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Preface

This edition is a major revision to the first edition. The revision is motivated by
the new progress in relay feedback autotuning, as proposed by Bill Luyben, where
the shape of the relay response can be utilized to identify likely model structure.
Several new chapters have been added, notably the use of the shape-factor for
autotuning and controller monitoring, incorporating autotuning in a multiple-
model setup, dealing with an imperfect actuator. At the turn of the century, com-
petitiveness in the global economy remains the same and the need for rapid and
flexible manufacturing has become standard practice. This has given process con-
trol engineers an expanded role in process operation.

It has long been recognized that industrial control is one of the key technologies
to make existing processes economically competitive. In theory, sophisticated
control strategies–supervisory, adaptive, model predictive control–should be the
norm of industrial practice in modern plants. Unfortunately, a recent survey, by
Desborough and Miller has shown otherwise. This indicates that 97% of regula-
tory controllers are of the proportional–integral–derivative (PID) type and only
32% of the loops show “excellent” or “good” performance. Six years have passed
since the first edition was published, and the practice of industrial process control
is very much the same: PID controllers are widely used but poorly tuned.

This book is aimed at engineers and researchers who are looking for ways to
improve controller performance. It provides a simple and yet effective method of
tuning PID controllers automatically. Practical tools needed to handle various
process conditions, e.g. load disturbance, nonlinearity and noise, are also given.

The mathematics of the subject is kept to a minimum level and emphasis is
placed on experimental designs that give relevant process information for the in-
tended tuning rules. Numerous worked examples and case studies are used to il-
lustrate the autotuning procedure and closed-loop performance.

This book is an independent learning tool that has been designed to educate
people in technologies associated with controller tuning. Most aspects of autotun-
ing are covered, and you are encouraged to try them out on industrial control prac-
tice.

The book is divided into 12 chapters. In Chapter 1, perspectives on process
control and the need for automatic tuning of PID controllers are given. The PID
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controller is introduced in Chapter 2. Corresponding P, I, and D actions are ex-
plained and typical tuning rules are tabulated. Chapter 3 shows how and why the
relay feedback tests can be used as a means of autotuning, and an autotuning pro-
cedure is also given. A simple and an improved algorithm are explored and ana-
lytical expressions for relay feedback responses are also derived. The shape of re-
lay feedback is discussed in Chapter 4. This gives useful information on possible
model structure and ranges of model parameters. Once model structure is avail-
able, an appropriate tuning rule can be applied for improved control performance.
In Chapter 5, a ramp type of relay is proposed to provide better accuracy in identi-
fying process parameters. The improved experimental design is shown to work
well for both single-input–single-output (SISO) and multivariable systems. Chap-
ter 6 is devoted to a more common situation: multivariable systems. Experiments
are devised and procedures are given for the automatic tuning of multiloop SISO
controllers. Chapter 7 is devoted to a practical problem: autotuning under load dis-
turbance. A procedure is presented to find controller parameters under load
changes. The multiple-model approach is known to be effective in handling proc-
esses that are nonlinear, and Chapter 8 extends the relay feedback autotuning in a
multiple-model framework. In Chapter 9, the controller monitoring problem is ad-
dressed. Again, the shape of relay feedback response gives a useful indication on
the appropriateness of the tuning constant. Moreover, monitoring and retuning are
completed in a single-relay feedback test. The issue of an imperfect actuator is
dealt with in Chapter 10. For control valve with hyteresis, an autotuning procedure
is proposed to overcome the frequently encountered problem in practice. In Chap-
ter 11, the importance of control structure design is illustrated using a plantwide
control example. Procedures for the design of the control structure and the tuning
of the entire plant are given and the results clearly indicate that the combination of
better process understanding and improved tuning makes the recycle plant much
easier to operate. Chapter 12 summarizes the guidelines for autotuning procedures
and describes when and what type of relay feedback test should be employed.

The book is based on work my students and I have been engaged in for almost
20 years to improve PID controller performance. I wrote the book because I be-
lieve strongly in the benefits of improved control, and a well-tuned PID controller
is a fundamental step for improved process operation.

Acknowledgements
Thanks are due to K. J. Åström, T. Hägglund, W. L. Luyben, Q. G. Wang, I. B.
Lee, and my colleague H. P. Huang, who have contributed to the development of
relay feedback autotuning. Undergraduate and graduate students and postdoc fel-
lows of NTU and NTUST have contributed to this book by their questions and in-
terest in the subject. In particular, the continuous feedback from Walters Shen, K.
L. Wu, D. M. Chang, Y. C. Cheng, Y. H. Chen, T. Thyagarajan, and R. C. Panda
needs to be acknowledged. The superb editing work of Brenda Tsai and Vincent
Chang made this book possible. Finally, without the understanding and support of
my family, this book would not have been undertaken, or completed.



ix

Contents

1 Introduction...................................................................................................1
1.1 Scope of Process Control.........................................................................1
1.2 Proportional–Integral–Derivative Control Performance............................2
1.3 Relay Feedback Identification .................................................................5
1.4 Conclusion..............................................................................................6
1.5 References ..............................................................................................7

2 Features of Proportional Integral Derivative Control ................................9
2.1 Proportional–Integral–Derivative Controller ............................................9

2.1.1 Proportional Control ........................................................................9
2.1.2 Proportional–Integral Control......................................................... 10
2.1.3 Proportional–Integral–Derivative Control ....................................... 12

2.2 Proportional–Integral–Derivative Implementation.................................. 13
2.2.1 Reset Windup ................................................................................ 13
2.2.2 Arrangement of Derivative Action.................................................. 15

2.3 Proportional–Integral–Derivative Tuning Rules ..................................... 17
2.3.1 Ziegler–Nichols Types of Tuning Rules.......................................... 17
2.3.2 Model-based Tuning ...................................................................... 19

2.4 Conclusion............................................................................................ 20
2.5 References ............................................................................................ 20

3 Relay Feedback ........................................................................................... 23
3.1 Experimental Design ............................................................................. 24
3.2 Approximate Transfer Functions: Frequency-domain Modeling ............. 26

3.2.1 Simple Approach ........................................................................... 27
3.2.2 Improved Algorithm ...................................................................... 30
3.2.3 Parameter Estimation ..................................................................... 32
3.2.4 Examples ....................................................................................... 32

3.3 Approximate Transfer Functions: Time-domain Modeling ..................... 36
3.3.1 Derivation for a Second-order Overdamped System........................ 39
3.3.2 Results........................................................................................... 41



x Contents

3.3.3 Validation ...................................................................................... 44
3.4 Conclusion............................................................................................ 44
3.5 References ............................................................................................ 46

4 Shape of Relay ............................................................................................. 47
4.1 Shapes of Relay Response ..................................................................... 47

4.1.1 Shapes ........................................................................................... 48
4.1.2 Model Structures............................................................................ 50

4.1.2.1 First-order Plus Dead Time....................................................... 50
4.1.2.2 Second-order Plus Small Dead Time ......................................... 51
4.1.2.3 High Order ............................................................................... 52

4.2 Identification......................................................................................... 52
4.2.1 Identification of Category 1: First-order Plus Dead Time ................ 52

4.2.1.1 Category 1a: True First-order Plus Dead Time........................... 52
4.2.1.2 Category 1b: Approximated First-order Plus Dead Time............ 55

4.2.2 Identification of Category 2: Second-order Plus Small Dead Time .. 56
4.2.3 Identification of Category 3:High order .......................................... 58
4.2.4 Validation ...................................................................................... 59

4.3 Implications for Control ........................................................................ 62
4.3.1 Proportional–Integral–Derivative Control ....................................... 62

4.3.1.1 Category 1: First-order Plus Dead Time .................................... 62
4.3.1.2 Category 2: Second-order Plus Small Dead Time ...................... 64
4.3.1.3 Category 3: High Order............................................................. 64

4.3.2 Results........................................................................................... 64
4.3.3 Extension....................................................................................... 70

4.3.3.1 Dead-time-Dominant Process.................................................... 70
4.3.3.2 Higher Order Process................................................................ 71

4.4 Conclusion............................................................................................ 72
4.5 References ............................................................................................ 73

5 Improved Relay Feedback........................................................................... 75
5.1 Analysis................................................................................................ 76

5.1.1 Ideal (On–Off) Relay Feedback ...................................................... 76
5.1.2 Saturation Relay Feedback ............................................................. 78
5.1.3 Potential Problem........................................................................... 83

5.2 Improved Experimental Design ............................................................. 84
5.2.1 Selection of the Slope of Saturation Relay ...................................... 84
5.2.2 Procedure....................................................................................... 89

5.3 Applications.......................................................................................... 89
5.4 Conclusion............................................................................................ 95
5.5 References ............................................................................................ 96

6 Multivariable Systems ................................................................................. 97
6.1 Concept ................................................................................................ 97

6.1.1 Single-input–Single-output Autotuning........................................... 97
6.1.2 Multiple-input–Multiple-output Autotuning.................................... 99

6.2 Theory ................................................................................................ 101



Contents xi

6.2.1 Sequential Design ........................................................................ 101
6.2.2 Process Characteristics................................................................. 104
6.2.3 Sequential Identification............................................................... 108

6.3 Controller Tuning................................................................................ 111
6.3.1 Potential Problem in Ziegler–Nichols Tuning ............................... 111
6.3.2 Modified Ziegler–Nichols Method................................................ 111
6.3.3 Performance Evaluation: Linear Model ......................................... 115

6.4 Properties............................................................................................ 117
6.4.1 Convergence................................................................................ 117
6.4.2 Tuning Sequence.......................................................................... 119
6.4.3 Problem of Variable Pairing ......................................................... 120
6.4.4 Summary of Procedure................................................................. 122

6.5 Applications........................................................................................ 123
6.5.1 Moderate-purity Column.............................................................. 123
6.5.2 High-purity Column..................................................................... 124
6.5.3 T4 Column................................................................................... 128

6.6 Conclusion.......................................................................................... 130
6.7 References .......................................................................................... 130
Appendix.................................................................................................... 132

7 Load Disturbance ...................................................................................... 135
7.1 Problems............................................................................................. 135

7.1.1 Step Change versus Continuous Cycling....................................... 135
7.1.2 Effect of Load Change on Relay Feedback Test ............................ 138

7.2 Analyses ............................................................................................. 139
7.2.1 Causes of Errors........................................................................... 139
7.2.2 Output-biased Relay Feedback System ......................................... 142
7.2.3 Derivation of Bias Value o ........................................................ 144

7.2.3.1 Effect of Load Disturbance ..................................................... 144
7.2.3.2 Opposite Effect from Output-biased Relay .............................. 146

7.3 Summary of Procedure........................................................................ 148
7.4 Applications........................................................................................ 149

7.4.1 Linear System .............................................................................. 150
7.4.2 Binary Distillation Column .......................................................... 152

7.5 Conclusion.......................................................................................... 153
7.6 References .......................................................................................... 154

8 Multiple Models for Process Nonlinearity ................................................ 155
8.1 Autotuning and Local Model ............................................................... 156
8.2 Model Scheduling ............................................................................... 157

8.2.1 Takagi–Sugeno Fuzzy Model ....................................................... 157
8.2.1.1 Single Input Systems .............................................................. 158
8.2.1.2 Multiple Inputs Systems.......................................................... 160

8.2.2 Selection of Scheduled Variable ................................................... 162
8.3 Nonlinear Control Applications ........................................................... 163

8.3.1 Transfer Function System............................................................. 163
8.3.2 Tennessee Eastman Process.......................................................... 167



xii Contents

8.4 Conclusion.......................................................................................... 173
8.5 References .......................................................................................... 173

9 Control Performance Monitoring ............................................................. 175
9.1 Shape Factor for Monitoring................................................................ 176

9.1.1 Shapes of the Relay Feedback ...................................................... 176
9.2 Performance Monitoring and Assessment ............................................ 179

9.2.1 Optimal Performance ................................................................... 179
9.2.2 Proposed Monitoring and Assessment Procedure .......................... 180

9.2.2.1 Case 1: I / = 1 .................................................................... 180
9.2.2.2 Case 2: I / > 1 .................................................................... 180
9.2.2.3 Case 3: I / 1< .................................................................... 181

9.2.3 Illustrative Examples.................................................................... 184
9.3 Applications........................................................................................ 188

9.3.1 Second-order Plus Dead Time Processes....................................... 188
9.3.2 High-order Processes ................................................................... 193

9.4 Conclusion........................................................................................... 196
9.5 References ........................................................................................... 196

10 Imperfect Actuators ................................................................................ 197
10.1 Potential Problems ............................................................................ 197
10.2 Identification Procedure .................................................................... 202

10.2.1 Two-step Procedure ................................................................... 202
10.2.2 Simultaneous Identification ........................................................ 205

10.3 Applications...................................................................................... 206
10.3.1 Linear Systems........................................................................... 206

10.3.1.1 Noise-free System................................................................. 206
10.3.1.2 Systems with Measurement Noise ......................................... 207
10.3.1.3 Load Disturbance.................................................................. 210

10.3.2 Nonlinear Process ...................................................................... 212
10.3.2.1 Two-step Procedure .............................................................. 212
10.3.2.2 Simultaneous Procedure........................................................ 212

10.4 Conclusion........................................................................................ 216
10.5 References ........................................................................................ 217

11 Autotuning for Plantwide Control Systems ............................................ 219
11.1 Recycle Plant .................................................................................... 219
11.2 Control Structure Design ................................................................... 222

11.2.1 Unbalanced Schemes.................................................................. 222
11.2.1.1 Column Overwork ................................................................ 222
11.2.1.2 Reactor Overwork................................................................. 226

11.2.2 Balanced Scheme....................................................................... 227
11.2.3 Controllability............................................................................ 228
11.2.4 Operability................................................................................. 231

11.3 Controller Tuning for Entire Plant ..................................................... 232
11.3.1 Tuning Steps.............................................................................. 233



Contents xiii

11.3.1.1 Inventory Control ................................................................. 233
11.3.1.2 Ratio Control ........................................................................ 233
11.3.1.3 Quality Loop ........................................................................ 235

11.3.2 Closed-loop Performance ........................................................... 238
11.4 Conclusion........................................................................................ 242
11.5 References ........................................................................................ 242

12 Guidelines for Autotune Procedure ........................................................ 245
12.1 Process Characteristics ...................................................................... 245

12.1.1 The Shape.................................................................................. 245
12.1.2 Load Disturbance....................................................................... 246
12.1.3 Nonlinearity............................................................................... 246
12.1.4 Noise ......................................................................................... 247
12.1.5 Imperfect Actuator ..................................................................... 248

12.2 Available Relays ............................................................................... 248
12.3 Specifications.................................................................................... 249

12.3.1 Direct Tuning............................................................................. 249
12.3.2 Model-based Tuning .................................................................. 251
12.3.3 Multiloop System....................................................................... 252

12.4 Discussion......................................................................................... 256
12.5 Conclusion........................................................................................ 257
12.6 References ........................................................................................ 258

Index............................................................................................................... 259



1

1

Introduction

1.1 Scope of Process Control

Over past 50 years, “process control” has developed into a vital part of the engi-
neering curriculum. Textbooks ranges from 600 to 1200 pages [1–3] and cover
various aspects of industrial process control. It is hopeless to discuss all subjects of
process control in this book. However, a brief description of the scope of process
control will be given and the specific role of this book will become clear.

For continuous manufacturing, on-demand production with on-aim quality is the
goal of process operation. Many factors contribute to non-smooth process opera-
tion, and controller tuning is just one of them, as shown in Figure 1.1 [4]. Starting
from the most fundamental level, process variations may come from the infrastruc-
ture of a control system in which the signal transmission, control panel arrange-
ment, distributed control system (DCS) selection, and DCS configuration may be
the source of the problem. If the infrastructure is not the source of variation, then
one may go up to the instrumentation level, which includes the control valve siz-
ing, sensor selection, and transmitter span determination. It is clear that a wrongly
sized control valve or an incorrectly determined transmitter span cannot provide
adequate resolution in the manipulated variable or the controlled variable. It then
comes to the controller tuning level in which inadequate controller settings may
lead to oscillation in process variables, and improved controller settings is the fo-
cus of this book. If a controller retuning still cannot fix the problem, then we go to
the controller structure level, in which one can try different types of controller.
The actions in this level include: remove or add the derivative action, take out or
add the integral action, use the gain scheduling, and add the dead time compensa-
tion. For example, the use of a proportional (P) only controller is often recom-
mended for maximum flow smoothing in level control, and avoid using the deriva-
tive (D) action when the measurement is corrupted with noise. If the process
variation is still significant, then it may be a problem in the control configuration.
Experienced designers always establish loop pairings by maximizing the steady
state gain between the controlled and the manipulated variables and by shortening
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Figure 1.1. Spectrum of process operation

the response time (time constant) and dead time. Certainly, the inherent integral
controllability should be maintained and the relative gain should be checked when
dealing with multivariable systems. The other option is to explore the possibility of
using a multivariable controller. However, one should be sure that we have enough
engineering manpower for the maintenance of the much more complicated control
system. Once all other possibilities are exhausted, we come to the rightmost part of
the spectrum: process design can also be a possible cause of non-smooth operation.
It has long been recognized that a process that has been design-based on some
steady state economic objective will not necessarily provide good dynamic per-
formance. This is especially true when new plants are typically designed using
complex flowsheets with many streams for material recycles and for energy ex-
changes. The highly integrated plants generally lead to complex dynamics and dif-
ficulty in control and operation. Thus, in some cases, process redesign is required
to ensure an operable process. The necessity of simultaneous design and control is
advocated by Luyben and as can be seen in two recent books [4,5] and chapters of
textbooks [2,3] devoted to this area. After studying the spectrum of process con-
trol, it should become clear that “controller tuning” only constitutes a fraction of
the entire spectrum and it is even clearer that an improved controller tuning cannot
solve all the problems associated with non-smooth process operation.

1.2 Proportional Integral Derivative Control Performance

Despite rapid evolution in control hardware, the proportional–integral–derivative
(PID) controller remains the workhorse in process industries. The P action (mode)
adjusts controller output according to the size of the error. The I action (mode) can
eliminate the steady state offset and the future trend is anticipated via the D action
(mode). These useful functions are sufficient for a large number of process applica-
tions and the transparency of the features leads to wide acceptance by the users. On
the other hand, it can be shown that the internal model control (IMC) framework
leads to PID controllers for virtually all models common in industrial practice [6].
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Note that this includes systems with inverse responses and integrating (unstable)
processes.

PID controllers have survived many changes in technology. It begins with
pneumatic control, through direct digital control to the DCS. Nowadays, the PID
controller is far different from that of 50 years ago. Typically, logic, function
block, selector and sequence are combined with the PID controller. Many sophisti-
cated regulatory control strategies, override control, start-up and shut-down strate-
gies can be designed around the classical PID control. This provides the basic
means for good regulatory, smooth transient, safe operation and fast start-up and
shut-down. Moreover, even with model predictive control (MPC), PID controllers
still serve as the fundamental building block at the regulatory level. The computing
power of microprocessors provides additional features, such as automatic tuning,
gain scheduling and model switching, to the PID controller. Eventually, all PID
controllers will have the above-mentioned intelligent features.

In process industries, more than 97% of the regulatory controllers are of the PID
type [7]. Most loops are actually under PI control (as a result of the large number
of flow loops). More than 60 years after the publication of the Ziegler–Nichols tun-
ing rule [8] and with the numerous papers published on the tuning methods since,
one might think that the use of PID controllers has already met our expectations.
Unfortunately, this is not the case. Surveys of Bialkowski [9], Ender [10],
McMillan [11], Hersh and Johnson [12], and Desborough and Miller [7] show that:

1. Pulp and paper industry over 2000 loops [9]

Only 20% of loops worked well (i.e. less variability in the automatic mode
over the manual mode).
30% gave poor performance due to poor controller tuning.
30% gave poor performance due to control valve problems (e.g. control
valve stick-slip, dead band, backlash).
20% gave poor performance due to process and/or control system design
problems.

2. Process industries [10]

30% of loops operated on manual mode.
20% of controllers used factory tuning.
30% gave poor performance due to sensor and control valve problems.

3. Chemical process industry [11]

Half of the control valves needed to be fixed (results of the Fisher diagnos-
tic valve package).
Most poor tuning was due to control valve problems.

4. Manufacturing and process industries [12]

Engineers and managers cited PID controller tuning as a difficult problem.

5. Refining, chemicals, and pulp and paper industries over 26,000 controllers [7]
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Only 32% of loops were classified as “excellent” or “acceptable”.
32% of controllers were classified as “fair” or “poor”, which indicates un-
acceptably sluggish or oscillatory responses.
36% of controllers were on open- loop, which implies that the controllers
were either in manual or virtually saturated.
PID algorithms are used in vast majority of applications (97%). For the rare
cases of complex dynamics or significant dead time, other algorithms are
used. MPC acts less as a multivariable regulatory controller and more like a
dynamic optimizer.

Surveys indicate that the process control performance is, indeed, “not as good as
you think” [10], and the situation remains pretty much the same a decade later [7].
The reality leads us to reconsider the priorities in process control research. First, an
improved process and control configuration redesign (e.g. selection and pairing of
input and output variables) can improve control performance. As mentioned ear-
lier, simultaneous design and control should be taken seriously to alleviate the
problem of a small operating window and the requirement for sophisticated control
configuration. Second, control valves contribute significantly to the poor control
performance. It is difficult, if not impossible, to replace or to restore all the control
valves to the expected performance. In other words, in many cases, this is a fact we
have to face (e.g. dead band, stick-slip, etc. [13]). One thing we can do is to devise
a diagnostic tool to identify potential problems in control valves. We have seen the
beginning of research effort in this direction [14–17]. Third, and probably the easi-
est way to improve control performance, is to find appropriate tuning constants for
PID controllers.

Sixty years after Ziegler and Nichols published their famous tuning rule, numer-
ous tuning methods have been proposed in the literature. We do expect that engi-
neers have gained proficiency in the design of simple PID controllers. The reality
indicates that this is simply not the case. Moreover, the structure of current leaner
corporations does not offer much opportunity to improve the situation. Another
factor is the time required for the tuning of many slow loops (e.g. temperature
loops in high-purity distillation columns). On many occasions, engineers simply do
not have the luxury and patience to tune a loop over a long period of time (not be-
ing able to complete the task in a shift). It then becomes obvious that the PID con-
troller with an automatic tuning feature is an attractive alternative for better con-
trol. That is, instead of continuous adaptation, the controller should be able to find
the tuning parameters by itself: it is an autotuner.

Table 1.1 shows the current trend where major vendors provide one type or
more autotuners in their products [18]. Identification methods include: open- or
closed- loop step tests (step), relay feedback test (relay), and possibly pseudo-
random binary signal (PRBS). The feature of gain-scheduling is also available in
many of the products.

In devising such an automatic tuning feature, several factors should be consid-
ered:
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Table 1.1. Autotuners from different vendors

Manufacturer Identification
method

Gain scheduling

ABB Step/relay Yes
Emerson Process Management Relay Yes
Foxboro Step No
Honeywell Step Yes
Siemens Step Yes
Yokogawa Step Yes

1. Control tuning can improve the performance, but it should be recognized that
good tuning can only solve part of the problem.

2. The experimental design for system identification becomes rather important,
since we are not able to keep all the control valves in perfect condition.

3. The system identification step should be time efficient. This is rather useful for
many slow industrial processes.

1.3 Relay Feedback Identification

System identification plays an integral part in automatic tuning of the PID control-
ler. Based on the information obtained, the methods for identification can be classi-
fied into the frequency-domain and time-domain approaches.

The time-domain approaches generate responses from step or pulse tests [2,3].
The characteristics of the process response are then utilized to back-calculate the
parameters of an assumed process model [19]. The step tests can be performed in
open-loop (manual mode) or closed-loop mode (while controller is working). The
open-loop step test is fairly straightforward. However, it is vulnerable to load dis-
turbances, especially for systems with large time constants. Moreover, the behavior
of the control valve is not fully tested in the experiment. The closed-loop step tests,
on the other hand, can shorten the time for experiment. But we have to choose a set
of controller parameters in order to generate oscillatory (underdamped) responses
[19]. The process model is then approximated from the damping behavior. The pat-
tern recognition controller [20,21] is a typical example. Since step-like change is
involved, it is not expected to work well for highly non-linear systems, (e.g. high
purity distillation columns [22]).

Another category is the Ziegler–Nichols type of experimental design. Probably
the more successful part of the Ziegler–Nichols method is not the tuning rule itself.
Rather, it is the identification procedure: a way to find the important process in-
formation, ultimate gain uK and ultimate frequency u . This is often referred to
as the trial-and-error procedure [2,3]. A typical approach can be summarized as
follows:
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1. Set the controller gain cK at a low value, perhaps 0.2.

2. Put the controller in the automatic mode.

3. Make a small change in the set point or load variable and observe the response.
If the gain is low, then the response will be sluggish.

4. Increase the gain by a factor of two and make another set point or load change.

5. Repeat step 4 until the loop becomes oscillatory and continuous cycling is ob-
served. The gain at which this occurs is the ultimate gain uK , and the period of
oscillation is the ultimate period uP  ( uuP /2= ).

This is a simple and reliable approach to obtain uK and u . The disadvantage is
also obvious: it is time consuming. The present-day version is the relay feedback
test proposed by Åström and Hägglund [23]. First, a continuous cycling of the con-
trolled variable is generated from a relay feedback experiment and the important
process information, uK and u , can be extracted directly from the experiment.
The information obtained from the relay feedback experiment is exactly the same
as that from the conventional continuous cycling method. It should be noticed that
the relay feedback is an old and useful technique for feedback control, as can be
seen from earlier results [24,25], and, here, a new meaning is assigned to the relay
feedback. However, an important difference is that the sustained oscillation is gen-
erated in a controlled manner (e.g. the magnitude of oscillation can be controlled)
in the relay feedback test. Moreover, in virtually all cases, this is a very efficient
way, i.e. a one-shot solution, to generate a sustain oscillation. Applications of the
Åström and Hägglund autotuner are found throughout process industries using sin-
gle-station controllers or a DCS (Table 1.1). The success of this autotuner is due to
the fact that the identification and tuning mechanism are so simple that operators
understand how it works. It also works well in slow and highly nonlinear processes
[22]. Over the past two decades, extensive research has been done on relay feed-
back tests. Refinements on the accuracy and improvements on the experimental de-
sign have been made. Discussions about potential problems, extensions to multi-
variable systems and incorporation of gain scheduling have also been reported.
Luyben brings the autotuner to another level in which the “shape” of relay feed-
back can be utilized to identify the model structure. This motivates us for the revi-
sion. It is our view that the relay-feedback-based autotuners now can provide the
necessary tools to improve control performance in a reliable way.

1.4 Conclusion

In this chapter we clearly define the scope of process control, and one should real-
ize that the controller tuning only constitutes a fraction of the process operation
problems. Surveys indicate that the PID controller is the major controller in proc-
ess industries. After many years of experience, the control loops, often thought too
simple, do not perform as well as one might expect. The failure comes from the
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lack of the required knowledge to maintain the control loops, to tune the control-
lers, to design an appropriate process for control and to design a suitable control
configuration for a given process. Poor control performance may have many dif-
ferent causes. However, obtaining good tuning is always the most cost-effective
way to improve control. You should recognize that controllers are working with
imperfect valves, noisy sensors and frequent load disturbances. These factors have
to be taken into account when you are designing the experiment to find controller
parameters.
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2

Features of Proportional–Integral–Derivative
Control

2.1 Proportional Integral Derivative Controller

The proportional–integral–derivative controller consists of three simple actions, i.e.
P, I, and D actions. Let us use a heat exchanger (a cooler to be exact) example to il-
lustrate these three functions. Figure 2.1 shows the inlet stream is cooled to a spe-
cific temperature by exchanging heat with cooling water. So the controlled variable
is the heat exchanger outlet temperature and the manipulated variable is the cooling
water flow rate. The heat exchanger outlet temperature is measured using a ther-
mocouple, and then it is converted into a signal, generally called the process vari-
able (PV), which is compatible with the control system (typically in the range of 4–
20 mA). The PV is compared with the set point (SP) and the controller output (CO)
is generated based on the control algorithm. The controller output is further con-
verted to an air pressure signal to drive the valve. In doing so, the real cooling wa-
ter flow rate is set according to the stem position (determined by CO), size of the
valve, pressure drop across the valve, and the valve characteristic. The feedback
controller generates its move based on the error E between the SP and PVs,

( ) ( ) ( )E t SP t PV t= .

2.1.1 Proportional Control

The P controller changes its output CO in direct proportion to the error signal E.

( )cCO Bias K SP PV= + (2.1)

The bias signal is the value of the controller output when there is no error. This is
an intuitive and simple action which is quite similar to human behavior. Whenever
we are far away from our goal, we make a larger adjustment, and when we come
close to the target, a smaller step is taken. Here, Kc is called the controller gain, an
adjustable parameter. Figure 2.2 shows the responses of a P controller with three
values of Kc for a step decrease in the heat exchanger inlet temperature. It becomes
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Figure 2.1. Process and control configuration of a heat exchanger

obvious that steady state errors (offset) exist for the P control. The responses indi-

cate that an increase in the controller gain Kc can reduce the offset, but the response
tends to be oscillatory. Certainly, when Kc is set to zero, the process is effectively

open loop. To summarize the behavior of P control, we have: (1) it is a simple and

intuitive, and (2) a steady state offset exists.

2.1.2 Proportional Integral Control

In order to eliminate steady state offset, the I action is often included. I action

moves the control valve in direct proportion to the time integral of the error. The

resultant PI controller can be expressed as

1
( ) ( )

c

I

CO Bias K SP PV SP PV dt= + + (2.2)
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Figure 2.2. P, PI, and PID control performance using different controller settings for

a step decrease in the heat exchanger inlet temperature To

Here, we have a second tuning parameter I, which is called the reset time or the

integral time with units of time (typically minutes). The PI controller equation in-

dicates that the CO will keep changing until the difference between the SP and PV

diminishes, i.e. E=0. This can be viewed as a relentless effort to meet the target by

changing the input effort. In other words, the CO will not rest until the steady state

error becomes zero. The integral action usually degrades the closed-loop perform-

ance. In a control notation, it introduces a 90° phase lag into the feedback loop. But

the integral action is often needed for its ability to eliminate steady state offset.

Figure 2.2 shows that, with I action, the heat exchanger outlet temperature does re-

turn to the set point. A smaller I speeds up the temperature response while becom-

ing a little oscillatory. It should be noticed that most of controllers (~70%) in in-

dustry are PI controllers. Instead of using the controller algorithm explicitly, most

of the controller manuals express the PI controller in terms of a Laplace transfor-

mation (this is probably one of the few Laplace transformations you need to recog-

nize when working in industry).

11
1 I

c c

I I

sCO
PI K K

E s s

+
= = + = (2.3)
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2.1.3 Proportional Integral Derivative Control

The D action uses the trend of the process variable to make necessary adjustments.

The process trend is estimated using the derivative of the error signal with respect

to time. The ideal PID has the following form:

1 ( )
( ) ( )

c D

I

d SP PV
CO Bias K SP PV SP PV dt

dt
= + + + (2.4)

Here, the third tuning parameter D is the derivative time with units of time. It may

be intuitive, appealing that the “process trend” can be incorporated into a control

algorithm. We use these types of trend (or derivative) in numerical methods, e.g.

Newton–Raphson method, and in stocks selling and buying. In theory, adding de-

rivative action should always improve the dynamic response, and it should be the

preference over the PI controller. The Laplace transformation of the ideal PID con-

troller can be expressed as

1
1

ideal c D

I

PID K s
s

= + + (2.5)

However, the ideal PID control algorithm has rarely been implemented in practice.

Instead, a filtered D action is often used. The following is the parallel form of PID

control with filtered D action:

1
1

1

D
parallel c

I D

s
PID K

s s
= + +

+
(2.6)

where typically takes a value of 1/10. Figure 2.2 clearly shows that the PID con-

troller outperforms the PI controller in the noise-free condition. But too large a D

will lead to significant oscillation in the controlled variable. However, when the

process measurement is corrupted with noise, we have a completely different be-

havior, especially in the manipulated variable. Figure 2.3 indicates that the control

valve is banging up and down, when we have fluctuating process measurements.

This is certainly not desirable from the maintenance perspective. This also con-

firms why most controllers in industry are PI controllers, instead of PID control-

lers. This is typically true in chemical process industries when many flow loops are

installed.

The P–I–D actions can be summarized as follows. P action is intuitive and effec-

tive, I action is relentless and offset free, and D action is the trend finder, but noise

sensitive. After understanding the characteristic of each action, one should find the

right combination of P–I–D actions for the controller to achieve good control per-

formance.
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Figure 2.3. Load responses of PID controller with noise-free and noisy measure-
ments

2.2 Proportional Integral Derivative Implementation

Two implementation issues for PID control are addressed. One is the anti-reset-
windup associated with controllers with I action, and the other is the D action ar-
rangement in a PID controller.

2.2.1 Reset Windup

The reset windup is an important and realistic problem in process control. It may
occur whenever a controller contains the I action. When a sustained error occurs,
the I term becomes quite large and the CO eventually goes beyond saturation limits
(CO greater than 100% or less than 0%). Because all actuators have limitations,
e.g. the flow through a control valve is limited by its size, and if the controller is
asking for more than the actuator can deliver, there will be a difference between
the CO and the actual control action (COA). When this happens, the controller is
effectively disabled, because the valve remains unchanged, e.g. in full-open posi-
tion. Not recognizing this circumstance, the controller continues to perform nu-
merical integration, and the CO becomes even larger. It then requires (1) the error
changing sign and (2) a long time to digest all the accumulated integrand, before



14 Autotuning of PID Controllers

the control valve moves away from the saturation limits. This is known as the reset

windup. The consequence is a long transient and large overshoot in the controlled

variable [1,2]. The reset windup may occur as a consequence of large disturbances

or it may be caused by large SP changes, e.g. during the start-up of a batch process.

Windup may also arise when the override control is used and so we have two con-

trollers with only one control valve.

Conceptually, reset windup can be prevented by turning off the I action when-

ever the CO saturates. Many antiwindup methods have been proposed for different

types of controller and for single-variable and multivariable systems [3,4]. One

simple and effective approach for the integral windup is shown in Figure 2.4. The

scheme involves a negative feedback loop around the I action with the CO in the

loop. At normal operation (without saturation), the CO is equal to the actual con-

trol action COA, i.e. CO= COA, the feedback path disappears and the I action is in

place. The actuator model is simply

0 <0

0 1

1 1

A

CO

CO CO CO

CO

=

>

(2.7)

When the I action winds up, the actual control action remains unchanged, e.g.

COA=1, and it can be treated as a reference value which is different from the con-

troller output. Thus, the antiwindup scheme is best described by the following

Laplace transformed relationship according to Figure 2.4:

1
( ) ( ) ( )

1 1
A I

CO s CO s E s
s s

= +
+ +

(2.8)

It becomes clear that the feedback loop tends to drive the CO to the actual control

action following a first-order dynamics. The adjustable parameter is called the

tracking time constant, and, typically, it is set to a small value. The antiwindup

scheme now becomes a standard feature in commercial PID controllers.

E= SP - PV

+

_

CO

CK

C

I

K

+

1

s

1

+
+

+

CO
A

CO

E
I

Actuator

Model

Figure 2.4. Antiwindup scheme with a tracking time constant
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2.2.2 Arrangement of Derivative Action

For PI controllers, the proportional and the integral actions are additive, and the PI

algorithm is universally used in all controllers. Unlike the PI controller, the PID

controller appears to have many different forms. The two most common types are

shown in Figure 2.5. The first type of PID controller has the three actions working

additively. The continuous transfer function is given in Equation 2.6. It is called

descriptively as the “parallel” form of PID controller. We label this as PIDparallel.

The second type of PID controller can be expressed in terms of the following trans-

fer function:

1

1

I D
series c

I D

s s
PID K

s s

+
=

+
(2.9)

This type of PID controller is known as the “series” form of PID controller, as can

be seen from the equation and the block diagram arrangement in Figure 2.5. It was

used in early analog controllers and has been implemented digitally in modern

DCSs. Some of the popular tuning methods, e.g. Ziegler–Nichols [5], Tyreus and

Luyben [6], and Luyben [7], are based on this algorithm. They also assume that the

derivative filter parameter had a value of =0.1. And yet another type of PID con-

troller is the four-parameter PID controller, which is derived from the internal

model control [8]. This is denoted as the “IMC” form of PID controller, PIDIMC.

The following is the transfer function of the IMC PID controller:

(A) Parallel

yset
+_
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s

+

+
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+

+

(B) Series

yset
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1
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+
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1
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Figure 2.5. Parallel and series types of PID controller
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1 1
1

1
IMC c D

I F

PID K s
s s

= + +
+

(2.10)

Unlike the previous two types of PID controller, where is a fixed value, the

fourth tuning constant F is also an adjustable parameter. These different PID

forms clearly indicate that the settings of a PID controller depend on the algorithm

used. The settings for the “series” and “parallel” can be very different, and one

should always be aware of which algorithm the tuning rule is based on. However,

the controller parameters for one algorithm can be transformed to the other as

shown in Table 2.1. For example, the tuning constants of the “parallel” form can be

transformed into the settings for the “series” form PID [2] and vice versa. Simi-

larly, the relationship between the settings of PIDIMC and PIDparallel can also be de-

rived.

Another commonly used PID implementation is to take the derivative on the

PV, instead of the error E = SP – PV, as shown in Figure 2.6. This can be under-

stood, because a pure derivative of a step change corresponds to an impulse, and

this implies a full swing of the control valve in an extremely short period of time,

which is not desirable in practice. This is also known as the derivative kick [9].

This arrangement in Figure 2.6 is a standard feature in most commercial control-

lers.

Along this line, the PID controller can be extended further to a five-parameter

controller by addressing the effects of derivative and proportional kicks [1,9].

1 ( )
( ) ( )

c D

I

d SP PV
CO Bias K SP PV SP PV dt

dt
= + + + (2.11)

Here, the two SP weightings, and , are two additional adjustable parameters

ranging from 0 to 1. This is often called the beta–gamma controller. The control
algorithm in Equation 2.11 allows independent SP weightings in the proportional

and derivative terms. To eliminate derivative kick, is set to zero, and similarly,

Table 2.1. Interchangeable controller settings for different forms of PID controllers

PIDparallel PIDseries
* PIDseries PIDparallel PIDIMC PIDparallel

,

4
1 1

2

C D
c series

I

K
K = +

,

4
1 1

2

I D
I series

I

= +

,

2

4
1 1

D

D series

D

I

=

+

,

I D

c parallel c

I

K K
+

=

,I parallel I D
= +

,

I D

D parallel

I D

=
+

,

I F

c parallel c

I

K K=

,I parallel I F
=

( )

( )

I F F

I D I F F

=

,

F

D parallel
=

* Valid for I/ D 4
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Figure 2.6. PID controller arrangement to avoid derivative kick

is set to zero to avoid proportional kick. The PID implementation in Figure 2.6 cor-

responds to the case of =1 and =0. However, five tuning parameters, in general,
may be prove to be too many, especially when one may be dealing with thousands

of controllers in a plant.

2.3 Proportional Integral Derivative Tuning Rules

Since the introduction of Ziegler–Nichols tuning in 1942, PID tuning has led to

remarkable research activity over the past 60 years. A recently published book,

Handbook of PI and PID Controller Tuning Rules by O’Dwyer [10], has compiled

245 tuning rules, among which 104 are for PI and 141 for PID controllers. While

been impressed by the tremendous effort, we might just run into a situation Martin

[11] encountered almost 30 years ago when trying to find a useful cubic equation

of state to describe vapor–liquid equilibrium. The scenario is similar to the queen

in Snow White, who asked, “Mirror, mirror on the wall, who’s the fairest of them

all?” Now, we stand here and ask: “PID tuning rule – which?” The answer may not

be the one you like to hear, but the truth is: it really depends on your processes

(e.g. the process type, the order, the parameters, the nonlinearity, the uncertainties,

etc.) In this section, we focus on two types of tuning rule. One is the Ziegler–

Nichols type of (i.e. ultimate gain- and ultimate period-based) tuning rules, and the

other is the model-based tuning rules. Furthermore, the process type is limited to

the first-order plus dead time (FOPDT) system and its variants.

( )
1

Ds

pK e
G s

s
=

+
(2.12)

where Kp is the steady state gain, D is the dead time, and is the time constant.

2.3.1 Ziegler Nichols Types of Tuning Rule

By Ziegler–Nichols type of tuning rules, we mean the PID settings are expressed

explicitly in terms of the ultimate gain Ku and the ultimate period Pu from a sus-

tained oscillation. Ziegler–Nichols tuning is still popular in control engineering
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practice. It works reasonably well for some loops but tends to be too underdamped

for many process control applications. Many modified versions of Ziegler–Nichols

tuning have been proposed over past 60 years [10,12]. A frequency domain inter-

pretation of the Ziegler–Nichols method is also given [13,14].

The original Ziegler–Nichols tuning rule, expressed in terms of Ku and Pu as

shown in Table 2.2, is extremely simple to use when the ultimate properties are

available. One should be aware that the PID settings are for the “series” arrange-

ment. The Ziegler–Nichols settings work well for a small range of dead time to

time constant ratio D/ , and the performance starts to degrade for D/ <0.2 and

D/ >2 [8]. A more conservative tuning rule is proposed by Tyreus and Luyben

[6,7]. The Tyreus–Luyben tuning rule is derived based on the integrator plus dead

time system, /Ds

p
G K e s= . This setting works well for the time-constant-

dominant processes, and our experience shows that it also works well for interact-

ing multivariable systems. At the other end of the spectrum, dead-time-dominant

processes, the Ciancone–Marlin tuning rule is suggested [15,16]. This specific Ci-

ancone–Marlin setting is obtained by examining pure dead time processes. The de-

tuning factors are obtained by converting the process-parameter-based tuning con-

stants to Ku - and Pu -related settings. The Ciancone–Marlin detuning factors are

quite different from the Ziegler–Nichols settings. Here, we have a more conserva-

tive proportional action and a more aggressive integral action, as can be seen in

Table 2.2. Note that the “series” PID controller is assumed for all three tuning

rules.

Table 2.2 clearly shows that the selection of the “right” tuning rule is really

process dependent. The D/ ratio is a good measure to locate the appropriate one.

Moreover, as will be explained in Chapter 4, the shape of the relay feedback re-

sponses gives a good indication of this D/ ratio.

Table 2.2. Ziegler–Nichols types of tuning: (1) the original, (2) for time-constant-

dominant processes and (3) for dead-time-dominant processes

Ziegler–Nichols cK I D * Remarks

P 2/uK

PI 2.2/uK 2.1/uP

PID 7.1/uK 2/uP 8/uP

Recommended

for 0.2<D/ <2

Tyreus–Luyben cK I D

PI / 3.2uK / 0.45uP

PID / 2.2uK / 0.45uP / 6.3uP

Derived from

/Ds

p
K e s

Ciancone–Marlin cK I D

PI / 3.3uK / 4uP

PID / 3.3uK / 4.4uP / 8.1uP

Based on
Ds

p
K e

* “Series” form of PID
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2.3.2 Model-based Tuning

A comprehensive model-based design method, IMC, is proposed by Morari and

coworkers [8,17]. The IMC design consists of the following steps:

1. Assume a process model G .

2. Factor the model into an invertible partG and a non-invertible part G
+

. The

non-invertible part contains the dead time and right-half-plane zeros.

3. Design the IMC controller as 1

c
G G F= . Here, F(s) is a low-pass filter with

a gain of unity which makes the controller proper, e.g. 1/( 1)nF s= + . is

the user-specified tuning parameter.

4. Tranform the IMC controller Gc(s) into a controller K(s) in the conventional

feedback structure (e.g. Figure 2.5), i.e. ( ) /(1 )
c c

K s G GG= .

The IMC approach offers a systematic way to identify the controller structure,

and, probably more importantly, it can also be used to derive tuning parameters for

the PID controller [8], usually known as IMC-PID tunings. As of the inverse-based

nature, it is clear that a high-order model (e.g. more than second order) leads to a

high-order controller which may not be useful in practice, e.g. imaging high-order

derivatives of measurement noises. Rivera et al. [8], Chien and Fruehauf [18], and

Bequette [19] give a comprehensive list of IMC-PID tunings for different types of

model. Here, the IMC-PID tunings for the first-order plus dead time, integrator

plus dead time (time constant dominates), and pure dead time (dead time dominate)

processes are given in Table 2.3. Both PI and PID settings are given, and recom-

mendations for the filter time constant are also given.

Table 2.3. The IMC-PID controller settings for: (1) the first-order plus dead time, (2)

integrator plus dead time, and (3) pure dead time processes

Model cK I D * F
** Remark

1

Ds
pK e

s +

/ 2

p

D

K

+
/ 2D+ –

>1.7D

>0.2

1

Ds
pK e

s +

/ 2

( / 2)p

D

K D

+

+
/ 2D+

2

D

D+

>0.8D

>0.2

Ds
pK e

s
2

2

( )p

D

K D

+

+
2 D+ – >D

Ds
pK e

s

2

( / 2)pK D+
2 D+

2 / 4

2

D D

D

+

+
>D

Ds
pK e

(2 )p

D

K D+
/ 2D – >D

Ds
pK e

(4 )p

D

K D+
/ 2D / 6D

2 22 / 6

4

D

D+
>1.7D

* “Parallel” form of PID

** IMC PID
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2.4 Conclusion

In this chapter we explore the features of the PID control. The selection of a P, PI,
or PID controller really depends on the process requirement (e.g. tolerable for
steady state offset) and noise content of the process variable. One thing is certain,
that including all three actions does not necessarily imply improved performance.
The implementation issues associated with PI and PID controllers are discussed.
The problem of the reset windup is explained and a solution is given. The types
and arrangement of PID controllers are described next. Unlike a PI controller, one
should be always aware of the type of PID algorithm used in your controller and
correct tuning parameters can be set. Finally, two types of PID tuning are pre-
sented. One is the familiar Ziegler–Nichols type of tuning, in which the controller
settings are expressed explicitly in terms of ultimate gain and ultimate period. One
should recognize that no single tuning rule works well for all systems. One should
also always distinguish the process characteristic (e.g. time-constant- or dead-time-
dominant process, or in between) and apply an appropriate tuning rule. The IMC
tunings are also given for first-order type processes. This can be useful if a low-
order process model becomes available.
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3

Relay Feedback

Åström and Hägglund [1] suggest the relay feedback test to generate sustained os-
cillation as an alternative to the conventional continuous cycling technique. It is
very effective in determining the ultimate gain and ultimate frequency. Luyben [2]
popularizes the relay feedback method and calls this method “ATV” (autotune
variation). The acronym also stands for all-terrain vehicle, since ATV provides a
useful tool for the rough and rocky road of system identification.

As pointed out by Luyben, the motivation for using the relay feedback (ATV)
has grown out of a study of an industrial distillation column. The distillation col-
umn is an important unit in chemical process industries. It is rather difficult to ob-
tain a linear transfer function model for highly nonlinear columns. Attempts have
been made using step or pulse tests. Unfortunately, the system results in an ex-
tremely long time constant, e.g. h870 [2]. Moreover, very large deviations oc-
cur in the linear model as the size or direction of the input is changed. Simulation
studies also reveal that, sometimes, very small changes of magnitude (less than
0.01%) have to be made to get an accurate linear model. This immediately rules
out the use of this kind of input design in real plants because plant data are never
known to anywhere near this order of accuracy. Luyben shows that the simple re-
lay feedback tests provide an effective way to determine linear models for such
processes. It has become a standard practice in chemical process control, as can be
seen in recent textbooks in process control [3,4]. Wang et al. [5] discuss various
aspects of the relay feedback.

The distinct advantages of the relay feedback are:

1. It identifies process information around the important frequency, the ultimate
frequency (the frequency where the phase angle is ).

2. It is a closed-loop test; therefore, the process will not drift away from the nomi-
nal operating point.

3. For processes with a long time constant, it is a more time-efficient method than
conventional step or pulse testing. The experimental time is roughly equal to
two to four times the ultimate period.



24 Autotuning of PID Controllers

3.1 Experimental Design

Consider a relay feedback system where G(s) is the process transfer function, y is
the controlled output, sety is the SP, e is the error and u is the manipulated input
(Figure 3.1A).

An on–off (ideal) relay is placed in the feedback loop. The Åström–Hägglund
relay feedback system is based on the observation: when the output lags behind the
input by radians, the closed-loop system may oscillate with a period uP . Fig-
ure 3.1(B) illustrates how the relay feedback system works. A relay of magnitude h
is inserted in the feedback loop. Initially, the input u is increased by h . As the out-
put y starts to increase (after a dead time D ), the relay switches to the opposite po-
sition, hu = . Since the phase lag is , a limit cycle with a period uP results
(Figure 3.1). The period of the limit cycle is the ultimate period. Therefore, the ul-
timate frequency from this relay feedback experiment is

u
u

P

2
= (3.1)

From the Fourier series expansion, the amplitude a can be considered to be the
result of the primary harmonic of the relay output. Therefore, the ultimate gain can
be approximated as [1,6]

4
u

hK a= (3.2)

where h is the height of the relay and a is the amplitude of oscillation. These two
values can be used directly to find controller settings. Notice that Equations 3.1

Figure 3.1. (A) Block diagram for a relay feedback system and (B) relay feedback
test for a system with positive steady state gain
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and 3.2 give approximate values of uu Kand . A more accurate expression will
be derived shortly.

The relay feedback test can be carried out manually (without any autotuner). The
procedure requires the following steps.

1. Bring the system to steady state.

2. Make a small (e.g. 5%) increase in the manipulated input. The magnitude of
change depends on the process sensitivities and allowable deviations in the con-
trolled output. Typical values are between 3 and 10%.

3. As soon as the output crosses the SP, the manipulated input is switched to the
opposite position (e.g. –5% change from the original value).

4. Repeat step 2 until sustained oscillation is observed (Figure 3.1).

5. Read off ultimate period uP from the cycling and compute uK from Equation
3.2.

This procedure is relatively simple and efficient. Physically, it implies moving
the manipulated input against the process. Consider a system with a positive steady
state gain (Figure 3.1). When you increase the input (as in step 1), the output y
tends to increase also. As a change in the output is observed, you switch the input
to the opposite direction. This is meant to bring the output back down to the SP.
However, as soon as the output comes down to the SP, you switch the input to the
upper position. Consequently, a continuous cycling results, but the amplitude of
oscillation is under your control (by adjusting h ). More importantly, in most cases,
you obtain the information you need for tuning of the controller.

Several characteristics can be seen from the relay feedback test. Consider the
most common FOPDT systems.

( )
1+

=
s
eKsG

Ds
p (3.3)

where pK is the steady state gain, D is the dead time and is the time constant.
Figure 3.2 indicates that, if the normalized dead time /D is less than 0.28, the ul-
timate period is smaller than the process time constant. In terms of plant test, that
implies the relay feedback test is more time efficient than the step test. The reason
is that it takes almost 3 to reach 95% of the steady state value in a step test and
the time required for the relay feedback is also roughly equal to 3 uP (to establish a
stable oscillation). Therefore, the relay feedback system is more time efficient than
the step test for systems with

28.0/ <D (3.4)

Since the dead time cannot be too large (it often comes from the measurement
delay), the temperature and composition loops in process industries seem to fall
into this category. In other words, Equation 3.4 is fairly typical for many slow
chemical processes, especially for units involved with composition changes.
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3.2 Approximate Transfer Functions: Frequency-domain
Modeling

After the relay feedback experiment, the estimated ultimate gain uK̂ and ultimate
frequency uˆ can be used directly to calculate controller parameters. Alterna-
tively, it is possible to back-calculate the approximated process transfer functions.
The other data useful in finding the transfer function are the dead timeD and/or the
steady state gain pK .

In theory, the steady state gain can be obtained from plant data. One simple way
to find pK is to compare the input and output values at two different steady states.
That is:

/pK y u= (3.5)

where y denotes the change in the controlled variable and u stands for the de-
viation in the manipulated input. However, precautions must be taken to make sure
that the sizes of the changes in u are made small enough such that the gain in Equa-
tion 3.5 truly represents the linearized gain. For highly nonlinear processes, these
changes are typically as small as 10–3 to 10–6 % of the full range [2]. Such small
changes would only be feasible using a mathematical model. Trying to obtain reli-
able steady state gains from plant data is usually impractical.

The dead time D in the transfer function can be easily read off from the initial
part of the relay feedback test. It is simply the time it takes for y to start
responding to the change in u (Figure 3.1). For the FOPDT system, it is simply the
time to reach the peak amplitude in a half period, as will be shown in Chapter 4.
Therefore, it is more likely that we will have information on the dead time rather
than the steady state gain.
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Now we are ready to find an approximate model. Typical transfer functions in
process control are assumed and parameters can be calculated. The transfer func-
tions have the following forms:

Model I (integrator plus dead time)

( )
Ds

pK e
G s

s
= (3.6)

Model P (pure dead time)

( ) Ds
pG s K e= (3.7)

Model 1 (FOPDT)

( )
1

Ds
pK e

G s
s

=
+

(3.8)

Model 2a (second-order plus dead time)

( )
( )21

Ds
pK e

G s
s

=
+

(3.9)

Model 2b (second-order plus dead time with two unequal lags)

( ) ( )( )1 21 1

Ds
pK e

G s
s s

=
+ +

(3.10)

In these five models, model I and model P have two unknown parameters, models
1 and 2a have three unknown parameters and model 2b has four unknown parame-
ters. Therefore, additional information, such as or pD K , is needed if the last three
models are employed. As pointed out by Tyreus and Luyben [7], the simplest inte-
grator-plus-time-delay model (model I) provides good approximation for slow
chemical processes, e.g. systems showing a small /D value. It is the model we
recommend for slow processes.

The relay feedback experiment has the following steps:

1. If necessary, the dead time D can be read off from the initial response, or the
time to the peak amplitude, and the steady state gain can be obtained from
steady state simulation.

2. The ultimate gain uK̂ and ultimate frequency uˆ are computed (Equations 3.1
and 3.2) after the relay feedback experiment.

3. Different model structures (Equations 3.6–3.10) are fitted to the data.

3.2.1 Simple Approach

Once the model is selected, we can back-calculate the model parameters from two
equations describing the ultimate gain and the ultimate frequency.
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Model I (Friman and Waller [8])

2u
p

u u u
K

K K P
= =

(3.11)

42
u

u

PD == (3.12)

Notice that no a priori process knowledge is needed for this model. Moreover,
computation of andpK D is quite straightforward.

Model P

1
P

u
K

K
= (3.13)

2
uPD = (3.14)

Similar to model I, no a priori process knowledge is necessary.

Model 1

( )
u

uD
=

tan
(3.15)

( )2
1p u

u

K K
= (3.16)

For model 1, either or pD K is needed to solve for the time constant. For example,
if the dead time is read off from the relay test, then we can compute from Equa-
tion 3.15. Then, pK can be found by solving Equation 3.16.

Model 2a

( )
u

uD 2/tan
= (3.17)

( )
u

up KK 1
= (3.18)

The equations describing model 2a are quite similar to those for model 1. Again,
we need to know pKD or before finding model parameters.
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Model 2b

( ) ( )1 1
1 2tan tanu u uD= (3.19)

( ) ( )2 2
1 2

1
ˆ

1 1

p

u
u u

K
K

=
+ +

(3.20)

Since we have four parameters in model 2b, both andpK D have to be known in
order to solve for the two time constants 1 and 2 . This is the most complex
model structure in our models, and it is often sufficient for process control applica-
tions.

Let us use an FOPDT system to illustrate the parameter estimation procedure.

Example 3.1 WB column [9]

( ) 12.8
16.8 1

seG s
s

=
+

This is the transfer function between the top composition Dx and the reflux flow
R . From a relay feedback test, we obtain the following ultimate gain and ultimate
frequency: ˆ 1.71uK = and ˆ 1.615u = . Note that these two values are only an ap-
proximation to the true values: 2.1uK = and 1.608u = .

Parameters can be calculated for different model structures:

Model I (no prior knowledge on pK and D )

( )
0.970.94 seG s

s
=

Model P (no prior knowledge on pK and D )

( ) 1.940.58 sG s e=

Model 1 (assume D is known, i.e. D = 1)

( ) ( )
13.2
14.0 1

seG s
s

=
+

Model 2a (assume D is known)

( )
( )2

1.12
0.59 1

seG s
s

=
+

Model 2b (assume pK and D are known)

( ) ( ) ( )
12.8

13.5 1 0.0009 1

seG s
s s

=
+ +

Despite varying in model parameters, all these four models have the same ultimate
gain and ultimate frequency. That is, the models are correct around the ultimate
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frequency, which is important for the controller design. However, if we extrapolate
the model to different frequencies, e.g. 0= , then the results can be completely
misleading. For example, the steady state gain of model 2a is only 1.12, which is
less than 10% of the true value. We have to be very cautious when using these
models.

3.2.2 Improved Algorithm

In theory, if the model structure is correct and the ultimate gain and ultimate fre-
quency are correctly identified, then we could have a very good approximation of
the transfer function. For example, if the uK and u in the previous example are
close to the true values, then we will not have errors in the steady state gains and
time constant for model 1. Unfortunately, since Equations 3.1 and 3.2 only give
approximations to the ultimate gain and ultimate frequency, the parameters derived
from Equations 3.15 and 3.16 can deviate significantly from the true system pa-
rameters. This implies the observed ultimate period ûP and the computed ultimate
gain are not the true values.

In order to have a better approximation of the transfer function, fundamental
analysis of the relay feedback system is necessary. First, one would like to know
what the period of oscillation from the relay feedback experiment really represents.
In other words, given a transfer function with known parameters, what is the ex-
pression for the period of oscillation observed from the relay feedback experiment,
ûP ? The following theorem [1] provides the answer.

Theorem 3.1 Consider the relay feedback system with a transfer function G(s) and
an ideal relay (Figure 3.1). Let ( ),sHG T z be the pulse transfer function of ( )G s
with a sampling time of sT . If there is a periodic oscillation, then the period of os-
cillation ûP is given by

( )ˆ / 2, 1 0uHG P =

Åström and Hägglund [1] prove the theorem starting form the discrete-time
state-space equations. The result, ( )ˆ / 2, 1 0uHG P = , is obtained by finding the z-
domain equivalent. The continuous-time response of an ideal relay (Figure 3.1) can
be discretized at the point when the relay switches. The z-transforms of the input
and output are ( )/ 1h z + and 0 respectively. Since this is a self-oscillation system,
the propagation of the input is described by the gain ( )ˆ / 2, 1 0uHG P = . This
equation can be used to find the period of oscillation for a known system. In identi-
fication, ûP is observed from the response and one is able to use this to back-
calculate system parameters. Unlike the continuous-time analysis based on the
primary harmonic, the discrete-time expression gives a sound basis for finding the
system parameters, since no assumption is made in the derivation.

Based on the theorem, a better relationship between ˆu (or ûP ) and the system
parameters can be derived. For the transfer functions of interest (models 1, 2a and
2b), the following results can be derived from the modified z-transform [10]:
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Model 1

( )( )ˆ ln 2exp 1u D
= (3.21)

Model 2a

( )2 1 exp
ˆ

ˆ 1 exp exp 1 exp 2
ˆ ˆ ˆ

u

u
u u u

m m

m

+

=

+ +

(3.22)

where ˆ

1 uD
m =

Model 2b

1 2
1 1 2 2

1 2

2exp 2exp
ˆ ˆ

1 exp 1 exp
ˆ ˆ

u u

u u

m m

=

+ +

(3.23)

Equations 3.21–3.23 provide alternative expressions between the observed ultimate

period , e.g. ˆu , and system parameters. For example, Equation 3.21 relates ˆu to

D and in a way that differs substantially from the standard phase angle equa-

tion (i.e. Equation 3.15).

( )1
ˆ ˆtanu uD=

Again, we can derive a better expression for the amplitude ratio part at the ulti-

mate frequency, since the expression in Equation 3.2 is based on the first harmonic

of the Fourier series expansion. The square-wave response of u (Figure 3.1) con-

sists of many frequency components:

( )
( )( )

0

sin 2 14

2 1
n

n th
u t

n
=

+
=

+ (3.24)

Therefore, it becomes obvious that the amplitude observed in the relay feedback

response is contributed from multiple frequencies, ˆ5,ˆ3,ˆ= , etc. In theory,

one can have a better estimate of the amplitude ratio by employing more terms. An

iterative procedure is necessary if more than one term is employed (e.g. finding

G(s) from the single-term solution and including the higher frequency information,

uˆ3= , to find a new G(s) and the procedure is repeated until G(s) converges).

However, experimental results show that the estimation of system parameters can

be improved substantially by improving the expression for period of oscillation

alone, as shown in the next section. Furthermore, for higher order systems, there is

little incentive to improve the expression for the amplitude by including more

terms, since higher order harmonics (e.g. uˆ3= or uˆ5= ) are attenuated by
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the process. If only one term is employed, then the equations describing the ampli-
tude ratio are exactly the same as Equations 3.16, 3.18 and 3.20.

3.2.3 Parameter Estimation

From the ongoing analysis, the procedure for the evaluation of the transfer function
has the following steps:
1. Select model structure.
2. Compute model parameters according to Table 3.1.

Table 3.1 summarizes the information required and the corresponding equations
to find the approximate transfer function. Most of these equation sets can be solved
sequentially. Notice that if the improved algorithm is used, then better estimates of
the ultimate gain and ultimate frequency can be calculated from the model. For
model 2b, if some information is not known, then a different procedure should be
employed. For example, if pK is not available, we can perform a second relay
feedback test [11] or use a biased relay (Chapters 7 and 12) to find additional in-
formation. Nonetheless, the equations noted in Table 3.1 are generally applicable
regardless of the procedure.

3.2.4 Examples

Several examples are used to illustrate the advantages of the improved algorithm.
Consider a first-order plus dead time system.

Example 3.2 FOPDT process

( )
1016.5

20 1

seG s
s

=
+

From a relay feedback experiment with 0.04h = we have ˆ 33.26uP = and
0.26a = . If D and/or pK are available, we can back-calculate . The values

calculated from Equations 3.15 and 3.16 are 16.3= and 16.09 respectively. The
improved algorithm (Equation 3.21) gives a better estimate in , 19.97= , by
improving the expression in the period of oscillation alone. The result from Equa-
tion 3.21 is almost exact (the difference may have resulted from reading off a and
uP from the response curve). Figure 3.3 shows the multiplicative modeling errors,

( ) ( )( ) ( )ˆ ˆ
me G i G i G i= , for the transfer function Ĝ estimated from Equations 3.15,

3.16 and 3.21. The results show that the error me is significantly less when is
calculated from Equation 3.21 alone.

In the following examples, we assume andpK D are known and the time con-
stant for models 1 and 2a is obtained by taking the average of the values calcu-
lated from the corresponding equations for the case of the simple algorithm. Next,
the effects of dead time on the estimation of the ultimate gain and ultimate fre-
quency are also investigated. In the original ATV method, ˆuK is calculated from



Relay Feedback 33

Table 3.1. Equations for different model structures

Model Simple algorithm Improved algorithm Prior information

Model I Equations 3.11 and
3.12 – None

Model P Equations 3.13 and
3.14 – None

Model 1 Equations 3.15 and
3.16

Equations 3.21 and
3.16

or pD K

Model 2a Equations 3.17 and
3.18

Equations 3.22 and
3.18

or pD K

Model 2b Equations 3.19 and
3.20

Equations 3.23 and
3.20

and pD K

Figure 3.3. Multiplicative errors of an FOPDT system obtained from Equations 3.15,
3.16 and 3.21

Equation 3.2 and ˆu is derived from Equation 3.1. In the proposed method,
 andu uK are back-calculated from the estimated transfer function ( )Ĝ s . Again,

this is shown in the following transfer function:

Example 3.3 Variable dead time

( ) 16.5
20 1

DseG s
s

=
+

Equation 3.21

Equation 3.15
Equation 3.16
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The percentage errors in  andu uK are compared for these two methods over a
range of dead time (D = 0.1–60). The results (Figure 3.4) show that the errors in

uK for the simple method are quite significant (5–20%). Furthermore, the error in
u is almost nil for the improved method.
Similar behavior can also be observed for a second-order lag with time-delay

system.

Example 3.4 Second-order system with two unequal lags

( ) ( )( )
37.3

7200 1 2 1

DseG s
s s

=
+ +

Figure 3.5 shows that a better estimation of ( )Ĝ s can be achieved over a range of
( 60)D D < . Again, improvements can be made in finding the correct uK and u

by using a more accurate expression in the period of oscillation.
Since the estimated transfer function is typically employed in the analysis and

design of a feedback control system, the impact of the modeling errors in closed-
loop performance is evaluated. A model-based controller, IMC, is employed to
analyze the performance. One of the advantages of the IMC is that we can specify
the desired trajectory in the design. Figure 3.6 compares the SP responses of IMC
when different models ˆ 'G are employed in the design of the controllers. Consider

Figure 3.4. Percentage errors in Ku and u for the FOPDT system over a range of
dead time D
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the FOPDT system

( )
1016.5

20 1

seG s
s

=
+

The SP response of the control system, designed according to ( )Ĝ s from the sim-
ple algorithm, tends to be more sluggish than the desired trajectory (Figure 3.6).
The proposed method improves this situation, as shown in Figure 3.6. Despite the
fact that a tighter response can be achieved by shortening the closed-loop time con-
stant under modeling errors, one has to realize that the value of a model-based con-
troller is that one can foresee the closed-loop response. In other words, a good
model always helps.

Generally, the proposed method improves the estimation in G(s) at the nominal
condition (with perfect knowledge of andpK D ). The robustness with respect to
errors in the dead time is investigated. Since the improved method calculates

 andu uK by finding the transfer function ( )Ĝ s first, followed by solving the
corresponding equations for them, it is more sensitive to the errors in the dead time
than the original method. Let us take another FOPDT system as an example.

Example 3.5 Error in the observed dead time

( ) 16.5
20 1

seG s
s

=
+

Figure 3.5. Percentage errors in Ku and u for a second-order plus dead time sys-
tem over a range of delay time D
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Figure 3.6. SP responses of IMC designed according to the estimated transfer
functions (s) (the closed-loop constant is 20 for the desired trajectory)

Figure 3.7 shows the estimate of uK and u for both methods when the per-
centage errors in dead time range from –50% to 50%. Despite the fact that the er-
rors in uK and u are less for the improved method over a reasonable range of er-
rors in dead time, it is more sensitive to the error in D . Therefore, care should be
taken in reading off the dead time from the initial responses or the time to the peak
amplitude.

3.3 Approximate Transfer Functions: Time-domain
Modeling

Up to this point, the model identification is based on the frequency domain ap-
proach, which is based on the describing functions. A method to derive FOPDT-
type systems was proposed by Wang et al. [12] using a single relay test. In a sepa-
rate attempt, Majhi and Atherton [3] proposed a technique to identify plant pa-
rameters, but the method needs a correct initial guess and convergence is not guar-
anteed. Kaya and Atherton [14] describe another method (A-locus) to identify low-
order process parameters from relay autotuning. Panda and Yu [15] develop ana-
lytical models to represent relay responses produced by different systems. The re-
lay output consists of a series of step changes in manipulated variables (with oppo-
site sign). Hence, the stabilized output is a sum of infinite terms of step responses
due to those step changes. For systems with dead timeD , the actual relay output
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Figure 3.7. Percentage errors in Ku and u for a first-order system over a range of
variation in the dead time

lags behind the input by a time unit D . The inputs and outputs can be synchro-
nized by shifting the output forward in time by an amount D , as shown in Figure
3.8B, and, in doing this, the dead time D can be eliminated from the expression
for relay responses, as will be shown later. The shifted version of a typical relay
feedback response provides the basis for the derivation.

It is assumed that the relay response is formed by n-number of step changes, of
opposite directions ( u± ), in input. The switching period for each step change is

2uP , except for the initial step change. In Figure 3.9, in the first interval, as time
changes from 0t = to t D= , the response 1y is produced due to the first step
change 1u . Again, in the second interval, time progressing from D to / 2uD P+ ,
response 2y results due to the combined effects of step changes 1u and 2u . Simi-
larly, the effect of 1u , 2u and 3u produces 3y during the third time interval
( / 2uD P+ to uD P+ ). Two half periods ( / 2uP ) are of special interest in Figure
3.9. The even values of n result in descending half period 2ny , and the odd values
of n formulate the ascending half periods 2 1ny + . It is interesting to note that the
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Figure 3.8. Schematic representation of the shifted version of relay feedback re-
sponse for the development of their analytical expressions: (A) original relay feed-
back responses and (B) output y shifted by D

Figure 3.9. Shifted version of relay input u and output y response of a typical
SOPDT system
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generalized response term ny slowly forms a convergent series. Let us use a sec-

ond-order system to illustrate the derivation as they are rich in system dynamics.1

3.3.1 Derivation for a Second-order Overdamped System

The transfer function of an SOPDT system with a damping coefficient greater than

one can be expressed as ( )G s = ( ) ( )1 21 1Ds
pK e s s+ + , where

pK is the steady state

gain, 1 and 2 are process time constants with 1 2> , and D is the dead time.

The original step response of an overdamped SOPDT can be given by

1 2( ) / ( ) /
1 1[1 ]t D t D

py K a e b e= +

where 1a and 1b are given by

1 2
1 1

1 2 1 2

anda b= =

Under the shifted version (Figure 3.8B), the first segment of the relay response 1y

is simply the step response without dead time in the time index:

1 2/ /
1 1 11 t t

py K a e b e= + (3.25)

At the second instant, the time is reset to zero at the initial point. The step response

(relay output) is given by (i.e. introducing a time shift by D amount in Equation

3.22)

1 2 1 22 1 1 1 11 2 1
t D t D t t

p py K a e b e K a e b e
+ +

= + +

Here, the first term represents the effect of the first step change (occurred at D

time earlier) and the second term shows the effect of the second step input, switch-

ing to the opposite direction. The above equation can be simplified to

[ ] 1 1 2 22 1 11 2 2 2
t tD D

py K a e e b e e= + (3.26)

The relay response at the third interval is the result of three step changes, lags by

an amount / 2uD P+ from input. After introducing a time shift of / 2uD P+ in

Equation 3.22, the net effect becomes

1 2

1 2 1 2

/ 2 / 2

3 1 1

/ 2 / 2

1 1 1 1

1

2 1 2 1

u u

u u

t D P t D P

p

t P t P t t

y K a e b e

a e b e a e b e

+ + + +

+ +

= +

+ + +

which can be simplified further as

1 One may skip the derivation in Section 3.3.1 and refer directly to Tables 3.2 and 3.3 for the

results.
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[ ] 1 1 1 2

2 2

/ 2
23 1 1

/ 2
2

1 2 2 2 2

2 2

u u

u u

t D P P t

p

D P P

y K a e e e b e

e e

+

+

= + × + +

× +

(3.27)

It can be seen that the terms in the right-hand side (RHS) of the above equation are
slowly forming a series.

With the progress of time, the response becomes stabilized and the general ex-
pression for the nth term can be described as

[ ] 1 1

1 1 1

1 2 2 2

2

( 2 ) / 2

1

( 2 ) ( 1)
2 2 2

( 2) / 2 ( 2 ) ( 1)
2 21

2

1 2 2

2 2 2 2

2 2

2 2

u

u u u

u u u

u

D n Pt

n p

n P n P P

D n P n P n Pt

P

y K a e e

e e e

b e e e e

e

+

+

= +

+ +

+ +

+

(3.28)

The RHS of Equation 3.28 has three parts, and each part consists of an infinite se-
ries, 1F , 2F and 3F .

1 21 1 2 1 3-
t t

n py K F a e F b e F= +

If n is odd, the first series 1F is simply

[ ]1 1 2 2 2 1F = + + =

The second series becomes:

1 2 2 3 42 2 2 2 2 2
D

n n n nF e r r r r r= + + +

where 1r e= and 1 12uP= . This above series is convergent and can be put
into the following form (note that terms are rearranged from the back side of the
above expression):

( ) ( )

1

D / 2 2 3
2

2 3
/ 2

e 2 1lim

2 22 1
1 1 u

n

n

P

F r r r r

r r r
r e

= + + +

= + + = =
+ +
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In a similar way, the 3F of the RHS of Equation 3.28 can also be simplified. Ulti-

mately, the response can be given by

1 2

1 2

1 1/ 2 / 2

2 2
1

1 1
u u

t t

n p P P
y K a e b e

e e

= +

+ +

(3.29)

This represents the ascending response ( n is odd). Since this response is dis-

symmetric, the general form can be employed as

( )1 2

1 2

1 1/ 2 / 2

2 2
1 1

1 1
u u

t t
n

n p P P
y K a e b e

e e

= +

+ +

(3.30)

One can refer to Panda and Yu [15] for the derivations for critically damped and

underdamped SOPDT systems, as well as for high-order systems.

3.3.2 Results

Different types of transfer function are considered, and the analytical expressions

for their relay feedback output response are developed following the above proce-

dure. Table 3.2 gives a list of first-, second-, and third-order plus dead time proc-

esses and their corresponding mathematical expressions for the stabilized relay

feedback output responses. These equations ny denote the upward or ascending

trend (or sometimes, curves in the lower part of midline for higher order systems)

of relay feedback output (while time t changes from 0 to / 2uP ). The downward

or descending trend can be obtained by reversing the sign of the output ( ny ).

In Table 3.2, the individual expressions, for relay feedback responses of first-,

second- and third-order systems contain terms similar to those of the corresponding

equations for the step responses, except that they differ only in weighting factor

( ( )/ 22 / 1 uPe+ ). If we compare the terms of the expressions of the relay feed-

back response with those of step response of a process, we see that they differ by a

weighting factor of ( )/ 22 / 1 uPe+ . For an FOPDT system, the response starts

( 0t = ) from the minimal point, at y a= , and ends ( / 2ut P= ) at the maximal

point, at y a= . Also note that, for an unstable FOPDT system, stable limit cycles

can occur only if / ln(2)D < . For the lead/lag second-order system (No. 6 in Ta-

ble 3.2), the expression is applicable to systems with left-half plane ( 3 0> ) or

right-half plane ( 3 0< ) zero.

Analytical expressions of relay feedback output responses for higher order sys-

tems are presented in Table 3.3. They are of much interest because, when we see,

for example, the expression for fifth-order process, the equation contains mainly

five terms (except ‘1’) and each of these terms represents corresponding lower or-

der processes. The first term inside the third bracket of the first line/row appears to

be for an FOPDT. The second term (having two terms inside the first bracket) is

for an SOPDT (critically damped). The third term (having three terms inside the

first bracket) is for a third-order process. The terms in the second row/line (having



42 Autotuning of PID Controllers

Ta
bl
e
3.
2.

Ti
m

e
re

sp
on

se
y n

of
re

la
y

fe
ed

ba
ck

fo
r F

O
PD

T,
SO

PD
T

an
d

th
ird

-o
rd

er
pr

oc
es

se
s



Relay Feedback 43

Ta
bl
e
3.
3.

Ti
m

e
re

sp
on

se
y n

of
re

la
y

fe
ed

ba
ck

fo
r f

ou
rth

an
d

hi
gh

-o
rd

er
pr

oc
es

se
s



44 Autotuning of PID Controllers

four terms inside) are for a fourth-order process. In the third or last row/line there
are five terms for a fifth-order process. Hence, the number of terms (size of the se-
ries) for a particular order of process is rhythmic. These tables are similar to the ta-
bles of inverse Laplace transform and will help in finding an equation for relay
feedback responses.

3.3.3 Validation

Two kinds of response can be observed in the analytical expressions in Tables 3.2
and 3.3. These responses are tabulated in Figure 3.10. Systems with serial numbers
1 and 2 in Table 3.2 always produce a monotonic response, where, at 0t = , the re-
sponse from the model starts at the lowermost (or uppermost) point (A or B) and,
at / 2ut P= , it ends at the other extreme point (B or C). Processes with serial
numbers 3, 4, 5 and 6 in Table 3.2 may give a non-monotonic response, as shown
in Figure 3.10. The third type is higher order systems without dead time (i.e.

3n ). For this type of system, this value occurs at the mid-point of the half pe-
riod, as also shown in Figure 3.10.

Figure 3.10 shows the correctness of the derived mathematical models. If the
relay height is other than unity, then the model for the relay output response will be
just multiplied by actual value of relay height h .

3.4 Conclusion

In this chapter the relay feedback test is introduced and the steps required to per-
form the experiment are also given. It can be carried out with or without a com-
mercial autotuner. Once you have obtained the information on the ultimate fre-
quency, the controller settings can be decided using the original or modified
Ziegler–Nichols methods. You can also go a step further to find an appropriate
transfer function for the process. This can be useful for implementing MPC or dead
time compensator (Smith predictor). Better approximation can be achieved using
the improved algorithm. Finding transfer functions using the biased relay plus hys-
teresis was discussed by Wang et al. [12]. Finally, analytical expressions for relay
feedback responses are tabulated for different types of process. This can be useful
if the model structure is known.
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Figure 3.10. Validation of analytical expressions for relay output of different sys-
tems: solid line is relay output and dashed line is model output. (A denotes starting
of one cycle that ends at B. Again from B next cycle starts and ends at C).



46 Autotuning of PID Controllers

3.5 References

1. Åström KJ, Hägglund T. Automatic tuning of simple regulators with specifications on
phase and amplitude margins. Automatica 1984;20:645.

2. Luyben WL. Derivation of transfer functions for highly nonlinear distillation columns.
Ind. Eng. Chem. Res. 1987;26:2490.

3. Seborg DE, Edgar TF, Mellichamp DA. Process dynamics and control. 2nd ed. New
York: Wiley; 2004.

4. Luyben WL, Luyben ML. Essentials of process control. New York: McGraw-Hill;
1997.

5. Wang QG, Lee TH, Lin C. Relay feedback. London: Springer-Verlag; 2003.

6. Ogata K. Modern control engineering. Prentice-Hall: Englewood Cliffs; 1970.

7. Tyreus BD, Luyben WL. Tuning PI controllers for integrator/dead time processes. Ind.
Eng. Chem. Res. 1992;31:2625.

8. Friman M, Waller KV. Autotuning of multiloop control systems. Ind. Eng. Chem. Res.
1994;33:1708.

9. Wood RK, Berry MW. Terminal composition control of a binary distillation column.
Chem. Eng. Sci. 1973;28:1707.

10. Chang RC, Shen SH, Yu CC. Derivation of transfer function from relay feedback sys-
tems. Ind. Eng. Chem. Res. 1992;31:855.

11. Li W, Eskinat E, Luyben WL. An improved autotune identification method. Ind. Eng.
Chem. Res. 1991;30:1530.

12. Wang QG, Hang CC, Zou B. Low-order modeling from relay feedback. Ind. Eng.
Chem. Res. 1997;36:375.

13. Majhi S, Atherton DP. Auto-tuning and controller design for processes with small time
delays. IEE Proc. Control Theory Appl. 1999;146(3):415.

14. Kaya I, Atherton DP. Parameter estimation from relay auto-tuning with asymmetric
limit cycle data. Process Control 2001;11:429.

15. Panda RC, Yu CC. Analytical expressions for relay feedback responses. J. Process Con-
trol 2003;13:48.



47

4

Shape of Relay

Luyben [1] pointed out that the shapes of the response curves of a relay feedback
test contain useful information. A simple characterization factor was proposed to
quantify the curve shape and later used to determine the three parameters for
FOPDT processes. This concept offers an attractive alternative to improve the relay
feedback autotuning, because qualitative information of model structure is avail-
able.

Here, we intend to utilize the shape information from the relay feedback test to
identify the correct model structure of the process and to find appropriate PID
controller settings. The additional shape information is also useful to devise dead
time compensation and high-order compensation, when necessary. Hieroglyphic
writing can often be seen in ancient cultures. Figure 4.1 shows that much of Chi-
nese is written in pictorial characters. The “shapes” of the characters tell us some-
thing about their meaning. We intend to extract some useful information from the
“shape” of the relay response.

4.1 Shapes of Relay Response

The Åström and Hägglund [2] relay feedback test is a useful tool in identification
because it identifies two important parameters, ultimate gain and ultimate fre-
quency, for controller tuning. Typically, the Ziegler–Nichols type of tuning rule is
applied because uK and uP are the information required to set PID controller
parameters. Unfortunately, satisfactory performance is not always guaranteed be-
cause no single tuning rule works well for the entire dead time D to time con-
stant ratio /D even for an FOPDT process. Luyben demonstrates that, for
FOPDT processes, a different /D ratio gives different shapes in relay feedback
tests (Figure 4.2) and this shape factor can be utilized to find the /D value and
different tuning rules can be applied accordingly. This presents a significant pro-
gress in relay feedback identification, and much reliable autotuning has resulted, as
shown by Luyben. Figure 4.2 shows the transition from a triangle to an almost rec-
tangular curve as /D changes from 0.1 to 10. Similar figures were also given by
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Figure 4.1. Hieroglyphic writing of Chinese characters

Friman and Waller [3]. In Luyben’s work, time to the mid-point of the amplitude
a is used to characterize /D .

4.1.1 Shapes

To characterize model structure and parameter value (e.g. /D ), processes with
different order (first, second, third, eighth, fifteenth and twentieth order) and dead
time to time constant ratio (i.e. / 0.01D = , 1 and 10) are studied. In this work,
only overdamped processes are studied (underdamped processes and systems
with inverse response are not included). Figure 4.3 shows the relay feedback re-
sponses for those higher order processes. Note that all process gains are assumed to
be one and a relay height 1h = is used to generate sustained oscillations.

From the curve shapes, Figures 4.2 and 4.3, several observations can be made
immediately.

1. FOPDT process.
If the response curves show a sharp edge (discontinuity) at the peak ampli-
tudes (i.e. y a= ± ), then the process can be considered as an FOPDT system,
as shown in Figure 4.2.

2. Effect of /D for FOPDT process.
If the relay feedback gives a triangular wave, then the process can be treated as
a time-constant-dominant process (i.e. small /D for FOPDT). Specifically,
the time to reach the peak amplitude is equal to the dead time, as will be
shown later. If the dead time to time constant ratio becomes larger, then curva-
ture begins to appear (e.g. Figure 4.2), and this implies a gradually developing
step response. As /D approaches infinity, the response resembles a symmet-
rical rectangular wave. Actually, FOPDT processes represent a very unique
class in terms of relay feedback responses.
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D/ = 0.1

0 2 5
- 0 .1

0 .1

D/ = 1

0 5 0
- 1

1

D/ = 10

0 7 5
-1 .1

1 .1

Figure 4.2. Relay feedback responses of FOPDT processes with different D/ val-
ues (controlled variable, solid lines; manipulated variable, dashed lines)

3. Effect of order.
If the order of the process increases to two and beyond (e.g. n = 2, 3, 8, 15 and
20 in Figure 4.3), the sharp edge disappears and the responses resemble a sinu-
soidal oscillation. Generally, a sustained oscillation is developed in the cycles
except for the second-order process with small /D value (Figure 4.3). Again,
when the dead time to time constant ratios become large, the responses ap-
proach rectangular waves.

4. Exponentially developed cycling.
If the response is of sinusoidal oscillations with exponentially increasing mag-
nitude and reaching a steady state after many cycles, the process can be con-
sidered as a second-order process with small /D value. This again repre-
sents a special class in relay feedback responses.
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Process D/ = 0.01 D/ = 1 D/ = 10

2nd

0 1 7 0
-8

8 x 1 0
3

0 8 0
-0 .6

0 .6

0 9 0
-1 .1

1 .1

3rd

0 8 0 0
- 0 . 2

0 . 2

0 1 5 0
- 0 . 6

0 . 6

0 9 0
- 1 .1

1 .1

8th

0 5 1 5
- 0 . 9

0 . 9

0 3 6 5
- 0 . 9

0 . 9

0 1 2 0
- 1 .1

1 .1

15th

0 1 1 5
- 1

1

0 1 3 0
- 1

1

0 1 6 0
- 1 .1

1 .1

20th

0 1 6 0
- 1

1

0 1 7 0
- 1

1

0 2 0 0
- 1 .1

1 .1

Figure 4.3. Relay feedback response for processes with different orders and vari-
ous D/ ratios (controlled variable, solid lines; manipulated variable, dashed lines)

4.1.2 Model Structures

The observations presented above are useful in identifying different model struc-
tures. The basic principle in classification is to use the least classes while capturing
all possible curve shapes in relay feedback responses. Based on the responses in
Figures 4.2 and 4.3, three distinct classes are identified.

4.1.2.1 First-order Plus Dead Time

As pointed out in the previous section, two distinct features constitute FOPDT sys-
tems: (1) a response curve showing sharp edges and (2) a response reaching a sta-
tionary oscillation in the first cycle. Therefore, category 1 is represented by the
FOPDT process

( ) 1
DspK e

G s s=
+

(4.1)
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where pK is the steady state gain, D is the dead time and denotes the time con-
stant. Figure 4.4 shows that, if the process is truly FOPDT, it certainly falls into
category 1. But, a high-order process with a large /D value can also be classified
into this category, at least by inspecting the relay feedback response, as shown in
the top two rows of Figure 4.3 with / 10D = . Quantitative comparison of multi-
plicative error also reveals that high-order systems with /D >10 are better repre-
sented by an FOPDT system (Figure 4.4).

4.1.2.2 Second-order Plus Small Dead Time

Observation from Figure 4.3 indicates that we need a model structure to describe
exponentially developed cycling (top row with / 0.01D = in Figure 4.3).

An ideal candidate is a second-order plus small dead time (SOPSDT) process:

( )
( )21

DspK e
G s

s
=

+
(4.2)

Typically, if the ratio /D= is less than 0.01, then the oscillation develops
slowly. In this work, the ratio is set to 0.001. Thus, the transfer function can be
expressed as

( )
( )21

spK e
G s

s
=

+
(4.3)

Again, quantitative assessment (Figure 4.4) also confirms such a category,
SOPSDT. This is denoted as category 2.

Figure 4.4. Quantitative classification of different model structures (categories 1 to
3) based on integrated absolute error from frequency response
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4.1.2.3 High Order

In addition to the two above-mentioned categories, Figure 4.3 indicates that rest of
the responses showing a sinusoidal oscillation and stationary cycling is reached in
one or two cycles. This behavior can be described by a high-order (HO) process
without dead time, which is also called category 3. A typical transfer function is

( )
( )1

p
n

K
G s

s
=

+
(4.4)

As long as 3n we can see similar relay feedback responses. In this work, a de-
fault value of 5n = is used. This leads to

( )
( )51

pK
G s

s
=

+
(4.5)

Figure 4.4 shows that this category, category 3, covers the largest parameter
space of the systems studied.

The model structures presented above (Equations 4.2, 4.3 and 4.5) show that
there are only two unknown parameters for categories 2 and 3, and for the FOPDT
model we have three unknown parameters (i.e. pK , D , and ). The parameters
chosen for categories 2 and 3 (i.e. and n in Equations 4.3 and 4.4) may affect the
distribution of model structure in the parameter space of Figure 4.4. Nonetheless,
most of the curve shapes are well represented using these three classes.

4.2 Identification

The detailed procedures for the system identification of various processes under
different categories are presented below.

4.2.1 Identification of Category 1: First-order Plus Dead Time

This category includes two types of system. One is the true FOPDT process, as
shown in the last row of Figure 4.4, and this is denoted as category 1a. The second
one is high order systems with a large /D value, as shown in the RHS of Figure
4.4 and it is called category 1b.

4.2.1.1 Category 1a: True First-order Plus Dead Time

This category has two important characteristics: (1) showing a sharp edge at the
peak amplitude, and (2) developing a stationery oscillation in the first cycle. The
relay feedback response of an FOPDT system actually can be described analyti-
cally. Figure 4.5A shows the original response curve where the output starts to in-
crease after the dead time D. If we align the output y with the input u by shifting
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(A) (B)

Figure 4.5. Analytical expressions of relay feedback response for FOPDT systems:
(A) original response and (B) shifted version

the output to the left (Figure 4.5B), it becomes clear that the increasing part of the
output response is the result of a step increase in “u ” by a magnitude “ h ”. After a
delay time D, the relay switches to h and the second step change becomes effec-
tive immediately. This results in the decreasing portion of in the half cycle shown
in Figure 4.5B. Therefore, the analytical expression for the first half cycle becomes

( ) ( )/1 tpKy t h e= for 0 t D< < (4.6)

( ) ( ) ( )/ ( ) /1 2 1t t Dp pK Ky t h e h e= for / 2uD t P< < (4.7)

The continuous step change repeats itself and a sustained oscillation results. Note
that similar derivations were proposed by Wang et al. [4] for stable FOPDT sys-
tems and by Tan et al. [5] and Huang and Chen [6] for first-order open-loop unsta-
ble systems. Equations 4.6 and 4.7 clearly indicate that the time to reach the peak
amplitude is exactly the dead time D for the FOPDT process, and this value can
be validated repeatedly at each half cycle ( / 2uP ). Provided with the two boundary
conditions ( )y D a= and ( ) 0/ 2uy P = , we are able to solve for the other two
model parameters, pK and :

( )/
/ 2

In 2 1
u
D

P
e

= (4.8)
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( )/1p D
aK

h e τ−
=

−
(4.9)

Thus, all three model parameters can be determined from the relay feedback re-
sponse for true FOPDT processes. Therefore, the identification consists of the fol-
lowing steps:
(0) Record the time to the peak amplitude D , the peak amplitude a , and the pe-

riod of oscillation uP .
(1) Set the dead time D as the time to the peak value (Figure 4.5).
(2) Compute the time constant τ from Equation 4.8. Note that Equation 4.8 is an

implicit equation for τ that requires an iterative solution. One can use the rela-
tionship between the ultimate frequency and τ given below to obtain a first
guess for the value of τ :

( )tan u

u

Dπ ω
τ

ω
−

= (4.10)

(3) Compute pK from Equation 4.9.

Similarly, for an unstable FOPDT system, all three model parameters can be ob-
tained directly from relay feedback responses:

( ) 1

DspK e
G s

sτ

−
=

+
(4.11)

First, the output responses can be represented analytically, as shown in Figure 4.6.
From the first half period, the expression becomes

( ) ( )/ 1tpK hy t e τ= − for 0 t D< < (4.12)

( ) ( ) ( )/ ( ) /1 2 1t t Dp pK h K hy t e eτ τ−= − − − for / 2uD t P< < (4.13)

Substituting the two boundary conditions ( ) ay D = and ( ) 0/ 2uy P = into Equa-
tions 4.12 and 4.13, the time constant τ and the steady state gain pK can be com-
puted directly:

( )/
/ 2

In 1/ 2 1
u

D
P
e τ

τ
−

=
 − 

(4.14)

( )/ 1Dp
aK eh

τ= − (4.15)

The identification procedure for the unstable process is exactly the same as that
of the stable one, except that the equations to compute τ and pK are Equations
4.14 and 4.15 respectively. Equation 4.14 also reveals that the condition for the ex-
istence of limit cycle requires /D τ < ln 2.
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Figure 4.6. Analytical expressions of relay feed back response for unstable FOPDT
systems (shifted version)

4.2.1.2 Category 1b: Approximated First-order Plus Dead Time

This category also has the FOPDT model structure. Similar to category 1a, station-
ary cycling develops in the first cycle, but the sharp edge around the peak ampli-
tude is not quite as obvious as category 1a. The second- and third-order systems
with / 10D = fall into this category. Since the true process is not exactly an
FOPDT system, reading off the dead time directly from the response (e.g. Figure
4.5B) can be erroneous. Similar to Luynen’s approach, we first define the time to
reach the peak amplitude a as at and to reach half of the peak amplitude / 2a as

/ 2at . Following the analytical expression in Equations 4.6 and 4.7, we have

( )/1 atpa K h e= (4.16)

( )/ 2 /12
atp

a K h e= (4.17)

Dividing Equation 4.16 by Equation 4.17, we can solve for using

/ 2 / /2 1a at te e = (4.18)

Once becomes available, we can solve for the other two model parameters, pK
and D , from ultimate properties:
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( )1tan u

u
D = (4.19)

( )21 u
p

u
K

K
+

= (4.20)

Therefore, the identification consists of the following steps:
(0) Record the time to the peak amplitude at , the time to one-half of the peak am-

plitude / 2at , the peak amplitude a , and the period of oscillation uP .
(1) Compute the time constant from Equation 4.18.
(2) Calculate the dead time from Equation 4.19.
(3) Calculate the steady state gain pK from Equation 4.20.

This procedure enables us to find the approximate FOPDT model.

4.2.2 Identification of Category 2: Second-order Plus Small Dead Time

As pointed out earlier, if a small dead time to time constant ratio ( /D= ) is
specified, we have only two unknown parameters, as shown in Equation 4.3. After
several numerical simulations, the default value of 0.001= was found to work
well for a wide range of parameter values. The time constant can be obtained from
the phase angle information

( )12 tanu u= (4.21)

and the steady state gain can be computed according to

( )21 u
p

u
K

K
+

= (4.22)

Therefore, the procedure consists of the following steps:
(0) Record the values of the peak amplitude a and the period of oscillation uP .
(1) Compute the time constant from Equation 4.21.
(2) Calculate the steady state gain pK from Equation 4.22.

This procedure enables us to find the SOPSDT model with the default setting of
0.001= . However, for certain cases, the model parameters obtained using the

default value of 0.001= may not be satisfactory. This is due to the fact that the
ratio depends on the rate at which the oscillations are developed. Figure 4.7 pre-
sents the relay feedback responses obtained for SOPSDT processes with

0.001= , 0.005 and 0.01. Observations from Figure 4.7 indicate that, as in-
creases, the normalized time constant (ratio of time constant G defined by the
peaks of the oscillations to the period of oscillation uP ) decreases. In other words,
as /D increases it takes fewer cycles to reach the static oscillations. Figure 4.8
gives a plot showing the dependence of the /D ratio on the normalized time con-
stant. A linear model is used to relate log( ) to the normalized time constant

/G uP :
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Figure 4.7. Relay feedback responses and global responses (defined by peaks) of
SOPSDT processes with different D/ ratios

Figure 4.8. Relationship between the normalized global time constant ( G/Pu) and
the dead time/time constant ratio ( = D/ ) for SOPSDT processes

( ) 0.3031log 1.4767G

uP
= (4.23)

Thus, with the value of /G uP from the relay feedback tests, we are able to calcu-
late . Therefore, this more elaborate procedure consists of the following steps:
(0) Record the values of the peak amplitude a , the period of oscillation uP and the

time constant G from the global response (Figure 4.7).
(1) Compute the value of the normalized time constant /G uP .
(2) Compute the value of using Equation 4.23.
(3) Compute the time constant from Equation 4.21.
(4) Calculate the steady state gain pK from Equation 4.22.

This procedure enables us to find the ratio and the model parameters for the
SOPSDT model.
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4.2.3 Identification of Category 3: High Order

After several numerical simulations, the default value of 5n = was found to work
well for wide range of parameter values. Thus, if the order n is chosen for cate-
gory 3 (e.g. 5n = in Equation 4.4), we are left with two unknown parameters.
They can be solved according to the ultimate properties via

( )tan /
u

n
= (4.24)

( )( ) / 221
n

u
p

u
K

K

+
=

(4.25)

Similarly, the identification procedure becomes:
(0) Record the values of the peak amplitude a and the period of oscillation uP .
(1) Compute the time constant from Equation 4.24 (with 5n = ).
(2) Calculate the steady state gain pK from Equation 4.25 (with 5n = ).

This procedure enables us to find the parameters for the fifth-order process (HO
model). However, for certain cases, the model parameters obtained using the de-
fault value of 5n = might not be satisfactory. This is because the value of n de-
pends on the rate at which the oscillations develop. Similar to the discussion in
Section 3.3.2, we can relate the normalized time constant /G uP to the order n by
Equation 4.26. A linear model is used to interpolate for n and /G uP between

3n = and 10n = .

( ) 1.9040 1.3736log G

uP
n = (4.26)

Thus, with the value of /G uP from the relay feedback tests, we are able to calcu-
late the order n . Therefore, the more elaborate procedure consists of the following
steps:
(0) Record the values of the peak amplitude a , the period of oscillation uP , and

the time constant of the curvature G .
(1) Compute the value of the curvature factor /G uC P= .
(2) Compute the value of n using Equation 4.26.
(3) Compute the time constant from Equation 4.24.
(4) Calculate the steady state gain pK from Equation 4.25.

This procedure enables us to find the order as well as model parameters for the HO
model.
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4.2.4 Validation

To illustrate the appropriateness of the proposed classification, six typical exam-
ples representing the various categories are considered (Table 4.1). Relay feedback
tests were conducted on all of these examples, and the relay feedback responses
thus obtained are shown in Figure 4.9 under the heading “true”. Time-domain re-
sponses clearly indicate that examples 1–3 can be classified as approximated
FOPDT systems (category 1b), example 4 is an SOPSDT system (category 2), and
example 5 and 6 can be classified as HO processes (category 3). The ultimate
properties computed from the relay experiments are also presented in Table 4.1.

The equivalent models in the three categories for these six examples were for-
mulated using the identification procedures described in the previous section. The
18 equivalent models thus obtained are presented in Table 4.2. Note that each
equivalent model has the same values of uK and u but very different model
structures. Relay experiments were conducted on all three equivalent models, as
shown in Figure 4.9. The results show that the correct model structure reproduces
the relay feedback response and that the mismatched model structures give com-
pletely different curve shapes, despite having the same uK and uP . The time-
domain responses confirm that examples 1 to 3 belong to category 1, example 4
belongs to category 2, and examples 5 and 6 belong to category 3.
The models identified in Table 4.2 also reveal the importance of applying appro-
priate model structure. In example 1, using the same values of uK and u , the
SOPSDT model gives a steady state gain 1600 times the true value, and in example
4 the FOPDT model structure results in an unstable system. The results clearly in-
dicate the need to extract model structure information from relay feedback tests.

Table 4.1. Processes studied and corresponding ultimate properties

Example True process uK uP

1
( )

10

31

se
s +

1.274 25.35

2
( )

15

151

se
s +

1.274 59.34

3
( )

10

21

se
s +

1.274 23.36

4
( )

0.05

225 1

se
s +

862.9 5.434

5
( )

0.6

86 1

se
s +

1.8424 91.94

6
( )

0.001

201

se
s +

1.342 39.33
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Exam-
ple

True Category- 1 Category- 2 Category- 3

1

0 90
-1 .1

1 .1

0 90
-1.1

1.1

0 90
-1.1

1.1

0 90
-1

-0.5

0

0.5

1

2

0 200
-1.1

1.1

0 200
-1.1

1.1

0 200
-1.1

1.1

0 200
-1.1

1.1

3

0 90
-1.1

1.1

0 90
-1.1

1.1

0 90
-1.1

1.1

0 90
-1.1

1.1

4

0 75
-2

2
x 10

3

0 75
-2

2
x 10

3

0 75
-2

2
x 10

3

0 130
-2

2
x 10

3

5

0 320
-0.75

0.75

0 320
-0.75

0.75

0 320
-0.75

0.75

0 320
-0.75

0.75

6

0 160
-1.1

1.1

0 160
-1.1

1.1

0 160
-1.1

1.1

0 160
-1.1

1.1

Figure 4.9. Reproduction of relay feedback responses (controlled variable, solid
lines; manipulated variable, dashed lines) for six examples with the assumption of
different model structures (from left to right: true process, FOPDT, SOPSDT, and
HO)
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Table 4.2. True process and equivalent models by assuming different model
structures

Example True process FOPDT SOPSDT HO

1
( )

10

31

se
s + ( )

10.85670.8724
1.9574 1

se
s + ( )

0.1830

2
1615.9378

182.95 1

se
s + ( )5

2.2648
2.9310 1s +

2
( )

15

151

se
s + ( )

24.91610.8970
5.2159 1

se
s + ( )

0.1830

2
1615.9378

182.95 1

se
s + ( )5

2.2656
6.8613 1s +

3
( )

10

21

se
s + ( )

10.00171.0169
2.4497 1

se
s + ( )

0.1686

2
1615.9645

168.6 1

se
s + ( )5

2.2658
2.7009 1s +

4
( )

0.05

225 1

se
s + ( )

1.32330.0234
21.2556 1

se
s ( )

0.0392

2
2.3822

39.2 1

se
s + ( )5

0.0033
0.6283 1s +

5
( )

0.6

86 1

se
s + ( )

23.643912.0599
400.6714 1

se
s + ( )

0.6637

2
1118.8082

663.7 1

se
s + ( )5

1.5661
10.6313 1s +

6
( )

0.001

201

se
s + ( )

10.8354.6861
47.9111 1

se
s + ( )

0.2839

2
1533.106

283.91 1

se
s + ( )5

2.1494
4.5479 1s +

The above categorization can be validated in the frequency domain by evaluat-
ing the integrated absolute error (IAE) for each of the equivalent models. Multipli-
cative error is employed here.

( )
( ) ( )

( )
mG j G j

e
G j

= (4.27)

where G is the true process and mG is the derived model. The IAE is evaluated
between 0.1 u and 10 u :

( )

10

0.1

u

u

IAE e d= (4.28)

The numerical values of IAE are presented in Table 4.3. By comparing the val-
ues of IAE of the models under categories 1, 2 and 3 of a particular true process,
one can easily identify the category to which the true process belongs. The cate-
gory to which the true process belongs offers the lowest IAE, thereby validating
the proposed categorization. Even though all three model structures give small er-
rors at the ultimate frequency, the correct category results in the lowest overall
IAE . With the help of IAE values computed for different model structure proc-
esses over a wide range of /D values, as well as different orders, a quantitative
classification can be made, as shown in Figure 4.4.
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Table 4.3. Comparison of integrated frequency response errors by assuming
different model structures

IAEExample True process
FOPDT SOPSDT HO

1
( )

10

31

se
s +

41.3083 10× 37.5365 10× 49.9724 10×

2
( )

15

151

se
s +

41.0958 10× 37.5468 10× 49.9986 10×

3
( )

10

21

se
s +

53.7721 10× 37.5233 10× 49.9337 10×

4
( )

0.05

225 1

se
s +

39.9766 10× 42.3097 10× 35.1679 10×

5
( )

0.6

86 1

se
s +

31.1144 10× 35.6718 10× 44.7446 10×

6
( )

0.001

201

se
s +

31.1952 10× 37.309 10× 49.3339 10×

4.3 Implications for Control

After identifying the appropriate model structure and associated model parameters,
different tuning rules can be designed to achieve improved performance.

4.3.1 Proportional Integral Derivative Control

4.3.1.1 Category 1: First-order Plus Dead Time

Following Luyben’s approach, different tuning formulas can be applied for differ-
ent /D values. PI controllers are used here, but the approach can be extended to
PID controllers with little difficulty.

1. / 0.1D <
For processes in category 1 having /D ratios less than 0.1, the Tyreus–
Luyben tuning rule is found to be suitable.

The Tyreus–Luyben tuning equations for PI controller are

3.2
u

c
KK = (4.29)

2.2I uP= (4.30)
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2. 0.1 / 1D

The minimum ITAE tuning rule developed by Rovira is found to be suitable for

the FOPDT processes in category 1 with /D ratios ranging from 0.1 to 1.

The ITAE tuning equations for a PI controller are

0.916
0.586

c
p

K
K D

= (4.31)

1.03 0.165
I

D
=

(4.32)

3. / 1D >

For processes in category 1 having /D ratios greater than 1, the PI control-

ler with the IMC tuning rule is found to be suitable.

The IMC tuning equations for a PI controller are

( )max 1.7 ,0.2D= (4.33)

2
c

p

D

K
K

+
= (4.34)

2
I

D
= + (4.35)

The various tuning rules for the FOPDT processes with different /D ratios are

summarized in Table 4.4. For unstable FOPDT systems, the tuning rules given by

Tan et al. [5], Huang and Chen [6], Marchetti et al. [7], and Jacob and

Chidambaram [8] can be used.

Table 4.4 Tuning rules for FOPDT processes with different D/ ratios

/ 0.1D < 0.1 / 1D / 1D >

Method TL ITAE IMC

3.2

u
c

K
K =

2.2I uP=

0.916
0.586

c
p

K
K D

=

( )1.03 0.165
I

D
=

( )max 1.7 ,0.2D=

2
c

p

D

K
K

+

=

2
I

D
= +
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4.3.1.2 Category 2: Second-order Plus Small Dead Time

For SOPSDT systems, Ziegler–Nichols tuning gives poor performance. It should
also be emphasized that this category is just an approximate modeling of the true
process, so modeling error should be expected. For the SOPSDT processes with
small values of /D  (i.e. / 0.01 0.001D = ), we find the following rules appro-
priate. For a PI controller, first set

2I = (4.36)

Then find that value of cK that gives a 45° phase margin. For / 0.001D = this
gives

3

2

2((0.0432 ) 0.0432 )
( 4(0.0432 ) 1)

u u
c

p u
K

K
+

=
+

(4.37)

4.3.1.3 Category 3: High Order

Again, this is just an approximate model of a large variety of processes (Figure
4.4); therefore, a conservative tuning rule should be devised. For HO processes
with orders ranging from 3 to 10, first, set the reset time to

( 1)I n= (4.38)

Next, adjusted cK to give a maximum closed-loop log modulus max
cL of 3dB .

For the default value of 5n = , this gives a very simple expression for cK :

1
c

p
K

K
= (4.39)

4.3.2 Results

After the exact category of the true process and the appropriate control strategy had
been identified, closed-loop studies were carried out on all six examples listed in
Table 4.1.

PI controllers were designed on the basis of the identified models. For example,
for the third-order plus dead time process of example 1, three different PI control-
lers were designed according to the FOPDT, SOPSDT, and HO model structures
(e.g. first row of Table 4.2) using the tuning rules presented in Table 4.4, and
Equations 4.36–4.39. This procedure was repeated for all six examples. Table 4.5
gives the controller settings for the examples studied. The effects of model struc-
tures on closed-loop performance can thus be compared. Closed-loop studies were
carried out on the true processes. The SP responses of three different controller set-
tings (from different model structures) on the six examples are presented in Figure
4.10. A close look at the responses reveals the following.
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Table 4.5. PI controller parameters for different examples

True process FOPDT-IMC SOPSDT-PM HO- max
cL

cK I cK I cK I

( )
10

31

se
s +

0.4587 7.3858 0.0023 365.9 0.4418 11.724

( )
15

151

se
s +

0.4652 17.6739 0.0023 856.64 0.4416 27.4452

( )
10

21

se
s +

0.4309 7.4506 0.0023 337.2 0.4415 10.8036

FOPDT-TL

( )
0.05

225 1

se
s +

269.6448 11.9548 1.5279 78.4 303.15 2.5132

( )
0.6

86 1

se
s +

0.5758 202.268 0.0033 1327.4 0.6387 42.5252

FOPDT-ITAE

( )
0.001

201

se
s +

0.4880 48.2641 0.0024 567.82 0.4654 18.1916

For examples 1–3, the responses obtained from the controller designed using the
FOPDT model structure are superior to the other responses. This is because exam-
ples 1–3 fall into category 1, for which a PI controller with IMC tuning is the rec-
ommended controller ( / 1D > ). The controller settings obtained using the
SOPSDT model structure give very slow responses, whereas those obtained by as-
suming an HO process result in undershoot responses.

For example 4, the correct model structure (SOPSDT) gives a reasonable SP re-
sponse when compared with those of the other two model structures. The TL tun-
ing (a conservative Ziegler–Nichols type of tuning) produces unstable responses
for the second-order system with small dead-time-to-time-constant ratio, and the
assumption of an HO model structure also fails to maintain stability. The reason is
that this is almost a double integrator process, which is difficult to control.

For examples 5 and 6, the responses obtained from the controller designed using
the equivalent HO models are superior to the other responses. The FOPDT model
structure results in undershoot responses, whereas the SOPSDT equivalent model
gives even more sluggish SP responses. Note that the controller gain cK of the
SOPSDT model is almost two orders of magnitude smaller than that of the reason-
able model.

A special case under the SOPSDT category for which the default value of
0.001= does not work very well is also considered below. Consider the

SOPSDT process represented by



66 Autotuning of PID Controllers

Example Category- 1a Category- 2 Category- 3

1
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Figure 4.10. Comparison of SP responses of six examples with PI controller

0.01

2(2 1)
seG

s
=

+
(4.40)

The relay feedback test output response indicates that the process belongs to cate-
gory 2, i.e. an SOPSDT process with a model structure given by Equation 4.3. The
model parameters obtained using the procedure described in Section 3.2 with the
default value of 0.001= is given by

0.05

2
6.027

(5 1)
s

m
eG

s
=

+
(4.41)

The controller settings obtained ( 0.6038cK = and 10I = ) using Equations 4.36
and 4.37 with the above model parameters result in a slow SP response (Figure
4.11). Hence, there is a need to select an appropriate value of using the proce-
dure described in Section 4.2. The model parameters thus obtained with the modi-
fied value of 0.00685= are given by the equation
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0.013

2
0.8709
(1.8978 1)

s
m

eG
s

=
+

(4.42)

The controller settings obtained ( 4.1794cK = and 3.7956I = ) using Equations
4.36 and 4.37 with the above model parameters result in a better SP response (Fig-
ure 4.11), on par with that obtained using the true process ( 3.6398cK = and

4I = ). Thus, it is clear that the appropriate model structure with suitable tuning
rules offers better closed-loop performance. More importantly, the improvement is
achieved by taking the shape factor in the relay feedback response into account.

In a real process environment, measurement noise is unavoidable. The proposed
method was tested against measurement noise. In the context of system identifica-
tion, the noise-to-signal ratio ( NSR ) can be expressed as

[ ]
[ ]

( )
( )

mean abs noise
NSR

mean abs signal
= (4.43)

where abs(.) denotes the absolute value and mean (.) represents the mean value.
The following two FOPDT processes are used to illustrate the effect of process

noises:

( ) ( )
0.1

1
seG s

s
=

+ (4.44)

( ) ( )
10

1
seG s

s
=

+
(4.45)

In the case of the process represented by Equation 4.44, relay feedback tests were
performed with 0NSR = and 1/5 and with a relay height of 1. The relay feedback
responses thus obtained are shown in Figure 4.12A. The limit cycle data were
computed by taking the average of the fictitious peaks around the peak. Two cycles
were employed to compute the average values of the limit cycle data. The FOPDT

(A) (B) (C)

Figure 4.11. Comparison of closed-loop responses of an SOPSDT process (special
case) for SP tracking: (A) controller settings obtained using the true process, (B)
controller settings obtained using the (SOPSDT) model with the default value of
= 0.001, and (C) controller settings obtained using the SOPSDT model with ob-
tained from Equation 4.23 ( = 0.00685)

0 100 200
0

0.5

1

0 25 500
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1

1.5

0 25 500
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1

1.5
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(A) (B)
N/S = 0, h =1
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Figure 4.12. Performance of an FOPDT process (D/ = 0.1) with different levels of
measurement noise (NSR = 0, 1/ 5 , and 1/10 ): (A) relay feedback responses, (B)
SP responses with a PI controller

equivalent model (Table 4.6) was formulated using the procedure described in Sec-
tion 4.1.1. Tyreus–Luyben tuning rules (Equations 4.29 and 4.30) were used to
tune the PI controller settings (Table 4.6). The SP responses thus obtained are
shown in Figure 4.12B and are on a par with the responses obtained for the noise-
free process. However, when the process was corrupted with noise there was model
mismatch in the FOPDT equivalent model derived. This mismatch can be allevi-
ated by increasing the strength of the signal ( 2h = , 1/10NSR = ). Better FOPDT
equivalent model parameters and controller settings were obtained (Table 4.6) by
following a procedure similar to that described above. Figure 4.12A shows that the
closed-loop performance results in satisfactory SP responses even under the influ-
ence of measurement noise.

Similarly, for the process represented by Equation 4.45, relay feedback tests
were performed with 0NSR = and 1/10 and with a relay height of 1. The corre-
sponding relay feedback responses thus obtained are shown in Figure 4.13A. The
limit cycle data were computed in a manner similar to that carried out for the proc-
ess represented by Equation 4.44. The FOPDT equivalent model was formulated
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Table 4.6. True process, equivalent models and corresponding PI controller
settings by assuming different NSR (FOPDT with D/ = 0.1 and D/ = 10)

True N / S 0= N / S 1/10= N / S 1/ 5=

0.1D = ( )
0.1

1

se
s + ( )

0.11.0091
1.0118 1

se
s + ( )

0.10360.5526
0.5414 1

se
s + ( )

0.10890.3962
0.3717 1

se
s +

cK 4.1900 4.1900 4.383 3.9527
I 0.8404 0.8404 0.8382 0.8492

True N / S 0= N / S 1/ 20= N / S 1/10=

10D =
( )

10

1

se
s + ( )

10.00100.9998
1.0258 1

se
s + ( )

9.16671.0026
1.6449 1

se
s + ( )

8.71351.2527
2.3101 1

se
s +

cK 0.3529 0.3525 0.3986 0.3766
I 6 6.0263 6.2282 6.6668
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Figure 4.13. Performance of FOPDT process (D/ = 10) with different levels of
measurement noise (NSR = 0, 1/ 5 , and 1/10 ): (A) relay feedback responses, (B)
SP responses with a PI controller
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using the procedure described in Section 4.1.2. PI controller settings were ob-
tained using the tuning rules given in Equajtion 4.33–4.35. Figure 4.13B shows the
SP responses obtained using the above controller settings. Even though the closed-
loop response obtained for 1/10NSR = is on a par with that obtained for the noise-
free process, the FOPDT model formulated has mismatch in the estimated model
parameters (Table 4.6). An increase in the strength of the signal ( 1/ 20NSR = ,

2h = ) can alleviate the model parameter mismatch. The PI controller settings de-
rived using the above model parameters result in a satisfactory SP response, as
shown in Figure 4.13B.

The observations from Figures 4.12B and 4.13B indicate that the proposed
method works well even in the presence of measurement noise, resulting in satis-
factory closed-loop performance.

4.3.3 Extension

Because the model structure and corresponding parameters are available, dead-time
compensation or higher order compensation can be provided whenever necessary.
For the purpose of illustration, IMC was used to design the controllers for an
FOPDT system with a large /D and for HO systems.

4.3.3.1 Dead-time-Dominant Process

For processes in category 1b, a dead-time compensator can be designed to improve
the performance. Given the model mG and IMC filter F (a first-order filter)

1

Dsp
m

K e
G

s
=

+
(4.46)

1
1

F
s

=
+

(4.47)

the conventional controller K using the IMC design becomes

( 1)1
1 ( 1)

c
Dsc m p

sGK
G G K s e

+
= =

+ (4.48)

In this work, the filter time constant is set to

2= (4.49)

Example 1 ( / 5.5465D = ) is used to illustrate the potential improvement; Figure
4.14 shows that better SP responses can be obtained for systems with large /D
values.
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(A)

(B)

Figure 4.14. SP responses for a process with large dead time (category 1b) using a
dead-time compensator (solid), and a PI controller (dashed lines)

4.3.3.2 Higher Order Process

For processes in category 3, a higher order controller can be used to improve the
control performance. Again, IMC control was employed with the following model

mG and filter F :

5( 1)
p

m
K

G
s

=
+ (4.50)

5
1

( 1)
F

s
=

+
(4.51)

The recommended value for is 0.45 . Thus, with the known values of mG and
F , the equivalent controller in the conventional feedback structure becomes

5

4 4 3 3 2 2
( 1)1

5 ( / 5) 2 2 1p

sK
K s s s s s

+
=

+ + + + (4.52)
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Example 5 is used to illustrate the potential improvement. Figure 4.15 shows
that a better load response is achieved using the higher order controller without ex-
citing the manipulated variable excessively.

4.4 Conclusion

The shapes of relay feedback responses are useful in extracting additional informa-
tion about process dynamics. From a methodical analysis of the shape information,
different processes can be broadly classified into three major categories. Analytical
expressions for the responses of stable and unstable FOPDT processes can be used
to derive all three model parameters. From the insight gained, the identification
procedures for different processes under various categories were evolved. Different
tuning rules were employed to find appropriate PID controller settings. Proce-
dures are tested against linear systems with and without noise. Further, dead-time

(A)

(B)

Figure 4.15. Load responses for a higher order process (category 3) using a higher
order controller (solid lines) and a PI controller (dashed lines)
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compensation (for category 1b) and higher order compensation (for category 3) can
also be devised whenever necessary. The results show that the proposed method
results in improved autotuning in a straightforward manner. Thus, shape informa-
tion is useful in inferring the correct model structure of the process and also in se-
lecting the appropriate control strategy to offer improved performance without the
need for any additional testing.
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5

Improved Relay Feedback

Luyben [1] pioneered the use of relay feedback tests for system identification. The
ultimate gain and ultimate frequency from the relay feedback test are used to fit a
typical transfer function (e.g. first-, second- or third-order plus dead time system).
As mentioned in Chapter 3, it can lead to significant errors in the ultimate gain and
ultimate frequency approximation (e.g. 5–20% error in uK ) for typical transfer
functions in a control system. The errors come from the linear approximation (de-
scribing function analysis) to a nonlinear element. The square type of output from
the relay is approximated with the principal harmonic from the Fourier transform
[2,3] and the ultimate gain is computed accordingly. Several attempts have been
proposed to overcome this inaccuracy. Li et al. [4] use two relay tests to improve
the estimation of uK and u . Chang et al. [3] employ the concept of a discrete-
time system to give a better estimation of u . Notice that, in these attempts, an
ideal relay is employed in the experiments and modifications are made afterward.
Since, the source of the error comes from sine-wave approximation of a square
type of oscillation, a straightforward approach to overcome the inaccuracy is to re-
design the experiment (instead of taking remedial action afterward). That is, to
produce a more sine-wave-like output using a different type of relay.

In this chapter we are trying to design an experiment such that better accuracy
can be achieved in estimating ultimate gain and ultimate frequency. Section 5.11

provides the fundamentals for the saturation relay and an in-depth analysis is
given. Section 5.2 discusses the experimental design and a procedure is given. Sin-
gle-loop and multivariable examples are illustrated in Section 5.3.

1 Readers who are interested in the method itself can skip this section and go directly to Sec-
tion 5.2.
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5.1 Analysis

5.1.1 Ideal (On Off) Relay Feedback

Autotuning based on relay feedback can be analyzed via a block diagram. Consider
a feedback system (Figure 5.1) where ( )sG is a linear transfer function and N is a
nonlinear element. If the input signal ( )te to the nonlinear element is a sinusoidal
wave

( ) sinte a t= (5.1)

where a is the magnitude of the sinusoidal wave, then the output signal ( )u t of
the nonlinear element is a square wave (Figure 5.2).

Since most control system analyses are based on linear theory, Fourier trans-
formation is useful in this regard. The output of the nonlinear element can be ex-
pressed as

( ) 0
1

cos sinn n
n

tu A A n t B n t
=

= + + (5.2)

where

Figure 5.1. Nonlinear feedback system

Figure 5.2. Input–output relationship for ideal (on–off)
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( ) ( )
2

0 0

1
2

A u t d t= (5.3)

( )
2

0

1 ( )cosnA u t n t d t= (5.4)

( ) ( )
2

0

1 sinnB u t n t d t= (5.5)

Because the output ( )tu is an odd-symmetric function (i.e. ( )aN is unbiased and
symmetric to the origin), the coefficients 0A and nA are equal to zero (i.e.

0 0A = and 0nA = , n ). Therefore, Equation 5.2 becomes

( )
1

sinn
n

u t B n t
=

= (5.6)

Furthermore, if an ideal relay is employed (Figure 5.2), then the coefficients nB
become

1 4 , 1, 3, 5,

0 , 2, 4, 6,
n

h n
B n

n

=
=

=
(5.7)

The describing function analysis provides a tool for frequency-domain analysis for
this nonlinear system. Only the principal harmonic is employed for the linear
equivalence. That is, only the first Fourier coefficient is used for frequency-domain
analysis. Therefore, the describing function becomes

( ) 1 1B jAN a
a

=
+

(5.8)

For the ideal relay, since 1 0A = and 1 4B h= , we have

( ) 4hN a
a

= (5.9)

Since a sustained oscillation is generated from a relay feedback test (e.g. Figure
5.2), the frequency of oscillation corresponds to the limit of stability, i.e.

( ) ( ) 01 u NG j a =+ (5.10)

or the ultimate gain uK becomes

( )
( )

1

4

u
u

K
G j

N a
h
a

=

=

= (5.11)
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Part of the success of the autotune identification comes from the fact that uK and
u can be read directly from the experimental results (e.g. Figure 5.2B).
The results of Equation 5.11 clearly indicate that the ultimate gain uK is esti-

mated from the amplitude ratio of two sinusoidal waves at a given frequency u
(i.e. ( ) ( )4 sinu t h t= over ( ) sine t a t= ). Obviously, the output of the relay
is a square wave instead of a sinusoidal wave. This leads to an erroneous result in
the estimated ultimate gain. Figure 5.2 shows the input–output relationship for an
ideal relay. Here, the principal harmonic is used to approximate a square wave
(Figure 5.2B). Chang et al. [3] point out that the truncation of the higher order
terms (i.e. 3,5,7,n = ) affects the ultimate gain and ultimate frequency estima-
tion. Mathematically, it is difficult to include the high order terms in a linear analy-
sis. Instead of including higher order terms, a straightforward approach is to redes-
ign the relay feedback experiment. In other words, it is helpful to devise an
experiment such that the output response of the relay is of more sine-wave-like, i.e.
less square-wave-like.

5.1.2 Saturation Relay Feedback

Since the square-wave output (e.g. Figure 5.2B) comes from an abrupt slope
change at the zero point (i.e. ( ) 0te = in Figure 5.2), the saturation relay provides a
smooth transition around the zero point, as shown in Figure 5.3A. The saturation
relay is characterized by two parameters: a relay height h and a slope k (Figure
5.3A). Therefore, the input of the relay is limited by a maximum a , where

ha
k

= (5.12)

That is, if the input to the relay is less than ( )e aa , then the output is propor-
tional to the input with a factor k

u ke= (5.13)

However, if the input to the relay is greater than ( )e aa > ), then the output of the
relay is limited by h

u h= (5.14)
or

u h= (5.15)

With the saturation relay inserted in the feedback loop, the output of the relay
shows a less square-wave-like response, e.g. a sine wave with an upper (or a lower)
limit. The height of the output response is limited by h  ( h ka= ). The output of
the saturation relay can be characterized analytically. Consider a saturation relay
feedback system. The input to the nonlinear element is a sinusoidal wave with an
amplitude a (Figure 5.3B), i.e.
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Figure 5.3. Input–output relationship for saturation relay

( ) sine t a t= (5.16)

The output to the nonlinear element ( )tu looks like a truncated sinusoidal wave
and the closeness of this output response to a sine wave depends a great deal on
the slope k chosen. The angle (Figure 5.4) gives a simple measure to character-
ize the relay output.

1sin a
a

= (5.17)

Since the relay output is a periodic function, considering a half period, if the phases
lie between and , then the output is equal to h and the sine-wave-like re-
sponses remain for andt t< > , as shown in Figure 5.4. Obviously, the
value depends on the slope k . If k , then we have

( )1 0
/lim sin

k

h k
a

== (5.18)

Then, the output becomes a square wave. With this measure, the relay output can
be expressed as
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Figure 5.4. Graphical interpretation of the angle

( )
sin 0 and

sin

h
t t t

u t

h t

=
< <

(5.19)

Since the principal harmonic is employed for the linear approximation, the Fourier

transformation of ( )tu is useful for the purpose of analysis:

( )
1

sinn

n

u t B n t

=

= (5.20)

where

( ) ( )=
0

2
sin  d

n
B u t n t t (5.21)

Since the term plays an important role in the frequency-domain analysis, the re-

lationship between and frequency responses is studied. Consider the following

cases.

(A) 0 / 2< <  ( /k h a> > ). For this general case, substituting ( )tu (Equa-

tion 5.19 ) into Equation 5.21, we have

( ) ( )

( )( )

1 1

cos cos

sin sin2 1

sin 1 1

1
, 1, 3, 5,

0 , 2, 4, 6,

n

n n

n

h

n n

B n
n

n

+

+

= =

=

(5.22)
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The expression for the odd coefficients (i.e. 1 3 5, ,  ,B B B ) differs from that
of an ideal relay [3] and the even coefficients remain zero. Thus, the describ-
ing function becomes

( )
2

12 sin 1 a
a

h a aN a
a a a

= + (5.23)

where /a h k= . Since the higher order terms (Equation 5.22) are neglected,
Figure 5.5 clearly shows that the principal harmonic approximation cannot
exactly describe the output response (e.g. Figure 5.5B).

(B) 0=  ( k ). Let us first consider an asymptotic case when the slope of
the saturation relay approaches infinity, i.e. k (Figure 5.3A). In this
case, a becomes zero (Equation 5.12), is zero (Equation 5.17) and, sub-
sequently, the saturation relay is reduced to an ideal relay (Figure 5.2). The
coefficients nB of the Fourier expansion can be derived from Equation 5.22.
After some algebraic manipulation, we have

( ) ( )

( )( )

0

sin 1 sin 12 1lim
sin 1 1

1 cos cos

1 4 , 1,3,5,

n
n nhB
n n

n
h n

n

+
=

+

= =

(5.24)

and

0 , 2 , 4, 6,nB n= = (5.25)

Since the principal harmonic 1B is employed in the describing function
analysis, N(a) becomes

( )
2 2

1
20

2 1lim sin

4

a

h a a aN a
a a a

h
a

= +

=

(5.26)

Again, the principal harmonic approximation cannot describe the true output
response. Figure 5.5A compares the true output response (solid line) with the
principal harmonic approximation (dashed line).

(C) / 2=  ( /k h a= ). Let us consider another asymptotic case. That is, the
slope is carefully chosen such that a a= (or /k h a= ). In this case, the
output of the relay is exactly a sine wave (e.g. Figure 5.5C). Therefore, the
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Figure 5.5. The wave shape of the output to the nonlinear element for different
slopes (solid: true output; dashed: approximations)

Fourier coefficients can be found by substituting 2= into Equation
5.22. Here, we have

0n
h

B =
1

otherwise
n =

(5.27)

In this case, only the primary harmonic term exists ( 1B h= and 0nB = for
2n ) and it gives the exact solution. Thus, the output of the saturation relay

is

( ) sintu h t= (5.28)

Equation 5.28 shows that the saturation relay gives a pure sinusoidal wave
and that the output lags behind the input by 180° . Obviously, this is ex-
actly the conventional sine-wave test and, from the definition, the ultimate
gain uK is

u
hK
a

= (5.29)

From the describing function analysis, N(a) can be found by substituting
/ 2= into Equation 5.23:
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( ) hN a
a

= (5.30)

Comparing Equation 5.30 with Equation 5.29, it is clear that no approxima-
tion is involved in this estimation.

The analyses of these three cases show that the saturation relay is a generaliza-
tion of the ideal relay. More importantly, better estimates of uK and u can be
achieved by adjusting the slope of the relay. For example, when 0= we have an
ideal relay, and as increases to / 2 the experiment becomes a conventional
sine-wave test. Therefore, it provides the flexibility in finding more accurate values
of uK and u .

5.1.3 Potential Problem

The improvement in the estimates of uK and u does not come without any po-
tential problem. One possible case is that if the slope chosen is too small (or a is
smaller than or /a h k ), then a limit cycle may not exist. This can be analyzed
from frequency responses. Notice that the condition for the existence of a sustained
oscillation is

( ) ( ) 01 uj N aG =+ (5.31)

or

( )
( )
1

uj
a

G
N

= (5.32)

Equation 5.32 can be solved by plotting and the intersection corresponds to the
crossover point ( uK and u ). For an ideal relay, the 1/ N loci starts from the
origin and goes toward  (e.g. starting from the point “a” toward left in Fig-
ure 5.6). In terms of a saturation relay, the starting point of the 1/ N loci corre-
sponds to 1/ k (Figure 5.6). As we decreases the slope, the starting point moves
gradually to the left. If the starting point moves to the point “b”, we still have an
intersection and a limit will exist. However, if the slope is decreased further, such
that the starting point moves over the point “c”, then 1/ N does not intersect
( )jG any longer and we do not have a limit cycle. Therefore, there exists a criti-

cal slope mink ; when the slope of the saturation relay is smaller than this value, the
feedback system cannot generate a sustained oscillation. On the other hand, if the
slope is chosen too large, then the relay approaches an ideal relay and the im-
provement in the estimate of uK and u disappears. Therefore, a trade-off has to
be made in the selection of the slope. Furthermore, this critical slope mink is related
to ( )G j . That is:

( )
1

u
min

G j
k = (5.33)
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Figure 5.6. Loci of G(j ) and –1/N(a)

The following example illustrates the trade-off.

Example 5.1 WB column

( ) 12.8
16.8 1

sDx eG s
R s

= =
+

This FOPDT system has the following ultimate properties: 2.1uK = and
1.608u = . If an ideal relay is used ( k ), then the test gives ˆ 1.71uK = and

ˆ 1.615u = . This test shows an almost –20% error in the estimate of uK . Further-
more, neither the input Dx nor the output R of the relay shows sine-wave-like re-
sponses (Figure 5.7A). If the slope k decreases to 5, then the system responses be-
have more sine-wave-like (Figure 5.7B) and the estimate of uK becomes
ˆ 1.94uK = (8% error). Obviously, an improvement in the estimate of uK can be

seen using the saturation relay. If the slope decreases further to the critical slope
( 2.1mink k= = ), then the input and output of the relay look exactly like a sine-
wave (Figure 5.7C) and the estimates become ˆ 2.098uK = and ˆ 1.607u = . These
are almost the exact values for uK and u . However, if the slope is chosen to be
less than mink  (e.g. k = 1.5), then the relay fails to generate a sustained oscillation.

The above example clearly indicates that the saturation relay can improve the
estimation of ultimate gain and ultimate frequency. However, attention has to be
paid in the selection of the slope k.

5.2 Improved Experimental Design

5.2.1 Selection of the Slope of Saturation Relay

As mentioned earlier, a critical slope mink exists to indicate the success/failure of a
relay feedback test. Furthermore, this critical slope is system dependent (Equation
5.29). Qualitatively, we also understand that the smaller the slope k, the more accu-
rate the estimate of uK and u which can be achieved given the assumption that
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Figure 5.7. Relay feedback test for Example 5.1: (A) ideal relay (k ), (B) satura-
tion relay (k = 5), (C) saturation relay (k = kmin = 2.1), (D) saturation relay (k = 1.5<
kmin)
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the test is successful. However, in a relay feedback test a quantitative value of the
slope should be given.

In order to determine the slope, a typical process transfer function for chemical
processes is used to illustrate the trade-off between the success of an experiment
and the accuracy of the estimate. Consider a transfer function of the form

( )
1

DseG s
s

=
+

(5.34)

where D is the dead time and is the time constant. A range of /D is studied
for different values of dimensionless slope / mink k and, subsequently, percentage
errors in uK and u are evaluated. Results (Figure 5 .8) show that the im-
provement in the estimate levels off as 10 mink k . Furthermore, the error in uK
ranges from 10% to 20% for these FOPDT systems with an ideal relay
( k ) and the experiments tend to underestimate uK . Several things become
apparent immediately. First, generally, the slope should be less than 10 mink in or-
der to improve the estimates. Second, it is preferable to choose a slope of at least
1.4 mink to avoid an unsuccessful relay feedback test ( ( )1/ umin u G jk K= = ).
Therefore, a simple rule of thumb is to select the slope as “1.4” times mink . Notice
that this is a safety factor for a class of transfer functions over a range of parame-
ter values; for a given system, the true safety factor is actually system dependent,

Figure 5.8. Percentage error in Ku and u for an FOPDT system (e-Ds/( s + 1) with
different values of D/
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as shown in Figure 5.8. In order to test the validity of this method, let us consider a
second-order example.

Example 5.2 High-purity distillation column [5]

( )
( )( )

10

7200 1 2 1
37.7 s

s
s s

eG =
+ +

For this system, the exact values for uK and u are 26.24 and 0.1315 respec-
tively. For an ideal relay ( k ), the ultimate gain found is 23.15. This corre-
sponds to 11.7% error in uK . As we decrease the slope to mink , the almost ex-
act value of uK can be found ( 26.04uK = ) (Figure 5.9). Furthermore, for

1.4 mink k= we can generate a sustained oscillation with an improved estimate in
both uK and u (Figure 5.9).

Figure 5.9. Percentage error in Ku and u for Example 5.2
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Example 5.3 Second-order system with RHP zero

( ) ( )
( )( )2 1 4 1

10 1 se
s

s s
sG =

+ +

+

This is a system with an inverse response. The exact values for uK and u are
0.576 and 0.336 respectively. When an ideal relay is employed, the percentage er-
rors in uK and u are –15.8% and –15.09% respectively. Again, improvement in
the estimates of uK and u can be seen as we decrease the slope toward mink
(Figure 5.10). This example again shows that setting 1.4 mink k= will lead to quite
accurate values of ultimate gain and ultimate frequency while guaranteeing the
success of the relay feedback test.

With these results, we can devise a procedure to find more accurate values of
uK and u .

Figure 5.10. Percentage error in Ku and u for Example 5.3
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5.2.2 Procedure

Since mink (or uK ) is needed to find the slope of the saturation relay, the proposed
procedure finds a rough estimate of mink first and goes on to find k and then to ob-
tain better values of uK and u . The procedure is summarized as follows. Con-
sider a relay feedback system.

(1) Select the height of the relay h (upper and lower limits in the manipulated in-
put in the experiment).

(2) Perform relay feedback tests:

(a) Use an ideal relay (set the slope of the saturation relay to a large value) to
estimate ˆ uK  ( ˆ 4 /uK h a= ).

(b) Calculate the slope of the saturation relay 1.4 mink k=  ( ˆmin uk K= ).

(c) Continue the relay feedback experiment using the saturation relay with
1.4 mink k= .

(3) Find u from the relay feedback test and compute the ultimate gain from

2
12 sin 1u

a
a

h a aK
a a a

= + .

5.3 Applications

The saturation relay feedback is applied to system identification (identifying uK
and u ), as well as autotuning of multivariable systems. Both a linear system and
a nonlinear process are studied.

Consider the WB column studied in Example 5.1. The exact values for uK and
u are 2.1 and 1.608 respectively. The proposed procedure goes as follows. The

relay height h is chosen as 1. Initially, a positive change in R is made and Dx starts
to increase (Figure 5.11). As soon as Dx moves upward, R is set to the lower posi-
tion ( 1R = ). This ideal relay feedback test goes on for two to three cycles (e.g.
time < 11 min in Figure 5.11) and we can estimate uK from the system responses.
The result is 1.71uK =  ( 18.6% error ) . With the initial result, the slope of the
saturation relay is chosen as 1.4 1.4 1.71 2.4mink k= = × = , then the relay feedback
test continues with the saturation relay (e.g. time > 11 min in Figure 5.11). The re-
sults show that the ultimate gain and ultimate frequency found from the saturation
relay feedback are 2.098 and 1.606 respectively. This corresponds to 0.01% error
in uK and 0.012% error in u . Obviously, significant improvement can be made
using the proposed procedure.

A nonlinear distillation example is used to illustrate the accuracy of the pro-
posed autotune identification procedure. The column studied by Shen and Yu
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Figure 5.11. Saturation relay identification procedure for WB column

[6] is a 20-tray distillation column. The product specifications are 98% and 2% of
the light component on the tops and bottoms of the column respectively. The rela-
tive volatility is 2.26, with a reflux ratio 1.76. Table 5.1 gives the steady state val-
ues. The control objective is to maintain the top and bottom product compositions
by changing the reflux flow rate R and vapor boil-up rate V. This is the conven-
tional R V control structure (Figure 5.12). This is a 2× 2 system (more discus-
sion on the multivariable system will be presented in Chapter 6). First, the Bx V
loop is used to test the accuracy of the proposed method in finding uK and u .
Figure 5.13 shows the input V and output Bx responses using the proposed auto-
tune identification with a relay height of 5%. The results (Table 5.2) show that,
compared with the stepping technique [1], the ideal relay feedback experiment
gives significant errors in uK and u . On the other hand, the saturation relay
feedback with a slope of 1.4 mink k=  ( 704k = ) gives a very good estimate in uK
and u . The errors in uK and u are 2.8% and 3.3% respectively.

Next, the saturation relay feedback is applied to both loops of this R V con-
trolled column. The multiple-input–multiple-output (MIMO) autotuning is per-
formed sequentially starting from the Dx R loop while keeping the Bx V loop
on manual. When uK and u for the Dx R loop are found, the PI controller is
tuned according to

3
u

c
KK = (5.35)

2I uP= (5.36)
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Figure 5.12. R–V controlled moderate-purity distillation column

Table 5.1. Steady state values for moderate-purity distillation column

Parameters Values
Number of trays 20
Feed tray 10
Relative volatility 2.26
Operating pressure (atm) 1.0
Feed flow rate (kg-mole/min) 36.3
Distillation flow rate (kg-mole/min) 18.15
Bottoms flow rate (kg-mole/min) 18.15
Reflux ratio 1.76
Feed composition (mole fraction) 0.50
Distillation composition (mole fraction) 0.98
Bottoms composition (mole fraction) 0.02

With this set of tuning constants, the Dx R loop is closed and the saturation relay
feedback is performed on the Bx V loop. This procedure is repeated until the tun-
ing constants converge. Chapter 6 will discuss this MIMO autotuning procedure in
detail. Figure 5.14 shows that it takes two saturation relay feedback tests to com-
plete the autotuning procedure. In order to test the correctness of the identified sys-
tem, the closed-loop transfer functions 11,CLg obtained from different approaches
are compared. Let 1 and 2 denote Dx and Bx . The closed-loop transfer function
for the Dx R loop is
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Figure 5.13. Proposed autotune identification procedure in xB–V loop for moderate-
purity distillation column

Table 5.2. Identification results (Ku and u) in xB–V loop for moderate-purity distil-
lation column

uK u

Value Error(%) Value Error(%)

Steping
method 562.2 0 0.1862 0

Ideal relay
( k ) 503.2 –10.5 0.1839 –5.2

Saturation relay
( 704k = ) 547.1 –2.8 0.1802 –3.3

12 21 22 2
11, 11

11 22 22 2
1

1CL
g g g Kg g
g g g K

=
+

(5.37)

Provided with the steady state gains and time constant, uK and u from the satu-
ration relay feedback (Figure 5.14) are used to back-calculate the coefficients of

11,CLg and 22,CLg :

( ) ( )( )
6

11,
0.00965

9.89 1 23 1

s

CL
eg s

s s
=

+ +

( ) ( )( )
6

22,
0.01316

4.7 1 24.5 1

s

CL
eg s

s s
=

+ +
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The two closed-loop transfer functions are compared with the frequency re-
sponses from the stepping technique. Results (Figure 5.15) show that the satura-
tion-relay-based MIMO autotuning gives very accurate estimates of the process
transfer functions. As can be seen from Figure 5.15, it matches perfectly with the
analytical results (results from stepping technique). Furthermore, autotuning based
on saturation relay feedback gives satisfactory closed-loop performance for 20%±
changes in feed composition (Figure 5.16).

The linear and nonlinear examples as well as identification and autotuning re-
sults clearly indicate that the saturation relay feedback gives a significant im-
provement in finding uK and u and, subsequently, leads to better performance in
identification and MIMO autotuning.

Figure 5.14. MIMO autotuning of the moderate-purity distillation example
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Figure 5.15. Bode diagram for moderate-purity distillation column: (A) g11,CL and (B)
g22,CL
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Figure 5.16. Load responses for ±20% feed composition changes

5.4 Conclusion

In this chapter we have shown that an alternative experimental design can improve
the accuracy in the estimate of the ultimate gain and ultimate frequency. The
analyses show that significant improvement in the estimates of uK and u can
be achieved using the saturation relay feedback. It also shows that too small a
slope in the ramp-type relay may fail to generate a limit cycle and, subsequently,
leads to a failed experiment. A procedure is proposed to overcome the potential
problem. It should be recognized that the input design plays a vital role for system
identification. In addition to the saturation relay, a dual-height relay was used by
Sung et al. [7] to approximate the sine wave.
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6

Multivariable Systems

Up to this point, discussions on autotuners are mostly limited to single-input–
single-output (SISO) systems. Koivo and Pohjolainer [1] use step responses to find
the state-space model for an n n× multivariable system. PI controllers are de-
signed according to the linear model. Conceptually, this is similar to a multivari-
able version of the process reaction curve method. Since step responses are em-
ployed in the identification phase, the method may encounter difficulties with
highly nonlinear processes. Cao and McAvoy [2] evaluate and analyze the per-
formance of a pattern recognition controller in a multivariable system. Hsu et al.
[3] attempt to extend the Åström–Hägglund autotuner to multivariable systems
when I-only controllers are used. Furthermore, the method of Hsu et al. [3] re-
quires that the steady state gain matrix should be known a priori. Obviously, this
requirement limits the applicability of the autotuner in an operating environment.

In this chapter, we extend the Åström–Hägglund autotuner to unknown multi-
variable systems. Here, decentralized PI controllers are used and the square multi-
variable systems are assumed to be open-loop stable.

6.1 Concept

6.1.1 Single-input Single-output Autotuning

Basically, an automatic tuning procedure can be divided into two steps: the identi-
fication phase and the controller design phase. In the identification phase, the
Åström–Hägglund autotuner is based on the observation that a feedback system in
which the output y lags behind the input u by radians may oscillate with a
period of uP . This is a well-known observation. To generate a sustained oscilla-
tion, a relay feedback test is performed (Figure 6.1A). Initially, the input (u ) is in-
creased by h  (u u h= + where u is the steady state value of u ). As soon as the
output is moving upward, the input is switched to the lower position (u u h= ) as
shown in Figure 6.1B. This procedure is repeated until the cycling has stabilized.
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Figure 6.1. Relay feedback system: (A) block diagram and (B) response

From the relay feedback test, the familiar ultimate gain uK and ultimate frequency
u are readily available. They can be approximated as

4
u

hK
a

= (6.1)

2
u

uP
= (6.2)

where a is the amplitude of the oscillation and uP is the period (Figure 6.1B).
Following the identification step, the controller can be designed from uK and u .
Typically, Ziegler–Nichols types of method can be applied to find the controller
gain cK and reset time I of a PI controller. It is also possible to find the tuning
constants using any other design methods, e.g. gain or phase margin specification
[4], dominant pole design [5], M-circle criterion [6]. Notice that all these methods
design a controller based on a single point on the Nyquist curve of ( )G j .
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6.1.2 Multiple-input Multiple-output Autotuning

In Chapter 3, the relay feedback test (ATV method) is employed for the identifica-
tion of the transfer function matrix ( )G s for multivariable systems. Consider an
n n× multivariable system ( )G s with the entry ( )ijg s . A relay feedback test is
performed and each individual element in a column of the transfer function matrix
can be found by fitting the corresponding point on the Nyquist curve to an assumed
model. This procedure is repeated ( n times) until all 2n transfer functions in

( )G s are found. Once ( )G s is identified, the familiar independent (as opposed to
sequential) design methods [7], e.g. BLT method [8], µ (structured singular
value) tuning criterion [9], can be employed to find the tuning constants. By inde-
pendent design, we mean all controllers are designed independently (once the per-
formance specification is met).

Basically, these are off-line controller design methods, despite the fact they can
be automated. However, the identification-design procedure along this line can be
computationally extensive ( 2n transfer functions have to be fitted followed by an
iterative searching for controller parameters). Furthermore, the columnwise identi-
fication procedure (identifying a column of transfer functions in ( )G s by perturb-
ing a manipulated input) can lead to inconsistency in nonlinear multivariable proc-
esses. This is termed independent identification hereafter, and it will be discussed
in a greater detail in the next section.

For an autotuner, an efficient identification-design procedure has to be devised.
From the efficiency point of view, an important question to ask is: Do we really
need to find out all ( 2n ) individual transfer functions ijg for the controller design?
The sequential design [7,10–14] provides an attractive alternative in MIMO auto-
tuning. By sequential design we mean each controller (in a multivariable system) is
designed in sequence. In other words, a MIMO process is treated as a sequence of
SISO systems.

Based on the concept of sequential design, a simple method is proposed for
MIMO autotuning. For the purpose of illustration, a 2 2× system is used (exten-
sion to an n n× system is straightforward). Consider a 2 2× system with a known
pairing ( 1 1y u and 2 2y u ) under decentralized control (Figure 6.2). Initially, a
relay is placed between 1y and 1u , while loop 2 is on manual (Figure 6.2A). Fol-
lowing the relay feedback test, a controller can be designed from the ultimate gain
and ultimate frequency. The next step is to perform the second relay feedback test
between 2y and 2u while loop 1 is on automatic (Figure 6.2B). A controller can
also be designed for loop 2 following the relay feedback test. Once the controller
on loop 2 is put on automatic, another relay feedback experiment is performed be-
tween 1y and 1u (Figure 6.2C). Generally, a new set of tuning constants is found
for the controller in loop 1. This procedure is repeated until the controller settings
converge. Typically, the controller parameters converge in three or four relay feed-
back tests for 2 2× systems. Notice that the proposed MIMO autotuning concept
repeats the “identification-design” procedure on SISO transfer functions.
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Figure 6.2. Sequential tuning procedure for a 2 × 2 system
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This approach has several advantages. First, it makes the problem simple. The
reason is that the proposed approach treats the MIMO system as a sequence of
SISO systems for which the relay feedback system has been proven useful and re-
liable. Second, it operates in an efficient manner, since the autotuner identifies the
transfer functions just needed for the controller design, as opposed to identifying
and fitting all 2n ijg values in the independent design. Third, in terms of identifi-
cation, it is a more accurate approach. It can be understood qualitatively that the
independent identification finds linear ijg values at different operating points (e.g.
changing one input by maintaining the rest of the inputs constant) and the control-
ler design is based on some combinations of ijg values while the sequential identi-
fication finds the transfer function (this can be a combination of ijg values) it
needs for controller design at a single operating point. From this point of view, it is
not necessary to identify all individual transfer ijg values for the purpose of con-
trollers tuning.

6.2 Theory

Since multivariable autotuning is based on the concept of a sequential identifica-
tion-design procedure, the fundamental theory of sequential design is addressed.
Process characteristics from the sequential design are also explored. More impor-
tantly, the idea of sequential identification is proposed and the advantages for iden-
tification in a sequential manner are also discussed.

6.2.1 Sequential Design

The concept of sequential design was proposed in the 1970s [7,10–13,15]. The idea
of sequential design is a straightforward one: to treat an n n× multivariable design
problem as a sequence of n SISO design problems. Therefore, the familiar design
methods can be employed. Unlike the familiar multivariable design methodology
in chemical process control, the classical sequential design method addresses the
problems of the variable pairing and the controller design at the same time, which
makes the design procedure complicated. Bhalodia and Weber [15] and Chiu and
Arkun [7], on the other hand, assume that the controller structure (variable pairing)
is determined a priori and the controller design is carried out sequentially. In this
work, only the problem of controller design is addressed; the variable pairing
problems are discussed elsewhere [16,17]. Notice that, in sequential design, the
process transfer function matrix ( )G s is, generally, assumed to be known.

Consider an n n× multivariable system with decentralized PI controllers (Fig-
ure 6.3A). In the autotuning procedure, initially, the relationship between 1y and

1u is simply (Figure 6.2A)
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Figure 6.3. Block diagram of an n × n multivariable system with decentralized con-
trollers

1
11

1 OL

y g
u

= (6.3)

where the subscript OL stands for open loop. When the loop is closed sequen-
tially, the closed-loop relationship between 1y and 1u becomes a bit more compli-
cated (Figure 6.2C). The following notation will be used:

( )

1  1

111 12

21 22 1

n

n

g g
G s

g g
=

( )
1

2

11

2 1

1

2

0

0

n

k
K s

k

y
y

y

u
u

u

=

=

=

With this partitioning (Figure 6.3B), the closed-loop relationship between 1y and
1u becomes
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( )
1

12 22 2 211
11, 11

1 11
1CL

CL

g g h gyg s g
u g

= = (6.4)

where

[ ] 1
2 22 2 22 2h g k I g k= + (6.5)

which is the complementary sensitivity function for the rest loops and the subscript
CL stands for closed-loop. When 2y is under perfect control ( 2h = ( ) ( )1 1n nI × ),

( )11,C Lg s is reduced to a simpler form:

( )
( )

1
11, 11

1 11

11 1C L
CL

yg s g
u s

= = (6.6)

where ( )11 s is exactly the ( )1,1 entry of the relative gain array (RGA [18]).
When 2y is without control ( 2 0h = ), then 11,C Lg becomes

( ) ( )11, 11C Lg s g s= (6.7)

Therefore, the second factor in the RHS of Equation 6.4 gives the measure of
closed-loop interaction throughout the frequency range of interest. In terms of se-
quential design, this implies, eventually, the SISO system we are dealing with is of
the form of Equation 6.4.

Let us take a 2 2× system as an example. The closed-loop relationship between
1y and 1u becomes

( )

( )

12 21
11, 11 2

11 22

11 2

1

1

C L g

g

g gg s h
g g

h

=

=

(6.8)

where is the Rijnsdorp interaction measure and ( )2 22 2 22 2/ 1h g k g k= + . Simi-
larly, we have

( )22, 22 11CL hg g= (6.9)
Here, takes the system interaction into account.

Therefore, the concept of sequential design is illustrated in Figure 6.4 with the
redrawn block diagram. Figure 6.4 shows that both controllers 1k and 2k can be
designed individually in a sequential manner (e.g. the controller 2k is embedded in

11,C Lg ). Despite the fact that this 2 2× system can be treated as two SISO sys-
tems, the characteristics of ,ii C Lg are quite different from the familiar process
transfer functions, e.g. FOPDT system.

It can be shown that the roots of the closed-loop characteristic equation

( ) 0det I GK =+ (6.10)
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Figure 6.4. Block diagram for sequential design

are exactly the same as these for each loop in Figure 6.4.

( )

( )

11 2 1

22 1 2

1 1 0
or

1 1 0

g h k

g h k

+ =

+ =
(6.11)

The poles and zeros of the transfer functions, e.g. 11,C Lg and 22,CLg , play an im-
portant role in the controller design. Following the steps of multivariable autotun-
ing (Figure 6.2), initially, the poles and zeros are exactly the same as those of 11g .
However, after 1k is designed and loop 1 is closed, the process transfer function in
loop 2 becomes ( )22 11g h (Figure 6.2B or 6.4). The poles of 22,CLg are the
poles of 22 12 21, ,g g g and 1h [13], as shown in Table 6.1. Once 2k is designed
and loop 2 is closed, we go back to loop 1, as shown in Figure 6.2C. At this point,
the transfer function becomes ( )11 21g h and the poles are the same as those of

11 12 21, ,g g g and 2h . The zeros for 11,C Lg and 22,CLg are zeros of ( 21 h ) and
( 11 h ) respectively. From the pole–zero configuration in sequential design (Ta-
ble 6.1), the behavior of ,ii C Lg can be investigated.

6.2.2 Process Characteristics

Consider the autotuning steps in Figure 6.2. Initially, controller 1, 1k , is designed
based on ( )11g s using any possible SISO tuning methods. Typically, in chemical
processes, ( )iig s is an FOPDT process transfer function, e.g.

( ) ( )/ 1Dsii p pg s K e s= + . Most SISO tuning methods result in a complementary
sensitivity function 1h with a resonant peak ( 0c,maxL dB> ). For example, if the
Ziegler–Nichols method is used, the complementary sensitivity function 1h
shows under-damped behavior. Figure 6.5 shows the damping coefficient for the
poles of 1h
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Table 6.1. Poles and zeros in sequential design for a 2 × 2 system

Poles Zeros
Step 1

(Loop 1) 11g 11g

Step 2
(Loop 2) 22 12 21 1, , ,g g g h 11 h

Step 3
(Loop 1)

11 12 21 2, , ,g g g h 21 h

when the Ziegler–Nichols tuning is applied to FOPDT systems with a range of
/ pD values. Notice that first-order Padé approximation is applied to find the

poles of 1h . The damping coefficients fall between 0.4 to 0.5 for a range of / pD
(0.001–1), rather underdamped behavior. Figure 6.6 shows c,maxL for 1h when the
Ziegler–Nichols tuning rule is applied to the same system. Again, underdamped
behavior is observed.

The next step is to design 2k when loop 1 is closed. As shown in Table 6.1, the
poles of 22,CLg are the poles of 1 22 12, ,h g g and 21g . Therefore, 22,CLg has a
pair of underdamped poles (from the poles of 1h ). This is a rather unusual situa-
tion, since most SISO tuning methods deal with an overdamped transfer function
(e.g. FOPDT system). Actually, chemical processes rarely show underdamped
open-loop responses (e.g. considering separators and reactors). Here, the under-
damped characteristics have resulted from the sequential design of multivariable
systems.

Since the multivariable system is treated as a series of SISO systems (Figure
6.4), a form of process transfer function for ,ii C Lg is helpful for the purpose of
analysis. In addition to the underdamped poles, the pole of iig is also the pole of

,ii C Lg . Therefore, an approximate transfer function is used:

( ) ( )
2

, 2 2 1

1
12 1

p p Dsii CL
pp p

e
K s

g s
ss s

=
+

++ +
(6.12)

This is a rather unusual structure for a typical process transfer function. However,
it gives a description of the mix of underdamped and overdamped behavior which
resulted from sequential design. A 2 2× distillation column example is used to il-
lustrate the appropriateness of Equation 6.12.

Example 6.1 WB column
Consider the transfer function matrix

( )

3

1 1 1
7 32 2 2

12.8 18.9
16.7 1 21 1
6.6 19.4
10.9 1 14.4 1

Ds s

s s
G

e e
y u us s

s
y u ue e

s s

=
+ +

=

+ +

(6.13)
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Figure 6.5. Damping coefficient for an FOPDT system with original and modified
Ziegler–Nichols methods

Figure 6.6. Lc,max for an FOPDT system with original and modified Ziegler–Nichols
methods
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with the tuning constants for PI controllers: 1 20.54, 0.072c cK K= = and 1 7.92I = ,
2 26.7I = . The underdamped step response of loop 1 ( ( )11, 11 21CLg g h= ) is

shown in Figure 6.7. The step responses data are fitted to Equation 6.12. The re-
sults of least square regression give

( )11, 2
6.4 44 1ˆ

42.25 11.7 1 60 1
sCL e

sg s
s s s

=
+

+ + +

Figure 6.7 compares the step responses of the original process and the approxi-
mated model 11,ˆ CLg . Good approximation can be obtained using Equation 6.12.

Another characteristic of ( ),ii C Lg s comes from the zeros. Table 6.1 shows that
the zeros of 22,CLg are those of ( 11 h ). Consider a case of ( ) 10 >  (i.e. the
system is paired with negative RGA in the diagonal, 0ii < ). It then becomes ob-
vious that RHP zero can occur. For example, if we have

( )1
1

1
h s

s
=

+
and

( ) 5s =

The zero of 22,CLg is 4 (an RHP zero). However, if

( ) ( )25 1s s= +

Figure 6.7. Step responses of the original process g11(1 – kh2) and the approxi-
mated model (Equation 6.12)
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then the zero becomes 4 5 (an LHP zero). This confirms the finding that pairing
with a negative RGA does not necessarily result in inverse responses (steady state
information is not sufficient to decide [16]). Nonetheless, systems with ( ) 10 >
give a different sign in the controller gain from the open-loop point of view.

6.2.3 Sequential Identification

It is well understood that system identification plays an important role for the suc-
cess of an autotuner. Traditionally, identification of MIMO systems is carried out
by manipulating the inputs iu independently. That is, the first column of the trans-
fer function matrices 1, 1,...,i i ng = are obtained for a change in 1u while the rest of
the inputs , 1j ju are kept constant. Figure 6.8A illustrates the signal flow in the
independent identification.

However, difficulties arise for the identification of nonlinear multivariable proc-
esses [19,20]. Despite the fact that the errors for each individual transfer function

( )ijg s are at an acceptable level, the identified transfer function matrices simply
fail to describe fundamental process characteristics. For example, Luyben [21]
shows that in order to find the correct RGA (in the sign), the changes made in the
manipulated input iu are so small (0.05% changes) that the computer calculations

Figure 6.8. Signal flow in (A) independent identification and (B) sequential identifi-
cation
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have to be carried out using double precision (not to mention how to implement it
in an operating environment).

In their pioneering work, Häggblom and Waller [22] point out the problem: con-
sistency relations are not met for individual transfer functions. In a series of papers,
Waller and coworkers utilize “external material balances” (consistency relations)
to find the transformations between control structures, reconcile process models
and design controllers for disturbance rejection, etc. Häggblom and Waller [23]
give a good summary. Notice that, in their work, independent identification is per-
formed (or assumed) and then the consistency relations are enforced. The goal for
all the reconciliation is obvious: the elements in a process transfer function matrix
should follow some sort of consistency relations (e.g. satisfying material balances).
A new approach is proposed to achieve this goal by modifying the identification
procedure.

In designing controllers for a multivariable system, the actual transfer function
we need is, generally, a combination of ijg values. For example, in the sequential
design for a 2 2× system the actual transfer function we need is

( ) 12 21
,

11 22
, 1, 2 and1ii CL ii jg i j i

g gg s h
g g

= = (6.14)

If these ijg values come directly from independent identification (without check-
ing consistency relations), then the design can be erroneous. A simple way to meet
consistency relations is by performing the identification in a sequential manner:
sequential identification (Figure 6.8B). Figure 6.2 illustrates the procedure of se-
quential identification when the relay feedback test is employed.

The advantage of sequential identification is shown in the following example
and comparisons are made between independent and sequential identifications.

Example 6.2 Blending system
Consider a simple 2 2× blending system (Figure 6.9). The control objective is to
maintain flow rate in the outlet stream F using the first stream 1F and the compo-
sition is controlled by changing the second stream 2F . Material balances describ-
ing the blending system are

1 2F F F= + (6.15)

1 1 2 2xF x F x F= + (6.16)

Linearizing Equation 6.16, the process transfer function ( )G s describing this
nonlinear system becomes

( ) ( ) ( ) 11 2
2

1 1 FF x x x xx F
F F

= (6.17)
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Figure 6.9. Blending system

The nominal steady state conditions are 1 1 20.78, 20, 0.9, 16,x F x F x= = = =
20.3,  4F= = . For independent identification, 1F and 2F are each perturbed by a

factor of 50%. Notice that the results from the step changes in 1F and 2F fail to
satisfy the component material balance (the consistency relation):

1 1 2 2x F xF x F x F+ = + (6.18)

Table 6.2 gives the values of ijg from independent identification. Results show
that 21g and 22g deviate from the true value by –28.3% and –9.2% respectively.
Obviously, the errors depend on the magnitude of the step changes. Furthermore,
the resultant ,ii CLg values are also quite different from the true values (Table 6.2).
On the other hand, sequential identification (Figure 6.8B) can find ,ii CLg directly.
Step changes of 50% are made on 1u and 2u , sequentially, while the other loop is
closed (Figure 6.8). Notice that sequential design finds ,ii CLg values directly (by-
passing ijg ), as shown in Table 6.2. The ,ii CLg values found are exactly the same
as the true values (Table 6.2).

This example clearly shows the advantage of the proposed identification ap-
proach for nonlinear multivariable systems. The sequential identification finds the
essential element, ,ii CLg , for controller design. In doing this, the consistency rela-
tions are achieved internally.

Table 6.2. Estimated process transfer functions for different identification ap-
proaches

11g 21g 12g 22g 11,CLg 22,CLg
True values 1 0.0060 1 –0.0250 1.250 –0.030
Independent
identification 1 0.0043 1 –0.0218 1.197 –0.026

Sequential
identification _ _ _ _ 1.250 –0.030
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6.3 Controller Tuning

6.3.1 Potential Problem in Ziegler Nichols Tuning

The Ziegler–Nichols method [24] is a very popular method of tuning the PID type
of controller for the reasons of its simplicity and its experimental nature (an ex-
perimental procedure comes with the tuning rule). However, most studies of the
Ziegler–Nichols method deal with overdamped systems [5,25,26]. The stability
problem may arise when one tries to tune an underdamped system using the
Ziegler–Nichols method. Tan and Weber [27] explored stability problems associ-
ated with Ziegler–Nichols tuning for third-order systems. As pointed out earlier,
the sequential design may produce an underdamped system since the poles of jh
are also the poles of ,ii CLg ( i j ), and a typical process transfer function is given
in Equation 6.12. Let us use the transfer function of Equation 6.12 to illustrate the
stability problem in the Ziegler–Nichols method. Consider the following under-
damped system with a damping coefficient of 0.6:

( )
2

1 10 1
25 6 1 5 1

se
sg s

s s s
=

+
+ + +

Based on the Ziegler–Nichols method, the controller settings are 19.39cK = and
2.84I = . The Nyquist plot of GK shows that the closed-loop system is unstable

(Figure 6.10). From Figure 6.10, it is clear that for an underdamped system
( 0.6= in this example) the Ziegler–Nichols method may give an unstable
closed-loop system. Notice that the results of Figure 6.5 show that, for the most
common type of transfer function (FOPDT), the Ziegler–Nichols method produces
underdamped poles (poles of h ) with the damping coefficient ranging from 0.4 to
0.5. Furthermore, in the sequential design, the underdamped transfer function, i.e.

,ii CLg , has to be tuned again with the simple Ziegler–Nichols method. This will
lead to an even more underdamped closed-loop system. Therefore, modifications
have to be made to avoid underdamped poles.

6.3.2 Modified Ziegler Nichols Method

It should be emphasized that any familiar SISO tuning methods, e.g. gain margin,
phase margin, ,c maxL criterion, can be applied to the PI controller design. How-
ever, based on the relay feedback type of identification, the Ziegler–Nichols type
of method is a natural choice (since uK and u are available). It is clear that any
modification should make the tuning constants more conservative. The detuning
procedure follows the spirit of BLT [8]. That is, a single detuning factor is em-
ployed to find appropriate constants.

,

,
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K
K
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f
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Figure 6.10. Nyquist plot of GK with Ziegler–Nichols tuning

After a number of tests on linear distillation column models [8], 2 2× systems
with FOPDT transfer functions [28] and nonlinear distillation examples, a detuning
factor f 2.5 is proposed. Justifications for the proposed tuning rule will be
given shortly. The modified Ziegler–Nichols method for PI controller becomes

3
u

c
KK = (6.19)

2I uP= (6.20)

The original Ziegler–Nichols PI tuning rule moves the crossover point ( )1/ ,0uK
in the G -plane to the point ( )1/ 2.2,0.087 (for the same frequency u ) in the
GK -plane. In the modified method a more conservative measure is taken, and the
point corresponding to u is moved to ( )1/ 3,0.0265 in the GK -plane. Since
the damping coefficient of 22,CLg (Equation 6.14) comes from 1h , we are inter-
ested in the damping coefficient or ,c maxL of the proposed method when applied to
typical iig values.

Figure 6.5 shows that damping coefficient of the modified Ziegler–Nichols
method for the transfer functions of ( )/ 1Ds

pe s + type. The results (Figure 6.5)
show that the proposed method is less underdamped (with greater than 0.6 for a
range of / pD values). The ,c maxL plots in Figure 6.6 also show the same trend.
This implies that, for the ranges of parameters ( 0.001 / 1D ) studied, the
damping coefficient in Equation 6.14 is greater than 0.6.

Stability is an important concern for any tuning method. However, a trade-off
between performance and the stability region has to be made. As pointed out by
Tan and Weber [27], unstable regions can always be found for different values of
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damping coefficient for third-order processes. Regions of instability are investi-
gated for the transfer function of the form

( ) 2
2 2

1

1
2 1 1

Ds
p p

p p p

K e s
G s

s s s
=

+
+ + +

(6.21)

The following parametric spaces are studied: Kp = 1, p = 5, p1 = 0–10, p2 = 0–10,
= 0.1–1. Figure 6.11A and B shows that instability regions exist for both the

original and modified Ziegler–Nichols methods. However, the modified Ziegler–
Nichols method reduces the instability region significantly. Figure 6.11 reveals that
the instability region often occurs in the region when 2 1p p> . The reason is that
the larger lead time constant in Equation 6.21 results in a resonant peak in ( )jg
which can be viewed as an enhancement of the underdamped behavior. Obviously,
the instability can be eliminated from Figure 6.11 by detuning the controller further
(using a much larger f ). However, performance will deteriorate.

Probably the most important evaluation is to test these methods in a sequential
design environment. A number of 2 2× systems are studied. Consider 2 2× sys-
tems ( )G s with FOPDT transfer function ( )ij sg . It is assumed that: ( ) ( )0s =
(or ( ) ( )0s = ) and ( ) ( )11 22g s g s= . Sequential design is applied to the system
with different values in of and / pD . The maximum closed-loop log modulus

,c maxL of the complementary sensitivity function ( ( ), , ,/ 1ii CL ii CL i ii CL ig g k g k= + )
is found. Notice that typically , 2dBc maxL = + is an often used heuristic in SISO
tuning [26]. Figure 6.12A shows that ,c maxL is ranging from 1.2 to 28 dB for the
Ziegler–Nichols method with 1> and 0.001 / 1pD< < . Furthermore, the
Ziegler–Nichols method produces an unstable system for 0.3< (Figure 6.12A).

Figure 6.11. Contour plots of stability regions for different tuning methods with (A)
D = 0.1 and (B) D = 1
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On the other hand, the proposed method gives fairly constant ,c maxL (ranging form
0 to 5.7 dB) for 1> (Figure 6.12B) and 0.001 / 1pD< < . As falls below
unity, the ,c maxL increases. However, the values of ,c maxL are still acceptable for

0.3> . For 0.25< , Figure 6.12B shows that an unstable region appears. Cer-
tainly, a more conservative tuning method (using a larger f ) can be used to elimi-
nate the unstable region. However, this can produce sluggish responses for systems
with 1> whenever the constant f tuning rule is applied.

Figure 6.12. Lc,max for 2 × 2 systems using different tuning methods (A) Ziegler–
Nichols tuning and (B) modified Ziegler–Nichols tuning
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The stability and ,c maxL analyses for SISO and more realistic MIMO systems
show that the modified Ziegler–Nichols rule works for a typical process transfer
function provided with reasonable variable pairing. More importantly, the tuning
constants follow directly from the relay feedback test (with very little computa-
tion).

6.3.3 Performance Evaluation: Linear Model

The WB column example (Example 6.1) is used to test the performance of the pro-
posed tuning method. The identification-design procedure is carried out in the
2 2× system. Except for the original pairing 1 1y u and 2 2y u , no prior knowl-
edge about the system is assumed. The autotuning procedure is:

(1a) perform the relay feedback test on 1 1y u while loop 2 is on manual (Figure
6.2A)

(1b) design the PI controller 1k based on 1uk and 1u according to Equations
6.19 and 6.20

(2a) perform the relay feedback test on 2 2y u while loop 1 is on automatic
(Figure 6.2B)

(2b) design the PI controller 2k
(3a) perform the relay feedback test on 1 1y u while loop 2 is on automatic (Fig-

ure 6.2C)
(3b) design the PI controller 1k .

This completes the identification-design procedure. Figure 6.13 shows the auto-
tuning procedure, which is completed in the first 100 min. Notice that, in theory,
we need another step in the autotuning: redesign 2k while the new set of PI tuning
constants is available. However, simulation results show that a new 1k (or 1h ) has
little effect on 2k . Therefore, the autotuning is terminated in three steps. A load
dis-turbance is introduced at 400t = min; the results show that the automatically
designed controllers possess a good disturbance rejection capability (Figure 6.13).
For a closer look at the performance, the modified Ziegler–Nichols method is
compared with the BLT method and the empirical method [8]. Simulation results
show that the load performance of the proposed tuning method is as good as other
well-known tuning methods (Figure 6.14). It should be emphasized, again, that this
good performance is achieved with essentially no prior knowledge about the proc-
ess (with the BLT or the empirical method it is necessary to know the process
transfer function for the tuning) and very little engineering effort (finding uK and

u and, subsequently, cK and I from Equations 6.19–6.20).
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Figure 6.13. Automatic tuning and load responses for WB column

Figure 6.14. Load responses for WB column with different tuning methods
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6.4 Properties

Despite the apparent success of the proposed automatic tuning method, potential
problems of the proposed autotuner are raised which are helpful for the applica-
tions of the autotuner in an operating environment.

6.4.1 Convergence

In theory, the property of convergence of any iterative procedure is very important.
Since the sequential identification-design procedure in MIMO autotuning is an it-
erative process, the convergence of the proposed autotuning procedure is dis-
cussed. In studying 2 2× systems, Bhalodia and Weber [15] point out that, starting
from different loops, the sequential design converges to the same set of tuning con-
stants. Recall the autotuning steps (e.g. steps 2 and 3 in Section 6.3.3) that, in step
2, the identification phase finds 2uK and 2u while loop 1 is on automatic
( ( )2h j is known) and the controller design phase calculates 2k , consequently

2h , from 2uK and 2u (Equations 6.19 and 6.20). When going back to loop 1 in
step 3, the purpose is to find 1uK and 1u with 2h (or 2k ) available (found from
the previous step). Therefore, mathematically, the problem can be formulated as
find 1u and 2u such that the following two nonlinear equations converge:

( )
( ){ }
( ){ }

11, 1 21
1 1 2

11, 1 2
tan

Im ,
,

Re ,
CL u u

u u
CL u u

g j j
f

g j j
= = (6.22)
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u u
CL u u
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2

2 4
22, 2 1

1 11
3

uCL u u
k

g j j
= + (6.25)

And a similar expression can found for ( )22, 1 2,CL u ug j j .
Unlike the conventional way of solving this set of nonlinear equations simulta-

neously, Equations 6.22 and 6.23 are solved sequentially. That is, in the kth itera-
tion Equation 6.22 is solved for 1u  ( ( )

1
k
u ) with 2u taking constant values from

the previous iteration ( ( )1
2 2

k
u u= ). In the linear equations counterpart, this is

exactly the Gauss–Seidel method (see Rice [29] p.142) for solving linear algebraic
equations in a sequential manner. Consider a set of linear algebraic equations

Ax B= (6.26)
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where A is the coefficient matrix with the entry ija , x is the solution vector and
B is a vector with constant values. When solving the equation sequentially, the
necessary and sufficient condition for the equation solving to converge is (see Rice
[29] p.144)

1 1diagI A A < (6.27)

where ( ) is the spectral radius (the largest absolute value of the eigenvalue) of
( ) and diagA is the matrix with iia in the diagonal and zero elsewhere. For a
2 2× system, Equation 6.27 is equivalent to

12 21

11 22
1a a

a a
< (6.28)

As for the case of sequential identification-design, the problem can be formulated
as

1 1

1 2 12 1

22 2

1 22 1

u u uu u

u

u uu u

f f

f f
= (6.29)

where the overbar stands for the solution of the nonlinear equations. Therefore, to
check for convergence is equivalent to finding whether

1 2

2 11 2

1 2

1 22 1

1
u uu u

u uu u

f f

f f
< (6.30)

An experiment is carried out to test the convergence of the multivariable auto-
tuning procedure. 10,000 cases of 2 2× systems with FOPDT types of transfer
function are generated randomly and Equations 6.22 and 6.23 are solved simulta-
neously. Then, the condition for convergence (Equation 6.30) is checked by lin-
earizing Equations 6.22 and 6.23 numerically. Results show that all cases meet the
convergence criterion. Therefore, it can be conjectured that there is no convergence
problem associated with the automatic tuning procedure around the neighborhood
of the true solution. Actually, this can be understood physically. From Equation
6.24, it can be seen that the only way 2u can affect ( )11, 1 2,CL u ug j j is
through 2k (or 2h in a more general way). However, generally, the magnitude of

jh is kept constant for a range of frequencies and the bandwidth of jh often is lar-
ger than that of iig . Therefore, the change in 2u has little impact of the solution
of 11,CLg . Since the systems (systems to be autotuned) are virtually unknown, the
property of convergence can only be conjectured or interpreted qualitatively. As
for our own experience, we have not found any convergence problem in any of the
cases studied.
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6.4.2 Tuning Sequence

Tuning sequence (which loop to be tuned first) is a problem which has arisen from
the sequential design. The work of Bhalodia and Weber [15] implies that a differ-
ent tuning sequence may result in a different speed of convergence (to the final
controller parameters). In our experiments, this means some understanding of the
tuning sequence can lead to an efficient identification-design procedure. In other
words, if a tuning sequence can result in faster convergence, then the autotuning
procedure can be terminated sooner. In our problem setting, the process is assumed
to be virtually unknown except for some very qualitative description. For example,
if information about the relative speed of the loop responses is available, then one
may utilize this to devise an appropriate tuning sequence. The relative loop speed
of Marino-Galarraga et al. [28] is useful in this regard. The normalized loop speed
for the loop i is defined as [28]

1

ui
i n

uii

s

=

= (6.31)

where ui is the ultimate frequency of iig . From the definition, it is clear that is
falls between 0 and 1. For a 2 2× system, if the speed of loop 1 ( 11g to be exact)
is faster than that of loop 2, then 1 0.5s > . Notice that is is the relative loop speed
when only diagonal elements are considered. Such information does not give a
complete description of a multivariable system in a rigorous way. However, this is
probably the most easily available dynamic information from the plant personnel.
Once is is available, which loop should be tuned first?

Following the approach of Marino-Galarraga et al. [28], a simple experiment is
performed. Consider 14 2 2× systems with 11 values of 0.5 and 2.0 (Table 6.3).
The proposed automatic tuning procedure is applied to these 14 systems starting
from loop 1 and loop 2. Table 6.3 gives the model structure and the parameter val-
ues for these systems. The iterations in the sequential design are terminated when
the controller parameters are within 1% of the true values. The results (Table 6.3)
indicate the general trend: faster convergence can be achieved when the fast loop is
tuned first.

Actually, this result can be understood physically. For a system with a very dif-
ferent loop speed, dynamically, the system interaction has little impact on the fast
loop. For example, the effect from system interaction (through the slow loop) does
not show on the fast variable until the transient (results from the transfer function
of the fast loop) almost dies out. On the other hand, the effect of the fast loop al-
ways acts on the slow loop. Mathematically, the bandwidth of the complementary
sensitivity function for the slow loop (e.g. bandwidth of 2h ) is much smaller than
that of the fast loop (e.g. 1h ) and typically 2h is a low-pass filter. Therefore, it is
very likely that

( ) ( ) ( ) ( )( ) ( )11, 1 11 1 1 2 1 11 11CL u u u u uhg j g j j j g j= (6.32)



120 Autotuning of PID Controllers

Table 6.3. Convergence for systems with different relative speeds.

System RGA 11D 12D 21D 22D 1s

Iteration No.
Loop 1 first/
Loop 2 first

1 0.5 0.40 2.70 3.00 5.70 0.905 2 / 3
2 0.5 1.00 2.70 3.00 5.70 0.811 3 / 4
3 0.5 2.00 2.70 3.00 5.70 0.709 3 / 3
4 0.5 3.00 2.70 3.00 5.70 0.633 4 / 5
5 0.5 4.50 2.70 3.00 5.70 0.550 3 / 8
6 0.5 5.00 2.70 3.00 5.70 0.527 3 / 8
7 0.5 6.00 2.70 3.00 5.70 0.489 4 / 3
8 2.0 0.40 2.70 3.00 5.70 0.905 3 / 4
9 2.0 1.00 2.70 3.00 5.70 0.811 3 / 3
10 2.0 2.00 2.70 3.00 5.70 0.709 3 / 3
11 2.0 3.00 2.70 3.00 5.70 0.633 2 / 3
12 2.0 4.50 2.70 3.00 5.70 0.550 4 / 5
13 2.0 5.00 2.70 3.00 5.70 0.527 4 / 5
14 2.0 6.00 2.70 3.00 5.70 0.489 5 / 3

where:
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Equation 6.32 indicates that if loop 1 is tuned first we are closer to the solution (of
Equations 6.22 and 6.23). The analyses show that when qualitative information
about relative loop speed is available we are able to utilize this in deciding the tun-
ing sequence, which will lead to a more efficient autotuning procedure.

6.4.3 Problem of Variable Pairing

In theory, variable pairing should not pose any problem at this stage. That is, all
outputs and manipulated inputs are paired correctly and the process is controlled
via DCS or single-station controllers. However, the proposed autotuning procedure
can be used to eliminate undesirable variable pairing. This is helpful at the com-
missioning stage of a new control system, since we are able to spot potential prob-
lems in the plant. The WB column example is used to illustrate the peculiar behav-
ior and poor performance when an undesirable pairing is configured. Notice that
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the RGA for the correct pairing is ( )11 0 2.01= and the well-known fact that a
system paired with negative 11 is undesirable [16,18].

Example 6.3 WB column with undesirable pairing
If the WB column is paired incorrectly ( 1 2y u and 2 1y u ), then we have

3

1 2 2
3 72 1 1

'

18.9 12.8
21 1 16.7 1
19.4 6.6

14.4 1 10.9 1

s s

s s
G

e e
y u us s
y u ue e

s s

= = + +

+ +

(6.33)

This pairing gives a negative value in 11  ( 11 1.01= ). Consider two cases.
The first case is that we do not know the signs of the diagonal elements (in reality,
it is nearly impossible not to know the signs of the diagonal elements once the con-
trol hardware is installed) or, more likely, we forget to apply the knowledge of the
“sign” in the relay feedback tests. Figure 6.15 illustrates the process of the autotun-
ing. A relay feedback test (t = 0–50 min in Figure 6.15) is performed on loop 1 (the

1 2y u loop) first and a PI controller is designed using the modified Ziegler–
Nichols method; then, another test is carried out on the 2 1y u loop (t = 50–200 in
Figure 6.15) and the second PI controller is designed. The procedure iterates back
to loop 1 with a controller design and the autotuning process is terminated at

300t = min, as shown in Figure 6.15. After the transient dies out, a unit step load
change is applied (at 400t = min). Poor load responses are observed (Figure 6.15)
when compared with the load responses in Figure 6.13 (the load responses with the
correct pairing).

With a closer look at the sustained oscillations when loop 2 ( 2 1y u ) is tuned
(Figure 6.15) one can find that the closed-loop gain 22,CLg is negative, which is
different from the positive open-loop gain (the (2,2) element in Equation 6.33). No-
tice that if the sign of the process gain is positive, then the output and the input
move toward the opposite direction in a half period (e.g. Figure 6.1B). Therefore,
the controller gain is negative in loop 2.

( )
( )

( )
30.7 10.123 0

30.7
78.1 10 0.17

78.1

s
sK s

s
s

=

+

+
(6.34)

That implies that loop 2 cannot be stabilized by itself [16,17]. Despite the fact that
the overall closed-loop system is stable, as shown in Figure 6.15, this control struc-
ture lacks integrity. Furthermore, 11,CLg is (open-loop) unstable, as shown in Ap-
pendix A. Therefore, poor responses can be expected for such a poorly conditioned
closed-loop system. However, no indication of any error is observed in the autotun-
ing process (Figure 6.15), apart from the poor responses.

Let us consider the second case, where we know or are aware of the “sign” of
the diagonal elements. Loop 1 ( 1 2y u loop) is tested and the controller is de-
signed in the same way as that of the previous case. After loop 1 is closed, a sec-
ond relay feedback test is performed between 2y and 1u . An increase in 1u is
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Figure 6.15. Automatic tuning procedure for the WB column with wrong pairing

made initially. Since we know the sign between 2y and 1u is positive, we are
waiting for 2y to cross the SP. However, 2y simply levels off toward the negative
direction and the relay never switches [30]. This means the relay feedback test fails
(because we insist that the sign of the transfer function is positive). Once such a
situation occurs, an undesirable pairing is confirmed.

From the ongoing analyses, it is clear that if the signs of the diagonal elements
are known or, most likely, one is aware of the correct sign in the relay feedback
tests, then the undesirable pairing can be eliminated in the process. Unfortunately,
it can only be used to eliminate undesirable pairings, but not for finding the best
pairing.

6.4.4 Summary of Procedure

From the properties discussed, an effective procedure for multivariable autotuning
is proposed. It depends on the extent of the process information available. Process
information is classified into “required” and “helpful”. The “signs” of the diagonal
elements are the required input data. As mentioned earlier, as the control hardware
is already installed, it is nearly impossible not to know the sign of the steady state
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gain (e.g. not to know whether the controller is direct or reverse acting for the di-
agonal elements). The relative speed of diagonal transfer function, e.g. is in Equa-
tion 6.32, is helpful, since knowing this can lead to faster convergence for systems
with very different loop speeds. With the process information available, the auto-
matic tuning procedure for an n n× multivariable system becomes (Figure 6.16):

(0) rank the loop speed from fast to slow into 1, 2,..., n
(1a) perform the relay feedback test on loop 1 (the relay is switched according to

the sign of iig )
(1b) design 1k using the modified Ziegler–Nichols method (Equations 6.19 and

6.20) and put 1k into automatic
(2a) perform the relay feedback test on loop 2
(2b) design 2k using the modified Ziegler–Nichols method and put 2k into auto-

matic

(na) perform the relay feedback test on loop n
(nb) design nk using the modified Ziegler–Nichols method and put nk into auto-

matic.

This procedure is repeated (back to step 1) until the controller parameters con-
verge. Typically, a total of ( )1n n+ identification-design steps will suffice, as
shown in the next section. Figure 6.16 shows the flow chart of the MIMO autotun-
ing procedure.

6.5 Applications

Two nonlinear distillation columns and a 3 3× linear example are used to illustrate
the MIMO autotuning procedure. For the nonlinear examples, one is a moderate-
purity column [31] and the other is a high-purity column [32]. The 3 3× linear sys-
tem is a transfer function matrix for a distillation column (T4 column [8]).

6.5.1 Moderate-purity Column

This is a 20-tray column studied by Shen and Yu [31]. The product specifications
are 98% and 2% of the light component on the top and bottoms of the column. The
relative volatility is 2.26 with a reflux ratio 1.76. Table 5.1 summarizes the steady
state operating conditions. The control objective is to maintain the top and bottoms
compositions ( 0.98Dx = and 0.02Bx = ) by changing the reflux flow rate R and
vapor boil-up V . This is the conventional R V control structure (Figure 5.12). In
the nonlinear simulation, the following assumptions are made:
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1. equal molar overflow
2. 100% tray efficiency
3. saturated liquid feed
4. total condenser and partial reboiler
5. perfect level control.

According to the autotuning procedure in Figure 6.16, relay feedback tests are per-
formed on the R V controlled distillation column. The relay heights h of 3% are
used in R and V . The Dx R loop is tuned first and the controller 1k is designed
(Equations 6.19 and 6.20) followed by the second relay feedback test on the
Bx V loop (Figure 6.17). After the bottoms controller 2k is designed and put on

automatic, the third relay feedback experiment is performed and the controller pa-
rameters for 1k are finalized. The resultant controller parameters are 1cK =

1245.34 , 97.1I = and 2 2157.4, 47.8c IK = = . The results of the first (t = 0–
200 min) and the third (t = 400–600 min) relay feedback tests clearly show that the
controllers 1k designed from these two tests are almost the same ( 1 223.25cK =
and 245.36 and 1 89.0I = and 97.1). This means, in fact, two relay feedback tests
are sufficient for this column. A +5% step flow rate change is introduced at

800t = min and a +5% feed composition change is also made at 1300t = min.
Figure 6.17 shows that good load rejections are achieved with the tuning constants
from the autotuning procedure. It should be emphasized that the good load re-
sponses are achieved with little engineering effort (no transfer func-tion is fitted,
no frequency-domain plot is generated). The only knowledge assumed is that one
has to know the “sign” between Dx and R is positive and the “sign” between Bx
and V is negative. Actually, this information is not applied, since the outputs and
inputs are paired correctly.

6.5.2 High-purity Column

The high-purity column is a 3C splitter [32] which separates propane and propyl-
ene in a 190-tray column. The relative volatility ranges from 1.12 to 1.24 and the
product specifications are 99.66% and 0.02% light component (propylene) at the
top and bottoms of the column respectively. This is a very high purity column with
difficult separation. In terms of control, this is a highly nonlinear system [33]. The
D B control structure is considered for dual-composition control (Figure 6.18).
The steady- state operating conditions are given in Chang and Yu [20]. The auto-
tuning procedure is applied to the 3C splitter. The Dx D loop is tuned first and
the autotuning is terminated in three relay feedback experiments. Again, the con-
troller parameters for the Dx D loop are expected to be almost the same from the
first and the third relay feedback tests (Figure 6.19). Table 6.4 shows the corre-
sponding tuning constants from the autotuning steps. A 5% feed composition
change is made at 1000t = min (Figure 6.19) and simulation results show that
good load responses are obtained. Chang and Yu [20] also studied the modeling,
tuning and robustness aspects of the 3C splitter. Since this column is highly
nonlinear and a non-conventional control structure is employed (resulting in a
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Figure 6.16. MIMO autotuning procedure
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Figure 6.17. Automatic tuning and load responses for a 5% step change in feed
composition for the Shen and Yu column

Figure 6.18. D–B control structure for C3 splitter
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Figure 6.19. Automatic tuning and load responses for a 5% step change in feed
composition for the C3 splitter

transfer function with a 1/ s term), a great deal of effort is spent finding the trans-
fer function matrix [32]. Chang and Yu [20] use the stepping technique (see Luy-
ben [26] p.444) to find frequency responses for the R V structure followed by a
transformation from R V to D B structure. Once the transfer function matrix is
obtained, a modified version of singular value tuning (SVT) [34] is used to find the
tuning constants for the PI controllers [20]. Table 6.4 gives the autotuning con-
stants from the SVT.

Comparisons are made between the autotuning approach and the SVT tuned
control system. Figure 6.20 shows the load responses for 30%± feed composition
changes. Similar results can be seen for feed flow rate disturbances.

The results show that better load responses are achieved using the proposed
autotuning procedure. More importantly, good performance is achieved with very
little engineering effort. The multivariable autotuner is activated at 0t = and the
tuning is completed at 700t = min following three relay feedback tests.

Table 6.4. Controller parameters for a C3 splitter using the proposed autotuning
procedure and SVT

Step 1 Step 2 Step 3
Tuning Dx D loop Bx B loop Dx D loop
method ( /c IK ) ( /c IK ) ( /c IK )
MIMO autotuner 150.42 / 93.42 42.28 /108.32 150.08 / 91.68
SVT method 45.64 / 79.35 7.91/150.0
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Figure 6.20. Load responses for ±30% feed composition change with different de-
sign methods

6.5.3 T4 Column

This autotuning procedure can be extended to an n n× multivariable system in a
straightforward manner. The following 3 3× literature example [8] illustrates this
extension. The transfer function matrix of the T4 column is
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1 0.59 0.68 0.42

2 2 2 2

3
7.75 3.79 1.59

2

2.986 5.24 5.984
66.7 1 400 1 14.29 1

0.0204 0.33 2.38
7.14 1 2.38 1 1.43 1

0.374 11.3 9.811
22.22 1 11.36 121.74 1

s s s

s s s

s s s

e e e
s s sy
e e ey
s s sy
e e e
s ss

+ + +

=
+ + +

+ ++

1

2

3

u
u
u

Following the autotuning procedure, the loop speed is ranked from fast to slow as:
loop 1, loop 2, loop 3. The autotuning is carried out according to Figure 6.16 and
the resultant controller parameters are 1 2.51cK = , 2 6.34cK = , 3 0.23cK =
and 1 16.2I = , 2 12.4I = , 3 12.6I = . Figure 6.21 shows that the tuning proce-
dure is completed in the first 180 min and an SP change is made at 300t = min.
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Notice that, except for 1cK , the controller parameters from five relay feedback
tests are essentially the same as the resultant parameters ( 1 3.24cK = , 2cK =

6.05 , 3 0.28cK = and 1 12.05I = , 2 12.17I = , 3 12.37I = ).
The results (Figure 6.21) show that the autotuning procedure gives reasonable

servo responses. Actually, the modified Ziegler–Nichols method shows better SP
responses than the BLT method. Again, the results show that the proposed autotun-
ing procedure achieves good performance with very little engineering effort for an
HO ( 3 3× ) system.

Figure 6.21. Automatic tuning and SP change in loop 1 for T4 column
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6.6 Conclusion

In this chapter we have seen the multivariable version of the Åström–Hägglund
autotuner. It is based on the concept of sequential identification-design. The con-
sistent nature (satisfying consistency relations) of the sequential identification is
discussed and the advantages are shown. Once the ultimate properties become
available, a modified Ziegler–Nichols tuning is applied to find the settings sequen-
tially. The convergent nature of the multivariable autotuner is also conjectured. It is
important to recognize that this relatively simple autotuner works and works well
for very difficult processes: recycle chemical process (Chapter 11), reactive distil-
lation [34], Tennessee Eastman process (Chapter 8), etc. It is used routinely in con-
troller tuning or complex processes, and we suggest you try it on your systems.
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Appendix

Consider a 2 2× system under decentralized PI control. Assume that:

1. ijg are rational, strictly proper transfer functions with no RHP pole.

2. The closed-loop system is stable along the tuning sequence (loop 1 tuned first,
followed by loop 2 then back to loop 1).

3. No pole–zero cancellation occurs in ,ii CLg .

If ( )0 1> (or 11 0< ) and loop 1 is tuned first, then ( )11,CLg s has at least
one RHP pole.
Proof: Since loop 1 is tuned first (with loop 2 on manual) and the system is stable,
this means ( ) ( )11 11 0g s k s+ = does not have an RHP zero or, equivalently, 1h
does not have an RHP pole.

Let 22g take the form

( ) ( )
( )22 22p

N s
g s K

D s
= (A1)

where ( )N s and ( )D s are numerator and denominator polynomials with deg
( )( ) ( )( )degD s N s> and (from the strictly proper assumption) ( ) ( )0 0 1D N= = .

The second controller 2k is designed according to

( ) ( ) ( )( )22, 22 11CLg g s s h s= (A2)

Since ( )0 1> and ( )1 0 1h = , it then becomes obvious that

( ) ( ) ( )( )22, 22 0 00 1CLg g= (A3)

This indicates that the sign of 22,CLg is different from that of 22g . Since 22,CLg
does not have an RHP pole (the poles of 22,CLg are the poles of 22 12 21, ,g g g and
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1h ) and the closed-loop system 22, 21 0CLg k+ = is stable, the controller gain 2cK
has the same sign as that of 22,CLg :

( )22, 20 0CL cKg > (A4)

or

( )22 20 0cKg < (or 22 2 0p cK K < ) (A5)

Now go back to loop 1 to design 1k for 11,CLg . Notice that the poles of 11,CLg are
the poles of 11 12 21, ,g g g and 2h . Let us consider the poles of 2h . The zeros of
the closed-loop characteristic equation become

22 2
11 0I

c
I

sg K
s
+

+ = (A6)

( ) ( )
( )

22 2 1
1 0p c I

I

K K s N s
s D s

+
+ = (A7)

( ) ( ) ( )22 2 22 2 0I p c I p csD s K K sN s K K N s+ + = (A8)

Since ( ) 10D = and 22g is stable and strictly proper, the coefficient of the highest
degree is positive. From ( ) 10N = , the constant term 22 2p cK K is negative. It is
obvious that the closed-loop characteristic equation has at least one RHP zero. This
implies 2h or 11,CLg has at least one RHP pole.
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7

Load Disturbance

Since frequent and large load changes are often encountered in industrial proc-
esses, any identification procedure should be able to, at least, detect load changes,
more positively, to find a quality process model under load disturbance. In this
chapter, the relay feedback system is enhanced by taking the effect of the load into
account. In other words, instead of analyzing or validating the plant data afterward,
the load effect is compensated for during the plant tests.

7.1 Problems

Disturbance rejection is the major consideration in chemical process control. In
terms of control, slow chemical processes have to overcome frequent and progres-
sive types of load change. Facing frequent load changes, any reliable identification
methodology should be as insensitive to load change as possible. Therefore, sensi-
tivity with respect to load changes is an important criterion in evaluating identifica-
tion techniques.

7.1.1 Step Change versus Continuous Cycling

Two popular identification methods, step test and relay feedback test, are com-
pared. Consider a second-order linear system, the process ( )2G s and load ( )LG s
transfer functions are

( )
( )( )

2
2

10 1 1

s

s s
eG s =
+ +

(7.1)

( )
( )10 1

s
L

s
eG s =

+
(7.2)
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First, a step test is introduced and the step response is shown in Figure 7.1. From
the system input u and output y , the reaction curve method [1,2] is used to find
an SOPDT model. The result gives

( )
( )( )

2
2
ˆ

9.4 1 0.86 1

seG s
s s

=
+ +

(7.3)

From the identified model ( )2Ĝ s , the ultimate gain uK and ultimate frequency
u are 6.749uK = and 0.6237u = . This corresponds to –4.5% error in uK and

3.95% error in u . Actually, a fairly good model is found from the process reac-
tion curve. However, if a step load change ( 0.5L = ) comes in at 10t = , then the
step response is distorted, as shown in Figure 7.1 (solid line). Again, Smith's
method is employed to find the transfer function. It becomes

( )
( )( )

2
2

8 1
1.5ˆ

2.3 1

s

s
eG s

s
=

+ + (7.4)

From the identified model ( ( )2Ĝ s in Equation 7.4), it is quite clear that the quality
of the model deteriorates significantly. This corresponds to 42.7% and 18.3%
errors in uK and u respectively. Furthermore, the deviation can become even
greater if the magnitude of load change increases.

Figure 7.1. Step test for G2 (s) with and without load disturbance
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An alternative is the relay feedback test, where an ideal relay is placed in the
feedback loop to generate a sustained oscillation. From system responses, the im-
portant information, ultimate gain uK and ultimate frequency u , can be found.
This gives

4
u

hK
a

= (7.5)

2
u

uP
= (7.6)

where h is the height of the relay and a is the amplitude of the output response.
Figure 7.2 shows the input and output responses and uK and u can be calculated
from Equations 7.5 and 7.6. This gives 6.55uK = and 0.5978u = , which corre-
sponds to 7.36% and 0.11% errors in uK and u respectively. Again, a load
change with 0.5L = is introduced at 10t = min (solid line in Figure 7.2). From
system responses, two observations become apparent. First, the system output is
asymmetric ( y is asymmetric with respect to the SP). The second observation is
that the offset in y is not equal to the magnitude of the load effect d (Figure 7.2).
For this asymmetric oscillation, the amplitude of the oscillation a is taken as the
average of the oscillation:

Figure 7.2. Relay feedback tests for G2 (s) with and without load disturbance
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2

max miny ya = (7.7)

where maxy and miny stand for the maximum and minimum amplitudes of the
process output respectively. Despite the presence of the load disturbance, the re-
sulting estimates of uK and u are still quite reliable and the corresponding errors
in uK and u are 7.14% and 13.1% respectively.

The results clearly indicate that the continuous cycling using an ideal relay
feedback is more robust with respect to load change than the method of step test.
This can be understood since the limit of stability is invariant under bounded load
changes. Therefore, in theory, uK and u cannot be affected by load disturbance.

7.1.2 Effect of Load Change on Relay Feedback Test

Despite the fact that the relay feedback test is less sensitive to load disturbances,
the estimates of uK and u (in particular) also deteriorate slightly for a moderate
load change ( 0.5L = ). Unfortunately, the errors in the estimates of uK and u
grow exponentially as the magnitude of the load change increases. Let us take
three typical linear transfer functions illustrating the effect of load disturbance.

Consider an ideal relay feedback system with an external load variable L (Fig-
ure 7.3A). Under load disturbance, an ideal relay feedback test results in an asym-
metrical oscillation, as shown in Figure 7.3B. In addition to the SOPDT system
( ( )2G s in Equation 7.1), a first-order and a third-order plus dead time system are
considered.

Figure 7.3. Ideal relay feedback system under load disturbance: (A) block diagram
and (B) system input and output responses
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( )
( )

2
1 10 1

seG s
s

=
+ (7.8)

and

( )
( )( )( )

2
3 20 1 10 1 1

seG s
s s s

=
+ + +

(7.9)

with a load transfer function ( )LG s (Equation 7.2). Ideal relay feedback tests with
1h = are performed on these three examples for a wide range of load changes. uK

and u (or uP ) are computed from system input and output responses and the re-
sults show that estimated errors, u in particular, grow rapidly as the magnitude of
the load increases (Figure 7.4). Furthermore, the estimated uK deteriorates as the
order of the system increases. Since load disturbance is uncontrollable in an operat-
ing environment, remedial action has to be taken to ensure the quality of the identi-
fied model.

7.2 Analyses

7.2.1 Causes of Errors

An ideal relay feedback test under a step load change gives asymmetric output re-
sponses ( y in Figure 7.3) and, consequently, an imbalance in half periods results.
This asymmetry and the imbalance lead to errors in the estimates of uK and u .

Unlike a simple relay feedback system ( 0L = in Figure 7.3A), the input to the
nonlinear element consists of two elements: a symmetric oscillation and a step in-
put. This type of problem was known to the control community as the dual input
describing function (DIDF) as early as the 1950s [3]. In order to describe the
characteristics of the nonlinear element (an ideal relay), the relationship between
the input and output signals of the nonlinear element can be separated into two
parts: one is the oscillatory part (the gain of the sinusoidal wave to the output of the
nonlinear element) and the other is the static part (the gain of the biased signal to
the output of a nonlinear element). The static part can be described by the equiva-
lent gain [4]:

uN
e

= (7.10)

where u and e are respectively the averaged input and output of the nonlinear
element, which can be found by integrating the system response. For example:

( )uP t

t
u u t dt

+
= (7.11)

( )u tP

t
e e t dt+= (7.12)
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Figure 7.4. Percentage error in Ku and u under load changes for ideal and output-
biased relays: (A) first-order model (G1), (B) second-order model (G2), and (C) third-
order model (G3)
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The oscillatory part is characterized by the familiar describing function ( )N a . The

following conditions should be satisfied for the existence of a sustained oscillation

[5]:

( )( ) ( )1 0 0LGe N G L=+ (7.13)

( )  01 uNG j =+ (7.14)

Equations 7.13 and 7.14 give constraint at the low ( 0= ) and high ( u= ) fre-

quencies. Furthermore, Equation 7.13 relates the bias in the output e to the exter-

nal load disturbance LG L .

The describing function analysis shows the difference between a simple relay

and a relay feedback under load change. Consider a relay feedback system (Figure

7.3). The output ( )u t of the nonlinear element can be expressed in terms of Fou-

rier series:

( ) ( )0

1

cos sinn n

n

Au t A n t B n t
=

= + + (7.15)

where

( )
2

0 0

1

1

2

2
= sin

A u t d t

h a

a

=

(7.16)

( )
2

0

1

1
cos

4
= sin sin , 2,4,6,

nA u t n t d t

h a
n n

n a

=

=

(7.17)

( )
2

0

1

1
sin

4
= cos sin , 1,3,5,

nB u t n t d t

h a
n n

n a

=

=

(7.18)

The factor 0A describes the imbalance in the half periods. Furthermore, in addi-

tion to the well-known terms 1B , 3B , 5B , from a single-input system ( 0L = ),

the dual-input system ( 0L ) gives the following non-zero terms: 2A , 4A , 6A ,

. It is quite clear that the term describing the imbalance, 0A , and the additional

terms, 2A , 4A , 6A , etc. degrade the principal harmonic approximation and, sub-

sequently, lead to erroneous estimates of uK and u . Furthermore, if a ap-

proaches zero, the 0A , 2A , 4A , terms disappear. Notice that the asymmetric

output response can also be observed from a relay feedback under a disturbance-

free condition (Figure 7.5). Figure 7.5A shows an output-biased relay with a bias
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Figure 7.5. Output-biased relay feedback system: (A) block diagram and (B) sys-

tem input and output responses

value 0 . The system response indicates an asymmetrical oscillation with respect

to the SP ( 0y = ) and the imbalance in half periods is also observed (Figure 7.3). It

then becomes obvious that we can utilize the asymmetry ( 0a in Figure 7.5B) of

the output-biased relay to cancel out the asymmetry ( a in Figure 7.3B) generated

from a load change.

7.2.2 Output-biased Relay Feedback System

Before getting into the detail of restoring symmetry, the frequency response of the

output-biased relay is analyzed [6]. Consider an output-biased relay feedback sys-

tem (Figure 7.5): the output of the nonlinear element u (Figure 7.5) can be ex-

pressed in terms of Fourier coefficients, i.e.

( )
2

0 0

1 0
0

1

2

2
= sin

A u t d t

ah

a

=

(7.19)
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( )2

0

1 0

1 cos

4= sin sin , 2,4,6,

nA u t n t d t

ah n n
n a

=

=
(7.20)

( )2

0

1 0

1 sin

4= cos sin , 1,3,5,

nB u t n t d t

ah n n
n a

=

=
(7.21)

Equations 7.19–7.21 show all non-zero terms in the Fourier expansion. Except for
the biased term (Equation 7.19), Fourier coefficients describing the oscillatory part
(Equations 7.20 and 7.21) are exactly the same as those from load disturbance
(Equations 7.17 and 7.18).

Let us first consider an ideal relay feedback system. If a load disturbance is in-
troduced, then the output oscillation is biased with a value of a (Figure 7.3). If
the relay block is switched to an output-biased relay (e.g. Figure 7.5A), with an ap-
propriate adjustment of 0 , it is possible to eliminate the asymmetry in the output
oscillation. That implies that, under a static load change, we can have an output-
biased relay feedback system with 0 0a = . Under this circumstance ( 0 0a = ),
Equation 7.24 becomes

0, 2, 4,6,nA n= = (7.22)

4 , 1,3,5,n
hB n

n
= = (7.23)

and the principal harmonic approximation gives the following describing function:

( ) 4hN a
a

= (7.24)

It should be emphasized that Equation 7.24 is exactly the same as the describing
function for the disturbance-free case. More importantly, performance degradation
(in the estimate of uK and u ) can be eliminated. The output-biased relay feed-
back can retain the quality of the estimates for a wide range of load changes. But,
the correct 0 comes from a trial-and-error procedure [7].

In an operating condition, it is not practical to have an on-line trial-and-error
procedure, since this can prolong the duration time for plant test. Therefore, it is
desirable to devise a procedure with which the biased value 0 can be found effi-
ciently.
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7.2.3 Derivation of Bias Value 0

7.2.3.1 Effect of Load Disturbance

Before finding an appropriate 0 to overcome load effect, one has to analyze the
relationship between the output bias a and the load effect from the available
process information. From the literature, one possibility is the static relationship
describing the existence of a sustained oscillation (Equation 7.13). That is:

1 p LK
ue K L
e

=+
(7.25)

where e and u can be found from integrating system output and input responses
and pK and LK stand for steady state gains for the process and load transfer func-
tions respectively. Unfortunately, Equation 7.25 gives two unknowns pK and

LK L that cannot be solved explicitly. Furthermore, a is not involved in the
equation.

A new relationship describing a and load effect LK L is derived. Let us ana-
lyze two extreme conditions for the existence of a sustained oscillation. The asym-
metry in the output a arises from the 0A term (Equation 7.16) according to the
Fourier expansion. Therefore, the two cases are classified as the lower and upper
bounds of a under the condition for the existence of a limit cycle. Consider the
feedback loop in Figure 7.3.
(1) Lower bound 0a =

The lower bound for a is quite obvious, i.e. 0a = . The corresponding
load effect is

0LK L = (7.26)

This can be understood from the typical symmetric oscillation obtained from
an ideal relay feedback when load disturbance does not exist (symmetric in-
put–output responses is an indication of zero load effect). This can also be un-
derstood by analyzing Fourier coefficients (Equations 7.16 and 7.18). If

0a = , then the bias term 0A (Equation 7.16) disappears and this implies
that there is no asymptotically constant load change.

(2) Upper bound a a
Another extreme is when a approaches the amplitude of the output oscilla-
tion (Figure 7.3B). It should be noted that we cannot have a a which ex-
ceeds the amplitude a and still has a sustained oscillation. Taking the limit,
the bias term of the Fourier coefficient (Equation 7.16) becomes

0A h (7.27)

Furthermore, the rest of the non-zero Fourier coefficients, 2A , 4A , and
1B , 3B , , are approaching zero (Equations 7.17 and 7.18). Equation 7.27

provides another perspective to the limiting condition: it characterizes the ma-
nipulated input ( )u t . Therefore, instead of correlating a to the maximum al-
lowable load change LK L , the relationship between the manipulated input and
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largest load change for the existence of a limit cycle is established. A steady
state analysis from the block diagram (Figure 7.3) indicates that, under this
circumstance, the maximum allowable load change is in balance with the
achievable capacity of the manipulated input. That is:

( ) 0L pK L K h =+ (7.28)

or

L pK L K h= (7.29)

Let us take the first-order example 1G to illustrate this. Consider the case
when 1h = and 0.999999L =  ( L pK L K h< ); the input and output responses
are shown in Figure 7.6. The results indicate that the magnitude of the ma-
nipulated input ( )u t approaches h while the output y stays fairly close to
the SP ( 0y = ). Furthermore, if LK L exceeds unity, i.e. L pK L K h> , then
the ideal relay feedback system fails to generate a sustained oscillation.

After deriving the relationship between the load effect LK L and corresponding
process variables (e.g. pK and h ) at these two extremes, a new result can readily
be formulated. For linear processes, the linear interpolation can be utilized to corre-
late the asymmetry a to the load effect LK L . From Equations 7.26 and 7.29, the
slope describing a and LK L is

0
0p p

a a
K h K h

= (7.30)

Therefore, the linear relationship relating the asymmetry a to the load effect be-
comes

L
p

aa K L
K h

= (7.31)

or

1
L

p

a K L
a K h

= (7.32)

The result gives a simple description between the load effect and relevant process
variables. Again, the three linear examples ( 1 2,G G and 3G ) are used to validate
Equation 7.32. Figure 7.7 shows that for the three typical process transfer functions
with a load transfer function ( LG in Equation 7.2), the asymmetry /a a is indeed
is a linear function of the load effect ( LK L ). This is the main result (Equation
7.32) in this chapter.

Furthermore, with this new equation, we are able to back-calculate the load ef-
fect and the steady state gain. Substituting LK L of Equation 7.32 into Equation
7.25, the steady state gain can be solved directly. That gives:

( )p
h u

eK
a
a +

= (7.33)
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Figure 7.6. Input and output responses for an ideal relay feedback system with the
magnitude of load change approaching the upper bound (KLL Kph) for G1

Once pK is available, the load effect can be solved from Equation 7.32.

( )L pK haK L
a

= (7.34)

Therefore, Equations 7.33 and 7.34 can be utilized to find additional process in-
formation. Since the objective of this work is to restore a symmetric output re-
sponse, the use of these two equations will not be elaborated further.

7.2.3.2 Opposite Effect from Output-biased Relay

Similarly, the counterpart of the linear relationship can be derived for the output-
biased relay feedback system. Again, from the Fourier analysis, the two extreme
conditions for the existence of a limit cycle can readily be derived. The lower
bound corresponds to

0 00 0a= = (7.35)

and the upper bound is

0 00 0a (7.36)
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Figure 7.7. Linear relation between bias value a/a and magnitude of load L under
ideal relay feedback for: (A) first-order (G1), (B) second-order (G2) and (C) third-
order (G3) systems
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Therefore, the linear relationship for the output-biased relay becomes

0
0

1a
a h

= (7.37)

Actually, Equation 7.37 is the dual of Equation 7.32, which describes the relation-
ship between the asymmetry in the output response 0a and the biased value 0 in
the relay.

Since the load change introduces the asymmetry a in y , the way to restore
the symmetric output response is to switch the relay to an output-biased relay such
that

oa a= (7.38)

Therefore, the bias value 0 can be found immediately (Equations 7.37 and 7.38).

0
a h
a

= (7.39)

This important result gives the bias value 0 for a better estimate of uK and u
throughout the relay feedback test. Without Equation 7.39, one has to go through a
trial-and-error procedure to find the correct value of 0 [7]. More importantly, all
the variables ( a , a and h ) for computing 0 can be read off directly from the
input–output response.

7.3 Summary of Procedure

Consider an ideal relay feedback system (Figure 7.3A). If a load disturbance comes
into the system during the plant test, an asymmetric oscillation results. If informa-
tion about the magnitude of disturbance and steady state gain is needed, Equations
7.33 and 7.34 can be utilized to solve for pK and LK L provided with u and y .
Otherwise, the experiment proceeds with an output-biased relay using the bias
value computed from Equation 7.39. Therefore, the procedure can be summarized
as follows:

(1) Perform an ideal relay feedback test (Figure 7.3).

(1a) If the limit cycle is symmetric, then calculate uK and u

4

2

u

u
u

hK
a

P

=

=

and stop the experiment.
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(1b) If the limit cycle is asymmetric,
A. When the additional information, steady state gain and the magnitude

of the load change, is needed, integrate system input and output re-
sponses (u and e in Equations 7.5 and 7.6) to find pK and LK L ac-
cording to Equations 7.33 and 7.34. Notice that, in order to have an
accurate estimate of pK and LK L , one has to wait until the asymmet-
ric response settles down. Typically, it takes two or three cycling peri-
ods.

B. If the additional information is not needed, go to step 2.

(2) Perform an output-biased relay feedback test with the following bias value
(Equation 7.39):

(1)
(1)
0 (1)

h a
a

=

(2a) If the limit cycle becomes symmetric, then calculate uK and u

4

2

u

u
u

hK
a

P

=

=

and stop the experiment.

(2b) If the limit cycle is still asymmetric, then update the bias value in the
output-biased relay according to

( )
( 1) ( )
0 0 ( )

i
i i

i
h a
a

+ = (7.40)

where ( 1)
0
i+ stands for the bias value in the (i+1)th adjustment and

( )ia represents the bias in the output with respect to the previous cen-
ter point. It is recommended that the bias value is updated every one or
tow oscillations.

7.4 Applications

Linear and nonlinear distillation examples are used to illustrate the effectiveness of
the proposed system identification approach under load changes. Step-like and
non-step types of load change are discussed. The ultimate gain and ultimate fre-
quency are used to evaluate the correctness of the identified model.
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7.4.1 Linear System

Consider the third-order plus dead time system:

( )( )( )

( )

2
3( )

20 1 10 1 1

( )
10 1

s

s
L

eG s
s s s

eG s
s

=
+ + +

=
+

Without load disturbance, a relay feedback experiment gives 10.44uK = and
0.2126u =  (t = 0–140 min in Figure 7.8). This corresponds to 5.6% and

2.9% errors in uK and u , respectively. When a step load change with L =
0.8 is introduced at 140t = min, an asymmetric sustained oscillation results (t =
140–310 min in Figure 7.8). Again, uK and u can be estimated (Equations 7.5
and 7.6) and the corresponding errors are 7.46% and 31.54% respectively. Ob-
viously, the quality of the estimates deteriorates as the result of load disturbance.
At this point, one can proceed to step 1b-A to find additional information. From the
system response we have 0.08354a = and 0.107a = , while u and e can be
found by integrating the input ( )u t and output ( )y t . That gives 0.0942u =
and 0.0942 0.1335 0.705e = = . Subsequently, the steady state gain and static
load effect can be computed from Equations 7.33 and 7.34. The results are:

Figure 7.8. Input and output responses for the proposed output-biased relay feed-
back with and without load changes for G3
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( )0.705
0.0835 0.0942
0.107

1.03

P
eK

a h u
a

=
+

=

=

Similarly, we find 0.803LK L = .
If the information about pK and LK L is not required, one can go directly to

step 2. With the known values of a and a , the bias value 0 can be computed
from Equation 7.39 and the result becomes 0 0.78= . Next, an output-biased relay
feedback test is performed ( t > 300 min in Figure 7.8) and uK and u can be
found. This gives 10 .44uK = and 0.2126u = , which are exactly the same as
that of disturbance-free case. Therefore, the example clearly shows that, incorpo-
rated with Equation 7.39, the output-biased relay is very effective in maintaining
the quality of the model in the face of load changes.

Despite the fact that chemical processes often face a progressive type of load
disturbance, sometimes, non-step-like load changes occur. Again, the proposed
method is tested against a series of step changes. For the third-order example, Fig-
ure 7.9 (middle line) shows the load changes. Once the asymmetry in the output is
detected (Figure 7.9), the bias value 0 is adjusted at the end of each cycling pe-
riod according to Equation 7.40. Despite the fact that the oscillation is hardly set-
tling down (Figure 7.9), the estimates of uK and u can still be very accurate. Ta-
ble 7.1 shows the estimated uK and u every three or four periods. The results
clearly indicate that the proposed method can identify a quality model under a per-
sistent load disturbance.

Table 7.1. Estimated Ku and u under a series of step load changes at different
oscillation periods

Period of oscillation uK u

3 10.20 0.2080

7 10.23 0.2102

10 10.25 0.2107

14 10.46 0.2125

17 10.25 0.2106

22 10.21 0.2105
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Figure 7.9. Input and output responses for the proposed output-biased relay feed-
back under a series of step load changes for G3

7.4.2 Binary Distillation Column

Since the asymmetry in the output response can come from a load change as well
as from process nonlinearity, the proposed approach is tested on a nonlinear proc-
ess under load changes. A binary distillation column [8] is used to illustrate the ef-
fectiveness of the proposed approach. This is a 20-tray distillation column studied
in Chapter 5. The product specifications are 98% and 2% of the light component
on the top and bottoms respectively. The relative volatility is 2.26 with a reflux ra-
tio of 1.76. Table 5.1 gives the steady state values. The control objective is to
maintain the top and bottoms product compositions Dx and Bx by changing the
reflux flow rate R and vapor boil-up rate V . This is the conventional R V con-
trol structure (Figure 5.12). In the nonlinear simulation, the following assumptions
are made: (1) equal molar overflow, (2) 100% tray efficiency, (3) saturated liquid
feed, (4) total condenser and partial reboiler and (5) perfect level control. An ana-
lyzer dead time of 6 min is used for top and bottoms composition measurements.

For this moderate-purity column, the stepping technique [9] is used to find the
ultimate gain and ultimate frequency at the nominal operating point. This gives

802.7uK = and 0.13 8u = for the Dx R loop. First, an ideal relay feedback
test is performed on the Dx R loop and the results are 736uK = and

0.13 2u =  (t = 0–210 min in Figure 7.10). At 210t = min, a 5% step change
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Figure 7.10. Input and output responses for an ideal relay feedback and an output-
biased relay feedback under a +5% step feed flow rate change for the distillation
example

in feed flow rate is introduced, and this leads to an asymmetric oscillation (Figure
7.10). The estimates of uK and u become 705.5 and 0.112 respectively. As a re-
sult of a feed flow rate disturbance, the estimation error in uK increases from 8%
to 12% and the error in the estimate of u increases from 4% to 19%. From the
system response (Figure 7.10), the parameters a and a can be read off immedi-
ately and the bias value of the output-biased relay can be calculated accordingly
( 0 0.3328= ). Next, the relay feedback test continues with an output-biased relay.
The results show that ( 450t > min in Figure 7.10) symmetric output response is
restored and the estimates of uK and u become 734.5 and 0.131 respectively.
The results indicate that, under load disturbance, an improved estimate uK and u
can be achieved using the output-biased relay. More importantly, the remedial ac-
tion can be made by simply observing input–output response.

7.5 Conclusion

Any realistic autotuner should possess some ability to handle load disturbances.
This is especially important for slow industrial processes. The reason is fairly ob-
vious: load disturbance can give erroneous results in system identification. Despite
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the fact that the relay feedback test is more resilient to load changes, the estimates
of uK and u deteriorate exponentially as the magnitude of the load increases.
Since external load disturbance generally leads to an asymmetric oscillation, an in-
tuitive approach is to restore a symmetric output response using the biased relay. In
this chapter, a simple relationship is derived to find the bias value for the output-
biased relay. The results show that good estimates of uK and u can be achieved
under step-like and non-step-like load changes.
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8

Multiple Models for Process Nonlinearity

Intelligent control is now becoming common in the literature and in practice. Con-
trol systems with some types of intelligent features have begun to appear. Among
these features, the abilities to perform automatic tuning in a multivariable envi-
ronment and to adjust parameters as the operating condition changes are of primary
importance in chemical process control. The reason is obvious: chemical processes,
generally, are multivariable and nonlinear.

Chemical processes are often operated at different steady states. Changes in the
operating condition are usually initiated by external factors. These parameters are
often known a priori, e.g. changes in the production rate or product specification.
The objective of process control is to achieve good transition while moving toward
a new operating point and yet maintaining robust performance in the face of un-
known disturbances. The concept of multiple models provides a useful framework
for automated chemical process control [1–4]. Useful approaches can be found in a
special issue edited by Johansen and Foss [5]. Since knowledge on process dynam-
ics accumulates as the plant starts operation, provided with an efficient autotuning
procedure, multiple models (or multiple sets of controller parameters) can be ob-
tained in a straightforward manner. Conventionally, these models, if they exist, are
utilized via a look-up table approach.

Here, we try to devise a framework for the control system design such that it
works well over the entire operating regime. The automated control system design
consists of two steps: (1) automatic tuning at a specific operating condition and (2)
automatic model scheduling for the entire operating regime. The relay-feedback-
based autotuning is proven reliable in the neighborhood of the nominal operating
point. However, if the process is operated over a wide range of operating condi-
tions, then the local controllers have to be retuned (as a result of large uncertainty
bound) to meet a global performance criterion. Once multiple models are available,
the next step is to employ the local model(s) at the corresponding operating condi-
tion. Approaches exist for incorporating models in different operating regimes.
One is switching to a specific model if a certain condition is met (a crisp switching
[4]). The other way is to combine local models using interpolation techniques (a
fuzzy switching [6]). In this work, the fuzzy modeling of Takagi and Sugeno is
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used to schedule local models. It is a fuzzy augmentation of crisp models which
provides a nice framework for model scheduling.

8.1 Autotuning and Local Model

Consider a relay-feedback system where ( )G s is the process transfer function, y
is the controlled output, e is the error and u is the manipulated input. An ideal
(on–off) relay is placed in the feedback loop. A relay of magnitude h is inserted in
the feedback loop. Initially, the input u is increased by h . As the output y starts
to increase (after a dead time D ), the relay switches to the opposite position,
u h= . Because the phase lag is , a limit cycle with a period uP results. The
period of the limit cycle is the ultimate period. Therefore, the ultimate properties
from this relay-feedback experiment are

2 /u uP= (8.1)

4 /uK h a= (8.2)

where h is the height of the relay and a is the amplitude of oscillation. Notice that
the relay-feedback tests result in sustained oscillations for open-loop stable systems
and most of the open-loop unstable systems.

Two approaches are taken here. One is the direct tuning using Ziegler–Nichols
types of rule. Because of the multivariable nature of the process considered, we use
the Shen–Yu tuning rule of Chapter 6. For a PI controller, we have 3c uK K=
and 2I uP= .

As will be shown later, in some cases transfer function models are preferable for
the purpose of model scheduling. The ultimate gain uK and ultimate frequency

u can be used directly to back-calculate the local transfer function model. As
pointed out by several authors, the high-frequency characteristic of the integrator
plus dead time model offers an attractive means in modeling slow chemical proc-
esses. The transfer functions have the following form:

( ) /DspKG s e s= (8.3)

The model parameters can be solved directly from the ultimate gain and ultimate
frequency:

2u
p

u u u
K

K K P
= = (8.4)

2 4
u

u

PD = = (8.5)

The controller parameters of the modified Ziegler–Nichols tuning can be expressed
explicitly in terms of pK and D . If the settings of Shen and Yu are used, then we
have
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/ 6c pK K D= (8.6)

8I D= (8.7)

In this section, the relay-feedback test is introduced and steps required to per-
form the experiment are also given. Once you have obtained the information on the
ultimate frequency, the controller settings can be decided using the modified
Ziegler–Nichols methods. Moreover, the model parameters of the useful integrator
plus dead time model can be found directly. This completes the tuning and model-
ing under a given operating condition. In other words, the local controller and local
model can be found in a straightforward manner. It is very likely that, after some
period of process operation, the autotuning procedure is repeated under different
operating conditions. How can we utilize this local information to construct a
global model?

8.2 Model Scheduling

Similar to gain scheduling, model scheduling is defined as using different process
models as the operating condition changes. The output (or scheduled) variables z
are often referred to as model parameters or controller settings and the input (or
scheduling) variables x are the variables that indicate changes in the operating
condition. They are often set by the operating condition, e.g. production rate, prod-
uct specification, process outputs, etc. The model scheduling problem then be-
comes the following: given sets of process data ( ),z x , find the functions

( )z f x= which can describe the global behavior.

8.2.1 Takagi Sugeno Fuzzy Model

The fuzzy modeling of Takagi and Sugeno [6] is employed to construct the global
model. It uses fuzzy logic to interpolate between several models. A brief descrip-
tion of the fuzzy set is given. In the fuzzy set, a variable x may belong partially to
a set (e.g. a set of high temperature). A membership function A characterizes this
degree of belonging. A is defined as:

( ) [ ]: ,0,1x x XA x

where X , generally, is a subset of (real number) and the membership function
falls between 0 and 1. The truth value (TV ) of a proposition “ 1x is 1A and 2x is

2A ” is expressed as

( ) ( ) ( ) ( )( )1 1 2 21 1 2 2 min ,A x A xA x A x =

where is the logical AND operator.
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Takagi and Sugeno [6] suggest that a multivariable system can be represented
by the fuzzy implications ( )jR . Consider a multivariable system with n input
variables ( , 1, ,ix i n= ) and one output z with k fuzzy implications.

(1) (1) (1)
1 1

1 1 1
0 1 1

: If is , and is ,

then

n n

n n

R x A x A

z p p x p x= + + +

( ) ( ) ( )
1 1

0 1 1

: If is , and is ,

then

k k k
n n

k k k
n n

R x A x A

z p p x p x= + + +

Then, the output z becomes

( )10 1
1

k
j j j

j n n
j

z p p x p x
=

= + + + (8.8)

where

( ) ( )
11

( ) ( )
11

1
( ) ( )

( ) ( )
j j

n n

j j
n n

j k

j
A x A x

A x A x

=

= (8.9)

In this work, the following assumptions are made: (1) the membership function is
linear and (2) each regime (except two ends) is defined by two membership func-
tions.

8.2.1.1 Single Input Systems

The Takagi–Sugeno method offers a general framework to establish a nonlinear
(global) model between the scheduling variable x  (e.g. production rate, product
specification, etc.) and the scheduled variable z  (e.g. process steady state gain,
time constants, dead time, etc.). Let us use an SISO example to analyze the fuzzy
model.

Example 8.1 SISO fuzzy model
Suppose the trend of the process variable z around two operating points is known.
We have the following two implications:

(1) (1)

(2) (2)

: If is , then 0.1 0.9

: If is , then 1

R x A z x

R x A z x

= +

= +

The membership functions (1)A and (2)A are given in Figure 8.1, and the results
show that the Takagi–Sugeno model leads to a piecewise nonlinear function be-
tween z and x . Analytically, the nonlinear function can be expressed as

( ) ( )( )1 0.1 0.9 , 1 21 r x xz r x + += + (8.10)

where
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Figure 8.1. Membership functions and resultant global model from fuzzy modeling
(Example 8.1)

*

*
*

x xr
x x

= (8.11)

with *x and *x defining the upper and lower bounds of the regime. This is simply
a linear combination of two linear functions, as shown in Figure 8.1.

Several observations can be made immediately. Consider the linear membership
functions in Figure 8.1 where the scheduling variable x superimposes the same
range.

1. If the output variable z shows the same trend as the scheduling variable x var-
ies (i.e. the slopes in the consequence of Figure 8.1 have the same sign), then
the resultant nonlinear function is monotonic (i.e. the sign of the slope remains
the same).

2. If the output variable z shows different trends as the scheduling variable x
varies (i.e. the slopes have different signs), then the resultant nonlinear function
is nonmonotonic.

An even simpler model scheduling mechanism can be devised. If we do not have
any knowledge about the trend of the process variable (i.e. the slope in Figure 8.1),
then the process variable can simply be set constant around the neighborhood
where system identification is performed. Suppose the two data points we have are

*z at *x and *z at *x . Mathematically, we have
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( )* *
* *1 ,x xz rx r x x= + (8.12)

This is simply a linear interpolation between these two points. The following ob-
servation points out its limitation.

3. If the trend of the output variable z is not included, then the resultant function
is simply a linear interpolation of these two different data points. It always ex-
hibits monotonic behavior in between.

Actually, the general result is as follows: if the process description in the conse-
quence is a polynomial with an order m , then the resultant function is also a poly-
nomial function to the 1m+ power. Despite its limitation, this simple approach of-
fers an attractive alternative in most cases. Another nice feature of the Takagi–
Sugeno modeling is that once a new identification result becomes available we can
simply add another implication to the original rule sets. The function then becomes
a piecewise linear function (e.g. Equation 8.12).

8.2.1.2 Multiple Inputs Systems

Systems with multiple scheduling variables are often encountered in practice. For
example, both the production rate and the production specification are changed to
meet the business condition (e.g. the Tennessee Eastman process [7] is a good ex-
ample). Consider a general dual-input system with input variables 1x and 2x and
one output variable z . Suppose we have four experimental results and the corre-
sponding data are ( *1,x , *2,x , (1,1)z ), ( *1x , *2,x , (2,1)z ), ( *1,x , *2x , (1,2)z ) and
( *1x , *2x , (2,2)z ). Figure 8.2 gives the ranges of the two input variables and the
membership functions. If these local data are employed in modeling, then again,
the result of fuzzy implications can be expressed analytically. It becomes a bilinear
function:

Figure 8.2. Linear membership functions for a two-input system
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( ) ( ) ( )( )(1,1) (1,2) (2,1) (2,2)
1 2 1 2 1 2 1 21 1 1 1z z zz r r z r r r r r r= + + + (8.13)

where

* *

* *1 1 2 2
1 2* *1 1, 2 2,

and
x x x xr r
x x x x

= = (8.14)

Example 8.2 MISO fuzzy model
Consider a system with two inputs 1x and 2x and one output z . Suppose the
trend of the output variable is not known and plant tests give the following four
data sets: ( 1x , 2x , z ) = (1,1,1), (1,3,3), (1,3,3) and (3,3,1). The four fuzzy impli-
cations are similar to that shown above with * *1, 2, 1x x= = and * *1 2 3x x= = . Fig-
ure 8.3A shows the resultant bilinear function.

In practice, we may not have all the data points. For example, only three data
points are available in Example 8.2, where (1,1)z corresponds to the nominal steady
state, (2,1)z stands for an increase in the production rate and (1,2)z represents a
change in the product specification. Under this circumstance, we only have three
fuzzy implications ( (1)R , (2)R and (3)R ). The analytical expression then becomes

( ) ( )1 2 1 21 2 (1,1) (1,2) (2,1)

1 2 1 2 1 2 1 2 1 2 1 2

1 1r r r rr rz z z z
r r r r r r r r r r r r

= + +
+ + +

(8.15)

With one less data point, the Takagi–Sugeno model gives a good description for
the triangular region defined by (1 ,1)z , (1 ,2)z and (2 ,1)z . However, extrapolation
outside this region is less reliable, as shown in Figure 8.3B.
It is obvious that the extension of the Takagi–Sugeno model to a multivariable sys-
tem is fairly straightforward. As expected, with the least process information, the

Figure 8.3. Global bilinear model from fuzzy modeling for Example 8.2 with (A) four
data sets and (B) three data sets



162 Autotuning of PID Controllers

model leads to a bilinear system. However, one should be cautious when the model
is extrapolated.

8.2.2 Selection of Scheduled Variable

From previous discussion, it becomes clear that the Takagi–Sugeno model interpo-
lates linearly among data points. Hence, we need more than two data points to de-
scribe a function with nonmonotonic behavior. It generally requires more process
information in quantity as well as in quality. Therefore, in building a global model,
it is important to select appropriate scheduled variables z such that the non-
monotonic behavior can be avoided. Typical output variables in model scheduling
are controller parameters and model parameters. It is rather intuitive to use the con-
troller parameters (e.g. cK and I ) as the output variables in the fuzzy modeling.
Let us use the linear integrator plus dead time model to illustrate the effect of dif-
ferent scheduled variables. Suppose that T-L tuning is employed to tune the typical
slow processes.

Consider the first case where both model parameters pK and D increase as the
operating condition changes (i.e. increase in the scheduling variable). Figure 8.4A
shows that the controller parameters also change monotonically as the operating
condition varies. However, a better global model can be achieved if the model pa-
rameters are selected as the scheduled variables. Numerically, it can be shown us-
ing the fuzzy modeling in the previous section for the case with or without a

Figure 8.4. Effect of the selected scheduled (output) variables
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process trend. The second case is that pK and D change toward different direc-
tions as the operating condition changes (Figure 8.4B). This is a more likely situa-
tion in process systems. Since pK represents the slope of the output responses and
D is a measure of dead time, an increase in pK and a decrease in D implies a
faster output response. This is exactly the case in some plantwide control exam-
ples. However, if the controller parameters are used as the output variable, then we
have a nonmonotonic behavior in the controller gain cK , as shown in Figure 8.4B.
As mentioned earlier, we need either more identification results or a very precise
description of the process trend to find a reasonable global model. If the model pa-
rameters are employed as the scheduled variables, then only two data points are
sufficient to construct a good global model. The examples clearly illustrate the im-
portance in selecting the scheduled variables. For the integrator plus dead time
model with the Ziegler–Nichols type of tuning, the model parameters seem to be a
better choice, as the speed of response changes with the operating condition (this is
most likely the case).

8.3 Nonlinear Control Applications

8.3.1 Transfer Function System

In this chapter, the integrator plus dead time model is chosen (Equation 8.3) to rep-
resent slow chemical processes. The controller settings of Equations 8.6 and 8.7
give a gain margin (GM) of 2.83 and phase margin (PM) of 46.1° for all possible
model parameters (i.e. 0pK and 0D ). First, we would like to know how well
the nominal controller settings work. Considering the nominal condition of 1pK =
and 1D = , Figure 8.5 shows the region of robust stability (RS). For example, the
closed-loop system becomes unstable when 2pK = and 2D = (Figure 8.5) and it
remains stable for small values of pK and D . Figure 8.5 shows that the settings
remain stable for a fairly large region in the parameter space. A more useful as-
sessment is that the region can achieve robust performance (RP). In this work, a
very simple measure of RP is defined: a system is RP if and only if 2.21
GM 3.95 and 36.1 PM 56.1° ° . This means we allow 1/ GM and PM to vary
by 0.1± and 10± ° respectively. The following equations describing the magnitude
M and phase are useful in finding the GM and PM as model parameters
change. Substituting nominal tuning constants into the integrator plus dead time
model, we have

( )
( )

2

2

1 8

48

p

p

D K
M

KD

+
= (8.16)

( ) ( )1tan 8D D
D
D

+= (8.17)
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Figure 8.5. Regime of robust stability (RS) and robust performance (RP, hatched
area)

where the overbar stands for the nominal condition. The region of the RP can then
be found by solving Equations 8.16 and 8.17. The hatched area in Figure 8.5 indi-
cates the parameter space where RP can be achieved. In other words, if the process
drifts out of the hatched area the controller has to be retuned for good performance.
Therefore, the region of RP can be used to evaluate the effectiveness of model
scheduling approaches.

Suppose the process is operated at three different conditions: high, nominal and
low productions, corresponding to 0.5pK D= = , 1 and 2 respectively (indicated
by × in Figure 8.6). We examined three approaches: (1) fixed gain control, (2)
crisp switching control and (3) fuzzy switching control. By crisp switching we
mean the model parameters (and consequently the controller parameters) are cho-
sen from one of the three sets if a certain condition in the scheduling variable is
met. Fuzzy switching implies the model parameters (and consequently the control-
ler parameters) are generated from a fuzzy model (e.g. Equation 8.12 ). In the fixed
gain control, we only have the nominal settings, the region of RP is indicated by
the middle hatched area in Figure 8.6. Performance degradation can be expected as
the operating point moves out of the region. If we choose to use the crisp model
switching among three sets of model parameters, then, at best, the regions of RP
are these three hatched areas. However, if the local models are scheduled according
to the Takagi–Sugeno fuzzy implications, then we have a much larger region for
RP, as shown in Figure 8.6. The degree of sophistication in fuzzy rules (e.g. with
or without knowledge of process trend) has little effect on the RP region.
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Figure 8.6. Regions of robust performance under different operating conditions (in-
dicated by ×) for the fixed gain control (the middle hatched area), crisp switching (all
three hatched areas) and fuzzy switching (the entire enclosed region)

Example 8.3 Nonlinear model
Consider the following nonlinear system:

( ) ( )D y sp eK y
y u

s
= (8.18)

with

( ) ( )1 and  1pK y y D y y= + = + (8.19)

Nominally, the system is operated at 0y = and 0u = . A PI controller with
Tyreus–Luyben tuning is employed and the results show that the fixed gain control
gives oscillatory SP responses (dashed line in Figure 8.7). If we obtain new identi-
fication results at 1y = , then a fuzzy model scheduling can be constructed.

(1) (1)

(2) (2)

: If is , then 2 and 2

: If is , then 1 and 1
p

p

R y A K D

R y A K D

= =

= =

The membership functions are similar to that of Figure 8.1, except that the range of
the scheduling variables y is between 0 and 1. The results show that much better
SP responses can be obtained (solid line in Figure 8.7) when these two local mod-
els are scheduled using the simple Takagi–Sugeno fuzzy implications. Figure 8.8
shows the SP and load responses when the process is operated under different con-
ditions. Here, a load transfer function of ( )10 11/ s + and 1L = are assumed.
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Figure 8.7. SP responses of Example 8.3 using the fixed gain control and fuzzy
switching

Figure 8.8. SP and load responses of Example 8.3 at different operating points us-
ing the fixed gain control and fuzzy switching
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8.3.2 Tennessee Eastman Process

The Tennessee Eastman problem is a realistic complex reactor/separator process
[7]. Several control strategies are proposed to solve the challenging problem. A de-
tailed description of the process is given in Downs and Vogel [7]. The essential
features of the process include an open-loop unstable reactor with two major reac-
tions ( A C D G+ + and A C E H+ + ), a separator removes unreacted light
components and recycles them back to the reactor and a stripper further separates
products from reactants (Figure 8.9). The temperature, pressure and levels are all
interacting and nonlinear. The process is operated under different modes as the
business condition changes. Mainly, we have to run the process under different
production rates (PR) and different product specifications (PS, G/H mass ratios).
Because we have a wide range of operating conditions, a single set of controller
parameters is not expected to work well for the entire region. This is an ideal prob-
lem for the application of the multiple models.

The Luyben control structure [8] is employed (Figure 8.9). In this case, an on-
demand product is set by the downstream process. The control structure consists of
nine control loops: three level loops (reactor, separator and stripper), one pressure
loop (reactor), three temperature loops (reactor, stripper and separator) and two
composition loops. The integrating nature of the recycle structure leads to the use
of simple proportional-only control on all loops. The reactor level and the stripper
level are maintained by changing the inlet flow rates, the controllers require little
tuning. The Luyben tuning constants are used for these two level loops and the
pressure loops (Table 8.1). It should be noticed that the separator level is main-
tained by changing the cooling water flow; this manipulated input has strong ef-
fects on the separator temperature and pressure, as well as on the level. Therefore,
care should be taken in the tuning of this level loop. Relay feedback tests are ap-
plied to the remaining six loops. The autotuning is carried out sequentially starting
from the reactor temperature loop work to the two composition loops. The control-
ler parameters are set to 1/3 of the ultimate gain, except for the stripper tempera-
ture loop (1/12). Table 8.1 gives the nominal settings.

Table 8.1. Nominal controller parameters for the Tennessee Eastman process

Loop Unit cK Transmitter span

Level Reactor 4 100%
Separator 2.35 100%
Stripper 2 100%

Pressure Reactor 3.33 3000 kPa
Temperature Reactor 12.7 100 C°

Separator 0.96 100 C°
Stripper 108 100 C°

Composition A in recycle 115 100 mol%
B in recycle 23.1 100 mol%
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The model scheduling mechanism will become very complex if controller set-
tings of all nine loops (or six loops) are scheduled. Therefore, it is important to de-
vise a control structure such that only the minimum number of loops need to be re-
tuned (actually, this can be viewed as a performance index of different control
structures). Suppose, after some period of operation, we have performed relay
feedback tests on 30± production changes ( PR 30%= ± ) with the nominal product
specification ( PS 45 / 55= ). And we also have ultimate properties for 25 / 75 and
70 / 30 product ratios ( PS 25 / 75= and 70 / 30 ). Figure 8.10 shows that the ulti-
mate gains stay fairly constant for most loops except for the separator level. There-
fore, only the controller parameter for the separator level is scheduled. Because we
have five data sets, the fuzzy implications thus become

*

(1) * (1,0)

(2) (0,0)

(3) * (0,1)

(4) (0, 1)

(5)

: If PR is PR and PS is PS, then
: If PR is PR and PS is PS, then
: If PR is PR and PS is PS , then
: If PR is PR and PS is PS , then

:

R K K
R K K
R K K
R K K

R

=

=

=

=

*
( 1,0)If PR is PR and PS is PS, then K K=

Figure 8.10. Controller parameters from relay feedback tests for different operating
conditions: changes in the production rate and product specification
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Figure 8.11 shows the corresponding membership functions. This is exactly the
three data sets scenario described in Section 2, except that we have four triangular
regions here. The results of the fuzzy modeling can also be expressed in the form
of Equestion 8.15 (use three data sets for each region). Figure 8.12 shows the ulti-
mate gain of the separator level loop as the production rate and product specifica-
tion change. Provided with five data sets, the fuzzy implications allow us to move
around different operating regions. For example, we have a simultaneous change in
the production rate and the product specification ( PR 20%= and PS = 65 / 35 ).
Simulation results (Figure 8.13A and 8.13B) show that much better transient re-
sponses and better disturbance rejection (IDV(1) at time 10> h) are obtained using
multiple local models. Moreover, this is achieved by scheduling only one level
loop.

Figure 8.11. Linear membership functions for Tennessee Eastman process.

Figure 8.12. Global model for the separator level ultimate gain of the Tennessee
Eastman process as production rate (PR) and product specification (PS) vary (–
20% < PR< +20% and 0.3 < D/(D + E) < 0.6)
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(A)

Figure 8.13A. Responses of the Tennessee Eastman process for simultaneous
production rate and product specification changes followed by a load change
(IDV(1) at time = 10 h) using: (A) fixed gain control
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(B)

Figure 8.13B. Responses of the Tennessee Eastman process for simultaneous
production rate and product specification changes followed by a load change
(IDV(1) at time = 10 h) using: (B) fuzzy switching
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8.4 Conclusion

In this chapter a framework for local autotuning and global model scheduling is
proposed. Relay feedback is employed to find local models and then these models
are scheduled using the Takagi–Sugeno fuzzy model. The characteristics of the re-
sultant global model are analyzed. The importance of the selection of the scheduled
parameters is emphasized. The proposed techniques are applied to simple transfer
function models as well as large–scale recycle plants. Issues such as which vari-
ables should be selected and how many loops should be scheduled become impor-
tant when dealing with large–scale systems. Simulation results show that improved
performance can be achieved using relatively simple model scheduling.
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9

Control Performance Monitoring

Controller performance assessment gives suitable information for developing im-
proved controllers, should the performance be deemed unacceptable. Hitherto,
much of the control research has been focused on developing model identification,
controller design and for quantifying the robustness and performance of control
systems at the design stage. Far less has been carried out on assessing the perform-
ance of the existing control systems. When the controller performance is inade-
quate, it is important to ascertain whether an acceptable level of performance can
be achieved with the existing control structure. If this is possible, then one can take
an appropriate course of action, like retuning of the existing controller, implement-
ing an alternate control algorithm, etc. Where acceptable performance cannot be
achieved with the existing control structure, then steps like implementing feed-
forward control, reducing the process dead time, adding new manipulated variables
or sensors, etc. can be taken. Harris [1] and Desborough and Harris [2] have con-
sidered methods based on autocorrelation analysis that compare the existing con-
trol system performance with a minimum variance control standard. Åström [3]
developed techniques for assessing the achievable performance using PID control
in terms of bandwidth, normalized peak error for SP and load disturbances and rise
time. This approach requires the Laplace transform model of the process. Swanda
and Seborg [4] evaluated the performance of a controller for a step change in SP
using settling time as the criterion. Huang and Jeng [5] assessed single-loop control
systems with controllers of general/PI/PID structure, with IAE and rise time in
tracking SP change. Huang and Shah [6] summarize the progress up to 1999.

Chiang and Yu [7] proposed a frequency-domain monitoring procedure based
on the relay feedback for SISO systems. Ju and Chiu [8] further extended their
work to multi-loop control systems. However, in both the above studies the relay
experiments have to be carried out at least twice to evaluate the maximum closed-
loop log modulus on-line. Here, we try to incorporate the shape factor (Chapter 4)
into controller monitoring, such that a simpler procedure can be devised.
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9.1 Shape- Factor for Monitoring

9.1.1 Shapes of the Relay Feedback

Consider a conventional feedback loop as shown in Figure 9.1. The process con-
sidered is a typical FOPDT process. The controller used is a PI controller. The
open-loop process ( )G s and the controller ( )K s have the following general forms:

( ) ( )1

DspK e
G s

s
=

+ (9.1)

( ) ( )1c I

I

K s
K s

s
=

+
(9.2)

The product of ( )G s and ( )K s is known as the loop transfer function, designated
as ( )Q s [9] and is given by

( ) ( ) ( )
( )

( )
( )

1 1
1 1

Ds Dsc p I I

I
GK

K K s e s e
Q s s

s s s s
=

+ +
= =

+ + (9.3)

where

I

c pK K
= (9.4)

An ideal relay is introduced in the feedback loop (before the controller) to conduct
the relay feedback test. The shape of the relay feedback response depends on the
value of the integral time I of the PI controller. The mismatch in the integral time
I can also be observed from the shape of the response. Typically, we have three

cases that arise based on the magnitude of I when compared with that of the
value of the time constant of the open-loop process.

Figure 9.1. Simple feedback loop with relay
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1. Integral time is equal to the time constant ( / 1I = ).
This is nothing but the original IMC-PI tuning rule [10]. With this integral
time, the loop transfer function has a special structure (integrator plus dead
time, IPDT) given by the following equation:

( ) ( )
Ds Dsc p

I
GK

K K e eQ s s s s= = = (9.5)

The relay output response for the above process is shown in Figure 9.2. The
step response of an integrator is a ramp function and that of a pure dead time
process is just a step delay in time. Hence, the relay output response of the
IPDT form of the loop transfer function is triangular in shape (a series of up-
ward and downward ramps with a delay D ). The half period of the relay re-
sponse corresponds to dead time D , and the slope corresponds to 1/ (see
Chapter 4). Hence the peak corresponds to /D .

2. Integral time is greater than the time constant ( / 1I > ).
In this case the loop transfer function will be of the form presented in Equa-
tion 9.3 with a lead time constant I greater than the lag time constant .
The relay feedback response of such a transfer function demonstrates convex
rise and fall, as shown in Figure 9.3.

3. Integral time is less than the time constant ( / 1I < ).
When the integral time takes a value less than the time constant, we have a
transfer function in the form of Equation 9.3 with a lag time constant
greater than the lead time constant I . The relay feedback response displays a
concave rise and fall shape. Depending on the sharpness of the shape, this
case can be further classified into two different sub-cases. If the /I ratio is
greater than ( /I )critical then we can observe a sharp peak in the concave
rise and fall, as shown in Figure 9.4a. On the other hand, if the /I ratio is

0 5 10
-1

-0.5

0

0.5

1

Pu

a

D

1/

Figure 9.2. Relay output response of GK(s) for FOPDT process with I = (thick
solid line) and the shifted input (thin solid line)
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less than the ( /I )critical ratio, then we can observe a rounded peak in the con-
cave rise and fall, as shown in Figure 9.4b. Generally, ( /I )critical is less than
0.5; the analytical expression in terms of model parameters will be derived
later.

These observations are useful in the controller performance assessment using
the shape factor from relay feedback.

0 5 10
-4

-2

0

2

4

a

D

P
u

y2n-1
y2n

y2n+1

t* = 0

Figure 9.3. Relay output response of GK(s) for FOPDT process with I > (thick
solid line) and the shifted input (thin solid line)

Figure 9.4. Relay output responses of GK(s) for FOPDT process with I < (thick
solid line) and the shifted input (thin solid line): (a) ( I / ) > ( I / )critical and (b) ( I / ) <
( I / )critical
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9.2 Performance Monitoring and Assessment

9.2.1 Optimal Performance

One of the finer ways of obtaining insight into the performance limitations is to

consider an “ideal” controller that is resulting in optimal performance. By “opti-

mal” we mean that the IAE is minimized for a unit SP change when a PI controller

with
I
= is used. The performance measure J can be expressed as

( )
0

J e t dt= (9.6)

Here, D (which can be viewed as the controller gain) is varied to locate the op-

timal performance. In Figure 9.5, J is normalized by J*, where J* is the minimum

IAE corresponding to the achievable performance using inverse-based controllers

and in this case it is simply the dead time ( D ) of the process, i.e. J* D= . From the

Figure 9.5, it is observed that, for a PI controller, / 1.68D = results in the mini-

mum */J J value of 2.1 and the shape of the relay output of ( )GK s for such a

controller will be triangular, as shown in Figure 9.2.

Before getting into the monitoring details, we need to address the question: What

is the difference between this monitoring method and the conventional direct auto-

tuning? As pointed out by Luyben [11], from the shape of relay feedback responses,

we have an idea about the model structure and corresponding tuning rule (e.g. ZN,

TL, and IMC) can be applied directly. The proposed monitoring approach helps the

operator to visualize whether the ultimate performance is achieved from the ex-

periment. Let us take Figure 9.2 as an example. The ultimate PI performance for an

FOPDT system corresponds to a triangular shape with a relay amplitude of /D =

( )/ 1.68D D = 1/1.68 (with 1h = ) (Figure 9.2). Any deviation from this shape in-

dicates a potential problem in the controller setting. If the reset time is too large

then we observe a convex rise in the relay response (Figure 9.3), and when the

Figure 9.5. Effect of /D ( I /KcKp) on IAE for FOPDT processes with I = using PI

controller
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reset time is too small we find a concave rise in the relay response (Figure 9.4).
The deviation of relay amplitude from 1/1.68 implies that the proportional gain
has to be adjusted. This implies insights are gained from the relay feedback ex-
periment, which is not possible with the conventional approach.

9.2.2 Proposed Monitoring and Assessment Procedure

Ongoing analyses reveal that the integral time I affects the fundamental shape of
the relay output responses, whereas the change in the controller gain cK alters
only the magnitude of the peak without affecting the shape. Therefore, the basic
structure for the monitoring and assessment procedure involves: (1) identifying
from the shape of the relay feedback the possible mismatch between the time con-
stant and integral time, and employing the corresponding equations to find model
parameters (e.g. , , and D ); (2) adjusting the controller parameters according
to the optimal PI settings (i.e. / 1.68D = with I = ).

9.2.2.1 Case 1: I / = 1

If the shape of the relay output test on ( )Q s is a triangle (as shown in Figure 9.2),
then it is obvious that ( )Q s falls into this category. The procedure for assessing
the controller performance of such a process is straightforward and involves the
following steps (denoted as Procedure 1 hereafter):

1. Read dead time D (time to the peak amplitude, e.g. Figure 9.2) and the peak
amplitude a from the relay test.

2. Compute old using the relation old /D a= .

3. Find new from the optimal performance chart, new 1.68D= .

4. Adjust cK according to ( )( )( )c,new c,old old newK K= to acquire the optimal
controller performance.

9.2.2.2 Case 2: I / > 1

If the shape of the relay output test on ( )GK s is similar to that shown in Figure
9.3, then it is evident that ( )GK s falls into this category. Unlike the earlier case,
the procedure for finding the value of old is not straightforward. Analytical ex-
pressions are derived using time-domain analysis to represent the convex ascend-
ing and descending parts of Figure 9.3. Accordingly, the expressions for 2ny and

2 1ny + can be given by Equations 9.7 and 9.8 respectively [12]:

( )/ 2 /

* /
2

* 21
4 1 Pu

tu I
n

eP ty
e

= + ×
+ (9.7)
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( )/ 2 /

* /
2 1

* 21
4 1 Pu

tu I
n

eP ty
e+ = + + ×

+
(9.8)

Parameters and can be estimated as follows. From Figure 9.3, it is clear that,
when * 0t = , 2 1ny a+ = . Applying this boundary condition in Equation 9.8 and
simplifying it we get

( ) ( )/ 2 /1
2, 1 0

4 1 Pu

u IPf a
e

= =
+

(9.9)

Similarly, by substituting the boundary condition, * / 2ut P D= and 2 1 0ny + = , in
Equation 9.8 we get

( )
( )

( )

/ 2 /

/ 2 /2
2/ 4, 1 0

1
uP D

Pu

u I eP Df
e

= + =
+

(9.10)

The two unknowns, namely and , can be determined by solving Equations 9.9
and 9.10. Thus, by knowing the values of and one can easily find the setting
of the controller gain and reset time to obtain the optimal controller performance.

The following procedure, Procedure 2, describes the steps involved to obtain
the optimal controller performance.

1. Read the dead time D (time to the peak amplitude, e.g. Figure 9.3), peak ampli-
tude a and ultimate period uP from the relay test.

2. Knowing I from the controller settings and limit cycle data from step 1, the
values of  ( old= ) and can be found using Equations 9.9 and 9.10.

3. Set , newI = .

4. Find new from the optimal performance chart, new 1.68D= .

5. Adjust cK according to ( )( ) ( )c,new c,old ,new old ,old new/I IK K= to acquire
the optimal controller performance.

The initial estimates for the two unknowns in Equations 9.9 and 9.10 are /D a=
and 0.8 I= .

9.2.2.3 Case 3: I / 1<

In this case, after several numerical simulations, it was found that for every /D
ratio there is a critical value for /I ratio. Figure 9.6 gives the variation of the
( /I )critical ratio with the /D ratio for systems falling under this category.
The implication of the ( /I )critical ratio can be explained as follows: consider a
system with ( )GK s of the form given in Equation 9.3 having D , , , I with
values of 0.5, 1, 1 and 0.2 respectively. From Figure 9.6, the value of ( /I )criti-
cal for the system is found to be 0.2824. The relay feedback tests were conducted
for the above system with the /I ratio taking the values of 0.2, 0.2824 and 0.6
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Figure 9.6. Variation of ( I / )critical ratio with D/ ratio for FOPDT process with I <

and the relay output responses thus obtained are displayed in Figure 9.7. From Fig-
ure 9.7 it is clear that for systems with a /I ratio less than or equal to the
( /I )critical ratio the time elapsed from zero to peak value of ( )y t , denoted as the
apparent dead time *D , becomes always greater than the true dead time D
( *D D> ) and the shape of the relay output of ( )GK s will have a rounded peak
(Figure 9.7(i) and (ii)). On the other hand, when the /I ratio is greater than or
equal to the ( /I )critical ratio the time elapsed from zero to peak value of ( )y t
becomes always equal to D  (i.e. *D D= ) and the shape of the relay output of

( )GK s will have a sharp peak (Figure 9.7 (iii)).

Case 3A: ( /I )critical  ( /I ) < 1.
As discussed earlier, if the relay output of ( )GK s is of the shape shown in Figure
9.4a or (Figure 9.7(iii)), then this implies that I < and the /I ratio is greater
than then ( /I )critical ratio. As pointed out earlier, the dead time of the process
can be determined immediately, i.e. D is the time to the peak value; therefore, the
same analytical expressions given in Equations 9.7 and 9.8 can be used to represent
the concave descending and ascending parts of Figure 9.4a. In such a case, the as-
sessment can be carried out by following the same procedure (Procedure 2) that is
described for case 2, ( /I ) 1> . That is, the two unknowns, namely and ,
can be determined by solving Equations 9.9 and 9.10. The values thus obtained can
be used to find the settings of the controller gain to acquire optimal controller per-
formance. Note that the initial estimate of is set to 1.2 I .

Case 3B; ( /I ) < ( /I )critical.
On the other hand, if the relay output of ( )GK s is of the shape shown in Figure
9.4b, then this implies that I < and the /I ratio is less than the ( /I )critical
ratio. In such a case, there is a minor modification in the assessment procedure.
Similar to the earlier approach, Eqs 9.7 and 9.8 are used to represent the concave
descending and ascending parts of Figure 9.4b. From Figure 9.4b we have
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-1

0

1

(i) ( /I ) 0.2=

0 10 20

-1
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1

(ii) ( /I ) 0.2824=
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(iii) ( /I ) 0.6=

Figure 9.7. Relay feedback responses of GK(s) for FOPDT process with I < and
( I / )critical 0.2824= (solid line) and the relay input (dotted line); (i) ( I / ) < ( I / )critical , 
(ii) ( I / ) = ( I / )critical , (iii) ( I / ) > ( I / )critical
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( ) ( )* *2 1 2 1/ 2 0 2 2
un nt P ty y h a+ += =

+ = (9.11)

After substituting various values in Equation 9.11 and simplifying it, at the bound-
ary condition * *t D= (time giving peak amplitude) and 2 1ny a+ = we have

( ) ( )
( )( )1 / 2 /

2
, 1 ln

4 1 u

Iu I
P

Pf a
e

= + +
+

(9.12)

Similarly, by substituting the boundary condition * / 2ut P D= and 2 1 0ny + = in
Equation 9.8 we get exactly the same expression as Equation 9.10. However, the
dead time D is computed from the difference between the apparent dead time *D
and *D . That is:

( )
( )( )/ 2 /

* * *
2

ln
1 u

I

P
D D D D

e
= =

+
(9.13)

Thus, the two unknowns, namely and , can be determined by solving Equa-
tions 9.10 and 9.12 when substituting Equation 9.13 for the dead time D . Equa-
tions 9.10 and 9.12 are non-linear and can be solved with the initial guess of
from the slope of the corresponding relay feedback response ( /D a= ) and the
initial guess of 2 I= .

The following, Procedure 3, are the various steps involved in assessing such a
process:

1. Read the apparent dead time *D , peak amplitude a and ultimate period uP
from the relay test.

2. Knowing I from the controller settings, the values of old and can be found
using Equations 9.10 and 9.12.

3. Set ,newI = .

4. Obtain D from Equation 9.13.

5. Find new from the optimal performance chart, new 1.68D= .

6. Adjust cK according to ( )( ) ( )c,new c,old ,new old ,old new/I IK K= to acquire
the optimal controller performance.

9.2.3 Illustrative Examples

The proposed scheme is illustrated for the FOPDT process for three cases, namely
( /I ) equal to, greater than, and less than 1. For the example pertaining to
I < , the value of is taken as 1 and I is taken as 50% of (Table 9.1). The

( /I )critical ratio for the system is 0.3873 (Figure 9.6). In other words, in the pre-
sent example, the value of ( /I ) ratio is greater than that of the ( /I )critical ra-
tio. Hence, this example falls under Case 3A described in Section 9.2.2.3. An ideal
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relay feedback response for such a system and the closed-loop response with PI
controller with original controller settings are shown in Figure 9.8a. The relay re-
sponse shows a concave curve with sharp peaks. Hence, the procedure described in
Section 9.2.2.3 for Case 3A (Procedure 2) is used to determine the new controller
parameters. The estimated model, e.g. values of and old , is very close to the
true process (Table 9.1) and the PI controller is retuned to obtain the improved per-
formance. The controller parameters and the value of min/J J thus obtained are
also presented in Table 9.1. The improvement in the controller performance is
shown in Figure 9.8a. The value of min/J J  ( 1= ) obtained for the above example
is very much satisfactory and shows that the PI controller with the new controller
settings exhibits almost optimal controller performance.

Another example is taken to illustrate Case 3B described in Section 9.2.2.3,
where I < and the ( /I ) ratio is less than the ( /I )critical ratio. The typical
values of the ( )GK s for the example considered are given in Table 9.1. The value
of is taken as 1 and I is taken as 20% of . The ( /I )critical ratio for the sys-
tem is 0.3873. In other words, the ( /I ) ratio is less than the ( /I )critical ratio.
Hence, this example falls under Case 3B of Section 9.2.2.3. Figure 9.8b shows the
ideal relay feedback response and the closed-loop response with PI controller with
original controller settings. The relay response shows a concave curve with round
peaks. Hence, Procedure 3 described in Section 9.2.2.3 for Case 3B is used to de-
termine the new controller parameters. The estimated values of , D , and pK ,
the new controller parameters and the value of min/J J thus obtained are also pre-
sented in Table 9.1. Figure 9.8b presents the closed-loop performance of the PI
controller with the improved controller settings. In this case also the value of

min/ 1J J = obtained reveals the accuracy of the proposed method.
The ( )GK s used to illustrate the case where / 1I = is also given in Table 9.1.

The relay response and the closed-loop response with PI controller are shown in
Figure 9.8c. The relay output is triangular in shape with sharp peaks. Hence, the
procedure described in Section 9.2.2.1 (Procedure 1) is used to determine the new
controller parameters (Table 9.1). Figure 9.8c also presents the closed-loop re-
sponse of the PI controller with new controller settings. The controller offers a

min/J J value of 1, thus confirming the optimal controller performance.
For the example illustrating the case where / 1I > , the various parameters of

( )GK s are given in Table 9.1. Figure 9.8d gives the relay output of ( )GK s for
the example considered. The convex curve with a sharp peak suggests that the pro-
cedure described in Section 9.2.2.2 (Procedure 2) has to be used to determine the
new controller parameters to obtain the optimal controller performance. Table 9.1
gives the values of the new controller parameters and the value of min/J J . The
value of min/ 1J J = and the closed-loop performance with the new controller set-
tings (Figure 9.8d) reveal that the PI controller with the new controller settings ob-
tained using the above procedure yields the optimal controller performance.
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Figure 9.8. Performance assessment of FOPDT process for (a) I < and ( I / ) >
( I / )critical, (b) I < and ( I / ) < ( I / )critical, (c) I = and (d) I > ; left: closed-loop re-
sponse with PI controller before adjustment; center: shape of the relay feedback re-
sponse of GK(s); right: closed-loop response with PI controller after adjustment
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9.3 Applications

Up to now, we have examined the proposed method for processes with the same
model structure (FOPDT); the same procedures will be tested against mismatches
on model structures. Two model structures are employed here. One is the SOPDT
system and the other is the HO system (order greater than 3).

9.3.1 Second-order Plus Dead Time Processes

The proposed scheme is extended for assessing the performance of a PI control
scheme with an SOPDT process. The feedback loop shown in Figure 9.1 holds
good in this case too, except that the open-loop process ( )G s has the following
form:

( ) ( )( )1 1
DspK e

G s
s s

=
+ + (9.14)

The controller used is a PI controller with ( )K s as given in Equation 9.2. The
product of ( )G s and ( )K s is given by Equation 9.15, where is same as that
given in Equation 9.4

( ) ( ) ( )
( )( )

( )
( )( )

1 1
1 1 1 1

Ds Dsc p I I

I

K K s e s e
Q s GK s

s s s s s s
+ +

= = =
+ + + + (9.15)

Similar to the earlier case, relay feedback tests are conducted by introducing an
ideal relay in the feedback loop before the controller and the shapes of the relay
feedback responses are observed. Even in the case of an SOPDT process, we can
find three cases, based on the magnitude of integral time I compared with that of
the value of (1+ ) .

1. I <  (1+ ) . The relay feedback tests are conducted on ( )GK s for 0.2= ,
0.6 and 1 with /D ratios of 0.5, 1, 5 and 10. The relay output responses thus
obtained are displayed in Figure 9.9. The concave shape is observed in the first
two rows. However, the third and fourth rows are of triangular shape with the
sharpness of the peak increasing with increase in /D ratio.

2. I =  (1+ ) . The relay tests are conducted on ( )GK s ; the shapes of the relay
output responses thus obtained are similar to those of Figure 9.9. As expected,
we could observe the triangular shapes in the last two rows. Here, also, the
sharpness of the peak increases with increase in /D ratio. However, in the
first two rows the shapes resemble triangles with curved peaks.

3. I >  (1+ ) . Figure 9.10 displays the shapes of the relay feedback responses
obtained for the SOPDT processes with different values of and /D ratios.
The convex shape is observed in the last two rows. However, in the first and
second rows the shapes are of triangles with predominantly curved peaks.
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0.2= 0.6= 1=

/D ( )GK s shape ( )GK s shape ( )GK s shape

0.5

1

5

10

Figure 9.9. Relay feedback responses of GK(s) for SOPDT process with I <
(1 + ) and the relay input
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0.2= 0.6= 1=

/D ( )GK s shape ( )GK s shape ( )GK s shape

0.5

1

5

10

Figure 9.10. Relay feedback responses of GK(s) for SOPDT process with I >
(1 + ) and the relay input



Control Performance Monitoring 191

First, let us examine the case of I =  (1+ ) . In this case, three examples are
considered, namely triangular shape with sharp peak (Figure 9.11a), triangular
shape with partially curved peak (Figure 9.11b) and triangular shape with pre-
dominantly curved peak (Figure 9.11c) to illustrate the proposed scheme. The as-
sessment is carried out using Procedure 1 given in Section 9.2.2.1, except that the
value of new is taken as 1.7D instead of 1.68D to have uniformity for the three
cases. Even though the closed-loop responses obtained after necessary correction
(Figure 9.11a–c) are satisfactory, better responses could be achieved in Figure
9.11b and c by taking slightly higher values of new (1.9D and 2D respectively
for Figure 9.11b and c). The values of ( )G s and ( )K s used for illustration, the
estimated controller parameters and also the values of min/J J given in Table 9.2
are satisfactory.

Figure 9.11. Performance assessment of SOPDT process for I = (1 + ) . (a) trian-
gular shape with sharp peak, (b) triangular shape with partially curved peak, and (c)
triangular shape with predominantly curved peak. Left: closed-loop response with PI
controller before adjustment; center: shape of the relay feedback response of
GK(s); right: closed-loop response with PI controller after adjustment
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Consider the case of I <  (1+ ) . The example used to illustrate this case is
also given in Table 9.2. The shape of the relay feedback response of ( )GK s is
shown in Figure 9.12a. Since the shape resembles a concave curve, the procedure
given in Section 9.2.2.3 (case A) is used (with new as 1.7D instead of 1.68D) to
perform the assessment of the controller. The estimated controller parameters and
the value of min/J J are given in Table 9.2. The closed-loop response obtained af-
ter adjustment (Figure 9.12a) and the value of min/J J (Table 9.2) reveal the opti-
mal controller performance of the controller.

For the case of I <  (1+ ) , when the shape of the relay response of ( )GK s
is a convex curve (Figure 9.12b), the procedure given in Section 9.2.2.2 can be
used (with new as 1.7D instead of 1.68D) to perform the controller assessment.
The details of ( )G s and ( )K s used for illustration, the estimated controller pa-
rameters and also the values of min/J J are tabulated in Table 9.2. The closed-loop
performance of the controller after the adjustment is displayed in Figure 9.12b.

Thus, Figures 9.11 and 9.12 and the tabulated results of Table 9.2 justify the ex-
tension of the proposed method for SOPDT processes.

9.3.2 High-order Processes

The proposed performance monitoring and assessment scheme is extended for as-
sessing the performance of the PI control scheme with HO processes. The ar-
rangement of the feedback loop is similar to that shown in Figure 9.1. However,

Figure 9.12. Performance assessment of SOPDT process for (a) I < (1 + ) and
(b) I > (1 + ) ; left: closed-loop response with PI controller before adjustment; cen-
ter: shape of the relay feedback response of GK(s); right: closed-loop response with
PI controller after adjustment
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the open-loop process ( )G s has the following form:

( )
( )1

Dsp
n

K e
G s

s
=

+
(9.16)

with 3n . The controller used is a PI controller with ( )K s as given by Equation
9.2. The product of ( )G s and ( )K s is given by Equation 9.17, where is same
as that given in Equation 9.4:

( ) ( )
( )( )

( )
( )( )

1 1
1 1

Ds Dsc p I I
n n

I

K K s e s e
GK s

s s s s
+ +

= =
+ +

(9.17)

Three different examples are taken to illustrate the assessment procedure for the
three cases of the HO process.

First consider an example of I n< . Figure 9.13a displays the shape of the re-
lay feedback response when I n< . Though a concave shape is expected, we
could observe only a shape almost resembling a symmetrical triangle with pre-
dominantly curved peaks. Hence, the procedure presented in Section 9.2.2.1, Pro-
cedure 1, is used (instead of Procedure 3 given in Section 9.2.2.3) with new as
1.7D. The closed-loop response obtained after controller parameter adjustment is
also shown in Figure 9.13a. The values of ( )G s and ( )K s used for illustration,
the estimated controller parameters and the value of min/J J are tabulated in Table
9.3.

The relay feedback response of ( )GK s of the HO process when I n= is
shown in Figure 9.13b. As expected, the shape is triangular, and hence Procedure 1
presented in Section 9.2.2.1 is used with new as 1.7D. Table 9.3 gives the details
of ( )G s , ( )K s , the estimated controller parameters and the value of min/J J . Fig-
ure 9.13b displays the closed-loop response of the PI controller after adjustment.

In this case, the ( )GK s is taken such that I n> and the relay feedback re-
sponse obtained from the relay test is shown in Figure 9.13c. The shape is a convex
curve and matches with our intuition. Hence, Procedure 2 described in Section
9.2.2.2 is used to assess the performance of the controller. Figure 9.13c also dis-
plays the closed-loop response of the PI controller after adjustment. The details of

( )G s and ( )K s used in the illustration, the estimated controller parameters and
the value of min/J J are tabulated in Table 9.3.

Figures 9.13a–c and the values of min/J J of Table 9.3 reveal that the proposed
method can also be extended for HO processes. In fact, the proposed method works
well for a third-order process, but as the order increases (fifth order and above) the
proposed method offers satisfactory values of min/J J for small /D ratio only.
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Figure 9.13. Performance assessment of higher order processes: (a) fifth-order
process for I < n ; (b) third-order process for I = n ; (c) fifth-order process for I >
n ; left: closed-loop response with PI controller before adjustment; center: shape of
the relay feedback response of GK(s); right: closed-loop response with PI controller
after adjustment

Table 9.3. Estimation of PI controller tuning parameters of HO process with I = n ,
I > n and I < n

( )G s ( )K s ( ) aG s
estimated

Procedureb
NEW,I NEW,cK min/ cJ J Remarks

I n<

( )

0.5

51

se

s +

2.5 1
1.25

2.5
s
s
+

( )

3.260.802
2.5 1

se
s +

1 2.5 0.4511 1.0003 Curved peaks
(Figure 9.13a)

I n=

( )

10

31

se

s +

3 1
0.43

3
s
s
+

( )

10.840.969
3 1

se
s +

1 3 0.1628 1.0259 Sharp peaks
(Figure 9.13b)

I n>

( )

5

51

se

s +

10 1
2

10
s
s
+

( )

6.570.813
1.420 1

se
s +

3 1.4198 0.1271 1.2688 Convex curve
(Figure 9.13c)

a The steady state gain back-calculated from .
b Computation procedure used.
c Compared to minimum IAE (Jmin) using PI controller with I n= .
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9.4 Conclusion

A method for performance monitoring and assessment of a single-loop control sys-
tem, using the shape factor from relay feedback, is presented. It was shown that the
shape of the relay output characterizes the performance of the controller. Improved
controller settings can be back-calculated whenever the shape of the relay feedback
deviates from its optimal form. The results show that the proposed scheme pro-
vides a reliable way to assess controller performance, and, if necessary, to readjust
the controller parameters. More importantly, it employs only one relay test and
provides a simple method, compatible even with a non-expert operator, to assess
the controller performance as well as to find the correct controller parameters.
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10

Imperfect Actuators

As mentioned in Chapter 1, an imperfect actuator (e.g. control valve) is a major
factor in poor control performance [1].

Recent years have seen renewed interest in the study of linear systems in the
presence of imperfect actuators. Adaptive schemes and fuzzy control are proposed
for dead-zone and/or hysteresis compensation [2–4]. Mechanical motion control is
a typical area of application. Less attention is paid to pneumatic actuators [5,6].
The problem of imperfect actuators can become very severe when autotuners are
employed to find controller parameters. The standard autotuning procedure can
lead to erroneous results and the performance of the control loops degrades drasti-
cally [7]. For example, an ideal relay feedback test tends to overestimate the ulti-
mate gain for valves with hysteresis and this, subsequently, leads to oscillatory or
unstable closed-loop responses [6,8].

This chapter studies quantitatively the estimation errors (in uK and u ) for
valves with hysteresis under relay feedback. Comparisons are also made between
ideal relay and the saturation (ramp-type) relay and an approach for simultaneous
identification of ultimate properties and width of hysteresis is proposed.

10.1 Potential Problems

Recall that, for an ideal relay, the ultimate properties from the relay feedback ex-
periment are

2
u

uP
= (10.1)

4
u

hK a= (10.2)

where h is the height of the relay and a is the amplitude of oscillation. For the
saturation relay (Figure 10.1B), uK can be computed from
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Figure 10.1. Actuator with hysteresis under (A) ideal relay feedback and (B) satura-
tion relay feedback

( )2
12 sin 1u

a
a

h a aK a a a= + (10.3)

where /a h k= .
Consider an imperfect actuator in a feedback loop with the process ( )G s and a

controller ( )K s . An imperfect actuator is characterized by the hysteresis width and
a slope as shown in Figure 10.1. The input and output of the hysteresis, cou and u ,
are described by

( )

( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )

co

co
1 1

co
r r

co co
1 r

1
,

1
,

1 1
1 ,

u t
u t

m u t c u t c
m

u t
m u t c u t c

m
u t u t

u t c u t c
m m

=

< +

< +

+ +

(10.4)
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where t is the index of time, cou is the controller output, u is the actual position
of the actuator, m is the slope of hysteresis and rc and 1c (negative) are
constants describing the width of the hysteresis. Here, we assume 1m = and

1 rc c= . The width of the hysteresis (dead band, DB ) is defined as

1DB rc c= (10.5)

Let us use a typical process transfer function to illustrate the effect of actuator
hysteresis on ultimate properties. This is an nth-order plus dead time system.

( )
( )1

Dsp
n

K e
G s

s
=

+
(10.6)

First let 1n = , a first-order system, and a time constant 20= and steady state
gain 1pK = are assumed. Two types of relay are considered: an ideal relay and a
saturation relay (Figure 10.1). A relay height h of 5% is used in both cases. For
the saturation relay, the slope k is taken as 1.4 uK to ensure a successful test (Fig-
ure 10.1B). Figure 10.2 shows the relative error in uK and uP as the width of hys-
teresis ( DB ) changes. As expected, the error in uK increases as DB increases for
both cases. When DB reaches 5%, the ideal relay feedback overestimates uK by a
factor of 2! That means a relay-feedback autotuner with Ziegler–Nichols tuning
can produce an unstable closed-loop system if DB is greater than 5%. The satura-
tion relay shows some improvement on the estimation error for uK . For the ulti-
mate period, the ideal relay produces a correct estimate and the saturation relay, on
the other hand, shows a maximum error of 35.71% (Figure 10.2) for a DB of 7%
(Figure 10.2). Notice that an overestimate in uP tends to give a more sluggish re-
sponse, since we have a larger reset time I . Figure 10.3 shows how the estimation
errors vary with the dead time /D . For the ideal relay, the estimation errors re-
main the same as /D changes. The saturation relay, however, shows a smaller
estimation error in uK for the system with a smaller /D ratio (i.e. systems with
a long time constant). The results are just the opposite for the estimation of uP , as
shown in Figure 10.3. Furthermore, we can improve the estimation in uK by re-
ducing the slope of the saturation relay, as shown in Figure 10.4. However, it
should be emphasized that if the slope uk K< is too small, then the relay feedback
will fail to generate a sustained oscillation.

Up to this point the results come from the study of FOPDT systems. On some
occasions, higher order systems are encountered and third-order systems are used
to illustrate the effects of hysteresis. Figure 10.5 reveals that hysteresis leads to an
overestimation in the ultimate gain and the offsets in the estimation are exactly the
same as that of the first-order system (i.e. Figure 10.2) for the ideal relay. Qualita-
tively similar estimation errors are observed for the saturation relay, as shown in
Figure 10.5 (e.g. comparing dashed lines in Figures 10.2 and 10.5). Actually, this is
within one's expectation, since hysteresis results in a discount in the relay height
and, without any compensation, this simply overestimates uK . The results can be
summarized as follows.
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Figure 10.2. Effects of hysteresis width (DB) on estimation errors for ideal and satu-
ration relays for first-order system with different D/ ratios

Figure 10.3. Effects of dead time to time constant (D/ ) ratios on estimation errors
for ideal and saturation relays for first-order system with DB = 5%

(1) Relay feedback tests overestimate uK for actuators with hysteresis and
relative errors increase with the DB . This is generally true, especially for
the ideal and saturation relays (Figures 10.2 and 10.5).

(2) The saturation relay improves the estimation error in uK over the ideal re-
lay. Moreover, the smaller the slope, the larger the margin of improvement
(Figure 10.4).

(3) The saturation relay gives a better estimate in uK for systems with a small
/D ratio (Figure 10.3).

(4) For an ideal relay, the estimation error of uK remains the same for different
/D ratios and the estimate of uP is not affected by the hysteresis (Figure

10.3).
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Figure 10.4. Effects of hysteresis width (DB) on estimation errors for first-order sys-
tem with the saturation relays using different slopes k with D/ = 0.005

Figure 10.5. Effects of hysteresis width (DB) on estimation errors for ideal and satu-
ration relays for third-order system with different D/ ratios

Actually, for the ideal relay, the estimation error of uK can be expressed ana-
lytically in terms DB and h . By comparing the ultimate gain using the assumed
and true relay heights, the relative error in the estimation of uK can be computed.
From Equation 10.2 we have

,DB

DB
2

u

u

K h
K h

= (10.7)

where uK is the ultimate gain without hysteresis and ,DBuK is the ultimate gain
under a hysteresis actuator with a width DB . Since the true relay height is lowered
by a factor of DB/ 2 , we subsequently overestimate the steady state gain as well
as the ultimate gain (the information is concealed by the hysteresis). Despite the
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fact that the saturation relay is more robust with respect to the hysteresis actuator,
the estimation error of uK can still be as large as 60% for a first-order system with

/ 1D = and DB 5%= . Therefore, it is necessary to provide remedial action for
systems with imperfect actuators.

10.2 Identification Procedure

10.2.1 Two-step Procedure

Conventionally, the width of the hysteresis DB can be identified from bump tests
or ramp tests. In the bump test, a series of step changes are made and hysteresis can
be observed from the steady state error resulting from opposite direction step
changes (Figure 10.6A). Provided with the steady state gain, the DB can be calcu-
lated from the steady state error. For systems with a long time constant, the bump
test can be time consuming. Another approach is to ramp the control output up
first, followed by a downward ramp (Figure 10.6B). The width of the hysteresis
can be observed from the plot of y and cou , as shown in Figure 10.6B. For linear
systems, the width DB is simply the gap in between. But for a nonlinear system
the gap may not be quite as obvious as shown in a later section.

If the width of the hysteresis is available, then we can use the inverse of the hys-
teresis to adjust the shape of the relay. The inverse of the hysteresis can be ex-
pressed analytically.

( ) ( ) ( ) ( )co
co 1 1r r

u t
u t t c t c

m
= + + (10.8)

with

( )
( ) ( )
( ) ( ) ( )

co co

co co

1 if 1

or 1 and 1 1
0 otherwise

r r

u t u t

t u t u t t

>

= = = (10.9)

( )
( ) ( )
( ) ( ) ( )

co co

1 co co 1

1 if 1

or 1 and 1 1
0 otherwise

u t u t

t u t u t t

<

= = = (10.10)

Figure 10.7 shows corresponding relays if we have the information about the hys-
teresis. For the ideal relay we simply increase the relay height by a factor of
DB/ 2 , i.e. ( )relay height DB/ 2h= + . For the saturation relay the shape of the re-
lay can also be modified to accommodate the hysteresis (Figure 10.7B). Since the
inverse of the hysteresis cancelled out the effect of the imperfect actuator, as ex-
pected, correct ultimate properties can be obtained using the modified relay (Figure
10.7). Note that the modified relays in Figure 10.7 provide the exact counter meas-
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ures to overcome the hysteresis problems. Despite the fact that the effect of hys-
teresis can be compensated using the modified relays, we still need two experi-
ments to complete the procedure: finding the width of hysteresis followed by a re-
lay feedback test.

Figure 10.6. Identification of hysteresis using (A) bump test and (B) ramp test
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Figure 10.7. Resultant relays by combining the original relay with the inverse of a
hysteresis for (A) ideal relay and (B) saturation relay
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10.2.2 Simultaneous Identification

Instead of identifying the hysteresis width and ultimate properties separately, it is
possible carry out the experiment in one step. As mentioned earlier, the reason the
ideal relay overestimates the ultimate gain under hysteresis (with a width DB ) is
that the actual output of the relay u is reduced by DB/ 2 as the result of a hystere-
sis. For example, in Figure 10.1A the actual actuator positions are

DB
2

DB or
2

u h h= (10.11)

The amplitude of oscillation a was generated from this relay height. Unfortu-
nately, we still use h to compute the ultimate gain using Equation 10.2. This con-
sequently results in a much larger uK . This insight leads to a new relay feedback
procedure for the simultaneous identification of DB and uK . If we carry out a re-
lay feedback test using two different relay heights 1h and 2h , this results in sus-
tained oscillations with two amplitudes 1a and 2a . As the result of possible hys-
teresis, the actual relay heights are 1 DB/ 2h and 2 DB / 2h . From sustained
oscillations we have

1
1

2
2

DB
2

DB
2

ha
a h

= (10.12)

Therefore, the width of the hysteresis DB can be calculated from

2 1 1 2

2 1

DB
2

a h a h
a a

= (10.13)

Once DB becomes available, the ultimate gain can be computed from

( )DB
2

4 i

u
i

h
K

a
= (10.14)

where 1i = or 2. The ultimate period uP can be read directly from the responses,
since it will not be affected by the hysteresis (e.g. Figure 10.2). The procedure can
be summarized as follows:

(1) Select a relay height 1h  (e.g. 3–7%).

(2) Perform a relay feedback test and, when the system reaches sustained oscil-
lation, read off the amplitude of oscillation 1a and ultimate period uP .

(3) Increase the relay height 2h by 2–4% and read off the amplitude of oscilla-
tion 2a .

(4) Compute the width of hysteresis DB from Equation 10.13 and the ultimate
gain from Equation 10.14.



206 Autotuning of PID Controllers

In step 1, the relay height 1h should be greater than DB/ 2 to prevent failure in
the experiment, since the actual relay height is discounted by DB/ 2 . In step 3,
only a small increase from 1h  (e.g. 2–4%), generally, can provide the resolution
we need to differentiate 1a and 2a  (i.e. we will have a net effect from the relay
height change). Notice that the ultimate periods should be the same for a relay with
different heights for linear systems. Any deviation from the equality is an indica-
tion of process nonlinearity, non-uniform hysteresis width, etc.

10.3 Applications

Since the two-step procedure, in theory, will give a perfect estimation in ultimate
properties (provided with an exact value of DB ), the second approach is tested
here. Let us use two linear systems and one nonlinear process to illustrate the si-
multaneous identification procedure for systems with imperfect actuators. Com-
parisons are made between conventional and proposed relay feedback tests.

10.3.1 Linear Systems

10.3.1.1 Noise-free System

Let use a transfer function model to illustrate the identification procedure. First,
consider a noise-free linear model.

Example 10.1 Noise-free example
FOPDT system:

( ) 20 1
seG s s=
+

(10.15)

Suppose the actuator exhibits hysteresis with a width DB 5%= , 1m = and
1 rc c= . An ideal relay feedback with 5%h = gives 52.9uK = , which is almost

100% larger than the nominal value ( 26.5uK = , e.g. Equation 10.7). Following
the proposed procedure, we start with 1 4%h = . From process responses (Figure
10.8), we obtain 1 0.00072a = and 3.85uP = . After a few oscillations the relay
height is increased by 3% ( 2 7%h = ), as shown in Figure 10.8. The amplitude of
oscillation then becomes 2 0.00217a = and uP stays the same. The ultimate pe-
riod indicates that this is a linear system. Then, we proceed to calculate the width
of hysteresis using Equation 10.13:

DB 0.00217 0.04 0.00072 0.07 0.02512 0.00217 0.00072
× ×= =

This is a very good estimate of DB  (i.e. 4% error). Once DB is available, the
ultimate gain is calculated immediately from Equation 10.14. That gives

26.35uK = . A PI controller is used to control the linear system with an imperfect
actuator. The controller is tuned using the modified Ziegler–Nichols method,
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Figure 10.8. Proposed relay feedback tests on an FOPDT system with h1 = 4% and
h2 = 7%

/ 3c uK K= and 2I uP= . Simulation results show that the proposed procedure
gives satisfactory responses under an imperfect actuator (Figure 10.9). On the
other hand, since the conventional relay feedback does not realize the existence of
hysteresis, an oscillatory SP response is observed.

This example clearly indicates that it is possible to identify the width of a hys-
teresis and ultimate properties simultaneously. Moreover, the estimates appear to
be quite accurate compared with the case of a perfect actuator. Any practical iden-
tification procedure should be robust with respect to process and/or measurement
noises.

10.3.1.2 Systems with Measurement Noise

The proposed method is tested against measurement noise. In the context of system
identification, the NSR can be expressed as

( )( )
( )( )

mean abs noise
NSR

mean abs signal
= (10.16)

where abs( ) denotes the absolute value and mean( ) represents the mean value.
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Figure 10.9. SP responses using controller settings from the original and proposed
relay feedback tests

Example 10.2 System with measurement noise

Example 10.1 with measurement noise. Consider the case of NSR 22%= . Again,
assume the actuator shows hysteresis with a width DB 5%= . First we perform a
relay feedback test with 1 4%h = , followed by a second test with 2 8%h = (Figure
10.10). Notice that it is a common practice to employ a relay with hysteresis for
systems with significant measurement noise. Here, the width of the hysteresis of
the relay is set to twice the standard deviation of the noise. From system output
(Figure 10.8), we obtain 1a = 0.00081 and 2 0.00281a = .

The width DB can be computed immediately from Equation 10.13 and, subse-
quently, the ultimate gain is calculated immediately from Equation 10.14. This re-
sults in DB 4.76%= and uK 25.46= . Notice that the estimated ultimate period is
15% higher than the nominal value. Table 10.1 compares the estimates for systems
with and without noise. The results show that the proposed method works reasona-
bly well under noisy conditions. As expected, as the noise level decreases (e.g.
NSR 10%= ), a slightly better estimate of DB can be obtained, as shown in Table
10.1. Moreover, SP responses of the noisy system are practically the same as Fig-
ure 10.8.
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Figure 10.10. Proposed relay feedback tests on an FOPDT system with measure-
ment noise (NSR = 22%)

Table 10.1. Estimates of width of hysteresis and ultimate properties under different
NSRs

NSR (%) estimated trueDB / DB a
uK a

uP
0 5.02/5.00 26.35 3.85

10 4.86/5.00 26.65 4.07

22 4.76/5.00 25.46 4.32

True valves: 26.46 and 3.85a u uK P= = .
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Another factor that affects the accuracy in the estimation is the choice of 1h and
2h . In theory, for linear systems, the results should remain the same regardless of

the selection of relay heights. However, the accuracy of estimation may vary for
systems with measurement noise. Again, consider the case with a noise level of
NSR 22%= . For a range of 1h and 2h the simultaneous procedure gives fairly
consistent results, as shown in Table 10.2. That is, for the suggested ranges of relay
heights, little difference is observed for different choices of 1h and 2h .

Example 10.2 clearly demonstrates that the simultaneous identification proce-
dure is quite robust with respect to measurement noise. However, the user should
be cau-tious when dealing with measurement noise. First, the amplitude for each
oscillation is obtained by taking the average of several points around the peak
(seven data points in this case) and the amplitude of oscillation ia is the average
from a few oscillations. The ultimate period uP is also an averaging value from
cycling. Certainly, the noise-handling method should also be applied to a conven-
tional relay feedback test. Moreover, the selection of the relay heights has little im-
pact on the accuracy of the estimation for the linear system studied.

10.3.1.3 Load Disturbance

Low-frequency load change is another important issue that any practical identifica-
tion procedure has to face. A relay feedback method was proposed to overcome
load disturbance when identifying ultimate gain and ultimate frequency. It was
proven effective for perfect actuators. Here, the proposed method is extended to
handle actuators with hysteresis under load changes.

Let us use the FOPDT system (Example 10.1) to illustrate the identification un-
der load disturbance. Consider the following load transfer function:

( )
0.5

10 1
s

L
eG s s=

+
(10.17)

Table 10.2. Estimates of width of hysteresis and ultimate properties for different
relay heights (h1 and h2) under 22% NSR

1 2/ (%)h h estimated trueDB / DB a
uK a

uP

3/6 4.95/5.00 25.79 4.08

3/8 4.92/5.00 25.56 4.58

3/10 4.96/5.00 25.47 4.23

4/6 4.34/5.00 26.50 4.65

4/8 4.76/5.00 25.46 4.32

4/10 4.56/5.00 25.46 4.15

True valves: 26.46 and 3.85a u uK P= = .
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Again, the actuator shows hysteresis with a width of 5% ( DB 5%= ). A step
load disturbance comes into the system when a relay feedback test with 4%h = is
performed (Figure 10.11) and it gives an unbalanced period of oscillation (e.g.
time 47< in Figure 10.11). We continue the procedure in Section 10.3 with a sec-
ond relay feedback test ( 7%h = ) and uK and uP can be computed from Equation
10.2 as shown in Figure 10.11. Following the proposed procedure, the width of the
hysteresis can be computed from Equation 10.13:

DB 0.00215 0.04 0.00073 0.07 0.02462 0.00215 0.00073
× ×= =

This gives DB 4.92%= , which is a fairly good estimation and the ultimate gain
is corrected according to Equation 10.14. The corrected ultimate gain becomes

uK = 26.90 . Notice that, up to this point, we just follow the proposed procedure
and biased oscillations are observed as the result of load change (e.g. time 60< in
Figure 10.11). But fairly good estimates in DB , uK and uP are obtained as
shown in Figure 10.11 (e.g. comparing with the true values in Table 10.1). We can
restore a symmetric oscillation using a biased relay, and the biased value 0 is

( )0
h as a= (10.18)

where a is the biased value of the output y . Once the biased relay is installed
and output oscillation becomes symmetric, a little better estimation in uK and uP
can be achieved (Figure 10.11). The result, again, illustrates the effectiveness of
the proposed procedure under low-frequency disturbances.

Figure 10.11. Extended relay feedback tests under step load change for an FOPDT
system with h1 = 4% and h2 = 7%



212 Autotuning of PID Controllers

10.3.2 Nonlinear Process

The third example is a reactor/separator plant studied by Wu and Yu [9]. The feed
to the system is the reactant A and almost high-purity (0.9895 mole fraction) prod-
uct B is taken out from the bottoms of the distillation column. A conventional con-
trol structure is employed (Figure 10.12) and controller settings are obtained using
the sequential autotuning approach of Shen and Yu. This is a multivariable system
where the product quality Bx is maintained by changing the vapor boil-up V and
the distillate composition is controlled by varying the reflux flow R . The nominal
production rate is B = 460 lb mol/h.

Because of wear, the steam valve exhibits hysteresis with a width of 6%. Not
recognizing this fact, controller settings (Table 10.2) from the sequential autotun-
ing simply lead to unacceptable closed-loop responses for a 10% production rate
increase, as shown in Figure 10.13.

10.3.2.1 Two-step Procedure

The ramp test (Figure 10.6B) is employed to find the width of the hysteresis DB.
For the slow chemical process, it takes an extremely long time (100 h as shown in
Figure 10.14) to complete the ramp test while finding a reasonable value for the
DB. Following the standard procedure, the width of the hysteresis can be observed
from the plot of the controlled variable Bx versus controller output coV (Figure
10.15). This gives a DB of 5.6% (a little lower than the true value of 6%). It is in-
teresting to note that nonlinear characteristics are observed in the ramp test (Figure
10.15) as opposed to the linear system (Figure 10.6B). Once DB is available, we
can compensate the offset from the hysteresis by adjusting the relay height (Figure
10.7). After the compensated relay feedback tests, the controller settings immedi-
ately become available, as shown in Figure 10.14. Despite being able to correctly
identify ultimate properties, the ramp test part of the procedure is simply too time
consuming and may not be a good choice for slow chemical processes. On the con-
trary, the relay feedback type of test becomes attractive.

10.3.2.2 Simultaneous Procedure

The simultaneous approach uses consecutive relay feedback tests to identify the
width of the hysteresis and the ultimate properties. Following the Shen–Yu tuning,
we can find the controller parameters (Table 10.3). Figure 10.16 shows the se-
quence of autotuning when the steam valve V (shown in the graph) is imperfect. It
takes less than 10 h to complete the tuning of top and bottom loops (as opposed to
more than 100 h for the two-step procedure). The new settings give good closed-
loop performance (Figure 10.13) which is not too different from that when the
steam valve does not have hysteresis. It should be noted that the actual opening of
the steam valve V is quite different from the control output coV . It is clear that the
behavior of the steam valve movement is far from sustained cycling as the result of
hysteresis (Figure 10.16). The situation becomes worse if both the reflux and steam
valves exhibit hysteresis. Figure 10.17 shows that a prolonged transient response
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occurs during the tuning of the Dx loop. A longer experimental time or, even
worse, possible failure in the experiment can be expected when more and more
valves in the system show hysteresis. Despite the fact that the settings from Figure
10.17 work almost as good as the previous case, the efficiency in the relay feed-
back test deteriorates quickly when the number of imperfect actuators increases.
This implies that, regardless of how smart the autotuner may be, the best solution
to handle imperfect actuators is to have the valves fixed or to get a positioner.

Figure 10.12. Recycle plant with R–V control structure on distillation column

Figure 10.13. Step responses of recycle plant with imperfect actuator in the bot-
toms loop for 10% production rate increase using controller settings from proposed
and original autotuning methods
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Figure 10.14. Ramp test followed by relay feedback tests for the recycle plant with
imperfect actuator in the bottoms loop

Figure 10.15. Plot of the controlled variables and controller output from ramp test to
identify width of the hysteresis
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Figure 10.16. Proposed autotuning sequence for a recycle plant with an imperfect
actuator in the bottom loop

Table 10.3. Controller parameters using different autotuning methods for the recy-
cle plant under various situations of imperfect valves

( )estimated trueDB / DB % / b
c IK

Bottom Top a
Bx a

Dx
Original / 0 / 0 0.126 /1.116 0.275 /1.289
Original 6 / 6 / 0 0.352 /1.101 0.121/1.350
Proposed 6 / 6 / 0 0.128 /1.122 0.275 /1.378
Original 6 / 6 5.9 / 6 0.369 /1.138 0.169 /1.360
Proposed 6 / 6 5.9 / 6 0.127 /1.124 0.272 /1.383

a Transmitter spans: 0.021Bx = and 0.1Dx =
mole fraction valve gains: twice nominal steady state flow rate.

b ln h.
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Figure 10.17. Proposed autotuning sequence for a recycle plant with imperfect ac-
tuators in both top and bottom loops

10.4 Conclusion

Hysteresis is sometimes observed in pneumatic and piezoelectric actuators. Under
relay feedback, the effects of actuator hysteresis on estimation errors are explored.
Comparisons are made between the ideal and saturation relays. As expected, the
ramp behavior of the saturation relay can alleviate the overestimate of uK . If the
width of hysteresis DB is available (e.g. estimated, from bump test, etc), the
shapes of the relays can be modified to accommodate the imperfection and to pro-
vide better accuracy. Moreover, a procedure for simultaneous identification of the
width of the hysteresis and ultimate properties is also proposed. Simulation results
show that good estimates of ultimate properties can be obtained. It provides better
reliability for relay feedback identification and opportunities for improved control
under imperfect actuators. Finally, a word of caution is required: regardless of how
smart the autotuner is, the best approach to handling an imperfect actuator is to
have it fixed.
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11

Autotuning for Plantwide Control Systems

Typical chemical processes consist of many process units. Therefore, the success
of the production depends a great deal on the smooth operation of all these units.
As a result of stringent environmental regulation and economic consideration, to-
day's chemical plants tend to be highly integrated and interconnected. Moreover,
the steady state and dynamic behavior of these interconnected units differs signifi-
cantly from individual units. Therefore, the problem of plantwide control becomes
the operation and control of these interconnected process units. A typical intercon-
nected process unit is the recycle system: process with material recycle.

The dynamics and control of processes with recycle streams received little atten-
tion until recently. Luyben and Tyreus [1–4] investigated the effects of recycle
loops on process dynamics, and the interaction between design and control was
also studied for several process systems with different levels of complexity, e.g.
different numbers of process units and chemical species. Downs and Vogel [5],
based on a commercial process system, proposed a benchmark plantwide control
problem, the Tennessee Eastman problem, for the purpose of developing, studying
and evaluating process control technology. Luyben et al. [6] give good guidelines
and a summary on plantwide control. Now, plantwide control is included in typical
process control textbooks [7–9].

As pointed out in Chapter 1, several ways exist to improve control performance:
(1) better process design, (2) selecting an appropriate control structure, (3) im-
proved controller settings and (4) better instrumentation. Issues (2) and (3) are ad-
dressed in this chapter. First, we will show that control structure design plays a
significant role in improving control performance. Once the control structure is
fixed, a procedure is proposed for the tuning of the entire plant.

11.1 Recycle Plant

Before looking into process characteristics, a simple reactor/separator process is
described. The process studied is a flowsheet consisting of a reactor and a distilla-
tion column in an interconnected structure as shown in Figure 11.1 [10]. An
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Figure 11.1. A reactor/separator process with recycle

irreversible first–order reaction ( A B ) occurs in a continuous stirred tank re-
actor (CSTR). The reaction rate k is a function of temperature described by the
Arrhenius expression, i.e. ( ) /0 E RTkk T e= . This is an exothermic reaction and the
reactor temperature T is controlled by manipulating the cooling water flow rate.
Some of the reactant is consumed in the CSTR, and the effluent of the reactor, a
mixture of A and B , is fed into a 20-tray distillation column. The product is taken
out from the bottoms of the column and the purified reactant is recycled back into
the CSTR. The column has a partial reboiler and a total condenser. Constant rela-
tive volatility ( 2.0= ) is assumed for the modeling purpose.1 Table 11.1 gives the
nominal operating condition for the process. The steady state equations play an
important role in analyzing this recycle system. From material balances, we have

0:reactor F D F+ = (11.1)

0 0 0 RF z Dx Fz V kz+ = + (11.2)

:column F D B= + (11.3)

D BFz Dx Bx= + (11.4)

0:overall F B= (11.5)

Notice that the external flows into and out of the system are the reactor fresh feed
flow rate 0F and the column bottoms flow rate B respectively. Rearranging Eqs
11.2, 11.4 and 11.5 we obtain

1 A FORTRAN program for this plantwide control system can be obtained by contacting the
author, e-mail: ccyu@ntu.edu.tw
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Table 11.1. Parameter values and steady state condition for reactor/separator
system

CSTR
Fresh feed flow rate ( 0F ) 460.000 ( lbmol / h )
Fresh feed composition ( 0z ) 0.900 ( mole fraction )
Fresh feed temperature ( 0T ) 530.000 ( R° )
Recycle flow rate (D ) 500.378 ( lbmol / h )
Recycle stream composition ( Dx ) 0.95 ( mole fraction )
Recycle stream temperature ( DT ) 587.156 ( R° )
Reactor temperature (T ) 616.425 ( R° )
Coil temperature ( jT ) 596.070 ( R° )
Reactor holdup ( RV ) 2400.945 ( lbmol )
Activation energy ( E ) 30841.770 ( Btu / lbmol )
Pre-exponential factor ( 0k ) 102.8297 10 ( 1h )
Reactor residence time 2.500 ( h )
Overall heat-transfer coefficient (U ) 150.519 ( Btu / h/ f t R° )
Heat-transfer area ( A ) 3206.8 ( 2f t R° )
Heat capacity ( pC ) 0.750 ( Btu / lb / Rm ° )
Heat of reaction ( ) –30000.000 ( Btu / lbmol )
Density ( ) 65.35 ( 3lb / ftm )
Molecular weight (MW ) 60.05 ( lb / lbmolm )
Distillation
Column feed flow rate ( F ) 960.378 ( lbmol / h )
Column feed composition ( z ) 0.500 ( mole fraction )
Reflux flow rate ( R ) 1100.045 ( lbmol / h )
Distillate flow rate (D ) 500.378 ( lbmol / h )
Reflux ratio ( RR ) 2.198 ( mole fraction )
Bottoms flow rate ( B ) 460.000 ( lbmol / h )
Vapor boil-up (V ) 1600.423 ( lbmol / h )
Bottoms composition ( Bx ) 0.0105 ( mole fraction )
No. of trays ( NT ) 20
Feed tray ( NF ) 12
Relative volatility ( ) 2
Liquid hydraulic time constant ( ) 0.0011 ( h )
Bottoms holdup ( BM ) 275 ( lbmol )
Reflux drum holdup ( DM ) 185 ( lbmol )
Tray holdup ( nM ) 23.5 ( lbmol / tray )
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( )0 0 B RkVF z x z= (11.6)

and rearranging Equations 11.3, 11.4, and 11.5 we obtain

0

D B

D

x xF
F x z

= (11.7)

Equations 11.6 and 11.7 give an insight into this reactor/separation system. For ex-
ample, three possible process variables to handle external load changes, i.e.
changes in 0F or 0z , are reactor holdup RV , reaction rate constant k and reactor
composition (mole fraction of light component) z . Conventionally, RV (via level
control) and k (via reactor temperature control) are kept constant and this, subse-
quently, results in a large change in the reactor composition z . Once significant
deviation occurs in z , this results in large changes in the internal flows (e.g. F , as
shown in Equation 11.7). Therefore, the disturbance rejection capabilities of differ-
ent control structures can be analyzed from these steady state equations (Equations
11.1–11.7). The experience of the disturbance rejection capability of each individ-
ual unit can be useful for recycle systems.

11.2 Control Structure Design

For a system with multiple units, alternatives exist for handling load disturbances.
For example, the effect of a throughput change can mostly be absorbed by a single
unit or it can be evenly handled by all units. Inappropriate disturbance handling can
lead to unreasonable demand on the capacity of an individual unit and, conse-
quently, result in the snowball effect [11].

11.2.1 Unbalanced Schemes

In a recyce plant, if load changes are handled mostly by one single unit in a plant-
wide system, some of the process variables (e.g. flow rates, level, etc.) can hit op-
erational constraints for a very small load change.

11.2.1.1 Column Overwork

Let us first consider the conventional control structure (Figure 11.2a) where the re-
actor holdup RV is kept constant by changing the reactor effluent flow rate F . On
the column side, both the top and bottoms compositions ( Dx and Bx ) are con-
trolled by manipulating the reflux flow rate R and vapor boil-up V respectively.
A distinct feature of this structure is that the reactor holdup is kept constant, as
shown in Figure 11.2a. This practice gives little problem for plants that are con-
nected as cascade units. However, for recycle systems, the practice of constant re-
actor holdup may require the separator to work much harder in order to maintain
product specifications. Consider the case of a throughput 0F increase.
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Figure 11.2. Control structures for reactor/separator process: (a) conventional
structure (structure C), (b) Luyben structure (structure L), (c) balanced structure 1
(structure B1) and (d) balanced structure 2 (structure B2)

For a reactor (as an individual unit), the reactor holdup has to increase propor-
tionally in order to keep the same performance (e.g. Equation 11.6). In this conven-
tional structure, since the reactor level is kept constant, the reactor effluent compo-
sition z (or the column feed composition) remains high (as the result of a smaller
residence time) along with an increased feed flow rate F (Figure 11.3). The in-
creases in both the feed flow rate F and feed composition z make the column
boil much more of light component to the top, which it subsequently recycles back
to the reactor in order to maintain the product specification. In fact, the resultant
process variables can be derived analytically for the fresh feed flow rate 0F
changes. Assuming constant k and RV , from Equations 11.1–11.4 we have

D

Dc
rx zF

x r zF
= (11.8)

where the overbar denotes nominal steady state value, 0 0/r F F= and the sub-
script c denotes the conventional structure. Similarly, the distillate flow rate, reac-
tor composition z and reactor holdup RV can also be expressed as

0 1D

Dc

Fx zD r
x r zD D

= + (11.9)
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c

z r
z

= (11.10)

 1R

R c

V
V

= (11.11)

Equation 11.10 clearly shows that the constant level practice of the conventional
structure results in an underperformance of the reactor, e.g. percentage change in
z is proportional to percentage change in 0F . This, subsequently, requires over-
work in the column. First, one can observe an ultimate constraint imposed on this
structure from Equations 11.8 and 11.9. If we have

1.9Dxr z= = (11.12)

the distillate flow rate (or the column feed flow rate) goes to infinity, as can be
seen from Equation 11.9. Obviously, any process variable has a physical con-
straint, e.g. the maximum flow capacity in the distillate is often designed as
twice D . This means that the operability (throughput handling ability) of the con-
ventional structure is much smaller than the data from Equation 11.12 (Figure
11.3). This is exactly the snowball effect pointed out by Luyben [11]. In order to
maintain the desired separation under an increase in the production rate, the distil-
lation column has to handle increases in both the feed composition z and feed
flow rate F . Therefore, both the vapor boil-up V and reflux flow rate R increase
quadratically for a linear increase in 0F , as shown in Figure 11.3. Since only a
fixed amount of product ( 0B F= ) is taken out of the column, most of these flow
rate increases recycle back to the reactor. Figure 11.3 shows the changes in the
process variables for a range of changes in 0 0/F F (from 0.1 to 1.6). The process
behavior shown here is very different from that of cascade units or of individual
units. Furthermore, this result comes from an almost unnoticed reason that the re-
actor does not maintain its performance during a throughput change. Actually, to
some extent, Equation 11.6 does reveal this fact. For a given product specification

Bx , the load changes in 0F and 0z can only be handled via k , RV or z . A con-
stant holdup RV combined with a constant reactor temperature control strategy (a
common practice for cascade units) results in a column overwork (i.e. column feed
composition z absorbing all the changes in load variables).

Similar behavior can also be observed for changes in the fresh feed composition.
Figure 11.4 shows how process variables vary for a range of 0z changes. Wu and
Yu [12] give an analytical expression for relationships between process variables.
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Figure 11.3. Steady state values of process variables for a range of F0 changes
under different control structures

Figure 11.4. Steady state values of process variables for a range of z0 changes un-
der different control structures
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11.2.1.2 Reactor Overwork

Luyben [11] recognized the effect of column overwork and the potential problem
of the snowball effect on the recycle stream. A new control structure is proposed
(Figure 11.2b). In the Luyben structure, the reactor holdup is adjusted for known
changes in fresh feed flow 0F and feed composition 0z . This, in fact, overcomes
the reactor underperformance problem. However, a unique feature of the Luyben
structure is that the reactor effluent flow rate F is kept constant using a flow con-
troller (Figure 11.2b). This implies that, even under throughput changes, the col-
umn feed flow rate is not allowed to change. As for the column control, both the
top and bottoms compositions are controlled by manipulating R and V respec-
tively, as shown in Figure 11.2b. Despite the fact that the fresh feed flow is used as
a manipulated variable in the Luyben structure, the throughput change is accom-
plished in an indirect manner, i.e. by adjusting the reactor level. Again, the process
variables can be expressed analytically by solving Equations 11.1–11.4. The vari-
ables kept constant are Dx , Bx and F . For throughput changes ( 0 0/r F F= ), the
corresponding process variables are

 1
L

F
F

= (11.13)

0 0 1
L

F FD r
D D D

= + (11.14)

 1D D

L

z x x rz z z= (11.15)

( )D

R

R DL x z r
V z r
V x

= (11.16)

where the subscript L denotes the Luyben structure. Figure 11.3 shows the
changes in the process variables for a range of throughput changes
( 0 0/ 0.1 1.6F F = ). The results clearly show that the variable reactor holdup
structure does alleviate the snowball effect on the recycle stream (e.g. /D D in
Figure 11.3). However, in this variable-reactor-level control structure, an important
question to ask is what an appropriate reactor holdup is. For an individual reactor,
the reactor performance is maintained by keeping reactor composition z constant.
Since F is kept constant, an increase in RV (as a result of an increase in the
throughput) leads to a larger residence time ( /RV F ) and, subsequently, results in a
better conversion (a smaller z ). Comparing this with the conventional structure
(Figure 11.3), the reactor composition z is overadjusted and, subsequently, the
process variables in the column remain fairly constant for throughput changes. For
this reactor overwork condition, the snowball effect, in fact, remains. Instead of
large changes in the recycle stream, the reactor holdup RV changes significantly
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for a throughput increase (Figure 11.3). The ultimate constraint imposed on the
Luyben structure is RV , as shown in Equation 11.16. If

2.09D

D

xr
x z

= = (11.17)

the reactor holdup goes to infinity. Obviously, in practice, the throughput handling
ability is much smaller then this value (e.g. a finite capacity imposed on the reactor
holdup). Therefore, it becomes obvious that the snowball effect does not disappear
for throughput changes. It appears in the reactor holdup RV instead of in the recy-
cle flow rate.

In the Luyben structure, the fresh feed composition disturbance can be handled
by adjusting the reactor holdup (Figure 11.4). Moreover, the process variables z ,
D , F , R , V remain unchanged for such disturbances.

11.2.2 Balanced Scheme

From the analyses of the conventional structure and the Luyben structure, it be-
comes clear that if the load disturbance is not handled evenly by these two units,
then this imbalance grows exponentially via the recycle structure. This, conse-
quently, leads to the snowball effect and, more importantly, results in a limited dis-
turbance rejection capability. That is a unique feature of plantwide control. There-
fore, care has to be taken in devising the control structure by distributing extra
work evenly between the two process units.

For reactor control, a measure of performance is the reactor composition. The
reactor composition can be controlled by adjusting reactor holdup RV (Figure
11.2c). In doing this, the reactor level grows linearly for changes in fresh feed flow
rate, as indicated by Eqs 11.6 and 11.7. As for the distillation column control, since
both the column feed flow rate F and composition z are controlled (in a feedfor-
ward or feedback manner) for external load changes, only single-end composition
control in the separator is sufficient to hold top and bottoms compositions. Once
the reactor/separator is controlled in this way, the separator shares its work under a
throughput change. It is worthwhile mentioning that, in this structure, the reactor
and separator are treated as a complete process unit and the control system is de-
signed accordingly. For example, the recycle flow D is adjusted by measuring the
reactor level (Figure 11.2c). This design concept indicates an important point in
plantwide control: treat the whole plant as a unit instead of designing a control sys-
tem for each individual unit and then putting them together to form a plantwide
control structure. For this control structure, an analytical expression for process
variables under throughput changes can also be derived from Equations 11.1–11.4.
By assuming constant z and 0/F F ratio, the process variables of interest become

b

F r
F

= (11.18)
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b

D r
D

= (11.19)

1
b

z
z

= (11.20)

R

R b

V r
V
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where r is the relative change in the fresh feed flow rate ( 0 0/F F ) and the sub-
script b denotes the balanced control structure. It immediately becomes clear that,
comparing this with the other two structures, ultimate constraint does not exist in
this structure; this gives better operability. Comparison is made for these three con-
trol structures under throughput changes. The results (Figure 11.3) clearly indicate
that, for the balanced control structure, the extensive variables (e.g. RV , F , V ,
R ) change in proportion to throughput 0F changes. In other words, both units
share their work to overcome throughput changes. On the other hand, if one of the
units overworks, the manipulated variables (or process variables; e.g. D for con-
ventional structure or RV for Luyben structure) could be saturated for a small
range of load changes. Figure 11.4 shows how these three control structures handle
fresh feed composition changes. For both the Luyben and the balanced structures,

0z changes are handled by the reactor and these two structures show identical re-
sults. Wu and Yu [12] give the derivation for fresh feed composition changes.

Notice that the configuration shown in Figure 11.2c (structure 1B ) is not the
only possible choice to achieve this balance in plantwide control. An alternative is
to keep the distillation top composition constant by changing the reactor level SP,
as shown in Figure 11.2d (structure 2B ). This control structure gives exactly the
same disturbance rejection capability as the other balanced structure (Figure 11.3).
Equation 11.7 clearly shows that as long as the ratio 0/F F is kept constant, keep-
ing any two compositions (out of Dx , Bx and z ) constant will maintain the third
composition at its SP. Therefore, the more appropriate control structure can be se-
lected from these two alternatives according to their dynamic properties. Notice
that two composition analyzers are required for all control structures mentioned
(Figure 11.2).

11.2.3 Controllability

The RGA of Bristol [13] was employed to analyze the interaction [10] and to as-
sess the controllability of plantwide control systems. It is well known that the RGA
is an interaction measure for multivariable systems and it can be used to test the in-
tegral controllability of a closed-loop system [14,15]. There are three major loops
in this plantwide structure (two composition loops, Bx and Dx or Dx and z , and
one temperature loop, T ), 3 3× RGAs can be obtained for these four control struc-
tures (Figure 11.5) from steady state rating programs (Table 11.2). The results
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show that all these four structures (structures C, L, 1B and 2B ) are decentralized
integral controllable [15]. That is, the controller gains for any of these loops can be
reduced arbitrarily to zero (manual mode) without causing instability. Therefore,
all three control structures are failure tolerant. This guarantees the integrity of the
control system. Furthermore, the closed-loop interaction can also be analyzed using
the RGA. Since the temperature loop is much faster than the composition loops, it
is easier to interpret the interaction by looking at the composition loops (assuming
constant T ). Table 11.2 gives RGAs for the reduced systems. Before looking at
the plantwide system, it should be noticed that the RGA for the column itself (un-
der R V control; Figure 11.2) is

6.8 5.8  V
5.8 6.8  R

B Dx x

=
(11.22)

Obviously, Table 11.2 shows that the relative gain ij for Luyben's structure
( 11 12.16= ) is much larger than that of the column alone ( 11 6.8= ) or the con-
ventional structure ( 11 2.78= ). That means if the steady state interaction is the
only indication of controllability, then the conventional structure is a better choice.

Figure 11.5. Control structures for reactor/separator process with xB controlled: (a)
D fixed ((C)D structure) (b) R fixed ((C)R structure), (c) RR fixed ((C)RR structure),
and (d) F fixed ((C)F structure)
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Table 11.2. RGA for different control structures with different assumptions

Manipulated variable Manipulated variable*
Scheme Controlled

variable V R T j V R

Bx 3.303759 –2.078648 –0.225111 2.78 –1.78

Dx –2.032999 3.002975 0.030024 –1.78 2.78C

T –0.270760 0.075672 1.195088
Bx 1.246383 –0.246383 1.0( )DC

T –0.246383 1.246383
Bx 1.184476 –0.184476 1.0( )RC

T –0.184476 1.184476
Bx 1.207454 –0.207454 1.0( )RRC

T –0.207454 1.207454
Bx 1.246386 –0.246386 1.0( )FC

T –0.246386 1/246386
Bx 9.15964 –8.12565 –0.03399 12.16 –11.16

Dx –8.216615 8.916006 0.300144 –11.16 12.16L

T 0.005606 0.209647 0.733847

V V set
R T j V V set

R

Bx 0.968 0.147 –0.114 0.78 0.22
z 0.032 0.512 0.455 0.22 0.781B
T –0.000002 0.341 0.659
Bx 0.731823 0.271457 –0.000328 0.59 0.41

Dx 0.268179 0.387579 0.344242 0.41 0.592B

T –0.0002 0.340964 0.6590
* Assuming constant reactor temperature.

Table 11.2 also shows that the balanced structure has very different characteristics,
i.e. 11 0.78 1= < . The RGA for this structure looks very much like a D V (distil-
late and vapor boil-up) controlled system. This is quite the case. For the control
structure 2B , consider the case when a step increase in V is made. Since D is ma-
nipulated by the reactor holdup, the reflux flow increases while keeping D con-
stant. Therefore, the steady state gains for these two compositions have different
signs for a change in V . The result is different from the conventional or Luyben
control structure, which shows the behavior of the R V control structure.

The steady state gain matrix is

5 5

5 5

1.4 10 8.3 10

2.3 10 1.6 10
B

set
D R

Vx
x V

× ×
=

× ×
(11.23)

The second column of the gain matrix looks more like the steady state gains for a
feed composition change, for a change in RV results in a change in z and subse-
quently affects Dx , Bx and z . The D V structure has a larger closed-loop gain
and, therefore, 11 is smaller than unity. The RGA analyses indicate that the input
and output pairing is correct for the balanced structure. Furthermore, one can ob-
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tain control structures without any interaction by controlling only one-end (bottoms
composition). Figure 11.5 shows four possible structures in which only Bx is con-
trolled and Dx is left uncontrolled by fixing one flow rate or flow ratio (e.g. D ,
R , RR or F ). From the interaction point of view, these four structures are better
choices (Table 11.2), since the relative gain is unity for SISO systems. If the inter-
action is the sole measure of controllability, then the least interacting control struc-
ture, e.g. single-end control or the conventional structure, should be the candidate
control structure. However, the disturbance handling capability seems to be a more
important factor in plantwide control structure selection.

11.2.4 Operability

For the control structures studied (Table 11.3), the effects for a range of load
changes ( 0z and 0F ) can be calculated from the steady state equations. Notice
that, in the computation, no constraint is placed on the flow rates or levels. There-
fore, the range of load changes that can be handled by the control structure (range-
ability) comes from the fact that the product specification(s) (e.g. Bx or Dx and
Bx ) simply cannot be met. Table 11.3 gives the rangeabilities for all these seven

control structures. It is interesting to note that some of the structures give unrea-
sonably small rangeabilities, e.g. (C)D and (C)F, for fresh feed flow changes. For
example, the structure (C)D can handle only a 3% throughput increase, despite the
fact this structure does not have any interaction problem. The reason is that for a
positive change in the throughput, the reactor composition z changes accordingly
(e.g. Equation 11.10). Therefore, the total light component that goes into the col-
umn increases quadratically, which cannot be handled by the column if both Bx
and Dx are fixed. That is, the purity of the light component on the top of the col-
umn reaches 100% for a 3% increase in the production rate. A similar limitation is
observed in the structure (C)F. For an increase in 0F , the distillate flow rate has to
be reduced for the fixed reaction effluent flow rate F configuration (Figure
11.5d). Despite the fact that F is flow controlled, the total light component zF

Table 11.3. Disturbance sensitivity analyses for different control structures with dif-
ferent load changes

Scheme Disturbance
variable ( )0 max

z ( )0 min
z 0

0 max

F
F

0

0 min

F
F

C 1.0 0.153 1.801 0.131
( )C D 0.938 0.2898 1.03 0.64

( )C R 1.0 0.163 1.9 0.2136

( )C RR 1.0 0.162 1.99 0.3
Conventional

( )C F 0.945 0.207 1.03 0.67

Luyben L 1.0 0.189 2.08 0.08
Balanced  ( 1B and 2B ) 1.0 0.189 15.12 0.0047
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which goes into the column increases as the result of increased purity in Dx . This
structure can only tolerate a small increase in 0F (decrease in D ), since it is lim-
ited by its physical constrains ( 1Dx ). This can be shown by rearranging Equa-
tions 11.5 and 11.6. Denote r as the dimensionless ratio of the fresh feed flow rate
to the nominal feed flow rate. We have

( )0 D B

D

x x
F xr

F F z+
= (11.24)

By substituting the nominal steady state value for 960.378F = , 0 460F = , Bx =
0.0105 , and 0.5z = and the limiting value 1Dx = into Equation 10.24, one ob-
tains

1.03r = (11.25)

Obviously, this shows a complete lack of operability in plantwide control. Unfor-
tunately, the interaction analysis does not give any indication of a limited range-
ability.

Again, the balanced schemes give the largest rangeability for throughput
changes, as shown in Table 11.3. Furthermore, the Luyben structure has a larger
rangeability then the conventional scheme for changes. The results presented here
are in contradiction with those from interaction analyses. Therefore, a trade-off has
to be made between interaction and operability. All the control structures with Bx
and Dx controlled handle 0z changes equally well. From the ongoing analyses, it
becomes obvious that the balanced structure is a better choice from a steady state
point of view.

11.3 Controller Tuning for Entire Plant

The dynamics of the reactor/separator process are analyzed using a series of rigor-
ous dynamic simulations. The reactor is a CSTR with the reactor temperature con-
trolled by the cooling water flow rate. The assumptions of theoretical tray,
equimolar overflow and constant relative volatility are made in modeling the distil-
lation column. The differential equations are similar to those of Luyben [16] pp.
64, 70. Parameters characterizing dynamic behavior, e.g. holdups in column and
reactor, are given in Table 11.1. Constraints are placed on the flow rates and levels.
The maximum flow rate and holdup are set to be twice the nominal steady state
values except for the fresh feed flow rate, which was set to be three times the
steady state value. An analyzer dead time of 6 min and a temperature measurement
lag of 1 min are assumed in the composition loop and temperature loop respec-
tively.
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11.3.1 Tuning Steps

Despite the fact that many methods have been proposed for the tuning of multi-
variable systems [16,17], little is said about the tuning of the plantwide control
structure in a systematic manner. Several authors [1,18] find ultimate gain uK
and ultimate frequency u first, followed by the Ziegler–Nichols type of tuning
method in their plantwide control systems. The Tyreus–Luyben tuning (Table 2.3)
is an alternative in plantwide control. Since, typically, many loops are involved in a
plantwide system, an important question to be answered is which loop (or group of
loops) should be tuned first and by what method. That is, what is the tuning se-
quence (e.g. arranged by unit, by properties or by speed of response)? One thing is
clear, however, the inventory loops should be under control when the quality loops
are tuned [18].

11.3.1.1 Inventory Control

In this work, the inventory in the system is maintained through three level loops
(Figure 11.2). The level loops are tuned first, followed by finding the tuning con-
stants for the composition and temperature loops. Since the holdups in the column
( DM and BM ) are an order of magnitude smaller than that of the reactor holdup
RV (Table 11.1), perfect level control is assumed in these two level loops (control-

ling DM and BM ).
The averaging level control of Cheung and Luyben [19] is used for the tuning of
the reactor level loop. For the conventional and Luyben structures, a PI controller
is employed for the reactor level control. First, the closed-loop time constant is set
to be a ratio (e.g. 10%) of the reactor residence time and a specific damping ratio
( 0.707= ) is specified for the closed-loop characteristic equation. Following the
tuning procedure of Cheung and Luyben [19], the controller gain cK and reset
time I can be found directly. The tuning constants for the level loops are given in
Table 11.4. For the balanced control structures, the reactor level is cascaded by the
top composition, and, therefore, a P controller is sufficient to maintain the compo-
sition SP. Since a P-only controller is employed in the reactor level control for the
balanced structure, the tuning constant is found by setting the closed-loop time
constant to be a ratio (roughly 3%) of the residence time (Table 11.4). It should be
emphasized that the tuning of the reactor level loop can affect the tuning constants
of the quality loops, especially for the Luyben and the balanced structures. The
reason is quite obvious: these two structures manipulate the reactor level for qual-
ity control.

11.3.1.2 Ratio Control

Since a ratio control is involved in the two balanced control structures (Figure 11.2
c, d), a dynamic element is placed in the feed-forward path. This is a “lag” device
with the time constant set to be 10% of the reactor residence time.



234 Autotuning of PID Controllers

Table 11.4. Ultimate properties and controller parameters for different control struc-
tures

Structure Parameter
pairing uK u (rad/min) *cK I (min)

Temp. loop 17.081 94.06 5.69 8.0
jT T

Comp. loop –2.24 13.0982 –0.75 57.6
Bx V

Comp. loop 0.92 9.827 0.31 76.7
Dx R

Conventional

Level loop –5.66 21.2
Temp. loop 17.051 94.2 5.68 8.0

jT T
Comp. loop –1.60 9.83 –0.53 76.7

Bx V
Comp. loop 0.81 8.74 0.27 86.4

Dx R

Luyben

Level loop 9.43 44.3
Temp. loop 17.064 94.2 5.69 8.0

jT T
Comp. loop –9.89 19.592 –3.3 38.4

Bx V
Comp. loop –0.16 2.4962 –0.07 125.9

set
Rz V

Balanced 1

Level loop 40.29
Temp. loop 16.996 93.919 5.67 8.0

jT T
Comp. loop –9.81 20.061 –3.27 37.6

Bx V
Comp. loop –0.06 6.874 –0.03 45.7

set
Rz V

Balanced 2

Level loop 29.51

* Transmitter spans: Dx and Bx : 0.1 mole fraction; z: 0.2 mole fraction level:
twice nominal steady state holdup.

Valve gains: twice nominal steady state flow rate except for fresh feed flow
(three times nominal steady state flow rate).
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Furthermore, the dynamic behavior of the two balanced structures ( 1B and 2B )
is not quite the same. Consider the case when a step change is made in set

RV . Fig-
ure 11.6 shows the responses for the control structure 1B . It is clear that the reac-
tor composition z goes through an inverse response while Dx is showing a little
undershoot step response. It is well known that the non-minimum phase behavior
of / set

Rz V cannot be removed via feedback control. Therefore, the balanced con-
trol structure 2B is selected from the dynamic response point of view and it is used
for subsequent comparisons (with other control structures).

11.3.1.3 Quality Loop

Once the inventory is under control, the tuning constants for the reactor tempera-
ture and distillation composition loops can be found. PI controllers are employed
for quality control. These three loops are tuned using the multivariable autotuner of
Chapter 6. The relay feedback MIMO autotuner proceeds with the tuning sequen-
tially and the sequence is repeated until the corresponding tuning constants are
relatively close between sequences.

Figure 11.6. Step responses of the control structure B1 for a step change in reactor
level
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Let us take the tuning of the conventional structure as an example (Figure 11.7).
The sequential tuning approach of Chapter 6 is employed here. Initially, the relay
feedback test is performed on the reactor temperature loop and a sustained oscilla-
tion is generated as shown in Figure 11.7. The ultimate gain can be found from
system responses.

4
u

hK a= (11.26)

where a is the amplitude of the output and h is the relay height. The ultimate pe-
riod uP can be read off from system responses. Once uK and uP are available,

uK and I can be found according to

3
u

c
KK = (11.27)

2I uP= (11.28)

This gives 5.68cK = and 7.8I = . Next, the Bx V loop is under the relay feed-
back test while the loop is on automatic. The results are 0.82cK = and

55.5I = . The Dx R loop is then tuned while the other two loops on automatic.

Figure 11.7. Sequential tuning of the T–Tj , xB–V and xD–R loops for the conven-
tional structure
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The tuning parameters for the Dx R loop are: 0.30cK = and 75.0I = . Actu-
ally, the tuning process can be terminated at this point (over a 4 h period). Figure
11.7 shows that this procedure is repeated for another sequence to ensure that these
parameters really converge. Table 11.4 gives the tuning constants for the conven-
tional structure. Following the same procedure, the tuning constants for the Luyben
structure can also be found sequentially, as shown in Figure 11.8. The dynamics of
these two structures are quite similar (e.g. in terms of time required for autotuning
as shown in Table 11.4). The balanced structure shows a slightly different charac-
teristic (Figure 11.9). The loop speeds for the jT T and Bx V loops are quite
similar to the two structures shown previously. However, the relay feedback test on
the set

D Rx h (level SP) loop takes a much longer time. Despite the fact that the
tuning constants converge in one sequence, it takes almost 7 h for one sequence.
That implies the loop is much slower than the loops for the other two structures
( Dx R loop). Table 11.4 presents the tuning constants for all three control struc-
tures.
In fact, one can learn the dynamic characteristics of the plantwide system from re-
lay feedback tests. For all these structures, the jT T loop is much faster than the
other two composition loops (almost an order of magnitude faster; Table 11.4).

Figure 11.8. Sequential tuning of the T–Tj , xB–V and xD–R loops for the Luyben
structure
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Figure 11.9. Sequential tuning of the T–Tj , xB–V and xD– set
Rh loops for the balanced

control structure B2

Therefore, the reactor temperature can be treated independently. The next faster
loop is the Bx V loop, as can be seen from the values of u (Table 11.4). For the
conventional and Luyben structures the loop speeds for the two composition loops
are quite similar, and the difference (in the loop speed) becomes noteworthy for the
balanced scheme. The balanced control structure shows a quite different loop speed
and gives little dynamic interaction. This can be understood from the fact that the
tuning constants from the first sequence and the second sequence are almost the
same (Figure 11.9). The autotuning results clearly indicate that the plantwide con-
trol structure can be tuned effectively using the sequential tuning approach of
Chapter 6.

11.3.2 Closed-loop Performance

The three control structures are tested for the reactor/separator process by perform-
ing a series of nonlinear dynamic simulations. Closed-loop performance and oper-
ability are employed to measure the effectiveness of these alternative control struc-
tures. As far as the product quality is concerned, the response of Bx is the most
important indicator among these three controlled variables ( Bx , Dx and T ).
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Figures 11.10–11.12 show what happens when step changes ( 10%± ) are made
in the fresh feed flow rate for these three control structures. For the conventional
structure, small changes in 0F  ( 10%± ) are amplified into very large deviations in
the distillate flow rate ( 30%± ; Figure 11.10). This is exactly the snowball effect
pointed out by Luyben [11]. Despite the sensitivity problem in the recycle stream,
the closed-loop responses, e.g. Bx are reasonably fast. That implies, at least, that
the controller settings are satisfactory. Figure 11.11 shows the closed-loop re-
sponses for the Luyben structure for 10%± fresh feed flow rate changes. Small
changes in 0F  ( 10%± ) result in significant changes in the reactor level ( 20.4%± ).
It is also interesting to note that, unlike the conventional structure, the reactor
brings the effluent composition z down to 0.452 for a 10% 0F increase. This is
achieved at the expense of a significant increase in the reactor holdup. Figure 11.11
also reveals that the fresh feed flow rate 0F saturates momentarily when the
throughput changes are made. However, the closed-loop performance of Bx is
much better than that of the conventional structure (Figures 11.10 and 11.11) de-
spite the sensitivity problem in the reactor level. Figure 11.12 shows what happens
when 10%± step changes in the fresh feed flow rate are made for the balanced
structure (structure 2B ). The results show that the sensitivity problem in either the
recycle stream or in the reactor level, observed in the other two structures, no
longer exists. The distillate flow rate and reactor level increase in proportion to the
increase in the fresh feed flow rate. Figure 11.12 also confirms the finding that

set
D Rx V is the slowest loop in this system. The closed-loop performance of Bx is

similar to that of the Luyben structure. Despite the differences in sensitivity and
performance of Bx , the closed-loop responses are reasonably fast for all three
structures.
A more realistic test for a production rate change, a 30% increase in fresh feed
flow rate, is used to evaluate these three control structures. Figure 11.13 shows the
closed-loop responses for the conventional, Luyben and the balanced structures.
For a 30% increase in 0F the conventional structure fails to meet the product
specifications Bx as the result of control valve saturation in the recycle stream ( D
in Figure 11.13). For this throughput change, the reactor level almost overflows
(levels off at 90%). This occurs despite the fact that Bx is controlled reasonably
well. Figure 11.13 shows that, for the balanced structure, good closed-loop per-
formance is achieved without violating (or almost violating) process constraints.
Figure 11.14 shows the fresh feed composition decreases by 10%. Again, better re-
sponses can be achieved using the balanced structures. Despite the fact the Luyben
and the balanced structures show exactly the same steady state behavior, the dy-
namic behavior differs between loops. The responses of Dx and z are better con-
trolled using the Luyben structure. The conventional structure shows the largest
deviation in Bx while the reactor temperature and Dx are under relatively good
control. In summary, the balanced control structure gives good closed-loop per-
formance and, more importantly, can handle large load changes without violating
process constraints.
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Figure 11.10. Step responses of the conventional structure for ±10% F0 changes

Figure 11.11. Step responses of the Luyben structure for ±10% F0 changes
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Figure 11.12. Step responses of the balanced (B2) structure for ±10% F0 changes

Figure 11.13. Step responses of conventional, Luyben and balanced control struc-
tures for +30% F0 change
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Figure 11.14. Step responses of conventional, Luyben and balanced control struc-
tures for –10% z0 change

11.4 Conclusion

We have provided a thorough study of a simple recycle plant. Two important is-
sues, control structure design and plantwide tuning, are discussed. Both aspects
provide opportunities to improve control performance. We have shown that steady
state analyses provide useful information to validate the operability of various con-
trol structures. The MIMO autotuning procedure of Chapter 6 provides a system-
atic framework for plantwide control. Simulation results show that the control sys-
tem is effective in handling large load changes while maintaining good closed-loop
performance. Extension to an even simpler control structure can be found in Wu et
al. [20]. Plantwide control of energy-integrated recycle plant can be found in Lin
and Yu [21].
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Intelligent control is becoming a common practice in many industrial applications.
Åström and coworkers [1–3] summarize the progress in the field. A review on relay
feedback can be found in Hang et al. [4]. The reason for such a need is fairly obvi-
ous: industrial processes are nonlinear and multivariable in nature, measurements
are corrupted with noise and frequent load changes occur. That is, we are dealing
with not so normal operating conditions in daily practice. In terms of autotuning,
this implies we have to devise different experiments to handle various circum-
stances.

Up to this point we have proposed different types of relay which are useful on
various occasions. In this chapter we try to identify typical process characteristics
and integrate the relays into corresponding situations. The approach can be imple-
mented in a rule-based expert system, which is available in many modern distrib-
uted control systems.

12.1 Process Characteristics

First, we will identify process conditions which are better handled with carefully
designed relay feedback experiments. These conditions are typical in many indus-
trial processes.

12.1.1 The Shape

As mentioned in Chapter 3, the shape of relay feedback response gives useful in-
formation to identify, at least qualitatively, the model structure (e.g. first-order,
second-order or HO systems; see Figures 3.10, 4.1 and 4.2) and, possibly, the dead
time to time constant ratio. This information is crucial for improved control system
performance, because no single tuning rule works well for all model structures
over the entire range of parameter values (e.g. Tables 2.2 and 2.3). So, we strongly
believe the performance of an autotuner can be improved significantly by:
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(1) Analyzing the shape of relay feedback response.

(2) Identifying the model structure and find corresponding model parameters.

(3) Applying appropriate tuning rules for the given model structure and parameter
values.

More importantly, the improvement can be achieved at virtually no cost, no addi-
tional relay feedback test, no prolonged plant test, etc.

12.1.2 Load Disturbance

As pointed out in Chapter 7, load changes will lead to erroneous results in uK and
u . A measure is defined to evaluate the effect of load disturbance. The bias-to-

signal ratio (BSR) is used to assess the degree of load effect:

aBSR a= (12.1)

where a is the averaged magnitude of oscillation:

2
max miny ya =

and maxy and miny stand for the maximum and minimum magnitude of the out-
puts. a is the bias in the asymmetrical oscillation (Figure 7.3B). The value of
the BSR falls between 0 and 1. If 0BSR = , then this means we have a symmetri-
cal oscillation and bias occurs when 0BSR > . Qualitatively, we classify the load
effect into three levels: low, medium and high. Corresponding errors in uK and

u for first-, second- and third-order plus dead time systems can also be found
from Chapter 7. Table 12.1 summarizes the qualitative results.

These are the results obtained using an ideal (on–off) relay. Table 12.1 shows
that the BSR gives a good indication of the accuracy. For the medium- and high-
level load effects, a better experimental design is needed to improve the accuracy.

12.1.3 Nonlinearity

Another important characteristic of industrial processes is nonlinearity. Two types
of nonlinearity are addressed. One is the “local” nonlinearity and the other is the
“global” nonlinearity. Let us consider the case of “local” nonlinearity. It is obvious
that process nonlinearity differs from load disturbance in its origin. But, in a relay
feedback test, they show a similar response in the output: asymmetry in the oscilla-
tion. Again, we use the BSR to describe the degree of nonlinearity. Table 12.2
gives qualitative results derived from a Hammerstein model with different relay
heights. Generally, pH neutralization processes, high-purity distillation columns,
and reactive distillation belong to the class of medium to high sBSR . It also should
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Table 12.1. The load effect and corresponding errors

Load level Range of *BSR Error in **uK Error in **u

Low 0 0.2BSR < 5%< 5%<

Medium 0.2 0.6BSR < 10%< 20%<

High 0.6 1BSR < 60%< 80%<

* /BSR a a= .
** Use 0BSR = as base value.

Table 12.2. The effect of nonlinearity and corresponding errors

Load level Range of *BSR Error in **uK Error in **u

Low 0 0.2BSR < 5%< 5%<

Medium
0.2 0.6BSR < 20%< 20%<

High
0.6 1BSR < 80%< 80%<

* /BSR a a= .
** Use 0BSR =  (i.e. linear system) as base value.

be noted that, for the same process, different relay heights can lead to different
sBSR .

“Global” nonlinearity may arise when the plant is operated over a wide opera-
tion range (e.g. different throughputs, various product grades). The autotuning can
be implemented in a multiple-model framework, as shown in Chapter 8.

12.1.4 Noise

Any practical identification procedure should be able to overcome process and/or
measurement noise. For relay feedback tests, noise generally will not deteriorate
the estimate of uK and u . However, it may result in apparently random switch-
ing of the relay. Therefore, the noise effect may prolong or fail the relay feedback
test. To overcome the possible failure, a relay with hysteresis is a good choice.
However, a relay with hysteresis means that we are finding a frequency point
smaller than the ultimate frequency. In other words, we simply overestimate the
magnitude of G (getting smaller uK ). Therefore, the errors often come from the
way we handle the noise, not from the noise itself.
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12.1.5 Imperfect Actuator

The relay feedback may lead to erroneous ultimate properties when we have imper-
fect actuators, especially for a control valve with actuator. Thus, the relay feedback
procedure has to be modified to find the dead band in the hysteresis and the correct
ultimate gain and ultimate period. Because imperfect actuators are often encoun-
tered in process industries, it is important to find the correct ultimate properties un-
der this circumstance. A two-step procedure is proposed in Chapter 10 to overcome
the problem of an imperfect actuator. A final note is that, regardless of how intelli-
gent the procedure is, the best solution is to get the valve fixed.

12.2 Available Relays

In this section we will summarize the relays we have discussed so far. Basically,
they can be classified into three types.

1. Ideal (on off) relay
As mentioned several times, this is simplest relay. The disadvantage is that the
estimated uK and u are less accurate. But, it provides a simple and reliable
way for autotuning.

4
u

hK a= (12.2)

2
u

uP
= (12.3)

2. Saturation relay
The saturation relay compensates for the problems associated with the ideal re-
lay. However, it requires a longer test period due to changes in the slope k . Ini-
tially, the slope of a saturation relay is set to a high value (e.g. k implies
an ideal relay). Then, we can have a rough estimate of the ultimate gain ˆ uK .
Next, the desired slope is calculated from

1.4
ˆ1.4
min

u

k k

K

=

=
(12.4)

The next step is to continue the test with this slope and a better estimate of uK
can be found:

( )2
12 sin 1u

a
a

h a aK a a a= + (12.5)

3. Biased relay

(i) Output-biased relay
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As pointed out in Chapter 7, the output-biased relay is effective in overcom-

ing asymmetrical oscillation. The reason for restoring the symmetry is that

the asymmetry gives rise to significant errors in uK and u . Asymmetrical

responses often arise from load disturbances and process nonlinearity. The

biased value of the relay is adjusted on-line according to

( )
( ) ( 1)
0 0 ( )

i
i i

i

h a

a
= (12.6)

where 0 is the bias in the relay height, as shown in Figure 7.5A.

(ii) Input-biased relay

Input-biased relay is useful in generating asymmetrical oscillation. In doing

this, we can find the steady state gain pK , in addition to the uK and u ,

from a single relay feedback test [4]. According to the equivalent gain in the

describing function, pK can be expressed as

( )

( )

2

0

2

0

p

d t

t

e t
K

u t d

= (12.7)

Therefore, in the normal operating condition (e.g. without load disturbance

and severe nonlinearity), we can obtain both steady state ( pK ) and dynamic

information ( uK and u ) using the input-biased relay feedback.

12.3 Specifications

Depending on the application, the relay feedback experiment can be designed for

specific purposes. Two typical controller design methods are direct tuning and

model-based tuning (Chapter 2). From the process perspective, the applications can

also be classified as single-loop and multiloop systems. In this section, we will

look at the direct tuning, model-based tuning and multiloop applications.

12.3.1 Direct Tuning

The process information required for direct tuning (Table 2.2) is the ultimate gain

uK and the ultimate frequency u . This is the situation where simple relay feed-

back tests work well. Table 12.3 gives the appropriate relays for different process

conditions.

In normal operating conditions, the saturation relay will improve the accuracy of

the identification. Under load changes or facing process nonlinearity, the output-

biased relay is recommended, since it reduces the identification error significantly.

Table 12.3 probably covers most of the process applications. A pH neutralization

example is used to illustrate the effectiveness of the output-biased relay.
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Table 12.3. Available relays for direct tuning

Operating condition Available relay

Normal
or

Measurement noise

(low, medium, high) or

low or

medium
Load

disturbance

high

low or

medium
Nonlinearity

high

Example 12.1 pH neutralization process.
This is a strong nonlinear process where the strong base NaOH is employed to neu-
tralize waste acids: HCl and HAc.

First an ideal relay with a height of 10% ( baseF ) is used to generate continuous
cycling (t = 0–4 min in Figure 12.1). Output responses show that the oscillation is
asymmetrical ( 0.16926a = and 0.0353a = ). We can find the ultimate gain and
ultimate frequency from Figure 12.1. They are 0.01599uK = and 5.81u = . uK
is off by 5.2%, if we use a relay height of 0.1% (can only be done in simulation).
According to Equation 12.6, an output bias of 20% ( o ) is established and another
relay feedback test is performed. Figure 12.1 shows that symmetrical oscillation is
restored and uK and u become: 0.01692 and 7.75 respectively. The error in uK
is less than 1% using the output-biased relay. Note that this is achieved with a relay
height of 10%. This example clearly illustrates the effectiveness of the output-
biased relay.
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Figure 12.1. Output-biased relay feedback test for pH neutralization system

12.3.2 Model-based Tuning

In some cases we would like to try out model-based tuning. IMC-PID tuning is a
typical example where we need to have a linear model for the controller tuning
(Table 2.3). Despite the fact that we can find a linear model from an ideal relay
feedback (e.g. Chapter 3), a more reliable approach is to find the steady state gain
and ultimate gain and frequency from the relay feedback tests. Therefore, for a
simple FOPDT model, the required information is pK , uK and u . Table 12.4
shows the available relays for this situation. Here, we recommend two consecutive
relay feedback tests to obtain all three items of process data. For example, in the
normal operating condition, an input-biased relay feedback is performed first to
find the pK , followed by a saturation relay to obtain uK and u . In doing this,
we can have a better estimate of three process values. Table 12.4 also indicates
that, in theory, we can identify these three values under load disturbance. That is,
we can use an output-biased relay to find uK and u followed by an input-biased
relay to get pK . But, this is generally not recommended in practice, since it is
rather sensitive to process changes, i.e. non-stationary load disturbances.
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Table 12.4. Available relays for model based tuning

Operating condition Available relay

Normal
+

Measurement noise
+

Load disturbance

(low, medium, high) +
Nonlinearity

(low, medium, high) +

Let us use the WB column example to illustrate the two-stage relay feedback
tests.

Example 12.2 WB column.

( ) 12.8
16.7 1

seG s
s

=
+

First, an input biased relay with 0.1i = is used to generate a sustained oscillation
(t = 0–14.5 min in Figure 12.2). The results are 12.792pK = , 1.72uK = and

1.616u = . In spite of good accuracy in pK , the ultimate gain is off by almost
20%. Next, the slope of the saturation relay is calculated ( 1.72 1.4 2.41k = × = ) and
a second relay feedback test is carried out (t = 14.5–30 min). The results show that

uK and u become 2.098 and 1.606, respectively. The corresponding errors are
0.01% and 0.012% respectively. Obviously, the two-stage approach is quite ef-

fective in finding all three process data.

12.3.3 Multiloop System

We have discussed multiloop autotuning in Chapter 6. With the sequential identifi-
cation and tuning procedure, we are able to obtain an interaction measure (i.e.
RGA [5]) using the multiloop version of the input-biased relay. Since we can ob-
tain pK using the input-biased relay, it is possible to construct the gain matrix un-
der the framework of sequential identification. Consider an n n× multivariable
system. From the first n autotuning steps we can calculate all 2n steady state
gains ( ,p ijK , , 1i j n= , or G ( )0 ). Once G ( )0 is available, the RGA can be
found accordingly [5].
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Figure 12.2. Integration of input-biased relay feedback test and saturation relay
feedback test for WB column

( ) ( )( )10 0
T

RGA =G G (12.8)

where stands for element-by-element multiplication and the superscript T de-
notes the matrix transpose. It is useful to obtain the interaction measure along the
tuning steps. More importantly, it can be used to re-evaluate the appropriateness of
the variable pairing. However, it is important to ensure the consistency of the
steady state gains. The sequential identification procedure of Shen and Yu [4] is
useful in this regard.

Let us use a 2 2× example to illustrate these sequential identification steps.
Starting from the first loop, we have

( )

( )

2

0
, 1 2

1
0

, 1, 2
i

p i

d t

d t

y t
K i

u t
= = (12.9)
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This step is exactly the same as the conventional identification procedure. Next,

perform an input-biased relay feedback test while loop 1 is on automatic. The entry

in the second column of the gain matrix becomes

( ) ( )

( )

2 2

, 1 1
0 0

, 2 2

2
0

, 1, 2
i p i

p i

d t K d t

d t

y t u t
K i

u t

= = (12.10)

Equation 12.10 can be viewed as solving the following simultaneous equations:

1 , 11 1 , 12 2p py K u K u= + (12.11)

2 , 21 1 , 22 2p py K u K u= + (12.12)

while , 1p iK is known. The unknown , 2p iK then becomes

, 1 1
, 2

2

, 1, 2
i p i

p iK
y K u

i
u

= = (12.13)

Therefore, we can repeat the multiloop autotuning procedure in Chapter 6 (Fig-

ure 6.16) with the input-biased relay. For a general n n× system, the equation for

the steady state gains under sequential identification is

( ) ( )

( )

12 2

,
0 0

1
, 2

0

,  1

n

n p i j j

j
p i n

n

d t K d t

d t

y t u t

K i n

u t

=
= =

(12.14)

After n steps, we obtain the G ( )0 and the RGA can be evaluated using Equa-

tion 12.8. Decisions on continuing tuning or control structure reconfiguration can

be made with the interaction measure. Several authors have discussed the implica-

tions of the RGA [6–9]. The blending example of Chapter 6 is used to illustrate the

enhanced multiloop autotuning.

Example 12.3 Blending system.

Consider a blending system (Figure 6.9) with two feed streams 1F and 2F . The

control objective is to maintain the outlet flow rate F and concentration x by ma-

nipulating 1F and 2F . At nominal condition we have 0.78x = , 20F = , 1 0.3x = ,

1 4F = , 2 0.9x = and 2 16F = . In a nonlinear simulation, 0.5 min of measurement

delay is added to the composition measurement.

Initially, the control system is set up as follows. The total flow is controlled by

1F and the concentration is maintained by changing 2F . We proceed with the mul-

tiloop autotuning using an input-biased relay. First, a relay feedback test is carried

out on the F – 1F loop with 1h = and 0.1i =  (t = 0–2.35 in Figure 12.3).
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Figure 12.3. Improved multivariable autotuning for blending system with different
variable pairings

From Equation 12.9 we obtain the steady state gain ( 1 0.0238xFK = and
1 1FFK = ) and controller parameters are 4.67cK = and 1.06I = . When the F –

1F loop is on auto mode, a second input-biased relay feedback test is performed on
the x – 2F loop. From system responses (t = 2.35–11.3 min in Figure 12.3), we
have 2 0.0063xFK = and 2 1FFK = . The controller parameters from the Shen–Yu
formula become 21.2cK = and 3.74I = . We can calculate the RGA immedi-
ately. This gives 11 0.21= . This value is very close to the true value ( 11 = 0.2 ).
Moreover, it indicates that the other pairing ( x – 1F and F – 2F ) is more appropri-
ate, since the RGA is close to 1 ( 11 1 0.21 0.79= = ). If we choose to reconfigure
the control structure (i.e. x – 1F and F – 2F ), then the controllers have to be redes-
igned. The autotuning procedure is shown in Figure 12.3 (t = 25–38 min). Control-
ler settings for the x – 1F loop and F – 2F loop are 1 21.7cK = , 1 4.69I = and

2 3.35cK = , 2 1.10I = .
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Figure 12.4 clearly shows that the reconfigured control structure is less interact-
ing, since the RGA is close to 1. The example reveals the potential benefit of the
input-biased relay: obtaining the interaction measure along with controller parame-
ters.

12.4 Discussion

It is always desirable to use the right tool in the right way, at the right time. Con-
troller tuning is no exception to this. Process understanding is essential, so that the
current situation can be correctly assessed and the appropriate tool can be applied
accordingly. The controller cannot function well if the model is not correctly iden-
tified. Thus, the importance of the experimental design in system identification
cannot be overlooked.

A summary, based on the discussion and observations, of the available relays
for various operating conditions is given in Table 12.5.

Figure 12.4. Step SP responses for blending system with two different variable
pairings



Guidelines for Autotune Procedure 257

Table 12.5. Summary of available relays for different operating conditions

Operating
conditions

Information
requirement Available relay

uK and u
or

Normal

pK , uK and u

+

uK and u

or

Measurement
noise

pK , uK and u

+

uK and u
Load

disturbance

pK , uK and u

+

uK and uNonlinearity

pK , uK and u

+

12.5 Conclusion

Accurate data is the key to good control performance. In this chapter we have tried
to integrate various relays with familiar operating conditions. The real difficulty in
autotuning is not in the methodology itself, it is in the selection of an appropriate
tool for the right situation. The intelligence of plant operators should exceed that of
the commercial intelligent controller. In terms of the relay feedback test, the rules
are:

1. Use an ideal relay feedback test to find a rough estimate of uK and u and to
determine corresponding operating condition.

2. Use the saturation relay to improve accuracy.
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3. Use a relay with hysteresis to overcome noises, but you should recognize the
possibility of underestimating uK .

4. Use an output-biased relay to restore symmetrical oscillation if the original cy-
cling is not symmetrical.

5. Use an input-biased relay to obtain steady state gains if they are really neces-
sary.

In terms of controller design, we recommend:

1. Use the “shape” of the relay feedback response to identify model structure and
to find the appropriate tuning rule.

2. Use “sequential” design to handle multivariable processes.
3. Be aware that erroneous estimates of the ultimate gain and ultimate period may

arise when the control valve shows a dead band and (or) hysteresis. The two-
step procedure in Chapter 10 should be taken to restore the correct informa-
tion.

4. Integrate “autotuning” into the multiple-model framework to handle global
nonlinearity.
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ATV, 23
averaging level control, 233

balanced scheme, 227
bias value

load disturbance, 144
output-biased relay, 146

bias-to-signal ratio, 246
blending system, 109, 254
bump test, 202

C3 splitter, 124
Ciancone–Marlin tuning, 18
closed-loop characteristic equation, 103
closed-loop transfer function, 91, 102
complementary sensitivity function, 103,

113
control configuration, 1
control structure design, 222
controller gain, 9
controller structure, 1
controller tuning, 1

entire plant, 232
conventional scheme, 232
convergence, 117
critical slope, 83
CSTR, 220

dead band, 199
dead time, 34

compensation, 1, 70
error, 36

dead-zone, 197
derivative kick, 16
derivative time, 12

describing function, 77, 81
distillation column, 124
disturbance sensitivity, 231
dual input describing function, 139

equivalent gain, 139, 249
experimental design, 24, 84

first-order plus dead time, 17, 27, 32, 48,
52, 55, 62, 189

Fourier transformation, 31, 76, 80, 141
fuzzy model, 157, 161, 164, 170

gain margin, 163
Gauss–Seidel method, 117
global model, 157, 162, 170

high-order system, 52, 58, 59, 64, 71, 194
high-purity distillation column, 23, 87,

124
hysteresis, 197, 205

width of the hysteresis, 199, 202, 205,
208, 211, 212

identification
independent, 108
sequential, 108

IMC-PID tuning, 19, 63, 65, 251
imperfect actuator, 197, 206, 213, 248
instrumentation, 1
integral controllability, 2
integrated absolute error, 61, 62, 179
integrator plus dead time, 27, 156, 162,

177
integrity, 121, 229



260 Index

intelligent control, 245
internal model control, 2, 34
inventory control, 233
inverse response, 235
ITAE, 63

load disturbance, 135, 138, 210, 246
local model, 156, 164, 170
Luyben structure, 226

maximum closed loop log modulus, 64,
113, 175

M-circle criterion, 98
measurement noise, 67, 68
MIMO, 90, 93, 97, 99, 252
model predictive control, 3
moderate-purity distillation column, 90,

91, 92, 152, 220
modified z-transform, 30

noise, 247
noise-to-signal ratio, 67, 207
nonlinearity, 246
normalized dead time, 25
normalized loop speed, 119
Nyquist plot, 111

odd-symmetric function, 77
overdamped, 39

P control, 9
parameter estimation, 32
perfect control, 103
performance assessment, 178
pH neutralization, 249
phase margin, 64, 163
PI control, 10
PID control, 12, 62
PID controller, 3

ideal PID, 12
IMC PID, 15
parallel PID, 12
series PID, 15

plantwide control, 219
pole

RHP, 132
sequential design, 105

procedure, 89, 115, 122, 148
process design, 2
production rate change, 239
proportional kick, 16
pseudo-random binary signal, 4

pulse test, 5

quality control, 235

ramp test, 202, 212
rangeability, 231
ratio control, 233
reactor/separator, 212
recycle system, 222
relative gain

negative, 107
relative gain array, 2, 103, 228, 252, 254
relay

biased, 44, 248
ideal, 24, 75, 148, 197, 200, 202, 205,

248
input-biased, 249, 252, 254
output-biased, 142, 149, 248
saturation, 78, 83, 197, 199, 200, 202,

248
relay feedback, 4, 23, 25

load disturbance, 137, 144
reset time, 11
reset windup, 13
robust performance, 163
robust stability, 163
R–V control structure, 90, 152

second-order plus dead time, 27, 34, 56,
64, 136, 189

sequential design, 99, 101
sequential tuning, 236
shape, 47, 245

relay feedback, 176
Shen–Yu tuning, 111, 212, 249
singular value tuning, 127
SISO, 97
snowball effect, 222
spectral radius, 118
steady-state gain, 26, 249, 252, 255
step test, 4, 25

load disturbance, 136
stepping technique, 152

T4 column, 128
Takagi–Sugeno model, 157, 161
Tennessee Eastman process, 160, 167,
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third-order plus dead time, 149
transmitter span, 215
tuning sequence, 119
Tyreus–Luyben tuning, 18, 62, 68
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underdamped, 105
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variable pairing, 120
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zero, 107
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