attributes M_Name
and S_Name from class Name gave them the same data type of Name. The
First_name, Last_name, and Middle_init are added to the classes Manager
and Secretary as it is inherited from same class. The constraints are inherited
too and collected to be under CONSTRAINT so by grouping them the
conditions that have been grouped can be checked easily. This effective
especially when the user declares two constraints which conflict with each
other as shown in Figure 7.

Suppose that C1 is a constraint over class A and C2 is a constraint over
class B, and class C inherits the constraints from A and B (multiple
inheritance). Constraints violate if the students grade is 95 because his grad
is grater than 80 as C1 and grater than 90 as C2 (no violation between the
conditions) so the student may get $10 or $20 (incorrect result) as a prize? It
depends on which constraint will be enforced. A special code will be
assigned to the Detection method. Figure 8 shows the mechanism of getting
the code, assume r1 is the rule that will be checked when inheritance
happens. The involved constraints will be grouped and checked, if conflict
exists then Detection method will be assigned with detection code and
message will be displayed. The detection code is needed to modify or
maintain the constraint.

An efficient OODB model for ensuring the integrity of user-defined constraints 207

The model will be activated during the classes’ creation. When
inheriting class from other class, the model will work and collects the
involved constraints then checks the violation wither exist or not, then
informs the programmer with the detection code if violation exists by
displaying a warning message. So it will ease to avoid any database crash or
data corruption.

8. CONCLUSION

Typically object-oriented databases lack the capability for an ad-hoc
declarative specification of maintaining the integrity constraints [3, 6]. A
new model to check and maintain the violation or unexpected circumstances
of the object-oriented database is proposed. The model depends on the
Assertion Language for Integrity Constraint Expression (ALICE) rule
language to find the suitable way to maintain the violation by designing an
efficient structural model to create the relations and its constraints.

The model that has been developed to detect the constraints over the
relations is presented, to ensure global declarative specification and
consistency maintenance using IRules in object-oriented database
environment by applying ALICE rule. Supporting integrity constraints in
object-oriented database systems requires a high integration of the
constraints with the rich concepts available.

With the rich semantics of object-oriented paradigm a lot of work
remains to be done for future work. In particular, more optimization
techniques can be developed for constraint compilation. Object-oriented
databases made new challenges to semantic integrity especially to both
constraint representation and constraint maintenance.

REFERENCES

Ina Graham, Object-Oriented Methods Principles & Practice. England: Addison-Wesely,

2001.

David W. Embley, Object Database Development Concepts and Principles. England:

Addison-Wesely, 1998.

Bindu R. Rao, Object-Oriented Database Technology, Applications, and Products. US:

McGraw-Hill, 1994.
Setrang Khoshafian, Object-Oriented Databases. New York: John Wiley & SonsInc,

1993.

[1]

[2]

[3]

[4]

208 Integrity and Internal Control in Information Systems

Urban. ALICE: An Assertion Language for Integrity Constraint Expression. Proceedings
of the Thirteenth Conference on Computer Software and Applications, 1989; pp. 292-

299.
S. Ceri and J. Widom. Deriving Production Rules for Constraint Maintenance. Proc. 16th

Int’l Conference Very Large Data Bases, 1990; pp. 566-577.
Susan D. Urbana and Anne M. Wang. The Design of a Constraint/Rule Language for an

Object-Oriented Data Model. Elsevier Science Inc., J.system software 28, 1995; pp. 203-
224.

Urban, Karadimce, and Nannapaneni. The Implementation and Evaluation of Integrity
Maintenance Rules in an Object-Oriented Database. Proceedings of the Eighth
International Conference on Data Engineering, 1992; pp. 656-572.

Urban. Desiderio. CONTEXT: A Constraint Explanation Tool. Data and Knowledge
Engineering, North-Holtand, 1992; pp. 153-183.

[5]

[6]

[7]

[8]

[9]

Michael Sipser, Introduction to the Theory of Computation. PWS Publishing Company,
1997.
Ying Jin, Amy Sundermier, and Suzanne W.Dietrich. An Execution and Transaction
Model for Active, Rules-Based Component Integration Middleware. Springer-Verlag
Berlin Heidelberg 2002; pp. 403-417

[10]

[11]

FROM SECURITY CULTURE TO EFFECTIVE E-
SECURITY SOLUTIONS

Prof. Solange Ghernaouti-Hélie
University of Lausanne, Switzerland
Tel. 00 41 21 692 34 21

Email: sgh@hec.unil.ch
Web: http://inforge.unil.ch/sgh

Abstract: Stakes and challenges of e-security are analyzed to point out key issues in
mastering information technologies risks. Lessons from the past are
summarized to explain why security solutions are not effective. The global
deployment of the information society is constrained by the development and
overall acceptance of an international e-security framework. The validity of
such model requires a challenging multidimensional approach of e-security.
Several reflection axis and recommendations to guide the conceptualization of
a unified e-security framework are proposed.

Key words: Information society, threats, risks management, security needs and challenges,
computer crime, multidimensional approach, unified e-security framework.

1. INFORMATION AND COMMUNICATION
TECHNOLOGIES REQUIEREMENTS FOR THE
INFORMATION SOCIETY

1.1 Basic requirements

Information and communication technologies become a new kind
of mediators for the information society and knowledge economy.
These technologies must be:

210 Integrity and Internal Control in Information Systems

Accessible;
Timely useable (timeliness);
Interoperable;
Scalable and flexible;
Affordable;
Open to party control;
Trustworthy.

Doing activities with information and communication technologies
suppose that three major issues have been resolved.

First, network infrastructure must exist, be accessible, available, reliable
and secure. Networks must offer as much bandwidth as necessary to support
user’s activities.

Systems and network management approaches and solutions could
contribute to achieve this issue. Moreover, the cost of use must be in
correlation with the performances and quality of services obtained. That
supposes a valid underlying economical model and an effective cost
management process.

Second, contents and services must answer the user’s needs in term of
quality, integrity, confidentiality and accessibility. That could be achieved
trough improving quality and security of software development, reverse
engineering processing and by management. As previously, cost must be
effective.

Third, a consistent international well-known regulatory framework must
have been define specially to clarify the responsibility of each actors
involved.

1.2 Security and trust requirements

It is not enough to promote development of connecting points to the
Internet for accessibility. The information infrastructure must be reliable.
Had hoc performances, services continuity and quality of services as quality
of data must be guaranteed.

User’s confidence in information and communication technologies will
be achieved by addressing in complementary way: security and privacy
protection issues.

The underlying problem lie on the level of security and trust offered and
guaranteed by access, services and information and communication
technologies providers. That could be sum up by the question: who controls
infrastructures, accesses, uses, contents and security? Security technologies
solutions and management provide part of the answer.

From security culture to effective e-security solutions 211

E-trust could be achieved through e-security and e-security would
contribute to define a trusted environment. The notion of trust is central for
computer security and does not rely only on technology tools. If trust is well
placed, any system could be acceptably secure. If it is misplaced, the system
cannot be secure. Security is a relative notion but security and trust are
critical factors of success and enablers for the information society.

2. INFORMATION TECHNOLOGIES RISKS AND
SECURITY THREATS

Focusing on security within open environments means to define the
targets of threats. Without doing a risk analysis survey, the main targets of
security threats are: end-user, network access point, network and all the
infrastructures connected to the network as servers and information systems.

2.1 Increasing ICT dependency and vulnerability

Information and communication technologies are not reliable and not
secure. Sources of vulnerabilities of the Internet are known. Multiple threats
can occur at the environmental, physical, logical, informational and human
levels.

Existing security technologies are fallible or could be circumvented,
moreover it is difficult to define and support an effective security
management process.

As the Internet as grown, so has connectivity, enabling also attackers to
break into an increasing numbers of systems.

This is possible because more often non-secure systems are used and
most systems cannot resist a determined attack if there are not well protected
and monitored. Public attack tools are available. Security solutions or
patches are not implemented. Management procedures and controls or
system configuration and administration are defective. Human weaknesses
are a reality.

A lack of an overall, global consistent and dynamic security approach
and a lack of a good software development and implementation quality exist.

Opening computers and information resources through Internet, imply
increasing dependency and vulnerability, so doing activities over the Internet
is risky. Organizations and individuals can be hit by e-insecurity.

212 Integrity and Internal Control in Information Systems

2.2 Cybercrime impacts

The negative impacts of security threats will affect not only systems or
individuals actors but in a chained way organizations and society.
Cybercrime is a reality. Usual criminals have gained new capabilities and e-
delinquency could impact the economic actors. For example, economic
crime can be enhanced such as: information warfare, competition distortion,
internal theft, stock exchange influence, accountability unfairness, money
laundering, etc. The market regulation can be weakened because traditional
law enforcement is less effective, economic advantages can be given to
unfair competitors, enterprise competitiveness can be reduced or canceled by
unfair information access.

The growing strength of criminal organizations that caring out large scale
information technology crime is alarming.

3. SOME UNSATISFIED SECURITY NEEDS

E-security fundamentals are well known: availability, confidentiality,
integrity, authentication, and non-repudiation. Master technological and
informational risks have to be done in allowing an efficient use of
information and communication technology, and also allowing privacy in
respect of fundamental human rights.

3.1 Difficulty to secure dynamic and complex
environments

Information and communication technologies form complex
environments. It is complex because several independents and correlated
infrastructures constitute them: human infrastructure, software, data,
application infrastructures, hardware infrastructure, network infrastructure,
maintenance infrastructure and environmental infrastructure. Each one is
dynamic and can evolve separately, has its specific vulnerabilities, security
requirements and its particular security solutions.

Moreover, security solutions have they own life cycle including several
stages: risks analysis, policy specification, security implementation,
maintenance, evaluation and optimization.

In this context some unsolved questions are raised, with no clear answers
today, among them:

How to obtain a minimum certified security level for each infrastructure?
How to obtain a certified global and consistent security level?

From security culture to effective e-security solutions 213

What can be certified?
What will be the validity of a static certificate in a dynamic environment?
What would be the dynamic certification process able to realize and to
guarantee certification in a dynamic environment?
Who will be the certified authority (or authorities) authorized to deliver
such certification at an international level?
Who will control and manage certification processes, certification
authorities and certificates?
Who will pay for certification?
Etc.

3.2 Lesson from the past

A wide range of stakeholders and players is present on the market such
as: engineers, architects, developers, integrators, system administrators,
managers, officers, lawyers, auditors, investigators, suppliers, manufactures,
providers, clients and ends users.

Each one has diversity of interests, visions, solutions and languages. This
reflects the evolution of the perception of handling security issues but does
not lead to a better resolution of these issues.

Security is becoming more and more complex. From an historic
perspective, security has been handling only through its technological
dimension, and then others as managerial or legal dimensions have been
taken into consideration. That is a good point, but the fact is, that they have
been taken into account in an independence way instead of, a systemic and
multidisciplinary approach.

More often we dispose of inefficient solutions, which introduce new
weaknesses and vulnerabilities, or shift the responsibility of the security on
others actors or entities, and produce a false sense of security.

Security solutions exist but are inefficient because:
We think about tools only, not about tools, process and management;
Tools are not enough simple and flexible;
Tools offer a static and punctual answer to a dynamic and global
problem;
Security international standards or recommendations exist but are not
implemented;
There is no clarified share of responsibility and it is more easier to move
the responsibility of the security to the end-user,
Lack of training and competencies;
End-users have not an e-security culture;

214 Integrity and Internal Control in Information Systems

Legal dispositions have been specified by people that does not fully
integrated the user point of view and the technological, managerial or
economical issues (mainly because it is too complex);
No one wants to support the security cost.

3.3 E-security challenges

The real challenge is to keep simple security handling.
That means that the security responsibility must be well defined at

national and international levels and that security solutions must be:
Transparent and cost effective for the end – user;
Cost - effective for the organization;
Enforceable for the regulator;
Flexible for information technologies provider.
Without offering simple and clear answers to this needs, e-security will

remained an abstract concept of no use.

4. MULTI DIMENSIONAL AND GLOBAL
APPROACH

Security issues and stakes are human, technological, economical, legal
and political.

Security tools can’t replace an ethical behavior and codes of conduct and
an appropriate legal framework.

2002 OECD guidelines on the security of information systems and
networks are a starting point to take into consideration security issues. But
security is not only a cultural problem that has a technological dimension.

It is also a regulatory problem by the fact that technologies:
Have become news kinds of mediators, which cannot be ignored at the

individual, enterprise, organization or society levels;
Are used to conduct criminal behaviors;
Are the targets of criminality actions.

4.1 E-security issues from an user point of view

Security rules and tools must be usable and cost effective. That means
that security mechanisms must be:

Readily understood;
Configured with a minimum of effort by untrained users;
Designed with the right balance between efficiency, configurability,
usability and costs.

From security culture to effective e-security solutions 215

Needs of awareness rising about risks assessments and risks management
Needs of culture and education are real.

4.2 E-security issues from a managerial point of view

Information and communication services must be based on the use of
secure systems, certified products and services.

That means to enforce use of standardized and certified solutions. ISO
15408 (Common Criteria) seems to be the best way to strengthen the fairness
of the security market and that effective security offers exist.

Information technologies managers have to:
Consider security as a permanent process that take into consideration
resources, costs, and processes optimization within a risk management
framework;
Define specifics security policies to support business activities (security
reference model) and a crisis management policy (back-up solutions),
Configure and manage hardware and software securely;
Be aware of they own penal responsibility in cases of major security
incidents or crisis;
Develop information assurance and legal conformance;
Manage human resources (check personal background, define
responsibility).

4.3 E-security issues from a technology point of view

To answer the need of monitoring and reaction, auditing mechanisms
should be designed into critical systems. These mechanisms may report
violations of a defined policy or actions that are considered to be security
threats. The use of strong identification and authentication solutions,
operational cryptographic mechanisms and one-time password are hardly
recommended. Automated or semiautomatic techniques for guiding the
selection of mechanisms for enforcing security policies and rules previously
defined have to be designed. When necessary, certified and recognized third
party authorities that have a regional, national and international recognition
could be used. That means that such authorities exist with defined
collaborative rules between them.

It is not necessary to define more security standards, but to promote
certification processes by public institutions, based on the International
Standard ISO 15408 - Common Criteria. That seems to be the best way to
strengthen the fairness of the security market. Certification processes should
be adapted to be more accurate for dynamic environment like Internet.

216 Integrity and Internal Control in Information Systems

Certified e-security solutions must be supported in a native node by
information technologies.

Security can be improved by:
Monitoring vulnerabilities and security solutions;
Finding computer and network security flaws;
Avoiding single points of failure;
Having an adaptability defensive mode.

4.4 E-security issues from a legal point of view

Law, legal institutions must exist to dissuade criminal behaviors and to
pursue people who act in illegal ways. Security solutions can protect a given
environment in a particular context, but cannot prevent criminal behavior.

More often, computer and cyber crime are poorly pursued because:
They can be automated, software embedded, and remotely realized;
The transnational dimension of that kind of crime requires an
international and cooperative judicial system;
Criminals can also use someone else identity making their identification
difficult;
It is difficult to qualify the facts;
Crime and evidence are related to immaterial resources.
A regulatory framework must be enforceable and effective both at the

national level and at the international level. It had to be defined and
supported by governments.

4.5 E-security from a market point of view

Technologies must have reduced vulnerabilities and improved quality
and security code. The market must increase product liability, take into
consideration the mobile world and must enforce authentication and privacy.

Only a parallel development of security control and privacy protection
will allow confidence into information and communication technologies and
in e-activities or e-transactions.

Market forces do not drive sufficient investment for:
Users and contents identification and authentication;
Watermarking and fingerprinting;
Digital signature;
Public Key Infrastructure;
Tracking;
Confidentiality and Privacy management;
E-transaction payment;
User interface.

From security culture to effective e-security solutions 217

5. AREAS FOR IMPROVEMENT OF E-SECURITY

There is no real technical obstacle to further development of e-security
but the scope of deployment of effective local and international e-security
services is very complex and the technical and management costs are not
trivial.

Private and public partnership is desirable on a National, European and
International levels to integrate security into infrastructures and to promote
security culture, behavior and tools.

Business, financial and organizational models are to be found to support
effective deployment of security that could benefit to each one.

It is fundamental that the international community:
Propose an unified e-security framework which take into consideration,
in a complementary way the human, the regulatory, the organizational
and economical, the technical and operational dimensions of e-security;
Promote an e-security culture (information on stakes and risks, diffusion
of simple recommendations as for example: use secure systems, reduce
vulnerability in avoiding dangerous situations or behaviors, etc.);
Train and inform on security, privacy or data protection issues, existing
solutions, legal dispositions, etc.;
Train and inform on information and communication technologies;
Force information technologies and contents providers to improve
security of their products and services;
Products or services must integrate in native simple and flexible security
measures and mechanisms; they must be well documented and
comprehensible (security mechanisms must be readily understood and
configured easily by untrained users);
Security must not be considered anymore as an option. As we trust in air
transportation (in these contexts security is not an option for fortunate
passengers), we must have confidence into information technologies;
Techniques must be define to guide the selection of mechanisms that
enforce a security policy;
In integrating at the beginning of their products development life cycle
security processes, measures and solutions.

6. CONCLUSION

It is our responsibility to promote a safe and reliable cyberspace
environment to contribute to design the emerging information society. A
minimum level of security for information and communication technologies
must be provided with an affordable cost. Security must not become an

218 Integrity and Internal Control in Information Systems

exclusion factor for everyone that would like to conduct private or business
activities over the Internet.

Efficient e-security will result of a balance between security needs,
financial and human processes, viable technological and legal solutions, to
be put in operation to satisfy e-security needs.

Security is a compromise between cost, security service level and time to
deliver them. It is illusive to believe that these three factors could be
satisfied together; choices have to be made between cost, level of security
and time to deliver security. After a one-privileged criterion has been
chosen, the others have to be adapted.

ACKNOWLEDGEMENTS

The author acknowledges Professor Stefano Spaccapietra to have given
her the opportunity to share security global issues with people who are
involved in the technological dimension of security.

REFERENCES

1.
2.

3.
4.

5.

M. Bishop. Computer security; Art and Science. Addison Wesley 2002.
S. Ghernaouti-Hélie. Stratégie et ingénierie de la sécurité des réseaux. InterEditions -
Dunod 1998.
S. Ghernaouti-Hélie. Internet et sécurité. Que-sais-je? n°3609. PUF 2002.
S. Ghernaouti-Hélie. Challenges to develop and deploy a unified e-security framework.
UNECE Workshop on E-Security and Knowledge Economy, 12 February 2003,
Geneva, Switzerland.
International standards ISO 15408, ISO 13335.

CONSISTENT QUERY ANSWERING

Recent Developments and Future Directions

Jan Chomicki
Department of Computer Science and Engineering
University at Buffalo, SUNY
Buffalo, NY 12260-2000
USA

chomicki@cse.buffalo.edu

Abstract We summarize here recent research on obtaining consistent informa-
tion from inconsistent databases. We describe the underlying semantic
model and a number of approaches to computing consistent query an-
swers. We conclude by outlining further research directions in this area.

Keywords: Databases, integrity constraints, queries, inconsistency.

Background
We are concerned here with relational databases and knowledgebases.

A database consists thus of facts and integrity constraints. A knowledge-
base can additionally contain rules (not necessarily Horn).

A knowledgebase is inconsistent if it implies, in the classical sense,
every formula, leading to the trivialization of reasoning. An inconsis-
tent knowledgebase has no model and thus can hardly be viewed as a
representation of the real world. However, inconsistency is a common
phenomenon in knowledgebases and databases. This apparent paradox
can be explained by observing that the stored information is not neces-
sarily correct and complete.

Inconsistency is often viewed as a defect, to be avoided at all costs.
Knowledgebases are assumed to be consistent, with their consistency
preserved by updates. Moreover, different forms of nonmonotonic rea-
soning or truth maintenance make sure that inconsistencies do not occur
during reasoning.

220 Integrity and Internal Control in Information Systems

EXAMPLE 1 The Closed World Assumption (CWA) [49] is a form of
nonmonotonic reasoning that infers for every atom L not implied by
the knowledgebase. CWA preserves the consistency of the knowledgebase
if the latter contains only atomic facts and Horn rules. In the presence
of disjunction, however, it is well known that CWA can lead to incon-
sistencies. Consider the knowledgebase It does not imply p or q
separately, and therefore CWA derives and But is
an inconsistent set of formulas. Consequently, weaker versions of CWA
were studied [45].

In relational databases, inconsistencies appear as violations of in-
tegrity constraints by the current database instance (a set of facts).
This can be viewed as an instance of the more general logical notion of
inconsistency, under the Closed World Assumption. Database systems
typically prevent such violations by cancelling the offending updates to
the database. Another possibility is to revise the database by resolving
inconsistencies.

EXAMPLE 2 Assume a database contains a fact p and an integrity con-
straint Inserting q leads to an integrity violation. A typical
DBMS would reject the insertion. Another option is to replace p by
but that requires moving to a richer representational framework in the
form of disjunctive databases [53], which is beyond the capabilities of
real DBMS today.

However, present-day database applications have to consider a variety
of scenarios in which data is not necessarily consistent. Integrity viola-
tions may be due to the presence of multiple autonomous data sources.
The sources may separately satisfy the constraints, but when they are
integrated the constraints may not hold. Moreover, because the sources
are autonomous, the violations cannot be simply fixed by removing the
data involved in the violations. Integrity constraints may also fail to be
enforced for efficiency (e.g., denormalization) or other reasons. Finally,
it may often be the case that the consistency of a database is only tem-
porarily violated and further updates or transactions are expected to
restore it. In all such cases, traditional approaches to deal with integrity
violations fail, and a new approach is required.

Consistent query answers

Bry’s approach

Bry [13]was the first to note that the standard notion of query an-
swer needs to be modified in the context of inconsistent databases1. He
proposed the notion of a consistent query answer – a query answer that

Consistent Query Answering 221

is unaffected by integrity violations present in the database. The set
of such answers forms a conservative estimate of the reliable informa-
tion content of a database. Bry’s proposal does not require that the
database be modified to remove the inconsistencies and thus is suitable
to the scenarios, outlined above, in which the removal of inconsistencies
is impossible or undesirable.

Bry’s definition of consistent query answer is based on provability in
minimal logic and expresses the intuition that the part of the database
instance involved in an integrity violation should not be involved in the
derivation of consistent query answers. This is not quite satisfactory, as
one would like to have a semantic, model-theoretic notion of consistent
query answer that parallels that of the standard notion of query answer
in relational databases. Moreover, the data involved in an integrity
violation is not entirely useless and some reliable partial information
can be extracted from it.

EXAMPLE 3 Assume that an instance of the relation Student is as fol-
lows:

Name
Smith
Smith

Address
Los Angeles
New York

Assume also that functional dependency is given.
In Bry’s approach, no positive information can be derived from this in-
consistent database, although such information is clearly present, for
example, we know that there is a student named Smith, and that Smith
lives in Los Angeles or New York.

The crucial observation to address the shortcomings of Bry’s approach
is as follows: even in the above simple example there is more than one
minimal way to restore the consistency of the database. Therefore, all
such ways should be considered. This brings us to the realm of belief
revision [29] where minimal change has been extensively studied. Choos-
ing model-theoretic revision operators can also yield the desired semantic
definition of consistent query answers. These insights form the basis of
the approach of Arenas, Bertossi and Chomicki [2], discussed below. The
paper [2] provided a framework on which most of the subsequent work
in this area is based. We discuss it in detail next.

Repairs and query answers

We assume a fixed relational database schema and a set of integrity
constraints IC over this schema. We say that a database instance is
consistent if in the standard model-theoretic sense (i.e., IC is
true in and inconsistent otherwise.

222 Integrity and Internal Control in Information Systems

DEFINITION 4 Given a database instance we denote by the set
of formulas where the P is a relation name and a
ground tuple. is a set of facts corresponding to the instance The
distance between instances and is the symmetric difference:

For the instances i.e., if the
distance between and is less than or equal to the distance between
and

DEFINITION 5 Given database instances and we say that is a
repair of if is consistent and is in the class
of consistent database instances.

EXAMPLE 6 Suppose the results of an election in which two candidates,
Brown and Green are running, are kept in two relations: Brown Votes
and Green Votes.

BrownVotes
County
A
A
B

Date
11/07
11/11
11/07

Tally
541
560
302

Green Votes
County
A
A
B

Date
11/07
11/11
11/07

Tally
653
780
101

Vote tallies in every county should be unique: thus the functional de-
pendency should hold in both relations. On the other
hand, we may want to keep multiple tallies corresponding to different
counts (and recounts). Clearly, both relations will have two repairs, de-
pending on whether the first or the second count for county A is picked.
So overall there are 4 repairs of the entire database.

To define consistent answers to queries defined in some query lan-
guage, we assume that this language has already a well-defined notion of
query answer in a database instance. For example, a
is an answer to a relational calculus query in an instance

if SQL2 has also a well-defined notion of when a
tuple is a query answer. We define by the set of all answers to
a query Q in an instance

DEFINITION 7 [2] Assume the set of all answers to a query Q is a k-ary
relation. A k-tuple is a consistent query answer to Q in an instance
(in symbols: if for every repair of

Consistent Query Answering 223

EXAMPLE 8 Returning to Example 6, we can see that the only consistent
answer to the query:

SELECT *
FROM BrownVotes

since the remaining two tuples are in conflict and will not appear in
every repair.

Similarly, the only consistent answer to the query

SELECT County
FROM BrownVotes
WHERE Tally > 400

is A. Note also that the latter answer is not obtained if the conflicting
tuples are blocked in the derivation of consistent answers (as in Bry’s
approach).

From the belief revision point of view, the problem addressed here is
that of revising the database with the integrity constraints. The def-
inition of repair (Definition 5) follows Winslett’s semantics [57]. The
notion of consistent query answer (Definition 7) corresponds to the no-
tion of counterfactual inference in that semantics. We note, however,
that research in belief revision has addressed mostly revising arbitrary
prepositional theories with prepositional formulas and focused on the se-
mantics of revised theories. On the other hand, the relational database
context requires a first-order approach but assumes a restricted form of
the revised theory which is just a set of facts. The latter restriction
makes possible an efficient derivation of consistent query answers even
for large databases.

Note. A literal is of the form (a positive literal) or
(a negative literal), where P is a database relation. We

will denote by literals and by a quantifier-free formula containing
only built-in predicates. We consider the following classes of integrity
constraints:

universal constraints: (binary if n = 2);

denial constraints: universal constraints with only negative liter-
als;

inclusion dependencies: where is a negative and
a positive literal.

B 11/07 302

is the tuple

224 Integrity and Internal Control in Information Systems

Functional dependencies (FDs) are a special case of denial constraints.

EXAMPLE 9 Consider a relation Student with two attributes Name and
Address. The (key) functional dependency can be
written as the following denial constraint;

Computing consistent query answers

We discuss here a number of different mechanisms for computing con-
sistent query answers. Note that Definition 7 suggests that consistent
query answers can be computed by evaluating the given query in every
repair of the given database. However, this approach is not practical
because there may be exponentially many repairs even in very simple
cases.

EXAMPLE 10 Consider the functional dependency over R and
the following family of instances of R, each of which has tuples (rep-
resented as columns):

Each instance has repairs.

Query rewriting

Query rewriting is based on the following idea: Given a query Q and
a set of integrity constraints, construct a query such that for every
database instance the set of answers to in is equal to the set of
consistent answers to Q in

Query rewriting was first proposed in [2] in the context of the domain
relational calculus. The approach presented there was based on concepts
from semantic query optimization [15], in particular the notion of a
residue.

Residues are associated with literals of the form or (where
is a vector of different variables of appropriate arity). For each literal

and each constraint containing in its clausal form (possibly
after variable renaming), a local residue is obtained by removing
and the quantifiers for from the (renamed) constraint. For each literal

and each constraint containing in its clausal form (possibly
after variable renaming), a local residue is obtained by removing
and the quantifiers for from the (renamed) constraint. Finally, for

Consistent Query Answering 225

each literal the global residue is computed as the conjunction of all local
residues (possibly after normalizing variables).

EXAMPLE 11 The functional dependency

produces for the following local and global residue

The rewritten query is obtained in several steps. First, for every
literal, an expanded version is constructed as the conjunction of this
literal and its global residue. Second, the expansion step is iterated by
replacing the literals in the residue by their expanded versions, until no
changes occur. Finally, the literals in the query are replaced by their
final expanded versions.

EXAMPLE 12 Under the functional dependency

the query is rewritten into

In this case, the expansion step is iterated only once.

The above approach is applicable to binary integrity constraints and
queries that are conjunctions of literals [2]. For more general queries
it is incomplete: The rewritten query does not necessarily produce all
consistent answers. For some non-binary constraints, the rewriting may
fail to terminate.

226 Integrity and Internal Control in Information Systems

Clearly, the query-rewriting approach is applicable to SQL queries
corresponding to the above class of relational calculus queries.

EXAMPLE 13 In the database of Example 6, the query

SELECT *
FROM BrownVotes

is transformed to:

SELECT *
FROM BrownVotes B1
WHERE NOT EXISTS
SELECT *
FROM BrownVotes B2
WHERE B1.County = B2.County
AND B1.Tally <> B2.Tally.

This opens the possibility of using SQL engines for computing consistent
query answers. In that way, very large databases can be handled.

Conflict graphs

Although the set of repairs of a database instance may be of exponen-
tial size, it can often be compactly represented. For functional dependen-
cies, it is very natural to define the conflict graph of the given instance,
whose vertices are the tuples in the instance and the edges represent
conflicts between tuples. Repairs correspond to maximal independent
sets in the conflict graph.

EXAMPLE 14 The conflict graph of the instance of the relation BrownVotes
from Example 6 is represented in Figure 1.

We show here a nondeterministic algorithm [17, 16] for checking whether
true is a consistent answer to a ground query in an instance of a
relation P. We assume that the sentence is in CNF, i.e. of the form

where each is a disjunction of ground literals.
is true in every repair of if and only if each of the clauses is true

Consistent Query Answering 227

in every repair. So it is enough to provide an algorithm that will check
if for a given ground clause true is a consistent answer.

It is easier to think that we are checking if true is not a consistent
answer. This means that we are checking whether there exists a repair
in which is true for some But is of the form

where the are tuples of constants. (We assume that all facts in the
set are mutually distinct.)

The nonderministic algorithm selects an edge in the conflict graph
for every such that and and constructs
a set of tuples S, such that

and there is no edge such that If the construction of S
succeeds, then a repair in which is true can be built by adding to S
new tuples from until the set is maximal independent.

The algorithm is also applicable to denial constraints that generalize
functional dependencies. In this case the notion of conflict graph is re-
placed by that of conflict hypergraph. The algorithm can be extended to
deal with nonground queries, too [18]. However, it is still not applicable
to queries with quantifiers or general universal constraints.

Typically, the number of conflicts in a database is not large, and thus
the conflict graph does not require much space and fits in main memory.
In such a case, the above approach is practical even for large databases.

Logic programs

Another approach to computing consistent query answers relies on
logical specification of repairs [3, 5]. A logic program (with disjunction
and classical negation) is constructed on the basis of the given in-
tegrity constraints and database instance. Repairs correspond to answer
sets [30] of this program. A query is also represented using a logic pro-
gram with a distinguished query predicate. The query atoms that
belong to every answer set of the program provide consistent
query answers. We demonstrate this construction through an example.

EXAMPLE 15 Consider Example 3 In this case, the logic program
contains the facts

228 Integrity and Internal Control in Information Systems

as well as the following rules:

Here Student' refers to the repaired version of Student. The first rule
is responsible for repairing integrity violations. The second and third
rules guarantee persistence. The first rule should override the remaining
ones. This can be accomplished, for example, using logic programs with
exceptions [38]. The first rule will then be a higher-priority exception,
and the remaining rules – lower-priority defaults. A logic program with
exceptions can be converted into a logic program with disjunction and
classical negation [38]. Consider now any relational calculus query Q.
Such a query can be converted to a stratified logic program in a standard
way.

The approach outlined above is very general as it can handle arbi-
trary relational calculus queries and binary universal constraints. It
has been extended to handle inclusion dependencies under the assump-
tion that null values are allowed in repairs (which slightly changes the
semantics of consistent query answers). A similar approach was inde-
pendently proposed by Greco et al. [34, 33]. That approach can handle
arbitrary universal constraints. In [8], another encoding of repairs by
logic programs was proposed. That encoding uses additional predicate
arguments to represent annotations, along the lines of [7]. The resulting
program is somewhat simpler because it does not require classical nega-
tion (but still uses disjunction). In [54], specification of repairs using
ordered logic programs is proposed. In that formulation, disjunctions
and multiple versions of the same predicate are not necessary.

Answer sets of logic programs with disjunction and classical negation
can be computed using any of the number of systems proposed in the
logic programming community: DLV [22] or smodels [51]. These im-
plementations can handle only relatively small databases because they
work by grounding a logic program and use only main memory.

The paper [23] proposes several optimizations that are applicable to
logic programming approaches. One is localization of conflict resolution,
another - encoding tuple membership in individual repairs using bitvec-
tors, which makes possible efficient computation of consistent query an-
swers using bitwise operators. However, we have seen in Example 10
even in the presence of one functional dependency there may be expo-
nentially many repairs [6]. With only 80 tuples involved in conflicts, the
number of repairs may exceed It is clearly impractical to efficiently
manipulate bit vectors of that size.

Consistent Query Answering 229

Aggregation

Aggregation is common in data warehousing applications where incon-
sistencies are likely to occur. However, in the presence of aggregation
operators, the notion of consistent query answer needs to be slightly
adjusted.

EXAMPLE 16 Consider Example 6. The aggregation query

SELECT SUM(Tally)
FROM BrownVotes

returns a different answer in every repair. Therefore, it has no consistent
answer in the sense of Definition 7. However, it is clear that from the
information present in the database we can draw the inference that the
returned sum of tallies is not completely unknown but rather falls between
843 and 862.

The definition below reflects this intuition.

DEFINITION 17 [4, 6](a) A consistent answer to an aggregation query
Q in a database instance is the minimal closed interval I = [a, b] such
that for every repair of the scalar value of the query Q in
belongs to I.
(b) The left and right end-points of the interval I are the greatest lower
bound (glb) and least upper bound (lub), respectively, answers to Q in

So in Example 16, the consistent answer is the closed interval [843, 862].
In some cases, consistent answers to aggregation queries can be effi-

ciently computed [4, 6].

EXAMPLE 18 The consistent answer to the aggregation query

SELECT SUM(Tally)
FROM BrownVotes

ic computed by the following query (in the syntax of SQL:1999):

WITH Partial(County, MinS, MaxS) AS
(SELECT County,MIN(Tally),MAX(Tally)
FROM BrownVotes
GROUP BY County)

SELECT SUM(MinS) ,SUM(MaxS)
FROM Partial;

The computational complexity of consistent answers to first-order and
aggregation queries is further discussed below.

230 Integrity and Internal Control in Information Systems

Computational complexity

We summarize here the results about the computational complexity
of consistent query answers [2, 6, 16, 17]. We adopt the data complexity
assumption [1, 37, 55] that measures the complexity of the problem as
a function of the number of tuples in a given database instance. The
given query and integrity constraints are considered fixed.

The query rewriting approach [2] – when it terminates – provides a di-
rect way to establish PTIME-computability of consistent query answers.
If the original query is first-order, so is the transformed version. In this
way, we obtain a PTIME procedure for computing CQAs: transform
the query and evaluate it in the original database. Note that the trans-
formation of the query is done independently of the database instance
and therefore, does not affect the data complexity. For example, in Ex-
ample 10 the query will be transformed (similarly to the query
in Example 12) to another first-order query and evaluated in PTIME,
despite the presence of an exponential number of repairs. The logic
programming approaches described earlier do not have good asymptotic
complexity properties because they are all based on classes
of logic programs [20].

The paper [16]([17] is an earlier version containing only some of the
results) identifies several new tractable classes of queries and constraints.
This paper contains the conflict-graph-based algorithm presented earlier,
which can easily be shown to work in PTIME. Another tractable class
consists of conjunctive queries where all the conjuncts do not share vari-
ables and integrity constraints that are functional dependencies, with at
most one dependency per relation. The paper [16] also shows that relax-
ing any of those restrictions leads to co-NP-completeness. Recently, [27]
has identified a class of conjunctive queries with relation arity at most 2,
for which data complexity of computing consistent query answers is in
PTIME, although the answers cannot be computed by query rewriting.

The paper [6] contains a complete classification of tractable and in-
tractable cases of the problem of computing consistent query answers
(in the sense of Definition 17) to aggregation queries w.r.t. a set of FDs
F. Its results can be summarized as follows:

For all SQL2 aggregate operators except COUNT(A), the problem is
in PTIME iff the set of FDs F contains at most one nontrivial FD

For COUNT(A), the problem is NP-complete, even for one nontrivial
FD.

Consistent Query Answering 231

If F is in BCNF and then the lub-answer to COUNT (*)
queries can be computed in PTIME.

Relaxing any of the above restrictions leads to NP-completeness.

Alternative repair semantics

The definition of repair (Definition 5), while intuitive, is not the only
possibly one. It postulates that repairs be obtained by deleting and
inserting facts, with deletion and insertion treated symmetrically. If
denial constraints are the only constraints present, then only deletions
can lead to repairs. However, in the presence of inclusion or tuple-
generating dependencies, insertions can also be used to bring about the
satisfaction of the constraints.

Several options have been explored in the literature in this context.
First, one can ignore insertions and work with deletions only [16]. That
is valid if we can assume that the information in the database is not
necessarily correct (thus there may be inconsistencies) but it is complete.
In fact, referential integrity actions in the SQL:1999 standard are limited
to deletions. Second, one can allow deletions only for repairing denial
constraints (there is no other way to do it) and use insertions to fix all
the other constraints. This is the approach adopted in [14]. It seems
suitable to data integration applications where the data is necessarily
incomplete. Finally, in some cases it is natural to consider updates of
individual attributes, instead of inserting/deleting whole tuples [56].

EXAMPLE 19 Consider the relation Emp with attributes Name, Salary,
and Manager, where Name is the primary key. The constraint that no
employee can have a salary greater than that of her manager is a denial
constraint:

Consider the following instance of Emp that violates the constraint:

Under Definition 5, this instance has two repairs: one obtained by
deleting the first tuple and the other – by deleting the second tuple. It
might be more natural to consider the repairs obtained by adjusting the
individual salary values in such a way that the constraint is satisfied.

The first approach leads to finitely many repairs, which guarantees
decidability for arbitrary queries and constraints. Some tractable cases

Name
Jones
Black

Salary
120K
100K

Manager
Black
Black

232 Integrity and Internal Control in Information Systems

are identified in [16]. In the second approach, there may be infinitely
many repairs (in the presence of inclusion dependencies). Some decidable
cases and more detailed complexity analysis are presented in [14]. In the
third approach, Wijsen proposes to represent all repairs of an instance
by a single trustable tableau. From this tableau, answers to conjunctive
queries can be efficiently obtained. It is not clear, however, what is the
computational complexity of constructing the tableau, or even whether
the tableau is always of polynomial size.

The minimality criterion constitutes another dimension of the repair
definition. The approaches discussed so far minimize the set of changes
but it is also possible to minimize the cardinality of this set. The latter
approach has been pursued in the context of belief revision [19]. The
paper [5] contains some discussion of how the modified definition of
repair can be implemented using a logic-program-based approach.

Future directions

Conflict resolution

The notion of repair can be useful not only in the context of consistent
query answering. In some cases, it is necessary to compute a single
repair, removing all the integrity violations. For denial constraints, this
task can be accomplished in PTIME. However, if inclusion dependencies
are added, the task may become co-NP-complete [16].

In general, one would like to use some form of priority or preference to
influence repairing. For example, some piece of information may be more
reliable or more up-to-date than another. The issue of computing repairs
and consistent query answers in the presence of priorities or preferences
is largely open. The work on prioritized logic programming [12, 50] may
be relevant in this context.

Data integration and exchange

Assume that we have a collection of (materialized) data sources and a
global, virtual database that integrates data from the sources. According
to the local-as-view approach [42, 46, 52], we can look at the data sources
as views over the global schema. Now, given a query to the global
database, one can generate a query plan that extracts the information
from the sources [31, 42, 43, 44]. In the global-as-view approach [41],
the global database is defined as a view over the data sources.

Sometimes one assumes that certain integrity constraints hold in the
global system, and those integrity constraints are used in generating the
query plan; actually, there are situations where without integrity con-

Consistent Query Answering 233

straints, no query plan can be generated [21, 32, 35]. The problem is that
we can rarely be sure that such global integrity constraints hold. Even
in the presence of consistent data sources, a global database that inte-
grates them may become inconsistent. The global integrity constraints
are not maintained and could easily be violated. In consequence, data
integration is a natural scenario to apply the methodologies presented
before. What we have to do is to retrieve consistent information from
the global database.

Several new interesting issues appear, among them are: (a) What is a
consistent answer in this context? (b) If we are going to base this notion
on a notion of repair, what is a repair? Notice that we do not have global
instances to repair, (c) How can the consistent answers be retrieved from
the global systems? What kind of query plans do we need? These and
other issues are addressed in [10–11] for the local-as-view approach and
in [40] for the global-as-view approach.

Recently, a new kind of scenario for data integration, called data ex-
change [47, 24], has been identified. In this scenario, one considers source
and target databases, and the mappings between them are described us-
ing source-to-target dependencies that generalize inclusion dependencies.
The distinctive feature of this scenario is that an instance of the target
database is materialized, using an instance of the source database and
the source-to-target dependencies. However, the issue of what to do if,
for the given contents of the data sources, there is no target database sat-
isfying the target constraints has not been addressed so far. Such a sce-
nario would clearly require that the construction of the target database
be augmented with some form of repairing the inconsistencies.

Data cleaning
The task of data cleaning [36, 48, 28] is to remove errors and incon-

sistencies in the data submitted to a data warehouse. Clearly, repairing
integrity violations is a part of this task. However, there is much more
to data cleaning. One has to resolve schematic discrepancies, combine
different records describing the same entity, normalize the data etc. Do-
main knowledge and heuristics play a significant role in data cleaning.
Declarative, high-level descriptions of the data cleaning process have
been proposed [28]. However, the semantics of the databases resulting
from the cleaning process has not been formally characterized so far in
the literature.

234 Integrity and Internal Control in Information Systems

Other applications

In spatial or spatiotemporal databases inconsistencies arise quite of-
ten. For example, there may be inconsistent readings of an object’s
location or the extent of a forest fire. Spatial or spatiotemporal objects
correspond to infinite sets of points. However, those sets are usually
finitely representable, e.g., using constraint databases [39]. Fortunately,
the notion of repair is applicable not only to finite databases but also
to infinite ones. Queries to constraint databases can be rewritten in
the same way as those to relational databases, opening the possibil-
ity of computing consistent query answers in spatial or spatiotemporal
databases.

Relational integrity constraints have been adapted to XML databases
[25–26]. However, as XML updates are more complex than relational
ones, it is not quite clear how to define repairs and consistent query
answers in that context.

Conclusions

We have presented a survey of recent work on consistent query an-
swering. This work has identified relevant expressiveness vs. tractability
tradeoffs and proposed a variety of computational approaches. Many se-
mantic and computational issues in this area remain to be explored. New
application scenarios promise also to bring a variety of new problems.

A more detailed survey of consistent query answering that contains
also an extensive discussion of related work is [9].

Acknowledgments

Thanks go to all those who have collaborated with me in the area
of consistent query answering, in particular Marcelo Arenas, Leopoldo
Bertossi and Jerzy Marcinkowski. The support of NSF under the grant
IIS-0119186 is gratefully acknowledged.

References

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in In-
consistent Databases. In ACM Symposium on Principles of Database Systems
(PODS), pages 68–79, 1999.

M. Arenas, L. Bertossi, and J. Chomicki. Specifying and Querying Database
Repairs Using Logic Programs with Exceptions. In International Conference on
Flexible Query Answering Systems (FQAS), pages 27–41. Springer-Verlag, 2000.

M. Arenas, L. Bertossi, and J. Chomicki. Scalar Aggregation in FD-Inconsistent
Databases. In International Conference on Database Theory (ICDT), pages 39–
53. Springer-Verlag, LNCS 1973, 2001.

M. Arenas, L. Bertossi, and J. Chomicki. Answer Sets for Consistent Query An-
swering in Inconsistent Databases. Theory and Practice of Logic Programming,
3(4–5):393–424, 2003.

M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad.
Scalar Aggregation in Inconsistent Databases. Theoretical Computer Science,
296(3):405–434, 2003.

M. Arenas, L. Bertossi, and M. Kifer. Applications of Annotated Predicate
Calculus to Querying Inconsistent Databases. In International Conference on
Computational Logic, pages 926–941. Springer-Verlag, LNCS 1861, 2000.

P. Barcelo and L. Bertossi. Logic Programs for Querying Inconsistent Databases.
In International Symposium on Practical Aspects of Declarative Languages
(PADL), pages 208–222. Springer-Verlag, LNCS 2562, 2003.

L. Bertossi and J. Chomicki. Query Answering in Inconsistent Databases. In
J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging
Applications of Databases. Springer-Verlag, 2003.

L. Bertossi, J. Chomicki, A. Cortes, and C. Gutierrez. Consistent Answers
from Integrated Data Sources. In International Conference on Flexible Query
Answering Systems (FQAS), Copenhagen, Denmark, October 2002. Springer-
Verlag.

Consistent Query Answering 235

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

L. Bravo and L. Bertossi. Logic Programs for Consistently Querying Data In-
tegration Systems. In International Joint Conference on Artificial Intelligence
(IJCAI), 2003. To appear.

G. Brewka and T. Eiter. Preferred Answer Sets for Extended Logic Programs.
Artificial Intelligence, 109(1-2):297–356, 1999.

F. Bry. Query Answering in Information Systems with Integrity Constraints.
In IFIP WG 11.5 Working Conference on Integrity and Control in Information
Systems. Chapman &Hall, 1997.

A. Cali, D. Lembo, and R. Rosati. On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases. In ACM Symposium on
Principles of Database Systems (PODS), pages 260–271, 2003.

U. S. Chakravarthy, J. Grant, and J. Minker. Logic-Based Approach to Semantic
Query Optimization. ACM Transactions on Database Systems, 15(2):162–207,
1990.

J. Chomicki and J. Marcinkowski. Minimal-Change Integrity Maintenance Using
Tuple Deletions. Technical Report cs.DB/0212004, arXiv.org e-Print archive,
December 2002. Under journal submission.

J. Chomicki and J. Marcinkowski. On the Computational Complexity of Consis-
tent Query Answers. Technical Report arXiv:cs.DB/0204010, arXiv.org e-Print
archive, April 2002.

J. Chomicki, J. Marcinkowski, and S. Staworko. Computing Consistent Query
Answers Using Conflict Hypergraphs. Submitted, September 2003.

M. Dalal. Investigations into a Theory of Knowledge Base Revision. In National
Conference on Artificial Intelligence, St.Paul, Minnesota, August 1988.

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive
Power of Logic Programming. ACM Computing Surveys, 33(3):374–425, 2001.

O.M. Duschka, M.R. Genesereth, and A.Y. Levy. Recursive Query Plans for
Data Integration. Journal of Logic Programming, 43(1):49–73, 2000.

T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving in
DLV. In J. Minker, editor, Logic-Based Artificial Intelligence, pages 79–103.
Kluwer, 2000.

T. Eiter, M. Fink, G. Greco, and D. Lembo. Efficient Evaluation of Logic
Programs for Querying Data Integration Systems. In International Conference
on Logic Programming (ICLP), 2003.

R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics
and Query Answering. In International Conference on Database Theory (ICDT),
pages 207–224. Springer-Verlag, LNCS 2572, 2003.

W. Fan, G. Kuper, and J. Simeon. A Unified Constraint Model for XML.
Computer Networks, 39(5):489–505, 2002.

236 Integrity and Internal Control in Information Systems

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

W. Fan and J. Simeon. Integrity Constraints for XML. Journal of Computer
and System Sciences, 66(1):254–201, 2003.

A. Fuxman and R. Miller. Towards Inconsistency Management in Data Integra-
tion Systems. In IJCAI-03 Workshop on Information Integration on the Web
(IIWeb-03), 2003.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C-A. Saita. Declarative
Data Cleaning: Language, Model, and Algorithms. In International Conference
on Very Large Data Bases (VLDB), pages 371–380, 2001.

P. Gärdenfors and H. Rott. Belief Revision. In D. M. Gabbay, J. Hogger, C, and
J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 4, pages 35–132. Oxford University Press, 1995.

M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing, 9(3/4):365–386, 1991.

G. Grahne and A. O. Mendelzon. Tableau Techniques for Querying Informa-
tion Sources through Global Schemas. In International Conference on Database
Theory (ICDT), pages 332–347. Springer-Verlag, LNCS 1540, 1999.

J. Grant and J. Minker. A Logic-Based Approach to Data Integration. Theory
and Practice of Logic Programming, 2(3):323–368, 2002.

G. Greco, S. Greco, and E. Zumpano. A Logic Programming Approach to
the Integration, Repairing and Querying of Inconsistent Databases. In Inter-
national Conference on Logic Programming (ICLP), pages 348–364. Springer-
Verlag, LNCS 2237, 2001.

S. Greco and E. Zumpano. Querying Inconsistent Databases. In International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), pages 308–325. Springer-Verlag, LNCS 1955, 2000.

J. Gryz. Query Rewriting using Views in the Presence of Functional and Inclu-
sion Dependencies. Information Systems, 24(7):597–612, 1999.

M. Hernandez and S. Stolfo. The Merge/Purge Problem for Large Databases.
In ACM SIGMOD International Conference on Management of Data, pages
127–138, 1995.

P. C. Kanellakis. Elements of Relational Database Theory. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, chapter 17, pages
1073–1158. Elsevier/MIT Press, 1990.

R. Kowalski and F. Sadri. Logic Programs with Exceptions. New Generation
Computing, 9(3/4):387–400, 1991.

G. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases. Springer-
Verlag, 2000.

D. Lembo, M. Lenzerini, and R. Rosati. Source Inconsistency and Incomplete-
ness in Data Integration. In 9th International Workshop on Knowledge Repre-
sentation meets Databases (KRDB’02), Toulouse, France, 2002.

Consistent Query Answering 237

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM Symposium
on Principles of Database Systems (PODS), 2002. Invited talk.

A. Y. Levy. Combining Artificial Intelligence and Databases for Data Integra-
tion. In Artificial Intelligence Today, pages 249–268. Springer-Verlag, LNCS
1600, 1999.

A. Y. Levy, A. Rajaraman, and J. J. Ordille. Query-Answering Algorithms for
Information Agents. In National Conference on Artificial Intelligence, pages
40–47, 1996.

A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying Heterogeneous Informa-
tion Sources Using Source Descriptions. In International Conference on Very
Large Data Bases (VLDB), pages 251–262, 1996.

J. Minker. On Indefinite Databases and the Closed World Assumption. In
International Conference on Automated Deduction (CADE), pages 292–308.
Springer-Verlag, LNCS 138, 1982.

A. Motro. Multiplex: A Formal Model for Multidatabases and Its Implemen-
tation. In International Workshop on Next Generation Information Technology
and Systems (NGITS), pages 138–158. Springer-Verlag, LNCS 1649, 1999.

L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin. Translating
Web Data. In International Conference on Very Large Data Bases (VLDB),
pages 598–609, 2002.

E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches.
IEEE Data Engineering Bulletin, 23(4):3–13, 2000.

R. Reiter. On Closed World Databases. In H. Gallaire and J. Minker, editors,
Logic and Data Bases, pages 55–76. Plenum Press, 1978.

C. Sakama and K. Inoue. Prioritized Logic Programming and its Application
to Commonsense Reasoning. Artificial Intelligence, 123:185–222, 2000.

P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable
Model Semantics. Artificial Intelligence, 138(1-2):181–234, June 2002.

J. D. Ullman. Information Integration Using Logical Views. In International
Conference on Database Theory (ICDT), pages 19–40. Springer-Verlag, LNCS
1186, 1997.

R. van der Meyden. Logical Approaches to Incomplete Information: A Survey.
In J. Chomicki and G. Saake, editors, Logics for Databases and Information
Systems, chapter 10. Kluwer Academic Publishers, Boston, 1998.

D. Van Nieuwenborgh and D. Vermeir. Preferred Answer Sets for Ordered Logic
Programs. In European Conference on Logics for Artificial Intelligence (JELIA),
pages 432–443. Springer-Verlag, LNAI 2424, 2002.

M. Y. Vardi. The Complexity of Relational Query Languages. In ACM Sympo-
sium on Theory of Computing (STOC), pages 137–146, 1982.

238 Integrity and Internal Control in Information Systems

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. Wijsen. Condensed Representation of Database Repairs for Consistent Query
Answering. In International Conference on Database Theory (ICDT), pages
378–393. Springer-Verlag, LNCS 2572, 2003.

M. Winslett. Reasoning about Action using a Possible Models Approach. In
National Conference on Artificial Intelligence, 1988.

Consistent Query Answering 239

[56]

[57]

ROLE OF CERTIFICATION IN MEETING
ORGANISATION SECURITY REQUIREMENTS

William List CA FBCS
Wm. List & Co., W.list@ntlworld.com

Security in systems is now a top priority. Management in organisations wish
to be assured that their systems are reliable and that the information provided
to stakeholders is secure and correct. This paper explores briefly the two main
ISO standards for security - the Common Criteria and the 7799 family. It
identifies current limitations in the standards and suggests area where the
standards could be developed to assist everyone in meeting the future security
needs

1. INTRODUCTION

Management wishes to have confidence that the systems they have put in
place are functioning as expected and are able to continue to operate in
adverse conditions. This is essentially the requirement for an Internal
Control system mandated in the OECD guidance on Corporate Governance.

Abstract:

Key words: Common Criteria, ISO 17799, Information Security, Improvements, Internal
Control, evaluation, certification

Part of these procedures are automated and there are two main ISO
standards Common Criteria (ISO/IEC 15084) and ISO/IEC17799 (BS7799
part 2:2002) which are the basis of evaluation or certification. In addition,
and not discussed here, are standards from ISACA (CobiT), IIA, and various
other organisations.

The objective of this paper is to raise some issues about certification and
evaluation for consideration by those involved as developers, certifiers or
evaluators and the people who seek to rely on the certificates issued.

The paper briefly addresses the Common Criteria and 7799 family. The
paper also considers the impact of risk analysis and the problems of
misunderstandings.

242 Integrity and Internal Control in Information Systems

2. BACK GROUND

2.1 The Common Criteria (CC)

This standard comprises:
A set of components of security functionality.
A set of rules for the creation of ‘Targets of Evaluation (TOE) and
Security Targets (ST)
A methodology for evaluation of the ST or TOE

A TOis the specification of security functionality as prepared by the
organisation submitting a product for evaluation. A ST is the specification of
the requirements for a specific implementation.

In addition there are documents called Protection Profiles (PP) which set
out generically the totality of the security requirements.

The common criteria is good for evaluation of hardware and/or software
products (or groups of products). It does not cover the people element of
security except in so far as the people procedures are asserted in the TOE or
ST.

The limitations of the Common Criteria are:
Functionality for batch processing (and essential element in many
business processes) is missing.
Requirement to build in mechanisms to report the contents of files
(e.g. access tables) is not specified.
Product manufacturers select those security functions for evaluation.
There may be other security functions in the product, which are not
evaluated.
The evaluation methodology is based on the assumption that the
development documentation available for evaluation is not for
evolutionary product.

Role of certification in meeting organisation security requirements 243

It is suitable for a system only if the system is a collection of
products excluding the people – its effectiveness decreases the more
people intervention is required for the system to function.
It covers security functionality only. If the rest of the product is poor
or malfunctions this may cause the results of processing to be wrong
(but securely wrong!).

2.2 The 7799 family

The 7799 family comprises two standards:
ISO/IEC 17799 – at present the 2000 version – which is a list of
some 125 controls. Organisations select appropriate controls from the
list to meet their identified information security needs.
BS7799 Part 2 – at present the 2002 version – which is the
specification for an information security management system
(ISMS). Organisations follow the standard to create a system for the
ongoing management of information security based on risk analysis.

The 7799 family cover all aspects of Information security; hardware,
software and people. Fundamental to the use of the Family is the decision on
the scope of the security implementation. The scope could be the entire
organisation or some part of it.

Limitations of the 7799 family
The list of controls in 17799 is biased to the security of the IT
infrastructure in that the controls identified for business processes are
more concerned with development principles than detailed controls
extant in line user departments or specific processes.
The framework for an ISMS as set out in BS7799 Part 2 is applicable
to all situations but if applied within an IT scope may not fully
address the business process requirements. This is often true if the
people involved have limited experience of the business processes.

2.3 Role of Risk analysis

Risk analysis is fundamental to any decisions on the extent to which
security measure are required in a product or system. On the basis of the
identified threats and vulnerabilities appropriate controls are implemented to
cover the risks within the scope of the analysis.

There are always residual risks that are deemed acceptable and there are
risks omitted from the analysis and no process is 100%. The result is that

244 Integrity and Internal Control in Information Systems

certain impacts will occur and there requires to be processes to find the
impacts and take appropriate action.

Where the scope of a certification or evaluation is anything less than the
whole organisation the risk analysis will be limited and may therefore place
undue weight on certain risks within scope when looked at from the
viewpoint of the organisation as a whole.

The question is ‘to what extent is the quality of the risk analysis a subject
for certification or evaluation?’

In the 7799 schemes provided the risk analysis is accepted by the
appropriate official it is unlikely that the auditors will challenge it.

In Common Criteria evaluations the analysis may be challenged but only
in an abstract context of a product not the live environment of which the
evaluators have no knowledge.

2.4 A material problem of misunderstanding?

There are a number of terms in the standards and common usage, which
do not necessarily have a consistent meaning. Within individual security (or
other) communities the terms are broadly agreed; but outside those
communities other definitions exist. The possibility of misunderstanding
between individuals and organisations implementing ‘information security’
and/or certifying or evaluating systems or products are quite substantial.
This potential misunderstanding may materially limit the value or
comprehension of a certificate or evaluation report to organisations wishing
to rely on them.

To enumerate three particular areas as examples of the possible
misunderstandings I cite systems, users and audit:

2.4.1 Systems

A system is what the writer (speaker) believes it to be at the time. It could
be any or all of the following:

The hardware
The operating system - or other infrastructure software e.g. a DBMS
The business process applications
Including the IT people
Including the line user people up to the Board level

Role of certification in meeting organisation security requirements 245

The problem is whether the reader (or listener) understands the same
system as the writer. This is a complication when people are discussing
system certification or evaluation - what do they mean?

2.4.2 Users

In any particular situation it is reasonably clear who the users are. In
general however there are at least three possible interpretations:

Persons who are in the organisation where IT functionality is used in
delivering the business objectives;
Persons who are in the IT department;
Customers if you are a vendor of hardware or software.

2.4.3 Audit

Audit in many security standards is considered as writing a log (after
determining what content should be written to the log).

Audit is considered as the process of creating a certificate or evaluation
(sometimes also called evaluation).

Audit may be an internal process whereby independent people check on
the work done by other people or automated processes.

Audit is also the term for the performance of financial and other external
examinations under a variety of company legislation.

3. ARE EVALUATIONS AND CERTIFICATIONS OF
ANY VALUE?

The current evaluation of products and certification of security in systems
are valuable. They provide a degree of assurance that specified objectives
have been achieved. They are not perfect and therefore absolute trust in the
results is unwise.

3.1 CC Evaluations

The evaluations performed under the CC are appropriate for hardware
and software in any combination. They are best when the product requires no
external activity to perform correctly and their value diminishes as the

246 Integrity and Internal Control in Information Systems

amount of external activity increases. This is because the CC does not
address people issues but only the functionality of hardware or software.

They suffer from the limitations set out in 2.1 above

3.2 7799 certifications

The usefulness of the certification depends on the scope of the ISMS.
The wider the ISMS the more useful the certification is. A 7799 certificate
indicates that the organisation has addressed information security in a
systematic manner. It does not indicate if specific procedures are in place
(which third parties may require) nor necessarily does it indicate effective
security is in place.

3.3 Non security functionality

CC Evaluations and 7799 Certification are limited to security
functionality. They do not intend to address other functions that the systems
or products perform. Clearly if the non security functionality in a system
fails to perform as expected then the result will be some form of error in the
information in the system or reported from the system. Therefore the
integrity, in the widest sense, of the information is compromised.

It is possible to set the scope of a 7799 certification to include the
necessary controls to address malfunctioning of the non security
functionality but it is not possible for CC evaluations.

4. WHAT DOES THE BOARD WANT?

The board expects:
Good information to work on;
That the system(s) are available when required;
No loss of confidentiality for organisation’s secrets;
Reasonable confidentiality for legal reasons;
Reasonable compliance with laws;
No hindrance to meting business objectives.

These taken together will meet the requirement for the Board to
effectively manage the organisation as set out in the OECD Corporate
Governance guidelines.

Role of certification in meeting organisation security requirements 247

At present the certification and evaluation processes are meeting parts of
these objectives but not all of them.

5. WHAT COULD BE DONE TO IMPROVE THE
SITUATION?

I would like to suggest that the development work at a standards level in
regard to the CC and 7799 address the following issues to expand the current
standards so as to more closely address the Board’s requirements.

5.1 Within the CC

To develop the processes for the development components of the
evaluation process to:

Accommodate the development process for commercial (particularly
business process) products;
Permit a 7799 certification of the development process to be considered
particularly for smaller developers.

To enhance the commercial value of the products evaluated by including
components, which address commercial security requirements over and
above those presently included. Consider evaluation of products being used
in the automation of the business process. Possibly also to consider
developing mechanisms whereby processes embedded in business process
applications could be confirmed as being compliant with applicable laws and
regulations.

5.2 Within the 7799 family

Ensure that the linkage between Information Security and the other parts
of the Internal Control system is made explicit in the guidance provided. In
general this could be achieved by developing guidance:

To explain how IT risk fits in with the overall business risk;
How business process security can be effected particularly in the area of
the ‘correctness’ of the results presented to management and
stakeholders.

To explore possible metrics which would enable people to evaluate better
the quality of the ISMS.

248 Integrity and Internal Control in Information Systems

6. CONCLUSION

In the future more and more of the business and home process will be
automated. It is vital that these processes are secure and deliver correct
information to the users of the systems.

Our present set of standards grew out of the needs of the large mainframe
systems and need to be changed to reflect the reality of the systems of the
future. In the security world we need a debate about what changes are
required so that those charged with delivering security in the future have the
tools they really need to do a first class job.

This paper has set out briefly the current major ISO standards and has
made some suggestions as how they might be changed for the future.

Grand Challenges in Data Integrity and Quality:
Panel Discussion

Bhavani Thuraisingham1

The MITRE Corporation, USA
* On Leave at the National Science Foundation, Arlington VA 22230, USA

This paper provides a summary of the panel discussions on data quality at the
IFIP Integrity and Internal Control in Information Systems Conference held in
Lausanne, Switzerland, November 2003.

Data integrity and quality have received a lot of attention recently. Data
integrity and quality are about maintaining the correctness, accuracy and
quality of the data. Especially in a heterogeneous and web-based
environment, data may emanate from all kinds of sources. Therefore it is
difficult to trust the accuracy and quality of the data. Data is however a
critical resource in almost all organizations. It is critical that appropriate
techniques are developed to ensure data integrity and quality so that data
users can carry out their functions effectively.

1 DISCLAIMER: The views and conclusions contained in this paper are those of the author and the

author’s understanding of the discussions at the conference. They do not reflect the policies and
procedures of the National Science Foundation or of the MITRE Corporation.

Abstract:

Key words: Data Quality, Data Integrity, Data Security, Quality of Service, Semantic Data
Quality, Data Quality Algebra

1. INTRODUCTION

While research in data integrity and data quality has progressed a great
deal, there is still a lot to do. Although we now have data cleansing and data
quality tools, we need a strong research program to advance the field to
ensure the quality of the data in a web-based world. Because of the
importance of the area we organized a panel at the IFIP Integrity and Internal
Control in Information Systems Conference in Lausanne, Switzerland held
in November 2003. The panelists were the following researchers (in
alphabetical order):

Integrating security and integrity: There have been many discussions
over the years on integrating security and integrity. From a security point of
view integrity is about unauthorized modifications of the data. Can we
develop solutions to detect and prevent unauthorized modifications as well
as malicious corruptions of data? Can we use data mining techniques to
detect and possibly prevent faults? How can we develop software that is self-
healing? How can we recover from the faults in a timely manner?

250 Integrity and Internal Control in Information Systems

Karl Aberer, EPFL, Lausanne, Switzerland
Yves Deswarte, LAAS-CNRS, Toulouse, France
Sushil Jajodia, George Mason University, USA
Leszek Lilien, Purdue University, USA
Indrakshi Ray, Colorado State University, USA
Monica Scannapieco, University of Rome, Italy

The panelists discussed many challenges. In section 2 we summarize the
challenges. Some directions are given in Section 3.

2. PANEL DISCUSSION

The challenges discussed by the panelists are the following:
Integrating security and integrity
Quality of Service
Secure high integrity transactions
Semantic data quality
Algebra for data quality
Trust management and data quality

Below we will elaborate on the challenges for each of the topics listed
above:

Algebra for Data Quality: Various algebras have been proposed for data
manipulation including relational algebra. Can we extend these algebras to
include data quality? One simple way to accomplish this is to have a data
quality attribute associated with each attribute in a relation. Then we need to
develop an algebra so that data quality values can be computed for the
results. So the challenge is how can we develop algebra for manipulating
data quality values as well as handle integrity constraints?

Grand challenges in data integrity and quality: panel discussion 251

Quality of Service: Closely related to the first topic is developing quality
of service primitives. We need flexible security and integrity policies. For
example, how can we effectively integrate security, integrity, fault tolerance
and real-time processing to achieve dependable computing? How can we
make tradeoffs say between security, integrity, fault tolerance and real-time
computing? For example, in some situations we may need 100% security
while in some other cases it is critical that the transactions meet the timing
constraints and therefore we may be willing to sacrifice some level of
security. How can we specify the flexible policies and subsequently
implement the policies in operational systems? How can we ensure that there
is end-to-end security and survivability and ensure that systems that are
composed are secure and survivable?

Secure High Integrity Transactions: There has been a lot of research on
secure transactions and especially on multilevel secure transactions. The idea
is for high-level transactions not to interfere with low level transactions and
send covert messages. The challenge is to ensure that the integrity
constraints and data quality constraints are satisfied by the transactions.
There has been work on integrity constraint processing during transaction
processing. However integrating security, integrity, data quality and
transaction processing remains a challenge.

Semantic data quality: Database community has worked on semantics for
a number of years. They have developed solutions to semantic heterogeneity,
a problem that occurs when integrating heterogonous databases. The
community is now moving in the direction of information integration where
information from diverse disparate data sources has to be integrated on the
web. Ontologies have been specified to aid information integration. The goal
is to move toward the semantic web. Data quality plays a crucial role. In
order to ensure that the data is accurate and consistent for the semantic web,
we need to develop data quality techniques for the semantic web. We need to
understand the nature of the data and consider the semantics when assigning
data quality values. Essentially data quality has to be considered when
discussing the semantics of the data. Ontologies have to specify data quality,

Trust management: Security researchers are working on trust
management issues. The challenge is how do you trust the data and
information provided by the publisher? The publisher may have received the
data from another source and that source may have received the data form
yet another source? One’s trust of the quality of the data depends on how
much he or she trusts the sender. The sender in turn trusts the quality of data
depending on who sends it to him or her. Can we develop a theory of trust?
How can we carry out trust negotiations with respect to data quality? That is,
can A and B negotiate with each other and develop trust mechanisms so that
they can effetely share data and collaborate on tasks? How can we ensure
trust and integrity in a peer-to-peer environment? There are many challenges
in trust management that need to be addressed for data quality.

The panel provided some good insights into directions and challenges in
data quality and data integrity. While the panelists were from academia,
there was also industry participation at the conference and we got some
useful information on data quality for various industries. For many
applications in the commercial world, including defense, intelligence,
banking, financial, and medical areas, data quality is critical. How can we
act on the data for critical applications in medicine, finance and defense if
we are not certain of the quality? There was a general consensus that while
everyone agrees that data quality and integrity and critical, the areas have not
received a lot of attention in the research world.

252 Integrity and Internal Control in Information Systems

data integrity as well as data security features. In summary, ensuring data
quality for secure information integration on the web remains a challenge.

3. DIRECTIONS

The challenge is for the various research communities to actively pursue
research and convince the research funding organizations that there is a clear
need to start research in this area. It was noted that there are now many
research funding initiatives in both data management and information
security. The question is, for now at least should we focus on data quality
and data integrity as part of the research programs in data management and
information security? This way the area will get some focus. Then as we
make more progress and uncover more challenges, we could devote more
resources in this area.

The group also felt that the panel has raised many interesting ideas and
discussed some key challenges. We should incorporate some of the ideas
presented in the call for papers for next year’s conference so that we can
keep the research going in this very important field.

Grand challenges in data integrity and quality: panel discussion 253

INDEX OF CONTRIBUTORS

Aberer, Karl
Aellig, Alexandre
Balsters, Herman
Basin, David
Bettini, Claudio
Brock, Bert de
Chomicki, Jan
Deswarte, Yves
Embury, Suzanne M.
Farkas, Csilla
France, Robert
Ghernaouti-Hélie, Solange
Höhn, Sebastian
Ibrahim, Hamidah
Jajodia, Sushil
Jin, Binling
Jürjens, Jan
Kim, Dae-Kyoo
Kodali, Naren B.
Li, Na

Lilien, Leszek
List, William
Miyazaki, Kunihiko
Oechslin, Philippe
Panda, Brajendra
Pretorius, Elmari
Quisquater, Jean-Jacques
Ray, Indrajit
Ray, Indrakshi
Saïdane, Ayda
Scannapieco, Monica
Solms, Basie von
Sulaiman, Md. Nasir
Takaragi, Kazuo
Thuraisingham, Bhavani
Wang, X. Sean
Wijesekera, Duminda
Zaqaibeh, Belal
Zhang, Junxing
Zuo, Yanjun

249
115
143
31
83

143
219

1
159
67
49

209
13

195
83

159
13
49
67
49

249
241

31
115
177
107

1
125
49

1
249
107
195
31

249
83
67

195
125
177

INDEX OF KEYWORDS

ALICE
Automated configuration

review
Certification
Challenge-response protocols
COBIT
Collaboration
Common Criteria
Computer crime
Condition monitoring
Consistency
Constraint
Damage assessment
Data integrity
Data modelling
Data protection
Data quality algebra
Data quality
Data security
Databases
Distributed query evaluation
Distribution
Evaluation
File integrity checking
Formal methods
Improvements
Inconsistency
Information flow
Information security
Information security

governance
Information security

management
Information society
Integrity and internal control

in financial systems
Integrity constraints
Integrity control
Integrity monitoring

Integrity
Internal control
Inter-object constraint
Intrusion detection
Intrusion propagation
ISO 17799
Legacy systems
Maintenance
Mandatory access control
Model checking
Multi level security
Multidimensional approach
Obejct-orientation
Object-oriented database
Physical surveillance
Quality of service
Queries
Recovery
Release control
Revision control
Risk management
Role-based access control
Secure multimedia
Security architectures
Security needs and

challenges
Security restraints
Semantic data quality
Semantics
SMIL
Software development
Systems integration
Threats
UML
Unified e-security

framework
Unified modelling language
Versions

31, 249

241
219
177
241

125
241
195

1, 115
115

107, 241
143
195
49
31
67

209
143
195
67

249
219
115
83

125
209

49
67
31

209
13

249
143
67

125
143
209
143

209
49

125

195

13
241

1
107
125
241
209
159
143
195
177

31
1

143
83

249
249
249

143, 219
159
143
241

107

107
209

13
219
143
159

