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Preface

Preface to the First Edition

A reader who achieves a substantial command of the material con-
tained in this book should be able to read with understanding most of
the literature in the field. Possible exceptions may be certain special as-
pects of the subject such as the aeroelasticity of plates and shells or the
use of electronic feedback control to modify aeroelastic behavior. The
first author has considered the former topic in a separate volume. The
latter topic is also deserving of a separate volume.

In the first portion of the book the basic physical phenomena of diver-
gence, control surface effectiveness, flutter and gust response of aeronau-
tical vehicles are treated. As an indication of the expanding scope of the
field, representative examples are also drawn from the non-aeronautical
literature. To aid the student who is encountering these phenomena
for the first time, each is introduced in the context of a simple physical
model and then reconsidered systematically in more complicated models
using more sophisticated mathematics.

Beyond the introductory portion of the book, there are several special
features of the text. One is the treatment of unsteady aerodynamics.
This crucial part of aeroelasticity is usually the most difficult for the
experienced practitioner as well as the student. The discussion is devel-
oped from the fundamental theory underlying numerical lifting surface
analysis. Not only the well known results for subsonic and supersonic
flow are covered; but also some of the recent developments for transonic
flow, which hold promise of bringing effective solution techniques to this
important regime.

Professor Sisto’s chapter on Stall Flutter is an authoritative account
of this important topic. A difficult and still incompletely understood
phenomenon, stall flutter is discussed in terms of its fundamental aspects

Xvii
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as well as its significance in applications. The reader will find this chapter
particularly helpful as an introduction to this complex subject.

Another special feature is a series of chapters on three areas of ad-
vanced application of the fundamentals of aeroelasticity. The first of
these is a discussion of Aeroelastic Problems of Civil Engineering Struc-
tures by Professor Scanlan. The next is a discussion on Aeroelasticity
of Helicopters and V/STOL aircraft by Professor Curtiss. The final
chapter in this series treats Aeroelasticity in Turbomachines and is by
Professor Sisto. This series of chapters is unique in the aeroelasticity
literature and the first author feels particularly fortunate to have the
contributions of these eminent experts.

The emphasis in this book in on fundamentals because no single vol-
ume can hope to be comprehensive in terms of applications. However,
the above three chapters should give the reader an appreciation for the
relationship between theory and practice. One of the continual fascina-
tions of aeroelasticity is this close interplay between fundamentals and
applications. If one is to deal successfully with applications, a solid
grounding in the fundamentals is essential.

For the beginning student, a first course in aeroelasticity could cover
Chapters 1-3 and selected portions of 4. For a second course and the
advanced student or research worker, the remaining Chapters would be
appropriate. In the latter portions of the book, more comprehensive
literature citations are given to permit ready access to the current liter-
ature.

The reader familiar with the standard texts by Scanlan and Rosen-
baum, Fung, Bisplinghoff, Ashley and Halfman and Bisplinghoff and
Ashley will appreciate readily the debt the authors owe to them. Re-
cent books by Petre* and Forsching’ should also be mentioned though
these are less accessible to an English speaking audience. It is hoped the
reader will find this volume a worthy successor.

*Petre, A., Theory of Aeroelasticity. Vol. I Statics, Vol. II Dynamics. In Romanian
Publishing House of the Academy of the Socialist Republic of Romania, Bucharest, 1966.
fForsching, H. W., Fundamentals of Aeroelasticity. In German. Springer-Verlag, Berlin,
1974.



PREFACE Xix

Preface to the Second Edition

The authors would like to thank all those readers who have written
with comments and errata for the First Edition. Many of these have
been incorporated into the Second Edition. They would like to thank
Professor Holt Ashley of Stanford University who has been most helpful
in identifying and correcting various errata.

Also the opportunity has been taken in the Second Edition to bring
up-to-date several of the chapters as well as add a chapter on unsteady
transonic aerodynamics and aeroelasticity. Chapters 2,5,6 and 8 have
been substantially revised. These cover the topics of Static Aeroelas-
ticity, Stall Flutter, Aeroelastic Problems of Civil Engineering Struc-
tures and Aeroelasticity in Turbomachines, respectively. Chapter 9,
Unsteady Transonic Aerodynamics and Aeroelasticity, is new and cov-
ers this rapidly developing subject in more breadth and depth than the
First Edition. Again, the emphasis is on fundamental concepts rather
than, for example, computer code development per se. Unfortunately
due to the press of other commitments, it has not been possible to re-
vise Chapter 7, Aeroelastic Problems of Rotorcraft. However, the Short
Bibliography has been expanded for this subject as well as for others. It
is hoped that the readers of the First Edition and also new readers will
find the Second Edition worthy of their study.
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Preface to the Third Edition

The authors would like to thank all those readers of the first and sec-
ond editions who have written with comments and suggestion. In the
third edition the opportunity has been taken to revise and update Chap-
ters 1 through 9. Also three new chapters have been added, i.e., Chapter
10, Experimental Aeroelasticity, Chapter 11, Nonlinear Aeroelasticity;
and Chapter 12, Aeroelastic Control. Chapter 10 is a brief introduction
to a vast subject: Chapter 11 is an overview of a frontier of research;
and Chapter 12 is the first connected, authoritative account of the feed-
back control of aeroelastic systems. Chapter 12 meets a significant need
in the literature. The authors of the first and second editions welcome
two new authors, David Peters who has provided a valuable revision of
Chapter 7 on rotorcraft, and Edward Crawley who has provided Chap-
ter 12 on aeroelastic control. It is a privilege and a pleasure to have
them as members of the team. The author of Chapter 10 would also
like to acknowledge the great help he has received over the year from
his distinguished colleague, Wilmer H. “Bill” Reed, III, in the study of
experimental aeroelasticity. Mr. Reed kindly provided the figures for
Chapter 10. The author of Chapter 12 would like to acknowledge the
significant scholarly contribution of Charrissa Lin and Ken Kazarus in
preparing the chapter on aeroelastic control. Finally the readers of the
first and second editions will note that the authors and subject indices
have been omitted from this edition. If any reader finds this an incon-
venience, please contact the editor and we will reconsider the matter for
the next edition.
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Preface to the Fourth Edition

In this edition several new chapters have been added and others sub-
stantially revised and edited. Chapter 6 on Aeroelasticity in Civil En-
gineering originally authored by Robert Scanlan has been substantially
revised by his close colleague, Emil Simiu. Chapter 9 on Modeling of
Fluid-Structure Interaction by Earl Dowell and Kenneth Hall is entirely
new and discusses modern methods for treating linear and nonlinear
unsteady aerodynamics based upon computational fluid dynamics mod-
els and their solution. Chapter 11 by Earl Dowell, John Edwards and
Thomas Strganac on Noninearity Aeroelasticity is also new and provides
a review of recent results. Chapter 12 by Robert Clark and David Cox
on Aeroelastic Control is also new and provides an authoritative account
of recent developments. Finally Chapter 13 by Kenneth Hall on Modern
Analysis for Complex and Nonlinear Unsteady Flows in Turbomachinery
is also new and provides an insightful and unique account of this impor-
tant topic. Many other chapters have been edited for greater clarity as
well and author and subject indices are also provided.

Dr. Deman Tang has provided invaluable contributions to the pro-
duction of the text and all of the authors would like to acknowledge his
efforts with great appreciation.

Useful comments on Chapter 6 by Professor Nocholas P. Jones of the
Whiting School of Engineering, John Hopkins University, are gratefully
acknowledged.

Figures 6.4, 6.24, 6.28, 6.33, 6.34, 6.35, 6.36, and 6.37 are reprinted
with permission from Elsevier.

EARL H. DOWELL



Short Bibliography

10
11

12

Books

Bolotin, V. V., Nonconservative Problems of the Elastic Theory of
Stability, Pergamon Press, 1963.

Bisplinghoff, R. L., Ashley, H. and Halfman, R. L., Aeroelastic-
ity, Addison-Wesley Publishing Company, Cambridge, Mass., 1955.
(BAH)

Bisplinghoff, R. L., and Ashley, H., Principles of Aeroelasticity, John
Wiley and Sons, Inc., New York, N.Y., 1962. Also available in Dover
Edition. (BA)

Fung, Y. C., An Introduction to the Theory of Aeroelasticity, John
Wiley and Sons, Inc., New York, N.Y., 1955. Also available in Dover
Edition.

Scanlan, R. H. and Rosenbaum, R., Introduction to the Study of Air-
craft Vibration and Flutter, The Macmillan Company, New York,
N.Y., 1951. Also available in Dover Edition.

AGARD Manual on Aeroelasticity, Vols. I-VII, Beginning 1959 with
continual updating. (AGARD)

Ashley, H., Dugundji, J. and Rainey, A. G., Notebook for Aeroelas-
ticity, AIAA Professional Seminar Series, 1969.

Dowell, E. H., Aeroelasticity of Plates and Shells, Noordhoff Interna-
tional Publishing, Leyden, 1975.

Simiu, E., and Scanlan, R. H., Wind Effects on Structures - An In-
troduction to Wing Engineering, John Wiley and Sons, 1978.

Johnson, W., Helicopter Theory, Princeton University Press, 1980.

Dowell, E. H., and Ilgamov, M., Studies in Nonlinear Aeroelasticity,
Springer - Verlag, 1988.

Paidoussis, M. P., Fluid - Structure Interactions: Slender Structures
and Azxial Flow, Volume 1, Academic Press, 1998.

In parentheses, abbreviations for the above books are indicated which

are used in the text.

Survey articles

xxiil



xxiv A MODERN COURSE IN AEROELASTICITY

1

10

11

12

13

Garrick, I. E., “Aeroelasticity - Frontiers and Beyond”, 13th Von
Karman Lecture, J. of Aircraft, Vol. 13, No. 9, 1976, pp. 641-657.

Several Authors, “Unsteady Aerodynamics. Contribution of the
Structures and Materials Panel to the Fluid Dynamics Panel Round
Table Discussion on Unsteady Aerodynamics”, Goettingen, May

1975, AGARD Report R-645, March 1976.

Rodden, W. P.;, A Comparison of Methods Used in Interfering Lifting
Surface Theory, AGARD Report R-643, March 1976.

Ashley, H., “Aeroelasticity”, Applied Mechanics Reviews, February
1970.

Abramson, H. N., “Hydroelasticity: A Review of Hydrofoil Flutter”,
Applied Mechanics Reviews, February 1969.

Many Authors, “Aeroelastic Effects From a Flight Mechanics Stand-
point”, AGARD, Conference Proceedings No. 46, 19609.

Landhal, M. T., and Stark, V. J. E., “Numerical Lifting Surface
Theory - Problems and Progress”, AIAA Journal, No. 6, No. 11,
November 1968, pp. 2049-2060.

Many Authors, “Symposium on Fluid - Solid Interactions” ASMFE
Annual Winter Meeting, November 1967.

Kaza, K. R. V., “Development of Aeroelastic Analysis Methods for
Turborotors and Propfans - Including Mistuning”, in Lewis Structure
Technology, Vol. 1, Proceedings, NASA Lewis Research Center, 1988.

FEricsson, L. E. and Reading, J. P., “Fluid Mechanics of Dynamic
Stall, Part I, Unsteady Flow Concepts, and Part II, Prediction of
Full Scale Characteristics”, J. Fluids and Structures, Vol. 2, No. 1
and 2, 1988, pp. 1-33 and 113-143, respectively.

Mabey, D. G., “Some Aspects of Aircraft Dynamic Loads Due to
Flow Separation”, AGARD-R-750, February, 1998.

Yates, E. C.,Jr. and Whitlow W. Jr., “Development of Computa-
tional Methods for Unsteady Aerodynamics at the NASA Langley
Research Center”, in AGARD-R-749, Future Research on Transonic
Unsteady Aerodynamics and its Aeroelastic Applications, August
1987.

Gad-el-Hak, M., “Unsteady Separation on Lifting Surfaces”, Applied
Mechanics Reviews, Vol. 40, No. 4, 1987, pp. 441-453.



XXV

14 Hajela, P. (Ed.), “Recent Trends in Aeroelasticity, Structures and
Structural Dynamics”, University of Florida Press, Gainesville, 1987.

15 Jameson, A., “The Evolution of Computational Methods in Aerody-
namics”, J. Applied Mechanics, Vol. 50, No. 4, 1983, pp. 1052-1070.

16 Seebass, R., “Advances in the Understanding and Computation of
Unsteady Transonic Flows”, in Recent Advances on Aerodynamics,
edited by A. Krothapalli and C. Smith, Springer - Verlag, 1984.

17 McCroskey, W. J., “Unsteady Airfoils”, in Annual Reviews of Fluid
Mechanics, 1982, Vol. 14, pp. 285-311.

18 Tijdeman, H. and Seebass, R., “Transonic Flow Past Oscillating Air-
foils”, in Annual Reviews of Fluid Mechanics, 1980, Vol. 12, pp.
181-222.

19 Ormiston, R., Warmbrodt, W., Hodges, D., and Peters, D., “Sur-
vey of Army/NASA Rotocraft Aeroelastic Stability Research”, NASA
TM 101026 and USAASCOM TR 88-A-005, 1988.

20 Dowell, E.H. and Hall, K.C., “Modeling of Fluid-Structure Interac-
tion, ” Annual Reviews of Fluid Mechanics, Vol.33, 2001, pp.445-490.

21 Eastep, Franklin E. (editor), “Flight Vehicle Aeroelasticity, ” a series
of invited articles by several authors in the Journal of Aircraft, Vol.40,
No.5, 2003, pp.809-874.

Journals
AHS Journal
ATAA Journal
ASCE Transactions, Engineering Mechanics Division
ASME Transaction, Journal of Applied Mechanics
International Journal of Solids and Structures
Journal of Aircraft
Journal of Fluids and Structures
Journal of Sound and Vibration

Other journals will have aeroelasticity articles, of course, but these
are among those with the most consistent coverage.

The impact of aeroelasticity on design is not discussed in any detail in
this book. For insight into this important area the reader may consult
the following volumes prepared by the National Aeronautics and Space
Administration in its series on SPACE VEHICLE DESIGN CRITERIA.
Although these documents focus on space vehicle application, much of
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the material is relevant to aircraft as well. The depth and breadth
of coverage varies considerably from one volume to the next, but each
contains at least a brief State-of-the-Art review of its topics as well as a
discussion of Recommended Design Practices. Further some important
topics are included which have not been treated at all in the present
book. These include, as already mentioned in the Preface.

Aeroelasticity of plates and shells (panel flutter) (NASA SP-8004)
and Aeroelastic effects on control systems dynamics (NASA SP-8016,
NASA SP-8036 NASA SP-8079) as well as Structural response to time-
dependent separated fluid flows (buffeting) (NASA SP-8001) Fluid mo-
tions inside elastic containers (fuel sloshing) (NASA SP-8009, NASA SP-
8031) and Coupled structural - propulsion instability (POGO) (NASA
SP-8055)

It was intended to revise these volumes periodically to keep them
up-to-date. Unfortunately this has not yet been done.

1 NASA SP-8001 1970
Buffeting During Atmospheric Ascent

2 NASA SP-8002 1964
Flight Loads Measurements During Launch and Exit

3 NASA SP-8003 1964
Flutter,Buzz and Divergence

4 NASA SP-8004 1972
Panel Flutter

5 NASA SP-8006 1965
Local Steady Aerodynamic Loads During Launch and Exit

6 NASA SP-8008 1965
Prelaunch Ground Wind Loads

7 NASA SP-8012 1968
Natural Vibration Wind Analysis

8 NASA SP-8016 1969
Effect of Structural Flexibility on Spacecraft Control System

9 NASA SP-8009 1968
Propellant Slosh Loads

10 NASA SP-8031 1969
Slosh Suppression
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12

13

14

15
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NASA SP-8035 1970
Wind Loads During Ascent

NASA SP-8036 1970
Effect of Structural Flexibility on Launch Vehicle Control System

NASA SP-8050 1970
Structural Vibration Prediction

NASA SP-8055 1970
Prevention of Coupled Structure - Propulsion Instability (POGO)

NASA SP-8079 1971
Structural Interaction with Control Systems.



Chapter 1

INTRODUCTION

Several years ago, Collar suggested that aeroelasticity could be use-
fully visualized as forming a triangle of disciplines, dynamics, solid me-
chanics and (unsteady) aerodynamics.

Aeroelasticity is concerned with those physical phenomena which in-
volve significant mutual interaction among inertial, elastic and aero-
dynamic forces. Other important technical fields can be identified by
pairing the several points of the triangle. For example,

= Stability and control (flight mechanics) = dynamics + aerodynamics
m Structural vibrations = dynamics + solid mechanics

m Static aeroelasticity = steady flow aerodynamics + solid mechanics

Conceptually, each of these technical fields may be thought of as a
special aspect of aeroelasticity. For historical reasons only the last topic,

INERTIAL FORCES
(DYNAMICS)

AERODYNAMIC FORCES ELASTIC FORCES
(FLUID) (SOLID MECHANICS)

Figure 1.1. Collar diagram.



2 A MODERN COURSE IN AEROELASTICITY

static aeroelasticity, is normally so considered. However, the impact of
aeroelasticity on stability and control (flight mechanics) has increased
substantially in recent years.

In modern aerospace vehicles, the relevant physical phenomena may
be even more complicated. For example, stresses induced by high tem-
perature environments can be important in aeroelastic problems, hence
the term

‘aerothermoelasticity’

In other applications, the dynamics of the guidance and control system
may significantly affect aeroelastic problems, or vice versa, hence the
term

‘aeroservoelasticity’

For a historical discussion of aeroelasticity including its impact on
aerospace vehicle design, consult Chapter 1 of Bisplinghoff and Ashley
[2] and AGARD CP No.46, “Aeroelastic Effects from a Flight Mechanics
Standpoint” [6].

We shall first concentrate on the dynamics and solid mechanics as-
pects of aeroelasticity with the aerodynamic forces taken as given. Sub-
sequently, the aerodynamic aspects of aeroelasticity shall be treated from
first principles. Theoretical methods will be emphasized, although these
will be related to experimental methods and results where this will add
to our understanding of the theory and its limitations. For simplicity,
we shall begin with the special case of static aeroelasticity.

Although the technological cutting edge of the field of aeroelasticity
has centered in the past on aeronautical applications, applications are
found at an increasing rate in civil engineering, e.g., flows about bridges
and tall buildings; mechanical engineering, e.g., flows around turboma-
chinery blades and fluid flows in flexible pipes; and nuclear engineering;
e.g., flows about fuel elements and heat exchanger vanes. It may well be
that such applications will increase in both absolute and relative number
as the technology in these areas demands lighter weight structures under
more severe flow conditions. Much of the fundamental theoretical and
experimental developments can be applied to these areas as well and
indeed it is hoped that a common language can be used in these several
areas of technology. To further this hope we shall discuss subsequently
in some detail several examples in these other fields, even though our
principal focus shall be on aeronautical problems. Separate chapters on
civil engineering, turbomachinery and helicopter (rotor systems) appli-
cations will introduce the reader to the fascinating phenomena which
arise in these fields.
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Since most aeroelastic phenomena are of an undesirable character,
leading to loss of design effectiveness or even sometimes spectacular
structural failure as in the case of aircraft wing flutter or the Tacoma
Narrows Bridge disaster, the spreading importance of aeroelastic effects
will not be warmly welcomed by most design engineers. However, the
mastery of the material to be discussed here will permit these effects to
be better understood and dealt with if not completely overcome. More-
over in recent years, the beneficial effects of aeroelasticity have received
greater attention. For example, the promise of new aerospace systems
such as uninhabited air vehicles (UAVs) and morphing aircraft will un-
doubtedly be more fully realized by exploiting the benefits of aeroelas-
ticity while mitigating the risks.



Chapter 2

STATIC AEROELASTICITY

2.1. Typical Section Model of An Airfoil

We shall find a simple, somewhat contrived, physical system useful for
introducing several aeroelastic problems. This is the so-called ‘typical
section’ which is a popular pedagogical device.* This simplified aeroe-
lastic system consists of a rigid, flat, plate airfoil mounted on a torsional
spring attached to a wind tunnel wall. See Figure 2.1; the airflow over
the airfoil is from left to right.

ELASTIC CENTER OR
ELASTIC AXIS (e.a.)

Figure 2.1. Geometry of typical section airfoil.

The principal interest in this model for the aeroelastician is the rota-
tion of the plate (and consequent twisting of the spring), a, as a function

*See Chapter 6, BA, especially pp. 189-200.
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STRUCTURAL
FAILURE

U Up

Figure 2.2. Elastic twist vs airspeed

of airspeed. If the spring were very stiff or airspeed were very slow, the
rotation would be rather small; however, for flexible springs or high flow
velocities the rotation may twist the spring beyond its ultimate strength
and lead to structural failure. A typical plot of elastic twist, ae, vs
airspeed, U, is given in Figure 2.2. The airspeed at which the elastic
twist increases rapidly to the point of failure is called the ‘divergence
airspeed’, Up. A major aim of any theoretical model is to accurately
predict Up. It should be emphasized that the above curve is representa-
tive not only of our typical section model but also of real aircraft wings.
Indeed the primary difference is not in the basic physical phenomenon
of divergence, but rather in the elaborateness of the theoretical analy-
sis required to predict accurately Up for an aircraft wing versus that
required for our simple typical section model.

To determine Up theoretically we proceed as follows. The equation
of static equilibrium simply states that the sum of aerodynamic plus
elastic moments about any point on the airfoil is zero. By convention,
we take the point about which moments are summed as the point of
spring attachment, the so-called ‘elastic center’ or ‘elastic axis’ of the
airfoil.

The total aerodynamic angle of attack, «, is taken as the sum of some
initial angle of attack, g (with the spring untwisted), plus an additional
increment due to elastic twist of the spring, ae.

o= op+ e (2.1.1)
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In addition, we define a point on the airfoil known as the ‘aerodynamic

center’.* This is the point on the airfoil about which the aerodynamic

moment is independent of angle of attack, . Thus, we may write the
moment about the elastic axis as

My = MAc—i-Le (2.1.2)
where
M, moment about elastic axis or center

M ac moment about aerodynamic center, both moments are positive
nose up

L lift, net vertical force positive up
e distance from aerodynamic center to elastic axis, positive aft.

From aerodynamic theory [1] (or experiment plus dimensional analysis)
one has

L =CrqS (2.1.3a)

Mac = CnmacqSe
where 90
CrL=Cr,+ a—;a, lift coeflicient (2.1.3b)

Cyvac = Cumac,, a constant, aerodynamic center moment coefficient in

which )
U
q= pT, dynamic pressure and

p air density
U air velocity
¢ airfoil chord
[ airfoil span

S airfoil area, ¢ x 1

*For two dimensional, incompressible flow this is at the airfoil quarter-chord; for supersonic
flow it moves back to the half-chord. See Ashley and Landahl [1]. References are given at
the end of each chapter.



8 A MODERN COURSE IN AEROELASTICITY

(2.1.3a) defines Cr, and Cprac (2.1.3b) is a Taylor Series expansion of
Cy, for small a.. Cp, is the lift coefficient at &« = 0. From (2.1.2), (2.1.3a)
and (2.1.3b), we see the moment is also expanded in a Taylor series. The
above forms are traditional in the aerodynamic literature. They are not
necessarily those a nonaerodynamicist would choose.

Note that Cr,, 0CL/0a, Cprrac, are nondimensional functions of
airfoil shape, planform and Mach number. For a flat plate in two-
dimensional incompressible flow [1]

ocr
oa
In what follows, we shall take Cr,, = 0 for convenience and without any

essential loss of information.
From (2.1.2), (2.1.3a) and (2.1.3b)

2, Cyvac, =0=0Cg,

oCL
My = eqS |:8Oz(a0 + Ole):| + qSCCMACo (2.1.4)
Now consider the elastic moment. If the spring has linear moment-twist
characteristics then the elastic moment (positive nose up) is —Kyae
where K, is the elastic spring constant and has units of moment (torque)
per angle of twist. Hence, summing moments we have

Oa

which is the equation of static equilibrium for our ‘typical section’ airfoil.
Solving for the elastic twist (assuming Cprac, = 0 for simplicity) one
obtains

eqS [M<a0 + Ole):| + qSCCMACO — Kqae =0 (215)

oCr,
Qe = g{i% (2.1.6)
o 1— qKTTOf

This solution has several interesting properties. Perhaps most important
is the fact that at a particular dynamic pressure the elastic twist becomes
infinitely large. This is, when the denominator of the right-hand side of
(2.1.6) vanishes
Se 0CL, 0

1- 2%
qKa da

(2.1.7)

at which point a, — 0.

Equation (2.1.7) represents what is termed the ‘divergence condition’
and the corresponding dynamic pressure which may be obtained by solv-
ing (2.1.7) is termed the ‘divergence dynamic pressure’,

Ka

4D = 5e(0C, /o) (2.1.8)
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Since only the positive dynamic pressures are physically meaningful,
note that only for e > 0 will divergence occur, i.e., when the aerodynamic
center is ahead of the elastic axis. Using (2.1.8), (2.1.6) may be rewritten
in a more concise form as

o, = 9/ap)20 (2.1.9)

 1-gq/ep

Of course, the elastic twist does not become infinitely large for any
real airfoil; because this would require an infinitely large aerodynamic
moment. Moreover, the linear relation between the elastic twist and
the aerodynamic moment would be violated long before that. However,
the elastic twist can become so large as to cause structural failure. For
this reason, all aircraft are designed to fly below the divergence dynamic
pressure of all airfoil or lifting surfaces, e.g., wings, fins, control surfaces.
Now let us examine equations (2.1.5) and (2.1.9) for additional insight
into our problem, again assuming Casac, = 0 for simplicity. Two special
cases will be informative. First, consider ap = 0. Then (2.1.5) may be

written
Qe [ancLe — Ka] =0

2.1.
Do (2.1.5a)

Excluding the trivial case o, = 0 we conclude from (2.1.5a) that

anaCaLe—Ka =0 (2.1.7a)
which is the ‘divergence condition’. This will be recognized as an eigen-
value problem, the vanishing of the coefficient of o, in (2.1.5a) being the
condition for nontrivial solutions of the unknown, a..* Hence, ‘diver-
gence’ requires only a consideration of elastic deformations.
Secondly, let us consider another special case of a somewhat different
type, ag # 0, but ae < ap. Then (2.1.5) may be written approximately
as

eanaiLao — Ky =0 (2.1.10)
Solving
Qe = qSe(@C;/aa)ao (2.1.11)

*Here in static aeroelasticity g plays the role of the eigenvalue; in dynamic aeroelasticity g
will be a parameter and the (complex) frequency will be the eigenvalue. This is a source of
confusion for some students when they first study the subject.
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G mae

N

O

Figure 2.3. Feedback representation of aeroelastic divergence.

Note this solution agrees with (2.1.6) if the denominator of (2.1.6) can
be approximated by

l_qSe(?CL T A
K, o« qp

Hence, this approximation is equivalent to assuming that the dynamic
pressure is much smaller than its divergence value. Note that the term
neglected in (2.1.5) is the aerodynamic moment due to the elastic twist.
This term can be usefully thought of as the ‘aeroelastic feedback’.
Without this term, solution (2.1.11) is valid only when ¢/¢p < 1; and
it cannot predict divergence. A feedback diagram of equation (2.1.5)
is given in Figure 2.3. Thus, when the forward loop gain,G, exceeds
unity, G = ¢eS(0CL/0a)/K, > 1, the system is statically unstable,
see equation (2.1.8). Hence, aeroelasticity can also be thought of as
the study of aerodynamic + elastic feedback systems. One might also
note the similarity of this divergence problem to conventional ‘buckling’
of structures.'Having exhausted the interpretations of this problem, we
will quickly pass on to some slightly more complicated problems, but
whose physical content is similar.

Typical section model with control surface

We shall add a control surface to our typical section of Figure 2.1, as
indicated in Figure 2.4. For simplicity, we take ag = Cprac, = 0; hence,
« = a,. The aerodynamic lift is given by

oCy, oCy, s
=q¢SCL =¢qS < 90, o+ 8(55> positive up (2.1.12)

*For the reader with some knowledge of feedback theory as in, for example, Savant|2]
fTimoshenko and Gere [3].
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CONTROL
SURFACE

Figure 2.4. Typical section with control surface.

and the moment by

0Cnrac
00

and the moment about the hinge line of the control surface by

H =qSycyCy = qSgcy <aCHo¢ + 8CH5> positive tail down
1oJe 1ol
(2.1.14)
where Sy is the area of control surface, ¢y the chord of the control
surface and C'y the (nondimensional) aerodynamic hinge moment coef-

ficient. As before, 68%, 88%, 8051‘)‘5"‘0, ag:f , 8%; are aerodynamic con-

Mac = qScChrrac = qSc 4 positive nose up (2.1.13)

stants which vary with Mach and airfoil geometry. Note 88% is typically
negative.

The basic purpose of a control surface is to change the lift (or moment)
on the main lifting surface. It is interesting to examine aeroelastic effects
on this lift.

To write the equations of equilibrium, we need the elastic moments
about the elastic axis of the main lifting surface and about the hinge
line of the control surface. These are —K o (positive nose up), —Ks(d —
dp) (positive tail down), and d. = § — dy, where J. is the elastic twist
of control surface in which Jy is the difference between the angle of
zero aerodynamic control deflection and zero twist of the control surface
spring.

The two equations of static moment equilibrium are

oC,  aCy, OChac B
oCy  0Cy B
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The above are two algebraic equations in two unknowns, « and §, which
can be solved by standard methods. For example, Cramer’s rule gives

0 eqS%k + gScouac
— K500 qSHCH %n — K,
o= - ol - (2.1.17)
eqSG¢ — Ko eqS%# —|— qScT=RAC
qSHCHaa% qsth% - Ks

and a similar equation for §. To consider divergence we again set the
denominator to zero. This gives a quadratic equation in the dynamic
pressure g. Hence, there are two values of divergence dynamic pressure.
Only the lower positive value of the two is physically significant.

In addition to the somewhat more complicated form of the divergence
condition, there is a new physical phenomenon associated with the con-
trol surface called ‘control surface reversal’. If the two springs were rigid,
ie., Ko — 0o and K5 — oo, then aa =0, § = &g, and

oCy,
L. =q¢S—=6 2.1.1
g5 5% (2.1.18)
With flexible springs, however,
oCy, oCy,
L= —_— 2.1.1
qS( Do a+ 95 5) ( 9)

where «, § are determined by solving the equilibrium equations (2.1.15),
and (2.1.16). In general, the latter value of the lift will be smaller than
the rigid value of lift. Indeed, the lift may actually become zero or
even negative due to aeroelastic effects. Such an occurrence is called
‘control surface reversal’. To simplify matters and show the essential
character of control surface reversal, we will assume K5 — 0o and hence,
0 — d¢ from the equilibrium condition (2.1.16). Solving the equilibrium
equation (2.1.15), we obtain

80L + c@CMAC

o= by o0 (2.1.20)
a5 88
But
L=¢qS (88?(50 + E)acLa>
“ (2.1.21)

o 6CL GCLOé
_q5< 5% ' da 50>5
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so that, introducing (2.1.20) into (2.1.21) and normalizing by L,, we
obtain
1+ g2 acMAc (acL /acL>

L
— = 2.1.22
Control surface reversal occurs when L/L, =0
Sc 0Cprac (0CL ,0CTL
1 =0 2.1.23
TaRg "5 \ a9 (2:1.23)
where ¢p is the dynamic pressure at reversal, or
—Ka (6CL/6C’L>
Sc
qr = (2.1.24)

ICnac
00

Typically, 0Carac/ 09 is negative, i.e., the aerodynamic moment for pos-
itive control surface rotation is nose down. Finally, (2.1.22) may be
written

L _1-d/a (2.1.25)

L. 1-gq/qp
where gp is given by (2.1.24) and ¢p by (2.1.8). It is very interesting to
note that when Ky is finite, the reversal dynamic pressure is still given
by (2.1.24). However, ¢p is now the lowest root of the denominator of
(2.1.17). Can you reason physically why this is so?*

A graphical depiction of (2.1.25) is given in the Figure 2.5 where the
two cases, gp > qr and g¢p < qg, are distinguished. In the former case
L/L,, decreases with increasing ¢ and in the latter the opposite is true.
Although the graphs are shown for ¢ > ¢p, our analysis is no longer valid
when the divergence condition is exceeded without taking into account
nonlinear effects. It is interesting to note that the gr given by (2.1.24)
is still the correct answer even for finite Ks5. Consider (2.1.15). For
reversal or zero lift, L = 0, (2.1.15) simplifies to

qRSsacgfsAcé — Kaa =0 (2.1.15R)
and (2.1.12) becomes
oCy, 80,;

*See, [3], pp.197-200.
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1.0 O\

L Ay/dp=2
0 \O i J
L/L, \ , 1.0 a/q, 29
O |
10 - !
20 - :

Figure 2.5. Lift vs dynamic pressure.

Eliminating «, ¢ from these two equations (or setting the determinant
to zero for nontrivial solutions) gives

oCr 00y, 0Crac
95 " oa P55 0 (2:1.20)

Solving (2.1.26) for ggr gives (2.1.24). Note that by this approach an
eigenvalue problem has been created. Also note the moment equilibrium
about the control surface hinge line does not enter into this calculation.
See Appendix B, Chapter 2 for a more conceptually straightforward, but
algebraically more tedious approach.

At the generalized reversal condition, when oy # 0,Cprac, # 0, the
lift due to a change in ¢ is zero, by definition. In mathematical language,

Kq

dL

— =0 at ¢= 2.1.27

=5 q4=qr ( )
To see how this generalized definition relates to our earlier definition of
the reversal condition, consider again the equation for lift and also the
equation for overall moment equilibrium of the main wing plus control
surface, viz.

_ oCy, oCy,
and
3CMAC 8CL aCL _
q¢ScChrac, + qSc 95 0+ eqS {aaa + 865] — Kol — ) =
(2.1.28)
From (2.1.19)
dL . 30[, da 80[,
B =qS [ o %—l— % ] (2.1.29)



Static Aeroelasticity (Dowell) 15

where ‘fl—g‘ may be calculated from (2.1.29) as
o~ [asespe +ase2y]
o5 = 0 (2.1.30)
a9 55 a

Note that neither Chsac, nor g appear in (2.1.30). Moreover when
(2.1.30) is substituted into (2.1.29) and dL/d is set to zero, the same
expression for gr is obtained as before, (2.1.24), when reversal was de-
fined as L = 0 (for ap = Cprac, = 0).

This result may be given a further physical interpretation. Consider a
Taylor series expansion for L in terms of § about the reference condition,
6 = 0. Note that 0 = 0 corresponds to a wing without any control surface
deflection relative to the main wing. Hence the condition § = 0, may be
thought of as a wing without any control surface.

The lift at any § may then be expressed as

oL
LO)=L[6=0)+ —— O+ ... 2.1.31
() =L(G=0)+2| 5+ (2.1.31)
Because a linear model is used, it is clear that higher order terms in this
expansion vanish. Moreover, it is clear that dL/d¢ is that same for any
0, cf. (2.1.29) and (2.1.30).

Now consider L(6 = 0). From (2.1.19)
L(3 = 0) = ¢52La(5 = 0) (2.1.32)
But from (2.1.29)

Koo+ gSCrrac,
a(§=0) = =225 (2.1.33)
@ a0 5,

Note that a(d = 0) = 0 for ap = Cprrac, = 0. Thus, in this special case,
L(§=0) =0, and

dL dL
L($) = — = — 2.1.34
(5) dé 16=0 dd anyd ( 3 )
and hence
L) =0 or & 5-0 (2.1.35)
N dd lanys B o

are equivalent statements when ag = Carac, = 0.

For oy # 0 and/or Cprac, # 0, however, the reversal condition is
more meaningfully defined as the condition when the lift due to d # 0 is
zero, i.e.

dL
— — 2.1.2
T 0 at ¢=g¢qr ( 7)
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In this case, at the reversal condition from (2.1.32) and (2.1.33 ),

L((S)’at reversal = L(6 = 0>|at reversal =
aCy, | a0+ L¢Chrac, (2.1.36)
qS 56
Oa 1— eqSO—D‘L

«

and hence the lift at reversal per se is indeed not zero in general unless

Typical section model—nonlinear effects

For sufficiently large twist angles, the assumption of elastic and/or aero-
dynamic moments proportional to twist angle becomes invalid. Typically
the elastic spring becomes stiffer at larger twist angles; for example the
elastic moment-twist relation might be

Mg =-Kyoe — Kagai
where K, > 0, Ko;>0. The lift angle of attack relation might be
L = ¢S[(0CL/da)a — (OCL/da)307]

where 0CL/0a and (0CL/0a)s are positive quantities. Note the lift
decreases for a large o due to flow separation from the airfoil. Com-
bining the above in a moment equation of equilibrium and assuming for
simplicity that ag = Charac = 0, we obtain (recall (2.1.5))

eqS[(0CL/da)ae — (0CL/0a)30l] — [Kate + Koyal] =0
Rearranging,

ae[eq(SOCL/0a) — Ko] — a2[eqS(0CL/00)3 + Koy = 0
Solving, we obtain the trivial solution a, = 0, as well as

[eqS% — Ka}

a, =

{eqS(aa%)g + K%}

To be physically meaningful o, must be a real number; hence the right
hand side of the above equation must be a positive number for the non-
trivial solution «, # 0 to be possible.

For simplicity let us first assume that e > 0. Then we see that only for
q > qp (i.e., for egS(0CL/0a) > K,) are nontrivial solutions possible.
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Oe

Figure 2.6. (Nonlinear) equilibria for elastic twist: e > 0. (top) e < 0. (bottom)

See Figure 2.6. For ¢ < qp, ae = 0 as a consequence of setting oy =
Crrac = 0. Clearly for e > 0, ae # 0 when ¢ < gp where

__ Ko
D= eSoCL /0

Note that two (symmetrical) equilibrium solutions are possible for
q > qp. The actual choice of equilibrium position would depend upon
how the airfoil is disturbed (by gusts for example) or possibly upon im-
perfections in the spring or airfoil geometry. ay may be thought of as an
initial imperfection and its sign would determine which of the two equi-
libria positions occurs. Note that for the nonlinear model «. remains
finite for any finite q. For e < 0, the equilibrium configurations would
be as shown in the Figure 2.6 where

dD; = —Ka3/6S(aCL/aOZ)3

and

al = 0C/0a(0Cy/0a);
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As far as the author is aware, the behavior indicated in Figure 2.6
has never been observed experimentally. Presumably structural failure
would occur for ¢ > qp, even though a._ is finite. It would be most
interesting to try to achieve the above equilibrium diagram experimen-
tally.

The above discussion does not exhaust the possible types of nonlinear
behavior for the typical section model. Perhaps one of the most impor-
tant nonlinearities in practice is that associated with the control surface
spring and the elastic restraint of the control surface connection to the
main lifting surface.*

2.2. One Dimensional Aeroelastic Model of
Airfoils

Beam-rod representation of large aspect ratio wing ¥

We shall now turn to a more sophisticated, but more realistic beam-rod
model which contains the same basic physical ingredients as the typical
section. A beam-rod is here defined as a flat plate with rigid chordwise
sections whose span, [, is substantially larger than its chord, c¢. See
Figure 2.7. The airflow is in the x direction. The equation of static
moment equilibrium for a beam-rod is

d doe
— M, = 2.2.1
“ (GJ dy)+ =0 (2:21)

a(y) nose up twist about the elastic axis, e.s., at station y

M, nose up aerodynamic moment about e.a., per unit distance in the
spanwise, g, direction

G shear modulus

J polar moment of inertia (=ch?/3 for a rectangular cross-section of
thickness, h, h < ¢)

GJ torsional stiffness

Equation (2.2.1) can be derived by considering a differential element dy
(see Figure 2.8) The internal elastic moment is G.J from the theory of
elasticity.t Note for dae/dy > 0, GJ(da./dy) is positive nose down.
Summing moments on the differential element, we have

*Woodcock|[4]
TSee Chapter 7, BA, pp. 280-295, especially pp.288-295
fHousner, and Vreeland|[5].
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Figure 2.7. Beam-rod representation of wing.

Figure 2.8. Differential element of beam-rod.

dae dae d dae
— dy+ H.O.T.+ M,dy =
Gde +Gde dy<GJd > y+HOT. + Mydy =0
In the limit, as dy — 0,
d GJ +M,=0 (2.2.1)
dy y = 2.

Equation (2.2.1) is a second order differential equation in y. Associated
with it are two boundary conditions. The airfoil is fixed at its root and
free at its tip, so that the boundary conditions are

ae =0 at ddc;e =0 at y=1 (2.2.2)
Turning now to the aerodynamic theory, we shall use the ‘strip theory’
approximation. That is, we shall assume that the aerodynamic lift and
moment at station y depends only on the angle of attack at station y
(and is independent of the angle of attack at other spanwise locations.)
Thus moments and lift per unit span are, as before,

My = Mac + Le (2.2.3a)
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L =qcCr (2.2.3b)
where now the lift and moment coefficients are given by
oCy, N
Orly) = — - lao(y) + ace(y)] (2.2.3¢)
Mac = qc®cnrac (2.2.3d)

(2.2.3b) and (2.2.3d) define C, and Cpsac respectively.
Using (2.2.3) in (2.2.1) and nondimensionalizing (assuming for sim-
plicity, constant wing properties)

~l<

Yy

s db AL
N =G0
qgcl? eaCL
oo

oo + CMACOC>

(2.2.1) becomes
d?a,
dy?
which is subject to boundary conditions (2.2.2). These boundary condi-
tions have the nondimensional form

+ Ma, =K (2.2.4)

a=0 at =0 (2.2.5)
doe
=0 at y=1
dj oy

The general solution to (2.2.4) is

K
ae = Asin Ay + B cos Ay + 2 (2.2.6)
Applying boundary conditions (2.2.5), we obtain
K 4 -
B+F—0, A[Acos A — Bsin A\ =0 (2.2.7)

*A more complete aerodynamic model would allow for the effect of an angle of attack at one
spanwise location, say 7, on (nondimentional) lift at another, say y. This relation would then
be replaced by CL(y) = [ A(y — n)[ao(n) + ae(n)]dn where A is an aerodynamic influence
function which must be measured or calculated from an appropriate theory. More will be
said about this later.
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Solving equation (2.2.7), A = —(K/A?)tan A\, B = —K/A?, so that

K
Qe = F[l — tan Asin A\ — cos Ag] (2.2.8)
Divergence occurs when a, — 00, i.e., tan A — oo, or cos A — 0.* Thus,
for A=Ay = (2m —1)5(m =1,2,3,...),ac — o0o. The lowest of these,
A1 = § is physically significant. Using the definition of A preceding
equation (2.2.4), the divergence dynamic pressure is

q= (77/2)2%/[06(861/804) (2.2.9)

Recognizing that S = l¢, we see that (2.2.9) is equivalent to the typical
section value, (2.1.8), with

W)QE

K‘“:(* l

5 (2.2.10)

Consider again (2.2.8). A further physical interpretation of this result
may be helpful. For simplicity, consider the case when Chrac, = 0 and
thus K = —\2ag. Then the expression for a., (2.2.8), may be written
as

ae = ap[—1 + tan Asin Ay + cos \J] (2.2.8a)

The tip of twist of § = 1 may be used to characterize the variation of a,
with A, i.e,

1
ly=1) = -1 2.2.8b
acli=1) =0 | o5 1] (2.2.8)
and thus
a = ap+ ae = o/ cos A (2.2.8¢)

From (2.2.8)., we see that for low flow speeds or dynamic pressure,
A — 0, = ap. As A — 7/2, a monotonically increases and o —
o0 as A — w/2. For a given wing design, a certain twist might be
allowable. From (2.2.8)., or its counterpart for more complex physical
and mathematical models, the corresponding allowable or design A may
be determined.

Another design allowable might be the allowable structural moment,
T = GJda/dy. Using (2.2.8) and the definition of 7', for a given allow-
able T the corresponding allowable A or ¢ may be determined.

*Note A = 0 is not a divergence condition! Expanding (2.2.8) for A < 1, we obtain a. =

ENn-x2g— (-2 4. - KL — g as A— 0.
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Eigenvalue and eigenfunction approach

One could have treated divergence from the point of view of an eigenvalue
problem. Neglecting those terms which do not depend on the elastic
twist, i.e., setting ag = Cprac, = 0, we have K = 0 and hence

d*a 9
7 T Na=0 (2.2.11)
with
a=0at y=0
da
—=0at y=1 2.2.12
g -ty ( )
The general solution is
a = Asin Ay + Bcos \y (2.2.13)
Using (2.2.12) and (2.2.13)
B=0

A[Acos A — Bsin \]

we conclude that
A=0
or

AcosA=0and A#0 (2.2.14)

The latter condition, of course, is ‘divergence’. Can you show that A =
0, does not lead to divergence? What does (2.2.13) say? For each
eigenvalue, A = \,;, = (2m — 1) there is an eigenfunction,

™

2.2.15
50 ( )

These eigenfunctions are of interest for a number of reasons:

QU ~ SID Ay = sin (2m — 1)

1 They give us the twist distribution at the divergence dynamic pres-
sure as seen above in (2.2.15).

2 They may be used to obtain a series expansion of the solution for any
dynamic pressure.

3 They are useful for developing an approximate solution for variable
property wings.

Let us consider further the second of these. Now we let ap #
0,Chrrac, # 0 and begin with (2.2.4)

+ Mo, =K (2.2.4)
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Assume a series solution of the form

Qe =Y anan(j) (2.2.16)
n
K=Y Anan(p) (2.2.17)
n
where a,, A, are to be determined. Now it can be shown that
! 1
/0 an(9)am()dy = 5 for m=n (2.2.18)
=0 for m—m

This is the so-called ‘orthogonality condition’. We shall make use of it
in what follows. First, let us determine A,. Multiply (2.2.17) by a;,

and fol e dy.

N | =

1 1
| Koulids =3 4 [ ant@antias = A,
using (2.2.18). Solving for A,

1
Ay = 2/ Ko (i)dj (2.2.19)
0

Now let us determine a,,. Substitute (2.2.16) and (2.2.17) into (2.2.4) to

ObLa 'l n
n dy~2 n+-tn n+-tn e

n

Now each eigenfunction, o, satisfies (2.2.11)

d2a,,
dy?

+Ma, =0 (2.2.11)

Therefore, (2.2.20) may be written

> an[=AL 4 Mon =) Anan (2.2.21)

Multiplying (2.2.21) by a,,, and fol e dy,

1

A2 =22 Uy = Am (multiplication)

N |
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Solving for a,,
Am

Thus,
A, _
Qe = Z An Oy = Z m@n(y) (2223)

n

where A,, is given by (2.2.19).*

Similar calculations can be carried out for airfoils whose stiffness,
chord, etc., are not constants but vary with spanwise location. One way
to do this is to first determine the eigenfunction expansion for the vari-
able property wing as done above for the constant property wing. The
determination of such eigenfunctions may itself be fairly complicated,
however. An alternative procedure can be employed which expands the
solution for the variable property wing in terms of the eigenfunctions of
the constant property wing. This is the last of the reasons previously
cited for examining the eigenfunctions.

Galerkin’s method

The equation of equilibrium for a wvariable property wing may be ob-
tained by substituting (2.2.3) into (2.2.1). In dimensional terms

d d oCy, _ oCr, 2
d—y (doyae> + eqca—aoze = —eqc 9o ap —qc'Crrac, (2.2.24)
In nondimensional terms
d dove
@ ('y d(zj ) +Naf =K (2.2.25)
where
GJ qcl? oCy,
=——— K=-—
7 (GJ)ref (G‘])ref |:6 Oa @0+ CMACO
oC
A= M @ eref b= ¢ ¢ (TO‘L>
N (Gj)ref Oa ref e Cref €ref oCL
( Oa >7”ef
Let

Qe = Z anan ()

*For a more detailed mathematical discussion of the above , see Hildebrand [6], pp. 224-234.
This problem is one of a type known as ‘Sturm-Liouville Problems’.
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K=Y Anon())

As before. Substituting the series expansions into (2.2.25), multiplying
by o, and fol -y,

1
Zan{ < dan) dﬂ+)\2/ ﬁanamdg} =
0 0
Am
ZA / anamdy—7

The first and second terms cannot be simplified further unless the eigen-
functions or ‘modes’ employed are eigenfunctions for the variable prop-
erty wing. Hence, a, is not as simply related to A,, as in the constant
property wing example. (2.2.26) represents a system of equations for the
an. In matrix notation

(2.2.26)

(Conlan} = {An) (2.2.27)

1
d ( day,
CmnE/ ~<'Y o )amdy—i—/\ / Banam, dy
0o dy \' dy

By truncating the series to a finite number of terms, we may formally
solve for the a,,,

where

{an} = *[ Crn) ™ {Am} (2.2.28)

The divergence condition is simply that the determinant of C,, vanish
(and hence a,, — 00)
|Crn| =0 (2.2.29)

which is a polynomial in A%2. It should be emphasized that for an ‘ex-
act’ solution, (2.2.27), (2.2.28) etc., are infinite systems of equations
(in an infinite number of unknowns). In practice, some large but fi-
nite number of equations is used to obtain an accurate approximation.
By systematically increasing the terms in the series, the convergence of
the method can be assessed. This procedure is usually referred to as
Galerkin’s method or as a ‘modal’ method.* The modes, «y,, used are
called ‘primitive modes’ to distinguish them from eigenfunctions, i.e.,
they are ‘primitive functions’ for a variable property wing even though
they are eigenfunctions for a constant property wing.

*Duncan [7]
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2.3. Rolling of a Straight Wing

We shall now consider a more complex physical and mathematical
variation on our earlier static aeroelastic lifting surface (wing) studies.
For variety, we treat a new physical situation, the rolling of a wing
(rotation about the root axis). Nevertheless, we shall meet again our
old friends, ‘divergence’ and ‘control surface effectiveness’ or ‘reversal’.

The present analysis differs from the previous one as follows:

a integral equation formulation vs. differential equation formulation
b aerodynamic induction effects vs. ‘strip’ theory

¢ ‘lumped element’ method of solution vs. modal (or eigenfunction)
solution.

The geometry of the problem is shown in Figure 2.9.

Integral equation of equilibrium

The integral equation of equilibrium is

1
a(y) = /0 2 (y, 1) My (n)di® (2.3.1)

Before deriving the above equation, let us first consider the physical
interpretation of C'**:
Apply a unit point moment at some point, say y = v, i.e.,

My(n) =6(n—")
Then (2.3.1) becomes
1
ay) = /0 C*(y,n)d(n —v)dn = C**(y, ) (2.3.2)

Thus C*“(y, ) is the twist a y due to a unit moment at +, or alterna-
tively, C** (y,n) is the twist at y due to a unit moment at n. C** is
called a structural influence function.

Also note that (2.3.1) states that to obtain the total twist, one mul-
tiplies the actual distributed torque, M,, by C** and sums (integrates)
over the span. This is physically plausible.

C° plays a central role in the integral equation formulation.! The
physical interpretation of C'“* suggests a convenient means of measuring

*For simplicity, cg = 0 in what follows.
TFor additional discussion, see the following selected references: Hildebeand [6] pp-388-394
and BAH, pp.39-44.
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y,n

Figure 2.9. Rolling of a straight wing.

C** in a laboratory experiment. By successively placing unit couples
at various locations along the wing and measuring the twists of all such
stations for each loading position we can determine C'“*. This capability
for measuring C** gives the integral equation a preferred place in aeroe-
lastic analysis where C** and/or GJ are not always easily determinable
from purely theoretical considerations.

Derivation of equation of equilibrium

Now consider a derivation of (2.3.1) taking as our starting point the
differential equation of equilibrium. We have, you may recall,

d da
il )\ =—-M 2.3.
dy (G’]dy) v (2:33)

with
da

a(0) =0 and o

(l)=0 (2.3.4)
as boundary conditions.

As a special case of (2.3.3) and (2.3.4) we have for a unit torque
applied at y = n,

d dcee
d—yGJ o —0(y —n) (2.3.5)
with e
c**(0,n) =0 and (l,m)=0 (2.3.6)
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Multiply (2.3.5) by a(y) and integrate over the span,

/01 o) g (GJdCQ,CY) dy = — /01 5(y —maly)dy = —a(n) (2.3.7)

dy dy
Integrate LHS of (2.3.7) by parts,
dce |1 dov 1 ! d do
GJ - GJ—C C— (GJ— | dy = — 2.3.8
Tyl dy 0+/0 dy( dy) v = el 255)

Using boundary conditions (2.3.4) and (2.3.6), the first two terms of
LHS of (2.3.8) vanish. Using (2.3.3) the integral term may be simplified
and we obtain,

1
a(n) = /0 C(y, ) My(y)dy (2.3.9)
Interchanging y and 7,
1
a(y) = /0 C**(n,y)My(n)dn (2.3.10)
(2.3.10) is identical to (1), if
C*(n,y) = C*“(y,n) (2.3.11)

We shall prove (2.3.11) subsequently.

Calculation of C**

We shall calculate C*“ from (2.3.5) using (2.3.6). Integrating (2.3.5)
with respect to y from 0 to y1,

GJ(y1) (y1,m) — GJ(0) (0,m)
dy dy
C i s (2.3.12)

=0 if y1 <n=Sy,n)

Sketch of function S(y1,7n)
Dividing (2.3.12) by GJ (y1) and integrating with respect to y; from 0
to y2,

o (o, ) — €20, ) — GI(0) 0,y [ Lo
Y2, N » N dy y N 0 GJ Y1
Y2 S(yhn) Y2 1
— duyn = — —d for >
o GIw) T ), Gan ™t T T
= for ya<m

(2.3.13)
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/ v,

s(y, )

From boundary conditions, (2.3.6),
(a) C**(0,7) =0

() ) =0

These may be used to evaluate the unknown terms in (2.3.12) and
(2.3.13). Evaluating (2.3.12) at y; =1

(c) GJ(1) Ty(l’n) -GJ dy

——

__.0

(Oa 77) =-1

Using (a) and (c), (2.3.13) may be written,

Y2 1 Y2 1
C*(y2,n) = ; Gdel_/n a7
1
=, adyl for  y2>n
21
=/, adyl for  ya<n
One may drop the dummy subscript on ys, of course. Thus
vl
C* (y,m) = ; a7l for y<n
m1
= ; adyl for y>n (2.3.14)

Note from the above result we may conclude by interchanging y and 7
that

C*(y,m) = C*(n,y)
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This is a particular example of a more general principle known as
Maxwell’s Reciprocity Theorem* which says that all structural influence
functions for linear elastic bodies are symmetric in their arguments. In
the case of C'** these are y and 7, of course.

Aerodynamic forces (including spanwise induction)

First, let us identify the aerodynamic angle of attack; i.e., the angle
between the airfoil chord and relative airflow. See Figure 2.10. Hence,
the total angle of attack due to twisting and rolling is

aotar = aly) = 7=
ota U
The control surface will be assumed rigid and its rotation is given by
d(y) =0r for [1 <y<lp=0 otherwise
From aerodynamic theory or experiment

r4

= ;

z

U

pyu L | py

N \AIRFOIL

GEOMETRY

Figure 2.10.

L ! d ! d
Co= o= [ amern P+ [ aBwansn T (2319)

Here A, ALY are aerodynamic influence functions; as written, they are
nondimensional. Thus, A is nondimensional lift at y due to unit angle
of attack at n. Substituting for o and 4, (2.3.15) becomes,

1 1 l
dn  pl Lafdn > Lsdn
Cr= | Al%a— —— [ A= 44 AR —
L /0 T U, 1T TR, l

*Bisplinghoff, Mar, and Pian [8], p.247.
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1 dn pl OCYy oCL
Cp= [ Ava—" 4+ = Sp—=t 2.3.16
L /0 z +Ua<pl)+ R 9on (2.3.16)

where

80[1 / ALa n d"?

and

Oor l

Physical Interpretation of AL® and AL9: AL is the lift coefficient at
y due to unit angle of attack at n. AL is the lift coefficient at y due to
unit rotation of control surface at 7.

Physical Interpretation of 0Cr,/0 (pl/U) and 0CL,/0dr:0CL/0 (pl/U)
is the lift coefficient at y due to unit rolling velocity, pl/U. 0CL,/OdR is
the lift coefficient at y due to unit control surface rotation, dg.

As usual

aC o sd
it = [ A

c _ Mac _ 9Cmac
MAC = = 6, °F

is the aerodynamic coefficient moment (about a.c.) at y due to control
surface rotation. Note

(2.3.17)

OCrrac/0ar =0

by definition of the aerodynamic center. Finally the total moment load-
ing about the elastic axis is

My = Mac + Le = qclCrrace + Crel (2.3.18)

Using (2.3.16) and (2.3.17), the above becomes

8CMAC /1 LS d77 8CL pl 8CL
M, = Abog =)+ ==
y =4gc |cC D670 +e ; «a ;i +8<’;l) U + 9672

(2.3.19)
Note that AP, AL are more difficult to measure than their structural
counterpart, C**. One requires an experimental model to which one can
apply unit angles of attack at various discrete points along the span of
the wing. This requires a rather sophisticated model and also introduces
experimental difficulties in establishing and maintaining a smooth flow
over the airfoil. Conversely

oC L oC L 8CMAC’

o7 Dor and =55
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are relatively easy to measure since they only require a rolling or control
surface rotation of a rigid wing with the same geometry as the flexible
airfoil of interest.

Aeroelastic equations of equilibrium and lumped
element solution method

The key relations are (2.3.1) and (2.3.19). The former describes the
twist due to an aerodynamic moment load, the latter the aerodynamic
moment due to twist as well as rolling and control surface rotation.

By substituting (2.3.19) into (2.3.1), one could obtain a single equa-
tion for ae. However, this equation is not easily solved analytically except
for some simple cases, which are more readily handled by the differential
equation approach. Hence, we seek an approximate solution technique.
Perhaps the most obvious and convenient method is to approximate the
integrals in (2.3.1) and (2.3.19) by sums, i.e., the wing is broken into
various spanwise segments or ‘lumped elements’. For example, (2.3.1)
would be approximated as:

ZC (i, )My (nj)An i=1,....N (2.3.20)

where An is the segment width and N the total number of segments.
Similarly, (2.3.19) may be written

OCnrac oCL, pl

My(yi) Zqe{ [e—55- +eaﬁ5

(3C’L An .
85}2 ZA (yi, )0 )l }oi=1,...,N

(2.3.21)

To further manipulate (2.3.20) and (2.3.21), it is convenient to use ma-
trix notation. That is,

{a} = An[C*|{M,} (2.3.20)

and

\ o0CAC \ oC [
MY — 2 M ce L | P
{My} =q \ { OORr } O+ \ { }

\ aC;,
+q ce 8 or

\
\ }5R+q ce [ALO‘]{Q}¥ (2.3.21a)

\
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All full matrices are of order N x N and row or column matrices of order
N.. Substituting (2.3.21) into (2.3.20), and rearranging terms gives,

4

where the following definitions apply

(1) =all {555 bon+ {;pr) } 2

U

2
— B gt | (0 = (1) (23.23)

oC
+q[F) { MAC} Sr A7

dor
[E] = [C*Y] ce
\
VT
[F]=[c*)| ¢
\
Further defining
\
D= | 1| - a2 gty
\ l
we may formally solve (2.3.23) as
{a} = [DI7H{f} (2.3.24)

Now let us interpret this solution.

Divergence

Recall that the inverse does not exist if
| D=0 (2.3.25)

and hence,

{a} — {oo}
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‘D‘ N=1

J 9, FOR N=1

Figure 2.11. Characteristic determinant vs dynamic pressure.

(2.3.25) gives rise to an eigenvalue problem for the divergence dynamic
pressure, ¢p. Note (2.3.25) is a polynomial in g.
The lowest possible root (eigenvalue) of (2.3.25) gives the ¢ of physical

interest, i'e'quivergence' Rather than seeking the roots of the polyno-

mial we might more simply plot |D| versus g to determine the values of
dynamic pressure for which the determinant is zero. A schematic of such
results for various choices of N is shown below in Figure 2.11. From the
above results we may plot gp (the lowest positive ¢ for which |D| = 0) vs.
N as shown below in Figure 2.12. The ‘exact’ value of ¢qp is obtained at
N — oo. Usually reasonably accurate results can be obtained for small
values of N, say 10 or so. The divergence speed calculated above does
not depend upon the rolling of the wing, i.e.,p is considered prescribed,

eg.,p=0.

Reversal and rolling effectiveness

In the above we have taken pl/U as known; however,in reality it is a
function of dp and the problem parameters through the requirement
that the wing be in static rolling equilibrium, i.e., it is an additional
degree of freedom. For rolling equilibrium at a steady roll rate, p, the
rolling moment about the z-axis is zero.

1
Approximating (2.3.26),

> LiyiAy =0 (2.3.27)

or, in matrix notation,

2ly]{L}Ay =0 (2.3.28)
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X

1 2 3

Figure 2.12. Convergence of divergence dynamic pressure with modal number.

or
2q[cy {CrL}Amy =0

From (2.3.16), using the ‘lumped element’ approximation and matrix
notation,

A oC oC l
{CL} = TU[AL"]{a} + {&SL} R + p % (2.3.16)
o o)
Substitution of (2.3.16) into (2.3.28) gives

A oC oC l
Ley] TW[ALQ]{Q} + {%L} or+ 7ZL V=0 (2329

R ) (2) U

U

Note that (2.3.29) is a single algebraic equation. (2.3.29) plus (2.3.20)
and (2.3.21) are 2N + 1 linear algebraic equations in the N(a) plus
N(M,) plus 1(p) unknowns. As before {M,} is normally eliminated
using (2.3.21) in (2.3.20) to obtain N, equation (2.3.22), plus 1, equa-
tion (2.3.29), equations in N(«a) plus 1(p) unknowns. In either case
the divergence condition my be determined by setting the determinant
of coefficients to zero and determining the smallest positive eigenvalue,

4 = 4D-
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Slel=

alq,

Figure 2.13. Roll rate vs dynamic pressure.

For ¢ < ¢p, pl/U (and «) may be determined from (2.3.23) and
(2.3.29). Since our mathematical model is linear

pl/U ~ b

and hence a convenient plot of the results is as shown in Figure 2.13. As
pl
¢ = qp, 7y (and{a}) — oo

Another qualitatively different type of result may sometimes occur. See
Figure 2.14. If
pl
U/or

then ‘rolling reversal’ is said to have occurred and the corresponding

q = qpr is called the ‘reversal dynamic pressure’. The basic phenomenon
is the same as that encountered previously as ‘control surface reversal’.
Figures 2.13 and 2.14 should be compared to Figures 2.5a,b.

It is worth emphasizing that the divergence condition obtained above
by permitting p to be determined by (static) rolling equilibrium will be
different from that obtained previously by assuming p = 0. The latter
physically corresponds to an aircraft constrained not to roll, as might

—0 for g—qr<gqp
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9=q,

pl
i 1
s

a/q,

Figure 2.14. Roll rate vs dynamic pressure.

be the case for some wind tunnel models. The former corresponds to a
model or aircraft completely free to roll.*

The above analysis has introduced the simple yet powerful idea of
structural and aerodynamic influence functions. While the utility of the
concept has been illustrated for a one-dimensional aeroelastic model,
not the least advantage of such an approach is the conceptual ease with
which the basic notion can be extended to two-dimensional models, e.g.,
plate-like structures, or even three-dimensional ones (though the latter
is rarely needed for aeroelastic problems).

In a subsequent section we briefly outline the generalization to two-
dimensional models. Later this subject will be considered in more depth
in the context of dynamic aeroelasticity.

Integral equation eigenvalue problem and the
experimental determination of influence functions

For the special case of a constant section wing with ‘strip theory’ aero-
dynamics one may formulate a standard integral equation eigenvalue
problem for the determination of divergence. In itself this problem is of
little interest. However, it does lead to some interesting results with re-
spect to the determination of the structural and aerodynamic influence
functions by experimental means.

*This distinction between the two ways in which the aircraft may be restrained received
renewed emphasis in the context of the oblique wing concept. Weisshaar and Ashley [9].
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For such a wing,

oC'L

fJe

where the omitted terms are independent of twist and may therefore be
ignored for the divergence (eigenvalue) problem. Also the coefficients of
« may be taken as constants for a constant section wing. Substituting
the above expression into the integral equation of structural equilibrium
we have

My, = Le + Mac = eqc

oC 1
a(y) = eqc 5 L/ C*(y,n)a(n)dn
@ Jo

This is an eigenvalue problem in integral form where the eigenvalue is
oCy,
fole

One may solve this problem for the corresponding eigenvalues and eigen-
functions which satisfy the equation

A= eqc

1
CMM—MACWWW%WM

Incidentally, the restriction to a constant section wing was unnecessary
and with a moderate amount of effort one could even use a more so-
phisticated aerodynamic model. Such complications are not warranted
here.

These eigenfunctions or similar functions may be usefully employed to
determine by experimental means the structural, C*®, and aerodynamic,
Aleinfluence functions. The former is not as attractive as the use
of point unit structural loads as we shall see; however, the procedure
outlined below for the determination of AL® probably deserves more
attention than it has previously received.

Assume the structural influence function can be expanded in terms of
the eigenfunctions

C*(y,n) =Y Cu(y)om(n) (2.3.30)

where the C,, are to be determined. Also recall that

1
%@—MACWWW%WM (2.3.31)

and the a,, are the eigenfunctions and A,, the eigenvalues of C'*“ satis-
fying (2.3.31) and an orthogonality condition

/Oénamdy:O for m#n
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Then multiply (2.3.30) by a,,(n) and integrate over the span of the wing;
the result is

Joh o (y, m)am(n)dn

Cin(y) =
Jy % (n)e
and from (2.3.31)
Ccyl = O{m—@) (2.3.32)
Am fo az,(n)dn
Hence (2.3.32) in (2.3.30) gives
an(y)an(n)
coly ) =S 2mY)anl) 2.3.33
) =3 SR (23.33)

Thus if the eigenfunctions are known then the Green’s function is readily
determined from (2.3.33). Normally this holds no special advantage since
the determination of the a,, theoretically or experimentally, is at least
as difficult as determining the Green’s function, C'*®, directly. Indeed
as discussed previously if we apply unit moments at various points along
the span the resulting twist distribution is a direct measure of C*%*. A
somewhat less direct way of measuring C“* is also possible which makes
use of the expansion of the Green’s (influence) function. Again using
(2.3.30)

C(y,m) chan (2.3.29)

and assuming the ay, are orthogonal (although not necessarily eigenfunc-
tions of the problem at hand) we have

Jir Co(y. m)an(n)dn

Cn(y) = (2.3.34)
fol a2(n)dn
Now we have the relation between twist and moment
fl ao
a(y) =2 (y,n)My(n)dn (2.3.35)

Clearly if we use a moment distribution

My(n) = an(n)

the resulting twist distribution will be (from (2.3.34))

1
a(y) = Culy) /0 o2 (n)dn (2.3.36)



40 A MODERN COURSE IN AEROELASTICITY

Hence we may determine the expansion of the Green’s function by suc-
cessively applying moment distribution in the form of the expansion
functions and measuring the resultant twist distribution. For the struc-
tural influence function this offers no advantage in practice since it is
easier to apply point moments rather than moment distributions.

However, for the aerodynamic Green’s functions the situation is dif-
ferent. In the latter case we are applying a certain twist to the wing
and measuring the resulting aerodynamic moment distribution. It is
generally desirable to maintain a smooth (if twisted) aerodynamic sur-
face to avoid complications of flow separation and roughness and hence
the application of a point twist distribution is less desirable than a dis-
tributed one. We quickly summarize the key relations for determining
the aerodynamic influence function. Assume

ARy, m) = Al (y)an(n) (2.3.37)

We know that .
CrL(y) :/0 ARy, m)a(n)dn (2.3.38)

For orthogonal functions, a,, we determine from (2.3.37) that
Jo A= (y, m)andn
fol aZ(n)dn

Applying the twist distribution o = «a,(n) to the wing, we see from
(2.3.38) and (2.3.39) that the resulting lift distribution is

ALe(y) = (2.3.39)

1
Crly) = ALe(y) / o2 (n)dn (2.3.40)

Hence by measuring the lift distributions on ‘warped wings’ with twist
distributions ay,(n) we may completely determine the aerodynamic in-
fluence function in terms of its expansion (2.3.37). This technique or
a similar one has been used occasionally,* but not as frequently as one
might expect, possibly because of the cost and expense of testing the
number of wings sufficient to establish the convergence of the series. In
this regard, if one uses the «a,, for a Galerkin or modal expansion solution
for the complete aeroelastic problem one can show that the number of
Ch, AL required is equal to the number of modes, a,, employed in the
twist expansion.

*Covert [10].
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2.4. Two Dimensional Aeroelastic Model of
Lifting Surfaces

We consider in turn, structural modeling, aerodynamic modeling, the
combining of the two into an aeroelastic model, and its solution.

Two dimensional structures—integral representation

The two dimensional or plate analog to the one-dimensional or beam-rod
model is

wog) = [ [ €™y npteonds dn (241)
where
w vertical deflection at a point, x, ¥, on plate
p force/area (pressure) at point &, n on plate
C"P deflection at x, y due to unit pressure at &, 0

Note that w and p are taken as positive in the same direction. For the
special case where

w(z,y) = h(y) + za(y) (2.4.2)

and

CP(z,y; €,m) = C"F(y,n) + 2CF (y,n) + £C"™M (y, 1) + 2£CM(y, )
(2.4.3)
with the definitions

CMF s the deflection of y axis at y due to unit force F
C°F is the twist about the y axis at y due to unit force F, etc.,

we may retrieve our beam-rod result. Note that (2.4.2) and (2.4.3) may
be thought of as polynomial (Taylor Series) expansions of deflections.
Substituting (2.4.2), (2.4.3) into (2.4.1), we have

h(y) + za(y) Z[/ChF </p(£,n)d£> dn

+ [ < / ép(fm)d£> an]
+al [ oo ( / p(é,n)df) d
+ [ ( [ente n)d5> dn]

(2.4.4)
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If y, n lie along an elastic axis, then C*"M = C*F' = 0. Equating coeffi-
cients of like powers of x, we obtain

h(y) = /ChF(y, n)F(n) dn (2.4.5)

- / CoM (g, )M () dn (2.4.6)

= [wae 2= [pac

(2.4.6) is our previous result. Since for static aeroelastic problems, M is
only a function of o (and not of h), (2.4.6) may be solved independently
of (2.4.5). Subsequently (2.4.6) may be solved to determine h if desired.
(2.4.5) has no effect on divergence or control surface reversal, of course,
and hence we were justified in neglecting it in our previous discussion.

where

Two dimensional aerodynamic surfaces—integral
representation

In a similar manner (for simplicity we only include deformation depen-
dent aerodynamic forces to illustrate the method)

M) [[arwyenGeent] @)

where

AP%r pondimensional aerodynamic pressure at z, y due to unit dw/9¢
at point &, n

¢, reference chord, [ reference span
For the special case
w=h+za

and, hence,
ow
ox
we may retrieve our beam-rod aerodynamic result.
For example, we may compute the lift as

=«

1
L= [ o= e [ A ma(n) T (24.8)

ate= [[ameye S

where
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Solution by matrix-lumped element approach

Approximating the integrals by sums and using matrix notation, (2.4.1)
becomes

{w} = ALAn[C*"){p} (2.4.9)
and (2.4.7) becomes
0 = a5 e (51 (2.4.10)

w\  wi1 —wi1
oc ) 2AE

is a difference representation of the surface slope. Hence

a "
(%) = ame™e) = o w o [
(W]
(2.4.11)
is the result shown for four spanwise locations, where
o 1 0 0

-1 0 1 0 -
(W] = o -1 0 1 - (2.4.12)

0 0 -1 0

number of chordwise location

is a numerical weighting matrix. From (2.4.9), (2.4.10), (2.4.11), we
obtain an equation for w,

\ 2 (A2
_ (AP (A0 1 ot i _
Dlwy={] 1 |-q P sRelCam W | ) = (0}

\ cr

(2.4.13)
For divergence
|D| =0

which permits the determination of ¢p.

*For definiteness consider a rectangular wing divided up into small (rectangular) finite differ-
ence boxes. The weighting matrix[(W)] is for a given spanwise location and various chordwise
boxes. The elements in the matrices, {Ow/9¢} and {w}, are ordered according to fixed span-
wise location and then over all chordwise locations. This numerical scheme is only illustrative
and not necessarily that which one might choose to use in practice.
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2.5. Other Physical Phenomena
Fluid flow through a flexible pipe

Another static aeroelastic configuration exhibiting divergence is a long

slender pipe with a flowing fluid." See Figure 2.15. We shall assume

the fluid is incompressible and has no significant variation across the

cross-section of the pipe. Thus, the aerodynamic loading per unit length

along the pipe is (invoking the concept of an equivalent fluid added mass

moving with the pipe and including the effect of convection velocity* U),
0%w 0%w 5 0?w

d a1

where

A = 1R? open area for circular pipe

p, U fluid density, axial velocity

w transverse deflection of the pipe

x axial coordinate

t time

The equation of motion for the beam-like slender pipe is

*w 9*w

Bl 51+t mogpn

=L (2.5.2)

where

mp = pp2mRh for a thin hollow circular pipe of thickness h, mass per
unit length

EI beam bending stiffness

Both static and dynamic aeroelastic phenomena are possible for this
physical model but for the moment we shall only consider the former.
Further we shall consider for simplicity simply supported or pinned
boundary conditions, i.e.,

and
M=FEI—=0 at z=0,a (2.5.3)

THousner [11].
tSee Section 3.4.
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Figure 2.15. Fluid flow through a flexible pipe.

where M is the elastic bending moment and a, the pipe length.
Substituting (2.5.1) into (2.5.2) and dropping the time derivatives
consistent with limiting our concern to static phenomena, we have

*w

9w
El—— + pAU*~— =0 2.5.4
ozt e 0z2 ( )
subject to boundary conditions
82
wza—;;):o at = =0,a (2.5.5)

The above equations can be recognized as the same as those governing
the buckling of a beam under a compressive load of magnitude,” P. The
equivalence is

P = pU?A

Formally we may compute the buckling or divergence dynamic pressure
by assuming’

4
w = E A;ePi*
i=1

where the p; are the four roots of the characteristic equation associated
with (2.5.4),
EIp* + pU%Ap? =0
Thus
p12=0

*Timoshenko and Gere [3].
t Alternatively one could use Galerkin’s method for (2.5.4) and (2.5.5) or convert them into
an integral equation to be solved by the ‘lumped element’ method.
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L (V%A 2
=44
D3, P4 EI
and \ N
w= A1 + Asx + Assin 73: + Ay cos % (2.5.6)
where

2\ = (pg‘iA> a’

Using the boundary conditions (2.5.5) with (2.5.6) we may determine
that
A=Ay =A;,=0
and either A3 =0 or sinA =0
For nontrivial solutions

As #0
and
sin A =0
or
A =m,2m, 3w, ete. (2.5.7)

Note that A = 0 is a trivial solution, e.g., w = 0.
Of the several eigenvalue solutions the smallest nontrivial one is of
the greatest physical interest, i.e.,

A=T

The corresponding divergence or buckling dynamic pressure is

pU? = 12" (2.5.8)
Note that A2 is a nondimensional ratio of aerodynamic to elastic stiffness;
we shall call it and similar numbers we shall encounter an ‘aeroelastic
stiffness number’. It is as basic to aeroelasticity as Mach number and
Reynolds number are to fluid mechanics. Recall that in our typical sec-
tion study we also encountered an ‘aeroelastic stiffness number’, namely,

oCy,
45 9a e

Ko
as well as in the (uniform) beam-rod wing model,

q(lc)e%a

GJ
1
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Figure 2.16. Fluid flow over a flexible wall.

(Low speed) fluid flow over a flexible wall

A mathematically similar problem arises when a flexible plate is embed-
ded in an otherwise rigid surface. See Figure 2.16. This is a simplified
model of a physical situation which arises in nuclear reactor heat ex-
changers, for example. Aeronautical applications may be found in the
local skin deformations on aircraft and missiles. Early airships may have
encountered aeroelastic skin buckling.*
For a one dimensional (beam) structural representation of the wall,
the equation of equilibrium is, as in our previous example,
0*w
El— =1L
oxt
Also, as a rough approximation, it has been shown that the aerodynamic
loading may be written as*
0*w
L~ pU?—
PY 922
Hence using this aerodynamic model, there is a formal mathematical
analogy to the previous example and the aeroelastic calculation is the
same. For more details and a more accurate aerodynamic model, the
cited references should be consulted.

2.6. Sweptwing Divergence

A swept wing, one whose elastic axis is at an oblique angle to an
oncoming fluid stream, offers an interesting variation on the divergence
phenomenon. Consider Figure 2.17. The angle of sweep is that between
the axis perpendicular to the oncoming stream (y axis) and the elastic
axis (7 axis). It is assumed that the wing can be modeled by the

*Shute [12], p.95.
*Dowell [13], p.19, Kornecki [14], Kornecki, Dowell and O’Brien [15].
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bending-torsion deformation of a beam-rod. Thus the two structural
equations of equilibrium are

Bending equilibrium of a beam-rod

d2 d2h —
i (B ) =1 261

Torsional equilibrium of a beam-rod

d? da _

— (GI=—=)+M,=0 2.6.2
dy? ( dy ) T 262
Here h is the bending displacement of the elastic axis and is assumed
positive downward. «., the elastic twist about the ¥y axis, is positive
nose up.

Now consider the aerodynamic model. Consider the velocity diagram,
Figure 2.18. A strip theory aerodynamic model will be invoked with
respect to chords perpendicular to the i axis. Thus the lift and aerody-
namic moment per unit span are given by

L=CLeq (2.6.3)
and
M, =Lé + M AC
T (2.6.4)
=Crcge + Cpracc™q

where ¢ = 2p(U cos A)? = gcos? A.  Also Cy is related to the (total)
angle of attack, ar, by

. oC

Cr(y) =~ ar(®) (2.6.5)
where i

ar = e + pr tan A (2.6.6)

To understand the basis of the second term in (2.6.6), consider the ve-
locity diagram of Figure 2.19. From this figure we see the fluid velocity
normal to the wing is U sin Adh/dy and thus the effective angle of attack
due to bending of a swept wing is

dh dh
UsinAd—g/U cos A = Ud—g tan A (2.6.7)
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CONSIDER BOTH
TWIST, 0.e , ABOUT

AND BENDING, h, OF
y (ELASTIC) AXIS

y

A

————— SHOWS EFFECTIVE ROOT AND TIP

Figure 2.17. Sweptwing geometry.

y
>A _—U sinA
U
U cosA

y

Figure 2.18. Velocity diagram in the =, y(Z,7) plane.

From (2.6.1)-(2.6.6), the following form of the equations of equilib-
rium is obtained.
d? d*h oCy, dh 9
diy2 <E_[dy_2> = *a |:O[e + dytanA} Cq COS A (267)

d doe oC dh ~
— | GJ 04_ 4 2L e + — tan A | g cos? Aé + Cpracc®qeos’ A =0
dy dy oa dy

(2.6.8)
SPECIAL CASES;

» If the beam is very stiff in bending, EI — oo, then from (2.6.7),
h — 0. (2.6.8) then is very similar to the torsional equation for an
unswept wing with slightly modified coefficients.

m If the beam-rod is very stiff in torsion, GJ — oo, then from (2.6.8),
a — 0. (2.6.7) then reduces to
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NI

U sin A

y
T U sin A%

Figure 2.19. Velocity diagram in g, Z plane.

2 2 s
CZJQ <E[3y};> + 88% sin A cos AchZ =0 (2.6.9)
As we shall see, divergence in bending alone is possible even for a swept
wing which is very stiff in torsion. This is not possible for an unswept
wing.

To illustrate this, consider a further special case, namely a beam
with constant spanwise properties. Introducing appropriate non-
dimensionalization then (2.6.9) becomes

d*h dh
—t+ A== 2.6.1
a7 + i 0 (2.6.10)
where g = g/l and
CL a3
A= 90 1% sin A cos A

EI

The boundary conditions associated with this differential equation are
zero deflection and slope at the root:

h=""—
dy

0@ §=0 (2.6.11)

and zero bending moment and shear force at the tip

2 3
d*h Eldh:

ET =
dy? dy?

0@ g=1 (2.6.12)
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(2.6.10)—(2.6.12) constitute an eigenvalue problem. The eigenvalues of A
are all negative and the lowest of these provides the divergence condition.

OC1, sin A cos Aél3q
o' El

The only way the right hand side of (2.6.13) can be less than zero is if
sinA <0or A<O.

Thus only swept forward wings can diverge in bending without tor-
sional deformation. This suggests that swept forward wings are more
susceptible to divergence than swept back wings. This proves to be the
case when both bending and torsion are present as well.

For many years, the divergence tendency of swept forward wings pre-
cluded their use. In recent years composite materials provide a mecha-
nism for favorable bending-torsion coupling which alleviates this diver-
gence. For a modern treatment of these issues including the effects of
composite structures two reports by Weisshaar [16,17] are recommended
reading.

A final word on how the eigenvalues are calculated. For (2.6.10)-
(2.6.12), classical techniques for constant coefficient differential equa-
tions may be employed. See BAH, pp. 479-489. Even when both
bending and torsion are included (2.6.7, 2.6.8), if the wing properties
are independent of spanwise location, then classical techniques may be
applied. Although the calculation does become more tedious. Finally,
for a variable spanwise properties Galerkin’s method may be invoked, in
a similar though more elaborate manner to that used for unswept wing
divergence.

Ap =—6.33 =

(2.6.13)
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Chapter 3

DYNAMIC AEROELASTICITY

In static aeroelasticity we have considered various mathematical mod-
els of aeroelastic systems. In all of these, however, the fundamental
physical content consisted of two distinct phenomena, ‘divergence ’ or
static instability, and loss of aerodynamic effectiveness as typified by
‘Control surface reversal ’. Turning to dynamic aeroelasticity we shall
again be concerned with only a few distinct fundamental physical phe-
nomena. However, they will appear in various theoretical models of
increasing sophistication. The principal phenomena of interest are (1)
‘flutter’ or dynamic instability and (2) response to various dynamic load-
ings as modified by aeroelastic effects. In the latter category primary
attention will be devoted to (external) aerodynamic loadings such as at-
mospheric turbulence or ‘gusts’. These loadings are essentially random
in nature and must be treated accordingly. Other loadings of interest
may be impulsive or discrete in nature such as the sudden loading due
to maneuvering of a flight vehicle as a result of control surface rotation.

To discuss these phenomena we must first develop the dynamic theo-
retical models. This naturally leads us to a discussion of how one obtains
the equations of motion for a given aeroelastic system including the req-
uisite aerodynamic forces. Our initial discussion of aerodynamic forces
will be conceptual rather than detailed. Later, in Chapter 4, these forces
are developed from the fundamentals of fluid mechanics. We shall begin
by using the ‘typical section ’ as a pedagogical device for illustrating
the physical content of dynamic aeroelasticity. Subsequently using the
concepts of structural and aerodynamic influence and impulse functions,
we shall discuss a rather general model of an aeroelastic system. The
solution techniques for our aeroelastic models are for the most part stan-
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dard for the modern treatment of the dynamics of linear systems and
again we use the typical section to introduce these methods.

We now turn to a discussion of energy and work methods which have
proven very useful for the development of structural equations of motion.
In principle, one may use Newton’s Second Law (plus Hooke’s Law) to
obtain the Equations of motion for any elastic body. However, normally
an alternative procedure based on Hamilton’s Principle or Lagrange’s
Equations is used.* For systems with many degrees of freedom, the
latter are more economical and systematic.

We shall briefly review these methods here by first deriving them from
Newton’s Second Law for a single particle and then generalizing them for
many particles and/or a continuous body. One of the major advantages
over the Newtonian formulation is that we will deal with work and energy
(scalars) as contrasted with accelerations and forces (vectors).

3.1. Hamilton’s Principle
Single particle
Newton’s Law states
7P d*7
— a2
where F is the force vector and 7 is the displacement vector, representing
the actual path of particle. m is the particle mass.
Consider an adjacent path, 7'+ 7, where 7 is a ‘virtual displacement’
which is small in some appropriate sense. If the time interval of interest
is t = t; — to then we shall require that

(3.1.1)

0r=0 at t=t1,t

although this can be generalized. Thus, the actual and adjacent paths
coincide at t = t1, or
Now form the dot product of (3.1.1) with 67" and fttf -+ -dt. The result

is
to dQ’F ~ . .
/t <md7§2 '5T—F~6T> dt =0 (3.1.2)

1
The second term in brackets can be identified as work or more precisely
the ‘virtual work’. The ‘virtual work’ is defined as the work done by
the actual forces being moved through the virtual displacement. We
assume that the force remains fixed during the virtual displacement or,
equivalently, the virtual displacement occurs instantaneously, i.e., §t =
0.

*See, for example, Meirovitvh [1].



Dynamic Aeroelasticity (Dowell) 95

It follows that the first term must also have the dimensions of work
(or energy ). To see this more explicitly, we manipulate the first term
by an integration by parts as follows:

t2 g2 dr t
m — - 07dt = m— - 0T
4y dt? dt 2
gy d
—m — - —(dr)dt
¢ dtodt
S (3.1.3)
2dr dr
=m — - 0—dt
y dt o dt

m (2 (dF di
=—— 0= —)dt
3o
Hence (3.1.2) becomes

t2 1 v dr
—md [ —  — F-6r|dt=0
/tl {2m (dt dt>+ r}

or
to
[T+ W)dt =0 (3.1.4)
t1
where | 4 dF
T T

is defined as the ‘virtual kinetic energy’ and
SW =F .67 (3.1.6)

is the ‘virtual work’. Hence, the problem is cast in the form of scalar
quantities, work and energy. (3.1.4) is Hamilton’s Principle. It is equiv-
alent to Newton’s Law.

Before proceeding further it is desirable to pause to consider whether
we can reverse our procedure, i.e., starting from (3.1.4), can we proceed
to (3.1.1)? It is not immediately obvious that this is possible. After all,
Hamilton’s Principle represents an integrated statement over the time
interval of interest while Newton’s Second Law holds at every instant in
time. By formally reversing our mathematical steps however, we may
proceed from (3.1.4) to (3.1.2). To take the final step from (3.1.2) to
(3.1.1) we must recognize that our choice of 67 is arbitrary. Hence, if
(3.1.2) is to hold for any possible choice of 67, (3.1.2) must follow. To
demonstrate this we note that, if 67 is arbitrary and (3.1.1) were not
true, then it would be possible select 67" such that (3.1.2) would not be
true. Hence (3.1.2) implies (3.1.1) if §7 is arbitrary.
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Many particles

The previous development is readily generalized to many particles. In-
deed, the basic principle remains the same and only the work and energy
expressions are changed as follows:

dr; dr;
5T:Z 5<dt dt) (3.1.7)

oW =Y F;- o7 (3.1.8)

where

m,; is the mass of ith particle,

7; is the displacement of ith particle, and (3.1.9)

F, is the force acting on ith particle.

Continuous body
For a continuous body (3.1.7) and (3.1.8) are replaced by (3.1.10) and

(3.1.11)
5T = /// 50— %dv (3.1.10)

volume

where p is the density (mass per unit volume), V' is the volume, and éW
is the virtual work done by external applied forces and internal elastic
forces. For example, if f is the vector body force per unit volume and p
the surface force per unit area then

oW = /// f 6rdV+// p-ordA (3.1.11)

volume surface area

Potential energy

In a course of elasticity™ it would be shown that the work done by internal
elastic forces is the negative of the virtual elastic potential energy. The
simplest example is that of an elastic spring. See sketch below. The
force in the spring is

—Kz

*Bisplinghoff, Mar, and pian [2], Timoshenko and Goodier [3].
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where the minus sign arises from the fact that the force of the spring on
the mass opposes the displacement, x. The virtual work is

oW = —Kuxdx

i
2

The virtual change in potential energy is

U = —oW

2 3.1.12

2

Considering the other extreme, the most complete description of the
potential energy of an elastic body which satisfies Hooke’s Law is (see
Bisplinghoff, Mar and Pian [2])

1
\'

where 0, is the stress component (analogous to F') and €, is the strain
component (analogous to z), etc.

From this general expression for potential (strain) energy of an elastic
body we may derive some useful results for the bending and twisting of
beams and plates. For the bending of a beam, the usual assumption of
plane sections over the beam cross-section remaining plane leads to a
strain-displacement relation of the form

Cyy = —F 55

where 2z is the vertical coordinate through the beam and w is the vertical
displacement of the beam. Hooke’s Law reads,
0w

Oyy = Feyy = —E,za—y2
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and we assume all other stresses are negligible
Oyz = Ogy = Ogz = Ogx — Ozz — 0

If we further assume w(x,y, z) = h(y) where y is the lengthwise coordi-

nate axis of the beam, then
-5/ (a 2) w

I:/Zde/dx

For the twisting of a thin beam , analogous reasoning leads to similar
results. Assume w = ax and « is the angle of twist about the y axis.
Then

where

0%w
€xy = —zm
E E  d*w
ey = (1+v) Cay = (1+ v)zamﬁy
Thus ) S ?
Q@
vz for(5)
where

=_= _ 2
G_2(1+ 4/ dz/dx

The above can be generalized to the bending of a plate in two dimensions.

B 9w
€yy = —z—6y2

9w
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and

1 2w\?  [0%w\? 02w 0%w 92w \ 2
U 5 // l<3x2> + (agﬂ) + v(%:? RIE +2(1 —v) (6566]/) dx dy

where

E +h/2
D= —— 22dy, plate bending stiffness
(1—v?) —h/2

and
w = w(z,y)

Nonpotential forces

Now, if one divides the virtual work into potential and nonpotential
contributions, one has Hamilton’s Principle in the form

/[(5T —6U) + Fnc - 6r]dt =0 (3.1.14)
SWhc

where Fyc includes only the nonpotential (or nonconservative) forces.
In our aeroelastic problems the nonconservative virtual work is a re-

sult of aerodynamic loading. For example, the virtual work due to the

aerodynamic pressure (force per unit area) on a two-dimensional plate

is clearly
Whne = //péwdxdy

Note that if the deflection is taken to be a consequence of a chordwise
rigid rotation about and bending of a spanwise elastic axis located at,
say « = 0, then

w = —h(y) — za(y)

5W:/[—/pd:n] 5hdy+/ [—/pmdz:] Saudy

L = [ pdx net vertical force/per unit span

and hence

where

M,= — f px dx net moment about y axis per unit span

Thus, for this special case,

5W—/—L6hdy+/My5ady

Can you derive equations for 7" and U in terms of h and «?
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3.2. Lagrange’s Equations

Lagrange’s equations may be obtained by reversing the process by
which we obtained Hamilton’s Principle. However to obtain a more gen-
eral result than simply a retrieval of Newton’s Second Law we introduce
the notion of ‘generalized’ coordinates. A ‘generalized’ coordinate is one
which is arbitrary and independent (of other coordinates). A set of ‘gen-
eralized’ coordinates is sufficient* to describe the motion of a dynamical
system. That is, the displacement of a particle or point in a continuous
body may be written

7 =17(q1,992,43,- - -, 1) (3:2.1)
where g; is the ith generalized coordinate. From (3.2.1) it follows that
T = T(ql, qi, t) (322)
Thus Hamilton’s Principle may be written
to
/ [0(T = U) + dWncldt =0 (3.1.14)
t1
Using (3.2.2) in (3.1.14)
21T —-U) AT -U
Z / [ 5q1 ( 5 )5qz + Qz(sql] dt =0 (3.2.3)

(2

where the Generalized forces, ();, are known from

5WNC = ZQzéqz (3.2.4)

As we will see (3.2.4) defines the Q; as coefficients of d¢; in an expression
for W which must be obtained independently of (3.2.4). Integrating
the first term of (3.2.3) by parts (noting that dg; = 0 t = t;,t2) we have

Z @5% / d a T -U) AT -U)
t1 qi

) a<T U)

0q; + Q;0q;|dt =0
9qi

(3.2.5)

*and necessary, i.e., they are independent
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Figure 3.1. Geometry of typical section airfoil.

Collecting terms

Z/t [ dm:;q,U)*a(i)q_-UuQi Sqidt = 0 (3.2.6)

Since the d¢q; are independent and arbitrary it follows that each bracketed
quantity must be zero, i.e.,

_doT-U) oT-U)
dt ¢ dq;

These are Lagrange’s equations.

+Q;,=0 i=1,2,... (3.2.7)

Example—typical section equations of motion

x is measured along chord from e.a.; note that x is not a generalized
coordinate, e.g., it cannot undergo a virtual change.

generalized coordinates {q1 = h, ¢2 = a}
The displacement of any point on the airfoil is
= ui + wk (3.2.8)

where u is the horizontal displacement component, w is the vertical
displacement component, and ¢, k are the unit, cartesian vectors.
From geometry
u=z[cosa — 1] ~

0
: fora <1 (3.2.9)
w=—h—zsina ™= —h — x«
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Hence,
1 dw\ ? du\?
reg () ()] e
1 dw\?
22/<dt> pdx
1

=5 /(—h — ax)?pdx

1. 1. 1
= 2h2/pdx+ 22hd/:cpda:+ de/prdx

3.2.10)
1. 1., 1, (
= §h2m + 52h0&5@ + 5042101
where m = / pdx total mass
Sy = / prdr = .9 m mass unbalance
I, = /p:dew moment of intertia
p = mass per unit chord length
The potential energy is
1 2 1 2
U= iKhh + iKaa (3.2.11)

where K, and K, are the spring stiffnesses For our system, Lagrange’s
equations are

_i 8(T—U)> (T —-U) B
dt( oh foan e (3.2.12)
_d(@(T—U)>+8(T—U)+Q —0 -
dt od oJe @
where
Wne = Quroh + Qo (3.2.13)

Now let us evaluate the terms in (3.2.12) and (3.2.13). Except for
@1, these are readily obtained by using (3.2.10) and (3.2.11) in (3.2.12).
Hence, let us first consider the determination of Qp, Q. To do this we
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calculate independently the work done by the aerodynamic forces.
Wne = / pdwdx
= /p(—éh — zda)dx

= <—/pd;v> +da (—/pxd:n>

= Sh(—L) + da(M,)

(3.2.14)

where we identify from (3.2.13) and (3.2.14)
L= /pdw =Qn
Myz—/pxdx:Qa

Note the sign convention is that p is positive up, L is positive up and
M, is positive nose up. Putting it all together, noting that

a(T - U)
oh

we have from Lagrange’s equations

= —Kph etc.

—i(mm+5ad)—Khh—L:0
‘gf (3.2.15)
— %(Sah+lad) — Koo+ M, =0
These are the equations of motion for the ‘typical section
the particular coordinates h and a.

Other choices of generalized coordinates are possible; indeed, one of
the principal advantages of Lagrange’s equations is this freedom to make
various choices of generalized coordinates. The choice used above sim-
plifies the potential energy but not the kinetic energy. If the generalized
coordinates were chosen to be the translation of an rotation about the
center of mass the kinetic energy would be simplified, viz.

’ in terms of

m.;o Iem . 2
T= Ehcm + 9 Cem
but the potential energy would be more complicated. Also the relevant
aerodynamic moment would be that about the center of mass axis rather
than that about the elastic axis (spring attachment point).
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Another choice might be the translation of and rotation about the
aerodynamic center axis though this choice is much less often used than
those discussed above.

Finally we note that there is a particular choice of coordinates which
leads to a maximum simplification of the inertial and elastic terms
(though not necessarily the aerodynamic terms). These may be de-
termined by making some arbitrary initial choice of coordinates, e.g., h
and «, and then determining the ‘normal modes’ of the system in terms
of of these.* These ‘normal modes’ provide us with a coordinate trans-
formation from the initial coordinates, h and «, to the coordinates of
maximum simplicity. We shall consider this matter further subsequently.

3.3. Dynamics of the Typical Section Model of
An Airfoil

To study the dynamics of aeroelastic systems, we shall use the ‘typical
section '* as a device for exploring mathematical tools and the physical
content associated with such systems. To simplify matters, we begin by
assuming the aerodynamic forces are given where p(x,t) is the aerody-
namic pressure, L, the resultant (lift) force and M, the resultant moment
about the elastic axis. See Figure 3.2. The equations of motion are

mh + Kph + Sai = —L (3.3.1)
Sah + Iné + Koo = M, (3.3.2)
where
L= /pd:c
M, = /pZL‘ dx

We will find it convenient also to define the ‘uncoupled natural frequen-
cies’,

wi=Kp/m, w:=Ky/l, (3.3.3)
These are ‘natural frequencies’ of the system for S, = 0 as we shall see
in a moment.

Sinusoidal motion

This is the simplest type of motion; however, as we shall see, we can
exploit it systematically to study more complicated motions.

*Meirvovitch [4].
*BA, pp.201-246
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Figure 3.2. Typical section geometry.

Let
T _ M wwt
(3.3.4)

Substituting (3.3.4) and (3.3.3) into (3.3.2) we have in matrix notation

)] () e

m(—w? + w?)
I (—w? + w?) a

—S w2

Solving for h, @ we have the transfer function, Hp,

‘41—(WN@V]+dﬂ%§(iJ

h
Lk, {[1 — (w/wa)?|[1 = (w/wn)?] = 75 (2
= Hy, <w/wa, ,d/b,ZEaaTa>
where
d=M,/L

and b is the reference length (usually selected as half-chord by tradition),

_ Sa _ Teg.
Y= T b




66 A MODERN COURSE IN AEROELASTICITY

Kh HhL

0; / O,

W,/ 0y, W,/ Wy

-1

O/ 0y,

Figure 3.3. Transfer function.

and
I,

2 [
> mb?
A plot of Hyy, is shown below in Figure 3.3. *L, 2 are the roots of the
denominator, the system ‘natural frequencies’.

2 2 2
i u _lresls{leesl-p-gl)

r

Whwa WhWe, 2[1 — 22 /r2]
A similar equation may be derived for

Q

L

«

= H,r, <w/wa; %, d/b, zq, ra) (3.3.8)

w1 and we are again the natural frequencies. Hpp, H,r are so-called
‘transfer functions’; they are ‘mechanical’ or ‘structural transfer func-
tions’ as they describe the motion of the structural system under speci-
fied loading. Later on we shall have occasion to consider ‘aerodynamic
transfer functions’ and also ‘aeroelastic transfer functions’. ws/w, is the
root of the numerator of Hyy;, (but not in general of H,z which will
vanish at a different frequency),

(53> = S (339
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Note that infinite response occurs at the natural frequencies, w; and ws,
for both Hpy and H,y;. This is not an instability; it is a ‘resonance’
with the infinite response due to the absence of any damping in the
system. Had structural or aerodynamic damping been included as will
be done in later examples, then the transfer functions would become
complex numbers which is a mathematical complication. However, the
magnitude of the transfer functions would remain finite though large
at w = w1, wo which is an improvement in the realism of the physical
model. With L and M assumed given, which admittedly is somewhat
artificial, the question of instability does not arise. We will elaborate
on this point later when we discuss the notion of instability in a more
precise way.

From sinusoidal motion we may proceed to periodic (but not neces-
sarily sinusoidal) motion.

Periodic motion

The above analysis can be generalized to any periodic motion by ex-
panding the motion into a Fourier (sinusoidal) series. Define:

To = basic period

wo = 2w /Ty, fundamental frequency

Then a periodic force, L(t), may be written as

L(t)= Y Lyetino! (3.3.10)
where
1 T0/2 .
Lp= — L(t)e~m«otqt (3.3.11)
To J-1y 2

Using (3.3.10) and (3.3.6)

h(t) =" Hu <w°n> L™t (3.3.12)

Wa

From periodic motion we may proceed to arbitrary time dependent mo-
tion.

Arbitrary motion

By taking the limit as the basic period becomes infinitely long, Ty — oo,
we obtain results for non-periodic motion.
Define
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w = nwy

Aw = Anwy*=wy = 27/ frequency increment

L*(w) = ﬁ = Lg;‘rro force per frequency increment

Then (3.3.10) becomes

L(t) = / Z L*(w)et™tdw (3.3.10)

(3.3.11) becomes
L*(w) = % /Z L(t)e ™'dt (3.3.11)

(3.3.12) becomes
h(t) = /_ Z Hinp (/o) L* (@)™ dos (3.3.12)

An interesting alternate form of (3.3.12) can be obtained by substituting
(3.3.11) into (3.3.12). Using a dummy time variable, 7, in (3.3.11) and
interchanging order of integration in (3.3.12), gives

h(t) = /_oo Inp(t — 7)L(T)dr (3.3.13)
where -
Inp(t) = 277/_ Hyp(w/we)e™tdw (3.3.14)

Comparing (3.3.12) and (3.3.14), note that Iy is the response to
L*(w) = 5= or from (3.3.10) and (3.3.11), L(t) = 4(t). Hence, I is
the response to an impulse force and is thus called the impulse function.

(3.3.10)—(3.3.11) are a pair of Fourier transform relations and (3.3.13)
is a so-called convolution integral.

Note (3.3.13) is suitable for treating transient motion; however, a
special case of the Fourier transform is often used for transient motion.
This is the Laplace transform.

Laplace transform. Consider

L(t)=0 for 7<0

also
Inp(t—7)=0 for t—7<0

*Note An = 1 since any n is an integer.
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The latter will be true for any physically realizable system since the
system cannot respond before the force is applied.
Define
p=iw; thus w= —ip

and
LT = 2nL* (—ip)

then (3.3.10) becomes

1 100
L(t) = / LiePtdp
—100

21

(3.3.11) becomes
LT = / L(t)e Pdt (3.3.15)
0

(3.3.13) becomes
ht) = /0 Inn(t — 7)L(r)dr

where ,
1 00

HhL( p> ePdp
2mi oo Wey

Utilization of Transform Integral Approach for Arbitrary Motion.
There are several complementary approaches in practice. In one the
transfer function, Hyy, is first determined through consideration of sim-
ple sinusoidal motion. Then the impulse function is evaluated from

Ini(t) =

I (t) / Hyp(w)e™dw (3.3.14)

and the response is obtained from

h(t) = /Ot I (t — ) L(T)dT (3.3.13)

Alternatively, knowing the transfer function, Hyy(w), the transform of
the input force is determined from

L*(w) = % /_ " L)etdu (3.3.11)

and the response is calculated from

_ / " Hp (@)L (@) d (3.3.12)
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Both approaches give the same result, of course.

As a simple example we consider the translation of our typical section
for S, = 0, i.e., the center of mass coincides with the elastic axis or
spring attachment point. This uncouples the rotation from translation
and we need only consider

mh + Kph = —L (3.3.1)
We assume a force of the form

L=e¢ for t>0

3.3.16
=0 for t<O0 ( )

From our equation of motion (or (3.3.6) for S, = x, = 0) we determine
the transfer function as
-1

2 _ g
7’ w pr— 3-3-6
m[W%L w?] " w/m ( )

Hpp(w) =
From (3.3.14), using the above and evaluating the integral, we have

sinwpt for ¢t >0
mwp, (3.3.17)

=0 for t<0

Inp(t) =

From (3.3.13), using above (3.3.17) for Ij,;, and given L, we obtain

h(t) = 1 {whe_“t — wp, coswpt + asin wht} (33.18)

mwp, a?+w?
We can obtain the same result using our alternative method. Calculating

L* from (3.3.11) for our given L, we have

1 1
C 2ma+iw

Using above and the previously obtained transfer function in (3.3.12) we
obtain the response. The result is, of course, the same as that determined
before. Note that in accordance with our assumption of a system initially
at rest, h = h = 0 at t = 0. Examining our solution, (3.3.18), for large
time we see that

h— —

1 { —wp, €oS wpt + asinwpt

3 3 as t — oo
a® + wy,

mwp,

This indicates that the system continues to respond even though the
force L approaches zero for large time! This result is quite unrealistic



Dynamic Aeroelasticity (Dowell) 71

physically and is a consequence of our ignoring structural damping in
our model. Had we included this effect in our equation of motion using
a conventional analytical damping model*

mlh 4 2Cawph] + Kph = —L (3.3.1)

the response would have been

b 1 wpe % + [—wp coswpt + asin wht]e_Chwht
- mwp,

a? 4+ w?

} (3.3.19)

for small damping, (;, < 1, which is the usual situation. Now h — 0, for
t — oo. Furthermore, if the force persists for a long time, i.e., a — 0,

then
1 wh, 1
h(t) = ————< —5 p = ——
( ) mwp, {w%} Kh
which is the usual static or steady state response to a force of unit

amplitude. The terms which approach zero for a large time due to

structural damping are usually termed the transient part of the solution.
If

a < Cpwp
the transient solution dies out rapidly compared to the force and we
usually are interested in the steady state response. If

a > Cpwp

the ‘impulsive’ force dies out rapidly and we are normally interested in
the transient response. Frequently the maximum response is of greatest
interest. A well known result is that the peak Dynamic response is
approximately twice the static response if the force persists for a long
time and the damping is small. That is, if

<1
a < wp

then Ay,q, occurs when (see(3.3.19))

N T
cos wpt = —1 or t=—
Wh

sin wy,t =0

*Meirovicth [4].
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and
1 wy
Amax = ————= |1 — (=1
o = gl (1)
2
=%

The reader may wish to consider other special combinations of the rel-
ative sizes of

a force time constant
wp, system natural time constant
(pwp, damping time constant

A great deal of insight into the dynamics of linear systems can be gained
thereby.

The question arises which of the two approaches is to be preferred.
The answer depends upon a number of factors, including the compu-
tational efficiency and physical insight desired. Roughly speaking the
second approach, which is essentially a frequency domain approach, is
to be preferred when analytical solutionsare to be attempted or physical
insight based on the degree of frequency ‘matching’ or ‘mis-matching’
of Hp; and L* is desired. Clearly a larger response will be obtained
if the maxima of H and L* occur near the same frequencies, i.e., they
are ‘matched’, and a lesser response will be obtained otherwise, i.e., the
maxima are ‘mismatched’. The first approach, which is essentially a time
domain approach, is generally to be preferred when numerical methods
are attempted and quantitative accuracy is of prime importance.

Other variations on these methods are possible. For example the
transfer function, Hpy, and the impulse function, Ij;, may be deter-
mined experimentally. Also the impulse function may be determined
directly from the equation of motion, bypassing any consideration of the
transfer function. To illustrate this latter remark, consider our simple

example )
mh + Kph = —L (3.3.1)

The impulse function is the response for h due to L(t) = d(¢). Hence, it
must satisfy )
mlp + Kplp = —6(t) (3.3.20)

Let us integrate the above from ¢ = 0 to .

/ [mfhl—l—KhIhl]dt = —/ o(t)dt
0 0
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or

€
mlp|g + Kh/ Ipdt = —1
0
In the limit as € — 0", we obtain the ‘initial condition’,

I(0%) = —% (3.3.21)

and also

In(0h) =0

Hence, solving (3.3.20) and using the initial velocity condition, (3.3.21),
we obtain

Iy = — L sinwpt for t>0 (3.3.17)
mwy,
which is the same result obtained previously.

Finally, all of these ideas can be generalized to many degrees of free-
dom. In particular using the concept of ‘normal modes’ any multi-
degree-of-freedom system can be reduced to a system of uncoupled
single-degree-of-freedom systems.* As will become clear, when aerody-
namic forces are present the concept of normal modes which decouple the
various degrees of freedom is not as easily applied and one must usually
deal with all the degrees of freedom which are of interest simultaneously.

Random motion

A random motion is by definition one whose response is neither repeat-
able nor whose details are of great interest. Hence attention is focused
on certain averages, usually the mean value and also the mean square
value. The mean value may be treated as a static loading and response
problem and hence we shall concentrate on the mean square relations
which are the simplest characterization of random, dynamic response.

Relationship between mean values. To see the equivalence between
mean value Dynamic response and static response, consider

h(t) = / " Dt =) L(r)dr (3.3.13)

and take the mean of both sides (here a bar above the quantity denotes
its mean, which should not be confused with that symbol’s previous use

*Meirovitch [4].
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in our discussion of sinusoidal motion). By definition

_ 1 [T
h = hmﬁ /Th(t)dt and thus

B 1 T oo
= lim — I (t—7)L
h = lim 5T /_T/_OO n(t —7)L(7)dTdt

Interchanging the order of integration and making a change of variables,
the right hand side becomes

o) T
B = /_ oo{hm21T /_ | L(t = r)dt} ()i

I / T Lu(r)dr

= I_Lth(w = 0)
L
Kp,

which is just the usual static relationship between h and L. Unfortu-
nately, no such simple relation exists between the mean square values.
Instead all frequency components of the transfer function, Hp;, con-
tribute. Because of this it proves useful to generalize the definition of a
square mean.

Relationship between mean square values. A more general and informa-
tive quantity than the mean square, the correlation function, ¢, can be
defined as

1T
¢rr(r) = llmﬂ,/_TL(t)L(t+r)dt (3.3.22)

The mean square of L, L2, is given by
L2 = ¢ (T =0) (3.3.23)

As 7 — o0, ¢rr, — 0 if L is truly a random function since L(¢) and
L(t+7) will be ‘uncorrelated’. Indeed, a useful check on the randomness
of L is to examine ¢ for large 7. Analogous to (3.3.22), we may define

1 T
Gpp(T) = lim — h(t)h(t + T)dt
21 /‘T (3.3.24)

T
Gp(r) = lim % / (Lt + )t
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¢n1 is the ‘cross-correlation’ between h and L. ¢pp, and ¢ are ‘auto-
correlations’. The Fourier transform of the correlation function is also a
quantity of considerable interest, the ‘power spectra’,

Prr(w) = i/oo prr(T)e“tdr (3.3.25)

(Note that a factor of two difference exists in (3.3.25) from the usual
Fourier transform definition. This is by tradition.) From (3.3.25), we
have

= / O (w)coswrdw
0

The latter follows since ® 1 (w) is a real even function of w. Note

L2 = ¢p(0) = /Oo pr(w)dw (3.3.27)
0

Hence a knowledge of @1 is sufficient to determine the mean square.
It turns out to be most convenient to relate the power spectra of L to
that of h and use (3.3.27) or its counterpart for h to determine the mean
square values.

To relate the power spectra, it is useful to start with a substitution
of (3.3.13) into the first of (3.3.24).

Sn(7) =lim % /i {/Z L(r) Inn(t — n)dn}
X {/OO L(ra)Inn(t + 7 — Tg)dTg} dt

—0o0

Interchanging order of integrations and using a change of integration
variables

t=t—1 m=t—t

t'=t+7—19; T=t+71—1t"

we have
Ohh = / / IhL(t/)IhL(t//)¢LL(T +t - t”)dt/dt” (3.3.28)
Once could determine h2 from (3.3.28)

_ o] +00
h? = drn(T =10) = / / IhL(t/)IhL(tll)¢LL(t/ — t//)dt/dt” (3.3.29)
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However we shall proceed by taking the Fourier transform of (3.3.28).
1 [ <
(I)hh :/ (bhh(T)eiw)th
™ —0oQ
1 ,
—_ /// I (I, (U)o (t + ' — e “tat' dt" dr
/// IhL +7,wt’ (t//) —iwt!’
X orp(t+t —t") exp —iw(r +t' —t")dt'dt" dr
Defining a new variable

r=r+t -+t
dr’ = dr

we see that

’CI)hh(w) = th(w)th(—w)@LL(w) ‘ (3330)
One can also determine that

O (w) = Hpp(—w)®rr(w)
Qpp(w) = Hpp(—w)®pr(w)

(3.3.31)

(3.3.30) is a powerful and well-known relation.* The basic procedure
is to determine ®r7 by analysis or measurement, compute ®; from
(3.3.30) and h? from an equation analogous to (3.3.26)

h2 = /Ooo O (w)dw = /OOO |Hpp(w))?® 1 (w)dw (3.3.32)

Let us illustrate the utility of the foregoing discussion by an example.

Ezxample: Airfoil response to a gust. Again for simplicity consider trans-
lation only.
mh 4+ Kph = —L (3.3.1)

Also for simplicity assume quasi-steady aerodynamics.

oCy,
L =qS—%
Saa

waG

i hoy Sia (3.3.33)

*Crandall and Mark [5].

Jf% + WTG is an effective angle of attack, a.
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wg taken as positive up, is a vertical fluid ‘gust’ velocity, which varies
randomly with time but is assumed here to be uniformly distributed
spatially over the airfoil chord. Various transfer functions may be defined
and calculated. For example

-1
—Hy = —— W =K 3.3.34
hL m[_w2 I w]%] Wh /m ( )

is the structural transfer function® (motion due to lift) (cf.(3.3.6))

= HLh == qS—— (3335)

is the aerodynamic transfer function (lift due to motion)

OcL l

is the aerodynamic transfer function (lift due to gust velocity field) and
h —Hrwg

Hp, = — = (3.3.37)
we g+ HLh]

is the aeroelastic transfer function (motion due to gust velocity field).

The most general of these is the aeroelastic transfer function which
may be expressed in terms of the structural and aerodynamic transfer
functions, (3.3.37). Using our random force-response relations, we have
from (3.3.32)

B ()
h? = / ‘thc; |2(I)wcwcdw
0

2
o |05 % 4|
2 CI)WGWde
0 2 2 9CL w

Define an effective damping constant as

qS@l

Jda U
— o 2 3.3.38
¢ 2v/mKy, ( )

*Here we choose to use a dimensional rather than a dimensionless transfer function.

TWe ignore a subtlety here in the interest of brevity. For a ‘frozen gust’, we must take
wag = wgexpiw(t — /Us) in determining this transfer function. See later discussion in
Sections 3.6, 4.2 and 4.3.¢
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then

2
oCy, 1
h2 — [qSTaLU} /Oo (I)wcwcdw
m?2 0 [~w?+wi? +4¢Cwin?

which, for small ( may be evaluate as*

BCL
X qS ™ (pw w, (UJ = Wh)
h? = e 3.3.39
Kh U ( )
Typically,
1+3 (‘”LG)Q
_9 LG

Dy wg (W) = Wg (3.3.40)

2
ﬂ'U I:l n (ng)2:|
as determined from experiment or considerations of the statistical theory
of atmospheric turbulence. Here, L¢ is the ‘scale length of turbulence’;

which is not to be confused with the lift force. Nondimensionalizing and
using (3.3.39) and (3.3.40), we obtain

2
BQ/bQ 38C'L whé:c; 1+3 (thG)
= =qS5-2= =% 5 (3.3.41)
’LU%;/UZ Khb % |:1 + (W}LLG’>2:|

Note as % — 0 or oo, h2/b®> — 0. Recall Lg is the characteristic
length associated with the random gustfield. Hence, for very large or
very small characteristic lengths the airfoil is unresponsive to the gust.
For what % does the largest response occur?

As an alternative to the above discussion, a correlation function ap-
proach could be taken where one uses the time domain and the aeroe-
lastic impulse function.

SE)CL 1 e—tht

Ihw(; 4° 50 T :
=——02giny/1— Cwpt (3.3.42)
b mbw? /1 — (2

but we shall not pursue this here. Instead the frequency domain analysis
is pursued further.

~

*Crandell and Mark; the essence of the approximation is that for small ¢, Pwgwg(w) =2
Pwgwe(wp) and maybe taken outside the integral. See the subsequent discussion of a
graphical analysis.

THoubolt, Steiner and Pratt [6]. Also see later discussion in Section 3.6
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/0y )]

Figure 3.4. Aeroelastic transfer function.

It is useful to consider the preceding calculation in graphical form for
a moment. The (square of the) transfer function is plotted in Figure 3.4.
and the gust power spectral density in Figure 3.5.

We note that the power spectral density is slowly varying with w
relative to the square of the transfer function which peaks sharply near
w = wp. Hence one may, to a close approximation, take the power
spectral density as a constant with its value determined at w = wy, in
computing the mean square response. This is a simple but powerful
idea which carries over to many degrees-of-freedom, and hence many
resonances, provided the resonant frequencies of the transfer function
are known. For some aeroelastic systems, locating the resonances may
prove difficult.

There are other difficulties with the approach which should be pointed
out. First of all we note that including the (aerodynamic) damping due
to motion is necessary to obtain a physically meanful result. Without it
the computed response would be infinite! Hence, an accurate evaluation
of the effective damping for an aeroelastic system is essential in random
response studies. It is known that in general the available aerodynamic
theories are less reliable for evaluating the (out-of-phase with displace-
ment) damping forces than those forces in-phase with displacement.*
Another difficulty may arise if instead of evaluating the mean square
displacement response we instead seek to determine the mean square of
acceleration. The latter quantity is frequently of greater interest from

*Acum [7].
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(DWG Wa

Figure 3.5. Gust (auto) power spectral density.

the standpoint of design. The relevant transfer function is given by

Hi = (iw)* Hpu (3.3.43)

hwg

and the mean square is therefore

2
oo 4 oCr, 1
0 W [an—aL U} Dy we dw

h? = (3.3.44)

2
[—me? + K2 + g5 % ]

If we make the same approximation as before that @, is a con-
stant, we are in difficulty because |thc|2 does not approach zero as
w — oo and hence the integral formally diverges. This means greater
care must be exercised in evaluating the integral and in particular con-
sidering the high frequency behavior of the gust power spectral density.
Also, one may need to use a more elaborate aerodynamic theory. In
the present example we have used a quasi-steady aerodynamic theory
which is reasonably accurate for low frequencies;* however, to evaluate
the acceleration response it will frequently be necessary to use a full
unsteady aerodynamic theory in order to obtain accurate results a high
frequencies in (3.3.44).

Measurement of power spectra. We briefly digress to consider an impor-
tant application of (3.3.27) to the experimental determination of power
spectra. For definiteness consider the measurement of gust power spec-

*Acum [7].
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tra. Analogous to (3.3.27) we have

W = /0 Dy (W)dw (3.3.45)

It is assumed that a device is available to measure wg over a useful
range of frequencies. The electronic signal from this device is then sent
to an electronic ‘filter’. The latter, in its most ideal form, has a transfer
function given by
w Aw
HFU)G:]- for wc—7w<wc+7
= 0 otherwise (3.3.46)

where w. = w.center frequency of the filter
Aw = frequency bandwidth of the filter

Now if we assume that the power spectrum varies slowly with w and
we choose a filter with Aw < w,, then (3.3.45) may be approximated by
taking @ g (W) = Puygwe (we) and moving it outside the integral. The
result is B

W2 2 Dy, (we) Aw

Solving for the power spectrum,

we
Aw
By systematically changing the filter center frequency, the power spec-
trum may be determined over the desired range of frequency. The fre-
quency bandwidth, Aw, and the time length over which wé is calculated
must be chosen with care. For a discussion of these matters, the reader
may consult Crandall and Mark [5], and references cited therein.

For a more extensive discussion of random motionindexMotion ! ran-
dom of two-dimensional plate-like structures with many degrees of free-
dom, see Appendix I, ‘A Primer for Structural Response to Random
Pressure Fluctuations’.

By (we) = (3.3.47)

Flutter - an introduction to dynamic aeroelastic in-
stability

The most dramatic physical phenomenon in the field of aeroelasticity is
flutter, a dynamic instability which often leads to catastrophic structural
failure. One of the difficulties in studying this phenomenon is that it is
not one but many. Here we shall introduce one type of flutter using the
typical section structural model and a steady flow aerodynamic model.
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The latter is a highly simplifying assumption whose accuracy we shall
discuss in more detail later. From (3.3.1) and with a steady aerodynamic
model, L = qs%a, M, = eL, the equations of motion are

mh+5’ad+Khh+an—La =0
B (3.3.48)
I+ Soh+ Kpa—qgS——a =0
foJe"
To investigate the stability of this system we assume solutions of the
form

h = hePt

I (3.3.49)
and determine the possible values of p, which are in general complex
numbers. If the real part of any value of p is positive, then the motion
diverges exponentially with time, (cf.3.3.49), and the typical section is
unstable.

To determine p, substitute (3.3.49) into (3.3.48) and use matrix no-
tation to obtain

[mp? + K] Sap? +qS%E et 1[0
SOLp2 Iapz + KO{ _ qse% dept - 0 (3350)

For nontrivial solutions the determinant of coefficients is set to zero
which determines p, viz.

Ap* +Bp? +C =0 (3.3.51)
where
A=ml, — S?X
B=m|K,— chaCL + Kpl, — SaqS%
O« Ox

oCy,
Jda

C =K, {Ka —qgSc———

Solving (3.3.51)
_B+[B?—4AC)?
2
= .3.52
p - (3:3.52)

and taking the square root of (3.3.52) determines p.
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The signs of A, B and C' determine the nature of the solution. A is
always positive for any distribution of mass; C' is positive as long as ¢ is
less than its divergence value, i.e.

[Ka — qSeac’L} >0
Ja

which is the only case of interest as far as flutter is concerned. B may
be either positive or negative; re-writing
oCy,
Oa
If [me + So] < 0 then B > 0 for all q. Otherwise B < 0 when
Kpl S, oC

hla [1+a] qSe L

me Oa

Consider in turn two possibilities, B > 0 and B < 0.

B+ mK,+ Kpl, — [me + S,]qSe (3.3.53)

K, + <0

B > 0: Then the values of p? from (3.3.52) are real and negative provided
B* —4AC >0

and hence the values of p are purely imaginary, representing neutrally
stable oscillations. On the other hand if

B2 —4AC <0

the values of p? are complex and hence at least one value of p will have
a positive real part indicating an unstable motion. Thus

B%? —4AC =0 (3.3.54)

gives the boundary between neutrally stable and unstable motion. From
(3.3.54) one may compute an explicit value of ¢ at which the dynamic
stability, ‘flutter’; occurs, i.e.,

Dq%—i—EqF—i-F =0
—E +[E? - ADF]?

or qr = 5D (3.3.55)
where
2
D= {[me + Sa]Saa(;’L}
_ 2 9CL
E = {—2[m€ + Sa] [mKa + Kh[a] + 4[m[a — Sa]eKh}Sw

F = [mKy + Kpl,)? — 4lml, — S%| Ky K,



84 A MODERN COURSE IN AEROELASTICITY

In order for flutter to occur at least one of the ¢ determined by (3.3.55)
must be real and positive. If both are, the smaller of the two is the
more critical; if neither are, flutter does not occur. Pines* has studied
this example in some detail and derived a number of interesting results.
Perhaps the most important of these is that for

Sa <0

i.e., the center of gravity is ahead of the elastic axis, no flutter occurs.
Conversely as S, increases in a positive sense the dynamic pressure at
which flutter occurs qp is decreased. In practice, mass is often added
to a flutter prone structure so as to decrease S, and raise gg. Such a
structure is said to have been ‘mass balanced’. Now consider the other
possibility for B.

B < 0: B is positive for ¢ = 0 (cf.(3.3.51) et. seq. ) and will only become
negative for sufficiently large q. However, the condition

B? —4AC =0
will occur before
B=0

since A > 0, C > 0. Hence, to determine when flutter occurs, only
B > 0 need be considered.

In concluding this discussion, let us study the effect of S, in more
detail following Pines.

Consider the first special case S, = 0. Then

2
D = [m@SacL]
o
oC
E =2me{l Ky, — mKa}Sa—aL
F = {mK, — K,I,}*

and one may show that
E? —4DF =0

Using this result and also (3.3.55) and (2.18), it is determined that

ar/ap =1 — wj/w}, (3.3.56)

*Pines [8].
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Thus if g4 < 0 and wp/we < 1, gp < 0, i.e., no flutter will occur.
Conversely if gp > 0 and wp/ws > 1, then gp < 0 and again no flutter
will occur.

Now consider the general case, S, # 0. Note that D > 0 and F > 0
for all parameter values. Thus from (3.3.55), ¢ < 0 if E > 0 and no
flutter will occur. After some rearrangement of the expression for E, it
is found that (in non-dimensional form)

_ aCy,
— 27 2 _
E=E/ <2m IW5S Do )
x; 3.3.57
e [~1+ (nfua)? ~ 272 <wh/wa>2] (3357
cg

— Teg [1 + (Wh/wa)z]

From this equation, the condition for no flutter, E > 0 or E > 0, gives
the following results.

m If 2,y = 0, then no flutter occurs for e > 0 and wp/wy > 1 or for
e <0 and wp/wy < 1.

» If e =0, then no flutter occurs for z., < 0 and any wp,/wq.
» For small x4, i.e., if
wgg/rgg <1
then E > 0 implies

L+ /e
[T+ (n/wa)?]

For wy,/we small (the usual case), this implies

—Teg >0

—€ —Teg >0
while for wy,/w,, large, this implies
€—Teg >0
as the conditions for no flutter.

Quasi-steady, aerodynamic theory

Often it is necessary to determine p by numerical methods as a function
of ¢ in order to evaluate flutter. For example, if one uses the slightly more
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complex ‘quasi-steady’ aerodynamic theory which includes the effective
angle of attack contribution, /U, so that

oCy,
9550 @
becomes '
aC; h|  uUsaecy :
o0 | T TP ga et

then (3.3.51) will contain terms proportional to p and p? and the values

of p must be determined numerically. An example of such a calculation

is given in Figure 6.30 of B.A. which is reproduced below as Figure 3.6.
Denote

p=pR+iw
w? = Kp/m, w2 = Kq/1,
ZTo = Sao/mb, r2 OC/mbz

o
b = a reference length

Since the values of p are complex conjugates only half of them are
shown. The solid lines are for the h/U or aerodynamic damping effect
included and the dash lines for it omitted. There are several interesting
points to be made.

(1) With aerodynamic damping omitted the typical section model is neu-
trally stable until U = Up. For U = Up the bending and torsion
frequencies merge and for U > Uy the system is unstable.

(2) With aerodynamic damping included, for small U all values of p are
stable and flutter occurs at sufficiently large U where pr changes sign
from negative to positive. There is a tendency for the frequencies to
merge but complete merging does not occur.

(3) In this example for this approximate aerodynamic theory, the addi-
tion of aerodynamic damping reduces the flutter velocity Ugp. This
last result has been a source of consternation (and research papers).
Whether it occurs in the real physical problem or whether it is a con-
sequence of our simplified theoretical model is not known. No exper-
iment has yet been performed where the aerodynamic (or structural)
damping has been systematically varied to verify or refute this result.

Finally we mention one further general complication which commonly
occurs in analysis. When even more elaborate, fully unsteady aerody-
namic theories are employed, the aerodynamic forces are usually only
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Figure 3.6. Dimensionless frequency w/wo and damping pr/we of the aeroelastic
modes of the typical section, estimated using steady-state aerodynamic operators
and plotted vs. reduced airspeed U/bw,. System parameters are zo = 0.05, ro =
0.5, wp/wa = 0.5, (2m/mpcbS) = 10, e/b = 0.4, 2 = 2r. Soild curves — with
aerodynamic damping. Dashed curves - - without aerodynamic damping.

conveniently known for neutrally stable motion, i.e.,
p=iw, pr=0

Hence, indirect or iterative methods are usually required to effect a so-
lution for U = Ug and often no information is obtained for U < Ug or
U > Upr. We shall return to this issue later.

3.4. Aerodynamic Forces for Airfoils-An
Introduction and Summary

Having developed the mathematical tools for treating the dynamics of
our aeroelastic system, we now turn to a topic previously deferred, the
determination of the aerodynamic forces. Usually, we wish to relate the
aerodynamic lift and moment to the motion of the airfoil. In order not to
break unduly the continuity of our discussion of aeroelastic phenomena,
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we give a brief summary of known results here and defer a discussion of
the aerodynamic theory from first principles until Chapter 4.

From aerodynamic theory we know that the motion appears in the
aerodynamic force relation through the ‘downwash’; w, i.e.,

024 0z,
o TV

where z, is vertical displacement of airfoil at point z, y at time t. We
shall not give a formal derivation of (3.4.1) here but shall indicate the
physical basis from which it follows. For an inviscid fluid the boundary
condition at a fluid-solid interface, e.g., at the surface of an airfoil, re-
quires that the fluid velocity component normal to the surface be equal
to the normal velocity of the surface on the instantaneous position of
the surface. (If we have a nearly planar solid surface undergoing small
motions relative to its own dimensions we may apply the boundary con-
dition on some average position of the body, say z = 0, rather than
on the instantaneous position of the surface, z = z,.) In a coordinate
system fixed with respect to the fluid the boundary condition would read

(3.4.1)

Wo =

w — 0z,
“ ot
where w, is the normal fluid velocity component, the so-called ‘down-

wash’, and %Zt“ is the normal velocity of the body surface. In a coordinate

system fixed with respect to the body there is an additional convection
term as given in (3.4.1). This may be derived by a formal transformation
from fixed fluid to fixed body axes.

Finally if in addition to the mean flow velocity, Uy, we also have a
vertical gust velocity, we, then the boundary condition is that the total
normal fluid velocity at the body surface be equal to the normal body
velocity, i.e.,

0z, 0z

o TV,

where w, is the additional fluid downwash due to the presence of the
airfoil beyond that given by the prescribed gust downwash wg. The
pressure loading on the airfoil is

Wotal = Wa + WG =

D+ pc

where p is the pressure due to

074 024
we = —wg(z,t) + e + Uw%

and pg is the prescribed pressure corresponding to the given wg. Note,
however, that pg is continuous through z = 0 and hence gives no net
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pressure loading on the airfoil. Thus, only the pressure p due to down-
wash w, is of interest in most applications.
For the typical section airfoil example,

2 = —h—ax (3.4.2)
and

Wwe=—wg—h—ax—Uy,«

-~

From the first and last terms we note that %C; is in some sense equivalent
to an angle of attack, although it is an angle of attack which varies with
position along the airfoil, wg = wg(z,t)!

Using the concept of aerodynamic impulse functions, we may now
relate lift and moment to h, o and wg. For simplicity let us neglect wea
for the present.

The aerodynamic force and moment can be written

L(t) N/OO ILh(t —7) [h(T) + Usor(7)]dT
R (3.4.3)
+ /_ Lialt — T)a(r)dr

(3.4.3) is the aerodynamic analog to (3.3.13). Note that h+ Uy always
appear in the same combination in w, from (3.4.2). It is conventional
to express (3.4.3) in nondimensional form. Thus,

00 h o
o= [ -0 [d;f, : +a<a>] do

% (3.4.4)
> da(o
+/—ooILd(SU) [di’)} do
and .
s 3 I, (s—0) [ do +a(o)| do
> da(o
+/_OOIMd(s—U)[ d(a)]da
where
=W Tl
- b b

For the typical section, the ‘aerodynamic impulse functions’, Irgo¢n, etc.,
depend also upon Mach number. More generally, for a wing they vary
with wing platform geometry as well, e.g., aspect ratio.



90 A MODERN COURSE IN AEROELASTICITY

(3.4.4) may be used to develop relations for sinusoidal motion by
reversing the mathematical process which led to (3.3.13). Taking the
Fourier transform of (3.4.4),

L(k > L : oo o0 b :
éb> = /_oo Cl(lf)e_’ksds = /_oo /_Oo I,;(s—0) dig +al e *dods+- - -
(3.4.5)
where the reduced frequency is given by
wb
k= —
Uso
Defining
y=s—o0, dy=ds
L(k oo oo h —
Q = / I d—b +al e etk g dy+---
q —0o0 —0o0 g
(3.4.6)

where
H,; (k) E/ IL;L(’y)e*”Wd’y
77’ _ > h(O’) iko
7= /OO 5 e do
a :/ alo)e*do

H,; etc., are ‘aerodynamic transfer functions’. From (3.4.4), (3.4.6) we
may write

I _
% = HLH [Zkz + d:| + Higika

: _ 3.4.7
M, h . ( )
W:HMH zk:g—l—a + Hpyroika

Remember that ‘transfer functions’, aerodynamic or otherwise, may be
determined from a consideration of sinusoidal motion only. Also note
that (3.4.2), (3.4.3) and (3.4.7) are written for pitching about an axis
x = 0. That is, the origin of the coordinate system is taken as the pitch
axis. By convention, in aerodynamic analysis the origin of the coordinate
system is usually taken at mid-chord. Hence

2a=—h—a(x — 2cq.) (3.4.2)
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Wy = —h — A — Zeq.) — Usox
= (—h — Ustt) — & — Zeq.)
= (h —Upa + e y.) — G
where

Te.q. = distance form mid-chord to e.a.

(3.4.4) and (3.4.7) should be modified accordingly, i.e.

db
b
do + «
is replaced by
dh
d—g + o —a&a where a= LUeb.a.

In the following table we summarize the state-of-the-art for the aero-
dynamic theories normally used in industrial practice in terms of Mach
number range and geometry. All of these assume inviscid, small pertur-
bation potential flow models. The transonic range, M = 1, is a currently
active area of research.

Aerodynamic theories available

Mach number Geometry
Two dimensional three dimensional
M<1 Available Rather elaborate numerical methods
available for determining transfer
functions
M=1 Available but of Rather elaborate numerical methods
limited utility available for determining (linear,
because of inherent inviscid) transfer functions; nonlinear
three dimensionality | and/or viscous effects may be important,
of flow howwever.
M>1 Available and Available and simple because of weak
simple because of three dimensional effects.
weak memory effect.

The results for high speed (M > 1) flow are particularly simple. In
the limit of large Mach number the (perturbation) pressure loading on
an airfoil is given by

2 Ozq Ozq
Uoo ot + UOO ox

P:PM U
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or 3 3
Za Za
= pa - _|_ U -~

P = paog [ 5; U am]
This is a local, zero memory relation in that the pressure at position z,
y at time ¢t depends only on the motion at the same position and time
and does not depend upon the motion at other positions (local effect)
or at previous times (zero memory effect). This is sometimes referred to
as aerodynamic ‘piston theory’™ since the pressure is that on a piston in

a tube with velocity
0z

Wy =

024
o V%
This pressure-velocity relation has been widely used in recent years in
aeroelasticity and is also well known in one-dimensional plane wave
acoustic theory. Impulse and transfer functions are readily derivable
using aerodynamic ‘piston theory’.

The ‘aerodynamic impulse functions’ and ‘aerodynamic transfer func-
tions’ for two-dimensional, incompressible flow, although not as simple
as those for M > 1, are especially well-known.! They were the first
available historically and provided a major impetus to aeroelastic inves-
tigations. The forms normally employed are somewhat different from
the notation of (3.4.4) and (3.4.7). For example, the lift due to transient
motion is normally written

L d2% do d’a
) P e T e
qb ds?  ds ds?
d 1 da
+ 47r{¢(0) LTrat <2 - a> ds] (3.4.8)

+/OS (ﬁ+a+ <;—a> gj) é(s—a)da}

One can put (3.4.8) into the form of (3.4.4) where

I,; = 27D +47¢ + 47 ¢(0)8

1 , 1 (3.4.9)
Irs =4m 5@ ¢+ 4r 5@ #(0)d — 2waD
Here § is the delta function and D the doublet function, the latter being

the derivative of a delta function. In practice, one would use (3.4.8)

*Ashley, and Zartarian [9]. Also see Chapter 4.
tSee Chapter 4.
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rather than (3.4.4) since delta and doublet functions are not suitable
for numerical integration, etc. However, (3.4.8) and (3.4.4) are formally
equivalent using (3.4.9) Note that (3.4.8) is more amenable to physical
interpretation also. The terms outside the integral involving h and &
may be identified as inertial terms, sometimes called ‘virtual mass’ terms.
These are usually negligible compared to the inertial terms of the airfoil
itself if the fluid is air.} The quantity

d%+ (L dov
%o e I
ds @ 2 ds

may be identified as the downwash at the % chord. Hence, the % chord
has been given a special place for two-dimensional, incompressible flow.
Finally, note that the ‘aerodynamic impulse functions’, Iy, Ir;, can be
expressed entirely in terms of a single function ¢, the so-called Wagner
function.* This function is given below in Figure 3.7. A useful approxi-

mate formulae is

¢(s) =1 — 0.165¢~ 004555 _ (.335¢03% (3.4.10)

For Mach numbers greater than zero, the compressibility of the flow
smooths out the delta and doublet functions of (3.4.9) and no such simple
form as (3.4.8) exists. Hence, only for incompressible flow is the form,
(3.4.8), particularly useful. Finally, we should mention that analogous
impulse functions exist for gust loading due to gust vertical velocity, wea.

[qf —j{ Itg(s —a)wGU(U)da

e 3.4.11
qb? o U
For incompressible flow ‘
Irg = 4my

1
Ing = Ina(3 +a)
where 1), the Kussner function, can be approximated by (See Figure 3.8)

Y(s) =1—0.5e7013% —0.5e° (3.4.12)

fFor light bodies or heavy fluids, e.g., lighter-than-airships or submarines, they may be
important

*For a clear, concise discussion of transient, two-dimensional, incompressible aerodynamics,
see Sears [10], and the discussion of Sears’ work in BAH, pp. 288-293.
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Figure 3.7. Wagner function.
1.0
8
6(S8) 6
4 -
2
0 ! ! !
4 8 12
S

Figure 3.8. Kussner function.

The Wagner and Kussner functions have been widely employed for tran-
sient aerodynamic loading of airfoils. Even for compressible, subsonic
flow they are frequently used with empirical corrections for Mach num-
ber effects. Relatively simple, exact formulae exist for two-dimensional,
supersonic flow also.! However, for subsonic and/or three-dimensional
flow the aerodynamic impulse functions must be determined by fairly
elaborate numerical means. Finally we note that (3.4.11) may be writ-

tSee BAH, pp. 367-375, for a traditional approach and Chapter 4 for an approach via Laplace
and Fourier Transforms.
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ten in the frequency domain as

L w

71? = HLG(W)ﬁG

A% 8 (3.4.13)
YV _H wa

e MG(w) 7

(3.4.7) and (3.4.13) will be useful when we treat the gust problem as a
random process and make use of power spectral techniques. For further
discussion of gust aerodynamics, see Sections 4.2 and 4.3.

General approximations

Frequently simplifying assumptions are made with respect to the spatial
or temporal dependence of the aerodynamic forces. Here we discuss
three widely used approximations.

‘Strip theory’ approximation.

In this approximation, one employs the known results for two-
dimensional flow (infinite span airfoil) to calculate the aerodynamic
forces on a lifting surface of finite span. The essence of the approxi-
mation is to consider each spanwise station as though it were a portion
of an infinite span wing with uniform spanwise properties. Therefore the
lift (or, more generally, chordwise pressure distribution) at any spanwise
station is assumed to depend only on the downwash at that station as
given by two-dimensional aerodynamic theory and to be independent of
the downwash at any other spanwise station.

‘Quasisteady’ approximation

The strip theory approximation discussed above is unambiguous and
its meaning is generally accepted. Unfortunately, this is not true for
the quasi-steady approximation. Its qualitative meaning is generally
accepted, i.e., one ignores the temporaral memory effect in the aerody-
namic model and assumes the aerodynamic forces at any time depend
only on the motion of the airfoil at that same time and are independent
of the motion at earlier times. That is, the history of the motion is
neglected as far as determining aerodynamic forces. For example, the
piston theory aerodynamic approximation is inherently a quasi-steady
approximation.

As an example of the ambiguity that can develop in constructing a
quasi-steady approximation, consider the aerodynamic forces for two-
dimensional, incompressible flow, e.g., see (3.4.8). One such approxi-
mation which is sometimes used is to approximate the Wagner function
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by
p=1

and hence

9(0)=1, ¢=0

This is clearly a quasi-steady model since the convolution integral in
(3.4.8) may now be evaluated in terms of the airfoil motion at the present
time, s = tUT"O, and thus the aerodynamic forces are independent of the
history of the airfoil motion.

An alternate quasi-steady approximation which is used on occasion
is to first obtain the aerodynamic forces for steady motion, e.g., only
those terms which involve « in (3.4.8)and then to define an equivalent

unsteady angle of attack.

dt Uso

to replace a everywhere in the steady aerodynamic theory. Clearly this
second quasi-steady approximation is different from the first. (An in-
teresting and relatively short exercise for the reader is to work out and
compare these two approximations in detail using (3.4.8).) However,
both are used in practice and the reader should be careful to determine
exactly what a given author means by ‘quasi-steady approximation’.

The ambiguity could be removed if there were general agreement that
what is meant by the quasi-steady approximation is an expansion in
reduced frequency for sinusoidal airfoil motion. However, even then,
there would have to be agreement as to the number of terms to be
retained in the expansion. (Recall that powers of frequency formally
correspond to time derivatives.)

Slender body or slender (low aspect ratio ) wing ap-
proximation

Another approximation based upon spatial considerations is possible
when the lifting surface is of low aspect ratio or one is dealing with a
slender body. In such cases the chordwise spatial rates of change (deriva-
tives) may be neglected compared to spanwise rates of change and hence
the chordwise coordinate effectively becomes a parameter rather than an
independent coordinate. This approach is generally attributed to R.T.
Jones.* It is useful as an asymptotic check on numerical methods for
slender bodies and low aspect ratio wings. However it is useful for quan-
titative predictions for only a modest range of practical lifting surfaces.

*Jones [11].
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A particulary interesting result is available for the external flow about
a slender body when the body has rigid cross-sections and deforms only
in the direction, i.e.,

za(x,y,t) = zq(z, 1)

The lift force per unit chordwise distance is given by*

45, [Uf% 02}

L:_poo

dx ox ot (3.4.14)
sl 9%z, U822a n 0%z, o
Poo 922 oz0t | 012

Equation (3.4.14) may be more compactly and insightfully written as

L= [gt + Uaa } {S [85;“ U%Z“]} (3.4.14)

For a cylinder of constant, circular cross-section

s

S=7R? —=0
™
and (3.4.14) becomes
0%z 0%z 0%z
L=—psS U= +2 ’ . 4.1
PooS | U5 T2V g0 T a2 (34.15)

It is interesting to note that (3.4.15) is the form of the lift force used
by Paidoussis and other for internal flows. Recall section 2.5, equation
(2.5.2). Dowell and Widnall, among others, have shown under what cir-
cumstances (3.4.15) is a rational approximation for external and internal
flows. '

3.5. Solutions to the Aeroelastic Equations of
Motion

With the development of the aerodynamic relations, we may now turn
to the question of solving the aeroelastic equations of motion. Substi-

*BAH, p. 418.
fDowell and Widnall [12], Widnall and Dowell [13], Dowell [14].
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tuting (3.4.4) into (3.3.1) and (3.3.2), these equations become:

h

mﬁ+Sd+Kh——L—{— SI~(8—0) dj—i—a do
o hit — - o Lh do
s do
— | Ipa(s—o)—d
/0 La(s a)daa

s w
—/0 ILg(s—G)TGda}qb

and
Iné + Soh + Ko =M,
s d%
= {/0 I (s —0) %—ka do
3.5.1)
8 do (
—I—/(; IM('X(S—O'>%dU
s w
—1—/0 In(s — cr)ﬁGala}qb2
where
P
b

and I, ;, etc. are nondimensional impulse functions. (3.5.1) are linear,
differential-integral equations for A and a. They may be solved in sev-
eral ways, all of which involve a moderate amount of numerical work.
Basically, we may distinguish between those methods which treat the
problem in time domain and those which work in the frequency domain.
The possibilities are numerous and we shall discuss representative ex-
amples of solution techniques rather than attempt to be exhaustive.

Time domain solutions

In this day and (computer) age, perhaps the most straightforward way
of solving (3.5.1) (and similar equations which arise for more compli-
cated aeroelastic systems) is by numerical time integration using finite
differences. Such integration is normally done on a digital computer. A
simplified version of the procedure follows:

Basically, we seek a step by step solution for the time history of the
motion. In particular, given the motion at some time, ¢, we wish to be
able to obtain the motion at some later time, ¢t + At. In general At
must be sufficiently small;just how small we will discuss in a moment.
In relating the solution at time, ¢ + At, to that at time, ¢, we use the
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idea of a Taylor series, i.e.,

bt + At) = h(t) + DD pg 4 TERO N2
dolt) . 1dat (3:52)
alt + At) :a(t)+(;‘l§)m+2 ;;g Jaty+ -

If we think of starting the solution at the initial instant, ¢ = 0, we see
that normally h(0), dh(0)/dt, a(0), da(0)/dt, are given as initial condi-
tions since we are dealing with (two) second order equations for A and
alpha. However, in general, d?h(0)/dt?, d?«(0)/dt?> and all higher or-
der derivatives are not specified. They can be determined though from
equations of motion themselves, (3.5.1). (3.5.1) are two algebraic equa-
tions for d?h/dt?, d*a/dt?, in terms of lower order derivatives. Hence,
they may readily be solved for dh/dt?, d*a/dt?. Moreover, by differ-
entiating (3.5.1) successively the higher order derivatives may also be
determined, e.g., d*h/dt3, etc. Hence, by using the equations of motion
themselves the terms in the Taylor Series may be evaluated, (3.5.2), and
h at t = At determined. Repeating this procedure, the time history may
be determined at t = 2At, 3At, 4At, etc.

The above is the essence of the procedure. However, there are many
variations on this basic theme and there are almost as many numerical
integration schemes as there are people using them.* This is perhaps for
two reasons: (1) an efficient scheme is desired (this involves essentially
a trade-off between the size of At and the number of terms retained
in the series, (3.5.2), or more generally a trade-off between At and the
complexity of the algorithm relating h(t+ At) to h(t)); (2) some schemes
including the one outlined above, are numerically unstable (i.e., numer-
ical errors grow exponentially) if At is too large. This has led to a
stability theory for difference schemes to determine the critical At and
also the development of difference schemes which are inherently stable
for all At. Generally speaking, a simple difference scheme such as the
one described here will be stable if At is small compared to the shortest
natural period of the system, say one-tenth or so. A popular method
which is inherently stable for all At is due to Houbolt.T

Finally, analytical solutions or semi-analytical solutions may be ob-
tained under certain special circumstances given sufficient simplification
of the system dynamics and aerodynamics. These are usually obtained
via a Laplace Transform. Since the Laplace Transform is a special case of

*Hamming [15].
fHoubolt [16].
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the Fourier transform, we defer a discussion of this topic to the following
section on frequency domain solutions.

Frequency domain solutions

An alternative procedure to the time domain approach is to treat the
problem in the frequency domain. This approach is more popular and
widely used today than the time domain approach. Perhaps the most
important reason for this is the fact that the aerodynamic theory is
much more completely developed for simple harmonic motion that for
arbitrary time dependent motion. That is, the unsteady aerodynamicist
normally provides H;, for example, rather than I, ;. Of course, these
two quantities form a Fourier transform pair,

HLh(k):/ ILh(s)e_ides
L e (3.5.3)
Ii(s) = 5 / H,j(k)e™*dk

where

k

b tU

AN

and, in principle, given H,; one can compute I,;(s). However, for
the more complex (and more accurate) aerodynamic theories H,; is a
highly oscillatory function which is frequently only known numerically at
a relatively small number of frequencies, k. Hence, although there have
been attempts to obtain I, ; by a numerical integration of H; over all
frequency, they have not been conspicuously successful. Fortunately, for
a determination of the stability characteristics of a system, e.g., flutter
speed, one need only consider the frequency characteristics of the system
dynamics, per se, and may avoid such integrations.

Another reason for the popularity of the frequency domain method
is the powerful power spectral description of random loads such as gust
loads, landing loads (over randomly rough surfaces), etc. These require
a frequency domain description. Recall (3.3.25) and (3.3.40).

The principal disadvantage of the frequency domain approach is that
one performs two separate calculations; one, to assess the system stabil-
ity, ‘flutter’, and a second, to determine the response to external loads
such as gusts, etc. This will become clearer as we discuss the details of
the procedures.

Let us now turn to the equations of motion, (3.5.1), and convert them
to the frequency domain by taking the Fourier transform of these equa-
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tions. The result is
—w?mh — w?Spa+ Kph = —L
iwh iwb

_ { — H,; (k) [U + a] ~ Hya(k)77a

—w?lha — wiS,b + Kya = M, (3.5.4)

= {HMh(k) [“"UE + a} + Hma(k)%d

S Hye 8 - }qb2
where ~
h E/ h(t)e™tdt, etc.

Collecting terms and using matrix notation,

[ —w2m+Kh+Hthqb —w25a+( Lh—{—HLa“"b)qb
w28 — (H,;%2)qh?  —w?Io+ Ko — (Hyj, + Hye™2)qb?

{ h }qu“’UG{ —HreHueb ) (3.5.5)

o
Formally, we may solve for h and @ by matrix inversion. The result will
be

= oG (356)

It is left to the reader to evaluate these transfer functions explicitly
from (3.5.5). Note these are aeroelastic transfer functions as opposed to
the purely mechanical or structural transfer functions, Hpp and H,p,
considered previously or the purely aerodynamic transfer functions, H;7,
etc. That is, Hpg include not only the effects of structural inertia and
stiffness, but also the aerodynamic forces due to structural motion.

With the aeroelastic transfer functions available one may now formally
write the solutions in the frequency domain

1 * wag —iwt
%/m Hyc(w)F (7) =ty (3.5.7)
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where the Fourier transform of the gust velocity is written as
o0
Fuwa E/ wa(t)e™'dt (3.5.8)
—00

Compare (3.5.7) with (3.3.12).
Alternatively, one could write

hgf) - /_Z Lha(t — 7) w%(t) dr (3.5.9)
where
Ina(t) = 217r/ Hpg(w)e™tdw (3.5.10)

Compare (3.5.9) and (3.5.10) with (3.3.13) and (3.3.14). As mentioned
in our discussion of time domain solutions, the integrals over frequency
may be difficult to evaluate because of the oscillatory nature of the
aerodynamic forces.

Finally, for random gust velocities one may write

D) (/) = Ha (@)@ (a, j0) (wes /0) (3.5.11)

where @, /5)(n /) P(w, /U)(we/U)> are the (auto) power spectra of % and
%, respectively. Thus

N 2
h oo
<b> = / |HhG|2<I>(wg/U)(wG/U)dw (3.5.12)

Compare (3.5.12) with (3.3.25). Since the transfer function is squared,
the integral (3.5.12) may be somewhat easier to evaluate than (3.5.7) or
(3.5.10). The gust velocity power spectra is generally a smoothly varying
function. (3.5.12) is commonly used in applications.

To evaluate stability, ‘flutter’, of the system one need not evaluate any
of these integrals over frequency. It suffices to consider the eigenvalues
(or poles) of the transfer function. A pole of the transfer function, wy,
will give rise to an aeroelastic impulse function of the form

IhG ~ eiwpt — ei(wp)Rte_(Wp)It

see (3.5.10). Hence, the system will be stable if the imaginary part,
(wp)1, of all poles is positive. If any one (or more) pole has a negative
imaginary part, the system is unstable, i.e., it flutters. The frequency
of oscillation is (wp)g, the real part of the pole. Note that the poles
are also the eigenvalues of the determinant of coefficients of A and & in
(3.5.5).

Having developed the mathematical techniques for treating dynamic
aeroelastic problems we will now turn to a discussion of results and some
of the practical aspects of such calculations.
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3.6. Representative Results and Computational
Considerations

We will confine ourselves to two important types of motion, ‘flutter’
and ‘gust response’.

Time domain

If we give the typical section (or any aeroelastic system) an initial dis-
turbance due to an impulsive force, the resultant motion may take one of
two possible forms as shown in Figure 3.9 and 3.10. ‘Flutter’ is the more
interesting of these two motions, since, if it is present, it will normally
lead to catastrophic structural failure which will result in the loss of the
flight vehicle. All flight vehicles are carefully analyzed for flutter and
frequently the structure is stiffened to prevent flutter inside the flight
envelope of the vehicle.

Even if flutter does not occur, however, other motions in response to
continuous external forces may be of concern with respect to possible
structural failure. An important example is the gust response of the
flight vehicle. Consider a vertical gust velocity time history as shown
in Figure 3.11. The resulting flight vehicle motion will have the form
shown in Figure 3.12. Note that the time history of the response has a
certain well defined average period or frequency with modulated, ran-
domly varying amplitude. The more random input has been ‘filtered’
by the aeroelastic transfer function and only that portion of the gust
velocity signal which has frequencies near the natural frequencies of the
flight vehicle will be identifiable in the response. This characteristic is
perhaps more readily seen in the frequency domain than in the time
domain.

Frequency domain

To assess flutter, we need only examine the poles of the transfer func-
tion. This is similar to a ‘root locus’ plot.* Typically, the real, wg, and
imaginary, wy, parts of the complex frequency are plotted versus flight
speed. For the typical section there will be two principal poles corre-
sponding to two degrees of freedom and at small flight speed or fluid
velocity, these will approach the natural frequencies of the mechanical
or structural system.See Figure 3.13. Flutter is identified by the lowest
airspeed for which one of the w; becomes negative. Note the coming
together or ‘merging’ of the wg of the two poles which is typical of some

*Savant [18].
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Figure 3.9. Time history of unstable motion or ”flutter”.
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Figure 8.11. Time history of gust velocity.
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Figure 3.12. Time history of motion due to gust velocity.

types of flutter . There are many variations on the above plot in practice
but we shall defer a more complete discussion until later.

Next, let us turn to the gust problem. A typical gust spectrum would
be as in Figure 3.14. The transfer function (at some flight speed) would
be as shown in Figure 3.15. Thus, the resultant response spectrum would
appear as in Figure 3.16. As U approaches Up, the resonant peaks of
|Hpg|? and @5, would approach each other for the system whose poles
were sketched previously. For U = Up the two peaks would essentially
collapse into one and the amplitude becomes infinite. For U > Up the
amplitude predicted by the analytical model would become finite again
for the power spectral approach and this physically unrealistic result is
a possible disadvantage of the method.

Flutter and gust response classification including pa-
rameter trends

Here we shall study some of the important parameters which affect flut-
ter and gust response of the typical action as well as more complex flight
vehicles.

Flutter

If one nondimensionalizes the typical section equations of motion , one
finds that the motion can be expressed formally as

h py g8 fa m ew . U
b P\ b mb? p(20)27 b we b (3.6.1)
a:Fg(wat...)

where the functions Fi, F5, symbolize the results of a calculated solution
using one of the several methods discussed earlier.
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U, FLIGHT SPEED

FLUTTER

U=UF '

Figure 3.13. Real and imaginary components of frequency vs air speed.

(DWG Wg

Figure 3.14. Gust power spectra.

The choice of nondimensional parameters is not unique but a matter of
convenience. Some authors prefer a nondimensional dynamic pressure,
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2
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Figure 3.15. Transfer function

w=2T7f

Figure 3.16. Power spectra of motion.

or ‘aeroelastic stiffness number’

1 4pU?
s = p > (aeroelastic stiffness)

A

to the use of a nondimensional velocity, U/bwg.
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The following short-hand notation will be employed:

wut nondimensional time

S
To =—2 static unbalance
mb
r2 E% radius of gyration (squared)
m ¢
= mass ratio
SIeTE

€ . . . .
EE location of elastic axis measured from aerodynamic center
or mid-chord
Wwh .
— frequency ration

We
M Mach number

wab
ko = % inverse of refuced velocity

Time is an independent variable which we do not control; however, in
some sense we can control the parameters, z,, rq, etc., by the design of
our airfoil and choice of where and how we fly it. For some combination
of parameters the airfoil will be dynamically unstable, i.e., it will ‘flutter’.
An alternative parametric representation would be to assume sinu-
soidal motion
h = Beiwt
a = ae™!

and determine the eigenvalues, w. Formally, recalling w = wg + iwy,

U
@ = GR (xaarouuvaa &7M7 >

o wa b;“ (3.6.2)
w w
L :GI <xa,ra,u,a,h,M, )

Wa Wa bwa

If for some combination of parameters, w; < 0, the system flutters.

Several types of flutter are possible. Perhaps these are most easily
distinguished on the basis of the eigenvalues, wr/wqa, wr/we and their
variation with airspeed, U/bw,. Examples are shown below of the several
possibilities with brief discussions of each.

In one type of flutter (called coupled mode or bending-torsion flut-
ter) the distinguishing feature is the coming together of two (or more)
frequencies, wg, near the flutter condition, w; — 0 and U — Upg. See
Figure 3.17. For ‘Coalescense’ or Merging Frequency’ Flutter U > Up
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Figure 3.17. Real and imaginary components of frequency vs air speed.

one of wy becomes large and positive (stable pole) and the other which
gives rise to flutter becomes large and negative (unstable pole) while the
corresponding wpr remain nearly the same. Although one usually speaks
of the torsion mode as being unstable and the bending mode stable, the
airfoil normally is undergoing a flutter oscillation composed of important
contributions of both A and «. For this type of flutter the out-of-phase
or damping forces of the structure or fluid are not qualitatively impor-
tant. Often one may neglect structural damping entirely in the model
and use a quasi-steady or even a quasi-static aerodynamic assumption.
This simplifies the analysis and, perhaps more importantly, leads to gen-
erally accurate and reliable results based on theoretical calculations.

‘Single-Degree-of-Freedom’ Flutter

In another type of flutter, the distinguishing feature is the virtual in-
dependence of the frequencies, wg, with respect to variations in airspeed,
U/bwy. See Figure 3.18. Moreover the change in the true damping, wy,
with airspeed is also moderate. However, above some airspeed one of the
modes (usually torsion) which has been slightly positively damped be-
comes slightly negatively damped leading to flutter. This type of flutter
is very sensitive to structural and aerodynamic out-of phase or damp-
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Figure 3.18. Real and imaginary components of frequency vs air speed.

ing forces. Since these forces are less well described by theory than the
in-phase forces, the corresponding flutter analysis generally gives less
reliable results. One simplification for this type of flutter is the fact that
the flutter mode is virtually the same as one of the system natural modes
at zero airspeed and thus the flutter mode and frequency (though not
flutter speed!) are predicted rather accurately by theory. Airfoil blades
in turbomachinery and bridges in a wind often encounter this type of
flutter.

There is yet another one-degree-of-freedom type of flutter, but of a
very special type. The flutter frequency is zero and hence this represents
the ‘Divergence’ or ‘Zero Frequency’ Flutter

static instability which we have previously analyzed in our discussion
of static aeroelasticity under the name of ‘divergence’. See Figure 3.19.
Because it is a static type of instability, out-of-phase forces are again
unimportant and the theory is generally reliable.

We note that in all of the above we have considered only positive
wpgr even though there are negative wgr as well and these are physically
meaningful. There are at least two reasons why this practice is usually
followed. For those models where the aerodynamic transfer functions can
be (approximately) expressed as a polynomial in p = iw, the negative wg
plane is (nearly) the mirror image of the positive wg plane and the wy



Dynamic Aeroelasticity (Dowell) 111

210 -
R / W
= @/ Oy
. U/b @y,
@)/ Oy,

Figure 3.19. Real and imaginary components of frequency vs air speed

are identical, i.e., all poles are complex conjugates in p. Secondly, some
of the structural damping models employed in flutter analysis are only
valid for wr < 0; hence, the wr < 0 in such cases cannot be interpreted
in a physically valid way. However, there are some types of travelling
wave flutter in planes and shells for which a consideration of negative
wp is essential. In such cases a change in sign of wp represents a change
in direction of a travelling wave.

Flutter Calculations in Practice

At this point it should be emphasized that, in practice, one or another
of several indirect methods is often used to compute the flutter velocity,
e.g., the so called ‘V — g method’. In this approach structural damping
is introduced by multiplying the structural frequencies squared

Why W
by 1414g where g is a structural coefficient and pure sinusoidal motion is
assumed, i.e., w = wr with w;y = 0. For a given U, the g is that required
to sustain pure sinusoidal motion for each aeroelastic mode. The compu-
tational advantage of this approach is that the aerodynamic forces only
need be determined for real frequencies. The disadvantage is the loss of
physical insight. For example, if a system (with no structural damping )
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is stable at a given airspeed, U, all the values of g so determined will be
negative, but these values of g cannot be interpreted directly in terms of
wy. Moreover, for a given system with some prescribed damping, only at
one airspeed U = U (where w = wr and wy = 0) will the mathematical
solution be physically meaningful. The limitations of the ‘V — g method’
are fully appreciated by experienced practitioners and it is a measure of
the difficulty of determining the aerodynamic forces for other than pure
sinusoidal motion, that this method remains very popular. Here we di-
gress from our main discussion to consider this and related methods in
some detail.
For sinusoidal motion

— heiu)t
o= aeiwt
L = Eeiwt

7wt
M, = Mye

The aerodynamic forces (due to motion only) can be expressed as

o

L = 2pob*w?(2b) {[L1 + L)~ + [L3 + m]a}

(3.6.3)

M, = —2psob®w?(2b) {[Ml + i M)

o S

+ [Ms3 + iM4]a}

This form of aerodynamic forces is somewhat different from that previ-
ously used in this text and is only one of several (equivalent) alternative
forms employed in the literature. Here Ly, Lo, L3, Ly are (nondimen-
sional) real aerodynamic coefficients which are functions of reduced fre-
quency and Mach number. Ly, Lo, L3, Ly are the forms in which the
coefficients are generally tabulated for supersonic flow.*

Using the above aerodynamic forms for L and M, in (74) and setting
the determinant of coefficients of h and & to zero to determine nontrivial

*Garrick [19].
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solutions, one obtains

A(w) = {2%:;(%) 1+ (%)2 <:‘j§>2] ~ Ly +z’Lz]}
x {%;;(2())@ [1 + (ﬁ)z} [Ms +iM4]}

- {% — L3 +¢L4]} {2;:;”(21)) - [My +z‘M2]} =0
(3.6.4)

Because L1, Lg, etc. are complicated, transcendental functions of &
(and M) which are usually only known for real values of k& (and hence real
values of w), often one does not attempt to determine from (3.6.4) the
complex eigenvalue, w = wgr + iwy. Instead one seeks to determine the
conditions of neutral stability when w is purely real. Several alternative
procedures are passible; two are described below.

In the first the following parameters are chosen.

ﬁ, Ty Ty Mand (a real value of )k
«
(3.6.4) is then a complex equation whose real and imaginary parts may

be used independently to determine the two (real) unknowns

2
w m
(wa> and 2psbS

From the imaginary part of (3.6.4), which is a linear equation in these
two unknowns, one may solve for (w/wy)? in terms of m/2p.bS. Sub-
stituting this result into the real part of (3.6.4) one obtains a quadratic
equation in m/2p.b?® which may be solved in the usual manner. Of
course, only real positive values of m/2p.,bS are meaningful and if neg-
ative or complex values are obtained these are rejected. By choosing
various values of the parameters one may determine under what phys-
ically meaningful conditions flutter (neutrally stable oscillations) may
occur. This procedure is not easily extendable to more than two degrees
of freedom and it is more readily applied for determining parameter
trends than the flutter boundary of a specific structure. Hence, a differ-
ent method which is described below is frequently used.

This method has the advantage of computational efficiency, though
from a physical point of view it is somewhat artificial. Structural damp-
ing is introduced as an additional parameter by multiplying w? and w%
by 1 + ig where g is the structural damping coefficient. The follow-
ing parameters are selected wp/wq, Tay Ta, M, (a real value) of k, and
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9 AVAILABLE

W/ 0,

U/b 0,

Figure 3.20. Structural damping and frequency required for neutrally stable motion
vs air speed.

m/2paobS. (3.6.4) is then identified as a complex polynomial in the

complex unknown
(*%‘)2 (1 +ig)
w

Efficient numerical algorithms have been devised for determining the
roots of such polynomials. A complex root determines

Wa

— and ¢
w

From wy/w and the previously selected value of k = wb/U, one may

compute

wab  wa

Uy w
One may then plot g vs Us/bwy.™ A typical result is shown in Figure
3.20 for two roots (two degrees of freedom). ¢ is the value of structural
damping required for neutral stability. If the actual structural damping

is gavarrapre then flutter occurs when (see Figure 3.20)

9 = JAVAILABLE

*(For each complex root of the polynomial.)
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9 AVAILABLE

U/b 0,

Figure 3.21. Structural damping required for flutter vs air speed.

It is normally assumed in this method that for ¢ < gavarrapre and U <
Ur no flutter will occur. Sometimes more complicated velocity-damping
or V — g curves are obtained, however. See Figure 3.21. Given the
uncertainty as to what gavarrapre may be for a real physical system,
it may then be prudent to define the flutter speed as the minimum value
of Uso/bwq for any g > 0. Here the physical interpretation of the result
becomes more difficult, particularly when one recalls that the factor 14+ig
is only an approximate representation of damping in a structure. Despite
this qualification, the V — g method remains a very popular approach to
flutter analysis and is usually only abandoned or improved upon when
the physical interpretation of the result becomes questionable.

One alternative to the V' — g method is the so-called p—k method.* In
this approach time dependence of the form h, o ~ eP? is assumed where
p = 0 +iw. In the aerodynamic terms only ak = wb/U is assumed. The
eigenvalues p are computed and the new w used to compute a new k and
the aerodynamic terms re-evaluated. The iteration continues until the
process converges. For small o, i.e., |o| < |w|, the o so computed may
be interpreted as true damping of the system.

Nonlinear Flutter Behavior

*Hassig [20].
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OSCILLATION OF

‘TRANSONIC Y SHOCK WAVE

BUZZ

OSCILLATION OF
CONTROL SURFACE

Figure 3.22. Schematic of transonic buzz geometry.

There are two other types of flutter which are of importance, ‘tran-
sonic buzz ’ and ‘stall flutter’. Both of these involve significant aero-
dynamic nonlinearities and are, therefore, not describable by our previ-
ous models. Indeed, both are poorly understood theoretically compared
to classic flutter and recourse to experiment and/or empirical rules-of-
thumb is often made. Recent advances in numerical solution of the non-
linear equations of fluid mechanics (computational fluid dynamics) have
provided an improved methodology for modeling these types of flutter.
See Chapters 9 and 11.

Typically an oscillating control surface gives rise to an oscillating
shock which produces an oscillating pressure field which gives rise to
an oscillating control surface which gives rise to an oscillating shock and
so on and so forth.

The airfoil profile shape is known to be an important parameter and
this fact plus the demonstrated importance of the shock means that
any aerodynamic theory which hopes to successfully predict this type
of flutter must accurately account for the nonuniform mean steady flow
over the airfoil and its effect on the small dynamic motions which are
superimposed due to control surface and shock oscillation. An early and
insightful theoretical model is that of Eckhaus; also see the discussion by
Landahl. Lambourne has given a valuable summary of the early exper-
imental and theoretical evidence.* See chapters 9 and 11 for the most
recent literature on this topic. An airfoil oscillating through large angles
of attack will create a time lag in the aerodynamic moment which may
give rise to megative aerodynamic damping in pitch and, hence, flutter,
even though for small angles of attack the aerodynamic damping would
be positive. This is associated with separation of the flow, an effect of
fluid viscosity Compressor, turbine and helicopter blades are particu-
larly prone to this type of flutter, since they routinely operate through

*Eckhaus [21], Landahl [22], Lambourne [23]
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‘ Stall’ flutter

SEPARATED FLOW

Figure 3.23. Schmatic of separated flow geometry.

large ranges of angle of attack. Chapter 5 discusses this type of flutter
in some detail. Also see chapter 9 and 11.

Parameter Trends for Flutter

Coalescence flutter is perhaps most common for airfoils under conven-
tional flow conditions (no shock oscillation and no stall). It is certainly
the best understood. Hence, for this type of flutter, let us consider the
the variation of (nondimensional) flutter velocity with other important
parameters.

Static Unbalance. x,:

If 4 < 0 (i.e., c.g. is ahead of e.a. ) frequently no flutter occurs. If
T < 0 the surface is said to be ‘mass balanced’.

Frequency Ratio. 2

Not unexpectedly, for coalescence flutter Up/bw,, is a minimum when
wp/wa =~ 1. That is, if wy, and w,, are closer in value, then the aeroelastic
frequencies will coalesce more readily and at a lower flow velocity.

Mach Number. M:

The aerodynamic pressure on an airfoil is normally greatest near Mach
number equal to one* and hence, the flutter speed (or dynamic pressure)
tends to be a minimum there. For M > 1 the aerodynamic piston theory

*See Chapter 4.
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U/bw,

|
1.0
O/ 0y,
Figure 3.24. Flutter airspeed vs frequency ratio.

COMPATIBILITY .

RELATION ,
\/ L

UF/ b @, .
m1/2 FOR LARGE M
AND FOR A FLAT PLATE

Figure 3.25. Flutter airspeed vs mach number.

predicts that the aerodynamic, p, varies as

U2
p ~ Pﬁ
Hence, Up ~ M for M >> 1 and constant . Also
e~ (pU?)p ~ M
Compatibility Conditions:

Note that for flight at constant altitude of a specific aircraft p (hence,
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NO FLUTTER

FLUTTER

ALTITUDE

Figure 3.26. Altitude vs mach number.

p) and ao (speed of sound) are fixed. Since
U=May

U/bwy and M are not independent, but are related by

(1) = 2)

Thus, a compatibility relation must also be satisfied for physically mean-
ingful in a flight flutter conditions as indicated by dashed line in Figure
3.25. By repeating the flutter calculation for various altitudes (various
P, G and hence various p and a, /bw,,), one may obtain a plot of flutter
Mach number versus altitude as given in Figure 3.26.

There is a counterpart to this compatibility condition for testing of
aeroelastic models in a compressible wind tunnel.

Mass ratio. w:

For large p the results are essentially those of a constant flutter dynamic
pressure; for small p they are often those of constant flutter velocity as
indicated by the dashed line in figure 3.27. However, for M = 0 and
two-dimensional airfoils theory predicts Ur — oo for some small but
finite p (solid line). This is contradicted by the experimental evidence
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L= _ 2
U/bo, -~ A.=l/u(u /b))

= CONSTANT FOR
LARGE [L

u

Figure 3.27. Flutter air speed vs mass ratio.

and remains a source of some controversy in the literature.* Crisp! has
suggested that the rigid airfoil chord assumption is untenable for small p
and that by including elastic chordwise bending the discrepancy between
theory and experiment may be resolved. See Figure 3.27.

Flutter Prevention

After one has ascertained that there is a flutter problem then there
is more than a casual curiosity as to how to fix it, i.e., increase U,
without adding any weight, of course. There is no universal solution,
but frequently one or more of the following are tried.

1) add mass or redistribute mass so that z, < 0, ‘mass balance’

increase (or decrease) -

3 oo

(1)

(2) increase torsional stiffness, i.e., increase wq

(3) if it is near one (for fixed wy,)
(4)

4) add damping to the structure, particularly for single-degree-of-

freedom flutter or stall flutter

(5) require the aircraft to be flown below its critical Mach number (nor-
mally used as a temporary expedient while one of the above items is

studied)

More Complex Structural Models

*Abramson [24]. Viscous fluid effects are cited as the source of the difficulty.
fCrisp [25].
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The above discussion was in the context of the typical section. For
more complex aerospace vehicles, additional degrees of freedom, equa-
tions of motion and parameters will appear. Basically, these will have
the form of additional frequency ratios (stiffness distribution) and iner-
tial constants (mass distribution). Hence, for ezample, we might have

Wh w1 w2 w3
o replaced by b OF, 58 ete and x4, 7o replaced by

/px dx, /pxzdx, /px?’dx, etc.
/ pry dz dy, / py dy, / py>dy, etc.

We will turn to such issues in Section 3.7

Gust response

To the parameters for flutter we add

waG

U

for gust response®. Since wg is a time history (deterministic or random)
we actually add a functional as a parameter rather than a constant.
Hence, various gust responses will be obtained depending on the nature
of the assumed gust time history.

The several approaches to gust response analysis can be categorized
by the type of atmospheric turbulence model adopted. The simplest of
these is the sharp edged gust; a somewhat more elaborate model is the
1-COSINE gust. Both of these are deterministic; a third gust model
is now increasingly used where the gust velocity field is treated as a
random process.

Discrete Deterministic Gust:

An example of a useful gust time history is a sharp edged gust,

wg = 50ft/sec. for = < Ut
po }, ' <0
or i

*Houbolt, Steiner and Pratt [6]
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Figure 3.28. Sharp edged gust.

=0 for x > Ut,a’ >0
2’ t' fixed in atmosphere
x,t fixed with aircraft
(Galilean transformation) 2’ = zUt (if 2’ =z =0at t =t = 0)
t'=t
In this model wg is constant with respect to space and time in the
atmospheric fixed coordinate system for all 2/ < 0. We shall deal with
the aerodynamic consequences of this property in the next chapter.
A somewhat more realistic gust model allows for the spatial scale of
the gust field. In this model w¢ is independent of time, ¢/, but varies

with distance, 2/, in the atmospheric fixed coordinate system, z’, t’. For
obvious reasons it is called a 1-COSINE gust i.e.,

WGy [ 2ma’
wa = 1 — cos
2 To
for t< SUFG’ z <0
=0 for t> :UUc, 7' >0

Recall

=1 —Uxt
x is normally varied to obtain the most critical design condition (largest
response to the gust excitation) and typically wg,, . =~ 50ft/sec. See

sketch below. Schematic results for flight vehicle response to these de-
terministic gust models are shown below.

Random Gust:
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X
| X |
Figure 3.29. 1-COSINE gust.
MAXIMUM
2 h SHARP EDGE GUST
9 b
ds?
waximun O=tU= /b
q2 h 1-COSINE GUST
_ b
ds? FORSOME X;/b
S
d2 h MAXMUM OF
//_\( MAXIMA; MOST
CRITICAL DESIGN
ds® |max CONDITION
Xs/b

Figure 3.30. Response to deterministic gust.
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In a random gust field, we still adopt the assumption that wg, though
now a random variable, varies only with z’ and is independent of ¢. In
the theory of isotropic turbulence this is usually referred to as Taylor’s
hypothesis* or the ‘frozen gust’ assumption. Thus

wag(2') = we(r — Usot)

Since x and t only appear in the above combination, we may consider
the alternative functional form

X

The correlation function may then be defined as

L1 z .
puone) gy v (1w (¢ g )

and the power spectral density as
) — l > —iwtd
wewg (W) = Puwgug (T)e t
T J -0

The power spectral density is given in Figure 3.31. A useful approximate
formula which is in reasonable agreement with measurements is*

2
2 1=3 (%)

DPupwg = wG7rU 2
[1 e ]

Typically,

w2, ~ 33 ft./sec.
Lg ~ 50 — 500 ft; gust scale length
We conclude this discussion with a representative vehicle responses

to random gust fields drawn from a variety of sources.! The analytical
results are from mathematical models similar to those described above,

*Houbolt, Steiner and Pratt [6]. The basis for the frozen gust assumption is that in the time
interval for any part of the gust field to pass over the flight vehicle (the length/Uss )the gust
field does not significantly change its (random) spatial distribution. Clearly this becomes
inaccurate as Uso, becomes small.

*Houbolt, Steiner and Pratt [6].

TThese particular examples were collected and discussed in Ashley, Dugundji and Rainey,
[24].
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Figure 3.31. Gust power spectral density.

but with more elaborate structural and aerodynamic ingredients as de-
scribed in succeeding pages in this chapter and Chapter 4.

In the Figure 3.32, the measured and calculated power spectral densi-
ties for acceleration at the pilot station of the XB-70 aircraft are shown.
The theoretical structural model allows for rigid body and elastic de-
grees of freedom using methods such as those described later in this
chapter. The aerodynamic theory is similar to those described in Chap-
ter 4. The dramatic conclusion drawn from his figure is that theory and
experiment do not necessarily agree closely! If one assumes the peaks
in the measured and calculated spectra are associated with resonances
at natural frequencies of the (aeroelastic) system, then one concludes
the theoretical model is not predicting these adequately. Since the res-
onances are determined primarily by mass and stiffness (springs), one
concludes that for real vehicles even these characteristics may be difficult
to model mathematically. This is quite aside from other complications
such as structural damping and aerodynamic forces.

Usually when one is dealing with a real vehicle, physical small scale
models are built and with these (as well as the actual vehicle when it is
available) the resonant frequencies are measured (in the absence of any
airflow). The results are then used to ‘correct’ the mathematical model,
by one method or another, including a possible direct replacement of
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Figure 8.32. Acceleration power spectral density. From Stenton [26].

calculated resonant frequencies by their measured counterparts in the
equations of motion. When this is done the peak frequencies in the
measured and calculated spectra will then agree (necessarily so) and the
question then becomes one of how well the peak levels agree.

A comparison for another aircraft, the B-47, is shown in Figure 3.33.
Here the measured and calculated resonant frequencies are in good agree-
ment. Moreover the peak levels and indeed all levels are in good corre-
spondence. The particular comparison shown is for the system transfer
function which relates the acceleration at a point on the aircraft to the
random gust input. The calculated transfer function has been obtained
from an aeroelastic mathematical model. The measured transfer func-
tion (from flight test) is inferred from a measurement of gust power
spectra and cross-spectra between the vehicle acceleration and gust ve-
locity field using the relation (c.f. e.g. (3.3.31))

= P

hwe Pwawa
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Figure 3.33. § = nondimensional distance along span. From Houbolt [6].

Both the amplitude and phase of the transfer function are shown as a
function of frequency for various positions along the wing span (g = 0 is
at the wing root and y = 1 at the wing tip). Such good agreement be-
tween theory and experiment is certainly encouraging. However, clearly
there is a major combined theoretical-experimental effort required to de-
termine accurately the response of structures to gust loading. It should
be noted that according to [6], Figure 3.33 is the bending strain transfer
function. ‘The dimensions of the ordinates ... are those for acceleration
because the responses of the strain gages were calibrated in terms of the
strain per unit normal acceleration experienced during a shallow pull-up
maneuver.’
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3.7. Generalized Equations of Motion for
Complex Structures

Lagrange’s equations and modal methods (Rayleigh-
Ritz)

The most effective method for deriving equations of motion for many
complex dynamical systems is to use Lagrange’s Equations.*

d OL 0L
e )
dt 0¢;  9q;
where
L = T-U, Lagrangian
T = Xkinetic energy
= potential energy
Qi = generalized forces

q; = generalized coordinates

The essential steps in the method are, first, a suitable choice of ¢; and
then an evaluation of T, U and @); in terms of @); and ;.

Lagrange’s equations have, as one of their principal advantages, the
ability to obtain the equations of motion for complex systems with little
or no more difficulty than that required for rather simple ones, such as
the ‘typical section’. Here we shall consider a two-dimensional (planar)
representation on a flight vehicle. (See Figure 3.34).

We note that this formulation can include ‘rigid’ body as well as flex-
ible body modes. For example, the following choices of modal functions,
Zm, include rigid body vertical translation, pitching (rotation about y
axis) and rolling (rotation about z axis), respectively.

z1 = 1 vertical translation
zg = x pitching

z3 =y rolling

For such modes the potential elastic or strain energy is zero; however,
in general, strain energy must be included for the flexible body modes.

The use of Lagrange’s equations, while formally compact, does not
reveal explicitly all of the complications which may arise in deriving
equations of motion for an unrestrained vehicle or structure. These are
seen more clearly in the discussion in a later section of integral equations
of equilibrium.

*Recall Sections 3.2.
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Figure 3.34. Two-dimensional (planar) representation of a flight vehicle.

Kinetic energy

The = — y plane is the plane of the (aircraft) structure. We consider
deformations perpendicular to the z —y plane (in the z direction). The
normal displacement with respect to a fixed inertial reference plane we
call z,(z,y,t). We may then express the kinetic energy as

T = ;//miz)gdx dy (3.7.1)

where m - mass/area and z, = %Zt“. If we expand the displacement in a

modal series, say

Za =Y qm(t)zm(z,y) (3.7.2)

then the kinetic energy may be written as

T = % D> dmnMnn (3.7.3)
m n
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where the generalized mass is given by

anE/ MZm2Zndx dy

For small motions the above integral over the body may be taken as over
the undeformed structure.
If the chosen modes, z,,, satisfy an orthogonality condition
Mpym = Mpibn Omn =1 for m=m
=0 for m#n

Then (3.7.3) simplifies to
1 )
T=3 §m G2 My, (3.7.4)

Strain (potential elastic) energy

For the strain energy, we may write a similar relation to (3.7.3).

1
U=35>.2 dmtnKmn (3.7.5)

m

where K,,, is a generalized spring constant which is determined from
an appropriate structural theory.* Indeed if the z,, are the ‘natural’ or
‘normal’modes of the structure, one may show that

Kon = W2 MyOmn (3.7.6)

where w,, is the mth ‘natural frequency’.t
Equations (3.7.3)-(3.7.6) are the keys to the Lagrangian approach.
Before continuing, we pause to consider K,,, in more detail.

Alternative Determination of Kpy,.

A stiffness influence function, K(z,y,&,n), may be defined which is the
(static) force/area required at point z,y to give a unit deflection at point
&, n. Hence

pla,y) = / / K (a,y: €, m) (€, m)dE dn (3.7.7)

*Recall Section 3.2.
T Meirovitch [4]
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A simple spring analog of (3.7.7) is
F = Kd simple spring analog, d = spring displacement

The potential energy stored in the elastic body is thus

1
U= 2//p(fc,y)za($,y)dw dy
1 (3.7.8)
U= §F d simple spring analog

Using (3.7.8) in (3.7.7),

v=5 [ [ Kepenae i pianedy  G:19)

1
U= §K d? simple spring analog

Using our modal expansion
Za(l', Y, t) = Z Qm(t)zm(l'7 y)
m

in (3.7.9) we obtain

U= % Z Z NKmnGman

m

where

Kom = [[ [ [ K526 02l mza(o, ) dndo dy

1 (3.7.10)
U= §K d? simple spring analog
From Maxwell’s Reciprocity Theorem
K(z,y:8,n) = K(&m:2,9)
and hence
Kpm = Kpm (3.7.11)

K (z,y;&,1n) can be determined by a suitable theoretical analysis or it can
be inferred from experiment. For the additional insight to be gained, let
us consider the latter alternative. It is a difficult experiment to measure
K directly since we must determine a distribution of force/area which
gives unit deflection at one point and zero deflection elsewhere. Instead
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it is much easier to measure the inverse of K, a flexibility influence,
C(z,y;&,m) which is the deflection at z,y due to a unit force/area at
&, n. For C(x,y;&,n) we have the following relation (recall Section 2.4)

2aly) = / / O,y €, )p(€, m)d€ dn (3.7.12)

Using (3.7.7) and (3.7.12) it can be shown that

// Clx,y; &K (& m;r,8)dEdn = 6(r — x,5 —y) (3.7.13)

where ¢ is a Dirac delta function. (3.7.13) is an integral equation for C'
or K given the other. However, it is rarely, if ever, used. Instead (3.7.6)
and (3.7.1) are attacked directly by considering a finite number of loads
and deflections over small (finite) areas of size AxAy = A{An. Hence
(3.7.7) and (3.7.12) are written

p(wi,yi) = Z K (w4, 95§55 mj)2a(€5,m5) AEAD (3.7.7)
zaljyyy) = Y Clj,y5 & mi)p(Sis i) AEAn (3.7.11)
j
In matrix notation
{p} = [K{za}ALAD (3.7.7)
{za} = [C{p}AEAD (3.7.11)

Substitution of (3.7.12) into (3.7.7) and solving, gives
[K] = [C]7/(A)*(An)? (3.7.14)

(3.7.14) is essentially a finite difference solution to (3.7.13). Hence, in
practice, if (3.7.10) is used to compute K, one measures C, computes
K from (3.7.14) and then evaluates K,,, by numerical integration of
(3.7.10). For a fuller discussion of influence functions, the reader may
wish to consult Bisplinghoff, Mar and Pian|[2].

There is one further subtlety which we have not discussed as yet. If
rigid body motions of the structure are possible, then one may wish to
use a C measure with respect to a fixed point. For example it may be
convenient to measure C with the center of the mass fixed with respect
to translation and rotation. This matter is discussed for fully later in
the chapter when integral equations of equilibrium are reviewed.

We now continue the general discussion from which we digressed to
consider K,,,. Two examples will be considered next.
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Examples
(a) Torsional vibrations of a rod

To illustrate the key relations (3.7.3)-(3.7.6) in a more familiar situa-
tion, consider the torsional vibrations of a rod. Here

zq = —xa(y, t) (cf. 3.7.2)

and thus (3.7.1) becomes

1
T =~ /Iaa2dy (3.7.15)

I, = /maszx

a = angle of twist

where

From structural theory [2],

—1/GJ da* (3.7.16)
2 dy Y o

Let
a= Z qoam(y) (3.7.17)
then
Z Z GG Mo, (3.7.18)
where
Moy = /Iaamandy (cf. 3.7.3)
and .
=3 Z Z 4%0° Ko (3.7.19)
where

Ky = / GJdO‘—m%dy (cf. 3.7.5)

The specific structural model chosen determines the accuracy with
which the generalized and stiffness are determined, but they always exist.
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(b) Bending-torsional motion of a beam-rod

The above is readily generalized to include bending as well as torsional
vibration of a beam-rod.
Let

Za(xa Y, t) = —ZL'OZ(y, t) - h(y7 t) (Cf 372)
«a = twist about elastic axis
h = bending deflection of elastic axis

and thus (3.7.1) becomes

1 . )
T=3 { / Mh2dy + 2 / Shady + / Iad2dy} (3.7.20)
Mz/mdx, Saz/mxdm, IaE/mx2dac

Also from structural theory [2],

= % {/GJ <?)Z>2dy+/EI (‘;Z’;)Qdy} (3.7.21)

where

Let
R
h = Z Qﬁhr(y)
" (3.7.22)
o= Z Im0m(y)
m=1
Then
Z Z q e M
(3.7.23)
+2ZZq hMah+Zququf‘h
where

M%%:/Ia@mandy7 M%};:/Saamhrdya Mﬂshz/mhhsdy
(3.7.24)
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and
{qumeﬁK%%Jr ZquqﬁKﬁh} (cf. 3.7.5)
where
Ky = / GJ d;‘;” d;;" K} = / EI ng};’" ng}f dy  (3.7.25)

Off all possible choices of modes, the ‘free vibration, natural modes’
are often the best choice. These are discussed in more detail in the next
section.

Natural frequencies and modes-eigenvalues and
eigenvectors

Continuing with our general discussion, consider Lagrange’s equa-
tionswith the generalized forces set to zero,

d(’(T‘U))ﬁU:o =12, M

dt 9q; 9q;
and thus obtain, using (3.7.3) and (3.7.5) in the above,
> MoiGm + Kmigm =0 i=1,...,M (3.7.26)
Consider sinusoidal motion
Gm = Gme"™" (3.7.27)
then, in matrix motion, (3.7.26) becomes
~w?*[M{aq} + [K){q} = {0} (3.7.28)
This is an eigenvalue problem for the eigenvalues, w;j,j = 1,...,J and

corresponding eigenvalues, (¢);. If the modal functions originally chosen,
Zm OF auy and h,., were ‘natural modes’ of the system then the M and
K matrices will be diagonal and the eigenvalue problem simplifies.

\
—w? | M | {g}+ Mw? | {q} = {0} (3.7.29)

\ \

and

€
S
oo o oR
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€
[\&)
coof o

etc.

(N
o OO

W

aM ) i

If this is not so then the eigenvalues may be determined from (3.7.22)
and a linear transformation may be made to diagonalize the M and
K matrices. The reader may wish to determine the eigenvalues and
eigenvectors of the typical section as in exercise.

For our purposes, the key point is that expression like (3.7.3)-(5.7.6)
exist. For a more extensive discussion of these matters, the reader may
consult Meirovitch [4].

Evaluation of generalized aerodynamic forces

The Generalized forces s in Lagrange’s equations are evaluated from
their definition in terms of Virtual work.

Wre =Y Qmbam (3.7.24-2)
m
Now the virtual work may be evaluated independently from

Wne = //pézadx dy (3.7.25-2)

where p is the net aerodynamic pressure on an element of the structure
with (differential) area dz dy. Using (3.7.2) in (3.7.25-2)

Wne = Z 0gm // pzmdr dy (3.7.26-2)
and we may identify from (3.7.25-2) and (3.7.24-2)

Qm = //pzmdx dy (3.7.27-2)
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From aerodynamic theory,* one can establish a relationship of the form

p(x,y,t) /// (z—&y—nt—7)

a 024
X |:87_(£7 7, 7-) + Uaig(fv 7, 7-) d£ dUdT

‘downwash’

(3.7.28-2)

A may be physically interpreted as the pressure at point x, y at times ¢
due to a unit impulse of downwash at point &, 7 at time 7. Using (3.7.2)
and (3.7.28-2) in (3.7.27-2) we may evaluate @, in more detail,

Qm - Z/O [qn(T)Inmq(t - T) + QH(T)Inmq(t - T)]dT (3729—2)

where

Tt =7 = [ [[ 4w =&t = Dyznl)znte e dydg ay

Lo /// Aw—&y—mt—1)

Ozp,
x U 7(& ;1) 2m(z, y)dx dyd€ dn

Iimg, Inmq may be thought of as generalized aerodynamic impulse func-
tions.

Equations of motion and solution methods
Finally applying Lagrange’s equations, using ‘normal mode’ coordinates
for simplicity,

M
Mol tnl = 3 [ Gl it =)+ 0ulr) Tl = 7)lr

m=1,....M
(3.7.30)

Note the form of (3.7.30). It is identical, mathematically speaking, to
the earlier results for the typical section.* Hence similar mathematical

*See Chapter 4, and earlier discussion in Sections3.4.
*Provided S, = 0 so that h, « are normal mode coordinates for the typical section.
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solution techniques may be applied.

Time domain solutions. A Taylor Series expansion is

Gt + A8) = ga(t) + do A+ T| (At)?

t
One may solve for g, from (3.7.30) and hence g, (t + At) is determined.
Gn(t), Gn(t) are known from initial conditions and

n(t + AL) = G (t) + Gn(t) AL + - - - (3.7.31)

Frequency domain solutions. Taking a Fourier transform of (3.7.30)

M
Myp|—w® + Wl JGm Z[iWHnmq+Hnmq]ﬂ7n

G, = / gme " “tdt
In matrix notation
\
My (—w? + w?) — [iwHpmg + Hamg) | {Gn} = {0} (3.7.32)
\

By examining the condition for nontrivial solutions
H . ” =0

we may find the ‘poles’ of the aeroelastic transfer functions and assess
the stability of the systems.

where

Response to gust excitation. If we wish to examine the gust response
problem then we must return to (3.7.28) and add the aerodynamic pres-
sure due to the gust loading

a(z,y,1) // Alx — &y —n,t — 1)wa(§,n, 7)dE dndr

The resulting Generalized forces s are

ot = [[[[[ Ay -nt-7) (3.7.33)

X wG(Ea , T)Zm(xa y)dg dT] dx dy dr
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Adding (3.7.33) to (3.7.30) does not change the mathematical technique
for the time domain solution. In the frequency domain, the right hand
column of (3.7.32) is now (Qma)

QmG = / QmGeiiwtdt

Hence by solving (3.7.32) we may obtain generalized aeroelastic transfer
functions _
5. = Hauquolws ) (3.7.34)
mG
and employ the usual techniques of the frequency domain calculus in-
cluding power spectral methods.

Integral equations of equilibrium

As an alternative approach to Lagrange’s Equations, we consider an
integral equation formulation using the concept of a structure influence
(Green’s) function. We shall treat a flat (two-dimensional) structure
which deforms under (aerodynamic) loading in an arbitrary way. We
shall assume a symmetrical vehicle and take the origin of our coordinate
system at the vehicle center of mass with the two axes in the plane of
the vehicle as principal axes, x,y. See figure 3.34. Note the motion
is assumed sufficiently small so that no distinction is made between the
deformed and undeformed axes of the body. For example the inertia and
elastic integral properties are evaluated using the (undeformed) axes x, y.
The axes x,y are inertial axes, i.e., fixed in space. If we consider small
deflections normal to the x,y plane, the x,y axes are approximately the
principal axes of the deformed vehicle.
It will be useful to make several definitions.

zq absolute vertical displacement of a point from x,y plane, positive up
m mass/area

pe external applied force/area, e.g., aerodynamic forces due to gust,
yge

py  force/area due to motion, e.g., aerodynamic forces (but not includ-
ing inertial forces)

9%z,

= — m——-
Pz =PE+DPM e

total force/area, including inertial forces. Let us first consider equilib-
rium of rigid body motions.
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Translation:
//pzdx dy =0 (3.7.35)
Pitch:
// xpzdrdy =0 (3.7.36)
Roll:

// ypzdx dy = 0 (3.7.37)

Now consider equilibrium of deformable or elastic motion.
- 0zq 0zq
z;lastzc = Za(wa Y, t) - za(07 07 t) - xai(ov 07 t) - yai(oa 07 t)
v (3.7.38)
= // Clz, y; & mpz (&, nt)dE dn

where
zelastic. = deformation (elastic) of a point on vehicle

C = structural influence or Green’s function; the (static) elastic defor-
mation a x,y due to unit force/area at &, 7 for a vehicle fixed* at the
origin, x =y = 0.

Since the method of obtaining the subsequent equations of motion in-
volves some rather extensive algebra, we outline the method here.

1 Set pg=py =0.

2 Obtain ‘natural frequencies and modes’; prove orthogonality of
modes.

3 Expand deformation, z, for nonzero pg and pjps in terms of normal
modes or natural modes and obtain a set of equation for the (time
dependent) coefficients of the expansion. The final result will again
be (3.7.30).

*By fixed we mean ‘clamped’ in the sense of the structural engineer, i.e., zero displacement
and slope. It is sufficient to use a static influence function, since invoking by D’Alambert’s
Principle the inertial contributions are treated as equivalent forces.
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Natural frequencies and modes

Set pr = par = 0. Assume sinusoidal motion, i.e.,

Za(z,y,t) = Za(z,y)e™" (3.7.39)
then (3.7.38) becomes
() — 2(0,0) — 2 222(0,0) - %ﬂom

(3.7.40)
=&/‘0m%@mm@m%@m%my

The frequency w has the character of eigenvalue. (3.7.40) can be
put into the form of a standard eigenvalue problem by solving for
5%(0, 0)7 %Z; (0 0)

%—‘ZL(O 0) and substituting into (3.7.40). For example, consider the de-

termination of Z,(0,0). Multiply (3.7.40) by m and integrate over the
flight vehicle area. The result is:

//mZad:L‘ dy — ZQ(O,O)/ mdx dy

0zq
—ZOO/ ma:dwdy—()()/ ma dx dy

=w2/ m(z, y) U C(x,y;fjn)za(én)dﬁdn] - dxdy
(3.7.41)
Examining the left hand side of (3.7.41), the first integral is zero from
(3.7.35), the third and fourth integrals are zero because of our use of

center-of-mass as our origin of coordinates. The second integral is iden-
tifiable as the total mass of the vehicle.

M = //mdmdy
Hence
Za(0,0) = —;L\); //m(z,y) [/ Cmz,d€ dn} dx dy

w2
== [ [miemzen (3742

xUO@M@Mme%m
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where the second line follows by change of order of integration. In a simi-

lar fashion %(07 0), %(0, 0) may be determined by multiplying (3.7.40)

by max and my respectively with integration over the flight vehicle. The
results are

Za w? _
Gew0 == [[memzicn | [[ cwmemmmic.sis iy
- de dn
(3.7.43)

etc. where

oy ——
Iy= //me(%y)dﬂfdy

In (3.7.42) and (3.7.43) note that =,y are now dummy integration vari-
ables, not to be confused with the x,y which appear in (3.7.40). Using
(3741 3.7.42, 3.7.43) (374O)Wehave

a(z,y) = w / Gla,y: & mm(€ mza(e,mdedn  (3.7.44)

where

G(x,y;&,m) = C(z,y;§m)

/Crs{n[ —I——i—‘qf] m(r, s)dr ds

(3.7.44) has the form of a standard eigenvalue problem. In general,
there are infinite number of nontrivial solutions (eigenfunctions), ¢,
with corresponding eigenvalues, w,,, such that

bl 1) / / ry E)m(E ) om(E m)dEdy  (3.7.45)

These eigenfunctions could be determined in a number of ways; perhaps
the most efficient method being the replacement of (3.7.45) by a system
of linear algebraic equations through approximation of the integral in
(3.7.45) by a sum.

J

In matrix notation,

\
{0} =?[Gyy A A | m \ {o}
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or

\ \
1| =[Gy AL A m\ {¢} = {0} (3.7.47)

\

Setting the determinant of coefficients to zero, we obtain a polynomial in
w? which gives us (approximate) eigenvalues as roots. The related eigen-
vector of (3.7.47) is an approximate description of the eigenfunctions of
(3.7.46).

An important and useful property of eigenfunctions is their orthogo-
nality, i.e.,

/ O (T, Y)Pn(z,y)derdy =0 for m#n (3.7.48)

We shall digress briefly to prove (3.7.48).

Proof of orthogonality

Consider two different eigenvalues and eigenfunctions .

dm(z,y) = wfn/ GmaopmdE dn (3.7.49a)

On(x,y) = wi/ Gmaeonpd§ dn (3.7.49b)

Multiply (3.7.49a) and (3.7.49b) by me,(z,y) and mo,,(x,y) respec-
tively and [ [ ---dz dy.

wl,?n / / Snmm dz dy = / . { / ngmmdgdn} “dedy (3.7.49¢)

wl% / / bmpnm da dy = / bmm [ / qunmd&dn] cdzdy (3.7.49d)

Interchanging the order of integration in (3.7.49c) and interchanging z, y
and &, 7, and vice versa on the right-hand side gives:

w2, // Ptz dy = // qum/ G m=y) (3.7.50)

- dn(&,m)m(&, n)dE dn]dx dy

If G were symmetric, i.e.,

G nr,y) = G(r,y;€,m) (3.7.51)
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then the right-hand side of (3.7.49d) and (3.7.49c) would be equal and
hence one could conclude that

11
Lz - wz] / Pm¢nm dz dy = 0
or

Unfortunately, the situation is more complicated since G is not symmet-
ric. However, from (3.7.44), et. seq., one can write

G(&mw,y) — G, y;:6,m)
/Crsfn[ I ] (r,s)drds
/ C(r,s;z,y) [ fr] m(r, s)dr ds

(3.7.53)

Using the above to substitute for G(&, n;x,y) in (3.7.50) and using
(3.7.35)-(3.7.37) to simplify the result, one sees that the terms on the
right-hand side of (3.7.53) contribute nothing. Hence, the right-hand
sides of (3.7.49d) and (3.7.49¢c) are indeed equal.

The orthogonality result follows. Note that the rigid body modes

w1 = 0 (Z)l =1
we=0 ¢o==zx (3.7.54)
w3 = 0 (bg =Y

are orthogonal as well. One can verify readily that the above satisfy

the equations of motion, (3.7.35)-(3.7.38), and that the orthogonality
conditions follow from (3.7.35)-(3.7.37).

Forced motion including aerodynamic forces

We will simplify the equations of motion to a system of ordinary integral-
differential equations in time by expanding the deformation in terms of
normal modes.

Recall the natural modes, ¢,,,, must Satlsfy the equations of motion with
pe =pyp =0 and

2q ~ ezwmt
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Substituting (3.7.55) in (3.7.35)-(3.7.37) and using orthogonality,
(3.7.52), and (3.7.54),

41 //mdmdy:/ [pE + ppmlde dy (3.7.56)

Go //medx dy = //x[PE + parldx dy (3.7.57)
i [[macy= [[os+mitzay 3159

The reader should be able to identify readily the physical significance of
the several integrals in the above equations. Substituting (3.7.55) into
(3.7.38) gives

n;Qm |:¢m($7y) - ¢m(070) - 8;5”1 (O 0) ag; (0 0)]

" (3.7.59)
Now the normal modes, ¢,,, satisfy
OPm OPm,
Sm,) — 6m(0,0) — 2°2(0,0) — y %5 (0,0)
y (3.7.60)

— 2, / O,y €, mym(E ) dm(Em)dEdy m = 1, 00

Also the left-hand side of (3.7.59) is identically zero for the rigid body
modes, m = 1,2,3. Further using (3.7.60)in the right-hand side of
(3.7.59) for m =4,5,. .., gives finally

5 (an+ ) [ontenn) - 6(0.0) = 2%520,0) =55 0.0)

m=4
= // C(z,y;&,m)[pE + Py — mL — m&Ga — mngs|dE dn
(3.7.61)

Multiplying (3.7.61) by m(z,y)¢n(x,y) and [ [---dxdy, invoking or-
thogonality, gives

M<qn+ ) //%m //CpE+pM mégy — méda

— minds]dé dn ydo dy
(3.7.62)



146 A MODERN COURSE IN AEROELASTICITY

where the ‘generalized mass’, M,,, is defined as

M, = //¢2mdxdy

Now the structural influence function, C', is symmetric, i.e.,

Clz,y;&m) = C(€ myz,y) (3.7.63)

This follows from Maxwell’s reciprocity theorem™ which states that the
deflection at x,y due to a unit load at &, 7 is equal to the deflection at
&,m due to a unit load at z,y.

Using (3.7.63) and interchanging the order of integration in (3.7.62),
one obtains

il . . .
M, (qn + u;) = / [pE + Prr — mdi — m&da — mngs]

n

: {/ C(&n;x,y)qﬁn(w,y)m(%y)dxdy} ~dg dn

(3.7.64)
Using (3.7.60) in (3.7.64),
M, (qn + f)%) =uf% [ o+ pas — s~ me, — mn
061 06
Jontean) = 000.0) = 520,00 =052 0,0)
L de dny
(3.7.65)

By using orthogonality, (3.7.52) and the equations of rigid body equilib-
rium, (3.7.56)-(3.7.58), one may show that the right-hand side of (3.7.65)
can be simplified as follows:

M, (qn + > // PE + D) dndE dn (3.7.66)
Defining the Generalized forces,
Qn = / / [PE + par]dndé dn (generalized force)
one has
Mplin + w2gn) = Qn n=1,2,3,4,... (3.7.67)

*Bisplinghoff, Mar and Pian [2].
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Note that there is no inertial or structural coupling in the equations
(3.7.67), However pps generally depends upon q1, ¢, ... and hence the
equations are aerodynamically coupled.t The lack of inertial and struc-
tural coupling is due to our use of natural or normal modes. Finally,
note that the rigid body equation of motions, (3.7.56)-(3.7.58), also have
the form of (3.7.67). Hence n may run over all integer values.

Examples

(a) Rigid wing undergoing translation responding to a gust
One mode only ¢1 = 1,¢; (= —h was notation used previously in typical
section model) and thus

Mg = QY +@QF (3.7.68)

Q' = //PM¢1dx dy = /LMdy (3.7.69)
QY = //PE¢1 dxdy = /LG dy (3.7.70)

where
Ly = /pM dx  lift /span (3.7.71)
Lg = /pE dx  lift /span (3.7.72)
Introducing nondimensional time, s = tU/b, (3.7.68) may be written
U2 t t
b—2M1q” :/ LMdy+/ Lgdy (3.7.73)
0 0
where p
"= I (nondimensional))

Assuming strip-theory, two dimensional, incompressible flow aerody-
namics, one has (recall Sections 3.4 and see Chapter 4)

Ly(s) = —mpUZ [q”(s) + 2/ q"(o)p(s — a)da] (3.7.74)
0
Note we have assumed ¢} (0) = 0 in the above. Similarly

Le = 2mpUsch [wG(om(s) + /0 ) ‘h"g’o@w(s - U)da]

= 2mpU?b [/0 w%@w’(s B U)da} (3.7.75)

fef.(3.7.31).
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where

dip
/ P

w (S) - dS

Here we have assumed that w¢ is independent of y for simplicity. Sub-
stituting (3.7.74) and (3.7.75) into (3.7.73) we have

U2 i 1 S
M (s) = mpUZ ) [~ 5 = [ dieots - oo
3 wG(U) /
—i—/o T V(s — U)da]

(3.7.76)
M = [[ m¢1dxdy, total mass of wing

Note [ L dy = [L since we have assumed b is a constant and [ = half-span
of wing. (3.7.76) may be solved in several ways which have previously
been discussed in the context of the typical section airfoil. Here, we shall
pursue the method of Laplace Transforms. Transforming (3.7.76)(p is
the Laplace Transform variable) gives

U2 2 2
M) = moU 20 |

— 2_ 2_
wg -pq1 P41~
b2 7]97/1726 - (0 (3.7.77)

We have taken ¢(0) = ¢/(0) = 0 while using the convolution theorem,
ie.,

{/S wa(o)yY' (s — gb)da} = Wapo (convolution theorem 1)
0

{/ 4 (o)¢' (s — U)dU} =p’qé (convolution theorem 2)
0

and a bar () denotes Laplace Transform. Solving (3.7.77) for q; gives

(3.7.78)

(IS
W[ Q‘Q
+ | <

)]
pay
Y
s
N—
Il
NS
[N

%)

+N)

(

where
— M :
u= m, mass ratio.
To complete the solution we must invert (3.7.78). To make this inversion
tractable, ¢ and v are approximated by

P(s) =1—0.5e %135 —0.5¢7°

3.7.79
P(s) =1~ 0.165¢ 004555 _ () 335,035 ( )



Dynamic Aeroelasticity (Dowell) 149

Thus

Y = (0.565p + .013) /p(p + 0.0455)(p + 0.3)
0.5p + 0.02805p + 0.01365 (3.7.80)
p3 + 0.3455p2 + 0.01365p

-

and

b%%0.565(p® + 0.575p% + 0.093p + 0.003)
w4 0.5)p(p+0.13)(p + 1)(p? + a1p? + asp + a3)

a= (3.7.81)

where

_0.34551. 4 0.67

=TT 05

0y = 0.01365 + 0.28
©w=+0.5

_0.01365

TR

Often one is interested in the acceleration,*

. Uz ,. U? _
G = 7 did = bjﬁl{pQ(]l}

as

0.565 [ Us Co13(e

~r0s5 ) b woloide e
9 Jo

+ AQG—(S—U) + Ble’Yl(S—U)

+ 32672(8—0) + 33673(5—0)}d0

(3.7.82)

where
N(-0.13)

D'(.013)
ON(-1)
- D'(-1)
(7r)
D' ()

Ay =

Ay

- T

Bi=123 =
and
N(p) =p(»”® + 0.5756p* + 0.09315p + 0.003141)

D(p) =(p+ 0.13)(p+ 1)(p° + a1p + a3)
i are the roots of p® +ai1p? +aip+az =0

*For ¢1(0) = ¢(0) = 0. £' = inverse Laplace Transform.
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Note that bracketed term in (3.7.82) must be a real quantity though the
components thereof may be complex (conjugates). Also, what does it
mean physically if the real part of 41,72 or 43 is positive?

An even simpler theory of gust response is available if one further
approximates the aerodynamic forces. Foe example, using a quasi-static
aerodynamic theory (recall Section 3.4), one has

1 =1 and thus Lg = QWpUgob%i
and
¢ =0, and thus Lj; = 0 (ignoring virtual inertia term)

Hence

My, = / LG dy = 27er21)1%
o U o Us we (3.7.83)
G =T G =,
The subscripted quantity, §i, is called the static approximation to the
gust response. Figure 3.35 is a schematic of the result from the full
theory, (3.7.82), referenced to the static result, (3.7.83). Here we have
further assumed a sharp-edge gust, i.e., wG= constant. After Figure
10.22 BAH. The maxima of the above curves are presented in Figure
3.36. As can be seen the static approximation is a good approximation
for large mass ratio, . For smaller p the acceleration is less than the
static result. Hence the quantity, qlq?“fa" is sometimes referred to as a
‘gust alleviation’ factor. ’
A somewhat more sophisticated aerodynamic approximation is to let
(again recall Section 3.4)

=1 and thus Lg =27 UQb%
¥ G = 2mPUb T (3.7.84)
¢ =1 and thus Ly = —7pU?[¢"(s) + 2¢'(s)]

assuming ¢'(0) = 0. In the motion induced lift, the Lpfirst term is
a virtual inertial term which is generally negligible compared to the
inertia of the flight vehicle. However, the second term is an aerodynamic
damping term which provides the only damping in the system and hence
may be important. It is this aerodynamic damping , even in the guise
of the full (linear)aerodynamic theory, which gives results substantially
different from the static approximation. (3.7.84) is termed a quasi-steady
aerodynamic approximation.
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Figure 3.35.  Acceleration time history.

1.0

0 | 1/

0 10 ®
1

Figure 3.36. Maximum acceleration vs mass ratio.

Using the approximation (3.7.84), (3.7.68) becomes for a constant
chord, b, wing of span, [, (in nondimensional form)
_ bwg(s)

(1w +0.5)q} (s) + ¢ (s) = o (3.7.85)
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where
H=Tpbl) b
Taking the Laplace transform of (3.7.85) with initial conditions
¢1(0) = q(0) =0, wg(0)=0 (Laplace transform)
we have
bt
(1 + 0.5)p°q@1 (p) + pgi(s) = w(;;(p) (Laplace with 3.7.85)
Solving
a1(p) = . 76(r)
' p{(n+0.5)p+1}
and thus
qi(s) = Lp*q(p)
1
1 = b [ +05
e -7 ]
T 05" U p+

1 s bw (o) - L (s ) 1 o s—o
_ b Asie oy o[
L+ 05 Jy, Us GV T 05 P\ T T 05

(3.7.86)

or

.. Ugo 1" 1 s Uso

b=l = 555 ), 5 wel)

1 s—0
5(s — o) — _
. { (5=0) u+0.5exp< u+0-5>}

Since

Uso wG(S)

1. = — static result
qls b /,L ( )7

a1 1 1 /S
- = walo
Gi.  p+0.5wa(s) Jo cl(o)

1 s—o
X {(5(3 —0) — 105 exp <_M+0-5) } do
(3.7.87)

For a sharp edge gust

wg = wp : const (s > 0),
=0 (s<0)
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Figure 3.37. Acceleration time history: Quasi-steady aerodynamics.

(3.7.87) becomes

41 1z s
T )

= exp(—
G, p+05 p(u+05

(3.7.88)

(3.7.88) is presented graphically in the Figure 3.37 . From (3.7.88) one
may plot the maxima (which occur at s = 0 for the quasi-steady aerody-
namic theory) vs. p. These are shown in Figure 3.38 where the results
are compared with those using the full unsteady aerodynamic theory and
the static aerodynamic theory. What conclusion do you draw concerning
the adequacy of the various aerodynamic theories?

(b) Wing undergoing translation and spanwise bending

My + Mpwlqn = QM + Q% n=1,2,3,... (3.7.89)
qn rigid body mode of translation
q2, q3... beam bending modal amplitudes of wing The mode shapes are

denoted by ¢,(y) and are normalized such that the generalized masses
are given by

M, = // oim dx dy = /[/md:c]gbidy =M (3.7.90)
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STATIC AND QUASI-STEADY ASYMPTOTE
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0 25 50 75
u

Figure 3.38. Maximum acceleration for wing in translation encountering a sharp
edge (step function) gust as given by various aerodynamic models vs mass ratio.

The Generalized forces are given by
QY = [[ Paondzdy = [ Lrsondy
(3.7.91)

Qf = [[ Povndzay= [ Loondy

Introduce s = (bj—: where b, is reference half chord. Also let the chord
vary spanwise, i.e.,

b(y) = brg(y) (3.7.92)
where g is given from the wing geometry. (3.7.89) may be written
U? " 2 M G
22 Man + Mwyan = Qn” + Qy (3.7.93)

Using two-dimensional aerodynamics in a ‘strip theory’ approximation
and assuming the gust velocity is uniform spanwise, the aerodynamic
lift forces are

U2
LM(Z/, 5) = - ﬂ'p(brg)QbT Z (bqul

- (f) (brg) /0 ) (%} ¢mq;;<a>> b(s — 0)dor
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and
La(y,s) = QWpU(brg)/O wg(o)Y' (s — o)do (3.7.94)

Substituting (3.7.94) into (3.7.91) and the result into (3.7.89) gives
(when nondimensionalized)

wlql +Q2Qn ]+ ZAnmqm+22Bnm/ qr(0)d(s — o)do
0

(3.7.95)
— 2b,B; / L”u/@ —o)do n=123,...
o U
where
M wpb
= Q, = —~
K= s, U
b 1/2
Anm = a n md
S g ? Grmdy
1/2 (3.7.96)
m=g / 9PnOmdy
1/2
1/2 1/2
S = / 2bdy = 2b,n/ gdy, wing area
1/2 —1/2

(3.7.95) is a set of integral-differential equations in one variable, time.
They are mathematically similar to the typical section equations. If
we further restrict ourselves to consideration of translation plus the first
wing bending mode, we have two equations in two unknowns. These may
be solved as in Examples (a) by Laplace Transformation. Alternatively,
Examples (a) and (b) could be handled by numerical integration in the
time domain. Yet another option is to work the problem in the frequency
domain.

(c) Random gusts solution in the frequency domain

Pursuing the latter option, we only need replace the Laplace transform
variable, p, by tw where w is the Fourier frequency. For simplicity,
consider again Example (a). (3.7.81) may be written

WG

qn
where
0.565[(iw)? + 0.5756(iw)? + 0.093iw + 0.003
Hoo(w) = [(iw) (iw) ]

(14 0.5)(iw)[iw + 0.13][iw + 1][(iw)? + a1 (iw)? + az(iw)as]
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Figure 3.39. Geometry of pipe.

is a transfer function relating sinusoidal rigid body response to sinusoidal
gust velocity. The poles of the transfer function can be examined for
stability. The mean square response to a random gust velocity can be
written as (cf. equation(3.7.40) in Section 3.3)
q1\> > 2
(%) = /0 | H ()P (s 1) i 07y (3.7.98)

Similar expressions can be obtained for two or more degrees of freedom.

3.8. Other Fluid-Structural Interaction
Phenomena

Fluid flow through a flexible pipe:“firehose” flutter

This problem has received a good deal of attention in the research liter-
ature. It has a number of interesting features, including some analogies
to the flutter of plates. Possible technological applications include oil
pipelines, hydraulic lines, rocket propellant fuel lines and human lung
airways.” The equation of motion is given by’

0w 0%w 0*w 0%w 0w
El— +m—5 + pA 2U U? =0 3.8.1
ot "o TP o TV azar TV 0 (38.1)
EI Dbending stiffness of pipe A open area of pipe
m  mass/length of pipe w transverse deflection of pipe
p fluid density a pipe length

U fluid velocity

We consider a cantilevered pipe clamped at one end of and free at the
other. Previously we had considered a pipe pinned at both ends and

*Weaver and Paidoussis [27] Also see Daidoussis [28].
TNote that slender body aerodynamic theory is used.
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discovered that a static instability occurred.! The present boundary
conditios lead to a dynamic instability, flutter. We shall consider a
classic eigenvalue analysis of this differential equation. Let

w = w(z)e™t (3.8.2)

where the w are to be determined by the requirement that nontrivial
solutions, w(x) # 0, are sought. Substituting (3.8.2) into (3.8.1) we
have cancelling out the common factor, e**

d*w dw d
{EI—mww+pA[ ww+2Uzw—+U2 w}}é“’f 0

dz* dz dx?
(3.8.3)
This ordinary differential equation may be solved by standard methods.
The solution has the form

4
= E Ciepim
=1

where p1,.. ., ps are the four roots of

EIp* — mw? + pA[—w? + 2Uiwp + U*p?] = 0 (3.8.4)
The four boundary conditions give four equations for C1,...,C4. These
are

w(x:O):0:>C'1+C’2+Cg+C4:O
ow
Ox
El—— (z = a) = 0 = C1peP2® + Cop3eP?® 4+ CapieP*® + CypiePt® = 0

o3
El—w( =a) = 0 = C1piel?® + OapieP?™ + Cspiels® + Cypi el = 0

ox3
(3.8.5)

(x=0)=0= Cip1 + Copz + C3p3 + Cyps = 0

Setting the determinant of coefficients of (3.8.5) equal to zero gives

1 1 1 1

_ p1 b2 b3 Y2
D = p%epla p%em“ pgema pﬁef”‘l“ =0 (3.8.6)

p?epla p%em“ pgepsa piema

fSections 2.5



158 A MODERN COURSE IN AEROELASTICITY

(3.8.6) is a transcendental equation for w which has no known analytical
solution. Numerical solution are obtained as follows. For a given pipe
at a given U one makes a guess for w (in general a complex number
with real and imaginary parts.) The pq,...,ps are then evaluated from
(3.8.4). D is evaluated from (3.8.6); in general it is not zero and one must
improve upon the original guess for w (iterate) until D is zero. A new
U is selected and the process repeated. For U = 0, the w will be purely
real and correspond to the natural frequencies of the pipe including the
virtual mass of the fluid. Hence, it is convenient to first set U = 0 and
then systematically increase it. A sketch of w vs U is shown below in
nondimensional form. These results are taken from a paper by Paidoussis
who has worked extensively on this problem. When the imaginary part
of wy becomes negative, flutter occurs. The nondimensional variables
used in presenting these results are (we have changed the notation from
Paidoussis with respect to frequency)

B=pA/(pA+m)
AU? 1
pgr)%e
Q= [(m—i—pA)/EI]%wa2

u =(

Also shown are the results obtained by a Galerkin procedure using
the natural modes of a cantilevered beam.

The stability boundary for this system may be presented in terms of
u and 3 as given in Figure 3.41. Also shown is the frequency, Qp, of the
flutter oscillation. These results have been verified experimentally by
Gregory and Paidoussis.” For a very readable historical and technical
review of this problem, see the paper by Paidoussis and Issid.! A similar
physical problem arises in nuclear reactor fuel bundles where one has a
pipe in an external flow. The work of Chen is particularly noteworthy.*
For an authoritative discussion of this class of phenomena, see the book
by Paidoussis [31].

(High speed) fluid flow over a flexible wall - a simple
prototype for plate or panel flutter

One type of flutter which becomes of considerable technological interest
with the advent of supersonic flight is called‘panel flutter’. Here the
concern is with a thin elastic plate or panel supported at its edge . For

*Gregory and Paidoussis [29]
Paidoussis and Issid [30]
fChen [31]
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4th mode

[33)

Figure 3.40a. The dimensionless complex frequency of the four lowest modes off the
system as a function of the dimensionless flow velocity for 8 = 0.200. —-, Exact
analysis —- four-mode approximation (Galerkin). Numbers on graph are values of u.

1

Figure 3.40b. The dimensionless complex frequency of the four lowest modes of the
system as a function of the dimensionless flow velocity for 5 = 0.295.

simplicity consider two dimensional motion. The physical situation is
sketched below.
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Figure 3.41. Flutter boundary for flexible pipe

DEFORMED ELASTIC

PLATE
I

FLAT ELASTIC
PLATE

Figure 3.42. Geometry of elastic plate

Over the top of the elastic plate, which is mounted flush in an oth-
erwise rigid wall, there is an airflow. The elastic bending of the plate
in the direction of the airflow (streamwise) is the essential difference be-
tween this type of flutter and classical flutter of an airfoil as exemplified
by the typical section. It is not our purpose to probe deeply into this
problem here; for a thorough treatment the reader is referred to Dowell.*

*Dowell [32]. Also see Bolotin [33]
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Figure 3.483. Geometry of rigid plates with hinges

We shall instead be content to consider a highly simplified model (some-
what analogous to the typical section model for airfoil flutter)which will
bring out some of the important features of this type of problem. Thus
we consider the alternative physical model shown in Figure3.42." Here
our model consists of three rigid plates each hinged at both ends. The
hinges between the first and second plates and also the second and third
plates are supported by springs. The plates have mass per unit length,
m, and are of length, [. At high supersonic Mach number, M >> 1, the
aerodynamic pressure change (perturbation) p, due to plate motion is
modelled by (see Chapter 4) a quasi-steady or quasi-static form

_ PeUs 0w
- My Oz

(3.8.7)

where w(z, t)g—;’ are deflection and slope of any one of the rigid plates.

To write the equations of motion for this physical model we must
recognize that there are two degrees of freedom. It is convenient to
choose as generalized coordinates, g1, qo, the vertical deflections of the
springs.

The potential energy of the model is then

1 1
U= 5l~cq% + 5l~cq§ (3.8.8)

TThis was suggested by Dr. H.M. Voss.
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The kinetic energy requires expression for w in terms of g; and g9 since
the mass is distributed. For each plate we have, in turn,

x ow
ate w Q1l, 97 q1/
Plate 2: w:ql[l_f}_i_qzr/l @ZQQ_Ql
l " Ox l
Plate 3: w = [1_5] ow _ —qa (3.8.9)
: = Q2 ik 97~ 1 8.

Because the plates are rigid, the slopes are constant within each plate.
x is measured from the front (leading) edge of each plate. The kinetic

energy is
1 ow\?

Using (3.8.9) in (3.8.10), we obtain after integration

2. . 2. .
P+ (2)d + Zdige] (3.8.11)

1 2
T = —ml[(Z)g
2ml[( )q 3 G

3

The virtual work done by the aerodynamic pressure is given by
oW = /(—p)éw dx (3.8.12)

and using (3.8.9) in (3.8.12) we obtain

W = Q10q1 + Q26q2 (3.8.13)
where
U2
Q1= _pMoo q2/2
U2
Q=02

Using Lagrange’s equations and (3.8.8), (3.8.11), (3.8.13) the equations
of motion are

2 . ml. U2
Smliy + iy + kqy + 2270, = 0
3 6 2M
L o (3.8.14)
ml .. . PocUZ,
"+ Smidy + kgy — =0
6Q1+3WQ2+ q2 oM Q1
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In the usual way we seek an eigenvalue solution to assess the stability of
the system, i.e., let

q1 = qlelm
g2 = quuut

then (3.8.14) becomes (in matrix notation)

k0 pcUZ [ 0 1 qret 0

2 00 ] —
[“ml[ }*{0 k]JFQMOO ~1 0 et 0
(3.8.15)
We seek nontrivial solutions by requiring the determinant of coefficients

to vanish which gives the following (nondimensional) equation after some
algebraic manipulation

(NN
OIS

15 4
- QP41+ M =0 3.8.16
36 3 thE ( )
where 2 02
0% = wm = P
k- A 2M ok
Solving (3.8.16) for Q2 we obtain
02 = g + %[1 — 15022 (3.8.17)

When the argument of the square root becomes negative, the solutions
for 2 becomes a pair of complex conjugates and hence one solution for
Q will have a negative imaginary part corresponding to unstable motion.
Hence, flutter will occur for

1

A2 >\ = = 8.1
>AF = 1E (3.8.18)

The frequency at this Ap is given by (3.8.17).

8712
o= ]

For reference the natural frequencies(A = 0) are from (77?).

=

6
0 = (5)% and Qs = (2)
From (3.8.15)(say the first of the equations) the eigenvector ratio may

be determined

1st Natural Mode:g =41 for Q=07 at A=0
q2
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Figure 3.44. Natural modes and flutter mode

2nd Natural Mode:g1 =—1 for Q=09 at A=0
q2

and at flutter :

Flutter Mode:%1 = 4+152 for Q= Qp, A=A
2
Sketches of the corresponding plate shapes are given below. The im-
portant features of this hinged rigid plate model which carry over to an
elastic plate are:

(1) The flutter mechanism is a convergence of natural frequencies
with increasing flow velocity. The flutter frequency is between the first
and second natural frequencies. In this respect it is similar to classical
bending-torsion flutter of an airfoil.

(2) The flutter mode shape shows a maximum nearer the rear edge of
the plate (rather than the front edge).

There are, of course, some oversimplifications in the rigid plate model.
For example, the plate length does not affect the flow velocity at which
flutter occurs. For an elastic plate, it would. Also in subsonic flow
the curvature of the plate has a strong influence on the aerodynamic
pressure. In the rigid plate model, the curvature is identically zero, of
course. Nevertheless the model serves a useful purpose in introducing
this type of flutter problem. For a review of the recent literature on
panel flutter, see Mei et al [34].



Dynamic Aeroelasticity (Dowell) 165

References for Chapter 3

1

10

11

12

13

Meirovitch, L., Methods of Analytical Dynamics, McGraw-Hill Book
Co., New York, 1970.

Bisplinghoff, R.L., Mar, J.W.and Pian, T.H.H., Statics of Deformable
Solids, Addison-Wesley, 1965.

Timoshenko, S.P. and Goodier, J.N., Theory of FElasticity, McGraw-
Hill, 1951.

Meirovitch, L., Elements of Vibration Analysis, McGraw-Hill, 1975.

Crandall, S. and Mark, W.D., Random Vibrations in Mechanical Sys-
tems, Academic Press, 1963.

Houbolt, J.C., Steiner, R. and Pratt, K.G., “Dynamic Response of
Airplanes to Atmospheric Turbulence Including Flight Data on Input
and Response”, NASA TR R-199 (June 1964)

Acum, W.E.A., The Comparison of Theory and Fxperiment of Oscil-
lating Wings, Vol. II, Chapter 10, AGARD Manual on Aeroelasticity.

Pines, S., An Elementary Explanation of the Flutter Mechanism,
Proceedings Nat.Specialists Meeting on Dynamics and Aeroelasticit,
Institute of the Aeronautical Sciences, Ft.Worth, Texas (November
1958)pp. 52-58.

Ashley, H. and Zartarian, G., Piston Theory-A New Aerodynamic
Tool for the Aeroelastician, J. Aero. Sci. Vol. 23, No. 12 (December
1956) pp. 1109-1118.

Sears, W.R.“Operational Methods in the Theory of Airfoils in Non-
uniform Motion”, J. of the Franklin Institute, Vol. 230,1940, pp.
95-111.

Jones, R.T., Properties of Low Aspect-Ratio Pointed Wing at Speed
Below and Above the Speed of Sound, NACA Report 835, 1946.

Dowell, E.H. and Widnall, S.E., “Generalized Aerodynamic Forces
on an Oscillating Cylindrical Shell: Subsonic and Supersonic Flow”,
AIAA Journal, Vol. 4, No. 4 (April 1966), pp. 607-610.

Widnall, S.E. and Dowell, E.H., “Aerodynamic Forces on an Oscil-
lating Cylindrical Duct with an Internal Flow”, J. Sound Vibration,
Vol. 1, No. 6(1967) pp. 113-127.



166 A MODERN COURSE IN AEROELASTICITY

14

15

16

17

18

19

20

21

22

23

24

25

26

Dowell, E.H., “Generalized Aerodynamic Forces on a Flexible Cylin-
drical Shell Undergoing Transient Motion”, Quarterly of Applied
Mathematics, Vol. 26, No. 3 (October 1968), pp. 343-353.

Hamming, R.W., Numerical Methods for Scientists and Engineers,
McGraw-Hill, 1973.

Houbolt, J.C., “A Recurrence Matrix Solution for the Dynamic Re-
sponse of Elastic Aircraft”, J. Aero. Sec., Vol. 17, No. 9 (September
1950), pp. 540-550.

Hausner, A., Analog and Analog/Hybrid Computer Programming,
Prentice-Hall, Inc. 1971.

Savant, C.J., Basic Feedback Control System Design, McGraw-Hill,
1958.

Garrick, I.LE. and Rubinow, S.L., “Flutter and Oscillating Air Force
Calculations for An Airfoil in a Two-Dimensional Supersonic Flow”,
NACA TR 846, 1946.

‘Hassig, H.J., “An Approximate True Damping Solution of the Flut-
ter Equation by Iteration”, J. Aircraft, Vol. 8, No. 11 (November
1971), pp.885-889

Eckhaus, W., “Theory of Transonic Aileron Buzz, Neglecting Viscous
Effects”, J. Aerospace Sciences, Vol. 29, No. 11 (November1971), pp.
712-718.

Landahl, M., Unsteady Transonic Flow, Pergamon Press, 1961.

Lambourne, N.C., Flutter in One Degree of Freedom, Vol. V., Chap-
ter 5, AGARD Manual on Aeroelasticity.

Abramson, H.N., “Hydroelasticity: A Review of Hydrofoil”, Applied
Mechanics Reviews, Vol. 22, No. 2, 1969, p. 115.

Crisp, J.D.C., “On the Hydrodynamic Flutter Anomaly” Noise,
Shock and Vibration Conference, Monash University, Melbourne,
Australia, 1974.

Stenton, T.E., “Turbulence Response Calculations for the XB-70 Air-
plane and Preliminary Comparison with Flight Data”, presented at
the Meeting on Aircraft Response to Turbulence, NASA Langley Re-
search Center, Sept. 24-25, 1968.



Dynamic Aeroelasticity (Dowell) 167

27

28

29

30

31

32

33

34

Weaver, D.S. and Paidoussis, M.P. , “On Collapse and Flutter Phe-
nomena in Thin Tubes Conveying Fluid”, J. of Sound Vibration, 50
(Jan 8, 1977), pp. 117-132.

Gregory, R.W. and Paidoussis, M.P., “Unstable Oscillation of Tubu-
lar Cantilevers Conveying Fluid. I. Theory. II. Experiments”. Proc.
of the Royal Society A Vol. 293, 1966, pp. 512-527, 528-542.

Paidoussis, M.P. and Issid, N.T., “Dynamic Instability of Pipes Con-
veying Fluid”, J. Sound and Vibration, Vol. 33, No. 3, 1974, pp.
267-294.

Chen, S.S., Vibration of Nuclear Fuel Bundles, Nuclear Engineering
Design, Vol. 35, 1975, pp. 399-422.

Paidoussis, M.P., Fluid-Structure Interactions: Slender Structures
and Axial Flow, Academic Press, 1998.

Dowell, E.H., Aeroelasticity of Plates and Shells, Noordhoff Interna-
tional Publishing, Leydenm The Netherlands, 1974.

Bolotin, V.V., Non-conservative Problems of the Elastic Theory of
Stability, Pergamon Press, 1963.

Mei, C., Abdel-Motagaly, K., and Chen, R.R., “Review of Nonlin-
ear Panel Flutter at Supersonic and Hypersonic Speeds,” Applied
Mechanics Reviews, Vol. 10, 1999, pp. 321-332.



Chapter 4

NONSTEADY AERODYNAMICS OF
LIFTING AND NON-LIFTING SURFACES

4.1. Basic Fluid Dynamic Equations

Nonsteady aerodynamics is the study of time dependent fluid motion
generated by (solid) bodies moving in a fluid. Normally (and as distinct
from classical acuostics) the body motion is composed of a (large) steady
motion, plus a (small) time dependent motion. In classical acoustics no
(large) steady motions are examined. On the other hand, it should be
said, in most of classical aerodynamic theory small time dependent mo-
tions are ignored, i.e. only small steady perturbations from the original
steady motion are usually examined. However in a number of problems
arising in aeroelasticity, such as a flutter and gust analysis, and also in
fluid generated noise, such as turbulent boundary layers and jet wakes,
the more general case must be attacked. It shall be our concern here.*
The basic assumptions about the nature of the fluid are that it be invis-
cid and its thermodynamic processes be isentropic. We shall first direct
our attention to a derivation of the Equations of motion, using the ap-
paratus of vector calculus and, of course, allowing for a large mean flow
velocity Let us recall some purely mathematical relationships developed
in the vector calculus. These are all variations of what is usually termed
Gauss’ theorem. T

I [[eridA= [[[VcadV

*References: Chapter 7, Liepmann [1]. Chapters 4, BA pp.70-81, Brief Review of Funda-
mentals; pp. 82-152, Catalog of available results with some historical perspective (1962).
Chapters 5,6,7, BAH, Detailed discussion of the then state-of-the art (1955) now largely of
interest to aficionados. Read pp.188-200 and compare with Chapter 4, BA. AGARD, Vol.,
II.

tHildebrand [2]

169
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11 ffl_)"ﬁdA:fffV-ng
T [[a(b-i)dA = [[la( +(b-V)ddv
Also
IV V(@ a@) =2@-V)a+2ax (Vxa) (V)

In the above, V is an arbitrary closed volume, A its surface area and @
and b are arbitrary vectors and ¢ an arbitrary scalar.

Conservation of mass

Consider an arbitrary but fixed volume of fluid, V', enclosed by a surface,
A. 7 is the (vector) fluid velocity, dA is the surface elemental area, 7
is the surface normal, ¢- 7 is the (scalar) velocity component normal
to surface, [[pg- 7 dA is the rate of mass flow (mass flux) through
surface, positive outward, 9/0t [[[ pdV is the rate of mass increase
inside volume and = [[[(9p/dt)dV since V, through arbitrary, is fixed.

The physical principle of continuity of mass states that the fluid in-
crease inside the volume = rate of mass flow into volume through the

surface. 5
/// Py = — //pq"-ﬁdA (4.1.1)

Using II, the area integral may be transformed to a volume integral.
(4.1.1) then reads:

o=
1] 25—

Since V is arbitrary, (4.1.2)

(4.1.2)

gt+v (pq) =0 (4.1.3)

This is the conservation of mass, differential equation in three dimen-
sions. Alternative forms are:

dp
3 TPV 7§+ (G- V)p=0
P (V) =0 (4.1.4)
Dt
where D 9
Dt~ o 1TV
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Conservation of momentum

The conservation or balance of momentum equation may be derived in

a similar way.
0
[ ] ] 5o

is the rate of momentum increase inside the volume

| [ vita-waa

is the rate of momentum flow (momentum flux) through surface, positive

outward
/ / —piidA

is the force acting on volume (recall 7 is positive outward)
The physical principal is that the total rate of change of momentum
= force acting on V.

/// p(DdV‘F//pqqndA // —pitdA  (4.1)

Using I and III to transform the area integrals and rearranging terms,

///{gt(f@ +pq(V - @) + (7 V)pg + Vp}rdV =0 (4.1.6)

Again because V is arbitrary,

%(p(f) +pd(V - Q)+ (7-V)pi=—Vp (4.1.7)

Alternative forms are

2 (o) + pd(V - @) =~V

or

D Dp
P e —i—cf[pV q+ Dt] —Vp (4.1.8)

where the bracketed term in (4.1.8) vanishes from (4.1.4).
Finally to complete our system of equations we have the isentropic

relation,
p/p”? = constant (4.1.9)

(4.1.3),(4.1.8) and (4.1.9) are five scalar equations (or two scalar plus
one vector equations) in five scalar unknowns: p,p and three scalar
components of the (vector) velocity, ¢
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Irrotational flow, Kelvin’s theorem and Bernoulli’s
equation

To solve these nonlinear, partial differential equations we must integrate
them. Generally, this is an impossible task except by numerical proce-
dures. However, there is one integration that may be preformed which
is both interesting theoretically and useful for application.

Consider the momentum equation which may be written

Dg _ —Vp
—1_ 4.1.10
Dt ( )
On the right-hand side, using Leibnitz’ Rule,” we may write
P
Vp _ v/ dp1 (4.1.11)
p pres PLP1)

where p1,p; are dummy integration variables, and p,.y some constant
reference pressure on the left-hand side

Dq _ 0q

-4 _ 72 ERVAYS

Dt =9 T V)

In the above the second term may be written as
(- V7= V(q;ﬂ from IV
and if we assume the flow is irrotational,

7=Vo¢ (4.1.12)

where ¢ is the scalar velocity potential. (4.1.12) implies and is implied
by
Vxq=0 (4.1.13)

The vanishing of the curl of velocity is a consequence of Kelvin’s Theorem
which states that a flow which is initially irrotational, V x § = 0, remains
so at all subsequent time in the absent of dissipation, e.g., viscosity or
shock waves. It can be proven using (4.1.3), (4.1.8) and (4.1.9). No
additional assumptions are needed.
Let us pause to prove this result. We shall begin with the momentum

equation.

Dg  Vp

Dt p

*Hildebrand [2], pp.348-353.
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First form V x and then dot the result into 74 dA and integrate over A.
74 is a unit normal to A and A itself is an arbitrary area of the fluid.
The result is

gt//(vXq-).q’AdA:—//[vX(vf)]-ﬁAdA

From Stokes Theorem,*

[ [ 2y taas - [
_ dp

A
dr = arc length along contour of the bounding arc of A. Since the
bounding contour is closed, and p is solely a function of p,

dp
p

D
Dt//(Vch’)-ﬁAdAzo

V X § = constant

=0

Hence

Since A is arbitrary

and if V x ¢ = 0 initially, it remains so thereafter.
Now let us return to the integration of the momentum equation,
(4.1.10). Collecting the several terms from (4.1.10) - (4.1.12), we have

) (Vo - Vo) P dpy
Vo) + vV VO Ly [T 4.1.14
2 o)+ v " (@114
o 96 V-V P4
G YOV o [ dny
at 2 Pref P1
o 00 V6-Vo [T d
D1
—_— 4+ — — = F(t 4.1.15
0, Yo " = o (4.1.15

We may evaluate F(t) by examining the fluid at some point where we
know its state. For example, if we are considering an aircraft or missile
flying at constant velocity through the atmosphere we know that far
away from the body

p= Usoi

*Hildebrand [2], p.318.
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If we choose as the lower limit, py.f = poo then (4.1.15) becomes

U2
0+?’°+0:F(t)

and we find that F' is a constant independent of space and time. Hence
finally

. P 2
9 Vo-Vo [T Us (4.1.16)

ot 2 Poo P1 2

(4.1.16) is usually referred to as Bernoulli’s equation although the deriva-
tion for nonsteady flow is due to Kelvin.
The practical value of Bernoulli’s equation is that it allows one to
relate p to ¢. Using
L Ly
Poo Poo
one may compute from (4.1.16) (the reader may do the computation)

Lo 6
P — Poo 2 =15 (T-d+2%) J(v—1)
Cc,= = 1 M*(1 — ————2d)|"/=H 1]
b= 2 = i T M ) )
(4.1.17)
where the Mach number is
U2
M2 = 2
a3
and
=P _p
dpp

a is the speed of sound

Derivation of a single equation for velocity potential
Most solutions are obtained by solving this equation
We shall begin with the conservation of mass equation (4.1.14)

10p q-Vp .
— P T = 4.14
p8t+ p +V-¢=0 ( )

Consider the first term. Using Leibnitz’ rule we way write

o [F o _opdpd [ im0 a1
ot J, »

. p Otdpdp

= a
o P Ot p
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Thus
10p 10 [P d;m 10,00 V¢-Vo
- === —_— == 4.1.1
pOt  a?ot /Oo 01 a28t[8t+ 2 5 ( 8
from Bernouilli’s equation (4.1.16)
In similar fashion, the second term may be written
- Vp _ —q-V 99 Vé-V¢
L— = —+ — 4.1.19
- o (4.1.19)
Finally, the third term
V-§=V-V¢=V% (4.1.20)

Collecting terms, and rearranging

2 .
{ahm (W’ W’>+v¢ 2 vo+vo. v<v¢ W)}

ot? 2 2

+V2p=0

2 110 ¢ Vo -Vo\]
v¢—a2[ (Vo - v¢)+6t2 +v¢-v<2>] =0

(4.1.21)

Note we have not yet accomplished what we set out to do, since (4.1.21)
is a single equation with fwo unknowns, ¢ and a. A second independent
relation between ¢ and a is needed.

The simplest method of obtaining this is to use

CL2

Sik

and

P = constant
p’Y

in Bernoulli’s equation. The reader may verify that

2 9 2 .
Lota 5 (28 Vo-Vo, (4.1.22)

ot 2
Small perturbation theory

(4.1.21) and (4.1.22) are often too difficult to solve. Hence a simpler
approximate theory is sought.
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As in acoustics we shall linearize about a uniform equilibrium state.
Assume

a4 =0 + a

P=Dtp

P = Poctp (4.1.23)
(=Usxi+q V¢=Usxi+Vo

¢ =Uxx —|—g§

Note in the present case we linearize about a uniform flow with velocity,
Uso. Using (4.1.23) in (4.1.21) and retraining lowest order terms:
First term:

Vi — V9
Second term:
d 92 Vo - Vo
5 (V0 Vo) + 55 4+ Ve V(= =5
o o O e o 0%
=2Uscl + V4] - 5 [Uscl + V6] + 5
— ~ 2 — ~ ~ ~
+ [Usol + V] - V[U?°O + Ul - Vo + %qu - Vo)
27 27 27
o1, T L 0O @+0($Z)

Coxot = Ot? 0z
Thus the linear or small perturbation equation becomes
-1 ,0% 029 0%¢
V2 — — = +2U, Uz
0= g T W + Uy
Note that we have replaced a by a., which is correct to lowest order. By
examining (4.1.22) one may show that

]=0 (4.1.24)

¢ ¢
Y= 1 [(‘Ti) + Uooaii)]
2 oo

a=— (4.1.25)
Hence it is indeed consistent to replace a by as.as long as M is not too
large where M = Uy /aoo-

In a similar fashion the relationship between pressure and velocity
potential, (4.1.17), may be linearized

P 2 96 2 06

% Dl T Unos UZ Ot
or . R
0 0
p= _poo[ﬁ‘i‘Uooﬁ] (4'1'26)

ot ox
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Reduction to classical acoustics

By making a transformation of coordinates to a system at rest with
respect to the fluid, we may formally reduce the problem to that of
classical acoustics.

Define
=2 — Ut
Yy =y
2=z
=t
then
o _ 9
oxr Oz

9 _09 o9

dr Ot dx' = Ot O’
o 0

= Ui T or

and (4.1.24) becomes the classical wave equation

s 1 0%
2 _— =
V- g =0 (4.1.27)
and (4.1.26) becomes
o, 09
b= pooat,

The general solution to (4.1.27) is
(;AS = flax’ + By + €2’ + asot’) + glax’ + By + €2’ — ast’)

where
o2 + ﬁz Lo

Unfortunately the above solution is not very useful, nor is the primed
coordinate system, is it is difficult to satisfy the boundary conditions
on the moving body in a coordinate system at rest with respect to the
air (and hence moving with respect to the body). That is, obtaining
solutions of (4.1.24) or (4.1.27)is not especially difficult per se. It is
obtaining solutions subject to the boundary conditions of interest which
is challenging.
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F(x+a x, y+ay, z4a z, t+a t)=0

Figure 4.1. Body geometry

Boundary conditions

We shall need to consider boundary conditions of various types and also
certain continuity conditions as well. In general we shall see that, at
least in the small perturbation theory, it is the boundary conditions,
rather than the equation of motions per se, which offer the principal
difficulty.

The BODY BOUNDARY CONDITION states the normal velocity of
the fluid at the body surface equals the normal velocity of the body.

Consider a body whose surface is described by F(z,y,z,t) = 0 at
some time, ¢, and at some later time, t + At, by F(z + Az,y + Ay, z +
Az, t+ At) = 0. See Figure 4.1 Now

AF = F(F+ A7t + At) — F(7t) = 0

and also
oF OF OF OF
AF =--'A ---A --A A
i M L M T
L, OF
—VF'AT—l—faft—At
Thus

F
VF - A7+ %tw =0 (4.1.28)
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Now o
7 = 7= unit normal (4.1.29)

also .

Ar
= lim — = loci
V Aim, Al body velocity

Thus the body normal velocity is

V7= AT VFE
At |VF
oF 1

=———— 1 4.1.2
o VE rom( 8)

(4.1.30)

The boundary condition on the body is, as stated before, the normal
fluid velocity equals the normal body velocity on the body. Thus, using
(4.1.28) and (4.1.29) one has

VF oF 1
7 =0 — = —— —— 4.1.31
CN=AgE T T ot [VE (4.1.31)
or OF
4 g VF = 4.1.32
D +q-V 0 (4.1.32)
on the body surface
F=0
Ezample.  Planar (airfoil) surface

F(z,y,z,t) =z — f(x,y,t)

where f is the height above the plane, z = 0, of the airfoil surface. See
Figure 4.2. (4.1.32) may be written:

of of , of ., -

fa+[(Uoo+u)z+v]+wkr]- f%zfa—ythk‘ =0
. of of o
E%—(Uw—i-u)%—i-va—y =w (4.1.33)
on
z = f(z,y,t) (4.1.34)

One may approximate (4.1.33) and (4.1.34) using the concept of a Taylor
series about z = 0 and noting that u < Ux.
of of

9 Ly 9 _ 4.1,
8t+U 5 — W on 2 0 (4.1.35)
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UPPER SURFACE OF

/AIRFOIL

Z|

/
LOWER SURFACE OF AIRFOIL

Figure 4.2.  Airfoil geometry.

Note

ow
e -— H.O.T.
Wa=f = Wae=0 + 0z z:Of +HO

>~ Wy=0

to a consistent approximation within the context of small perturbation
theory.

Symmetry and anti-symmetry

One of the several advantages of linearization is the ability to divide the
aerodynamic problem into two distinct cases, symmetrical (thickness)
and anti-symmetrical (lifting) flow. If one denotes the upper surface by

fupper = zu(7,y,1)

and the lower surface by

flOWGI‘ = Zl(-T, Y, t)

then it is useful to write
Zu = 2t + 21, (4.1.36)

Z=—2n+ 2L

where (4.1.36) defines z;, thickness, and zp, lifting contributions to z,
and z;.

One may retreat the thickness and lifting cases separately (due to
linearity) and superimpose their results for any z, and z;. The thickness
case is much simpler than the lifting case as we shall see.
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Recall (4.1.35), (we henceforward drop the " on ¢, p)

of of 9
ot T U%8: = 92 |0t oro- (4.1.35)

where + denotes the upper surface and - denotes the lower. From (4.1.35)
and (4.1.36), one sees that

Thickness case

99 is anti-symmetric with respect to z (discontinuous across airfoil)

0z

hence ¢ is symmetric (and also p).
Lifting case

9 is symmetric with respect to z (continuous across airfoil)
z
hence ¢ is anti-symmetric (and also p).

Consider now the pressure difference across the airfoil.

AP aAﬂ

Ap=p;—pu=—p [(‘%—I—Uooax

Thus Ap = 0 for the thickness case, i.e., there is no lift on the airfoil.

The OFF-BODY BOUNDARY CONDITIONS (these are really con-
tinuity conditions), state that p and ¢ 7 are continuous across any fluid
surface. In particular, for z = 0,

o9 99

= d —| = 4.1.37
Pu=pr alC 5.~ 8zl ( )
(4.1.37) may be used to prove some interesting results.
Thickness case 9
a—f =0 off wing
This follows from the fact that since 0¢/0z is anti-symmetric, one has
99| _ _99
dzlo+  0Ozlo-
But from the second of (4.1.37), this can only be true if
o0 _ o0 _,
Ozlo+  Ozlo-
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Lifting case
p=0 off wing

This follows in a similar way using the anti-symmetry of p and the first
of (4.1.37).

The BOUNDARY CONDITIONS AT INFINITY are conditions of
finiteness or outwardly propagating waves (Sommerfeld radiation condi-
tion) which will be imposed at infinity, z — +o0.

4.2. Supersonic Flow

It is convenient to distinguish between various flow regimes on the
basis of geometry (two or three dimensions) and Mach number (sub-
sonic or supersonic). We shall not give a historical development, but
shall instead begin with the simplest regime and proceed to the more
difficult problems. Our main focus will be the determination of pressure
distributions on airfoils and wings.

Two-dimensional flow

This flow regime™ is the simplest as the fluid ahead of the body remains
undisturbed and that behind the body does not influence the pressure
distribution on the body. These results follow from the mathematics,
but they also can be seen from reasonably simple physical considera-
tions. Take a body moving with velocity, U, through a fluid whose
undisturbed speed of sound is ae, Where M = Uy /as > 1. At any
point in the fluid disturbed by the passage of the body, disturbances
will propagate to the right with velocity, +a~, and to the left, —a
with respect to the fluid. That is, as viewed in the prime coordinate
system. The corresponding propagation velocities as seen with respect
to the body or airfoil will be:

Uso — s and Uy + aoo

Note these are both positive, hence the fluid ahead of the airfoil is never
disturbed; also disturbance behind the airfoil never reach the body. For
subsonic flow, M < 1, the situation is more complicated. Even for
three-dimensional, supersonic flow one must consider possible effects of
disturbances off the side edges in the third dimension. Hence the two-
dimensional, supersonic problems offers considerable simplification.
One of the consequences of the simplicity, as we will see, is that no
distinction between thickness and lifting cases need be made as far as

*See van der Vooren [3]
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the mathematics is concerned. Hence the body boundary conditions is
(considering z > 0)

1oJ0) 0z 0z

— =— 4+ Usp——=w 4.2.1

9zl:m0 Bt < (4.2.1)
where one may use the notation z, = f interchangeably and the equation
of fluid motion is

s , 1.0 9
Vit = o lg t Uy

[e.e]

¢ =0 (4.2.2)

Simple harmonic motion of the airfoil

Most of the available literature is for simple harmonic motion, that is:
iwt

Wwe = Wa(x)e™

_ . (4.2.3)
= p(x, )™
— —( ) wt
Hence we shall consider this case first. Thus (4.2.1) becomes:
99 gt _ il (4.2.4)
0z
and (4.2.2)
S g L ag g 06 0 070
T zz T T o T 2 00 a 4.2.
Gzz + ¢ aQ[ w ¢ + 2iwl, 8x+U°°8m2] 0 (4.2.5)

o0

Since ¢, 0¢/0x, etc., are zero for x < 0, this suggests the possibility of
using a Laplace Transform with respect to z, i.e.,

O(p,2) = L{¢} = / pe P dx (4.2.6)
0
W(p) = L{w,} = / wee Prdx (4.2.7)
0
Taking a transform of (4.2.4) and (4.2.5) gives:
dd
— =W 4.2.8
dz |z=0 ( )
d*®
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where
2
WP = (M2 - 1)p? Mt 2
oo Q5
iMw w?
— (M2 —1 2
( HIp+ aoo(MQ—l)] + ago(M2—1)2}

Note M = U /a0 (4.2.8) and (4.2.9) are now equations we can solve.
The solution to (4.2.9) is

® = Aet* + Be ™ H* (4.2.10)
Select A = 0 to keep @ finite as z — +o0o. Hence
b = Be M
where B can be determined using (4.2.8). From the above,

dd
o= —uB
dz| 0 1

Using this result and (4.2.8), one has

—uB =W
or
B=-W/u
and hence
D= —(W/p)e = (4.2.11)
Inverting (4.2.11), using the convolution theorem,
N z . oMz
o== wa(§)L™H . }dg (4.2.12)

and, in particular,

B,z =0) = /0 ' D)L, )

From H. Bateman, ‘Table of Integral Transforms’, McGraw-Hill, 1954
1 1
LT H{———=1} = Jo(ax)

N/

LHF(p+a)}=e"{(z)
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where L~ F(p)} = f(z). Thus

p[_%@ - &) w

aoo(M? — 1)

£ - - (c-0) (4213)

L7{eH*/u} may be computed by similar methods. In nondimensional
terms,

*

_ 2b z w
P(z",0) = / w(&") exp[—id(x* — &)]Jo[= (2" — £7)]dE”
(M2 —1)2 Jo M
(4.2.14)
where
kM2 2w,
W= Tm T k= @IS a reduced frequency and
¥ =x/2b, £ =E/2b
One can now use Bernoulli’s equation to compute p
0¢ 0¢
= T Pool ™, Uooi
P=—poolz; + Uy ]
or 96
5 o . 7 Uwi
P = —pufiwd + Voo ]
. PooUso (9(;3 T
2 [(%U* + ko]
Using Leibnitz’ rule,
U2, = g 1 dw, . i}
e d § T S AR
(M2 1)z Jo  Uso Usodf (4.2.15)
w(0) e @,
+ U(O:e wr Jo[M.I 1}

Discussion of inversion

The above inversion was something less than rigorous and, what is more
important, in at least one substantial aspect it was misleading. Let us
reconsider it, therefore, now that the general outline of the analysis is
clear.

Formally the inversion formula reads:

bz, 2) = 217”/ O (p, z)eP*dp (4.2.16)

—100
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Define a@ = ip, (a can be thought of as a Fourier transform variable),
then

_ 1 [ .
oz, 2) = / O(—ia, z)e " “da (4.2.17)
2 J_
and
Mw w?
=/ M2 —14/—[— 2
' \/ o T anr-y
where W
O =4—etH? (4.2.18)
7
Consider now p as « = —oo0 — +00. The quantity under the radical
changes sign at
w 1

a = aq, OQ:@Mj:l

where p = 0. Thus

p=*xilp| for a<a; or a>ay

=24l for a1 <a<a

where

MU) ]2 w2 1

’M’ = (M2_ 1) - [_a+ aoo(MZ_l) + ago(]\42_1)2’5

In the interval, a3 < a < ag, we have seen we must select the minus
sign so that @ is finite at infinity. What about elsewhere? In particular,
when a < oy and/or o > as?
The solution for ¢ = ¢e*“t has the form
1 [~ W . .
p=—— +—exp(fuz — iax + iwt)da (4.2.19)
2 o M

In the intervals a < a3 and/or a > a9, (4.2.19) reads:

1 [e.e]

= iiKexp(iiMz — tax + iwt)do (4.2.20)

21 ) ool
To determine the proper sign, we require that solution represent an
outgoing wave in the fluid fixed coordinate system, i.e., in the prime
system. In the prime system ' =z — Uxot, 2’ = 2, t/ =t and thus

1 oo
b= 5 / :tir[iexp[:lzi|u|z/ —iar’ +i(w — Usa)t']da (4.2.21)
Tl
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e ilM|Z

187

Consider a z’,t’ wave for fixed 2’. For a wave to be outgoing, if w—Us.ax >
0 then one must choose - sign while if w — U < 0 then choose + sign.

Note that
w—Ugxpa=0
when
w w
A=Q3 = --- = -----
3 Usw aooM
also note that
w w

——————————— = <oaz3<ay=---;-----
oo (M £ 1) 1 3 2

Thus the signs are chosen as sketched below. Here again

w 1 w 1 w 1

oAl = -~~~ ---- g = ~---—----- oz = -----
oo M —1 Ao M

The reader may find it of interest to consider the subsonic case, M < 1,

using similar reasoning.

Knowing the appropriate choice for i in the several intervals, (4.2.19)-
(4.2.21) may be integrated numerically, or by contour integration. The
inversion formula used previously were obtained by contour integration.

Discussion of physical significance of the results

Because of the complicated mathematical form of our solution, it is dif-
ficult to understand its physical significance. Perhaps it is most helpful

for this purpose to consider the limits of low and high frequency.
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One may show that (from (4.2.11) et. seq. or (4.2.15))*
w — 0: steady flow

pooUgo Wq, . pooUgo wa(lﬂ - /62)

p(z) — ﬁﬁ(ﬂﬁ)ap(%@ -3 U

Wq af
- =vM2-1
Uso ox b
w — o0: highly unsteady flow
pooUgo wq (7, t) PooUgo Wq
Foot oo Wams 7)) - A M
p('r7t)_> M UOO 7p(x?z7t) M Uoo(x z? t)

we 19f 9f

Ue U0t oz

The latter result may be written as

P = PoolocWq

which is the pressure on a piston in a long, narrow (one-dimensional)
tube with w the velocity of the piston. It is, therefore, termed ‘piston
theory’ for obvious reasons. Note that in the limits of low and high fre-
quency the pressure at point z depends only upon the downwash at the
same point. For arbitrary w, the pressure a one point depends in general
upon the downwash at all other points. See (4.2.15). Hence the flow has
a simpler behavior in the limits of small and large w than for interme-
diate w. Also recall that low and high frequency may be interpreted
in the time domain for transient motion as long and short time respec-
tively. This follows from the initial and final value Laplace Transform
theorems.* For example, if we consider a motion which corresponds to
a step change in angle of attack, o, we have

f=—za for t>0
=0 for t<0

we,=—« for t>0

We/Uso =0 for t<0

*See the appropriate example problem in Appendix II for details.
*Hildebrand [2].
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Hence for short time, (large w)

—p U2
p= PR} %
and long time, (small w)
b= —pocU2
M? -1

The result for short time may also be deduced by applying a Laplace
Transform with respect to time and taking the limit ¢ — 0 of the formal
inversion.

General comments. A few general comments should be made about the
solution. First of all, the solution has been obtained for simple harmonic
motion. In principle, the solution for arbitrary time dependent motion
may be obtained via Fourier superposition of the simple harmonic mo-
tion result. Actually it is more efficient to use a Laplace Transform with
respect to time and invert the time variable prior to inverting the spatial
variable, z. Secondly, with regard to the distinction between the lifting
and thickness cases, one can easily show by direct calculation and using
the method applied previously that

thickness z=0" w = w, p= p+

2=0" w=-w, p=p"

lifting z=0" w=w, p=p"
2=0" w=w, p=-p"

where p* is the solution previously obtained. Of course these results

also follow from our earlier general discussion of boundary conditions.

Gusts

Finally it is of interest to consider how aerodynamic pressures develop
on a body moving through a nonuniform flow, i.e., a ‘gust’. If the body is
motionless, the body boundary condition is that the total fluid velocity
be zero on the body.

0¢

wg =0
0z 12=0 twe

where wg is the specified vertical ‘gust’ velocity and d¢/0z is the per-
turbation fluid velocity resulting from the body passing through the gust

field. Hence in our previous development we may replace w by - wgand
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the same analysis then applies. Frequently one assumes that the gust
field is ‘frozen’, i.e., fixed with respect to the fluid fixed coordinates,
2.y, 2, t'. Hence

we = we(@',y)

= ’U)G(CL’ - Uoota y)

Further a special case is a ‘sharp edge’ gust for which one simply has

wg=wy for ' <0

=0 for 2'>0

or

wg=wy for t>uz/Ux

=0 for t<z/Usx

These special assumptions are frequently used in applications.

Solutions for the sharp edge gust can be obtained through superpo-
sition of (simple harmonic motion)sinusoidal gusts. However, it is more
efficient to use methods developed for transient motion. Hence before
turning to three-dimensional supersonic flow, we consider transient mo-
tion. Transient solutions can be obtained directly (in contrast to Fourier
superposition of simple harmonic motion results) for a two-dimensional,
supersonic flow.

Transient motion

Taking a Laplace transform with respect to time and a Fourier transform
with respect to the streamwise coordinate, x, the analog of (4.2.11) is

LFw,

LF{¢}at =0 = — (4.2.22)

iw = s is the Laplace Transform variable (where w was the frequency in
the simple harmonic motion result), « is the Fourier transform variable
(where iac = p was the Laplace transform variable used in the previous
simple harmonic motion result), £ = Laplace transform , F' = Fourier
transform, and
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Inverting the Laplace Transform, and using * to denote a Fourier trans-
form

t
N N 1.1
N / W (D)LY o dr
0 H

= —aeo / w* (1) exp[—taMaco (t — 7)|Jo|acocx(t — T)]dT

- (4.2.23)

Now from (4.1.26),
* 9¢* L
p —-—pa>[;i-+0&ﬂa¢}

Thus using (4.2.23) and the above,

P* = poo 3 asow™ (t) — a2 t w*(7)aexp[—iaM ass (t — 7)1 [ttoo (£ — T)]dT
{ / }

=po+n
(4.2.24)
Finally, a formal solution is obtained using
p= L[~ preda (4.2.25)
2 J_

The lift is obtained by using (4.2.24) and (4.2.25) in its definition below.

2b 2b 1 00 eiaQb -1
LE—Q/ pdx:—2pooaoo/ wd:c—/ Pl [] do
0 0 T J oo 1e

(4.2.26)
In the second term the integration over x has been carried out explicitly.

Lift, due to airfoil motion

Considering a translating airfoil, w, = —dh/dt, for example, we have
. dh [e—ia2b _ 1]
w'=—-——
dt —ix
and
dh
L= 2pooaooa(2b)
(4.2.27)
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—

Figure 4.3. Frozen gust geometry in fluid fixed coordinate system.

where

Kit—71)=—— 7)] Ji[e % — 1][e"%2° _ 1]da

T J_ e

1 /°° exp|—iaMax (t —

K may be simplified to
4 /Oo J1]acca(t — 7)) coslaMax(t — 7))
0

Kit—71)=—— -

- [1 — cos a2b]da
™

One can similarly work out areodynamic lift (and moment) for pitching
and other motions.

Lift, due to atmospheric gust
For a ‘frozen gust’,
wa(z — Usot) = wa(x')

x, t are coordinates fixed with respect to airfoil and 2/, ¢’ are coordinates
fixed with respect to atmosphere. At t =t = 0 the airfoil enters the gust;
the boundary condition is w,+wg = 0 or w, = —wg on airfoil. See figure
4.3. Short and long time correspond to high and low frequency; hence
it is of interest to use our previously developed approximate theories for
these limits. Subsequently we treat the full transient case.

(i) Piston Theory (short ¢) on the upper and lower airfoil surfaces

Pyt = —PloclooWq

and
Pl = +PoolooWa
Thus

L(t) = / (71 - pu)de

2b
= 2pooaoo/ wg(x — Usot)dx
0
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For simplicity, we first consider a sharp edge gust.
Let
wg=wy for ' <0 or x<Ut, t>z/Usx
=0 for >0 or z>Ut, t<z/Usx
Thus

Uso
L(t) = praoowo/ dz
0

2b
= 200000oWoUxt for t< i (4.2.28)

[e.9]

2b
= 20000owo2b for t > —
Uso

(ii) Static Theory (large t)

2pooUo20 Wo /2b dr — 4bpooaoow0M
vVM? —1Ux M2 -1
(iii) Full Transient Theory from (4.2.24),

L(t) = (4.2.29)

D = Poolloo|Wa (T, 1) —aOO/O aw (o, 7)e (- )dr] (4.2.24)

Special case. Sharp Edge Gust

we = —wWag(x — Ust) = —wy  for x < Uxt
=0 for z> Uyt

Thus

wi(a,T) = —/ e ez — Usor)dx

Using the above and (4.2.24),

aoowO

P = Pooloo|~wa (T — Uset) —

/ / _WUOO e"OJi()dre ™ da] (4.2.30)
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Again one may proceed further by computing the lift.

L:2pooaoow0 Ust, for Uxt < 2b
for Usot > 2b

2b
a3 “’0 / / / -drdadz

Integrating over x first, and introducing non-dimensional notation

tUso "
SE% o = a2b
TUso

- 2b

one obtains

L wy | s 1 8
—_— = — | = - —= F d 4.2.31
2 U220~ T {M M2/0 (s, 0) a} (4.2.31)

where

da*

W,1 [ [—cosa’s+cosa*(1 — s)]Ji[a E2]
R0 =y | = B

General case. Arbitrary Frozen Gust

oo .
wi (o, 7) = / e "“wg(r — UsoT)dx

—00

Ur ]
= —/ e " “Ywg(x — UseT)dx

—00

Let o' = v — Uxot, do’ = dx, then

0

* —iaUooT —iox’ / /

wy = —e Ao / e wg(x")dx
— 0o

_ianTwE(Oé)

= —e
Using above in (4.2.24), the pressure is
P = Pooloo[—wa (7 — Usct)

[e%e) t
+ aoo/ wéae*iaUmTe*()Jl( )dTe " dal
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and the lift,

2b
L :2pooaoo/ wag(x — Usot)dx
0

9 o 2 2b 0 t
_paw/ / /-.-drdozda:
27 0 —00 J0

Integrating over x first,

L 2 wa/Us dz 1 [*
—_— = _— - F d 4.2.32
2000 UZ,2b /0 M 20 M2 /0 (s, 0)do (4.2.32)
where now
1 > * * * Oé*(S — G)
F(s,0)=— {Wi{cos[a*(1 — s)] — cosa™s}J [ ——]
m™Jo M
+ Wr{sin[a™ (1 — s)] + sin a*s}Jl[a((j\/[_U)}}da*
and .
W
 Ux2b

For an alternative approach to transient motion which makes use of
an analogy between two-dimensional time dependent motion and three-
dimensional steady motion, the reader may consult Lomax [4].

This completes our development for two-dimensional, supersonic flow.
We now have the capability for determining the aerodynamic pressures
necessary for flutter, gust and even, in principle, acoustic analyses for
this type of flow. For the latter the pressure in the ‘far field’ (large z)
is usually of interest. Now let us consider similar analyses for three-
dimensional, supersonic flow *.

Three dimensional flow

We shall now add the third dimension to our analysis. As we shall see
there is no essential complication with respect to solving the govern-
ing differential equation; the principal difficulty arises with respect to
satisfying all of the relevant boundary conditions.

The convected wave equation reads in three spatial dimensions and

time o2
+ U2 ¢

2, L 0% ¢ _
V2 ago[ﬁtz +2Wso 5. + U 55] = 0 (4.2.33)

*References: BA, pp. 134-139; Landahl and Stark [5], Watkins [6].
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As before we assume simple harmonic time dependance.

¢ = d(z,y,2)e™!
Further taking a Laplace transform with respect to x, gives

0?’d 0%
a2+ WP T (4.2.34)

where -
b=Lp= / de Py
0
wM w ]
aoo(M? — 1) a?(M? —1)2

To reduce (4.2.33) to an ordinary differential equation in z, we take
a Fourier transform with respect to y. Why would a Laplace transform
be inappropriate? The result is:

2
p=vM —1[p+ )2+ 2

d> o .
5 = (12 ++2)® (4.2.35)

where ~
P* = Fd = / Pe~ M dy

—0o0

The solution to (4.2.34) is
®* = Aexp[+(p? +12)22] + Bexp|— (i ++7)22]

Selecting the appropriate solution for finiteness and/or radiation as z —
400, we have

&* = Bexp|— (12 +12)22] (4.2.36)
Applying the body boundary condition (as transformed)
dd*
= W* 4.2.37
dzr |z=0 ( )

we have from (4.2.36) and (4.2.37)

W*
B=— 5
(1% +~2)2
and hence
. W
z=0 — —



Nonsteady Aerodynamics (Dowell) 197

Using the convolution theorem
1
¢(z,y,z=0) / / we(&,n)L L£tpt 7d§d77 (4.2.38)
(n?+72)2

Now let us consider the transform inversions, The Laplace inversion is
essentially the same as for the two-dimensional case.

iMwx

1 exp|— G ) w? 2
—1 Qoo (M?—1) Y 1
= Ji
47 =1 lazar— e tar oY
To perform the Fourier inversion, we write
FHL M ———=1}}
(n?+177)2
iMwz 1
exp[—%] & w? 72 2 i
= ol e a2t ar z | eMVdy
oA -1 )\l =12 T 1)
expl- Mg ] o
= = Jo(++) cosyy d
— /0 o(---) cosyy dy

where the last line follows from the evenness of the integrand with respect
to v. The integral has been evaluated in Bateman, [7], p. 55.

.’L’2 1 w ZIL‘Q 1
Jo(+++) cos dvy = [——— — y?]2 cos — )2
|t yeos qyay = [~ o o GE !
for |y| < x
or
Y M?—1
A
:0 fOI' >
> s

Thus finally

_ 1
IE 1{ - - l}
(1% +~2)2
iMw @ ( 2 2)%]
1exp[ oo (M2 — 1)] (M2 1)1 =1 Y
y Cos = -
T M —1 [M2 1 Y ]2
x
for
< m—
T
=0 for >
>
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Using the above in (4.2.37) and nondimensionalizing by s = wing semi-
span and b = reference semi-chord,

o(a", ¥, 2 =0)

—8 s* y*+(2b/8)(l‘*—£*)/ﬁ " N . N " COSLT* " "
S / / o, 7°) expl—io(a* — €))L de*

0 Jy*—(2b/s)(z*—€*)/B r
(4.2.39)

(NI

r* [(CC* o 5*)2 o 52(%)2(y* o n*)2]
G= -1
& =x/2b,6/2b y*.n* =vy/s,n/s
L% kM

w

Uso’ (M2 —1)

k

If w is known everywhere in the region of integration then (4.2.39) is a
solution to our problem. Unfortunately, in many cases of interest, w, is
unknown over some portion of the region of interest. Recall that w, is

really %] »—0- In general this vertical fluid velocity is unknown off the
wing. There are three principal exceptions to this:

(1) If we are dealing with a thickness problem then %‘zZO = 0 every-
where off the wing and no further analysis is required.

(2) Certain wing geometries above a certain Mach number will have
undisturbed flow off the wing even in the lifting case. For these so-called
‘supersonic planforms’, %b:o = 0 off wing as well.

(3) Even in the most general case, there will be no disturbance to the
flow ahead of the rearward facing Mach lines, n = ££//3, which originate
at the leading most point of the lifting surface.

To make case (2) more explicit and in order to discuss what must
be done for those cases where the flow off the wing is disturbed, let us
consider the following figure; Figure 4.4. Referring first to case (2), we
see that if the slopes of the forward facing Mach lines (integration limits
of (4.2.39)) and the rearward facing Mach lines

nzyi(xgg) and 7 ==£¢/pB

are sufficiently small, i.e., ]%] — 0, then the regions where w, is un-
known, will vanish. This is what we mean by a ‘supersonic planform’.
The mathematical problem for these planforms is essentially the same
as for a ‘thickness problem’ whether or not lift is being produced.
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N=y+(&x- £)/B
yn

n=£/B

. W KNOWN, () UNKNOWN
W, UNKNOWN —_

IR

2

NOWN

=

n=y-&- &)JB

Figure 4.4. Lifting surface geometry. A representative delta wing is shown.

Finally let us consider the most difficult case where we have mixed
boundary condition problems. In general analytical solutions are not
possible and we resort to numerical methods. Omne such is the ‘box’
method. In this approach, the integral equation (4.2.39) is approximated
by differences and sums, i.e.,

(], s K L T * %
QS((LZJ) =2 ZA(ij)(kl)W (4.2.40)

k=1 I=1
where

1 e C08 %7’*1“ ED) o s
A(ij)(kl) = T eXP[—W(UCi - §k)]MAf An'
ij



200 A MODERN COURSE IN AEROELASTICITY

and
* _ * * S * * 1
o = (x5 = &0)% = 52(27))2(.% — )%
AL*, An* = dimensions of aerodynamic box

Aijykty aerodynamic influence coefficients; the velocity potential at point,

ij,due to a unit ‘downwash’, w,, at point kl

Equation (4.2.40) can be written in matrix notation as:

N [ [ B

The system of linear equation may be separated as follows:

(;5(N1 X 1) Ay ’ Ao ’Lf)a(Nl X 1)
unknown (N1x N1) | (N2xN1) known
_ — _ + _ _
P(N2 x 1) As y Ay Wa(N2 x 1)
known (N1x N2) | (N2xN2) unknown
(4.2.42)
where

N1 number of boxes where 1, is known, and ¢ is unknown (on wing)

N2 number of boxes where 1, is unknown, and ¢ is known (on wing)

Using last N2 equations of (4.2.42)

{éknown} = [A3]{waknown} + [A4]{waunknown} (4243)

Solving for @ _ 1.1 own

{@,unknown?t = [A4]_1{{¢_5known} — [AsH{@, kpown

— A As{w (1244)

aknown }

where we have noted that ¢y, = 0. Using (4.2.44) in the first N1
equations of (4.2.42),

{éunknown} = [Al]{waknown} + [AQ]{waunknown}

— [[A4] — [Ao)[Ad [ As]) @ (42.45)

aknown }

Computer programs have been written to preform the various compu-
tations.* Also it should be pointed out that in the evaluations of the

*Many Authors, Oslo AGARD Symposium [8].



Nonsteady Aerodynamics (Dowell) 201

‘aerodynamic’ influence coefficients it is essential to account for the sin-
gular nature of the integrand along the Mach lines. This requires an
analytical integration of (4.2.39) over each box with w assumed con-
stant and taken outside the integral.

Extensions to this technique have been made to include more compli-
cated geometries, e.g., nonplanar and multiple surfaces,*and also efforts
have been made to include other physical effects.

4.3. Subsonic Flow

Subsonic flow?! is generally a more difficult problem area since all
parts of the flow are disturbed due to the motion of the airfoil. To
counter this difficulty an inverse method of solution has been evolved,
the so-called ‘Kernel Function’ approach. To provide continuity with
our previous development we shall formulate and solve the problem in
a formal way through the use of Fourier Transforms. Historically, how-
ever, other methods were used. These will be discussed after we have
obtained our formal solution. To avoid repetition, we shall treat the
three-dimensional problem straight away.

Bernoulli’s equation reads:

9¢ 9¢
poo[@t + Uso 83:] (4.3.1)
It will prove convenient to use this relationship to formulate our solution
in term of pressure directly rather than velocity potential.

Derivation of the integral equation by transform
methods and solution by collocation

As before we will use the transform calculus. Since there is no limited
range of influence in subsonic flow we employ Fourier transforms with
respect to z and y. We shall also assume, as before, simple harmonic
time dependent motion. Thus

¢ = d(z,y,2)e™! (4.3.2)

and transformed

O* = /OO /d_)(:v,y, z) exp(—iax — ivy)dx dy (4.3.3)

*Many Authors, Oslo AGARD Symposium [8].
fLandahl and Ashley [9].
fBA, pp. 125-133; Ladahl and Stark, [5], Williams[10].
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Hence (4.3.1) may be transformed
P* = —pliw + Uxia]®* (4.3.4)

where

p=p(z,y,2)e™"

/ /p exp(—iax — iyy)dz dy (4.3.5)

As in supersonic flow we may relate the (transformed) velocity potential
to the (transformed) ‘upwash’ (see(4.2.26)et. seq.)

* W
oo = ———— (4.3.6)
(12 +92)2
Substituting (4.3.6) into (4.3.4),
P* f— pOO [Zw + UOOZ?:I
(u? +72)2
or )
V_V* P* 2 2\5
A e e (4.3.7)
Uso  pocUs [ +ial
Inverting
W o0 5
@(‘T,y) =/ K(ff—ﬁ,y—ﬁ)m(&??)dfdﬁ (4.3.8)
where

l
(b + ]2 exp(iax + iyy)dady

w
U+

K is physically interpreted as the (non-dimensional) upwash w/Us at
x,y due to a unit (delta-function) of pressure, p/pcUs, at & n. For
lifting flow (subsonic or supersonic), p = 0 off the wing; hence in (4.3.8)
the (double) integral can be conﬁned to the wing area. This is the
advantage of the present formulation.

Now we are faced with the problem of extracting the pressure from
beneath the integral in (4.3.9). By analogy to the supersonic ‘box’ ap-
proach we might consider approximating the integral equation by a dou-

ble sum
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In matrix notation

D
PooUgo}

o .
() = [RAg anlf
and formally inverting

) = (K acan ! () (43.10)

This solution is mathematically incorrect; worse, it is useless. The reason
is that it is not unique unless an additional restriction is made, the so-
called ‘Kutta Condition’.* This restriction states that the pressure on
the trailing edge of a thin airfoil must remain finite. For a lifting airfoil
this is tantamount to saying it must be zero. This constraint is empirical
in nature being suggested by experiment. Other constraints such as zero
pressure at the leading edge would also make the mathematical solution
unique; however, this would not agree with available experimental date.
Indeed these data suggest a pressure maxima at the edge; the theory
with trailing edge Kutta condition gives a square root singularity at the
leading edge.

Although, in principle, one could insure zero pressure at the trail-
ing edge by using a constraint equation to supplement (4.3.9) and/or
(4.3.10), another approach has gained favor in practice. In this approach
the pressure is expanded in a series of (given) modes

P=Y_> puFr(&Gi(n) (4.3.11)
P

where the functions Fj(&) are chosen to satisfy the Kutta condition. (If
the wing platform is other than rectangular, a coordinate transformation
may need to be made in order to choose such functions readily.) The py
are, as yet, unknown.

Substituting (4.3.11) into (4.3.8) and integrating over the wing area

w Dkl

where

Ruale.y) = / / K(x— &y — n)Fu()Gi(n)dé dn

K is singular at = &,y = 1 (as we shall see later) and the above
integral must be evaluated with some care.

*See Landahl and Stark or Williams, ibid.
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The question remains how to evaluate the unknown coefficient, pg;
in terms of w/Ux(z,y)? The most common procedure is collection.
(4.3.12) is evaluated at a number of points z;, j;, equal to the number
of coefficients, py;. Thus (4.3.12) becomes

ﬁ’(ﬂ?i’yj) Prl 7
LIV E K Y 4.3.13
(T - l (7—2 kl(xlﬂ y]) ( )

Defining f(ijkl = Kz, Yj), (4.3.13) becomes

U_)'ij

- Dkl
{Uoo} = [K(ij)(kz)}{m}

Inverting

p -1y W
It = 1K ) (43.14)
This completes our formal solution. Relative to the supersonic ‘box’
method, the above procedure, the so-called ‘Kernel Function” method,
has proven to be somewhat delicate. In particular, questions have arisen
as to:

1 the ‘optimum’ selection of pressure modes
2 the ‘best’ method for computing K

3 convergence of the method as the number of pressure modes becomes
large

It appear, however, that as experience is acquired these questions are
being satisfactorily answered at least on an ‘ad hoc’ basis.

In a later development an alternative approach for solving (4.3.8) has
gained popularity which is known as the ‘double lattice’ method. In this
method the lifting surface is divided into boxes and collocation is used
for both the downwash and the pressure.*

An alternative determination of the Kernel Function
using Green’s Theorem

The transform methods are most efficient at least for formal derivations,
however historically other approaches were first used. Many of these are

*Albano and Rodden [11]. The downwash is placed at the box three-quarters chord and
pressure concentrated at the one-quarter chord. For two-dimensional steady flow this pro-
vides an exact solution which satisfies the Kutta conditions. Lifanov, T.K. and Polanski,
T.E., ‘Proof of the Numerical Method of “Discrete Vortices” for Solving Singular Integral
Equations’, PMM (1975), pp. T42-746.
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now only of interest to history, however we should mention one other
approach which is a powerful tool for non-steady aerodynamic problems.
This is the use of Green’s Theorem.

First let us review the nature of Green’s Theorem.* Our starting point
is the divergence Theorem or Gauss’ Theorem.

///V-Edv—//l?.ﬁds (4.3.15)

S surface area enclosing volume V
71 outward normal
b arbitrary vector

Let b = 1 Vo where ¢1, ¢y are arbitrary scalars. Then (4.3.15) may

be written as:
///V-¢1V¢2dV: //ﬁ-th@dS

Now use the vector calculation identity
V-cdi=cV-d+da-Ve
c arbitrary scalar

a arbitrary vector

then V - 1 Vs = $1V2¢g + Vo - Vy and (4.3.15) becomes

///¢1V2¢2+V¢2 Vr)dV = //n 61V hadS (4.3.16)

This is the first form of Green’s Theorem. Interchanging ¢; and ¢ in
(4.3.16) and subtracting the result from (4.3.16) gives

/// (61203 — o V261V = // (61V 2 — 62V 61)dS
//qﬁl%—@a‘z’l)

This is the second (and generally more useful) form of Green’s Theorem.
0/0n denotes a derivative in the direction of the normal. Let us consider
several special but informative cases.

(a) p1 = ¢ = ¢ in (4.3.16)

(4.3.17)

*References: Hildebrand [2] p. 312, Stratton [12], pp. 165-169.



206 A MODERN COURSE IN AEROELASTICITY

///¢v2¢+v¢ +V@ldV = //¢a¢ds (4.3.18)

=¢,p2 = 11in (4.3.17)

// V2pdV = //a ds (4.3.19)

() Vi1 =0, =1/r,r=/(x —21)2+ (y—y1)2 + (2 — 21)2 in (4.3.17)

// o1V (1/r)dV = // [qﬁln - &’51} -dS (4.3.20)

Now V2(1/r) = 0 everywhere except at r = 0. Thus

// 61 V2(1/r)dV = ¢y (r // V3(1/r)dV

=0) / / V- V;dV
from divergence theorem (4.3.15)

/vm
— $1(r=0) /%/ —H« 2 6in 0. do

:—47T¢1 ?”—0

where we consider a small sphere of radius, €, say, in evaluating the
surface integral. Now

o1(r=0)=¢1(x1 =z, y1 =y, 21 = 2) = ¢1(x,y, 2)

Thus (4.3.20) becomes

dp11 1
wien =k [l 2] ks ea

The choice of ¢ = 1/r may seem rather arbitrary. This can be
motivated by noting that
V2o
4

= —6(x —21)0(y —1y1)0(2 — 21)

Hence we seek a ¢o which is the response to a delta function. This is
what leads to the simplification of the volume integral.
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Incompressible, three-dimensional flow

To simplify matters we will first confine ourselves to M = 0. However,
similar, but more complex calculations subsequently will be carried out
for M # 0.* For incompressible flow, the equation of motion is

V3¢ =
or

V3p=0
where ¢ and p are (perturbation) velocity potential and pressure respec-
tively. Hence we may identify ¢; in (4.3.21) with either variable as may
be convenient. To confirm to convention in the aerodynamic theory lit-

erature, we will take the normal positive into the fluid and introduce a
minus sign into (4.3.21) which now reads:

¢1(z,y,2) = // [¢1 - %ﬂ %ds (4.3.22)

For example for a planar airfoil surface

n on S at 2z =0T is +2z

n on S at z =0 is —z
Note z,y, z is any given point, while x1,y1, 21 are (dummy) integration
variables. See Figure 4.5 (top).

Let us identify the area S as composed of two parts, the area of the

airfoil plus wake, call it S7, and the area of a sphere at infinity, call it
Sa. See Figure 4.5 (bottom).

(i) Thickness problem (nonlifting). Let ¢1 = ¢, velocity potential.
Because ¢ is bounded at r — oo, there is no contribution from Ss.

Hence
o( // —_—— ldS
LY, 2 021 821 r

Sl at z1 = 0"
o () - (52)) %
071 021 T
Sl at zZ1 = 0~

Now ¢, o+ = ¢,,—o- for thickness problem and

96 99

021 1 z1=0+ N 0z

z21=0—

*Watkins, Woolston and Cunningham [13], Williams [14].
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=0

Figure 4.5. Airfoil and flow field geometry.

0 dS
(Z)(xvyvz) = " 5_ / aj |z1 =0t r

and using the body boundary condition

1 as

Thus

where

Note this solution is valid for arbitrary time-dependent motion. Time
only appears as a parameter in the solution ¢(z,y, z) = ¢(z,y, z;t). This
is a special consequence of M = 0.

(ii) Lifting problem. For the lifting problem it again will prove convenient
to use pressure rather than velocity potential. (4.3.22) becomes

0 (1 Op
p(z,y,2) = - (P2=0+ — P2=0- >8jzi r 821

Now

op

21=07F 821

pzl =0+ — _pzl =0—

1
>}d5‘
21=0" r
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for the lifting problem and

w o w
821 21=0" 821 z1=0" N
Thus )
A - 4.3.24
p(x,y,2 // pazl <r) ds (4.3.24)
where

Ap =p.—o+ — Pe=o-
(4.3.24) as it stands is not particularly helpful. We do not know either
p or Ap. However we can relate p to something we do know, w. To
simplify matters we shall specify harmonic motion,

p= ﬁeiwt
¢ — &eth
hence from Bernoulli’s equation
_ oo
D= —Poo [iwgb + Uooai] (4.3.25)

Solving (4.3.25), by variation of parameters,

3,y 2) = —/m Py 2)exp [iUw()\—x)} A\ (4.3.26)

—o0 pooUoo )

and using (4.3.24), one has
_ z )
e.2) = [ e figr -]

(0 () )

rA) = VA —21)2+ (y—m)?+ (2 — 21)?
dS = le dy1

where

Define
E=A—x,dA\=dE, A=+ 1

and interchange order of integration with respect to £ and S, then

s & [ 2

| {/oo 5 (T(S))exp {igte- @i as

xl,yhzl =0)
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Compute d¢/0z and set it equal to w, from body boundary condition,
on z = 0.

i [

{32 /oom1 88,21(1)6@ {i(;‘:,o[ﬁ —(z - 3?1)]} dé} ds

Now 51 -
200 ="
therefore
Wg AD
Ui = // P U2 ($17y1721 = O)K(l’ —T1,Y — yl7o)d$1dy1 (4327)
where

92 /I a1 eXp{f}ffo[g —(z —xl)]}dﬁ

K(x_xlay_ylao)_ 822

r

and where

r=VE+ 2+ (y - )

(4.3.27), of course, has the same form as we had previously derived by
transform methods.
The expression for the Kernel function may be simplified.

exp [_7(33_951)} /w—fcl Liwg 9%
et —1

K(z — 1,y —91,0) = ir U 22 522 7 %
Now )
(9 1 . 1 _3 -5 2
g2y~ 3" 2T MBI
thus 9
. 0 1 2 21-3/2
lim =7~ = =€+ (v —51)°] /
and finally
. exp [—%(x - x1)} /x:rl exp [—i— Wﬁ} & (43.28)
= ir oo 2 H (y— )2 -

The integral in (4.3.28) must be evaluated numerically.
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Compressible, three-dimensional flow

For the more general case of M # 0, we have an additional complication
since

V23 #0

For simple harmonic motion, the equation of motion reads
Vip+ LH=0 (4.3.29)

where

L= 1 [(m) + Uaamr

a?
By making a coordinate transformation we may reduce the compressible
equation to a simpler form.* Defining
r=a,yt =0y, =Pz

BV1 — M2

- . M? w .
¢ = exp |:Z(1_]\4_2)U,OO[L':| ¢
The equation for ¢* is
M2
P [u_mz}u"ﬂ V6 + k267 = 0 (4.3.30)

where
M w
k=|—s| —
(1 - M 2) Uso
Note this equation is essentially the reduced wave equation. We shall
use Green’s Theorem on ¢* and then transform back to ¢. Let

V2pi 4+ K¢t =0 (4.3.31)

V2h + k2 = 8(ax — 21)8(y" — y1)d(2" — 21)

Solving for ¢3,
e—ikr

8= -

drr
where

=@ - a2+ (- )2+ (1 - 22

*By assuming a transformation of the form e®**¢* = ¢, one can always determine Q such
that (4.3.29) reduces to (4.3.31).
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From (4.3.17),
B 0
[[[6i6 - 120 - sx-woppav = [[ [@@—@ ¢’1]
(4.3.17a)
or a * —ikr
¢T($,y, = _// |:¢1 8?’L 8(ilj| ¢ - dsS (4321&)
or
O —ikr
$i(2,y,2) = // [qf)lan ;2] ‘ —ds (4.3.22a)

(if we redefine the positive normal). Using symmetry and anti-symmetry

properties of %j and ¢]

—zkr
o1(x,y, 2 // AP — o { . }dS (4.3.24a)

where
A(ﬂ = ¢il =0+ — QbLl:O
and . .
_&bl % -0
821 z1=01 821 z1=0—

Note dS = dx1dy; and

0 0
(ale)dl‘l dy1 = (ﬁ)dl‘%dy%; Ty =]
1

From (4.3.24a) and the definition of ¢*

M?
¢1 =exp [Z(I—JW?)U({;QC] ¢1(2,y, 2)

. M2 w
eXp[ (- M%Uf"”} (4.3.32)

st {5

Identifying ¢; with p and using (4.3.32) in (4.3.26),

xT

_ 1 M2
¢(%yasz) = E eXp |:Z(1_]\42)U(j})\:| exp [ZLZO()\ — $):|

M? w 9 (e tkr
//poo e e e o e T
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Define { = A — z1,d\ = d§, A = £ + z1 and interchange order of integra-
tion with respect to & and S,

o(x,y,2,w) // ol (z1,91,21)
ezkr ' M2 w
'{/_w azl{ e
- exp (zéfﬁ) exp [—z[}u(:c - xl)} dﬁ}dS

A .

[ e - -]
T—T1 1 W o eikr

AL el g {5 e os

Compute 0¢/0z and set it equal to w, from the body boundary condition
on z = (, noting that

2 e—ik‘r . i eikzr
0z r 9z r

w
= // 5 (z1,91,21 = 0)K(z — w1,y — y1,0)dr1dyr  (4.3.33)
PoolU%

The final result is

where

K(x,y):limm(_m/x exp[( ! “’5} 82{”}615

z—0 4 0 MZ) 822 T

1
r=[+ (1 - M) (Y + 2%z
That expression for K may be simplified as follows: Define a new
variable, 7, to replace £ by

(]‘ - MQ)T = € - MT(f,y,Z)
where one will recall
r(6,y,2) = [+ B20° + )

and
B2=1- M?
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After some manipulation one may show that

A&
P2 +y2 4222 7
and
W f —ikr W
CP\TrLa-my )¢ TP T
Thus
K = lim / R
z—0 47 072 —00 [7—2 + y2 + 22]5
(4.3.34)

Taking the second derivative and limit as indicated in (4.3.34) and

using the identity
[ Mx +r } 2 1
(x24+y%)| [ o= Mr

one finally obtains

1 M(Mz+r) L w M
K=mi ey o [ZUoo(l—M?)(Mx_T)}
o 4.3.35
W (z—Mr)/(1-M?) exp <1K> ( )
texp <_> / Ty
Uoo —00 [7-2 + y2]§

This is one form often quoted in the literature. By expressing K in
nondimensional form we see the strong singularity in K as y — 0.

1 {M(Mx/y—l-?“/y) exp [.wy M (Ml“ rﬂ

VK (z,y) = -

1 Z .
dr L /yl(a/y)? +1] U My Ty
< .wm> [o/y—M(r/y)]/(1—M?) exp (U%fz>
e\ / 736&2}

Z2=T1/y

Note that the compressible Kernel, K, has the same strength singularity

as for incompressible flow and is of no more fundamental complexity.
There is a vast literature on unsteady aerodynamics within the frame-

work of linearized, potential flow models. Among standard references
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one may mention the work of A. Cunningham* on combined subsonic -
supersonic Kernel Function methods including an empirical correction
for transonic effects and also the work of Morino! using Green’s Theo-
rem in a more general form from both subsonic and supersonic flow. For
an authoritative overview, the papers by Rodden! and Ashley are rec-
ommended. The reader who has mastered the material presented so far
should be able to pursue this literature with confidence. Before turning
to representative numerical results the historically important theory of
incompressible, two-dimensional flow will be presented.

Incompressible, two-dimensional flow

A classical solution is due to Theodorsen® and others. Traditionally, the
coordinate system origin is selected at mid-chord with b = half-chord.
The governing differential equation for the velocity potential, ¢, is

Vip=0 (4.3.36)
with boundary conditions for a lifting, airfoil of
0 0zq 0zq
— =We = — 00— 4.3.
9z licor - == gy TV, (4.3.57)
on airfoil, —b < z < b, on z = 0 and
o¢ o¢
= |2 20 = 4.3,
D P [8t+U 8x] 0 (4.3.38)
off airfoil, x > b or x < —b, on z =0 and
p,¢—0 as z— o0 (4.3.39)
From (4.3.36), (4.3.37) and (4.3.39) one may construct an integral equa-
tion,
0¢ L[ 1)
0= — |y = —— —~>' 74 4.3.4
w az| 0 o ), x—fg (4.3.40)
where 9 9
Y(z,t) = 9¢ 99 (4.3.41)

T oxlu  oxlL

*Cunningham [15].

fMorino, Chen and Suciu [16].

fRodden [17], Ashley and Rodden [18].

*Theodorsen [19]. Although this work is of great historical importance, the details are of
less compelling interest today and some readers may wish to omit this section on a first
reading. The particular approach followed here is a variation on Theodorsen’s original theme
by Marten Landahl.
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and
U=2=0", L=2z=0"

Further definitions include

‘Circulation’ = T'(z) = / v(&)d¢ = Oi = v(z)
—b Ox
A¢p = ¢ — du
_ p
" 1 U

AC, =C)p, — Cp,
From the above, and (4.3.41),

T(z,t) = / £)de = / [‘%U_a‘ﬂ df = —Ap(x),  (4.3.42)
Note: A¢(z = —b) = 0. Also from (4.3.38) and (4.3.41),
2 [0A¢ 0A¢
ACP_UgO[ o V=g, ]
and using (4.3.42)
2 [or or

Thus once v (and hence I') is known, AC), is readily computed. We
therefore seek to solve (4.3.40) for . The advantage of (4.3.40) over
(4.3.36)-(4.3.39) is that we have reduced the problem by one variable,
having eliminated z. A brief derivation of (4.3.40) is given below.

Derivation of integral equation (4.3.40). A Fourier transform of (4.3.36)
gives
d2 ¢*

5 a?¢* =0 (4.3.36a)

where

b*(, 2 t) = / " (s, e dn

(4.3.37) becomes

de” .
7o (4.3.37a)

The general solution to (4.3.36a) is

¢* = Aetlolz 4 Be~lalz (4.3.38a)
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From the finiteness condition, (4.3.39), we see that one must require
that A = 0 for z > 0 (and B = 0 for z < 0). Considering z > 0 for
definiteness, we compute from (4.3.38a)

d *
d%!z:o = —|a|B (4.3.39a)
From (4.3.39a) and (4.3.37a),
w*
B=--—2 (4.3.40a)
||

and from (4.3.38a) and (4.3.40a)

lomor = —2 4.3.41
¢ |z—0ﬁL ’a’ ( a)
From (4.3.41)
_ (99)| _(99Y
T ox z=07* ox z=0—
and using(4.3.41a)
V= —2iaa (4.3.42a)
|al
Re-arranging (4.3.42a),
o lal
@ 2ix

and inverting back to physical domain (using the convolution theorem)
we obtain the desired result.

L [y
=—— d 4.3.40
Waq, o), w—¢ 3 ( )
where ) © ol .
il _ 1o tor g, —
o o 2t T o

o0

The lower limit © = —b in (4.3.40) follows from the fact that p = 0
for x < —b (on z = 0) implies that ¢ = ¢, = 0 for x < —b. This will be
made more explicit when we consider = > b where p = 0 does not imply
¢ = ¢ = 0! See discussion below.

Also one can calculate v for > b in terms od ~ for b < x < b by
using the condition that AC), = 0 (continuous pressure) for x > b. This
is helpful in solving (4.3.40) for 7 in terms of w,. From (4.3.43)

or or

Xz
I'=I(t—— 4.3.44
(- (4:3.42)

o0
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Simple harmonic motion of an airfoil

For the special case of simple harmonic motion, one has

wa(x> t) = wa(x)eia}t
v(z,t) = F(zx)e™? (4.3.45)
T = f\eiwt

(4.3.44) and (4.3.45) imply
[(z,t) = Aexp(iw[t — x/Us])

The (integration) constant A may be evaluated by considering the solu-
tion at z =b.
I(z =b,t) = Aexp(iw[t — b/Ux))

[(z,t) =T(b) exp{iw[t — (x — b) /U] }

and .

r —iw-

— = _—T —q — oo 4.3.4
7= 5 = T eplivle —b)/Ux]  (4340)
Introducing traditional nondimensionalization
x wb
== *=¢/b, k= —
=g, =g k=g

a summary of the key relations is given below

ey L (E)
wa(x )__% 1 x*_é‘*

d¢* from(4.3.40)

where (=) F ()
~(z* (b
= —ik
Uw  Usb
for z* > 1 from (4.3.46)

(Zb) — /_ 1 ba’gf)dg* definition

exp[—ik(xz™ —1)]

Y

= _ o[ (@)
Acp_2[ g ik | from (43.43) (4.3.47)

Special Case: Steady flow. For simplicity let us first consider steady
flow, w = 0. From (4.3.46) or (4.3.47)

v=0 for z*>1
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and hence we have

1 17(6*)
S or pxTF—&*

We(z*) = de¢* (4.3.48)

To solve (4.3.48) for v, we replace z* by u, multiply both sides of (4.3.48)

by the ‘the solving kernel’
14+u 1
1l—vu—x*

and integrate f_ll ...du. The result is

1 a 1
/ + u we( [1+u / df*du
1—uu—x 1—uu—a: 1 u—E&*

Now write v(£*) = ~v(z*) + [y(£*) — v(z*)], then above may be written
as

/ \/mwa L {4 \/%u}x* 1 et} du

1l—uu—ax*
1+u *
{/ Vl—uu—x/ u—§* B m)dﬁdu}
(4.3.49)
where § i

f*—$*

To simplify (4.3.49)we will need to know several integrals. To avoid a
diversion, these are simply listed here and are evaluated in detail at the
end of this discussion of incompressible, two-dimensional flow.

1 * *
d. 1
IOE/ 3 —ln< —|—x> for z* <1
_qaxr—&F 1—z*

*+1
—ln<x*+1> for 2" >1

Tr* —

1 d
I = / tu_ du =7 for z¥<1

l—uwu—2x*

*+1
—77[1— Tt

for 2" >1
¥ —1
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1
1 1- d 1+ a*
IQE/ \/ +uln\ u‘ LEE— e for —1<z*<1
A V1—u 14+uvu—2z* 1—a*
(4.3.50)
Now we can proceed to consider the several terms on the RHS of (4.3.49)

1st term. Now

vIs  —y(x¥) 1+x*
Ist t =——=
st term o 5 M\ T

2nd term. Interchange order of integration;

f1= j{i & =R, o) /—11 m(u - x*ci?u — g*)df*

1 1 1 1
(u—a*)(u—¢€)  a*— & {u—x* _u—ﬁ*}

from a partial fractions expansion.

L . U i+ul 1 1 .
14:_/_11:(5,36){/_1,/1_“[u_x*_u_g*}du}dg

1
- f_lp(g*,x*)[g//ﬁo]dg* from I

Now

Finally then, from above and (4.3.49),

1
[1+u we(u) T 1+ x*
T2 du = — —~(z*
/1 l—vu—ao* “ 27@) 1—a*
() 2 /l—l—m*/l /1+uwa(u)d (4.3.51)
x¥)=—— U .3.
7 aV1—a* ) V]1I—-—uu—a*

Note: Other ‘solving kernels’ exist, but they do not satisfy the Kutta
condition, y(z*) finite at * = 1, i.e., finite pressure at the trailing edge.

or
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One might reasonably inquire, how do we know what the solving ker-
nel should be? Perhaps the most straightforward way to motivate the
choice is to recognize that the solution for steady flow can be obtained
by other methods. Probably the simplest of these alternative solution
methods is to use the transformations z* cos 6, £* = cos ¢ and expand
and w, in Fourier series in ¢ and 6. See BAH, p. 216. Once the answer
is known, i.e., (4.3.51), the choice of the solving kernel is fairly obvious.
The advantage of the solving kernel approach over the other methods is
that it is capable of extension to unsteady airfoil motion where an ana-
lytical solution may be obtained as will be described below. On the other
hand a method that is based essentially on the Fourier series approach
is often employed to obtain numerical solutions for three-dimensional,
compressible flow. This is the so-called Kernel Function approach dis-
cussed earlier.

In the above we have obtained the following integral relation: Given

1t og(e)

o L wt =&

f@®) = dg”

with g(1) finite or zero, then

General case: Oscillating motion. We may employ the solving kernel
approach to attack the unsteady problem also. Recall from (4.3.40),
(4.3.43), (4.3.46) one has

Do) = - () ger L /°° NE) g (4.3.53)
1

Con ozt = Cor T — £

(%) T _ @) . /x V(E) o
AC, = 2ik =2 2ik —2d 4.3.54
r= . TURUm Tl N sl S )
) G TA) ]
Ue ik Ub exp|—ik(z* —1)] for z*>1 (4.3.55)

Substituting (4.3.55) into (4.3.53).

1 1 < /¢x _
wale’) = =5 | xz(f 2 & + G(z*) (4.3.56)

where

2rb ) x* — &*
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Invert (4.3.56) to determine ~(z*); recall the steady flow solution,

(4.3.52).
2 1o Pl [a(€) —GE) . 2 [L-a
a\1+z* 1 1—{*{ & — ¥ }5_ a\1+z*

1+ ¢ {wa@*)—@@ib > exp—ik(u — 1)]/(€" — u)

du p d&*
~ (4.3.57)

Interchanging the order if integration of the term involving I'(1) on the

RHS side of (4.3.57) we may evaluate the integral over £* and obtain

e 21—
7(x)_+7r 1+ x*
P4 wa(€) . o TQ) g [ e
{/1 Cen et

(4.3.58)

(4.3.58) is not a complete solution until we determine I'(1) which we do
as follows. Integrating (4.3.58) with respect to z* we obtain

- s wiere

I'(1) . o0 1 )
- ik(b)e”“/ ute 1] e~ udy
1

u—1
where the integrals in the right hand side with respect to z* have been
evaluated explicitly. We may now solve (4.3.59) for I'(1). Recognizing
that

oo
J
we determine from (4.3.59) and (4.3.60) that

f(l) _lkf \/ﬁi ) (4.3.61)

b mk[ HP (k) + iHP (k)]

(4.3.59)

u—1 2

1 ) _ —ik
vt 1] e~ gy = 2 [H® (k) + i1 (k)] — eTk (4.3.60)




Nonsteady Aerodynamics (Dowell) 223

H{Q), Héz) are standard Hankel functions.* (4.3.58) and (4.3.61) con-
stitute the solution for 4 in terms of w,. From %, we may determine
AC), by using

@) [T AE)
A =2 2
Cp U + zk/_l . d¢

After considerable, but elementary, algebra
_4 i /1 LH€ [9u(§)/Us ) -
CoaVil4ar )\ 1-¢ x* — &F
—zk\/ *Zf
1 Uso/1 — 5*2

1—ua* 1+ g* wa(f*) *
e [ e o (4.3.62)

where

and
q®

(HY +iHy?)
is Theodorsen’s well known Function.
The lift may be computed as the integral of the pressure.

C(k) =

B U2 1 U2
L =F < ACpdz™ = P o0
2 V), 2

(rem [ i [ ey

(4.3.63)

Similarly for the moment about the point z = ba,
_ U? T
M, = p?oob2 /1 ACy[z* — aldx” (4.3.64)

In particular, for
za:—h—a(a:—ba)
—h —a(x — ba)

* Abramowitz and Stegun [20].
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r -G

AN R N N R I A N
0 4 8 12 16 20 24 28 32 36 40
1/k

T

Figure 4.6. The functions F' and G against % After Theodorsen [19].

one has

Wa = —iwh — iwa(z — ba) — Us@ (4.3.65)

Thus (4.3.65) in (4.3.63) and (4.3.64) give

L =mpb?[~w?h + iwUs@ + baw?a]

- 1
+ 2mpUscbC (k) [iwh + Usotx + 6(5 — a)iwa]

_ _ 1 1 4.3.66
M, =7 pb*[—baw?h — Usob(3; — a)iwd + b2(g + a?)w?al ( )

1 - 1
+ 277,0Uoob2(§ + a)C(k)[iwh + Usotx + b(§ — a)iwa]

Theodorsen’s Function, C(k) = F = iG, is given below in Fig. 4.6.

Transient motion

Using Fourier synthesis one may now obtain results for arbitrary time de-
pendent motion from the simple harmonic motion results; using Fourier
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summation (integration) and (4.3.66),

1 ® = 7 W
L(t) =5 /_Oo L(w) que to pMw)e™ dw

1 [e.e]

ton L( @) due to a&(w)e™ dw
/ {ﬂ'PbQ 5 4 27pUsobC (k) (iw)} - h(w)e™tdw

+ 2/ {mpb?(iwUso + baw?) + 27 pUsobC (k) (Uno + b(% —a)iw)}
™ —0o0

a(w)e™tdw
(4.3.67)
where ~
h(w) :/ h(t)e™“tdw
and ~
alw) = / at)e “dw (4.3.68)
Now - o
/ (iw)"Ge“tdw = ﬁ n=1,2... (4.3.69)
Thus
d’h da d*a
L=mph® | £
mpb [dtQ Uoegy b0
+ pUsob / C(k) f(w)e™tdw
where
- 1
f(w) =iwh(w) + User(w) + b(§ —a)iwa(w)
4.3.70)
 [dh 1 da] _., (
/—oo[d —i—Uooa—i—b(—a)dt} dt
Physically,

do

= Wa at = ="0b/2;

h 1
d +Uooa+b(*—a)

x=0>/2is 2 chord of airfoil.
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Similarly,
o [, d*h 1 dae 5,1 o A2
. N (4.3.71)
¥ pUsct?(5 + 0) / C (k) f(w)e™tdu
Example I. Step change in angle of attack.
h=0
a=0 for t<0
= qg = constant for ¢t >0
da d’a dh d*h
—=—=—=—=0 f
@ ae " a e 0 r 120
flw) = Uooag/ e~ Wty
0
Usovg —iwt oo Usovo
= 7.6 |O = -
—iw w
L :pUgobag/ @elmdw
:pUOQObag/ @e’ksdk
oo Ik
where s = %. Finally,
1 [ Ck) ,
L = 27pU?bayg , / CE) s g, (4.3.72)
2mi J_o K

{--} = ¢(s) is called the Wagner Function, see Figure 4.7. Note that if «
is precisely a step function, then L has a singularity a ¢t = 0 from (4.3.70).
Also shown is the Kussner function, v (s), to be discussed subsequently.
Note also that ¢ is the lift of the airfoil due to step change in angle os
attack or more generally due to step change in —w,/Us at % chord.

Thus using the Duhamel superposition formula

d’h da d*a
— 2 - —
L(t) =mpb {dtz +Usxo 7 ba dtz]
s dwg, (4.3.73)
—2mpUsob |wa 4 (0)0(s) + / L(0)p(s —o)do
1 0 do
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1.0

(s)

Figure 4.7. Wagner’s function ¢(s) for indicial lift and Kiissner’s function (s) for
liftt due to a sharp-edged gust, plotted as functions of distance travelled in semi-
chordlengths. After BAH, Fig 5.21.

Example II. Entrance into a sharp edged gust.

In the primed coordinate system, i.e., fixed with respect to the atmo-
sphere, one has
wg=0 for 2/ >0
=wy for 2/ <0
Note: The general transformation between fluid fixed and body fixed
coordinate systems is
2 =4+b—Usxt, x+b=2"+Uyt
t'=t t=1t
The leading edge enters the gust at t =t = 0 at
t=0, ¥ =x+b
t'=0.
Thus in the coordinate system fixed with respect to the airfoil, one

has
z+b

wg =0 for x+b> Uyt or i
oo

> ¢ (4.3.74)
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b
=wqy for x4+ b < Uxt or T <t
- ' o
wa(w) E/ wae™tdt
—o0
S .
:wo/ e~ Wt
(24b)/Uso
:@e—iwt &
b -
:@exp |:—iw (l‘ + ):| — @efzkezkx
W Uso w
where
¥ =ux/b (4.3.75)
For w o
wa = —wa (: _%Oefzkezkm )
w

one finds from the oscillating airfoil motion theory that

L = 2mpUscb{C(K) Jo(k) = i1 (k)] + iy ()} 52e

and

1
My = b(§ + a)L

L(t) ! /00 L(w)e*tdw

:% g
o [N . i

:,OUoobwo/ {ik}e—lkelksdk (4.3.76)

:27Tonobw01/)(S)

where . S
=_— k(s —1 4.3.
P(s) 57 /OO k explik(s — 1)]dk (4.3.77)
is called the Kussner function and was shown previously in Figure 4.7.
Finally then, using Duhamel’s integral,

L =7pUb {wg(O)w(s) + /

0 dO'

S dwg

(o)(s— a)da} (4.3.78)

A famous controversy concerning the interpretation of Theodorsen’s
function for other than real frequencies (neutrally stable motion) took
place in the 1950’s. The issue has arisen again because of possible ap-
plications to feedback control of aeroelastic systems. For a modern view
and discussion, the reader should consult Edwards, Ashley, and Break-
well [21]. Also see Sears, [10] in chapter 3.
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Figure 4.8. Integral contour.

Evaluation of integrals

Iy:
For z* < 1

*

1 dg* ) ¥ —e df* 1 df*
= e 1
fo ?{_w*—g* 5%[/_1 x*—§*+/:c*+5x*—f*]
. ToCdr —g) 1 d(E —a)
=lim |— 2 TS ) @as =24
e [ /_1 (z* — &%) /x*+e (& — %) ]

1
—in(a" — €

¥ —e

(e =)

xr* €

—[lne—In(z" +1)] - [In(1 —2") —Ine] = In <iii:>

For x* > 1, there is no need for a Cauchy Principal Value and

41
I(]—ln<x + >

1+u du
L: 1= 7{

1—uu—ox*

Use contour integration. Define w = u + v (a complex variable whose

real part is u) and
1
w+1\2 1
F =
(w) (w—l) w— x*

Choose a contour as follows
Now

w4+ 1

C= R4
w J—
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where
u+ 1) (u—1) 402 —2v
el D@D+
T (u—=1)2 402 T (u—1)2 402
6 =tan ' I/R

(i) on top, v = 0T, u—1<0
R<0, I=0 =60=-x
(ii) on bottom, v =07, u—1<0
R<0, I=0"=0=+r
Thus

1

1\2 1 :

% - + ue—mr/2 on top
w—1 1—u

=4/ 1—i_iue“”/2 on bottom
1—u

Now dw = du on top or bottom and w — z* = u — x* except on arcs
near u = z*. On the arcs w — z* = ee”?, dw = ee’?idf where € is radius

of arc. Also .
w4+ 1)\2 14+uw, .
(w_1> BT

and = --- (+4) on bottom. Thus

bottom

¥ —e 1
1 d
Clz/F(w)dw:/ +/ i Tu_du
c 1 wiie V1—uu—x*
t

op
Tt te -1 14+u du
- / - / —iy —+
1 e l-uvu—z
+ contributions from arcs which cancel each other

1
I d
lim<1—2z'/ S oy
e—0 aV1-uu—=z

(1 can be simply evaluated by Cauchy’s Theorem. As w — oo, F(w) —
1/w.

dw

G = / — =2
around arc at co W
Cl 2mi
L ===

2 26
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For z* > 1, Iy is still equal to {1/2mi; however, now (1 = [y
at inﬁnjtyf (w)dw— Residue of F at z*

|
= omi — 2y | T
¥ —1
|
Ilzi:w 1-— T
21 ¥ —1

A similar calculation gives Is.
Evaluations of Iy

—Ig_/ \/m ’1—|—u du
1—u 1—u|lu—2o*
Define

w=u+ 1
and

w—+1| Jw+1 1
w—1 w—1w—x*

The contour is the same as for I;.

As before
1
1\2 1 .
<w+) I -
w—1 1—u
1 )
:\/ﬁeﬂﬂ/2 on bottom
1—u
Also
1
In (“’+1> InvV/R2+ I + i
w —
1
=lIn ut ’—iﬂ' on top
u—1
1
=lIn ut ’—i—iﬂ' on bottom
u—1

Now dw = du on top or bottom and w — x* = u— x* except on arcs near
u = z*. On the arcs w — z* = e, dw = ee?i df where € is radius of

arc. Thus
r*—e 1 1 1
sz/Fz(w)dw:/ +/ z’{\/ *“M u _m]
c 1 R 1—u 1—-u

du

u—x
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/ / 1+u 14+ u ) du
1/ In —am top
1—u 1—u u— x*
T 14w 0 1+a*
/ imy |~ de/ imy | 49 arcs
0 1-:[‘* - 1—IE*

Note: In terms cancel and thus are omitted in the arc contributions.
Cancelling 7 terms from bottom and top and adding arc terms, gives

e f /F

1+u
1—u

du

u— x*

/ / /1+u ‘1+u du
+
1 e 1—u l—u|u—2x*
1
— 2im? +
1—z*
Adding bottom and top terms,
. /1+u 14+u| du .9 [1+a*
| =2 -9
E%Q Z/ 1—u ‘1—u u— x* o 1—a*
1
= 2L - 2in% T
1—a*

(2 can be simply evaluated by Cauchy’s Theorem. As w — oo, Fh(w) —
0.
14 z*

1—x*

C2=O=>12=—

4.4. Representative Numerical Results

Consider a flat plate airfoil, initially at zero angle of attack, which is
given a step change in «, i.e.,

w= —Usxa for t>0
=0 for t<0

Although most calculations in practice are carried out for sinusoidal time
dependent motion, for our purposes examining aerodynamic pressures
due to this step change leads to more insight into the nature of the
physical system. Of course, in principle, the results for sinusoidal motion
(or a step change) may be superposed to obtain results for arbitrary time
dependent motion.

It is traditional to express the pressure in nondimensional form

p _ P

Pooggoa o qo
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Figure 4.9. Chordwise lifting pressure distributions.

as a function of nondimensional time,

5= Weo
/2

233

and My. The results shown below are from an article by Lomax;*
both subsonic and supersonic, two- and three dimensional results are

displayed.

In Figure 4.9 the chord-wise pressure distribution for two-dimensional
flow is shown at several times, s, for a representative subsonic Mach
number. For s = 0, the result is given by piston theory (as in supersonic

flow) T
P = PoolooW

For a step change in «, piston theory gives

Ap _pr—pu _ 4

PooUgoa o PooUgoa M
2 2

*Lomax [22].

TThis can be shown by considering the transient analysis of Section 4.2 and noting it still

applies for t = 0T.
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Figure 4.10. Chordwise lifting pressure distribution.

For s — 00, the result is also well known, with a square root singularity
at the leading edge. Of course, the Kutta condition, Ap = 0, is enforced
at the trailing edge for all s. As s — oo

Ap 4 c—x
pooggoa N (1— M2)3 x

This result is implicit in the analysis of Section 4.3.

In Figure 4.10 the chord-wise pressure distribution is shown at several
times, s, for a representative supersonic Mach number. For s = 0 the
result is again that given by piston theory

Ap 4

PooUgoa - M
2

For s — oo, the result is (as previously cited in our earlier discussion,
Section 4.2)
Ap 4

pooggoa - (M2 — 1)%

Indeed the pressure reaches this final steady state value at a finite s
which can be determined as follows. All disturbances propagate in the
fluid with the speed of sound, as,, but the airfoil moves faster with
velocity Us, > aoo. Hence, the elapsed time for all disturbances (created
by the step change of a for the airfoil) to move off the airfoil is the
time required for a (forward propagating in the fluid) disturbance at
the leading edge to move to the trailing edge, namely

t=c¢/(Us — o)
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or, in nondimensional form,

For
2M

My —1

steady state conditions are obtained all along the airfoil. As can be seen
from Figure 4.10 for s = 0" the leading edge pressure instantly reaches
its final steady state value. As s increases the steady state is reached by
increasing portions of the airfoil along the chord. Note that the initial
results, s = 0, and steady state results,

s 2Mw
=M. 1

s >

have a constant pressure distribution; however, for intermediate s, the
pressure varies along the chord.

The pressure distributions may be integrated along the chord to obtain
the total force (lift) on the airfoil.

C
L E/ Ap dzx,
0
L :
Cr, = T ea lift curve slope
2

4
CLa — M
and the steady-state result is
4
Cr,=———— for My>1
(a2 1)
and it is also known that
2
C'Laziﬂl for My <1
(1-MZ)2

see Section 4.3. Results for Cr,, are shown in Figure 4.11 for various
Mach number.

Finally some representative results for three-dimensional, supersonic
flow are shown in Figure 4.12. The effect of three-dimensionality is to
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Figure 4.11. Time history of lift curve slope.

reduce the lift. For small aspect ratio, A, where

A = maximum span squared/wing area
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Figure 4.12. Time history of lift curve slope.

it is known from slender body theory* (an asymptotic theory for A — 0)
that

Cr,==A

T
“ 2
for s — co. Note however, that the s = 0T result is independent of A
and is that given by piston theory.

Hence, piston theory gives the correct result for s = 0" for two- and
three-dimensional flows, subsonic as well as supersonic. However, only
for relatively high supersonic and nearly two-dimensional flow does it
give a reasonable approximation for all s.

For subsonic flows, the numerical methods are in an advanced state
of development and results have been obtained for rather complex ge-
ometries including multiple aerodynamic surfaces. In Figure 4.13 to 4.17
representative data are shown. These are drawn from a paper by Rod-
den,* et al., which contains an extensive discussion of such data and
the numerical techniques used to obtain them. Simple harmonic motion

*See Lomax, for example [22].
*Rodden, Giesing and Kdlmdn [23].
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Figure 4.13. Lift coefficient of plunging wing-tail combination for various vertical
separation distances; simple harmonic motion.
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Figure 4.14. Rolling moment coefficient of horizontal stabilizer for simplified T-tail
oscillating in yaw about fin mid-chord; simple harmonic motion.

is  considered where k is a non-dimensional frequency of oscillation.
Comparison with experimental data are also shown.

4.5. Transonic Flow

Major progress has been made in recent years on this important topic.
Here we concentrate on the fundamental ideas and explore one simple
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Figure 4.15. Distribution of span load for wing with and without engine nacelle. (a)
plunging (b) pitching; simple harmonic motion.
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Figure 4.16. Comparison of experimental and calculated lifting pressure coefficient
on a wing-nacelle combination in plunge; simple harmonic motion.

approach to obtaining solutions using the same mathematical methods
previously employed for subsonic and supersonic flow.

The failure of the classical linear, perturbation theory in transonic
flow is well known and several attempts have been made to develop a
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Figure 4.17. Comparison of experimental and calculated lifting pressure coefficient
on a wing-nacelle combination oscillating in pitch; simple harmonic motion.

theoretical model which will give consistent, accurate results. Among
the more successful approximate methods that builds upon the classical
approaches for subsonic and supersonic flow is the ‘local linearization’
concept of Spreiter which has been generalized to treat oscillating airfoils
in transonic flow [24]. Another valuable method is that of parametric
differentiation as developed by Rubbert and Landahl [25]. ‘Local lin-
earization’ is an ad hoc approximation while parametric differentiation is
a perturbation procedure from which the result of local linearization may
be derived by making further approximations. Several authors [26-29]
have attacked the problem in a numerical fashion using finite differences
and results have been obtained for two and three-dimensional, high sub-
sonic flow. This continues to be an active subject of research and will
be discussed further in Chapter 9. Cunningham [30]. has suggested a
relatively simple, empirical modification of the classical theory.

In the present section a rational approximation method* is discussed
which is broadly related to the local linearization concept. It has the
advantages of (1) being simpler than the latter (2) capable of being
systematically improved to obtain an essentially exact solution to the
governing transonic equation. Although the method has been developed
for treating infinitesimal dynamic motions of airfoils of finite thickness, it
may also be employed (using the concept of parametric differentiation) to
obtain solutions for nonlinear, steady nonlifting flows. This is a problem
for which 1local linearization’ was originally developed.

*This section is a revised version of Dowell [31]. A list of nomenclature is given at the end
of this section.
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Figure 4.18. Pressure distribution for Guderley airfoil at constant angle of attack.

First, the basic idea will be explained for an infinitesimal steady mo-
tion of an airfoil of finite thickness in two-dimensional flow. Results will
also be given for dynamic motion. The aerodynamic Green’s functions
for three-dimensional flow have also been derived. These are needed in
the popular Mach Box and Kernel Function methods [32]. Using Green’s
functions derived by the present methods, three-dimensional calculations
are effectively no more difficult than for the classical theory.

Analysis
From (4.3.21), Section 4.1, the full nonlinear equation for ¢ is

29 0 Foa20) Vo-Vo\|
a*Ve¢ — 8t(qus-V<;5)+8t2+V<;5-V<2)]_0
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Figure 4.19. Pressure distribution for Guderley airfoil at constant angle of attack.

In cartesian, scalar notation and re-arranging terms

¢a:a?(a2 - (b?:) + ¢yy(a2 - ¢§> + ¢Z2<a2 - 453)

— 2¢yz¢y¢z - 2¢$Z¢Z¢Z - 2¢a:y¢w¢y (451)
“Dprarn-22 o
ot Ty TR o

Also we previously determined that ((4.1.22), Section 4.1)

@ oas _Us <a¢ 4 Ve qu) (4.5.2)

v—1 2 ot 2
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Now let ¢ = Usoxz + ¢, then (4.5.2) becomes

. 06 | (06\% | (06\? | (94>
oo o, e () ¢ () + (8
y—1 ot 2
~_ |9, 09
- ot Voo ox
or R R
0¢ 0¢
2~ 2 _ sl hatsd
a® >as, —(y—1) 5t + Uso o (4.5.3)
(4.5.1) becomes
) 96 8 0
2 oo ool 2 g9
boa (“00 (=D 5 Uy | ~ U = 2 m)
. - (4.5.4)
- ~ 0 0¢ 0°¢
2 2 Y A I )
+ Gyl + Gzz05, o <2UOo 83:) 5z =

where obvious higher order terms have been neglected on the basis of
O, ¢y7 ¢. < U and oo

The crucial distinction in transonic perturbation theory is in the co-
efficient of ¢,,. In the ususal subsonic or supersonic small perturbation
theory one approximated it as simply

0% — UL

However if Usx, = ax or nearly so then the terms retained above become
important. The time derivative term in the coefficient of ¢, may still
be neglected compared to the next to last term in (4.5.4), but no further
simplification is possible, in general. Hence, (4.5.4) becomes (dividing

by a%)

. L. 1 26 0%
wa|l — M? ve — —— | 2Us — | = 4.5.
where A
1)px
M? = M2 1—1—(7(—1})(;5 , Moo = Usx/aoo

It may be shown that My, is the consistent transonic, small pertur-
bation approximation to the local (rather than free stream) Mach num-
ber. Hence, the essence of transonic small perturbation theory is the
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allowance for variable, local Mach number rather than simply approx-
imating the local Mach number by M., as in the usual subsonic and
supersonic theories.

We digress briefly to show that in (4.5.4) the term

. Bl
o [—w - 1)5%] (45.6)
may be neglected compared to
82
_2UOOM (4.5.7)

This is done both for its interest in the present context as well as a
prototype for estimation of terms in analyses of this general type.

We assume that a length scale, L, and a time scale, T', may be chosen
so that

x*
t*

x/L ‘is of order one’

t/T  ‘is of order one’

Hence, derivatives with respect to z* or t* do not, by assumption, change
the order or size of a term. Thus (4.5.6) and (4.5.7) may be written
(ignoring constants of order one like v — 1 and 2) as

e
A = 2T (4.5.6)
and R
_ d)t*x*
B = Uy T (4.5.7)
Hence X
(4) ¢
(B) UL

This ratio however, is much less than one by our original assumption of
a small perturbation, viz.

¢ =UsLz* + ¢

In the beginning we have assumed

¢

Uy Lz* <1

Hence (4.5.6) may be neglected compared to (4.5.7).
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(4.5.5) is a nonlinear equation even though we have invoked small
perturbation ideas. One may develop a linear theory by considering a
steady flow due to airfoil shape, ¢s and an infinitesimal time depen-
dent motion of the airfoil superimposed, ¢4. For definiteness, one may
consider ¢4 as due to an airfoil of symmetric thickness at zero angle of
attack. Thus let

b2, y, 2, t) = ds(2,y,2) + da(z,y, 2,t) (4.5.6)

and substitute into (4.5.5). The equations for ¢5 is (by definition)

ésxm[l - Mgs] + &Syy + (ngzz =0 (457)
where A
ME, = M2 14 (4 )5
s Uoo

The equation for qu (neglecting products of qu and its derivatives which
is acceptable for sufficiently small time dependent motions) is

. . 1 . U . . .
bd,z + Py — —5 Pt — 2%.0¢dzt —bog,z —apg, =0 (4.5.8)
aOO aOO

where

b= [M;—1+(7+1)35”M§o]

az(fy+1)M2%

oo Uoo
From Bernoulli’s equation
o b 2
Pms = Poo2Ugo Uoo

Hence, a and b may be written as

(v + DMZCp,s()
2

M2 dC,, <(z
R

b= |M2 —1-—

¢q is velocity potential due to the infinitesimal motion (henceforth “and d
are dropped for simplicity). C,,, s is the mean steady pressure coefficient
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due to airfoil finite thickness and is taken as known. In general, it is a
function of x, y, z and the method to be described will, in principle, allow
for such dependence. However, all results have been obtained ignoring
the dependence on y and z. See Refs. [24], [25] and [33] for discussion
of this point.

The (perturbation) pressure, p, is related to ¢ by the Bernoulli rela-

tions 5 5
¢ ¢
= —Poo | 57 Uooi
p=-r [(% + &J
and the boundary conditions are
op, _ ~ _Of of
%Lz:[)—wa: ot +U008x

on airfoil where

f(x,y,t) = vertical displacement of point x,y on airfoil

w, = upwash velocity

and
plz—0 = 0 off airfoil

plus appropriate finiteness or radiation conditions as z — oo.

Note that equation (4.5.7) is nonlinear in ¢s. If one linearizes, as for
example in the classical supersonic theory, one would set My = M., and
obtain as a solution to (4.5.7)

N pooUgo 87f
(M2, — 1) O

where 0f/0x is the slope of airfoil shape. As My, — 1, p — oo which
is a unrealistic physical result of the linear theory. On the other hand if
one uses )

bs, |
Uso

Mp =My |1+ (y—1)

a finite result is obtained for ps; as My, — 1 which is in reasonable
agreement with the experimental data.*

Equation (4.5.7) with the full expression for M, is a nonlinear partial
differential equation which is much more difficult to solve than its lin-
ear counterpart. However two types of methods have proven valuable,

*Spreiter [34].
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the numerical Finite difference methods T and various techniques associ-
ated with the name ‘local linearization’ as pioneered by Oswatitsch and
Spreiter [34].

Once ¢, is known (either from theory or experiment) (4.5.8) may
be used to determine ¢4. (4.5.8) is a linear differential equation with
variable coefficients which depend upon g%s. Hence, the solution for the
lifting problem, gZA)d, depends upon the thickness solution, ¢, unlike the
classical linear theory where the two may be calculated separately and
the results superimposed. Again either finite difference methods or ‘local
linearization” may be employed to solve (4.5.8). Here we pursue an im-
proved analytical technique to determine gZA)d, which has been developed
in the spirit of ‘local linearization’ ideas [31].

To explain the method method most concisely, let ¢, = ¢; = 0 in
equation (4.5.8), i.e., consider two-dimensional, steady flow.

Assume*

a= i am(z — 20)™
m=0

b= i bn(z — x0)"
n=0

and ¢ = ¢ + ¢’ where, by definition,
0. — bodY, — apd =0 (4.5.8a)

and ¢ satisfies any nonhomogeneous boundary conditions on ¢. The
equation for ¢ is thus from (4.5.8) and using the above

gb,zz_bo :r:ac a0¢ Zb L= 1'0 ¢ +¢;cx]+zam(x_xo)m[d)gx_‘_qb;w]
m=1

(4.5.8b)
with homogeneous boundary conditions on ¢'.

If ¢/ < ¢, ie., ¢¥ is a good approximation to the solution, then ¢’
may be computed from (4.5.8b) by neglecting ¢ in the right hand side.
The retention of ag (but not by !) in (4.5.8a) is the key to the method,
even though this may seem inconsistent at first.

We begin our discussion with steady airfoil motion in a two-
dimensional flow. This is the simplest case from the point of view of

TBallhaus, Magnus and Yoshihara [35].
*We expand in a power series about x = xo; however, other series might be equally or more
useful for some applications. Results suggest the details of a and b are unimportant.
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computation, of course; however, it is also the most critical in the sense
that, as Landahl [33] and others have pointed out, unsteadiness and/or
three-dimensionality alleviate the nonlinear transonic effects. Indeed, if
the flow is sufficiently unsteady and/or three-dimensional, the classical
linear theory gives accurate results transonically for thin wings.

Steady airfoil motion in two-dimensional, ‘supersonic’ (by > 0) flow

Solution for ¢°. For by > 0, x is a time-like variable and the flow is
undisturbed ahead of the airfoil (as far as ¢" is concerned). Hence, so-
lutions may be obtained using a Laplace transform with respect to z.
Defining

¢ = /OOO (bo(x,z)e_pxda:

(4.5.8a) becomes
¢ —pie’ =0 (4.5.9)
with
2 _qp 2
1 = [bop” + aop]
Solving (4.5.9)
% = AVe = 4 AJetHz (4.5.10)

In order to satisfy finiteness/radiation condition at infinity, one selects
A9 =0. AY is determined from the (transformed) boundary condition,

¢Y |20 = w* (4.5.11)

From (4.5.10) and (4.5.11),
¢% .m0 = 4.5.12
=0 . ( )

Inverting (4.5.12)

oy = _/O by exp <_2“;05> Iy [Z?}ﬂ w(z —€)de  (4.5.13)

It is of interest to note two limiting cases. As ag&/2by — 0,

r o1
¢°| =0 = —/ by w(x — &)d¢ (4.5.14)
0
the classical result. But, more importantly, as ag&/2by — oo,

Pl =— [ (rat) bule - ) (45.15)
0
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Hence, even when the effective Mach number at x = zy is transonic,
i.e., by = 0, the present model gives a finite result. Before computing
the correction, ¢, to the velocity potential we shall exploit ¢° to obtain
several interesting result. For this purpose we further restrict ourselves

to an airfoil at angle of attack, w = —Uxa. From (4.5.15),
é—%w—w()u(f)}- F=22 (4.5.16)
Uoo()d N a 0¥ ! ’ - 2b0 e

and the pressure on the lower aerodynamic surface is

_1
oTTa = U% |2=0 = 2b, 2e " Io(Z) (4.5.17)
T2 oo

Go_ » _2
«

The lift, moment and center of pressure may be computed.

c
LY E/ 2p%dx = pooUgoac4(7moc)_%Lo
0

o o (4.5.18)
L0 = (n/2)2eze %Iy(¢) + I1(¢)]; ¢= QL
0
0 _ ¢ 0 2 28 1270
M 2%z dx = Lo — poo U2, g(waoc) 2 M
0 (4.5.19)
~ 3 122 s 1
Mo =7 ( 3m):{e N (2)E 2 + 3¢+ e h(o)ez}

The center of pressure may be obtained from LY and M? in the usual
way. We shall use and discuss these results for a particular airfoil later.
But first let is consider the computations of ¢'.

Solutions for ¢'. For simplicity, we shall consider only a linear variation
in mean pressure, C),, s, along the airfoil chord. hence, ag, by and by are
not zero and b; = ag. All other a,, and b,, are zero. Assuming ¢/ < ¢,
the equation for ¢’ is

¢, — aodl, — bodly, = b1z — 0)e), (4.5.20)
Taking a Laplace transform of (4.5.20),
! 2 'x 0* 2d¢0* 2 ,0*
G —p 9T =—b|2py" +p v + z0p° P (4.5.21)

A particular solution of (4.5.21) is

¢y = (Coz + C12%)e 12 (4.5.22)
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where
A B by
Co=b |—+-—=|; Ci=-—B
’ 1[2u+4uz]’ P ap
—2pw* 20" 120 2, % 2 dw*
P +pt; [ op+ao]_x0pw _prdw
7 Iz 2 I p dp
B _pPw* [2bop + ag]
=" 5

The homogeneous solution for ¢’ is of the same form as for ¢°. After
some calculation, applying homogeneous boundary condition to ¢’, we
determine

Co

¢ *|rmo = — 4.5.23
\ . ( )

Inverting (4.5.23) using the definitions of Cy, A, B above, and assuming
w = —Uyxa for simplicity, we have

1
¢ bs 5. d? d a9 -
T |z=0 — I - | 5=o = Ry
Uooa’ ' 0 (et di? ’ dz TR (4.5.24)
59 )
S0 a5y (2) + L1(7)] Yy e=
2bg
The pressure coefficient corresponding to ¢’ is given by
Cg = ;,1 + C;Q
where
! o
b N
DR = (2L — L) (E — 7°) + LF?)
= (4.5.25)
b3 Cha 200 _;
Tp = ETe_x{Q.i(Il — Io) + Io}

As may be seen C]’Dl is always a small correction to Cg; however, 01/92
may be large or small (particularly near the leading edge as & — 0)

depending on the size of
ZTo apgcC

¢ 2bg
Since we are free to choose xy in any application, it is in our interest to
choose it so that
! 0
Cp < C)

More will be said of this in the following section.
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We note that higher terms in the power series for ¢ and b may be in-
cluded and a solution for ¢ obtained in a similar manner. The algebra
becomes more tedious, of course.

Results and comparisons with other theoretical and experimental data

We have calculated two examples, a Guderley airfoil and a parabolic
arc airfoil, both of 6% thickness ratio, 7, and for Mach numbers near
one. These were chosen because they have smooth mean steady pressure
distributions (at least for some Mach number range) and because other
investigators have obtained results for these airfoils. These two airfoils
and their mean, steady pressure distributions are shown in [24]. The
Guderley airfoil had a linear mean pressure variation while the parabolic
are has a somewhat more complicated variation including a (theoreti-
cal) logarithmic singularity at the leading edge. For My, = 1, when
Cp,.s = 0 the local Mach number along the chord equals one and if one
expanded about the point then by = 0, and our procedure would fail in
that ¢/ > ¢°. Hence, one is lead to believe that one should choose
as far away from the sonic point, C,,s = 0 at M, = 1, as possible. To
fix this idea more concretely, we first considered the Guderley airfoil.
Guderley airfoil. We have calculated C’g and C’S + Czla for My, = 1. Two
different choices of zy were used, xg = ¢/2 (Figure 4.18) and ¢ (Figure
4.19). Results from Stahara and Spreiter [24] are also shown for refer-
ence. As can be seen for xg = ¢/2, the ‘correction’ term, ]’02, dominates
the basic solution, C’g, as z/c — 0. For xg = ¢, on the other hand, the
correction term is much better behaved, in agreement with our earlier
speculation about choosing zy as far as possible from the sonic point.
Note that if, for example, we choose g = 0 this would also work in
principle, but now by < 0, and a ‘subsonic’ solution would have to be
obtained for ¢°.

Parabolic arc airfoil. Similar results have been obtained and are dis-
played in Figure 4.20 (xo = ¢/2) and Figure 4.21 (9 = ¢p). Both of
these solutions are well behaved in the sense that C’z’7 < C’g, though
again the results for 2o = ¢ appear to be better than those for z¢ = ¢/2.
The relatively better behavior of the zy = ¢/2 results for the parabolic
arc as compared with the Guderley airfoil is probably related to the
sonic point being farther ahead of xzy = ¢/2 for the former than the lat-
ter. See [24]. Also shown in Figures 4.20 and 4.21 are the theoretical
results of Stahara-Spreiter [24] and the experimental data of Knechtel
[36]. Knechtel indicates the effective Mach number of his experiments
should be reduced by approximately 0.03 due to wall interface effects.
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Figure 4.20. Pressure distribution for parabolic arc airfoil at constant angle of attack.

Also he shows that the measured mean steady pressure distributions
at zero angle of attack, C,,, s, agree well with the theoretical results of
Spreiter [24,37] for My, > 1. However, for M, < 1, C), s deviates from
that theoretically predicted; see Figure 4.22 taken from [36]. The change
in slope for C,, s near the trailing edge may be expected to be impor-
tant for computing the lifting case. In Figure 4.23 results are shown for
My = 0.9 which dramatically make this point. Shock induced separa-
tion of the boundary layers is the probable cause of the difficulty.
Finally, we present a graphical summary of lift curve slope and center
of pressure for the parabolic arc airfoil comparing results of Knechtel’s
experimental data and the present analysis. See Figure 4.24.
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Figure 4.21.  Pressure distribution for parabolic arc airfoil at constant angle of attack.

All things considered the agreement between theory and experiment is
rather good; however, it is clear that is C),, s varies in a complicated way
one must go beyond the straight line approximation used in obtaining
the present result. In principle this can be done; how much effort will
be required remains to be determined.

Non-steady airfoil motion in two-dimensional, ‘supersonic’ by > 0 flow

Solutions for ¢°. Again taking a Laplace transform with respect to z of
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FROM REF. 36

CPmi 0

FOR
Mg = 1.083 —3=

1,052
1.01
0.966

0.909
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-0.4

0.806
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0 0.2 0.4 06 0.8 1.0
x/c

@=0°, My =0.704 TO 1.083

Figure 4.22. Representative experimental pressure distribution for 6-percent-thick
circular-arc airfoil with roughness elements near the leading edge.

(4.5.8) (for ¢y =0 and a = ap, b = by) we obtain
¢ — ¢’ =0 (4.5.26)

where p = [bop? + aogp — d]% and bg is as before
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Figure 4.23. Pressure distribution for parabolic arc airfoil at constant angle of attack.

2U, 2
ap = ag + Zooiw; d= <w>

0 Qoo

and we have assumed simple harmonic motion in time. Solving (4.5.26)
subject to the boundary condition, (4.5.11), and appropriate finiteness
and/or radiation condition at infinity we have (after inversion)

. e g7h
Flo=— [0t e (G2 ) 1 [(;j’()) +b0] £ pwalo = €)d

(4.5.27)




256 A MODERN COURSE IN AEROELASTICITY

EXPERIMENTAL DATA FROM REF. 36
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Figure 4.24. FEffects of boundary-layer trio in the variation with Mach number of
lift-curve slope and center pressure of the circular-arc airfoil at a, ~ 0°.

The perturbation pressure on the lower surface is given by

P’ = poold} + Usod] (4.5.28)

which may be evaluated from (4.5.27) directly using Leibnitz’ rule

0 1 ~ 2
0 p -1 —aox ag d wq(0)
— — _2b 2 _

@ —do ao \? d 2
+/0 eXp( 2bg >IO [<Qbo> +bo] :
. |:Z~wwa(52_ 5) + wg(g_g)] df

where

wh(z) = dZa (4.5.29)

An alternative form for C’g may be obtained by first interchanging the
arguments x and x — ¢ in (4.5.27). For ap = 0, by = M2 — 1 the
above reduces to the classical result. For any ag and by and k = wc/Us
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large the results approach those of the classical theory and for £k — oo
approach the ‘piston’ theory [32]. For the specific case of an airfoil un-
dergoing vertical translation, w = —h;, where h is vertical displacement
and the h; is the corresponding velocity, we have the following results,

1 ~ 2 - ) 5
Poo =i | (g2) 2] e {nior + 22}

where
1
B 2bg bo

_1
p_o [(a) d|”
2 |\ 200 ) T ho

In the limit as by — 0, (corresponding to My, — 1 in the classical theory)
) 1
ao d|* ao
20 el 20, 1
[<250> " bo] o O

¢°|=0 — a2 <~x ) (4.5.31)

aogm

NI

(4.5.30)

and

D=

Using (4.5.30) or (4.5.31) in (4.5.28) gives the perturbation pressure.
The latter form is particularly simple

Cp __ 1 N IR
ikheiwt S = (maoc) ™ [2(1“/0) 2 +idk (E) (4.5.32)
¢ ik 2 eiwt
where )
h = }_Z iwt; k =
e i

Solution for ¢'. Park [38] has computed ¢’ and made comparisons with
available experimental and theoretical data. It is well-known, of course,
that for sufficiently large k the classical theory itself is accurate transon-
ically [33]. Hence, we also expect the present theory to be more accurate
for increasing k.

Results and comparison with other theoretical data

We have calculated a numerical example for the Guderley airfoil for
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Figure 4.25. Pressure distribution for Guderley airfoil oscillating in rigid body trans-
lation.

M =1 and k£ = 0.5 in order to compare with the results of Stahara-
Spreiter [24]. We have chosen x¢ = ¢/2 for which

bp=0.12; ag=1.2/c

For such small by, we may use the asymptotic form for by — 0, (4.5.32),
and the results are plotted in Figures 4.25 and 4.26 along with the results
of [24].

As k — 0, the phase angle, ® is a constant at 90° and the pressure
coefficient amplitude is the same as that of Figure 4.18. Presumably
somewhat more accurate results could be obtained by choosing zg = ¢
and computing the correction, C’;,. However, the agreement is already
good between the present results and those of [24].

As Stahara-Spreiter [24] point out even for k as large as unity there
are still substantial quantitative differences between their results (and
hence the present results) and those of the classical theory. However, for

k > 1, one may expect the present theory and that of [24] to give
results which approach those of the classical theory.

Non-steady airfoil motion in three-dimensional ‘supersonic’ (by > 0)

flow
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Figure 4.26. Pressure-translation phase angle distribution.

Solution for ¢°. We begin with (4.5.1) and take a Fourier transform
with respect to y,

¢Mz/ e~ Mdy (4.5.33)

and a Laplace transform with respect to x,
wWE/(&pmm (4.5.34)
0

(4.5.1) becomes

¢t — 1P T =0 (4.5.35)
where

1 = [bop? + agp — ~]%; by, ag as before

and

d=(w/asx)? =2

Solving (4.5.35) subject to the boundary condition, (4.5.11), and appro-
priate boundary finiteness/radiation conditions at infinity we have (after
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inversion)

&) = /0 / Alw =&y —mulg. s dy (4.5.36)

=5 ‘

~ 1
_exp _aox W 2 ~ 212
Alz,y) = 7<r2 0 >r1 cosh [(2000 ) + (QCLI)OO) ] r

for r2>0, ie.

0< |yl <ab 2

=0 for r2<0, ie.

1
xby * < |yl

and
2

r? = 2% — bly? (4.5.37)
A is the aerodynamic Green’s function required in the Mach Box nu-
merical lifting surface method [32].

For by — M2 —1; ag — 0; do — 2(iwUs/a?,) and A reduces to the
classical results. For by — 0, R.ag > 0,

1 -
A— ———e WV AT g5 05 ly| < o0 (4.5.38)
2mx

For by — 0, Reag < 0,

1 .
A— — exp W) for o> 0; |yl <oo (4.5.39)
2rx bo

Non-steady airfoil motion in three-dimensional ‘subsonic’ (by < 0) flow

Solution for ¢°. We begin with (4.5.1), assuming simple harmonic mo-
tion,

—bo@ey — G0y + do° + @y, + 2. =0 (4.5.40)

where ag, by, d as before.
To put (4.5.40) in canonical form by eliminating the term ¢,, we
introduce the new dependent variable, ®

P° = 2P (4.5.41)
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where € is determined to be

Q= —ay/2bg (4.5.42)
and the equation for ® is
—g2
B®y, + @ LLB + d} + Py + .. =0 (4.5.43)
and
=—-by>0

We further define new independent variables,

N

=z Y= B%y, 7 =B2z (4.5.44)
then (4.5.43) becomes

(I)x/x/ —+ (Py/y/ —+ CI’Z/Z/ + ];2(1) =0 (4545)

k2 = (d—jé) /B

We are now in a position to use Green’s theorem

///[@vw — pV2P)dV = // [@Zﬁ: - gﬂ ds (4.5.46)

V' volume enclosing fluid

where

S surface area of volume indented to pass over airfoil surface and wake
n outward normal.

We take ® to be the solution we seek and choose ¢ as

e—ifcr
¢E< . ) (4.5.47)

where
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Thus the LHS of (4.5.7) becomes —47®(z’, 4/, 2’). On the RHS, there is

no contribution from the surface area of sphere at infinity. Thus (4.5.46)
becomes

Ar®(x,y, 2) // [(cb o) o [e—ikr
Yy 2) = U—®PL)5
s airfoil plus wake 0z T

—ikr o
_ (6 ) (<I>U q)L):| d.%'ldyl

r 071
(4.5.49)

where
®y, @1, upper, lower surface
6?1 aza on upper/lower surface and we have returned to the original
independent variables, x,y, z and x1,¥y1, 21. Since ® is an odd function

of 21, 21,

0
d d;)=0 4.5.50
3 Zl( v—®r) = ( )
Also
o e—z‘fcr o e—z’fcr
— = — -1 4.5.51
0z1 < r > oz r (=1) ( )
Thus (4.5.49) becomes, re-introducing the original dependent variable,
¢0
e—zkr
(;5 (33 Y,z le dmldyl (4.5.52)
where
Ao = oy — 6]

Up to this point we have implicitly identified ¢° with the velocity poten-
tial. However, within the approzimation, a = ag, b = by, ¢ = ¢°, p =
p°, ¢ and p satisfy the same equation, (4.5.40);hence, we may use (4.5.54)
with ¢° replaced by p°. Further using Bernoulli’s equation, (4.5.5), we
may relate ¢¥ to p®

¢ (x,y,2) = —/x pOp(A’é/’ %) exp [iw(g_x)} X (4.5.53)
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Substituting (4.5.52) into (4.5.53) (where (4.5.52) is now expressed in
terms of p°); introducing a new variable ¢ and x1,y1; gives

¢ (@,y,2 “4r // PooUso ml’yl)eXp[_W(:Uzo; xl)]

x1 W —1kr
| {/ exp <[Q . K) 2 { . }dﬁ} day dyy

(4.5.54)
Finally, computing from (4.5.56)
_ 99
9z lz=0
we obtain
A
wg':oy) N // @(m, y)K(z — 21,y —y1)dedyy - (4.5.55)
where
—iw(x—2x1) ~
. OXP [W} r—r iw 92 [ e—ikr
TR /—oo ex"([mUJ 5) 02y -+ (%
(4.5.56)
and

r? = [+ By — 1)’
The above derivation, though lengthy, is entirely analogous to the clas-
sical one. For ag — 0, B — 1 — M2 we retrieve the known result
[32].

It should be noted that in the above derivation we have assumed Re
ap > 0 and thus Re € < 0. This permits both the radiation and finite-
ness conditions to be satisfied as z — +o0o. For Re dp < 0 one may not
satisfy both conditions and one must choose between them.

Asymmetric mean flow. In the above derivations we have assumed a
mean flow about symmetrical airfoils at zero angle of attack and consid-
ered small motions of that configuration. It is of interest to generalize
this to a mean flow about asymmetrical airfoils at nonzero angles of at-
tack. First consider the Mach box form of the integral relation between
velocity potential and downwash, cf. equation (4.5.36),

by = / / Ap(z — €,y — qywp(€,n)de dn (4.5.57)
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Here we have written the relation as though we knew wy everywhere on
z = 0%. We do not, of course, and thus the need for the Mach box pro-
cedure [32]. here Ay is that calculated using upper surface parameters,
ignoring the lower surface. A similar relation applies for the lower sur-
face with Ay replaced by —Ar. Hence, we may compute from (4.5.57)
(for lifting motions where wy = wr, = w on and off the airfoil)

by — b1 = / / Al — €y — nw(€, n)de dn (4.5.58)

where

AEAU+AL

is the desired aerodynamic influence function. Note that Ay and Ajp, are
the same basic function, but in one the upper surface parameters are
used and in the other the lower surface parameters.

Using the Kernel Function approach the situation is somewhat more
complicated. Here we have, cf. equation (4.5.55),

wy = / Ky(z — &y —n)pu(§,n)ds dn (4.5.59)

Note Ky = 2K, where Kpp, is the Kernel Function for Ap when the
lower surface mean flow parameters are the same as those of the upper
surface.

A similar equation may be written for wy, and py, with Ky replaces
by —Kj. Again we note wy = wy = w. These two integral equations
must be solved simultaneously for py; and pr with given w. Hence, the
number of unknowns one must deal with is doubled for different upper
and lower surface parameters. This poses a substantial addition burden
on the numerics. There is a possible simplification, however. Define

Ky - Ky,
2

If (AK/K)? < 1, then on may simply use K, i.e., the average of the up-
per and lower surface kernel functions. Formally, one may demonstrate
this using perturbation ideas as follows.

Using (4.5.59) (and its counterparts for the lower surface) and (4.5.60)
one may compute

K=="YT"L AK= (4.5.60)

W+ w1, = 20 / / K (pur — pr) + AK (pyr + pr))dé dn
and

Wy —wr, =0= //[K(pU+pL) + AK (py — pr)|d€ dn (4.5.61)
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From the second of these equations, the size of the terms may be esti-

mated.

pU+pLNO(AK>

pU — PL K
Thus in the first of (4.5.61) the two terms on the right hand side are of
order

AK)?
Ko —pr) and S )

The second terms may be neglected if

(AK/K)* < 1 (4.5.62)
and (4.5.61) may be approximated as

K
wleag) = [[ 5= €y = mpl&miey (45.63)

where

Ap=pu —pL

(4.5.62) would not appear to be unduly restrictive condition for some
applications.

The development in this section is not dependent upon the particular
method used to compute Ky and/or Kj, elsewhere in the text. The
crucial assumptions are that (1) the oscillating motion is a small pertur-
bation to the mean flow and (2) the difference between the upper and
lower surface Kernel functions is small compared to either.

Concluding remarks

A relatively simple, reasonably accurate and systematic procedure has
been developed for transonic flow. A measure of the simplicity of the
method is that all numerical results presented herein were computed by
hand and analytical forms have been obtained for general ‘supersonic’
Mach number and airfoil motion for two-dimensional flow. For three-
dimensional flow the relevant Green’s functions have been determined
which may be used in the Kernel Function and Mach Box numerical
lifting surface methods.

This approach has been extended to include a more accurate form of
Bernoulli’s equation and airfoil boundary condition. Also numerical ex-
amples are now available for two dimensional airfoils in transient motion
and three dimensional steady flow over a delta wing. Finally a simple
correction for shock induced flow separationhas been suggested.*

*Dowell [39].
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For a highly readable survey of transonic flow, the reader should con-
sult the paper by Spreiter and Stahara [40].

Also important advances in finite difference and finite element solu-
tions are discussed in the following papers (all presented at the ATAA
Dynamic Specialists Conference, San Diego, March 1977): Chan and
Chen [41], Ballhaus and Goorjian [42] and Isogai [43].

In an important, but somewhat, neglected paper Eckhaus [44] gave a
transonic flow model including shock waves which considered a constant
supersonic Mach number ahead of the shock and a constant subsonic
Mach number behind it. An obvious next step is to combine the Eckhaus
and Dowell models. M.H. Williams [45] has extended Eckhaus’ results
by utilizing a somewhat broader theoretical formulation and obtaining
more accurate and extensive solutions. He has compared his results to
those of Tijdeman and Schippers [46] (experiment) and Ballhaus and
Goorjian [42] (finite difference solutions) and obtain good agreement.
The comparison with experiment is shown here in Figure 4.27 for a
NACA 64 A006 airfoil with a trailing edge quarter chord oscillating flap.
The measured steady state shock strength and location for no flap. The
measured steady state shock strength and location for no flap oscillation
is used as an input to the theoretical model. Since the flap is downstream
of the shock, the theory predicts no disturbance upstream of the shock.
The experiment shows the upstream effect is indeed small. Moreover the
agreement on the pressure peaks at the shock and at the slap hinge line
is most encouraging. It would appear the the transonic airfoil problem
is finally yielded to a combination of analytical and numerical methods.
As Tijdeman and other have emphasized, however, the effects of the
viscous boundary layer may prove significant for some applications. In
particular the poorer agreement between theory and experiment for the
imaginary pressure peak at the shock in Figure 4.27 is probably due to
the effects of viscosity. The same theoretical model has also been studied
by Goldstein, et al. for cascades with very interesting results [47]. Rowe,
a major contributor to subsonic aerodynamic solution methods, has in
the same spirit discussed how the classical boundary conditions and
Bernoulli’s equation can be modified to partially account for transonic
effects as the airfoil critical mach number is approached [48].

For a broad-ranging survey of unsteady fluid dynamics including a
discussion of linear potential theory, transonic flow, unsteady boundary
layers, unsteady stall, vortex shedding and the Kutta-Joulowski trailing
edge condition the paper by McCroskey [49] is recommended. For a dis-
cussion of the fundamentals of computational fluid dynamics of unsteady
transonic flow, see Chapter 9.
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Figure 4.27.
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Nomenclature

A aerodynamic influence function; see equation (4.5.36)

a,b see definitions following equation (4.5.1)

am, by, see equation preceding (4.5.10)

ap see equation following (4.5.26)

oo free stream speed of sound

B = -

Cp = 2(p — poo)/pocU%; pressure coefficient due to airfoil motion

Cp

s mean steady pressure coefficient due to airfoil finite thickness at
zero angle of attack

Cr,, lift curve slope per degree

¢ airfoil chord

d see equation following (4.5.26)
d see equation following (4.5.35)
e see equation (4.5.30)

f vertical airfoil displacement

h rigid body translation of airfoil
Im imaginary part

i =(-1)2

K aerodynamic kernel function; see equation (4.5.55)
k

T

k see equation following (4.5.45)

L lift

M pitching moment about leading edge
M, free stream Mach number

p perturbation pressure; also Laplace Transform variable

Re real part
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r see equations (4.5.37), (4.5.47) and (4.5.56)

t time

Uy free stream velocity

w, downwash

x,y, 2z spatial coordinated

x',y’, 7 spatial coordinates

T

Q
8

0

2bo

Zcp. center of pressure; measured from leading edge

xo see equation preceding (4.5.10)

a angle of attack

~ ratio of specific heats; also Fourier transform variable
® see equation (4.5.41)

¢ velocity potential

1 see equation (4.5.47)

Poo free stream density

Q2 see equation (4.5.42)

w frequency of airfoil oscillation

&, A, n dummy integration variables for x,y, z

Superscripts

0 basic solution
! correction to basic solution
* Laplace Transform

1 Fourier transform

Subscripts

U, L upper, lower surfaces
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Chapter 5

STALL FLUTTER

As the name implies, stall flutter is a phenomenon which occurs with
partial or complete separation of the flow from the airfoil occurring pe-
riodically during the oscillation. In contrast to classical flutter (i.e.,
flow attached at all times) the mechanism for energy transfer from the
airstream to the oscillating airfoil does not rely on elastic and/or aero-
dynamic coupling between two modes, nor upon a phase lag between
a displacement and its aerodynamic reaction. These latter effects are
necessary in a linear system to account for an airstream doing positive
aerodynamic work on a vibrating wing. The essential feature of stall
flutter is the nonlinear aerodynamic reaction to the motion of the air-
foil /structure. Thus, although coupling and phase lag may alter the
results somewhat, the basic instability and its principal features must
be explained in terms of nonlinear normal force and moment character-
istics.

5.1. Background

Stall flutter of aircraft wings and empennages is associated with very
high angles of attack. Large incidence is necessary to induce separation
of the flow from the suction surface. This type of operating condition
and vibratory response was observed as long ago as World War I at which
time stall flutter occurred during sharp pull-up maneuvers in combat.
The surfaces were usually monoplane without a great deal of effective
external bracing. The cure was to stiffen the structure and avoid the
dangerous maneuvers whenever possible.

Electric power transmission cables of circular cross-section, or as mod-
ified by bundling or by ice accretion, etc., and structural shapes of vari-
ous description are classified as bluff bodies. As such they do not require
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large incidence for flow separation to occur. In fact incidence is chiefly an
orientation parameter for these airfoils rather than an indication of the
level of steady aerodynamic loading. Again, largely attributable to the
nonlinearity in the force and moment as a function of incidence, such
structures are prone to stall flutter. These vibrations are sometimes
called ‘galloping ’ as in the case of transmission lines. The number and
classes of structures that potentially could experience stall flutter are
very great, and include such diverse examples as suspension bridges, he-
licopter rotors and turbomachinery blades. More mundane examples are
venetian blind slats and air deflectors or spoilers on automobiles.

The stall flutter of non-airfoil structures is described at greater length
in Chapter 6, along with galloping and buffeting. These are all closely
related bluff body phenomena from the point of view of vortex method
aerodynamics, a subject which is introduced later in the present chap-
ter. The stall flutter of rotorcraft blades is described in greater detail
in Chapter 7 where the special kinematic restraints of these rotating
structures lead to a unique aeroelastic description. The stall flutter of
turbomachinery blades is described more fully in Chapter 8, wherein it
is observed that the aeroelastic behavior in stall flutter is distinct from
both non-airfoil structures and rotorcraft blades.

When the flow field is measured or visualized during stall flutter oscil-
lations it is observed that free vortices are generated in the vicinity of the
separation points. These large vortical structures are shed periodically
creating regions of reduced and even reversed velocity in the vicinity
of the airfoil. For this reason the aforementioned technique known as
the vortex method has been developed recently for the computational
modelling of unsteady separation aerodynamics.

It may be shown that the mutual induction, or interaction, of as few
as three vortices leads to chaotic behavior. Thus it is confirmed by
computation that use of vortex method aerodynamics displays many of
the nonlinear aeroelastic phenomena actually observed experimentally
in conjunction with stall flutter.

5.2. Analytical formulation

Although analysis of stall flutter based on computational unsteady
aerodynamics is becoming feasible, it is nevertheless instructive to couch
the problem in analytical terms so as to discriminate clearly the ac-
tual mechanism of instability [1]. We will consider two important cases:
bending and twisting.

In the case of bending, or plunging displacement of a two-dimensional
‘typical section ’ airfoil, let us assume that the force coefficient, including
penetration well into the stall regime, is given by a polynomial approxi-
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mation in «,

v

_Cn - Z an(QSS)an ap = _Cnss(ass) (521)
n=0

where « is the instantaneous departure from the steady state value of
angle of attack, agg, attributable to vibration of the airfoil. This method
of expressing the normal force characteristic gives a good local fit with
a few terms. However, the coefficients, «,,, depend on the mean angle of
attack,ass. Force has been taken to be positive in the same direction as
positive displacement h. (In the usual (static) theory of thin unstalled
and uncambered profiles —C',, = msin 2azs. The a,, could then be ob-
tained by deriving the Maclaurin series expansion of 7 sin2(ags + «)
considered as a function of ). In general the —C), function is an em-
pirically determined function, or characteristic, when stall occurs on a
cambered airfoil, but the procedure is still the same. The «,, are in fact
given by the slope and higher order derivatives according to

_1ac,
n! da™ la=0

an = (5.2.2)

We next consider a small harmonic bending oscillation
h = hg coswt

to exist and enquire as to the stability of that motion: Will it amplify
or decay?

Under these circumstances, it is possible to interpret the instantaneous
angle of attack perturbation to be given by (see Figure 5.1)

V cos agg

h
o = arctan <tan gs + ) — Qlgs (5.2.3)

with Maclaurin series expansion in powers of h as follows

AN AN i\’
O = COS Qlgg (V) — §s1n 2054 (V) —3 CoS 3Qugs (V)
5.2.4
1. i\ (524
+151n4a33 <V> + -

It should be noted that this incidence is relative to a coordinate system
fixed to the airfoil. The dynamic pressure also changes periodically with
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Figure 5.1.  Velocity triangle.

time in this coordinate system according to

. . 2
R I 5 . h h
Qo] = 5/)‘/1%1 = 5pV 1+ 2sin ogg (V) + <V> (5.2.5)

It is assumed for simplicity that the single static characteristic of nor-
mal force coefficient versus angle of attack continues to be operative in
the dynamic application described above. Thus, the expanded equation
for the normal force N = ¢(2b)C), is given by

.\ 2 -\ 3 .\ 4
1, h 1 h 1, h
— 5511&2045S (V) ~3 COS 30gs (V) + Zsm4ass (V) + "
(5.2.6)
with .
h h h
V= —% sinwt = —k‘jo sin wt (5.2.7)
A slight concession to the dynamics of stalling may be introduced
by the inclusion of a time delay, ¥/w, in the oscillatory velocity term
appearing in the C), expansion, i.e., within the summation of (5.2.6),
but not in the development of ¢ro;. The latter is assumed to respond
instantaneously to « or h.

5.3. Stability and aerodynamic work

As is common with single degree of freedom systems such as that
postulated above, the question of amplification or subsidence of the am-
plitude of the initial motion can easily be decided on the basis of the
work done by this force acting on the displacement. Thus

)

. N
1, , h h ” h
N =— §pV (2b) |1+ 2sin o, (V) + (V) ;an(ass) [ cos ass (V
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T 27
. 1 .
Work/Cycle = / Nhdt = — Nhd(wt) (5.3.1)
0 wJo
and since the frequency is effectively the number of cycles per unit time,
the power may be expressed as

1 2 .
P = Power = (Work/Cycle)(Cycles/Seconds) = o Nhd(wt)
0

T

_ (5.3.2)
Using the previous expression for N and h, it is clear that only even
powers of sin wt in the integrand of the power integral will yield nonzero
contributions. Also, terms of the form sin” wt coswt will integrate to
zero for any integer value of n including zero. Restricting the series
expansions for —C,, and « to their leading terms such that the power
integral displays terms of vibratory amplitude up to the sixth power
(i.e., up to h§) results in

P = %pV?’b [A(who/V)? + B(who/V)* + C(who V) +---]  (5.3.3a)

where
A = — 2apsin agg — a1 COS Qugg COS Y
1 1
B=- e [ — (cos ags — cOS 3augs) <1 + 5 c08 2¢)
+ (3 cos ags — cos 3ags) cos P |
1 . . 3 1
— 4% (sin ags + sin3ags) | 1 — 5 cos + 5 c08 21)
3
— Eag [(3cos ass + cos 3ass) cos ]
1 3
C=— Eal [ (cos 3args — €os Hargs) <2 + cos 2@[})

1 1
~ 16 (3 cos3ags — 2 cos bags) cos ) — 3 cos 3agscOS3Y | — - -
(5.3.3b)

The cubic dependence on V is a consequence of the dimensions of power,
or work per unit time.

5.4. Bending stall flutter

The analytical expression for the aerodynamic power in a sinusoidal
bending vibration is too cumbersome for easy physical interpretation.
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However, for very small amplitudes of motion, as might be triggered
by turbulence in the fluid, or other ‘noise’ in the system, it is clear
that the sign of the work flow will be governed by the coefficient of
(who/V)%. Assuming a small to moderate positive mean incidence, as,
the coefficient o will be positive. With cos ¥ near unity, a positive
power can only occur if «; is sufficiently negative, i.e., if the —C), vs
« characteristic has a negative slope at the static operating incidence.
More precisely, if |¢| < 90° and

a1 < —2ap tan agg sec (5.4.1)

the small amplitude vibration is unstable and the work flow will be such
as to feed energy into the vibration and increase its amplitude.
In the previous expression for the power, (5.3.3a),

P/ (;pV?’b) = A(who/V)? + B (who/V)* + C (who/V)®  (5.4.2)

the coefficients A, B and C' are complicated functions of ¥, as and the
Qy,, the coeflicients of the power series representation of the normal force
characteristic. For example in the highly simplified case of agss = ¢ = 0,
we obtain

dCy, 1dC,, 1 d3C’n
A pr— —_ — B —_— —_——_— J—
“ do oz:O7 2 da a=0 8 dOé3 a=0
and
1 dC, 1 d°C,

- _ 4.
12 do a:0+ 192 dab ‘azO (5-4.3)

In the general case A, B and C individually may be either positive, zero
or negative. The several possible cases are of fundamental interest in
describing possible bending stall flutter behavior. I. A <0, B <0, C <
0 No flutter is possible.

II. A> 0, B >0, C > 0 Flutter amplitude grows from zero to very
large values.

III. A > 0, B < 0, C < 0 Flutter amplitude grows smoothly from zero
to a finite amplitude given by

(who/V i = (=1BI + /B2 + 44[CT) /2|C

At this amplitude the power once again becomes zero.
IV. A< 0,B > 0,C > 0 No flutter at small amplitudes; if an ex-
ternal ‘trigger’ disturbance carries the system beyond a certain critical
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vibratory amplitude given by
(who/V)fy = (=B +V/B? +4]A|C) /2C

the flutter will continue to grow beyond that amplitude up to very large
values. At the critical amplitude the power is zero.

V. A>0,B >0,C < 0 This is similar to case III except that the
finite amplitude, or equilibrium, flutter amplitude

(who/V)3; = (B + /B2 + 44|C])/2(C|

might be expected to be somewhat larger.
VI. A >0, B<0,C >0 This is similar to case IV except that the
critical vibratory amplitude beyond which flutter may be expected to

grow
(who/V)2 VI = (|IB] ++/B?% +4|A|C)/2C
is perhaps a larger value.

VII. A >0, B <0, C >0 This case has behavior similar to case II if
B is very small and similar to case III if C' is very small and also very
large amplitudes are excluded from consideration.

VIII. A < 0.B > 0, C' < 0 This case behavior is similar to case I if
B is very small and similar to case IV if C is very small and also very
large amplitudes are excluded from consideration.

5.5. Nonlinear mechanics description

A number of these variations of power dependency on amplitude have
been sketched in Figure 5.2. Case II is an example of what may be
termed ‘soft flutter’; given an airstream velocity V, incidence ags and
time delay 1/w such as produce values of A, B and C according to
case II, the vibratory amplitude of flutter might be expected to grow
smoothly from zero.

Cases III and V similarly are examples of soft flutter; in these cases
however, the amplitude of vibration reaches a steady value and does not
increase further. An equilibrium flutter amplitude is attained after a
period of time and maintained thereafter. If, in either of these cases,
one were to plot h versus h/w with time as a parameter, it would be
found that the ‘trajectory’ of the ‘characteristic point’ would be a spiral
around the origin, beginning at the origin at ¢ = 0 and asymptotically
approaching a circle of radius hg for very large time. In the parlance of
nonlinear mechanics the circular path is a ‘limit cycle’ and hence most
instances of stall flutter may be termed limit cycle vibrations.

Case IV, or alternatively case VI, describes a type of behavior which
may be termed ’hard flutter’. In this situation when flutter appears as



282 A MODERN COURSE IN AEROELASTICITY

P | FLUTTER I , CIBCULAR
VTS hw | JCYCLE

Jho |
CASE II

H
S|
Ey/

A
/
/
/
!
',I
]
\
\
\\
\
\
\
N
—
£
=
O
S
~N
/A"
//
D

NO FLUTTER

Figure 5.2. Power vs. amplitude.

a self-sustaining oscillation, the amplitude is immediately a large finite
value. Here the motion spirals away from the circular limit cycle to
either large or smaller amplitudes in the phase plane (i.e., the h, h/w
plane). This example is an instance in which the limit cycle is unstable.
The slightest perturbation from an initially pure circular path, either to
larger or smaller radii, will result in monotonic spiralling away from the
limit cycle. The previous example of case III illustrated the case of a
stable limit cycle.

The origin of the phase plane is also a degenerate limit cycle in the
sense that the limit of a circle is a point in which case only path radii
larger than zero have physical meaning. However, the origin may be an
unstable limit cycle (soft flutter) or a stable limit cycle (hard flutter).

It is clear from a consideration of cases VII and VIII that more than
two limit cycles may obtain; it is a theorem of mechanics that the con-
centric circles which are limit cycles of a given system are alternately
stable and unstable.

5.6. Torsional stall flutter

With pure twisting motion of the profile, the analytical formulation
is more complex stemming from the fact that the dynamic angle of inci-
dence is compounded of two effects: the instantaneous angular displace-
ment and the instantaneous linear velocity in a direction normal to the
chord position; the second magnitude is linearly dependent upon the
distance along the chord from the elastic axis and upon the frequency
of vibration. Both components, of course, vary harmonically with the
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frequency w. Thus, assuming a displacement 6y coswt the ‘local’ angle
of attack becomes

T — xg)wb
o = Oy coswt + arctan |tan ags — w sin wt] —ass  (5.6.1)

V cos agg

and the relative dynamic pressure becomes

. . 2

Grel = %erQel = %”VQ REST % 2 (M % x0)>

(5.6.2)

Since the local incidence varies along the chord in the torsional case, it is
not possible to formulate the twisting problem in a simple and analogous
manner to the bending case unless a single ‘typical’ incidence is chosen.
For incompressible potential flow, thin airfoil theory, it is known [2] that
the three-quarter chord point is ‘most representative’ in relating changes
in incidence to changes in aerodynamic reaction for an unstalled thin
airfoil with parabolic camber. Replacing x — x¢ by a constant, say eb,
for

simplicity, one has by analogy with bending

a =0y coswt + cos ags(—ekby) sinwt — % sin 2ass(—ek90)2

1 1 (5.6.3)

-sin? wt — 3 cos 3a55(—ek:00)3wt + yiie

where « is, again, the departure in angle of attack from ags. The con-

stant e will normally be of order unity for an elastic axis location forward
of midchord.

From this point onward, the illustrative analysis involves the substitu-

tion of a into an analytical approximation for the aerodynamic moment
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coefficient

Crn =Y bp(ass)a™ (5.6.4)
n=0

In this equation, the b, may be associated with the slope and higher
order derivatives i.e.,

1d"Cy,
bn - Edoéin |O£=0 (565)
at the mean incidence point, in a manner analogous to the role of the
a, in the normal force coefficient.
The work done by the aerodynamic moment acting on the torsional

displacement is given by

T 27
. 1 .
Work/Cycle = / MO dt = / 0MO d(wt) (5.6.6)
0 w
and hence the work flow, or power, is
1 27 .
P=— MOd(wt) (5.6.7)
27 0

Using the previously derived expressions contributing to the moment
M = q(2b)?C,y, leads to

feb @

1+ 2sina55(7) +( v )?

1
M :§p1/2(2b)2

. Z by (uss)[0o cos wt — cos ags(ekby) sinwt

m=0
1 1
— — sin 2as4(ekfp)? sin? wt + 3 c08 3ass(ekfp)d sin® wt + -]
(5.6.8)

and this expression, in turn inserted into the integrand of (5.6.7), will
allow an analytical expression to be derived by quadrature.

At this stage in the development of torsional stall flutter, a key differ-
ence emerges more clearly when compared to bending stall flutter; a fun-
damental component of the moment coefficient appears (b — 16 cos wt)
which is out of phase with the torsional velocity (§ = —wpsinwt). Not-
ing that 0 is the second factor in the integrand, it is seen that the final
integrated expression for the power will have terms similar in nature to
the expression derived for the bending case, and in addition may have
terms proportional to

b10o, ba03, bab, b33, b3b3, etc.,
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It is not particularly instructive to set out this result in full detail.

However, let us consider briefly the case of very slow oscillations, so
that terms proportional to higher powers of the frequency can be ignored.
Then

1 v 2m
P= —ipV2(2b)2a;—fro ;bnég/o cos"(wt — 1) sin wt d(wt)

. (5.6.9)

1-3.
246 (n+1)

1 , - N
:—§pV3(4b)ksm¢ > bttt
n=0dd

We conclude from this equation that the work flow again will be pro-
portional to a sum of terms in even powers of the vibratory amplitude,
but in this instance, the low frequency torsional stall flutter is critically
dependent on the time lag 1) /w between the oscillatory motion and the
response of the periodic aerodynamic moment.

Torsional stall flutter is thus seen to be a much more complex phe-
nomenon, with a greater dependence on time lag and exhibiting very
strong dependence on the locatio of the elastic axis. For example, if
the elastic axis were artificially moved rearward on an airfoil such as to
reduce the effective value of the parameter e to zero, the airfoil flutter
behavior would be governed by exactly the same specialization of the
analysis as was just termed ‘low frequency’. Exactly the same terms
would be eliminated from consideration. In qualitative terms one may
also conclude that the actual behavior in torsional flutter in the general
case (with e # 0) is some intermediate state between the low frequency
behavior (critical dependence on sin 1) and a type of behavior char-
acteristic of bending stall flutter (critical dependence on the slope of a
dynamic characteristic at the mean incidence).

5.7. General comments

An interesting by-product of the nonlinear nature of stall flutter is
the ability, in principle, to predict the final equilibrium amplitude of the
vibration. This is in contradistinction to classical flutter in which only
the stability boundary is usually determined. The condition for constant
finite flutter amplitude is that the work, or power flow, again be zero.
As we have seen this can be discerned when the power equation is set
equal to zero; the resulting quadratic equation is solved for the squared
flutter amplitude, either (ho/b)? or 62 as the case may be. Since all
the a, or b, coeflicients are functions of ags, the two types of flutter
are displayed in Figure 5.4 as presumed functions of this parameter.
Hard flutter displays a sudden jump to finite amplitude as a critical
parameter is varied and a lower ‘quench’ value of that parameter where
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Figure 5.4. Flutter amplitude vs steady state angle of attack.

the vibration suddenly disappears. The two effects conspire to produce
the characteristic hysteresis loop indicated by arrows in Figure 5.4.

In summary then, stall flutter is associated with nonlinearity in the
aerodynamic characteristic; the phenomenon may occur in a single de-
gree of freedom and the amplitude of vibratory motion will often be
limited by the aerodynamic nonlinearities. Although structural mate-
rial damping has not been considered explicitly, it is clear that since
damping is an absorber of energy its presence will serve to limit the
flutter amplitudes to smaller values; damping limited amplitudes will
obtain when the positive power flow from airstream to airfoil equals the
power conversion to heat in the mechanical forms of damping.

It is also clear that motion in a third degree of freedom is possible.
Oscillatory surging of the airfoil in the chordwise direction can be related
to a nonlinear behavior in the drag acting on the profile. However, air-
foils are usually very stiff structurally in the chordwise direction and the
drag/surging mechanism would normally be of importance only for bluff
structural shapes such as bundles of electric power conductors suspended
between towers, etc.

Under certain circumstances such as the example noted directly above,
stall flutter in more than one degree of freedom may occur. In these
cases, the dynamic characteristics of normal force, aerodynamic mo-
ment (and drag) become functions of an effective incidence compounded
of many sources: plunging velocity, torsional displacement, torsional ve-
locity and surging velocity. The resultant power equation will also con-
tain cross-product terms in the various displacement amplitudes, and
hence the equation cannot be used to predict stability or equilibrium
flutter amplitudes without additional information concerning the vibra-
tion modes.
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Figure 5.5. Dynamic moment loops.

Perhaps the greatest deficiency in the theory, however, is the fact
that even in pure bending motion or pure torsional motion, the dynamic
force and moment are in fact frequency dependent: a,, = an(ass, k)
and b, = by(ass, k). And in general ag # —Chss and by # —Cipss. In
analogy with classical flutter it may be shown that even this dependence
is deficient in that the characteristics in practice may be double valued.
That is, for the same value of effective incidence «, the characteristic
may have different values depending upon whether « is decreasing or
increasing with time. Such a hysteretic characteristic is usually more
pronounced at high frequencies of oscillation; an airfoil may have two
lift or moment coeflicients at a particular angle of attack even in the
static case, depending upon how the operating point was approached.

It is for these reasons that practical stall flutter prediction has been at
best a semi-empirical process, and often entirely empirical. A model is
oscillated in torsion, or bending, in a wind tunnel under controlled con-
ditions with parametric variation of reduced frequency, mean incidence
and oscillatory amplitude. Various elastic axis locations also may be
studied. Data which are taken may vary from instantaneous normal force
and moment down to the actual time-dependent pressure distribution on
the profile. Data reduction consists essentially of cross-plotting the var-
ious data so that flutter prediction for prototype application is largely a
matter of interpolation in model data using dimensionless groups. Spe-
cific representative data will be taken up in subsequent chapters where
stall flutter applications are studied.

An exception to the previous reliance on experimental data is a the-
ory [3] which postulates that the departure of the normal force and/or
aerodynamic moment from the classical (attached flow) values can be
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modelled by considering a flat plate with separated flow on the suction
side. As the plate oscillates harmonically in time, the position of the sep-
aration point (from which emanates a free streamline) is also considered
to move periodically with the same frequency as the oscillation. The
movement of the separation point along the suction surface is between
two arbitrarily specified upstream and downstream limits and with an
arbitrarily specified phase angle with respect to the oscillatory motion.

Under these circumstances, it is possible to solve the unsteady flow
problem (analogous to the classical Theodorsen solution for attached
flow) with separation present. In effect the appropriate dynamic force
and moment characteristics are generated for each function specifying
the separation point movement and airfoil motion. The empirical part
of the flutter prediction technique then resides in correlation of the sepa-
ration point behavior as a function of the airfoil attitude and oscillatory
motion. To illustrate the potential of the technique, two moment loops
from the reference are shown in Figure 5.5. The one on the left is from an
experimental program [4], the one on the right is from [3]. Although the
variation of moment with torsional displacement is remarkably similar,
it must be emphasized that the particular choice of elastic axis location
is different in experiment and theory, and the assumed separation point
behavior in the theory was reasonable, but quite arbitrary and unrelated
to the unknown separation point behavior in the experiment.

The method of modelling the separation region on the suction surface
of the airfoil by a free streamline issuing from the ‘separation’ point has
been generalized subsequently [5]. The method employs simultaneous
integral equations and may be applied to subsonic, small perturbation
flows of aeroelastic significance. In particular, for cascades of airfoils of
interest in axial-flow compressors [6], the method has shown promise of
improved stall flutter prediction. A type of stall resulting in a leading
edge ‘bubble’ is also amenable to this type of small perturbation analysis
[7] and is more appropriate for sharp leading edges with onset flows that
result in reattachment of the separation streamline.

These free-streamline methods are useful when the reattachment point
and/or separation point behavior can be predicted beforehand and the
mean incidence is not excessive. An example is the thin airfoil with small
leading edge radius at moderate incidence where the separation point is
‘anchored’ at the leading edge and reattachment does not occur.

5.8. Reduced order models

As noted in Chapter 11, Nonlinear Aeroelasticity, reduced order mod-
els have been developed to help account for the effect of airfoil vibratory
displacement, velocity and acceleration on the associated aerodynamic
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responses. Since the theoretical underpinning for these models is not
firmly established for conditions of massive flow separation, the char-
acteristics must be developed by model fitting from experimental data.
For this reason these models have also been termed “semi-empirical”.

In fact, a low order model is the quasisteady development presented in
Section 5.2 for the nonlinear normal force and moment characteristics.
The linear quasisteady development in Chapter 3 is another low order
model. The steady flow aerodynamics example of that same chapter is
of course the model of lowest possible order.

Reduced order modelling for stall flutter and bluff body aeroelasticity
has been studied by a number of investigators. Some of these studies are
described in Chapter 11 and references to much of the recent literature
may be found there. One important and representative study is that by
Tang and Dowell [16] in which many of the characteristics attributable
to aerodynamic nonlinearities appear. Example are the asymptotic ap-
proach to limit cycles and the development of chaotic pitch displacement
and moment coefficient histories for particular values of the advance ra-
tio.

5.9. Computational stalled flow

In recent years the so-called vortex method has begun to be used
to model periodically separated flow from bluff bodies [8, 9] as well as
streamlined shapes [10] such as airfoils. The vortex method is essentially
a computational algorithm which tracks a large collection of discrete vor-
tices in time. Since it is a time-marching procedure, the aerodynamic
reactions are obtained with an evolving flow and the aeroelastic response
of the structure must evolve in like manner. Hence stability of a spe-
cific structure oriented in a specific flow cannot be discriminated ab ini-
tio. The aeroelastic vibration develops in the course of time; hence the
method might equally be termed computational fluid elasticity (CFE).
The power of the method may be appreciated when it is realized that
highly nonlinear aerodynamics (and structure as well) may be modelled
and finite amplitudes of the flutter vibration may be predicted. The
cost of computation is high since fairly long runs on supercomputers are
required for acceptable accuracy.

The vortex method for modelling unsteady separated flow as initiated
in [10] and modified in [11] and [12] for oscillating airfoils, is based upon
the following fluid dynamic system of equations.

For two-dimensional, viscous, incompressible flow past an infinite lin-

ear cascade of airfoils at high Reynolds number, the basic aerodynamic
equations that govern the vorticity field derived in [8] are as follows. (For



290 A MODERN COURSE IN AEROELASTICITY

a single airfoil the formulation may be simplified from what is shown
here).
Conservation of vorticity in the fluid requires

Dw

T vV3w (5.9.1)
where the vorticity in the fluid field is
v Ou
= — — — 5.9.2
“ or Oy ( )

Vorticity within the solid is a continuation of the fluid field and repre-
sents the motion (vibration) of the solid

w =20, (5.9.3)
The boundary conditions in terms of vorticity can be written as [8]
Ow dQ,,
—)ds = —2R,,—— 9.4
F5 s = 2R, (5.9.4)

The system of equations governing the vorticity and the system gov-
erning the velocity and pressure are equivalent. A stream function
can be defined to satisfy the continuity equation

u= _88:;/} and v = gﬁ (5.9.5)
Combining (5.9.2) and (5.9.5) results in the Poisson equation
Vi =w (5.9.6)

The vortex method represents the vorticity field as the sum of a large
number (N) of vortex blobs

N
W= w (5.9.7)
k—1
and the stream function induced by a collection of vortices is 34, where

Y = (Tx/4n)In|sin[(27/p) (2 — 21.)] |2 (5.9.8)

Here i = v/—1 and the complex variable notation z = x + 4y is used.
The instantaneous coordinates of the mth airfoil surface [z(t),y(t)]
under coupled bending-torsion with a frequency of f Hertz are given by

x(t) = xo — hsin(27 ft + p+ mo)sin 8 — yo Osin(27 ft + mo) (5.9.9a)
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y(t) = yo + hsin(2w ft + pu+ mo) cos § + x O sin(27 ft + mo) (5.9.9b)

where (z0,yo) are coordinates for each airfoil without vibration and are
measured from its centroid, assumed here for simplicity to coincide with
the center of twist. The quantity u refers to the intrablade phase angle
which is the phase difference between the bending and torsional modes.
On the other hand, the interblade phase angle, o, represents the phase
shift between neighboring blades. To obtain the corresponding bound-
ary conditions, the nonpenetration condition is imposed as expressed by
(4.1.32).

With the definition of the stream function 0¢/ds = V,, where s and
n are local coordinates parallel and normal to the wall, respectively, the
incremental value of stream function along each airfoil surface can be
determined by

so+As so+As
dy|s = / Vnds = / (Zpng + Ypny)ds (5.9.10)
S0 S0

This equation is used to determine the distribution of the values of the
stream function along the boundary points of the airfoils, and then to
solve the vorticity-stream function equations. As a consequence of the
airfoil motion the values of the stream function are not constant along
the boundary of the airfoil. It should also be mentioned that the no-slip
condition reflecting the nonzero viscosity of the fluid is satisfied in a
weak sense, as discussed in [8].

Computations based on this system of equations have shown [12] that
the two-dimensional unsteady flow, as exemplified in a linear cascade
of oscillating airfoils, is properly predicted for a range of reduced fre-
quencies at low incidence. Results similar to those derivable analytically
by the methods of Section 4.3 in Chapter 4, and also in Chapter 8 for
cascades, are confirmed by these computational procedures. With this
validation in hand it is possible then to consider larger values of the
mean incidence until stall is encountered, and compute the aerodynamic
response under intermittent separation, and finally, under complete or
"deep’ stall. The rapid change in amplitude and phase for lift due to
plunging motion as the mean incidence is increased in steps is shown in
the following table, along with streamline pattern at one instant for the
highest incidence case, Figure 5.6.

The presence of strong vortices in the flow illustrates an important
stability modification mechanism present in stalled flow. These coher-
ent structures are subject to a nonlinear eigenfunction/eigenfrequency
interpretation associated entirely with the flow. A completely rigid air-
foil (cascade of airfoils) is (are) subject to a flow instability identified
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Figure 5.6. Streamline pattern at several instants for bending vibrations in stall.

as Karman vortex shedding [13] (propagating stall phenomenon). This
unsteady periodic behavior has a characteristic frequency and the associ-
ated flow patten is in the guise of an eigenfunction. Thus stall flutter, in
a modern interpretation, may be thought of as the aeroelastic coupling
of fluid and structure through the vortex shedding and convection mech-
anism. If an airfoil natural frequency lies close to a natural frequency
of the flow instability (either Karman vortex or propagating stall), the
vibration of the blade can ‘entrain’ the stall frequency, resulting in the
shift from a forced excitation at the ‘stall natural frequency’ to a self-
excitation at the flutter frequency. This duality of frequencies may be
observed in the lift response spectrum during the first few instants of
the prescribed motion, Figure 5.7, for several bending amplitudes.

In this figure two distinct frequencies are evident, one associated with
the propagating stall that would be present in the absence of any vibra-
tion, and the other at the same frequency as the impressed vibration.
At a later time the propagating frequency has shifted and is essentially
equal to the vibration frequency (which is always taken to include the
effect of apparent mass). Frequency synchronization has taken place.

Results of this nature have led to further modelling and computation
with the conclusion that stall flutter can be predicted by a computational
algorithm in which the airfoil motion is not prescribed beforehand. In
[14] and [15] the vortex method aerodynamic subprogram is executed in
parallel and interactively with a structural dynamics subprogram, the
entire computation being carried forward in a time marching fashion.

Figure 5.8 from [14] is a computational confirmation of the frequency
entrainment phenomenon previously hypothesized to occur for free vi-
brations. The temporal evolution of the streamline pattern and the
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Figure 5.7.  Effect of vibration amplitude on lift amplitude and frequency.

accompanying blade vibratory motion for one datum point of Figure 5.8
is shown in Figure 5.9. The propagating stall frequency of a cascade of
blade s with fixed geometry and onset flow is seen to be relatively unaf-
fected by the presence of flexible blades except in the neighborhood of
those blades having natural frequency near the intrinsic stall frequency.
Within the interval of entrainment, however, the stall frequency is phys-
ically modified so as to synchronize with the blade natural frequency.
Within the entrainment interval stall flutter may be said to occur. In
Chapter 6 the synchronization phenomenon as applied to bluff bodies
is discussed in greater detail. Further studies are underway to define
the interval of synchronization as a function of the governing aeroelastic
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Figure 5.8. Influence of blade-reduced frequency on the stall-reduced frequency for
a cascade in torsional vibration. The plot shows the entrainment of stall frequency
on a certain interval of blade frequency.

parameters and to further define the stall flutter behavior within this
interval.

The vortex method possesses inherent limitations which are related to
the two-dimensionality of the assumed flow and the necessity for a sep-
aration criterion embedded in a boundary layer subroutine. These lim-
itations would be removed with the alternative development of Navier-
Stokes solvers for full three-dimensional, unsteady, compressible flows.
The principal difficulty to be overcome is the provision of an accurate
turbulence model that will

result in the necessary resolution of the scale of turbulence for typical
cascade geometry. And the much greater number of computations re-
quired for this computational model, stemming from the multiplicity of
blade passages, makes the forthcoming increase in computational speed
a necessary adjunct. Supercomputers, probably involving parallel pro-
cessing, are a necessity for reliable large scale Navier-Stokes solutions.
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Chapter 6

AEROELASTICITY IN CIVIL
ENGINEERING

Certain types of civil engineering structures can be subjected to aero-
dynamic forces generated by structural motions. These motions, called
self-excited, are in turn affected by the aerodynamic forces they gener-
ate. Behavior associated with self-excited motions is called aeroelastic.
The flutter of the Brighton Chain Pier Bridge (Fig. 6.1) and, more than
one century later, the original Tacoma-Narrows Bridge (Fig. 6.2) are
notorious examples of aeroelastic behavior. Tall chimneys and buildings
may also respond aeroelastically and need to be designed accordingly.
The John Hancock building in Boston, which has a relatively flat shape
in plan (Fig. 6.3), has experienced across-wind and torsional motions
of sufficient severity to warrant the installation of a large tuned-mass
damper system at its top. These motions may have been due to aeroelas-
tic effects*. Under certain conditions power lines experience aeroelastic
behavior referred to as galloping .

Aeroelastic phenomena of interest in civil engineering differ from those
studied in aeronautical engineering in two important ways. First, civil
engineering structures are typically bluff, although in modern suspended-
span’ bridge design streamlined box-like deck shapes are increasingly
being used. Second, unlike flows typically considered in aeronautical
engineering, the flows in which civil engineering structures are immersed
are in most cases turbulent. Atmospheric turbulence depends upon the

*Recent research on tall buildings with relatively large ratio between depth and width suggests
that this was indeed the case - see Section 6.6.2. To the writers’ knowledge, for legal or other
reasons, detailed technical reports on the wind-induced behavior of the John Hancock building
are not available in the public domain.

TThe term “suspended-span bridge” covers both suspension bridges and cable-stayed bridges.

299
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thermal stratification of the flow. At very high wind speeds mechanical
turbulence is dominant and the air flow may therefore be assumed to
be neutrally stratified. Standard atmospheric models commonly used in
wind engineering are applicable in this case. However, atmospheric flows
are not necessarily neutrally stratified — even at relatively high wind
speeds. The actual flow turbulence may therefore differ substantially
from, and in some cases be considerably weaker than, the turbulence
inherent in standard models.

To estimate the effects of the interaction between aerodynamic forces
and structural motions it is in principle necessary to solve the Navier-
Stokes equations for turbulent flow with time-dependent boundary con-
ditions dependent on the solutions themselves. This problem defies an-
alytical capabilities. It is also difficult to solve dependably by compu-
tational fluid dynamic (CFD) methods, although continual progress is
being made in this field, especially for non-turbulent flows.

Given the limitations of analytical and numerical procedures, the
aeroelastic characterization of civil engineering structures relies largely
on laboratory testing and empirical modeling. Such testing is not al-
ways without its problems, however, and for certain conditions it is
necessary to assess carefully the applicability to the prototype of labo-
ratory test results and the associated empirical models. There are two
reasons for this. First, wind tunnels that achieve Reynolds numbers
comparable to those typical of most types of civil engineering structures
(e.g., high-pressure wind tunnels) are currently not capable of simulating
atmospheric turbulence, which can significantly affect bluff body aero-
dynamic and aeroelastic behavior. Second, wind tunnels that simulate
the features of atmospheric turbulence usually violate Reynolds number
similarity requirements by factors of the order of 100 to 1000. Never-
theless, for most structures with sharp edges at which flow separation
must occur both in the prototype and the model, and for properly mod-
eled structures with rounded shapes and rough or ribbed surfaces, it is
assumed in most cases that the violation of Reynolds number similar-
ity is relatively inconsequential, and that prudent use of laboratory test
results is warranted.

This chapter is divided into two main parts. The first part is devoted
to bluff body aeroelasticity fundamentals pertaining to vortex-shedding
related phenomena (Section 6.1), galloping (Section 6.2), divergence
(Section 6.3), flutter, and buffeting in the presence of aeroelastic ef-
fects (Section 6.4). The second part is concerned with applications to
suspended-span bridges (Section 6.5), and tall chimneys and buildings
(Section 6.6).

A. FUNDAMENTALS
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Figure 6.1. Brighton Chain Pier Bridge failure, Nov. 29, 1836, as sketched by W.
Reed. From J.S. Russell, “On the Vibration of Suspension Bridges and Other Struc-
tures, and the Means of Preventing Injury from this Cause,” Trans. Royal Scottish
Soc. Arts (1841), quoted in F.B. Farquharson (ed.), Aerodynamic Stability of Sus-
pension Bridges, Bulletin No. 116, University of Washington Engineering Experiment
Station, Seattle, 1949-1954.

6.1. Vortex-induced Oscillation
Vortex shedding

The aeolian harp (named after Aeolus, the Greek god of winds) consists
of a set of parallel strings which, when exposed to wind, experience
vibrations that produce acoustical tones. The vibrations are caused by
periodic lift forces associated with vortex shedding, and were studied by
Strouhal in 1878 [1]. The shedding of vortices in the wake of circular
cylinders was studied in 1908 by Bénard [2], after whom the vortices
are named in France. A few years later it was also studied by von
Karmén [3]. The orderly array of vortices that forms in the wake of a
cylinder is known as a von Karmén street*. The character of the vortex

*The late Professor Wallace Hayes of Princeton University sometimes called it “boulevard
Bénard.”
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Figure 6.2. Flutter of the Tacoma Narrows Bridge, November 10, 1940. From F.B.
Farquharson (ed.), Aerodynamic Stability of Suspension Bridges, 1949-1954.

shedding depends upon Reynolds number, the turbulence present in the
oncoming flow, and the turbulence in the boundary layer that develops
on the circular cylinder’s surface. These factors control the interplay
between viscous and inertial forces that determines the position of the
boundary layer’s separation point. Vortex shedding is not limited to
circular cylinders; it also occurs in the wake of prismatic bodies (Fig.
6.4), and of non-cylindrical elongated bodies such as tapered chimneys.

For long rigid cylindrical bodies in flow with uniform mean speed,
around which the flow may be assumed to be two-dimensional, the vortex
shedding frequency fs satisfies the relation

S = f.DJU (6.1.1)

where D is the across-flow dimension of the cylinder, U is the mean
speed of the oncoming flow, and the Strouhal number S depends upon
the cross-section of the cylinder. (The assumption that the flow is two-
dimensional means that end effects are assumed to affect negligibly the
overall model behavior.) For smooth circular cylinders S changes dras-
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Figure 6.3. John Hancock Building, Boston (by permission of Professor Mary Anne
Sullivan, Bluffton College, http://www.bluffton.edu).
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Figure 6.4. Flow around rectangular cylinder, Reynolds number Re=200. From Y.
Nakamura, “Bluff Body Aerodynamics and Turbulence” J. Wind Eng. Ind. Aerodyn.,
49 (1993) 65-78.

tically at certain critical values of the Reynolds number (see, e.g., [4]).
However, for circular cylinders with rough surfaces no such critical phe-
nomena appear to have been observed [5], [6, p. 151]. The Strouhal
number is listed in [6] for a variety of shapes of interest in structural
engineering under uniform, smooth flow conditions.

The shedding of vortices in the wake of a body gives rise to an asym-
metric flow (Fig.6.4) and, therefore, to an asymmetric pressure field
which induces on the body fluctuating lift forces, as well as relatively
small drag force fluctuations. In air flow the latter may in most appli-
cations be assumed to be negligibly small. Various aspects of vortex
shedding, including the dependence of the fluctuating lift force acting
on a square cylinder upon the turbulence in the oncoming flow, are dis-
cussed, for example, in [6, 7].

If the body is not perfectly rigid, or if it has elastic supports, it will ex-
perience motions due to the aerodynamic forces and, in particular, to the
fluctuating lift force. As long as the motions are sufficiently small they
do not affect the vortex shedding, and Eq. 6.1.1 remains valid. If the
vortex-shedding frequency fs, and therefore the frequency of the associ-
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ated lift force, is equal to the natural frequency of vibration of the body
fn, then a relatively large motion amplification occurs. Experiments
show that this is the case not only at the flow speed f,D/S, but also at
any flow speed U within an interval f,D/S — AU < U < f,D/S+ AU,
where AU/U depends upon cross-sectional shape and the mechanical
damping , and is usually of the order of few percent. Within that in-
terval the vortex shedding frequency no longer conforms to Eq. 6.1.1;
rather, it aligns itself to the frequency of vibration of the body.

This is an aeroelastic effect: while the flow affects the body motion,
the body motion in turn affects the flow insofar as it produces a synchro-
nization of the vortex-shedding frequency with the frequency of vibration
of the body. Synchronization occurs in a wide variety of physical, bio-
logical, and mathematical non-linear systems, including clocks attached
to the same deformable wall, which tick in unison, women sleeping in
the same room, who according to [8] tend to have their menses on the
same day, and the famous van der Pol equation, among other nonlinear
equations. In the vortex-shedding case the synchronization is referred
to as lock-in.

Figure 6.5 shows measurements of the across-flow oscillations of an
elastically supported circular cylinder in smooth flow and their spectral
densities, and of flow velocity fluctuations and their spectral densities at
2.5 diameters downstream of and one diameter above the cylinder axis
[9]. Note the significant increase in amplitude for fs = f,,. However, even
for fs = f, the ratio of the amplitude to the diameter of the cylinder
remains relatively small. This is typical of vortex-induced oscillations.

Up to a certain magnitude of the displacement the body motion results
in a transfer of energy from the flow to the body. This transfer may be
viewed as equivalent to a flow-induced negative aerodynamic damping.
For larger displacements, however, there occurs a transfer of energy from
the body to the flow. This helps to limit the amplitude of the motion
and may be viewed as equivalent to a flow-induced positive damping .

Figure 6.6 reflects another aeroelastic phenomenon of interest in prac-
tice: the increased along-span correlation of the pressures acting on a
circular cylinder as the oscillation amplitudes increase.

Modeling of vortex-induced oscillations

The aeroelastic behavior of an oscillator is described by its equation of
motion, in which the excitation term is the resultant of the flow-induced
pressures. As was mentioned earlier, the latter can in principle be ob-
tained from the solution of the Navier-Stokes equation with boundary
conditions dependent upon the solution itself.
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For many years mathematicians and engineers have tried to develop
simplified empirical models. One justification for such models is that
the collective behavior of a wide variety of systems with large num-
bers of degrees of freedom can be similar to the behavior of simple
low-degree-of-freedom systems representing them. (A flow interacting
with a body is a system with an infinity of degrees of freedom.) The
various empirical vortex-induced oscillation models contain adjustable
parameters fitted to match experimental results. By construction, the
solutions of the model equations with parameters fitted to those results
provide a reasonable description of the observed aeroelastic motions.
The user must be aware that the empirical model may not be valid as
a motion predictor for conditions that differ significantly from the ex-
perimental conditions in which the fitted parameters were obtained. For
long elastically-supported cylinders in uniform smooth flow we review
a number of two-degree-of-freedom models, and a simpler but useful
single-degree-of-freedom model.

Coupled two-degree-of-freedom equations: wake os-
cillator models

Two-degree-of-freedom models entail two coupled equations, one describ-
ing the body motion, and one describing the wake motion. Various
models, all derived from a generic model, were reviewed by Scanlan [10],
whom we follow in the sequel. The generic model includes the equation
of body motion

mlij + 2Cwny + wly] = F(¢, ¢, 6), (6.1.2)

where y is the across-flow body displacement, m is the body mass, ( is
the mechanical damping ratio, w, = 27 f,, ¢ is a representative wake
variable, and

N
F($,0,0) = asd+ Y azn 14" + aos, (6.1.3)

n=1
and the equation of wake motion

M
S+ D bom-1d®" ! 4 bod = Gy, 9,5, 9. U), (6.1.4)

R
Gy, 9,8, 9, V) =ca'¥ +csij + cafi + > _ cor19® ' +coy. (6.1.5)

T
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Figure 6.5a. Response for U/ f, D = 4.294; ¢ = 0.15%.

The constants a’, b’, ¢’ must be identified by a combination of physical
reasoning and experimental work. The system 6.1.2-6.1.5 is autonomous.
Various models differ according to the meaning ascribed to the variable
¢ and the choice of non-zero constants a, b, and c.

The first wake oscillator model was proposed in 1955 by the great
American mathematician Birkhoff* [11]. In the Birkhoff model the vari-
able ¢ is the angle, denoted by «, between the axis of the vortex street
and a fictitious lamellar mass, “something like the tail of a swimming
fish,” that extends a distance L aft of the cylinder, and oscillates at the
Strouhal frequency from side to side across the wake.

Funakawa [12] pursued Birkhoff’s basic idea by attributing to the wake
oscillator a physical meaning associated with the mass of the “dead fluid”
region in the near wake of the cylinder. He conducted experiments in
uniform smooth flow in which a circular cylinder was subjected to har-
monic oscillations at the Strouhal frequency. Details on the behavior
of the “dead fluid” region were inferred from flow visualizations under

*Birkhoff’s contributions to the field of dynamical systems rank in importance with those of
Poincaré, with whom he had close and fruitful scientific interactions.
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Figure 6.5b. Response for U/ f,D = 5.003;¢ = 0.15%.

lock-in conditions. The wake oscillator was assumed to act as a hori-
zontal pendulum coupled to the cylinder motion and described by the
equation

16 + i+ k(o + %) = w2 asinw,t (6.1.6)

where I = % pLH (D + L)? is the moment of inertia of the wake oscilla-
tor, H=125D, L =2.2D, k = %pU2(27r)L(D + L)/2 is the oscillator’s
moment stiffness, and @ = 2yq/(D + L). Equation (6.1.6) was used by
Funakawa to calculate drag and lift forces induced by the wake oscil-
lator on the cylinder through Magnus effects, and dependent on y, 1,
and 7°. There results from this model a van der Pol-type equation of
motion of the body that contains two terms of aerodynamic origin. The
first term is of the form c1 geroy and reflects the transmission of energy
from the flow into the body. Unlike a mechanical damping coefficient
— which is associated with loss of energy by the system, — the aerody-
namic damping coefficient ¢ gero < 0. The second term has the form
cz7aeroy3, where the aerodynamic damping coefficient ¢ 4ero > 0. For
small § the net aerodynamic damping due to the linear and nonlinear
terms in g is negative, so that the displacement increases. For large
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Figure 6.5c. Response for U/ f,D = 5.475;¢ = 0.15%.

7 the net aerodynamic damping becomes positive, thereby limiting the
amplitude of the body motion. A critique of Funakawa’s model work led
Nakamura [13] to propose a modified form of the Magnus lift force. A
further modification was proposed by Tamura and Matsui [14].

In another family of circular cylinder vortex-induced oscillation mod-
els the parameter ¢ of Eq. (6.1.2) is taken to be the lift coefficient Cf..
Hartlen and Currie [15] proposed the following model:

1
Mij+Cy+ Ky = 5pU2DCL(t) (6.1.7)

C’L —awsC'L+ %C%+WSCL = by (6.1.8)
where b is an adjustable parameter, a = pD?/8725%M,y = 4a/3Cy,,
and (', is the measured amplitude of the fluctuating lift coefficient on
the stationary cylinder. Hartlen and Currie’s model was subsequently
modified by Skop and Griffin [16, 17], Landl [18], Wood [19], and Wood
and Parkinson [20].

Dowell [21] developed a model in which Cf, was also used as the wake
oscillator variable. The model is based on four requirements:
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1. At high frequencies a virtual mass relationship is preserved between
liftt and cylinder acceleration, that is,

..2
8C), = —BlpDz%(w — 00) (6.1.9)
where Bj is a constant.
2. At low frequencies quasi-steady conditions hold between C, and
y, that is, for co — 0
Y y Y\3
Cr=f(£)=41(=) — A3(= 6.1.10
=12 = () - Ay + (6.1.10)
where A7, Az ... are constants.
3. For small Cp and y = 0 the fluid oscillation has the Strouhal
frequency, that is, )
Cr+w?Cr =0. (6.1.11)

4. Characteristics of the van der Pol oscillator are included in the
response of Cr. Conditions 1 to 4 lead to the equation

R Cr \ 2
—€ell—-4
Cr—c [ (CL())

. DY ...
WSCL +(JJ§CL = —B1 <U,2> Yy

Yy Yy Yy Yy
A1U As (U> + As <U> Ar (U>

(6.1.12)

2
+ wyg

in which the parameter ¢ must be determined experimentally. Two
special features of Dowell’s model are that it contains a fourth order
coupling of y to Cr, and that the model can describe oscillations in a
broader frequency range than is the case for other models. For details
and comparisons with experiments see [21].

Single-degree-of- freedom model of vortex-induced
response

The following simple single-degree-of-freedom model proposed by Scan-
lan [22] exhibits features of a van der Pol oscillator:

i . 1 2\ 4
m(j + 2w +why) = 5pU°D [Yl(K) (1 - 61%2> %
(6.1.13)

+ YQ(K)% + OL(K) sin(wt + ¢)} .

In Eq. (6.1.13) K = Dw/U, and the circular frequency w satisfies the
Strouhal relation w = 2rSU/D; Y1, Y2, €, and Cf, a measure of the lift
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Figure 6.6. FEffect of increasing oscillation amplitude a/2 of a circular cylinder of
diameter D on correlation between pressures at points separated by distance d along a
cylinder generator: (a) smooth flow; (b) flow with turbulence intensity 11%. Reynolds
number: Re = 2 x 10*.

force that would occur in the absence of lock-in, must be fitted to experi-
mental results. This model allows for negative and positive aerodynamic
damping at low and high body displacements, respectively, that is, for
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the aeroelastic transfer of energy from the flow to the body or from the
body to the flow according as the displacements are small or large. At
lock-in w ~ wy, and Ya(w,) = 0, Cr(w,) = 0, since the last two terms
within the square bracket of Eq. (6.1.13) are much smaller than the
term - dominant by far — reflecting the aerodynamic damping effects.
At steady amplitudes the average energy dissipation per cycle is zero, so
that
T

/ 4mlw — pUDY7(1 — 6D7) y2dt = 0 (6.1.14)

0

where T' = 27w /w. The assumption that, for practical purposes, y is
harmonic, that is, y = yg coswt, implies

y2
2

T
/ 7P (t)dt = wyl. (6.1.15)
0
r T
/ yPydt = wyp —. (6.1.16)
0 4
Equation (6.1.14) then yields
1
Yo _ olyr = 8mSsers]? (6.1.17)

D XY



Aeroelasticity in Civil Engineering (Scanlan and Simiu) 313

where Sy denotes the Scruton number, defined as

(m

Sscr = W

(6.1.18)
The parameters Y; and € may be evaluated from model tests. At the
lock-in velocity the body is displaced to an initial amplitude Ay > o
and then released. The body will then undergo a decaying oscillation
until it levels out to the steady state motion with amplitude given by
Eq. (6.1.17). It is shown in [23] that the amplitude of the decaying
oscillation can be described by the expression

y(t) Yo/D

= T (6.1.19)
D [1— ((A3 - y3)/A3) exp(—aydUt/AD?)]z
in which D2y
14 1
— . 6.1.20
o € ( )

The value of « is determined from the model tests as follows. Defining
R, = Ap/A,, where A,, is the amplitude of the decaying oscillation at n
cycles after the release,

—48D? A2 — R2y2
a=""n [ 0 "2‘%] . (6.1.21)
Yo A5 — 5
It follows that )
. m Yo
2mao
= —. 1.2
€ D%, (6.1.23)

Y1 may be obtained by alternative identification techniques from sec-
tion model tests of the type used to measure flutter coefficients (Section
6.5). Scanlan’s model is the basis of procedures for the estimation of
vortex-shedding effects on bridge decks (Section 6.5.3) and tall chim-
neys (Section 6.6).

Experimental data used in conjunction with a model similar to Eq.
(6.1.17) yielded the values plotted in Fig.6.7 [9]. Also plotted in Fig.6.7
is the following empirical formula developed in [23]:

Yo 1.29

— = . 6.1.24

D [140.43(872525,c)]33° ( )
For additional basic material on vortex-induced oscillation, see [24-28]

and references listed in [10].
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6.2. Galloping

In this section we study two types of galloping. Across-wind galloping
is a large-amplitude oscillation (one to ten or more across-wind dimen-
sions of the body) exhibited in a plane normal to the oncoming flow
velocity by slender structures with certain types of cross-section. For
example, ice-laden cables subjected to winds approximately normal to
their span exhibit galloping oscillations in a vertical plane. For brevity
we will refer to across-wind galloping simply as galloping. Wake gallop-
ing refers to oscillations of a downstream cylinder induced by the wake
flow of an upstream cylinder, and has been observed in bundled power
transmission-line cables.

Equation of motion of galloping bodies. The Glauert-
Den Hartog necessary condition for galloping insta-
bility

Pioneering contributions to the galloping problem are due to Glauert
[29] and Den Hartog [30, 31]. Experience has shown that knowledge
of the mean lift and drag coefficients obtained under static conditions
as functions of angle of attack is sufficient for building a satisfactory
analytical description of the galloping phenomenon; that is, galloping is
governed primarily by quasi-steady forces. Deviations of the actual drag
and lift forces from their mean static counterparts that occur during
the galloping motion have a second-order effect, unless the oscillator can
experience chaotic transitions, as suggested in Section 6.2.3.

We assume that the problem is two-dimensional, and consider the
cross-section of a prismatic body in smooth flow (Fig. 6.8). Assume the
body is fized and that the angle of attack of the flow velocity U, is a.
The mean drag (mean force in the direction of U,) and the mean lift
(mean force in the direction normal to U,) are, respectively,

D(a) = %UEBCD(a) (6.2.1)

L(a) = %U,?BCL(a) (6.2.2)
Their projection on the direction y is
Fy(a) = —D(a)sina — L(a) cos o (6.2.3)
We write Fy(«) in the alternative form

Fyla) = %UQBC’Fy(a) (6.2.4)
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L

Figure 6.8. Lift L and drag force D on a fixed bluff object.

Figure 6.9. Effective angle of attack on an oscillating bluff object.
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Figure 6.10. Force coefficients on an octagonal cylinder.

where

U = U, cos a. (6.2.5)
It follows from Eqs. (6.2.3) and (6.2.4) that
Cry = —[CL(a) + Cp(a) tan o] seca. (6.2.6)

We now consider the case in which the same body oscillates in the
across-wind direction y in flow with velocity U (Fig.6.9).

The magnitude of the relative velocity of the flow with respect to the
moving body is denoted by U, and can be written as

U, = (U? + ?)z. (6.2.7)
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The angle of attack, denoted by «, is

Y
= arctan —. 6.2.8
a = arctan ( )

If the body has mass m per unit length, elastic supports, and linear
viscous damping , its equation of motion is

mlij + 2Cwny + w2y] = F, (6.2.9)
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Figure 6.12. Schematic of double galloping oscillator.
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where ( is the damping ratio, w,, is the circular natural frequency, and
F, is the aerodynamic force acting on the body. It is assumed that the
mean aerodynamic drag and lift coefficients Cp(a) and Cp(«) for the
oscillating body and for the fixed body are the same, so Fyy(«) is given
by Egs. (6.2.4) to (6.2.8).

For incipient motion, where a may be assumed to be small,

Y o

>~ 2 >
[0 U R
OF,
Fy(@)la=o = 52 |a=o0 (6.2.10)

For small o, Egs. (6.2.10), (6.2.4) (in which it is recalled that U is
constant), (6.2.6), and (6.2.8) yield

1 dCr,
Fy(a)|amo & —=pU?B [ —= 2.11
Moo= —5o0%B (GECo) (G211
and the equation of motion of the body is
. . 1 dCr, y
2w, 2y = —=pU’B(—=+Cp| = 6.2.12
i+ 2w+ o) = —5o08 (GE+Co) & 0212)

In the right-hand side of Eq. (6.2.12) the coefficient of y may be
viewed as an aerodynamic damping coefficient. The total aerodynamic
damping coefficient - the factor d multiplying the derivative y — is

1 d
omcan + pUB (L 4 op) = (6.2.13)
2 do 0

If d > 0 the fixed point y = 0, y = 0 is stable, that is, small oscillations
from the position of equilibrium y = 0 due to a small initial deviation
from that position will decay in time, and the body will revert to its
position of equilibrium. The body is then said to be aerodynamically
stable. However, if d < 0, the fixed point y = 0, y = 0 is unstable, and
the body is said to be aerodynamically unstable.

A necessary condition for the occurrence of galloping motion is then

(dCL + CD) < 0. (6.2.14)
« 0

The inequality (6.2.14) is known as the Glauert-Den Hartog criterion.
(A sufficient condition for the occurrence of galloping is d < 0.) Note,
however, that Eq. (6.2.14) is applicable to galloping motion that starts
from rest; a large triggering disturbance can in certain instances cause
the occurrence of galloping even if Eq. (6.2.14) is not satisfied.
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For reasons of symmetry circular cylinders cannot gallop: since the
quasi-static mean lift force is identically zero for any angle of attack,
dCr/da = 0. For an octagonal prism the lift and drag coefficients mea-
sured under static conditions are depicted in Fig.6.10. It can be seen
that for angles of attack —5° < a < 5° | where « is defined in Fig.6.10,
the Glauert-Den Hartog criterion is satisfied.

Description of galloping motion

In Section 6.2.1 we were concerned with obtaining a necessary condition
for the occurrence of galloping. In this section we consider bodies for
which the total aerodynamic coefficient d < 0, and discuss the evolution
in time of their galloping motion.

As shown by Egs. (6.2.4), (6.2.6), and (6.2.8), the equation of motion
of the galloping body (Eq. (6.2.9)) is nonlinear. The description of
the galloping motion is based on the development of the aerodynamic
coefficient U, in powers of 5/U Since /U = tana, [32] proposed the
polynomial expression

. . 2 . . 3 . 5 . 7
y g\ ¥ y y y
Cry=A12~—Ay ([ 2) L —A3(2) +45(2) -4, (2
e 2<U> 9] 3<U) i 5<U> 7<U> ’
(6.2.15)

where the constants A; are determined by a least squares fit or another
appropriate technique. The steady-state solution of the resulting equa-
tion of motion for a prismatic body with square cross-section is obtained
by assuming

y = acos(wnt + @) (6.2.16a)

§ = —awp sin(wpt + @), (6.2.16b)

in which « and ¢ are slowly varying functions of time, and by applying
the Krylov and Bogoliuboff technique to the resulting equation of mo-
tion [33]. This leads to the identification of three basic types of curves
CF, as functions of «, and of the corresponding curves « as functions
of the reduced velocity U/Dw,. The observable amplitudes are those
depicted in solid lines in Fig.6.11. They correspond to stable limit cy-
cles. Interrupted lines correspond to unstable limit cycles, which are not
observable in physical experiments. For A; > 0, if the speed increases
from U; to Us a jump occurs from the lower to the upper curve; if the
speed decreases from Us to Uy the jump occurs from the upper to the
lower curve.

The effect upon the galloping of non-uniform deflections along the
span and of turbulence in the oncoming flow is discussed in [34]. Tur-
bulence helps to render the oscillations unsteady and, depending upon
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its scale and intensity, it can reduce the magnitude of the aerodynamic
damping to a degree that will prevent the occurrence of galloping. For
additional studies of galloping see [35-37].

Chaotic galloping of two elastically coupled square
bars

Experiments on a double galloping oscillator consisting of two elastica