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Preface

Preface to the First Edition
A reader who achieves a substantial command of the material con-

tained in this book should be able to read with understanding most of
the literature in the field. Possible exceptions may be certain special as-
pects of the subject such as the aeroelasticity of plates and shells or the
use of electronic feedback control to modify aeroelastic behavior. The
first author has considered the former topic in a separate volume. The
latter topic is also deserving of a separate volume.

In the first portion of the book the basic physical phenomena of diver-
gence, control surface effectiveness, flutter and gust response of aeronau-
tical vehicles are treated. As an indication of the expanding scope of the
field, representative examples are also drawn from the non-aeronautical
literature. To aid the student who is encountering these phenomena
for the first time, each is introduced in the context of a simple physical
model and then reconsidered systematically in more complicated models
using more sophisticated mathematics.

Beyond the introductory portion of the book, there are several special
features of the text. One is the treatment of unsteady aerodynamics.
This crucial part of aeroelasticity is usually the most difficult for the
experienced practitioner as well as the student. The discussion is devel-
oped from the fundamental theory underlying numerical lifting surface
analysis. Not only the well known results for subsonic and supersonic
flow are covered; but also some of the recent developments for transonic
flow, which hold promise of bringing effective solution techniques to this
important regime.

Professor Sisto’s chapter on Stall Flutter is an authoritative account
of this important topic. A difficult and still incompletely understood
phenomenon, stall flutter is discussed in terms of its fundamental aspects

xvii
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as well as its significance in applications. The reader will find this chapter
particularly helpful as an introduction to this complex subject.

Another special feature is a series of chapters on three areas of ad-
vanced application of the fundamentals of aeroelasticity. The first of
these is a discussion of Aeroelastic Problems of Civil Engineering Struc-
tures by Professor Scanlan. The next is a discussion on Aeroelasticity
of Helicopters and V/STOL aircraft by Professor Curtiss. The final
chapter in this series treats Aeroelasticity in Turbomachines and is by
Professor Sisto. This series of chapters is unique in the aeroelasticity
literature and the first author feels particularly fortunate to have the
contributions of these eminent experts.

The emphasis in this book in on fundamentals because no single vol-
ume can hope to be comprehensive in terms of applications. However,
the above three chapters should give the reader an appreciation for the
relationship between theory and practice. One of the continual fascina-
tions of aeroelasticity is this close interplay between fundamentals and
applications. If one is to deal successfully with applications, a solid
grounding in the fundamentals is essential.

For the beginning student, a first course in aeroelasticity could cover
Chapters 1-3 and selected portions of 4. For a second course and the
advanced student or research worker, the remaining Chapters would be
appropriate. In the latter portions of the book, more comprehensive
literature citations are given to permit ready access to the current liter-
ature.

The reader familiar with the standard texts by Scanlan and Rosen-
baum, Fung, Bisplinghoff, Ashley and Halfman and Bisplinghoff and
Ashley will appreciate readily the debt the authors owe to them. Re-
cent books by Petre∗ and Forsching† should also be mentioned though
these are less accessible to an English speaking audience. It is hoped the
reader will find this volume a worthy successor.

∗Petre, A., Theory of Aeroelasticity. Vol. I Statics, Vol. II Dynamics. In Romanian
Publishing House of the Academy of the Socialist Republic of Romania, Bucharest, 1966.
†Forsching, H. W., Fundamentals of Aeroelasticity. In German. Springer-Verlag, Berlin,
1974.



PREFACE xix

Preface to the Second Edition
The authors would like to thank all those readers who have written

with comments and errata for the First Edition. Many of these have
been incorporated into the Second Edition. They would like to thank
Professor Holt Ashley of Stanford University who has been most helpful
in identifying and correcting various errata.

Also the opportunity has been taken in the Second Edition to bring
up-to-date several of the chapters as well as add a chapter on unsteady
transonic aerodynamics and aeroelasticity. Chapters 2,5,6 and 8 have
been substantially revised. These cover the topics of Static Aeroelas-
ticity, Stall Flutter, Aeroelastic Problems of Civil Engineering Struc-
tures and Aeroelasticity in Turbomachines, respectively. Chapter 9,
Unsteady Transonic Aerodynamics and Aeroelasticity, is new and cov-
ers this rapidly developing subject in more breadth and depth than the
First Edition. Again, the emphasis is on fundamental concepts rather
than, for example, computer code development per se. Unfortunately
due to the press of other commitments, it has not been possible to re-
vise Chapter 7, Aeroelastic Problems of Rotorcraft. However, the Short
Bibliography has been expanded for this subject as well as for others. It
is hoped that the readers of the First Edition and also new readers will
find the Second Edition worthy of their study.
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Preface to the Third Edition
The authors would like to thank all those readers of the first and sec-

ond editions who have written with comments and suggestion. In the
third edition the opportunity has been taken to revise and update Chap-
ters 1 through 9. Also three new chapters have been added, i.e., Chapter
10, Experimental Aeroelasticity, Chapter 11, Nonlinear Aeroelasticity;
and Chapter 12, Aeroelastic Control. Chapter 10 is a brief introduction
to a vast subject: Chapter 11 is an overview of a frontier of research;
and Chapter 12 is the first connected, authoritative account of the feed-
back control of aeroelastic systems. Chapter 12 meets a significant need
in the literature. The authors of the first and second editions welcome
two new authors, David Peters who has provided a valuable revision of
Chapter 7 on rotorcraft, and Edward Crawley who has provided Chap-
ter 12 on aeroelastic control. It is a privilege and a pleasure to have
them as members of the team. The author of Chapter 10 would also
like to acknowledge the great help he has received over the year from
his distinguished colleague, Wilmer H. “Bill” Reed, III, in the study of
experimental aeroelasticity. Mr. Reed kindly provided the figures for
Chapter 10. The author of Chapter 12 would like to acknowledge the
significant scholarly contribution of Charrissa Lin and Ken Kazarus in
preparing the chapter on aeroelastic control. Finally the readers of the
first and second editions will note that the authors and subject indices
have been omitted from this edition. If any reader finds this an incon-
venience, please contact the editor and we will reconsider the matter for
the next edition.
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Preface to the Fourth Edition
In this edition several new chapters have been added and others sub-

stantially revised and edited. Chapter 6 on Aeroelasticity in Civil En-
gineering originally authored by Robert Scanlan has been substantially
revised by his close colleague, Emil Simiu. Chapter 9 on Modeling of
Fluid-Structure Interaction by Earl Dowell and Kenneth Hall is entirely
new and discusses modern methods for treating linear and nonlinear
unsteady aerodynamics based upon computational fluid dynamics mod-
els and their solution. Chapter 11 by Earl Dowell, John Edwards and
Thomas Strganac on Noninearity Aeroelasticity is also new and provides
a review of recent results. Chapter 12 by Robert Clark and David Cox
on Aeroelastic Control is also new and provides an authoritative account
of recent developments. Finally Chapter 13 by Kenneth Hall on Modern
Analysis for Complex and Nonlinear Unsteady Flows in Turbomachinery
is also new and provides an insightful and unique account of this impor-
tant topic. Many other chapters have been edited for greater clarity as
well and author and subject indices are also provided.

Dr. Deman Tang has provided invaluable contributions to the pro-
duction of the text and all of the authors would like to acknowledge his
efforts with great appreciation.

Useful comments on Chapter 6 by Professor Nocholas P. Jones of the
Whiting School of Engineering, John Hopkins University, are gratefully
acknowledged.

Figures 6.4, 6.24, 6.28, 6.33, 6.34, 6.35, 6.36, and 6.37 are reprinted
with permission from Elsevier.

EARL H. DOWELL
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The impact of aeroelasticity on design is not discussed in any detail in
this book. For insight into this important area the reader may consult
the following volumes prepared by the National Aeronautics and Space
Administration in its series on SPACE VEHICLE DESIGN CRITERIA.
Although these documents focus on space vehicle application, much of
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the material is relevant to aircraft as well. The depth and breadth
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It was intended to revise these volumes periodically to keep them
up-to-date. Unfortunately this has not yet been done.

1 NASA SP-8001 1970
Buffeting During Atmospheric Ascent

2 NASA SP-8002 1964
Flight Loads Measurements During Launch and Exit

3 NASA SP-8003 1964
Flutter,Buzz and Divergence

4 NASA SP-8004 1972
Panel Flutter

5 NASA SP-8006 1965
Local Steady Aerodynamic Loads During Launch and Exit

6 NASA SP-8008 1965
Prelaunch Ground Wind Loads

7 NASA SP-8012 1968
Natural Vibration Wind Analysis

8 NASA SP-8016 1969
Effect of Structural Flexibility on Spacecraft Control System

9 NASA SP-8009 1968
Propellant Slosh Loads

10 NASA SP-8031 1969
Slosh Suppression
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11 NASA SP-8035 1970
Wind Loads During Ascent

12 NASA SP-8036 1970
Effect of Structural Flexibility on Launch Vehicle Control System

13 NASA SP-8050 1970
Structural Vibration Prediction

14 NASA SP-8055 1970
Prevention of Coupled Structure - Propulsion Instability (POGO)

15 NASA SP-8079 1971
Structural Interaction with Control Systems.



Chapter 1

INTRODUCTION

Several years ago, Collar suggested that aeroelasticity could be use-
fully visualized as forming a triangle of disciplines, dynamics, solid me-
chanics and (unsteady) aerodynamics.

Aeroelasticity is concerned with those physical phenomena which in-
volve significant mutual interaction among inertial, elastic and aero-
dynamic forces. Other important technical fields can be identified by
pairing the several points of the triangle. For example,

Stability and control (flight mechanics) = dynamics + aerodynamics

Structural vibrations = dynamics + solid mechanics

Static aeroelasticity = steady flow aerodynamics + solid mechanics

Conceptually, each of these technical fields may be thought of as a
special aspect of aeroelasticity. For historical reasons only the last topic,

(DYNAMICS)
INERTIAL  FORCES

AERODYNAMIC  FORCES
(FLUID)

ELASTIC  FORCES
(SOLID  MECHANICS)

Figure 1.1. Collar diagram.

1



2 A MODERN COURSE IN AEROELASTICITY

static aeroelasticity, is normally so considered. However, the impact of
aeroelasticity on stability and control (flight mechanics) has increased
substantially in recent years.

In modern aerospace vehicles, the relevant physical phenomena may
be even more complicated. For example, stresses induced by high tem-
perature environments can be important in aeroelastic problems, hence
the term

‘aerothermoelasticity’

In other applications, the dynamics of the guidance and control system
may significantly affect aeroelastic problems, or vice versa, hence the
term

‘aeroservoelasticity’

For a historical discussion of aeroelasticity including its impact on
aerospace vehicle design, consult Chapter 1 of Bisplinghoff and Ashley
[2] and AGARD CP No.46, “Aeroelastic Effects from a Flight Mechanics
Standpoint” [6].

We shall first concentrate on the dynamics and solid mechanics as-
pects of aeroelasticity with the aerodynamic forces taken as given. Sub-
sequently, the aerodynamic aspects of aeroelasticity shall be treated from
first principles. Theoretical methods will be emphasized, although these
will be related to experimental methods and results where this will add
to our understanding of the theory and its limitations. For simplicity,
we shall begin with the special case of static aeroelasticity.

Although the technological cutting edge of the field of aeroelasticity
has centered in the past on aeronautical applications, applications are
found at an increasing rate in civil engineering, e.g., flows about bridges
and tall buildings; mechanical engineering, e.g., flows around turboma-
chinery blades and fluid flows in flexible pipes; and nuclear engineering;
e.g., flows about fuel elements and heat exchanger vanes. It may well be
that such applications will increase in both absolute and relative number
as the technology in these areas demands lighter weight structures under
more severe flow conditions. Much of the fundamental theoretical and
experimental developments can be applied to these areas as well and
indeed it is hoped that a common language can be used in these several
areas of technology. To further this hope we shall discuss subsequently
in some detail several examples in these other fields, even though our
principal focus shall be on aeronautical problems. Separate chapters on
civil engineering, turbomachinery and helicopter (rotor systems) appli-
cations will introduce the reader to the fascinating phenomena which
arise in these fields.
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Since most aeroelastic phenomena are of an undesirable character,
leading to loss of design effectiveness or even sometimes spectacular
structural failure as in the case of aircraft wing flutter or the Tacoma
Narrows Bridge disaster, the spreading importance of aeroelastic effects
will not be warmly welcomed by most design engineers. However, the
mastery of the material to be discussed here will permit these effects to
be better understood and dealt with if not completely overcome. More-
over in recent years, the beneficial effects of aeroelasticity have received
greater attention. For example, the promise of new aerospace systems
such as uninhabited air vehicles (UAVs) and morphing aircraft will un-
doubtedly be more fully realized by exploiting the benefits of aeroelas-
ticity while mitigating the risks.



Chapter 2

STATIC AEROELASTICITY

2.1. Typical Section Model of An Airfoil
We shall find a simple, somewhat contrived, physical system useful for

introducing several aeroelastic problems. This is the so-called ‘typical
section’ which is a popular pedagogical device.∗ This simplified aeroe-
lastic system consists of a rigid, flat, plate airfoil mounted on a torsional
spring attached to a wind tunnel wall. See Figure 2.1; the airflow over
the airfoil is from left to right.

Figure 2.1. Geometry of typical section airfoil.

The principal interest in this model for the aeroelastician is the rota-
tion of the plate (and consequent twisting of the spring), α, as a function

∗See Chapter 6, BA, especially pp. 189–200.
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U U

STRUCTURAL

FAILURE

α e

D

Figure 2.2. Elastic twist vs airspeed

of airspeed. If the spring were very stiff or airspeed were very slow, the
rotation would be rather small; however, for flexible springs or high flow
velocities the rotation may twist the spring beyond its ultimate strength
and lead to structural failure. A typical plot of elastic twist, αe, vs
airspeed, U , is given in Figure 2.2. The airspeed at which the elastic
twist increases rapidly to the point of failure is called the ‘divergence
airspeed’, UD. A major aim of any theoretical model is to accurately
predict UD. It should be emphasized that the above curve is representa-
tive not only of our typical section model but also of real aircraft wings.
Indeed the primary difference is not in the basic physical phenomenon
of divergence, but rather in the elaborateness of the theoretical analy-
sis required to predict accurately UD for an aircraft wing versus that
required for our simple typical section model.

To determine UD theoretically we proceed as follows. The equation
of static equilibrium simply states that the sum of aerodynamic plus
elastic moments about any point on the airfoil is zero. By convention,
we take the point about which moments are summed as the point of
spring attachment, the so-called ‘elastic center’ or ‘elastic axis’ of the
airfoil.

The total aerodynamic angle of attack, α, is taken as the sum of some
initial angle of attack, α0 (with the spring untwisted), plus an additional
increment due to elastic twist of the spring, αe.

α = α0 + αe (2.1.1)
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In addition, we define a point on the airfoil known as the ‘aerodynamic
center’.∗ This is the point on the airfoil about which the aerodynamic
moment is independent of angle of attack, α. Thus, we may write the
moment about the elastic axis as

My = MAC + Le (2.1.2)

where

My moment about elastic axis or center

MAC moment about aerodynamic center, both moments are positive
nose up

L lift, net vertical force positive up

e distance from aerodynamic center to elastic axis, positive aft.

From aerodynamic theory [1] (or experiment plus dimensional analysis)
one has

L = CLqS (2.1.3a)

MAC = CMACqSc

where

CL = CL0 +
∂CL

∂α
α, lift coefficient (2.1.3b)

CMAC = CMAC0 , a constant, aerodynamic center moment coefficient in
which

q =
ρU2

2
, dynamic pressure and

ρ air density

U air velocity

c airfoil chord

l airfoil span

S airfoil area, c × 1

∗For two dimensional, incompressible flow this is at the airfoil quarter-chord; for supersonic
flow it moves back to the half-chord. See Ashley and Landahl [1]. References are given at
the end of each chapter.
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(2.1.3a) defines CL and CMAC (2.1.3b) is a Taylor Series expansion of
CL for small α. CL0 is the lift coefficient at α ≡ 0. From (2.1.2), (2.1.3a)
and (2.1.3b), we see the moment is also expanded in a Taylor series. The
above forms are traditional in the aerodynamic literature. They are not
necessarily those a nonaerodynamicist would choose.

Note that CL0 , ∂CL/∂α, CMAC0 are nondimensional functions of
airfoil shape, planform and Mach number. For a flat plate in two-
dimensional incompressible flow [1]

∂CL

∂α
= 2π, CMAC0 = 0 = CL0

In what follows, we shall take CL0 ≡ 0 for convenience and without any
essential loss of information.

From (2.1.2), (2.1.3a) and (2.1.3b)

My = eqS

[
∂CL

∂α
(α0 + αe)

]
+ qScCMAC0 (2.1.4)

Now consider the elastic moment. If the spring has linear moment-twist
characteristics then the elastic moment (positive nose up) is −Kααe

where Kα is the elastic spring constant and has units of moment (torque)
per angle of twist. Hence, summing moments we have

eqS

[
∂CL

∂α
(α0 + αe)

]
+ qScCMAC0 − Kααe = 0 (2.1.5)

which is the equation of static equilibrium for our ‘typical section’ airfoil.
Solving for the elastic twist (assuming CMAC0 = 0 for simplicity) one

obtains

αe =
qS

Kα

e∂CL
∂α αo

1 − q Se
Kα

∂CL
∂α

(2.1.6)

This solution has several interesting properties. Perhaps most important
is the fact that at a particular dynamic pressure the elastic twist becomes
infinitely large. This is, when the denominator of the right-hand side of
(2.1.6) vanishes

1 − q
Se

Kα

∂CL

∂α
= 0 (2.1.7)

at which point αe → ∞.
Equation (2.1.7) represents what is termed the ‘divergence condition’

and the corresponding dynamic pressure which may be obtained by solv-
ing (2.1.7) is termed the ‘divergence dynamic pressure’,

qD ≡ Kα

Se(∂CL/∂α)
(2.1.8)
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Since only the positive dynamic pressures are physically meaningful,
note that only for e > 0 will divergence occur, i.e., when the aerodynamic
center is ahead of the elastic axis. Using (2.1.8), (2.1.6) may be rewritten
in a more concise form as

αe =
(q/qD)α0

1 − q/qD
(2.1.9)

Of course, the elastic twist does not become infinitely large for any
real airfoil; because this would require an infinitely large aerodynamic
moment. Moreover, the linear relation between the elastic twist and
the aerodynamic moment would be violated long before that. However,
the elastic twist can become so large as to cause structural failure. For
this reason, all aircraft are designed to fly below the divergence dynamic
pressure of all airfoil or lifting surfaces, e.g., wings, fins, control surfaces.
Now let us examine equations (2.1.5) and (2.1.9) for additional insight
into our problem, again assuming CMAC0 = 0 for simplicity. Two special
cases will be informative. First, consider α0 ≡ 0. Then (2.1.5) may be
written

αe

[
qS

∂CL

∂α
e − Kα

]
= 0 (2.1.5a)

Excluding the trivial case αe = 0 we conclude from (2.1.5a) that

qS
∂CL

∂α
e − Kα = 0 (2.1.7a)

which is the ‘divergence condition’. This will be recognized as an eigen-
value problem, the vanishing of the coefficient of αe in (2.1.5a) being the
condition for nontrivial solutions of the unknown, αe.∗ Hence, ‘diver-
gence’ requires only a consideration of elastic deformations.

Secondly, let us consider another special case of a somewhat different
type, α0 �= 0, but αe � α0. Then (2.1.5) may be written approximately
as

eqS
∂CL

∂α
α0 − Kααe = 0 (2.1.10)

Solving

αe =
qSe(∂CL/∂α)α0

Kα
(2.1.11)

∗Here in static aeroelasticity q plays the role of the eigenvalue; in dynamic aeroelasticity q
will be a parameter and the (complex) frequency will be the eigenvalue. This is a source of
confusion for some students when they first study the subject.
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αo αeG

1

Figure 2.3. Feedback representation of aeroelastic divergence.

Note this solution agrees with (2.1.6) if the denominator of (2.1.6) can
be approximated by

1 − q
Se

Kα

∂CL

∂α
= 1 − q

qD
≈ 1

Hence, this approximation is equivalent to assuming that the dynamic
pressure is much smaller than its divergence value. Note that the term
neglected in (2.1.5) is the aerodynamic moment due to the elastic twist.
This term can be usefully thought of as the ‘aeroelastic feedback’∗.
Without this term, solution (2.1.11) is valid only when q/qD � 1; and
it cannot predict divergence. A feedback diagram of equation (2.1.5)
is given in Figure 2.3. Thus, when the forward loop gain,G, exceeds
unity, G ≡ qeS(∂CL/∂α)/Kα > 1, the system is statically unstable,
see equation (2.1.8). Hence, aeroelasticity can also be thought of as
the study of aerodynamic + elastic feedback systems. One might also
note the similarity of this divergence problem to conventional ‘buckling’
of structures.†Having exhausted the interpretations of this problem, we
will quickly pass on to some slightly more complicated problems, but
whose physical content is similar.

Typical section model with control surface
We shall add a control surface to our typical section of Figure 2.1, as
indicated in Figure 2.4. For simplicity, we take α0 = CMAC0 = 0; hence,
α = αe. The aerodynamic lift is given by

L = qSCL = qS

(
∂CL

∂α
α +

∂CL

∂δ
δ

)
positive up (2.1.12)

∗For the reader with some knowledge of feedback theory as in, for example, Savant[2]
†Timoshenko and Gere [3].
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Figure 2.4. Typical section with control surface.

and the moment by

MAC = qScCMAC = qSc
∂CMAC

∂δ
δ positive nose up (2.1.13)

and the moment about the hinge line of the control surface by

H = qSHcHCH = qSHcH

(
∂CH

∂α
α +

∂CH

∂δ
δ

)
positive tail down

(2.1.14)
where SH is the area of control surface, cH the chord of the control
surface and CH the (nondimensional) aerodynamic hinge moment coef-
ficient. As before, ∂CL

∂α , ∂CL
∂δ , ∂CMAC

∂δ , ∂CH
∂α , ∂CH

∂δ are aerodynamic con-
stants which vary with Mach and airfoil geometry. Note ∂CH

∂δ is typically
negative.

The basic purpose of a control surface is to change the lift (or moment)
on the main lifting surface. It is interesting to examine aeroelastic effects
on this lift.

To write the equations of equilibrium, we need the elastic moments
about the elastic axis of the main lifting surface and about the hinge
line of the control surface. These are −Kαα (positive nose up), −Kδ(δ−
δ0) (positive tail down), and δe ≡ δ − δ0, where δe is the elastic twist
of control surface in which δ0 is the difference between the angle of
zero aerodynamic control deflection and zero twist of the control surface
spring.

The two equations of static moment equilibrium are

eqS

(
∂CL

∂α
α +

∂CL

∂δ
δ

)
+ qSc

∂CMAC

∂δ
δ − Kαα = 0 (2.1.15)

qSHcH

(
∂CH

∂α
α +

∂CH

∂α
δ

)
− Kδ(δ − δ0) = 0 (2.1.16)
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The above are two algebraic equations in two unknowns, α and δ, which
can be solved by standard methods. For example, Cramer’s rule gives

α =

∣∣∣∣ 0 eqS ∂CL
∂δ + qSc∂CMAC

∂δ

−Kδδ0 qSHcH
∂CH
∂δ − Kδ

∣∣∣∣∣∣∣∣ eqS ∂CL
∂δ − Kα eqS ∂CL

∂δ + qSc∂CMAC
∂δ

qSHcH
∂CH
∂α qshCH

∂CH
∂δ − Kδ

∣∣∣∣
(2.1.17)

and a similar equation for δ. To consider divergence we again set the
denominator to zero. This gives a quadratic equation in the dynamic
pressure q. Hence, there are two values of divergence dynamic pressure.
Only the lower positive value of the two is physically significant.

In addition to the somewhat more complicated form of the divergence
condition, there is a new physical phenomenon associated with the con-
trol surface called ‘control surface reversal’. If the two springs were rigid,
i.e.,Kα → ∞ and Kδ → ∞, then α = 0, δ = δ0, and

Lr = qS
∂CL

∂δ
δ0 (2.1.18)

With flexible springs, however,

L = qS

(
∂CL

∂α
α +

∂CL

∂δ
δ

)
(2.1.19)

where α, δ are determined by solving the equilibrium equations (2.1.15),
and (2.1.16). In general, the latter value of the lift will be smaller than
the rigid value of lift. Indeed, the lift may actually become zero or
even negative due to aeroelastic effects. Such an occurrence is called
‘control surface reversal’. To simplify matters and show the essential
character of control surface reversal, we will assume Kδ → ∞ and hence,
δ → δ0 from the equilibrium condition (2.1.16). Solving the equilibrium
equation (2.1.15), we obtain

α = δ0

∂CL
∂δ + c

e
∂CMAC

∂δ
Kα
qSe

∂CL
∂δ

(2.1.20)

But

L = qS

(
∂CL

∂δ
δ0 +

∂CL

∂α
α

)

= qS

(
∂CL

∂δ
+

∂CL

∂α

α

δ0

)
δ0

(2.1.21)
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so that, introducing (2.1.20) into (2.1.21) and normalizing by Lr, we
obtain

L

Lr
=

1 + q Sc
Kα

∂CMAC
∂δ

(
∂CL
∂α /∂CL

∂δ

)
1 − q Se

Kα

∂CL
∂α

(2.1.22)

Control surface reversal occurs when L/Lr = 0

1 + qR
Sc

Kα

∂CMAC

∂δ

(
∂CL

∂α
/
∂CL

∂δ

)
= 0 (2.1.23)

where qR is the dynamic pressure at reversal, or

qR ≡
−Kα
Sc

(
∂CL
∂δ /∂CL

∂α

)
∂CMAC

∂δ

(2.1.24)

Typically, ∂CMAC/∂δ is negative, i.e., the aerodynamic moment for pos-
itive control surface rotation is nose down. Finally, (2.1.22) may be
written

L

Lr
=

1 − q/qr

1 − q/qD
(2.1.25)

where qR is given by (2.1.24) and qD by (2.1.8). It is very interesting to
note that when Kδ is finite, the reversal dynamic pressure is still given
by (2.1.24). However, qD is now the lowest root of the denominator of
(2.1.17). Can you reason physically why this is so?∗

A graphical depiction of (2.1.25) is given in the Figure 2.5 where the
two cases, qD > qR and qD < qR, are distinguished. In the former case
L/Lr, decreases with increasing q and in the latter the opposite is true.
Although the graphs are shown for q > qD, our analysis is no longer valid
when the divergence condition is exceeded without taking into account
nonlinear effects. It is interesting to note that the qR given by (2.1.24)
is still the correct answer even for finite Kδ. Consider (2.1.15). For
reversal or zero lift, L = 0, (2.1.15) simplifies to

qRSs
∂CMAC

∂δ
δ − Kαα = 0 (2.1.15 R)

and (2.1.12) becomes
∂CL

∂α
α +

∂CL

∂α
δ = 0 (2.1.12 R)

∗See, [3], pp.197–200.
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q
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Figure 2.5. Lift vs dynamic pressure.

Eliminating α, δ from these two equations (or setting the determinant
to zero for nontrivial solutions) gives

Kα
∂CL

∂δ
+

∂CL

∂α
qRSc

∂CMAC

∂δ
= 0 (2.1.26)

Solving (2.1.26) for qR gives (2.1.24). Note that by this approach an
eigenvalue problem has been created. Also note the moment equilibrium
about the control surface hinge line does not enter into this calculation.
See Appendix B, Chapter 2 for a more conceptually straightforward, but
algebraically more tedious approach.

At the generalized reversal condition, when α0 �= 0, CMAC0 �= 0, the
lift due to a change in δ is zero, by definition. In mathematical language,

dL

dδ
= 0 at q = qR (2.1.27)

To see how this generalized definition relates to our earlier definition of
the reversal condition, consider again the equation for lift and also the
equation for overall moment equilibrium of the main wing plus control
surface, viz.

L = qS

[
∂CL

∂α
α +

∂CL

∂δ
δ

]
(2.1.19)

and

qScCMAC0 + qSc
∂CMAC

∂δ
δ + eqS

[
∂CL

∂α
α +

∂CL

∂δ
δ

]
− Kα(α − α0) = 0

(2.1.28)
From (2.1.19)

dL

dδ
= qS

[
∂CL

∂α

dα

dδ
+

∂CL

∂δ

]
(2.1.29)
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where dα
dδ may be calculated from (2.1.29) as

dα

dδ
=

−
[
qSc∂CMAC

∂δ + qSe∂CL
∂δ

]
eqS ∂CL

∂δ − Kα

(2.1.30)

Note that neither CMAC0 nor α0 appear in (2.1.30). Moreover when
(2.1.30) is substituted into (2.1.29) and dL/dδ is set to zero, the same
expression for qR is obtained as before, (2.1.24), when reversal was de-
fined as L = 0 (for α0 = CMAC0 = 0).

This result may be given a further physical interpretation. Consider a
Taylor series expansion for L in terms of δ about the reference condition,
δ ≡ 0. Note that δ ≡ 0 corresponds to a wing without any control surface
deflection relative to the main wing. Hence the condition δ ≡ 0, may be
thought of as a wing without any control surface.

The lift at any δ may then be expressed as

L(δ) = L(δ = 0) +
∂L

∂δ

∣∣∣
δ=0

δ + . . . (2.1.31)

Because a linear model is used, it is clear that higher order terms in this
expansion vanish. Moreover, it is clear that dL/dδ is that same for any
δ, cf. (2.1.29) and (2.1.30).

Now consider L(δ = 0). From (2.1.19)

L(δ = 0) = qS
∂CL

∂α
α(δ = 0) (2.1.32)

But from (2.1.29)

α(δ = 0) =
Kαα0 + qSCMAC0

Kα − eqS ∂CL
∂α

(2.1.33)

Note that α(δ = 0) = 0 for α0 = CMAC0 = 0. Thus, in this special case,
L(δ = 0) = 0, and

L(δ) =
dL

dδ

∣∣∣
δ=0

δ =
dL

dδ

∣∣∣
anyδ

δ (2.1.34)

and hence
L(δ) = 0 or

dL

dδ

∣∣∣
anyδ

δ = 0 (2.1.35)

are equivalent statements when α0 = CMAC0 = 0.
For α0 �= 0 and/or CMAC0 �= 0, however, the reversal condition is

more meaningfully defined as the condition when the lift due to δ �= 0 is
zero, i.e.

dL

dδ
= 0 at q = qR (2.1.27)
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In this case, at the reversal condition from (2.1.32) and (2.1.33 ),

L(δ)|at reversal = L(δ = 0)|at reversal =

qS
∂CL

∂α

⎡
⎣α0 + qSc

Kα
CMAC0

1 − eqS
∂CL
∂α

Kα

⎤
⎦ (2.1.36)

and hence the lift at reversal per se is indeed not zero in general unless
α0 = CMAC0 = 0.

Typical section model—nonlinear effects
For sufficiently large twist angles, the assumption of elastic and/or aero-
dynamic moments proportional to twist angle becomes invalid. Typically
the elastic spring becomes stiffer at larger twist angles; for example the
elastic moment-twist relation might be

ME = −Kααe − Kα3α
3
e

where Kα > 0, Kα3>0. The lift angle of attack relation might be

L = qS[(∂CL/∂α)α − (∂CL/∂α)3α3]

where ∂CL/∂α and (∂CL/∂α)3 are positive quantities. Note the lift
decreases for a large α due to flow separation from the airfoil. Com-
bining the above in a moment equation of equilibrium and assuming for
simplicity that α0 = CMAC = 0, we obtain (recall (2.1.5))

eqS[(∂CL/∂α)αe − (∂CL/∂α)3α3
e] − [Kααe + Kα3α

3
e] = 0

Rearranging,

αe[eq(S∂CL/∂α) − Kα] − α3
e[eqS(∂CL/∂α)3 + Kα3 ] = 0

Solving, we obtain the trivial solution αe ≡ 0, as well as

α2
e =

[
eqS ∂CL

∂α − Kα

]
[
eqS(∂CL

∂α )3 + Kα3

]
To be physically meaningful αe must be a real number; hence the right
hand side of the above equation must be a positive number for the non-
trivial solution αe �= 0 to be possible.

For simplicity let us first assume that e > 0. Then we see that only for
q > qD (i.e., for eqS(∂CL/∂α) > Kα) are nontrivial solutions possible.
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Figure 2.6. (Nonlinear) equilibria for elastic twist: e > 0. (top) e < 0. (bottom)

See Figure 2.6. For q < qD, αe ≡ 0 as a consequence of setting α0 ≡
CMAC ≡ 0. Clearly for e > 0, αe �= 0 when q < qD where

qD ≡ Kα

eS∂CL/∂α

Note that two (symmetrical) equilibrium solutions are possible for
q > qD. The actual choice of equilibrium position would depend upon
how the airfoil is disturbed (by gusts for example) or possibly upon im-
perfections in the spring or airfoil geometry. α0 may be thought of as an
initial imperfection and its sign would determine which of the two equi-
libria positions occurs. Note that for the nonlinear model αe remains
finite for any finite q. For e < 0, the equilibrium configurations would
be as shown in the Figure 2.6 where

qD3 = −Kα3/eS(∂CL/∂α)3

and
α2

e∞ = ∂CL/∂α(∂CL/∂α)3



18 A MODERN COURSE IN AEROELASTICITY

As far as the author is aware, the behavior indicated in Figure 2.6
has never been observed experimentally. Presumably structural failure
would occur for q > qD, even though αe∞ is finite. It would be most
interesting to try to achieve the above equilibrium diagram experimen-
tally.

The above discussion does not exhaust the possible types of nonlinear
behavior for the typical section model. Perhaps one of the most impor-
tant nonlinearities in practice is that associated with the control surface
spring and the elastic restraint of the control surface connection to the
main lifting surface.∗

2.2. One Dimensional Aeroelastic Model of
Airfoils

Beam-rod representation of large aspect ratio wing †

We shall now turn to a more sophisticated, but more realistic beam-rod
model which contains the same basic physical ingredients as the typical
section. A beam-rod is here defined as a flat plate with rigid chordwise
sections whose span, l, is substantially larger than its chord, c. See
Figure 2.7. The airflow is in the x direction. The equation of static
moment equilibrium for a beam-rod is

d

dy

(
GJ

dαe

dy

)
+ My = 0 (2.2.1)

αe(y) nose up twist about the elastic axis, e.s., at station y

My nose up aerodynamic moment about e.a., per unit distance in the
spanwise, y, direction

G shear modulus

J polar moment of inertia (=ch3/3 for a rectangular cross-section of
thickness, h, h � c)

GJ torsional stiffness

Equation (2.2.1) can be derived by considering a differential element dy
(see Figure 2.8) The internal elastic moment is GJ from the theory of
elasticity.‡ Note for dαe/dy > 0, GJ(dαe/dy) is positive nose down.
Summing moments on the differential element, we have

∗Woodcock[4]
†See Chapter 7, BA, pp. 280–295, especially pp.288–295
‡Housner, and Vreeland[5].
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Figure 2.7. Beam-rod representation of wing.

GJ
dαe
d

M y

GJ
dα e
d yy

+ (GJ
dα e
d y

)d y

Figure 2.8. Differential element of beam-rod.

−GJ
dαe

dy
+ GJ

dαe

dy
+

d

dy

(
GJ

dαe

dy

)
dy + H.O.T. + Mydy = 0

In the limit, as dy → 0,

d

dy

(
GJ

dαe

dy

)
+ My = 0 (2.2.1)

Equation (2.2.1) is a second order differential equation in y. Associated
with it are two boundary conditions. The airfoil is fixed at its root and
free at its tip, so that the boundary conditions are

αe = 0 at y = 0 GJ
dαe

dy
= 0 at y = l (2.2.2)

Turning now to the aerodynamic theory, we shall use the ‘strip theory’
approximation. That is, we shall assume that the aerodynamic lift and
moment at station y depends only on the angle of attack at station y
(and is independent of the angle of attack at other spanwise locations.)
Thus moments and lift per unit span are, as before,

My = MAC + Le (2.2.3a)
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L ≡ qcCL (2.2.3b)

where now the lift and moment coefficients are given by

CL(y) =
∂CL

∂α
[α0(y) + αe(y)]∗ (2.2.3c)

MAC = qc2cMAC (2.2.3d)

(2.2.3b) and (2.2.3d) define CL and CMAC respectively.
Using (2.2.3) in (2.2.1) and nondimensionalizing (assuming for sim-

plicity, constant wing properties)

ỹ ≡ y

l

λ2 ≡ ql2
GJ

c
∂CL

∂α
e

K ≡ −qcl2

GJ

(
e
∂CL

∂α
α0 + CMAC0c

)
(2.2.1) becomes

d2αe

dỹ2
+ λ2αe = K (2.2.4)

which is subject to boundary conditions (2.2.2). These boundary condi-
tions have the nondimensional form

α = 0 at ỹ = 0 (2.2.5)

dαe

dỹ
= 0 at ỹ = 1

The general solution to (2.2.4) is

αe = A sin λỹ + B cos λỹ +
K

λ2
(2.2.6)

Applying boundary conditions (2.2.5), we obtain

B +
K

λ2
= 0, λ[A cos λ − B sin λ] = 0 (2.2.7)

∗A more complete aerodynamic model would allow for the effect of an angle of attack at one
spanwise location, say η, on (nondimentional) lift at another, say y. This relation would then
be replaced by CL(y) =

∫
A(y − η)[α0(η) + αe(η)]dη where A is an aerodynamic influence

function which must be measured or calculated from an appropriate theory. More will be
said about this later.
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Solving equation (2.2.7), A = −(K/λ2) tanλ, B = −K/λ2, so that

αe =
K

λ2
[1 − tan λ sin λỹ − cos λỹ] (2.2.8)

Divergence occurs when αe → ∞, i.e., tan λ → ∞, or cos λ → 0.∗ Thus,
for λ = λm = (2m − 1)π

2 (m = 1, 2, 3, . . .), αe → ∞. The lowest of these,
λ1 = π

2 is physically significant. Using the definition of λ preceding
equation (2.2.4), the divergence dynamic pressure is

q = (π/2)2
GJ

l
/lce(∂CL/∂α) (2.2.9)

Recognizing that S = lc, we see that (2.2.9) is equivalent to the typical
section value, (2.1.8), with

Kα =
(π

2

)2 GJ

l
(2.2.10)

Consider again (2.2.8). A further physical interpretation of this result
may be helpful. For simplicity, consider the case when CMAC0 = 0 and
thus K = −λ2α0. Then the expression for αe, (2.2.8), may be written
as

αe = α0[−1 + tanλ sin λỹ + cos λỹ] (2.2.8a)

The tip of twist of ỹ = 1 may be used to characterize the variation of αe

with λ, i.e,

αe(ỹ = 1) = α0

[
1

cos λ
− 1

]
(2.2.8b)

and thus
α = α0 + αe = α0/ cos λ (2.2.8c)

From (2.2.8)c, we see that for low flow speeds or dynamic pressure,
λ → 0, α = α0. As λ → π/2, α monotonically increases and α →
∞ as λ → π/2. For a given wing design, a certain twist might be
allowable. From (2.2.8)c, or its counterpart for more complex physical
and mathematical models, the corresponding allowable or design λ may
be determined.

Another design allowable might be the allowable structural moment,
T ≡ GJdαe/dy. Using (2.2.8) and the definition of T , for a given allow-
able T the corresponding allowable λ or q may be determined.

∗Note λ ≡ 0 is not a divergence condition! Expanding (2.2.8) for λ � 1, we obtain αe =
K
λ2 [1 − λ2ỹ − (1 − λ2ỹ2

2
) + · · · ] → K[ ỹ2

2
− ỹ] as λ → 0.
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Eigenvalue and eigenfunction approach
One could have treated divergence from the point of view of an eigenvalue
problem. Neglecting those terms which do not depend on the elastic
twist, i.e., setting α0 = CMAC0 = 0, we have K = 0 and hence

d2α

dỹ2
+ λ2α = 0 (2.2.11)

with
α = 0 at y = 0
dα

dỹ
= 0 at y = 1 (2.2.12)

The general solution is

α = A sin λỹ + B cos λỹ (2.2.13)

Using (2.2.12) and (2.2.13)
B = 0

λ[A cos λ − B sin λ]

we conclude that
A = 0

or
λ cos λ = 0 and A �= 0 (2.2.14)

The latter condition, of course, is ‘divergence’. Can you show that λ =
0, does not lead to divergence? What does (2.2.13) say? For each
eigenvalue, λ = λm = (2m − 1)π

2 there is an eigenfunction,

αm ∼ sin λmỹ = sin (2m − 1)
π

2
ỹ (2.2.15)

These eigenfunctions are of interest for a number of reasons:

1 They give us the twist distribution at the divergence dynamic pres-
sure as seen above in (2.2.15).

2 They may be used to obtain a series expansion of the solution for any
dynamic pressure.

3 They are useful for developing an approximate solution for variable
property wings.

Let us consider further the second of these. Now we let α0 �=
0, CMAC0 �= 0 and begin with (2.2.4)

d2αe

dỹ
+ λ2αe = K (2.2.4)
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Assume a series solution of the form

αe =
∑

n

anαn(ỹ) (2.2.16)

K =
∑

n

Anαn(ỹ) (2.2.17)

where an, An are to be determined. Now it can be shown that∫ 1

0
αn(ỹ)αm(ỹ)dỹ =

1
2

for m = n

= 0 for m¬n

(2.2.18)

This is the so-called ‘orthogonality condition’. We shall make use of it
in what follows. First, let us determine An. Multiply (2.2.17) by αm

and
∫ 1
0 · · · dỹ.∫ 1

0
Kαm(ỹ)dỹ =

∑
n

An

∫ 1

0
αn(ỹ)αm(ỹ)dỹ = Am

1
2

using (2.2.18). Solving for Am,

Am = 2
∫ 1

0
Kαm(ỹ)dỹ (2.2.19)

Now let us determine an. Substitute (2.2.16) and (2.2.17) into (2.2.4) to
obtain ∑

n

[
an

d2αn

dỹ2
+ λ2anαn

]
=
∑

n

Anαn (2.2.20)

Now each eigenfunction, αn, satisfies (2.2.11)

d2αn

dỹ2
+ λ2

nαn = 0 (2.2.11)

Therefore, (2.2.20) may be written∑
n

an[−λ2
n + λ2]αn =

∑
Anαn (2.2.21)

Multiplying (2.2.21) by αm and
∫ 1
0 · · · dỹ,

[λ2 − λ2
m]am

1
2

= Am
1
2

(multiplication)
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Solving for am,

am =
Am

[λ2 − λ2
m]

(2.2.22)

Thus,

αe =
∑

anαn =
∑

n

An

[λ2 − λ2
m]

αn(ỹ) (2.2.23)

where An is given by (2.2.19).∗
Similar calculations can be carried out for airfoils whose stiffness,

chord, etc., are not constants but vary with spanwise location. One way
to do this is to first determine the eigenfunction expansion for the vari-
able property wing as done above for the constant property wing. The
determination of such eigenfunctions may itself be fairly complicated,
however. An alternative procedure can be employed which expands the
solution for the variable property wing in terms of the eigenfunctions of
the constant property wing. This is the last of the reasons previously
cited for examining the eigenfunctions.

Galerkin’s method
The equation of equilibrium for a variable property wing may be ob-
tained by substituting (2.2.3) into (2.2.1). In dimensional terms

d

dy

(
GJ

d

dy
αe

)
+ eqc

∂CL

∂α
αe = −eqc

∂CL

∂α
α0 − qc2CMAC0 (2.2.24)

In nondimensional terms

d

dy

(
γ

dαe

dỹ

)
+ λ2αeβ = K (2.2.25)

where

γ ≡ GJ

(GJ)ref
K = − qcl2

(GJ)ref

[
e
∂CL

∂α
α0 + CMAC0

]

λ2 ≡ ql2cref

(GJ)ref

(
∂CL

∂α

)
ref

eref β =
c

cref

e

eref

(
∂CL
∂α

)
(

∂CL
∂α

)
ref

Let
αe =

∑
n

anαn(ỹ)

∗For a more detailed mathematical discussion of the above , see Hildebrand [6], pp. 224–234.
This problem is one of a type known as ‘Sturm-Liouville Problems’.
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K =
∑

n

Anαn(ỹ)

As before. Substituting the series expansions into (2.2.25), multiplying
by αm and

∫ 1
0 · · · dỹ,

∑
an

{∫ 1

0

d

dỹ

(
γ

dαn

dỹ

)
αm dỹ + λ2

∫ 1

0
βαnαm dỹ

}
=

∑
n

An

∫ 1

0
αnαm dỹ =

Am

2

(2.2.26)

The first and second terms cannot be simplified further unless the eigen-
functions or ‘modes’ employed are eigenfunctions for the variable prop-
erty wing. Hence, an is not as simply related to An as in the constant
property wing example. (2.2.26) represents a system of equations for the
an. In matrix notation

[Cmn]{an} = {Am}1
2

(2.2.27)

where

Cmn ≡
∫ 1

0

d

dỹ

(
γ

dαn

dỹ

)
αmdỹ + λ2

∫ 1

0
βαnαm dỹ

By truncating the series to a finite number of terms, we may formally
solve for the an,

{an} =
1
2
[Cmn]−1{Am} (2.2.28)

The divergence condition is simply that the determinant of Cmn vanish
(and hence an → ∞)

|Cmn| = 0 (2.2.29)

which is a polynomial in λ2. It should be emphasized that for an ‘ex-
act’ solution, (2.2.27), (2.2.28) etc., are infinite systems of equations
(in an infinite number of unknowns). In practice, some large but fi-
nite number of equations is used to obtain an accurate approximation.
By systematically increasing the terms in the series, the convergence of
the method can be assessed. This procedure is usually referred to as
Galerkin’s method or as a ‘modal’ method.∗ The modes, αn, used are
called ‘primitive modes’ to distinguish them from eigenfunctions, i.e.,
they are ‘primitive functions’ for a variable property wing even though
they are eigenfunctions for a constant property wing.

∗Duncan [7]
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2.3. Rolling of a Straight Wing
We shall now consider a more complex physical and mathematical

variation on our earlier static aeroelastic lifting surface (wing) studies.
For variety, we treat a new physical situation, the rolling of a wing
(rotation about the root axis). Nevertheless, we shall meet again our
old friends, ‘divergence’ and ‘control surface effectiveness’ or ‘reversal’.

The present analysis differs from the previous one as follows:

a integral equation formulation vs. differential equation formulation

b aerodynamic induction effects vs. ‘strip’ theory

c ‘lumped element’ method of solution vs. modal (or eigenfunction)
solution.

The geometry of the problem is shown in Figure 2.9.

Integral equation of equilibrium
The integral equation of equilibrium is

α(y) =
∫ 1

0
Cαα(y, η)My(η)dη∗ (2.3.1)

Before deriving the above equation, let us first consider the physical
interpretation of Cαα:

Apply a unit point moment at some point, say y = γ, i.e.,

My(η) = δ(η − γ)

Then (2.3.1) becomes

α(y) =
∫ 1

0
Cαα(y, η)δ(η − γ)dη = Cαα(y, γ) (2.3.2)

Thus Cαα(y, γ) is the twist a y due to a unit moment at γ, or alterna-
tively, Cαα (y, η) is the twist at y due to a unit moment at η. Cαα is
called a structural influence function.

Also note that (2.3.1) states that to obtain the total twist, one mul-
tiplies the actual distributed torque, My, by Cαα and sums (integrates)
over the span. This is physically plausible.

Cαα plays a central role in the integral equation formulation.† The
physical interpretation of Cαα suggests a convenient means of measuring

∗For simplicity, α0 ≡ 0 in what follows.
†For additional discussion, see the following selected references: Hildebeand [6] pp.388–394
and BAH, pp.39–44.
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l 2

l 1

Figure 2.9. Rolling of a straight wing.

Cαα in a laboratory experiment. By successively placing unit couples
at various locations along the wing and measuring the twists of all such
stations for each loading position we can determine Cαα. This capability
for measuring Cαα gives the integral equation a preferred place in aeroe-
lastic analysis where Cαα and/or GJ are not always easily determinable
from purely theoretical considerations.

Derivation of equation of equilibrium
Now consider a derivation of (2.3.1) taking as our starting point the
differential equation of equilibrium. We have, you may recall,

d

dy

(
GJ

dα

dy

)
= −My (2.3.3)

with
α(0) = 0 and

dα

dy
(l) = 0 (2.3.4)

as boundary conditions.
As a special case of (2.3.3) and (2.3.4) we have for a unit torque

applied at y = η,
d

dy
GJ

dCαα

dy
= −δ(y − η) (2.3.5)

with
Cαα(0, η) = 0 and

dCαα

dy
(l, η) = 0 (2.3.6)
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Multiply (2.3.5) by α(y) and integrate over the span,∫ 1

0
α(y)

d

dy

(
GJ

dCα,α

dy

)
dy = −

∫ 1

0
δ(y − η)α(y)dy = −α(η) (2.3.7)

Integrate LHS of (2.3.7) by parts,

αGJ
dCαα

dy

∣∣∣1
0
−GJ

dα

dy
Cαα

∣∣∣1
0
+
∫ 1

0
Cαα d

dy

(
GJ

dα

dy

)
dy = −α(η) (2.3.8)

Using boundary conditions (2.3.4) and (2.3.6), the first two terms of
LHS of (2.3.8) vanish. Using (2.3.3) the integral term may be simplified
and we obtain,

α(η) =
∫ 1

0
Cαα(y, η)My(y)dy (2.3.9)

Interchanging y and η,

α(y) =
∫ 1

0
Cαα(η, y)My(η)dη (2.3.10)

(2.3.10) is identical to (1), if

Cαα(η, y) = Cαα(y, η) (2.3.11)

We shall prove (2.3.11) subsequently.

Calculation of Cαα

We shall calculate Cαα from (2.3.5) using (2.3.6). Integrating (2.3.5)
with respect to y from 0 to y1,

GJ(y1)
dCαα

dy
(y1, η) − GJ(0)

dCαα

dy
(0, η)

= −1 if y1 > η

= 0 if y1 < η ≡ S(y1, η)

(2.3.12)

Sketch of function S(y1, η)

Dividing (2.3.12) by GJ (y1) and integrating with respect to y1 from 0
to y2,

Cαα(y2, η) − Cαα(0, η) − GJ(0)
dCαα

dy
(0, η)

∫ y2

0

1
GJ

dy1

=
∫ y2

0

S(y1, η)
GJ(y1)

dy1 = −
∫ y2

η

1
GJ(y1)

dy1 for y2 > η

= 0 for y2 < η

(2.3.13)
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From boundary conditions, (2.3.6),

(a) Cαα(0, η) = 0

(b)
dCαα

dy
(l, η) = 0

These may be used to evaluate the unknown terms in (2.3.12) and
(2.3.13). Evaluating (2.3.12) at y1 = l

(c) GJ(l)
dCαα

dy︸ ︷︷ ︸
−→0

(l, η) − GJ
dCαα

dy
(0, η) = −1

Using (a) and (c), (2.3.13) may be written,

Cαα(y2, η) =
∫ y2

0

1
GJ

dy1 −
∫ y2

η

1
GJ

dy1

=
∫ η

0

1
GJ

dy1 for y2 > η

=
∫ y2

0

1
GJ

dy1 for y2 < η

One may drop the dummy subscript on y2, of course. Thus

Cαα (y, η) =
∫ y

0

1
GJ

dy1 for y < η

=
∫ η

0

1
GJ

dy1 for y > η (2.3.14)

Note from the above result we may conclude by interchanging y and η
that

Cαα(y, η) = Cαα(η, y)
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This is a particular example of a more general principle known as
Maxwell’s Reciprocity Theorem∗ which says that all structural influence
functions for linear elastic bodies are symmetric in their arguments. In
the case of Cαα these are y and η, of course.

Aerodynamic forces (including spanwise induction)
First, let us identify the aerodynamic angle of attack; i.e., the angle
between the airfoil chord and relative airflow. See Figure 2.10. Hence,
the total angle of attack due to twisting and rolling is

αTotal = α(y) − py

U

The control surface will be assumed rigid and its rotation is given by

δ(y) = δR for l1 < y < l2 = 0 otherwise

From aerodynamic theory or experiment

y

z

p

x

z

U

-py

AIRFOILGEOMETRY

-py/U

Figure 2.10.

CL ≡ L

qc
=
∫ 1

0
ALα(y, η)αT(η)

dη

l
+
∫ 1

0
ALδ(y, η)δ(η)

dη

l
(2.3.15)

Here ALα, ALδ are aerodynamic influence functions; as written, they are
nondimensional. Thus, ALδ is nondimensional lift at y due to unit angle
of attack at η. Substituting for αT and δ, (2.3.15) becomes,

CL =
∫ 1

0
ALαα

dη

l
− pl

U

∫ 1

0
ALαη

l

dη

l
+ δR

∫ l2

l1

ALδ dη

l

∗Bisplinghoff, Mar, and Pian [8], p.247.
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CL =
∫ 1

0
ALαα

dη

l
+

pl

U

∂CL

∂
(

pl
U

) + δR
∂CL

∂δR
(2.3.16)

where
∂CL

∂
(

pl
U

)(y) ≡ −
∫ 1

0
ALαη

l

dη

l

and
∂CL

∂δR
(y) ≡

∫ l2

l1

ALδ dη

l

Physical Interpretation of ALα and ALδ:ALα is the lift coefficient at
y due to unit angle of attack at n. ALδ is the lift coefficient at y due to
unit rotation of control surface at η.

Physical Interpretation of ∂CL/∂ (pl/U) and ∂CL/∂δR:∂CL/∂ (pl/U)
is the lift coefficient at y due to unit rolling velocity, pl/U . ∂CL/∂δR is
the lift coefficient at y due to unit control surface rotation, δR.

As usual
CMAC ≡ MAC

qc2
=

∂CMAC

∂δR
δR (2.3.17)

is the aerodynamic coefficient moment (about a.c.) at y due to control
surface rotation. Note

∂CMAC/∂αT ≡ 0

by definition of the aerodynamic center. Finally the total moment load-
ing about the elastic axis is

My = MAC + Le = qc[CMACc + CLe] (2.3.18)

Using (2.3.16) and (2.3.17), the above becomes

My = qc

⎡
⎣c

∂CMAC

∂δR
+ e

⎧⎨
⎩
∫ 1

0
ALδα

dη

l
+

∂CL

∂
(

pl
l

) (pl

U

)
+

∂CL

∂δR

⎫⎬
⎭
⎤
⎦

(2.3.19)
Note that ALα, ALδ are more difficult to measure than their structural
counterpart, Cαα. One requires an experimental model to which one can
apply unit angles of attack at various discrete points along the span of
the wing. This requires a rather sophisticated model and also introduces
experimental difficulties in establishing and maintaining a smooth flow
over the airfoil. Conversely

∂CL

∂ pl
U

,
∂CL

∂δR
and

∂CMAC

∂δR
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are relatively easy to measure since they only require a rolling or control
surface rotation of a rigid wing with the same geometry as the flexible
airfoil of interest.

Aeroelastic equations of equilibrium and lumped
element solution method
The key relations are (2.3.1) and (2.3.19). The former describes the
twist due to an aerodynamic moment load, the latter the aerodynamic
moment due to twist as well as rolling and control surface rotation.

By substituting (2.3.19) into (2.3.1), one could obtain a single equa-
tion for α. However, this equation is not easily solved analytically except
for some simple cases, which are more readily handled by the differential
equation approach. Hence, we seek an approximate solution technique.
Perhaps the most obvious and convenient method is to approximate the
integrals in (2.3.1) and (2.3.19) by sums, i.e., the wing is broken into
various spanwise segments or ‘lumped elements’. For example, (2.3.1)
would be approximated as:

α (yi) ∼=
N∑

i=1

Cαα (yi, ηj)My (ηj)∆η i = 1, . . . , N (2.3.20)

where ∆η is the segment width and N the total number of segments.
Similarly, (2.3.19) may be written

My(yi) ∼=qc { [ c
∂CMAC

∂δR
+ e

∂CL

∂ pl
U

pl

U

+ e
∂CL

∂δR
δR ] + e

N∑
j=1

ALα(yi, ηj)α(ηj)
∆η

l
} i = 1, . . . , N

(2.3.21)

To further manipulate (2.3.20) and (2.3.21), it is convenient to use ma-
trix notation. That is,

{α} = ∆η[Cαα]{My} (2.3.20)

and

{My} = q

⎡
⎣ \

c2

\

⎤
⎦{∂CMAC

∂δR

}
δR + q

⎡
⎣ \

ce
\

⎤
⎦{∂CL

∂ pl
U

}
pl

U

+q

⎡
⎣ \

ce
\

⎤
⎦{∂CL

∂δR

}
δR + q

⎡
⎣ \

ce
\

⎤
⎦ [ALα]{α}∆η

l
(2.3.21a)
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All full matrices are of order N ×N and row or column matrices of order
N.. Substituting (2.3.21) into (2.3.20), and rearranging terms gives,

M

⎡
⎣
⎡
⎣ \

1
\

⎤
⎦− q

(∆η)2

l
[E][ALα]

⎤
⎦ {α} = {f} (2.3.23)

where the following definitions apply

{f} ≡ q[E]
{

∂CL

∂δR

}
δR +

⎧⎨
⎩ ∂CL

∂
(

pl
U

)
⎫⎬
⎭ pl

U
∆η

+q[F ]
{

∂CMAC

∂δR

}
δR ∆η

[E] ≡ [Cαα]

⎡
⎣ \

ce
\

⎤
⎦

[F ] ≡ [Cαα]

⎡
⎣ \

c2

\

⎤
⎦

Further defining

[D] ≡
⎡
⎣ \

1
\

⎤
⎦− q

(∆η)2

l
[E][ALα]

we may formally solve (2.3.23) as

{α} = [D]−1{f} (2.3.24)

Now let us interpret this solution.

Divergence
Recall that the inverse does not exist if

| D |= 0 (2.3.25)

and hence,
{α} → {∞}
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Figure 2.11. Characteristic determinant vs dynamic pressure.

(2.3.25) gives rise to an eigenvalue problem for the divergence dynamic
pressure, qD. Note (2.3.25) is a polynomial in q.

The lowest possible root (eigenvalue) of (2.3.25) gives the q of physical
interest, i.e.,qDivergence. Rather than seeking the roots of the polyno-
mial we might more simply plot |D| versus q to determine the values of
dynamic pressure for which the determinant is zero. A schematic of such
results for various choices of N is shown below in Figure 2.11. From the
above results we may plot qD (the lowest positive q for which |D| = 0) vs.
N as shown below in Figure 2.12. The ‘exact’ value of qD is obtained at
N → ∞. Usually reasonably accurate results can be obtained for small
values of N , say 10 or so. The divergence speed calculated above does
not depend upon the rolling of the wing, i.e.,p is considered prescribed,
e.g., p = 0.

Reversal and rolling effectiveness
In the above we have taken pl/U as known; however,in reality it is a
function of δR and the problem parameters through the requirement
that the wing be in static rolling equilibrium, i.e., it is an additional
degree of freedom. For rolling equilibrium at a steady roll rate, p, the
rolling moment about the x-axis is zero.

MRolling ≡ 2
∫ 1

0
Lydy = 0 (2.3.26)

Approximating (2.3.26), ∑
i

Liyi∆y = 0 (2.3.27)

or, in matrix notation,
2�y	{L}∆y = 0 (2.3.28)
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Figure 2.12. Convergence of divergence dynamic pressure with modal number.

or
2q�cy	{CL}∆my = 0

From (2.3.16), using the ‘lumped element’ approximation and matrix
notation,

{CL} =
∆η

l
[ALα]{α} +

{
∂CL

∂δR

}
δR +

⎧⎨
⎩ ∂CL

∂
(

pl
U

)
⎫⎬
⎭ pl

U
(2.3.16)

Substitution of (2.3.16) into (2.3.28) gives

�cy	
⎧⎨
⎩∆η

l
[ALα]{α} +

{
∂CL

∂δR

}
δR +

⎧⎨
⎩ ∂CL

∂
(

pl
U

)
⎫⎬
⎭ pl

U

⎫⎬
⎭ = 0 (2.3.29)

Note that (2.3.29) is a single algebraic equation. (2.3.29) plus (2.3.20)
and (2.3.21) are 2N + 1 linear algebraic equations in the N(α) plus
N(My) plus 1(p) unknowns. As before {My} is normally eliminated
using (2.3.21) in (2.3.20) to obtain N , equation (2.3.22), plus 1, equa-
tion (2.3.29), equations in N(α) plus 1(p) unknowns. In either case
the divergence condition my be determined by setting the determinant
of coefficients to zero and determining the smallest positive eigenvalue,
q = qD.
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p l

U

q / q

δ R

D

Figure 2.13. Roll rate vs dynamic pressure.

For q < qD, pl/U (and α) may be determined from (2.3.23) and
(2.3.29). Since our mathematical model is linear

pl/U ∼ δR

and hence a convenient plot of the results is as shown in Figure 2.13. As

q → qD,
pl

U
(and{α}) → ∞

Another qualitatively different type of result may sometimes occur. See
Figure 2.14. If

pl

U/δR
→ 0 for q → qR < qD

then ‘rolling reversal’ is said to have occurred and the corresponding
q = qR is called the ‘reversal dynamic pressure’. The basic phenomenon
is the same as that encountered previously as ‘control surface reversal’.
Figures 2.13 and 2.14 should be compared to Figures 2.5a,b.

It is worth emphasizing that the divergence condition obtained above
by permitting p to be determined by (static) rolling equilibrium will be
different from that obtained previously by assuming p = 0. The latter
physically corresponds to an aircraft constrained not to roll, as might
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Figure 2.14. Roll rate vs dynamic pressure.

be the case for some wind tunnel models. The former corresponds to a
model or aircraft completely free to roll.∗

The above analysis has introduced the simple yet powerful idea of
structural and aerodynamic influence functions. While the utility of the
concept has been illustrated for a one-dimensional aeroelastic model,
not the least advantage of such an approach is the conceptual ease with
which the basic notion can be extended to two-dimensional models, e.g.,
plate-like structures, or even three-dimensional ones (though the latter
is rarely needed for aeroelastic problems).

In a subsequent section we briefly outline the generalization to two-
dimensional models. Later this subject will be considered in more depth
in the context of dynamic aeroelasticity.

Integral equation eigenvalue problem and the
experimental determination of influence functions
For the special case of a constant section wing with ‘strip theory’ aero-
dynamics one may formulate a standard integral equation eigenvalue
problem for the determination of divergence. In itself this problem is of
little interest. However, it does lead to some interesting results with re-
spect to the determination of the structural and aerodynamic influence
functions by experimental means.

∗This distinction between the two ways in which the aircraft may be restrained received
renewed emphasis in the context of the oblique wing concept. Weisshaar and Ashley [9].
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For such a wing,

My = Le + MAC = eqc
∂CL

∂α
α + · · ·

where the omitted terms are independent of twist and may therefore be
ignored for the divergence (eigenvalue) problem. Also the coefficients of
α may be taken as constants for a constant section wing. Substituting
the above expression into the integral equation of structural equilibrium
we have

α(y) = eqc
∂CL

∂α

∫ 1

0
Cαα(y, η)α(η)dη

This is an eigenvalue problem in integral form where the eigenvalue is

λ ≡ eqc
∂CL

∂α

One may solve this problem for the corresponding eigenvalues and eigen-
functions which satisfy the equation

αn(y) = λn

∫ 1

0
Cαα(y, η)αn(η)dη

Incidentally, the restriction to a constant section wing was unnecessary
and with a moderate amount of effort one could even use a more so-
phisticated aerodynamic model. Such complications are not warranted
here.

These eigenfunctions or similar functions may be usefully employed to
determine by experimental means the structural, Cαα, and aerodynamic,
Alα, influence functions. The former is not as attractive as the use
of point unit structural loads as we shall see; however, the procedure
outlined below for the determination of ALα probably deserves more
attention than it has previously received.

Assume the structural influence function can be expanded in terms of
the eigenfunctions

Cαα(y, η) =
∑

n

Cn(y)αn(η) (2.3.30)

where the Cn are to be determined. Also recall that

αn(y) = λn

∫ 1

0
Cαα(y, η)αn(η)dη (2.3.31)

and the αn are the eigenfunctions and λn the eigenvalues of Cαα satis-
fying (2.3.31) and an orthogonality condition∫

αnαmdy = 0 for m �= η



Static Aeroelasticity (Dowell) 39

Then multiply (2.3.30) by αm(η) and integrate over the span of the wing;
the result is

Cm(y) =

∫ 1
0 Cαα(y, η)αm(η)dη∫ 1

0 α2
m(η)dη

and from (2.3.31)

Cmcyl =
αm(y)

λm

∫ 1
0 α2

m(η)dη
(2.3.32)

Hence (2.3.32) in (2.3.30) gives

Cαα(y, η) =
∑

n

αn(y)αn(η)

λn

∫ 1
0 α2

m(η)dη
(2.3.33)

Thus if the eigenfunctions are known then the Green’s function is readily
determined from (2.3.33). Normally this holds no special advantage since
the determination of the αn, theoretically or experimentally, is at least
as difficult as determining the Green’s function, Cαα, directly. Indeed
as discussed previously if we apply unit moments at various points along
the span the resulting twist distribution is a direct measure of Cαα. A
somewhat less direct way of measuring Cαα is also possible which makes
use of the expansion of the Green’s (influence) function. Again using
(2.3.30)

Cαα(y, η) =
∑

n

Cnαn(η) (2.3.29)

and assuming the αn are orthogonal (although not necessarily eigenfunc-
tions of the problem at hand) we have

Cn(y) =

∫ 1
0 Cαα(y, η)αn(η)dη∫ 1

0 α2
n(η)dη

(2.3.34)

Now we have the relation between twist and moment

α(y) =

∫ 1
0

C

αα

(y, η)My(η)dη (2.3.35)

Clearly if we use a moment distribution

My(η) = αn(η)

the resulting twist distribution will be (from (2.3.34))

α(y) = Cn(y)
∫ 1

0
α2

n(η)dη (2.3.36)
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Hence we may determine the expansion of the Green’s function by suc-
cessively applying moment distribution in the form of the expansion
functions and measuring the resultant twist distribution. For the struc-
tural influence function this offers no advantage in practice since it is
easier to apply point moments rather than moment distributions.

However, for the aerodynamic Green’s functions the situation is dif-
ferent. In the latter case we are applying a certain twist to the wing
and measuring the resulting aerodynamic moment distribution. It is
generally desirable to maintain a smooth (if twisted) aerodynamic sur-
face to avoid complications of flow separation and roughness and hence
the application of a point twist distribution is less desirable than a dis-
tributed one. We quickly summarize the key relations for determining
the aerodynamic influence function. Assume

ALα(y, η) =
∑

n

ALα
n (y)αn(η) (2.3.37)

We know that

CL(y) =
∫ 1

0
ALα(y, η)α(η)dη (2.3.38)

For orthogonal functions, αn we determine from (2.3.37) that

ALα
n (y) =

∫ 1
0 ALα(y, η)αndη∫ 1

0 α2
n(η)dη

(2.3.39)

Applying the twist distribution α = αn(η) to the wing, we see from
(2.3.38) and (2.3.39) that the resulting lift distribution is

CL(y) = ALα
n (y)

∫ 1

0
α2

n(η)dη (2.3.40)

Hence by measuring the lift distributions on ‘warped wings’ with twist
distributions αn(η) we may completely determine the aerodynamic in-
fluence function in terms of its expansion (2.3.37). This technique or
a similar one has been used occasionally,∗ but not as frequently as one
might expect, possibly because of the cost and expense of testing the
number of wings sufficient to establish the convergence of the series. In
this regard, if one uses the αn for a Galerkin or modal expansion solution
for the complete aeroelastic problem one can show that the number of
Cn, ALα

n required is equal to the number of modes, αn, employed in the
twist expansion.

∗Covert [10].
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2.4. Two Dimensional Aeroelastic Model of
Lifting Surfaces

We consider in turn, structural modeling, aerodynamic modeling, the
combining of the two into an aeroelastic model, and its solution.

Two dimensional structures—integral representation
The two dimensional or plate analog to the one-dimensional or beam-rod
model is

w(x, y) =
∫∫

Cwp(x, y; ξ, η)p(ξ, η)dξ dη (2.4.1)

where

w vertical deflection at a point, x, y, on plate

p force/area (pressure) at point ξ, η on plate

Cwp deflection at x, y due to unit pressure at ξ, η

Note that w and p are taken as positive in the same direction. For the
special case where

w(x, y) = h(y) + xα(y) (2.4.2)

and

Cwp(x, y; ξ, η) = ChF(y, η) + xCαF(y, η) + ξChM(y, η) + xξCαM(y, η)
(2.4.3)

with the definitions

ChF is the deflection of y axis at y due to unit force F

CαF is the twist about the y axis at y due to unit force F , etc.,

we may retrieve our beam-rod result. Note that (2.4.2) and (2.4.3) may
be thought of as polynomial (Taylor Series) expansions of deflections.

Substituting (2.4.2), (2.4.3) into (2.4.1), we have

h(y) + xα(y) = [
∫

ChF

(∫
p(ξ, η)dξ

)
dη

+
∫

ChM

(∫
ξp(ξ, η)dξ

)
dη ]

+ x [
∫

CαF

(∫
p(ξ, η)dξ

)
dη

+
∫

CαM

(∫
ξp(ξ, η)dξ

)
dη ]

(2.4.4)
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If y, η lie along an elastic axis, then ChM = CαF = 0. Equating coeffi-
cients of like powers of x, we obtain

h(y) =
∫

ChF(y, η)F (η) dη (2.4.5)

α(y) =
∫

CαM(y, η)M(η) dη (2.4.6)

where
F ≡

∫
p dξ, M ≡

∫
pξ dξ

(2.4.6) is our previous result. Since for static aeroelastic problems, M is
only a function of α (and not of h), (2.4.6) may be solved independently
of (2.4.5). Subsequently (2.4.6) may be solved to determine h if desired.
(2.4.5) has no effect on divergence or control surface reversal, of course,
and hence we were justified in neglecting it in our previous discussion.

Two dimensional aerodynamic surfaces—integral
representation
In a similar manner (for simplicity we only include deformation depen-
dent aerodynamic forces to illustrate the method),

p(x, y)
q

=
∫∫

Apwx(x, y; ξ, η)
∂w

∂ξ
(ξ, η)

dξ

cr

dη

l
(2.4.7)

where

Apwx nondimensional aerodynamic pressure at x, y due to unit ∂w/∂ξ
at point ξ, n

cr reference chord, l reference span

For the special case
w = h + xα

and, hence,
∂w

∂x
= α

we may retrieve our beam-rod aerodynamic result.
For example, we may compute the lift as

L ≡
∫

pdx = qcr

∫ 1

0
ALα(y, η)α(η)

dη

l
(2.4.8)

where
ALα ≡

∫∫
Apwx(x, y; ξ, η)

dξ

cR

dx

cr
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Solution by matrix-lumped element approach
Approximating the integrals by sums and using matrix notation, (2.4.1)
becomes

{w} = ∆ξ∆η[Cwp]{p} (2.4.9)

and (2.4.7) becomes

{p} = q
∆ξ

cr

∆η

l
[Apwx ]

(
∂w

∂ξ

)
(2.4.10)

Now (
∂w

∂ξ

)
∼= wi−1 − wi−1

2∆ξ

is a difference representation of the surface slope. Hence

(
∂w

∂ξ

)
=

1
2∆ξ

[W ]{w} =
1

2∆ξ

⎡
⎢⎢⎣

[W ] [0] [0] [0]
[W ] [0] [0]

[W ] [0]
[W ]

⎤
⎥⎥⎦ {w}∗

(2.4.11)
is the result shown for four spanwise locations, where

[W ] =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 ·
−1 0 1 0 ·
0 −1 0 1 ·

· · ·
· · · 0 0 −1 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
number of chordwise location

(2.4.12)

is a numerical weighting matrix. From (2.4.9), (2.4.10), (2.4.11), we
obtain an equation for w,

[D]{w} ≡
⎡
⎣
⎡
⎣ \

1
\

⎤
⎦− q

(∆ξ)2

cr

(∆η)2

l

l

2∆ξ
[Cwp][Apwx ][W ]

⎤
⎦ {w} = {0}

(2.4.13)
For divergence

|D| = 0

which permits the determination of qD.

∗For definiteness consider a rectangular wing divided up into small (rectangular) finite differ-
ence boxes. The weighting matrix[(W)] is for a given spanwise location and various chordwise
boxes. The elements in the matrices, {∂w/∂ξ} and {w}, are ordered according to fixed span-
wise location and then over all chordwise locations. This numerical scheme is only illustrative
and not necessarily that which one might choose to use in practice.
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2.5. Other Physical Phenomena
Fluid flow through a flexible pipe
Another static aeroelastic configuration exhibiting divergence is a long
slender pipe with a flowing fluid.† See Figure 2.15. We shall assume
the fluid is incompressible and has no significant variation across the
cross-section of the pipe. Thus, the aerodynamic loading per unit length
along the pipe is (invoking the concept of an equivalent fluid added mass
moving with the pipe and including the effect of convection velocity‡ U),

−L = ρA

[
∂

∂t
+ U

∂

∂x

]2

w = ρA

[
∂2w

∂t2
+ 2U

∂2w

∂x∂t
+ U2 ∂2w

∂x2

]
(2.5.1)

where

A ≡ πR2 open area for circular pipe

ρ, U fluid density, axial velocity

w transverse deflection of the pipe

x axial coordinate

t time

The equation of motion for the beam-like slender pipe is

EI
∂4w

∂x4
+ mp

∂2w

∂t2
= L (2.5.2)

where

mp ≡ ρp2πRh for a thin hollow circular pipe of thickness h, mass per
unit length

EI beam bending stiffness

Both static and dynamic aeroelastic phenomena are possible for this
physical model but for the moment we shall only consider the former.
Further we shall consider for simplicity simply supported or pinned
boundary conditions, i.e.,

w = 0

and

M ≡ EI
∂2w

∂x2
= 0 at x = 0, a (2.5.3)

†Housner [11].
‡See Section 3.4.
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Figure 2.15. Fluid flow through a flexible pipe.

where M is the elastic bending moment and a, the pipe length.
Substituting (2.5.1) into (2.5.2) and dropping the time derivatives

consistent with limiting our concern to static phenomena, we have

EI
∂4w

∂x4
+ ρAU2 ∂2w

∂x2
= 0 (2.5.4)

subject to boundary conditions

w =
∂2w

∂x2
= 0 at x = 0, a (2.5.5)

The above equations can be recognized as the same as those governing
the buckling of a beam under a compressive load of magnitude,∗ P . The
equivalence is

P = ρU2A

Formally we may compute the buckling or divergence dynamic pressure
by assuming†

w =
4∑

i=1

Aie
pix

where the pi are the four roots of the characteristic equation associated
with (2.5.4),

EIp4 + ρU2Ap2 = 0

Thus
p1,2 = 0

∗Timoshenko and Gere [3].
†Alternatively one could use Galerkin’s method for (2.5.4) and (2.5.5) or convert them into
an integral equation to be solved by the ‘lumped element’ method.
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p3, p4 = ±i

(
ρU2A

EI

) 1
2

and
w = A1 + A2x + A3 sin

λx

a
+ A4 cos

λx

a
(2.5.6)

where

λ2 ≡
(

ρU2A

EI

)
a2

Using the boundary conditions (2.5.5) with (2.5.6) we may determine
that

A1 = A2 = A4 = 0

and either A3 = 0 or sinλ = 0
For nontrivial solutions

A3 �= 0

and
sin λ = 0

or
λ = π, 2π, 3π, etc. (2.5.7)

Note that λ = 0 is a trivial solution, e.g., w ≡ 0.
Of the several eigenvalue solutions the smallest nontrivial one is of

the greatest physical interest, i.e.,

λ = π

The corresponding divergence or buckling dynamic pressure is

ρU2 =
EI

Aa2
π2 (2.5.8)

Note that λ2 is a nondimensional ratio of aerodynamic to elastic stiffness;
we shall call it and similar numbers we shall encounter an ‘aeroelastic
stiffness number’. It is as basic to aeroelasticity as Mach number and
Reynolds number are to fluid mechanics. Recall that in our typical sec-
tion study we also encountered an ‘aeroelastic stiffness number’, namely,

qs∂CL
∂α

Kα
e

as well as in the (uniform) beam-rod wing model,

q(lc)e∂CL
∂ α

GJ
l
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Figure 2.16. Fluid flow over a flexible wall.

(Low speed) fluid flow over a flexible wall
A mathematically similar problem arises when a flexible plate is embed-
ded in an otherwise rigid surface. See Figure 2.16. This is a simplified
model of a physical situation which arises in nuclear reactor heat ex-
changers, for example. Aeronautical applications may be found in the
local skin deformations on aircraft and missiles. Early airships may have
encountered aeroelastic skin buckling.∗

For a one dimensional (beam) structural representation of the wall,
the equation of equilibrium is, as in our previous example,

EI
∂4w

∂x4
= L

Also, as a rough approximation, it has been shown that the aerodynamic
loading may be written as∗

L ∼ ρU2 ∂2w

∂x2

Hence using this aerodynamic model, there is a formal mathematical
analogy to the previous example and the aeroelastic calculation is the
same. For more details and a more accurate aerodynamic model, the
cited references should be consulted.

2.6. Sweptwing Divergence
A swept wing, one whose elastic axis is at an oblique angle to an

oncoming fluid stream, offers an interesting variation on the divergence
phenomenon. Consider Figure 2.17. The angle of sweep is that between
the axis perpendicular to the oncoming stream (y axis) and the elastic
axis (y axis). It is assumed that the wing can be modeled by the

∗Shute [12], p.95.
∗Dowell [13], p.19, Kornecki [14], Kornecki, Dowell and O’Brien [15].
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bending-torsion deformation of a beam-rod. Thus the two structural
equations of equilibrium are

Bending equilibrium of a beam-rod

d2

dȳ2

(
EL

d2h

dȳ2

)
= −L̄ (2.6.1)

Torsional equilibrium of a beam-rod

d2

dȳ2

(
GJ

dαe

dȳ

)
+ M̄y = 0 (2.6.2)

Here h is the bending displacement of the elastic axis and is assumed
positive downward. αe, the elastic twist about the y axis, is positive
nose up.

Now consider the aerodynamic model. Consider the velocity diagram,
Figure 2.18. A strip theory aerodynamic model will be invoked with
respect to chords perpendicular to the y axis. Thus the lift and aerody-
namic moment per unit span are given by

L̄ = C̄Lc̄q (2.6.3)

and

M̄y =L̄ē + M̄AC

=C̄L ¯cqe + C̄MACc̄2q̄
(2.6.4)

where q̄ = 1
2ρ(U cosΛ)2 = q cos2 Λ. Also C̄L is related to the (total)

angle of attack, αT , by

C̄L(ȳ) =
∂C̄L

∂α
αT(ȳ) (2.6.5)

where
αT = αe +

dh

dȳ
tan Λ (2.6.6)

To understand the basis of the second term in (2.6.6), consider the ve-
locity diagram of Figure 2.19. From this figure we see the fluid velocity
normal to the wing is U sin Λdh/dȳ and thus the effective angle of attack
due to bending of a swept wing is

U sin Λ
dh

dȳ
/U cosΛ = U

dh

dȳ
tan Λ (2.6.7)
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Figure 2.17. Sweptwing geometry.
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Figure 2.18. Velocity diagram in the x, y(x̄, ȳ) plane.

From (2.6.1)–(2.6.6), the following form of the equations of equilib-
rium is obtained.

d2

dȳ2

(
EI

d2h

dȳ2

)
= −∂C̄L

∂α

[
αe +

dh

dȳ
tan Λ

]
c̄q cos2 Λ (2.6.7)

d

dȳ

(
GJ

dαe

dȳ

)
+

∂C̄L

∂α

[
αe +

dh

dȳ
tan Λ

]
c̄q cos2 Λē + C̄MACc̄2q cos2 Λ = 0

(2.6.8)
Special cases;

If the beam is very stiff in bending, EI → ∞, then from (2.6.7),
h → 0. (2.6.8) then is very similar to the torsional equation for an
unswept wing with slightly modified coefficients.

If the beam-rod is very stiff in torsion, GJ → ∞, then from (2.6.8),
α → 0. (2.6.7) then reduces to
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y

U sin Λ dh
dy

U sin Λ

z

Figure 2.19. Velocity diagram in ȳ, z̄ plane.

d2

dȳ2

(
EI

d2h

dȳ2

)
+

∂C̄L

∂α
sin Λ cosΛc̄q

dh

dȳ
= 0 (2.6.9)

As we shall see, divergence in bending alone is possible even for a swept
wing which is very stiff in torsion. This is not possible for an unswept
wing.

To illustrate this, consider a further special case, namely a beam
with constant spanwise properties. Introducing appropriate non-
dimensionalization then (2.6.9) becomes

d4h

dỹ4
+ λ

dh

dỹ
= 0 (2.6.10)

where ỹ ≡ ȳ/l and

λ =
∂C̄L
∂α qc̄l

3

EI
sin Λ cos Λ

The boundary conditions associated with this differential equation are
zero deflection and slope at the root:

h =
dh

dỹ
= 0 @ ỹ = 0 (2.6.11)

and zero bending moment and shear force at the tip

EI
d2h

dỹ2
= EI

d3h

dỹ3
= 0 @ ỹ = 1 (2.6.12)
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(2.6.10)–(2.6.12) constitute an eigenvalue problem. The eigenvalues of λ
are all negative and the lowest of these provides the divergence condition.

λD = −6.33 =
∂C̄L

∂α

sin Λ cosΛc̄l̄3q

EI
(2.6.13)

The only way the right hand side of (2.6.13) can be less than zero is if
sin Λ < 0 or Λ < 0.

Thus only swept forward wings can diverge in bending without tor-
sional deformation. This suggests that swept forward wings are more
susceptible to divergence than swept back wings. This proves to be the
case when both bending and torsion are present as well.

For many years, the divergence tendency of swept forward wings pre-
cluded their use. In recent years composite materials provide a mecha-
nism for favorable bending-torsion coupling which alleviates this diver-
gence. For a modern treatment of these issues including the effects of
composite structures two reports by Weisshaar [16,17] are recommended
reading.

A final word on how the eigenvalues are calculated. For (2.6.10)–
(2.6.12), classical techniques for constant coefficient differential equa-
tions may be employed. See BAH, pp. 479-489. Even when both
bending and torsion are included (2.6.7, 2.6.8), if the wing properties
are independent of spanwise location, then classical techniques may be
applied. Although the calculation does become more tedious. Finally,
for a variable spanwise properties Galerkin’s method may be invoked, in
a similar though more elaborate manner to that used for unswept wing
divergence.
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Chapter 3

DYNAMIC AEROELASTICITY

In static aeroelasticity we have considered various mathematical mod-
els of aeroelastic systems. In all of these, however, the fundamental
physical content consisted of two distinct phenomena, ‘divergence ’ or
static instability, and loss of aerodynamic effectiveness as typified by
‘Control surface reversal ’. Turning to dynamic aeroelasticity we shall
again be concerned with only a few distinct fundamental physical phe-
nomena. However, they will appear in various theoretical models of
increasing sophistication. The principal phenomena of interest are (1)
‘flutter’ or dynamic instability and (2) response to various dynamic load-
ings as modified by aeroelastic effects. In the latter category primary
attention will be devoted to (external) aerodynamic loadings such as at-
mospheric turbulence or ‘gusts’. These loadings are essentially random
in nature and must be treated accordingly. Other loadings of interest
may be impulsive or discrete in nature such as the sudden loading due
to maneuvering of a flight vehicle as a result of control surface rotation.

To discuss these phenomena we must first develop the dynamic theo-
retical models. This naturally leads us to a discussion of how one obtains
the equations of motion for a given aeroelastic system including the req-
uisite aerodynamic forces. Our initial discussion of aerodynamic forces
will be conceptual rather than detailed. Later, in Chapter 4, these forces
are developed from the fundamentals of fluid mechanics. We shall begin
by using the ‘typical section ’ as a pedagogical device for illustrating
the physical content of dynamic aeroelasticity. Subsequently using the
concepts of structural and aerodynamic influence and impulse functions,
we shall discuss a rather general model of an aeroelastic system. The
solution techniques for our aeroelastic models are for the most part stan-

53
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dard for the modern treatment of the dynamics of linear systems and
again we use the typical section to introduce these methods.

We now turn to a discussion of energy and work methods which have
proven very useful for the development of structural equations of motion.
In principle, one may use Newton’s Second Law (plus Hooke’s Law) to
obtain the Equations of motion for any elastic body. However, normally
an alternative procedure based on Hamilton’s Principle or Lagrange’s
Equations is used.∗ For systems with many degrees of freedom, the
latter are more economical and systematic.

We shall briefly review these methods here by first deriving them from
Newton’s Second Law for a single particle and then generalizing them for
many particles and/or a continuous body. One of the major advantages
over the Newtonian formulation is that we will deal with work and energy
(scalars) as contrasted with accelerations and forces (vectors).

3.1. Hamilton’s Principle
Single particle
Newton’s Law states

�F = m
d2�r

dt2
(3.1.1)

where F̄ is the force vector and �r is the displacement vector, representing
the actual path of particle. m is the particle mass.

Consider an adjacent path, �r + δ�r, where �r is a ‘virtual displacement’
which is small in some appropriate sense. If the time interval of interest
is t = t1 → t2 then we shall require that

δ�r = 0 at t = t1, t2

although this can be generalized. Thus, the actual and adjacent paths
coincide at t = t1, or t2

Now form the dot product of (3.1.1) with δ�r and
∫ t2
t1

· · · dt. The result
is ∫ t2

t1

(
m

d2�r

dt2
· δ�r − �F · δ�r

)
dt = 0 (3.1.2)

The second term in brackets can be identified as work or more precisely
the ‘virtual work’. The ‘virtual work’ is defined as the work done by
the actual forces being moved through the virtual displacement. We
assume that the force remains fixed during the virtual displacement or,
equivalently, the virtual displacement occurs instantaneously, i.e., δt =
0.

∗See, for example, Meirovitvh [1].
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It follows that the first term must also have the dimensions of work
(or energy ). To see this more explicitly, we manipulate the first term
by an integration by parts as follows:

m

∫ t2

t1

d2�r

dt2
· δ�rdt = m

d�r

dt
· δ�r

�
��
∣∣∣t2
21

− m

∫ t2

t1

d�r

dt
· d

dt
(δr)dt

= m

∫ t2

t1

d�r

dt
· δ d�r

dt
dt

= −m

2

∫ t2

t1

δ

(
d�r

dt
· d�r

dt

)
dt

(3.1.3)

Hence (3.1.2) becomes∫ t2

t1

[
1
2
mδ

(
d�r

dt
· d�r

dt

)
+ F · δ�r

]
dt = 0

or ∫ t2

t1

δ[T + W ]dt = 0 (3.1.4)

where
δT ≡ δ

1
2
m

d�r

dt
· d�r

dt
(3.1.5)

is defined as the ‘virtual kinetic energy’ and

δW ≡ �F · δ�r (3.1.6)

is the ‘virtual work’. Hence, the problem is cast in the form of scalar
quantities, work and energy. (3.1.4) is Hamilton’s Principle. It is equiv-
alent to Newton’s Law.

Before proceeding further it is desirable to pause to consider whether
we can reverse our procedure, i.e., starting from (3.1.4), can we proceed
to (3.1.1)? It is not immediately obvious that this is possible. After all,
Hamilton’s Principle represents an integrated statement over the time
interval of interest while Newton’s Second Law holds at every instant in
time. By formally reversing our mathematical steps however, we may
proceed from (3.1.4) to (3.1.2). To take the final step from (3.1.2) to
(3.1.1) we must recognize that our choice of δ�r is arbitrary. Hence, if
(3.1.2) is to hold for any possible choice of δ�r, (3.1.2) must follow. To
demonstrate this we note that, if δ�r is arbitrary and (3.1.1) were not
true, then it would be possible select δ�r such that (3.1.2) would not be
true. Hence (3.1.2) implies (3.1.1) if δ�r is arbitrary.
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Many particles
The previous development is readily generalized to many particles. In-
deed, the basic principle remains the same and only the work and energy
expressions are changed as follows:

δT =
∑

i

m1

2
δ

(
d�ri

dt
· d�ri

dt

)
(3.1.7)

δW =
∑

i

�Fi · δ�ri (3.1.8)

where

mi is the mass of ith particle,
�ri is the displacement of ith particle, and
�Fi is the force acting on ith particle.

(3.1.9)

Continuous body
For a continuous body (3.1.7) and (3.1.8) are replaced by (3.1.10) and
(3.1.11)

δT =
∫ ∫ ∫
volume

ρ

2
δ
d�r

dt
· d�r

dt
dV (3.1.10)

where ρ is the density (mass per unit volume), V is the volume, and δW
is the virtual work done by external applied forces and internal elastic
forces. For example, if �f is the vector body force per unit volume and �p
the surface force per unit area then

δW =
∫∫∫

volume

�f · δ�rdV +
∫∫

surface area

�p · δ�rdA (3.1.11)

Potential energy
In a course of elasticity∗ it would be shown that the work done by internal
elastic forces is the negative of the virtual elastic potential energy. The
simplest example is that of an elastic spring. See sketch below. The
force in the spring is

−Kx

∗Bisplinghoff, Mar, and pian [2], Timoshenko and Goodier [3].
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where the minus sign arises from the fact that the force of the spring on
the mass opposes the displacement, x. The virtual work is

δW = −Kxδx

= −δ
Kx2

2

The virtual change in potential energy is

δU ≡ −δW

= δ
Kx2

2
= δ

(
Fx

2

) (3.1.12)

Considering the other extreme, the most complete description of the
potential energy of an elastic body which satisfies Hooke’s Law is (see
Bisplinghoff, Mar and Pian [2])

U =
1
2

∫∫∫
v

[σxxεxx + σxyεxy + σxyεxy + · · · ]dV (3.1.13)

where σxx is the stress component (analogous to F ) and εxx is the strain
component (analogous to x), etc.

From this general expression for potential (strain) energy of an elastic
body we may derive some useful results for the bending and twisting of
beams and plates. For the bending of a beam, the usual assumption of
plane sections over the beam cross-section remaining plane leads to a
strain-displacement relation of the form

εyy = −z
∂2w

∂y2

where z is the vertical coordinate through the beam and w is the vertical
displacement of the beam. Hooke’s Law reads,

σyy = Eεyy = −Ez
∂2w

∂y2
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and we assume all other stresses are negligible

σyz = σxy = σxz = σxx = σzz = 0

If we further assume w(x, y, z) = h(y) where y is the lengthwise coordi-
nate axis of the beam, then

U =
1
2

∫
EI

(
∂2h

∂y2

)2

dy

where
I ≡

∫
z2dz

∫
dx

For the twisting of a thin beam , analogous reasoning leads to similar
results. Assume w = αx and α is the angle of twist about the y axis.
Then

εxy = −z
∂2w

∂x∂y

σxy =
E

(1 + v)
εxy =

E

(1 + v)
z

∂2w

∂x∂y

Thus

U
1
2

∫
GJ

(
∂α

∂y

)2

dy

where
G ≡ E

2(1 + v)
, J ≡ 4

∫
z2dz

∫
dx

The above can be generalized to the bending of a plate in two dimensions.

εyy = −z
∂2w

∂y2

εxx = −z
∂2w

∂x2

εxy = −z
∂2w

∂x∂
y

σxx =
E

(1 − v2)
[εxx + vεyy]

σyy =
E

(1 − v2)
[εyy + vεxx]

σxy =
E

(1 − v
)εxy
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and

U =
1
2

∫ ∫
D

[(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2v
∂2w

∂x2

∂2w

∂y2
+ 2(1 − v)

(
∂2w

∂x∂y

)2
]

dx dy

where

D ≡ E

(1 − v2)

∫ +h/2

−h/2
z2dy, plate bending stiffness

and
w = w(x, y)

Nonpotential forces
Now, if one divides the virtual work into potential and nonpotential
contributions, one has Hamilton’s Principle in the form∫

[(δT − δU) + �FNC · �δr︸ ︷︷ ︸
δWNC

]dt = 0 (3.1.14)

where FNC includes only the nonpotential (or nonconservative) forces.
In our aeroelastic problems the nonconservative virtual work is a re-

sult of aerodynamic loading. For example, the virtual work due to the
aerodynamic pressure (force per unit area) on a two-dimensional plate
is clearly

δWNC =
∫∫

p δw dx dy

Note that if the deflection is taken to be a consequence of a chordwise
rigid rotation about and bending of a spanwise elastic axis located at,
say x = 0, then

w = −h(y) − xα(y)

and hence

δW =
∫ [

−
∫

pdx

]
δh dy +

∫ [
−
∫

px dx

]
δα dy

where

L =
∫

p dx net vertical force/per unit span

My ≡ − ∫ px dx net moment about y axis per unit span

Thus, for this special case,

δW =
∫

−L δh dy +
∫

Myδαdy

Can you derive equations for T and U in terms of h and α?
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3.2. Lagrange’s Equations
Lagrange’s equations may be obtained by reversing the process by

which we obtained Hamilton’s Principle. However to obtain a more gen-
eral result than simply a retrieval of Newton’s Second Law we introduce
the notion of ‘generalized’ coordinates. A ‘generalized’ coordinate is one
which is arbitrary and independent (of other coordinates). A set of ‘gen-
eralized’ coordinates is sufficient∗ to describe the motion of a dynamical
system. That is, the displacement of a particle or point in a continuous
body may be written

�r = �r(q1, qq2, q3, . . . , t) (3.2.1)

where qi is the ith generalized coordinate. From (3.2.1) it follows that

T = T (q̇i, qi, t) (3.2.2)

U = U(q̇i, qi, t)

Thus Hamilton’s Principle may be written∫ t2

t1

[δ(T − U) + δWNC]dt = 0 (3.1.14)

Using (3.2.2) in (3.1.14)

∑
i

∫ t2

t1

[
∂(T − U)

∂q̇i
δq̇i +

∂(T − U)
∂qi

δqi + Qiδqi

]
dt = 0 (3.2.3)

where the Generalized forces, Qi, are known from

δWNC ≡
∑

i

Qiδqi (3.2.4)

As we will see (3.2.4) defines the Qi as coefficients of δqi in an expression
for δWNC which must be obtained independently of (3.2.4). Integrating
the first term of (3.2.3) by parts (noting that δqi = 0 t = ti, t2) we have

∑
i �����∂(T − U)

∂qi
δqi|t2t1 +

∫ t2

t1

[
− d

dt

∂(T − U)
∂q̇i

δqi

+
∂(T − U)

∂qi
δqi + Qiδqi

]
dt = 0

(3.2.5)

∗and necessary, i.e., they are independent



Dynamic Aeroelasticity (Dowell) 61

Figure 3.1. Geometry of typical section airfoil.

Collecting terms∑
i

∫ t2

t1

[
− d

dt

∂(T − U)
δq̇i

+
∂(T − U)

∂qi
+ Qi

]
δqidt = 0 (3.2.6)

Since the δqi are independent and arbitrary it follows that each bracketed
quantity must be zero, i.e.,

− d

dt

∂(T − U)
δq̇i

+
∂(T − U)

∂qi
+ Qi = 0 i = 1, 2, . . . (3.2.7)

These are Lagrange’s equations.

Example—typical section equations of motion
x is measured along chord from e.a.; note that x is not a generalized
coordinate, e.g., it cannot undergo a virtual change.

generalized coordinates {q1 = h, q2 = α}
The displacement of any point on the airfoil is

�r = u�i + w�k (3.2.8)

where u is the horizontal displacement component, w is the vertical
displacement component, and �i,�k are the unit, cartesian vectors.

From geometry

u = x[cos α − 1] 
 0
w = −h − x sin α ∼= −h − xα

}
for α � 1 (3.2.9)
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Hence,

T =
1
2

∫ [(
dw

dt

)2

+
(

du

dt

)2
]

ρdx


 1
2

∫ (
dw

dt

)2

ρdx

=
1
2

∫
(−ḣ − α̇x)2ρdx

=
1
2
ḣ2

∫
ρdx +

1
2
2ḣα̇

∫
xρdx +

1
2
α̇2

∫
x2ρdx

=
1
2
ḣ2m +

1
2
2ḣα̇Sα +

1
2
α̇2Iα

where m ≡
∫

ρ dx total mass

Sα ≡
∫

ρxdx ≡ xc.g.m mass unbalance

Iα ≡
∫

ρx2dx moment of intertia

ρ ≡ mass per unit chord length

(3.2.10)

The potential energy is

U =
1
2
Khh2 +

1
2
Kαα2 (3.2.11)

where Kn and Kα are the spring stiffnesses For our system, Lagrange’s
equations are

− d

dt

(
∂(T − U)

∂ḣ

)
+

∂(T − U)
∂h

+ Qh = 0

− d

dt

(
∂(T − U)

∂α̇

)
+

∂(T − U)
∂α

+ Qα = 0
(3.2.12)

where

δWNC = Qhδh + Qαδα (3.2.13)

Now let us evaluate the terms in (3.2.12) and (3.2.13). Except for
Qh these are readily obtained by using (3.2.10) and (3.2.11) in (3.2.12).
Hence, let us first consider the determination of Qh, Qα. To do this we
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calculate independently the work done by the aerodynamic forces.

δWNC =
∫

pδwdx

=
∫

p(−δh − xδα)dx

= δ

(
−
∫

pdx

)
+ δα

(
−
∫

pxdx

)
= δh(−L) + δα(My)

(3.2.14)

where we identify from (3.2.13) and (3.2.14)

L ≡
∫

pdx = Qh

My ≡ −
∫

pxdx = Qα

Note the sign convention is that p is positive up, L is positive up and
My is positive nose up. Putting it all together, noting that

∂(T − U)
∂h

= −Khh etc.

we have from Lagrange’s equations

− d

dt
(mṁ + Sαα̇) − Khh − L = 0

− d

dt
(Sαḣ + Iαα̇) − Kαα + My = 0

(3.2.15)

These are the equations of motion for the ‘typical section ’ in terms of
the particular coordinates h and α.

Other choices of generalized coordinates are possible; indeed, one of
the principal advantages of Lagrange’s equations is this freedom to make
various choices of generalized coordinates. The choice used above sim-
plifies the potential energy but not the kinetic energy. If the generalized
coordinates were chosen to be the translation of an rotation about the
center of mass the kinetic energy would be simplified, viz.

T =
m

2
ḣ2

cm +
Icm

2
α̇2

cm

but the potential energy would be more complicated. Also the relevant
aerodynamic moment would be that about the center of mass axis rather
than that about the elastic axis (spring attachment point).
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Another choice might be the translation of and rotation about the
aerodynamic center axis though this choice is much less often used than
those discussed above.

Finally we note that there is a particular choice of coordinates which
leads to a maximum simplification of the inertial and elastic terms
(though not necessarily the aerodynamic terms). These may be de-
termined by making some arbitrary initial choice of coordinates, e.g., h
and α, and then determining the ‘normal modes’ of the system in terms
of of these.∗ These ‘normal modes’ provide us with a coordinate trans-
formation from the initial coordinates, h and α, to the coordinates of
maximum simplicity. We shall consider this matter further subsequently.

3.3. Dynamics of the Typical Section Model of
An Airfoil

To study the dynamics of aeroelastic systems, we shall use the ‘typical
section ’∗ as a device for exploring mathematical tools and the physical
content associated with such systems. To simplify matters, we begin by
assuming the aerodynamic forces are given where p(x, t) is the aerody-
namic pressure, L, the resultant (lift) force and My the resultant moment
about the elastic axis. See Figure 3.2. The equations of motion are

mḣ + Khh + Sαα̈ = −L (3.3.1)

Sαḧ + Iαα̈ + Kαα = My (3.3.2)

where
L ≡

∫
p dx

My ≡
∫

px dx

We will find it convenient also to define the ‘uncoupled natural frequen-
cies’,

ω2
h ≡ Kh/m, ω2

α ≡ Kα/Iα (3.3.3)

These are ‘natural frequencies’ of the system for Sα ≡ 0 as we shall see
in a moment.

Sinusoidal motion
This is the simplest type of motion; however, as we shall see, we can
exploit it systematically to study more complicated motions.

∗Meirvovitch [4].
∗BA, pp.201-246
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Figure 3.2. Typical section geometry.

Let

L = L̄eiωt, My = M̄ye
iωt

h = h̄eiωt, α = ᾱeiωt
(3.3.4)

Substituting (3.3.4) and (3.3.3) into (3.3.2) we have in matrix notation[
m(−ω2 + ω2

h) −Sαω2

−Sαω2 Iα(−ω2 + ω2
α)

]{
h̄
ᾱ

}
=
{ −L̄

M̄y

}
(3.3.5)

Solving for h̄, ᾱ we have the transfer function, HhL

h̄

L̄
=

−[1 − (ω/ωα)2] + d/bxα
r2
α

(
ω
ωα

)2

Kh

{
[1 − (ω/ωα)2][1 − (ω/ωh)2] − x2

α
r2
α

(
ω
ωα

)2 (
ω
ωh

)2
}

≡ Hhl

(
ω/ωα;

ωh

ωα
, d/b, xα, rα

) (3.3.6)

where
d ≡ M̄y/L̄

and b is the reference length (usually selected as half-chord by tradition),

xα ≡ Sα

mb
=

xc.g.

b
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-1

KhHhL

ω 1/ωα

ω/ωα

ω3/ωα

ω 2 /ωα

Figure 3.3. Transfer function.

and
r2
α ≡ Iα

mb2

A plot of HhL is shown below in Figure 3.3. ω1
ωα

, ω2
ωα

are the roots of the
denominator, the system ‘natural frequencies’.

ω2
1

ωhωα
,

ω2
2

ωhωα
=

[
ωh
ωα

+ ωα
ωh

]
±
{[

ωh
ωα

+ ωα
ωh

]2 − 4
[
1 − x2

α
r2
α

]} 1
2

2[1 − x2
α/r2

α]
(3.3.7)

A similar equation may be derived for

ᾱ

L̄
≡ HαL

(
ω/ωα;

ωh

ωα
, d/b, xα, rα

)
(3.3.8)

ω1 and ω2 are again the natural frequencies. HhF , HαF are so-called
‘transfer functions’; they are ‘mechanical’ or ‘structural transfer func-
tions’ as they describe the motion of the structural system under speci-
fied loading. Later on we shall have occasion to consider ‘aerodynamic
transfer functions’ and also ‘aeroelastic transfer functions’. ω3/ωα is the
root of the numerator of HhL (but not in general of HαL which will
vanish at a different frequency),(

ω3

ωα

)2

=
1

1 + (d/b)xα/r2
α

(3.3.9)
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Note that infinite response occurs at the natural frequencies, ω1 and ω2,
for both HhL and HαL. This is not an instability; it is a ‘resonance’
with the infinite response due to the absence of any damping in the
system. Had structural or aerodynamic damping been included as will
be done in later examples, then the transfer functions would become
complex numbers which is a mathematical complication. However, the
magnitude of the transfer functions would remain finite though large
at ω = ω1, ω2 which is an improvement in the realism of the physical
model. With L and M assumed given, which admittedly is somewhat
artificial, the question of instability does not arise. We will elaborate
on this point later when we discuss the notion of instability in a more
precise way.

From sinusoidal motion we may proceed to periodic (but not neces-
sarily sinusoidal) motion.

Periodic motion
The above analysis can be generalized to any periodic motion by ex-
panding the motion into a Fourier (sinusoidal) series. Define:

T0 ≡ basic period

ω0 ≡ 2π/T0, fundamental frequency

Then a periodic force, L(t), may be written as

L(t) =
∞∑

n=−∞
Lne+inω0t (3.3.10)

where

Ln =
1
T0

∫ T0/2

−T0/2
L(t)e−inω0tdt (3.3.11)

Using (3.3.10) and (3.3.6)

h(t) =
∑

n

HhL

(
ω0n

ωα

)
Lneinω0t (3.3.12)

From periodic motion we may proceed to arbitrary time dependent mo-
tion.

Arbitrary motion
By taking the limit as the basic period becomes infinitely long, T0 → ∞,
we obtain results for non-periodic motion.

Define
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ω ≡ nω0

∆ω ≡ ∆nω0
∗=ω0 = 2π/T0 frequency increment

L∗(ω) ≡ Ln
∆ω = LnT0

2π force per frequency increment

Then (3.3.10) becomes

L(t) =
∫ ∞

−∞
L∗(ω)e+iωtdω (3.3.10)

(3.3.11) becomes

L∗(ω) =
1
2π

∫ ∞

−∞
L(t)e−iωtdt (3.3.11)

(3.3.12) becomes

h(t) =
∫ ∞

−∞
HhL(ω/ωα)L∗(ω)eiωtdω (3.3.12)

An interesting alternate form of (3.3.12) can be obtained by substituting
(3.3.11) into (3.3.12). Using a dummy time variable, τ , in (3.3.11) and
interchanging order of integration in (3.3.12), gives

h(t) =
∫ ∞

−∞
IhL(t − τ)L(τ)dτ (3.3.13)

where
IhL(t) ≡ 1

2π

∫ ∞

−∞
HhL(ω/ωα)eiωtdω (3.3.14)

Comparing (3.3.12) and (3.3.14), note that IhL is the response to
L∗(ω) = 1

2π or from (3.3.10) and (3.3.11), L(t) = δ(t). Hence, I is
the response to an impulse force and is thus called the impulse function.

(3.3.10)–(3.3.11) are a pair of Fourier transform relations and (3.3.13)
is a so-called convolution integral.

Note (3.3.13) is suitable for treating transient motion; however, a
special case of the Fourier transform is often used for transient motion.
This is the Laplace transform.

Laplace transform. Consider

L(τ) = 0 for τ < 0

also
IhL(t − τ) = 0 for t − τ < 0

∗Note ∆n = 1 since any n is an integer.
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The latter will be true for any physically realizable system since the
system cannot respond before the force is applied.

Define
p ≡ iω; thus ω = −ip

and
L† ≡ 2πL∗(−ip)

then (3.3.10) becomes

L(t) =
1

2πi

∫ i∞

−i∞
L†eptdp

(3.3.11) becomes

L† =
∫ ∞

0
L(t)e−ptdt (3.3.15)

(3.3.13) becomes

h(t) =
∫ t

0
IhL(t − τ)L(τ)dτ

where

IhL(t) =
1

2πi

∫ i∞

−i∞
HhL

(−ip

ωα

)
eptdp

Utilization of Transform Integral Approach for Arbitrary Motion.
There are several complementary approaches in practice. In one the
transfer function, HhL, is first determined through consideration of sim-
ple sinusoidal motion. Then the impulse function is evaluated from

IhL(t) =
1
2π

∫ ∞

∞
HhL(ω)eiωtdω (3.3.14)

and the response is obtained from

h(t) =
∫ t

0
IhL(t − τ)L(τ)dτ (3.3.13)

Alternatively, knowing the transfer function, HhL(ω), the transform of
the input force is determined from

L∗(ω) =
1
2π

∫ ∞

−∞
L(t)eiωtdω (3.3.11)

and the response is calculated from

h(t) =
∫ ∞

−∞
HhL(ω)L∗(ω)eiωtdω (3.3.12)
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Both approaches give the same result, of course.
As a simple example we consider the translation of our typical section

for Sα ≡ 0, i.e., the center of mass coincides with the elastic axis or
spring attachment point. This uncouples the rotation from translation
and we need only consider

mḧ + Khh = −L (3.3.1)

We assume a force of the form

L = e−at for t > 0
= 0 for t < 0

(3.3.16)

From our equation of motion (or (3.3.6) for Sα = xα = 0) we determine
the transfer function as

HhL(ω) =
−1

m[ω2
h − ω2]

, ω2
h ≡ Kh/m (3.3.6)

From (3.3.14), using the above and evaluating the integral, we have

IhL(t) =
1

mωh
sin ωht for t > 0

= 0 for t < 0
(3.3.17)

From (3.3.13), using above (3.3.17) for IhL and given L, we obtain

h(t) = − 1
mωh

{
ωhe−at − ωh cos ωht + a sin ωht

a2 + ω2
h

}
(3.3.18)

We can obtain the same result using our alternative method. Calculating
L∗ from (3.3.11) for our given L, we have

L =
1
2π

1
a + iω

Using above and the previously obtained transfer function in (3.3.12) we
obtain the response. The result is, of course, the same as that determined
before. Note that in accordance with our assumption of a system initially
at rest, h = h = 0 at t = 0. Examining our solution, (3.3.18), for large
time we see that

h → − 1
mωh

{−ωh cos ωht + a sin ωht

a2 + ω2
h

}
as t → ∞

This indicates that the system continues to respond even though the
force L approaches zero for large time! This result is quite unrealistic
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physically and is a consequence of our ignoring structural damping in
our model. Had we included this effect in our equation of motion using
a conventional analytical damping model∗

m[ḧ + 2ζnωhḣ] + Khh = −L (3.3.1)

the response would have been

h =
1

mωh

{
ωhe−at + [−ωh cos ωht + a sin ωht]e−ζhωht

a2 + ω2
h

}
(3.3.19)

for small damping, ζh � 1, which is the usual situation. Now h → 0, for
t → ∞. Furthermore, if the force persists for a long time, i.e., a → 0,
then

h(t) → − 1
mωh

{
ωh

ω2
h

}
= − 1

Kh

which is the usual static or steady state response to a force of unit
amplitude. The terms which approach zero for a large time due to
structural damping are usually termed the transient part of the solution.
If

a � ζhωh

the transient solution dies out rapidly compared to the force and we
usually are interested in the steady state response. If

a � ζhωh

the ‘impulsive’ force dies out rapidly and we are normally interested in
the transient response. Frequently the maximum response is of greatest
interest. A well known result is that the peak Dynamic response is
approximately twice the static response if the force persists for a long
time and the damping is small. That is, if

ζh � 1

a � ωh

then hmax occurs when (see(3.3.19))

cos ωnt ∼= −1 or t =
π

ωh

sin ωnt ∼= 0

∗Meirovicth [4].
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and

hmax = − 1
mωh

ωh

ω2
h

[1 − (−1)]

= − 2
Kh

The reader may wish to consider other special combinations of the rel-
ative sizes of

a force time constant

ωh system natural time constant

ζhωh damping time constant

A great deal of insight into the dynamics of linear systems can be gained
thereby.

The question arises which of the two approaches is to be preferred.
The answer depends upon a number of factors, including the compu-
tational efficiency and physical insight desired. Roughly speaking the
second approach, which is essentially a frequency domain approach, is
to be preferred when analytical solutionsare to be attempted or physical
insight based on the degree of frequency ‘matching’ or ‘mis-matching’
of HhL and L∗ is desired. Clearly a larger response will be obtained
if the maxima of H and L∗ occur near the same frequencies, i.e., they
are ‘matched’, and a lesser response will be obtained otherwise, i.e., the
maxima are ‘mismatched’. The first approach, which is essentially a time
domain approach, is generally to be preferred when numerical methods
are attempted and quantitative accuracy is of prime importance.

Other variations on these methods are possible. For example the
transfer function, HhL, and the impulse function, IhL, may be deter-
mined experimentally. Also the impulse function may be determined
directly from the equation of motion, bypassing any consideration of the
transfer function. To illustrate this latter remark, consider our simple
example

mḧ + Khh = −L (3.3.1)

The impulse function is the response for h due to L(t) = δ(t). Hence, it
must satisfy

mÏhl + KhIhl = −δ(t) (3.3.20)

Let us integrate the above from t = 0 to ε.∫ ε

0
[mÏhl + KhIhl]dt = −

∫ ε

0
δ(t)dt
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or

mİhl|ε0 + Kh

∫ ε

0
Ihldt = −1

In the limit as ε → 0+, we obtain the ‘initial condition’,

İhl(0+) = − 1
m

(3.3.21)

and also
İhl(0+) = 0

Hence, solving (3.3.20) and using the initial velocity condition, (3.3.21),
we obtain

Ihl = − 1
mωh

sin ωht for t > 0 (3.3.17)

which is the same result obtained previously.
Finally, all of these ideas can be generalized to many degrees of free-

dom. In particular using the concept of ‘normal modes’ any multi-
degree-of-freedom system can be reduced to a system of uncoupled
single-degree-of-freedom systems.∗ As will become clear, when aerody-
namic forces are present the concept of normal modes which decouple the
various degrees of freedom is not as easily applied and one must usually
deal with all the degrees of freedom which are of interest simultaneously.

Random motion
A random motion is by definition one whose response is neither repeat-
able nor whose details are of great interest. Hence attention is focused
on certain averages, usually the mean value and also the mean square
value. The mean value may be treated as a static loading and response
problem and hence we shall concentrate on the mean square relations
which are the simplest characterization of random, dynamic response.

Relationship between mean values. To see the equivalence between
mean value Dynamic response and static response, consider

h(t) =
∫ ∞

−∞
Ihl(t − τ)L(τ)dτ (3.3.13)

and take the mean of both sides (here a bar above the quantity denotes
its mean, which should not be confused with that symbol’s previous use

∗Meirovitch [4].
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in our discussion of sinusoidal motion). By definition

h̄ ≡ lim
1

2T

∫ T

−T
h(t)dt and thus

h̄ = lim
1

2T

∫ T

−T

∫ ∞

−∞
Ihl(t − τ)L(τ)dτdt

Interchanging the order of integration and making a change of variables,
the right hand side becomes

h̄ =
∫ ∞

−∞
{lim 1

2T

∫ T

−T
L(t − τ)dt}IhL(τ)dτ

= L̄

∫ ∞

−∞
Ihl(τ)dτ

= L̄Hhl(ω = 0)

= − L̄

Kh

which is just the usual static relationship between h and L. Unfortu-
nately, no such simple relation exists between the mean square values.
Instead all frequency components of the transfer function, Hhl, con-
tribute. Because of this it proves useful to generalize the definition of a
square mean.

Relationship between mean square values. A more general and informa-
tive quantity than the mean square, the correlation function, φ, can be
defined as

φLL(τ) ≡ lim
1

2T

∫ T

−T
L(t)L(t + τ)dt (3.3.22)

The mean square of L, L̄2, is given by

L̄2 = φLL(τ = 0) (3.3.23)

As τ → ∞, φLL → 0 if L is truly a random function since L(t) and
L(t+τ) will be ‘uncorrelated’. Indeed, a useful check on the randomness
of L is to examine φ for large τ . Analogous to (3.3.22), we may define

φhh(τ) ≡ lim
1

2T

∫ T

−T
h(t)h(t + τ)dt

φhl(τ) ≡ lim
1

2T

∫ T

−T
h(t)L(t + τ)dt

(3.3.24)
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φhl is the ‘cross-correlation’ between h and L. φhh and φLL are ‘auto-
correlations’. The Fourier transform of the correlation function is also a
quantity of considerable interest, the ‘power spectra’,

ΦLL(ω) ≡ 1
π

∫ ∞

−∞
φLL(τ)eiωtdτ (3.3.25)

(Note that a factor of two difference exists in (3.3.25) from the usual
Fourier transform definition. This is by tradition.) From (3.3.25), we
have

φLL(τ) =
1
2

∫ ∞

−∞
ΦLL(ω)eiωtdω

=
∫ ∞

0
ΦLL(ω) cos ωτdω

(3.3.26)

The latter follows since ΦLL(ω) is a real even function of ω. Note

L̄2 = φLL(0) =
∫ ∞

0
ΦLL(ω)dω (3.3.27)

Hence a knowledge of ΦLL is sufficient to determine the mean square.
It turns out to be most convenient to relate the power spectra of L to
that of h and use (3.3.27) or its counterpart for h to determine the mean
square values.

To relate the power spectra, it is useful to start with a substitution
of (3.3.13) into the first of (3.3.24).

φhh(τ) = lim
1

2T

∫ T

−T

{∫ ∞

−∞
L(τ1)IhL(t − τ1)dτ1

}

×
{∫ ∞

−∞
L(τ2)IhL(t + τ − τ2)dτ2

}
dt

Interchanging order of integrations and using a change of integration
variables

t′ ≡ t − τ1; τ1 = t − t′

t′′ ≡ t + τ − τ2; τ2 = t + τ − t′′

we have

φhh =
∫ ∞

−∞

∫ ∞

−∞
IhL(t′)IhL(t′′)φLL(τ + t′ − t′′)dt′dt′′ (3.3.28)

Once could determine h̄2 from (3.3.28)

h̄2 = φhh(τ = 0) =
∫ ∞

−∞

∫ +∞

−∞
IhL(t′)IhL(t′′)φLL(t′ − t′′)dt′dt′′ (3.3.29)
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However we shall proceed by taking the Fourier transform of (3.3.28).

Φhh ≡ 1
π

∫ ∞

−∞
φhh(τ)e−iωtdτ

=
1
π

∫ ∫ ∫
IhL(t′)IhL(t′′)φLL(τ + t′ − t′′)e−iωtdt′dt′′dτ

=
1
π

∫ ∫ ∫
IhL(t′)e+iωt′IhL(t′′)e−iωt′′

× φLL(τ + t′ − t′′) exp−iω(τ + t′ − t′′)dt′dt′′dτ

Defining a new variable

τ ′ ≡ τ + t′ − t′′

dτ ′ = dτ

we see that
Φhh(ω) = Hhl(ω)Hhl(−ω)ΦLL(ω) (3.3.30)

One can also determine that

ΦhL(ω) = HhL(−ω)ΦLL(ω)
Φhh(ω) = HhL(−ω)ΦhL(ω)

(3.3.31)

(3.3.30) is a powerful and well-known relation.∗ The basic procedure
is to determine ΦLL by analysis or measurement, compute Φhh from
(3.3.30) and h̄2 from an equation analogous to (3.3.26)

h̄2 =
∫ ∞

0
Φhh(ω)dω =

∫ ∞

0
|HhL(ω)|2ΦLL(ω)dω (3.3.32)

Let us illustrate the utility of the foregoing discussion by an example.

Example: Airfoil response to a gust. Again for simplicity consider trans-
lation only.

mḧ + Khh = −L (3.3.1)

Also for simplicity assume quasi-steady aerodynamics.†

L = qS
∂CL

∂α

[
ḣ

U
+

wG

U

]
(3.3.33)

∗Crandall and Mark [5].
† ḣ

U
+ ωG

U
is an effective angle of attack, α.
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wG taken as positive up, is a vertical fluid ‘gust’ velocity, which varies
randomly with time but is assumed here to be uniformly distributed
spatially over the airfoil chord. Various transfer functions may be defined
and calculated. For example

h̄

L̄
≡ HhL =

−1
m[−ω2 + ω2

h]
, ω2

h ≡ K/m (3.3.34)

is the structural transfer function∗ (motion due to lift) (cf.(3.3.6))

L̄

h̄
≡ HLh = qS

∂CL

∂α

iω

U
(3.3.35)

is the aerodynamic transfer function (lift due to motion)

L̄

w̄G
≡ HLwG

= qS
∂CL

∂α

1
U

(3.3.36)

is the aerodynamic transfer function† (lift due to gust velocity field) and

HhwG
≡ h̄

w̄G
=

−HLwG[
− 1

HhL
+ HLh

] (3.3.37)

is the aeroelastic transfer function (motion due to gust velocity field).
The most general of these is the aeroelastic transfer function which

may be expressed in terms of the structural and aerodynamic transfer
functions, (3.3.37). Using our random force-response relations, we have
from (3.3.32)

h̄2 =
∫ ∞

0
|HhwG

|2ΦwGwGdω

=
∫ ∞

0

[
qS ∂CL

∂α
1
U

]2
[−mω2 + Kh]2 +

[
qS ∂CL

∂α
ω
U

]2 ΦWGWG
dω

Define an effective damping constant as

ζ ≡ qS ∂CL
∂α

1
U

2
√

mKh
(3.3.38)

∗Here we choose to use a dimensional rather than a dimensionless transfer function.
†We ignore a subtlety here in the interest of brevity. For a ‘frozen gust’, we must take
ωG = ω̄G exp iω(t − x/U∞) in determining this transfer function. See later discussion in
Sections 3.6, 4.2 and 4.3.‘
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then

h̄2 =

[
qS ∂CL

∂α
1
U

]2
m2

∫ ∞

0

ΦwGwGdω

[−ω2 + ω2
h]2 + 4ζ2ω2

hω2

which, for small ζ may be evaluate as∗

h̄2 ∼= qS ∂CL
∂α π

Kh

ΦwGwG(ω = ωh)
U

(3.3.39)

Typically,†

ΦwGwG(ω) = w̄2
G

LG

πU

1 + 3
(

ωLG
U

)2

[
1 +

(
ωLG

U

)2
]2 (3.3.40)

as determined from experiment or considerations of the statistical theory
of atmospheric turbulence. Here, LG is the ‘scale length of turbulence’;
which is not to be confused with the lift force. Nondimensionalizing and
using (3.3.39) and (3.3.40), we obtain

h̄2/b2

w̄2
G/U2

= qS
∂CL
∂α

Khb

ωhLG
U

ωhb
U

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + 3
(

ωhLG
U

)2

[
1 +

(
ωhLG

U

)2
]2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.3.41)

Note as ωhLG
U → 0 or ∞, h̄2/b2 → 0. Recall LG is the characteristic

length associated with the random gustfield. Hence, for very large or
very small characteristic lengths the airfoil is unresponsive to the gust.
For what ωhLG

U does the largest response occur?
As an alternative to the above discussion, a correlation function ap-

proach could be taken where one uses the time domain and the aeroe-
lastic impulse function.

IhwG

b
= −qS ∂CL

∂α
1
U e−ζωht

mbω2
h

√
1 − ζ2

sin
√

1 − ζ2ωht (3.3.42)

but we shall not pursue this here. Instead the frequency domain analysis
is pursued further.

∗Crandell and Mark; the essence of the approximation is that for small ζ,ΦwGwG (w) ∼=
ΦwGwG(wh) and maybe taken outside the integral. See the subsequent discussion of a
graphical analysis.
†Houbolt, Steiner and Pratt [6]. Also see later discussion in Section 3.6
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Figure 3.4. Aeroelastic transfer function.

It is useful to consider the preceding calculation in graphical form for
a moment. The (square of the) transfer function is plotted in Figure 3.4.
and the gust power spectral density in Figure 3.5.

We note that the power spectral density is slowly varying with w
relative to the square of the transfer function which peaks sharply near
ω = ωh. Hence one may, to a close approximation, take the power
spectral density as a constant with its value determined at ω = ωh in
computing the mean square response. This is a simple but powerful
idea which carries over to many degrees-of-freedom, and hence many
resonances, provided the resonant frequencies of the transfer function
are known. For some aeroelastic systems, locating the resonances may
prove difficult.

There are other difficulties with the approach which should be pointed
out. First of all we note that including the (aerodynamic) damping due
to motion is necessary to obtain a physically meanful result.Without it
the computed response would be infinite! Hence, an accurate evaluation
of the effective damping for an aeroelastic system is essential in random
response studies. It is known that in general the available aerodynamic
theories are less reliable for evaluating the (out-of-phase with displace-
ment) damping forces than those forces in-phase with displacement.∗
Another difficulty may arise if instead of evaluating the mean square
displacement response we instead seek to determine the mean square of
acceleration. The latter quantity is frequently of greater interest from

∗Acum [7].
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wG

ω

wG
Φ

Figure 3.5. Gust (auto) power spectral density.

the standpoint of design. The relevant transfer function is given by

HḧwG
= (iω)2HhwG

(3.3.43)

and the mean square is therefore

ḧ2 =

∫∞
0 ω4

[
qS ∂CL

∂α
1
U

]2
ΦwGwGdω

[−mω2 + Kn]2 +
[
qS ∂CL

∂α
ω
U

]2 (3.3.44)

If we make the same approximation as before that ΦwGwG is a con-
stant, we are in difficulty because |HhwG

|2 does not approach zero as
w → ∞ and hence the integral formally diverges. This means greater
care must be exercised in evaluating the integral and in particular con-
sidering the high frequency behavior of the gust power spectral density.
Also, one may need to use a more elaborate aerodynamic theory. In
the present example we have used a quasi-steady aerodynamic theory
which is reasonably accurate for low frequencies;∗ however, to evaluate
the acceleration response it will frequently be necessary to use a full
unsteady aerodynamic theory in order to obtain accurate results a high
frequencies in (3.3.44).

Measurement of power spectra. We briefly digress to consider an impor-
tant application of (3.3.27) to the experimental determination of power
spectra. For definiteness consider the measurement of gust power spec-

∗Acum [7].
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tra. Analogous to (3.3.27) we have

w̄2
G =

∫ ∞

0
ΦwGwG(ω)dω (3.3.45)

It is assumed that a device is available to measure wG over a useful
range of frequencies. The electronic signal from this device is then sent
to an electronic ‘filter’. The latter, in its most ideal form, has a transfer
function given by

HFwG
= 1 for ωc − ∆ω

2
ω < ωc +

∆ω

2
= 0 otherwise

where ωc ≡ ωccenter frequency of the filter
∆ω ≡ frequency bandwidth of the filter

(3.3.46)

Now if we assume that the power spectrum varies slowly with w and
we choose a filter with ∆ω � ωc, then (3.3.45) may be approximated by
taking ΦwGwG(ω) ∼= ΦwGwG(ωc) and moving it outside the integral. The
result is

w̄2
G
∼= ΦwGwG(ωc)∆ω

Solving for the power spectrum,

ΦwGwG(ωc) =
w̄2

G

∆ω
(3.3.47)

By systematically changing the filter center frequency, the power spec-
trum may be determined over the desired range of frequency. The fre-
quency bandwidth, ∆ω, and the time length over which w̄2

G is calculated
must be chosen with care. For a discussion of these matters, the reader
may consult Crandall and Mark [5], and references cited therein.

For a more extensive discussion of random motionindexMotion ! ran-
dom of two-dimensional plate-like structures with many degrees of free-
dom, see Appendix I, ‘A Primer for Structural Response to Random
Pressure Fluctuations’.

Flutter - an introduction to dynamic aeroelastic in-
stability
The most dramatic physical phenomenon in the field of aeroelasticity is
flutter, a dynamic instability which often leads to catastrophic structural
failure. One of the difficulties in studying this phenomenon is that it is
not one but many. Here we shall introduce one type of flutter using the
typical section structural model and a steady flow aerodynamic model.
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The latter is a highly simplifying assumption whose accuracy we shall
discuss in more detail later. From (3.3.1) and with a steady aerodynamic
model, L = qS ∂CL

∂α α, My = eL, the equations of motion are

mḧ + Sαα̈ + Khh + qS
∂CL

∂α
α = 0

Iαα̈ + Sαḧ + Kαα − qS
∂CL

∂α
α = 0

(3.3.48)

To investigate the stability of this system we assume solutions of the
form

h = h̄ept

α = ᾱept
(3.3.49)

and determine the possible values of p, which are in general complex
numbers. If the real part of any value of p is positive, then the motion
diverges exponentially with time, (cf.3.3.49), and the typical section is
unstable.

To determine p, substitute (3.3.49) into (3.3.48) and use matrix no-
tation to obtain[

[mp2 + Kh] Sαp2 + qS ∂CL
∂α

Sαp2 Iαp2 + Kα − qSe∂CL
∂α

]{
h̄ept

ᾱept

}
=
{

0
0

}
(3.3.50)

For nontrivial solutions the determinant of coefficients is set to zero
which determines p, viz.

Ap4 + Bp2 + C = 0 (3.3.51)

where

A ≡ mIα − S2
α

B ≡ m

[
Kα − qSc

∂CL

∂α

]
+ KhIα − SαqS

∂CL

∂α

C ≡ Kh

[
Kα − qSc

∂CL

∂α

]

Solving (3.3.51)

p2 =
−B ± [B2 − 4AC]

1
2

2A
(3.3.52)

and taking the square root of (3.3.52) determines p.
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The signs of A, B and C determine the nature of the solution. A is
always positive for any distribution of mass; C is positive as long as q is
less than its divergence value, i.e.[

Kα − qSe
∂CL

∂α

]
> 0

which is the only case of interest as far as flutter is concerned. B may
be either positive or negative; re-writing

B + mKα + KhIα − [me + Sα]qSe
∂CL

∂α
(3.3.53)

If [me + Sα] < 0 then B > 0 for all q. Otherwise B < 0 when

Kα +
KhIα

m
−
[
1 +

Sα

me

]
qSe

∂CL

∂α
< 0

Consider in turn two possibilities, B > 0 and B < 0.

B > 0: Then the values of p2 from (3.3.52) are real and negative provided

B2 − 4AC > 0

and hence the values of p are purely imaginary, representing neutrally
stable oscillations. On the other hand if

B2 − 4AC < 0

the values of p2 are complex and hence at least one value of p will have
a positive real part indicating an unstable motion. Thus

B2 − 4AC = 0 (3.3.54)

gives the boundary between neutrally stable and unstable motion. From
(3.3.54) one may compute an explicit value of q at which the dynamic
stability, ‘flutter’, occurs, i.e.,

Dq2
F + EqF + F = 0

or qF =
−E ± [E2 − 4DF ]

1
2

2D
(3.3.55)

where

D ≡
{

[me + Sα]S
∂CL

∂α

}2

E ≡ {−2[me + Sα][mKα + KhIα] + 4[mIα − S2
α]eKh}S ∂CL

∂α
F = [mKα + KhIα]2 − 4[mIα − S2

α]KhKα
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In order for flutter to occur at least one of the qF determined by (3.3.55)
must be real and positive. If both are, the smaller of the two is the
more critical; if neither are, flutter does not occur. Pines∗ has studied
this example in some detail and derived a number of interesting results.
Perhaps the most important of these is that for

Sα ≤ 0

i.e., the center of gravity is ahead of the elastic axis, no flutter occurs.
Conversely as Sα increases in a positive sense the dynamic pressure at
which flutter occurs qF is decreased. In practice, mass is often added
to a flutter prone structure so as to decrease Sα and raise qF . Such a
structure is said to have been ‘mass balanced’. Now consider the other
possibility for B.

B < 0: B is positive for q ≡ 0 (cf.(3.3.51) et. seq. ) and will only become
negative for sufficiently large q. However, the condition

B2 − 4AC = 0

will occur before
B = 0

since A > 0, C > 0. Hence, to determine when flutter occurs, only
B > 0 need be considered.

In concluding this discussion, let us study the effect of Sα in more
detail following Pines.

Consider the first special case Sα = 0. Then

D =
[
meS

∂CL

∂α

]2

E = 2me{IαKh − mKα}S ∂CL

∂α
F = {mKα − KhIα}2

and one may show that
E2 − 4DF = 0

Using this result and also (3.3.55) and (2.18), it is determined that

qF/qD = 1 − ω2
h/ω2

α (3.3.56)

∗Pines [8].
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Thus if qd < 0 and ωh/ωα < 1, qF < 0, i.e., no flutter will occur.
Conversely if qD > 0 and ωh/ωα > 1, then qF < 0 and again no flutter
will occur.

Now consider the general case, Sα �= 0. Note that D > 0 and F > 0
for all parameter values. Thus from (3.3.55), qF < 0 if E > 0 and no
flutter will occur. After some rearrangement of the expression for E, it
is found that (in non-dimensional form)

Ē ≡ E/

(
2m2Iαω2

αS
∂CL

∂α

)
=

e

[
−1 + (ωh/ωα)2 − 2

x2
cg

r2
cg

(ωh/ωα)2
]

− xcg

[
1 + (ωh/ωα)2

]
(3.3.57)

From this equation, the condition for no flutter, E > 0 or Ē > 0, gives
the following results.

If xcg = 0, then no flutter occurs for e > 0 and ωh/ωα > 1 or for
e < 0 and ωh/ωα < 1.

If e = 0, then no flutter occurs for xcg < 0 and any ωh/ωα.

For small xcg, i.e., if

x2
cg/r2

cg � 1

then Ē > 0 implies

e
[−1 + (ωh/ωα)2]
[1 + (ωh/ωα)2]

− xcg > 0

For ωh/ωα small (the usual case), this implies

−e − xcg > 0

while for wh/wα large, this implies

e − xcg > 0

as the conditions for no flutter.

Quasi-steady, aerodynamic theory
Often it is necessary to determine p by numerical methods as a function
of q in order to evaluate flutter. For example, if one uses the slightly more
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complex ‘quasi-steady’ aerodynamic theory which includes the effective
angle of attack contribution, ḣ/U , so that

qS
∂CL

∂α
α

becomes

qS
∂CL

∂α

[
α +

ḣ

U

]
= ρ

US

2
∂CL

∂α
[Uα + ḣ]

then (3.3.51) will contain terms proportional to p and p3 and the values
of p must be determined numerically. An example of such a calculation
is given in Figure 6.30 of B.A. which is reproduced below as Figure 3.6.

Denote

p = pR + iω

ω2
h ≡ Kh/m, ω2

α ≡ Kα/Iα

xα ≡ Sα/mb, r2
α ≡ Iα/mb2

b = a reference length

Since the values of p are complex conjugates only half of them are
shown. The solid lines are for the ḣ/U or aerodynamic damping effect
included and the dash lines for it omitted. There are several interesting
points to be made.

(1) With aerodynamic damping omitted the typical section model is neu-
trally stable until U = UF . For U = UF the bending and torsion
frequencies merge and for U > UF the system is unstable.

(2) With aerodynamic damping included, for small U all values of p are
stable and flutter occurs at sufficiently large U where pR changes sign
from negative to positive. There is a tendency for the frequencies to
merge but complete merging does not occur.

(3) In this example for this approximate aerodynamic theory, the addi-
tion of aerodynamic damping reduces the flutter velocity UF . This
last result has been a source of consternation (and research papers).
Whether it occurs in the real physical problem or whether it is a con-
sequence of our simplified theoretical model is not known. No exper-
iment has yet been performed where the aerodynamic (or structural)
damping has been systematically varied to verify or refute this result.

Finally we mention one further general complication which commonly
occurs in analysis. When even more elaborate, fully unsteady aerody-
namic theories are employed, the aerodynamic forces are usually only
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Figure 3.6. Dimensionless frequency ω/ωα and damping pR/ωα of the aeroelastic
modes of the typical section, estimated using steady-state aerodynamic operators
and plotted vs. reduced airspeed U/bωα. System parameters are xα = 0.05, rα =
0.5, ωh/ωα = 0.5, (2m/πρ∞bS) = 10, e/b = 0.4, ∂CL

∂α
= 2π. Soild curves − with

aerodynamic damping. Dashed curves - - without aerodynamic damping.

conveniently known for neutrally stable motion, i.e.,

p = iω, pR ≡ 0

Hence, indirect or iterative methods are usually required to effect a so-
lution for U = UF and often no information is obtained for U < UF or
U > UF . We shall return to this issue later.

3.4. Aerodynamic Forces for Airfoils-An
Introduction and Summary

Having developed the mathematical tools for treating the dynamics of
our aeroelastic system, we now turn to a topic previously deferred, the
determination of the aerodynamic forces. Usually, we wish to relate the
aerodynamic lift and moment to the motion of the airfoil. In order not to
break unduly the continuity of our discussion of aeroelastic phenomena,
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we give a brief summary of known results here and defer a discussion of
the aerodynamic theory from first principles until Chapter 4.

From aerodynamic theory we know that the motion appears in the
aerodynamic force relation through the ‘downwash’, wa i.e.,

wα ≡ ∂za

∂t
+ U∞

∂za

∂x
(3.4.1)

where za is vertical displacement of airfoil at point x, y at time t. We
shall not give a formal derivation of (3.4.1) here but shall indicate the
physical basis from which it follows. For an inviscid fluid the boundary
condition at a fluid-solid interface, e.g., at the surface of an airfoil, re-
quires that the fluid velocity component normal to the surface be equal
to the normal velocity of the surface on the instantaneous position of
the surface. (If we have a nearly planar solid surface undergoing small
motions relative to its own dimensions we may apply the boundary con-
dition on some average position of the body, say z = 0, rather than
on the instantaneous position of the surface, z = za.) In a coordinate
system fixed with respect to the fluid the boundary condition would read

wa =
∂za

∂t

where wa is the normal fluid velocity component, the so-called ‘down-
wash’, and ∂za

∂t is the normal velocity of the body surface. In a coordinate
system fixed with respect to the body there is an additional convection
term as given in (3.4.1). This may be derived by a formal transformation
from fixed fluid to fixed body axes.

Finally if in addition to the mean flow velocity, U∞, we also have a
vertical gust velocity, wG, then the boundary condition is that the total
normal fluid velocity at the body surface be equal to the normal body
velocity, i.e.,

wtotal ≡ wa + wG =
∂za

∂t
+ U∞

∂za

∂x
where wa is the additional fluid downwash due to the presence of the
airfoil beyond that given by the prescribed gust downwash wG. The
pressure loading on the airfoil is

p + pG

where p is the pressure due to

wa = −wG(x, t) +
∂za

∂t
+ U∞

∂za

∂x

and pG is the prescribed pressure corresponding to the given wG. Note,
however, that pG is continuous through z = 0 and hence gives no net
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pressure loading on the airfoil. Thus, only the pressure p due to down-
wash wa is of interest in most applications.

For the typical section airfoil example,

za = −h − αx (3.4.2)

and
wa = −wG − ḣ − α̇x − Uα︸ ︷︷ ︸α

From the first and last terms we note that wG
U∞ is in some sense equivalent

to an angle of attack, although it is an angle of attack which varies with
position along the airfoil, wG = wG(x, t)!

Using the concept of aerodynamic impulse functions, we may now
relate lift and moment to h, α and wG. For simplicity let us neglect wG

for the present.
The aerodynamic force and moment can be written

L(t) ∼
∫ ∞

−∞
ILḣ(t − τ)[ḣ(τ) + U∞α(τ)]dτ

+
∫ ∞

−∞
ILα̇(t − τ)α̇(τ)dτ

(3.4.3)

(3.4.3) is the aerodynamic analog to (3.3.13). Note that ḣ+U∞α always
appear in the same combination in wa from (3.4.2). It is conventional
to express (3.4.3) in nondimensional form. Thus,

L

qb
=
∫ ∞

−∞
ILḣ(s − σ)

[
dh

b (σ)
dσ

+ α(σ)

]
dσ

+
∫ ∞

−∞
ILα̇(s − σ)

[
dα(σ)

dσ

]
dσ

(3.4.4)

and
My

qb2
=
∫ ∞

−∞
IMḣ(s − σ)

[
dh

b (σ)
dσ

+ α(σ)

]
dσ

+
∫ ∞

−∞
IMα̇(s − σ)

[
dα(σ)

dσ

]
dσ

where
s ≡ tU∞

b
, σ ≡ τU∞

b

For the typical section, the ‘aerodynamic impulse functions’, IL|doth, etc.,
depend also upon Mach number. More generally, for a wing they vary
with wing platform geometry as well, e.g., aspect ratio.
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(3.4.4) may be used to develop relations for sinusoidal motion by
reversing the mathematical process which led to (3.3.13). Taking the
Fourier transform of (3.4.4),

L̄(k)
qb

≡
∫ ∞

−∞
L(s)
qb

e−iksds =
∫ ∞

−∞

∫ ∞

−∞
ILḣ(s−σ)

[
dh

b

dσ
+ α

]
e−iksdσds+· · ·

(3.4.5)
where the reduced frequency is given by

k ≡ ωb

U∞
Defining

γ ≡ s − σ, dγ = ds

L̄(k)
qb

=
∫ ∞

−∞

∫ ∞

−∞
ILḣ(γ)

[
dh

b

dσ
+ α

]
e−ikγeikσdσ dγ + · · ·

= HLḣ(k)
[
ik

h̄

b
+ ᾱ

]
+ · · ·

(3.4.6)

where

HLḣ(k) ≡
∫ ∞

−∞
ILḣ(γ)e−ikγdγ

h̄

b
≡
∫ ∞

−∞
h(σ)

b
e−ikσdσ

ᾱ ≡
∫ ∞

−∞
α(σ)e−ikσdσ

HLḣ etc., are ‘aerodynamic transfer functions’. From (3.4.4), (3.4.6) we
may write

L̄

qb
= HLḣ

[
ik

h̄

b
+ ᾱ

]
+ HLα̇ikᾱ

M̄y

qb2
= HMḣ

[
ik

h̄

b
+ ᾱ

]
+ HMα̇ikᾱ

(3.4.7)

Remember that ‘transfer functions’, aerodynamic or otherwise, may be
determined from a consideration of sinusoidal motion only. Also note
that (3.4.2), (3.4.3) and (3.4.7) are written for pitching about an axis
x = 0. That is, the origin of the coordinate system is taken as the pitch
axis. By convention, in aerodynamic analysis the origin of the coordinate
system is usually taken at mid-chord. Hence

za = −h − α(x − xe.a.) (3.4.2)
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wa = −ḣ − α̇(x − xe.a.) − U∞α

= (−ḣ − U∞α) − α̇(x − xe.a.)

= (ḣ − Uαα + α̇xe.a.) − α̇x

where
xe.a. = distance form mid-chord to e.a.

(3.4.4) and (3.4.7) should be modified accordingly, i.e.

dh
b

dσ
+ α

is replaced by
dh

b

dσ
+ α − α̇a where a ≡ xe.a.

b

In the following table we summarize the state-of-the-art for the aero-
dynamic theories normally used in industrial practice in terms of Mach
number range and geometry. All of these assume inviscid, small pertur-
bation potential flow models. The transonic range, M ≈ 1, is a currently
active area of research.

Aerodynamic theories available
Mach number Geometry

Two dimensional three dimensional

M � 1 Available Rather elaborate numerical methods
available for determining transfer
functions

M ≈ 1 Available but of Rather elaborate numerical methods
limited utility available for determining (linear,
because of inherent inviscid) transfer functions; nonlinear
three dimensionality and/or viscous effects may be important,
of flow howwever.

M � 1 Available and Available and simple because of weak
simple because of three dimensional effects.
weak memory effect.

The results for high speed (M � 1) flow are particularly simple. In
the limit of large Mach number the (perturbation) pressure loading on
an airfoil is given by

p = ρ
U2∞
M

[
∂za
∂t + U∞ ∂za

∂x

U∞

]
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or

p = ρa∞
[
∂za

∂t
+ U∞

∂za

∂x

]
This is a local, zero memory relation in that the pressure at position x,
y at time t depends only on the motion at the same position and time
and does not depend upon the motion at other positions (local effect)
or at previous times (zero memory effect). This is sometimes referred to
as aerodynamic ‘piston theory’∗ since the pressure is that on a piston in
a tube with velocity

wa =
∂za

∂t
+ U∞

∂za

∂x

This pressure-velocity relation has been widely used in recent years in
aeroelasticity and is also well known in one-dimensional plane wave
acoustic theory. Impulse and transfer functions are readily derivable
using aerodynamic ‘piston theory’.

The ‘aerodynamic impulse functions’ and ‘aerodynamic transfer func-
tions’ for two-dimensional, incompressible flow, although not as simple
as those for M � 1, are especially well-known.† They were the first
available historically and provided a major impetus to aeroelastic inves-
tigations. The forms normally employed are somewhat different from
the notation of (3.4.4) and (3.4.7). For example, the lift due to transient
motion is normally written

L

qb
= 2π

[
d2 h

b

ds2
+

dα

ds
− a

d2α

ds2

]

+ 4π
{

φ(0)

[
dh

b

ds
+ α +

(
1
2
− a

)
dα

ds

]

+
∫ s

0

(
dh

b

dσ
+ α +

(
1
2
− a

)
dα

dσ

)
φ̇(s − σ)dσ

}
(3.4.8)

One can put (3.4.8) into the form of (3.4.4) where

ILḣ = 2πD + 4πφ̇ + 4πφ(0)δ

ILα̇ = 4π
(

1
2
− a

)
φ̇ + 4π

(
1
2
− a

)
φ(0)δ − 2πaD

(3.4.9)

Here δ is the delta function and D the doublet function, the latter being
the derivative of a delta function. In practice, one would use (3.4.8)

∗Ashley, and Zartarian [9]. Also see Chapter 4.
†See Chapter 4.
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rather than (3.4.4) since delta and doublet functions are not suitable
for numerical integration, etc. However, (3.4.8) and (3.4.4) are formally
equivalent using (3.4.9) Note that (3.4.8) is more amenable to physical
interpretation also. The terms outside the integral involving ḧ and α̈
may be identified as inertial terms, sometimes called ‘virtual mass’ terms.
These are usually negligible compared to the inertial terms of the airfoil
itself if the fluid is air.‡ The quantity

−
[

dh
b

ds
+ α +

(
1
2
− a

)
dα

ds

]

may be identified as the downwash at the 3
4 chord. Hence, the 3

4 chord
has been given a special place for two-dimensional, incompressible flow.
Finally, note that the ‘aerodynamic impulse functions’, ILh, ILi, can be
expressed entirely in terms of a single function φ, the so-called Wagner
function.∗ This function is given below in Figure 3.7. A useful approxi-
mate formulae is

φ(s) = 1 − 0.165e−0.0455s − 0.335e0.3s (3.4.10)

For Mach numbers greater than zero, the compressibility of the flow
smooths out the delta and doublet functions of (3.4.9) and no such simple
form as (3.4.8) exists. Hence, only for incompressible flow is the form,
(3.4.8), particularly useful. Finally, we should mention that analogous
impulse functions exist for gust loading due to gust vertical velocity, wG.

LG

qb
=
∮ ∞

−∞
ILG(s − σ)

wG(σ)
U

dσ

MyG

qb2
=
∫ ∞

−∞
IMG(s − σ)

wG(σ)
U

dσ

(3.4.11)

For incompressible flow
ILG = 4πψ̇

IMG = ILG(
1
2

+ a)

where ψ, the Kussner function, can be approximated by (See Figure 3.8)

ψ(s) = 1 − 0.5e−0.13s − 0.5e−s (3.4.12)

‡For light bodies or heavy fluids, e.g., lighter-than-airships or submarines, they may be
important
∗For a clear, concise discussion of transient, two-dimensional, incompressible aerodynamics,
see Sears [10], and the discussion of Sears’ work in BAH, pp. 288-293.
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Figure 3.7. Wagner function.
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Figure 3.8. Kussner function.

The Wagner and Kussner functions have been widely employed for tran-
sient aerodynamic loading of airfoils. Even for compressible, subsonic
flow they are frequently used with empirical corrections for Mach num-
ber effects. Relatively simple, exact formulae exist for two-dimensional,
supersonic flow also.† However, for subsonic and/or three-dimensional
flow the aerodynamic impulse functions must be determined by fairly
elaborate numerical means. Finally we note that (3.4.11) may be writ-

†See BAH, pp. 367-375, for a traditional approach and Chapter 4 for an approach via Laplace
and Fourier Transforms.
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ten in the frequency domain as

L̄G

qb
= HLG(ω)

w̄G

U

M̄y

qb2
= HMG(ω)

w̄G

U

(3.4.13)

(3.4.7) and (3.4.13) will be useful when we treat the gust problem as a
random process and make use of power spectral techniques. For further
discussion of gust aerodynamics, see Sections 4.2 and 4.3.

General approximations
Frequently simplifying assumptions are made with respect to the spatial
or temporal dependence of the aerodynamic forces. Here we discuss
three widely used approximations.

‘Strip theory’ approximation.
In this approximation, one employs the known results for two-
dimensional flow (infinite span airfoil) to calculate the aerodynamic
forces on a lifting surface of finite span. The essence of the approxi-
mation is to consider each spanwise station as though it were a portion
of an infinite span wing with uniform spanwise properties. Therefore the
lift (or, more generally, chordwise pressure distribution) at any spanwise
station is assumed to depend only on the downwash at that station as
given by two-dimensional aerodynamic theory and to be independent of
the downwash at any other spanwise station.

‘Quasisteady’ approximation
The strip theory approximation discussed above is unambiguous and
its meaning is generally accepted. Unfortunately, this is not true for
the quasi-steady approximation. Its qualitative meaning is generally
accepted, i.e., one ignores the temporaral memory effect in the aerody-
namic model and assumes the aerodynamic forces at any time depend
only on the motion of the airfoil at that same time and are independent
of the motion at earlier times. That is, the history of the motion is
neglected as far as determining aerodynamic forces. For example, the
piston theory aerodynamic approximation is inherently a quasi-steady
approximation.

As an example of the ambiguity that can develop in constructing a
quasi-steady approximation, consider the aerodynamic forces for two-
dimensional, incompressible flow, e.g., see (3.4.8). One such approxi-
mation which is sometimes used is to approximate the Wagner function
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by
φ = 1

and hence
φ(0) = 1, φ̇ = 0

This is clearly a quasi-steady model since the convolution integral in
(3.4.8) may now be evaluated in terms of the airfoil motion at the present
time, s ≡ tU∞

b , and thus the aerodynamic forces are independent of the
history of the airfoil motion.

An alternate quasi-steady approximation which is used on occasion
is to first obtain the aerodynamic forces for steady motion, e.g., only
those terms which involve α in (3.4.8)and then to define an equivalent
unsteady angle of attack.

α +
dh

dt

1
U∞

to replace α everywhere in the steady aerodynamic theory. Clearly this
second quasi-steady approximation is different from the first. (An in-
teresting and relatively short exercise for the reader is to work out and
compare these two approximations in detail using (3.4.8).) However,
both are used in practice and the reader should be careful to determine
exactly what a given author means by ‘quasi-steady approximation’.

The ambiguity could be removed if there were general agreement that
what is meant by the quasi-steady approximation is an expansion in
reduced frequency for sinusoidal airfoil motion. However, even then,
there would have to be agreement as to the number of terms to be
retained in the expansion. (Recall that powers of frequency formally
correspond to time derivatives.)

Slender body or slender (low aspect ratio ) wing ap-
proximation
Another approximation based upon spatial considerations is possible
when the lifting surface is of low aspect ratio or one is dealing with a
slender body. In such cases the chordwise spatial rates of change (deriva-
tives) may be neglected compared to spanwise rates of change and hence
the chordwise coordinate effectively becomes a parameter rather than an
independent coordinate. This approach is generally attributed to R.T.
Jones.∗ It is useful as an asymptotic check on numerical methods for
slender bodies and low aspect ratio wings. However it is useful for quan-
titative predictions for only a modest range of practical lifting surfaces.

∗Jones [11].
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A particulary interesting result is available for the external flow about
a slender body when the body has rigid cross-sections and deforms only
in the direction, i.e.,

za(x, y, t) = za(x, t)

The lift force per unit chordwise distance is given by∗

L = − ρ∞
dS

dx
U

[
U

∂za

∂x
+

∂za

∂t

]

− ρ∞S

[
U2 ∂2za

∂x2
+ 2U

∂2za

∂x∂t
+

∂2za

∂t2

] (3.4.14)

Equation (3.4.14) may be more compactly and insightfully written as

L = −ρ∞
[

∂

∂t
+ U

∂

∂x

]{
S

[
∂za

∂t
+ U

∂za

∂x

]}
(3.4.14)

For a cylinder of constant, circular cross-section

S = πR2,
dS

dx
= 0

and (3.4.14) becomes

L = −ρ∞S

[
U2 ∂2za

∂x2
+ 2U

∂2za

∂x∂t
+

∂2za

∂z2

]
(3.4.15)

It is interesting to note that (3.4.15) is the form of the lift force used
by Paidoussis and other for internal flows. Recall section 2.5, equation
(2.5.2). Dowell and Widnall, among others, have shown under what cir-
cumstances (3.4.15) is a rational approximation for external and internal
flows.†

3.5. Solutions to the Aeroelastic Equations of
Motion

With the development of the aerodynamic relations, we may now turn
to the question of solving the aeroelastic equations of motion. Substi-

∗BAH, p. 418.
†Dowell and Widnall [12], Widnall and Dowell [13], Dowell [14].
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tuting (3.4.4) into (3.3.1) and (3.3.2), these equations become:

mḧ + Sαα̈ + Khh = −L =
{
−
∫ s

0
ILḣ(s − σ)

[
dh

b

dσ
+ α

]
dσ

−
∫ s

0
ILα̇(s − σ)

dα

dσ
dσ

−
∫ s

0
ILG(s − σ)

wG

U
dσ
}

qb

and

Iαα̈ + Sαḧ + Kαα =My

=
{∫ s

0
IMḣ(s − σ)

[
dh

b

dσ
+ α

]
dσ

+
∫ s

0
IMα̇(s − σ)

dα

dσ
dσ

+
∫ s

0
IMG(s − σ)

wG

U
dσ
}

qb2

(3.5.1)

where
s ≡ tU∞

b

and ILḣ, etc. are nondimensional impulse functions. (3.5.1) are linear,
differential-integral equations for h and α. They may be solved in sev-
eral ways, all of which involve a moderate amount of numerical work.
Basically, we may distinguish between those methods which treat the
problem in time domain and those which work in the frequency domain.
The possibilities are numerous and we shall discuss representative ex-
amples of solution techniques rather than attempt to be exhaustive.

Time domain solutions
In this day and (computer) age, perhaps the most straightforward way
of solving (3.5.1) (and similar equations which arise for more compli-
cated aeroelastic systems) is by numerical time integration using finite
differences. Such integration is normally done on a digital computer. A
simplified version of the procedure follows:

Basically, we seek a step by step solution for the time history of the
motion. In particular, given the motion at some time, t, we wish to be
able to obtain the motion at some later time, t + ∆t. In general ∆t
must be sufficiently small;just how small we will discuss in a moment.
In relating the solution at time, t + ∆t, to that at time, t, we use the
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idea of a Taylor series, i.e.,

h(t + ∆t) = h(t) +
dh(t)

dt
∆t +

1
2

d2h(t)
dt2

(∆t)2 + · · ·

α(t + ∆t) = α(t) +
dα(t)

dt
∆t +

1
2

d2α(t)
dt2

(∆t) + · · ·
(3.5.2)

If we think of starting the solution at the initial instant, t = 0, we see
that normally h(0), dh(0)/dt, α(0), dα(0)/dt, are given as initial condi-
tions since we are dealing with (two) second order equations for h and
alpha. However, in general, d2h(0)/dt2, d2α(0)/dt2 and all higher or-
der derivatives are not specified. They can be determined though from
equations of motion themselves, (3.5.1). (3.5.1) are two algebraic equa-
tions for d2h/dt2, d2α/dt2, in terms of lower order derivatives. Hence,
they may readily be solved for d2h/dt2, d2α/dt2. Moreover, by differ-
entiating (3.5.1) successively the higher order derivatives may also be
determined, e.g., d3h/dt3, etc. Hence, by using the equations of motion
themselves the terms in the Taylor Series may be evaluated, (3.5.2), and
h at t = ∆t determined. Repeating this procedure, the time history may
be determined at t = 2∆t, 3∆t, 4∆t, etc.

The above is the essence of the procedure. However, there are many
variations on this basic theme and there are almost as many numerical
integration schemes as there are people using them.∗ This is perhaps for
two reasons: (1) an efficient scheme is desired (this involves essentially
a trade-off between the size of ∆t and the number of terms retained
in the series, (3.5.2), or more generally a trade-off between ∆t and the
complexity of the algorithm relating h(t+∆t) to h(t)); (2) some schemes
including the one outlined above, are numerically unstable (i.e., numer-
ical errors grow exponentially) if ∆t is too large. This has led to a
stability theory for difference schemes to determine the critical ∆t and
also the development of difference schemes which are inherently stable
for all ∆t. Generally speaking, a simple difference scheme such as the
one described here will be stable if ∆t is small compared to the shortest
natural period of the system, say one-tenth or so. A popular method
which is inherently stable for all ∆t is due to Houbolt.†

Finally, analytical solutions or semi-analytical solutions may be ob-
tained under certain special circumstances given sufficient simplification
of the system dynamics and aerodynamics. These are usually obtained
via a Laplace Transform. Since the Laplace Transform is a special case of

∗Hamming [15].
†Houbolt [16].
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the Fourier transform, we defer a discussion of this topic to the following
section on frequency domain solutions.

Frequency domain solutions
An alternative procedure to the time domain approach is to treat the
problem in the frequency domain. This approach is more popular and
widely used today than the time domain approach. Perhaps the most
important reason for this is the fact that the aerodynamic theory is
much more completely developed for simple harmonic motion that for
arbitrary time dependent motion. That is, the unsteady aerodynamicist
normally provides HLḣ, for example, rather than ILḣ. Of course, these
two quantities form a Fourier transform pair,

HLḣ(k) =
∫ ∞

−∞
ILḣ(s)e−iksds

ILḣ(s) =
1
2π

∫ ∞

−∞
HLḣ(k)eiksdk

(3.5.3)

where

k ≡ ωb

U
, s ≡ tU

b

and, in principle, given HLḣ one can compute ILḣ(s). However, for
the more complex (and more accurate) aerodynamic theories HLḣ is a
highly oscillatory function which is frequently only known numerically at
a relatively small number of frequencies, k. Hence, although there have
been attempts to obtain ILḣ by a numerical integration of HLḣ over all
frequency, they have not been conspicuously successful. Fortunately, for
a determination of the stability characteristics of a system, e.g., flutter
speed, one need only consider the frequency characteristics of the system
dynamics, per se, and may avoid such integrations.

Another reason for the popularity of the frequency domain method
is the powerful power spectral description of random loads such as gust
loads, landing loads (over randomly rough surfaces), etc. These require
a frequency domain description. Recall (3.3.25) and (3.3.40).

The principal disadvantage of the frequency domain approach is that
one performs two separate calculations; one, to assess the system stabil-
ity, ‘flutter’, and a second, to determine the response to external loads
such as gusts, etc. This will become clearer as we discuss the details of
the procedures.

Let us now turn to the equations of motion, (3.5.1), and convert them
to the frequency domain by taking the Fourier transform of these equa-
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tions. The result is

−ω2mh̄ − ω2Sαᾱ + Knh̄ = −L̄

=
{
− HLḣ(k)

[
iωh̄

U
+ ᾱ

]
− HLα̇(k)

iωb

U
ᾱ

− HLG(k)
w̄G

U

}
qb

−ω2Iαᾱ − ω2Sαb̄ + Kαᾱ = M̄y (3.5.4)

=
{

HMḣ(k)
[
iωh̄

U
+ ᾱ

]
+ Hmα̇(k)

iωb

U
ᾱ

+HMG
w̄G

U

}
qb2

where
h̄ ≡

∫ ∞

−∞
h(t)eiωtdt, etc.

Collecting terms and using matrix notation,[ −ω2m + Kh + HLḣ
iω
U qb −ω2Sα + (HLḣ + HLα̇

iωb
U )qb

−ω2Sα − (HMḣ
iω
U )qb2 −ω2Iα + Kα − (HMḣ + HMα̇

iωb
U )qb2

]
.

{
h̄
ᾱ

}
= qb

w̄G

U

{ −HLGHMGb
}

(3.5.5)

Formally, we may solve for h̄ and ᾱ by matrix inversion. The result will
be

h̄
b

w̄G
U

≡ HhG

which is one of the aeroelastic transfer functions to a gust input and

ᾱ
w̄G
U

≡ HαG (3.5.6)

It is left to the reader to evaluate these transfer functions explicitly
from (3.5.5). Note these are aeroelastic transfer functions as opposed to
the purely mechanical or structural transfer functions, HhF and HαF ,
considered previously or the purely aerodynamic transfer functions, HLh̄,
etc. That is, HhG include not only the effects of structural inertia and
stiffness, but also the aerodynamic forces due to structural motion.

With the aeroelastic transfer functions available one may now formally
write the solutions in the frequency domain

h(t)
b

=
1
2π

∫ ∞

−∞
HhG(ω)F

(wG

U

)
e−iωtdω (3.5.7)
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where the Fourier transform of the gust velocity is written as

FwG ≡
∫ ∞

−∞
wG(t)eiωtdt (3.5.8)

Compare (3.5.7) with (3.3.12).
Alternatively, one could write

h(t)
b

=
∫ ∞

−∞
IhG(t − τ)

wG(t)
U

dτ (3.5.9)

where
IhG(t) ≡ 1

2π

∫ ∞

−∞
HhG(ω)eiωtdω (3.5.10)

Compare (3.5.9) and (3.5.10) with (3.3.13) and (3.3.14). As mentioned
in our discussion of time domain solutions, the integrals over frequency
may be difficult to evaluate because of the oscillatory nature of the
aerodynamic forces.

Finally, for random gust velocities one may write

Φ(h/b)(h/b) = |HhG(ω)|2Φ(wg/U)(wG/U) (3.5.11)

where Φ(h/b)(h/b), Φ(wg/U)(wG/U), are the (auto) power spectra of h
b and

wg

U , respectively. Thus(
h̄

b

)2

=
∫ ∞

−∞
|HhG|2Φ(wg/U)(wG/U)dω (3.5.12)

Compare (3.5.12) with (3.3.25). Since the transfer function is squared,
the integral (3.5.12) may be somewhat easier to evaluate than (3.5.7) or
(3.5.10). The gust velocity power spectra is generally a smoothly varying
function. (3.5.12) is commonly used in applications.

To evaluate stability, ‘flutter’, of the system one need not evaluate any
of these integrals over frequency. It suffices to consider the eigenvalues
(or poles) of the transfer function. A pole of the transfer function, ωp,
will give rise to an aeroelastic impulse function of the form

IhG ∼ eiωpt = ei(ωp)Rte−(ωp)It

see (3.5.10). Hence, the system will be stable if the imaginary part,
(ωp)I, of all poles is positive. If any one (or more) pole has a negative
imaginary part, the system is unstable, i.e., it flutters. The frequency
of oscillation is (ωp)R, the real part of the pole. Note that the poles
are also the eigenvalues of the determinant of coefficients of h̄ and ᾱ in
(3.5.5).

Having developed the mathematical techniques for treating dynamic
aeroelastic problems we will now turn to a discussion of results and some
of the practical aspects of such calculations.
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3.6. Representative Results and Computational
Considerations

We will confine ourselves to two important types of motion, ‘flutter’
and ‘gust response’.

Time domain
If we give the typical section (or any aeroelastic system) an initial dis-
turbance due to an impulsive force, the resultant motion may take one of
two possible forms as shown in Figure 3.9 and 3.10. ‘Flutter’ is the more
interesting of these two motions, since, if it is present, it will normally
lead to catastrophic structural failure which will result in the loss of the
flight vehicle. All flight vehicles are carefully analyzed for flutter and
frequently the structure is stiffened to prevent flutter inside the flight
envelope of the vehicle.

Even if flutter does not occur, however, other motions in response to
continuous external forces may be of concern with respect to possible
structural failure. An important example is the gust response of the
flight vehicle. Consider a vertical gust velocity time history as shown
in Figure 3.11. The resulting flight vehicle motion will have the form
shown in Figure 3.12. Note that the time history of the response has a
certain well defined average period or frequency with modulated, ran-
domly varying amplitude. The more random input has been ‘filtered’
by the aeroelastic transfer function and only that portion of the gust
velocity signal which has frequencies near the natural frequencies of the
flight vehicle will be identifiable in the response. This characteristic is
perhaps more readily seen in the frequency domain than in the time
domain.

Frequency domain
To assess flutter, we need only examine the poles of the transfer func-
tion. This is similar to a ‘root locus’ plot.∗ Typically, the real, wR, and
imaginary, wI, parts of the complex frequency are plotted versus flight
speed. For the typical section there will be two principal poles corre-
sponding to two degrees of freedom and at small flight speed or fluid
velocity, these will approach the natural frequencies of the mechanical
or structural system.See Figure 3.13. Flutter is identified by the lowest
airspeed for which one of the wI becomes negative. Note the coming
together or ‘merging’ of the wR of the two poles which is typical of some

∗Savant [18].
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Figure 3.9. Time history of unstable motion or ”flutter”.
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Figure 3.10. Time history of stable motion.
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Figure 3.11. Time history of gust velocity.
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h(t)

t

Figure 3.12. Time history of motion due to gust velocity.

types of flutter . There are many variations on the above plot in practice
but we shall defer a more complete discussion until later.

Next, let us turn to the gust problem. A typical gust spectrum would
be as in Figure 3.14. The transfer function (at some flight speed) would
be as shown in Figure 3.15. Thus, the resultant response spectrum would
appear as in Figure 3.16. As U approaches UF , the resonant peaks of
|HhG|2 and Φhh would approach each other for the system whose poles
were sketched previously. For U = UF the two peaks would essentially
collapse into one and the amplitude becomes infinite. For U > UF the
amplitude predicted by the analytical model would become finite again
for the power spectral approach and this physically unrealistic result is
a possible disadvantage of the method.

Flutter and gust response classification including pa-
rameter trends
Here we shall study some of the important parameters which affect flut-
ter and gust response of the typical action as well as more complex flight
vehicles.

Flutter
If one nondimensionalizes the typical section equations of motion , one
finds that the motion can be expressed formally as

h

b
= F1

(
ωαt;

Sα

mb
,

Iα

mb2
,

m

ρ(2b)2
,
e

b
,
ωh

ωα
, M,

U

bωα

)
α = F2(wαt . . .)

(3.6.1)

where the functions F1, F2, symbolize the results of a calculated solution
using one of the several methods discussed earlier.
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Figure 3.13. Real and imaginary components of frequency vs air speed.

wG

ω

wG
Φ

Figure 3.14. Gust power spectra.

The choice of nondimensional parameters is not unique but a matter of
convenience. Some authors prefer a nondimensional dynamic pressure,
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( ω)| 2
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ω

Figure 3.15. Transfer function

ω

Φhh

=2πf

Figure 3.16. Power spectra of motion.

or ‘aeroelastic stiffness number’

λ ≡ 1
µk2

α

=
4ρU2

mω2
α

, (aeroelastic stiffness)

to the use of a nondimensional velocity, U/bωα.
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The following short-hand notation will be employed:

ωαt nondimensional time

xα ≡ Sα

mb
static unbalance

r2
α ≡ Iα

mb2
radius of gyration (squared)

µ ≡ m

ρ(2b)2
mass ratio

a ≡e

b
location of elastic axis measured from aerodynamic center

or mid-chord
ωh

ωα
frequency ration

M Mach number

kα =
ωαb

U
inverse of refuced velocity

Time is an independent variable which we do not control; however, in
some sense we can control the parameters, xα, rα, etc., by the design of
our airfoil and choice of where and how we fly it. For some combination
of parameters the airfoil will be dynamically unstable, i.e., it will ‘flutter’.

An alternative parametric representation would be to assume sinu-
soidal motion

h = h̄eiωt

α = ᾱeiωt

and determine the eigenvalues, ω. Formally, recalling ω = ωR + iωI,

ωR

ωα
= GR

(
xα, rα, µ, a,

ωh

ωα
, M,

U

bωα

)
ωI

ωα
= GI

(
xα, rα, µ, a,

ωh

ωα
, M,

U

bωα

) (3.6.2)

If for some combination of parameters, ωI < 0, the system flutters.
Several types of flutter are possible. Perhaps these are most easily

distinguished on the basis of the eigenvalues, ωR/ωα, ωI/ωα and their
variation with airspeed, U/bωα. Examples are shown below of the several
possibilities with brief discussions of each.

In one type of flutter (called coupled mode or bending-torsion flut-
ter) the distinguishing feature is the coming together of two (or more)
frequencies, ωR, near the flutter condition, ωI → 0 and U → UF . See
Figure 3.17. For ‘Coalescense’ or Merging Frequency’ Flutter U > UF
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Figure 3.17. Real and imaginary components of frequency vs air speed.

one of ωI becomes large and positive (stable pole) and the other which
gives rise to flutter becomes large and negative (unstable pole) while the
corresponding ωR remain nearly the same. Although one usually speaks
of the torsion mode as being unstable and the bending mode stable, the
airfoil normally is undergoing a flutter oscillation composed of important
contributions of both h and α. For this type of flutter the out-of-phase
or damping forces of the structure or fluid are not qualitatively impor-
tant. Often one may neglect structural damping entirely in the model
and use a quasi-steady or even a quasi-static aerodynamic assumption.
This simplifies the analysis and, perhaps more importantly, leads to gen-
erally accurate and reliable results based on theoretical calculations.

‘Single-Degree-of-Freedom’ Flutter
In another type of flutter, the distinguishing feature is the virtual in-

dependence of the frequencies, ωR, with respect to variations in airspeed,
U/bωα. See Figure 3.18. Moreover the change in the true damping, ωI,
with airspeed is also moderate. However, above some airspeed one of the
modes (usually torsion) which has been slightly positively damped be-
comes slightly negatively damped leading to flutter. This type of flutter
is very sensitive to structural and aerodynamic out-of phase or damp-
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Figure 3.18. Real and imaginary components of frequency vs air speed.

ing forces. Since these forces are less well described by theory than the
in-phase forces, the corresponding flutter analysis generally gives less
reliable results. One simplification for this type of flutter is the fact that
the flutter mode is virtually the same as one of the system natural modes
at zero airspeed and thus the flutter mode and frequency (though not
flutter speed!) are predicted rather accurately by theory. Airfoil blades
in turbomachinery and bridges in a wind often encounter this type of
flutter.

There is yet another one-degree-of-freedom type of flutter, but of a
very special type. The flutter frequency is zero and hence this represents
the ‘Divergence’ or ‘Zero Frequency’ Flutter

static instability which we have previously analyzed in our discussion
of static aeroelasticity under the name of ‘divergence’. See Figure 3.19.
Because it is a static type of instability, out-of-phase forces are again
unimportant and the theory is generally reliable.

We note that in all of the above we have considered only positive
ωR even though there are negative ωR as well and these are physically
meaningful. There are at least two reasons why this practice is usually
followed. For those models where the aerodynamic transfer functions can
be (approximately) expressed as a polynomial in p ≡ iω, the negative ωR

plane is (nearly) the mirror image of the positive ωR plane and the ωI
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Figure 3.19. Real and imaginary components of frequency vs air speed

are identical, i.e., all poles are complex conjugates in p. Secondly, some
of the structural damping models employed in flutter analysis are only
valid for ωR < 0; hence, the ωR < 0 in such cases cannot be interpreted
in a physically valid way. However, there are some types of travelling
wave flutter in planes and shells for which a consideration of negative
ωR is essential. In such cases a change in sign of ωR represents a change
in direction of a travelling wave.

Flutter Calculations in Practice

At this point it should be emphasized that, in practice, one or another
of several indirect methods is often used to compute the flutter velocity,
e.g., the so called ‘V − g method’. In this approach structural damping
is introduced by multiplying the structural frequencies squared

ω2
h, ω2

α

by 1+ ig where g is a structural coefficient and pure sinusoidal motion is
assumed, i.e., ω = ωR with ωI ≡ 0. For a given U , the g is that required
to sustain pure sinusoidal motion for each aeroelastic mode. The compu-
tational advantage of this approach is that the aerodynamic forces only
need be determined for real frequencies. The disadvantage is the loss of
physical insight. For example, if a system (with no structural damping )
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is stable at a given airspeed, U , all the values of g so determined will be
negative, but these values of g cannot be interpreted directly in terms of
ωI. Moreover, for a given system with some prescribed damping, only at
one airspeed U = UF (where ω = ωR and ωI ≡ 0) will the mathematical
solution be physically meaningful. The limitations of the ‘V −g method’
are fully appreciated by experienced practitioners and it is a measure of
the difficulty of determining the aerodynamic forces for other than pure
sinusoidal motion, that this method remains very popular. Here we di-
gress from our main discussion to consider this and related methods in
some detail.

For sinusoidal motion

h = h̄eiωt

α = ᾱeiωt

L = L̄eiωt

My = M̄ye
iωt

The aerodynamic forces (due to motion only) can be expressed as

L̄ = 2ρ∞b2ω2(2b)
{

[L1 + iL2]
h̄

b
+ [L3 + iL4]ᾱ

}

M̄y = −2ρ∞b3ω2(2b)
{

[M1 + iM2]
h̄

b
+ [M3 + iM4]ᾱ

} (3.6.3)

This form of aerodynamic forces is somewhat different from that previ-
ously used in this text and is only one of several (equivalent) alternative
forms employed in the literature. Here L1, L2, L3, L4 are (nondimen-
sional) real aerodynamic coefficients which are functions of reduced fre-
quency and Mach number. L1, L2, L3, L4 are the forms in which the
coefficients are generally tabulated for supersonic flow.∗

Using the above aerodynamic forms for L̄ and M̄y in (74) and setting
the determinant of coefficients of h̄ and ᾱ to zero to determine nontrivial

∗Garrick [19].
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solutions, one obtains

∆(ω) ≡
{

m

2ρ∞b(2b)

[
1 +

(ωα

iω

)2
(

ωh

ωα

)2
]
− [L1 + iL2]

}

×
{

m

2ρ∞b(2b)
r2
α

[
1 +

(ωα

iω

)2
]
− [M3 + iM4]

}

−
{

mxα

2ρ∞b(2b)
− [L3 + iL4]

}{
mxα

2ρ∞b(2b)
− [M1 + iM2]

}
= 0

(3.6.4)

Because L1, L2, etc. are complicated, transcendental functions of k
(and M) which are usually only known for real values of k (and hence real
values of ω), often one does not attempt to determine from (3.6.4) the
complex eigenvalue, ω = ωR + iωI. Instead one seeks to determine the
conditions of neutral stability when w is purely real. Several alternative
procedures are passible; two are described below.

In the first the following parameters are chosen.
ωh

ωα
, rα, xα, Mand (a real value of)k

(3.6.4) is then a complex equation whose real and imaginary parts may
be used independently to determine the two (real) unknowns(

ω

ωα

)2

and
m

2ρ∞bS

From the imaginary part of (3.6.4), which is a linear equation in these
two unknowns, one may solve for (ω/ωα)2 in terms of m/2ρ∞bS. Sub-
stituting this result into the real part of (3.6.4) one obtains a quadratic
equation in m/2ρ∞b2 which may be solved in the usual manner. Of
course, only real positive values of m/2ρ∞bS are meaningful and if neg-
ative or complex values are obtained these are rejected. By choosing
various values of the parameters one may determine under what phys-
ically meaningful conditions flutter (neutrally stable oscillations) may
occur. This procedure is not easily extendable to more than two degrees
of freedom and it is more readily applied for determining parameter
trends than the flutter boundary of a specific structure. Hence, a differ-
ent method which is described below is frequently used.

This method has the advantage of computational efficiency, though
from a physical point of view it is somewhat artificial. Structural damp-
ing is introduced as an additional parameter by multiplying ω2

α and ω2
h

by 1 + ig where g is the structural damping coefficient. The follow-
ing parameters are selected ωh/ωα, rα, xα, M , (a real value) of k, and
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Figure 3.20. Structural damping and frequency required for neutrally stable motion
vs air speed.

m/2ρ∞bS. (3.6.4) is then identified as a complex polynomial in the
complex unknown (ωα

ω

)2
(1 + ig)

Efficient numerical algorithms have been devised for determining the
roots of such polynomials. A complex root determines

ωα

ω
and g

From ωα/ω and the previously selected value of k ≡ ωb/U∞ one may
compute

ωαb

U∞
=

ωα

ω
k

One may then plot g vs U∞/bωα.∗ A typical result is shown in Figure
3.20 for two roots (two degrees of freedom). g is the value of structural
damping required for neutral stability. If the actual structural damping
is gAV AILABLE then flutter occurs when (see Figure 3.20)

g = gAV AILABLE

∗(For each complex root of the polynomial.)
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Figure 3.21. Structural damping required for flutter vs air speed.

It is normally assumed in this method that for g < gAV AILABLE and U <
UF no flutter will occur. Sometimes more complicated velocity-damping
or V − g curves are obtained, however. See Figure 3.21. Given the
uncertainty as to what gAV AILABLE may be for a real physical system,
it may then be prudent to define the flutter speed as the minimum value
of U∞/bωα for any g > 0. Here the physical interpretation of the result
becomes more difficult, particularly when one recalls that the factor 1+ig
is only an approximate representation of damping in a structure. Despite
this qualification, the V −g method remains a very popular approach to
flutter analysis and is usually only abandoned or improved upon when
the physical interpretation of the result becomes questionable.

One alternative to the V −g method is the so-called p−k method.∗ In
this approach time dependence of the form h, α ∼ ept is assumed where
p = σ + iω. In the aerodynamic terms only ak ≡ ωb/U is assumed. The
eigenvalues p are computed and the new ω used to compute a new k and
the aerodynamic terms re-evaluated. The iteration continues until the
process converges. For small σ, i.e., |σ| � |ω|, the σ so computed may
be interpreted as true damping of the system.

Nonlinear Flutter Behavior

∗Hassig [20].
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Figure 3.22. Schematic of transonic buzz geometry.

There are two other types of flutter which are of importance, ‘tran-
sonic buzz ’ and ‘stall flutter’. Both of these involve significant aero-
dynamic nonlinearities and are, therefore, not describable by our previ-
ous models. Indeed, both are poorly understood theoretically compared
to classic flutter and recourse to experiment and/or empirical rules-of-
thumb is often made. Recent advances in numerical solution of the non-
linear equations of fluid mechanics (computational fluid dynamics) have
provided an improved methodology for modeling these types of flutter.
See Chapters 9 and 11.

Typically an oscillating control surface gives rise to an oscillating
shock which produces an oscillating pressure field which gives rise to
an oscillating control surface which gives rise to an oscillating shock and
so on and so forth.

The airfoil profile shape is known to be an important parameter and
this fact plus the demonstrated importance of the shock means that
any aerodynamic theory which hopes to successfully predict this type
of flutter must accurately account for the nonuniform mean steady flow
over the airfoil and its effect on the small dynamic motions which are
superimposed due to control surface and shock oscillation. An early and
insightful theoretical model is that of Eckhaus; also see the discussion by
Landahl. Lambourne has given a valuable summary of the early exper-
imental and theoretical evidence.∗ See chapters 9 and 11 for the most
recent literature on this topic. An airfoil oscillating through large angles
of attack will create a time lag in the aerodynamic moment which may
give rise to negative aerodynamic damping in pitch and, hence, flutter,
even though for small angles of attack the aerodynamic damping would
be positive. This is associated with separation of the flow, an effect of
fluid viscosity Compressor, turbine and helicopter blades are particu-
larly prone to this type of flutter, since they routinely operate through

∗Eckhaus [21], Landahl [22], Lambourne [23]
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SEPARATED  FLOW

‘ Stall’  flutter

Figure 3.23. Schmatic of separated flow geometry.

large ranges of angle of attack. Chapter 5 discusses this type of flutter
in some detail. Also see chapter 9 and 11.

Parameter Trends for Flutter

Coalescence flutter is perhaps most common for airfoils under conven-
tional flow conditions (no shock oscillation and no stall). It is certainly
the best understood. Hence, for this type of flutter, let us consider the
the variation of (nondimensional) flutter velocity with other important
parameters.

Static Unbalance. xα:
If xα < 0 (i.e., c.g. is ahead of e.a. ) frequently no flutter occurs. If

xα < 0 the surface is said to be ‘mass balanced’.
Frequency Ratio. ωh

ωα
:

Not unexpectedly, for coalescence flutter UF/bωα is a minimum when
ωh/ωα 
 1. That is, if ωh and ωα are closer in value, then the aeroelastic
frequencies will coalesce more readily and at a lower flow velocity.

Mach Number. M :
The aerodynamic pressure on an airfoil is normally greatest near Mach

number equal to one∗ and hence, the flutter speed (or dynamic pressure)
tends to be a minimum there. For M � 1 the aerodynamic piston theory

∗See Chapter 4.
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Figure 3.24. Flutter airspeed vs frequency ratio.
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Figure 3.25. Flutter airspeed vs mach number.

predicts that the aerodynamic, p, varies as

p ∼ ρ
U2
M

Hence, UF ∼ M
1
2 for M � 1 and constant µ. Also

λF ∼ (ρU2)F ∼ M

Compatibility Conditions:

Note that for flight at constant altitude of a specific aircraft ρ (hence,
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Figure 3.26. Altitude vs mach number.

µ) and a∞ (speed of sound) are fixed. Since

U = Ma∞

U/bωα and M are not independent, but are related by(
U

bωα

)
= M

(
a∞
bωα

)
Thus, a compatibility relation must also be satisfied for physically mean-
ingful in a flight flutter conditions as indicated by dashed line in Figure
3.25. By repeating the flutter calculation for various altitudes (various
ρ, a∞ and hence various µ and a∞/bωα), one may obtain a plot of flutter
Mach number versus altitude as given in Figure 3.26.

There is a counterpart to this compatibility condition for testing of
aeroelastic models in a compressible wind tunnel.

Mass ratio. µ:

For large µ the results are essentially those of a constant flutter dynamic
pressure; for small µ they are often those of constant flutter velocity as
indicated by the dashed line in figure 3.27. However, for M ≡ 0 and
two-dimensional airfoils theory predicts UF → ∞ for some small but
finite µ (solid line). This is contradicted by the experimental evidence
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Figure 3.27. Flutter air speed vs mass ratio.

and remains a source of some controversy in the literature.∗ Crisp† has
suggested that the rigid airfoil chord assumption is untenable for small µ
and that by including elastic chordwise bending the discrepancy between
theory and experiment may be resolved. See Figure 3.27.

Flutter Prevention

After one has ascertained that there is a flutter problem then there
is more than a casual curiosity as to how to fix it, i.e., increase UF ,
without adding any weight, of course. There is no universal solution,
but frequently one or more of the following are tried.

(1) add mass or redistribute mass so that xα < 0, ‘mass balance’

(2) increase torsional stiffness, i.e., increase ωα

(3) increase (or decrease) ωh
ωα

if it is near one (for fixed ωα)

(4) add damping to the structure, particularly for single-degree-of-
freedom flutter or stall flutter

(5) require the aircraft to be flown below its critical Mach number (nor-
mally used as a temporary expedient while one of the above items is
studied)

More Complex Structural Models

∗Abramson [24]. Viscous fluid effects are cited as the source of the difficulty.
†Crisp [25].
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The above discussion was in the context of the typical section. For
more complex aerospace vehicles, additional degrees of freedom, equa-
tions of motion and parameters will appear. Basically, these will have
the form of additional frequency ratios (stiffness distribution) and iner-
tial constants (mass distribution). Hence, for example, we might have

ωh
ωα

replaced by ω1
ωα

, ω2
ωα

, ω3
ωα

, etc. and xα, rα replaced by

∫
ρx dx,

∫
ρx2dx,

∫
ρx3dx, etc.∫

ρxy dx dy,

∫
ρy dy,

∫
ρy2dy, etc.

We will turn to such issues in Section 3.7

Gust response
To the parameters for flutter we add

wG

U

for gust response∗. Since wG is a time history (deterministic or random)
we actually add a functional as a parameter rather than a constant.
Hence, various gust responses will be obtained depending on the nature
of the assumed gust time history.

The several approaches to gust response analysis can be categorized
by the type of atmospheric turbulence model adopted. The simplest of
these is the sharp edged gust; a somewhat more elaborate model is the
1-COSINE gust. Both of these are deterministic; a third gust model
is now increasingly used where the gust velocity field is treated as a
random process.

Discrete Deterministic Gust :

An example of a useful gust time history is a sharp edged gust,

wG = 50ft/sec. for x < Ut

or t >
x

U

}
, x′ < 0

∗Houbolt, Steiner and Pratt [6]
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Figure 3.28. Sharp edged gust.

= 0 for x > Ut,x′ > 0
x′, t′ fixed in atmosphere
x, t fixed with aircraft

(Galilean transformation) x′ = xUt (if x′ = x = 0 at t = t′ = 0)
t′ = t

In this model wG is constant with respect to space and time in the
atmospheric fixed coordinate system for all x′ < 0. We shall deal with
the aerodynamic consequences of this property in the next chapter.

A somewhat more realistic gust model allows for the spatial scale of
the gust field. In this model wG is independent of time, t′, but varies
with distance, x′, in the atmospheric fixed coordinate system, x′, t′. For
obvious reasons it is called a 1-COSINE gust i.e.,

wG =
wGmax

2

[
1 − cos

2πx′

xG

]
for t <

xG

U
, x′ < 0

= 0 for t >
xG

U
, x′ > 0

Recall
x′ = x − U∞t

xG is normally varied to obtain the most critical design condition (largest
response to the gust excitation) and typically wGmax 
 50ft/sec. See
sketch below. Schematic results for flight vehicle response to these de-
terministic gust models are shown below.

Random Gust:
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In a random gust field, we still adopt the assumption that wG, though
now a random variable, varies only with x′ and is independent of t′. In
the theory of isotropic turbulence this is usually referred to as Taylor’s
hypothesis∗ or the ‘frozen gust’ assumption. Thus

wG(x′) = wG(x − U∞t)

Since x and t only appear in the above combination, we may consider
the alternative functional form

wG = wG

(
t − x

U∞

)
The correlation function may then be defined as

φwGwG(τ) ≡ lim
1

2T

∫ ∞

−∞
wG

(
t − x

U∞

)
wG

(
t − x

U∞
+ τ

)
dt

and the power spectral density as

ΦwGwG(ω) ≡ 1
π

∫ ∞

−∞
φwGwG(τ)e−iωtdt

The power spectral density is given in Figure 3.31. A useful approximate
formula which is in reasonable agreement with measurements is∗

ΦwGwG = w̄2
GπU

1 = 3
(

ωLG
U

)2

[
1 =

(
ωLG

U

)2
]2

Typically,

w̄2
G 
 33 ft./sec.

LG 
 50 − 500ft; gust scale length

We conclude this discussion with a representative vehicle responses
to random gust fields drawn from a variety of sources.† The analytical
results are from mathematical models similar to those described above,

∗Houbolt, Steiner and Pratt [6]. The basis for the frozen gust assumption is that in the time
interval for any part of the gust field to pass over the flight vehicle (the length/U∞)the gust
field does not significantly change its (random) spatial distribution. Clearly this becomes
inaccurate as U∞ becomes small.
∗Houbolt, Steiner and Pratt [6].
†These particular examples were collected and discussed in Ashley, Dugundji and Rainey,
[24].
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Figure 3.31. Gust power spectral density.

but with more elaborate structural and aerodynamic ingredients as de-
scribed in succeeding pages in this chapter and Chapter 4.

In the Figure 3.32, the measured and calculated power spectral densi-
ties for acceleration at the pilot station of the XB-70 aircraft are shown.
The theoretical structural model allows for rigid body and elastic de-
grees of freedom using methods such as those described later in this
chapter. The aerodynamic theory is similar to those described in Chap-
ter 4. The dramatic conclusion drawn from his figure is that theory and
experiment do not necessarily agree closely! If one assumes the peaks
in the measured and calculated spectra are associated with resonances
at natural frequencies of the (aeroelastic) system, then one concludes
the theoretical model is not predicting these adequately. Since the res-
onances are determined primarily by mass and stiffness (springs), one
concludes that for real vehicles even these characteristics may be difficult
to model mathematically. This is quite aside from other complications
such as structural damping and aerodynamic forces.

Usually when one is dealing with a real vehicle, physical small scale
models are built and with these (as well as the actual vehicle when it is
available) the resonant frequencies are measured (in the absence of any
airflow). The results are then used to ‘correct’ the mathematical model,
by one method or another, including a possible direct replacement of
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Figure 3.32. Acceleration power spectral density. From Stenton [26].

calculated resonant frequencies by their measured counterparts in the
equations of motion. When this is done the peak frequencies in the
measured and calculated spectra will then agree (necessarily so) and the
question then becomes one of how well the peak levels agree.

A comparison for another aircraft, the B-47, is shown in Figure 3.33.
Here the measured and calculated resonant frequencies are in good agree-
ment. Moreover the peak levels and indeed all levels are in good corre-
spondence. The particular comparison shown is for the system transfer
function which relates the acceleration at a point on the aircraft to the
random gust input. The calculated transfer function has been obtained
from an aeroelastic mathematical model. The measured transfer func-
tion (from flight test) is inferred from a measurement of gust power
spectra and cross-spectra between the vehicle acceleration and gust ve-
locity field using the relation (c.f. e.g. (3.3.31))

HḧwG
=

ΦḧwG

ΦwGwG
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Figure 3.33. ȳ = nondimensional distance along span. From Houbolt [6].

Both the amplitude and phase of the transfer function are shown as a
function of frequency for various positions along the wing span (ȳ = 0 is
at the wing root and ȳ = 1 at the wing tip). Such good agreement be-
tween theory and experiment is certainly encouraging. However, clearly
there is a major combined theoretical-experimental effort required to de-
termine accurately the response of structures to gust loading. It should
be noted that according to [6], Figure 3.33 is the bending strain transfer
function. ‘The dimensions of the ordinates . . . are those for acceleration
because the responses of the strain gages were calibrated in terms of the
strain per unit normal acceleration experienced during a shallow pull-up
maneuver.’
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3.7. Generalized Equations of Motion for
Complex Structures

Lagrange’s equations and modal methods (Rayleigh-
Ritz)
The most effective method for deriving equations of motion for many
complex dynamical systems is to use Lagrange’s Equations.∗

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi

where

L ≡ T-U, Lagrangian
T ≡ kinetic energy
U ≡ potential energy
Qi ≡ generalized forces
qi ≡ generalized coordinates

The essential steps in the method are, first, a suitable choice of qi and
then an evaluation of T, U and Qi in terms of Qi and q̇i.

Lagrange’s equations have, as one of their principal advantages, the
ability to obtain the equations of motion for complex systems with little
or no more difficulty than that required for rather simple ones, such as
the ‘typical section’. Here we shall consider a two-dimensional (planar)
representation on a flight vehicle. (See Figure 3.34).

We note that this formulation can include ‘rigid’ body as well as flex-
ible body modes. For example, the following choices of modal functions,
zm, include rigid body vertical translation, pitching (rotation about y
axis) and rolling (rotation about x axis), respectively.

z1 = 1 vertical translation
z2 = x pitching
z3 = y rolling

For such modes the potential elastic or strain energy is zero; however,
in general, strain energy must be included for the flexible body modes.

The use of Lagrange’s equations, while formally compact, does not
reveal explicitly all of the complications which may arise in deriving
equations of motion for an unrestrained vehicle or structure. These are
seen more clearly in the discussion in a later section of integral equations
of equilibrium.

∗Recall Sections 3.2.
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Figure 3.34. Two-dimensional (planar) representation of a flight vehicle.

Kinetic energy
The x − y plane is the plane of the (aircraft) structure. We consider
deformations perpendicular to the x− y plane (in the z direction). The
normal displacement with respect to a fixed inertial reference plane we
call za(x, y, t). We may then express the kinetic energy as

T =
1
2

∫∫
m(̇z)2adx dy (3.7.1)

where m - mass/area and ża ≡ ∂za
∂t . If we expand the displacement in a

modal series, say
za =

∑
m

qm(t)zm(x, y) (3.7.2)

then the kinetic energy may be written as

T =
1
2

∑
m

∑
n

q̇mq̇nMmn (3.7.3)
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where the generalized mass is given by

Mmn ≡
∫∫

mzmzndx dy

For small motions the above integral over the body may be taken as over
the undeformed structure.

If the chosen modes, zm, satisfy an orthogonality condition

Mmn = Mmδmn δmn = 1 for m = m

= 0 for m �= n

Then (3.7.3) simplifies to

T =
1
2

∑
m

q̇2
mMm (3.7.4)

Strain (potential elastic) energy
For the strain energy, we may write a similar relation to (3.7.3).

U =
1
2

∑
m

∑
qmqnKmn (3.7.5)

where Kmn is a generalized spring constant which is determined from
an appropriate structural theory.∗ Indeed if the zm are the ‘natural’ or
‘normal’modes of the structure, one may show that

Kmn = ω2
mMmδmn (3.7.6)

where ωm is the mth ‘natural frequency’.†
Equations (3.7.3)-(3.7.6) are the keys to the Lagrangian approach.

Before continuing, we pause to consider Kmn in more detail.

Alternative Determination of Kmn.

A stiffness influence function, K(x, y, ξ, η), may be defined which is the
(static) force/area required at point x, y to give a unit deflection at point
ξ, η. Hence

p(x, y) =
∫∫

K(x, y; ξ, η)za(ξ, η)dξ dη (3.7.7)

∗Recall Section 3.2.
†Meirovitch [4]
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A simple spring analog of (3.7.7) is

F = Kd simple spring analog, d = spring displacement

The potential energy stored in the elastic body is thus

U =
1
2

∫∫
p(x, y)za(x, y)dx dy

U =
1
2
Fd simple spring analog

(3.7.8)

Using (3.7.8) in (3.7.7),

U =
1
2

∫∫ ∫∫
K(x, y; ξ, η)za(ξ, η)za(x, y)dξ dηdx dy (3.7.9)

U =
1
2
Kd2 simple spring analog

Using our modal expansion

za(x, y, t) =
∑
m

qm(t)zm(x, y)

in (3.7.9) we obtain

U =
1
2

∑
m

∑
nKmnqmqn

where

Kmn ≡
∫∫ ∫∫

K(x, y; ξ, η)zm(ξ, η)zn(x, y)dξ dηdx dy

U =
1
2
Kd2 simple spring analog

(3.7.10)

From Maxwell’s Reciprocity Theorem

K(x, y; ξ, η) = K(ξ, η; x, y)

and hence
Kmn = Knm (3.7.11)

K(x, y; ξ, η) can be determined by a suitable theoretical analysis or it can
be inferred from experiment. For the additional insight to be gained, let
us consider the latter alternative. It is a difficult experiment to measure
K directly since we must determine a distribution of force/area which
gives unit deflection at one point and zero deflection elsewhere. Instead
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it is much easier to measure the inverse of K, a flexibility influence,
C(x, y; ξ, η) which is the deflection at x, y due to a unit force/area at
ξ, η. For C(x, y; ξ, η) we have the following relation (recall Section 2.4)

za(x, y) =
∫∫

C(x, y; ξ, η)p(ξ, η)dξ dη (3.7.12)

Using (3.7.7) and (3.7.12) it can be shown that∫∫
C(x, y; ξ, η)K(ξ, η; r, s)dξ dη = δ(r − x, s − y) (3.7.13)

where δ is a Dirac delta function. (3.7.13) is an integral equation for C
or K given the other. However, it is rarely, if ever, used. Instead (3.7.6)
and (3.7.1) are attacked directly by considering a finite number of loads
and deflections over small (finite) areas of size ∆x∆y = ∆ξ∆η. Hence
(3.7.7) and (3.7.12) are written

p(xi, yi) =
∑

i

K(xi, yi; ξj, ηj)za(ξj, ηj)∆ξ∆η (3.7.7)

za(xj, yj) =
∑

j

C(xj, yj; ξi, ηi)p(ξi, ηi)∆ξ∆η (3.7.11)

In matrix notation
{p} = [K]{za}∆ξ∆η (3.7.7)

{za} = [C]{p}∆ξ∆η (3.7.11)

Substitution of (3.7.12) into (3.7.7) and solving, gives

[K] = [C]−1/(∆ξ)2(∆η)2 (3.7.14)

(3.7.14) is essentially a finite difference solution to (3.7.13). Hence, in
practice, if (3.7.10) is used to compute Kmn, one measures C, computes
K from (3.7.14) and then evaluates Kmn by numerical integration of
(3.7.10). For a fuller discussion of influence functions, the reader may
wish to consult Bisplinghoff, Mar and Pian[2].

There is one further subtlety which we have not discussed as yet. If
rigid body motions of the structure are possible, then one may wish to
use a C measure with respect to a fixed point. For example it may be
convenient to measure C with the center of the mass fixed with respect
to translation and rotation. This matter is discussed for fully later in
the chapter when integral equations of equilibrium are reviewed.

We now continue the general discussion from which we digressed to
consider Kmn. Two examples will be considered next.
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Examples
(a) Torsional vibrations of a rod
.

To illustrate the key relations (3.7.3)-(3.7.6) in a more familiar situa-
tion, consider the torsional vibrations of a rod. Here

za = −xα(y, t) (cf. 3.7.2)

and thus (3.7.1) becomes

T =
1
2

∫
Iαα̇2dy (3.7.15)

where

Iα ≡
∫

mx2dx

α ≡ angle of twist

From structural theory [2],

U =
1
2

∫
GJ

(
dα

dy

)2

dy (3.7.16)

Let

α =
M∑

m=1

qα
mαm(y) (3.7.17)

then

T =
1
2

∑
m

∑
n

q̇α
mq̇α

nMmn (3.7.18)

where

Mmn ≡
∫

Iααmαndy (cf. 3.7.3)

and

U =
1
2

∑
m

∑
n

qα
mqα

nKmn (3.7.19)

where

Kmn =
∫∫

GJ
dαm

dy

dαn

dy
dy (cf. 3.7.5)

The specific structural model chosen determines the accuracy with
which the generalized and stiffness are determined, but they always exist.
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(b) Bending-torsional motion of a beam-rod
The above is readily generalized to include bending as well as torsional
vibration of a beam-rod.

Let
za(x, y, t) = −xα(y, t) − h(y, t) (cf. 3.7.2)

α ≡ twist about elastic axis

h ≡ bending deflection of elastic axis

and thus (3.7.1) becomes

T =
1
2

{∫
Mḣ2dy + 2

∫
Sαḣαdy +

∫
Iαα̇2dy

}
(3.7.20)

where

M ≡
∫

m dx, Sα ≡
∫

mx dx, Iα ≡
∫

mx2 dx

Also from structural theory [2],

U =
1
2

{∫
GJ

(
∂α

∂y

)2

dy +
∫

EI

(
∂2h

∂y2

)2

dy

}
(3.7.21)

Let

h =
R∑

r=1

qh
rhr(y)

α =
M∑

m=1

qα
mαm(y)

(3.7.22)

Then

T =
1
2

∑
m

∑
n

q̇α
mq̇α

nMαα
mn

+ 2
∑
m

∑
r

q̇α
mq̇h

rMαh
mr +

∑
r

∑
s

˙̇qh
r q̇h

sMhh
rs

(3.7.23)

where

Mαα
mn ≡

∫
Iααmαndy, Mαh

mr ≡
∫

Sααmhrdy, Mhh
rs ≡

∫
mhhsdy

(3.7.24)
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and

U =
1
2

{∑
m

∑
n

qα
mqα

nKαα
mn +

∑
r

∑
s

qh
r qh

sKhh
rs

}
(cf. 3.7.5)

where

Kαα
mn ≡

∫
GJ

dαm

dy

dαn

dy
, Khh

rs ≡
∫

EI
d2hr

dy2

d2hs

dy2
dy (3.7.25)

Off all possible choices of modes, the ‘free vibration, natural modes’
are often the best choice. These are discussed in more detail in the next
section.

Natural frequencies and modes-eigenvalues and
eigenvectors
Continuing with our general discussion, consider Lagrange’s equa-
tionswith the generalized forces set to zero,

d

dt

(
∂(T − U)

∂q̇i

)
+

∂U

∂qi
= 0 i = 1, 2, . . . , M

and thus obtain, using (3.7.3) and (3.7.5) in the above,∑
Mmiq̈m + Kmiqm = 0 i = 1, . . . , M (3.7.26)

Consider sinusoidal motion

qm = q̄meiwt (3.7.27)

then, in matrix motion, (3.7.26) becomes

−ω2[M ]{q} + [K]{q} = {0} (3.7.28)

This is an eigenvalue problem for the eigenvalues, ωj, j = 1, . . . , J and
corresponding eigenvalues, (q)j. If the modal functions originally chosen,
zm or αm and hr, were ‘natural modes’ of the system then the M and
K matrices will be diagonal and the eigenvalue problem simplifies.

−ω2

⎡
⎣ \

M
\

⎤
⎦ {q} +

⎡
⎣ \

Mω2
j

\

⎤
⎦ {q} = {0} (3.7.29)

and

ω2
1,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q1

0
0
0
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
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ω2
2,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
q2

0
0
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2

etc.

ω2
M,

⎧⎪⎪⎨
⎪⎪⎩

0
0
0

qM

⎫⎪⎪⎬
⎪⎪⎭

M

If this is not so then the eigenvalues may be determined from (3.7.22)
and a linear transformation may be made to diagonalize the M and
K matrices. The reader may wish to determine the eigenvalues and
eigenvectors of the typical section as in exercise.

For our purposes, the key point is that expression like (3.7.3)-(3.7.6)
exist. For a more extensive discussion of these matters, the reader may
consult Meirovitch [4].

Evaluation of generalized aerodynamic forces
The Generalized forces s in Lagrange’s equations are evaluated from
their definition in terms of Virtual work.

δWNC =
∑
m

Qmδqm (3.7.24-2)

Now the virtual work may be evaluated independently from

δWNC =
∫∫

pδzαdx dy (3.7.25-2)

where p is the net aerodynamic pressure on an element of the structure
with (differential) area dx dy. Using (3.7.2) in (3.7.25-2)

δWNC =
∑
m

δqm

∫∫
pzmdx dy (3.7.26-2)

and we may identify from (3.7.25-2) and (3.7.24-2)

Qm ≡
∫∫

pzmdx dy (3.7.27-2)
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From aerodynamic theory,∗ one can establish a relationship of the form

p(x, y, t) =
∫∫ ∫ t

0
A(x − ξ, y − η, t − τ)

×
[
∂za

∂τ
(ξ, η, τ) + U

∂za

∂ξ
(ξ, η, τ)

]
︸ ︷︷ ︸

‘downwash’

dξ dηdτ

(3.7.28-2)

A may be physically interpreted as the pressure at point x, y at times t
due to a unit impulse of downwash at point ξ, η at time τ . Using (3.7.2)
and (3.7.28-2) in (3.7.27-2) we may evaluate Qm in more detail,

Qm =
∑

n

∫ t

0
[q̇n(τ)Inmq̇(t − τ) + qn(τ)Inmq(t − τ)]dτ (3.7.29-2)

where

Inmq̇(t − τ) ≡
∫∫ ∫∫

A(x − ξ, y − η, t − τ)zn(ξ, η)zm(x, y)dx dydξ dη

Inmq(t − τ) ≡
∫∫ ∫∫

A(x − ξ, y − η, t − τ)

× U
∂zn

∂ξ
(ξ, η)zm(x, y)dx dydξ dη

Inmq̇, Inmq may be thought of as generalized aerodynamic impulse func-
tions.

Equations of motion and solution methods
Finally applying Lagrange’s equations, using ‘normal mode’ coordinates
for simplicity,

Mm[q̇m + ω2
mqm] =

M∑
n=1

∫ 1

0
[q̇n(τ)Inmq̇(t − τ) + qn(τ)Inmq(t − τ)]dτ

m = 1, . . . , M
(3.7.30)

Note the form of (3.7.30). It is identical, mathematically speaking, to
the earlier results for the typical section.∗ Hence similar mathematical

∗See Chapter 4, and earlier discussion in Sections3.4.
∗Provided Sα ≡ 0 so that h,α are normal mode coordinates for the typical section.
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solution techniques may be applied.

Time domain solutions. A Taylor Series expansion is

qn(t + ∆t) = qn(t) + q̇n

∣∣∣∣t∆t +
q̈n

2

∣∣∣∣
t

(∆t)2

One may solve for q̈n from (3.7.30) and hence qn(t + ∆t) is determined.
qn(t), q̈n(t) are known from initial conditions and

q̇n(t + ∆t) = q̇n(t) + q̈n(t)∆t + · · · (3.7.31)

Frequency domain solutions. Taking a Fourier transform of (3.7.30)

Mm[−ω2 + ω2
m]q̄m =

M∑
n

[iωHnmq̇ + Hnmq]q̄n

where
q̄m ≡

∫ ∞

−∞
qme−iωtdt

In matrix notation⎡
⎣
⎡
⎣ \

Mm(−ω2 + ω2
m)

\

⎤
⎦− [iωHnmq̇ + Hnmq]

⎤
⎦ {q̄n} = {0} (3.7.32)

By examining the condition for nontrivial solutions

|[· · · ]| = 0

we may find the ‘poles’ of the aeroelastic transfer functions and assess
the stability of the systems.

Response to gust excitation. If we wish to examine the gust response
problem then we must return to (3.7.28) and add the aerodynamic pres-
sure due to the gust loading

pG(x, y, t) =
∫∫∫

A(x − ξ, y − η, t − τ)wG(ξ, η, τ)dξ dηdτ

The resulting Generalized forces s are

QmG(t) =
∫∫∫∫∫

A(x−ξ, y − η, t − τ)

× wG(ξ, η, τ)zm(x, y)dξ dη dx dy dτ

(3.7.33)
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Adding (3.7.33) to (3.7.30) does not change the mathematical technique
for the time domain solution. In the frequency domain, the right hand
column of (3.7.32) is now (Q̄mG)

Q̄mG =
∫ ∞

−∞
QmGe−iωtdt

Hence by solving (3.7.32) we may obtain generalized aeroelastic transfer
functions

q̄n

Q̄mG
≡ HqnQmG

(ω; · · · ) (3.7.34)

and employ the usual techniques of the frequency domain calculus in-
cluding power spectral methods.

Integral equations of equilibrium
As an alternative approach to Lagrange’s Equations, we consider an
integral equation formulation using the concept of a structure influence
(Green’s) function. We shall treat a flat (two-dimensional) structure
which deforms under (aerodynamic) loading in an arbitrary way. We
shall assume a symmetrical vehicle and take the origin of our coordinate
system at the vehicle center of mass with the two axes in the plane of
the vehicle as principal axes, x, y. See figure 3.34. Note the motion
is assumed sufficiently small so that no distinction is made between the
deformed and undeformed axes of the body. For example the inertia and
elastic integral properties are evaluated using the (undeformed) axes x, y.
The axes x, y are inertial axes, i.e., fixed in space. If we consider small
deflections normal to the x, y plane, the x, y axes are approximately the
principal axes of the deformed vehicle.

It will be useful to make several definitions.

za absolute vertical displacement of a point from x, y plane, positive up

m mass/area

pE external applied force/area, e.g., aerodynamic forces due to gust,
pG

pM force/area due to motion, e.g., aerodynamic forces (but not includ-
ing inertial forces)

pZ = pE + pM − m
∂2za

∂t2

total force/area, including inertial forces. Let us first consider equilib-
rium of rigid body motions.
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Translation: ∫∫
pZdx dy = 0 (3.7.35)

Pitch: ∫∫
xpZdx dy = 0 (3.7.36)

Roll: ∫∫
ypZdx dy = 0 (3.7.37)

Now consider equilibrium of deformable or elastic motion.

zelastic
a ≡ za(x, y, t) − za(0, 0, t) − x

∂za

∂x
(0, 0, t) − y

∂za

∂y
(0, 0, t)

=
∫∫

C(x, y; ξ, η)pZ(ξ, ηt)dξ dη

(3.7.38)

where

zelastic
a ≡ deformation (elastic) of a point on vehicle

C ≡ structural influence or Green’s function; the (static) elastic defor-
mation a x, y due to unit force/area at ξ, η for a vehicle fixed∗ at the
origin, x = y = 0.

Since the method of obtaining the subsequent equations of motion in-
volves some rather extensive algebra, we outline the method here.

1 Set pE = pM = 0.

2 Obtain ‘natural frequencies and modes’; prove orthogonality of
modes.

3 Expand deformation, za for nonzero pE and pM in terms of normal
modes or natural modes and obtain a set of equation for the (time
dependent) coefficients of the expansion. The final result will again
be (3.7.30).

∗By fixed we mean ‘clamped’ in the sense of the structural engineer, i.e., zero displacement
and slope. It is sufficient to use a static influence function, since invoking by D’Alambert’s
Principle the inertial contributions are treated as equivalent forces.
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Natural frequencies and modes
Set pE = pM = 0. Assume sinusoidal motion, i.e.,

za(x, y, t) = z̄a(x, y)eiωt (3.7.39)

then (3.7.38) becomes

z̄a(x, y) − z̄a(0, 0) − x
∂z̄a

∂x
(0, 0) − y

∂z̄a

∂y
(0, 0)

= ω2

∫∫
C(x, y; ξ, η)m(ξ, η)z̄a(ξ, η)dξ dη

(3.7.40)

The frequency ω has the character of eigenvalue. (3.7.40) can be
put into the form of a standard eigenvalue problem by solving for
za(0, 0), ∂z̄a

∂x (0, 0),
∂z̄a
∂y (0, 0) and substituting into (3.7.40). For example, consider the de-
termination of za(0, 0). Multiply (3.7.40) by m and integrate over the
flight vehicle area. The result is:∫∫

mz̄adx dy − z̄a(0, 0)
∫∫

m dx dy

− ∂z̄a

∂x
(0, 0)

∫∫
mx dx dy − ∂z̄a

∂y
(0, 0)

∫∫
mx dx dy

= ω2

∫∫
m(x, y)

[∫∫
C(x, y; ξ, η)z̄a(ξη)dξ dη

]
· dxdy

(3.7.41)

Examining the left hand side of (3.7.41), the first integral is zero from
(3.7.35), the third and fourth integrals are zero because of our use of
center-of-mass as our origin of coordinates. The second integral is iden-
tifiable as the total mass of the vehicle.

M =
∫∫

m dx dy

Hence

z̄a(0, 0) = −ω2

M

∫∫
m(x, y)

[∫∫
Cmz̄adξ dη

]
dx dy

= −ω2

M

∫∫
m(ξ, η)z̄a(ξ, η)

×
[∫∫

C(x, y; ξ, η)m(x, y)dx dy

]
dξ dη

(3.7.42)



142 A MODERN COURSE IN AEROELASTICITY

where the second line follows by change of order of integration. In a simi-
lar fashion ∂z̄a

∂x (0, 0), ∂z̄a
∂y (0, 0) may be determined by multiplying (3.7.40)

by mx and my respectively with integration over the flight vehicle. The
results are

∂z̄a

∂x
(0, 0) = − ω2

Iy

∫∫
m(ξ, η)z̄a(ξ, η)

[∫∫
C(x, y; ξ, η)xm(x, y)dx dy

]
· dξ dη

(3.7.43)

etc. where
Iy ≡

∫∫
x2m(x, y)dx dy

Iy ≡
∫∫

y2m(x, y)dx dy

In (3.7.42) and (3.7.43) note that x, y are now dummy integration vari-
ables, not to be confused with the x, y which appear in (3.7.40). Using
(3.7.41, 3.7.42, 3.7.43) in (3.7.40) we have

za(x, y) = ω2

∫∫
G(x, y; ξ, η)m(ξ, η)za(ξ, η)dξ dη (3.7.44)

where
G(x, y; ξ, η) ≡ C(x, y; ξ,η)

−
∫∫

C(r, s; ξ, η)
[

1
M

+
xr

Iy
+

ys

Ix

]
m(r, s)dr ds

(3.7.44) has the form of a standard eigenvalue problem. In general,
there are infinite number of nontrivial solutions (eigenfunctions), φm

with corresponding eigenvalues, wm, such that

φm(x, y) = ω2
m

∫∫
G(x, y; ξ, η)m(ξ, η)φm(ξ, η)dξ dη (3.7.45)

These eigenfunctions could be determined in a number of ways; perhaps
the most efficient method being the replacement of (3.7.45) by a system
of linear algebraic equations through approximation of the integral in
(3.7.45) by a sum.

φm(xi, yi) = ω2
m

∑
j

G(xi, yi; ξj, ηj)m(ξj, ηj)φm(ξj, ηj)∆ξ ∆η (3.7.46)

In matrix notation,

{φ} = ω2[Gij ∆ξ ∆η]

⎡
⎣ \

m
\

⎤
⎦ {φ}
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or ⎡
⎣
⎡
⎣ \

1
\

⎤
⎦− ω2[Gij ∆ξ ∆η]

⎡
⎣ \

m
\

⎤
⎦
⎤
⎦ {φ} = {0} (3.7.47)

Setting the determinant of coefficients to zero, we obtain a polynomial in
ω2 which gives us (approximate) eigenvalues as roots. The related eigen-
vector of (3.7.47) is an approximate description of the eigenfunctions of
(3.7.46).

An important and useful property of eigenfunctions is their orthogo-
nality, i.e.,∫∫

φm(x, y)φn(x, y)dx dy = 0 for m �= n (3.7.48)

We shall digress briefly to prove (3.7.48).

Proof of orthogonality
Consider two different eigenvalues and eigenfunctions .

φm(x, y) = ω2
m

∫∫
Gmφmdξ dη (3.7.49a)

φn(x, y) = ω2
n

∫∫
Gmφndξ dη (3.7.49b)

Multiply (3.7.49a) and (3.7.49b) by mφn(x, y) and mφm(x, y) respec-
tively and

∫ ∫ · · · dx dy.

1
ω2

m

∫∫
φnφmm dx dy =

∫∫
φnm

[∫∫
Gφmmdξ dη

]
· dx dy (3.7.49c)

1
ω2

n

∫∫
φmφnm dx dy =

∫∫
φmm

[∫∫
Gφnmdξ dη

]
· dx dy (3.7.49d)

Interchanging the order of integration in (3.7.49c) and interchanging x, y
and ξ, η, and vice versa on the right-hand side gives:

1
ω2

m

∫∫
φmφnm dx dy =

∫∫
φmm[

∫∫
G(ξ, η; x, y)

· φn(ξ, η)m(ξ, η)dξ dη]dx dy

(3.7.50)

If G were symmetric, i.e.,

G(ξ, η; x, y) = G(x, y; ξ, η) (3.7.51)
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then the right-hand side of (3.7.49d) and (3.7.49c) would be equal and
hence one could conclude that[

1
ω2

m

− 1
ω2

n

] ∫∫
φmφnm dx dy = 0

or ∫∫
φmφnm dx dy = 0 for m �= n (3.7.52)

Unfortunately, the situation is more complicated since G is not symmet-
ric. However, from (3.7.44), et. seq., one can write

G(ξ, η; x, y) − G(x, y; ξ, η)

=
∫∫

C(r, s; ξ, η)
[

1
M

+
ys

Ix
+

xr

Iy

]
m(r, s)dr ds

−
∫∫

C(r, s; x, y)
[

1
M

+
ηs

Ix
+

ξr

Iy

]
m(r, s)dr ds

(3.7.53)

Using the above to substitute for G(ξ, η; x, y) in (3.7.50) and using
(3.7.35)-(3.7.37) to simplify the result, one sees that the terms on the
right-hand side of (3.7.53) contribute nothing. Hence, the right-hand
sides of (3.7.49d) and (3.7.49c) are indeed equal.

The orthogonality result follows. Note that the rigid body modes

ω1 = 0 φ1 = 1
ω2 = 0 φ2 = x

ω3 = 0 φ3 = y

(3.7.54)

are orthogonal as well. One can verify readily that the above satisfy
the equations of motion, (3.7.35)-(3.7.38), and that the orthogonality
conditions follow from (3.7.35)-(3.7.37).

Forced motion including aerodynamic forces
We will simplify the equations of motion to a system of ordinary integral-
differential equations in time by expanding the deformation in terms of
normal modes.

za(x, y, t) =
∞∑

m=1

qm(t)φm(x, y) (3.7.55)

Recall the natural modes, φm, must satisfy the equations of motion with
pE = pM = 0 and

za ∼ eiωmt
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Substituting (3.7.55) in (3.7.35)-(3.7.37) and using orthogonality,
(3.7.52), and (3.7.54),

q̈1

∫∫
m dx dy =

∫∫
[pE + pM]dx dy (3.7.56)

q̈2

∫∫
x2m dx dy =

∫∫
x[pE + pM]dx dy (3.7.57)

q̈3

∫∫
y2m dx dy =

∫∫
y[pE + pM]dx dy (3.7.58)

The reader should be able to identify readily the physical significance of
the several integrals in the above equations. Substituting (3.7.55) into
(3.7.38) gives

∞∑
m=1

qm

[
φm(x, y) − φm(0, 0) − x

∂φm

∂x
(0, 0) − y

∂φm

∂y
(0, 0)

]

=
∫∫

C(x, y; ξ, η)

[
pE + pM − m

∞∑
m=1

q̈mφm(ξ, η)

]
dξ dη

(3.7.59)

Now the normal modes, φm, satisfy

φm(x, y) − φm(0, 0) − x
∂φm

∂x
(0, 0) − y

∂φm

∂y
(0, 0)

= ω2
m

∫∫
C(x, y; ξ, η)m(ξ, η)φm(ξ, η)dξ dη m = 1, . . . ,∞

(3.7.60)

Also the left-hand side of (3.7.59) is identically zero for the rigid body
modes, m = 1, 2, 3. Further using (3.7.60)in the right-hand side of
(3.7.59) for m = 4, 5, . . ., gives finally

∞∑
m=4

(
qm +

q̈m

ω2
m

)[
φm(x, y) − φm(0, 0) − x

∂φm

∂x
(0, 0) − y

∂φm

∂y
(0, 0)

]

=
∫∫

C(x, y; ξ, η)[pE + pM − mq̈1 − mξq̈2 − mηq̈3]dξ dη

(3.7.61)

Multiplying (3.7.61) by m(x, y)φn(x, y) and
∫ ∫ · · · dx dy, invoking or-

thogonality, gives

Mn

(
qn +

q̈n

ω2
n

)
=
∫∫

φnm
{∫∫

C[pE + pM − mq̈1 − mξq̈2

− mηq̈3]dξ dη
}

dx dy

(3.7.62)



146 A MODERN COURSE IN AEROELASTICITY

where the ‘generalized mass’, Mn, is defined as

Mn ≡
∫∫

φ2
nm dx dy

Now the structural influence function, C, is symmetric, i.e.,

C(x, y; ξ, η) = C(ξ, η; x, y) (3.7.63)

This follows from Maxwell’s reciprocity theorem∗ which states that the
deflection at x, y due to a unit load at ξ, η is equal to the deflection at
ξ, η due to a unit load at x, y.

Using (3.7.63) and interchanging the order of integration in (3.7.62),
one obtains

Mn

(
qn +

q̈n

ω2
n

)
=
∫∫

[pE + pM − mq̈1 − mξq̈2 − mηq̈3]

·
{∫∫

C(ξ, η; x, y)φn(x, y)m(x, y)dx dy

}
· dξ dη

(3.7.64)

Using (3.7.60) in (3.7.64),

Mn

(
qn +

q̈n

ω2
n

)
=

1
w2

n

∫∫
[pE + pM − mq̈1 − mξq̈2 − mηq̈3]

·
[
φn(ξ, η) − φn(0, 0) − ξ

∂φn

∂ξ
(0, 0) − η

∂φn

∂η
(0, 0)

]
· dξ dη

(3.7.65)

By using orthogonality, (3.7.52) and the equations of rigid body equilib-
rium, (3.7.56)-(3.7.58), one may show that the right-hand side of (3.7.65)
can be simplified as follows:

Mn

(
qn +

q̈n

ω2
n

)
=

1
ω2

n

∫∫
[pE + pM]φndξ dη (3.7.66)

Defining the Generalized forces,

Qn ≡
∫∫

[pE + pM]φndξ dη (generalized force)

one has
Mn[q̈n + ω2

nqn] = Qn n = 1, 2, 3, 4, . . . (3.7.67)

∗Bisplinghoff, Mar and Pian [2].
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Note that there is no inertial or structural coupling in the equations
(3.7.67), However pM generally depends upon q1, q2, . . . and hence the
equations are aerodynamically coupled.† The lack of inertial and struc-
tural coupling is due to our use of natural or normal modes. Finally,
note that the rigid body equation of motions, (3.7.56)-(3.7.58), also have
the form of (3.7.67). Hence n may run over all integer values.

Examples
(a) Rigid wing undergoing translation responding to a gust
One mode only φ1 = 1, q1 (≡ −h was notation used previously in typical
section model) and thus

M1q̈1 = QM
1 + QE

1 (3.7.68)

QM
1 =

∫∫
pMφ1dx dy =

∫
LM dy (3.7.69)

QE
1 =

∫∫
pEφ1 dx dy =

∫
LG dy (3.7.70)

where
LM ≡

∫
pM dx lift/span (3.7.71)

LG ≡
∫

pE dx lift/span (3.7.72)

Introducing nondimensional time, s ≡ tU/b, (3.7.68) may be written

U2

b2
M1q

′′ =
∫ t

0
LM dy +

∫ t

0
LG dy (3.7.73)

where
′ ≡ d

ds
(nondimensional)

Assuming strip-theory, two dimensional, incompressible flow aerody-
namics, one has (recall Sections 3.4 and see Chapter 4)

LM(s) = −πρU2
∞

[
q′′(s) + 2

∫ s

0
q′′(σ)φ(s − σ)dσ

]
(3.7.74)

Note we have assumed q′1(0) = 0 in the above. Similarly

LG = 2πρU∞b

[
wG(0)ψ(s) +

∫ s

0

dwG(σ)
dσ

ψ(s − σ)dσ

]

= 2πρU2b

[∫ s

0

wG(σ)
U

ψ′(s − σ)dσ

] (3.7.75)

†cf.(3.7.31).
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where

ψ′(s) ≡ dψ

ds
Here we have assumed that wG is independent of y for simplicity. Sub-
stituting (3.7.74) and (3.7.75) into (3.7.73) we have

U2∞
b2

Mq′′1(s) = πρU2
∞(2bl)

[
− q′′1

2b
− 1

b

∫ s

0
q′′1(σ)φ(s − σ)dσ

+
∫ s

0

wG(σ)
U∞

ψ′(s − σ)dσ
]

(3.7.76)

M ≡ ∫∫
mφ1 dx dy, total mass of wing

Note
∫

L dy = lL since we have assumed b is a constant and l ≡ half-span
of wing. (3.7.76) may be solved in several ways which have previously
been discussed in the context of the typical section airfoil. Here, we shall
pursue the method of Laplace Transforms. Transforming (3.7.76)(p is
the Laplace Transform variable) gives

U2

b2
Mp2q̄1(p) = πρU2(2bl)

[
w̄G

U
pψ̄

p2q̄1

2b
− p2q̄1

b
ψ̄

]
(3.7.77)

We have taken q(0) = q′(0) = 0 while using the convolution theorem,
i.e., {∫ s

0
wG(σ)ψ′(s − φ)dσ

}
= w̄Gpφ̄ (convolution theorem 1)

{∫ s

0
q′′1(σ)φ′(s − σ)dσ

}
= p2q̄1φ̄ (convolution theorem 2)

and a bar (̄ ) denotes Laplace Transform. Solving (3.7.77) for q̄1 gives

q̄1(p) =
b
2

w̄G
U ψ̄

p(µ
2 + 1

4 + 1
2 φ̄)

(3.7.78)

where
µ ≡ M

π(2bl)bρ
, mass ratio.

To complete the solution we must invert (3.7.78). To make this inversion
tractable, φ and ψ are approximated by

ψ(s) = 1 − 0.5e−0.13s − 0.5e−s

φ(s) = 1 − 0.165e−0.0455s − 0.335e−0.3s
(3.7.79)
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Thus

ψ̄ = (0.565p + .013)/p(p + 0.0455)(p + 0.3)

φ̄ =
0.5p2 + 0.02805p + 0.01365
p3 + 0.3455p2 + 0.01365p

(3.7.80)

and

q̄1 =
b w̄G

U 0.565(p3 + 0.575p2 + 0.093p + 0.003)
(µ + 0.5)p(p + 0.13)(p + 1)(p3 + a1p2 + a2p + a3)

(3.7.81)

where
a1 ≡ 0.3455µ + 0.67

µ + 0.5

a2 ≡ 0.01365µ + 0.28
µ + 0.5

a3 ≡ 0.01365
µ + 0.5

Often one is interested in the acceleration,∗

q̈1 =
U2

b2
q′′1 q̈1 =

U2

b2
L1{p2q̄1}

=
0.565

µ + 0.5

∫ s

0

U∞
b

wG(σ){A1e
−0.13(s−σ)

+ A2e
−(s−σ) + B1e

γ1(s−σ)

+ B2e
γ2(s−σ) + B3e

γ3(s−σ)}dσ

(3.7.82)

where
A1 =

N(−0.13)
D′(.013)

A2 =
N(−1)
D′(−1)

Bk=12 3 =
N(γk)
D′(γk)

and

N(p) ≡p(p3 + 0.5756p2 + 0.09315p + 0.003141)

D(p) ≡(p + 0.13)(p + 1)(p3 + a1p + a3)

γk are the roots of p3 + a1p
2 + a1p + a3 = 0

∗For q1(0) = q̇(0) = 0.L1 ≡ inverse Laplace Transform.
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Note that bracketed term in (3.7.82) must be a real quantity though the
components thereof may be complex (conjugates). Also, what does it
mean physically if the real part of γ1, γ2 or γ3 is positive?

An even simpler theory of gust response is available if one further
approximates the aerodynamic forces. Foe example, using a quasi-static
aerodynamic theory (recall Section 3.4), one has

ψ = 1 and thus LG = 2πρU2∞b wG
U∞

and

φ = 0, and thus LM = 0 (ignoring virtual inertia term)

Hence

M1q̈1 =
∫

LG dy = 2πρU2bl
wG

U

q̈1s = π
ρU2

M
(2bl)

wG

U∞
=

U∞
b

wG

µ

(3.7.83)

The subscripted quantity, q̈1, is called the static approximation to the
gust response. Figure 3.35 is a schematic of the result from the full
theory, (3.7.82), referenced to the static result, (3.7.83). Here we have
further assumed a sharp-edge gust, i.e., wG= constant. After Figure
10.22 BAH. The maxima of the above curves are presented in Figure
3.36. As can be seen the static approximation is a good approximation
for large mass ratio, µ. For smaller µ the acceleration is less than the
static result. Hence the quantity, q̈1max

q̈1s
is sometimes referred to as a

‘gust alleviation’ factor.
A somewhat more sophisticated aerodynamic approximation is to let

(again recall Section 3.4)

ψ = 1 and thus LG = 2πρU2b
wG

U
φ = 1 and thus LM = −πρU2[q′′(s) + 2q′(s)]

(3.7.84)

assuming q′(0) = 0. In the motion induced lift, the LMfirst term is
a virtual inertial term which is generally negligible compared to the
inertia of the flight vehicle. However, the second term is an aerodynamic
damping term which provides the only damping in the system and hence
may be important. It is this aerodynamic damping , even in the guise
of the full (linear)aerodynamic theory, which gives results substantially
different from the static approximation. (3.7.84) is termed a quasi-steady
aerodynamic approximation.
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Figure 3.35. Acceleration time history.
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Figure 3.36. Maximum acceleration vs mass ratio.

Using the approximation (3.7.84), (3.7.68) becomes for a constant
chord, b, wing of span, l, (in nondimensional form)

(µ + 0.5)q′′1(s) + q′1(s) =
bwG(s)

U∞
(3.7.85)
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where
µ ≡ M1

πρ(2bl) · b
Taking the Laplace transform of (3.7.85) with initial conditions

q′1(0) = q(0) = 0, wG(0) = 0 (Laplace transform)

we have

(µ + 0.5)p2q̄1(p) + pq̄1(s) =
bw̄G(p)

U∞
(Laplace with 3.7.85)

Solving

q̄1(p) =
b

U∞ w̄G(p)
p{(µ + 0.5)p + 1}

and thus

q′′1(s) = L−1p2q̄1(p)

=
1

(µ + 0.5)
L−1 b

U∞
w̄G(p) ·

[
1 −

1
µ+0.5

p + 1
µ+0.5

]

=
1

µ + 0.5

∫ s

0

b

U∞
wG(σ) ·

{
δ(s − σ) − 1

µ + 0.5
exp

(
− s − σ

µ + 0.5

)}
dσ

(3.7.86)

or

q̈1 =
U2∞
b2

q′′1(s) =
1

µ + 0.5

∫ s

0

U∞
b

wG(σ)

×
{

δ(s − σ) − 1
µ + 0.5

exp
(
− s − σ

µ + 0.5

)}
Since

q̈1s =
U∞
b

wG(s)
µ

(static result),

q̈1

q̈1s

=
µ

µ + 0.5
1

wG(s)

∫ s

0
wG(σ)

×
{

δ(s − σ) − 1
µ + 0.5

exp
(
− s − σ

µ + 0.5

)}
dσ

(3.7.87)

For a sharp edge gust

wG = w0 : const (s > 0),
= 0 (s < 0)
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Figure 3.37. Acceleration time history: Quasi-steady aerodynamics.

(3.7.87) becomes

q̈1

q̈1s

=
µ

µ + 0.5
exp(− s

µ + 0.5
) (3.7.88)

(3.7.88) is presented graphically in the Figure 3.37 . From (3.7.88) one
may plot the maxima (which occur at s = 0 for the quasi-steady aerody-
namic theory) vs. µ. These are shown in Figure 3.38 where the results
are compared with those using the full unsteady aerodynamic theory and
the static aerodynamic theory. What conclusion do you draw concerning
the adequacy of the various aerodynamic theories?

(b) Wing undergoing translation and spanwise bending

Mnq̈n + Mnω2
nqn = QM

n + QG
n n = 1, 2, 3, . . . (3.7.89)

q1 rigid body mode of translation
q2, q3. . . beam bending modal amplitudes of wing The mode shapes are
denoted by φn(y) and are normalized such that the generalized masses
are given by

Mn ≡
∫∫

φ2
nm dx dy =

∫
[
∫

mdx]φ2
ndy = M (3.7.90)
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Figure 3.38. Maximum acceleration for wing in translation encountering a sharp
edge (step function) gust as given by various aerodynamic models vs mass ratio.

The Generalized forces are given by

QM
n =

∫∫
PMφn dx dy =

∫
LMφn dy

QG
n =

∫∫
PGφn dx dy =

∫
LGφn dy

(3.7.91)

Introduce s ≡ Ut
br

where br is reference half chord. Also let the chord
vary spanwise, i.e.,

b(y) = brg(y) (3.7.92)

where g is given from the wing geometry. (3.7.89) may be written

U2

b2
r

Mq′′n + Mω2
nqn = QM

n + QG
n (3.7.93)

Using two-dimensional aerodynamics in a ‘strip theory’ approximation
and assuming the gust velocity is uniform spanwise, the aerodynamic
lift forces are

LM(y, s) = − πρ(brg)2
U2

b2
r

∑
m

φmq′′m

− 2πρU

(
U

br

)
(brg)

∫ s

0

(∑
m

φmq′′m(σ)

)
φ(s − σ)dσ
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and
LG(y, s) = 2πρU(brg)

∫ s

0
wG(σ)ψ′(s − σ)dσ (3.7.94)

Substituting (3.7.94) into (3.7.91) and the result into (3.7.89) gives
(when nondimensionalized)

µ[q′′n + Ω2
nqn] +

∞∑
m=1

Anmq′′m + 2
∑
m

Bnm

∫ s

0
q′′m(σ)φ(s − σ)dσ

= 2brB1n

∫ s

0

wg(σ)
U

ψ′(s − σ)dσ n = 1, 2, 3, . . .

(3.7.95)

where

µ ≡ M

πρSbr
, Ωn ≡ ωnbr

U

Anm ≡ br

S

∫ 1/2

−1/2
g2φnφmdy

Bnm ≡ br

S

∫ 1/2

−1/2
gφnφmdy

S ≡
∫ 1/2

−1/2
2b dy = 2br

∫ 1/2

−1/2
g dy, wing area

(3.7.96)

(3.7.95) is a set of integral-differential equations in one variable, time.
They are mathematically similar to the typical section equations. If
we further restrict ourselves to consideration of translation plus the first
wing bending mode, we have two equations in two unknowns. These may
be solved as in Examples (a) by Laplace Transformation. Alternatively,
Examples (a) and (b) could be handled by numerical integration in the
time domain. Yet another option is to work the problem in the frequency
domain.

(c) Random gusts solution in the frequency domain
.

Pursuing the latter option, we only need replace the Laplace transform
variable, p, by iw where w is the Fourier frequency. For simplicity,
consider again Example (a). (3.7.81) may be written

q̄1

b
= HqG(ω)

wG(ω)

U
(3.7.97)

where

HqG(ω) ≡ 0.565[(iω)3 + 0.5756(iω)2 + 0.093iω + 0.003]
(µ + 0.5)(iω)[iω + 0.13][iω + 1][(iω)3 + a1(iω)2 + a2(iω)a3]
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Figure 3.39. Geometry of pipe.

is a transfer function relating sinusoidal rigid body response to sinusoidal
gust velocity. The poles of the transfer function can be examined for
stability. The mean square response to a random gust velocity can be
written as (cf. equation(3.7.40) in Section 3.3)

¯(q1

b

)2

=
∫ ∞

0
|HqG(ω)|2Φ(wG/U)(wG/U)dω (3.7.98)

Similar expressions can be obtained for two or more degrees of freedom.

3.8. Other Fluid-Structural Interaction
Phenomena

Fluid flow through a flexible pipe:“firehose” flutter
This problem has received a good deal of attention in the research liter-
ature. It has a number of interesting features, including some analogies
to the flutter of plates. Possible technological applications include oil
pipelines, hydraulic lines, rocket propellant fuel lines and human lung
airways.∗ The equation of motion is given by†

EI
∂4w

∂x4
+ m

∂2w

∂t2
+ ρA

[
∂2w

∂t2
+ 2U

∂2w

∂x ∂t
+ U2 ∂2w

∂x2

]
= 0 (3.8.1)

EI bending stiffness of pipe A open area of pipe
m mass/length of pipe w transverse deflection of pipe
ρ fluid density a pipe length
U fluid velocity

We consider a cantilevered pipe clamped at one end of and free at the
other. Previously we had considered a pipe pinned at both ends and

∗Weaver and Paidoussis [27] Also see Daidoussis [28].
†Note that slender body aerodynamic theory is used.
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discovered that a static instability occurred.‡ The present boundary
conditios lead to a dynamic instability, flutter. We shall consider a
classic eigenvalue analysis of this differential equation. Let

w = w̄(x)eiωt (3.8.2)

where the ω are to be determined by the requirement that nontrivial
solutions, w̄(x) �= 0, are sought. Substituting (3.8.2) into (3.8.1) we
have cancelling out the common factor, eiωt

{
EI

d4w̄

dx4
− mω2w̄ + ρA

[
−ω2w̄ + 2Uiω

dw̄

dx
+ U2 d2w̄

dx2

]}
��eiωt = 0

(3.8.3)
This ordinary differential equation may be solved by standard methods.
The solution has the form

w̄(x) =
4∑

i=1

Cie
pix

where p1,. . ., p4 are the four roots of

EIp4 − mω2 + ρA[−ω2 + 2Uiωp + U2p2] = 0 (3.8.4)

The four boundary conditions give four equations for C1, . . . , C4. These
are

w(x = 0) = 0 ⇒ C1 + C2 + C3 + C4 = 0
∂w

∂x
(x = 0) = 0 ⇒ C1p1 + C2p2 + C3p3 + C4p4 = 0

EI
∂2w

∂x2
(x = a) = 0 ⇒ C1p

2
1e

p2a + C2p
2
2e

p2a + C3p
2
3e

p3a + C4p
2
4e

p4a = 0

EI
∂3w

∂x3
(x = a) = 0 ⇒ C1p

3
1e

p2a + C2p
3
2e

p2a + C3p
3
3e

p3a + C4p
37
4 ep4a = 0

(3.8.5)

Setting the determinant of coefficients of (3.8.5) equal to zero gives

D ≡

∣∣∣∣∣∣∣∣
1 1 1 1
p1 p2 p3 p4

p2
1e

p1a p2
2e

p2a p2
3e

p3a p2
4e

p4a

p3
1e

p1a p3
2e

p2a p3
3e

p3a p3
4e

p4a

∣∣∣∣∣∣∣∣ = 0 (3.8.6)

‡Sections 2.5
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(3.8.6) is a transcendental equation for ω which has no known analytical
solution. Numerical solution are obtained as follows. For a given pipe
at a given U one makes a guess for ω (in general a complex number
with real and imaginary parts.) The p1, . . . , p4 are then evaluated from
(3.8.4). D is evaluated from (3.8.6); in general it is not zero and one must
improve upon the original guess for ω (iterate) until D is zero. A new
U is selected and the process repeated. For U = 0, the ω will be purely
real and correspond to the natural frequencies of the pipe including the
virtual mass of the fluid. Hence, it is convenient to first set U = 0 and
then systematically increase it. A sketch of ω vs U is shown below in
nondimensional form. These results are taken from a paper by Paidoussis
who has worked extensively on this problem. When the imaginary part
of ωI becomes negative, flutter occurs. The nondimensional variables
used in presenting these results are (we have changed the notation from
Paidoussis with respect to frequency)

β ≡ ρA/(ρA + m)

u ≡(ρ
AU2

EI
)

1
2 a

Ω ≡ [(m + ρA)/EI]
1
2 ωa2

Also shown are the results obtained by a Galerkin procedure using
the natural modes of a cantilevered beam.

The stability boundary for this system may be presented in terms of
u and β as given in Figure 3.41. Also shown is the frequency, ΩF , of the
flutter oscillation. These results have been verified experimentally by
Gregory and Paidoussis.∗ For a very readable historical and technical
review of this problem, see the paper by Paidoussis and Issid.† A similar
physical problem arises in nuclear reactor fuel bundles where one has a
pipe in an external flow. The work of Chen is particularly noteworthy.‡
For an authoritative discussion of this class of phenomena, see the book
by Paidoussis [31].

(High speed) fluid flow over a flexible wall - a simple
prototype for plate or panel flutter
One type of flutter which becomes of considerable technological interest
with the advent of supersonic flight is called‘panel flutter’. Here the
concern is with a thin elastic plate or panel supported at its edge . For

∗Gregory and Paidoussis [29]
†Paidoussis and Issid [30]
‡Chen [31]
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Figure 3.40a. The dimensionless complex frequency of the four lowest modes off the
system as a function of the dimensionless flow velocity for β = 0.200. —-, Exact
analysis —- four-mode approximation (Galerkin). Numbers on graph are values of u.

Figure 3.40b. The dimensionless complex frequency of the four lowest modes of the
system as a function of the dimensionless flow velocity for β = 0.295.

simplicity consider two dimensional motion. The physical situation is
sketched below.
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Figure 3.41. Flutter boundary for flexible pipe

Figure 3.42. Geometry of elastic plate

Over the top of the elastic plate, which is mounted flush in an oth-
erwise rigid wall, there is an airflow. The elastic bending of the plate
in the direction of the airflow (streamwise) is the essential difference be-
tween this type of flutter and classical flutter of an airfoil as exemplified
by the typical section. It is not our purpose to probe deeply into this
problem here; for a thorough treatment the reader is referred to Dowell.∗

∗Dowell [32]. Also see Bolotin [33]
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Figure 3.43. Geometry of rigid plates with hinges

We shall instead be content to consider a highly simplified model (some-
what analogous to the typical section model for airfoil flutter)which will
bring out some of the important features of this type of problem. Thus
we consider the alternative physical model shown in Figure3.42.† Here
our model consists of three rigid plates each hinged at both ends. The
hinges between the first and second plates and also the second and third
plates are supported by springs. The plates have mass per unit length,
m, and are of length, l. At high supersonic Mach number, M >> 1, the
aerodynamic pressure change (perturbation) p, due to plate motion is
modelled by (see Chapter 4) a quasi-steady or quasi-static form

p =
ρ∞U2∞
M∞

∂w

∂x
(3.8.7)

where w(x, t)∂w
∂x are deflection and slope of any one of the rigid plates.

To write the equations of motion for this physical model we must
recognize that there are two degrees of freedom. It is convenient to
choose as generalized coordinates, q1, q2, the vertical deflections of the
springs.

The potential energy of the model is then

U =
1
2
kq2

1 +
1
2
kq2

2 (3.8.8)

†This was suggested by Dr. H.M. Voss.
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The kinetic energy requires expression for w in terms of q1 and q2 since
the mass is distributed. For each plate we have, in turn,

Plate 1: w = q1
x

l
,

∂w

∂x
= q1/l

Plate 2: w = q1

[
1 − x

l

]
+ q2x/l,

∂w

∂x
=

q2 − q1

l

Plate 3: w = q2

[
1 − x

l

]
,

∂w

∂x
=

−q2

l
(3.8.9)

Because the plates are rigid, the slopes are constant within each plate.
x is measured from the front (leading) edge of each plate. The kinetic
energy is

T =
1
2

∫
m

(
∂w

∂t

)2

dx (3.8.10)

Using (3.8.9) in (3.8.10), we obtain after integration

T =
1
2
ml[(

2
3
)q̇2

1 + (
2
3
)q̇2

2 +
2
6
q̇1q̇2] (3.8.11)

The virtual work done by the aerodynamic pressure is given by

δW =
∫

(−p)δw dx (3.8.12)

and using (3.8.9) in (3.8.12) we obtain

δW = Q1δq1 + Q2δq2 (3.8.13)

where

Q1 ≡ −ρ∞U2∞
M∞

q2/2

Q2 ≡ ρ∞U2∞
M∞

q1/2

Using Lagrange’s equations and (3.8.8), (3.8.11), (3.8.13) the equations
of motion are

2
3
mlq̈1 +

ml

6
q̈2 + kq1 +

ρ∞U2∞
2M∞

q2 = 0

ml

6
q̈1 +

2
3
mlq̈2 + kq2 − ρ∞U2∞

2M∞
q1 = 0

(3.8.14)
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In the usual way we seek an eigenvalue solution to assess the stability of
the system, i.e., let

q1 = q1e
iωt

q2 = q2e
iωt

then (3.8.14) becomes (in matrix notation)

[
−ω2ml

[
2
3

1
6

1
6

2
3

]
+
[

k 0
0 k

]
+

ρ∞U2∞
2M∞

[
0 1
−1 0

]] {
q̄1e

iωt

q̄2e
iωt

}
=
{

0
0

}
(3.8.15)

We seek nontrivial solutions by requiring the determinant of coefficients
to vanish which gives the following (nondimensional) equation after some
algebraic manipulation

15
36

Ω4 − 4
3
Ω2 + 1 + λ2 = 0 (3.8.16)

where

Ω2 ≡ ω2ml

k
, λ ≡ ρ∞U2∞

2M∞k

Solving (3.8.16) for Ω2 we obtain

Ω2 =
8
5
± 2

5
[1 − 15λ2]

1
2 (3.8.17)

When the argument of the square root becomes negative, the solutions
for Ω2 becomes a pair of complex conjugates and hence one solution for
Ω will have a negative imaginary part corresponding to unstable motion.
Hence, flutter will occur for

λ2 > λ2
F ≡ 1

15
(3.8.18)

The frequency at this λF is given by (3.8.17).

ΩF =
[
8
5

] 1
2

For reference the natural frequencies(λ ≡ 0) are from (??).

Ω1 = (
6
5
)

1
2 and Ω2 = (2)

1
2

From (3.8.15)(say the first of the equations) the eigenvector ratio may
be determined

1st Natural Mode:
q̄1

q̄2
= +1 for Ω = Ω1 at λ = 0
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FLUTTER MODE

MODE

MODE

1

2nd

st

Figure 3.44. Natural modes and flutter mode

2nd Natural Mode:
q̄1

q̄2
= −1 for Ω = Ω2 at λ = 0

and at flutter :

Flutter Mode:
q̄1

q̄2
= −4 + 15

1
2 for Ω = ΩF , λ = λf

Sketches of the corresponding plate shapes are given below. The im-
portant features of this hinged rigid plate model which carry over to an
elastic plate are:

(1) The flutter mechanism is a convergence of natural frequencies
with increasing flow velocity. The flutter frequency is between the first
and second natural frequencies. In this respect it is similar to classical
bending-torsion flutter of an airfoil.

(2) The flutter mode shape shows a maximum nearer the rear edge of
the plate (rather than the front edge).

There are, of course, some oversimplifications in the rigid plate model.
For example, the plate length does not affect the flow velocity at which
flutter occurs. For an elastic plate, it would. Also in subsonic flow
the curvature of the plate has a strong influence on the aerodynamic
pressure. In the rigid plate model, the curvature is identically zero, of
course. Nevertheless the model serves a useful purpose in introducing
this type of flutter problem. For a review of the recent literature on
panel flutter, see Mei et al [34].
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Chapter 4

NONSTEADY AERODYNAMICS OF
LIFTING AND NON-LIFTING SURFACES

4.1. Basic Fluid Dynamic Equations
Nonsteady aerodynamics is the study of time dependent fluid motion

generated by (solid) bodies moving in a fluid. Normally (and as distinct
from classical acuostics) the body motion is composed of a (large) steady
motion, plus a (small) time dependent motion. In classical acoustics no
(large) steady motions are examined. On the other hand, it should be
said, in most of classical aerodynamic theory small time dependent mo-
tions are ignored, i.e. only small steady perturbations from the original
steady motion are usually examined. However in a number of problems
arising in aeroelasticity, such as a flutter and gust analysis, and also in
fluid generated noise, such as turbulent boundary layers and jet wakes,
the more general case must be attacked. It shall be our concern here.∗
The basic assumptions about the nature of the fluid are that it be invis-
cid and its thermodynamic processes be isentropic. We shall first direct
our attention to a derivation of the Equations of motion, using the ap-
paratus of vector calculus and, of course, allowing for a large mean flow
velocity Let us recall some purely mathematical relationships developed
in the vector calculus. These are all variations of what is usually termed
Gauss’ theorem.†

I
∫∫

c�n dA =
∫∫∫ ∇c dV

∗References: Chapter 7, Liepmann [1]. Chapters 4, BA pp.70–81, Brief Review of Funda-
mentals; pp. 82–152, Catalog of available results with some historical perspective (1962).
Chapters 5,6,7, BAH, Detailed discussion of the then state-of-the art (1955) now largely of
interest to aficionados. Read pp.188–200 and compare with Chapter 4, BA. AGARD, Vol.,
II.
†Hildebrand [2]

169
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II
∫∫

�b · �n dA =
∫∫∫ ∇ ·�b dV

III
∫∫

�a(�b · �n) dA =
∫∫

[�a(∇ ·�b) + (�b · ∇)�a] dV

Also
IV ∇(�a · �a) = 2(�a · ∇)�a + 2�a × (∇× �a) (IV)

In the above, V is an arbitrary closed volume, A its surface area and �a
and �b are arbitrary vectors and c an arbitrary scalar.

Conservation of mass
Consider an arbitrary but fixed volume of fluid, V , enclosed by a surface,
A. �q is the (vector) fluid velocity, dA is the surface elemental area, �n
is the surface normal, �q · �n is the (scalar) velocity component normal
to surface,

∫∫
ρ�q · �n dA is the rate of mass flow (mass flux) through

surface, positive outward, ∂/∂t
∫∫∫

ρ dV is the rate of mass increase
inside volume and =

∫∫∫
(∂ρ/∂t)dV since V , through arbitrary, is fixed.

The physical principle of continuity of mass states that the fluid in-
crease inside the volume = rate of mass flow into volume through the
surface. ∫ ∫ ∫

∂ρ

∂t
dV = −

∫ ∫
ρ�q · �ndA (4.1.1)

Using II, the area integral may be transformed to a volume integral.
(4.1.1) then reads:∫∫∫

∂ρ

∂t
dV = −

∫∫∫
∇ · (ρ�q)dV

or∫ ∫ ∫
[
∂ρ

∂t
+ ∇ · (ρ�q)]dV = 0

(4.1.2)

Since V is arbitrary, (4.1.2)

∂ρ

∂t
+ ∇ · (ρ�q) = 0 (4.1.3)

This is the conservation of mass, differential equation in three dimen-
sions. Alternative forms are:

∂ρ

∂t
+ ρ∇ · �q + (�q · ∇)ρ = 0

Dρ

Dt
+ ρ(∇ · �q) = 0 (4.1.4)

where
D

Dt
≡ ∂

∂t
+ (�q · ∇)
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Conservation of momentum
The conservation or balance of momentum equation may be derived in
a similar way. ∫ ∫ ∫

∂

∂t
(ρ�q)dV

is the rate of momentum increase inside the volume∫ ∫
ρ�q(�q · �n)dA

is the rate of momentum flow (momentum flux) through surface, positive
outward ∫ ∫

−p�n dA

is the force acting on volume (recall �n is positive outward)
The physical principal is that the total rate of change of momentum

= force acting on V .∫ ∫ ∫
∂(ρ�q)

∂t
dV +

∫ ∫
ρ�q(�q · �n)dA =

∫ ∫
−p�n dA (4.1)

Using I and III to transform the area integrals and rearranging terms,∫ ∫ ∫
{ ∂

∂t
(ρ�q) + ρ�q(∇ · �q) + (�q · ∇)ρ�q + ∇p}dV = 0 (4.1.6)

Again because V is arbitrary,

∂

∂t
(ρ�q) + ρ�q(∇ · �q) + (�q · ∇)ρ�q = −∇p (4.1.7)

Alternative forms are

D

Dt
(ρ�q) + ρ�q(∇ · �q) = −∇p

or
ρ
D�q

Dt
+ �q[ρ∇ · �q +

Dρ

Dt
] = −∇ρ (4.1.8)

where the bracketed term in (4.1.8) vanishes from (4.1.4).
Finally to complete our system of equations we have the isentropic

relation,
p/ργ = constant (4.1.9)

(4.1.3),(4.1.8) and (4.1.9) are five scalar equations (or two scalar plus
one vector equations) in five scalar unknowns: p, p and three scalar
components of the (vector) velocity, �q
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Irrotational flow, Kelvin’s theorem and Bernoulli’s
equation
To solve these nonlinear, partial differential equations we must integrate
them. Generally, this is an impossible task except by numerical proce-
dures. However, there is one integration that may be preformed which
is both interesting theoretically and useful for application.

Consider the momentum equation which may be written

D�q

Dt
=

−∇p

ρ
(4.1.10)

On the right-hand side, using Leibnitz’ Rule,∗ we may write

∇p

ρ
= ∇

∫ p

pref

dp1

ρ1(p1)
(4.1.11)

where ρ1, p1 are dummy integration variables, and pref some constant
reference pressure on the left-hand side

D�q

Dt
≡ ∂�q

∂t
+ (�q · ∇)�q

In the above the second term may be written as

(�q · ∇)�q = ∇(�q · �q)
2

from IV

and if we assume the flow is irrotational,

�q = ∇φ (4.1.12)

where φ is the scalar velocity potential. (4.1.12) implies and is implied
by

∇× �q = 0 (4.1.13)

The vanishing of the curl of velocity is a consequence of Kelvin’s Theorem
which states that a flow which is initially irrotational, ∇×�q = 0, remains
so at all subsequent time in the absent of dissipation, e.g., viscosity or
shock waves. It can be proven using (4.1.3), (4.1.8) and (4.1.9). No
additional assumptions are needed.

Let us pause to prove this result. We shall begin with the momentum
equation.

D�q

Dt
= −∇p

ρ

∗Hildebrand [2], pp.348–353.
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First form ∇× and then dot the result into �nA dA and integrate over A.
�nA is a unit normal to A and A itself is an arbitrary area of the fluid.
The result is

D

Dt

∫ ∫
(∇× �q) · �qA dA = −

∫ ∫
[∇× (

∇p

ρ
)] · �nA dA

From Stokes Theorem,∗

−
∫ ∫

[∇× (
∇p

ρ
)] · �nA dA = −

∫ ∇p

ρ
· d�r

= −
∮

dp

ρ

d�r ≡ arc length along contour of the bounding arc of A. Since the
bounding contour is closed, and ρ is solely a function of p,∮

dp

ρ
= 0

Hence
D

Dt

∫ ∫
(∇× �q) · �nA dA = 0

Since A is arbitrary
∇× �q = constant

and if ∇× �q = 0 initially, it remains so thereafter.
Now let us return to the integration of the momentum equation,

(4.1.10). Collecting the several terms from (4.1.10) - (4.1.12), we have

∂

∂t
(∇φ) + ∇(∇φ · ∇φ)

2
+ ∇

∫ p

pref

dp1

ρ1
= 0 (4.1.14)

or
∇[

∂φ

∂t
+

∇φ · ∇φ

2
+ ∇

∫ p

pref

dp1

ρ1
] = 0

or
∂φ

∂t
+

∇φ · ∇φ

2
+ ∇

∫ p

pref

dp1

ρ1
= F (t) (4.1.15)

We may evaluate F (t) by examining the fluid at some point where we
know its state. For example, if we are considering an aircraft or missile
flying at constant velocity through the atmosphere we know that far
away from the body

�p = U∞�i

∗Hildebrand [2], p.318.
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φ = U∞x

p = p∞
If we choose as the lower limit, pref = p∞ then (4.1.15) becomes

0 +
U2∞
2

+ 0 = F (t)

and we find that F is a constant independent of space and time. Hence
finally

∂φ

∂t
+

∇φ · ∇φ

2
+
∫ p

p∞

dp1

ρ1
=

U2∞
2

(4.1.16)

(4.1.16) is usually referred to as Bernoulli’s equation although the deriva-
tion for nonsteady flow is due to Kelvin.

The practical value of Bernoulli’s equation is that it allows one to
relate p to φ. Using

p

p∞
= (

p

p∞
)γ

one may compute from (4.1.16) (the reader may do the computation)

Cp =
p − p∞
γ
2p∞M2

=
2

γM2
{[1 +

γ − 1
2

M2(1 − (�q · �q + 2∂φ
∂t )

U2∞
)]γ/(γ−1) − 1}

(4.1.17)
where the Mach number is

M2 ≡ U2∞
a2∞

and
az ≡ dp

dρ
=

γp

ρ

a is the speed of sound

Derivation of a single equation for velocity potential
Most solutions are obtained by solving this equation

We shall begin with the conservation of mass equation (4.1.14)

1
ρ

∂ρ

∂t
+

�q · ∇ρ

ρ
+ ∇ · �q = 0 (4.1.4)

Consider the first term. Using Leibnitz’ rule we way write

∂

∂t

∫ 2

p∞

dp1

ρ1
=

∂ρ

∂t

dp

dρ

d

dp

∫ p

p∞

dp1

ρ1
=

∂ρ

∂t
a2 1

ρ
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Thus

1
ρ

∂ρ

∂t
=

1
a2

∂

∂t

∫ p

p∞

dp1

ρ1
= − 1

a2

∂

∂t
[
∂φ

∂t
+

∇φ · ∇φ

2
] (4.1.18)

from Bernouilli’s equation (4.1.16)
In similar fashion, the second term may be written

�q · ∇ρ

ρ
=

−�q · ∇
a2

[
∂φ

∂t
+

∇φ · ∇φ

2
] (4.1.19)

Finally, the third term

∇ · �q = ∇ · ∇φ = ∇2φ (4.1.20)

Collecting terms, and rearranging

− 1
a2

{
∂2φ

∂t2
+

∂

∂t

(∇φ · ∇φ

2

)
+ ∇φ · ∂

∂t
∇φ + ∇φ · ∇

(∇φ · ∇φ

2

)}
+ ∇2φ = 0

∇2φ − 1
a2

[
∂

∂t
(∇φ · ∇φ) +

∂2φ

∂t2
+ ∇φ · ∇

(∇φ · ∇φ

2

)]
= 0

(4.1.21)

Note we have not yet accomplished what we set out to do, since (4.1.21)
is a single equation with two unknowns, φ and a. A second independent
relation between φ and a is needed.

The simplest method of obtaining this is to use

a2 ≡ dp

dρ

and
p

ργ
= constant

in Bernoulli’s equation. The reader may verify that

a2 − a2∞
γ − 1

=
U2∞
2

− (
∂φ

∂t
+

∇φ · ∇φ

2
) (4.1.22)

Small perturbation theory
(4.1.21) and (4.1.22) are often too difficult to solve. Hence a simpler
approximate theory is sought.
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As in acoustics we shall linearize about a uniform equilibrium state.
Assume

a = a∞ + â

p = p∞ + p̂

ρ = ρ∞ + ρ̂

�q = U∞�i + �̂q ∇φ = U∞�i + ∇φ̂

φ = U∞x + φ̂

(4.1.23)

Note in the present case we linearize about a uniform flow with velocity,
U∞. Using (4.1.23) in (4.1.21) and retraining lowest order terms:

First term:
∇2φ → ∇2φ̂

Second term:
∂

∂t
(∇φ · ∇φ) +

∂2φ

∂t2
+ ∇φ · ∇(

∇φ · ∇φ

2
)

=2[U∞�l + ∇φ̂] · ∂

∂t
[U∞�l + ∇φ̂] +

∂2φ̂

∂t2

+ [U∞�l + ∇φ̂] · ∇[
U2∞
2

+ U∞�l · ∇φ̂ +
1
2
∇φ̂ · ∇φ̂]

=2U∞
∂2φ̂

∂x∂t
+

∂2φ̂

∂t2
+ U2

∞
∂2φ̂

∂x2
+ O(φ̂2)

Thus the linear or small perturbation equation becomes

∇2φ̂ − 1
a2∞

[
∂2φ̂

∂t2
+ 2U∞

∂2φ̂

∂x∂t
+ U2

∞
∂2φ̂

∂x2
] = 0 (4.1.24)

Note that we have replaced a by a∞ which is correct to lowest order. By
examining (4.1.22) one may show that

â = −γ − 1
2

[∂φ̂
∂t + U∞ ∂φ̂

∂x ]
a∞

(4.1.25)

Hence it is indeed consistent to replace a by a∞as long as M is not too
large where M ≡ U∞/a∞.

In a similar fashion the relationship between pressure and velocity
potential, (4.1.17), may be linearized

Cp 
 p̂
γ
2p∞M2

= − 2
U∞

∂φ̂

∂x
− 2

U2∞

∂φ̂

∂t

or

p̂ = −ρ∞[
∂φ̂

∂t
+ U∞

∂φ̂

∂x
] (4.1.26)



Nonsteady Aerodynamics (Dowell) 177

Reduction to classical acoustics
By making a transformation of coordinates to a system at rest with
respect to the fluid, we may formally reduce the problem to that of
classical acoustics.

Define
x′ ≡ x − U∞t

y′ ≡ y

z′ ≡ z

t′ ≡ t

then
∂

∂x
=

∂

∂x′

∂

∂x
=

∂x′

∂t

∂

∂x′ +
∂t′

∂t

∂

∂x′

= −U∞
∂

∂x′ +
∂

∂t′

and (4.1.24) becomes the classical wave equation

∇′2φ̂ − 1
a2∞

∂2φ̂

∂t′2
= 0 (4.1.27)

and (4.1.26) becomes

p̂ = −ρ∞
∂φ̂

∂t′

The general solution to (4.1.27) is

φ̂ = f(αx′ + βy′ + εz′ + a∞t′) + g(αx′ + βy′ + εz′ − a∞t′)

where
α2 + β2 + ε2 = 1

Unfortunately the above solution is not very useful, nor is the primed
coordinate system, is it is difficult to satisfy the boundary conditions
on the moving body in a coordinate system at rest with respect to the
air (and hence moving with respect to the body). That is, obtaining
solutions of (4.1.24) or (4.1.27)is not especially difficult per se. It is
obtaining solutions subject to the boundary conditions of interest which
is challenging.
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F(x+ x, y+ z, t+ t)=0y, z+

F(x,y,z,t)=0

r + r

r

Figure 4.1. Body geometry

Boundary conditions
We shall need to consider boundary conditions of various types and also
certain continuity conditions as well. In general we shall see that, at
least in the small perturbation theory, it is the boundary conditions,
rather than the equation of motions per se, which offer the principal
difficulty.

The BODY BOUNDARY CONDITION states the normal velocity of
the fluid at the body surface equals the normal velocity of the body.

Consider a body whose surface is described by F (x, y, z, t) = 0 at
some time, t, and at some later time, t + ∆t, by F (x + ∆x, y + ∆y, z +
∆z, t + ∆t) = 0. See Figure 4.1 Now

∆F ≡ F (�r + ∆�r, t + ∆t) − F (�r, t) = 0

and also

∆F =
∂F

∂x
∆x +

∂F

∂y
∆y +

∂F

∂z
∆z +

∂F

∂t
∆t

= ∇F · ∆�r +
∂F

∂t
∆t

Thus

∇F · ∆�r +
∂F

∂t
∇t = 0 (4.1.28)
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Now
�n =

∇F

|∇F | unit normal (4.1.29)

also
�V ≡ lim

∆t→0

∆�r

∆t
≡ body velocity

Thus the body normal velocity is

�V · �n =
∆�r

∆t
· ∇F

|∇F

= −∂F

∂t

1
|∇F | from(4.1.28)

(4.1.30)

The boundary condition on the body is, as stated before, the normal
fluid velocity equals the normal body velocity on the body. Thus, using
(4.1.28) and (4.1.29) one has

�q · �n = �q · ∇F

|∇F | = −∂F

∂t

1
|∇F | (4.1.31)

or
∂F

∂t
+ �q · ∇F = 0 (4.1.32)

on the body surface
F = 0

Example. Planar (airfoil) surface

F (x, y, z, t) ≡ z − f(x, y, t)

where f is the height above the plane, z = 0, of the airfoil surface. See
Figure 4.2. (4.1.32) may be written:

−∂f

∂t
+ [(U∞ + u)�ı + v�j + w�k] ·

[
−∂f

∂x
�ı − ∂f

∂y
�j + �k

]
= 0

or
∂f

∂t
+ (U∞ + u)

∂f

∂x
+ v

∂f

∂y
= w (4.1.33)

on
z = f(x, y, t) (4.1.34)

One may approximate (4.1.33) and (4.1.34) using the concept of a Taylor
series about z = 0 and noting that u � U∞.

∂f

∂t
+ U∞

∂f

∂x
= w on z = 0 (4.1.35)
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z u
zl

UPPER SURFACE OF
AIRFOIL

LOWER  SURFACE OF AIRFOIL
x

z

Figure 4.2. Airfoil geometry.

Note

wz=f = wz=0 +
∂w

∂z

∣∣∣
z=0

f + H.O.T.


 wz=0

to a consistent approximation within the context of small perturbation
theory.

Symmetry and anti-symmetry
One of the several advantages of linearization is the ability to divide the
aerodynamic problem into two distinct cases, symmetrical (thickness)
and anti-symmetrical (lifting) flow. If one denotes the upper surface by

fupper = zu(x, y, t)

and the lower surface by

flower = zl(x, y, t)

then it is useful to write
zu ≡ zt + zL (4.1.36)

zl ≡ −zt + zL

where (4.1.36) defines zt, thickness, and zL, lifting contributions to zu

and zl.
One may retreat the thickness and lifting cases separately (due to

linearity) and superimpose their results for any zu and zl. The thickness
case is much simpler than the lifting case as we shall see.
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Recall (4.1.35), (we henceforward drop the ∧ on φ, p)

∂f

∂t
+ U∞

∂f

∂x
=

∂φ

∂z

∣∣∣
z=0+ or 0−

(4.1.35)

where + denotes the upper surface and - denotes the lower. From (4.1.35)
and (4.1.36), one sees that

Thickness case

∂φ

∂z
is anti-symmetric with respect to z (discontinuous across airfoil)

hence φ is symmetric (and also p).

Lifting case

∂φ

∂z
is symmetric with respect to z (continuous across airfoil)

hence φ is anti-symmetric (and also p).
Consider now the pressure difference across the airfoil.

∆p ≡ pl − pu = −ρ

[
∂∆φ

∂t
+ U∞

∂∆φ

∂x

]
Thus ∆p = 0 for the thickness case, i.e., there is no lift on the airfoil.

The OFF-BODY BOUNDARY CONDITIONS (these are really con-
tinuity conditions), state that p and �q ·�n are continuous across any fluid
surface. In particular, for z = 0,

pu = pl and
∂φ

∂z

∣∣∣
u

=
∂φ

∂z

∣∣∣
l

(4.1.37)

(4.1.37) may be used to prove some interesting results.

Thickness case
∂φ

∂z
= 0 off wing

This follows from the fact that since ∂φ/∂z is anti-symmetric, one has

∂φ

∂z

∣∣∣
0+

= −∂φ

∂z

∣∣∣
0−

But from the second of (4.1.37), this can only be true if

∂φ

∂z

∣∣∣
0+

=
∂φ

∂z

∣∣∣
0−

= 0
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Lifting case
p = 0 off wing

This follows in a similar way using the anti-symmetry of p and the first
of (4.1.37).

The BOUNDARY CONDITIONS AT INFINITY are conditions of
finiteness or outwardly propagating waves (Sommerfeld radiation condi-
tion) which will be imposed at infinity, z → ±∞.

4.2. Supersonic Flow
It is convenient to distinguish between various flow regimes on the

basis of geometry (two or three dimensions) and Mach number (sub-
sonic or supersonic). We shall not give a historical development, but
shall instead begin with the simplest regime and proceed to the more
difficult problems. Our main focus will be the determination of pressure
distributions on airfoils and wings.

Two-dimensional flow
This flow regime∗ is the simplest as the fluid ahead of the body remains
undisturbed and that behind the body does not influence the pressure
distribution on the body. These results follow from the mathematics,
but they also can be seen from reasonably simple physical considera-
tions. Take a body moving with velocity, U∞, through a fluid whose
undisturbed speed of sound is a∞, where M ≡ U∞/a∞ > 1. At any
point in the fluid disturbed by the passage of the body, disturbances
will propagate to the right with velocity, +a∞, and to the left, −a∞
with respect to the fluid. That is, as viewed in the prime coordinate
system. The corresponding propagation velocities as seen with respect
to the body or airfoil will be:

U∞ − a∞ and U∞ + a∞

Note these are both positive, hence the fluid ahead of the airfoil is never
disturbed; also disturbance behind the airfoil never reach the body. For
subsonic flow, M < 1, the situation is more complicated. Even for
three-dimensional, supersonic flow one must consider possible effects of
disturbances off the side edges in the third dimension. Hence the two-
dimensional, supersonic problems offers considerable simplification.

One of the consequences of the simplicity, as we will see, is that no
distinction between thickness and lifting cases need be made as far as

∗See van der Vooren [3]
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the mathematics is concerned. Hence the body boundary conditions is
(considering z > 0)

∂φ

∂z

∣∣∣
z=0

=
∂za

∂t
+ U∞

∂za

∂x
≡ wa (4.2.1)

where one may use the notation za ≡ f interchangeably and the equation
of fluid motion is

∇2
x,zφ − 1

a2∞
[
∂

∂t
+ U∞

∂

∂x
]2φ = 0 (4.2.2)

Simple harmonic motion of the airfoil
Most of the available literature is for simple harmonic motion, that is:

za = z̄a(x)eiωt

wa = w̄a(x)eiωt

φ = φ̄(x, z)eiωt

p = p̄(x, z)eiwt

(4.2.3)

Hence we shall consider this case first. Thus (4.2.1) becomes:

∂φ̄

∂z
��eiωt = w̄a�

�eiωt (4.2.4)

and (4.2.2)

φ̄xx + φ̄zz − 1
a2∞

[−ω2φ̄ + 2iωU∞
∂φ̄

∂x
+ U2

∞
∂2φ̄

∂x2
] = 0 (4.2.5)

Since φ̄, ∂φ̄/∂x, etc., are zero for x < 0, this suggests the possibility of
using a Laplace Transform with respect to x, i.e.,

Φ(p, z) ≡ L{φ̄} =
∫ ∞

0
φ̄e−pxdx (4.2.6)

W (p) ≡ L{w̄a} =
∫ ∞

0
w̄ae

−pxdx (4.2.7)

Taking a transform of (4.2.4) and (4.2.5) gives:

dΦ
dz

∣∣∣
z=0

= W (4.2.8)

d2Φ
dz2

= µ2Φ (4.2.9)
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where

µ2 ≡ (M2 − 1)p2 + 2Mi
ωp

a∞
− ω2

a2∞

= (M2 − 1){[p +
iMω

a∞(M2 − 1)
]2 +

ω2

a2∞(M2 − 1)2
}

Note M ≡ U∞/a∞. (4.2.8) and (4.2.9) are now equations we can solve.
The solution to (4.2.9) is

Φ = Aeµz + Be−µz (4.2.10)

Select A ≡ 0 to keep Φ finite as z → +∞. Hence

Φ = Be−µz

where B can be determined using (4.2.8). From the above,

dΦ
dz

|z=0 = −µB

Using this result and (4.2.8), one has

−µB = W

or
B = −W/µ

and hence
Φ = −(W/µ)e−µz (4.2.11)

Inverting (4.2.11), using the convolution theorem,

φ̄ = −
∫ x

0
w̄a(ξ)L−1{e−µz

µ
}dξ (4.2.12)

and, in particular,

φ̄(x, z = 0) = −
∫ x

0
w̄a(ξ)L−1{ 1

µ
}dξ

From H. Bateman, ‘Table of Integral Transforms’, McGraw-Hill, 1954

L−1{ 1√
p2 + α2

} = J0(αx)

L−1{F (p + a)} = e−ax{(x)



Nonsteady Aerodynamics (Dowell) 185

where L−1{F (p)} ≡ f(x). Thus

L−1{ 1
µ
} =

exp[− iMω
a∞(M2−1)

(x − ξ)]

(M2 − 1)
1
2

J0[
ω

a∞(M2 − 1)
(x − ξ)] (4.2.13)

L−1{eµz/µ} may be computed by similar methods. In nondimensional
terms,

φ̄(x∗, 0) = − 2b

(M2 − 1)
1
2

∫ x∗

0
w̄(ξ∗) exp[−iω̄(x∗ − ξ∗)]J0[

w̄

M
(x∗ − ξ∗)]dξ∗

(4.2.14)
where

ω̄ ≡ kM2

M2 − 1
, k ≡ 2bω

U∞
is a reduced frequency and

x∗ ≡ x/2b, ξ∗ ≡ ξ/2b

One can now use Bernoulli’s equation to compute p

p = −ρ∞[
∂φ

∂t
+ U∞

∂φ

∂x
]

or
p̄ = −ρ∞[iωφ̄ + U∞

∂φ

∂x
]

=
ρ∞U∞

2b
[
∂φ̄

∂x∗ + ikφ̄]

Using Leibnitz’ rule,

p̄ = − ρ∞U2∞
(M2 − 1)

1
2

{
∫ x∗

0
[ik

w̄a

U∞
+

1
U∞

dw̄

dξ∗
]e−···J0[· · · ]dξ∗

+
w̄(0)
U∞

e−iωx∗
J0[

ω̄

M
x∗]}

(4.2.15)

Discussion of inversion
The above inversion was something less than rigorous and, what is more
important, in at least one substantial aspect it was misleading. Let us
reconsider it, therefore, now that the general outline of the analysis is
clear.

Formally the inversion formula reads:

φ̄(x, z) =
1

2πi

∫ i∞

−i∞
Φ(p, z)epxdp (4.2.16)
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Define α ≡ ip, (α can be thought of as a Fourier transform variable),
then

φ̄(x, z) =
1
2π

∫ ∞

−∞
Φ(−iα, z)e−iαxdα (4.2.17)

and

µ =
√

M2 − 1

√
−[−α +

Mω

a∞(M2 − 1)
]2 +

ω2

a2∞(M2 − 1)2

where
Φ = ±W

µ
e±µz (4.2.18)

Consider now µ as α = −∞ → +∞. The quantity under the radical
changes sign at

α = α1, α2 =
w

a∞
1

M ± 1
where µ = 0. Thus

µ = ±i|µ| for α < α1 or α > α2

= ±|µ| for α1 < α < α2

where

|µ| = (M2 − 1)
∣∣∣− [−α +

Mω

a∞(M2 − 1)
]2 +

ω2

a2∞(M2 − 1)2
| 12

In the interval, α1 < α < α2, we have seen we must select the minus
sign so that Φ is finite at infinity. What about elsewhere? In particular,
when α < α1 and/or α > α2?

The solution for φ = φ̄eiwt has the form

φ = − 1
2π

∫ ∞

−∞
±W

µ
exp(±µz − iαx + iωt)dα (4.2.19)

In the intervals α < α1 and/or α > α2, (4.2.19) reads:

φ = − 1
2π

∫ ∞

−∞
±i

W

|µ|exp(±i|µ|z − iαx + iωt)dα (4.2.20)

To determine the proper sign, we require that solution represent an
outgoing wave in the fluid fixed coordinate system, i.e., in the prime
system. In the prime system x′ = x − U∞t, z′ = z, t′ = t and thus

φ = − 1
2π

∫ ∞

∞
±i

W

|µ|exp[±i|µ|z′ − iαx′ + i(ω − U∞α)t′]dα (4.2.21)
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e-

α

α α α1 3 2

e
µz’- e

i|µ| z’
i|µ | z’

Consider a z′,t′ wave for fixed x′. For a wave to be outgoing, if w−U∞α >
0 then one must choose - sign while if ω −U∞α < 0 then choose + sign.
Note that

ω − U∞α = 0

when
α = α3 ≡ ω

U∞
=

ω

a∞M

also note that

ω

a∞(M + 1)
≡ α1 < α3 < α2 ≡ ω

a∞(M − 1)

Thus the signs are chosen as sketched below. Here again

α1 ≡ w

a∞
1

M + 1
α2 ≡ w

a∞
1

M − 1
α3 ≡ w

a∞
1
M

The reader may find it of interest to consider the subsonic case, M < 1,
using similar reasoning.

Knowing the appropriate choice for µ in the several intervals, (4.2.19)-
(4.2.21) may be integrated numerically, or by contour integration. The
inversion formula used previously were obtained by contour integration.

Discussion of physical significance of the results
Because of the complicated mathematical form of our solution, it is dif-
ficult to understand its physical significance. Perhaps it is most helpful
for this purpose to consider the limits of low and high frequency.
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One may show that (from (4.2.11) et. seq. or (4.2.15))∗

ω → 0: steady flow

p(x) → ρ∞U2∞√
M2 − 1

wa

U
(x), p(x, z) =

ρ∞U2∞
β

wa(x − βz)
U∞

wa

U∞
→ ∂f

∂x
β ≡

√
M2 − 1

ω → ∞: highly unsteady flow

p(x, t) → ρ∞U2∞
M

wa(x, t)
U∞

, p(x, z, t) =
ρ∞U2∞

M

wa

U∞
(x − Mz, t)

wa

U∞
→ 1

U∞
∂f

∂t
+

∂f

∂x

The latter result may be written as

p = ρ∞a∞wa

which is the pressure on a piston in a long, narrow (one-dimensional)
tube with ω the velocity of the piston. It is, therefore, termed ‘piston
theory’ for obvious reasons. Note that in the limits of low and high fre-
quency the pressure at point x depends only upon the downwash at the
same point. For arbitrary ω, the pressure a one point depends in general
upon the downwash at all other points. See (4.2.15). Hence the flow has
a simpler behavior in the limits of small and large ω than for interme-
diate ω. Also recall that low and high frequency may be interpreted
in the time domain for transient motion as long and short time respec-
tively. This follows from the initial and final value Laplace Transform
theorems.∗ For example, if we consider a motion which corresponds to
a step change in angle of attack, α, we have

f = −xα for t > 0

= 0 for t < 0

wa = −α for t > 0

wa/U∞ = 0 for t < 0

∗See the appropriate example problem in Appendix II for details.
∗Hildebrand [2].
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Hence for short time, (large w)

p =
−ρ∞U2∞

M
α

and long time, (small ω)

p =
−ρ∞U2∞α√

M2 − 1

The result for short time may also be deduced by applying a Laplace
Transform with respect to time and taking the limit t → 0 of the formal
inversion.

General comments. A few general comments should be made about the
solution. First of all, the solution has been obtained for simple harmonic
motion. In principle, the solution for arbitrary time dependent motion
may be obtained via Fourier superposition of the simple harmonic mo-
tion result. Actually it is more efficient to use a Laplace Transform with
respect to time and invert the time variable prior to inverting the spatial
variable, x. Secondly, with regard to the distinction between the lifting
and thickness cases, one can easily show by direct calculation and using
the method applied previously that

thickness z = 0+ w = wa p = p+

z = 0− w = −wa p = p+

lifting z = 0+ w = wa p = p+

z = 0− w = wa p = −p+

where p+ is the solution previously obtained. Of course these results
also follow from our earlier general discussion of boundary conditions.

Gusts
Finally it is of interest to consider how aerodynamic pressures develop
on a body moving through a nonuniform flow, i.e., a ‘gust’. If the body is
motionless, the body boundary condition is that the total fluid velocity
be zero on the body.

∂φ

∂z

∣∣∣
z=0

+ wG = 0

where wG is the specified vertical ‘gust’ velocity and ∂φ/∂z is the per-
turbation fluid velocity resulting from the body passing through the gust
field. Hence in our previous development we may replace w by - wGand
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the same analysis then applies. Frequently one assumes that the gust
field is ‘frozen’, i.e., fixed with respect to the fluid fixed coordinates,
x′, y′, z′, t′. Hence

wG = wG(x′, y′)

= wG(x − U∞t, y)

Further a special case is a ‘sharp edge’ gust for which one simply has

wG = w0 for x′ < 0

= 0 for x′ > 0

or

wG = w0 for t > x/U∞

= 0 for t < x/U∞

These special assumptions are frequently used in applications.
Solutions for the sharp edge gust can be obtained through superpo-

sition of (simple harmonic motion)sinusoidal gusts. However, it is more
efficient to use methods developed for transient motion. Hence before
turning to three-dimensional supersonic flow, we consider transient mo-
tion. Transient solutions can be obtained directly (in contrast to Fourier
superposition of simple harmonic motion results) for a two-dimensional,
supersonic flow.

Transient motion
Taking a Laplace transform with respect to time and a Fourier transform
with respect to the streamwise coordinate, x, the analog of (4.2.11) is

LF{φ}at z=0 = −LFwa

µ
(4.2.22)

iω ≡ s is the Laplace Transform variable (where ω was the frequency in
the simple harmonic motion result), α is the Fourier transform variable
(where iα ≡ p was the Laplace transform variable used in the previous
simple harmonic motion result), L ≡ Laplace transform , F ≡ Fourier
transform, and

µ2 ≡ −(M2 − 1)α2 + 2
Msi

a∞
α +

s2

a2∞
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Inverting the Laplace Transform, and using ∗ to denote a Fourier trans-
form

φ∗|at z=0 = −
∫ t

0
w∗(τ)L−1{ 1

µ
}|t−τdτ

= −a∞
∫ t

∞
w∗(τ) exp[−iαMa∞(t − τ)]J0[a∞α(t − τ)]dτ

(4.2.23)

Now from (4.1.26),

p∗ = −ρ∞
[
∂φ∗

∂t
+ U∞iαφ∗

]
Thus using (4.2.23) and the above,

p∗ = ρ∞
{

a∞w∗(t) − a2
∞

∫ t

0
w∗(τ)αexp[−iαMa∞(t − τ)]J1[αa∞(t − τ)]dτ

}
≡ p∗0 + p∗1

(4.2.24)

Finally, a formal solution is obtained using

p =
1
2π

∫ ∞

−∞
p∗eiαxdα (4.2.25)

The lift is obtained by using (4.2.24) and (4.2.25) in its definition below.

L ≡ −2
∫ 2b

0
p dx = −2ρ∞a∞

∫ 2b

0
w dx − 1

π

∫ ∞

−∞
p∗1

[
eiα2b − 1

iα

]
dα

(4.2.26)
In the second term the integration over x has been carried out explicitly.

Lift, due to airfoil motion
Considering a translating airfoil, wa = −dh/dt, for example, we have

w∗ = −dh

dt

[e−iα2b − 1]
−iα

and

L = 2ρ∞a∞
dh

dt
(2b)

+ ρ∞a2
∞

∫ t

0

dh

dt
(τ)K(t − τ)dτ

(4.2.27)
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x’

Figure 4.3. Frozen gust geometry in fluid fixed coordinate system.

where

K(t − τ) ≡ − 1
π

∫ ∞

−∞

exp[−iαMa∞(t − τ)]
α

J1[eiα2b − 1][e−iα2b − 1]dα

K may be simplified to

K(t − τ) = − 4
π

∫ ∞

0

J1[a∞α(t − τ)] cos[αMa∞(t − τ)]
α

· [1 − cos α2b]dα

One can similarly work out areodynamic lift (and moment) for pitching
and other motions.

Lift, due to atmospheric gust
For a ‘frozen gust’,

wG(x − U∞t) = wG(x′)

x, t are coordinates fixed with respect to airfoil and x′, t′ are coordinates
fixed with respect to atmosphere. At t = t′ = 0 the airfoil enters the gust;
the boundary condition is wa+wG = 0 or wa = −wG on airfoil. See figure
4.3. Short and long time correspond to high and low frequency; hence
it is of interest to use our previously developed approximate theories for
these limits. Subsequently we treat the full transient case.

(i) Piston Theory (short t) on the upper and lower airfoil surfaces

puu = −pa∞a∞wG

and
pl = +p∞a∞wG

Thus

L(t) =
∫

(pl − pu)dx

= 2ρ∞a∞
∫ 2b

0
wG(x − U∞t)dx



Nonsteady Aerodynamics (Dowell) 193

For simplicity, we first consider a sharp edge gust.
Let

wG = w0 for x′ < 0 or x < Ut, t > x/U∞
= 0 for x′ > 0 or x > Ut, t < x/U∞

Thus

L(t) = 2ρ∞a∞w0

∫ U∞t

0
dx

= 2ρ∞a∞w0U∞t for t <
2b

U∞

= 2ρ∞a∞w02b for t >
2b

U∞

(4.2.28)

(ii) Static Theory (large t)

L(t) =
2ρ∞U2∞√
M2 − 1

w0

U∞

∫ 2b

0
dx = 4b

ρ∞a∞w0M√
M2 − 1

(4.2.29)

(iii) Full Transient Theory from (4.2.24),

p = ρ∞a∞[wa(x, t) − a∞
∫ t

0
αw∗

a(α, τ)e−(··· )J1(· · · )dτ ] (4.2.24)

Special case. Sharp Edge Gust

wa = −wG(x − U∞t) = −w0 for x < U∞t

= 0 for x > U∞t

Thus

w∗
a(α, τ) = −

∫ ∞

−∞
e−iαxwG(x − U∞τ)dx

= −w0

∫ U∞τ

−∞
e−iαxdx

=
−w0

−iα
eiαx

∣∣∣U∞τ

−∞
=

w0

iα
eiαU∞τ

Using the above and (4.2.24),

p = ρ∞a∞[−wG(x − U∞t) − a∞w0

2π

×
∫ ∞

−∞

∫ t

0
α

e−iαU∞t

iα
e−(·)J1( )dτeiαxdα]

(4.2.30)
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Again one may proceed further by computing the lift.

L = 2ρ∞a∞w0 U∞t, for U∞t < 2b

2b, for U∞t > 2b

+2ρ∞
a2∞w0

2π

∫ 2b

0

∫ ∞

−∞

∫ t

0
· · · dτdαdx

Integrating over x first, and introducing non-dimensional notation

s ≡ tU∞
2b

α∗ ≡ α2b

σ ≡ τU∞
2b

one obtains

L

2ρ∞U2∞2b
=

w0

U∞

[
s

M
− 1

M2

∫ s

0
F (s, σ)dσ

]
(4.2.31)

where

F (s, σ) ≡ Wo

U

1
π

∫ ∞

0

[− cos α∗s + cos α∗(1 − s)]J1[α∗ (s−σ)
M ]

α∗ dα∗

General case. Arbitrary Frozen Gust

w∗
a(α, τ) = −

∫ ∞

−∞
e−iαxwG(x − U∞τ)dx

= −
∫ Uτ

−∞
e−iαxwG(x − U∞τ)dx

Let x′ = x − U∞t, dx′ = dx, then

w∗
a = −e−iαU∞τ

∫ 0

−∞
e−iαx′

wG(x′)dx′

= −e−iαU∞τw∗
G(α)

Using above in (4.2.24), the pressure is

p = ρ∞a∞[−wG(x − U∞t)

+
a∞
2π

∫ ∞

−∞

∫ t

0
w∗

Gαe−iαU∞τe−( )J1( )dτeiαxdα]
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and the lift,

L =2ρ∞a∞
∫ 2b

0
wG(x − U∞t)dx

− 2ρ∞a2∞
2π

∫ 2b

0

∫ ∞

−∞

∫ t

0
· · · dτ dα dx

Integrating over x first,

L

2ρ∞U2∞2b
=
∫ 2b

0

wG/U∞
M

dx

2b
− 1

M2

∫ s

0
F (s, σ)dσ (4.2.32)

where now

F (s, σ) ≡ 1
π

∫ ∞

0
{W ∗

I {cos[α∗(1 − s)] − cos α∗s}J1[
α∗(s − σ)

M
]

+ W ∗
R{sin[α∗(1 − s)] + sinα∗s}J1[

α∗(s − σ)
M

]}dα∗

and
W ∗ ≡ w∗

U∞2b

For an alternative approach to transient motion which makes use of
an analogy between two-dimensional time dependent motion and three-
dimensional steady motion, the reader may consult Lomax [4].

This completes our development for two-dimensional, supersonic flow.
We now have the capability for determining the aerodynamic pressures
necessary for flutter, gust and even, in principle, acoustic analyses for
this type of flow. For the latter the pressure in the ‘far field’ (large z)
is usually of interest. Now let us consider similar analyses for three-
dimensional, supersonic flow ∗.

Three dimensional flow
We shall now add the third dimension to our analysis. As we shall see
there is no essential complication with respect to solving the govern-
ing differential equation; the principal difficulty arises with respect to
satisfying all of the relevant boundary conditions.

The convected wave equation reads in three spatial dimensions and
time

∇2φ − 1
a2∞

[
∂2φ

∂t2
+ 2U∞

∂2φ

∂x∂t
+ U2

∞
∂2φ

∂x2
] = 0 (4.2.33)

∗References: BA, pp. 134-139; Landahl and Stark [5], Watkins [6].



196 A MODERN COURSE IN AEROELASTICITY

As before we assume simple harmonic time dependance.

φ = φ̄(x, y, z)eiωt

Further taking a Laplace transform with respect to x, gives

∂2Φ
∂z2

+
∂2Φ
∂y2

= µ2Φ (4.2.34)

where
Φ ≡ Lφ̄ =

∫ ∞

0
φ̄e−pxdx

µ =
√

M2 − 1[(p +
iωM

a∞(M2 − 1)
)2 +

ω2

a2(M2 − 1)2
]
1
2

To reduce (4.2.33) to an ordinary differential equation in z, we take
a Fourier transform with respect to y. Why would a Laplace transform
be inappropriate? The result is:

d2Φ∗

dz2
= (µ2 + γ2)Φ∗ (4.2.35)

where
Φ∗ ≡ FΦ =

∫ ∞

−∞
Φe−iγydy

The solution to (4.2.34) is

Φ∗ = A exp[+(µ2 + γ2)
1
2 z] + B exp[−(µ2 + γ2)

1
2 z]

Selecting the appropriate solution for finiteness and/or radiation as z →
+∞, we have

Φ∗ = B exp[−(µ2 + γ2)
1
2 z] (4.2.36)

Applying the body boundary condition (as transformed)

dΦ∗

dx

∣∣∣
z=0

= W ∗ (4.2.37)

we have from (4.2.36) and (4.2.37)

B = − W ∗

(µ2 + γ2)
1
2

and hence
Φ∗

z=0 = − W ∗

(µ2 + γ2)
1
2
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Using the convolution theorem

φ̄(x, y, z = 0) = −
∫ x

0

∫ ∞

−∞
w̄a(ξ, η)L−1F−1 1

(µ2 + γ2)
1
2

dξdη (4.2.38)

Now let us consider the transform inversions, The Laplace inversion is
essentially the same as for the two-dimensional case.

L−1 1

(µ2 + γ2)
1
2

=
exp[− iMωx

α∞(M2−1)
]

√
M2 − 1

J0([
ω2

a2∞(M2 − 1)2
+

γ2

(M2 − 1)
]
1
2 x)

To perform the Fourier inversion, we write

F−1{L−1{ 1

(µ2 + γ2)
1
2

}}

=
exp[− iMωx

α∞(M2−1)
]

2π
√

M2 − 1

∫ ∞

−∞
J0

([
ω2

a2∞(M2 − 1)2
+

γ2

(M2 − 1)

] 1
2

x

)
eiγydγ

=
exp[− iMωx

α∞(M2−1)
]

π
√

M2 − 1

∫ ∞

0
J0(· · · ) cos γy dγ

where the last line follows from the evenness of the integrand with respect
to γ. The integral has been evaluated in Bateman, [7], p. 55.∫ ∞

0
J0(· · · ) cos γy dγ = [

x2

M2 − 1
− y2]

1
2 cos[

ω

a∞(M2 − 1)
1
2

(
x2

M2 − 1
− y2)

1
2 ]

for |y| <
x√

M2 − 1

= 0 for |y| >
x√

M2 − 1

Thus finally

F−1L−1{ 1

(µ2 + γ2)
1
2

}

=
1
π

exp[− iMω
a∞(M2−1)

]x
√

M2 − 1
cos

[ ω

a∞(M2−1)
1
2
( x2

M2−1
− y2)

1
2 ]

[ x2

M2−1
− y2]

1
2

for |y| <
x√

M2 − 1

= 0 for |y| >
x√

M2 − 1
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Using the above in (4.2.37) and nondimensionalizing by s ≡ wing semi-
span and b ≡ reference semi-chord,

φ̄(x∗, y∗, z = 0)

=
−s

π

∫ s∗

0

∫ y∗+(2b/s)(x∗−ξ∗)/β

y∗−(2b/s)(x∗−ξ∗)/β
w̄a(ξ∗, η∗) exp[−iω̄(x∗−ξ∗)]

cos ω̄r∗
M

r∗
dξ∗ dη∗

(4.2.39)
where

r∗ ≡ [(x∗ − ξ∗)2 − β2(
s

2b
)2(y∗ − η∗)2]

1
2

β ≡
√

M2 − 1
x∗, ξ∗ ≡ x/2b, ξ/2b y∗, η∗ ≡ y/s, η/s

k ≡ ω2b

U∞
, ω̄ ≡ kM2

(M2 − 1)

If w̄ is known everywhere in the region of integration then (4.2.39) is a
solution to our problem. Unfortunately, in many cases of interest, w̄a is
unknown over some portion of the region of interest. Recall that w̄a is
really ∂φ̄

∂z |z=0. In general this vertical fluid velocity is unknown off the
wing. There are three principal exceptions to this:

(1) If we are dealing with a thickness problem then ∂φ
∂z |z=0 = 0 every-

where off the wing and no further analysis is required.
(2) Certain wing geometries above a certain Mach number will have

undisturbed flow off the wing even in the lifting case. For these so-called
‘supersonic planforms’, ∂φ

∂z |z=0 = 0 off wing as well.
(3) Even in the most general case, there will be no disturbance to the

flow ahead of the rearward facing Mach lines, η = ±ξ/β, which originate
at the leading most point of the lifting surface.

To make case (2) more explicit and in order to discuss what must
be done for those cases where the flow off the wing is disturbed, let us
consider the following figure; Figure 4.4. Referring first to case (2), we
see that if the slopes of the forward facing Mach lines (integration limits
of (4.2.39)) and the rearward facing Mach lines

η = y ± (x − ξ)
β

and η = ±ξ/β

are sufficiently small, i.e., | 1β | → 0, then the regions where w̄a is un-
known, will vanish. This is what we mean by a ‘supersonic planform’.
The mathematical problem for these planforms is essentially the same
as for a ‘thickness problem’ whether or not lift is being produced.
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Figure 4.4. Lifting surface geometry. A representative delta wing is shown.

Finally let us consider the most difficult case where we have mixed
boundary condition problems. In general analytical solutions are not
possible and we resort to numerical methods. One such is the ‘box’
method. In this approach, the integral equation (4.2.39) is approximated
by differences and sums, i.e.,

φ̄(x∗
i , y

∗
j )

U∞s
=

K∑
k=1

L∑
l=1

A(ij)(kl)
w̄a(ξ∗k, η∗l )

U∞
(4.2.40)

where

A(ij)(kl) ≡ − 1
π

exp[−iω̄(x∗
i − ξ∗k)]

cos ω̄
M r∗(ij)(kl)

r∗(ij)(kl)

∆ξ∗∆ηη
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and

r∗(ij)(kl) ≡ [(x∗
i − ξ∗k)2 − β2(

s

2b
)2(y∗j − η∗l )

2]
1
2

∆ξ∗, ∆η∗ ≡ dimensions of aerodynamic box
A(ij)(kl) aerodynamic influence coefficients; the velocity potential at point,

ij,due to a unit ‘downwash’, w̄a, at point kl

Equation (4.2.40) can be written in matrix notation as:

{
φ̄
}

=

⎡
⎣ A

⎤
⎦{ w̄a

}
(4.2.41)

The system of linear equation may be separated as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ̄(N1 × 1)
unknown
−−−

φ̄(N2 × 1)
known

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

A1 | A2

(N1 × N1) | (N2 × N1)
−−−− + −−−−

A3 | A4

(N1 × N2) | (N2 × N2)

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w̄a(N1 × 1)
known
−−−

w̄a(N2 × 1)
unknown

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.2.42)
where

N1 number of boxes where w̄a is known, and φ̄ is unknown (on wing)

N2 number of boxes where w̄a is unknown, and φ̄ is known (on wing)

Using last N2 equations of (4.2.42){
φ̄known

}
= [A3]{w̄aknown} + [A4]{w̄aunknown} (4.2.43)

Solving for w̄aknown

{w̄aunknown} = [A4]−1{{φ̄known} − [A3]{w̄aknown}}
= −[A4]−1[A3]{w̄aknown}

(4.2.44)

where we have noted that φ̄known = 0. Using (4.2.44) in the first N1
equations of (4.2.42),

{φ̄unknown} = [A1]{w̄aknown} + [A2]{w̄aunknown}
= [[A1] − [A2][A4]−1[A3]]{w̄aknown}

(4.2.45)

Computer programs have been written to preform the various compu-
tations.∗ Also it should be pointed out that in the evaluations of the

∗Many Authors, Oslo AGARD Symposium [8].
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‘aerodynamic’ influence coefficients it is essential to account for the sin-
gular nature of the integrand along the Mach lines. This requires an
analytical integration of (4.2.39) over each box with w̄ assumed con-
stant and taken outside the integral.

Extensions to this technique have been made to include more compli-
cated geometries, e.g., nonplanar and multiple surfaces,∗and also efforts
have been made to include other physical effects.†

4.3. Subsonic Flow
Subsonic flow‡ is generally a more difficult problem area since all

parts of the flow are disturbed due to the motion of the airfoil. To
counter this difficulty an inverse method of solution has been evolved,
the so-called ‘Kernel Function’ approach. To provide continuity with
our previous development we shall formulate and solve the problem in
a formal way through the use of Fourier Transforms. Historically, how-
ever, other methods were used. These will be discussed after we have
obtained our formal solution. To avoid repetition, we shall treat the
three-dimensional problem straight away.

Bernoulli’s equation reads:

p = −ρ∞[
∂φ

∂t
+ U∞

∂φ

∂x
] (4.3.1)

It will prove convenient to use this relationship to formulate our solution
in term of pressure directly rather than velocity potential.

Derivation of the integral equation by transform
methods and solution by collocation
As before we will use the transform calculus. Since there is no limited
range of influence in subsonic flow we employ Fourier transforms with
respect to x and y. We shall also assume, as before, simple harmonic
time dependent motion. Thus

φ = φ̄(x, y, z)eiωt (4.3.2)

and transformed

Φ∗ =
∫ ∞

−∞

∫
φ̄(x, y, z) exp(−iαx − iγy)dx dy (4.3.3)

∗Many Authors, Oslo AGARD Symposium [8].
†Landahl and Ashley [9].
‡BA, pp. 125-133; Ladahl and Stark, [5], Williams[10].
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Hence (4.3.1) may be transformed

P ∗ = −ρ[iω + U∞iα]Φ∗ (4.3.4)

where
p = p̄(x, y, z)eiωt

P ∗ ≡
∫ ∞

−∞

∫
p̄ exp(−iαx − iγy)dx dy (4.3.5)

As in supersonic flow we may relate the (transformed) velocity potential
to the (transformed) ‘upwash’ (see(4.2.26)et. seq.)

Φ∗|z=0 =
−W ∗

(µ2 + γ2)
1
2

(4.3.6)

Substituting (4.3.6) into (4.3.4),

P ∗ = ρ∞
[iω + U∞iα]

(µ2 + γ2)
1
2

W ∗

or
W̄ ∗

U∞
=

P ∗

ρ∞U2∞

(µ2 + γ2)
1
2

[ iω
U∞ + iα]

(4.3.7)

Inverting

w̄

U∞
(x, y) =

∫ ∞

−∞

∫
K(x − ξ, y − η)

p̄

ρ∞U2∞
(ξ, η)dξ dη (4.3.8)

where

K(x, y) ≡ 1
(2π)2

∫ ∞

−∞

∫
(µ2 + γ2)

1
2

[ iω
U∞ + iα]

exp(iαx + iγy)dα dγ

K is physically interpreted as the (non-dimensional) ‘upwash’, w̄/U∞ at
x, y due to a unit (delta-function) of pressure, p̄/ρ∞U2∞, at ξ, η. For
lifting flow (subsonic or supersonic), p̄ = 0 off the wing; hence in (4.3.8)
the (double) integral can be confined to the wing area. This is the
advantage of the present formulation.

Now we are faced with the problem of extracting the pressure from
beneath the integral in (4.3.9). By analogy to the supersonic ‘box’ ap-
proach we might consider approximating the integral equation by a dou-
ble sum

w̄ij

U∞

 ∆ξ ∆η

∑
k

∑
l

K(ij)(kl)
p̄kl

ρ∞U2∞
(4.3.9)
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In matrix notation

{ w̄

U∞
} = [K̃∆ξ ∆η]{ p̄

ρ∞U2∞
}

and formally inverting

{ p̄

ρ∞U2∞
} = {K ∆ξ ∆η}−1{ w̄

U∞
} (4.3.10)

This solution is mathematically incorrect; worse, it is useless. The reason
is that it is not unique unless an additional restriction is made, the so-
called ‘Kutta Condition’.∗ This restriction states that the pressure on
the trailing edge of a thin airfoil must remain finite. For a lifting airfoil
this is tantamount to saying it must be zero. This constraint is empirical
in nature being suggested by experiment. Other constraints such as zero
pressure at the leading edge would also make the mathematical solution
unique; however, this would not agree with available experimental date.
Indeed these data suggest a pressure maxima at the edge; the theory
with trailing edge Kutta condition gives a square root singularity at the
leading edge.

Although, in principle, one could insure zero pressure at the trail-
ing edge by using a constraint equation to supplement (4.3.9) and/or
(4.3.10), another approach has gained favor in practice. In this approach
the pressure is expanded in a series of (given) modes

p̄ =
∑

k

∑
l

pklFk(ξ)Gl(η) (4.3.11)

where the functions Fk(ξ) are chosen to satisfy the Kutta condition. (If
the wing platform is other than rectangular, a coordinate transformation
may need to be made in order to choose such functions readily.) The pkl

are, as yet, unknown.
Substituting (4.3.11) into (4.3.8) and integrating over the wing area

w̄

U∞
(x, y) =

∑
k

∑
l

pkl

ρ∞U2∞
K̃kl(x, y) (4.3.12)

where
K̃kl(x, y) =

∫ ∫
K(x − ξ, y − η)Fk(ξ)Gl(η)dξ dη

K̄ is singular at x = ξ, y = η (as we shall see later) and the above
integral must be evaluated with some care.

∗See Landahl and Stark or Williams, ibid.
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The question remains how to evaluate the unknown coefficient, pkl

in terms of w̄/U∞(x, y)? The most common procedure is collection.
(4.3.12) is evaluated at a number of points xi, jj, equal to the number
of coefficients, pkl. Thus (4.3.12) becomes

w̄(xi, yj)
U∞

=
∑

k

∑
l

pkl

ρ∞U2∞
K̃kl(xi, yj) (4.3.13)

Defining K̃ijkl ≡ K̃kl(xi, yj), (4.3.13) becomes

{ w̄ij

U∞
} = [K̃(ij)(kl)]{

pkl

ρ∞U2∞
}

Inverting

{ p̄

ρ∞U2∞
} = [K̃]−1{ w̄

U∞
} (4.3.14)

This completes our formal solution. Relative to the supersonic ‘box’
method, the above procedure, the so-called ‘Kernel Function’ method,
has proven to be somewhat delicate. In particular, questions have arisen
as to:

1 the ‘optimum’ selection of pressure modes

2 the ‘best’ method for computing K̃

3 convergence of the method as the number of pressure modes becomes
large

It appear, however, that as experience is acquired these questions are
being satisfactorily answered at least on an ‘ad hoc’ basis.

In a later development an alternative approach for solving (4.3.8) has
gained popularity which is known as the ‘double lattice’ method. In this
method the lifting surface is divided into boxes and collocation is used
for both the downwash and the pressure.∗

An alternative determination of the Kernel Function
using Green’s Theorem
The transform methods are most efficient at least for formal derivations,
however historically other approaches were first used. Many of these are

∗Albano and Rodden [11]. The downwash is placed at the box three-quarters chord and
pressure concentrated at the one-quarter chord. For two-dimensional steady flow this pro-
vides an exact solution which satisfies the Kutta conditions. Lifanov, T.K. and Polanski,
T.E., ‘Proof of the Numerical Method of “Discrete Vortices” for Solving Singular Integral
Equations’, PMM (1975), pp. 742-746.
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now only of interest to history, however we should mention one other
approach which is a powerful tool for non-steady aerodynamic problems.
This is the use of Green’s Theorem.

First let us review the nature of Green’s Theorem.∗ Our starting point
is the divergence Theorem or Gauss’ Theorem.∫ ∫ ∫

∇ ·�bdV =
∫ ∫

�b · �ndS (4.3.15)

S surface area enclosing volume V

�n outward normal

�b arbitrary vector

Let �b = φ1 ∇φ2 where φ1, φ2 are arbitrary scalars. Then (4.3.15) may
be written as: ∫ ∫ ∫

∇ · φ1∇φ2dV =
∫ ∫

�n · φ1∇φ2dS

Now use the vector calculation identity

∇ · c�a = c∇ · �a + �a · ∇c

c arbitrary scalar

�a arbitrary vector

then ∇ · φ1∇φ2 = φ1∇2φ2 + ∇φ2 · ∇φ1 and (4.3.15) becomes∫ ∫ ∫
[φ1∇2φ2 + ∇φ2 · ∇φ1]dV =

∫ ∫
�n · φ1∇φ2dS (4.3.16)

This is the first form of Green’s Theorem. Interchanging φ1 and φ2 in
(4.3.16) and subtracting the result from (4.3.16) gives∫ ∫ ∫

[φ1∇2φ2 − φ2∇2φ1]dV =
∫ ∫

�n · (φ1∇φ2 − φ2∇φ1)dS

=
∫ ∫

(φ1
∂φ2

∂n
− φ2

∂φ1

∂n
)dS

(4.3.17)

This is the second (and generally more useful) form of Green’s Theorem.
∂/∂n denotes a derivative in the direction of the normal. Let us consider
several special but informative cases.

(a) φ1 = φ2 = φ in (4.3.16)

∗References: Hildebrand [2] p. 312, Stratton [12], pp. 165-169.
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[φ∇2φ + ∇φ · +∇φ]dV =

∫ ∫
φ

∂φ

∂n
dS (4.3.18)

(b) φ1 = φ, φ2 = 1 in (4.3.17)∫∫∫
∇2φ dV =

∫∫
∂φ

∂n
dS (4.3.19)

(c) ∇2φ1 = 0, φ2 = 1/r, r ≡
√

(x − x1)2 + (y − y1)2 + (z − z1)2 in (4.3.17)∫∫∫
φ1∇2(1/r)dV =

∫∫ [
φ1

∂

∂n
− ∂φ1

∂n

]
1
r
dS (4.3.20)

Now ∇2(1/r) = 0 everywhere except at r = 0. Thus∫∫∫
φ1∇2(1/r)dV = φ1(r = 0)

∫∫∫
∇2(1/r)dV

= φ1(r = 0)
∫∫∫

∇ · ∇1
r
dV

from divergence theorem (4.3.15)

= φ1(r = 0)
∫∫

∇(1/r) · ∇r

|∇r|dS

= φ1(r = 0)
∫ 2π

0

∫ π

0
− 1

r2
r2 sin θ dθ dφ

= −4πφ1(r = 0)

where we consider a small sphere of radius, ε, say, in evaluating the
surface integral. Now

φ1(r = 0) = φ1(x1 = x, y1 = y, z1 = z) = φ1(x, y, z)

Thus (4.3.20) becomes

φ1(x, y, z) = − 1
4π

∫∫ [
φ1

∂

∂n
− ∂φ1

∂n

]
1
r
dS (4.3.21)

The choice of φ2 = 1/r may seem rather arbitrary. This can be
motivated by noting that

∇2φ2

4π
= −δ(x − x1)δ(y − y1)δ(z − z1)

Hence we seek a φ2 which is the response to a delta function. This is
what leads to the simplification of the volume integral.
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Incompressible, three-dimensional flow
To simplify matters we will first confine ourselves to M = 0. However,
similar, but more complex calculations subsequently will be carried out
for M �= 0.∗ For incompressible flow, the equation of motion is

∇2φ = 0

or
∇2p = 0

where φ and p are (perturbation) velocity potential and pressure respec-
tively. Hence we may identify φ1 in (4.3.21) with either variable as may
be convenient. To confirm to convention in the aerodynamic theory lit-
erature, we will take the normal positive into the fluid and introduce a
minus sign into (4.3.21) which now reads:

φ1(x, y, z) =
1
4π

∫∫ [
φ1

∂

∂n
− ∂φ1

∂n

]
1
r
dS (4.3.22)

For example for a planar airfoil surface

n on S at z1 = 0+ is + z1

n on S at z1 = 0− is − z1

Note x, y, z is any given point, while x1, y1, z1 are (dummy) integration
variables. See Figure 4.5 (top).

Let us identify the area S as composed of two parts, the area of the
airfoil plus wake, call it S1, and the area of a sphere at infinity, call it
S2. See Figure 4.5 (bottom).

(i) Thickness problem (nonlifting). Let φ1 = φ, velocity potential.
Because φ is bounded at r → ∞, there is no contribution from S2.
Hence

φ(x, y, z) =
1
4π

∫∫ [
φ

∂

∂z1
− ∂φ

∂z1

]
1
r
dS

S1 at z1 = 0+

+
1
4π

∫∫ [
φ

(
− ∂

∂z1

)
−
(
− ∂φ

∂z1

)]
dS

r

S1 at z1 = 0−

Now φz1=0+ = φz1=0− for thickness problem and

∂φ

∂z1

∣∣∣
z1=0+

= − ∂φ

∂z1

∣∣∣
z1=0−

∗Watkins, Woolston and Cunningham [13], Williams [14].
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z

x

z  = 0

z  = 01

1
+

-

SAIRFOIL
WAKE

S2

1

Figure 4.5. Airfoil and flow field geometry.

Thus
φ(x, y, z) = − 1

2π

∫∫
∂φ

∂z1
|z1=0+

dS

r

and using the body boundary condition

= − 1
2π

∫∫
wa

dS

r
(4.3.23)

where
wa =

∂za

∂t
+ U∞

∂za

∂x

Note this solution is valid for arbitrary time-dependent motion. Time
only appears as a parameter in the solution φ(x, y, z) = φ(x, y, z; t). This
is a special consequence of M ≡ 0.

(ii) Lifting problem. For the lifting problem it again will prove convenient
to use pressure rather than velocity potential. (4.3.22) becomes

p(x, y, z) =
1
4π

∫∫ [
(pz=0+ − pz=0−)

∂

∂z1

(
1
r

)
−
(

∂p

∂z1

∣∣∣
z1=0+

− ∂p

∂z1

∣∣∣
z1=0−

)
1
r

]
dS

Now
pz1=0+ = −pz1=0−
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for the lifting problem and

∂p

∂z1

∣∣∣
z1=0+

− ∂p

∂z1

∣∣∣
z1=0−

= 0

Thus

p(x, y, z) =
1
4π

∫∫
∆p

∂

∂z1

(
1
r

)
dS (4.3.24)

where
∆p = pz=0+ − pz=0−

(4.3.24) as it stands is not particularly helpful. We do not know either
p or ∆p. However we can relate p to something we do know, w. To
simplify matters we shall specify harmonic motion,

p = p̄eiωt

φ = φ̄eiωt

hence from Bernoulli’s equation

p̄ = −ρ∞
[
iωφ̄ + U∞

∂φ̄

∂x

]
(4.3.25)

Solving (4.3.25), by variation of parameters,

φ̄(x, y, z) = −
∫ x

−∞
p̄

ρ∞U∞
(λ, y, z) exp

[
i

ω

U∞
(λ − x)

]
dλ (4.3.26)

and using (4.3.24), one has

φ̄(x, y, z) = −
∫ x

−∞
exp

[
i

ω

U∞
(λ − x)

]

·
{

1
4π

∫∫
∆p̄

ρ∞U∞
(x1, y1, z1 = 0)

∂

∂z1

(
1

r(λ)

)
dS

}
dλ

where

r(λ) ≡
√

(λ − x1)2 + (y − y1)2 + (z − z1)2

dS ≡ dz1 dy1

Define
ξ = λ − x1, dλ = dξ, λ = ξ + x1

and interchange order of integration with respect to ξ and S, then

φ̄(x, y, z) = − 1
4π

∫∫
∆p̄

ρ∞U∞
(x1, y1, z1 = 0)

·
{∫ x−x1

−∞
∂

∂z1
(

1
r(ξ)

) exp
{

i
ω

U∞
[ξ − (x − x1)]

}
dξ

}
dS
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Compute ∂φ̄/∂z and set it equal to w̄a from body boundary condition,
on z = 0.

w̄a = − 1
4π

lim
z→0

∫∫
∆p̄

ρ∞U∞

×
{

∂

∂z

∫ x−x1

−∞
∂

∂z1
(
1
r
) exp

{
i

ω

U∞
[ξ − (x − x1)]

}
dξ

}
dS

Now
∂

∂z
(
1
r
) = − ∂

∂z1
(
1
r
)

therefore

w̄a

U∞
=
∫∫

∆p̄

ρ∞U2∞
(x1, y1, z1 = 0)K(x − x1, y − y1, 0)dx1dy1 (4.3.27)

where

K(x − x1, y − y1, 0) ≡ 1
4π

lim
∂2

∂z2

∫ x−x1

−∞

exp
{

iω
U∞ [ξ − (x − x1)]

}
dξ

r

and where
r ≡

√
ξ2 + z2 + (y − y1)2

(4.3.27), of course, has the same form as we had previously derived by
transform methods.

The expression for the Kernel function may be simplified.

K(x − x1, y − y1, 0) =
exp

[
− iω

U∞ (x − x1)
]

4π

∫ x−x1

−∞
e+ iωξ

U∞
lim
z→0

∂2

∂z2

1
r
dξ

Now
∂2

∂z2

1
r

= −1
2
r−32 + (−1/2)(−3/2)r−5(2z)2

thus

lim
z→0

∂2

∂z2

1
r

= −[ξ2 + (y − y1)2]−3/2

and finally

K = −
exp

[
− iω

U∞ (x − x1)
]

4π

∫ x−x1

−∞

exp
[
+ iωξ

U∞

]
[ξ2 + (y − y1)2]+3/2

dξ (4.3.28)

The integral in (4.3.28) must be evaluated numerically.
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Compressible, three-dimensional flow
For the more general case of M �= 0, we have an additional complication
since

∇2φ �= 0

For simple harmonic motion, the equation of motion reads

∇2φ̄ + Lφ̄ = 0 (4.3.29)

where

L ≡ − 1
a2

[
(iω) + U

∂

∂x

]2

By making a coordinate transformation we may reduce the compressible
equation to a simpler form.∗ Defining

x1 ≡ x, y1 ≡ βy, z1 ≡ βz

β
√

1 − M2

φ̄ ≡ exp
[
i

M2

(1 − M2)
ω

U∞
x

]
φ∗

The equation for φ∗ is

exp
[
i

M2

(1 − M2)
ω

U∞
x1

]
[∇12

φ∗ + k2φ∗] = 0 (4.3.30)

where

k ≡
[

M

(1 − M2)

]
ω

U∞
Note this equation is essentially the reduced wave equation. We shall
use Green’s Theorem on φ∗ and then transform back to φ̄. Let

∇2φ∗
1 + k2φ∗

1 = 0 (4.3.31)

∇2φ∗
2 + k2φ∗

2 = δ(x1 − x1
1)δ(y

1 − y1
1)δ(z

1 − z1
1)

Solving for φ∗
2,

φ∗
2 = −e−ikr

4πr

where
r =

√
(x1 − x1

1)2 + (y1 − y1
1)2 + (z1 − z1

1)2

∗By assuming a transformation of the form eΩxφ∗ = φ̄, one can always determine Ω such
that (4.3.29) reduces to (4.3.31).
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From (4.3.17),∫∫∫
[φ∗

1(δ − k2φ∗
2) − φ∗

2(−k2φ∗
1)]dV =

∫∫ [
φ∗

1

∂φ2

∂n
− φ∗

2

∂φ∗
1

∂n

]
dS

(4.3.17a)
or

φ∗
1(x, y, z) = − 1

4π

∫∫ [
φ∗

1

∂

∂n
− ∂φ∗

1

∂n

]
e−ikr

r
dS (4.3.21a)

or

φ∗
1(x, y, z) = +

1
4π

∫∫ [
φ∗

1

∂

∂n
− ∂φ∗

1

∂n

]
e−ikr

r
dS (4.3.22a)

(if we redefine the positive normal). Using symmetry and anti-symmetry
properties of ∂φ∗

1
∂n and φ∗

1

φ∗
1(x, y, z) =

1
4π

∫∫
∆φ∗

1

∂

∂z1

{
e−ikr

r

}
dS (4.3.24a)

where
∆φ∗

1 = φ∗
1z1=0+ − φ∗

1z1=0

and
−∂φ∗

1

∂z1

∣∣∣
z1=0+

+
∂φ∗

1

∂z1

∣∣∣
z1=0−

= 0

Note dS ≡ dx1dy1 and

(
∂

∂z1
)dx1 dy1 = (

∂

∂z1
1

)dx1
1dy1

1; x1 = x1
1

From (4.3.24a) and the definition of φ∗

φ̄1 = exp
[
i

M2

(1 − M2)
ω

U∞
x

]
φ∗

1(x, y, z)

=
exp

[
i M2

(1−M2)
ω

U∞ x
]

4π

×
∫∫

∆φ̄1 exp
[
− M2

(1 − M2)
ω

U∞
x1

]
∂

∂z1

{
e−ikr

r

}
dS

(4.3.32)

Identifying φ̄1 with p̄ and using (4.3.32) in (4.3.26),

φ̄(x, y, z, ω) = − 1
4π

∫ x

−∞
exp

[
i

M2

(1 − M2)
ω

U∞
λ

]
exp

[
i

ω

U∞
(λ − x)

]

·
∫∫

∆p̄

ρ∞U∞
exp

[
−i

M2

(1 − M2)
ω

U∞
x1

]
∂

∂z1

{
e−ikr

r

}
dS dλ
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Define ξ ≡ λ− x1, dλ = dξ, λ = ξ + x1 and interchange order of integra-
tion with respect to ξ and S,

φ̄(x, y, z, ω) = − 1
4π

∫∫
z1=0

∆p̄

ρ∞U∞
(x1, y1, z1)

·
{∫ x−x1

−∞

∂

∂z1

{
eikr

r

}
exp

[
−i

M2

(1 − M2)
ω

U∞
ξ

]

· exp
(

i
ω

U∞
ξ

)
exp

[
−i

ω

U∞
(x − x1)

]
dξ
}

dS

= − 1
4π

∫∫
z1=0

∆p̄

ρ∞U∞
(x1, y1, z1) exp

[
− iω

U∞
(x − x1)

]

·
{∫ x−x1

−∞
exp

[
i

1
(1 − M2)

ω

U∞
ξ

]
∂

∂z1

{
eikr

r

}
dξ

}
dS

Compute ∂φ̄/∂z and set it equal to w̄a from the body boundary condition
on z = 0, noting that

∂

∂z

{
e−ikr

r

}
= − ∂

∂z1

{
eikr

r

}
The final result is

w̄a

U∞
=
∫∫

∆p̄

ρ∞U2∞
(x1, y1, z1 = 0)K(x − x1, y − y1, 0)dx1dy1 (4.3.33)

where

K(x, y) = lim
z→0

exp
(
−i ω

U∞ x
)

4π

∫ x

−∞
exp

[
i

(1 − M2)
ω

U∞
ξ

]
∂2

∂z2

{
eikr

r

}
dξ

r ≡ [ξ2 + (1 − M2)(y2 + z2)]
1
2

That expression for K may be simplified as follows: Define a new
variable, τ , to replace ξ by

(1 − M2)τ ≡ ξ − Mr(ξ, y, z)

where one will recall

r(ξ, y, z) ≡ [ξ2 + β2(y2 + z2)]
1
2

and
β2 ≡ 1 − M2
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After some manipulation one may show that

dτ

[τ2 + y2 + z2]
1
2

=
dξ

r

and

exp
(

+
iω

U∞
ξ

(1 − M2)

)
e−ikr = exp

[
i

ω

U∞
τ

]
Thus

K = lim
z→0

exp
(
−i ωx

U∞

)
4π

∂2

∂z2

∫ [x−Mr(x,y,x)]/(1−M2)

−∞

exp
(

iωτ
U∞

)
[τ2 + y2 + z2]

1
2

dτ

(4.3.34)
Taking the second derivative and limit as indicated in (4.3.34) and

using the identity [
Mx + r

(x2 + y2)

]2

≡ 1[
x−Mr

(1−M2)

]2
+ y2

one finally obtains

K = − 1
4π

{ M(Mx + r)
r(x2 + y2)

exp
[
i

ω

U∞
M

(1 − M2)
(Mx − r)

]

+ exp
(
−i

ωx

U∞

)∫ (x−Mr)/(1−M2)

−∞

exp
(
i ωτ
U∞

)
[τ2 + y2]

3
2

dτ }
(4.3.35)

This is one form often quoted in the literature. By expressing K in
nondimensional form we see the strong singularity in K as y → 0.

y2K(x, y) = − 1
4π

{M(Mx/y + r/y)
r/y[(x/y)2 + 1]

exp
[
i
ωy

U∞
M

(1 − M2)

(
M

x

y
− r

y

)]

+ exp
(
−i

ωx

U∞

)∫ [x/y−M(r/y)]/(1−M2)

−∞

exp
(

iωy
U∞ z

)
[z2 + 1]

3
2

dz
}

z ≡ τ/y

Note that the compressible Kernel, K, has the same strength singularity
as for incompressible flow and is of no more fundamental complexity.

There is a vast literature on unsteady aerodynamics within the frame-
work of linearized, potential flow models. Among standard references
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one may mention the work of A. Cunningham∗ on combined subsonic -
supersonic Kernel Function methods including an empirical correction
for transonic effects and also the work of Morino† using Green’s Theo-
rem in a more general form from both subsonic and supersonic flow. For
an authoritative overview, the papers by Rodden‡ and Ashley are rec-
ommended. The reader who has mastered the material presented so far
should be able to pursue this literature with confidence. Before turning
to representative numerical results the historically important theory of
incompressible, two-dimensional flow will be presented.

Incompressible, two-dimensional flow
A classical solution is due to Theodorsen∗ and others. Traditionally, the
coordinate system origin is selected at mid-chord with b ≡ half-chord.
The governing differential equation for the velocity potential, φ, is

∇2φ = 0 (4.3.36)

with boundary conditions for a lifting, airfoil of

∂φ

∂z

∣∣∣
z=0+,−

= wa ≡ ∂za

∂t
+ U∞

∂za

∂x
(4.3.37)

on airfoil, −b < x < b, on z = 0 and

p = −ρ∞
[
∂φ

∂t
+ U∞

∂φ

∂x

]
= 0 (4.3.38)

off airfoil, x > b or x < −b, on z = 0 and

p, φ → 0 as z → ∞ (4.3.39)

From (4.3.36), (4.3.37) and (4.3.39) one may construct an integral equa-
tion,

wa =
∂φ

∂z
|z=0 = − 1

2π

∫ ∞

−b

γ(ξ, t)
x − ξ

dξ (4.3.40)

where
γ(x, t) ≡ ∂φ

∂x

∣∣∣
U
− ∂φ

∂x

∣∣∣
L

(4.3.41)

∗Cunningham [15].
†Morino, Chen and Suciu [16].
‡Rodden [17], Ashley and Rodden [18].
∗Theodorsen [19]. Although this work is of great historical importance, the details are of
less compelling interest today and some readers may wish to omit this section on a first
reading. The particular approach followed here is a variation on Theodorsen’s original theme
by Marten Landahl.
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and
U ⇒ z = 0+, L ⇒ z = 0−

Further definitions include

‘Circulation’ ≡ Γ(x) ≡
∫ x

−b
γ(ξ)dξ ⇒ ∂Γ

∂x
= γ(x)

∆φ = φL − φU

Cp ≡ p
1
2ρ∞U2∞

∆Cp ≡ CpL − CpU

From the above, and (4.3.41),

Γ(x, t) =
∫ x

−b
γ(ξ)dξ =

∫ x

−b

[
∂φU

∂ξ
− ∂φL

∂ξ

]
dξ = −∆φ(x), (4.3.42)

Note: ∆φ(x = −b) = 0. Also from (4.3.38) and (4.3.41),

∆Cp =
2

U2∞

[
∂∆φ

∂t
+ U∞

∂∆φ

∂x

]
and using (4.3.42)

∆Cp =
2

U2∞

[
∂Γ
∂t

+ U∞
∂Γ
∂x

]
(4.3.43)

Thus once γ (and hence Γ) is known, ∆Cp is readily computed. We
therefore seek to solve (4.3.40) for γ. The advantage of (4.3.40) over
(4.3.36)-(4.3.39) is that we have reduced the problem by one variable,
having eliminated z. A brief derivation of (4.3.40) is given below.

Derivation of integral equation (4.3.40). A Fourier transform of (4.3.36)
gives

d2φ∗

dz2
− α2φ∗ = 0 (4.3.36a)

where
φ∗(α, z, t) ≡

∫ ∞

−∞
φ(x, z, t)e−iαxdx

(4.3.37) becomes
dφ∗

dz

∣∣∣
z=0

= w∗
a (4.3.37a)

The general solution to (4.3.36a) is

φ∗ = Ae+|α|z + Be−|α|z (4.3.38a)
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From the finiteness condition, (4.3.39), we see that one must require
that A = 0 for z > 0 (and B = 0 for z < 0). Considering z > 0 for
definiteness, we compute from (4.3.38a)

dφ∗

dz
|z=0 = −|α|B (4.3.39a)

From (4.3.39a) and (4.3.37a),

B = −w∗
a

|α| (4.3.40a)

and from (4.3.38a) and (4.3.40a)

φ∗|z=0+ =
−w∗

a

|α| (4.3.41a)

From (4.3.41)

γ∗ =
(

∂φ

∂x

)∗ ∣∣∣
z=0+

−
(

∂φ

∂x

)∗ ∣∣∣
z=0−

and using(4.3.41a)

γ∗ = −2iα
w∗

a

|α| (4.3.42a)

Re-arranging (4.3.42a),

w∗
a = − |α|

2iα
γ∗

and inverting back to physical domain (using the convolution theorem)
we obtain the desired result.

wa = − 1
2π

∫ ∞

−b

γ(ξ, t)
x − ξ

dξ (4.3.40)

where
1
2π

∫ ∞

−∞
− |α|

2iα
e+iαxdα = − 1

2πx

The lower limit x = −b in (4.3.40) follows from the fact that p = 0
for x < −b (on z = 0) implies that φ = φx = 0 for x < −b. This will be
made more explicit when we consider x > b where p = 0 does not imply
φ = φx = 0! See discussion below.

Also one can calculate γ for x > b in terms od γ for b < x < b by
using the condition that ∆Cp = 0 (continuous pressure) for x > b. This
is helpful in solving (4.3.40) for γ in terms of wa. From (4.3.43)

∆Cp = 0 ⇒ ∂Γ
∂t

+ U∞
∂Γ
∂x

= 0

Γ = Γ(t − x

U∞
) (4.3.44)
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Simple harmonic motion of an airfoil
For the special case of simple harmonic motion, one has

wa(x, t) = w̄a(x)eiωt

γ(x, t) = γ̄(x)eiωt

Γ = Γ̄eiωt

(4.3.45)

(4.3.44) and (4.3.45) imply

Γ(x, t) = A exp(iω[t − x/U∞])

The (integration) constant A may be evaluated by considering the solu-
tion at x = b.

Γ(x = b, t) = A exp(iω[t − b/U∞])

Γ(x, t) = Γ̄(b) exp{iω[t − (x − b)/U∞]}
and

γ̄ =
∂Γ̄
∂x

=
−iω

U∞
Γ̄(b) exp[−iω(x − b)/U∞] (4.3.46)

Introducing traditional nondimensionalization

x∗ ≡ x

b
, ξ∗ ≡ ξ/b, k ≡ ωb

U∞

a summary of the key relations is given below

w̄a(x∗) = − 1
2π

∫ ∞

−1

γ̄(ξ∗)
x∗ − ξ∗

dξ∗ from(4.3.40)

where
γ̄(x∗)
U∞

= −ik
Γ̄(b)
U∞b

exp[−ik(x∗ − 1)]

for x∗ > 1 from (4.3.46)

γ̄(x∗)
U∞b

=
∫ x∗

−1

barγ(ξ∗)
U∞

dξ∗ definition

∆C̄p = 2
[
γ̄(x∗)
U∞

+ ik
γ̄(x∗)
U∞b

]
from (4.3.43) (4.3.47)

Special Case: Steady flow. For simplicity let us first consider steady
flow, ω ≡ 0. From (4.3.46) or (4.3.47)

γ = 0 for x∗ > 1
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and hence we have

wa(x∗) = − 1
2π

∫ 1

−1

γ(ξ∗)
x∗ − ξ∗

dξ∗ (4.3.48)

To solve (4.3.48) for γ, we replace x∗ by u, multiply both sides of (4.3.48)
by the ‘the solving kernel’ √

1 + u

1 − u

1
u − x∗

and integrate
∫ 1
−1 . . . du. The result is

∫ 1

−1

√
1 + u

1 − u

wa(u)
u − x∗du = − 1

2π

∫ 1

−1

√
1 + u

1 − u

1
u − x∗

∫ 1

−1

γ(ξ∗)
u − ξ∗

dξ∗ du

Now write γ(ξ∗) = γ(x∗) + [γ(ξ∗) − γ(x∗)], then above may be written
as

∫ 1

−1

√
1 + u

1 − u

wa(u)
u − x∗du = −

γ(x∗)
{∫ 1

−1

√
1+u
1−u

1
u−x∗

∫ 1
−1

dξ∗
u−ξ∗ dξ∗

}
du

2π

− 1
2π

{∫ 1

−1

√
1 + u

1 − u

1
u − x∗

∫ 1

−1

(ξ∗ − x∗)
u − ξ∗

F (ξ∗, x∗)dξ∗du

}
(4.3.49)

where

F (ξ∗, x∗) ≡ γ(ξ∗) − γ(x∗)
ξ∗ − x∗

To simplify (4.3.49)we will need to know several integrals. To avoid a
diversion, these are simply listed here and are evaluated in detail at the
end of this discussion of incompressible, two-dimensional flow.

I0 ≡
∫ 1

−1

dξ∗

x∗ − ξ∗
= ln

(
1 + x∗

1 − x∗

)
for x∗ < 1

= ln

(
x∗ + 1
x∗ − 1

)
for x∗ > 1

I1 ≡
∫ 1

−1

√
1 + u

1 − u

du

u − x∗ = π for x∗ < 1

= π

[
1 −

√
x∗ + 1
x∗ − 1

]
for x∗ > 1
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I2 ≡
∫ 1

−1

√
1 + u

1 − u
ln|1 − u

1 + u
| du

u − x∗ = −π2

√
1 + x∗

1 − x∗ for − 1 < x∗ < 1

(4.3.50)
Now we can proceed to consider the several terms on the RHS of (4.3.49)

1st term. Now ∫ 1

−1

dξ∗

u − ξ∗
= ln|1 + u

1 − u
| from I0

I3 ≡
∮ 1

−1

√
1 + u

1 − u

1
u − x∗

∫ 1

−1

dξ∗

u − ξ∗
du

=
∫ 1

−1

√
1 + u

1 − u

1
u − x∗ ln|1 + u

1 − u
|du = +π2

√
1 + x∗

1 − x∗ from I2

1st term = −γI3

2π
=

−γ(x∗)
2

π

√
1 + x∗

1 − x∗

2nd term. Interchange order of integration;

I4 ≡
∮ 1

−1
[ξ∗ − x∗]F (ξ∗, x∗)

∫ 1

−1

√
1 + u

1 − u

du

(u − x∗)(u − ξ∗)
dξ∗

Now
1

(u − x∗)(u − ξ∗)
=

1
x∗ − ξ∗

[
1

u − x∗ − 1
u − ξ∗

]
from a partial fractions expansion.

I4 = −
∫ 1

−1
F (ξ∗, x∗)

{∫ 1

−1

√
1 + u

1 − u

[
1

u − x∗ − 1
u − ξ∗

]
du

}
dξ∗

= −
∮ 1

−1
F (ξ∗, x∗)[���π − π0]dξ∗ from I1

Finally then, from above and (4.3.49),∫ 1

1

√
1 + u

1 − u

wa(u)
u − x∗du = −π

2
γ(x∗)

√
1 + x∗

1 − x∗

or

γ(x∗) = − 2
π

√
1 + x∗

1 − x∗

∫ 1

−1

√
1 + u

1 − u

wa(u)
u − x∗du (4.3.51)

Note: Other ‘solving kernels’ exist, but they do not satisfy the Kutta
condition, γ(x∗) finite at x∗ = 1, i.e., finite pressure at the trailing edge.
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One might reasonably inquire, how do we know what the solving ker-
nel should be? Perhaps the most straightforward way to motivate the
choice is to recognize that the solution for steady flow can be obtained
by other methods. Probably the simplest of these alternative solution
methods is to use the transformations x∗ cos θ, ξ∗ = cos φ and expand γ
and wa in Fourier series in φ and θ. See BAH, p. 216. Once the answer
is known, i.e., (4.3.51), the choice of the solving kernel is fairly obvious.
The advantage of the solving kernel approach over the other methods is
that it is capable of extension to unsteady airfoil motion where an ana-
lytical solution may be obtained as will be described below. On the other
hand a method that is based essentially on the Fourier series approach
is often employed to obtain numerical solutions for three-dimensional,
compressible flow. This is the so-called Kernel Function approach dis-
cussed earlier.

In the above we have obtained the following integral relation: Given

f(x∗) = − 1
2π

∫ 1

−1

g(ξ∗)
x∗ − ξ∗

dξ∗

with g(1) finite or zero, then

g(x∗) = − 2
π

√
1 − x∗

1 + x∗

∫ 1

−1

√
1 + ξ∗

1 − ξ∗
f(ξ∗)

ξ∗ − x∗dξ∗ (4.3.52)

General case: Oscillating motion. We may employ the solving kernel
approach to attack the unsteady problem also. Recall from (4.3.40),
(4.3.43), (4.3.46) one has

w̄a(x∗) = − 1
2π

∫ 1

−1

γ̄(ξ∗)
x∗ − ξ∗

dξ∗ − 1
2π

∫ ∞

1

γ̄(ξ∗)
x∗ − ξ∗

dξ∗ (4.3.53)

∆Cp =
2γ̄(x∗)

U∞
+ 2ik

Γ̄(x∗)
U∞b

= 2
γ̄(x∗)
U∞

+ 2ik
∫ x∗

−1

γ̄(ξ∗)
U∞

dξ∗ (4.3.54)

γ̄(x∗)
U∞

= −ik
Γ̄(1)
U∞b

exp[−ik(x∗ − 1)] for x∗ > 1 (4.3.55)

Substituting (4.3.55) into (4.3.53).

w̄a(x∗) = − 1
2π

∫ 1

−1

γ̄(ξ∗)
x∗ − ξ∗

dξ∗ + Ḡ(x∗) (4.3.56)

where

Ḡ(x∗) ≡ ikΓ̄(1)
2πb

∫ ∞

+1

exp[−ik(ξ∗ − 1)]
x∗ − ξ∗

dξ∗
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Invert (4.3.56) to determine γ(x∗); recall the steady flow solution,
(4.3.52).

γ̄(x∗) = − 2
π

√
1 − x∗

1 + x∗

∫ 1

−1

√
1 + ξ∗

1 − ξ∗

{
w̄a(ξ∗) − Ḡ(ξ∗)

ξ∗ − x∗

}
dξ∗ = − 2

π

√
1 − x∗

1 + x∗

×
∫ 1

−1

√
1 + ξ∗

1 − ξ∗

{
w̄a(ξ∗) − ikΓ̄(1)

2πb

∫∞
1 exp[−ik(u − 1)]/(ξ∗ − u)

ξ∗ − x∗ du

}
dξ∗

(4.3.57)
Interchanging the order if integration of the term involving Γ̄(1) on the
RHS side of (4.3.57) we may evaluate the integral over ξ∗ and obtain

γ̄(x∗) = +
2
π

√
1 − x∗

1 + x∗{∫ 1

−1

√
1 + ξ∗

1 − ξ∗
w̄a(ξ∗)

(x∗ − ξ∗)
dξ∗ + ik

Γ̄(1)
b

eik

∫ ∞

1

e−iku

x∗ − u
du

}
(4.3.58)

(4.3.58) is not a complete solution until we determine Γ̄(1) which we do
as follows. Integrating (4.3.58) with respect to x∗ we obtain

Γ̄(1)
b

≡
∫ 1

−1
γ̄(x∗)dx∗ = − 2

∫ 1

−1

√
1 + ξ∗

1 − ξ∗
w̄a(ξ∗)dξ∗

− ik
Γ̄(1)

b
eik

∫ ∞

1

[√
u + 1
u − 1

− 1

]
e−ikudu

(4.3.59)

where the integrals in the right hand side with respect to x∗ have been
evaluated explicitly. We may now solve (4.3.59) for Γ̄(1). Recognizing
that∫ ∞

1

[√
u + 1
u − 1

− 1

]
e−ikudu =

−π

2
[H(2)

1 (k) + iH
(2)
0 (k)] − e−ik

ik
(4.3.60)

we determine from (4.3.59) and (4.3.60) that

Γ̄(1)
b

= 4
e−ik

∫ 1
−1

√
1+ξ∗
1−ξ∗ w̄a(ξ∗)dξ∗

πik[H(2)
1 (k) + iH

(2)
0 (k)]

(4.3.61)
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H
(2)
1 , H

(2)
0 are standard Hankel functions.∗ (4.3.58) and (4.3.61) con-

stitute the solution for γ̄ in terms of w̄a. From γ̄, we may determine
∆Cp by using

∆Cp = 2
γ̄(x∗)
U∞

+ 2ik
∫ x∗

−1

γ̄(ξ∗)
U∞

dξ∗

After considerable, but elementary, algebra

∆Cp =
4
π

√
1 − x∗

1 + x∗

∫ 1

−1

√
1 + ξ∗

1 − ξ∗

{
w̄a(ξ∗)/U∞

x∗ − ξ∗

}
dξ∗

+
4
π

ik
√

1 − x∗2
∮ 1

−1

W (ξ∗)dξ∗

U∞
√

1 − ξ∗2(x∗ − ξ∗)

+
4
π

[1 − C(k)]

√
1 − x∗

1 + x∗

∫ 1

−1

√
1 + ξ∗

1 − ξ∗
w̄a(ξ∗)

U∞
dξ∗ (4.3.62)

where

W (ξ∗) ≡
∫ ξ∗

−1
w̄a(u)du

and

C(k) ≡ H
(2)
1

[H(2)
1 + iH

(2)
0 ]

is Theodorsen’s well known Function.
The lift may be computed as the integral of the pressure.

L̄ ≡ρU2∞
2

b

∫ 1

−1
∆Cpdx∗ =

ρU2∞
2

b{
−C(k)

∫ 1

−1

√
1 + ξ∗

1 − ξ∗
w̄a(ξ)
U∞

dξ∗ − ik

∫ 1

−1

√
1 − ξ∗2 w̄a(ξ∗)

U∞
dξ∗

}
(4.3.63)

Similarly for the moment about the point x = ba,

M̄y ≡ ρU2∞
2

b2

∫ 1

−1
∆Cp[x∗ − a]dx∗ (4.3.64)

In particular, for

za = − h − α(x − ba)

z̄a = − h̄ − ᾱ(x − ba)

∗Abramowitz and Stegun [20].
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Figure 4.6. The functions F and G against 1
k
. After Theodorsen [19].

one has

w̄a = −iωh̄ − iωᾱ(x − ba) − U∞ᾱ (4.3.65)

Thus (4.3.65) in (4.3.63) and (4.3.64) give

L̄ =πρb2[−ω2h̄ + iωU∞ᾱ + baω2ᾱ]

+ 2πρU∞bC(k)[iωh̄ + U∞ᾱ + b(
1
2
− a)iωᾱ]

M̄y =πρb2[−baω2h̄ − U∞b(
1
2
− a)iωᾱ + b2(

1
8

+ a2)ω2ᾱ]

+ 2πρU∞b2(
1
2

+ a)C(k)[iωh̄ + U∞ᾱ + b(
1
2
− a)iωᾱ]

(4.3.66)

Theodorsen’s Function, C(k) = F = iG, is given below in Fig. 4.6.

Transient motion
Using Fourier synthesis one may now obtain results for arbitrary time de-
pendent motion from the simple harmonic motion results; using Fourier
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summation (integration) and (4.3.66),

L(t) =
1
2π

∫ ∞

−∞
L̄(ω)due to hh̄(ω)eiωtdω

+
1
2π

∫ ∞

−∞
L̄(ω)due to αᾱ(ω)eiωtdω

=
1
2π

∫ ∞

−∞
{πρb2(−ω2) + 2πρU∞bC(k)(iω)} · h̄(ω)eiωtdω

+
1
2π

∫ ∞

−∞
{πρb2(iωU∞ + baω2) + 2πρU∞bC(k)(U∞ + b(

1
2
− a)iω)}

ᾱ(ω)eiωtdω

(4.3.67)

where
h̄(ω) =

∫ ∞

−∞
h(t)e−iωtdω

and
ᾱ(ω) =

∫ ∞

−∞
α(t)e−iωtdω (4.3.68)

Now ∫ ∞

−∞
(iω)nᾱeiωtdω =

dnα

dtn
n = 1, 2 . . . (4.3.69)

Thus

L =πρb2

[
d2h

dt2
+ U∞

dα

dt
− ba

d2α

dt2

]
+ ρU∞b

∫ ∞

−∞
C(k)f(ω)eiωtdω

where

f(ω) ≡iωh̄(ω) + U∞ᾱ(ω) + b(
1
2
− a)iωᾱ(ω)∫ ∞

−∞

[
dh

dt
+ U∞α + b(

1
2
− a)

dα

dt

]
e−iωtdt

(4.3.70)

Physically,

dh

dt
+ U∞α + b(

1
2
− a)

dα

dt
= −wa at x = b/2;

x = b/2 is
3
4

chord of airfoil.
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Similarly,

My =πρb2

[
ba

d2h

dt2
− U∞b(

1
2
− a)

dα

dt
− b2(

1
8

+ a2)
d2α

dt2

]
+ ρU∞b2(

1
2

+ a)
∫ ∞

−∞
C(k)f(ω)eiωtdω

(4.3.71)

Example I. Step change in angle of attack.

h ≡ 0
α = 0 for t < 0

= α0 ≡ constant for t > 0

dα

dt
=

d2α

dt2
=

dh

dt
=

d2h

dt2
= 0 for t > 0

f(ω) = U∞α0

∫ ∞

0
e−iωtdt

=
U∞α0

−iω
e−iωt|∞0 =

U∞α0

iω

L =ρU2
∞bα0

∫ ∞

−∞
C(k)
iω

eiωtdω

=ρU2
∞bα0

∫ ∞

−∞
C(k)
ik

eiksdk

where s ≡ Ut
b . Finally,

L = 2πρU2bα0

{
1

2πi

∫ ∞

−∞
C(k)

k
eiksdk

}
(4.3.72)

{· · · } ≡ φ(s) is called the Wagner Function, see Figure 4.7. Note that if α
is precisely a step function, then L has a singularity a t = 0 from (4.3.70).
Also shown is the Kussner function, ψ(s), to be discussed subsequently.
Note also that φ is the lift of the airfoil due to step change in angle os
attack or more generally due to step change in −wa/U∞ at 3

4 chord.
Thus using the Duhamel superposition formula

L(t) =πρb2

[
d2h

dt2
+ U∞

dα

dt
− ba

d2α

dt2

]

− 2πρU∞b

[
wa3

4

(0)φ(s) +
∫ s

0

dwa3
4

dσ
(σ)φ(s − σ)dσ

] (4.3.73)
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Figure 4.7. Wagner’s function φ(s) for indicial lift and Küssner’s function ψ(s) for
lift due to a sharp-edged gust, plotted as functions of distance travelled in semi-
chordlengths. After BAH, Fig 5.21.

Example II. Entrance into a sharp edged gust.

In the primed coordinate system, i.e., fixed with respect to the atmo-
sphere, one has

wG =0 for x′ > 0
= w0 for x′ < 0

Note: The general transformation between fluid fixed and body fixed
coordinate systems is

x′x = +b − U∞t, x + b = x′ + U∞t′

t′ = t t = t′

The leading edge enters the gust at t = t′ = 0 at

t = 0, x′ = x + b

t′ = 0.

Thus in the coordinate system fixed with respect to the airfoil, one
has

wG = 0 for x + b > U∞t or
x + b

U∞
> t (4.3.74)
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= w0 for x + b < U∞t or
x + b

U∞
< t

wG(ω) ≡
∫ ∞

−∞
wGeiωtdt

=w0

∫ ∞

(x+b)/U∞
e−iωtdt

=
w0

iω
e−iωt

∣∣∣∞
(x+b)/U∞

=
w0

iω
exp

[
−iω

(x + b)
U∞

]
=

w0

iω
e−ikeikx∗

where
x∗ ≡ x/b (4.3.75)

For
w̄a = −wG

(
= −w0

iω
e−ikeikx∗)

one finds from the oscillating airfoil motion theory that

L̄ = 2πρU∞b{C(k)[J0(k) − iJ1(k)] + iJ1(k)}w0

iω
e−ik

and
M̄y = b(

1
2

+ a)L̄

L(t) =
1
2π

∫ ∞

∞
L̄(ω)eiωtdω

=ρU∞bw0

∫ ∞

−∞
{· · · }

ik
e−ikeiksdk

=2πρU∞bw0ψ(s)

(4.3.76)

where
ψ(s) ≡ 1

2πi

∫ ∞

−∞
{· · · }

k
exp[ik(s − 1)]dk (4.3.77)

is called the Kussner function and was shown previously in Figure 4.7.
Finally then, using Duhamel’s integral,

L = πρUb

{
wG(0)ψ(s) +

∫ s

0

dwG

dσ
(σ)(s − σ)dσ

}
(4.3.78)

A famous controversy concerning the interpretation of Theodorsen’s
function for other than real frequencies (neutrally stable motion) took
place in the 1950’s. The issue has arisen again because of possible ap-
plications to feedback control of aeroelastic systems. For a modern view
and discussion, the reader should consult Edwards, Ashley, and Break-
well [21]. Also see Sears, [10] in chapter 3.
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x

v

u

Figure 4.8. Integral contour.

Evaluation of integrals

I0:
For x∗ < 1

I0 ≡
∮ 1

−1

dξ∗

x∗ − ξ∗
= lim

ε→0

[∫ x∗−ε

−1

dξ∗

x∗ − ξ∗
+
∫ 1

x∗+ε

dξ∗

x∗ − ξ∗

]

= lim
ε→0

[
−
∫ x∗−ε

−1

d(x∗ − ξ∗)
(x∗ − ξ∗)

−
∫ 1

x∗+ε

d(ξ∗ − x∗)
(ξ∗ − x∗)

]

= − ln(x∗ − ξ∗)
∣∣∣x∗−ε

ξ∗=−1
− ln(ξ∗ − x∗)

∣∣∣1
x∗+ε

= − [ln ε − ln(x∗ + 1)] − [ln(1 − x∗) − ln ε] = ln

(
1 + x∗

1 − x∗

)
For x∗ > 1, there is no need for a Cauchy Principal Value and

I0 =ln

(
x∗ + 1
x∗ − 1

)

I1 : I1 ≡
∮ 1

−1

√
1 + u

1 − u

du

u − x∗

Use contour integration. Define w ≡ u + iv (a complex variable whose
real part is u) and

F (w) ≡
(

w + 1
w − 1

) 1
2 1

w − x∗

Choose a contour as follows
Now

w + 1
w − 1

= [R2 + I2]
1
2 e−iθ
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where

R ≡ (u + 1)(u − 1) + v2

(u − 1)2 + v2
, I ≡ −2v

(u − 1)2 + v2

θ = tan−1 I/R

(i) on top, v = 0+, u − 1 < 0

R < 0, I = 0− ⇒ θ = −π

(ii) on bottom, v = 0−, u − 1 < 0

R < 0, I = 0+ ⇒ θ = +π

Thus (
w + 1
w − 1

) 1
2

=

√
1 + u

1 − u
e−iπ/2 on top

=

√
1 + u

1 − u
e+iπ/2 on bottom

Now dw = du on top or bottom and w − x∗ = u − x∗ except on arcs
near u = x∗. On the arcs w − x∗ = εeiθ, dw = εeiθidθ where ε is radius
of arc. Also (

w + 1
w − 1

) 1
2

=

√
1 + u

1 − u
(−i) on top

and = · · · (+i) on bottom. Thus

ζ1 ≡
∫

C
F (w)dw =

bottom︷ ︸︸ ︷∫ x∗−ε

−1
+
∫ 1

x∗+ε
i

√
1 + u

1 − u

du

u − x∗

+

top︷ ︸︸ ︷∫ x∗+ε

1
+
∫ −1

x∗−ε
−i

√
1 + u

1 − u

du

u − x∗+

+ contributions from arcs which cancel each other

lim
ε→0

ζ1 = 2i
∫ 1

−1

√
1 + u

1 − u

du

u − x∗ = 2iI1

ζ1 can be simply evaluated by Cauchy’s Theorem. As w → ∞, F (w) →
1/w.

ζ1 =
∫
around arc at ∞

dw

w
= 2πi

I1 =
ζ1

2i
=

2πi

2i
= π



Nonsteady Aerodynamics (Dowell) 231

For x∗ > 1, I1 is still equal to ζ1/2πi; however, now ζ1 =
∫
arc

at infinityf(w)dw− Residue of F at x∗

= 2πi − 2πi

√
x∗ + 1
x∗ − 1

I1 =
ζ1

2πi
= π

[
1 −

√
x∗ + 1
x∗ − 1

]
A similar calculation gives I2.

Evaluations of I2

−I2 ≡
∫ 1

−1

√
1 + u

1 − u
ln

∣∣∣∣1 + u

1 − u

∣∣∣∣ du

u − x∗

Define
w ≡ u + iv

and

F (w) ≡ ln

∣∣∣∣w + 1
w − 1

∣∣∣∣
√

w + 1
w − 1

1
w − x∗

The contour is the same as for I1.
As before (

w + 1
w − 1

) 1
2

=

√
1 + u

1 − u
e−iπ/2 on top

=

√
1 + u

1 − u
e+iπ/2 on bottom

Also

ln

(
w + 1
w − 1

)
= ln

√
R2 + I2 + iθ

= ln

∣∣∣∣u + 1
u − 1

∣∣∣∣− iπ on top

= ln

∣∣∣∣u + 1
u − 1

∣∣∣∣+ iπ on bottom

Now dw = du on top or bottom and w−x∗ = u−x∗ except on arcs near
u = x∗. On the arcs w − x∗ = εeiθ, dw = εeiθi dθ where ε is radius of
arc. Thus

ζ2 ≡
∫

C
F2(w)dw =

∫ x∗−ε

−1
+
∫ 1

x∗+ε
i

{√
1 + u

1 − u

[
ln

∣∣∣∣1 + u

1 − u

∣∣∣∣− iπ

]}

× du

u − x∗ bottom
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+
∫ x∗+ε

1
+
∫ −1

x∗−ε
−i

{√
1 + u

1 − u

[
ln

∣∣∣∣1 + u

1 − u

∣∣∣∣− iπ

]}
du

u − x∗ top

−
∫ π

0
iπ

√
1 + x∗

1 − x∗dθ −
∫ 0

−π
iπ

√
1 + x∗

1 − x∗dθ arcs

Note: ln terms cancel and thus are omitted in the arc contributions.
Cancelling π terms from bottom and top and adding arc terms, gives

ζ2 =
∫ x∗−ε

−1
+
∫ 1

x∗+ε
i

√
1 + u

1 − u
ln

∣∣∣∣1 + u

1 − u

∣∣∣∣ du

u − x∗

+
∫ x∗+ε

1
+
∫ −1

x∗−ε
−i

√
1 + u

1 − u
ln

∣∣∣∣1 + u

1 − u

∣∣∣∣ du

u − x∗

− 2iπ2

√
1 + x∗

1 − x∗

Adding bottom and top terms,

lim
ε→0

ζ2 = 2i
∫ 1

−1

√
1 + u

1 − u
ln

∣∣∣∣1 + u

1 − u

∣∣∣∣ du

u − x∗ − 2iπ2

√
1 + x∗

1 − x∗

= − 2iI2 − 2iπ2

√
1 + x∗

1 − x∗

ζ2 can be simply evaluated by Cauchy’s Theorem. As w → ∞, F2(w) →
0.

ζ2 = 0 ⇒ I2 = −π2

√
1 + x∗

1 − x∗

4.4. Representative Numerical Results
Consider a flat plate airfoil, initially at zero angle of attack, which is

given a step change in α, i.e.,

w = −U∞α for t > 0
= 0 for t < 0

Although most calculations in practice are carried out for sinusoidal time
dependent motion, for our purposes examining aerodynamic pressures
due to this step change leads to more insight into the nature of the
physical system. Of course, in principle, the results for sinusoidal motion
(or a step change) may be superposed to obtain results for arbitrary time
dependent motion.

It is traditional to express the pressure in nondimensional form
p

ρ∞U2∞α
2

≡ p

qα
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Figure 4.9. Chordwise lifting pressure distributions.

as a function of nondimensional time,

s ≡ tU∞
c/2

and M∞. The results shown below are from an article by Lomax;∗
both subsonic and supersonic, two- and three dimensional results are
displayed.

In Figure 4.9 the chord-wise pressure distribution for two-dimensional
flow is shown at several times, s, for a representative subsonic Mach
number. For s = 0, the result is given by piston theory (as in supersonic
flow)†

p = ρ∞a∞w

For a step change in α, piston theory gives

∆p
ρ∞U2∞α

2

=
pL − pU

ρ∞U2∞α
2

=
4
M

∗Lomax [22].
†This can be shown by considering the transient analysis of Section 4.2 and noting it still
applies for t = 0+.
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Figure 4.10. Chordwise lifting pressure distribution.

For s → ∞, the result is also well known, with a square root singularity
at the leading edge. Of course, the Kutta condition, ∆p = 0, is enforced
at the trailing edge for all s. As s → ∞

∆p
ρ∞U2∞α

2

=
4

(1 − M2)
1
2

√
c − x

x

This result is implicit in the analysis of Section 4.3.
In Figure 4.10 the chord-wise pressure distribution is shown at several

times, s, for a representative supersonic Mach number. For s = 0 the
result is again that given by piston theory

∆p
ρ∞U2∞α

2

=
4
M

For s → ∞, the result is (as previously cited in our earlier discussion,
Section 4.2)

∆p
ρ∞U2∞α

2

=
4

(M2 − 1)
1
2

Indeed the pressure reaches this final steady state value at a finite s
which can be determined as follows. All disturbances propagate in the
fluid with the speed of sound, a∞, but the airfoil moves faster with
velocity U∞ > a∞. Hence, the elapsed time for all disturbances (created
by the step change of α for the airfoil) to move off the airfoil is the
time required for a (forward propagating in the fluid) disturbance at
the leading edge to move to the trailing edge, namely

t = c/(U∞ − a∞)
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or, in nondimensional form,

s ≡ tU∞
c/2

=
2M∞

M∞ − 1

For
s >

2M∞
M∞ − 1

steady state conditions are obtained all along the airfoil. As can be seen
from Figure 4.10 for s = 0+ the leading edge pressure instantly reaches
its final steady state value. As s increases the steady state is reached by
increasing portions of the airfoil along the chord. Note that the initial
results, s = 0, and steady state results,

s ≥ 2M∞
M∞ − 1

have a constant pressure distribution; however, for intermediate s, the
pressure varies along the chord.

The pressure distributions may be integrated along the chord to obtain
the total force (lift) on the airfoil.

L ≡
∫ c

0
∆p dx,

CLα ≡ L
ρ∞U2∞cα

2

, lift curve slope

Again the s = 0 result is that given by piston theory

CLα =
4
M

and the steady-state result is

CLα =
4

(M2 − 1)
1
2

for M∞ > 1

and it is also known that

CLα =
2π

(1 − M2∞)
1
2

for M∞ < 1

see Section 4.3. Results for CLα are shown in Figure 4.11 for various
Mach number.

Finally some representative results for three-dimensional, supersonic
flow are shown in Figure 4.12. The effect of three-dimensionality is to
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Figure 4.11. Time history of lift curve slope.

reduce the lift. For small aspect ratio, A, where

A ≡ maximum span squared/wing area
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Figure 4.12. Time history of lift curve slope.

it is known from slender body theory∗ (an asymptotic theory for A → 0)
that

CLα =
π

2
A

for s → ∞. Note however, that the s = 0+ result is independent of A
and is that given by piston theory.

Hence, piston theory gives the correct result for s = 0+ for two- and
three-dimensional flows, subsonic as well as supersonic. However, only
for relatively high supersonic and nearly two-dimensional flow does it
give a reasonable approximation for all s.

For subsonic flows, the numerical methods are in an advanced state
of development and results have been obtained for rather complex ge-
ometries including multiple aerodynamic surfaces. In Figure 4.13 to 4.17
representative data are shown. These are drawn from a paper by Rod-
den,∗ et al., which contains an extensive discussion of such data and
the numerical techniques used to obtain them. Simple harmonic motion

∗See Lomax, for example [22].
∗Rodden, Giesing and Kálmán [23].



238 A MODERN COURSE IN AEROELASTICITY

Figure 4.13. Lift coefficient of plunging wing-tail combination for various vertical
separation distances; simple harmonic motion.

Figure 4.14. Rolling moment coefficient of horizontal stabilizer for simplified T-tail
oscillating in yaw about fin mid-chord; simple harmonic motion.

is considered where k is a non-dimensional frequency of oscillation.
Comparison with experimental data are also shown.

4.5. Transonic Flow
Major progress has been made in recent years on this important topic.

Here we concentrate on the fundamental ideas and explore one simple
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Figure 4.15. Distribution of span load for wing with and without engine nacelle. (a)
plunging (b) pitching; simple harmonic motion.

Figure 4.16. Comparison of experimental and calculated lifting pressure coefficient
on a wing-nacelle combination in plunge; simple harmonic motion.

approach to obtaining solutions using the same mathematical methods
previously employed for subsonic and supersonic flow.

The failure of the classical linear, perturbation theory in transonic
flow is well known and several attempts have been made to develop a
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Figure 4.17. Comparison of experimental and calculated lifting pressure coefficient
on a wing-nacelle combination oscillating in pitch; simple harmonic motion.

theoretical model which will give consistent, accurate results. Among
the more successful approximate methods that builds upon the classical
approaches for subsonic and supersonic flow is the ‘local linearization’
concept of Spreiter which has been generalized to treat oscillating airfoils
in transonic flow [24]. Another valuable method is that of parametric
differentiation as developed by Rubbert and Landahl [25]. ‘Local lin-
earization’ is an ad hoc approximation while parametric differentiation is
a perturbation procedure from which the result of local linearization may
be derived by making further approximations. Several authors [26-29]
have attacked the problem in a numerical fashion using finite differences
and results have been obtained for two and three-dimensional, high sub-
sonic flow. This continues to be an active subject of research and will
be discussed further in Chapter 9. Cunningham [30]. has suggested a
relatively simple, empirical modification of the classical theory.

In the present section a rational approximation method∗ is discussed
which is broadly related to the local linearization concept. It has the
advantages of (1) being simpler than the latter (2) capable of being
systematically improved to obtain an essentially exact solution to the
governing transonic equation. Although the method has been developed
for treating infinitesimal dynamic motions of airfoils of finite thickness, it
may also be employed (using the concept of parametric differentiation) to
obtain solutions for nonlinear, steady nonlifting flows. This is a problem
for which 1local linearization’ was originally developed.

∗This section is a revised version of Dowell [31]. A list of nomenclature is given at the end
of this section.
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Figure 4.18. Pressure distribution for Guderley airfoil at constant angle of attack.

First, the basic idea will be explained for an infinitesimal steady mo-
tion of an airfoil of finite thickness in two-dimensional flow. Results will
also be given for dynamic motion. The aerodynamic Green’s functions
for three-dimensional flow have also been derived. These are needed in
the popular Mach Box and Kernel Function methods [32]. Using Green’s
functions derived by the present methods, three-dimensional calculations
are effectively no more difficult than for the classical theory.

Analysis

From (4.3.21), Section 4.1, the full nonlinear equation for φ is

a2∇2φ −
[

∂

∂t
(∇φ · ∇φ) +

∂2φ

∂t2
+ ∇φ · ∇

(∇φ · ∇φ

2

)]
= 0
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Figure 4.19. Pressure distribution for Guderley airfoil at constant angle of attack.

In cartesian, scalar notation and re-arranging terms

φxx(a2 − φ2
x) + φyy(a2 − φ2

y) + φzz(a2 − φ2
z)

− 2φyzφyφz − 2φxzφzφz − 2φxyφxφy

− ∂

∂t
(φ2

x + φ2
y + φ2

z) −
∂2φ

∂t2
= 0

(4.5.1)

Also we previously determined that ((4.1.22), Section 4.1)

a2 − a2∞
γ − 1

=
U2∞
2

−
(

∂φ

∂t
+

∇φ · ∇φ

2

)
(4.5.2)
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Now let φ = U∞x + φ̂, then (4.5.2) becomes

a2 − a2∞
γ − 1

= −

⎡
⎢⎣∂φ̂

∂t
+

2U∞ ∂φ̂
∂x +

(
∂φ̂
∂x

)2
+
(

∂φ̂
∂y

)2
+
(

∂φ̂
∂z

)2

2

⎤
⎥⎦

∼= −
[

∂φ̂

∂t
+ U∞

∂φ̂

∂x

]
or

a2 ∼= a2
∞ − (γ − 1)

[
∂φ̂

∂t
+ U∞

∂φ̂

∂x

]
(4.5.3)

(4.5.1) becomes

φ̂xx

(
a2
∞ − (γ − 1)

[
∂φ̂

∂t
+ U∞

∂φ̂

∂x

]
− U2

∞ − 2U∞
∂φ̂

∂x

)

+ φ̂yya
2
∞ + φ̂zza

2
∞ − ∂

∂t

(
2U∞

∂φ̂

∂x

)
− ∂2φ̂

∂t2
∼= 0

(4.5.4)

where obvious higher order terms have been neglected on the basis of
φ̂x, φ̂y, φ̂z � U∞ and a∞.

The crucial distinction in transonic perturbation theory is in the co-
efficient of φ̂xx. In the ususal subsonic or supersonic small perturbation
theory one approximated it as simply

a2
∞ − U2

∞

However if U∞ = a∞ or nearly so then the terms retained above become
important. The time derivative term in the coefficient of φ̂xx may still
be neglected compared to the next to last term in (4.5.4), but no further
simplification is possible, in general. Hence, (4.5.4) becomes (dividing
by a2∞)

φ̂xx[1 − M2
L] + φ̂yy + φ̂zz − 1

a2∞

[
2U∞

∂2φ̂

∂x∂t
+

∂2φ̂

∂t2

]
= 0 (4.5.5)

where

M2
L ≡ M2

∞

[
1 +

(γ + 1)φ̂x

U∞

]
, M∞ ≡ U∞/a∞

It may be shown that ML is the consistent transonic, small pertur-
bation approximation to the local (rather than free stream) Mach num-
ber. Hence, the essence of transonic small perturbation theory is the
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allowance for variable, local Mach number rather than simply approx-
imating the local Mach number by M∞ as in the usual subsonic and
supersonic theories.

We digress briefly to show that in (4.5.4) the term

φ̂xx

[
−(γ − 1)

∂φ̂

∂t

]
(4.5.6)

may be neglected compared to

−2U∞
∂2φ̂

∂t∂x
(4.5.7)

This is done both for its interest in the present context as well as a
prototype for estimation of terms in analyses of this general type.

We assume that a length scale, L, and a time scale, T , may be chosen
so that

x∗ ≡ x/L ‘is of order one’
t∗ ≡ t/T ‘is of order one’

Hence, derivatives with respect to x∗ or t∗ do not, by assumption, change
the order or size of a term. Thus (4.5.6) and (4.5.7) may be written
(ignoring constants of order one like γ − 1 and 2) as

A ≡ φ̂x∗x∗

L2

φ̂t∗

T
(4.5.6)

and

B ≡ U∞
φ̂t∗x∗

TL
(4.5.7)

Hence
(A)
(B)

∼ 0

[
φ̂

U∞L

]

This ratio however, is much less than one by our original assumption of
a small perturbation, viz.

φ = U∞Lx∗ + φ̂

In the beginning we have assumed

φ̂

U∞Lx∗ � 1

Hence (4.5.6) may be neglected compared to (4.5.7).
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(4.5.5) is a nonlinear equation even though we have invoked small
perturbation ideas. One may develop a linear theory by considering a
steady flow due to airfoil shape, φ̂s and an infinitesimal time depen-
dent motion of the airfoil superimposed, φ̂d. For definiteness, one may
consider φs as due to an airfoil of symmetric thickness at zero angle of
attack. Thus let

φ̂(x, y, z, t) = φ̂s(x, y, z) + φ̂d(x, y, z, t) (4.5.6)

and substitute into (4.5.5). The equations for φs is (by definition)

φ̂sxx[1 − M2
Ls

] + φ̂syy + φ̂szz = 0 (4.5.7)

where

M2
Ls

≡ M2
∞

[
1 + (γ + 1)

φ̂sx

U∞

]

The equation for φ̂d (neglecting products of φ̂d and its derivatives which
is acceptable for sufficiently small time dependent motions) is

φ̂dzz + φ̂dyy − 1
a2∞

φ̂dtt − 2
U∞
a2∞

φ̂dxt − bφ̂dxx − aφ̂dx = 0 (4.5.8)

where

b ≡
[
M2

∞ − 1 + (γ + 1)
φ̂sx

U∞
M2

∞

]

a ≡ (γ + 1)M2
∞

φ̂sx

U∞

From Bernoulli’s equation

Cpms ≡ P̂s

ρ∞U2∞
2

= −2φ̂sx

U∞

Hence, a and b may be written as

b ≡
[
M2

∞ − 1 − (γ + 1)M2∞Cpms(x)
2

]

a ≡ −(γ + 1)
M2∞
2

dCpms(x)
dx

φ̂d is velocity potential due to the infinitesimal motion (henceforthˆand d
are dropped for simplicity). Cpms is the mean steady pressure coefficient



246 A MODERN COURSE IN AEROELASTICITY

due to airfoil finite thickness and is taken as known. In general, it is a
function of x, y, z and the method to be described will, in principle, allow
for such dependence. However, all results have been obtained ignoring
the dependence on y and z. See Refs. [24], [25] and [33] for discussion
of this point.

The (perturbation) pressure, p, is related to φ by the Bernoulli rela-
tions

p = −ρ∞
[
∂φ

∂t
+ U∞

∂φ

∂x

]
and the boundary conditions are

∂φ

∂z
|z=0 = wa ≡ ∂f

∂t
+ U∞

∂f

∂x

on airfoil where

f(x, y, t) ≡ vertical displacement of point x, y on airfoil
wa ≡ upwash velocity

and
p|z=0 = 0 off airfoil

plus appropriate finiteness or radiation conditions as z → ∞.
Note that equation (4.5.7) is nonlinear in φ̂s. If one linearizes, as for

example in the classical supersonic theory, one would set ML = M∞ and
obtain as a solution to (4.5.7)

p̂s =
ρ∞U2∞

(M2∞ − 1)
1
2

∂f

∂x

where ∂f/∂x is the slope of airfoil shape. As M∞ → 1, p̂ → ∞ which
is a unrealistic physical result of the linear theory. On the other hand if
one uses

ML = M∞

[
1 + (γ − 1)

φ̂sx

U∞

] 1
2

a finite result is obtained for p̂s as M∞ → 1 which is in reasonable
agreement with the experimental data.∗

Equation (4.5.7) with the full expression for ML is a nonlinear partial
differential equation which is much more difficult to solve than its lin-
ear counterpart. However two types of methods have proven valuable,

∗Spreiter [34].
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the numerical Finite difference methods † and various techniques associ-
ated with the name ‘local linearization’ as pioneered by Oswatitsch and
Spreiter [34].

Once φ̂s is known (either from theory or experiment) (4.5.8) may
be used to determine φ̂d. (4.5.8) is a linear differential equation with
variable coefficients which depend upon φ̂s. Hence, the solution for the
lifting problem, φ̂d, depends upon the thickness solution, φ̂s, unlike the
classical linear theory where the two may be calculated separately and
the results superimposed. Again either finite difference methods or ‘local
linearization’ may be employed to solve (4.5.8). Here we pursue an im-
proved analytical technique to determine φ̂d, which has been developed
in the spirit of ‘local linearization’ ideas [31].

To explain the method method most concisely, let φy = φt = 0 in
equation (4.5.8), i.e., consider two-dimensional, steady flow.

Assume∗

a =
∞∑

m=0

am(x − x0)m

b =
∞∑

n=0

bn(x − x0)n

and φ = φ0 + φ′ where, by definition,

φ0
zz − b0φ

0
xx − a0φ

0
x = 0 (4.5.8a)

and φ0 satisfies any nonhomogeneous boundary conditions on φ. The
equation for φ′ is thus from (4.5.8) and using the above

φ′
zz−b0φ

′
xx−a0φ

′
x =

∞∑
n=1

bn(x−x0)n[φ0
xx+φ′

xx]+
∞∑

m=1

am(x−x0)m[φ0
xx+φ′

xx]

(4.5.8b)
with homogeneous boundary conditions on φ′.

If φ′ � φ0, i.e., φ0 is a good approximation to the solution, then φ′
may be computed from (4.5.8b) by neglecting φ′ in the right hand side.
The retention of a0 (but not b1 !) in (4.5.8a) is the key to the method,
even though this may seem inconsistent at first.

We begin our discussion with steady airfoil motion in a two-
dimensional flow. This is the simplest case from the point of view of

†Ballhaus, Magnus and Yoshihara [35].
∗We expand in a power series about x = x0; however, other series might be equally or more
useful for some applications. Results suggest the details of a and b are unimportant.



248 A MODERN COURSE IN AEROELASTICITY

computation, of course; however, it is also the most critical in the sense
that, as Landahl [33] and others have pointed out, unsteadiness and/or
three-dimensionality alleviate the nonlinear transonic effects. Indeed, if
the flow is sufficiently unsteady and/or three-dimensional, the classical
linear theory gives accurate results transonically for thin wings.

Steady airfoil motion in two-dimensional, ‘supersonic’ (b0 > 0) flow

Solution for φ0. For b0 > 0, x is a time-like variable and the flow is
undisturbed ahead of the airfoil (as far as φ0 is concerned). Hence, so-
lutions may be obtained using a Laplace transform with respect to x.
Defining

φ0∗ ≡
∫ ∞

0
φ0(x, z)e−pxdx

(4.5.8a) becomes
φ0∗

zz − µ2φ0∗ = 0 (4.5.9)

with
µ2 ≡ [b0p

2 + a0p]

Solving (4.5.9)
φ0∗ = A0

1e
−µz + A0

2e
+µz (4.5.10)

In order to satisfy finiteness/radiation condition at infinity, one selects
A0

2 ≡ 0. A0
1 is determined from the (transformed) boundary condition,

φ0∗
z |z=0 = w∗ (4.5.11)

From (4.5.10) and (4.5.11),

φ0∗ |z=0 =
−w∗

µ
(4.5.12)

Inverting (4.5.12)

φ0|z=0 = −
∫ x

0
b
− 1

2
0 exp

(−a0ξ

2b0

)
I0

[
a0ξ

2b0

]
w(x − ξ)dξ (4.5.13)

It is of interest to note two limiting cases. As a0ξ/2b0 → 0,

φ0|z=0 = −
∫ x

0
b
− 1

2
0 w(x − ξ)dξ (4.5.14)

the classical result. But, more importantly, as a0ξ/2b0 → ∞,

φ0|z=0 = −
∫ x

0
(πa0ξ)−

1
2 w(x − ξ)dξ (4.5.15)
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Hence, even when the effective Mach number at x = x0 is transonic,
i.e., b0 ≡ 0, the present model gives a finite result. Before computing
the correction, φ′, to the velocity potential we shall exploit φ0 to obtain
several interesting result. For this purpose we further restrict ourselves
to an airfoil at angle of attack, w = −U∞α. From (4.5.15),

φ0
z=0

U∞α
=

2b
1
2
0

a0
x̃e−x[I0(x̃) + I1(x̃)]; x̃ ≡ a0x

2b0
(4.5.16)

and the pressure on the lower aerodynamic surface is

Cp

α
≡ p0

ρ0U2∞α
2

=
2φ0

x

U∞α
|z=0 = 2b

− 1
2

0 e−xI0(x̃) (4.5.17)

The lift, moment and center of pressure may be computed.

L0 ≡
∫ C

0
2p0dx = ρ∞U2

∞αc4(πa0c)−
1
2 L̃0

L̃0 ≡ (π/2)
1
2 c̃

1
2 e−c̃[I0(c̃) + I1(c̃)]; c̃ ≡ a0c

2b0

(4.5.18)

M0 =
∫ c

0
2p0x dx = L0c − ρ∞U2

∞c2 8
3
(πa0c)−

1
2 M̃0

M̃0 ≡3
4
(3π)

1
2 {e−c̃I1(c̃)[c̃−

1
2 +

2
3
c̃

1
2 ] +

2
3
e−c̃I2(c̃)c̃

1
2 }

(4.5.19)

The center of pressure may be obtained from L0 and M0 in the usual
way. We shall use and discuss these results for a particular airfoil later.
But first let is consider the computations of φ′.

Solutions for φ′. For simplicity, we shall consider only a linear variation
in mean pressure, Cpms, along the airfoil chord. hence, a0, b0 and b1 are
not zero and b1 = a0. All other am and bn are zero. Assuming φ′ � φ0,
the equation for φ′ is

φ′
zz − a0φ

′
x − b0φ

′
xx = b1(x − x0)φ0

xx (4.5.20)

Taking a Laplace transform of (4.5.20),

φ
′∗
zz − µ2φ

′∗ = −b1

[
2pφ0∗ + p2 dφ0∗

dp
+ x0p

2φ0∗
]

(4.5.21)

A particular solution of (4.5.21) is

φ
′∗
p = (C0z + C1z

2)e−µz (4.5.22)
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where

C0 ≡ b1

[
A

2µ
+

B

4µ2

]
; C1 ≡ b1

4µ
B

A ≡−2pw∗

µ
+

p2w∗

µ3

[2b0p + a0]
2

− x0
p2w∗

µ
− p2

µ

dw∗

dp

B ≡p2w∗

µ2

[2b0p + a0]
2

The homogeneous solution for φ′ is of the same form as for φ0. After
some calculation, applying homogeneous boundary condition to φ′, we
determine

φ
′∗|z=0 =

C0

µ
(4.5.23)

Inverting (4.5.23) using the definitions of C0, A, B above, and assuming
w = −U∞α for simplicity, we have

φ′

U∞α
|z=0 =

b
1
2
0

a0
{ 2e−x̃x̃I1(x̃) −

[
d2

dx̃2
+

d

dx̃

]
[e−x̃x̃2I2(x̃)]

+
c̃2x0

c
e−x̃x̃[I0(x̃) + I1(x̃)] } ; c̃ ≡ a0c

2b0

(4.5.24)

The pressure coefficient corresponding to φ′ is given by

C0
p = C ′

p1 + C ′
p2

where

b
1
2
0 C ′

p1

α
≡ e−x̃{(2I1 − I0)(x̃ − x̃2) + I2x̃

2}

b
1
2
0 C ′

p2

α
≡ c̃

2x0

c
e−x̃{2x̃(I1 − I0) + I0}

(4.5.25)

As may be seen C ′
p1 is always a small correction to C0

p; however, C ′
p2

may be large or small (particularly near the leading edge as x̃ → 0)
depending on the size of

x0

c

a0c

2b0

Since we are free to choose x0 in any application, it is in our interest to
choose it so that

C ′
p2 � C0

p

More will be said of this in the following section.
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We note that higher terms in the power series for a and b may be in-
cluded and a solution for φ′ obtained in a similar manner. The algebra
becomes more tedious, of course.

Results and comparisons with other theoretical and experimental data

We have calculated two examples, a Guderley airfoil and a parabolic
arc airfoil, both of 6% thickness ratio, τ , and for Mach numbers near
one. These were chosen because they have smooth mean steady pressure
distributions (at least for some Mach number range) and because other
investigators have obtained results for these airfoils. These two airfoils
and their mean, steady pressure distributions are shown in [24]. The
Guderley airfoil had a linear mean pressure variation while the parabolic
are has a somewhat more complicated variation including a (theoreti-
cal) logarithmic singularity at the leading edge. For M∞ = 1, when
Cpms = 0 the local Mach number along the chord equals one and if one
expanded about the point then b0 = 0, and our procedure would fail in
that φ′ � φ0. Hence, one is lead to believe that one should choose x0

as far away from the sonic point, Cpms ≡ 0 at M∞ ≡ 1, as possible. To
fix this idea more concretely, we first considered the Guderley airfoil.
Guderley airfoil. We have calculated C0

p and C0
p + C ′

p for M∞ = 1. Two
different choices of x0 were used, x0 = c/2 (Figure 4.18) and c (Figure
4.19). Results from Stahara and Spreiter [24] are also shown for refer-
ence. As can be seen for x0 = c/2, the ‘correction’ term, C ′

p2, dominates
the basic solution, C0

p, as x/c → 0. For x0 = c, on the other hand, the
correction term is much better behaved, in agreement with our earlier
speculation about choosing x0 as far as possible from the sonic point.
Note that if, for example, we choose x0 = 0 this would also work in
principle, but now b0 < 0, and a ‘subsonic’ solution would have to be
obtained for φ0.

Parabolic arc airfoil. Similar results have been obtained and are dis-
played in Figure 4.20 (x0 = c/2) and Figure 4.21 (x0 = c0). Both of
these solutions are well behaved in the sense that C ′

p < C0
p, though

again the results for x0 = c appear to be better than those for x0 = c/2.
The relatively better behavior of the x0 = c/2 results for the parabolic
arc as compared with the Guderley airfoil is probably related to the
sonic point being farther ahead of x0 = c/2 for the former than the lat-
ter. See [24]. Also shown in Figures 4.20 and 4.21 are the theoretical
results of Stahara-Spreiter [24] and the experimental data of Knechtel
[36]. Knechtel indicates the effective Mach number of his experiments
should be reduced by approximately 0.03 due to wall interface effects.
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Figure 4.20. Pressure distribution for parabolic arc airfoil at constant angle of attack.

Also he shows that the measured mean steady pressure distributions
at zero angle of attack, Cpms, agree well with the theoretical results of
Spreiter [24,37] for M∞ ≥ 1. However, for M∞ ≤ 1, Cpms deviates from
that theoretically predicted; see Figure 4.22 taken from [36]. The change
in slope for Cpms near the trailing edge may be expected to be impor-
tant for computing the lifting case. In Figure 4.23 results are shown for
M∞ = 0.9 which dramatically make this point. Shock induced separa-
tion of the boundary layers is the probable cause of the difficulty.

Finally, we present a graphical summary of lift curve slope and center
of pressure for the parabolic arc airfoil comparing results of Knechtel’s
experimental data and the present analysis. See Figure 4.24.



Nonsteady Aerodynamics (Dowell) 253

C

α
p

STAHARA-SPREITER

GUDERLEY AIRFOIL 
τ 0.06=

0 1.0x/c

1

2

3

4

5

6

7

THEORY
M =1 x DOWELL, Co

p
DOWELL, Co

p + Cp
’

xo = c ao
bo

EXPERIMENT KNECHTEL

M =1.026

x
x

x
x

x

x

, =.45/c
=.585

Figure 4.21. Pressure distribution for parabolic arc airfoil at constant angle of attack.

All things considered the agreement between theory and experiment is
rather good; however, it is clear that is Cpms varies in a complicated way
one must go beyond the straight line approximation used in obtaining
the present result. In principle this can be done; how much effort will
be required remains to be determined.

Non-steady airfoil motion in two-dimensional, ‘supersonic’ b0 > 0 flow

Solutions for φ0. Again taking a Laplace transform with respect to x of
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Figure 4.22. Representative experimental pressure distribution for 6-percent-thick
circular-arc airfoil with roughness elements near the leading edge.

(4.5.8) (for φyy ≡ 0 and a = a0, b = b0) we obtain

φ0∗
zz − µ2φ0∗ = 0 (4.5.26)

where µ ≡ [b0p
2 + ã0p − d]

1
2 and b0 is as before
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Figure 4.23. Pressure distribution for parabolic arc airfoil at constant angle of attack.

ã0 ≡ a0 +
2U∞
a2∞

iω; d ≡
(

ω

a∞

)2

and we have assumed simple harmonic motion in time. Solving (4.5.26)
subject to the boundary condition, (4.5.11), and appropriate finiteness
and/or radiation condition at infinity we have (after inversion)

φ0|z=0 = −
∫ x

0
b
− 1

2
0 exp

(−ã0ξ

2b0

)
I0

⎧⎨
⎩
[(

ã0

2b0

)2

+
d

b0

] 1
2

ξ

⎫⎬
⎭wa(x − ξ)dξ

(4.5.27)
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Figure 4.24. Effects of boundary-layer trio in the variation with Mach number of
lift-curve slope and center pressure of the circular-arc airfoil at αo � 0o.

The perturbation pressure on the lower surface is given by

p0 = ρ∞[φ0
t + U∞φ0

x] (4.5.28)

which may be evaluated from (4.5.27) directly using Leibnitz’ rule

C0
p =

p0

ρ∞U2∞
2

= −2b
− 1

2
0

⎧⎨
⎩exp

(−ã0x

2b0

)
I0

[(
ã0

2b0

)2

+
d

b

] 1
2

x

⎫⎬
⎭ wa(0)

U∞

+
∫ x

0
exp

(−ã0ξ

2b0

)
I0

⎧⎨
⎩
[(

ã0

2b0

)2

+
d

b0

] 1
2

ξ

⎫⎬
⎭

·
[
iω

wa(x − ξ)
U2∞

+
w′

a(x − ξ)
U∞

]
dξ

where

w′
a(x) ≡ dwa

dx
(4.5.29)

An alternative form for C0
p may be obtained by first interchanging the

arguments x and x − ξ in (4.5.27). For a0 = 0, b0 ≡ M2∞ − 1 the
above reduces to the classical result. For any a0 and b0 and k ≡ ωc/U∞
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large the results approach those of the classical theory and for k → ∞
approach the ‘piston’ theory [32]. For the specific case of an airfoil un-
dergoing vertical translation, w = −ht, where h is vertical displacement
and the ht is the corresponding velocity, we have the following results,

φ0|z=0 = htb
− 1

2
0

[(
ã0

2b0

)2

+
d

b0

]− 1
2

e−ex̃x̃

{
I0(x̃) +

I1(x̃)
e

}

where

x̃ ≡
[(

ã0

2b0

)2

+
d

b0

] 1
2

x

e ≡ ã0

2b0

[(
ã0

2b0

)2

+
d

b0

]− 1
2

(4.5.30)

In the limit as b0 → 0, (corresponding to M∞ → 1 in the classical theory)[(
ã0

2b0

)2

+
d

b0

] 1
2

→ ã0

2b0
; e → 1

and

φ0|z=0 → ht2
(

x

ã0π

) 1
2

(4.5.31)

Using (4.5.30) or (4.5.31) in (4.5.28) gives the perturbation pressure.
The latter form is particularly simple

Cp

ik h̄
ceiωt

≡ p
ρ∞U2∞
ik h̄

c
eiωt

= (πã0c)−
1
2

[
2(x/c)−

1
2 + i4k

(x

c

) 1
2

]
(4.5.32)

where
h ≡ h̄eiωt; k ≡ ωc

U∞
Solution for φ′. Park [38] has computed φ′ and made comparisons with
available experimental and theoretical data. It is well-known, of course,
that for sufficiently large k the classical theory itself is accurate transon-
ically [33]. Hence, we also expect the present theory to be more accurate
for increasing k.

Results and comparison with other theoretical data

We have calculated a numerical example for the Guderley airfoil for
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Figure 4.25. Pressure distribution for Guderley airfoil oscillating in rigid body trans-
lation.

M = 1 and k = 0.5 in order to compare with the results of Stahara-
Spreiter [24]. We have chosen x0 = c/2 for which

b0 = 0.12; a0 = 1.2/c

For such small b0, we may use the asymptotic form for b0 → 0, (4.5.32),
and the results are plotted in Figures 4.25 and 4.26 along with the results
of [24].

As k → 0, the phase angle, Φ is a constant at 90◦ and the pressure
coefficient amplitude is the same as that of Figure 4.18. Presumably
somewhat more accurate results could be obtained by choosing x0 = c
and computing the correction, C ′

p. However, the agreement is already
good between the present results and those of [24].

As Stahara-Spreiter [24] point out even for k as large as unity there
are still substantial quantitative differences between their results (and
hence the present results) and those of the classical theory. However, for

k � 1, one may expect the present theory and that of [24] to give
results which approach those of the classical theory.

Non-steady airfoil motion in three-dimensional ‘supersonic’ (b0 > 0)
flow
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Figure 4.26. Pressure-translation phase angle distribution.

Solution for φ0. We begin with (4.5.1) and take a Fourier transform
with respect to y,

φ† ≡
∫ ∞

−∞
φe−iγydy (4.5.33)

and a Laplace transform with respect to x,

(φ†)∗ ≡
∫ ∞

0
(φ†)e−pxdx (4.5.34)

(4.5.1) becomes
φ0∗†

zz − µ2φ0∗† = 0 (4.5.35)

where
µ ≡ [b0p

2 + ã0p − d̃]
1
2 ; b0, ã0 as before

and
d̃ ≡ (ω/a∞)2 − γ2

Solving (4.5.35) subject to the boundary condition, (4.5.11), and appro-
priate boundary finiteness/radiation conditions at infinity we have (after
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inversion)

φ0|z=0 =
∫ x

0

∫ ∞

−∞
A(x − ξ, y − η)w(ξ, η)dξ dη (4.5.36)

where

A(x, y) =
− exp

(
−ã0
2b0

x
)

π
r−1 cosh

⎧⎨
⎩
[( ω

a∞
b0

)2

+
(

ã0

2b0

)2
] 1

2

r

⎫⎬
⎭

for r2 > 0, i.e.

0 < |y| < xb−
1
2

= 0 for r2 < 0, i.e.

xb
− 1

2
0 < |y|

and
r2 ≡ x2 − b2

0y
2 (4.5.37)

A is the aerodynamic Green’s function required in the Mach Box nu-
merical lifting surface method [32].

For b0 → M2∞ − 1; a0 → 0; ã0 → 2(iωU∞/a2∞) and A reduces to the
classical results. For b0 → 0, Reã0 > 0,

A → − 1
2πx

e−ã0y2/4x for x > 0; |y| < ∞ (4.5.38)

For b0 → 0, Reã0 < 0,

A → − 1
2πx

exp
(−ã0x

b0

)
for x > 0; |y| < ∞ (4.5.39)

Non-steady airfoil motion in three-dimensional ‘subsonic’ (b0 < 0) flow

Solution for φ0. We begin with (4.5.1), assuming simple harmonic mo-
tion,

−b0φ
0
xx − ã0φ

0
x + dφ0 + φ0

yy + φ0
zz = 0 (4.5.40)

where ã0, b0, d as before.
To put (4.5.40) in canonical form by eliminating the term φx, we

introduce the new dependent variable, Φ

φ0 ≡ eΩxΦ (4.5.41)
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where Ω is determined to be

Ω = −ã0/2b0 (4.5.42)

and the equation for Φ is

BΦxx + Φ
[−ã2

4B
+ d

]
+ Φyy + Φzz = 0 (4.5.43)

and
B ≡ −b0 > 0

We further define new independent variables,

x′ ≡ x, y′ ≡ B
1
2 y, z′ ≡ B

1
2 z (4.5.44)

then (4.5.43) becomes

Φx′x′ + Φy′y′ + Φz′z′ + k̃2Φ = 0 (4.5.45)

where

k̃2 ≡
(

d − a2

4B

)
/B

We are now in a position to use Green’s theorem∫∫∫
[Φ∇2ψ − ψ∇2Φ]dV =

∫∫
s

[
Φ

∂ψ

∂n
− ψ

∂Φ
∂n

]
dS (4.5.46)

V volume enclosing fluid

S surface area of volume indented to pass over airfoil surface and wake

n outward normal.

We take Φ to be the solution we seek and choose ψ as

ψ ≡
(

e−ik̃r

r

)
(4.5.47)

where
r ≡ [(x′ − x′

1)
2 + (y′ − y′1)

2 + (z′ − z′1)
2]

Note that

[∇2 + k̃2]

(
e−ik̃r

r

)
= −4πδ(x′ − x′

1)δ(y
′ − y′1)δ(z

′ − z′1) (4.5.48)
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Thus the LHS of (4.5.7) becomes −4πΦ(x′, y′, z′). On the RHS, there is
no contribution from the surface area of sphere at infinity. Thus (4.5.46)
becomes

4πΦ(x, y, z) =
∫∫

S airfoil plus wake

[
(ΦU − ΦL)

∂

∂z1

(
e−ik̃r

r

)

−
(

e−ik̃r

r

)
∂

∂z1
(ΦU − ΦL)

]
dx1dy1

(4.5.49)

where
ΦU, ΦL upper, lower surface
∂
∂n = −∂

∂z1
on upper/lower surface and we have returned to the original

independent variables, x, y, z and x1, y1, z1. Since Φ is an odd function
of z1, z1,

∂

∂z1
(ΦU − ΦL) = 0 (4.5.50)

Also

∂

∂z1

(
e−ik̃r

r

)
=

∂

∂z

e−ik̃r

r
(−1) (4.5.51)

Thus (4.5.49) becomes, re-introducing the original dependent variable,
φ0

φ0(x, y, z) =
−e−Ωx

4π

∫∫
∆φe−Ωx1

∂

∂z

{
e−ik̃r

r

}
dx1dy1 (4.5.52)

where

∆φ ≡ φ0
U − φ0

L

Up to this point we have implicitly identified φ0 with the velocity poten-
tial. However, within the approximation, a = a0, b = b0, φ = φ0, p =
p0, φ and p satisfy the same equation, (4.5.40);hence, we may use (4.5.54)
with φ0 replaced by p0. Further using Bernoulli’s equation, (4.5.5), we
may relate φ0 to p0

φ0(x, y, z) = −
∫ x

−∞
p0(λ, y, z)

ρ∞U∞
exp

[
iω(λ − x)

U∞

]
dλ (4.5.53)
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Substituting (4.5.52) into (4.5.53) (where (4.5.52) is now expressed in
terms of p0); introducing a new variable ξ and x1, y1; gives

φ0(x, y, z) =
1
4π

∫∫
∆p

ρ∞U∞
(x1, y1) exp

[−iω(x − x1)
U∞

]

·
{∫ x−x1

−∞
exp

(
[Ω + iω]ξ

U∞

)
∂

∂z

{
e−ik̃r

r

}
dξ

}
dx1 dy1

(4.5.54)

Finally, computing from (4.5.56)

w =
∂φ

∂z

∣∣∣
z=0

we obtain

w(x, y)
U∞

=
∫∫

∆p

ρ∞U2∞
(x1, y1)K(x − x1, y − y1)dx1 dy1 (4.5.55)

where

K ≡ lim
z→0

exp
[−iω(x−x1)

U∞

]
4π

∫ x−x1

−∞
exp

([
Ω +

iω

U∞

]
ξ

)
∂2

∂z2

{
e−ik̃r

r

}
dξ

(4.5.56)
and

r2 ≡ [ξ2 + B(y − y1)2]

The above derivation, though lengthy, is entirely analogous to the clas-
sical one. For a0 → 0, B → 1 − M2∞ we retrieve the known result
[32].

It should be noted that in the above derivation we have assumed Re
ã0 > 0 and thus Re Ω < 0. This permits both the radiation and finite-
ness conditions to be satisfied as z → ±∞. For Re ã0 < 0 one may not
satisfy both conditions and one must choose between them.

Asymmetric mean flow. In the above derivations we have assumed a
mean flow about symmetrical airfoils at zero angle of attack and consid-
ered small motions of that configuration. It is of interest to generalize
this to a mean flow about asymmetrical airfoils at nonzero angles of at-
tack. First consider the Mach box form of the integral relation between
velocity potential and downwash, cf. equation (4.5.36),

φU =
∫∫

AU(x − ξ, y − η)wU(ξ, η)dξ dη (4.5.57)
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Here we have written the relation as though we knew wU everywhere on
z = 0+. We do not, of course, and thus the need for the Mach box pro-
cedure [32]. here AU is that calculated using upper surface parameters,
ignoring the lower surface. A similar relation applies for the lower sur-
face with AU replaced by −AL. Hence, we may compute from (4.5.57)
(for lifting motions where wU = wL ≡ w on and off the airfoil)

φU − φL =
∫∫

A(x − ξ, y − η)w(ξ, η)dξ dη (4.5.58)

where
A ≡ AU + AL

is the desired aerodynamic influence function. Note that AU and AL are
the same basic function, but in one the upper surface parameters are
used and in the other the lower surface parameters.

Using the Kernel Function approach the situation is somewhat more
complicated. Here we have, cf. equation (4.5.55),

wU =
∫∫

KU(x − ξ, y − η)pU(ξ, η)dξ dη (4.5.59)

Note KU = 2K∆p where K∆p is the Kernel Function for ∆p when the
lower surface mean flow parameters are the same as those of the upper
surface.

A similar equation may be written for wL and pL with KU replaces
by −KL. Again we note wL = wU ≡ w. These two integral equations
must be solved simultaneously for pU and pL with given w. Hence, the
number of unknowns one must deal with is doubled for different upper
and lower surface parameters. This poses a substantial addition burden
on the numerics. There is a possible simplification, however. Define

K ≡ KU + KL

2
; ∆K ≡ KU − KL

2
(4.5.60)

If (∆K/K)2 � 1, then on may simply use K, i.e., the average of the up-
per and lower surface kernel functions. Formally, one may demonstrate
this using perturbation ideas as follows.

Using (4.5.59) (and its counterparts for the lower surface) and (4.5.60)
one may compute

wu + wL ≡ 2w =
∫∫

[K(pU − pL) + ∆K(pU + pL)]dξ dη

and

wu − wL ≡ 0 =
∫∫

[K(pU + pL) + ∆K(pU − pL)]dξ dη (4.5.61)
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From the second of these equations, the size of the terms may be esti-
mated.

pU + pL

pU − pL
∼ 0

(
∆K

K

)
Thus in the first of (4.5.61) the two terms on the right hand side are of
order

K(pU − pL) and
(∆K)2

K
(pU − pL)

The second terms may be neglected if

(∆K/K)2 � 1 (4.5.62)

and (4.5.61) may be approximated as

w(x, y) ≈
∫∫

K

2
(x − ξ, y − η)∆p(ξ, η)dξ dη (4.5.63)

where
∆p ≡ pU − pL

(4.5.62) would not appear to be unduly restrictive condition for some
applications.

The development in this section is not dependent upon the particular
method used to compute KU and/or KL elsewhere in the text. The
crucial assumptions are that (1) the oscillating motion is a small pertur-
bation to the mean flow and (2) the difference between the upper and
lower surface Kernel functions is small compared to either.

Concluding remarks

A relatively simple, reasonably accurate and systematic procedure has
been developed for transonic flow. A measure of the simplicity of the
method is that all numerical results presented herein were computed by
hand and analytical forms have been obtained for general ‘supersonic’
Mach number and airfoil motion for two-dimensional flow. For three-
dimensional flow the relevant Green’s functions have been determined
which may be used in the Kernel Function and Mach Box numerical
lifting surface methods.

This approach has been extended to include a more accurate form of
Bernoulli’s equation and airfoil boundary condition. Also numerical ex-
amples are now available for two dimensional airfoils in transient motion
and three dimensional steady flow over a delta wing. Finally a simple
correction for shock induced flow separationhas been suggested.∗

∗Dowell [39].
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For a highly readable survey of transonic flow, the reader should con-
sult the paper by Spreiter and Stahara [40].

Also important advances in finite difference and finite element solu-
tions are discussed in the following papers (all presented at the AIAA
Dynamic Specialists Conference, San Diego, March 1977): Chan and
Chen [41], Ballhaus and Goorjian [42] and Isogai [43].

In an important, but somewhat, neglected paper Eckhaus [44] gave a
transonic flow model including shock waves which considered a constant
supersonic Mach number ahead of the shock and a constant subsonic
Mach number behind it. An obvious next step is to combine the Eckhaus
and Dowell models. M.H. Williams [45] has extended Eckhaus’ results
by utilizing a somewhat broader theoretical formulation and obtaining
more accurate and extensive solutions. He has compared his results to
those of Tijdeman and Schippers [46] (experiment) and Ballhaus and
Goorjian [42] (finite difference solutions) and obtain good agreement.
The comparison with experiment is shown here in Figure 4.27 for a
NACA 64 A006 airfoil with a trailing edge quarter chord oscillating flap.
The measured steady state shock strength and location for no flap. The
measured steady state shock strength and location for no flap oscillation
is used as an input to the theoretical model. Since the flap is downstream
of the shock, the theory predicts no disturbance upstream of the shock.
The experiment shows the upstream effect is indeed small. Moreover the
agreement on the pressure peaks at the shock and at the slap hinge line
is most encouraging. It would appear the the transonic airfoil problem
is finally yielded to a combination of analytical and numerical methods.
As Tijdeman and other have emphasized, however, the effects of the
viscous boundary layer may prove significant for some applications. In
particular the poorer agreement between theory and experiment for the
imaginary pressure peak at the shock in Figure 4.27 is probably due to
the effects of viscosity. The same theoretical model has also been studied
by Goldstein, et al. for cascades with very interesting results [47]. Rowe,
a major contributor to subsonic aerodynamic solution methods, has in
the same spirit discussed how the classical boundary conditions and
Bernoulli’s equation can be modified to partially account for transonic
effects as the airfoil critical mach number is approached [48].

For a broad-ranging survey of unsteady fluid dynamics including a
discussion of linear potential theory, transonic flow, unsteady boundary
layers, unsteady stall, vortex shedding and the Kutta-Joulowski trailing
edge condition the paper by McCroskey [49] is recommended. For a dis-
cussion of the fundamentals of computational fluid dynamics of unsteady
transonic flow, see Chapter 9.
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Nomenclature
A aerodynamic influence function; see equation (4.5.36)

a, b see definitions following equation (4.5.1)

am, bn see equation preceding (4.5.10)

ã0 see equation following (4.5.26)

a∞ free stream speed of sound

B ≡ −b0

Cp ≡ 2(p − p∞)/ρ∞U2∞; pressure coefficient due to airfoil motion

Cpms mean steady pressure coefficient due to airfoil finite thickness at
zero angle of attack

CLα lift curve slope per degree

c airfoil chord

d see equation following (4.5.26)

d̃ see equation following (4.5.35)

e see equation (4.5.30)

f vertical airfoil displacement

h rigid body translation of airfoil

Im imaginary part

i ≡ (−1)
1
2

K aerodynamic kernel function; see equation (4.5.55)

k ≡ ωc
U∞

k̃ see equation following (4.5.45)

L lift

M pitching moment about leading edge

M∞ free stream Mach number

p perturbation pressure; also Laplace Transform variable

Re real part
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r see equations (4.5.37), (4.5.47) and (4.5.56)

t time

U∞ free stream velocity

wa downwash

x, y, z spatial coordinated

x′, y′, z′ spatial coordinates

x̃ ≡ a0x
2b0

xc.p. center of pressure; measured from leading edge

x0 see equation preceding (4.5.10)

α angle of attack

γ ratio of specific heats; also Fourier transform variable

Φ see equation (4.5.41)

φ velocity potential

ψ see equation (4.5.47)

ρ∞ free stream density

Ω see equation (4.5.42)

ω frequency of airfoil oscillation

ξ, λ, η dummy integration variables for x, y, z

Superscripts
0 basic solution

′ correction to basic solution

∗ Laplace Transform

† Fourier transform

Subscripts
U, L upper, lower surfaces



270 A MODERN COURSE IN AEROELASTICITY

References for Chapter 4
1 Liepmann, H.W. and Roshko, A., Elements of Gasdynamic, John

Wiley, 1957.

2 Hildebrand, F.B., Advanced Calculus for Engineers, Prentice-Hall,
Inc., 1961

3 van der Vooren, A.I., Two-dimensional Linearized Theory, Vol. II,
Chapter 2, AGARD Manual on Aeroelasticity

4 Lomax, H., Heaslet, M.A., Fuller, F.B. and Sluder, L., “Two- and
Three-dimensional Unsteady Lift Problems in High Speed Flight”,
NACA Report 1077, 1952.

5 Landhal, M.T. and Stark, V.J.E., “Numerical Lifting Surface Theory
- Problems and Progress”, AIAA Journal (November 1968) pp. 2049-
2060.

6 Bateman, H., Table of Integral Transforms, McGraw-Hill, 1954

7 Many Authors, Oslo AGARD Symposium Unsteady Aerodynamics
for Aeroelastic Analyses of Interfering Surface, Tønsberg, Oslofjor-
den, Norway (Nov. 1970)

8 Landahl, M.T. and Ashely, H., Thickness and Boundary Layer Ef-
fects, Vol. II, Chapter 9, AGARD Manual on Aeroelasticity.

9 Williams, D. E., Three-Dimensional Subsonic Theory, Vol. II, Chap-
ter 3, AGARD Manual on Aeroelasticity.

10 Albano, E. and Rodden, W. P., “A Doublet-Lattice Method for
Calculating Life Distributions on Oscillating Surfaces in Subsonic
Flows”, AIAA J. (February 1969) pp. 279-285.

11 Stratton, J. A. Electromagnetic Theory, McGraw-Hill, 1941.

12 Watkins, C. E., Woolston, D. S. and Cunningham, H. J., “A System-
atic Kernel Function Procedure for Determining Aerodynamic Forces
on Oscillating or Steady Finite Wings at Subsonic Speeds”, NASA
Technical Report TR-48, 1959.

13 Williams, D. E., Some Mathematical Methods in Three-Dimensional
Subsonic Flutter Derivative Theory, Great Britain Aeronautical Re-
search Council, R&M 3302, 1961.

14 Cunningham, A. M., Jr., “Further Developments in the Prediction of
Oscillatory Aerodynamics in Mixed Transonic Flow”, AIAA Paper
75-99 (January 1975).



Nonsteady Aerodynamics (Dowell) 271

15 Morino, L., Chen, L. T. and Suciu, E. O., “Steady and Oscillatory
Subsonic and Supersonic Aerodynamics Around Complex Configura-
tions”, AIAA Journal (March 1975), pp. 368-374.

16 Rodden, W. P., “State-of-the-Art in Unsteady Aerodynamics”,
AGARD Report No. 650, 1976.

17 Ashley, H. and Rodden, W. P., “Wing-Body Aerodynamic Interac-
tion”, Annual Review of Fluid Mechanics, Vol. 4, 1972, pp. 431-472.

18 Theodorsen, T., “General Theory of Aerodynamic Instability and the
Mechanism of Flutter”, NACA Report 496, 1935.

19 Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Func-
tions, National Bureau of Standards, U.S. Printing Office, 1965.

20 Edwards, J. V., Ashley, H. and Breakwell, J. B., “Unsteady Aerody-
namics Modeling for Arbitrary Motions”, AIAA Paper 77-451, AIAA
Dynamics Specialist Conference, San Diego, March 1977.

21 H. Lomax, Indicial Aerodyamics, Vol. II, Chapter 6, AGARD Manual
on Aeroelasticity, 1960.

22 Rodden, W. P., Giesing, J. P. and Kalman, T. P., “New Develop-
ments and Applications of the Subsonic Doublet-Lattice Method for
Non-Planar Configurations”, AGARD Symposium on Unsteady Aero-
dynamics for Aeroelastic Analyses of Interfering Surfaces, Tonsberg,
Oslofjorden, Norway (November 3-4) 1970.

23 Stahara, S. S. and Spreiter, J. R., “Development of a Nonlinear Un-
steady Transonic Flow Theory”, NASA CR-2258 (June 1973).

24 Rubbert, P. and Landahl, M., “Solution of the Transonic Airfoil
Problem though Parametric Differentiation”, AIAA Journal (March
1967), pp. 470-479.

25 Beam, R. M. and Warming, R. F., “Numerical Calculations of Two-
Dimensional, Unsteady Transonic Flows with Circulation”, NASA
TN D-7605, (February 1974).

26 Ehlers, F. E., “A Finite Difference Method for the Solution of the
Transonic Flow Around Harmonically Oscillating Wings”, NASA
CR-2257 (July 1974).

27 Traci, R. M., Albano, E. D., Farr, J. L., Jr. and Cheng, H. K., “Small
Disturbance Transonic Flow About Oscillating Airfoils”, AFFDL-
TR-74-37 (June 1974).



272 A MODERN COURSE IN AEROELASTICITY

28 Magnus, R. J. and Yoshihara, H., “Calculations of Transonic Flow
Over an Oscillating Airfoil”, AIAA Paper 75-98 (January 1975).

29 Cunningham, A. M., Jr., “Further Developments in the Prediction of
Oscillatory Aerodynamics in Mixed Transonic Flow‘’, AIAA Paper
75-99 (January 1975).

30 Dowell, E. H., “A Simplified Theory of Oscillating Airfoils in Tran-
sonic Flow”, Proceedings of Symposium on Unsteady Aerodynamics,
pp. 655-679, University of Arizona (July 1975).

31 Bisplinghoff, R. L. and Ashley, H., Principles of Aeroelasticity, John
Wiley and Sons, Inc., New York, 1962.

32 Landahl, M., Unsteady Transonic Flow, Pergamon Press, London,
1961.

33 Spreiter, J. R., “Unsteady Transonic Aerodynamics-An Aeronautics
Challenge”, Proceedings of Symposium on Unsteady Aerodynamics,
pp. 583-608, University of Arizona (July 1975).

34 Ballhaus, W. F., Magnus, R. and Yoshihara, H., “Some Examples of
Unsteady Transonic Flows Over Airfoils”, Proceedings of a Sympo-
sium on Unsteady Aerodynamics, pp. 769-792, University of Arizona
(July 1975).

35 Knechtel, E. D., “Experimental Investigation at Transonic Speeds of
Pressure Distributions Over Wedge and Circular-Arc Airfoil Sections
and Evaluation of Perforated-Wall Interference”, NASA TN D-15
(August 1959).

36 Spreiter, J. R. and Alksne, A. Y., “Thin Airfoil Theory Based on
Approximate Solution of the Transonic Flow Equation”, NACA TN
3970, 1957.

37 Park, P. H., “Unsteady Two-Dimensional Flow Using Dowell’s
Method”, AIAA Journal (October 1976) pp. 1345-1346. Also see
Isogai, K., “A Method for Predicting Unsteady Aerodynamic Forces
on Oscillating Wings with Thickness in Transonic Flow Near Mach
Number 1”, National Aerospace Laboratory Technical Repoirt NAL-
TR-368T, Tokyo, Japan, June 1974. Isogai, using a modified local
linearization procedure, obtains aerodynamic forces comparable to
Park’s and these provide significantly better agreement with tran-
sonic flutter experiments on parabolic arc airfoils.



Nonsteady Aerodynamics (Dowell) 273

38 Dowell, E. H., “A Simplified Theory of Oscillating Airfoils in Tran-
sonic Flow: Review and Extension”, AIAA Paper 77-445, presented
at AIAA Dynamic Specialist Conference, San Diego (March 1977).

39 Spreiter, J. R. and Stahara, S. S., “Developments in Transonic Steady
and Unsteady Flow Theory”, Tenth Congress of the International
Council of the Aeronautical Sciences, Paper No. 76-06 (October
1976).

40 Chan, S. T. K. and Chen, H. C., “Finite Element Applications to
Unsteady Transonic Flow”, AIAA Paper 77-446.

41 Ballhaus, W. F. and Goorjian, P. M., “Computation of Unsteady
Transonic Flows by the Indicial Method”, AIAA Paper 77-447.

42 Isogai, K., “Oscillating Arifoils Using the Full Potential Equation”,
AIAA Paper 77-448. Also see NASA TP1120, April 1978.

43 Eckhaus, W., “A Theory of Transonic Aileron Buzz, Neglecting Vis-
cous Effects”, Journal of the Aerospace Sciences (June 1962), pp.
712-718.

44 Williams, M. H. “Unsteady Thin Airfoil Theory for Transonic Flow
with Embedded Shocks”, Princeton University MAE Report No.
1376, May 1978.

45 Tijdeman, H. and Schippers, P., Results of Pressure Measurements on
an Airfoil with Oscillating Flap in Two-Dimensional High Subsonic
and Transonic Flow, National Aerospace Lab. Report TR 730780,
The Netherlands (July 1973).

46 Goldstein, M. E., Braun, W., and Adamczyk, J. J., “Unsteady Flow
in a Supersonic Cascade with Strong In-Passage Shocks”, J. Fluid
Mechanics, Vol. 83, 3 (1977), pp. 569-604.

47 Rowe, W. S., Sebastian, J. D., and Redman, M. C., “Recent Develop-
ments in Predicting Unsteady Airloads Caused by Control Surfaces”,
J. Aircraft(December 1976) pp. 955-963.

48 MdcCroskey, W. J., “Some Current Research in Unsteady Fluid
Dynamics-The 1976 Freeman Scholar Lecture”, Journal of Fluids En-
gineering (March 1977), pp. 8-39.



Chapter 5

STALL FLUTTER

As the name implies, stall flutter is a phenomenon which occurs with
partial or complete separation of the flow from the airfoil occurring pe-
riodically during the oscillation. In contrast to classical flutter (i.e.,
flow attached at all times) the mechanism for energy transfer from the
airstream to the oscillating airfoil does not rely on elastic and/or aero-
dynamic coupling between two modes, nor upon a phase lag between
a displacement and its aerodynamic reaction. These latter effects are
necessary in a linear system to account for an airstream doing positive
aerodynamic work on a vibrating wing. The essential feature of stall
flutter is the nonlinear aerodynamic reaction to the motion of the air-
foil/structure. Thus, although coupling and phase lag may alter the
results somewhat, the basic instability and its principal features must
be explained in terms of nonlinear normal force and moment character-
istics.

5.1. Background
Stall flutter of aircraft wings and empennages is associated with very

high angles of attack. Large incidence is necessary to induce separation
of the flow from the suction surface. This type of operating condition
and vibratory response was observed as long ago as World War I at which
time stall flutter occurred during sharp pull-up maneuvers in combat.
The surfaces were usually monoplane without a great deal of effective
external bracing. The cure was to stiffen the structure and avoid the
dangerous maneuvers whenever possible.

Electric power transmission cables of circular cross-section, or as mod-
ified by bundling or by ice accretion, etc., and structural shapes of vari-
ous description are classified as bluff bodies. As such they do not require

275
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large incidence for flow separation to occur. In fact incidence is chiefly an
orientation parameter for these airfoils rather than an indication of the
level of steady aerodynamic loading. Again, largely attributable to the
nonlinearity in the force and moment as a function of incidence, such
structures are prone to stall flutter. These vibrations are sometimes
called ‘galloping ’ as in the case of transmission lines. The number and
classes of structures that potentially could experience stall flutter are
very great, and include such diverse examples as suspension bridges, he-
licopter rotors and turbomachinery blades. More mundane examples are
venetian blind slats and air deflectors or spoilers on automobiles.

The stall flutter of non-airfoil structures is described at greater length
in Chapter 6, along with galloping and buffeting. These are all closely
related bluff body phenomena from the point of view of vortex method
aerodynamics, a subject which is introduced later in the present chap-
ter. The stall flutter of rotorcraft blades is described in greater detail
in Chapter 7 where the special kinematic restraints of these rotating
structures lead to a unique aeroelastic description. The stall flutter of
turbomachinery blades is described more fully in Chapter 8, wherein it
is observed that the aeroelastic behavior in stall flutter is distinct from
both non-airfoil structures and rotorcraft blades.

When the flow field is measured or visualized during stall flutter oscil-
lations it is observed that free vortices are generated in the vicinity of the
separation points. These large vortical structures are shed periodically
creating regions of reduced and even reversed velocity in the vicinity
of the airfoil. For this reason the aforementioned technique known as
the vortex method has been developed recently for the computational
modelling of unsteady separation aerodynamics.

It may be shown that the mutual induction, or interaction, of as few
as three vortices leads to chaotic behavior. Thus it is confirmed by
computation that use of vortex method aerodynamics displays many of
the nonlinear aeroelastic phenomena actually observed experimentally
in conjunction with stall flutter.

5.2. Analytical formulation
Although analysis of stall flutter based on computational unsteady

aerodynamics is becoming feasible, it is nevertheless instructive to couch
the problem in analytical terms so as to discriminate clearly the ac-
tual mechanism of instability [1]. We will consider two important cases:
bending and twisting.

In the case of bending, or plunging displacement of a two-dimensional
‘typical section ’ airfoil, let us assume that the force coefficient, including
penetration well into the stall regime, is given by a polynomial approxi-
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mation in α,

−Cn =
v∑

n=0

an(αss)αn a0
∼= −Cnss(αss) (5.2.1)

where α is the instantaneous departure from the steady state value of
angle of attack, αss, attributable to vibration of the airfoil. This method
of expressing the normal force characteristic gives a good local fit with
a few terms. However, the coefficients, αn, depend on the mean angle of
attack,αss. Force has been taken to be positive in the same direction as
positive displacement h. (In the usual (static) theory of thin unstalled
and uncambered profiles −Cn = π sin 2αss. The αn could then be ob-
tained by deriving the Maclaurin series expansion of π sin 2(αss + α)
considered as a function of α). In general the −Cn function is an em-
pirically determined function, or characteristic, when stall occurs on a
cambered airfoil, but the procedure is still the same. The αn are in fact
given by the slope and higher order derivatives according to

an = − 1
n!

dnCn

dαn

∣∣∣
α=0

(5.2.2)

We next consider a small harmonic bending oscillation

h = h0 cos ωt

to exist and enquire as to the stability of that motion: Will it amplify
or decay?

Under these circumstances, it is possible to interpret the instantaneous
angle of attack perturbation to be given by (see Figure 5.1)

α = arctan

(
tanαss +

ḣ

V cos αss

)
− αss (5.2.3)

with Maclaurin series expansion in powers of ḣ as follows

α = cos αss

(
ḣ

V

)
− 1

2
sin 2αss

(
ḣ

V

)2

− 1
3

cos 3αss

(
ḣ

V

)3

+
1
4

sin 4αss

(
ḣ

V

)4

+ · · ·
(5.2.4)

It should be noted that this incidence is relative to a coordinate system
fixed to the airfoil. The dynamic pressure also changes periodically with



278 A MODERN COURSE IN AEROELASTICITY

Figure 5.1. Velocity triangle.

time in this coordinate system according to

qrel =
1
2
ρV 2

rel =
1
2
ρV 2

⎡
⎣1 + 2 sin αss

(
ḣ

V

)
+

(
ḣ

V

)2
⎤
⎦ (5.2.5)

It is assumed for simplicity that the single static characteristic of nor-
mal force coefficient versus angle of attack continues to be operative in
the dynamic application described above. Thus, the expanded equation
for the normal force N = q(2b)Cn is given by

N = − 1
2
ρV 2(2b)

⎡
⎣1 + 2 sin αss

(
ḣ

V

)
+

(
ḣ

V

)2
⎤
⎦ v∑

n=0

an(αss) [ cos αss

(
ḣ

V

)

− 1
2

sin 2αss

(
ḣ

V

)2

− 1
3

cos 3αss

(
ḣ

V

)3

+
1
4

sin 4αss

(
ḣ

V

)4

+ · · · ]n

(5.2.6)

with
ḣ

V
= −ωh0

V
sin ωt = −k

h0

b
sin ωt (5.2.7)

A slight concession to the dynamics of stalling may be introduced
by the inclusion of a time delay, Ψ/ω, in the oscillatory velocity term
appearing in the Cn expansion, i.e., within the summation of (5.2.6),
but not in the development of qrel. The latter is assumed to respond
instantaneously to α or ḣ.

5.3. Stability and aerodynamic work
As is common with single degree of freedom systems such as that

postulated above, the question of amplification or subsidence of the am-
plitude of the initial motion can easily be decided on the basis of the
work done by this force acting on the displacement. Thus
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Work/Cycle =
∫ T

0
Nḣ dt =

1
ω

∫ 2π

0
Nḣd(ωt) (5.3.1)

and since the frequency is effectively the number of cycles per unit time,
the power may be expressed as

P = Power = (Work/Cycle)(Cycles/Seconds) =
1
2π

∫ 2π

0
Nḣd(ωt)

(5.3.2)
Using the previous expression for N and ḣ, it is clear that only even
powers of sin ωt in the integrand of the power integral will yield nonzero
contributions. Also, terms of the form sinn ωt cos ωt will integrate to
zero for any integer value of n including zero. Restricting the series
expansions for −Cn and α to their leading terms such that the power
integral displays terms of vibratory amplitude up to the sixth power
(i.e., up to h6

0) results in

P =
1
2
ρV 3b

[
A(ωh0/V )2 + B(ωh0/V )4 + C(ωh0 V )6 + · · · ] (5.3.3a)

where

A = − 2a0 sin αss − a1 cos αss cos ψ

B = − 1
4
a1 [ − (cos αss − cos 3αss)

(
1 +

1
2

cos 2ψ

)
+ (3 cos αss − cos 3αss) cos ψ ]

− 1
4
a2

[
(sin αss + sin 3αss)

(
1 − 3

2
cos ψ +

1
2

cos 2ψ

)]
− 3

16
a3 [(3 cos αss + cos 3αss) cos ψ]

C = − 1
16

a1 [ (cos 3αss − cos 5αss)
(

3
2

+ cos 2ψ

)
− 1

16
(3 cos 3αss − 2 cos 5αss) cos ψ − 1

3
cos 3αss cos 3ψ ] − · · ·

(5.3.3b)

The cubic dependence on V is a consequence of the dimensions of power,
or work per unit time.

5.4. Bending stall flutter
The analytical expression for the aerodynamic power in a sinusoidal

bending vibration is too cumbersome for easy physical interpretation.
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However, for very small amplitudes of motion, as might be triggered
by turbulence in the fluid, or other ‘noise’ in the system, it is clear
that the sign of the work flow will be governed by the coefficient of
(ωh0/V )2. Assuming a small to moderate positive mean incidence, αss,
the coefficient α0 will be positive. With cosΨ near unity, a positive
power can only occur if α1 is sufficiently negative, i.e., if the −Cn vs
α characteristic has a negative slope at the static operating incidence.
More precisely, if |ψ| < 90◦ and

a1 < −2a0 tan αss sec ψ (5.4.1)

the small amplitude vibration is unstable and the work flow will be such
as to feed energy into the vibration and increase its amplitude.

In the previous expression for the power, (5.3.3a),

P/

(
1
2
ρV 3b

)
= A (ωh0/V )2 + B (ωh0/V )4 + C (ωh0/V )6 (5.4.2)

the coefficients A, B and C are complicated functions of ψ, αss and the
αn, the coefficients of the power series representation of the normal force
characteristic. For example in the highly simplified case of αss = ψ = 0,
we obtain

A = a1 =
dCn

dα

∣∣∣
α=0

, B =
1
2

dCn

dα

∣∣∣
α=0

+
1
8

d3Cn

dα3

∣∣∣
α=0

and

C =
1
12

dCn

dα

∣∣∣
α=0

+
1

192
d5Cn

dα5

∣∣∣
α=0

(5.4.3)

In the general case A, B and C individually may be either positive, zero
or negative. The several possible cases are of fundamental interest in
describing possible bending stall flutter behavior. I. A < 0, B < 0, C <
0 No flutter is possible.

II. A > 0, B > 0, C > 0 Flutter amplitude grows from zero to very
large values.

III. A > 0, B < 0, C < 0 Flutter amplitude grows smoothly from zero
to a finite amplitude given by

(ωh0/V )2III =
(
−|B| +

√
B2 + 4A|C|

)
/2|C|

At this amplitude the power once again becomes zero.
IV. A < 0, B > 0, C > 0 No flutter at small amplitudes; if an ex-

ternal ‘trigger’ disturbance carries the system beyond a certain critical



Stall Flutter (Sisto) 281

vibratory amplitude given by

(ωh0/V )2IV = (−B +
√

B2 + 4|A|C)/2C

the flutter will continue to grow beyond that amplitude up to very large
values. At the critical amplitude the power is zero.

V. A > 0, B > 0, C < 0 This is similar to case III except that the
finite amplitude, or equilibrium, flutter amplitude

(ωh0/V )2V = (B +
√

B2 + 4A|C|)/2|C|
might be expected to be somewhat larger.

VI. A > 0, B < 0, C > 0 This is similar to case IV except that the
critical vibratory amplitude beyond which flutter may be expected to
grow

(ωh0/V )2VI = (|B| +
√

B2 + 4|A|C)/2C

is perhaps a larger value.
VII. A > 0, B < 0, C > 0 This case has behavior similar to case II if

B is very small and similar to case III if C is very small and also very
large amplitudes are excluded from consideration.

VIII. A < 0. B > 0, C < 0 This case behavior is similar to case I if
B is very small and similar to case IV if C is very small and also very
large amplitudes are excluded from consideration.

5.5. Nonlinear mechanics description
A number of these variations of power dependency on amplitude have

been sketched in Figure 5.2. Case II is an example of what may be
termed ‘soft flutter’; given an airstream velocity V , incidence αss and
time delay ψ/ω such as produce values of A, B and C according to
case II, the vibratory amplitude of flutter might be expected to grow
smoothly from zero.

Cases III and V similarly are examples of soft flutter; in these cases
however, the amplitude of vibration reaches a steady value and does not
increase further. An equilibrium flutter amplitude is attained after a
period of time and maintained thereafter. If, in either of these cases,
one were to plot h versus ḣ/ω with time as a parameter, it would be
found that the ‘trajectory’ of the ‘characteristic point’ would be a spiral
around the origin, beginning at the origin at t = 0 and asymptotically
approaching a circle of radius h0 for very large time. In the parlance of
nonlinear mechanics the circular path is a ‘limit cycle’ and hence most
instances of stall flutter may be termed limit cycle vibrations.

Case IV, or alternatively case VI, describes a type of behavior which
may be termed ’hard flutter’. In this situation when flutter appears as
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Figure 5.2. Power vs. amplitude.

a self-sustaining oscillation, the amplitude is immediately a large finite
value. Here the motion spirals away from the circular limit cycle to
either large or smaller amplitudes in the phase plane (i.e., the h, ḣ/ω
plane). This example is an instance in which the limit cycle is unstable.
The slightest perturbation from an initially pure circular path, either to
larger or smaller radii, will result in monotonic spiralling away from the
limit cycle. The previous example of case III illustrated the case of a
stable limit cycle.

The origin of the phase plane is also a degenerate limit cycle in the
sense that the limit of a circle is a point in which case only path radii
larger than zero have physical meaning. However, the origin may be an
unstable limit cycle (soft flutter) or a stable limit cycle (hard flutter).

It is clear from a consideration of cases VII and VIII that more than
two limit cycles may obtain; it is a theorem of mechanics that the con-
centric circles which are limit cycles of a given system are alternately
stable and unstable.

5.6. Torsional stall flutter
With pure twisting motion of the profile, the analytical formulation

is more complex stemming from the fact that the dynamic angle of inci-
dence is compounded of two effects: the instantaneous angular displace-
ment and the instantaneous linear velocity in a direction normal to the
chord position; the second magnitude is linearly dependent upon the
distance along the chord from the elastic axis and upon the frequency
of vibration. Both components, of course, vary harmonically with the
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Figure 5.3. Geometry.

frequency ω. Thus, assuming a displacement θ0 cos ωt the ‘local’ angle
of attack becomes

α = θ0 cos ωt + arctan
[
tan αss − (x − x0)ωθ0

V cos αss
sin ωt

]
− αss (5.6.1)

and the relative dynamic pressure becomes

qrel =
1
2
ρV 2

rel =
1
2
ρV 2

⎡
⎣1 + 2 sin αss

θ̇(x − x0)
V

+

(
θ̇(x − x0)

V

)2
⎤
⎦

(5.6.2)
Since the local incidence varies along the chord in the torsional case, it is
not possible to formulate the twisting problem in a simple and analogous
manner to the bending case unless a single ‘typical’ incidence is chosen.
For incompressible potential flow, thin airfoil theory, it is known [2] that
the three-quarter chord point is ‘most representative’ in relating changes
in incidence to changes in aerodynamic reaction for an unstalled thin
airfoil with parabolic camber. Replacing x − x0 by a constant, say eb,
for

simplicity, one has by analogy with bending

α =θ0 cos ωt + cos αss(−ekθ0) sin ωt − 1
2

sin 2αss(−ekθ0)2

· sin2 ωt − 1
3

cos 3αss(−ekθ0)3ωt +
1
4
· · ·

(5.6.3)

where α is, again, the departure in angle of attack from αss. The con-
stant e will normally be of order unity for an elastic axis location forward
of midchord.

From this point onward, the illustrative analysis involves the substitu-
tion of α into an analytical approximation for the aerodynamic moment
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coefficient

Cm =
v∑

n=0

bn(αss)αn (5.6.4)

In this equation, the bn may be associated with the slope and higher
order derivatives i.e.,

bn =
1
n!

dnCm

dαn
|α=0 (5.6.5)

at the mean incidence point, in a manner analogous to the role of the
an in the normal force coefficient.

The work done by the aerodynamic moment acting on the torsional
displacement is given by

Work/Cycle =
∫ T

0
Mθ̇ dt =

1
ω

∫ 2π

0Mθ̇ d(ωt) (5.6.6)

and hence the work flow, or power, is

P =
1
2π

∫ 2π

0
Mθ̇d(ωt) (5.6.7)

Using the previously derived expressions contributing to the moment
M = q(2b)2Cm leads to

M =
1
2
ρV 2(2b)2

[
1 + 2 sin αss(

θ̇eb

V
) + (

θ̇eb

V
)2
]

·
v∑

m=0

bn(αss)[θ0 cos ωt − cos αss(ekθ0) sin ωt

− 1
2

sin 2αss(ekθ0)2 sin2 ωt +
1
3

cos 3αss(ekθ0)3 sin3 ωt + · · · ]n
(5.6.8)

and this expression, in turn inserted into the integrand of (5.6.7), will
allow an analytical expression to be derived by quadrature.

At this stage in the development of torsional stall flutter, a key differ-
ence emerges more clearly when compared to bending stall flutter; a fun-
damental component of the moment coefficient appears (b − 1θ0 cos ωt)
which is out of phase with the torsional velocity (θ̇ = −ωθ0 sin ωt). Not-
ing that θ̇ is the second factor in the integrand, it is seen that the final
integrated expression for the power will have terms similar in nature to
the expression derived for the bending case, and in addition may have
terms proportional to

b1θ0, b2θ
2
0, b2θ0, b3θ

3
0, b3θ

2
0, etc.,
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It is not particularly instructive to set out this result in full detail.
However, let us consider briefly the case of very slow oscillations, so

that terms proportional to higher powers of the frequency can be ignored.
Then

P = −1
2
ρV 2(2b)2

ωθ0

2π

v∑
n=0

bnθn
0

∫ 2π

0
cosn(ωt − ψ) sin ωt d(ωt)

= −1
2
ρV 3(4b)k sin ψ

v∑
n=odd

bnθn+1
0

1 · 3 · 5 · · ·n
2 · 4 · 6 · · · (n + 1)

(5.6.9)

We conclude from this equation that the work flow again will be pro-
portional to a sum of terms in even powers of the vibratory amplitude,
but in this instance, the low frequency torsional stall flutter is critically
dependent on the time lag ψ/ω between the oscillatory motion and the
response of the periodic aerodynamic moment.

Torsional stall flutter is thus seen to be a much more complex phe-
nomenon, with a greater dependence on time lag and exhibiting very
strong dependence on the locatio of the elastic axis. For example, if
the elastic axis were artificially moved rearward on an airfoil such as to
reduce the effective value of the parameter e to zero, the airfoil flutter
behavior would be governed by exactly the same specialization of the
analysis as was just termed ‘low frequency’. Exactly the same terms
would be eliminated from consideration. In qualitative terms one may
also conclude that the actual behavior in torsional flutter in the general
case (with e �= 0) is some intermediate state between the low frequency
behavior (critical dependence on sin ψ) and a type of behavior char-
acteristic of bending stall flutter (critical dependence on the slope of a
dynamic characteristic at the mean incidence).

5.7. General comments
An interesting by-product of the nonlinear nature of stall flutter is

the ability, in principle, to predict the final equilibrium amplitude of the
vibration. This is in contradistinction to classical flutter in which only
the stability boundary is usually determined. The condition for constant
finite flutter amplitude is that the work, or power flow, again be zero.
As we have seen this can be discerned when the power equation is set
equal to zero; the resulting quadratic equation is solved for the squared
flutter amplitude, either (h0/b)2 or θ2

0 as the case may be. Since all
the an or bn coefficients are functions of αss, the two types of flutter
are displayed in Figure 5.4 as presumed functions of this parameter.
Hard flutter displays a sudden jump to finite amplitude as a critical
parameter is varied and a lower ‘quench’ value of that parameter where
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Figure 5.4. Flutter amplitude vs steady state angle of attack.

the vibration suddenly disappears. The two effects conspire to produce
the characteristic hysteresis loop indicated by arrows in Figure 5.4.

In summary then, stall flutter is associated with nonlinearity in the
aerodynamic characteristic; the phenomenon may occur in a single de-
gree of freedom and the amplitude of vibratory motion will often be
limited by the aerodynamic nonlinearities. Although structural mate-
rial damping has not been considered explicitly, it is clear that since
damping is an absorber of energy its presence will serve to limit the
flutter amplitudes to smaller values; damping limited amplitudes will
obtain when the positive power flow from airstream to airfoil equals the
power conversion to heat in the mechanical forms of damping.

It is also clear that motion in a third degree of freedom is possible.
Oscillatory surging of the airfoil in the chordwise direction can be related
to a nonlinear behavior in the drag acting on the profile. However, air-
foils are usually very stiff structurally in the chordwise direction and the
drag/surging mechanism would normally be of importance only for bluff
structural shapes such as bundles of electric power conductors suspended
between towers, etc.

Under certain circumstances such as the example noted directly above,
stall flutter in more than one degree of freedom may occur. In these
cases, the dynamic characteristics of normal force, aerodynamic mo-
ment (and drag) become functions of an effective incidence compounded
of many sources: plunging velocity, torsional displacement, torsional ve-
locity and surging velocity. The resultant power equation will also con-
tain cross-product terms in the various displacement amplitudes, and
hence the equation cannot be used to predict stability or equilibrium
flutter amplitudes without additional information concerning the vibra-
tion modes.
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Figure 5.5. Dynamic moment loops.

Perhaps the greatest deficiency in the theory, however, is the fact
that even in pure bending motion or pure torsional motion, the dynamic
force and moment are in fact frequency dependent: an = an(αss, k)
and bn = bn(αss, k). And in general a0 �= −Cnss and b0 �= −Cmss. In
analogy with classical flutter it may be shown that even this dependence
is deficient in that the characteristics in practice may be double valued.
That is, for the same value of effective incidence α, the characteristic
may have different values depending upon whether α is decreasing or
increasing with time. Such a hysteretic characteristic is usually more
pronounced at high frequencies of oscillation; an airfoil may have two
lift or moment coefficients at a particular angle of attack even in the
static case, depending upon how the operating point was approached.

It is for these reasons that practical stall flutter prediction has been at
best a semi-empirical process, and often entirely empirical. A model is
oscillated in torsion, or bending, in a wind tunnel under controlled con-
ditions with parametric variation of reduced frequency, mean incidence
and oscillatory amplitude. Various elastic axis locations also may be
studied. Data which are taken may vary from instantaneous normal force
and moment down to the actual time-dependent pressure distribution on
the profile. Data reduction consists essentially of cross-plotting the var-
ious data so that flutter prediction for prototype application is largely a
matter of interpolation in model data using dimensionless groups. Spe-
cific representative data will be taken up in subsequent chapters where
stall flutter applications are studied.

An exception to the previous reliance on experimental data is a the-
ory [3] which postulates that the departure of the normal force and/or
aerodynamic moment from the classical (attached flow) values can be
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modelled by considering a flat plate with separated flow on the suction
side. As the plate oscillates harmonically in time, the position of the sep-
aration point (from which emanates a free streamline) is also considered
to move periodically with the same frequency as the oscillation. The
movement of the separation point along the suction surface is between
two arbitrarily specified upstream and downstream limits and with an
arbitrarily specified phase angle with respect to the oscillatory motion.

Under these circumstances, it is possible to solve the unsteady flow
problem (analogous to the classical Theodorsen solution for attached
flow) with separation present. In effect the appropriate dynamic force
and moment characteristics are generated for each function specifying
the separation point movement and airfoil motion. The empirical part
of the flutter prediction technique then resides in correlation of the sepa-
ration point behavior as a function of the airfoil attitude and oscillatory
motion. To illustrate the potential of the technique, two moment loops
from the reference are shown in Figure 5.5. The one on the left is from an
experimental program [4], the one on the right is from [3]. Although the
variation of moment with torsional displacement is remarkably similar,
it must be emphasized that the particular choice of elastic axis location
is different in experiment and theory, and the assumed separation point
behavior in the theory was reasonable, but quite arbitrary and unrelated
to the unknown separation point behavior in the experiment.

The method of modelling the separation region on the suction surface
of the airfoil by a free streamline issuing from the ‘separation’ point has
been generalized subsequently [5]. The method employs simultaneous
integral equations and may be applied to subsonic, small perturbation
flows of aeroelastic significance. In particular, for cascades of airfoils of
interest in axial-flow compressors [6], the method has shown promise of
improved stall flutter prediction. A type of stall resulting in a leading
edge ‘bubble’ is also amenable to this type of small perturbation analysis
[7] and is more appropriate for sharp leading edges with onset flows that
result in reattachment of the separation streamline.

These free-streamline methods are useful when the reattachment point
and/or separation point behavior can be predicted beforehand and the
mean incidence is not excessive. An example is the thin airfoil with small
leading edge radius at moderate incidence where the separation point is
‘anchored’ at the leading edge and reattachment does not occur.

5.8. Reduced order models
As noted in Chapter 11, Nonlinear Aeroelasticity, reduced order mod-

els have been developed to help account for the effect of airfoil vibratory
displacement, velocity and acceleration on the associated aerodynamic
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responses. Since the theoretical underpinning for these models is not
firmly established for conditions of massive flow separation, the char-
acteristics must be developed by model fitting from experimental data.
For this reason these models have also been termed “semi-empirical”.

In fact, a low order model is the quasisteady development presented in
Section 5.2 for the nonlinear normal force and moment characteristics.
The linear quasisteady development in Chapter 3 is another low order
model. The steady flow aerodynamics example of that same chapter is
of course the model of lowest possible order.

Reduced order modelling for stall flutter and bluff body aeroelasticity
has been studied by a number of investigators. Some of these studies are
described in Chapter 11 and references to much of the recent literature
may be found there. One important and representative study is that by
Tang and Dowell [16] in which many of the characteristics attributable
to aerodynamic nonlinearities appear. Example are the asymptotic ap-
proach to limit cycles and the development of chaotic pitch displacement
and moment coefficient histories for particular values of the advance ra-
tio.

5.9. Computational stalled flow
In recent years the so-called vortex method has begun to be used

to model periodically separated flow from bluff bodies [8, 9] as well as
streamlined shapes [10] such as airfoils. The vortex method is essentially
a computational algorithm which tracks a large collection of discrete vor-
tices in time. Since it is a time-marching procedure, the aerodynamic
reactions are obtained with an evolving flow and the aeroelastic response
of the structure must evolve in like manner. Hence stability of a spe-
cific structure oriented in a specific flow cannot be discriminated ab ini-
tio. The aeroelastic vibration develops in the course of time; hence the
method might equally be termed computational fluid elasticity (CFE).
The power of the method may be appreciated when it is realized that
highly nonlinear aerodynamics (and structure as well) may be modelled
and finite amplitudes of the flutter vibration may be predicted. The
cost of computation is high since fairly long runs on supercomputers are
required for acceptable accuracy.

The vortex method for modelling unsteady separated flow as initiated
in [10] and modified in [11] and [12] for oscillating airfoils, is based upon
the following fluid dynamic system of equations.

For two-dimensional, viscous, incompressible flow past an infinite lin-
ear cascade of airfoils at high Reynolds number, the basic aerodynamic
equations that govern the vorticity field derived in [8] are as follows. (For
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a single airfoil the formulation may be simplified from what is shown
here).

Conservation of vorticity in the fluid requires

Dω

Dt
= v∇2ω (5.9.1)

where the vorticity in the fluid field is

ω =
∂v

∂x
− ∂u

∂y
(5.9.2)

Vorticity within the solid is a continuation of the fluid field and repre-
sents the motion (vibration) of the solid

ω = 2Ωm (5.9.3)

The boundary conditions in terms of vorticity can be written as [8]∮
(v

∂ω

∂n
)ds = −2Rm

dΩm

dt
(5.9.4)

The system of equations governing the vorticity and the system gov-
erning the velocity and pressure are equivalent. A stream function ψ
can be defined to satisfy the continuity equation

u =
−∂ψ

∂y
and v =

∂ψ

∂x
(5.9.5)

Combining (5.9.2) and (5.9.5) results in the Poisson equation

∇2ψ = ω (5.9.6)

The vortex method represents the vorticity field as the sum of a large
number (N) of vortex blobs

ω =
N∑

k−1

ωk (5.9.7)

and the stream function induced by a collection of vortices is Σψk, where

ψk = (Γk/4π)ln| sin[(2π/p)(z − zk)]|2 (5.9.8)

Here i =
√−1 and the complex variable notation z = x + iy is used.

The instantaneous coordinates of the mth airfoil surface [x(t), y(t)]
under coupled bending-torsion with a frequency of f Hertz are given by

x(t) = x0 − h sin(2π ft + µ + mσ) sin β − y0 θ sin(2π ft + mσ) (5.9.9a)
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y(t) = y0 + h sin(2π ft + µ + mσ) cos β + x0 θ sin(2π ft + mσ) (5.9.9b)

where (x0, y0) are coordinates for each airfoil without vibration and are
measured from its centroid, assumed here for simplicity to coincide with
the center of twist. The quantity µ refers to the intrablade phase angle
which is the phase difference between the bending and torsional modes.
On the other hand, the interblade phase angle, σ, represents the phase
shift between neighboring blades. To obtain the corresponding bound-
ary conditions, the nonpenetration condition is imposed as expressed by
(4.1.32).

With the definition of the stream function ∂ψ/∂s = Vn where s and
n are local coordinates parallel and normal to the wall, respectively, the
incremental value of stream function along each airfoil surface can be
determined by

dψ|s =
∫ s0+∆s

s0

Vnds =
∫ s0+∆s

s0

(ẋbnx + ẏbny)ds (5.9.10)

This equation is used to determine the distribution of the values of the
stream function along the boundary points of the airfoils, and then to
solve the vorticity-stream function equations. As a consequence of the
airfoil motion the values of the stream function are not constant along
the boundary of the airfoil. It should also be mentioned that the no-slip
condition reflecting the nonzero viscosity of the fluid is satisfied in a
weak sense, as discussed in [8].

Computations based on this system of equations have shown [12] that
the two-dimensional unsteady flow, as exemplified in a linear cascade
of oscillating airfoils, is properly predicted for a range of reduced fre-
quencies at low incidence. Results similar to those derivable analytically
by the methods of Section 4.3 in Chapter 4, and also in Chapter 8 for
cascades, are confirmed by these computational procedures. With this
validation in hand it is possible then to consider larger values of the
mean incidence until stall is encountered, and compute the aerodynamic
response under intermittent separation, and finally, under complete or
’deep’ stall. The rapid change in amplitude and phase for lift due to
plunging motion as the mean incidence is increased in steps is shown in
the following table, along with streamline pattern at one instant for the
highest incidence case, Figure 5.6.

The presence of strong vortices in the flow illustrates an important
stability modification mechanism present in stalled flow. These coher-
ent structures are subject to a nonlinear eigenfunction/eigenfrequency
interpretation associated entirely with the flow. A completely rigid air-
foil (cascade of airfoils) is (are) subject to a flow instability identified
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Figure 5.6. Streamline pattern at several instants for bending vibrations in stall.

as Karman vortex shedding [13] (propagating stall phenomenon). This
unsteady periodic behavior has a characteristic frequency and the associ-
ated flow patten is in the guise of an eigenfunction. Thus stall flutter, in
a modern interpretation, may be thought of as the aeroelastic coupling
of fluid and structure through the vortex shedding and convection mech-
anism. If an airfoil natural frequency lies close to a natural frequency
of the flow instability (either Karman vortex or propagating stall), the
vibration of the blade can ‘entrain’ the stall frequency, resulting in the
shift from a forced excitation at the ‘stall natural frequency’ to a self-
excitation at the flutter frequency. This duality of frequencies may be
observed in the lift response spectrum during the first few instants of
the prescribed motion, Figure 5.7, for several bending amplitudes.

In this figure two distinct frequencies are evident, one associated with
the propagating stall that would be present in the absence of any vibra-
tion, and the other at the same frequency as the impressed vibration.
At a later time the propagating frequency has shifted and is essentially
equal to the vibration frequency (which is always taken to include the
effect of apparent mass). Frequency synchronization has taken place.

Results of this nature have led to further modelling and computation
with the conclusion that stall flutter can be predicted by a computational
algorithm in which the airfoil motion is not prescribed beforehand. In
[14] and [15] the vortex method aerodynamic subprogram is executed in
parallel and interactively with a structural dynamics subprogram, the
entire computation being carried forward in a time marching fashion.

Figure 5.8 from [14] is a computational confirmation of the frequency
entrainment phenomenon previously hypothesized to occur for free vi-
brations. The temporal evolution of the streamline pattern and the



Stall Flutter (Sisto) 293

Figure 5.7. Effect of vibration amplitude on lift amplitude and frequency.

accompanying blade vibratory motion for one datum point of Figure 5.8
is shown in Figure 5.9. The propagating stall frequency of a cascade of
blade s with fixed geometry and onset flow is seen to be relatively unaf-
fected by the presence of flexible blades except in the neighborhood of
those blades having natural frequency near the intrinsic stall frequency.
Within the interval of entrainment, however, the stall frequency is phys-
ically modified so as to synchronize with the blade natural frequency.
Within the entrainment interval stall flutter may be said to occur. In
Chapter 6 the synchronization phenomenon as applied to bluff bodies
is discussed in greater detail. Further studies are underway to define
the interval of synchronization as a function of the governing aeroelastic
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Figure 5.8. Influence of blade-reduced frequency on the stall-reduced frequency for
a cascade in torsional vibration. The plot shows the entrainment of stall frequency
on a certain interval of blade frequency.

parameters and to further define the stall flutter behavior within this
interval.

The vortex method possesses inherent limitations which are related to
the two-dimensionality of the assumed flow and the necessity for a sep-
aration criterion embedded in a boundary layer subroutine. These lim-
itations would be removed with the alternative development of Navier-
Stokes solvers for full three-dimensional, unsteady, compressible flows.
The principal difficulty to be overcome is the provision of an accurate
turbulence model that will

result in the necessary resolution of the scale of turbulence for typical
cascade geometry. And the much greater number of computations re-
quired for this computational model, stemming from the multiplicity of
blade passages, makes the forthcoming increase in computational speed
a necessary adjunct. Supercomputers, probably involving parallel pro-
cessing, are a necessity for reliable large scale Navier-Stokes solutions.
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Chapter 6

AEROELASTICITY IN CIVIL
ENGINEERING

Certain types of civil engineering structures can be subjected to aero-
dynamic forces generated by structural motions. These motions, called
self-excited, are in turn affected by the aerodynamic forces they gener-
ate. Behavior associated with self-excited motions is called aeroelastic.
The flutter of the Brighton Chain Pier Bridge (Fig. 6.1) and, more than
one century later, the original Tacoma-Narrows Bridge (Fig. 6.2) are
notorious examples of aeroelastic behavior. Tall chimneys and buildings
may also respond aeroelastically and need to be designed accordingly.
The John Hancock building in Boston, which has a relatively flat shape
in plan (Fig. 6.3), has experienced across-wind and torsional motions
of sufficient severity to warrant the installation of a large tuned-mass
damper system at its top. These motions may have been due to aeroelas-
tic effects∗. Under certain conditions power lines experience aeroelastic
behavior referred to as galloping .

Aeroelastic phenomena of interest in civil engineering differ from those
studied in aeronautical engineering in two important ways. First, civil
engineering structures are typically bluff, although in modern suspended-
span† bridge design streamlined box-like deck shapes are increasingly
being used. Second, unlike flows typically considered in aeronautical
engineering, the flows in which civil engineering structures are immersed
are in most cases turbulent. Atmospheric turbulence depends upon the

∗Recent research on tall buildings with relatively large ratio between depth and width suggests
that this was indeed the case - see Section 6.6.2. To the writers’ knowledge, for legal or other
reasons, detailed technical reports on the wind-induced behavior of the John Hancock building
are not available in the public domain.
†The term “suspended-span bridge” covers both suspension bridges and cable-stayed bridges.
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thermal stratification of the flow. At very high wind speeds mechanical
turbulence is dominant and the air flow may therefore be assumed to
be neutrally stratified. Standard atmospheric models commonly used in
wind engineering are applicable in this case. However, atmospheric flows
are not necessarily neutrally stratified – even at relatively high wind
speeds. The actual flow turbulence may therefore differ substantially
from, and in some cases be considerably weaker than, the turbulence
inherent in standard models.

To estimate the effects of the interaction between aerodynamic forces
and structural motions it is in principle necessary to solve the Navier-
Stokes equations for turbulent flow with time-dependent boundary con-
ditions dependent on the solutions themselves. This problem defies an-
alytical capabilities. It is also difficult to solve dependably by compu-
tational fluid dynamic (CFD) methods, although continual progress is
being made in this field, especially for non-turbulent flows.

Given the limitations of analytical and numerical procedures, the
aeroelastic characterization of civil engineering structures relies largely
on laboratory testing and empirical modeling. Such testing is not al-
ways without its problems, however, and for certain conditions it is
necessary to assess carefully the applicability to the prototype of labo-
ratory test results and the associated empirical models. There are two
reasons for this. First, wind tunnels that achieve Reynolds numbers
comparable to those typical of most types of civil engineering structures
(e.g., high-pressure wind tunnels) are currently not capable of simulating
atmospheric turbulence, which can significantly affect bluff body aero-
dynamic and aeroelastic behavior. Second, wind tunnels that simulate
the features of atmospheric turbulence usually violate Reynolds number
similarity requirements by factors of the order of 100 to 1000. Never-
theless, for most structures with sharp edges at which flow separation
must occur both in the prototype and the model, and for properly mod-
eled structures with rounded shapes and rough or ribbed surfaces, it is
assumed in most cases that the violation of Reynolds number similar-
ity is relatively inconsequential, and that prudent use of laboratory test
results is warranted.

This chapter is divided into two main parts. The first part is devoted
to bluff body aeroelasticity fundamentals pertaining to vortex-shedding
related phenomena (Section 6.1), galloping (Section 6.2), divergence
(Section 6.3), flutter, and buffeting in the presence of aeroelastic ef-
fects (Section 6.4). The second part is concerned with applications to
suspended-span bridges (Section 6.5), and tall chimneys and buildings
(Section 6.6).

A. FUNDAMENTALS
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Figure 6.1. Brighton Chain Pier Bridge failure, Nov. 29, 1836, as sketched by W.
Reed. From J.S. Russell, “On the Vibration of Suspension Bridges and Other Struc-
tures, and the Means of Preventing Injury from this Cause,” Trans. Royal Scottish
Soc. Arts (1841), quoted in F.B. Farquharson (ed.), Aerodynamic Stability of Sus-
pension Bridges, Bulletin No. 116, University of Washington Engineering Experiment
Station, Seattle, 1949-1954.

6.1. Vortex-induced Oscillation
Vortex shedding
The aeolian harp (named after Aeolus, the Greek god of winds) consists
of a set of parallel strings which, when exposed to wind, experience
vibrations that produce acoustical tones. The vibrations are caused by
periodic lift forces associated with vortex shedding, and were studied by
Strouhal in 1878 [1]. The shedding of vortices in the wake of circular
cylinders was studied in 1908 by Bénard [2], after whom the vortices
are named in France. A few years later it was also studied by von
Kármán [3]. The orderly array of vortices that forms in the wake of a
cylinder is known as a von Kármán street∗. The character of the vortex

∗The late Professor Wallace Hayes of Princeton University sometimes called it “boulevard
Bénard.”
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Figure 6.2. Flutter of the Tacoma Narrows Bridge, November 10, 1940. From F.B.
Farquharson (ed.), Aerodynamic Stability of Suspension Bridges, 1949-1954.

shedding depends upon Reynolds number, the turbulence present in the
oncoming flow, and the turbulence in the boundary layer that develops
on the circular cylinder’s surface. These factors control the interplay
between viscous and inertial forces that determines the position of the
boundary layer’s separation point. Vortex shedding is not limited to
circular cylinders; it also occurs in the wake of prismatic bodies (Fig.
6.4), and of non-cylindrical elongated bodies such as tapered chimneys.

For long rigid cylindrical bodies in flow with uniform mean speed,
around which the flow may be assumed to be two-dimensional, the vortex
shedding frequency fs satisfies the relation

S = fsD/U (6.1.1)

where D is the across-flow dimension of the cylinder, U is the mean
speed of the oncoming flow, and the Strouhal number S depends upon
the cross-section of the cylinder. (The assumption that the flow is two-
dimensional means that end effects are assumed to affect negligibly the
overall model behavior.) For smooth circular cylinders S changes dras-
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Figure 6.3. John Hancock Building, Boston (by permission of Professor Mary Anne
Sullivan, Bluffton College, http://www.bluffton.edu).
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Figure 6.4. Flow around rectangular cylinder, Reynolds number Re=200. From Y.
Nakamura, “Bluff Body Aerodynamics and Turbulence” J. Wind Eng. Ind. Aerodyn.,
49 (1993) 65-78.

tically at certain critical values of the Reynolds number (see, e.g., [4]).
However, for circular cylinders with rough surfaces no such critical phe-
nomena appear to have been observed [5], [6, p. 151]. The Strouhal
number is listed in [6] for a variety of shapes of interest in structural
engineering under uniform, smooth flow conditions.

The shedding of vortices in the wake of a body gives rise to an asym-
metric flow (Fig.6.4) and, therefore, to an asymmetric pressure field
which induces on the body fluctuating lift forces, as well as relatively
small drag force fluctuations. In air flow the latter may in most appli-
cations be assumed to be negligibly small. Various aspects of vortex
shedding, including the dependence of the fluctuating lift force acting
on a square cylinder upon the turbulence in the oncoming flow, are dis-
cussed, for example, in [6, 7].

If the body is not perfectly rigid, or if it has elastic supports, it will ex-
perience motions due to the aerodynamic forces and, in particular, to the
fluctuating lift force. As long as the motions are sufficiently small they
do not affect the vortex shedding, and Eq. 6.1.1 remains valid. If the
vortex-shedding frequency fs, and therefore the frequency of the associ-
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ated lift force, is equal to the natural frequency of vibration of the body
fn, then a relatively large motion amplification occurs. Experiments
show that this is the case not only at the flow speed fnD/S, but also at
any flow speed U within an interval fnD/S −∆U < U < fnD/S + ∆U ,
where ∆U/U depends upon cross-sectional shape and the mechanical
damping , and is usually of the order of few percent. Within that in-
terval the vortex shedding frequency no longer conforms to Eq. 6.1.1;
rather, it aligns itself to the frequency of vibration of the body.

This is an aeroelastic effect: while the flow affects the body motion,
the body motion in turn affects the flow insofar as it produces a synchro-
nization of the vortex-shedding frequency with the frequency of vibration
of the body. Synchronization occurs in a wide variety of physical, bio-
logical, and mathematical non-linear systems, including clocks attached
to the same deformable wall, which tick in unison, women sleeping in
the same room, who according to [8] tend to have their menses on the
same day, and the famous van der Pol equation, among other nonlinear
equations. In the vortex-shedding case the synchronization is referred
to as lock-in.

Figure 6.5 shows measurements of the across-flow oscillations of an
elastically supported circular cylinder in smooth flow and their spectral
densities, and of flow velocity fluctuations and their spectral densities at
2.5 diameters downstream of and one diameter above the cylinder axis
[9]. Note the significant increase in amplitude for fs = fn. However, even
for fs = fn the ratio of the amplitude to the diameter of the cylinder
remains relatively small. This is typical of vortex-induced oscillations.

Up to a certain magnitude of the displacement the body motion results
in a transfer of energy from the flow to the body. This transfer may be
viewed as equivalent to a flow-induced negative aerodynamic damping.
For larger displacements, however, there occurs a transfer of energy from
the body to the flow. This helps to limit the amplitude of the motion
and may be viewed as equivalent to a flow-induced positive damping .

Figure 6.6 reflects another aeroelastic phenomenon of interest in prac-
tice: the increased along-span correlation of the pressures acting on a
circular cylinder as the oscillation amplitudes increase.

Modeling of vortex-induced oscillations
The aeroelastic behavior of an oscillator is described by its equation of
motion, in which the excitation term is the resultant of the flow-induced
pressures. As was mentioned earlier, the latter can in principle be ob-
tained from the solution of the Navier-Stokes equation with boundary
conditions dependent upon the solution itself.
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For many years mathematicians and engineers have tried to develop
simplified empirical models. One justification for such models is that
the collective behavior of a wide variety of systems with large num-
bers of degrees of freedom can be similar to the behavior of simple
low-degree-of-freedom systems representing them. (A flow interacting
with a body is a system with an infinity of degrees of freedom.) The
various empirical vortex-induced oscillation models contain adjustable
parameters fitted to match experimental results. By construction, the
solutions of the model equations with parameters fitted to those results
provide a reasonable description of the observed aeroelastic motions.
The user must be aware that the empirical model may not be valid as
a motion predictor for conditions that differ significantly from the ex-
perimental conditions in which the fitted parameters were obtained. For
long elastically-supported cylinders in uniform smooth flow we review
a number of two-degree-of-freedom models, and a simpler but useful
single-degree-of-freedom model.

Coupled two-degree-of-freedom equations: wake os-
cillator models
Two-degree-of-freedom models entail two coupled equations, one describ-
ing the body motion, and one describing the wake motion. Various
models, all derived from a generic model, were reviewed by Scanlan [10],
whom we follow in the sequel. The generic model includes the equation
of body motion

m[ÿ + 2ζωnẏ + ω2
ny] = F (φ, φ̇, φ̈), (6.1.2)

where y is the across-flow body displacement, m is the body mass, ζ is
the mechanical damping ratio, ωn = 2πfn, φ is a representative wake
variable, and

F (φ, φ̇, φ̈) = a2φ̈ +
N∑

n=1

a2n−1φ̇
2n−1 + a0φ, (6.1.3)

and the equation of wake motion

φ̈ +
M∑

m=1

b2m−1φ̇
2m−1 + b0φ = G(y, ẏ, ÿ,

...
y ,

....
y ), (6.1.4)

where

G(y, ẏ, ÿ,
...
y ,

....
y ) = c4

....
y + c3ÿ + c2ÿ +

R∑
r

c2r−1ẏ
2r−1 + c0y. (6.1.5)
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Figure 6.5a. Response for U/fnD = 4.294; ζ = 0.15%.

The constants ai, bi, ci must be identified by a combination of physical
reasoning and experimental work. The system 6.1.2-6.1.5 is autonomous.
Various models differ according to the meaning ascribed to the variable
φ and the choice of non-zero constants a, b, and c.

The first wake oscillator model was proposed in 1955 by the great
American mathematician Birkhoff∗ [11]. In the Birkhoff model the vari-
able φ is the angle, denoted by α, between the axis of the vortex street
and a fictitious lamellar mass, “something like the tail of a swimming
fish,” that extends a distance L aft of the cylinder, and oscillates at the
Strouhal frequency from side to side across the wake.

Funakawa [12] pursued Birkhoff’s basic idea by attributing to the wake
oscillator a physical meaning associated with the mass of the “dead fluid”
region in the near wake of the cylinder. He conducted experiments in
uniform smooth flow in which a circular cylinder was subjected to har-
monic oscillations at the Strouhal frequency. Details on the behavior
of the “dead fluid” region were inferred from flow visualizations under

∗Birkhoff’s contributions to the field of dynamical systems rank in importance with those of
Poincaré, with whom he had close and fruitful scientific interactions.



308 A MODERN COURSE IN AEROELASTICITY

Figure 6.5b. Response for U/fnD = 5.003; ζ = 0.15%.

lock-in conditions. The wake oscillator was assumed to act as a hori-
zontal pendulum coupled to the cylinder motion and described by the
equation

Iα̈ + cα̇ + k(α +
ẏ

U
) = ω2

sIᾱ sin ωst (6.1.6)

where I = 1
4ρLH(D + L)2 is the moment of inertia of the wake oscilla-

tor, H = 1.25D, L = 2.2D, k = 1
2ρU2(2π)L(D + L)/2 is the oscillator’s

moment stiffness, and ᾱ = 2y0/(D + L). Equation (6.1.6) was used by
Funakawa to calculate drag and lift forces induced by the wake oscil-
lator on the cylinder through Magnus effects, and dependent on y, ẏ,
and ẏ3. There results from this model a van der Pol-type equation of
motion of the body that contains two terms of aerodynamic origin. The
first term is of the form c1,aeroẏ and reflects the transmission of energy
from the flow into the body. Unlike a mechanical damping coefficient
– which is associated with loss of energy by the system, – the aerody-
namic damping coefficient c1,aero < 0. The second term has the form
c2,aeroẏ

3, where the aerodynamic damping coefficient c2,aero > 0. For
small ẏ the net aerodynamic damping due to the linear and nonlinear
terms in ẏ is negative, so that the displacement increases. For large
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Figure 6.5c. Response for U/fnD = 5.475; ζ = 0.15%.

ẏ the net aerodynamic damping becomes positive, thereby limiting the
amplitude of the body motion. A critique of Funakawa’s model work led
Nakamura [13] to propose a modified form of the Magnus lift force. A
further modification was proposed by Tamura and Matsui [14].

In another family of circular cylinder vortex-induced oscillation mod-
els the parameter φ of Eq. (6.1.2) is taken to be the lift coefficient CL.
Hartlen and Currie [15] proposed the following model:

Mÿ + Cẏ + Ky =
1
2
ρU2DCL(t) (6.1.7)

C̈L − aωsĊL +
γ

ωs
Ċ3

L + ωsCL = bẏ (6.1.8)

where b is an adjustable parameter, α = ρD2/8π2S2M, y = 4α/3CL0 ,
and CL0 is the measured amplitude of the fluctuating lift coefficient on
the stationary cylinder. Hartlen and Currie’s model was subsequently
modified by Skop and Griffin [16, 17], Landl [18], Wood [19], and Wood
and Parkinson [20].

Dowell [21] developed a model in which CL was also used as the wake
oscillator variable. The model is based on four requirements:
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1. At high frequencies a virtual mass relationship is preserved between
lift and cylinder acceleration, that is,

8CL = −B1ρD2 ÿ2

2
(ω → ∞) (6.1.9)

where B1 is a constant.
2. At low frequencies quasi-steady conditions hold between CL and

y, that is, for ∞ → 0

CL = f(
ẏ

U
) = A1(

ẏ

U
) − A3(

ẏ

U
)3 + . . . (6.1.10)

where A1, A3 . . . are constants.
3. For small CL and y ≡ 0 the fluid oscillation has the Strouhal

frequency, that is,
C̈L + ω2

sCL = 0. (6.1.11)

4. Characteristics of the van der Pol oscillator are included in the
response of CL. Conditions 1 to 4 lead to the equation

C̈L − ε

[
1 − 4

(
CL

CL0

)2
]
ωsĊL + ω2

sCL = −B1

(
D

U2

)
....
y

+ ω2
s

[
A1

ẏ

U
− A3

(
ẏ

U

)3

+ A5

(
ẏ

U

)5

− A7

(
ẏ

U

)7
]

(6.1.12)

in which the parameter ε must be determined experimentally. Two
special features of Dowell’s model are that it contains a fourth order
coupling of y to CL, and that the model can describe oscillations in a
broader frequency range than is the case for other models. For details
and comparisons with experiments see [21].

Single-degree-of- freedom model of vortex-induced
response
The following simple single-degree-of-freedom model proposed by Scan-
lan [22] exhibits features of a van der Pol oscillator:

m(ÿ + 2ζωnẏ + ω2
ny) =

1
2
ρU2D

[
Y1(K)

(
1 − ε

y2

D2

)
ẏ

U

+ Y2(K)
y

D
+ CL(K) sin(ωt + φ)

]
.

(6.1.13)

In Eq. (6.1.13) K = Dω/U , and the circular frequency ω satisfies the
Strouhal relation ω = 2πSU/D; Y 1, Y 2, ε, and CL, a measure of the lift
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Figure 6.6. Effect of increasing oscillation amplitude a/2 of a circular cylinder of
diameter D on correlation between pressures at points separated by distance d along a
cylinder generator: (a) smooth flow; (b) flow with turbulence intensity 11%. Reynolds
number: Re = 2 × 104.

force that would occur in the absence of lock-in, must be fitted to experi-
mental results. This model allows for negative and positive aerodynamic
damping at low and high body displacements, respectively, that is, for
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Figure 6.7. Maximum amplitude as a function of Scruton number.

the aeroelastic transfer of energy from the flow to the body or from the
body to the flow according as the displacements are small or large. At
lock-in ω ≈ ωn, and Y2(ωn) = 0, CL(ωn) = 0, since the last two terms
within the square bracket of Eq. (6.1.13) are much smaller than the
term - dominant by far – reflecting the aerodynamic damping effects.
At steady amplitudes the average energy dissipation per cycle is zero, so
that ∫ T

0

∣∣∣∣4mζω − ρUDY1(1 − ε
y2

D2
)
∣∣∣∣ ẏ2dt = 0 (6.1.14)

where T = 2π/ω. The assumption that, for practical purposes, y is
harmonic, that is, y = y0 cos ωt, implies∫ T

0
ẏ2(t)dt = ωy2

0π. (6.1.15)

∫ T

0
y2ẏdt = ωy2

0

π

4
. (6.1.16)

Equation (6.1.14) then yields

y0

D
= 2

[y1 − 8πSscrs]
1
2

ΣY1
(6.1.17)
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where Sscr denotes the Scruton number, defined as

Sscr =
ζm

ρD2
. (6.1.18)

The parameters Y1 and ε may be evaluated from model tests. At the
lock-in velocity the body is displaced to an initial amplitude A0 > y0

and then released. The body will then undergo a decaying oscillation
until it levels out to the steady state motion with amplitude given by
Eq. (6.1.17). It is shown in [23] that the amplitude of the decaying
oscillation can be described by the expression

y(t)
D

=
y0/D

[1 − ((A2
0 − y2

0)/A
2
0) exp(−αy2

0Ut/4D3)]
1
2

(6.1.19)

in which

α =
ρD2Y1

2m
ε. (6.1.20)

The value of α is determined from the model tests as follows. Defining
Rn = A0/An, where An is the amplitude of the decaying oscillation at n
cycles after the release,

α =
−4SD2

ny2
0

ln

[
A2

0 − R2
ny2

0

A2
0 − y2

0

]
. (6.1.21)

It follows that

Y1 =
m

2ρD2
ln

[
α

y2
0

D2
+ 16πζS

]
, (6.1.22)

ε =
2mα

ρD2Y1
. (6.1.23)

Y1 may be obtained by alternative identification techniques from sec-
tion model tests of the type used to measure flutter coefficients (Section
6.5). Scanlan’s model is the basis of procedures for the estimation of
vortex-shedding effects on bridge decks (Section 6.5.3) and tall chim-
neys (Section 6.6).

Experimental data used in conjunction with a model similar to Eq.
(6.1.17) yielded the values plotted in Fig.6.7 [9]. Also plotted in Fig.6.7
is the following empirical formula developed in [23]:

y0

D
=

1.29
[1 + 0.43(8π2S2Sscr)]3.35

. (6.1.24)

For additional basic material on vortex-induced oscillation, see [24-28]
and references listed in [10].
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6.2. Galloping
In this section we study two types of galloping. Across-wind galloping

is a large-amplitude oscillation (one to ten or more across-wind dimen-
sions of the body) exhibited in a plane normal to the oncoming flow
velocity by slender structures with certain types of cross-section. For
example, ice-laden cables subjected to winds approximately normal to
their span exhibit galloping oscillations in a vertical plane. For brevity
we will refer to across-wind galloping simply as galloping. Wake gallop-
ing refers to oscillations of a downstream cylinder induced by the wake
flow of an upstream cylinder, and has been observed in bundled power
transmission-line cables.

Equation of motion of galloping bodies. The Glauert-
Den Hartog necessary condition for galloping insta-
bility
Pioneering contributions to the galloping problem are due to Glauert
[29] and Den Hartog [30, 31]. Experience has shown that knowledge
of the mean lift and drag coefficients obtained under static conditions
as functions of angle of attack is sufficient for building a satisfactory
analytical description of the galloping phenomenon; that is, galloping is
governed primarily by quasi-steady forces. Deviations of the actual drag
and lift forces from their mean static counterparts that occur during
the galloping motion have a second-order effect, unless the oscillator can
experience chaotic transitions, as suggested in Section 6.2.3.

We assume that the problem is two-dimensional, and consider the
cross-section of a prismatic body in smooth flow (Fig. 6.8). Assume the
body is fixed and that the angle of attack of the flow velocity Ur is α.
The mean drag (mean force in the direction of Ur) and the mean lift
(mean force in the direction normal to Ur) are, respectively,

D(α) =
1
2
U2

r BCD(α) (6.2.1)

L(α) =
1
2
U2

r BCL(α) (6.2.2)

Their projection on the direction y is

Fy(α) = −D(α) sin α − L(α) cos α (6.2.3)

We write Fy(α) in the alternative form

Fy(α) =
1
2
U2BCFy(α) (6.2.4)
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Figure 6.8. Lift L and drag force D on a fixed bluff object.

Figure 6.9. Effective angle of attack on an oscillating bluff object.
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Figure 6.10. Force coefficients on an octagonal cylinder.

where
U = Ur cos α. (6.2.5)

It follows from Eqs. (6.2.3) and (6.2.4) that

CFy = −[CL(α) + CD(α) tan α] sec α. (6.2.6)

We now consider the case in which the same body oscillates in the
across-wind direction y in flow with velocity U (Fig.6.9).

The magnitude of the relative velocity of the flow with respect to the
moving body is denoted by Ur and can be written as

Ur = (U2 + ẏ2)
1
2 . (6.2.7)
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Figure 6.11. Basic types of lateral force coefficients Cfy and the corresponding gal-
loping response amplitudes. From M. Novak, “Galloping Oscillations of Prismatic
Structures,” J. Eng. Mech. Div., ASCE 98 (1972) 27-46.

The angle of attack, denoted by α, is

α = arctan
ẏ

U
. (6.2.8)

If the body has mass m per unit length, elastic supports, and linear
viscous damping , its equation of motion is

m[ÿ + 2ζωnẏ + ω̇2
ny] = Fy (6.2.9)
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Figure 6.12. Schematic of double galloping oscillator.
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where ζ is the damping ratio, ωn is the circular natural frequency, and
Fy is the aerodynamic force acting on the body. It is assumed that the
mean aerodynamic drag and lift coefficients CD(α) and CL(α) for the
oscillating body and for the fixed body are the same, so Fy(α) is given
by Eqs. (6.2.4) to (6.2.8).

For incipient motion, where a may be assumed to be small,

α ∼= ẏ

U
∼= 0,

Fy(α)|α=0
∼= ∂Fy

∂α
|α=0α. (6.2.10)

For small α, Eqs. (6.2.10), (6.2.4) (in which it is recalled that U is
constant), (6.2.6), and (6.2.8) yield

Fy(α)|α=0
∼= −1

2
ρU2B

(
dCL

dα
+ CD

)
0

, (6.2.11)

and the equation of motion of the body is

m[ÿ + 2ζωnẏ + ω2
ny] = −1

2
ρU2B

(
dCL

dα
+ CD

)
0

ẏ

U
(6.2.12)

In the right-hand side of Eq. (6.2.12) the coefficient of ẏ may be
viewed as an aerodynamic damping coefficient. The total aerodynamic
damping coefficient - the factor d multiplying the derivative ẏ – is

2mζωn +
1
2
ρUB

(
dCL

dα
+ CD

)
0

= d. (6.2.13)

If d > 0 the fixed point y = 0, ẏ = 0 is stable, that is, small oscillations
from the position of equilibrium y = 0 due to a small initial deviation
from that position will decay in time, and the body will revert to its
position of equilibrium. The body is then said to be aerodynamically
stable. However, if d < 0, the fixed point y = 0, ẏ = 0 is unstable, and
the body is said to be aerodynamically unstable.

A necessary condition for the occurrence of galloping motion is then(
dCL

dα
+ CD

)
0

< 0. (6.2.14)

The inequality (6.2.14) is known as the Glauert-Den Hartog criterion.
(A sufficient condition for the occurrence of galloping is d < 0.) Note,
however, that Eq. (6.2.14) is applicable to galloping motion that starts
from rest; a large triggering disturbance can in certain instances cause
the occurrence of galloping even if Eq. (6.2.14) is not satisfied.
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For reasons of symmetry circular cylinders cannot gallop: since the
quasi-static mean lift force is identically zero for any angle of attack,
dCL/dα ≡ 0. For an octagonal prism the lift and drag coefficients mea-
sured under static conditions are depicted in Fig.6.10. It can be seen
that for angles of attack −5◦ < a < 5◦ , where α is defined in Fig.6.10,
the Glauert-Den Hartog criterion is satisfied.

Description of galloping motion
In Section 6.2.1 we were concerned with obtaining a necessary condition
for the occurrence of galloping. In this section we consider bodies for
which the total aerodynamic coefficient d < 0, and discuss the evolution
in time of their galloping motion.

As shown by Eqs. (6.2.4), (6.2.6), and (6.2.8), the equation of motion
of the galloping body (Eq. (6.2.9)) is nonlinear. The description of
the galloping motion is based on the development of the aerodynamic
coefficient CFy in powers of ẏ/U Since ẏ/U = tanα, [32] proposed the
polynomial expression

CFy = A1
ẏ

U
− A2

(
ẏ

U

)2 ẏ

|ẏ| − A3

(
ẏ

U

)3

+ A5

(
ẏ

U

)5

− A7

(
ẏ

U

)7

,

(6.2.15)
where the constants Ai are determined by a least squares fit or another
appropriate technique. The steady-state solution of the resulting equa-
tion of motion for a prismatic body with square cross-section is obtained
by assuming

y = a cos(ωnt + φ) (6.2.16a)

ẏ = −aωn sin(ωnt + φ), (6.2.16b)

in which α and φ are slowly varying functions of time, and by applying
the Krylov and Bogoliuboff technique to the resulting equation of mo-
tion [33]. This leads to the identification of three basic types of curves
CFy as functions of α, and of the corresponding curves α as functions
of the reduced velocity U/Dωn. The observable amplitudes are those
depicted in solid lines in Fig.6.11. They correspond to stable limit cy-
cles. Interrupted lines correspond to unstable limit cycles, which are not
observable in physical experiments. For A1 > 0, if the speed increases
from U1 to U2 a jump occurs from the lower to the upper curve; if the
speed decreases from U2 to U0 the jump occurs from the upper to the
lower curve.

The effect upon the galloping of non-uniform deflections along the
span and of turbulence in the oncoming flow is discussed in [34]. Tur-
bulence helps to render the oscillations unsteady and, depending upon
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its scale and intensity, it can reduce the magnitude of the aerodynamic
damping to a degree that will prevent the occurrence of galloping. For
additional studies of galloping see [35-37].

Chaotic galloping of two elastically coupled square
bars
Experiments on a double galloping oscillator consisting of two elastically
supported and coupled square prisms (Fig. 6.12) are described in [38].
The bars were observed to gallop in phase, but except for relatively low
flow speeds U this oscillatory form alternated irregularly with a second
oscillatory form wherein the two bars galloped with higher frequency
in opposite phases (Fig. 6.13). The mean time between transitions
from the first to the second oscillatory form decreased as the flow speed
increased.

A similar simple galloping oscillator is shown in Fig.6.14. Observa-
tions show that its motion exhibits small deviations from periodicity
(Fig.6.15) that may be attributed to irregular flow fluctuations in the
wake flow and to turbulence caused by experimental appurtenances. It
follows that the actual aerodynamic forces acting on the oscillator de-
viate from the quasi-static model assumed in Section 6.2.1. Numerical
simulations of the double galloping oscillator in which small random
excitations were superimposed on the quasi-static aerodynamic forces
yielded results similar to the experimental results of Fig.6.13 [38].

It has been conjectured that galloping motions of the type shown in
Fig.6.13 are chaotic. The experimental results just reviewed have led
to the development of a theory of chaotic dynamics occurring in a wide
class of stochastic systems that can exhibit transitions between distinct
oscillatory forms [39].

Wake galloping: physical description and analysis
We now consider the case of two circular cylinders of which one is lo-
cated upstream of the other. Under certain conditions the downstream
cylinder may experience wake galloping that is galloping induced by the
wake of the upstream cylinder. Wake galloping arises in power transmis-
sion lines grouped in bundles as for example in Fig.6.16. Since it occurs
between spacers, it is referred to as subspan galloping .

We noted earlier that circular cylinders cannot experience across-wind
galloping in uniform oncoming flow. However, the flow in the wake of an
upstream cylinder is sheared (i.e., non-uniform). If the distance between
the upstream and the downstream cylinder is a few cylinder diameters,
and the downstream cylinder is displaced into approximately the outer
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Figure 6.13. (a) Observed time history of displacement y1; (b) observed time history
of displacement displacements y1 (solid line) and y2 (interrupted line). From E. Simiu
and G.R. Cook, “Empirical Fluidelastic Models and haotic Modeling: A Case Study,”
J. Sound Vibr. 154 45-66.
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Figure 6.14. Schematic of single galloping oscillator.

quarter of the wake, a galloping motion will begin from that displaced
position, which grows in amplitude until it reaches a steady state ellip-
tical orbit - a limit cycle – with the long axis oriented approximately
along the flow velocity. An oscillograph trace of the galloping motion of
a downstream cylinder supported elastically in both the flow direction
and the direction normal to the flow is shown in Fig.6.17. The direction
of the motion on that orbit is downstream near the outer portion of the
wake and upstream near the center of the wake, or clockwise in Fig.6.17.

Wake galloping is analyzed by assuming two-dimensionality (i.e., uni-
form upstream flow and large ratio of subspan to cylinder diameter). The
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Figure 6.15. Observed time history of displacement y.

downstream cylinder is assumed to be elastically supported in both the
horizontal and vertical direction about a position (X, Y ), where X, Y are
along-flow and across-flow coordinates centered on the upstream cylin-
der (Fig. 6.18). The equations of motion of the downward cylinder are
written in terms of its excursions (x, y) away from the position (X, Y ):

mẍ + dxẋ + Kxxx + Kxyy = Fx (6.2.17a)

mÿ + dyẏ + Kyxx + Kyyy = Fy (6.2.17b)

where m is the mass per unit length of the downstream cylinder, dx, dy

are damping constants, Krs (r, s = x, y) are spring constants, and Fx, Fy

are the flow-induced force components in the X and Y direction, written
as

Fx =
1
2
ρU2D

{(
∂Cx

∂x
x +

∂Cx

∂y
y

)
+ Cy

ẏ

Uw
− 2Cx

ẋ

Uw

}
(6.2.18a)

Fy =
1
2
ρU2D

{(
∂Cy

∂x
x +

∂Cx

∂y
y

)
− Cx

ẏ

Uw
− 2Cy

ẋ

Uw

}
(6.2.18b)
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Figure 6.16. Spacer in four-bundle power line.

where U is the free upstream flow velocity, Uw is the average wake ve-
locity in the U direction at (X, Y ), and D is the cylinder diameter [40].
Expressions similar to Eqs. 6.2.18 were first developed in [41, 42]. Cx, Cy

are aerodynamic drag and lift coefficients. They, and their derivatives,
are obtained by direct measurements of time-averaged values in the wind
tunnel. The corresponding forces are self-excited: they vanish if the ex-
cursions x, y and their derivatives vanish. Cases of interest have included
smooth circular cylinders and stranded wire cables.

An analytical solution of the problem can be obtained by assuming in
Eqs. (6.2.17), (6.2.18)

x = x0e
λt (6.2.19a)
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Figure 6.17. Amplitude trace of a wake galloping orbit (courtesy of National Aero-
nautical Establishment, National Research Council of Canada).

Figure 6.18. Coordinates for wake galloping analysis [43].

y = y0e
λt (6.2.19b)

and using the condition that the determinant of the coefficients of Eqs.
(6.2.17) vanishes. The motions are unstable if the real part of the eigen-
value λ is smaller than zero. Stability boundaries can be obtained by
seeking the vanishing real part of λ for a number of points X, Y . The
agreement between theory and experiment was found to be reasonably
good (Fig.6.19) [43]. The corresponding orbits [x(t), y(t)] may be calcu-
lated by using Eqs. (6.2.18)-(6.2.19). For applications to cables see [40,
44, 45].
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Figure 6.19. Measured and predicted stabiloity boundaries for wake galloping [43].

Figure 6.20. Parameters for torsional divergence problem.

6.3. Torsional Divergence
Torsional divergence is an aeroelastic phenomenon that, like galloping,

can be described by using aerodynamic properties measured on the body
at rest. It can occur in bodies with relatively flat shapes, such as airfoils
and lifting surfaces (see Sections 2.1-2.3) or bridge decks. It is also
referred to as lateral buckling , and represents the condition wherein,
given a slight deck twist, the drag load and the self-excited aerodynamic
moment will precipitate a torsional instability
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We illustrate the divergence phenomenon by considering the bridge
deck section of Fig.6.20, in which U is the horizontal wind velocity, α is
the angle of rotation about the bridge section’s elastic center, and kα is
the torsional stiffness. The aerodynamic moment per unit span may be
written as

M(α) =
1
2
ρU2B2CM(α) (6.3.1)

where CM(α) is the aerodynamic moment coefficient about the torsional
axis and B is the bridge deck width. Typically CM(α) is a monotonically
increasing function of α. We denote CM(0) by CM0. For small angles
α, M(α) may be approximated to first order as

M(α) =
1
2
ρU2B2

[
CM0 +

dCM

dα
|α=0α

]
. (6.3.2)

By equating the aerodynamic torsional moment M(α) given by Eq. 6.3.2
to the internal torsional moment kαα we obtain

(kα − λC ′
M0) = λCM0 (6.3.3)

where λ = 1
2ρU2B2 and C ′

M0 = dCM
dα |α=0, or

α =
λCM0

kα − λC ′
M0

. (6.3.4)

Since λ > 0, it follows from Eq. (6.3.4) that, provided C ′
M0 > 0, α

approaches infinity (diverges) for λ = kα
C′

M0
. (For C ′

M0 < 0, a case that
occurs for some types of bridge decks, divergence does not occur.) The
critical divergence velocity is therefore

Ucr =

√
2kα

ρB2C ′
M0

. (6.3.5)

The generalization of the problem to three dimensions and the role of
the shape of the curve CM(α) in the solution of the divergence problem
are discussed in Section 6.5.2.

6.4. Flutter and Buffeting in the Presence of
Aeroelastic Effects

Flutter is the term applied to aeroelastic phenomena occurring in flex-
ible bodies with relatively flat shapes in plan (e.g., airfoils, rotor blades,
turbomachinery blades, bridge decks) and involving oscillations with am-
plitudes that grow in time and can result in catastrophic structural fail-
ure. The term flutter is relatively recent and was first introduced in an
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aeronautical context; note that in Fig.6.1 flutter is referred to as “un-
dulation.” As late as 1971 it has also been used to designate the wake
galloping of conductor cables [42, 44], a usage that now appears to be
obsolete. Like other aeroelastic phenomena, flutter entails the solution
of equations of motion involving inertial, structural damping , restoring,
and aerodynamic forces dependent upon the ambient flow and the shape
and motion of the body.

For phenomena of interest in civil engineering the body motion is
said to be stable from a flutter point of view if, assuming the absence of
forcing terms, and given a sufficiently small disturbance from the body’s
position of equilibrium, the oscillations initiated by that disturbance
will gradually die out, that is, the body will revert to its position of
equilibrium. In dynamical systems theory that position is referred to as
a stable fixed point (or a sink). In the presence of small forcing, solutions
near the fixed point stay nearby, and the system is referred to as linearly
stable. As the flow velocity increases, the aerodynamic forces acting on
the body will also increase, and for a certain value of the flow velocity,
called critical flutter velocity, or simply flutter velocity, the stable fixed
point in the dynamical system representing the body motion becomes
neutrally stable - a center. At that velocity, in the absence of forcing, an
initial small disturbance from equilibrium will result in steady harmonic,
rather than decaying, oscillations. For velocities larger than the critical
velocity the center turns into an unstable fixed point, also known as a
source, and the oscillations initiated by a small disturbance will grow in
time. The nonlinear dependence upon the motion of the aerodynamic
forces and/or the body restoring force can result in a dynamical system
in which the oscillations reach a periodic steady state by evolving on a
stable limit cycle. In general, for flow velocities in excess of the critical
velocity, the body will perform unacceptably from a service point of
view, or can experience structural damage or collapse during the growing
transient motion, that is, before its motion reaches a steady state.

The greatest difficulty in solving the flutter problem for bridges is the
development of appropriate expressions for the aerodynamic forces due
to the bridge deck motion. For thin airfoil flutter in incompressible flow
it has been shown by Theodorsen [46] that the aerodynamic forces due
to small oscillations can be derived from basic potential flow theory. To
date perhaps the most influential contribution to solving the bridge flut-
ter problem is a simple conceptual framework developed by Scanlan, who
noted that the aerodynamic forces due to relatively small bridge deck
oscillations can be characterized by fundamental quantities – aerody-
namic derivatives or transforms thereof – obtained from measurements
performed on the oscillating, rather than the fixed, body [47].
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Computational fluid dynamics approaches currently being developed
rest on the same basic idea. For some bridge decks it is possible to
perform numerical computations of the motion-dependent aerodynamic
forces, at least for smooth oncoming flow [48]. The latter restriction is
not trivial, since turbulence, like the Reynolds number, can affect the
aerodynamics and therefore aeroelastic behavior.

Although flutter is accompanied at all times by shedding of vor-
tices with frequency equal to the flutter frequency, it is a phenomenon
distinct from vortex-induced oscillation. The latter entails aeroelastic
flow-structure interactions only for flow velocities at which the vortex-
shedding frequency is close or equal to the structure’s natural frequency.
For velocities higher than those at which lock-in occurs the oscillations
are significantly weaker than at lock-in (see Section 6.5). In contrast, for
velocities higher than the critical flutter velocity the strength of flutter
oscillations increases monotonically with flow velocity. As was pointed
out by Scanlan and Billah [49], the statement made in some physics
textbooks that the flutter of the original Tacoma Narrows bridge was
a vortex-induced resonant oscillation conflates two distinct phenomena,
and is therefore incorrect.

In Section 6.4.1 we consider the case of two-dimensional bridge deck
behavior in smooth flow. Section 6.4.2 is concerned, in a two-dimensional
context, with bridge deck flutter and buffeting in the presence of aeroe-
lastic phenomena.

Formulation and analytical solution of the two-
dimensional bridge flutter problem in smooth flow
The equations of motion of a thin airfoil with linear restoring forces are
written as

mḧ + Sα̈ + chḣ + Chh = Lh (6.4.1a)

Sḣ + Iα̈ + cαα̇ + Cαα = Mα (6.4.1b)

where h and α are the displacement due to vertical bending and the tor-
sional angle, respectively. A unit span is acted upon by the aerodynamic
lift Lh and moment Mα, and has mass m, mass moment of inertia I,
static imbalance S (equal to m times the distance a between the center of
mass and the elastic center), vertical and torsional restoring forces char-
acterized by the stiffness Ch and Cα, respectively, and viscous damping
coefficients ch and cα. Theodorsen showed that for small oscillations the
expressions for Lh and Mα are linear in h and α and their first and sec-
ond derivatives [46]. The coefficients in these expressions are referred to
as aerodynamic coefficients or, more commonly, flutter derivatives, and
are functions of the reduced frequency bω/U , where b is the half-chord



Aeroelasticity in Civil Engineering (Scanlan and Simiu) 331

Figure 6.21. Separation layers in smooth flow (solid line) and in turbulent flow (inter-
rupted line). After A. Laneville, I.S. Gartshore, and G.V. Parkinson, “An Explanation
of Some Effects of Turbulence on Bluff Bodies,” Proceedings, Fourth International
Conference, “Wind Effects on Buildings and Structures,” Cambridge Univ. Press,
Cambridge, 1977.

of the airfoil, ω denotes circular frequency, and U is the smooth flow
velocity.

Bridge decks are typically symmetrical, so the distance a and the im-
balance S are zero. Scanlan and Tomko proposed expressions applicable
to small oscillations that, like Theodorsen’s expressions, are linear in
h and α and their first and second derivatives [47]. However, as was
noted earlier, the flutter derivatives must be obtained from laboratory
measurements (or, if possible, by using computational fluid dynamics
to solve the Navier-Stokes equation numerically). Tests showed that,
just as for airfoils, the flutter derivatives are functions of the reduced
frequency. In bridge engineering the reduced frequency is customarily
defined as Bω/U , where B is the whole width of the deck (unlike in
aeronautical engineering, in which the half-chord is used), and U is the
mean wind flow velocity; in addition, it is customary to write the expres-
sions for the lift and moment in terms of real parameters and variables,
rather than complex ones, as is common in aeronautical engineering.
If the horizontal displacement p is also taken into account - which was
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not done in Scanlan’s original formulation – the equations of motion of a
two-dimensional section of a symmetrical bridge deck with linear viscous
damping and restoring forces in smooth flow can be written as

mḧ + chḣ + Chh = Lh

Iα̈ + cαα̇ + Cαα = Mα

mp̈ + cpṗ + Cpp = Dp

(6.4.1c)

where h, α, and p are the displacement due to vertical bending, torsion,
and horizontal bending, respectively. A unit span is acted upon by the
aerodynamic lift Lh, moment Mα, and drag Dp, respectively, has mass
m, mass moment of inertia I, vertical, torsional and horizontal restoring
forces with stiffness Ch, Cα, and Cp, respectively, and viscous damping
coefficients ch, cα, and cp. The expressions for the aeroelastic forces,
including those induced by the horizontal bridge deck displacements p,
are written in the form

Lh =
1
2
ρU2B

[
KA∗

1(K)
ḣ

U
+ KA∗

2(K)
Bα̇

U
+ K2A∗

3(K)α + K2A∗
4(K)

h

B

+ KA∗
5

ṗ

U
+ K2A∗

6(K)
p

B

]
(6.4.2a)

Mα =
1
2
ρU2B

[
KH∗

1 (K)
ḣ

U
+ KH∗

2 (K)
Bα̇

U
+ K2H∗

3 (K)α + K2H∗
4 (K)

h

B

+ KH∗
5

ṗ

U
+ K2H∗

6 (K)
p

B

]
(6.4.2b)

Dp =
1
2
ρU2B

[
KP ∗

1 (K)
ḣ

U
+ KP ∗

2 (K)
Bα̇

U
+ K2P ∗

3 (K)α + K2P ∗
4 (K)

h

B

+ KP ∗
5

ṗ

U
+ K2P ∗

6 (K)
p

B

]
(6.4.2c)

Equations (6.4.2a,b,c) do not explicitly include terms in ḧ, α̈ and p̈ (i.e.,
added mass terms) which are negligible in wind engineering applications;
however, they include terms in h and p whose function is to account for
changes in the frequency of vibration of the body due to aeroelastic ef-
fects. Since these terms are out of phase with their first derivatives but
in phase with added mass terms, the latter are in practice absorbed in
the terms in h and p. The quantitities α, ḣ/U and Bα̇/U are effective
angles of attack and are therefore nondimensional, as are the coefficients
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H∗
i , A∗

i and P ∗
i , to which the designation “flutter derivatives” or “Scan-

lan derivatives” is usually applied. Each term in Eqs. (6.4.2) can be
viewed as similar in form to terms of the type

L =
1
2
ρU2BCL =

1
2
ρU2B

dCL

dα
α (6.4.3)

for small angle of attack α. Terms such as KH∗
i and K2A∗

i are thus anal-
ogous to lift coefficient derivatives dCL/dα. These terms are motional
aerodynamic derivatives, which go over into steady-state aerodynamic
derivatives such as dCL/dα for K → 0 (zero frequency), meaning that
they are obtained for the oscillating body, rather than under static con-
ditions. The terms KH∗

i , K2A∗
i , and so forth, could be denoted by single

symbols. Also, the asterisks could be omitted from the coefficients H∗
i

and A∗
i . However, for historical reasons the notation that has gained

currency is that of Eqs. 6.4.2. There is no fundamental reason why
this could not change, as was suggested for example by Starossek, an
advocate of complex, as opposed to real, notation [50]. The percep-
tion by some bridge engineers that real notation is more intuitive and
transparent undoubtedly accounts for its current wider acceptance.

If plots of the flutter derivatives H∗
i , A∗

i and P ∗
i are available from

measurements as functions of reduced frequency K, the solution of the
flutter equations can be obtained as follows. It is assumed that the
expressions for h, α and p are proportional to eiωt. These expressions
are inserted in the equations of motion

mḧ + chḣ + Chh = Lh (6.4.4a)

Iα̈ + cαα̇ + Cαα = Mα (6.4.4b)

mp̈ + cpṗ + Cpp = Dp (6.4.4c)

The determinant of the amplitudes of h, α, and p is then set to zero.
For each value of K a complex equation in ω is obtained. For the lowest
value of K denoted by Kc the corresponding equation yields a real (or
nearly real) solution denoted by ωc. The flutter velocity is

Uc =
Bωc

Kc
. (6.4.5)

In Eqs. 6.4.2 the terms containing first derivatives of the displacements
are measures of the aerodynamic damping . If, among these terms, only
those associated with the coefficients H∗

1 , A∗
2, and P ∗

1 are significant, the
total (structural plus aerodynamic) damping can be written as

ch − 1
2
ρU2BKH∗

1 (6.4.6a)



334 A MODERN COURSE IN AEROELASTICITY

cα − 1
2
ρU2BKA∗

2 (6.4.6b)

cp − 1
2
ρU2BKP ∗

1 (6.4.6c)

for the vertical, torsional, and horizontal degree of freedom, respectively.
For the airfoil case horizontal displacements are negligible, and H∗

1 and
A∗

2 are both negative for all K [46, 6]. The total damping is therefore
positive for both h and α. It follows that, in incompressible flow, the air-
foil is not capable of experiencing flutter in a single - vertical or torsional
- mode. The mechanism for the occurrence of flutter in airfoils therefore
always involves coupling between the vertical and torsional modes.

However, under the two-dimensionality assumption, and depending
upon the coefficients H∗

1 and A∗
2, such coupling is not always involved

in the flutter of bridge decks. The original Tacoma Narrows bridge,
which collapsed in November 1940, had negligible H∗

1 values for all K,
meaning that flutter in the vertical degree of freedom was not possible.
However, A∗

2 was positive for K > 0.16 or so. Assuming that the effect
of horizontal deck motions was negligible, it is easy to see that, for
sufficiently high flow velocity, the total damping given by Eq. (6.4.6b)
is negative, and flutter involving only the torsional degree of freedom
would occur. Torsional flutter has in fact occurred (Fig. 6.0.2) in wind
with mean velocity of about 20 m/s. The bridge’s susceptibility to flutter
was due to the use of a section with an “H” shape (the horizontal line
in the “H” representing the deck, and the vertical lines representing the
girders supporting it). Owing to its inherent instability this type of
bridge section should no longer be used.

An alternative approach to the assessment of a bridge’s stability with
respect to flutter involves aerodynamic indicial functions of a bridge
deck section, representing the aerodynamic response of the section to a
step change in angle of attack. These functions are derivable from the
aerodynamic derivatives. Under the assumption that linear superposi-
tion is permissible they allow estimates of transient response. For basic
material concerning aerodynamic indicial functions as applied to bridge
decks see [51].

Bridge section response to excitation by turbulent
wind in the presence of aeroelastic effects
The aerodynamic forces induced on a bridge by turbulent wind are due
to
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1. Aeroelastic forces associated with flutter derivatives
2. Vortex-induced forces
3. Randomly fluctuating forces induced by turbulent flow (buffeting
forces)

The expressions for the aeroelastic forces have the same form as
for the smooth flow case (Eqs. (6.4.2a,b,c)). However, the aerodynamic
coefficients H∗

i , A∗
i , P ∗

i should be obtained from measurements in
turbulent flow, since turbulence may affect the aerodynamics of the
bridge deck by changing the configuration of the separation layers and
the position of reattachment points. As a simple example we show
in Fig. 6.21 separation layers observed at the upwind corners of a
rectangular shape in smooth and turbulent flow. Nearer the body the
turbulence transports particles with higher momentum from the outer
flow, thus bringing the separation layers closer to the body and causing
reattachment of the flow. This change affects the aerodynamic response;
in this particular example the turbulence results in a decreased drag
force. Through more complex aerodynamic mechanisms, turbulence
can affect the flutter derivatives and, therefore, the flutter velocity - in
many instances favorably but possibly also unfavorably. Vortex-induced
forces may be neglected unless lock-in occurs. The buffeting forces per
unit span may be written as follows:

Lb =
1
2
ρU2B

[
2CL

u(t)
U

+
(

dCL

dα
+ CD

)
w(t)
U

]
(6.4.7a)

Mb =
1
2
ρU2B

[
2CM

u(t)
U

(
dCM

dα

)
w(t)
U

]
(6.4.7b)

Db =
1
2
ρU2B

[
2CD

u(t)
U

]
. (6.4.7c)

For example, Eq. (6.4.7c) is derived from the expression for the total
(mean plus fluctuating) drag force D, where

D = D̄ + Db =
1
2
ρCDB[U + u(t)]2, (6.4.8a)

U is the mean flow velocity, u(t) is the horizontal component of the
turbulent velocity fluctuation at time t, the mean drag force is defined
as

D̄b =
1
2
ρCDBU2, (6.4.8b)

and the drag coefficient CD is measured under turbulent flow conditions.
For the two-dimensional case the solution of the buffeting problem in the
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presence of aeroelastic effects is obtained from Eqs. (6.4.4a,b,c) in which
the right-hand sides consist of the sums Lh + Lb, Mα + Mb, Dp + Db,
respectively. However, even though the two-dimensional case can in
some instances provide useful insights into the behavior of a bridge, to
be useful in applications to actual bridges the solution must be obtained
for the three-dimensional case where the bridge deformation and the
aerodynamic forces are functions of position along the span. Such a
solution is presented in Section 6.5.4.

B. APPLICATIONS

6.5. Suspension-Span Bridges
This section is devoted to practical methods and results applicable to

bridge design for wind. Section 6.5.1 is a brief overview of current wind
tunnel testing methods. It includes examples of mean drag, lift, and
moment coefficients measured on a fixed section model for various angles
of inclination of the deck with respect to the horizontal, and examples
of flutter derivatives obtained from an oscillating section model. Section
6.5.2 discusses the three-dimensional torsional divergence analysis of a
full bridge. Section 6.5.3 is concerned with bridge response to vortex
shedding. Section 6.5.4 is devoted to the flutter and buffeting analysis
of a full-span bridge. Section 6.5.5 discusses factors that affect, and
methods used to enhance, stability against flutter. Cables in cable-
stayed bridges can exhibit severe vibrations due to the combined action
of wind and rain. The excitation mechanism of the dynamic wind-water-
cable interaction is discussed in [52]. The vibrations can be reduced by
using various types of vibration mitigation devices, or by the mechanical
processing of the cable surfaces (e.g., the creation on those surfaces of
dimples or various protuberances) to prevent the formation of water
rivulets on the cables [52-56].

Wind tunnel testing of suspended-span bridges
Three types of wind tunnel tests are commonly used for suspended-span
bridges :

1. Tests on models of the full bridge . Usual model scales are about
1:300 to 1:500. An example is shown in Fig.6.22.

2. Three-dimensional partial bridge models. The supports for such par-
tial models may consist of taut wires, and the tests are usually designed
to mimic motion in the fundamental vibration mode of the bridge.
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3. Tests on section models. Such tests are relatively inexpensive and
yield basic information usable in parametric studies. They afford more
flexibility than tests on models of the full bridge, which may be used to
verify results of analyses based on section model tests. Also, they can be
conducted in conventional wind tunnels at relatively large model scales
(1:50 or even 1:25), thus allowing a better modeling of possibly impor-
tant details and reducing possible distortions due to Reynolds number
effects (Fig.6.23).

Such distortions can be significant. Figures 6.24a,b show results of
tests conducted in smooth flow in the high-pressure wind tunnel at
Göttingen on a section model of the bridge over the Great Belt, Den-
mark [57]. It may be surmised that the presence of turbulence in the
oncoming flow - which was not simulated in the high-pressure wind tun-
nel – would reduce those distortions by entraining fluid particles with
higher momentum from the outer flow into the separation region, thus
bringing the separation layers of Fig.6.24a closer to those of Fig.6.24b.
It was concluded in [57] that the drag coefficient obtained at the lower
Reynolds numbers typical of conventional wind tunnels was in this case
conservative for bridge design. From measurements reported for a se-
ries of deck shapes it was stated in [58] that, for those shapes, results
obtained in conventional wind tunnel tests were conservative from the
overall point of view of bridge design for wind. Whether or not such
statements can be made in more general terms is not clear at this time.

The information sought in section model tests consists of mean drag,
lift, and moment coefficients measured under static conditions as func-
tions of angle α, and of flutter derivatives. For some bridge decks flutter
derivatives obtained under turbulent wind conditions yield higher criti-
cal flutter velocities than their smooth flow counterparts (e.g., [59]), but
there are instances where this is not the case. For example, based on sec-
tion model tests, the prototype flutter velocity for the renovated Lion’s
Gate Bridge was the same, to within about 2%, for both smooth and
turbulent flow [60]. For important bridges it is prudent to perform tests
under low or no turbulence conditions and under standard turbulence
conditions.

For a section model of the New Burrard Inlet Crossing measured mean
drag, lift, and moment coefficients plotted against the angle α are shown
in Fig.6.25 [61]. For a study of the Golden Gate Bridge measured flutter
derivatives at a 0◦ mean angle of attack (angle of inclination between
the mean position of the deck and the horizontal) are shown in Figs.6.26
and 6.27 [62, 6]. Flutter derivatives measured at a 5◦ mean angle of
attack are shown in Fig.6.28 [63].
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Measurements of flutter derivatives can be made with the section
model being subjected to forced oscillations, or with the section model
undergoing free oscillations [64]. Note that for an adequate modeling of
the flutter of very long bridges (e.g., the Akashi-Kaikyo bridge , whose
main span is 1990 m long) all 18 flutter derivatives (see Eqs.(6.4.2a,b,c))
are needed in the calculations. [70]

Torsional divergence analysis for a full bridge
A linear torsional divergence analysis requires knowledge of the moment
coefficient CM(α) measured under static conditions and of the torsional
flexibility matrix CT , whose elements cij represent the torsional angles
αi at x = xi induced by a unit torsional moment acting at x = xj. Let
the torsional moments acting at x = xj be denoted by Mj. We denote
by {α} and {M}, respectively, the column vectors of the torsional angles
αi and of the moments

Mj =
1
2
ρU2B2∆LjCM(αJ) (6.5.1)

where ∆Lj is the length of the span element associated with xj, and
CM(αj) is the moment coefficient corresponding to the angle αj. The
following matrix equation holds:

{α} = CT{M}. (6.5.2)

In Eq. (6.5.2) the variables are torsional angles along the span. The
velocity Uc for which the solution of Eq. (6.5.2) diverges is the critical
torsional divergence velocity. If CM(α) can be approximated by the
linear function

CM(α) ≈ dCm

dα
α + CM0 (6.5.3)

where CM0 = C
(0)
M , then, using the notation

1
p

=
1
2
ρU2B2∆Li (6.5.4)

where ∆Li = ∆L for all i, Eq. 6.5.2 can be written as

{α} = CT
1
p

{
dCM

dα
+ CM0

}
(6.5.5)

or [
pI − dCM

dα
CT

]
{α} = CT{CM0}. (6.5.6)
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Figure 6.22. Model of Akashi Strait suspension bridge (courtesy of T. Miyata, Yoko-
hama National University, and M. Kitagawa, Honshu-Shikoku Bridge Authority,
Tokyo).

Equation (6.5.6) has divergent solutions if the determinant

∣∣∣∣pI − dCM

dα
CT

∣∣∣∣ = 0. (6.5.7)
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Figure 6.23. Section model of the Halifax Narrows Bridge (courtesy of Boundary-
Layer Wind Tunnel Laboratory, University of Western Ontario).

The largest eigenvalue of Eq. (6.5.7) yields the critical torsional di-
vergence velocity through Eq. (6.5.4).

Note that if the moment induced by the mean wind speed is negative
(i.e., if the bridge deck subjected to the action of the mean wind speed
twists so that the wind approaches the upper side of the deck), according
to the linear analysis torsional divergence will not occur. The case of
the nonlinear dependence of CM upon α can be dealt with by solving
Eq. (6.5.2) in which CM is expressed in terms of a power series in α.

Locked-in vortex-induced response
Bridge decks supported by open trusses usually do not experience vortex-
induced oscillations, owing to the shredding of the vorticity by the truss
members. However, vortex-induced response can be a problem for bluff
bridge decks with a box or open-box shape. Aerodynamic design can
help to reduce significantly or even eliminate this problem, as is seen in
Fig.6.29 [65], which shows the measured amplitudes of vortex-induced
deflections for alternative shapes of the bridge section. The largest de-
flections occurred for the open-box section. A closed box fared better,
possibly owing to its greater stiffness, rather than for aerodynamic rea-
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Figure 6.24. Interpretation of oil flow pictures indicating flow fields at (a) low
Reynolds numbers (sub-critical conditions) and (b) high Reynolds numbers (super-
critical conditions).

sons. However, the provision of fairings is advantageous from an aero-
dynamic viewpoint, as is, more generally, the extent to which the bridge
section is streamlined. Flow visualizations showed that added fairings
are effective in streamlining the flow when the deck is in a twisted po-
sition. This can be seen in Fig.6.30b in which, owing in part to those
fairings, the turbulence zone above the upper part of the deck is consider-
ably smaller than for the section shown in Fig 6.30a. For the Great Belt
Bridge in Denmark vortex-induced response suppression was achieved
with remarkable effectiveness by appending guide vanes to the bridge
[66]. The steady-state amplitude h0 of the vortex-induced response may
be calculated by using Eq. (6.1.20), in which we substitute the notation
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Figure 6.25. Drag. lift, and aerodynamic coefficients for proposed deck of New Bur-
rard Inlet Crossing [61] (courtesy of the National Aeronautical Establishment, Na-
tional Research Council of Canada).

KH∗
1 (K) for Y1(K). The result is

h0

B
= 2

[
H∗

1 − 4 ζm
ρB2

εH∗
1

] 1
2

(6.5.8)
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Figure 6.26. Aerodynamic coefficients H∗
i (i = 1, 2.3.4), Golden Gate Bridge (cour-

tesy of Dr. J. D. Raggett, West Wind Laboratory, Carmel, CA).

Figure 6.27. A∗
i flutter derivatives of Golden Gate bridge at 0◦(i = 1, 2.3.4).



344 A MODERN COURSE IN AEROELASTICITY

Figure 6.28. A∗
i flutter derivatives of Golden Gate bridge at 5◦(i = 1, 2.3.4). From

A. Jain, N.P. Jones, R.H. Scanlan “Effect of modal damping on bridge aeroelasticity
”, J. Wind Eng. Ind. Aerod. 77-78 (1998) 421-430.

Equation (6.5.8) is applied to a full bridge as follows [6]. In the equa-
tion of motion of the bridge

m(ḧ + 2ζωhḣ + ω2
hh) =

1
2
ρU2BKH∗

1 (1 − ε
h2(x, t)

B2
)
ḣ(x, t)

U
(6.5.9)

(see Eq. (6.1.20)), it is assumed

h(x, t) = φ(x)Bξ(t), (6.5.10)

where φ(x) is the dimensionless mode with frequency ωn that responds
to the locked-in vortex shedding, and the corresponding generalized co-
ordinate is

ξ(t) = ξ0 cos ωht. (6.5.11)

Inserting h from Eq. (6.5.10) into Eq. (6.5.9) and multiplying the
result by Bφ(x), the motion of a segment of length dx associated with
the spanwise coordinate x is described by the equation

m(x)B2φ2(x)[ξ̈(t) + 2ζωhξ̇(t) + ω2
hξ(t)]dx

=
1
2
ρUB3KH∗

1 [1 − εφ2(x)ξ2(t)]ξ̇(t)φ2(x)f(x)dx
(6.5.12)



Aeroelasticity in Civil Engineering (Scanlan and Simiu) 345

Figure 6.29. Vertical amplitudes of vortex-induced deflections for various bridge deck
sections of the proposed Long Creek’s bridge [65] (courtesy of the National Aeronau-
tical Establishment, National Research Council of Canada).

in which we introduced a function f(x) to account for the spanwise loss
of coherence of the vortex-related forces. It is suggested in [6] that it
may be appropriate to model the function f(x) by the mode shape φ(x),
normalized to unit value at its maximum ordinate. For example, if φ(x)
is a half-sinusoid over a span l, it would be assumed

f(x) = sinπx/l. (6.5.13)
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Figure 6.30a. Visualization of water flow over a bridge model deck section (courtesy
of the National Aeronautical Establishment, National Research Council of Canada).

Integration of Eq. (6.5.12) over the full length of the bridge yields the
equation

I
[
ξ̈ + 2ζωhξ̇ + ω2

hξ
]

=
1
2
ρUB2LKH∗

1 [C2 − εC4]ξ̇ (6.5.14)

where I denotes the full-bridge generalized inertia of the mode φ(x), and

C2 =
∫ l

0

φ2(x)f(x)dx

l
, C4 =

∫ l

0

φ4(x)f(x)dx

l
. (6.5.15)

Under the assumption (6.5.13), C2 = 0.42 and C4 = 0.34. At steady-
state amplitude, Eq. (6.5.14) and conditions similar to those that led to
Eqs. (6.1.17) and (6.1.20) yield the amplitude

ξ0 = 2
[
C2H

∗
1 − 4ζI/(ρB4l)

εC4H∗
1

] 1
2

. (6.5.16)

Numerical example: Response to vortex-shedding of the original
Tacoma Narrows bridge [6]
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Figure 6.30b. Visualization of water flow over a partially streamlined bridge model
deck section (courtesy of the National Aeronautical Establishment, National Research
Council of Canada).

Figure 6.31. Schematic of Akashi-Kiokyo suspension bridge . Note spanwise non-
uniformity of the deck shape. From M. Yamada, T. Miyata, N.N. Minh, H. Katsuchi,
“Complex flutter-mode analysis for coupled gust response of the Akashi-Kaikyo Bridge
model”, Wind Engineering into the 21st Century, Tenth Intern. Conf. on Wind Eng.,
A. Larsen, G.L. Larose, and F.M. Livesey (eds.), Vol. 2, Rotterdam:Bakkema, 1081-
1088.
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Figure 6.32. Spindle-type suspension bridge concept. From T. Miyata, “Comprehen-
sive Discussions on Aeroelastic-Coupled Flutter Control for Very Long Suspension
Bridges,” in Long-Span Bridges and Aerodynamics, Springer-Verlag, Berlin (1999),
181-200.

The original Tacoma Narrows bridge experienced considerable vortex-
induced oscillations before its collapse due to torsional flutter. Per-
tinent data are: n1 = 0.66 Hz (natural frequency), B = 11.9m, ρ =
1.23kg/m3, m = 4250kg/m, I ∼= ∫ l

0 mB2φ2dx, φ = sin πx/l, so I =
mB2l/2kgm2. It is assumed ζ = 0.0025, K = Bω/U = 3.13, U = 15.7
m/s, H∗

1 = 1.19, ε = 4170 [6]. Inserting these values into Eq. (6.5.16),
and remembering that C2 = 0.42 and C4 = 0.34, we obtain ξ0 = 0.03.
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Figure 6.33. A “π-section” deck. From Y. Kubo, K. Sadashima, E. Yamaguchi, K.
Kato, Y. Okamoto, T. Koga, “Improvement of aeroelastic instability of shallow π
section,” J. Wind Eng. Ind. Aerod. 89 (2002) 1445-1457.

Figure 6.34. Cross-section of slotted box girder. From H. Sato, N. Hirahara, K.
Fumoto, S. Hirano and S. Kusuhara, “Full aeroelastic model test of a super long-span
bridge with slotted box girder,” J. Wind Eng. Ind. Aerod. 90 (2002) 2023-2032.

Eq. (6.5.10) yields a peak-to-peak amplitude 2ξ0B = 0.71 m. This is
reasonably consistent with observations at the site, according to which
for the mode of the type considered in our calculations the double am-
plitude did not exceed 0.9 m.

According to [67], the vortex-induced response of a bridge in flow with
low-frequency fluctuations is smaller than would be the case in smooth
flow; this is attributed to the weakening effect on the vorticity shed in the
bridge’s wake of phase differences between the low-frequency flow fluc-
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tuations on the one hand and the bridge oscillations on the other. Wind
tunnels tend to reproduce atmospheric turbulence scales inadequately.
Therefore low-frequency flow fluctuations tend also to be reproduced
inadequately, as are the inhibiting effects of those fluctuations on the
vortex-induced oscillations. The latter may therefore be overestimated
by laboratory test results.

Flutter and buffeting of a full-span bridge
In this section we extend to a full bridge the methods developed in
Section 6.4.2 for the two-dimensional analysis of flutter and buffeting
for bridge sections. We assume that the deformations are small so that
the behavior of the bridge and of the aeroelastic and buffeting forces is
linear.

Let h(x, t), p(x, t), and α(x, t) denote, respectively, the vertical, hori-
zontal (sway), and torsional (twist) displacements of the spanwise station
defined by the coordinate x; hi(x), pi(x), and αi(x) the ith modal dis-
placements at x; and ξi(t), Ii, ωi and ζi the generalized coordinate, gen-
eralized inertia, natural frequency, and damping ratio in the ith mode.
We have

h(x, t) =
N∑

i=1

hi(x)Bξi(t) (6.5.17a)

p(x, t) =
N∑

i=1

Pi(x)Bξi(t) (6.5.17b)

α(x, t) =
N∑

i=1

αi(x)ξi(t). (6.5.17c)

The equation of motion in the ith mode is

Ii(ξ̈i + 2ζiωiξ̇i + ω2
i ξi) = Qi (6.5.18)

where the Generalized force Qi is defined by

Qi =
∫ l

0
[(Lae + Lb)hiB + (Dae + Db)piB + (Mae + Mb)αi]dx, (6.5.19)

the aeroelastic lift, drag, and moment are

Lae =
1
2
ρU2B

[
KH∗

1

ḣ

U
+ KH∗

2

Bα̇

U
+ K2H∗

3α

+ K2H∗
4

h

B
+ KH∗

5

ṗ

U
+ K2H∗

6 (K)
p

B

] (6.5.20a)
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Dae =
1
2
ρU2B

[
KP ∗

1

ḣ

U
+ KP ∗

2

Bα̇

U
+ K2P ∗

3 α

+ K2P ∗
4

p

B
+ KP ∗

5

ṗ

U
+ K2P ∗

6 (K)
h

B

] (6.5.20b)

Mae =
1
2
ρU2B2

[
KA∗

1

ḣ

U
+ KA∗

2

Bα̇

U
+ K2A∗

3α

+ K2A∗
4

h

B
+ KA∗

5

ṗ

U
+ K2A∗

6(K)
p

B

] (6.5.20c)

respectively, and the buffeting forces are

Lb =
1
2
ρU2B

[
2CL

u(x, t)
U

+
(

dCL

dα
+ CD

)
w(x, t)

U

]
=

1
2
ρU2BL̆b(x, t)

(6.5.21a)

Db =
1
2
ρU2B

[
2CD

u(x, t)
U

]
=

1
2
ρU2BD̆b(x, t) (6.5.21b)

Mb =
1
2
ρU2B2

[
2CM

u(x, t)
U

+
(

dCM

dα

)
w(x, t)

U

]
=

1
2
ρU2B2M̆b(x, t).

(6.5.21c)
The aerodynamic coefficients and derivatives in Eqs. and (6.5.21a,b,c)
should be based on measurements performed in turbulent flow, unless
the flow is assumed to be smooth, in which case there is no buffeting
by oncoming flow turbulence. Effects of turbulence created by the flow-
structure interaction (signature turbulence) are assumed to be negligible.
This assumption needs to be verified, and may not be acceptable (for
example in the case of Fig.6.30a). Effects of vortices shed in the wake
of the deck may be assumed to be negligible unless the flow speed being
considered is close to the speeds associated with lock-in.

The multimodal system of equations of motion of the bridge can be
written in matrix notation:

Iξ′′ + Aξ′ + Bξ = Qb(s) (6.5.22)

where ξ is the generalized coordinate vector, s = Ut/B, and I is an
identity matrix. A and B are the damping and stiffness matrices of the
system, respectively, and include terms associated with both structural
and aerodynamic damping and stiffness. Qb is the generalized buffeting
force vector. The terms of the matrices A, B, and Qb are

Aij(K) = 2ζiKiδij − ρB4lK

2Ii

[
G

H∗
1

hihj
+ G

H∗
2

hiaj
+ G

H∗
5

hipj
+ G

P∗
1

PiPj

+ G
P∗

2
piαj + G

P∗
5

pihj
+ G

A∗
1

αihj
+ G

A∗
2

αiαj + G
A∗

5
αipj

]
(6.5.23a)
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Bij(K) = K2
i δij − ρB4lK2

2Ii

[
G

H∗
3

hiαj
+ G

H∗
4

hihj
+ G

H∗
6

hipj
+ G

P∗
3

PiPj

+ G
P∗

4
pipj + G

P∗
6

pihj
+ G

A∗
3

αiαj + G
A∗

4
αihj

+ G
A∗

6
αipj

] (6.5.23b)

Qbi(K) =
ρB4l

2Ii

∫ l

0
[L̆b(x, s)hi + D̆b(x, s)pi + M̆b(x, s)αi]

dx

l
(6.5.23c)

where δij is the Kronecker delta symbol, and the modal integrals are
given by expressions of the type

G
H∗

3
hiαj

=
∫ l

0
H∗

3 (K, x)hi(x)αi(x)
dx

l
. (6.5.24)

The coordinate x indexes information on the deck cross-section (which
may vary along the span) and the mean angle of attack induced by the
mean flow speed. For each vibration mode that angle of attack varies
along the span. The flutter derivatives are therefore included under the
integral sign (as in Eq. (6.5.24)) even if the cross-section of the deck
is uniform along the span. Expressions of the type (6.5.24) imply that
the aeroelastic forces are perfectly correlated along the span. This is
not truly the case, but some measurements suggest that the error inher-
ent in this assumption is small [68]. The equations of motion obtained
by taking into account only diagonal terms (i = j) in the matrices A
and B represent the single-degree-of-freedom, uncoupled equations. The
off-diagonal terms (corresponding to i �= j) introduce the aeroelastic cou-
pling.

Flutter analysis

Denote the Fourier transform of ξi by

ξ̄i(K) = lim
T→∞

∫ T

0
ξi(s)e−jKsds (6.5.25)

where j =
√−1. The Fourier transform of Eq. (6.5.22) is

Eξ̄ = Q̄b (6.5.26)

where the terms of the matrix E are

Eij = −ω2(B/U)2δij + jω(B/U)KAij(K) + Bij(K). (6.5.27)

The flutter condition is identified by solving the eigenvalue problem

Eξ̄ = 0. (6.5.28)
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Equation (6.5.28) has nontrivial solutions if the real and imaginary parts
of the determinant of E vanish. The solutions of interest are sought as
follows. For a fixed value of K seek the value of ω in the frequency range
of interest until the real part of the determinant of E vanishes. Repeat
the process for successive values of K until both the real part and the
imaginary part of the determinant of E vanish for the same value of
ω. That value of ω is the flutter frequency. The flutter speed is equal
to ωB/K, where K has the value that yielded the flutter frequency ω.
For a multi-modal problem the same procedure must be carried out a
number of times equal to the number of modes. The largest solution of K
corresponds to the critical flutter condition. The mode corresponding
to that solution is the dominant mode in the flutter condition. The
eigenvector ξ yields the shape of the flutter oscillatory motion, that is,
the relative participation in the flutter motion of each vibration mode
(Eqs. (6.5.17a,b,c)). Note that in the linear formulation just described
the flutter condition is independent of the buffeting excitation.

The flutter derivative P ∗
1 may be obtained by equating the following

two expressions for the drag:

D =
1
2
ρ(U = ṗ)2BCD (6.5.29a)

D =
1
2

ρU2BKP ∗
1 ṗ

U
. (6.5.29b)

If the term in ṗ2 is neglected from Eq. (6.5.29a),

P ∗
1 = −2CD/K. (6.5.30)

For a streamlined box and an H-shape section Eq. (6.5.30) was
consistent with measurements up to reduced frequencies of Un/B = 15.
However, for higher frequencies Eq. (6.5.30) was found to underestimate
the measured values of P ∗

1 .

Buffeting analysis

We develop the buffeting analysis with a view to obtaining ex-
pressions for the spectral density of the bridge deck response. The
Fourier transform of the generalized buffeting force may be written as

Q̄b =
1
2
ρB4l

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
I1

∫ l
0 F̄b1

dx
l

1
I

∫ l
0 F̄b2

dx
l·

·
·

1
In

∫ l
0 F̄bn

dx
l

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (6.5.31)
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F bi(x, K) = L̆b(x, K)hi(x) + D̆b(x, K)pi(x) + M̆b(x, K)αi(x, K)
(6.5.32)

or, in view of Eqs (6.5.21a,b,c) and (6.5.23c),

F bi(x, K) =
1
U
{[2CLhi(xA) + 2CDpi(xA) + +2CMαi(xA)]u(K)

+[(C ′
L + CD)hi(xA) + C ′

Dpi(xA) + C ′
Mαi(xA)]w(K)}.

(6.5.33)

Denoting the transpose of the complex conjugate of the vector Qb by
Q∗T

b , we have

QbQ
∗T
b =

(
ρB4l

2

)2

⎡
⎢⎢⎢⎣

1
I1Il

∫ l
0

∫ l
0 F b1F

∗
b1

dxA
l

dxB
l · · · 1

I1In

∫ l
0

∫ l
0 F b1F

∗
bn

dxA
l

dxB
l

·
·

1
InI1

∫ l
0

∫ l
0 F bnF

∗
b1

dxA
l

dxB
l · · · 1

InIn

∫ l
0

∫ l
0 F bnF

∗
bn

dxA
l

dxB
l

⎤
⎥⎥⎥⎦ (6.5.34)

By definition, the power spectral density of a function φ is

Sφφ(ω) = lim
T→∞

2
T

φφ (6.5.35)

where φ ≡ φ(xA) is a stationary stochastic process at a point with co-
ordinate xA. A similar expression holds for the cross-spectral density of
φ(xA)φ(xB). From Eqs. (6.5.34) and (6.5.35) a spectral density matrix
with the following terms can be developed:

SQbi
SQbj

(K) =
(

ρB4l

2U

)2 1
IiIj

∫ l

0

∫ l

0
{qi(xA)qj(xB)Suu(xA, xB, K)

+ r̄i(xA)rj(xB)Sww(xA, xB, K)
+[qi(xA)rj(xB) + ri(xA)qj(xB)]Cuw(xA, xB, K)}dxAdxB,

(6.5.36)

qi(x) = 2[CLhi(x) + CDpi(x) + CMαi(x)], (6.5.37)

rj(x) = (C ′
L + CD)hj(x) + C ′

Dpj(x) + C ′
Mαj(x), (6.5.38)

Suu(xA, xB, K) is the cross-spectral density of the horizon-
tal wind speed fluctuations u at the spanwise coordinates xA and
xB, Sww(xA, xB, K) is the cross-spectral density of the vertical wind
speed fluctuations w at xA and xB, Cuw(xA, xB, K) is the co-spectrum
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of u at xA and w at xB. It is assumed in Eq. (6.5.36) that the quadra-
ture spectrum of u and w is negligible. Aerodynamic admittances are
assumed to be equal to unity; in other words the dependence upon fre-
quency of the relation between wind speed fluctuations and the fluctuat-
ing forces they induce is neglected. This may lead to a slight but likely
negligible overestimation of the response. The power spectral density
matrix Sξξ of the generalized coordinate vector ξ is obtained from Eqs.
(6.5.39) in terms of the matrix E and the matrix SQbQb

of the spectral
density of the generalized force vector Qb, that is,

Sξξ(K) = E−1SQbQb
{[E∗]T}−1 (6.5.39)

The coupling between modes is due to the off-diagonal terms in the
matrix E. The power spectral density of the displacements, obtained
from Eqs. (6.5.17a,b,c), is

Shh(x, K) =
∑
i,j

∑
i,j

B2hi(x)hj(x)Sξiξj (K) (6.5.40a)

Spp(x, K) =
∑
i,j

∑
i,j

B2pi(x)pj(x)Sξiξj (K) (6.5.40b)

Sαα(x, K) =
∑
i,j

∑
i,j

αi(x)αj(x)Sξiξj (K) (6.5.40c)

where the summations are carried out over the number of modes being
considered. The mean square values of the displacements are

σ2
h(x) =

∫ ∞

0
Shh(x, n)dn (6.5.41a)

σ2
p(x) =

∫ ∞

0
Spp(x, n)dn (6.5.41b)

σ2
α(x) =

∫ ∞

0
Sαα(x, n)dn (6.5.41c)

where n = ω/2π is the frequency.
The cross-spectral density of the horizontal velocity fluctuations u, the

cross-spectral density of the vertical fluctuations w, and the co-spectrum
of u acting at x1 and w acting at x2 may be described empirically by
the expressions

Suu(x1, x2, n) ∼= Suu(ω) exp
[
cun|x1 − x2|

U

]
(6.5.42a)
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Sww(x1, x2, n) ∼= Sww(ω) exp
[
cwn|x1 − x2|

U

]
(6.5.42b)

Cuw(x1, x2, n) ∼= Cuw(ω) exp
[
cuwn|x1 − x2|

U

]
(6.5.42c)

respectively, where tentative values of the exponential decay coefficients
in Eqs. (6.5.42a,b,c) and (6.5.43a,b,c) are cu

∼= 15, cw
∼= 8, cuw

∼= 8 [6]

Suu(ω) ≡ Suu(x, x, ω) =
200zu2∗

U(1 + 50nz/U)
5
3

(6.5.43a)

Sww(ω) ≡ Sww(x, x, ω) =
3.36zu2∗

U(1 + 10nz/U)
5
3

(6.5.43b)

Cuw(ω) ≡ Cuw(x, x, ω) =
14zu2∗

U(1 + 9.6nz/U)2.4
, (6.5.43c)

u∗ =
kU(z)

ln(z/z0)
(6.5.44)

is the friction velocity, k = 0.4 is von Kármán’s constant, z is the height
of the bridge deck above water, and it may be assumed that for flow
over water the roughness length is z0 = 0.003 m - 0.01 m, say. If the
bridge span is over ground, rather than over water, z0 depends upon
the terrain roughness, see, e.g., [6]. If topographic effects are significant,
models such as Eqs. (6.5.43a,b,c)-(6.5.44) may not be appropriate, and
micrometeorological measurements should be performed (see, e.g., [69]).
However it should be kept in mind that measurements conducted at
low wind speeds, at which stable or unstable stratification effects could
be significant, may not be representative of conditions occurring at the
relatively high speeds for which aeroelastic and buffeting responses are
significant.

To perform and validate calculations pertaining to a full bridge model
tested in the wind tunnel it is necessary to use turbulence models con-
sistent with the measured properties of the wind tunnel flow [69, 70]. It
is noted in [66] that the large uncertainties associated with the spatial
structure of low-frequency turbulence result in similarly large uncer-
tainties in the estimation of buffeting response to which low-frequency
vibration modes contribute significantly.

Details of the implementation of the flutter and buffeting analysis
based on Eq. (6.5.26) are reported for the Akashi-Kaikyo Bridge (1990
m main span) in [71]. One conclusion of the Akashi-Kaikyo flutter anal-
yses was that disregarding cross-modal effects (off-diagonal terms in the
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matrix E) yielded incorrect estimates of the flutter velocity. This con-
clusion was verified by observations on the full-scale model of the bridge.
For a full model of the Straits of Messina Bridge calculations and wind
tunnel measurements are reported in [72].

Analyses can be conducted by taking into account the buffeting re-
sponse not only of the deck, but also that of a dynamic model of the
entire bridge , including the cables and the bridge towers. Buffeting
response calculations indicated that, for the Tsing Ma bridge in Hong
Kong (1377 m main span), the effect of including the cable and tower
dynamics in the modeling was relatively small [73]. However, the longer
the bridge , the more the effect of the tower dynamics becomes sig-
nificant from an aeroelastic point of view. For example, according to
calculations for a three-span bridge with a 3000 m main span and 1500
m side spans, replacing flexible steel pylons by stiffer, reinforced con-
crete pylons resulted in an increase of the critical flutter speed of about
25%, while for a bridge with a 2000 m main span and 1000 m side spans
the increase was about 10% [74]. For the latter bridge replacing cables
with allowable stress of about 1000 MPa or less by cables with allowable
stress of about 1200 MPa or more (and a correspondingly lower moment
of inertia) resulted in a decrease of the critical flutter speed of about
25%.

A case study: The Golden Gate Bridge [63]

The Golden Gate bridge has a 1280 m center span and two 343 m side
spans. The elevation of the deck above water is 67 m. The calculated
vibration modes, the modal frequencies , and the modal integrals (Eqs.
(6.5.14)) are given in Table 6.5.1 for the first eleven modes, ranked by or-
der of increasing frequencies . Static force coefficients are listed in Table
6.5.2. A surface roughness length of 0.009 m was used in the calculations.
The flutter derivatives were assumed to be independent of position along
the span. However, the flutter velocities were calculated for five distinct
sets of flutter derivatives, corresponding to −5◦,−2.5◦, 0◦, 2.5◦, and 5◦
mean angles of attack. Figures 6.5.5-6.5.7 show flutter derivatives H∗

i
and A∗

i (i = 1, 2, 3, 4) obtained in smooth flow from a 1:50 section model
of the Golden Gate bridge for a zero-degree mean angle of attack [62].
For comparison flutter derivatives are shown in Fig. 6.5.7 for a 5◦ mean
angle of attack [63]. Only the flutter derivatives H∗

i , A∗
i (i = 1, 2, 3, 4),

and P ∗
1 (given by Eq. 6.5.30) were accounted for in the calculations.

Buffeting calculations were carried out using flutter derivatives for
the bridge at 0◦ mean angle of attack under a 22.2. m/s mean velocity.
The largest values along the deck calculated for 2% modal damping
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ratios and a mean wind speed of 34 m/s at the deck elevation were
σhh = 0.31 m and σαα = 0.77 × 10−3 rad. Smaller assumed damping
ratios would result in larger buffeting response.

TABLE 6.5.1. Frequencies , Types of Modal Forms, and
Modal Integrals for Golden Gate Bridge

Mode Freq. Type Ghihi Gαiαi Gpipi

number (Hz)
1 0.0490 LS 3 × 10−16 8 × 10−5 0.33
1 0.0490 LS 3 × 10−16 8 × 10−5 0.33
2 0.0870 V AS 0.3 1.9 × 10−15 7.7 × 10−15

3 0.1124 LAS 1.7 × 10−14 1.24 × 10−2 0.32
4 0.1285 V S 0.19 1.4 × 10−14 8.3 × 10−14

5 0.1340 V AS 0.34 2.7 × 10−14 6.0 × 10−14

6 0.1638 V S 0.34 1.8 × 10−14 4.0 × 10−14

7 0.1916 TAS 6.7 × 10−13 0.32 0.033
8 0.1972 TS 2.5 × 10−12 0.18 0.25
10 0.1988 V AS 0.18 9.6 × 10−12 4.6 × 10−13

11 0.2021 V S 0.26 8.0 × 10−15 1.5 × 10−15

Note: L: Lateral; V: Vertical; T: Torsional; S; Symmetric; AS: Anti-
symmetric.

TABLE 6.5.2. Static Force Coefficients at 0◦ Angle of Attack
for Golden Gate Bridge

CD CL CM C ′
D C ′

L C ′
M

0.304 0.211 0.0044 0 3.25 -0.177

For flutter calculations it was assumed that the damping ratios were
0.5%. Calculations showed that, under the assumptions used, no flutter
occurred for combinations including only the first six modes. Inclusion
of the seventh mode, and of the seventh and eighth modes, yielded
the reduced frequencies K, the circular frequencies ω, and the critical
flutter velocities Uc listed in Table 6.5.3 for each of the five mean angles
of attack. If a 1% modal damping was assumed in the calculations, the
multimodal flutter analysis yielded a flutter velocity of 44.6 m/s, rather
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than 22.0 m/s, as was the case for the assumption of a 0.5% modal
damping .

In addition to a multimodal analysis, a single-mode analysis was per-
formed. Mode 7 yielded the lowest flutter velocity in all cases. The
single-mode flutter velocities obtained were almost identical to those ob-
tained by a multimodal analysis based on a combination of seven modes.
This result, as well as the calculated shape of the oscillatory flutter mo-
tion, suggests that the flutter is dominated by mode 7, which is the first
torsional asymmetric mode (i.e., the type of mode in which the flutter
of the Tacoma Narrows bridge occurred - see Fig. 6.0.2).

In addition to section model tests in smooth flow, tests in flow with
turbulence intensities 7.4% and 11% were conducted for a 1:150 scale
model of half the central span. Depending upon turbulence intensity,
mean flutter velocities were about 10% to 20% higher than the flutter
velocity for smooth flow conditions [63, 76].

TABLE 6.5.3. Flutter Velocities for Golden Gate Bridge (0.5%
Modal Damping Ratios).

Angle −5◦ −5◦ −2.5◦ −2.5◦ 0◦ 0◦ 2.5◦ 2.5◦ 5◦ 5◦
Modes 7 8 7 8 7 8 7 8 7 8

K 1.27 1.27 1.28 1.28 1.34 1.34 1.43 1.43 1.49 1.49
ω(rad.) 1.18 1.18 1.17 1.17 1.18 1.18 1.19 1.19 1.19 1.19
Uc(m/s) 25.5 25.5 25.2 25.2 24.1 24.1 22.7 22.7 22.0 22.0

Before concluding this section we mention the development in [77] of a
time domain approach for full bridges . The approach uses aerodynamic
impulse response functions obtained from flutter derivatives by Fourier
transformation. Unlike calculations in the frequency domain, which as-
sume that the aeroelastic forces depend upon the mean deformation of
the bridge , the time domain calculations use models of the aeroelastic
forces that depend upon the instantaneous deformation induced by the
buffeting . A numerical example included in [77] indicates that, for a
2000 m span bridge with specified aeroelastic properties, the effect of
this refinement on the flutter velocity and the buffeting response was
relatively small.

We also refer the reader to research on the behavior of suspended-span
bridges during construction [78-80], and on the effects of winds skewed
with respect to the direction normal to the bridge span [81-84].
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Reduction of bridge susceptibility to flutter

It has already been noted that “H-section” decks are prone to flutter.
This is due both to their weak torsional stiffness and to their unfavor-
able aerodynamic properties. Roadways with slots, vents, or grills can
significantly improve aeroelastic performance [85]. Even minor details
such as deck railings can affect structural performance [86].

The design of long bridges to achieve satisfactory performance eco-
nomically requires efficient aeroelastic design both through the selec-
tion of cross-sectional deck shapes with favorable flow patterns, and
through aeroelastically effective structural design resulting in a reduc-
tion of modal and cross-modal integrals (see Eqs. (6.5.23a,b,c)-(6.5.24)),
particularly for torsional motions. Modal shapes consistent with such re-
duction can be achieved through the selection of a favorable ratio of side
spans to main span, cross-sections stiffer near the supports and along
the side spans than in the central part of the main span, stiff pylon
towers, and stiff cables. For the Akashi-Kiokyo Bridge the decks were
of equal width throughout the bridge but had torsionally stronger and
more bluff shapes near the supports and along the side spans (Fig.6.31).
The spindle-type suspension bridge concept depicted in Fig.6.32 is aimed
at achieving similar features more elegantly [87].

As an example of the role of aerodynamic refinements we briefly
consider the “π -section” deck (Fig.6.33). It was found that a ratio
C/D′ = 2.0 was optimal aerodynamically [88] (C = deck floor overhang,
D′ = girder depth). In addition the aeroelastic performance depends on
the ratio r of solid traffic barrier height to outer pedestrian traffic strip
width. For θ = tan−1 r = 30◦ the torsional aerodynamic damping was
found to be almost negligible in comparison with the case θ = 90◦ [89].
For this value of θ flow separation patterns result in aeroelastically ben-
eficial reductions of unsteady pressures on the upper surface of the deck.
It would be of interest to determine whether the reductions observed in
the wind tunnel are Reynolds-number independent.

According to tests and calculations reported in [90], the slotted
box girder shown in Fig.6.34 is effective aerodynamically, as well
as being efficient structurally, for a hypothetical suspension bridge
with a 2800 main span and 1100 m side spans. For a similar study
of a suspension bridge with 2500 m main span and 1250 m side
spans, with a deck consisting of a two-box girder over the mid-1230
m of the central span and a box girder over the rest of the bridge, see [91].
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6.6. Tall Chimneys and Stacks, and Tall
Buildings

Tall chimneys and stacks
Tall chimneys and stacks can be affected by locked-in vortex-induced
response. As was mentioned in Section 1.3, at lock-in Eq. (6.1.16) can
be written approximately as

m(ÿ + 2ζω1ẏ + ω2
1y) =

1
2
ρU2DY1(K)(1 − ε

y2

D2
)
ẏ

U
. (6.6.1)

In Eq. 6.6.1 K = Dω/U, D is the diameter, U is the velocity, the
circular frequency ω satisfies the Strouhal relation ω = 2πSU/D, ω1 is
the fundamental natural frequency, and Y1(K) and ε must be fitted to
experimental results. The right-hand side of Eq. 6.6.1 is approximated
in [92] by the simplified expression

2ω1ρD2Ka0(
U

Ucr
)
[
1 − η2

rms

λ2

]
ẏ (6.6.2)

where

η2
rms =

1
T

∫ T
0 y2dt

D2
, (6.6.3)

the numerator of Eq. 6.6.3 is an estimate of the variance of the
fluctuating response, Kα0(U/Ucr) > 0 is an aerodynamic coefficient,
Ucr = ω1D(2πS), S is the Strouhal number, and T is a sufficiently long
time interval. If (6.6.1) is equated to the product −2mζaωn, where ζα

denotes the aerodynamic damping ratio, we may define a total damping
ratio

ζt = ζ + ζa, (6.6.4)

where

ζa = −2
ρD2

m
Ka0(

U

Ucr
)
[
1 − η2

rms

λ2

]
ẏ (6.6.5)

If ηrms = λ, then ζa = 0. The response, including the effects of the
aeroelastic forces, is obtained simply by substituting the total damping
ratio ζt for the structural damping ratio ζ in the homogeneous equation
of motion of the body. If ηrms < λ , then ζa < 0, and the body extracts
energy from the flow, that is, it can experience self-excited oscillations. If
ηrms > λ, then ζa > 0, and the body experiences no destabilizing aeroe-
lastic effects. The approximate validity of the approach just described
was verified against wind tunnel measurements of chimney response con-
ducted at Reynolds numbers Re ≈ 600, 000 [92]. For reinforced concrete
chimneys [91] suggests λ ≈ 0.4.
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Figure 6.35. Steel chimney with helical strakes. From J. Wind Eng. Ind. Aerodyn.
1 (1976) 341-347.

It may be inferred from some measurements conducted in smooth
flow that the largest value of the aerodynamic coefficient Kα0, denoted
by Kα0max, is of the order of unity (about 1.0 for Re ≤ 104, about 1.4
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Figure 6.36. Wind tunnel measurements of across-wind response of rectangular
buildings (circles and triangles indicate damping ratios). From H. Kawai, “Vortex
Induced Vibration of Tall Buildings,” J. Wind Eng. Ind. Aerod. 41-44 (1993) 117-
128.
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Figure 6.37. Displacements of wind response obtained from response analysis ac-
counting for measured aerodynamic damping and from wind tunnel tests on elastic
model; shear flow corresponding to suburban terrain. From J. Katagiri, T. Okhuma,
and H. Marukawa, “Motion-induced wind forces acting on rectangular high-rise build-
ings with side ration of 2,” J. Wind Eng. Ind. Aerod. 89 (2001) 1421-1432.

for 104 < Re < 105, and about 0.8 for Re ≥ 105 - see [92]). Ratios
Kα0/Kα0max proposed in [92] as functions of the ratio U/Ucr and of
turbulence intensity are shown in Fig. (6.6.1). More elaborate models
of Kα0, applicable to chimneys with non-negligible end effects, are pro-
posed in [93]; see also [6]. For response involving more than one mode of
vibration [92] proposes, for each mode, expressions for the total damping
similar to Eq. (6.6.4). In these expressions modal aerodynamic damp-
ing ratios are derived by assuming that aeroelastic effects are linearly
superposable.

The calculation of the total response of a chimney or stack to wind
loading requires information or assumptions on the drag coefficient,
Strouhal number, spectral density of the lift coefficient, spanwise wind
loading correlation parameter, and aeroelastic parameter Kα0. The aero-
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dynamic and aeroelastic information depends upon Reynolds number,
chimney surface roughness, chimney aspect ratio and taper, and terrain
roughness. For details see [93, 6, and 94].

To reduce the vortex-induced response chimneys may be provided
with hydraulic dampers or tuned mass dampers [95], or with aerody-
namic devices referred to as spoilers. The latter are aimed at reducing
or destroying the shed vortices’ coherence along the height. A spoiler
commonly used in the past for steel stacks with very light damping was
developed on the basis of wind tunnel tests. It consists of three thin he-
lical strakes applied over the top 33% to 40% of the chimney (Fig.6.35)
[96, 6]. The strakes in use are rectangular in cross-section, with a height
of 0.1 to 0.13 diameters, and a pitch of one revolution in 5 diameters.
They increase significantly the drag force acting on the stacks. According
to full-scale observations reported in [97], for large vibration amplitudes
(e.g., 3% to 5% of the diameter) the vortices re-establish themselves and
the strakes become ineffective. An alternative type of spoiler device is a
perforated shroud placed over the top 25% of the stack [98, 6].

Tall buildings
The response of tall (high-rise) buildings to wind loading may be divided
into three categories:

along-wind response, which consists of (a) the static response induced
by the mean flow speed, and (b) the dynamic (buffeting ) response
induced mainly by longitudinal turbulent fluctuations in the oncom-
ing flow (contributions by along-wind components of the signature
turbulence, that is, of flow fluctuations due to the flow-structure in-
teraction, are typically small)

across-wind response due to signature turbulence, including vorticity
shed in the building wake (contributions by lateral turbulent fluctu-
ations in the oncoming flow are typically small)

torsional response, due to the non-zero distance between the build-
ing’s elastic center and the instantaneous point of application of the
resultant wind loading.

This terminology pertains to the case where the mean wind speed is
parallel to a principal axis od the building’s horizontal cross section.

For isolated buildings in horizontal terrain with specified roughness
simple procedures are available for relating the along-wind response to
the oncoming turbulent flow (see, e.g., [6]). Expressions based on first
principles are not available, however, for the estimation of the across-
wind and torsional response. Nevertheless, some tentative empirical cri-
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teria have been developed from wind tunnel measurements. Let hrms

denote the rms value of the across-wind oscillations at the top of the
building. According to those criteria aeroelastic effects become signifi-
cant if hrms > hrms cr, where hrms cr is a critical value. For buildings
with a square shape in plan experiments reported in [99, 100] suggest
that, if B denotes the side of the horizontal cross-section, it is conser-
vative to assume hrms cr/B = 0.015 for open terrain, hrms cr/B = 0.025
for suburban terrain and, under the assumption that no neighboring
building affects significantly the turbulent wind field, hrms cr/B = 0.045
for centers of cities. For a variety of shapes tentative, crude empirical
expressions and attendant data are available to describe the across-wind
and torsional response for hrms < hrms cr [101, 6]. According to [102],
for some building shapes estimates based on those expressions appear to
be significantly at variance with results based on [101].

Figure 6.36 [103] shows results of wind tunnel experiments obtained
for four prismatic building shapes in smooth flow, flow over open terrain,
and flow over urban terrain. Results for each case are given for three
values of the structural damping ratio. The model scale was estimated
to be about 1/600, and for all models the height H, the sectional area
BD, and the specific mass were 0.5 m, 0.0025 m2, and 120 kg/ m3,
respectively. In Fig.6.36, f0, U , and hrms denote, respectively, natural
frequency of vibration in the fundamental mode, wind speed at building
top, and rms of across-wind response at the building top. Additional
results are reported in [104] for winds acting from various directions on
the models described in [103] and on a model with a triangular shape in
plan.

For tall buildings higher vibration modes typically do not make major
contributions to the total response. In engineering practice information
provided by sources such as [99-104] is seldom if at all used for design
purposes. Rather, each important tall structure is subjected to an ad-
hoc aeroelastic wind tunnel test that reproduces the structure’s main
mechanical characteristics and built environment and allows testing for
a sufficient number of wind speeds and directions. Recently, however,
efforts have been made to develop for tall buildings an approach simi-
lar to the approach used for suspended-span bridges . Those efforts are
still in the incipient stage. They entail primarily measurements used to
estimate aerodynamic damping . For a tall building with a depth-to-
width ratio of 2, H/(BD)

1
2 = 5, and a linear fundamental modal shape,

measurements of wind forces induced by across-wind harmonic forcing
as well as by torsional harmonic forcing in smooth and turbulent flows
were reported in [105], the wind direction being parallel to the long di-
mension of the rectangle. As is the case for chimneys (Eq. (6.6.3)),
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the total damping ratio may be written as a sum of structural damp-
ing and aerodynamic damping . For flow over suburban terrain and for
four values of the structural damping, Fig.6.37 shows, for various struc-
tural across-wind and torsional damping ratios, denoted by hsx and hsθ,
nondimensional across-wind and torsional rms responses based on direct
wind tunnel measurements and on analyses in which the measured aero-
dynamic damping ratios were used. In Figure 6.6.3 UH denotes the mean
velocity at elevation H, B is the short dimension of the horizontal cross-
section of the building, and nx, nθ denote the across-wind and torsional
natural frequencies . Similar studies conducted on models with ratios
D/B = 1 and D/B = 3 are reported in [106]. The framework developed
in [105, 106] provides a useful basic understanding of aeroelastic effects
on tall buildings . However, until a sufficiently comprehensive database
is developed, it cannot serve as a substitute for individual, ad-hoc wind
tunnel tests, the more so as lock-in or galloping effects not accounted
for in [105, 106] can play an important role in the response for reduced
velocities larger than 5 or so [104].

Reference 107 discusses corrections to estimates of aeroelastic re-
sponse obtained by current wind tunnel techniques.
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Chapter 7

AEROELASTIC RESPONSE
OF ROTORCRAFT

In this chapter we will examine a number of aeroelastic phenomena
associated with helicopters and other rotor or propeller driven aircraft.
Certain areas have been selected for treatment to illustrate some sig-
nificant stability problems which are associated with the design of he-
licopters The approach to be followed employs simplified modelling of
various problems such that physical insight into the nature of the phe-
nomena can be obtained. In general a complete and precise formulation
of many of the problem areas discussed is highly complex and the reader
is referred to the literature for these more detailed formulations.

A basic introduction to the mechanics and aerodynamics of helicopters
may be found in [1] and [2]. Extensive reviews of helicopter aeroelasticity
may be found in [3] and [4]. Ref. [4] provides an excellent discussion of
the considerations necessary in modelling helicopter aeroelasticity and
illustrates the complexity of a general formulation as well as the care
required to obtain a complete and precise analytical model.

Helicopter rotors in use may be broadly classified in four types,
semi-articulated or teetering, fully-articulated, hingeless and bearing-
less. This classification is based on the manner in which the blades are
mechanically connected to the rotor hub. The teetering rotor is typically
a two-bladed rotor with the blades connected together and attached to
the shaft by a pin which allows the two-blade assembly to rotate such
that tips of the blades may freely move up and down with respect to
the plane of rotation (flapping motion). In the fully-articulated rotor,
each blade is individually attached to the hub through two perpendic-
ular hinges allowing rigid motion of the blade in two directions, out of
the plane of rotation (flapping motion) and in the plane of rotation (lag
motion). The third type is the hingeless rotor in which the rotor blade
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is a cantilever beam, but with soft flexures near the root, simulating
hinges. Fourth, bearingless rotors further replace the pitch bearing by
the softness in torsion of the root of the blade. Thus, pitch changes are
introduced through torsional deformations.

Because of their greater flexibility, elastic deformations of hingeless
and bearingless rotors are significant in the analysis of the dynamics of
the vehicle. Bending out of the plane of rotation is referred to as flap
bending and in-plane as lag bending. These three rotor configurations
are shown schematically in Figure 7.1. Rotation of the blade about its
long axis is controlled by a pitch change mechanism suitably connected
to the pilot’s stick. For further details see [1] for articulated rotors and [5]
for hingeless rotors. Other variations in rotor hub geometry are found
such as the gimballed rotor described in [6]. We will concentrate our
discussion on the aeroelastic behavior of fully-articulated and hingeless
rotors. However, it is important to realize that, for the aeroelastic anal-
ysis of rotors, the precise details of the hub and blade geometry must be
carefully modelled.

Phenomena in helicopter aeroelasticity may be classified by the
degrees-of-freedom which are significantly coupled. Typically, the dy-
namics of a single blade are of interest although coupling among blades
can be present through the elasticity of the blade pitch control system
or the aerodynamic wake [7]. The degrees-of-freedom of a single blade
include rigid body motion in the case of the articulated system as well as
elastic motion. Elastic motions of interest include bending in two direc-
tions and twisting or torsion. These elastic deformations are coupled in
general. In addition to individual blade aeroelastic problems, the blade
degrees-of-freedom can couple with the rigid body degrees-of-freedom of
the fuselage in flight as well as the elastic deformations of the fuselage
[8-10] or with the fuselage/landing gear system on the ground [10]. In
fact, a complete aeroelastic model of the helicopter typically involves a
dynamic model with a large number of degrees-of-freedom. We do not
propose to examine these very complex models, but rather will consider
simple formulations of certain significant stability problems which will
give some insight into the importance of aeroelasticity in helicopter de-
sign. Avoiding resonances is also of considerable significance, but is not
discussed here. First, aeroelastic phenomena associated with an indi-
vidual blade are described and then those associated with blade/body
coupling are examined. Finally, we will consider phenomena associated
with the dynamics of the wake.



Aeroelastic Response of Rotorcraft (Curtiss and Peters) 379

7.1. Blade Dynamics
Classical flutter and divergence of a rotor blade involving coupling of

flap bending and torsion have not been particularly significant due to
the fact that, in the past, rotor blades have been designed with their
elastic axis, aerodynamic center, and center of mass coincident at the
quarter chord.

In addition, blades are often torsionally stiff (a typical torsional fre-
quency of a modern rotor blade is about 5-8 per revolution) which mini-
mizes coupling between elastic flap bending and torsion. It is important
to note that torsional stiffness control system flexibility is included as
well as blade flexibility. Rotor systems with low torsional stiffness [11]
have experienced flutter problems; and on hingeless and bearingless ro-
tors, the blade section center of mass and elastic axis position can be
moved from the quarter chord to provide a favorable effect on the over-
all flight stability [12] which may mean that these classical phenomena
will have to be reviewed more carefully in the future. Sweep has also
been employed on rotor blades [13] and this couples flap bending with
torsion. However, we will not consider flutter and divergence here, but
will instead concentrate on phenomena more frequently encountered in
practice. Further discussion of classical bending-torsion flutter and di-
vergence of rotor blade may be found in [3] and [14].

Articulated, rigid blade motion
In order to introduce the nature of rotor blade motion we first develop
the equations of motion for the flapping and lagging of a fully articulated
blade assuming that the blade is rigid. Consider a single blade which has
only a flapping hinge located on the axis of rotation as shown in Figure
7.2. The blade flapping angle is denoted by βs and the blade rotational
speed by Ω. We proceed to derive the equation of motion of the blade
about the flapping axis. We assume that the rotor is in a hovering state
with no translational velocity. It is most convenient to use a Newtonian
approach to this problem. Since the flapping pin is at rest in space, we
may write the equation of motion for the blade as follows [15]

¯̇HP + Ω̄B × H̄P =
∫ R

0
Ῡ × dF̄A (7.1.1)

A blade-body axis system denoted by the subscriptB is employed and H̄P

is the moment of momentum of the blade with respect to the flapping
pin. dF̄A is the aerodynamic force acting on the blade at the radial
station r̄. The gravity force on the blade is neglected owing to the
comparatively high centripetal acceleration. Figure 7.2 also shows the
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Figure 7.1. Varous rotor hub configurations.
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coordinate system and variables involved. The blade is modelled as a
very slender rod, and the body axes are principal axes such that the
inertia characteristics of the blade are

IB
∼= Iy

∼= Iz; Ix
∼= 0

Therefore
H̄ = (IBqB)j̄B + (IBrB)k̄B (7.1.2)

where
Ω̄ = pBīB + qBj̄B + rBk̄B (7.1.3)

The equation of motion, (7.1.1), becomes

IB[q̇B − pBrB]j̄B + IB[ṙB + pBqB]k̄B =
∫ R

0
r̄ × dF̄A (7.1.4)

Now we must express the angular body rates in terms of the variables
of interest in the problem, Ω the angular velocity, and βs the flap angle.
The angular velocity must be resolved into the blade axis system by
rotation through βs, and then the flapping velocity β̇s added.⎧⎨

⎩
pB

qB

rB

⎫⎬
⎭ =

⎧⎨
⎩

cos βs 0 sin βs

0 1 0
− sin βs 0 cos βs

⎫⎬
⎭
⎧⎨
⎩

0
0
Ω

⎫⎬
⎭
⎧⎨
⎩

0
−β̇s

0

⎫⎬
⎭

That is

pB = Ω sin βs

qb = −β̄s

rB = Ω cos βs

(7.1.5)

Substitution of (7.1.5) into (7.1.4) gives

IB[−β̈s − Omega2 cos βs sin βs]j̄B + [−2Ω sin βsβ̇s]k̄B =
∫ R

0
r̄ × dF̄A

(7.1.6)
The first term on the left hand side is the angular acceleration of the
blade about the yB axis and the second term is the angular acceleration
of the blade about the zB axis (i.e., in the lag direction), which arises
as a result of out-of-plane (flapping) motion of the blade. The aerody-
namic force on the blade element is comprised of the lift and drag and
is formulated from strip theory (usually called blade-element theory) [1,
2]. Also, see the discussion in Section 3.4. Three-dimensional iclud-
ing the induced velocity which, for our purposes, may be calculated by
momentum theory [1]. Thus from Figure 7.2.

dF̄A = dLk̄B + (−dD − φdL)j̄B (7.1.7)



382 A MODERN COURSE IN AEROELASTICITY

Figure 7.2. Coordinate systems and aerodynamics for blade flapping analysis.

where the inflow angle φ is assumed to be small and is made up of
the effect of induced velocity (downwash) and the induced angle due to
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flapping velocity. Therefore

dL =
1
2
ρ(Ωr)2c dra(θ − φ)

dD =
1
2
ρ(Ωr)2c drδ

φ =
rβ̇s + v

Ωr

Define

x ≡ r

R
; λ ≡ − v

ΩR
; γ ≡ ρacR4

IB
, the Lock number (7.1.8)

Here the blade chord, c, and pitch angle, θ, are taken to be indepen-
dent of x, for simplicity, although rotor blades are usually twisted. The
blade section drag coefficient is denoted by δ and is also assumed to be
independent of the radial station. Thus

dL =
IBγΩ2

R

[
θ − β̇s

Ω
+

λ

x

]
x2dx

dD =
IBγΩ2

R

(
δ

a

)
x2dx (7.1.9)

and
r̄ = xRīB

The total rotor thrust is found by integrating the lift along the radius,
averaging over one revolution, and multiplying by the number of blades
to give [1]

2CT

aσ
=

θ

3
+

λ

2
(7.1.10)

where
σ =

bc

πR

and b is the number of blades. The thrust coefficient is

CT =
T

ρπR2(Ω/R)2

Momentum theory results in the following expression for the induced
velocity

λ = −
√

CT

2
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so that the integral on the right-hand side of equation (7.1.6) becomes∫ R

0
r̄ × dF̄A = −IBγΩ2

8

[
θ +

4λ

3
− β̇s

Ω

]
j̄b

+
IBγ2

8

[
−δ

a
+

β̇s

Ω

(
β̇s

Ω
− θ

)
+

4
3

(
θ − 2

β̇s

Ω

)
λ + 2λ2

]
k̄B

(7.1.11)

The j̄B components contribute to the lapping equation of motion which
may be expressed from equations (7.1.6) and (7.1.11) as

β̈s +
γΩ
8

β̇s + Ω2 cos βs sin βs =
γΩ2

8

[
θ +

4λ

3

]
(7.1.12)

The k̄B component of equation (7.1.11) is the aerodynamic torque about
the zB axis or in the lag direction. There is a steady component and a
component proportional to flapping velocity. Each of these components
is important either for loads or for stability of the inplane motion.

If we assume that the flapping motion is small as is typical of rotor
blade motion then the flapping equation becomes linear.

β̈s +
γΩ
8

β̇s + Ω2βs =
γΩ2

8

[
θ +

4λ

3

]
(7.1.13)

The linearized blade flapping equation may be recognized as a second
order system with a natural frequency equal to the rotor angular velocity
and a damping ratio equal to γ/16 which arises from the aerodynamic
moment about the flapping pin. This motion is well damped as γ is
between 5 and 15 for typical rotor blades. It is good that the system
is well damped since the aerodynamic inputs characteristically occur in
forward flight at Ω, and thus the blade flapping motion is forced at
resonance.

The spring or displacement term can be interpreted as arising from the
centrifugal force [1]. This same stiffening effect will appear in the flexible
blade analysis and will increase the natural frequency as rotational speed
is increased.

If the more general case of flapping in forward flight is considered,
then the equation of motion for flapping (7.1.12) will contain periodic
coefficients which can lead to instabilities [16]. However, the flight speed
at which such instabilities occur is well beyond the performance range of
conventional helicopters, unless they have positive pitch-flap coupling.

Now we include the lag degree-of-freedom to obtain a complete de-
scription of rigid motion of a fully-articulated rotor blade . The complete
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Figure 7.3. Direction of centrifugal force for flap and lag motion.

development of this two-degree-of-freedom problem is quite lengthy and
will not be reproduced here [17].

Following the approach given above, assuming that the flap angle and
lag angle are small and that the lag hinge and flap hinge are coincident
and located a small distance e (hinge offset) from the axis of rotation as
shown in Figure 7.3, and further accounting for the effect of lag velocity
on the aerodynamics forces acting on the blade, the lift is given by

dL =
1
2
ρ[Ω + ζ̇sr]2c dra

[
θ − (rβ̇s + υ)

(Ω + ζ̇s)r

]
(7.1.14)

where the effect of the small distance e on the aerodynamics is neglected.
The lag angle is defined as positive in the direction of rotor rotation.
Care must be taken in formulating the inertial terms since we have noted
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above that a term like β̇s sin βs is of significance in the equations of
motion, and thus the small angle assumption must not be made until
after the expressions for the acceleration have been obtained. Rotating
by the flap angle first and then by the lag angle, the angular rates in the
blade body axis system are given by⎧⎨
⎩

pb

qB

rb

⎫⎬
⎭ =

⎡
⎣ cos ζs sin ζs 0

− sin ζs cos ζs 0
0 0 1

⎤
⎦
⎡
⎣ cos βs 0 sin βs

0 1 0
− sin βs 0 cos βs

⎤
⎦
⎧⎨
⎩

0
0
Ω

⎫⎬
⎭

+

⎡
⎣ cos ζs sin ζs 0

− sin ζs cos ζs 0
0 0 1

⎤
⎦
⎧⎨
⎩

0
−β̇s

0

⎫⎬
⎭+

⎧⎨
⎩

0
0
ζ̇s

⎫⎬
⎭ (7.1.15)

We must also account for the fact that the hinge point of the blade is no
longer at rest but is accelerating [15]. Since the hinge point is located at
a distance e from the axis of rotation, the equation of motion, (7.1.1),
must be modified to read

˙̄HP + Ω̄B × H̄P =
∫ R

0
r̄ × dF̄A + Ē × MBāP (7.1.16)

where āP is the acceleration of the hinge point

āP = Ω̄ × (Ω̄ × Ē) + ˙̄Ω × Ē (7.1.17)

Ē is the offset distance and MB is the blade mass.
Accounting for all of these factors, and assuming that the flapping

and lagging motion amplitudes are small, the equations of motion for
this two-degree-of-freedom system may be expressed [17, 18] as

−β̈s − Ω2

(
1 +

3
2
ē

)
βs − 2βsζ̇sΩ = −γΩ2

8
[ θ +

4
3
λ − β̇s

Ω
+(

2θ +
4
3
λ

)
ζ̇s

Ω
] − 2βsβ̇sΩ + ζ̈s +

3
2
ēΩ2ζs =

γΩ2

8
[ −

(
θ +

8
3
λ

)
β̇s

Ω
−(

2
δ

a
− 4

3
λθ

)
ζ̇s

Ω
−−δ

a
+

4
3
λθ + 2λ2 ]

(7.1.18)

where
ē =

e

R

It has been assumed that the blade has a uniform mass distribution.
These results can be displayed more conveniently by nondimensionalizing
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time by rotor angular velocity Ω and also expressing the variables as the
sum of a constant equilibrium part and a perturbation

βs = β0 + β (7.1.19)

ζs = ζ0 + ζ

Retaining only linear terms, the equilibrium equations are

β0 =
γ

8(1 + 3
2 ē)

[
θ +

4λ

3

]

ζ0 =
γ

12ē

[
−δ

a
+

4
3
λθ + 2λ2

]
= −1

3
γ

ē

(
2Cq

aσ

) (7.1.20)

The steady value of the flapping, β0, is referred to as the coning angle.
The steady value of the lag angle, ζ0, is proportional to the rotor torque
coefficient, cq [1].

The perturbation equations are

β̈ +
γ

8
+
(

1 +
3
2
ē

)
β +

[
2β0 − γ

8

(
2θ +

4
3
λ

)]
ζ̇ = 0[

−2β0 +
γ

8

(
θ +

8
3
λ

)]
β̇ + ζ̈ +

γ

8

(
2
δ

a
− 4

3
λtheta

)
ζ̇ +

3
2
ēζ = 0

(7.1.21)

These equations describe the coupled flap-lag motion of a rotor blade.
A number of features can be noted. The effect of the blade angular
velocity on the lag frequency is much weaker than on flap frequency.
The uncoupled natural frequency in flap expressed as a fraction of the
blade angular velocity is

ωβ

Ω
=

√
1 +

3
2
ē (7.1.22)

and the coupled frequency in lag is

ωζ

Ω
=

√
3
2
ē (7.1.23)

For a typical hinge offset of ē = 0.05, the rigid flap frequency is
ωβ

Ω
= 1.04

and the rigid lag frequency is
ωζ

Ω
= 0.27
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The flap natural frequency is thus somewhat higher than the rotational
speed and the lag frequency is roughly one-quarter of the rotational
speed. This difference is due to the weaker effect of the restoring moment
due to centrifugal force in the lag direction as indicated in Figure 7.3.

The uncoupled lag damping arises primarily from the blade drag and
is equal to

DL ≡ 2
δ

a

(γ

8

)
(7.1.24)

The lift curve slope of the blade, a, is the order of 6 per radian and the
drag coefficient, δ, is the order of 0.015 giving a physical lag damping
which is 0.005 times the flap damping or characteristically negligible.
The damping ratio of the uncoupled lag motion for a Lock number of 8
is

ζL = 0.009

This low value of aerodynamic damping indicates that structural damp-
ing will be of significance in estimating the lag damping. Any coupling
between these equations which reduces the lag damping tends to result
in an instability. Equations (7.1.21) can be rewritten

β̈ +
γ

8
β̇ +

(
1 +

3
2
ē

)
β +

(
β0 − γ

8
θ
)

ζ̇ = 0

−γ

8
θβ̇ + ζ̈ +

γ

8

[
2
δ

a

]
ζ̇
3
2
ēζ = 0

(7.1.25)

where the equilibrium relationship for β0 has been introduced (7.1.20)
with the effect of hinge offset on coning neglected. It can be shown that
the coupling present in this two-degree-of-freedom system arising from
inertial and aerodynamic forces will not lead to an instability. However,
the hinge offset or changes in minor features of the hub geometry can
lead to instability. The equilibrium lag angle is proportional to rotor
torque (equation (7.1.20)); and, consequently, it varies over a wide range
from high power flight to autorotation as a result of the weak centrifugal
stiffening. Thus, the simple pitch link geometry shown in figure 7.4 will
produce a pitch change with lag depending upon the equilibrium lag
angle. The blade pitch angle variation with lag angle can be expressed
as

∆θ = θζζ
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Figure 7.4. Pitch-lag coupling due to pitch link geometry. Articulated rotor.

This expression is inserted into equations (7.1.18). Retaining only the
linear homogeneous terms, the perturbation equations are

β̈ +
γ

8
β̇ +

(
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3
2
ē

)
β +

(
β0 − γ

8
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)

ζ̇ − γ

8
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8
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8
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δ
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ζ̇
3
2
ēζ − γ

6
λθζζ = 0

(7.1.26)

We can now sketch a root locus for the effect of θζ on the dynamics of
this system. Expressing the equations of motion in operational notation,
the root locus equation for variations in θζ is

−θζ
γλ
6

[
s2 + 3

4
β0

λ s + 1 + 3
2 ē
]

[s2 + γ
8s + (1 + 3

2 ē)][s2 + γ
8 [2 δ

a]s + 3
2

¯e] + γ
8θ(β0 − γ

8θ)s2
= −1 (7.1.27)

The root locus shown in Figure 7.5 illustrates the effect of this geo-
metric coupling, indicating that the critical case where instability occurs
corresponds to the 180◦ locus (θζ is positive). Recall that λ is negative.
Thus, if forward lag produces an increase in pitch, an instability is likely
to occur for a soft-inplane rotor. The effect is also proportional to thrust
coefficient indicating that the instability is more likely to occur as the
thrust is increased [18, 19]. Increasing thrust also increases the steady-
state lag angle, hence increasing the geometric coupling for the geometry
shown. In general, this instability tends to be of a rather mild nature,
but it has destroyed tail rotors. Mechanical dampers are often installed
about the lag axes for reasons to be discussed and these also provide
additional lag damping and thus alleviate the instability.
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Figure 7.5. Effect of pitch-lag coupling on flap-lag stability.

This example serves to illustrate that great care must be taken in
the geometric design of the articulated rotor hub to avoid undesirable
couplings and possible instabilities. We now turn to the elastic hingeless
blade.

Elastic motion of hingeless blades
The dynamics of a single hingeless blade will now be examined. Again
we will use a simplified analysis which yields the essential features of
the dynamic motion, and the reader is referred to the literature for a
more detailed approach. In general, the flap and lag elastic deformations
(as referred to a shaft axis system) are coupled as a result of the fact
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that the principal elastic axes of the blade will be inclined with respect
to the shaft due to pitch angle. In fact, the term flexible “blade”, as
used here, includes the hub as well as the blade itself. Hub is used to
refer to the portion of the blade structure inboard of the radial location
where the pitch change takes place. The rotation of the blade principal
elastic axes with blade pitch will depend upon the relative stiffness of
the hub and the blade. It can be seen physically that, if the hub is soft in
comparison to the blade, then the principal axes of this flexible system
tend to remain fixed as the pitch of the blade is changed. However, if the
hub is stiff and the blade is soft, the principal elastic axes rotate in a 1:1
relationship with blade pitch. An additional source of elastic coupling
between flap and lag deflections arises from the built-in blade twist. A
third source of elastic coupling between flap and lag arises from inclusion
of torsion as a degree-of-freedom. For the typical rotor blade with a high
torsional frequency, the effect of torsional flexibility on flap-lag coupling
can be obtained through a quasistatic approximation to the torsional
motion. That is, for a first-order estimate, the torsional inertia and
damping can be neglected; and the coupling effects of torsional flexibility
can be expressed in terms of geometric coupling similar in form to the
hub geometry effects described in connection with the fully-articulated
rotor. A detailed analysis of the flap-lag-torsion motion of a hingeless
rotor blade may be found in [20] and [21], and the complete equations
of motion for elastic bending and torsion of rotor blades may be found
in [22].

We now proceed to examine the flap-lag motion of a hingeless rotor
blade from a simplified viewpoint.

If it is assumed that the rotor blade is untwisted, has zero pitch, and
is torsionally rigid; the natural frequencies of the rotating blade can be
expressed in terms of its mode shapes, φ, and derivatives with respect
to radial distance φ′ and φ′′ as [23-25]

ω2
β =

∫ R
0 EIβ(φ

′′
β)2dr + Ω2

∫ R
0

(
φ

′
β

)2
(
∫ R
r mndn)dr∫ R

0 mφ2
βdr

(7.1.28)

ω2
ζ =

∫ R
0 EIζ(φ

′′
ζ)2dr + Ω2

{∫ R
0

(
φ

′
ζ

)2
(
∫ R
r mndn)dr − ∫ R

0 mφ2
ζdr

}
∫ R
0 mφ2

ζ dr

m is the running mass of the blade and EI is the stiffness these expres-
sions gives the nonrotating natural frequency and the second term gives
the effect of centrifugal stiffening due to rotation. The coefficient of the
square of the angular velocity Ω in the expression for flapping frequency
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is usually referred to as the Southwell coefficient. Note that the effect of
the centrifugal stiffening is considerably weaker in the lag direction than
in the flap direction as would be expected from the previous discussion
of the articulated rotor.

The Southwell coefficient is denoted by Ks

Ks =

∫ R
0 (φ

′
β)2

(∫ R
r mndn

)
dr∫ R

0 mφ2
βdr

(7.1.29)

and the nonrotating frequencies are denoted by

ω2
β0

=

∫ R
0 EIβ(φ

′′
β)2dr∫ R

0 mφ2
βdr

ω2
ζ =

∫ R
0 EIζ(φ

′′
ζ)2dr∫ R

0 mφ2
ζdr

(7.1.30)

If the flap and lag mode shapes are assumed to be the same, the rotating
frequencies can be written as

ω2
β = ω2

β0
+ KsΩ2

ω2
ζ = ω2

ζ0 + (Ks − 1)Ω2
(7.1.31)

It is interesting to note that, if the mode shape is assumed to be that of
a rigid articulated blade with hinge offset, ē, i.e.,

φ = 0 0 < x < ē

φ = (x − ē) ē < x < 1
(7.1.32)

for a uniform mass distribution and small ē, then from (7.1.29)

Ks ≡ 1 +
3
2
ē (7.1.33)

Thus the natural frequencies are from (7.1.30), (7.1.31) and (7.1.33)

ω2
β = Ω2

(
1 +

3
2
ē

)

ω2
ζ = Ω2

(
3
2
ē

)
(7.1.34)

reducing to the results for the rigid blade. For typical blade mass and
stiffness distributions the Southwell coefficient is of the order of 1.2 [24].
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Figure 7.6. Spring model for elastic blade and hub.

A simplified model for the elastic rotor blade follows. The elastic
blade is modelled as a rigid blade with hinge offset ē and two orthogonal
springs (Kβ and Kζ) located at the hinge to represent the flap and lag
stiffness characteristics. The natural frequencies for this model of the
blade are

ω2
β =

Kβ

IB
+
(

1 +
3
2
ē

)
Ω2

ω2
ζ =

Kζ

IB
+
(

3
2
ē

)
Ω2

(7.1.35)

The spring constants Kβ and Kζ can be chosen to match the nonrotating
frequencies of the actual elastic blade, and the offset is chosen to match
the Southwell coefficient. In this way the dependence of frequency on
rotor angular velocity is matched. Owing to the fact that the Southwell
coefficient is close to unity (i.e., the equivalent offset, ē is small), in
many investigations the dependence of the Southwell coefficient on ē is
neglected [17] giving

ω2
β =

Kβ

IB
+ Ω2

ω2
ζ =

Kζ

IB

(7.1.36)
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Thus, with this approximation there is no centrifugal stiffening in the
lag direction. We will use this approximation in the analysis which
follows. Recall that these frequencies are assumed to be uncoupled and
therefore are defined with respect to the blade axes. Thus, they will
appear coupled in a shaft oriented axis system. In order to include the
effect of hub flexibility in the analysis, the hub (the portion of the blade
system which does not rotate with pitch) is modelled by a second pair
of orthogonal springs which are oriented parallel and perpendicular to
the shaft and do not rotate when the blade pith is changed [17]. These
spring constants are denoted KβH

and KζH
. The springs representing

blade stiffness, ζB, are also located at the root since offset has been
neglected. However, this pair of springs rotate with the blade as pitch
is changed. Figure 7.6 shows the geometry.

This model for the hub and blade gives rise to elastic coupling be-
tween flap and lag motion. Essentially, a mode shape φ = x is being
employed to describe the elastic deflection of the blade in both direc-
tions such that the aerodynamic and inertial coupling terms developed
for the articulated blade model (equation (7.1.21)) apply directly to this
approximate model of the hingeless blade. The equations of motion for
flap-lag dynamics are therefore

β̈ +
γ

8
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{
γ

8

(
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4
3
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− 2β0

}
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8

(
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8
3
λ

)]
β̇ + z2β + ζ̈ +

γ

8

(
2
δ

a
− 4

3
λθ

)
ζ̇ + q2ζ = 0

(7.1.37)

where the difference between these equations of motion and those pre-
sented for the articulated blade (7.1.21) arise from the terms p, q, and z.
p and q are the ratios of the noncoupled natural frequencies (i.e., those
at zero pitch) to the rotor rpm, and z is the elastic coupling effect. For
the spring model described above these terms can be expressed as [17]
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R is referred to as the elastic coupling parameter. The physical signifi-
cance of this parameter can be understood by examining the relationship
between the rotation of the principal axes of the blade-hub system, η,
and the blade pitch angle, θ, [26]

tan 2η =
R sin 2θ

R cos 2θ + (1 − R)
(7.1.39)

It can be seen from this expression that if R = 0 the principal axes
remain fixed as blade pitch is changed and consequently there is no
elastic coupling. The flap and lag natural frequencies are

p2 = ω̄2
β + 1

q2 = ω̄2
ζ

where ω̄2
β and ω̄2

ζ are the dimensionless nonrotating frequencies. This is
the case in which the hub is flexible and the blade is rigid. At the other
limit R = 1, equation (7.1.39) indicates that the principal axes rotate
in a 1:1 relationship with the blade pitch (η = θ). In this case elastic
coupling is present, and expressions for the natural frequencies (7.1.38)
simply represent the fact that, as the blade is rotated through 90◦ pitch,
the nonrotating frequencies must interchange. In addition to the case
R = 0 where the elastic coupling between flap and lag vanishes, another
interesting case exists in which no elastic coupling is present. This is
the case referred to as matched stiffness, i.e., when the nonrotating fre-
quencies of the blade are equal in both directions (ω̄ζ = ω̄β). Various
advantages accrue from this particular design choice as will be discussed
below.

In principle, the designer has at his disposal the selection of the non-
rotating frequencies of the blade. Consider some of the options in this
regard. For simplicity, only the behavior of the rotor at zero pitch is
examined. One choice is the matter of the hub stiffness relative to the
blade stiffness which has an important impact on the flap-lag behavior
of the rotor through the parameter R as will be discussed below. The
flap frequency is largely chosen on the basis of the designed helicopter
stability and control characteristics [5, 12]. Since the rotor blade is,
in general, a long slender member, the flap frequency will tend to be
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relatively near to the rotor rpm. Typical ratios of flap frequency to
blade angular velocity for hingeless rotor helicopters are of the order
of p = 1.05 − 1.15 [25] although at least one helicopter has flown with
a flap frequency ratio of 1.4 [27]. The second major design decision is
the choice of the lag frequency. Characteristically, the nonrotating lag
frequency will tend to be considerably higher than the flap frequency
owing to the larger dimensions of the blade and hub in the chordwise
direction compared to the flapwise direction. As mentioned above, lag
hinges are provided on articulated rotors to relieve lag stresses arising
from flapping. Owing to the fact that the flap frequency is only slightly
larger than once per revolution on a typical hingeless blade there will
be considerable flap bending of the rotor blades. In fact, the amplitude
of the vertical displacement of the blade tip on a hingeless blade will
be quite similar to the flapping amplitude of the fully articulated rotor.
The relationship between amplitude of tip motion of the hingeless blade
and the flapping amplitude of the articulated blade is given by [28]

|βH| =
|βA|{

1 +
(

8
γ(p2 − 1)

)2
} 1

2

Therefore, the inplane forces due to flap bending will cause the signifi-
cant root stresses on a hingeless rotor. The dependence of these stresses
on the selection of lag frequency can be seen by assuming that the flap
and lag bending are loosely coupled (z = 0). The lag bending amplitude
arising from sinusoidal flap bending at one per rev can be expressed from
the equations (7.1.37), neglecting the lag damping, as

| ζ
β
| =

[
2β0 − γ

8 (θ + 8
3λ)

]
(q2 − 1)

(7.1.40)

The lag bending moment at the blade root, Kζζ, thus varies as q2/(q2−1)
as shown in Figure 7.7. It can be seen that if the lag frequency is se-
lected above one per rev, large root bending stresses occur. The bending
moment is reduced by choosing a lag frequency well below one per rev.
A lag frequency below one per rev incidentally would be characteristic
of a matched stiffness blade. For example, if

p2 = 1.2 = ω̄2
β + 1

and
ω̄2

ζ = ω̄2
β

then
ω̄ζ = 0.45
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Figure 7.7. Dependance of lag bending stress on lag frequency.

Rotor blades are usually characterized by their lag frequency as soft
inplane (ω̄ζ < 1) or stiff inplane (ω̄ζ > 1). Thus, rotor blade lag stresses
an be reduced by choosing a soft inplane blade design and it should be
kept in mind in the discussion that follows that there is a significant
variation in the root bending stress with lag frequency. In the following,
the influence of lag frequency on the dynamics of a hingeless blade is
examined. Also it may be noted at this point that in contrast to the
articulated rotor, in which large mechanical motion in lag allows me-
chanical lag dampers to be effective, this is usually more difficult with
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Figure 7.8. Flap lag stability boundaries. R = 0, no elastic coupling [17].

the hingeless rotor. Nevertheless, hingeless rotor helicopters have been
equipped with lag dampers [10, 29].

Note also that if the lag frequency is selected such that the operating
condition of the rotor is less than one per rev, then resonance in the lag
mode will be encountered as the rotor is run up to operating speed.

Flap-lag stability characteristics as predicted by the equations of mo-
tion given by equations (7.1.37) are now examined. First consider the
case in which the hub is considerably more flexible than the blade (R
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= 0). In Figure 7.8 the stability boundaries given by equations (7.1.37)
are shown as a function of flap and lag frequency and blade pitch an-
gle for a typical rotor blade. This figure was obtained by determining
the conditions under which Routh’s discriminant equals zero. It can be
seen that an approximately elliptical region of instability occurs which
increases in extent as blade pitch is increased. It is centered around
a lag bending frequency o 1.15 and flap frequency of 1.15 indicating
that, in this particular case, flap-lag instability is more likely to be a
problem for stiff inplane rotors. It can be seen that the stiff inplane
blade (1.1 < ω̄ζ < 1.2) is destabilized with increasing pitch. Figure 7.9
shows root location of blade damping versus pitch angle (which relates
to thrust coefficient). Clearly, the instabilities occur at high thrust. A
family of plots can be seen for various values wζ. One can see that the
stiff inplane rotors are more likely to be unstable. Figure 7.10 shows the
effect of various ratios of hub stiffness to blade stiffness (different values
of R)indicating the importance of careful modelling of the blade and hub
in the study of flap-lag stability. This theory has been correlated with
experiment in [30]. At large pitch angles where the blade encounters
stall, wider ranges of instability occur as shown in [30]. This increase in
the region of instability is primarily a result of the loss in flap damping
owing to reduction in blade lift curve slope, a.

Various other configuration details have an impact on the flap-lag sta-
bility such as precone (the inclination of the blade feathering or pitch
change axis with respect to a plane perpendicular to the hub). Precone
is usually employed to relieve the root bending stresses that arise from
the steady flap bending moment due to average blade lift. The blade
may also have droop and sweep [21] (the inclinations of the blade axis
with respect to the pitch change axis in the flap and lag directions re-
spectively) which will also have an impact on the flap-lag stability. The
presence of kinematic pitch-lag coupling will have important effects on
hingeless blade stability which depend strongly on the lag stiffness and
the elastic coupling parameter R [17]. Reference [31] provides a closed-
form damping expression with a physical exploration of the effect of each
parameter.

If torsional flexibility is included, elastic coupling between pitch, lag
and flap will exist. This can be most readily understood by extending
the simple spring model of blade flexibility to include a torsion spring.
Consider a blade hub system as shown in Figure 7.11 with a flap angle
β and a lag angle ζ. Owing to the root spring orientation, there will be
torques exerted about the torsion axis which depend on the respective
stiffnesses in the two directions. Representing the torsional stiffness of
the blade and control system by Kθ, the equation for torsional equilib-
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Figure 7.9. Locus of roots for increasing blade pitch. R = 0, no elastic coupling.
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rium is (neglecting torsional inertia and damping )

Kθθ = (Kβ − Kζ)βζ (7.1.41)

Linearizing about the blade equilibrium position, β0, ζ0,

∆θ =
1

Kθ
[(Kβ − Kζ)β0∆ζ + (Kβ − Kζ)ζ0∆β] (7.1.42)

That is, torsional flexibility results in both pitch-lag coupling

θζ =
(

Kβ − Kζ

Kθ

)
β0 (7.1.43)

and pitch-flap coupling

θβ =
(

Kβ − Kζ

Kθ

)
ζ0 (7.1.44)

These couplings depend both on the relative stiffness of the blade in the
flap and lag directions and on the equilibrium values of the flap deflection
and the lag deflection. A matched stiffness blade (Kβ = Kζ) eliminates
these couplings which is perhaps the primary reason for interest in a
matched stiffness blade. For typical blade frequencies, Kζ is larger than
Kβ and therefore θζ tends to be negative and θβ positive. θβ is equivalent
to what is usually referred to as a δ3 hinge on an articulated blade.
In powered flight ζ0 is negative (7.1.20), and the sign of the effect is
equivalent to negative ζ3 [32]. This pitch change arising from flapping
is statically destabilizing in the sense that an upward flapping produces
an increase in pitch. If this term becomes sufficiently large, flapping
divergence can occur. In autorotation, this coupling would change sign,
as the equilibrium lag angle is positive. The characteristically negative
value of pitch-lag coupling θζ tends to produce a stabilizing effect in
most cases as may be seen from the articulated rotor example. Negative
values of θζ can be destabilizing for a stiff inplane rotor with small values
of R [17]. Precone, that is rotation of the pitch change axis in the flap
direction, has a significant effect on the pitch-lag coupling. The coning
angle β0, in equation (7.1.43) refers only to the elastic deflection of the
blade. Consequently, with perfect precone, that is, when the precone
angle is equal to the equilibrium steady flap angle given by equation
(7.1.20), the elastic deflection is zero and the pitch-lag coupling is zero.
For excessive precone (i.e., if the rotor is operated well below its design
thrust), β0 is negative and a destabilizing pitch-lag coupling occurs. It
should be noted that hub flexibility will also have an important impact
on these kinematic couplings since it will determine the deflection of the
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Figure 7.10. Locus of roots for increasing blade pitch with various levels of elastic
coupling [17].
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Figure 7.11. Simplified blade model for flap-lag-torsion coupling.

pitch change axis. A precise formulation of flap-lag-torsion coupling as
well as further discussion of its influence on blade stability can be found
in [12]. Comparisons of theory and experiment can be found in [33].

In summary, a soft-inplane rotor blade tends to be less susceptible
to isolated blade instabilities while the stiff-inplane blade tends to ex-
hibit instabilities along with a considerably more complex behavior with
changes in parameters. Figure 7.12 contrasts the effect of pitch-lag cou-
pling on these two rotor blade types illustrating the complexity of the
stability boundaries for the stiff inplane case in contrast to the soft in-
plane case which is quite similar to the articulated rotor.

7.2. Stall Flutter
A single degree-of-freedom instability encountered by helicopter

blades which also occurs in gas turbines is referred to as stall flutter.
The reader should consult Chapter 5 for a discussion of stall flutter on a
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Figure 7.12. Flap-lag stability boundaries as a function of pitch-lag coupling and
elastic coupling [17].

Figure 7.13. Angle of attack distribution of helicopter rotor at 140 knots (advance
ratio =0.33) [34].

nonrotating airfoil. Stall flutter is primarily associated with high speed
flight and maneuvering of a helicopter and arises from the fact that
stalling of the rotor blade is encountered at various locations on the
rotor disc. For a rotor blade, stall flutter does not constitute a destruc-
tive instability but rather produces a limit cycle behavior owing to the
varying aerodynamic conditions encountered by the blade as it rotates
in forward flight.
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Consider the aerodynamic conditions existing on a rotor blade in high
speed flight. On the advancing side of the rotor disc, the dynamic pres-
sureexBlade section depends on the sum of the translation velocity of
the helicopter and the rotational velocity, while on the retreating side
of the disc it depends on the difference between these two velocities.
Consequently, if the rolling moment produced by the rotor is equal to
zero, as required for equilibrium flight, the angle-of-attack of the blade is
considerably smaller on the advancing side than on the retreating side.
A typical angle-of-attack distribution at an advance ratio of 0.33 (140
kts) is shown in Figure 7.13. This resulting distribution is produced by
a combination of flapping or flap bending motion and the pilot’s control
input.

Note that on the advancing side the angle-of-attack is small and varies
comparatively slowly with azimuth angle. On the retreating side the
angle-of-attack is large and changes rapidly with azimuth angle. Conse-
quently, prediction of the airload on the blade requires a model for the
aerodynamics of the blade element which includes unsteady effects both
in the potential flow region as well as in the stalled region. The source
of the stall flutter instability is related to the unsteady aerodynamic
characteristics of an airfoil under stalled conditions. Since the stalled
region is only encountered by the blade over a portion of the rotor disc,
however, if an instability of the aerodynamics at stall, it will not give rise
to continuing unstable motion since a short time later the blade element
will be at a low angle-of-attack, well below stall.

Owing to the complexity of the flow field around a stalled airfoil, we
must have recourse to experimental data in order to determine the un-
steady aerodynamic characteristics of an airfoil oscillating a high angle-
of-attack. Experimental data are available in on typical helicopter airfoil
sections [34-36], which make it possible to characterize the aerodynamics
of an airfoil oscillating about stall . In addition a number of investiga-
tions have been conducted which give insight into the nature and com-
plexity of the aerodynamic flow field under stalled conditions [37-39].

For a simplified treatment of stall flutter, it is assumed that the blade
motion can be adequately described by a model involving only the blade
torsional degree-of-freedom. The influence of flapping or heave motion
of the section is neglected such that θ = α. The equation of motion for
this single degree-of-freedom system is therefore

α̈ + ω2
θα =

(
ρ(ΩR)2c2

2Iθ

)
CM(α̇) (7.2.1)

where aerodynamic strip theory analysis is employed. Since the aerody-
namic damping is a complex function of the angular velocity it is conve-
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nient to express equation (7.2.1) as an energy equation by multiplying
by dα and integrating over one cycle to obtain

∆
{

α̇2

2
+ ω2

θ

α2

2

}
=

ρ(ΩR)2c2

2Iθ

∫
CM(α̇)dα (7.2.2)

The left hand side of equation (7.2.2) expresses the change in energy over
one cycle which is produced by the dependence of aerodynamic pitching
moment on angle-of-attack rate as given by the right hand side. Figure
7.14 shows the time history of the pitching moment and normal force
coefficients as a function of angle-of-attack for an airfoil oscillating at a
reduced frequency typical of one per rev motion at three mean angles-
of-attack. The arrows on the figure denote the direction of change of
CN and CM. Note the large hysteresis loop which occurs in the normal
force in the dynamic case when the mean angle-of-attack is near stall.
In the potential flow region the effects are rather small and are predicted
by Theodorsen’s aerodynamic theory (see Chapter 4). Proper represen-
tation of the unsteady lift behavior does have an important bearing on
the prediction of rotor performance, but will not be discussed further.
The pitching moment characteristics are of primary interest here.

The pitching moment is well behaved in the potential flow region,
and well above stall, resulting in small elliptically shaped loops over
one cycle. In the vicinity of lift stall, two interesting effects occur; the
average pitching moment increases markedly in a nose down sense, a
phenomenon that is referred to as moment stall [35], and the moment
time history looks like a figure eight. The change in energy over one
cycle given by equation (7.2.2) is proportional to∫

CM(α̇)dα

The value of this integral is qual to the area enclosed by the loop, and its
sign is given by the direction in which the loop is traversed. If the loop is
traversed in a counter clockwise direction, then this integral will have a
negative value indicating that energy is being removed from the structure
or that there is positive damping. Thus the low and high angle-of-attack
traces indicate positive damping . Near the angle-of-attack at which
moment stall occurs statically however, the figure-eight-like behavior
indicates that there is essentially no net dissipation of energy over a
cycle or possibly that energy is being fed into the structure (the integral
on the right hand side of equation (7.2.2) is positive). This pitching
moment characteristic gives rise to the phenomenon referred to as stall
flutter. To actually encounter stall flutter, this behavior must occur over
some appreciable span of the blade [40]. Reference [40] also discusses
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Figure 7.14. Typical oscillating airfoil data [35].
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Figure 7.15. Typical time history of blade motion for blade encountering stall flutter
[42].

the importance of the rate of change of angle-of-attack with time on the
dynamics of this process and concludes that delay in the development of
dynamic stall depending upon α̇ is responsible for stall occurring over
a significant radius of the blade with consequent effects on the rotor
loads and vibrations Of course, the rotor blade only encounters this
instabilityth range and consequently the complete motion is essentially a
limit cycle. The loss in damping at stall coupled with the marked change
in the average pitching moment gives rise to large torsional motion with
perhaps 2 or 3 cycles of the torsion excited before being damped by
the low angle-of-attack aerodynamics. A typical time history of blade
torsional motion and angle-of-attack when stall flutter is encountered
is shown in Figure 7.15. The dominant effect of the occurrence of stall
flutter on a helicopter is to give rise to a marked increase in the vibratory
loads in the blade pitch control system [40]. Reference [40] discusses
approximate methods for incorporating unsteady stall aerodynamics into
the rotor blade equations of motion. The most significant assumption in
the analysis of rotor blade stall flutter relates to the applicability of two-
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dimensional lating sinusoidally to a highly three-dimensional motions
are nonsinusoidal.

Further understanding of the aerodynamics of stall may make it pos-
sible to design airfoil sections which would minimize the occurrence of
stall flutter and the associated control loads. Blade section design, how-
ever, has many constraints owing to the wide range in aerodynamic
conditions encountered in one revolution and the aerodynamic phenom-
ena described appear to be characteristic of airfoils oscillating about an
angle-of-attack beyond the onset of static stall. In more recent work,
analytic methods have been developed to model dynamic stall [41] and
[42]; and CFD codes have been formulated to predict dynamic stall [43].

7.3. Rotor-Body Coupling
Another important topic is the aeroelastic instability of helicopters as-

sociated with coupling of blade motion and body motion. This problem
is of considerable significance in articulated and hingeless rotor heli-
copter design, and was first encountered on autogiros. This violent in-
stabilitybuted to rotor blade flutter until a theory was developed during
the period 1942 to 1947 showing it to be a new phenomenon. The insta-
bility is called ground resonance and was first analyzed and explained
by Coleman [44] who modelled the essential features of the instabilitytor
helicopters. The name ground “resonance” is somewhat confusing since,
in fact, the dynamic system of the helicopter and blades is unstable. The
instability occurs at a particular rotor angular velocity and therefore it
appears in some sense like a resonance, but it is not. Further, the ground
enters the problem owing to the mechanical support provided the heli-
copter fuselage by the landing gear. The particularly interesting result
obtained by Coleman is that the instability can be predicted neglecting
the rotor aerodynamics; that is, ground resonance is purely a mechan-
ical instability, the energy source being the rotor angular velocity. In
the discussion below, Coleman’s development is followed. Then there is
qualitative discussion of the more complex formulation of this problem
as applied to hingeless rotors. For an articulated rotor, the aerodynam-
ics tend to be unimportant and only the lag degree-of-freedom needs to
be included. For hingeless rotors, the flapping degree-of-freedom is im-
portant as well and aerodynamic forces play a significant role [10]. The
addition of the flapping degrees-of-freedom leads to a similar instability
in flight referred to as air resonance.

Following Coleman’s analysis we consider a simplified model of a heli-
copter resting on the ground. The degrees-of-freedom assumed are: pitch
and roll of the rotor shaft or pylon which arise from the landing gear
oleo strut flexibility and the lag degree-of-freedom of each rotor blade.
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Discussion is restricted to the case in which the rotor has three or more
rotor blades and thus has polar symmetry. The two-bladed rotor is a
somewhat more complex problem and a few remarks on this special case
are made at the end of this section. A four-bladed rotor system is used
as the example since the approach is most easily visualized in this case.
The generalization to three or more blades is described at the end of this
section.

Consider the helicopter shown in Figure 7.16. The system has six
degrees-of-freedom, the lag motion of each of the four rotor blades and
the two pylon deflections. Each rotor blade is modelled as an articu-
lated blade with hinge offset ē. A spring is included at the root since a
centering spring may be employed about the lag hinge.

A coordinate system is chosen which is fixed in space in order to allow
the simplest mathematical treatment of the asymmetric stiffness and in-
ertia characteristics associated with pitch and roll motion of the fuselage
on the landing gear. If a rotating coordinate system is employed, then
the differential equations describing the dynamics would involve peri-
odic coefficients with attendant problems in unravelling the solution.
In fact, it is this difference in the form of the equations of motion in
fixed and rotating coordinate systems which gives rise to difficulties in
analyzing the two-bladed rotor system with asymmetric pylon charac-
teristics. The two-bladed rotor lacks polar symmetry; and, therefore, a
fixed coordinate system approach will give rise to periodic coefficients
from the rotor, while a rotating coordinate system analysis will give rise
to periodic coefficients arising from the asymmetric pylon characteris-
tics. Thus, periodic coefficients cannot be eliminated in the two-bladed
case unless the pylon frequencies are equal. For a rotor with three or
more blades, the use of a fixed coordinate system allows treatment of
asymmetric pylon characteristics without encountering the problem of
solving equations with periodic coefficients.

First we consider the equations of motion describing blade lag dynam-
ics in a fixed coordinate system to illustrate the influence of coordinate
system motion. All of our previous examples have used a coordinate
system rotating with the blade. Simplification of this problem can be
effected by defining new coordinates to describe the rotor lag motion.
These new coordinates are linear combination of the lag motion of the in-
dividual blades. They usually are referred to as multi-blade coordinates
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[45] and are defined for a four-bladed rotor as

γ0 =
ζ1 + ζ2 + ζ3 + ζ4

4

γ1 =
ζ1 − ζ3

2

γ2 =
ζ2 − ζ4

2

γ3 =
(ζ1 + ζ3) − (ζ2 + ζ4)

4

(7.3.1)

The new coordinates, γ1 and γ2, describe the motion of the center of
mass of the rotor system with respect to the axis of rotation and thus
are responsible or coupling of rotor motion to pylon motion, while γ0

and γ3 describe motions of the rotor in which the center of mass of
the rotor system remains on the axis of rotation.If γ2 = γ2 = 0, then
motions corresponding to γ0 and γ3 are such that opposite blades move
as though rigidly attached together with a vertical pin at the root. These
motion variables, γ0 and γ3, will be uncoupled for the dynamic problem
of interest; and, consequently, the system is reduced to four degrees-of-
freedom by introducing these coordinates as will be shown.

Now the equations of motion for γ1 and γ2 are developed in a mov-
ing coordinate system and then transformed to a stationary coordinate
system. With the hub fixed, the lag motion of each blade without aero-
dynamics is, a shown earlier,

ζ̈i + Ω2(ω̄2
ζ)ζi = 0 i = (1, 2, 3, 4) (7.3.2)

The natural frequency, ω̄2
ζ arises from a mechanical spring on the hinge

and the offset or centrifugal stiffening effect and is given by equation
(7.1.35). The equations of motion for γ1 and γ2 are from (7.3.1) and
(7.3.2)

γ̈1 + Ω2(ω̄2
ζ)γ1 = 0

γ̈ + Ω2(ω̄2
ζ)γ2 = 0

(7.3.3)

These equations may be thought of as describing the motion of the cen-
ter of mass of the rotor system in two directions with respect to the
coordinate system rotating at the rotor angular velocity Ω. Resolving
to a fixed coordinate system as shown in Figure 7.17,

γ1 = Γ1 cosΩt + Γ2 sin Ωt

γ2 = −Γ1 sin Ωt + Γ2 cosΩt
(7.3.4)
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Figure 7.16. Mechanical degrees of freedom for ground resonance analysis.
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Figure 7.17. Axis system and coordinates for ground resonance analysis.

Differentiating and substitution (7.3.4) into (7.3.3) we obtain the equa-
tions

[Γ̈1 + 2ΩΓ̇2 + {Ω2(ω̄2
ζ − 1)}Γ1] cosΩt

+ [Γ̈2 − 2ΩΓ̇1 + {Ω2(ω̄2
ζ − 1)}Γ2] sin Ωt = 0

[Γ̈1 + 2ΩΓ̇2 + {Ω2(ω̄2
ζ − 1)}Γ1] sin Ωt

− [Γ̈2 − 2ΩΓ̇1 + {Ω2(ω̄2
ζ − 1)}Γ2] cosΩt = 0

(7.3.5)

The second equation appears similar to the first with the coefficients of
the sine and cosine terms reversed. Although the variables have been
transformed to a fixed system, the equations of motion are still referred
to a moving frame which accounts for the presence of the cosine and sine
terms. To complete the transformation, multiply the first equation by



414 A MODERN COURSE IN AEROELASTICITY

cost t and add to the second multiplied by sin t and subtracting from the
second multiplied by cos t yields the second equation. The two equations
of motion are

Γ̈1 + 2ΩΓ̇2 + {Ω2(ω̄2
ζ − 1)}Γ1 = 0

Γ̈2 − 2ΩΓ̇1 + {Ω2(ω̄2
ζ − 1)}Γ2 = 0

(7.3.6)

These are the equations of motion for the new lag coordinates (or CM
motion) in the nonrotating coordinate system. Note that the variables
are coupled due to the effects of rotation. The characteristic equation for
the dynamics of the lag motion is now obtained from equations (7.3.6)
as

{s2 + Ω2(ω̄2
ζ − 1)}2 + 4Ω2s2 = 0 (7.3.7)

The roots of this characteristic equation are

s1,2. = ±iΩ(ω̄ζ + 1)
s3,4. = ±iΩ(ω̄ζ − 1)

(7.3.8)

Thus, the coordinate transformation has resulted in natural frequencies
in the fixed coordinate system which are equal to the natural frequencies
in the rotating system given by equations (7.3.3) (ω̄ζΩ) plus or minus
the rotational speed (the angular velocity of the coordinate system).
This is a basic characteristic of natural frequencies when calculated in
rotating and fixed coordinate systems which must be kept in mind in
analyzing rotating systems. At this point we consider one other respect
of the dynamics of this type of system which is helpful in visualizing the
motion. Consider the eigenvectors describing the amplitude and phase
of the two variables in transient motion. These ratios are obtained from
the equations of motion and the characteristic roots.

|Γ1

Γ2
| =

−2Ωs

s2 + Ω2(ω̄2
ζ − 1)

|s1,2,3,4

Therefore

|Γ1

Γ2
| = ±i|s1,2

|Γ1

Γ2
| = ∓i|s3,4

(7.3.9)

The upper sign corresponds to the upper sign in the roots (7.3.8).
In either of these characteristic motions, Γ1 and Γ2 are of equal am-

plitude and Γ1 either leads or lags Γ2 by 90◦. Thus the transient motion
of the rotor system center of mass is a circular motion. This symmetry
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Figure 7.18. Free body diagram for ground resonance analysis.

which occurs in many rotating systems permits an elegant formulation
using complex coordinates [28, 44]. The two variables Γ1 and Γ2 can be
combined into one single complex variable, as will be discussed below.
Further, since the transient motion is circular, these modes are referred
to as whirling modes and the whirling may be described as advancing or
regressing depending upon whether the mode of motion corresponds to
transient motion in the direction of rotor rotation or against the direc-
tion of rotation. Consider the root

s1 = +iΩ(ω̄ζ + 1)

corresponding to a counter clockwise rotation of the variables Γ1 and Γ2

in Figure 7.17. From the eigenvectors (7.3.9), we see that Γ1 leads Γ2

by 90◦. Thus Γ1 reaches a maximum and then Γ2 reaches a maximum
and so the oscillation proceeds in the direction of rotation and is an
advancing mode. Similarly, s2 = −Ω(ω̄ζ + 1), corresponds to the two
vectors rotating in a clockwise direction, but now Γ1 lags Γ2 and so this
is also an advancing mode. Hence, the mode with frequency (ω̄ζ)Ω is an
advancing mode. Following a similar argument for the mode (ω̄ζ−1)Ω we
find that it is a regressing mode, when ω̄ζ is greater than 1. One must be
careful of this terminology, since in a rotating coordinate system modes
are also described as advancing and regressing modes, but because of the
change in coordinate system angular velocity, modes may be regressing
in the rotating system and advancing in the stationary system. From
a geometric point of view, there are two whirling modes corresponding
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to the four characteristic roots. Use of complex coordinates helps to
visualize the direction of rotation of the modes simply [28].

Thus, the transient motion of the center of mass of the rotor system
may be described in terms of two circular or whirling modes. When
viewed in the fixed frame of reference, one is an advancing whirl (in the
same direction as the rotation of the rotor) and one is a regressing whirl
at low rotor angular velocity (ωζ > Ω) and a slow advancing whirl at
larger angular velocities (ωζ < Ω). Recall that the frequencies as seen
in the rotating frame are simply equal to ±ωζ and one is an advancing
mode while the other is always a regressing mode.

Now the effect of the pylon motion is added. It is assumed that
the pylon is sufficiently long and the angular deflections are sufficiently
small such that the hub motion lies in a horizonal plane. The equations
of motion are developed using a Newtonian approach. First, a single
blade is considered; and then the effects of the other blades ar added.
It is most convenient to derive the equations with the pylon or fuselage
motion referred to a fixed axis system and the lag angle referred to
a moving axis system and then to transform the lag angle to a fixed
coordinate system. This will illustrate the manner in which periodic
coefficients enter the equations. The equations of motion for the blade
ad fuselage system may be written from the free body diagram shown
in Figure 7.18, as

H̄B + Ω̄B × H̄B = P̄CM × R̄

MBāCM = −R̄

˙̄HF = H̄ × R̄
(7.3.10)

where R̄ is the reaction force at the hinge, H̄B is the moment of mo-
mentum of the blade about its center of mass and H̄F is the moment
of momentum of the fuselage about its center of mass which is assumed
fixed in space. Ω̄B is the angular velocity of the blade, P̄CM is the dis-
tance from the hinge to the blade center of mass and H̄ is the height
of the rotor hub above the CM . The acceleration of the blade enter of
mass in terms of the acceleration at the hinge point is

āCM = āE + Ω̄B × (Ω̄B × P̄CM) + Ω̇B × P̄CM (7.3.11)

and the acceleration of the hinge in terms of the acceleration of the hub,
ā0, and the rotational velocity of the hub is

āE = ā0 + Ω̄ × (Ω̄ × ē) + ˙̄Ω × ē (7.3.12)

The angular velocity of the hub is assumed constant. Three sets of unit
vectors are defined. The subscript B refers to the set of unit vectors
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fixed to the blade, the subscript H to the set fixed in the hub and the
subscript F refers to a set fixed in space. The lag angle is assumed to
be small, so that the relationships among these unit vectors for blade
number 1 (Figure 7.17) are⎧⎨

⎩
īF
j̄F

k̄F

⎫⎬
⎭ =

⎡
⎣ cos ψ1 − sin ψ1 0

sin ψ1 cos ψ1 0
0 0 1

⎤
⎦
⎧⎨
⎩

īH
j̄H

k̄H

⎫⎬
⎭ (7.3.13)

⎧⎨
⎩

īH
j̄H

k̄H

⎫⎬
⎭ =

⎡
⎣ 1 −ζ1 0

−ζ1 1 0
0 0 1

⎤
⎦
⎧⎨
⎩

īB
j̄B

k̄B

⎫⎬
⎭ (7.3.14)

The various quantities involved in the equations of motion are

H̄B = ICM(Ω + ζ̇1)k̄B + ICM(θ cos ψ1 + θ̇ sin ψ1)

H̄F = Ixθ̇īF + Iyφ̇j̄F

Ω̄ = Ωk̄H + θ̇iF + φ̇jF

Ω̄B = (Ω + ζ̇1)k̄B + θ̇iF + φ̇jF

H̄ = hk̄F

ē = ēiH

P̄CM = rCM īB

ā0 = ẍH īF + ÿHj̄F = hφ̈īF − hθ̈j̄F

(7.3.15)

Substituting equations (7.3.11)-(7.3.15) into the equations of motion
(7.3.10) for the blade and body motion, noting that R̄ = −MBāCM,
we obtain one blade equation of motion and two body equations of mo-
tion

ζ̈1 +
erCMMB

IB
Ω2ζ1 =

MBrCMh

IB
(θ̈ cos ψ1 + φ̈ sin ψ1)

(Iy + MBh2)φ̈ = MBh[eΩ2 + rCM(Ω + ζ̇1)2] cos ψ

+ MBrCMh(ζ̈1 − Ω2ζ1) sin ψ1

(Ix + MBh2)θ̈ = − MBh[eΩ2 + rCM(Ω + ζ̇1)2] sin ψ1

+ MBrCMh(ζ̈1 − Ω2ζ1) cos ψ1

(7.3.16)

The subscript 1 has been added to note that only one blade has been
considered.

The equations of motion for the other three blades are identical to
blade one with the azimuth angle suitably shifted, i.e., the equation of
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motion of blade 2 in terms of the azimuth angle of blade 1 is

ζ̈2 +
erCMMB

IB
Ω2ζ2 =

MBrCMh

IB

(
θ̈ cos

(
ψ1 +

π

2

)
+ φ̈ sin

(
ψ1 +

π

2

))
(7.3.17)

The equations of motion for the new coordinates, γ0, γ1, etc., are for-
mulated by linear combinations of the blade equations and are

γ̈0 +
erCMMB

IB
Ω2γ0 = 0

γ̈1 +
erCMMB

IB
Ω2γ1 =

MBrCMh

IB
(θ̈ cos ψ1 + φ̈ sin ψ1)

γ̈2 +
erCMMB

IB
Ω2γ2 =

MBrCMh

IB
(−θ̈ sin ψ1 + φ̈ cos ψ1)

γ̈3 +
erCMMB

IB
Ω2γ3 = 0

(7.3.18)

We thus see as discussed earlier that γ0 and γ3 are not coupled to the
hub motion and thus do not need to be considered further. Note that
the equations of motion for γ1 and γ2 have periodic coefficients since
ψ1 = Ωt. The influence of the other three blades must be added to the
fuselage equations. The first equation becomes

(Iy + 4MBh2)φ̈ =

υ∑
i=1

MBh(eΩ2 + rCM(Ω + ζ̇i)2) cos
(

ψ1 +
(i − 1)π

2

)

+ MbrCMh(ζ̈i − Ω2ζi) sin
(

ψ1 +
(i − 1)π

2

) (7.3.19)

and a similar form is obtained for the other fuselage equation. Using
trigonometric identities and the definitions of the multi-blade coordi-
nates (7.3.1) the two fuselage equations become, retaining only linear
terms,

(Iy + 4MBh2)φ̈ =2MBrCMh{(γ̈1 − 2Ωγ̇2 − Ω2γ1) sin ψ1

+ (γ̈2 + 2Ωγ̇1 − Ω2γ2) cos ψ1}
(Iy + 4MBh2)θ̈ =2MBrCMh{(γ̈1 − 2Ωγ̇2 − Ω2γ1) cos ψ1

− (γ̈2 + 2Ωγ1 − Ω2γ2) sin ψ1}

(7.3.20)

Again we see that the coordinates γ0 and γ3 do not appear.
These equations involved periodic coefficients. The periodic coeffi-

cients are a consequence of defining the lag motion in a rotating system
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and the fuselage motion in a fixed system as noted earlier. The peri-
odic coefficients can eliminated by transforming the lag motion to fixed
coordinates as described above. This transformation involves the rela-
tionships given by equations (7.3.4). A centering spring about the lag
hinge is incorporated in the lag equations such that the lag frequency is
given by

ω2
ζ =

Kζ

IB
+

erCMMB

IB
Ω2

This is equivalent to equation (7.1.35) without the assumption of a uni-
form blade mass distribution. Employing equations (7.3.4) the blade
equations (7.3.18) become

Γ̈1 + (ω2
ζ − Ω2)Γ1 + 2ΩΓ̇2 =

MBrCMh

IB
θ̈

−2ΩΓ̇1 + Γ̈2 + (ω2
ζ − Ω2)Γ2 =

MBrCMh

IB
φ̈

(7.3.21)

The fuselage equations, including the effects of the supporting springs
kφ and kθ are

(Iy + 4Mbh
2)φ̈ + kφφ = 2MBrCMhΓ̈2

(Ix + 4Mbh
2)θ̈ + kθθ = 2MBrCMhΓ̈1

(7.3.22)

Equations (7.3.22) can be placed in the form given in [43] by converting
the pylon rotations θ and φ to linear hub translations x and y. From
Figure 7.17, dropping the subscripts F on x and y,

x = hφ, x̄ =
x

R

y = −hθ, ȳ =
y

R

A uniform mass blade is assumed such that

IB = MB
R2

3

Define effective fuselage mass and spring constants by

MFx =
Iy

h2
kx =

kφ

h2

MFy =
Ix

h2
ky =

kθ

h2
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These definitions eliminate the parameter h from equations (7.3.21) and
(7.3.22). Equations (7.3.21) and (7.3.22) become

Γ̈1 + (ω2
ζ − Ω2)Γ1 + 2ΩΓ̇2 = −3

2
ÿ

−2ΩΓ̇1 + Γ̈2 + (ω2
ζ − Ω2)Γ2 =

3
2
ẍ

(MFx + 4MB)ẍ + kxx̄ =MBΓ̈2

(MFy + 4MB)ÿ + kyȳ = − MBΓ̈1

(7.3.23)

Note that the periodic coefficients will not be eliminated if we attempt
to transform the body motion into rotating coordinates except in the
special case where fuselage inertias and springs are identical about both
axes. The procedure followed above for four blades will produce iden-
tical results for three or more blades. A generalized description of this
procedure may be found in [6].

If the rotor has two blades, the only way to eliminate the periodic
coefficients is to convert the pylon motion to rotating coordinates. Only
in the special case of equal inertia and stiffness will the periodic coeffi-
cients be eliminated [43]. In general, if there is polar symmetry in one
frame of reference and a lack of symmetry in the other frame, expressing
the equation of motion in this latter frame will eliminate the necessity
of dealing with periodic coefficients. With a two bladed rotor, the rotor
lacks polar symmetry. If the support system also lacks polar symmetry,
the periodic coefficients cannot be eliminated, and Floquet theory must
be employed to analyze the stability of the system. The simplest case
(equal support stiffness) of the two-bladed rotor is analyzed in the rotat-
ing system and the three or more bladed rotor in the fixed frame. Recall
from the previous discussion that this will give quite a different picture
of the variation of system natural frequencies with rpm. For simplic-
ity, only the multibladed rotor with pylon symmetry is discussed which
may be treated in either reference frame. The pylon characteristics are
assumed to be

MFx = MFy = MF

kx = ky = kF

The important parameter governing the coupling between the blade mo-
tion and the fuselage motion is the ratio of the total blade mass to the
total system mass defined by µ,

µ =
4MB

MF + 4MB
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It is convenient to nondimensionalize the time by the support frequency
with the blade mass concentrated at the hub

ω2
F =

kF

MF + 4MB

since rotor angular velocity is considered to be the variable parameter.
The frequencies nondimensionalized in this fashion are denoted by ω̂ζ

and Ω̂. Introducing these definitions, equations (7.3.23) becomes,

Γ̈1 + (ω̂2
F − Ω̂2)Γ1 + 2Ω̂Γ̇2 +

3
2
ÿ = 0

− 2Ω̂Γ̇1 + Γ̈2(ω̂2
F − Ω̂2)Γ21 − 3

2
ẍ = 0

µ

4
Γ̈1 + ¨̄y + ȳ = 0

µ

4
Γ̈2 + ¯̈x + x̄ = 0

(7.3.24)

The stability of the system defined by equations (7.3.24) is examined
as a function of the various physical parameters of the problem. First,
consider the limiting case in which the blade mass is zero (µ = 0).
This eliminates the coupling between the fuselage motion and the blade
motion. The natural frequencies of the system are composed of the
uncoupled blade dynamics and the fuselage dynamics. The roots of the
characteristic equation are therefore

±i(Ω̂ + ω̂ζ), ±i(Ω̂ − ω̂ζ), ±i, ±i

The latter two pairs correspond to the fuselage motion and the former to
the blade motion. The modes of motion are whirling or circular modes
owing to polar symmetry. Figure 7.19 shows the whirling modes, ie.,
only the four frequencies with signs that correspond to the direction of
whirling, positive being an advancing mode. The frequencies are shown
as a function of rotor angular velocity. In the numerical example shown,
a centering spring (Kζ) is included such that ω̂ = 0.3 when the rotor is
not rotating (Ω̂=0) and the hinge offset ē = 0.05. (Ω̂−ω̂ζ) is a regressing
mode when negative, (Ω̂ + ω̂ζ) is an advancing mode. The fuselage
modes (±i) are advancing and regressing modes respectively. These four
whirling modes constitute the dynamics of the system in the limiting
case of no hub mass. For comparison purposes, if the system is analyzed
in the rotating frame, the result will be equivalent to subtracting the
angular velocity Ω̂ from the frequencies shown in figure 7.19 resulting in
the diagram shown in Figure 7.20. Thus, the appearance of the figure
depends upon the coordinate system. For two bladed rotors, one is
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likely to see a graph similar to Figure 7.20; while, for multibladed rotor
analysis, one usually sees the fixed coordinate plot shown in Figure 7.19.
It may be noted that at two rotor angular velocities (Ω̂ = 0.65 and
Ω̂ = 1.51) the frequency of one of the blade modes is equal to a pylon
mode.It would be expected that the coupling effects due to blade mass
are most significant in these regions.

Now the influence of the mass ratio µ on the dynamics of the system
is examined. It would be most convenient if root locus techniques could
be used. This is not possible directly with equations (7.3.24) since µ
does not appear linearly in the characteristic equation. Through intro-
duction of complex coordinates, root locus techniques can be employed
[28]. Define

z̄ = x̄ + iȳ

δ = Γ2 − iΓ1

This coordinate change reduces the four equations (7.3.24) to two equa-
tions owing to the symmetry properties of these equations, i.e.,

δ̈ − 2iΩ̂δ̇ + (ω̂2
ζ − Ω̂2)δ − 3

2
z̈ = 0 (7.3.25)

−µ

4
δ̈ + z̈ + z̄ = 0

We now have a fourth order system in place of an eighth order system
(Equations (7.3.24)), and the roots of this system are the whirling modes
only, i.e.,

i(Ω̂ + ω̂ζ)

i(Ω̂ − ω̂ζ)

±i

The characteristic equation of this system can now be written as

(s2 + 1)(s2 − 2iΩ̂s + (ω̂2
ζ − Ω̂2)) − 3

8
µs4 = 0

Now µ appears as a linear parameter and the characteristic equation can
be written as

3
8µs4

(s2 + 1)(s2 − 2iΩ̂s + (ω̂2
ζ − Ω̂2))

= 1 (7.3.26)

Equation (7.3.26) is in root locus form with µ as the variable parameter
and a zero degree locus is indicated. The usual root locus rules apply
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Figure 7.19. Uncoupled whirling modes (µ = 0). Fixed coordinate system.

to equations with complex coefficients as well as to those with real co-
efficients. Figure 7.21 shows root loci for increasing µ for two values of
Ω̂ (0.2 and 1.3) and indicates that the influence of µ on the dynamics is
quite different depending upon the sign of (Ω̂ − ω̂ζ). When (Ω̂ − ω̂) is
negative it can be seen from Figure 7.21 that the coupling effect of in-
creasing µ is to separate the system frequencies. However, when (Ω̂−ω̂ζ)
is positive, the two intermediate Frequencies come together; and, if µ is
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Figure 7.20. Uncoupled whirling modes (µ =00). Rotating coordinate system.

sufficiently large, instabilitycritical case occurs at intersection B of Fig-
ure 7.19 (i.e., when the regressing mode frequency (Ω̂−ω̂ζ) = 1 such that
the two intermediate frequencies are equal). At this operating condition,
any value of µ causes instability. Intersection A is not critical because
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Figure 7.21. Root locus for increasing blade mass ratio (µ) for two operating condi-
tions.

of the large separation of the two intermediate frequencies (Ω̂ + ω̂ζ and
Ω̂ − ω̂ζ). In the typical case, for an articulated rotor ω̂ζ is the order of
one; and Ω̂ at the operating condition (Ω̂OP) is the order of three, so
that intersection B occurs below operating rpm. That is

Ω̂CR = 1 + ω̂ζ ≡ 2
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Figure 7.22. Extent of unstable region for various mass ratios.

Thus, to completely eliminate the possibility of this instabilityround
resonance, one must have Ω̂CR > ω̂OP = 3, and a very large offset is
required since ω̂ζ > 2 and therefore, ω̄ζ = 0.67 which corresponds to a
hinge offset of 0.3 (7.1.35) without a centering spring. Note that this
ratio Ω̂OP is largely determined by considerations other than rotor sta-
bility, such as the rotor operating rpm and the shock absorbing character
of the landing gear. Since this large hinge offset is not practical, a cen-
tering spring may be employed to increase ω̄ζ; however this will increase
the root bending moment, the reason the lag hinge was installed.

The unstable region extends below and above this intersection to an
extent depending upon the mass ratio as well as the other geometric
parameters. Various criteria can be found in the literature as to the size
of the unstable region as a function of mass ratio. A typical graph of
the frequencies as well as the extent of the unstable region as a function
of µ is shown in Figure 7.22 taken from [10]. This result applies to the
case where the pylon has only one degree-of-freedom in contrast to the
example here where the pylon has two degrees-of-freedom.

Now we examine the influence of mechanical damping on the stability
of the system. Damping in the rotation (lag damping ) and nonrotating
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(pylon damping ) parts of the system is considered separately. Consider
first the influence of damping on the pylon. This would lead to terms
CF φ̇ and CF θ̇ in equations (7.3.22). Adding this in complex form to the
second of equations (7.3.25) and expressing the characteristic equation
in root locus form

ĈFs[s2 − 2iΩ̂s + (ω̂2
ζ − Ω̂2)]

(s2 + 1)(s2 − 2iΩ̂s + (ω̂2
ζ − Ω̂2)) − 3

8µs4
= −1 (7.3.27)

where
ĈF =

CFωF

kfh2

This root locus has two zeros at the uncoupled lag modes. Figure 7.23
shows the influence of increasing damping for two cases. In the first, µ
is small so that the basic system is neutrally stable. Adding only fixed
axis damping destabilizes the system. In the second case where µ is large
enough such that the basic system is unstable no amount of damping
will stabilize the system.

Now consider adding damping to the lag motion of the blades. It must
be noted that this damping will be in the rotating coordinate system
(about the blade hinge) and so to directly add damping terms to the
equations of motion, the rotating frame equations must be used. The
damping then appears as CRγ̇1 and CRγ̇2. If the transformations are
followed, this will ultimately result (in the rotating frame with complex
notation) in the damping appearing in the first of equations (7.3.25) as

ĈR(δ̇ − iΩ̂δ)

The iΩ̂ term appears because rotating coordinate system damping is
expressed with respect to a fixed frame. Adding this damping to the
first of the two equations and expressing the characteristic equation in
root locus form as

ĈR(s − iΩ̂)(s2 + 1)
(s2 + 1)(s2 − 2iΩ̂s + (ω̂2

ζ − Ω̂2)) − 3
8µs4

= −1 (7.3.28)

the root locus shown in Figure 7.24 is obtained. Again it is interesting
to note that adding damping only in the rotating frame results in desta-
bilizing one of the fuselage modes when the system is initially neutrally
stable (small µ). For large µ the situation is similar to the fixed axis
damping case. These rather surprising effects of damping in a rotating
system indicates that damping must be handled with considerable care.
Owing to the order of the system, it is rather difficult to obtain physical
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insight into the source of these effects. A combination of damping in the
rotating frame (blades) and stationary frame (pylon) is required to sta-
bilize the system; although, as can be seen from the root locus sketches,
there will always be one zero near to the fuselage blade lag mode making
it difficult to provide a large amount of damping in one of the modes.
There would, of course, generally be damping in the pylon frequencies.
Particularly on articulated rotors, blade lag dampers are added since, as
noted, this region of instability must be traversed in increasing the rotor
speed to operating rpm. Reference [44] presents boundaries showing the
damping required to eliminate the instability region for articulated rotor
helicopters.

The treatment of more general problems, including the blade flapping
degrees of freedom and discussion of its importance in the hingeless rotor
case, may be found in [8], [9], and [10]. The two-bladed rotor is treated
in [44].

Flapping motion of articulated rotors with small hinge offset does not
produce appreciable hub moments; and, consequently, there is only weak
coupling between he flapping motion and the pylon motion. The hinge-
less rotor, however, produces large hub moments and consequently the
flapping motion coupled into the pylon, lag dynamics [10]. Figure 7.25
shows the influence of the flapping frequency on the stability boundaries
for µ = 0.1.

There are now three frequencies involved in the problem, the pylon
frequency, ωF , the lag frequency, Ω̂− ω̂ζ and the flap frequency p (p - 1
in the stationary frame). In addition to the destructive instability which
occurs when the coupled pylon frequency is equal to the lag frequency
(Ω̂ − ω̂ζ), a mild instability occurs when the coupled flap frequency is
equal to the lag frequency (Ω̂− ω̂ζ) as shown by Figure 7.26. Note that
pylon and flap frequencies are significantly changed by the coupling.
The ground resonance problem for hingeless rotors thus becomes quite
complex and difficult to generalize. The reader is referred to [10] for
further details. It may be noted that a more detailed model of the
rotor blades must be employed for hingeless rotors. Since both flap
and lag degrees-of- freedom are involved, it is important to model the
coupling between these motions, which occurs as a result of hub and
blade geometry. Aerodynamic forces and structural damping are also
significant.

Air resonance refers to the form this dynamic problem takes with
the landing gear restraint absent, that is, with the vehicle in the air.
Coupling of flapping motion, body motion and lag motion is involved.
Fuselage inertia and damping characteristics can have a significant im-
pact on the stability. The air resonance problem is clearly asymmetrical;
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Figure 7.23. Root locus for increasing pylon (fixed axis) damping on ground reso-
nance stability.

and, characteristically, the roll axis is more critical owing to its low in-
ertia and small aerodynamic damping [8]. Furthermore, air resonance
generally involves the unsteady flow field [46].

Since the primary source of damping in this physical system arises
from flap bending, it is possible that the nature of the flight control
system can have an impact on air resonance stability as shown in [47].
Essentially an attitude feedback from the body to cyclic pitch tends
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Figure 7.24. Root locus for increasing lag (rotating axis) damping on ground reso-
nance stability.

to maintain the rotor in a horizontal plane thus effectively removing the
aerodynamic damping from the flapping/body dynamics. There are also
other indications that the flight control system feedbacks have an impact
on rotor system stability [48]; however, this problem does not appear to
be well understood.

Another problem associated with propeller and prop/rotor driven air-
craft which involves a blade motion-support coupling is whirl flutter
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Figure 7.25. Influence of flap frequency on ground resonance stability boundaries
[10].

which has been experienced on conventional aircraft [49] as well as on
V/STOL aircraft [6]. This instability in the case of the conventional air-
craft can be explained by considering only the wing as flexible (i.e., the
propeller blades may be assumed to be rigid). For the tilt prop/rotor
aircraft, where blade flexibility is important, the primary source of the
instability is the same as in the rigid propeller case. It is a result of
the aerodynamics characteristics of propellers and prop rotors at high
inflows typical of cruising flight. It can be shown that the source of
the whirl flutter instability is primarily associated with the fact that an
angle-of-attack change on a propeller produces a yawing moment, and a
sideslip angle produces a pitching moment. Further, the magnitude of
this moment change grows with the square of the tangent of the inflow
angle [6] and results in a rapid onset of the instability.

For the prop/rotor, a complex model with a large number of degrees-
of-freedom is required to predict the dynamics of the system accurately
[6]. The whirl flutter instability can occur on articulated rotors as well
as hingeless rotors although for somewhat different physical reasons [5-].
Here inplane force dependence on angular rate produces unstable damp-
ing moments acting on the support. The hingeless rotor which produces
significant hub moments is similar to the rigid propeller. Young [51] has
shown by a simplified analysis that, under certain circumstances, the
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Figure 7.26. Frequency and damping of rotor-body system. Flap, lag and pylon
pitch degrees of freedom. No aerodynamics [10].

occurrence of this instability suitable selection of the flapping frequency.
Ref. [6] contains an excellent discussion of these various problem areas.

A typical predicted variation of damping with flight speed for a tilt-
prop-rotor aircraft is shown in Figure 7.27. As mentioned earlier, it is
important in modelling this dynamic system to insure that the structural
details of the hub, blade and pitch control system are precisely modelled.
Ref. [52] indicates the impact that relatively small modelling details can
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Figure 7.27. Damping of wing bending modes as a function of airspeed. Tilt
prop/rotor aircraft with gimballed rotor [6].

have on the flutter speed, as well as describing in detail the modelling
requirements for prop-rotor whirl flutter.

Aeroelastic analysis of two-bladed rotors requires special considera-
tions since the two blades are connected together. The reader is referred
to [53] and [54] for the analysis of two-bladed rotors.

7.4. Unsteady Aerodynamics
Thus far in this chapter, we have utilized only the simplest quasi-

steady,blade-element aerodynamics. However, it is well-known that the
unsteady dynamics of the rotor flow field can have a profound effect on
rotorcraft. This effect is routinely included in rotor vibration and perfor-
mance codes through vortex-lattice waking modelling [55]. However, in
rotor aeroelastic computations, which involve eigenvalue computations,
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the vortex wake is usually frozen in time. When not frozen in time, the
eigenvalue computation can take hours of computing time [56]. There-
fore, more approximate methods have been developed to include the
important effects of wake dynamics in rotorcraft aeroelasticity. Some of
the more useful ones are explained below.

Dynamic inflow
Amer [57] analyzed the problem of rotor damping in roll and correlated
the predicted data with flight test measurements in hover and forward
flight. Amer observes that a discrepancy in damping is “due primarily
to changes in induced velocity which occur during rolling (or pitching)
because of changes in the distribution of thrust around the rotor disk”.
This observation more or less forms the stimulus for most of the subse-
quent dynamic inflow work. It fell to Sissingh [58], however, to explain
this discrepancy by quantifying Amer’s observation with the inclusion of
variable inflow or, more precisely, of changes in induced velocities caused
by transient changes in rotor disk loading. Starting from Glauert’s clas-
sical momentum theory postulate, he gives the formula

k(δλ/λ) = δCT/CT (7.4.1)

where k = 2 in hovering and k = 1 in forward flight with V > 40 mph
(µ � λ). For transitional flight conditions when induced flow λ cannot
be neglected in comparison to µ, Sissingh suggests an “appropriate”
value for k(1 < k < 2) on an ad hoc basis.

It is easily seen that equation (7.4.1) follows from the classical results

λ = −
√

CT/2, µ = 0 (7.4.2)

λ = −CT/2µ, µ � λ (7.4.3)

Sissingh was probably the first to initiate a systematic exposition that es-
tablished a relation between instantaneous perturbations (or transients)
in thrust δT , and perturbations in induced flow, δλ. The induced flow λ
is an involved function of both radius, r, and spatial azimuth position,
ψ. To arrive at a tractable model, he uses first harmonic inflow and lift
distributions, without radial variation,

λ = λo + λs sin ψ + λc cos ψ (7.4.4)

Here, λ0 is the uniform inflow, while λs and λc are side-to-side and fore-
to-aft inflow variations. His analysis convincingly shows that the in-
clusion of induced velocity perturbations, as typified in equation (7.4.4),
improves correlation of predicted damping values with those of the flight
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test data of Amer. (Sissingh’s distribution has been used by several other
investigators [59-61].) As seen from this equation, the distribution has
two disadvantages. first, it neglects the effects of radial variation com-
pletely. Second, it exhibits a discontinuity at r = 0. As a means of
improving the inflow distribution to account for radial variation to some
degree and to avoid discontinuity, Peters [62] approximates dynamic in-
flow perturbations in induced flow by a truncated fourier series with a
prescribed radial distribution. The dynamic flow ν is perturbed with
respect to the steady inflow λ such that the total inflow is

−λ = λ̄ + ν (7.4.5)

and dynamic inflow is

ν = νo + νs
r

R
sin ψ + νc

r

R
cos ψ (7.4.6)

Similar to the development of [58], the inflow takes the form⎧⎨
⎩

vo

vs

vc

⎫⎬
⎭ =

1
V

⎡
⎣ 1/2 0 0

0 −2 0
0 0 −2

⎤
⎦
⎧⎨
⎩

δCT

δCL

δCM

⎫⎬
⎭ (7.4.7)

where δCT , δCL, and δCM are perturbations in thrust, roll-moment,
and pitch-moment coefficients and where the mass-flow parameter, V , is
obtained from momentum theory as

V =
µ2 + λ̄(λ̄ + ν̄)√

µ2 + λ̄2
(7.4.8)

where ν̄ is the part of λ̄ due to thrust (the remainder is due to climb)
and 4µ is the ratio of forward speed to tip speed.

The preceding development from equation (7.4.7) implies that per-
turbations in disk loading (δCT , δCL, δCM) create instantaneous per-
turbations in inflow (λ0, λs, λc). In other words, the feedback between
changes in disk loading and inflow takes place without time lag. How-
ever, in transient downwash dynamics, a large mass of air is involved;
and it is natural to expect that mass effects will have an influence on
the complete build up of inflow perturbations due to disk-loading per-
turbations and vice versa. That is, the feedback will have some form
of time delay due to mass effects. This aspect of the problem was in-
vestigated by Carpenter and Fridovich [63] during the early 1950s. The
inclusion of the mass effects forms an integral part of the development
of unsteady inflow models as an extension of the quasi-steady inflow
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treated in the preceding paragraph. Substantial data-correlation experi-
ence with the quasi-steady momentum model clearly demonstrates that
unsteady wake effects (not quasi-steady alone) play a dominant role in
hover, in transitional flight, and at low collective pitch [61, 62]. We will
bypass the mathematical details [64] and include the rate terms, [M ], in
the quasi-steady equation:

1
Ω

[M ]

⎧⎨
⎩

v̇o

v̇s

v̇c

⎫⎬
⎭+ [L]−1

⎡
⎣ vo

vs

vc

⎤
⎦ =

⎧⎨
⎩

δCT

δCL

δCM

⎫⎬
⎭ (7.4.9)

where [L] is the matrix of influence coefficients in equation (7.4.7); or,
symbolically

1
Ω

[M ]{U̇} + [L]−1{U} = {δF} (7.4.10)

When premultiplied by [L], equation (7.4.10) takes the form

[τ ]{U̇} + {U} = [L]{δF} (7.4.11)

where [τ ] = [L][M ]/Ω.
In equation (7.4.11), [r] and [L] have the physical significance of time

constants and gains, respectively. The elements of [τ ] can also be treated
as filter constants. This means, unsteady inflow can be simulated by
passing the quasi-steady inflow through a low-pass filter.

We now turn to the problem of evaluating these rate (or apparent
mass) terms. This problem has been the subject matter of extensive
studies. In [63], apparent mass terms are identified in terms of reaction
forces (or moments) of an impermeable disk which undergos instanta-
neously acceleration (or rotation) in still air. The problem of finding
reactions on an impermeable disk basically leads to the solution of a
potential flow problem in terms of elliptic integrals. The values for the
apparent mass of air mA and apparent inertia of air IA are [64]:

mA =
8
3
ρR3 and IA =

16
45

ρR5 (7.4.12)

In other words, these values represent 64 per cent of the mass and 57
percent of the rotary inertia of a sphere of air or radius R; and we have
a diagonal [M ] matrix with

m11 = mAρπR3 = 8/(3π) (7.4.13)

m22 = m33 = IAρπR5 = 16/(45π) (7.4.14)

which give time constants of 0.4244/V for δCT and 0.2264/V for δCL

or δCM. Given the complexity of the actual apparent mass terms of a
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lifting rotor, it would seem that the methodology adopted to arrive at
the time constants is at best a crude approximation. Surprisingly, tests
of Hohenemser et al. [59], and more recent analytical studies of Pitt and
Peters [64] arrive at time constants or mass terms which are within a
few percent of those given by equation (7.4.12). From the symmetry of
the flow problem in hover, it is clearly seen that M is a diagonal matrix
with m22 = m33. Therefore, we have

[M ] =

⎡
⎣ 8

3π 0 0
0 −16

45π 0
0 0 16

45π

⎤
⎦ (7.4.15)

Equation (7.4.9) with [M ] and [L]−1 from equations (7.4.15) and (7.4.7)
forms the theory of dynamic inflow in hover. Numerous correlations
with experimental data have shown the model accurate and crucial in
rotor aeroelastic modelling. This includes frequency response [59, 62],
control derivatives [62], and air and ground resonance [65]. Figures 7.28
and 7.29, taken from [65], show measured and computed frequencies
of a ground-resonance model versus rotor speed. Figure 7.28 has no
dynamic inflow modelling, and Figure 7.29 includes modelling of the
type of equation (7.4.9). We are particularly interested in the range
300 < Ω < 1000 in which ground resonance can occur. The modes,
labelled on the basis of theoretical eigenvectors are: regressing inplane
(ζR), regressing flapping (βR), roll (φ), pitch (θ). Note that in Figure
7.28, the regressing inplane mode shows good frequency correlation; but
all other modes are significantly off of the correct frequency. In Figure
7.29, a new mode appears (due to the added inflow degrees of freedom).
It is labelled λ and is a mode dominated by inflow motions. The new
results show excellent correlation of all frequencies with the exception
of a roll-pitch coupling for 200 < Ω < 400. The results show that the
regressing flap mode becomes critically damped at Ω = 750, and that
the measured modes are crucially impacted by the dynamic inflow.

One of the interesting aspects of the dynamic inflow theory refers
to the formulation of equivalent Lock number and drag coefficient (γ∗
and C∗

d) [66]. This formulation reveals that there is an intrinsic cor-
relation between downwash dynamics and unsteady airfoil aerodynam-
ics. After all, any three-dimensional automatically includes induced flow
theory as a local approximation to transient downwash dynamics. Fur-
ther,dynamic inflow decreases lift and increases profile drag. Therefore,
we should expect an equivalent γ (or γ∗) that is lower than γ, and an
equivalent Cd (or C∗

d) that is higher than Cd. Thus, the γ∗ - C∗
d concept

leads to one of the simplest methods of crudely accounting for dynamic
inflow in conventional “no-inflow”- programs. One simply must change
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Figure 7.28. Influence of unsteady aerodynamics on hingeless rotor ground reso-
nance. Comparison of measured modal frequencies, and calculations without dynamic
inflow.

γ to γ∗ and Cd to C∗
d. Furthermore, the concept brings out the physics

of dynamic inflow in a simple and visible manner.
In quasi-steady inflow theory, apparent mass effects are neglected.

Therefore, the inflow differential equations reduce to algebraic equations
without increasing the system dimension. If we stipulate the condition
of axial flow (e.g., µ = 0) in the quasi-steady formulation, we may obtain
γ∗ and C∗

d, directly as detailed in [66].

γ∗ = γ/(1 +
aσ

8V
) (7.4.16)

and
(Cd/a)∗ =

Cd

a

(
1 +

aσ

8V

)
+

aσ

8V
(θ̄ − φ)2 (7.4.17)

where (θ̄ − φ) can be approximated by 6CT/aσ.
In forward flight, the model of equation (7.4.9) can be used but with

alterations to the [L] matrix. In [64], a general (L] matrix is defined
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Figure 7.29. Influence of Unsteady aerodynamics on hingeless rotor ground reso-
nance. Comparison of measured modal frequencies, and calculations including dy-
namic inflow.

based on potential flow theory. A new parameter, X, is introduced which
is defined as the tangent of one-half of the wake skew angle. In hover
or axial flight, X = tan(0) = 0 and, in edgewise flight, X = tan(π/4) =
1. Thus, S varies from zero to one as we transition from axial flight to
edgewise flight. The corresponding [L] matrix is

[L] =
1
V

⎡
⎣ 1

2 0 15π
64 X

0 −2(1 + X2) 0
15π
64 X 0 −2(1 − X2)

⎤
⎦ (7.4.18)

In axial flow, X = 0; and this matrix reduces to the momentum-theory
values in equation (7.4.7). In edgewise flow, significant couplings develop
between thrust and the fore-to-aft gradient in flow (and between pitch
moment and uniform flow). Equation (7.4.18) has been proven accurate
by exhaustive correlations with forward-flight data [67].
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Frequency domain
The theory of dynamic inflow treats low-frequency inflow effects in the
range of 0/rev to 2/rev. For high-frequency effects, investigators tra-
ditionally have relied upon frequency-domain aerodynamics such as the
Theodorsen function [68]. However, the wake model for Theodorsen the-
ory (a flat two-dimensional for rotor work. A very useful alternative is
Loewy theory [69]. The model for the Loewy theory is similar to that
for the Theodorsen theory except that the wake is assumed to return in
an infinite number of layers spaced apart by a fixed distance, h semi-
chords. The resultant lift-deficiency function (the Loewy function) takes
the following form

C ′(k) =
1

1 + A(k)
(7.4.19)

A(k) =
Y0(k) + iJ0(k)(1 + 2W )
J1(k)(1 + 2W ) − iY1(k)

(7.4.20)

W = [exp(kh + 2πiω/Q) − 1]−1 (7.4.21)

where k is the rotating-system reduced frequency, Yn and Jn are Bessel
Functions, ω is the frequency per revolution as seen in the non-rotating
system, and Q is the number of blades.

W is called the wake-spacing function. For infinite wake spacing (h →
∞), W → 0; and consequently, equation (??) reduces to Theodorsen
theory. For finite wake spacing, W becomes largest when ω is an integer
multiple of Q, and the resulting C ′(k) is low. Thus, lift is lost when the
shed vorticity of successive layers is aligned. For small k, the near-wake
approximation for A(k) is [71]

A(k) ≈ πk

(
1
2

+ W

)
(7.4.22)

The above theory has a connection to dynamic inflow theory (although
the latter is in the time-domain). In particular, when ω is an integer
multiple of Q and k is small, we can write

A(k) ≈ πk

(
1
kh

)
=

π

h
(7.4.23)

Now, if we note that a = 2π for Loewy theory and that h = 4v/σ, where
σ = 2bQ/πR (where b = semi-chord). Then

A =
σa

8V
, C ′(k) =

1
1 + σa

8V

(7.4.24)

which is the quasi-steady approximation for dynamic inflow, γ∗/γ.
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Thus, C ′(k) tends to oscillate between 1
1+σa/8V and 1 (as ω is varied).

The lowest points are at integer multiple of Q, and the highest points
are at odd multiples of Q/2.

An alternative theory for C ′(k) is given by Miller [70], which neglects
the W in the denominator of A/(k). Both theories have the same near-
wake approximation. In order to apply a lift deficiency function to rotor
problems, one must also account for the effect of C ′(k) on lift and drag.
This can be accomplished through the C∗

D approach.

a∗ = aC ′(k) =
a

1 + A(k)
(7.4.25)

C∗
D = CD +

A(k)
1 + A(k)

(θ̄ − φ)2 (7.4.26)

Despite the elegance and power of lift-deficiency functions, their use in
rotor problems has been limited by several shortcomings. First, the
theories are limited to a two-dimensional approximation in axial flow.
Second, they are in the frequency domain, which is inconvenient for
periodic-coefficient eigen-analysis (although finite-state approximations
can be obtained) [72]. Third, Loewy theory exhibits a singularity as ω
and k approach zero simultaneously. Due to these drawbacks, investiga-
tors often use dynamic inflow for the low-frequency effects (since it is a
three-dimensional neglect wake effects in other frequency ranges.

Finite-state wake modelling
More recently, a complete three-dimensional wake model has been de-
veloped that includes dynamic inflow and the Loewy function implicitly
[73]. In this theory, the induced flow on the rotor disk is expressed as an
expansion in a Fourier series (azimuthally) and in special polynomials
(radially) in powers of r̄ = r/R.

ν(r̄, ψ, t) =
∞∑

m=0 n=m+1

∞∑
m+3

φ̂n(r̄)[αm
n cos mψ + βm

n sin mψ] (7.4.27)

where

φ̂m
n (r̄) =

1
2

√
π(2n + 1)

n−1∑
q=m,m+2,...

r̄q (−1)(q−m)/2(n + q)!
(q − m)!!(q + m)!!(n − q − 1)!!

(7.4.28)
and αm

n and βm
n are the expansion coefficients. Thus, α0

1, α1
2, and β1

2

take on the role of νo, νc and νs in dynamic inflow; and the higher-order
terms allow a more detailed inflow model to any order desired. When
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the above expansion is combined with an acceleration-potential for the
three-dimensional flow field, differential equations are formed that are
similar in character to dynamic inflow.

1
Ω
{α̇m

n } + [Lc]−1{αm
n } = {τmc

n } (7.4.29)

1
Ω
{β̇m

n } + [Ls]−1{βn
m} = {τms

n } (7.4.30)

The [L] matrices are influence coefficients that depend on X (tangent of
one-half of the wake skew angle). They are partitioned by the harmonic
numbers m, r (m = inflow harmonic, r = pressurewithin each mr parti-
tion) there is a row-column pair (j, n) for the inflow and pressure shape
function, respectively.

[Lom
jn ]c =

1
V

XmΓ0m
jn

[Lrm
jm]c =

1
V

[X |m−r| + (−1)�X |m+1|]Γrm
jn

[Lrm
jn ]c =

1
V

[X |m−r| − (−1)�X |m+r|]Γrm
jn

(7.4.31)

where � = min(r,m) and

Γrm
jn =

(−1)n+j−2r
2 4

√
(2n + 1)(2j + 1)

π(j + n)(j + n + 2)[(j − n)2 − 1]
for r + m even

Γrm
jn =

sgn(r − m)√
(2n + 1)(2j + 1)

for r + m odd, j = n ± 1

Γrm
jn = 0 for r + m odd, j �= n ± 1

(7.4.32)

The right hand sides of equations 7.4.29-30 are generalized forces ob-
tained from the integral over each blade of the circulatory lift per unit
length (and then summed over all the blades, the q-th blade being at
ψq).

τoc
n =

1
2π

Q∑
q=1

[∫ 1

0

Lq

ρΩ2R3
φ̂0

n(r̄)dr̄

]

τmc
n =

1
π

Q∑
q=1

[∫ 1

0

Lq

ρΩ2R3
φ̂m

n (r̄)dr̄

]
cos(mψq)

τms
n =

1
π

Q∑
q=1

[∫ 1

0

Lq

ρΩ2R3
φ̂m
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Figure 7.30. Experimental induced inflow distribution. Tapered blade, µ = 0.15.

It is interesting to note that τ0c
1 , τ1c

2 , and τ1s
2 are proportional to CT ,

CM, and CL (respectively). Thus, when only these three are present, we
recover dynamic inflow. The higher expansion terms are taken to the
same order as we take velocity expansions.

The Lq terms (lift per unit length of q-th blade ) can be inserted in
equation (7.4.33) from any lifting theory. When they are taken from
blade element theory (and when the radial direction is neglected), one
can prove that the system of equations 7.4.29-30 reduces to the Loewy
theory for X = 0 (axial flow) [73]. It should be pointed out that these
equations are perturbation equations with ν and Lq taken as perturba-
tions with respect to a steady state. A complete, nonlinear theory is
available [74] but is not presented here.

Figures 7.30 and 7.31 show measured and calculated induced flows
on a rotor at µ = 0.15, from [74]. The calculations are based on the
finite-state model. The major features of the flow-field are captured
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Figure 7.31. Theoretical induced inflow distribution, tapered, blades with fuselage,
µ = 0.15, Cr = 0.0064, α = 3◦, M = 4, S = 33.

by the model. In [33], the new wake model is used to greatly improve
correlation of stability computations with experimental data.

Summary
In recent years, rotor aeroelasticity has relied more heavily on un-

steady aerodynamic modelling to improve predictive capabilities. The
major modelling tools are dynamic inflow, lift-deficiency functions, and
finite-state modelling. The last of these includes the other two as special
cases.
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Chapter 8

AEROELASTICITY IN TURBOMACHINES

The advent of the jet engine and the high performance axial-flow
compressor toward the end of World War II focussed attention on certain
aeroelastic problems in turbomachines.

The concern for very light weight in the aircraft propulsion applica-
tion, and the desire to achieve the highest possible isentropic efficiency
by minimizing parasitic losses led inevitably to axial-flow compressors
with cantilever airfoils of high respect ratio. Very early in their develop-
ment history these machines were found to experience severe vibration
of the rotor blades at part speed operation; diagnosis revealed that these
were in fact stall flutter (see Chapter 5) oscillations. The seriousness of
the problem was underlined by the fact that the engine operating regime
was more precisely termed the ‘part corrected speed’ condition, and that
in addition to passing through this regime at ground start up, the regime
could be reentered during high flight speed conditions at low altitude. In
either flight condition destructive behavior of the turbojet engine could
not be tolerated.

In retrospect it is probable that flutter had occurred previously in
some axial flow compressors of more robust construction and in the later
stages of low pressure axial-flow stream turbines as well. Subsequently
a variety of significant forced and self-excited vibration phenomena have
been detected and studied in axial-flow turbomachinery blades.

In 1987 and 1988 two volumes of the AGARD Manual on Aeroelastic-
ity in Turbomachines [1, 2] were published with 22 chapters in all. The
sometimes disparate topics contributed by nineteen different authors
and/or co-authors form a detailed and extensive reference base related
to the subject material of the present Chapter 8. The reader is urged to
refer to the AGARD compendium for in-depth development and discus-

453
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sion of many of the topics to be introduced here, and for related topics
(such as the role of experimentation) not included here.

8.1. Aeroelastic Environment in Turbomachines
Consider an airfoil or blade in an axial flow turbine or compressor

which is running at some constant rotational speed. For reasons of
steady aerodynamic and structural performance the blade has certain
geometric properties defined by its length, root and tip fixation, possi-
ble mechanical attachment to other blades and by the chord, camber,
thickness, stagger and profile shape which are functions of the radial
coordinate. Furthermore, the blade may be constructed in such a man-
ner that the line of centroids and the line of shear centers are neither
radial nor straight, but are defined by schedules of axial and tangential
coordinates as functions of radius. In fact, in certain cases, it may not
be possible to define the elastic axis (i.e., the line of shear centers). The
possibility of a built-up sheet metal and spar construction, a laid-up
plastic laminate construction, movable or articulated fixations and/or
supplemental damping devices attached to the blade would complicate
the picture even further.

The blade under consideration, which may now be assumed to be
completely defined from a geometrical and kinematical point of view,
is capable of deforming∗ in an infinite variety of ways depending upon
the loading to which it is subjected. In general, the elastic axis (if such
can be defined) will assume some position given by axial and tangential
coordinates which will be continuous functions of the radius (flapwise
and chordwise bending). About this axis a certain schedule of twisting
deformations may occur (defined, say by the angular displacement of a
straight line between leading and trailing edges). Finally, a schedule of
plate type bending deformations may occur as functions of radius and
the chordwise coordinate. (Radial extensions summoned by centrifugal
forces may further complicate the situation).

Although divergence is not a significant problem in turbomachines,
an alternative static aeroelastic problem, possibly resulting in the mea-
surable untwist and uncamber of the blades, can have important conse-
quences with respect to the steady performance and with respect to the
occurrence of blade stall and surge.

One has now to distinguish between steady and oscillatory phenom-
ena. If the flow through the machine is completely steady in time and
there are no mechanical disturbances affecting the blade through its

∗Deformations are reckoned relative to a steadily rotating coordinate system in the case of a
rotor blade.
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connections to other parts of the machine, the blade will assume some
deformed position as described above (and as compared to its manu-
factured shape) which is also steady in time. This shape or position
will depend on the elastic and structural properties of the blade and
upon the steady aerodynamic and centrifugal loading. (The centrifugal
contribution naturally does not apply to a stator vane.)

Consider the situation, however, where dynamic disturbances may
exist in the airstream, or may be transmitted through mechanical at-
tachments from other parts o the structure. Due to the unsteadiness
of the aerodynamic and/or the external forces the blade will assume a
series of time-dependent positions. If there is a certain repetitive nature
with time of the displacements relative to the equilibrium position, the
blade is said to be executing vibrations, the term being taken to include
those cases where the amplitude of the time-dependent displacements is
either increasing, decreasing or remaining constant as time progresses.

It is the prediction and control of these vibrations with which the
turbomachine aeroelastician is concerned. Once the blade is vibrating
the aerodynamic forces are no longer a function only of the airstream
characteristics and the blade’s angular position and velocity in the dis-
turbance field, but depend in general upon the blade’s vibratory position,
velocity and acceleration as well. There is a strong interaction between
the blade’s time-dependent motion and the time-dependent aerodynamic
forces which it experiences. It is appropriate at this point to note that in
certain cases the disturbances may be exceedingly small, serving only to
‘trigger’ the unsteady motion, and that the vibration may be sustained
or amplified purely by the interdependence or feedback between the har-
monic variation with time of the blade’s position and the harmonic vari-
ation with time of the aerodynamic forces (the flutter condition).

A further complication is that a blade cannot be considered as an iso-
lated structure. There exist aerodynamic and possibly structural cou-
pling between neighboring blades which dictate a modal description of
the entire vibrating bladed-disk assembly. Thus an interblade phase
angle, σ, is defined and found to play a crucial role in turbomachine
aeroelasticity . Nonuniformities among nominally ‘identical’ blades in
a row, or stage, are found to be extremely important in turbomachine
aeroelasticity; stemming from manufacturing and assembly tolerances
every blade row is ‘mistuned’ to a certain extent, i.e., the nominally
identical blades in fact are not identical

8.2. The Compressor Performance Map
The axial flow compressor, and its aeroelastic problems, are typical;

the other major important turbomachine variant being the axial flow
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turbine (gas or steam). In the compressor the angle of attack of each
rotor airfoil at each radius r is compounded of the tangential velocity
of the airfoil section due to rotor rotation and the through flow velocity
as modified in direction by the upstream stator row. Denoting the axial
component by Vx and the angular velocity by Ω as in Figure 8.1, it is
clear that the angle of attack will increase inversely with the ratio φ =
Vx/(rΩ). In the compressor, an increase in angle of attack (or an increase
in ‘loading’) results in more work being done on the fluid and a greater
stagnation pressure increment ∆p0 being imparted to it. Hence the
general aspects of the single ‘stage’ (i.e., pair of fixed and moving blade
rows) characteristics in Figure 8.2 are not without rational explanation.
Note that the massflow through the stage equals the integral over the
flow annulus of the product of Vx and fluid density.

When the various parameters are expressed in dimensionless terms,
and the complete multistage compressor is compounded of a number of
states, the overall compressor ‘map’, or graphical representation of mul-
tistage characteristics, appears as in Figure 8.3, where ṁ is massflow,
γ and R are the ratio of specified heats and gas constant, respectively;
T0 is stagnation temperature and A is a reference flow area in the com-
pressor. Conventionally the constants γ and R are omitted where the
identity of the working fluid is understood (e.g., air). The quantity A is
a scaling parameter relating the absolute massflow of geometrically simi-
lar machines and is also conventionally omitted. The tangential velocity
of the rotor blade tip, Ωrtip, is conventionally replaced by the rotational
speed in rpm. The latter omission and replacement are justified when
discussing a particular compressor.

An important property of the compressor map is the fact that to each
point there corresponds theoretically a unique value for angle of attack
(or incidence) at any reference airfoil section in the compressor. For
example, taking a station near the tip of the first rotor blade as a refer-
ence, contours of incidence may be superposed on the map coordinates.
In Figure 8.4 such angle contours have been shown for a specific ma-
chine. As defined here, ai is the angle between the relative approach
velocity W and the chord of the airfoil. Here again axial velocity Vx

(or massflow) is seen to display an inverse variation with respect to an-
gle of attack as a line of constant rotational speed is traversed. The
basic reason such incidence contours can be established is that the two
parameters which locate a point on the map, ṁ

√
T0/p0 and Ωr/

√
T0,

are effectively a Mach number in the latter case and a unique function
of Mach number in the former case. Thus the ‘Mach number triangles’
are established which yield the same ‘angle of attack’ as the velocity
triangles to which they are similar, Figure 8.5.
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Figure 8.1. Velocity triangle in an axial compressor.

As a matter for later reference, contours of V/(vω) for a particular
stator airfoil, or else W/(bω) for a particular rotor airfoil, can be superim-
posed on the same map, provided the environmental stagnation temper-
ature, T0, is specified. These contours are roughly parallel, though not
exactly, to the constant rotational speed lines. The natural frequency of
vibration, ω, tends to be constant for a rotor blade at a given rotational
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Figure 8.2. Work and pressure ratio relationships.

Figure 8.3. Compressor map.

speed; and of course a stator blade’s frequency does not depend directly
on rotation. However, upon viewing the velocity triangles in Figure 8.5,
it is clear that if Ωr is kept constant and the direction of V is kept
constant, the size of W may increase or decrease as Vx (or massflow) is
changed. In fact, if the angle between V and W is initially close to 90
degrees, a not uncommon situation, the change in the magnitude of W
will be minimal. For computing the stator parameter, V/(bω), the direc-
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Figure 8.4. Map showing incidence as a parameter.

Figure 8.5. Velocity and Mach number correspondence.
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tion of W leaving a rotor is considered to be virtually constant, and the
corresponding changes in V (length and direction) as Vx is varied lead to
similar conclusions with regard to angle of attack and magnitude of V
experienced y the following stator. The values of W/(bω) increase with
increasing value of Ωrtip, since the changes in W (or V ) will dominate
the somewhat smaller changes in the appropriate frequency ω, at least in
the first few stages of the compressor. Compressibility phenomena, when
they become significant will sometimes alter these general conclusions.

8.3. Blade Mode Shapes and Materials of
Construction

Flutter and vibration of turbomachinery blades can and do occur with
a wide variety of these beam -like structures and their degrees of end
restraint. Rotor blades in use vary from cantilever with perfect root
fixity all the way to a single pinned attachment such that the blade
behaves in bending like a pendulum ‘flying out’ and being maintained
in a more or less radial orientation by the centrifugal (rather than a
gravity) field. Stator vanes may be cantilevered from the outer housing
or may be attached at both ends, with degrees of fixity ranging from
‘encastred’ to ‘pinned’.

The natural modes and frequencies of these blades, or blade -disc
systems when the blades are attached to their neighbors in the same
row or the discs are not effectively rigid, are obtainable by standard
methods of structural dynamics. Usually twisting and two directions
of bending are incorporated in a beam -type finite element analysis. If
plate-type deformations are significant, the beam representation must be
replaced by more sophisticated plate or shell elements which recognize
static twist and variable thickness.

In predicting the first several natural modes and frequencies of rotor
blades it is essential to take into account the effect of rotor rotational
speed. Although the description is not analytically precise in all respects,
the effect of rotational speed can be approximately described by stating
ω2

n = ω2
0n + KnΩ2 where ω0n is the static (nonrotating) frequency of

the rotor blade and κn is a proportionality constant for any particular
blade in the nth mode. The effect is most pronounced in the natural
modes which exhibit predominantly bending displacements; the modes
associated with the two gravest frequencies are usually of this type, and
it is here that the effect is most important. The effective κn may be
negative under some circumstances.

Materials of construction are conventionally aluminum alloys, steel
or stainless steel (high nickel and/or chromium content). However, in
recent applications titanium and later beryllium have become significant.
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In all these examples, considering flutter or forced vibration in air as
the surrounding fluid, the fluid/structural mass ratios are such that the
critical mode and frequency may be taken to be one or a combination
of the modes calculated, or measured, in a vacuum.

More recently there has been a reconsideration of using blades and
vanes made of laminated materials such as glass cloth, graphite or metal
oxide fibers laid up in polymeric or metal matrix materials and molded
under pressure to final airfoil contours. Determining the modes and
frequencies of these composite beams is more exacting. However, once
determined, these data may be used in the same manner as with conven-
tional metal blades. It should also be noted that aeroelastic programs
related to turbomachinery often make a great deal of practical use out
of mode and frequency data determined experimentally from prototype
and development hardware.

A major consideration in all material and mode of construction stud-
ies is the determination of mechanical damping characteristics. Briefly
stated the damping may be categorized as material or structural. The
former is taken to describe a volume-distributed property in which the
rate of energy dissipation into heat (and thus removed from the mechan-
ical system) is locally proportional to a small power of the amplitude of
the local cyclical strain. The proportionality constant is determined by
many factors, including the type of material, state of mean or steady
strain, temperature and other minor determinants.

The structural damping will usually be related to interfacial effects,
for example in the blade attachment to the disk or drum, and will depend
on normal pressure across the interface, coefficient of friction between
the surfaces, mode shape of vibration, and modification of these determi-
nants by previous fretting or wear. Detailed knowledge about damping
is usually not known with precision, and damping information is usu-
ally determined and used in ‘lumped’ or averaged fashion. Comparative
calculations may be use to predict such gross damping parameters for a
new configuration, basing the prediction on the known information for
an existing and somewhat similar configuration. By this statement it is
not meant to imply that this is a satisfactory state of affairs. More pre-
cise damping prediction capabilities would be very welcome in modern
aeroelastic studies of turbomachines, and some studies of this nature are
reported in Refs [1] and [2].

The aeroelastic response is central to the analysis of fatigue and frac-
ture of turbomachinery blades. The question of crack initiation, crack
propagation and destructive failure cannot be addressed without due at-
tention being given to the type of excitation (forced or self-excited) and
the parametric dependencies on the nonsteady aerodynamic forces. This
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may be appreciated when it is noted that the modal shape functions, fre-
quencies and structural damping of a blade change with the crack growth
of the specimen. This concatenation of aeroelasticity and blade failure
prediction is presently an active area of research and development.

8.4. Nonsteady Potential Flow in Cascades
Unwrapping an annulus of differential height dr from the blade row

flow passage of an axial turbomachine results in a two-dimensional rep-
resentation of a cascade of airfoils and the flow about them. The airfoils
are identical in shape, equally spaced, mutually congruent and infinite
in number.

When a cascade is considered, as opposed to a single airfoil, the fact
that the flexible blades may be vibrating means that the relative pitch
and stagger may be functions of time and also position in the cascade.
The steady flow, instead of being a uniform stream, will now undergo
turning; large velocity gradients may occur in the vicinity of the blades
and in the passages between them. These complications imply that the
blade thickness and steady lift distribution must be taken into account
for more complete fidelity in formulating the nonsteady aerodynamic
reactions. See chapters by Whitehead and Verdon in Ref. [1].

A fundamental complication which occurs is the necessity for treating
the wakes of shed vorticity from all the blades in the cascade.

Assume the flow is incompressible. Standard methods of analyzing
steady cascade performance provide the steady vorticity distribution
common to all the blades, γs(x), and its dependence on W1 and β1.
As a simple example of cascading effects consider only this steady lift
distribution on each blade in the cascade and compute the disturbance
velocity produced at the reference blade by a vibration of al the blades
in the cascade.

In what follows the imaginary index j for geometry and the imaginary
index i for time variation (i.e., complex exponential) cannot be ‘mixed’.
That is ij �= −1. Furthermore, it is convenient to replace the coordinate
normal to the chord, z, by y and the upwash on the reference airfoil wa

by υ. The velocities induced by an infinite column of vortices of equal
strength, τ , are given by

δ[u(z) − jv(z)] =
jΓ
2π

∞∑
n=−∞

1
Z − ζn

(8.4.1)

where the location ζn of the nth vortex

ζn = ξ + jnse−jβ + jYn(ξn, t) + Xn(t) (8.4.2)
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Figure 8.6. Cascade camberlines modelled by vortex sheets.

indicates small deviations from uniform spacing s, (Yn � s, Xn � c).
The point Z is on the zeroth or reference blade

Z = x + jY (x, t) + X(t) (8.4.3)

and the location of the vortices will ultimately be congruent points on
different blades so that

ξn = ξ + ns sin β (8.4.4)

(The subscript naught, indicating the zeroth blade, is conventionally
omitted.) Finally, harmonic time dependence with time lag −r between
the motions of adjacent blades∗ is indicated by

Yn(ξn, t) = einωr Y (ξ, t) (8.4.5)

With these provisions the Cauchy kernel in (8.4.1) may be written

1
Z − ζn

=
1

x − ξ − jnse−jβ + j[Y (x, t) − Yn(ξn, t)] + X(t) − Xn(t)
(8.4.6)

∗This so-called ‘periodicity assumption’ of unsteady cascade aerodynamics lends order, in
principle and often in practice, to the processes of cascade aeroelasticity. The mode of
every blade is assumed to be identical, with the same amplitude and frequency but with the
indicated blade-to-blade phase shift. Such a blade row, would be termed ‘perfectly tuned’.
Absent this assumption, the cascade representing a rotor of n blades could have n distinct
components (type of mode, modal amplitude, frequency).



464 A MODERN COURSE IN AEROELASTICITY

and summing (8.4.5) over all blades

n=∞∑
n=−∞

1
Z − ζn

=
1

x − ξ + j[Y (x, t) − Y (ξ, t)]
+

∞′∑
n=−∞

1
Z − ζn

(8.4.7)

where the primed summation indicates n = 0 is excluded. The first term
on the RHS of (8.4.7) is a self-induced effect of the zeroth foil. The part
Y (x, t) − Y (ξ, t) is conventionally ignored in the thin-airfoil theory; it
is small compared to x − ξ and vanishes with x − ξ. Hence the first
term supplies the single airfoil or self-induced part of the steady state
solution. Expanding the remaining term yields

′∑ 1
Z − ζn

∼=
′∑ 1

x − ξ − jns e−jβ
+ j

′∑ Yn(ξn, t) − Y (x, t)
(x − ξ − jns e−jβ)2

+
′∑ Xn(t) − X(t)

(x − ξ − jns e−jβ)2
+ · · ·

(8.4.8)

where the last two summations on the RHS of (8.4.8) are the time-
dependent portions. The corresponding unsteady induced velocities from
(8.4.1) may be expressed as follows using the preceding results

δ[ũ(x′)−jṽ(x′)] 
 −γs(ξ′)δξ′

2πc
P2
{ ′∑ einωτY (ξ′, t) − Y (x′, t)

(χ − jnπ)2

+
1
j

′∑ einωτX(t) − X(t)
(χ − jnπ)2

} (8.4.9)

where the primed variables are dimensionless w.r.t. the chord,

P = πejβc/s (8.4.10a)

χ = P (x′ − ξ′) (8.4.10b)

and ũ, υ̃ are the time dependent parts of u, υ. The local chordwise
distribute vortex strength γs(ξ)dξ has replaced τ the discrete vortex
strength in the last step, (8.4.9). With the notation

q = 1 − ωτ/π (8.4.11)

the summations may be established in closed form. For example, when
the blades move perpendicular to their chordlines with the same ampli-
tude all along the chord (pure bending) the displacement function is a
constant

Y = −h̄eiωt = −h (8.4.12)
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and, upon integrating over the chord in (8.4.9), one obtains

ũ(x′) − jṽ(x′) =
P2

2πc

∫ 1

0
γs(ξ′)

′∑ einωτh(t) − h(t)
(χ − jnπ)2

dξ′

or

ũ = − h

2πc

∫ 1

0
γs(ξ′)[F − iI]dξ′ (8.4.13a)

ṽ = − h

2πc

∫ 1

0
γs(ξ′)[G + iH]dξ′ (8.4.13b)

where

F + iG = P2 q sinh χ sinh qχ − cosh χ cosh qχ + 1
sin h2χ

(8.4.13c)

H + iI = P2 q sinh χ cosh qχ − cosh χ sinh qχ

sin h2χ
(8.4.13d)

Similar disturbance velocity fields can be derived for torsional motion,
pure chordwise motion, etc. Another separate set of disturbance fields
may be generated to take account of the blade thickness effects by aug-
menting the steady vorticity distribution γ(x) by, say −jε(x), the steady
source distribution, in the above development.

The net input to the computation of oscillatory aerodynamic coeffi-
cients is then obtained by adding the υ̃ of all the effects so described to
the LHS of the integral equation which follows

on y=0,0<x<c︷ ︸︸ ︷
v1(x) + v2(x) + v3(x) =

1
2π

∫ c

0
[γ1(ξ) + γ2(ξ) + γ3(ξ)]K(ξ − x)dξ

+
1
2π

∫ ∞

c
[γ1(ξ) + γ2(ξ) + γ3(ξ)]K(ξ − x)dξ

(8.4.14)

In this formulation υ1 may be identified with the unsteady upwash, if
any, convected as a gust with the mean flow and υ2 is the unsteady up-
wash attributable to vibratory displacement of all the blades in the cas-
cade, where each blade is represented by steady vortex and source/sink
distribution. It is υ2 that was described for one special component (pure
bending) in the derivation of υ̃ leading to (8.4.13b).

The component υ3 may be identified with the unsteady upwash elative
to the zeroth airfoil occasioned by its harmonic vibration.

Since we are dealing here with a linear problem each of the subscripted
sub-problems may be solved separately and independently of the others.
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It is also important to note that since the vortex distributions γ1, γ2

and γ3 representing the lift distributions on the cascade chordlines are
unsteady they must give rise to distributions of free vortices in the wake
of each airfoil of the cascade. In other words vortex wakes emanate from
the trailing edge of each airfoil and are convected downstream: at a
point with fixed coordinates in the wake, the strength of the vortex ele-
ment instantaneously occupying that point will vary with time. Hence,
the integral equation will in general contain a term that is an integral
over the wake (c < ξ < ∞) to account for the additional induced veloc-
ities from the infinite number of semi-infinite vortex wakes. The kernel
1
2πK(ξ − x) accounts in every case for the velocity induced at (x, 0)
by a vortex element at the point (π, 0) on the chord or wake of the
reference, or zeroth, airfoil plus an element of equal strength located at
the congruent point (π + ns sin β, ns cos β) of every other profile of the
cascade or its wake. The form of K may in fact be derived by returning
to the previous derivation for υ̃ in (8.4.9) and (8.4.13b) and extracting
the terms

isolated airfoil︷ ︸︸ ︷
1

ξ − x
+

cascade effect︷ ︸︸ ︷
∞∑

n=−∞

1
ξ − x + jns e−jβ

(8.4.15)

In this expression the signs have been changed to imply calculations of
positive υ (rather than −jυ) and with each term it is now necessary to
associate a strength γr(ξ) exp(inωr) (r = 1, 2 or 3) since the inducing
vortexes now pulsate rather than being steady in time. The kernel now
appears as

1
2π

K(ξ − x) =
1
2π

∞∑
n=−∞

einωτ

ξ − x + jns exp(−jβ)
(8.4.16)

which may be summed in closed form to yield

1
2π

K(ξ − x) =
ejβ

2s

· cosh[(1 − σ/π)π exp(jβ)(ξ − x)/s] + ij sinh[(1 − σ/π)π exp(jβ)(ξ − x)/s]
sinh[π exp(jβ)(ξ − x)/s]

(8.4.17)

where σ = ωτ is known as the interblade phase angle, an assumed con-
stant.

The term for n = 0 in the summation (8.4.16) is

1
2π

K0(ξ − x) =
1
2π

1
ξ − x

(8.4.18)
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which is the kernel for the isolated airfoil. Hence, the added complexity
of solving the cascaded airfoil problem is attributed to the additional
terms giving the more complicated kernel displayed in (8.4.17).

In contradistinction to the isolated airfoil case, solutions of the un-
steady aerodynamics integral equation cannot be solved in closed form,
or in terms of tabulated functions, for arbitrary geometry (β and s/c)
and arbitrary interblade phase angle, σ. In fact, as noted previously, the
thickness distribution of the profiles and the steady lift distribution be-
come important when cascades of small space/chord ratio are considered
to vibrate with nonzero interblade phasing. Consequently, solutions to
the equation are always obtained numerically. It is found that the new
parameters β, s/c and σ are strong determinants of the unsteady aero-
dynamic reactions. A tabular comparison of the effect of these variables
on the lift due to bending taken from the data in [3] appears below. In
this chart, the central stencil gives the lift coefficient for the reference
values of s/c = 1.0, β = 45◦, σ = 0.4pi. Other values in the matrix give
the coefficient resulting from changing one and only one of the governing
parameters.

The effects of thickness and steady lift cannot be easily displayed,
and are conventionally determined numerically for each application. See
Chapter III in [1].

8.5. Compressible Flow
The linearized problem of unsteady cascade flow in a compressible

fluid may be conveniently formulated in terms of the acceleration poten-
tial, −p/ρ, where p is the perturbation pressure, i.e., the small unsteady
component of fluid pressure. Using the acceleration potential as the
primary dependent variable, a number of compact solutions have been
obtained for the flat plate cascade at zero incidence. The most reliable
in subsonic flow is that due to Smith [4], and in supersonic flow the
solutions of Verdon [5] and Adamczyk [6] are representative.

Supersonic flow relative to the blades of a turbomachine is of practical
importance in steam turbines and near the tips of transonic compressor
blades. In these cases the axial component of the velocity remains sub-
sonic; hence analytic solutions in this flow regime (the so-called subsonic
leading edge locus) are of the most interest. It may be that in future
applications the axial component will be supersonic. In this event the
theory actually becomes simper so that the present concentration on
subsonic values of Maxial represents the most difficult problem. Cur-
rently efforts are underway to account for such complicating effects as
changing back-pressure on the stage, flow turning, shock waves, etc.



468 A MODERN COURSE IN AEROELASTICITY

β s/c σ
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otherwise noted
k=0.5 unless

σ β 

β σ

k

k
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To illustrate the effect of varying the Mach number from incompress-
ible on up to supersonic, a particular unsteady aerodynamic coefficient
has been graphed in Figure 8.7 as a function of the relative Mach number.
It is seen that the variation of the coefficient in the subsonic regime is not
great except in the immediate neighborhood of the so-called ‘resonant’
Mach number, or the Mach number at which ‘aerodynamic resonance’
occurs.

It is possible to generalize the situation with respect to compressibility
by indicating that the small disturbance approximations are retained,
but the velocities, velocity potential, acceleration potential, or pressure
(in every case the disturbance component of these quantities) no longer
satisfy the Laplace equation, but rather an equation of the following
type.

(1 − M2)φxx + φyy =
1
a2

φtt − 2
M

a
φxt = 0 (8.5.1)

Here M is the relative Mach number and a is the sound speed. Note that
the presence of time derivatives make this partial differential equation
hyperbolic whatever the magnitude of M , a situation quite different from
the steady flow equation.

Although the above equation is appropriate to either subsonic or su-
personic flow, the resonance phenomenon occurs in the regime of sub-
sonic axial component of the relative velocity when geometric and flow
conditions satisfy a certain relationship.
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Figure 8.7. The aerodynamic resonance phenomenon.

Equating the time of propagation of a disturbance along the cascade
to the time for an integral number of oscillations to take place plus the
time lag associated with the interblade phase angle, σ, yields

s

V +
p

=
2πv

ω
− σ

ω
(8.5.2a)

s

V −
p

=
2πv

ω
+

σ

ω
(8.5.2b)

where V ±
p , the velocity of propagation, has two distinct values associated

with the two directions along the cascade, see Figure 8.8.

V ±
p = a[

√
1 − M2 cos2 β ± M sin β] (8.5.3)

These expressions can be reduced to the equation

ωs

a
= (2vπ ± σ)(

√
1 − M2 cos2 β ∓ M sin β) (8.5.4)

where v may be any positive integer, and with the upper set of signs
may also be zero.

Equation (8.5.4) may be graphed and potential acoustic resonances
discerned by plotting the characteristics of a given stage on the same
sheet for possible coincidence. (It is convenient to take β as the pa-
rameter with axes ωs/a and M .) Acoustic resonances of the variety
described above may be dangerous because they account for the vanish-
ing, or near vanishing, of all nonsteady aerodynamic reactions including
therefore the important aerodynamic damping. Although it is difficult
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Figure 8.8. Resonant values of governing parameters.

to establish with certainty, several cases of large vibratory stresses have
been correlated with the onset of acoustic resonance. It should be recog-
nized that the effects of blade thickness and nonconstant Mach number
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throughout the field are such as to render the foregoing formulation
somewhat approximate.

The foregoing development may also be based more rigorously on the
theoretically derived integral equation relating the harmonically varying
downwash on the blade to the resulting harmonically varying pressure
difference across the blade’s thickness. Symbolically

v̄a(x) =
∫ c

0
K(ξ − x)∆p̄a(ξ)dξ (8.5.5)

and the acoustic resonance manifests itself by a singularity appearing
in the kernel K for special values of k, s, c, τ and β of which K is a
function. Under this circumstance the downwash υa can only remain
finite, as it must physically, by a vanishing of ∆pa as noted above. The
previous development shows why the compressible flow solutions have
received such an impetus from, and are so closely related to, the acoustic
properties of compressor and fan cascades.

Thus the field of aeroacoustics, as exemplified in the text of Gold-
stein [7], and the field of turbomachine aeroelasticity are in a synergistic
relationship. This is discussed more fully in [1].

The acoustic resonance phenomenon, as just described results
from standing waves in blade-fixed coordinates, albeit with impressed
throughflow velocity, of the fluid occupying the interblade passages.

8.6. Periodically Stalled Flow in Turbomachines
Rotating, or propagating, stall are terms which describe a phe-

nomenon of circumferentially asymmetric flow in axial compressors.
Such a flow usually appears at rotationally part-speed conditions and
manifests itself as one or more regions of reduced (or even reversed)
throughflow which rotate about the compressor axis at a speed some-
what less than rotor speed, albeit in the same direction.

A major distinction between propagating stall and surge is that in
the former case the integrated massflow over the entire annulus remains
steady with time whereas in the latter case this is not true. The absolute
propagation rate can be brought to zero or even made slightly negative
by choosing pathological compressor design parameters.

If the instigation of this phenomenon can be attributed to a single
blade row (as it obviously must in a single-stage compressor) then insofar
as this blade row is concerned, it represents a periodic stall ing and
unstall ing of each blade in the row. Later or preceding blade rows (i.e.,
half-stage) may or may not experience individual blade stall periodically,
depending on the magnitude of the flow fluctuation at that stage, as well
as the cascade stall limits in that stage.
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The regions of stall ed flow may extend across the flow annulus (full
span) or may be confined either to the root or tip regions of the blades
(partial-span stall ) The number of such regions which may exist in
the annulus at any one time varies from perhaps 1 to 10 with greater
numbers possible in special types of apparatus.

The periodic loading and unloading of the blades may prove to be
extremely harmful if a resonant condition of vibration obtains. Unfor-
tunately the frequency of excitation cannot be accurately predicted at
the present time so that avoidance of resonance is extremely difficult.

The results of various theories concerning propagating stall are all
moderately successful in predicting the propagational speed. However
the number of stall patches which occur (i.e., the circumferential wave-
length of the disturbance) seems to be analytically unpredictable so that
the frequency of excitation remains uncertain. Furthermore, the identi-
fication of the particular stage which is controlling the propagating stall
, in the sense noted above, is often uncertain or impossible.

This situation with regard to propagating stall has recently been im-
pacted by a CFD approach using the vortex method of description. In
Chapter 5 the vortex method was applied to the analysis of stall flut-
ter. The earlier application, however, was to propagating (or rotating)
stall, i.e. for the flow instability which can occur with completely rigid
blades. The vortex method has been intensively developed for propa-
gating stall prediction and results [9] indicate that success in the long
sought objective of wavelength prediction is at hand. Improvements that
are required for more useful results are in the boundary layer subroutine
executed at each time step for each blade ) and in the enlargement of
computing capacity to handle the number of blades in realistic annular
cascades. A further improvement that is desirable is in the vortex merg-
ing algorithm. The vortex method is a time-marching CFD routine in
which the location of a large number of individual vortices are tracked
on the computational domain. New vortices are created at each time
step to satisfy the boundary conditions and separation criteria. Hence,
to limit the total number of vortices in the field after many time steps,
it is necessary to merge individual vortices, preferably downstream of
the cascade. Many merging criteria may be considered, related to the
strength and position of the candidate vortices.

Although the precise classification of vibratory phenomena of an
aeromechanical nature is often somewhat difficult in turbomachines be-
cause of the complication due to cascading and multistaging, it is never-
theless necessary to make such distinctions as are implied by an attempt
at classification. The manifestation of stall flutter in turbomachines is a
good example of what is meant. When a given blade row, or cascade, ap-
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proaches the install ing incidence in some sense (i.e., stall ing defined by
rapid increase of relative total pressure loss, or defined by rapid increase
in deviation angle, or defined by the appearance of flow separation from
the suction surface of the blades, etc.) it is found experimentally that a
variety of phenomena may exist. Thus the region of reduced throughflow
may partially coalesce into discrete patches which propagate relative to
the cascade giving rise to the type of flow instability previously discussed
under rotating stall. There is no dependence on blade flexibility.

Under certain other overall operating conditions it is found that in
the absence of, or even coexistent with, the previous manifestation, the
blades vibrate somewhat sporadically at or near their individual natu-
ral frequencies. There is no immediately obvious correlation between
the motions of adjacent blades, and the amplitudes of vibrations change
with time in an apparently random manner. (We exclude here all vi-
bration attributable to resonance with the propagating stall frequency,
should the propagation phenomenon also be present.) This behavior is
termed stall flutter or stall ing flutter and the motion is often in the
fundamental bending mode. Another term is random vibration. Since
the phenomenon may be explained on the basis of nonlinear mechanics,
(see the chapter on Stall Flutter) the sporadicity of the vibration can
be attributed provisionally to the fact that the excitation has not been
strong enough to cause ‘entrainment of frequency’, a characteristic of
many nonlinear systems. Hence, each blade vibrates, on the average, as
if the adjacent blades were not also vibrating. However, a careful analy-
sis demonstrates that the instantaneous amplitude of a particular blade
is effected somewhat by the ‘instantaneous phase difference’ between its
motion and the motion of the adjacent blade(s). One must also speak of
‘instantaneous’ frequency since a frequency modulation is also apparent.
As a general statement it must be said that the frequency, amplitude
and phase of adjacent blades are functionally linked in some complicated
aeromechanical manner which results in modulations of all three quali-
ties as functions of time. While the frequency modulation will normally
be small (perhaps less than 1 or 2 percent) the amplitude and the phase
modulations can be quite large. Here the term phase difference has been
used rather loosely to describe the relationship between two motions of
slightly different frequency. Since this aerodynamic coupling would also
depend on the instantaneous amplitude of the adjacent blade(s), it is
not surprising that the vibration gives a certain appearance of random-
ness. On the linear theory for identically tuned blades one would not
expect to find sporadic behavior as described above. However, it is just
precisely the failure to satisfy these two conditions that accounts for the
observed motion; the average blade system consists of an assembly of
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slightly detuned blades (nonidentical frequencies ) and furthermore the
oscillation mechanism is nonlinear.

Application of vortex method aerodynamics to a cascade of elastically
supported blades recently has demonstrated [12], in a computational
sense, the features of randomness and sporadicity as described above.

When the relative magnitudes of the nonsteady aerodynamic forces
increase it may be expected that entrainment of frequency will occur.
In certain nonlinear systems it can be shown that the ‘normalized’ fre-
quency interval (ω−ω0)/ω (where ω is the impressed frequency and ω0 is
the frequency of self-excitation) within which one observes entrainment,
is proportional to h/h0, where h is the amplitude of the impressed motion
and h0 is the amplitude of the self-excited oscillation. In case of entrain-
ment one would expect to find a common phase difference between the
motion of adjacent blades which implies also motion with a common
flutter frequency. This latter phenomenon is also termed stalling flutter,
although the term limit-cycle vibration is sometimes used to empha-
size the constant-amplitude nature of the motion, which is often in the
fundamental torsional mode.

Finally it should be noted that the distinction between blade instabil-
ity (flutter) and flow instability (rotating stall ) is not always perfectly
distinct. When the sporadic stall flutter occurs it is clear that there is
no steady tangentially propagating feature of the instability. Similarly,
when propagating stall occurs with little or no vibration (stiff blades
away from resonance) it is apparent that the instability is not associ-
ated with vibratory motion of the blade. However, the limit cycle type
of behavior can be looked upon (due to the simultaneously observed
constant interblade phase relationship) as the propagation of a distur-
bance along the cascade. Furthermore, the vorticity shed downstream
of the blade row would have every aspect of a propagation stall region.
For instance if the interblade phasing was 180 degrees the apparent stall
region would be on one blade pitch in tangential extent and each would
be separated by one blade pitch of unstall ed throughflow. The tangen-
tial wavelength is two blade pitches. Because of the large number of
such regions, and the small tangential extent of each, this situation is
still properly termed stall flutter since the blades are controlling and the
blade amplitudes are constant. At the other extreme when one or two
stall patches appear in the annulus it is obvious that the flow instability
is controlling and then the phase relationships between adjacent blade’s
motions may appear to be rather sporadic. At any rate, in the middle
ground between these extremes it is probable that a strong interaction
between flow stability and blade stability exists and the two phenomena
cannot be easily separated.
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Another distinction may be attempted to assist in understanding the
operative phenomena. When a single airfoil is subjected to an increasing
angle of attack an instability of the fluid may arise, related to the Kar-
man vortex frequency or the extension of this concept to a distributed
frequency spectrum. If the frequency of this fluid instability coincides
with the natural frequency of the blade in any mode the phenomenon
is termed buffeting. If the dynamic moment coefficient (or force coef-
ficient) attains a negative slope a self-excited vibration known as stall
flutter occurs. The two phenomena may merge when airfoil vibration
exerts some influence on the vortex shedding frequency. Stall -flutter
is usually observed in the torsional mode and buffeting in the bending
mode, but this distinction is not always possible. These concepts cannot
be carried over directly to the cascade where steady bending amplitudes
of the limit cycle variety have been observed. The explanation rests on
the additional degrees of freedom present in the cascaded configuration.

8.7. Stall Flutter in Turbomachines
On account of the foregoing complications and the very recent emer-

gence of quantitative CFD-based theories noted in Chapter 5 it is not
surprising that past prediction for turbomachines has rested almost en-
tirely on correlation of experimental data. The single most important
parameter governing stall ing is the incidence, and the reduced frequency
has been seen in all aeroelastic formulations to exert a profound influ-
ence. Hence it is not surprising that these variables have been used to
correlate the data.

Typically stall flutter will occur at part-speed operation and will be
confined to those rotor stages operating at higher than average inci-
dence. With luck the region of flutter will be above the operating line
on a compressor map and extend up to the surge line. Under less fortu-
nate circumstances the operating line will penetrate the flutter region.
The flutter boundary will have the appearance shown on Figure 8.9.
Contours of constant flutter (or limit cycle oscillation) stress (or tip
amplitude) will run more or less parallel to, and within, the boundary.
Traditional parameters for this typical experimental correlation are re-
duced velocity, W/bω, (the inverse of reduced frequency) and incidence,
at some characteristic radius such as 75 percent or 80 percent of the
blade span for a cantilever blade. The curve is typical of data obtained
in turbomachines or cascades; essentially a new correlation is required
for each major change of any aerodynamic variable (Mach number, stag-
ger, blade contour, etc.). The structural mode shape will usually be first
torsion. The single contour shown in the previous figure is for that level
of cyclic stress (or strain) in the blade material that is arbitrarily taken
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Figure 8.9. Experimental stall flutter correlation.

to represent some distinct and repeatable measurement attributable to
the flutter vibration and discernible above the ‘noise’ in the strain mea-
suring system. A typical number might be a stress of 10,000 kPa used
to define the flutter boundary. However, small changes in relative air-
speed, W , may increase the flutter stress substantially, or, in the case of
‘hard’ flutter, a small increase in incidence might have a similar effect.
Hence, in keeping with the nonlinear behavior described in Chapter 5,
the contours of constant flutter stress may be quite closely spaced in some
regions of the correlation diagram. Naturally, when considering three-
dimensional effects it is the net energy passing from airstream to airfoil
that determines whether flutter will occur, or not. The stall ed tip of a
rotor blade, for example, must extract more energy from the airstream
than is put back into the airstream by airfoil sections at smaller radii
and that is dissipated from the system by damping.

This total description of stall flutter in turbomachine rotor blades is
consistent with the appearance of the stall flutter boundary as it appears
on the following typical compressor performance map (Figure 8.10), the
vibrations are usually confined to the first two or three stages. This
figure may be viewed in conjunction with the performance map on Figure
8.4 which shows typical angles of attack for a rotor blade tip in the first
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Figure 8.10. Stall flutter boundary.

stage of a compressor. Keeping in mind that the mass flow parameter
ṁ
√

T0/p0 is virtually proportional to the throughflow velocity in the
first few stages of a compressor, it is clear that any typical operating
line as shown on the compressor map will traverse the flutter boundary
somewhat as the dotted line on Figure 8.9.

This explains the general shape and location of the region of occur-
rence of stall flutter. Experimental determinations confirm increasing
stresses as the region is penetrated from below and the specific behav-
ior is a function of the aeroelastic properties of the individual machine,
consistent with the broad principles enunciated here.

8.8. Choking Flutter
In the middle stages of a multistage compressor it may be possible to

discern another region on the compressor map wherein so-called choking
flutter will appear. This will normally occur at part-speed operation and
will be confined to those rotor stages operating at lower than average
incidence (probably negative values are encountered). The region of
flutter will normally lie below the usual operating line on a compressor
map, but individual stages may encounter this type of instability without
greatly affecting operating line; this is particularly true when the design
setting angle of a particular row of rotor blades has been arbitrarily
changed from the average of adjacent stages through inadvertence or by
a sequence of aerodynamic redesigns.

The physical manifestation of choking flutter is usually discriminated
by a plot of a stage’s operating line on coordinates of relative Mach
number vs. incidence, as in Figure 8.11. On these same coordinates the
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Figure 8.11. Choking flutter correlation.

choke boundaries are shown; a coincidence or intersection of these graphs
indicate the possible presence of choking flutter and is usually confined
to a very small range of incidence values. The mechanism of choking
flutter is not fully understood. It is related to compressibility phenomena
in the fluid and separation of the flow is probably also involved. The
graph labelled ‘2 × Loss′min is a locus of constant aerothermodynamic
loss coefficient (closely related to the drag coefficient of an airfoil); the
interior of the nose-shaped region representing low values of loss, or
efficient operation of the compressor stage. The curve labelled ‘choke
boundary’ represents the combination of relative Mach number and flow
angle at which the minimum flow area between adjacent blades (the
throat) is passing the flow with the local sonic velocity. Presumably
separation of the flow at the nose of each airfoil on the pressure surface,
and the relative motion between adjacent blades as they vibrate, conspire
to change the effective throat location in a time dependent manner.
These oscillatory changes effect the pressure distribution on each blade
in such a fashion (including a phase angle) as to pump energy from the
airstream into the vibration and thus sustain the presumed motion.

Experimental results [13, 14] bear out the general description of chok-
ing flutter described above. The analytically-based predictions [15, 16]
lend further credence to the mechanism, although the aerodynamic for-



Aeroelasticity in Turbomachines (Sisto) 479

mulation is confined to quasisteady time dependence. Ultimately a sat-
isfactory explanation and prediction technique will be likely attained
with a time marching computational capability using the compressible
Navier-Stokes equations.

Choking flutter occurs in practice with sufficient frequency and de-
structive potential as to be an important area for current research efforts
as noted above.

8.9. Aeroelastic Eigenvalues
Traditionally the analytical prediction of flutter has been conducted

by computation of the aeroelastic eigenvalues for the particular system
under investigation. In turbomachines the eigenvalue determinations
have been conducted in the frequency domain, and the unsteady aero-
dynamics, excluding separated or choked flow, have been based on the
solutions of the small disturbance equations as described in [3-6] and
elsewhere, and as reviewed effectively in the AGARD Manual [1]. A
representative sample analysis for the steady loading effect in an infinite
cascade was introduced in Section 8.4. In the literature a large number
of additional effects are treated, including compressibility, finite flow de-
flection, three-dimensionality, finite shock strength and shock movement,
section thickness and turbine-type geometry.

In every case, however, the initial formulation of the eigenvalue prob-
lem for an N -bladed annular cascade results in a system of mN equa-
tions, where m is the number of degrees of freedom (or else structural
modes) assigned to each blade. Since the disc on which the turbomachine
blades are attached will not be completely rigid, these modeshapes will
be ‘system’ modes in which nodal circles and diameters may be discerned
on the disc proper (and its extension into the flow annulus).

−ω2[Mn]{qn} + [Mnω2
n(1 + ign)]{qn} = πb3ω2[F ]{qn} (8.9.1)

In (8.9.1) the aeroelastic equation has been specialized for one degree
of freedom per blade (m = 1); hence n ranges from 0 to N -1. This
equation, adapted from Crawley’s Chapter 19 in [2], assumes harmonic
time dependence at frequency ω and the nth blade has its individual
mass, Mn, natural frequency, ωn, and the structural damping coefficient,
gn. The development leading to (8.9.1) parallels that for (3.7.32) for a
single foil. (The principal result of considering m > 1 is to replace each
matrix element by a submatrix and enlarge the displacement vector,
{qn}).

When the blades on the disc are structurally uncoupled (rigid disc
and no interconnecting shrouds or lacing wires) the square matrices on
the LHS are diagonal and the equations are coupled only through the
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aerodynamic force matrix

[F ] =

⎡
⎢⎢⎢⎢⎣

F0 FN−1 FN−2 . . . F1

F1 F0 FN−1 . . . F2

· · · ·
· · · ·

FN−1 FN−2 FN−3 . . . F0

⎤
⎥⎥⎥⎥⎦ (8.9.2)

The matrix is completely populated and each element is an aerodynamic
influencecoefficient: the force effect on the row-identified blade due to
the motion of the column-identified blade. These are the terms derivable
from the previously described analytical theories under the assumption
of constant interblade phase angle, σ, and harmonic displacement given
by

qn = Re[q̄n exp(iωt)] (8.9.3)

although Fourier decomposition of the aerodynamic force is necessary to
obtain the form implied by (8.9.1) and (8.9.2).

For a ‘tuned’ stage the mass, natural frequency and damping coeffi-
cient for every blade are the same so that the N equations are identical
([F ] is circulant) and the complex eigenvalues

ω = ωR + iωI (8.9.4)

may be obtained from any one of the individual blade equations. Since
there are N possible tuned values of σ, there are N possible [F ] matrices
and N corresponding eigenvalues. The particular eigenvalue that obtains
in practice will be for those values of airspeed W (embedded in F ) and
gn that just produce ωI = 0. That is, the typical V , g plot is replaced by
a family of contours with σ as the parameter. The critical flutter speed is
then obtained by minimizing W with respect to σ, see [10]. In this sense
the aeroelastic behavior of tuned cascades is a straightforward extension
of the single airfoil procedure, to include an additional parameter, the
interblade phase angle.

One of the most intensive recent efforts in turbomachine aeroelastic
studies has been in the area of ‘mistuned’ blade rows. When the mass
and/or stiffness of all airfoils are not identical, or the coupling through
the discs or shrouds is not uniform, then structural mistuning is present.
Analogous aerodynamic mistuning results from nonuniform blade spac-
ing, setting angle of section profile. Such mistuned stages are inevitably
manufactured, subject in degree to inspection and tolerance acceptance
procedures at assembly. The general effect of mistuning is to reduce the
symmetry and cyclical nature of the matrices in the flutter equation,
(8.9.1). The character of the eigenvalue plots and the eigenfunctions be-
come more varied. Thus, at flutter, all blades are found to vibrate with
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the same frequency; the relative blade amplitudes and phase angles are
constant with respect to time, but not with respect to location in the
blade row. For each of the eigensolutions, however, there may be asso-
ciated a ‘tuned’ interblade phase angle [2]. The most significant effect
of mistuning is to change the value of ωI. If the shift of the least stable
eigenvalue is in the direction of increased stability, the proclivity to flut-
ter is reduced and it is for this reason that mistuning is considered to
be a powerful design tool for improving aeroelastic stability in cascaded
airfoils. Figures 8.12a and 8.12b adapted from [11] show the effect of
mistuning on the position of the eigenvalues (actually iω rather than ω)
for a 14-blade cascade.

It is demonstrated that a necessary but not sufficient condition for
aeroelastic stability is that the blades be self-damped; the effect of a
blade’s motion upon itself must be to contribute positive aerodynamic
damping. The unsteady interactions amongst or between blades in the
cascade are destabilizing for at least one possible σ. This blade-to-blade
destabilizing interference is reduced by mistuning and is hence desirable.
Mistuning, however, can never produce stability when self-damping is
negative. With nonzero structural damping, blades of larger (blade to
air) mass ratio are relatively more stable.

The effect of kinematic coupling (e.g. the presence of some bending
displacements in a predominantly torsional mode) may be quite impor-
tant in determining stability whereas dynamic coupling (e.g. through
the aerodynamic reactions) is usually not strong enough to be of sig-
nificance. The effect of mean loading is speculated as being a possible
source of flutter near stall, and stability trends with reduced velocity are
discussed qualitatively in [2], noting both structural and aerodynamic
implications of the reduced frequency parameter.

Optimal mistuning as an intentional manufacturing procedure at as-
sembly is an important concept, although it must be tempered with the
knowledge that, under forced aerodynamic resonance, so-called ‘rogue’
blades may be identified which will vibrate at dangerously high ampli-
tude. More research on mistuning may be expected to yield increasingly
practical results for the turbomachine aeroelastician to apply benefi-
cially, see [17, 18] and [19].

8.10. Recent Trends
A number of supersonic flutter regimes have been encountered in prac-

tice, see Regions III, IV and V in Figure 8.13. Only Region III flutter, in
either pitching or plunging, will usually be encountered along a normal
operating line, and then only at corrected overspeed conditions. Super-
sonic aerodynamic theories have been developed to explain and confirm
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Figure 8.12a. Aeroelastic eigenvalues of a 14-bladed tuned rotor.

Region III flutter. Low incidence formulations were reported by a num-
ber of investigators, with greatest interest being attached to the onset
flows having a subsonic axial component. The survey papers by Platzer
[21-24] give an excellent summary of the early aerodynamics literature
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Figure 8.12b. Eigenvalues of the same rotor with ‘optimal’ mistuning.

and experience up to 1982 including summaries of relevant papers by
authors in the former Soviet Union.

Regions IV and V in Figure 8.13 are at higher compressor pressure ra-
tio, above the normal equilibrium operating line, and, in Region V, may
involve stall ing at supersonic blade relative Mach number. Unsteady
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Figure 8.13. Axil compressor or fan characteristic map showing principle types of
flutter and region of occurrence.

aerodynamic analyses appropriate to this regime have been presented
[25, 26]. For the first time account was taken of the effect of shock
waves which may appear when the surface Mach number exceeds unity.
Flutter observed in these regions have been mostly flexural, although
not exclusively. In Region V stall ing of the flow has been implicated
since the region is in the neighborhood of the surge or stall limit line.
Hence Region V is provisionally termed ‘supersonic bending stall flut-
ter’ and it is assumed that there is a detached bow shock at each blade
passage entrance; i.e., the passage is unstarted. By contrast, the flutter
mechanism in Region IV is thought to involve an in-passage shock wave
whose oscillatory movement is essential for the instability mechanism.

A counterclockwise continuation around Figure 8.13 returns one to
Region I, divided earlier in Figure 8.10 and which, it now appears, should
be divided into more than one subregion. The so-called system mode
instability seems to be associated with the upper end of this region,
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and although the blade loading is high, flutter may not involve flow
separation as an essential part of the mechanism. Instead it has been
hypothesized [27] that even with a subsonic onset flow the surface Mach
number can exceed unity locally and oscillating shocks may help explain
the appearance of negative aerodynamic damping. It seems that these
instability mechanisms (separation, oscillating shocks) may both appear
in this general region of the fan or compressor map, although not both
at the same time in a particular machine. Thus the non-aerodynamic
factors, which are not revealed by the map parameters and are dis-
cussed in Section 8.1, may determine which, if any, of these flutter types
will manifest itself in any particular instance. The clarification of this
matter is still required so that Region I is now provisionally labelled
Subsonic/Transonic Stall Flutter and System Mode Instability. Region
II, discussed in Section 8.8 and of relatively lesser importance, is associ-
ated with choking of the passage and is labelled Choke Flutter. As such
the role of oscillatory shock waves is again indicated to be important.
Hence for relatively low negative incidence and high enough subsonic
relative Mach numbers, appropriate to a middle stage of a multistage
compressor, the mechanism of choke flutter has many similarities to the
transonic stall flutter of Region I. In addition, some authors [28] add a
second sub-region at a larger negative incidence and lower relative Mach
number, and term it negative incidence stall flutter. The choke flut-
ter mechanism is still controversial; it may involve the type of machine
(fan, compressor or turbine), type of stage (front, middle, or rear) and
structural details (shrouded vs unshrouded, disc vs drum, etc.).

Three-dimensional unsteady cascade flow was first formulated in the
1970s [29, 30]. In order to apply two-dimensional theory to the aeroelas-
tic problems of real blade systems one must either use a representative
section analysis or else apply the strip hypothesis; i.e., the aerodynamics
at one radius is uncoupled from the aerodynamics at any other radius. In
particular, it is known that at ‘aerodynamic resonance’ the strip theory
breaks down and the acoustic modes are strongly coupled radially.

Along with aerodynamic advances the structural description of the
blade d-disc assembly [31, 32], has received a great impetus, and the
importance of forward and backward travelling waves has been firmly
established. Within a particular number of nodal diameters, coupling
between modes has been shown to be significant [33] and the role of the
‘twin modes’ (i.e. sin nφ and cos nφ) in determining propagation has
been clarified. Ford and Foord [34] have used the twin mode concept
in both analysis and flutter measurement. Furthermore, the number
of nodal diameters affects the fundamental natural frequencies slightly
so that they cluster together. Coupling of modes with closely spaced
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frequencies by aerodynamic means therefore becomes appreciable and
the resulting flutter mode may contain significant content from two or
three modes with consecutive numbers of diametral nodes.

A great concentration of studies recently has been in the area of
Computational Fluid Dynamics (CFD) coupled with a Finite Element
Method (FEM) description of the blade and disk structure. Typically
these sets of governing equations are solved interactively in a time march-
ing fashion to yield the developing flutter amplitudes. Stability limits
are not determined directly per se. For nonlinear systems the limit cycle
amplitudes are predicted while for linear systems the temporal growth
of amplitude identifies those values of the operating variables that lie
within the instability boundary.

Usually in these models only spanwise displacements in plunging,
pitching and surging are allowed, leading to beam -type finite elements
for representing a tapered, twisted blade of variable cross-section [35][36].
Consequently, when plate- or shell-type elements are necessitated by air-
foil thicknesses on the order of 4 or 5 percent, the chordwise deformations
cannot be neglected and full three-dimensional FEM packages must be
utilized. Essentially the camber schedule of the blade profiles change
with time in these cases.

The FEM-based structural analysis is also essential for static aeroe-
lastic studies in the nascent field of compliant blade performance mod-
ification. The compliance of the blade in an annular cascade represents
a passive means of controlling the aerothermodynamic performance of
the turbomachine by aeroelastic tailoring. This topic comes under the
overarching subject of aeroservoelasticity, the application of automatic
control theory to fundamental aeroelastic problems. In the blading of
turbomachinery the enhanced compliance, and its chordwise distribu-
tion, are introduced intentionally by design. The resulting configuration
must be checked for freedom from dynamic aeroelastic instability, or
flutter, over the entire operating range of the compressor map such as
that appearing in Figure 8.4. It may be remarked that the concept of
performance “map” will have to be extended to include the parametric
ependence of performance on a representative value of a new dimen-
sionless quantity: the ratio of the dynamic pressure of the fluid to the
Young’s modulus of the structure. In effect the augmentation of com-
pliance introduces variable geometry into the turbomachine blading.

The small compliance, or conversely great rigidity, of conventional
blades is responsible for only slight amounts of untwist and uncambering.
In the design and development of traditional turbomachines these effects,
in turn, have been reflected in very slight corrections to the aerother-
modynamic performance as compared to assuming complete rigidity of
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the airfoils. This situation will be changed with the application of static
aeroservoelasticity to the design of turbomachines with compliant blades.

Applications of unsteady Navier-Stokes codes to cascaded airfoils ap-
pear in references [37][38] and [39]. These early studies using Navier-
Stokes solvers for unsteady flows with moving boundaries are chiefly of
interest for computational prediction. At present the needed confidence
and accuracy are not being obtained because of the inadequacy of the
turbulence model in the CFD code and the extreme requirements on
computer capacity alluded to above.

Subjects receiving attention recently that have not been treated fully
include such topics as finite shock motion, variable shock strength, thick
and highly cambered blades in a compressible flow, and the effects of
curvilinear wakes and vorticity transport. These and other large am-
plitude and therefore nonlinear perturbations, which prevent the linear
super-position implicit in classical modal analysis, have certain impli-
cations relative to the traditional solutions of the aeroelastic eigenvalue
problem. The field of aeroelasticity in turbomachines continues to be
under active investigation, driven by the needs of aircraft powerplant,
gas turbine and steam turbine designers.
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Chapter 9

MODELING OF FLUID-STRUCTURE
INTERACTION

In the course of preparing this chapter, a bibliography of over 500
references was prepared and is available from the authors in electronic
form upon request.

9.1. The Range Of Physical Models
The classical models
The physical models used in treating fluid-structure interaction phe-
nomena vary enormously in their complexity and range of applicability.
The simplest model is the very popular ”piston theory,” which may be
thought of as the limit of potential-flow models as the frequency of an
oscillating body in a fluid becomes large. It also may be thought of as
the double limit as the Mach number becomes large, but the product of
the Mach number and amplitude of oscillation normalized by body chord
remains small compared with unity. This simplest theory expresses the
fluid pressure p on the oscillating body at some point x,y and some time
t as a simple linear function of the motion at that same point and instant
in time. That is,

p = (ρU/M)
[
∂w

∂t
+ U

∂w

∂x

]
, (9.1)

where w is a function of x, y and t and is the instantaneous deflection of
the body in the fluid stream, p, U , and M are the free-stream density,
velocity, and Mach number, respectively. This simple fluid mechanics
model has been very popular with structural engineers because it allows
the fluid pressure to be incorporated into a standard structural dynamic
with a minimum of additional complexity. But this fluid model is physi-
cally useful over only a limited range of flow conditions, and its primary
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value is in checking the results from more complex fluid models in the
appropriate limit. There is a nonlinear version of the piston theory, but
it still is limited in the frequency or Mach number range where it is use-
ful. Lighthill (1953), in a classic paper on the subject, notes the analogy
with the pressure on a piston face with a certain oscillating velocity.

The full-potential theory is a much more formidable model to consider,
however. Even if one assumes the flow is inviscid and irrotational, the full
potential-flow theory requires the solution of a nonlinear wave equation
for the velocity potential whose gradient gives the local fluid velocity
components and from which the fluid pressure may be determined via
Bernoulli’s equation. See, for example, Dowell et al (1995). A well-
known simplification is to assume that the motion of the body is small
and the body profile is thin and thus derive a small-perturbation form of
the potential-flow theory that leads to the celebrated linear convected-
wave equation for the velocity potential Φ; that is,

∇2Φ − D2Φ
Dt2

= 0. (9.2)

where ∇2 is the Laplacian operation and D/Dt is the substantial deriva-
tive, which is, in turn,

D

Dt
≡ ∂

∂t
+ U

∂

∂x
, (9.3)

The solution of the linear convected-wave equation forms the basis for
many of the fluid-structure interaction models that have been used for
fluid-structure interaction stability and response analyses of aircraft.
These are termed “flutter” or “gust response” analyses. See for exam-
ple the texts by Bisplinghoff et al (1955) and Fung (1955). Note that,
in deriving Equation 9.2, the steady flow about which dynamic pertur-
bations are taken is a simple, uniform-constant-velocity flow. While a
great deal of understand of unsteady flows has been gained from the
study of Equation 9.2, for some flows of interest, a more complex steady
flow must be considered, as is discussed below.

Solving the convected-wave equation per se is not the primary dif-
ficulty in determining the pressure on a wing; rather it is the satis-
faction of appropriate boundary conditions. For example, for a thin
wing undergoing bending structural oscillations, it is required that the
(small-perturbation) pressure be zero in the plane of the wing off the
wing surface, but that the fluid velocity normal to the wing surface be
equal to the body or structural velocity on the body surface. Note that,
from symmetry and antisymmetry considerations, one need only con-
sider the fluid in the region above (or below) the plane defined by the
wing (which is treated as a planar body undergoing oscillations normal
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to its surface within the small-perturbation approximation). This gives
rise to a mixed-boundary value problem since the boundary conditions
involve both the unknown velocity potential and its gradient over differ-
ent portions of the fluid boundary or solution domain.

The solution to this mixed-boundary problem can be obtained by in-
voking Green’s theorem or Fourier transforms methods to reduce the
convected-wave equation, a partial differential equation in three spatial
dimensions with suitable boundary conditions, to an integral equation
that relates the downwash created by the body oscillations (the brack-
eted term in Equation 9.1) to the pressure on the wing. In some contexts
this would be called a boundary element approach. Formally,[

∂w

∂t
+ U

∂w

∂x

]
=
∫ t

0

[ ∫ ∫
wing

K(x − x∗, y − y∗, t − t∗) ×

p(x∗, y∗, t∗)dx∗dy∗
]
dt∗ (9.4)

Here K is a Green’s function, also sometimes called a kernel function,
which can be expressed in terms of elementary functions although in a
rather elaborate form. Form the standpoint of the fluid mechanician, to
determine a solution to Equation 9.4 is to find the unknown pressure p
for a prescribed downwash. Of course the structural analyst thinks of
solving a companion structural model to determine the body motion and
hence the downwash for a prescribed pressure. The fluid-structure inter-
action solution requires that we solve the fluid and structural models si-
multaneously for the unknown pressure and body motion. Normally the
solution of Equation 9.4 is the more difficult part of the fluid-structure
interaction analysis, not least because the Green’s function K is a highly
singular function that varies as (y − y∗)−2 approaches y∗. Nevertheless,
successful numerical techniques have been devised to effect solutions to
Equation 13.4. Most such solutions are for the special but important
case of simple harmonic motion in time. Of course, from Fourier theory
one can in principle determine solutions for arbitrary time-dependent
motion by superposition of the solutions for harmonic motion. For a
thorough elaboration of solution techniques for Equation 9.4 for both
subsonic and supersonic flow, see the well-known text by Fung (1955),
Bisplinghoff et al (1955), and Dowell et al (1995). These solutions to-
day remain the most commonly used in the design aircraft and are still
important for turbomachinery applications as well. Even so, it has been
known for many years that the classical small-perturbation theory has
some substantial limitations. For example, when the flow is transonic
with the Mach number near unity, then shock waves may form, and these
must be taken into account for a physically faithful analysis. Also, in
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turbomachinery flows, the turning angles are often so large as to require
a nonlinear modeling of the steady flow at the very least.

The distinction between linear and nonlinear models
There are two distinct approaches here. The simplest, although still
more complex than the classical theory of the linear convected-wave
equation, is to first determine a fully nonlinear solution for the steady
(time-independent) flow about the body when the body is not in motion.
Thus, the steady-flow solution varies with spatial position unlike the
assumed uniform steady flow of the classical theory. For a transonic
flow, the nonlinear static solution may include a shock wave. Then
one considers a small dynamic perturbation about this steady flow or
static solution and assumes that the subsequent shock motion and all
other flow variable vary in a linear fashion with the body motion. This
is usually called a time-linearized or dynamically linear (but statically
linear) model. Such models are discussed in more depth later, in the
section entitled Time-Linearized Models. The governing equation for
the dynamically perturbed flow is still a linear convected-wave equation,
but now the coefficients in the partial differential equation depend on
the steady flow and hence vary with the spatial coordinates throughout
the flow field. For subsonic flow or supersonic flow or supersonic flow
with a Mach Number well removed from unity, this steady flow may be
approximated by a uniform steady flow with a constant flow velocity
U everywhere in the flow field as in the classical theory for airfoils and
wings. Again, for flows in turbomachinery, one may find the classical
approximation less useful.

The solution of the time-linearized equations rather than the full non-
linear equations usually leads to at least an order of magnitude reduction
in computer costs and is often sufficient for describing accurately many
interesting physical phenomena, for example, the onset of instabilities
of the fluid-structure system or even of the fluid alone. The concept
of time linearization may be used not only for potential-flow models,
but also in the context of the more elaborate and general Euler equa-
tions for an inviscid rotational flow or even the Navier-Stokes equations
for a viscous flow. As an example of a time-linearized analysis for the
Navier-Stokes equations, one may recall the much studies hydrodynamic
stability theory; for example, see the well-known text by Lin (1955).

The other approach is of course to attempt to determine a fully dy-
namically nonlinear solution. This approach is discussed in more depth
in the section entitled Nonlinear Dynamical Models and involves the
numerical solution of a nonlinear convected-wave equation for potential
flow and more elaborate equations for the Euler or Navier-Stokes mod-
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els. Once one is committed to determining nonlinear solutions, be they
steady (static) or unsteady, then normally a finite-difference scheme in
the spatial variable will be required that converts the nonlinear partial
differential equation model in space and time to a very large system of
ordinary differential equations (ODEs) in time only. The size of the sys-
tem is often very large indeed, involving 104 to ≥ 106 ODEs. This is the
field of computational fluid dynamics(CFD). See, for example, various
review articles on the CFD approach to unsteady aerodynamics by Ti-
jdeman & Seebass (1980), McCroskey (1982), Seebass et all (1986), and
Nixon (1989) and Edwards et al (1991).

Computational fluid dynamics models
With a CFD approach, one can in principle consider not only the
potential-flow models of irrotational flow, but also the inviscid rota-
tional models of the Euler equations and indeed the viscous models of
the Navier-Stokes equations. As is well known, however, the computa-
tional resources required to treat the Navier-Stokes equations de novo
even today are beyond our capabilities, and therefore various empiri-
cal models of turbulence have been developed so that solutions to the
Navier-Stokes equations can be made computationally tractable. Such
empirical models of turbulence effectively allow one to construct a math-
ematical model that avoids the nonlinear dynamics of the transition from
laminar to turbulent flow. In this review, we discuss only briefly the ba-
sic elements of the CFD approach. However, as will be emphasized, the
important work that has been done over many years by the CFD commu-
nity is now beginning to bear fruit for fluid-structure interaction analysis
with the advent of what is usually called reduced-order modeling.

The computational challenge of fluid structure inter-
action modeling
The fluid-structure interaction analyst has a special challenge. If one
wished to obtain solutions for many difference combinations of struc-
tural and fluid parameters, then the solutions to the CFD and other fluid
models must be made as computationally efficient as possible. Typically
a design team may wish to evaluate thousands of parameter variations as
various structural elements are changed in the design process. For many
years, in the analysis of complex structures, the finite-element model for
a structural body undergoing oscillations has been “reduced” in size by
first finding the natural or eigenmodes of the structure and then recast-
ing the finite-element structural model in terms of these modes, using,
for example, Lagrange’s equations from classical dynamics. Typically
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a finite-element structural model of a few thousand degrees of freedom
has been reduced to a modal model with a few tens of degrees of free-
dom. See, for example, Dowell et al (1995). This reduces not only the
size of the model but also the computational cost by orders of magni-
tude, while providing new insights into the physical phenomena through
a consideration of the structural modal behavior. Such an approach has
only recently been proposed and successfully pursued for fluid models.
However in the last few years it has been shown that such an approach
gives remarkable benefits in terms of computational cost savings and
also in terms of increasing our insight into the dynamics of fluid models
by considering their modal structure. Hence, in this review considerable
attention is given to these new developments. See the section entitled
Reduced-Order Models below. Now, we turn to a more thorough expo-
sition of some of the issues we have touched upon so far.

9.2. Time-Linearized Models
Time-linearized models are a broad and very interesting class of fluid

models that are extremely powerful and useful in dealing with fluid-
structure interaction phenomena. First, a few special cases that are
well known in the literature are considered, and then the general case is
treated. For the reader who prefers deductive to inductive reasoning, the
general case is treated at the end of this section and may be consulted
first. The basic notion is that a steady-flow field is first determined that
is the base flow about which a dynamic, small perturbation is considered.
Only linear terms in the dynamic perturbation are retained, and thus
the governing equations for the dynamic perturbation are linear in the
dynamic or time-dependent unknowns with coefficients that depend on
the (nonlinear) base steady-flow or static-equilibrium solution.

Classical aerodynamic theory
In classical aerodynamics, the base flow is taken to be the simplest imag-
inable, that is, a uniform steady flow. Physically this may be thought
of as the flow around an infinitesimally thin, flat plate aligned with a
uniform oncoming flow velocity. Or to say it another way, any thickness
or profile deviation from a thin flat plate gives rise to a small pertur-
bation to the uniform flow itself so that the effects of finite thickness,
airfoil or wing profile (camber or curvature), and airfoil or wing motion
can be treated separately as linear perturbations to the uniform steady
flow, and therefore their effects may simply be added together or super-
imposed. Hence, the governing equation for a potential flow is Equation
13.2, as previously discussed. Much of the literature on fluid-structure
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interaction uses this model. And it is perhaps the simplest model that
is based on time linearization. However there are others.

Classical hydrodynamic stability theory
One of the most fascinating issues in unsteady fluid mechanics is the
transition from laminar to turbulent flow. Some of the most famous
investigators in the field of fluid mechanics have addressed this issue,
for example, Werner Heisenberg, G.I Taylor, and Theodore Von Kar-
man (see Lin 1955). A central question is under what circumstances
a laminar flow loses its stability and begins the process of transition
to turbulence. Hydrodynamic-stability theory examines the small dy-
namic perturbation of a laminar flow field and determines the condition
for the loss of stability. The theory is a subtle one, and a connected
and authoritative account is provided by Lin (1955) in his celebrated
book. The best known aspect of this theory is that which considers the
stability of a parallel shear flow. In this model the underlying steady
flow is a nonlinear viscous solution to Navier-Stokes equations, but to
simplify the model and subsequent calculations, the steady flow is often
assumed to vary only normal to a flat plate of infinite extent, but not
to vary in the flow direction or in the spanwise direction. Hence, the
steady flow is a function of only one spatial variable in the direction
transverse to the plate and the flow. Therefore, in the dynamic pertur-
bation analysis, the governing equation is a linear one show coefficients
depend only on the transverse spatial variable. This allows a Fourier
decomposition in both time and the spatial direction aligned with the
flow (and in the spanwise direction as well). This leads then to the fa-
mous Orr-Sommerfeld equation which has challenged fluid mechanicians
for many years. The assumption of a parallel shear flow over an infinite
plate may or may not model all the interesting physics of a spatially
evolving viscous steady flow on an airfoil, of course. The invocation of
this severe assumption is a measure of the complexity of considering the
spatially developing, steady-boundary layer and its dynamic perturba-
tion when the hydrodynamic-stability theory was first being developed
more than 50 ears ago. This restrictive assumption has been attacked
by subsequent investigators, but the range of geometries considered to
date has still been somewhat limited.

Parallel shear flow with an inviscid dynamic pertur-
bation
A further simplification to hydrodynamic-stability theory that is some-
times useful is to neglect the viscous terms in the dynamic perturbation
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per se, but still include their effect in determining the steady flow. This
may be thought of as an inviscid perturbation about the viscous steady
flow. While such a model clearly cannot treat the stability of the viscous
steady-flow field per se, it may be useful in computing the pressure on
a wall over which the boundary layer thickness does not vary greatly.
By scaling arguments, one may deduce when the neglect of the viscous
terms in the dynamic perturbations may be justified. Such a model has
been proposed by Miles (1967) and Anderson & Fung (1962) in the con-
text of fluid-structure interaction and has been applied successfully by
Dowell (1971) to the determination of the stability of an elastic plate in-
teracting with a flow stream, the so-called panel flutter problem. Dowell
has shown that the boundary layer effect on the unsteady aerodynamic
pressure is most pronounced for transonic flows and is relatively less
important for subsonic and supersonic flows, in agreement with the ex-
perimental evidence.

Formally, for a slowly varying boundary layer thickness, one may also
determine the solution for the pressure on an airfoil or wing, using the
shear flow model. Specifically, one may derive a new Kernel or Green’s
function so that the solution techniques of classical aerodynamics may
be applied. But this model has not been widely used, although it may
have some utility for treating the effect of a boundary layer on a wing
control surface, for example (see Chi & Dowell 1977).

General time-linearized analysis
To consider the most general case, we consider a generic form of a CFD
model in which, for example, a finite-difference technique is used to con-
vert the partial differential equations of a nonlinear flow model, whether
potential, Euler, or Navier-Stokes, to a large system of ODEs in time.
Thus, formally, one has

∂

∂t
{q} = {Q(q)} + {B(x, y, z, t)}. (9.5)

Here q is a vector of unknown variable to be determined throughout
the flow field, Q is a known function of the q (i.e. for a given q, one
knows Q), and B is some known function that expresses the motion of a
structure or body in the fluid. Of course there are additional parameters
determined by the far upstream conditions and the properties of the
fluid, for example, the upstream Mach number. Formally, a dynamic-
perturbation analysis may proceed as follows: one sets

B = B0 + B̂(t),

q = q0 + q̂(t). (9.6)
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Where B0 and q0 depend only on x, y, z, but not on t, that is, they form
a steady-flow solution to Equation 13.5. Substituting Equation 13.6 into
Equation 13.5 and retaining only linear terms in q̂, one has the governing
linear small-perturbation equations for q̂ which have coefficients that
depend on the steady-flow solution, q0 , as follows:

∂

∂t
{q} =

[
∂Q
∂q

∣∣∣
q=q0

]
{q̂} + {B̂}. (9.7)

Standard and novel means for solving large systems of such equations
have been developed.

Note that if B̂ = 0 in Equation 9.7, then one has a eigenvalue
problem. This can be exploited effectively by first solving the eigen-
value/eigenvector problem and reconstituting Equation 9.7 in terms of
a small number of eigenvectors or eigenmodes. This leads to one class of
so-called reduced-order models (ROMs). All such ROMs, which are dis-
cussed in more detail below, are based on this notion of a few dominant
modes that may be represented by some relatively small linear combina-
tion of eigenmodes. However, even without appealing to eigenmodes per
se, the solution of Equation 9.7 offers an attractive and powerful way
of describing unsteady flows. This is especially the case if we consider
simple harmonic motion and use a Fourier series (for periodic motion) or
Fourier integral (for arbitrary time-dependent motion) to construct the
solution for any time dependence from the basic solution of harmonic
motion.

Here we emphasize the physical effects that such time-linearized mod-
els may include. For example, the steady flow may include shock waves
and also separated flows. The dynamic perturbation ansatz does re-
quire that the oscillations of shocks or separated flow regions be suffi-
ciently small, but there are many flow conditions in which that is true.
For example, if a small dynamic perturbation is assumed, it is required
that shock wave motions be small compared with the airfoil or wing
chord and that the dynamic variation in shock strength, for example,
the jump in pressure through the shock, be small compared with that of
the steady shock. Similar restrictions apply to separated flow regions.
Also, of course, limit cycle oscillations due to fluid nonlinearities are
not modeled when time linearization is assumed. Note, however, that
the effects of turbulence can be included formally within the framework
of the empirical turbulence models frequently used in CFD application,
e.g. Baldwin-Lomax models, k− ε models, etc. In this regard it is worth
noting that to construct a dynamical perturbation model one needs to
be able to differentiate Q with respect to q. Doing this for the original
fluid equations, e.g. Euler or Navier-Stokes, is not a problem, at least
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formally. However some empirical turbulence models introduce nondif-
ferentiable functions that can pose practical computational difficulties
in constructing dynamic-perturbation models. Of course, if one has an
exact steady-flow solution of the steady Navier-Stokes equations, then
a dynamic-perturbation analysis follows without any especial difficulty.
In particular it may be noted that such models allow, in principle, a
hydrodynamic-stability analysis that fully accounts for the spatial dis-
tribution of a laminar steady flow prior to its becoming unstable.

Some numerical examples
As a typical example, we show results from a computation by Florea et
al (1996) for a separated flow over a cascade of airfoils. One purpose of
this example is to show that one can calculate quantities such as the time
variation of boundary layer thickness and skin friction as well as pressure
or pitching moment on an airfoil with such models. Here an empirical
turbulence model has been used in the CFD code, and a time-linearized
solution has been developed. See Figures 9.1 and 9.2.

9.3. Nonlinear Dynamical Models
A nonlinear dynamical model is almost invariable cast in the form of

a CFD model with spatial discretization by finite-difference techniques
or other methods. Thus one starts with a system of ODEs such as those
of Equation 13.5. The most popular form of solution for such equations
has been a time-marching technique. However, there are severe practical
computational difficulties associated with the size of such system of equa-
tions, which may be on the order of 106, and equally important, with the
small step in time that one must take with such equations because of nu-
merical stability considerations. In the language of numerical analysis,
these equations are “stiff.” The end result has been that such mod-
els have been infrequently used beyond the research community. Even
for research purposes, when such CFD models are used in combination
with structural models, the range of the parameter space that can be
explored has been relatively modest. Nevertheless, substantial progress
has been made and some techniques have been developed to make such
models more attractive computationally. Three are discussed here. First
to be discussed are harmonic-balance techniques, which effect a solution
in the frequency domain. Second are system identification techniques
that allow the nonlinear (and linear) models to be expressed more com-
pactly. The latter, used in combination with the third approach, i.e.
reduced-order-modeling techniques, offers considerable promise for fu-
ture development, as does the harmonic-balance methodology.



Modeling of Fluid-Structure Interaction (Dowell and Hall) 501

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2

R
ea

l [
C

M
]

Reduced Frequency, ωc/V

7 eigenmodes with 7 corrections
7 eigenmodes with 1 correction

7 eigenmodes with no corrections
direct solver

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.5 1 1.5 2

Im
ag

 [
C

M
]

Reduced Frequency, ωc/V

Unstable

Stable

7 eigenmodes with 7 corrections
7 eigenmodes with 1 correction

7 eigenmodes with no corrections
direct solver

Figure 9.1. Real and imaginary (Imag) pitching moment for airfoils pitching about
a point near midchord for a range of reduced frequencies . Ω = 620; σ = 900.
(Republished from Florea et al (1996) with permission.)
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Figure 9.2. Real and imaginary (Im) parts of unsteady displacement thickness for
airfoils pitching about a point near midchord. Ω = 620; σ = 900; ω̄=0.5. (Republished
from Florea et al (1996) with permission.)
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Harmonic balance method
In the harmonic-balance method, one takes the time dependence of the
solution to be a Fourier series in time, for example,

q =
∑
m

qmeiω0mt. (9.8)

Lan and his coworkers (Greco et all 1995, 1997 and Hwang & Lan 1989
) have used a single term in such a Fourier expansion and investigated
the nonlinear potential-flow model in a series of interesting papers. Of
course for sufficiently small amplitudes of airfoil or wing motion (and
therefore fluid motion), a single-term approximation may suffice. In the
limit of infinitesimal motion, such an analysis becomes a time-linearized
model. More recently, Hall and his coworkers (2000) have considered
multiple harmonic terms in the Fourier series and developed computa-
tionally efficient methods for extracting the nonlinear solution to the
Euler equations. Lan and his coworkers (Greco et al 1995, 1997 and
Hwang & Lan 1989) have applied his method to airfoils and wings, while
Hall developed his methodology for turbomachinery applications to cas-
cades of airfoils. Hall et all (2000) have shown that a few harmonics
are normally sufficient to describe the flow field accurately, even for
rather large airfoil and fluid motions. Both Lan and Hall note that a
harmonic balance approach allows the analyst to take advantage of the
many computational-solution techniques that have been developed for
steady-flow solvers over the years.

System identification methods
Several authors have considered system identification methods. Among
these, Silva (1993, 1997) has suggested the adaptation of the
Volterra/Wiener approach that has been developed in the field of signal
processing. Formally, by considering a small number of inputs (struc-
tural motions) and outputs (e.g. lift and moment on an airfoil), the non-
linear input/output relationships can be modeled with a relatively small
number of equations. This approach has considerable promise; however,
if the inputs or outputs of interest change, then the model must be re-
constructed. Also the dynamics of the system are essentially treated as a
“black Box”, and the internal dynamics of the total governing equations
and hence the fluid are to some degree masked by thisapproach.

Silva chooses the integral formulation for the input/output model and
defines a hierarchy of impulse or temporal Green’s functions. For exam-
ple, if y(t) is a typical output and u an input, then following Volterra
and Wiener, one may postulate a form of input/output relationship as



504 A MODERN COURSE IN AEROELASTICITY

follows:

y(t) =
∑

n

∫ ∞

−∞
hn(σ∗

1, σ
∗
2, .....)u(t − σ∗

1)u(t − σ∗
2)....dσ∗

1dσ∗
2... (9.9)

The corresponding differential equation form is

∂y

∂t
= A0 + A1y + A2y

2 + ...... + Anyn + Bu (9.10)

Silva suggests techniques for deducing hn in Equation 9.9, and
there are also methods in the literature for deducing the coefficients,
A0, A1, .....An, etc, in Equation 9.10, given u and with y determined by
a numerical simulation. Please note that, formally, Equation 9.10 may
be obtained from Equation 9.5 by expanding Q(q) in a Taylor series and
noting that there exists a linear transformation between y and q. Note
that, while Equations 9.9 and 9.10 are written here as scalar equations
for simplicity, there are generalizations to a vector form available.

Nonlinear reduced-order models
Of course formally one may determine a modal representation for q from
a time-linearized analysis and use these modes to reduce the full nonlin-
ear dynamical model (see Equation 9.5). Such a technique has been used
for structural models of relatively high dimension for some years, (e.g.
see Dowell 1975), but it is only now being explored for CFD models.
The nonlinear dynamic models are a subject of current research, but
it does appear that there are several promising alternatives that may
lead to advances in our ability to deduce more compact models, which
will lead to a greater understanding of such models and improve their
computational efficiency.

Reduced-order models
The use of CFD models for systematically investigating unsteady aero-
dynamic flows has been a goal since the advent of the computer age.
Many investigators have demonstrated the potential utility of CFD for
improving the physical modeling of complex unsteady flows. However,
until recently the computational cost associated with the high dimen-
sionality of these models has precluded their use in routine applications
for studying aeroelastic phenomena. Thus the research literature has
been voluminous, but the applications in industry have been relatively
few in number.

Recent work on a conceptually novel and computationally efficient
technique for computing unsteady flows based on the modal character of
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such flows is described below. Eigenmode-based, reduced-order models
(ROMs) are given prominence although other related modal descriptions
also prove useful and are discussed as well.

Why study the eigenmodes of unsteady aerodynamic flows? This is
perhaps the fundamental question most often asked, although occasion-
ally someone will express surprise that eigenmodes even exist for these
flows. The reason areseveral:

1 Eigenvalues and eigenmodes for these flows do exist! So perhaps they
can tell us something about the basic physical behavior of the flow
field.

2 Indeed, if a relatively small number of eigenmodes are dominant, this
immediately suggests a way to construct an efficient computational
aerodynamic model using these dominant modes.

3 Constructing the aerodynamic model in eigenmodal form is a partic-
ularly attractive way to combine the eigenmode aerodynamic model
with a number of degrees of freedom for a given desired level of ac-
curacy. These aeroelastic models will be especially useful for design
studies, including the active control of such systems.

4 Finally, as will be seen, alternative modal descriptions are available.
While their usefulness is predicated on the existence of eigenmodes,
these other modal descriptions seek to induce more information on
the flow response to enhance the accuracy of a reduced model of
a given dimension or reduce the dimension for a required accuracy
compared with a standard eigenmode representation. Moreover, for
one descriptor, the so-called proper orthogonal decomposition (POD)
modes, one may avoid the necessity of a tedious direct eigenvalue
evaluation of the CFD equations, a major advantage of using these
modes.

For a more in depth discussion of this work, see, for example, Hall
(1994), Dowell et al (1997), and Dowell et al (1999); earlier work is
noted in those references.

Constructing reduced order models
There are two distinct ways of going about constructing ROMs, although
there are many variations on the basic themes. One approach is to char-
acterize the aerodynamic flow field in terms of a relatively small number
of global modes. By a mode we mean a distribution of flow field variables
that characterizes a gross motion of the flow. The conceptually simplest
way of choosing such a set of modes is to consider the eigenmodes of
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the flow field. Of course, such modes form a complete set, and any flow
field distribution can be expressed in terms of such eigenmodes. For-
mally, the eigenvectors are used to effect a linear transformation from
the original set of (local) flow variables used in the CFD model, such
as pressure, density, and velocity components at a spatial grid point, to
a new modal set of global coordinates. The new modal equations are
uncoupled due to the orthogonality of the eigenvectors. In particular
any alternative modal selection, and we consider several, can always be
expressed in terms of such eigenmodes.

Indeed, it is the existence of eigenmodes that underpins an modal
description of the flow. As with other simpler mechanical systems, it is
the hope and expectation, borne out in the results to be shown later,
that a relatively small number of modes will prove adequate to describe
the flow. Thus, a typical CFD model, which may have 104 to 106 or
more degrees of freedom, may be reduced to a model containing only
101 to 102 modes, which is capable of accurately describing the pressure
on an oscillating aerodynamic surface.

The second category of ROMs does not explicitly rely on a modal de-
scription per se, but rather appeals to the idea that only a small number
of inputs, that is, structural motions or modes, and a correspondingly
small number of outputs, that is, generalized forces or specific integrals of
the aerodynamic pressure distribution weighted by the structural mode
shapes, are of interest. Hence one may construct, for example, a transfer
function matrix whose size is determined by the number of inputs and
outputs. Typically the size of this matrix will be on the order of the
number of structural modes. The transfer functions are determined nu-
merically using a systems identification technique from time simulations
calculated by using the CFD code. If the number or type of inputs, that
is, the structural modes, changes during an aeroelastic simulation, then
the aerodynamic-transfer functions may need to be recalculated. On
the other hand, the CFD code does not require deconstruction to de-
termine aerodynamic modal information, thereby saving this additional
effort but also foregoing the additional insight and flexibility gained by
knowing the aerodynamic modes. Changes in the structural modes do
not change the aerodynamic eigenmodes, of course, but changes in the
structural modes may require recalculation of the transfer functions of
aerodynamic input/output models.

Linear and nonlinear fluid models
Two points that arise in the use of a model representation are worthy
of mention. For nonlinear dynamical systems, it is possible to extend
the idea of a linear eigenmode itself to nonlinear eigenmodes. See, for
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example, the book by Troger & Steindl (1991) and chapter 7 of the
present book for a readable account of these ideas. This point has some
theoretical interest. However, these nonlinear eigenmodes still lead to
coupled modal equations, so their value in practice is often not substan-
tially greater than that of linear eigenmodes for ROM systems of several
(say 10 or more) degrees of freedom.

The second noteworthy point is that, if one determines the linear
eigenmodes for say one airfoil-Mach number combination and then uses
an eigenvector transformation for another airfoil-Mach number combina-
tion, then the corresponding modal equations will also be coupled even
in the linear terms. This, of course, is because we have used the eigen-
modes of one fluid system to represent the dynamics of a different fluid
system. That is, orthogonality of the modes only holds for eigenmodes
used for the same dynamical system from which they are derived. Never-
theless, if the eigenvectors do not change appreciably with, for instance,
Mach number, these coupled modal equations may still be adequate,
and thus one may avoid recomputing the eigenvector for each change in
Mach number.

Eigenmode computational methodology
For the simpler (lower dimensional) fluid models, for example, a two-
dimensional vortex lattice model of unsteady flow about an airfoil, the
size of the eigenvalue matrix is on the order of 100 × 100. For such
matrices, standard eigenvalue extraction numerical procedures may be
used. We have used EISPACK, a standard algorithm and computer code
available in most computational centers in the United States.

For more complicated fluid models (e.g. the full potential models or
Euler models), the order of the eigenvalue matrix may be in the range
of 1000 to 10,000 squared or greater. For matrices of this size, new de-
velopments in eigenvalue extraction have been required. We have used
methods based on the Lanczos algorithm. For the full-potential equa-
tion (1000 × 1000), an efficient and effective algorithm is described by
Hall et al (1995). For the Euler equations (104 × 104 ), the paper by
Romanowski & Dowell (1996) will be of interest. The discussion by Ma-
hajan et al (1994) is also recommended to the reader. As the extensions
to three-dimensional and viscous flows are made, further developments
in eigenvalue and eigenmode determination will likely be required or
desired.

To improve the convergence of the eigenmode ROM representation,
that is, to reduce the number of eigenvectors retained, a so-called static-
correction method is useful, as was first noted by Hall. In this approach,
Equation 9.7 is first solved by setting the left-hand side to zero, and
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then a correction is determined by expanding the difference between this
solution and the full solution of Equation 9.7 in terms of eigenmodes.

However an alternative method may be preferable, as described below.

Proper orthogonal decomposition modes
Given the difficulty of extracting eigenmodes for very high-dimensional
systems (e.g. > 104 ), it is of great interest to note that a simpler modal
approach is available, as recently developed by Romanowski (1996). This
approach adapts a methodology from the fields of nonlinear dynamics
and signal processing, that is, the POD or Karhunen-Loeve (KL) modal
representation. See Romanowski (1996) for an introduction to the rele-
vant literature in this field.

Here we quote Romanowski’s account of the essence of the method.

”Karhunen-Loeve Decomposition (KL Decomposition) [also called proper or-
thogonal decomposition (POD)] has been used for a broad range of dynamic
system characterization and data compression applications. The procedure,
which is briefly summarized below, results in an optimal basis for representing
the given data ensemble.

The instantaneous flow field vector, qj , is retained at J discrete times, such
that j = 1, 2, 3, ....J. A caricature flow field, q̄j , is defined as the deviation of
each instantaneous flow field from the mean flow field, q̄j , of the ensemble:

q̃j = qj − q̄j . (9)∗ (9.11)

A matrix Φ is formed as the ensemble of the two-point correlation of the
caricature flow fields, such that

Φjk = q̃T
j q̃T

k . (10) (9.12)

References (10) and (12) [of Romanowski 1996] show that solving the eigen-
value problem

[Φ]{v} = λ{v} (11) (9.13)

produces an optimal set of basis vectors, [V] = [{v1}, {v2}, ....{vj}] for repre-
senting the flow field ensemble. Additionally, the magnitude of the eigenvalue,
λj gives a measure of the participation of the jth KL [or POD] eigenvector
in the ensemble. Therefore, a reduced set of basis vectors can easily be found
by limiting the set to only those KL eigenvectors corresponding to sufficiently
large eigenvalue.”

Since the number of time steps and thus the order of matrix needed to
compute a reasonable and useful set of KL or POD modes is typically on
the order of 1000, the determination of POD modes is computationally
very inexpensive, especially as compared to determining the eigenmodes
of the original fluid dynamics model. In the subsequent section, results

∗The first equation number is from the original reference Romanowski (1996).
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using POD modes are shown to be in excellent agreement with those ob-
tained from the full-order model and also the ROM based on eigenmodes.
It also might be noted that one can first use the POD decomposition
to reduce the order of the original model and then do a further eigen-
mode analysis of the ROM, a technique that may be useful for some
applications.

As a final comment on the POD or KL methodology, it is important to
note that a similar calculation may be done in the frequency domain by
assuming simple harmonic solutions and replacing the data at discrete
time steps with data at discrete frequencies over a frequency internal
of interest. Kim (1998) has used the POD frequency domain method
for a vortex lattice fluid model and Hall et al (1999) and Thomas et al
(1999) have done so for an Euler fluid model, including shock waves at
transonic conditions.

Balanced modes
Baker et al (1996) have used this methodology originally developed in
the controls community to develop reduced-order aerodynamic models.
Rule et al (2000) have explored this method as well. This basic notion
is that balanced modes are in some sense an optimal descriptor within
the framework of POD modes for a given family of inputs or structural
motions and the aerodynamic outputs of interest. See also the discussion
of balanced modes in the Appendix.

Synergy among the modal methods
In light of the above discussion, the following methodology appears to
be a practical and perhaps even an optimum approach. With a given
CFD model, a set of POD modes can be constructed with on the order
of 102 - 103 degrees of freedom. Then, using the POD modes and the
corresponding ROM (POD/ROM), a further reduction may be obtained
by extracting eigenmodes or balanced modes from the POD/ROM. For
some applications in which the smallest possible model is desired, for
example, design for active control of an aeroelastic system, this further
reduction will be desirable and perhaps essential. However, for validation
studies where the identification and understanding of the most critical
modes for stability are the primary issue, one may prefer to retain a
POD/ROM or an eigenmode ROM.

Input/output models
There is a long tradition of developing aerodynamic transfer function
representations from numerical data for simple harmonic motion dating
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from the time of Jones’s approximation to the Theordorsen function.
Much of the relevant literature is summarized by Karpel (1982), whose
own contribution was to develop a state-space or transfer function repre-
sentation of minimum order for a given level of accuracy by using trans-
fer function ideas based on data for simple harmonic motion. Hall et al
(1999) have recently discussed such models in light of the more recent
developments in aerodynamic modal representations. Their discussion
follows. See Bisplinghoff et al (1955) and Karpel (1982) for references
to the original literature.

“Investigators have developed a number of techniques to reduce the complexity
of unsteady aerodynamic models. R.T. Jones approximated indicial lift func-
tions with series of exponentials in time. Such series have particularly simple
Laplace transforms, i.e., rational polynomials in the Laplace variables, mak-
ing them especially useful for aeroelastic computations. Pade approximants
are rational polynomials whose coefficients are found by least-squares curve
fitting the aerodynamic loads computed over a range of frequencies. Vepa
(1976), Edwards (1979), and Karpel (1982) developed various forms of the
matrix Pade approximant technique. Their approach reduces the number of
so-called augmented states needed to model the various unsteady aerodynamic
transfer functions (lift due to pitching, pitching moment due to pitching, etc.)
by requiring that all the transfer functions share common poles.”

“. . . [A POD or eigenmode model] is similar in form to that obtained using
a matrix Pade approximate for the unsteady aerodynamics...and has some
of the same advantages of the Pade approach. Both methods produce low
degree-of-freedom models. Furthermore, both require the aerodynamic lift and
moment transfer functions to share common eigenvalues (although the zeros
are obviously different). This is appealing because physically the poles should
be independent of the type of transfer function. However, the present (modal)
approach has several advantages over the matrix Pade approximate method.
The present method attempts to compute the actual aerodynamic poles, or
at least the poles of a rational CFD model. The Pade approach, on the other
hand, selects pole locations by some form of curve fitting (of aerodynamic
data for simple harmonic motion). In fact, some Pade techniques can produce
unstable aerodynamic poles, even for stable aerodynamic systems.”

It is interesting that the notion of a transfer function can be extended
to nonlinear dynamical systems where the counterpart is usually called a
describing function. Ueda & Dowell (1984) pioneered and discussed this
approach. The describing function may be considered a single harmonic-
balance method.

In the time domain transfer functions can be inverted to form convo-
lution integrals. Silva (1993, 1997) has recently pioneered the extension
of these ideas to nonlinear aerodynamic models, using the concept of a
Volterra integral.
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Structural, aerodynamic, and aeroelastic modes
Structural modes have a long and rich tradition. The novelty of much
that is being discussed here is to extend such ideas to aerodynamic flows
that also possess a modal character, albeit a more complex one. And
finally there are aeroelastic modes one may consider.

For the determination of structural modes, one normally neglects dis-
sipation or damping and thus only models kinetic energy (or inertia) and
potential strain nergy (or stiffness) of the structure. The eigenvalues are
real (the natural frequencies squared) as are the corresponding eigen-
modes. Physically, if one excites the structure with a simple harmonic
oscillation at a frequency near that of an eigenvalue, the structure will
perform a simple harmonic oscillation at that same frequency, whose
spatial distribution is given by the corresponding eigenvector.

For aerodynamic modes (and also for aeroelastic modes), the physical
interpretation as well as the mathematical determination of the eigenval-
ues and eigenvectors or eigenmodes is more subtle and difficult, but still
rewarding. First of all, the eigenvalues are complex, with the real and
imaginary parts of the eigenvalue giving the oscillation frequency and
rate of growth or decay (damping ) of the eigenmode. As for a struc-
tural modes, if one is clever enough to excite only a single aerodynamic
eigenmode, then an oscillation will occur whose spatial distribution is
given by the corresponding eigenvector. However, the eigenvalues of
an aerodynamic flow are closely spaced together, typically much more
closely than the eigenvalues for structural modes. Indeed, if the aerody-
namic computational domain were extended to infinity, then the eigen-
values would no longer be discrete but rather would form a continuous
distribution for most aerodynamic flows. Thus, exciting only a single
aerodynamic mode experimentally is a difficult feat. For some turboma-
chinery flows with bounded flows between blades in a cascade, discrete
well-spaced eigenvalues are possible that have a resonant character (see
Hall et al 1995). This is also true for some aerodynamic eigenmodes in
a wind tunnel, of course. And these have been observed experimentally
(see Parker 1967).

Aeroelastic modes are those that exist when the structural and aero-
dynamic modes are fully coupled; that is, oscillations of a fluid mode
excite all structural modes and vice verse. In general, these aeroelastic
modes also have complex eigenvalues and eigenvectors. At low speeds
(well below the flutter speed, for example) one may usually identify
the structural and aerodynamic eigenvalues separately, because struc-
tural/aerodynamic coupling is weak. However, as the flutter speed if
approached, the eigenvalues and eigenvectors may change substantially,
and the fluid and structural modes become more strongly coupled. It is
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even possible for a mode that is aerodynamic in origin at low speeds to
become the critical flutter mode at higher speeds, although normally it
is one or more of the structural modes that become unstable as the flow
velocity approaches the flutter speed.

Winther et al (1998) have suggested using aeroelastic modes to reduce
the total number of modes to be used in a simulation of overall aircraft
motion. This seems like an idea worth exploring, although aeroelastic
modes by definition vary with flow condition, that is, dynamic pressure
and Mach number, and thus the aeroelastic modes at one flight con-
dition will not be the aeroelastic modes at another. Of course, if one
uses a sufficient number of aeroelastic modes, they will be able to de-
scribe accurately the system dynamics at any flight condition, but that
tends to defeat the purpose of minimizing the number of modes in the
representation.

Also it should be noted that the particular implementation of aeroe-
lastic modes in Winther et al (1998) does not include aerodynamic states
or modes per se, which limits that particular approach when the aerody-
namic modes themselves are active and couple strongly with the struc-
tural modes. This is probably the exceptional case, but one which can
occur.

Representative results
Dowell et al (1997) have discussed (a) comparisons of the ROM to clas-
sical unsteady, incompressible aerodynamic theory, (b) reduced-order
calculations of compressible unsteady aerodynamics based on the full-
potential equation, (c) reduced-order calculations of unsteady flow about
an isolated airfoil based on the Euler equations, (d) reduced-order cal-
culations of unsteady viscous flows associated with cascade stall flutter,
and (e) linear flutter analyses using ROMs.

In the present discussion, recent results for transonic flows with shock
waves, including viscous and nonlinear effects, are emphasized. Before
turning to these, however, we consider some fundamental results con-
cerning the effects of spatial discretization and a finite computational
domain.

The effects of spatial discretization and a finite computational
domain

For simplicity, we use a classical numerical model, the vortex lattice
method, for an incompressible potential fluid, to illustrate the points we
wish to make. Compressible potential-flow models and Euler flow CFD
models have provided numerical results consistent with those obtained
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from the vortex lattice models in this regard. The results discussed here
are from Heeg & Dowell (1999).

In CFD there are two approximations that are nearly universal to all
such models. One is the construction of a computational grid that deter-
mines the limits of spatial resolution of the computational model. The
second is the approximation of an infinite fluid domain by a finite spatial
domain. It is a principal purpose of the present discussion to note that
the computational grid determines not only the spatial resolution obtain-
able by the CFD model, but also the frequency or temporal resolution
that can be obtained. Further, as is shown, the finiteness of computa-
tional domain determines the resolution of the eigenvalue distribution
for a CFD model. Both of these observations have important ramifica-
tions for assessing the CFD model and its ability to provide an adequate
approximation to the original fluid model on which it is founded, as well
as being helpful in constructing and understanding ROMs.

In the following discussion, we consider both discrete-time and
continuous-time eigenvalues. Even in a high dimensional system such
as usually encountered with CFD, the relationship between any dynam-
ical variable, such as vortex strength, velocity potential, flow velocity,
density, pressure, etc, and its time evolution as expressed for the deter-
mination of eigenvalues and eigenvectors is a simple one. For a given
dynamic variable q̂, which changes with time t, the eigenvalue relation-
ship from a time-linearized model is

q̂ = Aeλt, (9.14)

where λ is the continuous-time eigenvalue. For a discrete time represen-
tation in which the time step is ∆t, we define the discrete-time eigenvalue
z as the ratio of q̂ to its value one time step earlier. It is easily seen
then that

z = eλ∆t

or
λ = log(z/∆t). (9.15)

It will be useful in our discussion to consider both λ and z.
Here we use the vortex lattice model, because (a) it is one of the

simplest CFD models, (b) it has been widely used, and (c) among prac-
titioners, it is thought to be well understood in terms of its capability
and limitations. As noted earlier, similar results are obtained from more
elaborate CFD models, which include the effects of flow compressibility,
rotationality, and/or viscosity.

As an example, we consider the flow over an airfoil with a certain
number of vortex elements on the airfoil and in the wake. Initially, we
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Figure 9.3. Influence of varying the number of aerodynamic elements of the vortex-
lattice model, while maintaining the number of elements. Shown are continuous-time
real and imaginary (Imag) eigenvalues, λ. (Republished from Heeg & Dowell (1999)
with permission.)

select 20 elements on the airfoil and 360 elements in the wake. The
length of the finite wake extends 18 chord lengths. The eigenvalues
and eigenmodes of the flow can be computed by now well-established
methods for a relatively small eigenvalue system, for example, < 1000.

The eigenvalue distribution for λ is shown in Figure 9.3. Note that
the real part of the eigenvalue is the damping and the imaginary part is
the frequency of the eigenvalue. We now study the effects of (a) refining
the vortex lattice grid and (b) changing the extent of the wake length.
Note that, In figure 9.3, the baseline configuration’s eigenvalue with the
largest imaginary part has the value of 10π. When we next halve the
element size while maintaining the same number of wake elements, thus
shortening the wake, the total number of eigenvalues remains constant.
However, the frequency range of the original eigenvalues has doubled.
Thus we see that refining the grid has led to increasing the frequency
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Figure 9.4. Influence of varying the number of aerodynamic elements in the wake of
the vortex-lattice model, while maintaining the element size. Shown are continuous-
time real and imaginary (Imag) eigenvalues, λ. (Republished from Heeg & Dowell
(1999) with permission.)

range of the eigenvalue distribution. The spacing of the eigenvalues has
also increased by about a factor of two. As is seen in the next paragraph,
the latter result is because the computational domain has been reduced
by nearly half, that is, the wake length is shorter.

Now consider what happens as the extent of the wake length is de-
creased while the grid spacing is held constant. In Figure 9.4, the base-
line configuration is compared to an aerodynamic model that has half
as many aerodynamic elements in the wake. Now we see that the spac-
ing between eigenvalues has increased by about a factor of two, but the
largest imaginary part of the eigenvalue distribution (frequency) is un-
changed. Hence, the effect of extending the wake length (for a fixed-grid
resolution) is to refine the resolution of the eigenvalue distribution, but
not to change the maximum frequency of the eigenvalue distribution. A
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Figure 9.5. Full aerodynamic eigenspectrums. Re, real; Im, imaginary, M, Mach
number. Flat-plate airfoil (16 × 8 mesh). (Republished from Thomas et al (1999)
with permission.)

more in-depth interpretation of this behavior is given by Heeg & Dowell
(1999) along with further details and numerical examples.

The effects of mach number and steady angle of attack: sub-
sonic and transonic flows
Here we examine some recent results from Hall et al (1999) and Thomas
et al (1999) and also Florea et al (1999). Hall et al used an Euler equa-
tion flow model with a frequency domain POD method, and Thomas et
al used a transonic potential-flow model with a now standard eigenvalue,
eigenmode formulation. Although different flow models and modal rep-
resentations were used, the results of these two studies lead to similar
conclusions regarding the nature of the flow and the efficacy of a modal
representation of the aerodynamic flow.
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In Figure 9.5, the full eigenvalue spectrum for a flat plate airfoil using
a coarse computational grid is shown to elucidate the effects of Mach
number from M = 0 to M = 1.1. These results are from Thomas et
al (1999). Interestingly, the eigenvalue spectrum changes notably over
this range. For M = 0 , all of the eigenvalues are real and negative.
Hence none of the eigenmodes have an oscillatory character. For any
M > 0, however, eigenvalues that are complex conjugates appear along
with real eigenvalues. The eigenvalue pattern continues to evolve as the
Mach number increases, with another significant change in character
occurring in the transonic range from M = 0.9 to M = 1.1. The cor-
responding eigenmodes have also been determined, including the char-
acteristic pressure distributions on the airfoil. Typically, the eigenmode
that corresponds to the smallest negative real eigenvalue has a pressure
distribution similar to that for steady flow at a constant angle of attack.

As an aside, it is very interesting that the eigenvalues for M = 0
are distributed along the real axis in Figure 9.5, whereas in Figure 9.3
they are distributed along the imaginary axis. In both cases these rep-
resent discrete approximation to a branch cut. It is well known from
Theordorsen’s theory for that the branch cut can be placed along a line
emanating from near the origin of the complex plane (see Dowell et al
1995). The results of Figure 9.3 and Figure 9.5 indicate that different
CFD models for the same physical flow may place this branch cut along
distinctly different rays from the origin. In Figure 9.6, results are shown
for a flat plate M = 0.2 and 0.9 and an NACA 0008 airfoil at M = 0.85.
For the latter, a shock is present. Results are shown for a finer mesh
that is typical of CFD calculations, and results are shown from the full
eigenspectrum and those eigenvalues of the flow obtained by using 100
POD modes to construct a ROM. The POD modes were determined
using solutions at discrete values, often called snapshots in the POD
literature, computed at uniformly distributed Frequencies in the range
−1.0 < Im[λ] < 1.0. The dominant eigenmodes are well approximated
by the POD/ROM model. Note the characteristic distribution pattern of
the eigenvalues as a function of Mach number, including with and with-
out shock. Further results have been obtained for an NACA 64A006
airfoil (see Florea et al [1999]). The CFD grid is shown in Figure 9.7,
and the steady-flow pressure distribution is shown in Figure 9.8. Note
that a shock is distinctly present for M > 0.86. For this airfoil, a bend-
ing/torsion flutter analysis is conducted over the Mach number range
M = 0.5 − 0.9. The flutter boundary is shown in Figure 9.9. Root loci
for the two dominant aeroelastic modes (which originate in the plunging
and pitching structural modes at low Mach number) are shown in Figure
9.10 for Mach numbers in the range M = 0.8−0.9. These root loci show
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Figure 9.6. A comparison of the full and ROM aerodynamic eigenspectrums. Re (λ),
real eigenvalues; Im(λ), imaginary eigenvalues; M, Mach number; α, angle of attack.
(Republished from Thomas et al (1999) with permission.)

that in the Mach number range where the position of the shock on the
airfoil moves appreciable, the critical eigenmode for flutter changes from
the plunging mode to the pitching mode. There is a corresponding and
sharp change in the flutter boundary (cf Figure 9.10). One of the ben-
efits of a reduced-order-modal representation of the aerodynamic flow
is the capability and ease of constructing such root loci, which provide
a significantly improved understanding of transonic flutter over other
methods of stability analysis, for example, time-marching solutions.
We now turn to some complementary results from Florea et al (1999),
who have studied an NACA 0012 airfoil and an MBB A3 airfoil. We
present results only for the former airfoil here. The grids used for the
CFD models are shown in Figure 9.11. In addition to the basic grid, a
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Figure 9.7. Computational grid used for an NACA 64A006 airfoil. (Republished
from Hall et al (1999) with permission.)

refined grid in the vicinity of the shock wave was also considered. In Fig-
ure 9.12, the steady flow pressure distribution is shown form M = 0.75
and several steady angles of attack. The corresponding eigenvalue distri-
butions are shown in Figure 9.13. Somewhat surprisingly perhaps, the
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Figure 9.8. Steady-background-flow surface pressure coefficient. M, Mach number.
(Republished from Hall et al (1999) with permission.)

eigenvalue distribution does not change radically with angle of attack
changes, even though the flow at zero angle of attack is shockless, while
that at a 20 angle of attack has a strong shock.

Another comparison of eigenvalue distributions is shown in Figure 9.14
where the angle of attack is held at 0, but a range of Mach numbers is
considered. Although over the full range of Mach numbers the eigenvalue
distribution does change, there is not radical change in the high subsonic,
transonic range per se.

Finally, in Figure 9.15, a comparison is shown between the results
of the full CFD model (> 5000 degrees of freedom) and those from a
ROM. Two different versions of the ROM are used with 67 and 160
degrees of freedom, respectively. Good correlation is obtained between
the full CFD model and the ROM for lift and moment on an oscillating
airfoil over a wide range of reduced frequencies.
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Hall et al (1999) with permission.)

The effects of viscosity
Epureanu et al (2000) have considered the effects of viscosity by using
the POD methodology in the frequency domain. Also see the earlier
results by Florea et al (1998) using the direct eigenvalue approach. The
results of Epureanu et al (2000) are for a cascade of airfoils. The basic
flow model uses a potential description in the outer inviscid region and
a simplified integral boundary layer model in the inner region. The
solution domain is shown in Figures 9.16 and 9.17. A comparison of
results from this model wit a Navier-Stokes solver has shown reasonable
agreement. Comparisons have also been made with experimental data
showing reasonable correlation.

Representative comparisons are shown between the full CFD model
and a POD/ROM in Figure 9.18 for a pressure distribution at fixed in-
terblade phase angle and frequency, in Figure 9.19 for lift vs. interblade
phase angle for a fixed frequency, and in Figure 9.20 for lift vs. reduced
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lished from Hall et al (1999) with permission.)

frequency for a fixed interblade phase angle. The results are in generally
good agreement given the complexity of the flow. A reduction in de-
grees of freedom by two orders of magnitude or more is realized for this
example. Note that no more degrees of freedom are required to model
viscous flows than those required for inviscid flows, when considering
aerodynamic pressures on a airfoil.

Nonlinear aeroelastic reduced-order models
One of the remaining challenges is to construct nonlinear aerodynamic
ROMs. An example of a shock wave undergoing large oscillations in a
one-dimensional channel has been treated by Hall in an as yet unpub-
lished work (KC Hall, unpublished observations). However, no results
from ROMs for flows about an airfoil undergoing large motions have yet
been reported in the literature.

On the other hand, an example wing problem has been examined
with a linear ROM vortex lattice aerodynamic model and a nonlinear
structural model for a delta wing. The details are presented by Tang et
al (1999). Physically, a low Mach number and small angle of attack flow
about a platelike structure undergoing oscillations on the order of the
plate thickness are considered. For a plate, oscillations of this magnitude
give rise to strong geometric structural nonlinearity. The consequence
of this structural nonlinearity is that, once the flutter speed is exceeded,
the wing goes into a limit cycle oscillation (LCO) of bounded amplitude.
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Figure 9.11. Typical 129 × 43-node grid about an NACA 0012 isolated airfoil. (Top)
initial grid; (bottom) locally refined grid. (Republished from Florea et al (1999) with
permission.)

Of course, a purely linear aeroelastic model would predict exponentially
growing oscillations for flow conditions beyond the flutter boundary. The
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use of ROMs for the fluid and structure makes calculations of this type
of LCO practical.

The geometry of the delta wing and its wake is shown if Figure 9.21.
A comparison between theory and experiment is shown in Figure 9.22
for the flutter boundary and in Figure 9.23 for the limit cycle oscillation.

9.4. Concluding Remarks and Directions for
Future Research

With the construction of ROMs based on rigorous fluid dynamical the-
ory, it is now possible to (a) provide a practical approach for construct-
ing highly efficient, accurate, unsteady aerodynamic models suitable for
fluid/structure modeling, (b) calculate true damping and frequency for
all coupled fluid/structural (aeroelastic) modes at all parameter condi-
tions, and (c) provide greater physical insight from aeroelastic analysis.
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What more might the future bring?
Using fully (dynamically) nonlinear models, one should be able to

develop rigorous ROMs that will accurately model large and violent
aircraft motions, for example. For aeroacoustics phenomena in which
the far-field radiation pattern is of prime interest, the eigenmode-ROM
concept should work well also, but far-field boundary conditions will need
special attention for this (or any other) approach. See Hardin & Hussaini
(1993) for a discussion of the present state-of-the-art in computational
aeroacoustics. Finally, regarding turbulence and turbulence models, if
we use a standard turbulence model, for example, κ- ε, etc, then the
present method formally goes through. However, it is possible that the
real value of the eigenmodal ROM approach will be to encourage the
development of better turbulence models.

Is it possible that one could attack the full Navier-Stokes equations us-
ing the eigenmode-ROM methodology? The answer is that is some sense
such work has already begun. The classical hydrodynamic-stability the-
ory is an eigenmode approach based on the boundary layer approxima-
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Figure 9.17. Solution domain used to calculate the inviscid flow. Special local an-
alytic solution is used at the stagnation point. The system of coordinates along the
airfoil surface is indicated by ξ and η. A typical displacement thickness is sketched
along the airfoil and wake. (Republished with permission from Epureanu et al (2001).)

tion combined with a highly simplified geometry, a flat plate of infinite
extent. However, the work per se, now some 50-70 years ago in its origins,
did not lead to advances much beyond the limitations of the classical in-
finite geometry. Already, models with an outer inviscid model combined
with viscous boundary layer theory have been developed, and some en-
couraging preliminary results are emerging. See Florea et al (1998) and
Epureanu et al (2000). Thus, one might hope to overcome that clas-
sical geometrical limitation and treat the larger-scale viscous motions
about an airfoil or wing with a modern ROM. With these large-scale
motions determined, it might even be possible to refine the eigenmode
representation to determine local flow behavior. Clearly this is only a
hypothesis, but a very intriguing one. It is certainly an open question
as to the resolutions of turbulence length scales one may achieve with a
given eigenmode or POD expansion. The recent work of K.Y. Tang et al
(1996) on ROMs in low-Reynolds-number flows using KL or POD modes
is interesting in this regard. Also, see the pioneering work of Holmes et
al (1996) discussed in their stimulating book.
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Appendix: Singular-Value Decomposition, Proper
Orthogonal Decomposition, & Balanced Modes

Let qn
j be the nth flow variable at some spatial point at some time j

where n = 1, 2, ....N and j = 1, 2, ....J . Now from the matrix, Q̃, as

[Q̃] =

⎡
⎢⎢⎢⎢⎣

q1
1 . . . q1

J
. .
. .
. .

qN
1 . . . qN

J

⎤
⎥⎥⎥⎥⎦ . (9.16)

Again note that total number of time step is J , and the total number
of flow variables is N . For a typical CFD calculation, J might be 1000,
and N might be 10000 or more. Hence N is much greater than J .

Now assume a singular value decomposition of Q̃; that is

Q̃ = UΣVT , (9.17)

where U is a unitary matrix of dimension N ×n and V is also a unitary
matrix of dimension J ×n. We may select n and typically n will be less
than J . Note that

[UTU] = [I]n×n , [VTV] = [I]n×n, (9.18)

and Σ is a diagonal matrix of singular values; that is,

[Σ] =

⎡
⎢⎢⎣

σ1

σ2

.
σn

⎤
⎥⎥⎦ . (9.19)

We order these singular values such that

σ1 ≥ σ2 ≥ ..... ≥ σn. (9.20)

Now form Φ, the correlation matrix for the POD method:

Φ = Q̃TQ̃ = VΣTUTUΣVT = VΣTΣVT . (9.21)

Equation 9.21 implies that V is the eigenvector of the correlation matrix
and the corresponding eigenvalues are the squares of the singular values.

From Equation 9.17, one may computer (assuming that V is normal-
ized so that the magnitude of each eigenvector is unity),

Q̃V = UΣVTV = UΣ. (9.22)
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One may also compute U from Equation 9.22, and further one may
compute Q̃ from a knowledge of U,V, and the singular values using
Equation 9.17. Usually it is easier to compute Q̃ directly from Equation
9.16, however. The representation of Equation 9.17 may be useful if we
choose to decompose Q̃ such that

Q̃(UΣ
1
2 )(Σ

1
2 VT). (9.23)

With this decomposition the POD modes are said to be “balanced,” and
these are often put forth as an optimum choice for mode selection.

If there is a truncation in the singular values, that is, if we choose
n to be less than J which is much less than N , then Equation 9.17
may be written in a reduced form. The corresponding reduced form for
Q̃ approaches the original Q̃ if the neglected singular values or POD
eigenvalues are sufficiently small compared with those retained.

Denoting V as the eigenvector matrix for the correlation matrix of
dimension J ×n, noting that Q̃ is a matrix N ×J , and defining a as the
new unknowns to be determined, which are the n modal amplitudes of
the POD modes, then one may write the original flow variables, q, as

{q(t)}N×1 = [Q̃]N×J[V]J×n{a}n×1. (9.24)

Substituting this expression into Equation 9.5 of the main text, that is,

∂

∂t
{q} = {Q(q)} + {B}u, (9.25)

and premultiplying by the transpose of Q̃ [ V ] gives a ROM in terms
of the new unknowns a, where the dimension of the vector a is n × 1
with n chosen to be less than J . For simplicity, in Equation 9.25, only
a single scalar input, u, is shown. The generalization to multiple inputs
is clear. If Q(q) in Equation 9.25 is expanded in a Taylor series about a
steady-flow solution (the time-linearized model corresponds to retaining
only linear terms in q in the Taylor series), then a particularly simple
and attractive form of the ROM is obtained.

There is another interesting case to consider which may arise when
experimental data rather than numerical data from a CFD code are used
to construct a ROM. In this case the number of low variables that are
observed or measured, N , will be relatively small and typically N will be
less than J , the total number of time steps for which data are obtained.
Formally the calculation still goes through, but now the number of flow
variables modeled is much smaller than a CFD code. Ideally these flow
variables would be related to the amplitudes of the dominant modes of
the flow.



Chapter 10

EXPERIMENTAL AEROELASTICITY

Much of this text has been devoted to mathematical modeling of phys-
ical phenomena in the field of aeroelasticity. Yet one of the most chal-
lenging and important aspects of the subject is the conduct of physical
experiments. Experiments are useful for many purposes, e.g. to assess
the accuracy and validity of theoretical models, to study phenomena be-
yond the current reach of theory, and/or to verify the safety and integrity
of aeroelastic systems through wind tunnel tests or flight tests. A thor-
ough exposition of this topic would require a volume in itself. Here a few
of the fundamental aspects of experimental aeroelasticity are discussed.
The focus is on aeroelastic tests per se rather than structural dynamic
tests or unsteady aerodynamic measurements. However the latter will
be touched on as well insofar as they are relevant to our principal topic.

For authoritative treatment of this subject the discussion by Ricketts
[1] is highly recommended.

Before an aeroelastic experiment is conducted, it is usual to make
measurements of the natural modes and frequencies of the structural
model. Hence our discussion begins there.

10.1. Review of Structural Dynamics
Experiments

In the jargon of the practitioners, these are referred to as ground vi-
bration tests or GVT. The basic requirements are a means for exciting
(forcing) the structure into its resonant, natural modes and also a means
for measuring the response of the structure. For excitation systems a
variety of devices have been used including those that provide mechan-
ical forces, electromagnetic forces and acoustical excitation. The choice
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of excitation depends primarily upon the level of force required and the
range of frequency to be covered. For lightly damped systems excited
in a resonant mode, the force level needed can be estimated as the mass
of the structure times the frequency squared times (twice) the critical
damping ratio times the amplitude of response required, i.e. the inertial
and stiffness terms nearly cancel and the exciting force is balanced by
structural dissipation or damping. The response amplitude required is
typically determined by the sensitivity of available response measure-
ment instrumentation or perhaps the need for the response to be in a
certain linear (or less usually, nonlinear) range of response.

In practical terms mechanical excitation systems are used for low fre-
quencies (say 1-100 Hz), electromagnetic exciters (shakers) are used for
moderate frequencies (say 10-1000 Hz) and acoustic excitation at high
frequencies (say 100-10000 Hz).

The response measurement systems may be either mechanical (strain
gauges or accelerometers), electromagnetic (some electromagnetic de-
vices may be used as either exciters or response measurement devices)
or, more recently piezoelectric devices∗ that may be used to either serve
as exciter or responder.

The basic measurement technique is to excite the system at its reso-
nant frequencies (usually having theoretical calculations as a guide) with
the excitation and response devices placed at locations on the structure
expected to have large response. Multiple exciters are used to distin-
guish between symmetric and anti-symmetric natural modes or to ex-
cite modes with complex shapes. In principle, a continuous distribution
of excitation with a distribution of force amplitude proportional to the
expected (mass weighted) natural mode (and therefore orthogonal to all
other natural modes) is optimum. Rarely can so many exciters be used
in practice to approach this ideal.

If a pure frequency excitation is used, then a transient decay time
history or a half-power frequency response plot may be used to esti-
mate modal natural frequency and damping (e.g. see Thomson† or any
standard text on vibration theory).

Also a random excitation over the range of relevant frequencies may
be used to identify multiple modes with one excitation. This is used
only when test time is limited. Another possibility is pulse excitation
in the time domain and the use of Fast Fourier transform theory to
extract information on multiple natural modes. Commercial hardware

∗See Crawley [2]
†See Thomson [3]
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and software is now widely available to perform the latter measurement‡.
However for precise work the old fashioned methods may still be pre-
ferred.

Of course, if any significant nonlinearities are present, nonlinear the-
ory must be used to guide the form of excitation, measurement and
data interpretation. The range of possibilities is too extensive to be eas-
ily summarized. But the presence of higher harmonics in the response
measurement is often a key observation that suggests nonlinearities are
present and important.

10.2. Wind Tunnel Experiments
With the presence of flow the environment for excitation and mea-

surement of response is more complex, but the basic devices for creat-
ing, measuring and interpreting the responses remain the same as for
the simpler structural dynamics experiments. Sometimes the aerody-
namic turbulence in the tunnel is used to provide a random excitation
and, of course, for self-excited instabilities (e.g. flutter) no special re-
quirements are (in principle) necessary to excite the aeroelastic system.
Nevertheless, where practicable, it is desirable to have an excitation sys-
tem available of the conventional sort, e.g. mechanical, electromagnetic,
acoustic, or perhaps, piezoelectric. Such excitations allow one to conduct
sub-critical response experiments(i.e. experiments conducted below the
flutter boundary). One of the principal challenges in flutter testing is
to be able to extrapolate to flutter (critical) conditions from sub-critical
measurements.

Sub-critical flutter testing
By monitoring the change of modal damping with change in flow dy-
namic pressure, for example, one may try to anticipate the value of dy-
namic pressure for which the modal damping will become zero and then
negative. However, because of the sometimes complicated and rapid
variation of damping with dynamic pressure and the necessity to moni-
tor several potentially critical modes, it is often difficult to extrapolate to
this flutter condition. Indeed extrapolation techniques for this purpose
remain an active area of research∗.

For certain types of flutter, monitoring the changes in modal frequen-
cies may also be a useful guide to help predict the onset of flutter.

‡See, e.g., ZONIX, HEWLETT PACKARD and other manufacturers’ catalogs and equipment
manuals.
∗See Matsuzaki [4].
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Approaching the flutter boundary
For low speed (incompressible flow) flutter tests, the flutter boundary
is normally approached by increasing the flow velocity in suitable incre-
ments. For high speed (compressible flow) flutter tests, the Mach number
is normally fixed, and the flutter boundary is approached by increasing
the wind tunnel stagnation pressure, and hence dynamic pressure, in
suitable increments. Then the Mach number is changed and the process
repeated. At very high Mach numbers, a blow-down (transient flow)
wind tunnel may be the only flow facility available. However, a con-
tinuous flow, closed return tunnel is to be preferred when available in
order to assure well defined flow conditions and give adequate time for
accurate response measurements.

Safety devices
Normally some provision will be made for suppression of the flutter
response by a rapidly applied restraint to the flutter model, in order to
protect the model from damage due to flutter.

Research tests vs. clearance tests
Research tests are normally conducted to provide experimental data for
comparison with theory and hence usually rather detailed data sets are
obtained over a wide range of flow and/or structural parameters. Clear-
ance tests are designed simply to show a particular flutter model is un-
likely to encounter an instability over a range of anticipated operational
conditions.

Scaling laws
By expressing the aeroelastic equations of motion in non-dimensional
form or by simply using dimensional analyses, it is possible to relate
the behavior of the small scale models typically tested in wind tun-
nels so that of full-scale aircraft in flight. ∗ Often not all relevant
non-dimensional parameters can be matched between tunnel scale and
flight scale due to the imitations of modal fabrication and wind tunnel
flow conditions. Selecting an appropriate set of scaling parameters is
a matter of intelligent application of theory (i.e. matching those non-
dimensional parameters that are most important and sensitive as pre-
dicted by analysis) and judgement based upon experience. Normally
modal frequency ratios, reduced frequency, Mach number and a non-

∗See Dugundji and Calligeros for a particularly valuable discussion [5]
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dimensional ratio of dynamic pressure to model stiffness are matched.
Frequently fluid/structural mass ratio is not.

Wind tunnel tests are extraordinarily valuable and often fill in gaps
in our knowledge where theory is unavailable or unreliable.

10.3. Flight Experiments
Virtually all the previous comments for wind tunnel tests apply to

flight tests as well. However the need for safety is now paramount and the
challenges of providing a well defined excitation force are considerably
higher. Also the test procedure is necessarily different.

Approaching the flutter boundary
Normally the flutter boundary has been estimated from a suitable com-
bination of analysis and wind tunnel experiment prior to the flight test
and presented in terms of altitude (corresponding to a certain static
or dynamic pressure) vs Mach number. Usually the Mach number at
which flutter will occur increases with increasing altitude. Hence flutter
testing normally begins at high altitude (this also provides more margin
for emergency procedures including the pilot leaving the aircraft). At
fixed altitude the Mach number is increased in small increments until
flutter occurs or the maximum Mach number capability of the aircraft
is reached.

When is flight flutter testing required?
For new aircraft, for substantial modifications of existing aircraft and
for new uses of an existing aircraft, flutter testing is usually required.

Excitation
Several excitation methods have been proposed and used. None are
clearly superior. Use of existing hardware, e.g. control stick raps, elec-
tronic inputs to the control system, or atmospheric turbulence, obviously
minimize cost. On the other hand, add-on devices, such as oscillating
vanes, inertial mass oscillations, or pyrotechnic devices presumably give
greater control and range to the excitation. The rotating slotted cylinder
device proposed by Reed∗ shows promise of being a good compromise
between cost and performance. Examples of excitation systems that
have been used in practice are shown in Fig. 10.1†.

∗See Reed [6].
†After Reed [6]. All Figures anf Tables in this Chapter are drawn from [6].
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STICK RAPS ATMOSPHERIC TURBULENCE

INPUT TO FLIGHT CONTROL SYSTEM INERTIA  EXCITER

PYROTECHNIC (BONKER)

FLUTTER EXCITATION METHODS

FLIGHT FLUTTER TESTING

OSCILLATING VANE 

Figure 10.1.

Examples of recent flight flutter test programs
To remind the reader of the danger inherent in such tests, Fig. 10.2
shows the loss of a substantial portion of the tail surface from the recent
flutter testing of the F-117A Stealth fighter. Other examples of recent
programs are described in Table 10.I (Figure 10.3).

10.4. The Role of Experimentation and Theory in
Design

In designing a new aircraft with acceptable aeroelastic behavior, a
synergistic combination of theory, wind tunnel tests and flight tests is
normally employed. Here a brief overview is presented of how this is
usually done.
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Figure 10.2.

One measure of the relative importance of each of these synergistic
elements is their cost. Baird∗ has estimated these for the F-14 aircraft.
See Table 10.II (Figure 10.4).

In Table 10.III (Figure 10.5) a flow chart is shown that indicates the
interaction among thes4e elements. Note that each element normally
influences another. For example, analysis and wind tunnel tests help
define the flight flutter test program. Conversely any anomalies deter-
mined during flight test will almost assuredly lead to additional analysis
and wind tunnel tests.

Finally, although the emphasis here has been on flutter experiments,
gust responseexperiments or static aeroelastic behavior may be the sub-
ject of tests as well. The techniques employed are similar to those for
flutter, with pilot and aircraft safety usually not as much a critical con-
cern as with flutter tests.

∗Baird [7].
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EXAMPLES OF RECENT FLIGHT FLUTTER TEST PROGRAMS

X-29 FORWARD SWEPT WING DEMONSTRATOR
THREE DIFFERENT FLIGHT CONTROL SYSTEMS TO TEST
NEW STRUCTURE
218+ TEST POINTS TO CLEAR THE FLIGHT ENVELOPE
EXCITATION: TURBULENCE AND ROTATY INERTIA SHAKERS FOR
THE FLAPERONS 

F-18 HARV AIRPLANE (TO BE TESTED SUMMER 1991)
MODIFICATION: TURNING VANES-STRUCTURE AND FLIGHT 
CONTROL LAWS
EXCITATION: COMMANDS TO THE FLIGHT CONTROL SURFACES
TWO DIFFERENT FLIGHT  CONTROL SYSTEMS TO TEST
ESTIMATE OVER 80 TEST POINTS TO CLEAR FLIGHT ENVELOPE

       ANGLE OF ATTACK RANGE: 0TO 70
MACH NUMBER:MULTIPLE POINTS UP TO 0.7 MACH

SCHWEIZER 1-36 DEEP-STALL SAILPLANE
MODIFICATION:HORIZONTAL STABILIZER MODIFIED TO PIVOT TO 70
FOR CONTROLLABITY RESEARCH WITH COMPLETELY STALLED
GROUND TEST PERFORMED PRIOR TO FLIGHT TEST DUE TO NONLINEAR
STRUCTURAL DYNAMICS BEHAVIOR OF TAIL
EXCITATION: TURBULENCE- DATA ACQUIRED AT CONSTANT SPEED
DURING CONTINUOUS DESCENT IN ALTITUDE BANDS OF 1000 FEET
ABOUT TEST ALTITUDE
STABILITY ANALYSIS: CLEARED IN REAL TIME BY MONITORING STRIP 
CHARTS

EXCITATION: TURBULENCE AND STICK RAPS
MODIFICATION: DIGITAL FLIGHT CONTROL SYSTEM AND CANARDS

STABILITY ANALYSIS: RECURSIVE IDENTIFICATION ALGORITHM USED
TO SEPARATE CLOSELY SPACED MODES

AFTI/F-16 AEROSERVOELASTIC AND FLUTTER TEST

-+

FLIGHT FLUTTER TESTING

Figure 10.3. Table 10.I
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RELATIVE COSTS

ANALYSIS

WIND TUNNEL

FLIGHT FLUTTER TEST

GVT

D   COST andR

29

27

25

19

0.5
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F-14   FLUTTER PREVENT PROGRAM

/

/

/

/

/

/

Figure 10.4. Table 10.II

GROUND
VIBRATION

FLUTTERVIBRATION
UNSTEADY AERO
FLUTTER

WIND

TESTS

FLIGHT
TUNNEL
TESTS

ANALYTICAL MODEL

FLUTTER CLEARANCE

TESTS (GVT)

AIRCRAFT FLUTTER CLEARANCE PROCESS

Figure 10.5. Table 10.III
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Chapter 11

NONLINEAR AEROELASTICITY

11.1. Introduction
Nonlinear aeroelasticity has been a subject of high interest for the

last decade and the literature is now extensive.∗ An account of the state
of the art is provided as of this writing with an emphasis on key ideas
and results. These demonstrate our current theoretical, computational
and experimental capabilities and the degree to which correlation among
results from these several approaches agree or disagree. An exhaustive
literature survey is not attempted here; however a bibliography of over
eight hundred citations is available in electronic form from the first au-
thor upon request. The particular results and methods described must
inevitably reflect the authors’ knowledge and experience, but we have
made an effort to be comprehensive in terms of ideas and representative
with respect to results.

The chapter begins with a discussion of generic nonlinear aeroelastic
behavior especially as it relates to Limit Cycle Oscillations (LCO); then
the important studies that come from flight experience with LCO are
noted which have stimulated much of the other research on the subject.
Next a summary is provided of the primary physical sources of fluid and
structural nonlinearities that can lead to nonlinear aeroelastic response
in general and LCO more particularly.

A broad overview of unsteady aerodynamic models, both linear and
nonlinear, is then given before turning to the heart of the chapter that
provides a critique of the results obtained to date via various meth-

∗This chapter is based upon an invited paper prepared by E.H. Dowell, J.W. Edwards and
T. Strganac, “Nonlinear Aeroelasticity,” Journal of Aircraft, Vol.40, No.5, 2003, pp.857-874.
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ods, using as a framework correlations between theory and experiment
or alternative theoretical models. For these correlations unsteady aero-
dynamic forces per se, flutter boundaries and limit cycle oscillations are
each considered in turn. For limit cycle oscillations (1) airfoils with stiff-
ness nonlinearities, (2) delta wings with geometrical plate nonlinearities,
(3) very high aspect ratio wings with both structural and aerodynamic
nonlinearities, (4) nonlinear structural damping and (5) aerodynamic
flows with large shock motions and flow separation are each discussed.
A brief mention is also made of recent studies of active control of non-
linear aeroelastic systems.

The chapter concludes with a summary of major lessons learned by
the research and development community to date and offers suggestions
for future work that appear particularly attractive at this time.

11.2. Generic Nonlinear Aeroelastic Behavior
There are several basic concepts that will be helpful for the reader

to keep in mind throughout the discussion to follow. The first is the
distinction between a static nonlinearity and a dynamic one. In the
aeroelasticity literature the term ”linear system” may either mean a
(mathematical or wind tunnel) model or flight vehicle that is both stat-
ically and dynamically linear in its response or one that is nonlinear in
its static response, but linear in its dynamic response. So we will usually
qualify the term ”linear model” further by noting whether the system is
dynamically linear or both statically and dynamically, i.e. wholly, linear.

An example of a system which is wholly linear is a structure whose
deformation to either static or dynamic forces is (linearly) proportional
to those forces. An aerodynamic flow is wholly linear when the response
(say change in pressure) is (linearly) proportional to changes in down-
wash or fluid velocities induced by shape or motion of a solid body in
the flow. This is the domain of classical small perturbation aerodynamic
theory and leads to a linear mathematical model (convected wave equa-
tion) for the fluid pressure perturbation or velocity potential. Shock
waves and separated flow are excluded from such flow models that are
both statically and dynamically linear. A wholly linear aeroelastic model
is of course one composed of wholly linear structural and aerodynamic
models.

A statically nonlinear, but dynamically linear structure is one where
the static deformations are sufficiently large that the static response
is no longer proportional to the static forces and the responses to the
static and dynamic forces cannot be simply be added to give meaningful
results. Buckled skin panels (buckling is a nonlinear static equilibrium
that arises from a static instability) that dynamically respond to (not
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too large) acoustic loads or the prediction of the onset of their dynamic
aeroelastic instability (flutter) are examples where a statically nonlinear,
but dynamically linear model may be useful.

In aerodynamic flows, shock waves and separated flows are themselves
the result of a dynamically nonlinear process. But once formed they
may often be treated in the aeroelastic context as part of a nonlinear
static equilibrium state (steady flow). Then the question of the dynamic
stability of the statically nonlinear fluid-structural (aeroelastic) system
may be addressed by a linear dynamic perturbation analysis about this
nonlinear static equilibrium. Sometime such aerodynamic flow models
are call time linearized.

Of course if one wishes to model nonlinear limit cycle oscillations and
the growth of their amplitude as flow parameters are changed, then ei-
ther or both the structural and the aerodynamic model must be treated
as dynamically nonlinear. Often a single nonlinear mechanism is pri-
marily responsible for the limit cycle oscillation. However, one may not
know a priori which nonlinearity is dominant unless one has designed a
mathematical model, wind tunnel model or flight vehicle with the chosen
nonlinearity. Not the least reason why limit cycle oscillations are more
difficult to understand in flight vehicles (compared to say mathematical
models) is that rarely has a nonlinearity been chosen and designed into
the vehicle. More often one is dealing with an unanticipated and possi-
bly unwanted nonlinearity. Yet sometimes that nonlinearity is welcome
because without it the limit cycle oscillation would instead be replaced
by catastrophic flutter leading to loss of the flight vehicle.

It must be emphasized that the variety of possible nonlinear aeroelas-
tic response behaviors is not limited to ‘Limit Cycle Oscillations (LCO)’
per se. In the context of nonlinear system theory [1], an LCO is one of
the simplest dynamic bifurcations, a ‘first stop on the road to chaos,’ so
to speak. Other common possible behaviors include higher harmonic and
subharmonic resonances, jump-resonances, entrainment, beating (which
can be due to either linear or nonlinear coupling), and period doubling to
name only a few. These behaviors have been delineated and studied us-
ing low order model problems in the nonlinear dynamics literature; how-
ever in aeroelastic wind tunnel and flight testing, the detailed knowledge
required to identify these nonlinear behaviors has rarely been available.
Also, experience indicates that the concept of LCO is a good general de-
scription for many nonlinear aeroelastic behaviors. Thus, we will limit
ourselves herein to the use of the generic term, LCO, acknowledging that
this is an oversimplification.

Now let us turn to the generic types of nonlinear dynamic response
that may occur, i.e. limit cycle oscillations and the variation of their
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amplitude with flight speed (or wind tunnel velocity). Of course the
frequency of the LCO may vary with flight parameters as well, but usu-
ally the frequency is near that predicted by a classical linear dynamic
stability (flutter) analysis.

The generic possibilities are indicated in Fig. 11.1 where the limit
cycle amplitude is plotted vs. some system parameter, e.g. flight speed.
In Fig. 11.1a, an aeroelastic system is depicted that is stable to small or
large disturbances (perturbations) below the flutter (instability) bound-
ary predicted by a linear dynamical model. Beyond the flutter boundary,
LCO arise due to some nonlinear effect and typically the amplitude of
the LCO increases as the flight speed increases beyond the flutter speed.
In Fig. 11.1b, the other generic possibility is shown. While again LCO
exist beyond the flutter boundary, now LCO may also exist below the
flutter boundary, if the disturbances to the system are sufficiently large.
Moreover both stable (solid line) and unstable (dotted line) LCO now
are present. Stable LCO exist when for any sufficiently small distur-
bance, the motion returns to the same LCO at large time. Unstable
LCO are those for which any small perturbation will cause the motion
to move away from the unstable LCO and move toward a stable LCO.
Theoretically, in the absence of any disturbance both stable and un-
stable LCO are possible dynamic, steady state motions of the system.
Information about the size of the disturbance required to move from one
stable LCO to another can also be obtained from data such as shown in
Fig. 11.1b. Note also the hysteretic response as flight speed increases
and then decreases.

11.3. Flight Experience with Nonlinear
Aeroelastic Effects

Much of the flight experience with aircraft has been documented by
the Air Force Flight Test Center at Eglin AFB and is described in several
publications by Denegri and his colleagues,[2-5]. Most of this work has
been in the context of the F-16 aircraft. Denegri distinguishes among
three types of LCO based upon the phenomenological observations in
flight and as informed by classical linear flutter analysis. “Typical LCO”
is when the LCO begins at a certain flight condition and then with say
an increase in Mach number at constant altitude the LCO response
smoothly increases. “Flutter”, as distinct from LCO, is said to occur
when the increase in LCO amplitude with change in Mach number is so
rapid that the safety of the vehicle is in question. And finally “atypical
LCO” is said to occur when the LCO amplitude first increases and then
decreases and perhaps disappears with changes in Mach number. Often
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Figure 11.1. Schematic of Limit Cycle Oscillation Response

changes in flight vehicle angle of attack lead to similar generic LCO
responses to those observed with changes in Mach number.

It has long been recognized [6] that the addition of external stores
to aircraft changes the dynamic characteristics and may adversely affect
flutter boundaries. Limit cycle oscillations (LCO) remain a persistent
problem on high performance fighter aircraft with multiple store config-
urations. Using measurements obtained from flight tests, Bunton and
Denegri [7] describe LCO characteristics of the F-16 and F/A-18 air-
craft. While LCO can be present in any sort of nonlinear system, in the
context of aeroelasticity, LCO typically is exhibited as an oscillatory
torsional response of the wing, the amplitude of which is limited, but
dependent on the nature of the nonlinearity as well as flight conditions,
such as speed, altitude, and Mach number. The LCO motion is often
dominated by antisymmetric modes. LCO are not described by stan-
dard linear aeroelastic analysis, and they may occur at flight conditions
below those at which linear instabilities such as flutter are predicted. Al-
though the amplitude of the LCO may be above structural failure limits,
more typically the presence of LCOs results in a reduction in vehicle per-
formance, leads to airframe-limiting structural fatigue, and compromises
the ability of pilots to perform critical mission-related tasks. When LCO
are unacceptable for flight performance, extensive and costly flight tests
for aircraft/store certification are required.

Denegri [2,3] suggests that for the F-16, the frequencies of LCO might
be identified by linear flutter analysis; however, linear analysis fails to
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predict the oscillation amplitude or the onset velocity for LCO. No defini-
tive theory has been forwarded to explain completely the mechanisms
responsible for F-16 LCO. Denegri notes that while linear techniques
have been used to predict the frequency of LCOs, linear analysis can-
not consistently predict where within the flight envelope the onset of
the oscillations will occur. Thus, nonlinear analysis will be necessary to
predict the onset of the LCO and their amplitudes with changing flight
conditions. Such nonlinear analysis would be a useful and valuable tool
for reducing the amount of flight testing necessary for aircraft/store cer-
tification.

Nonlinear aerodynamic effects
There are several other flight experiences with limit cycle oscillations
in addition to the F-16 including those for example with the F-18, the
B-1 and B-2. Most of these LCO have been attributed by a majority of
investigators to nonlinear aerodynamic effects due to shock wave motion
and/or separated flow. However, there is the possibility that nonlinear
structural effects involving stiffness, damping or freeplay may play a role
as well. Indeed, much of the present day research and development effort
is devoted to clarifying the basic mechanisms responsible for nonlinear
flutter and LCO. For an authoritative discussion of these issues see Cun-
ningham et al, [8-10];Denegri et al [2-5] on the F-16 and F-18, Dobbs
et al [11]; Hartwich et al [12] on the B-1 and Dreim et al, [13] on the
B-2. Recent experimental evidence from wind tunnel tests is beginning
to shed further light on these matters as are advances in mathematical
and computational modeling.

In addition to the above studies, many aircraft with freeplay in their
control surfaces have experienced LCO as well.

Freeplay
There have been any number of aircraft that have experienced flutter
induced limit cycle oscillations as a result of control surface freeplay.
Not surprisingly perhaps these are not well documented in the public
literature, but are more known by word of mouth among practitioners
and perhaps documented in internal company reports and/or restricted
government files.

A recent and notable exception is the account in Aviation Week and
Space Technology [14] of a flutter/limit cycle oscillation as a result of
freeplay. In many ways this account is typical. The oscillation is of
limited amplitude and there was a reported disagreement between the
manufacturer and the regulating governmental agency as to whether
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this oscillation was or was not sufficiently large as to be a threat to the
structural integrity of the aircraft structure.

Geometric structural nonlinearities
Another not infrequently encountered and documented case is the limit
cycle oscillation that follows the onset of flutter in plate-like structures.
The structure has a nonlinear stiffening as a result of the tension induced
by mid-plane stretching of the plate that arises from its lateral bending.
This is most commonly encountered in what is often called panel flutter
where a local element of a wing or fuselage skin encounters flutter and
then a limit cycle oscillation. There have been many incidents reported
in the literature dating back to the V-2 rocket of World War II, the X-15,
the Saturn Launch Vehicle of the Apollo program and continuing on to
the present day. Some of these are discussed in a monograph by Dowell
[15] and also a NASA Special Publication Dowell [16].

It has been recently recognized that low aspect ratio wings may behave
as structural plates and the entire wing may undergo a form of plate-
like flutter and limit cycle oscillations. This has been seen in both wind
tunnel models and computations. However there is not yet a clearly
documented case of such behavior in flight.

11.4. Physical Sources of Nonlinearities
These have been identified through mathematical models (in almost

all cases), wind tunnel tests (in several cases) and flight tests (less often).
Among those most commonly studied and thought to be among the
more important are the following. Large shock motions may lead to
a nonlinear relationship between the motion of the structure and the
resulting aerodynamic pressures and forces that act on the structure. If
the flow is separated (perhaps in part induced by the shock motion) this
may also create a nonlinear relationship between structural motion and
the consequent aerodynamic flow field.

Structural nonlinearities can also be important and are the result of
a given (aerodynamic) force on the structure creating a response that
is no longer (linearly) proportional to the applied force. Freeplay and
geometric nonlinearities are prime examples (already mentioned). But
the internal damping forces in a structure may also have a nonlinear re-
lationship to structural motion, with dry friction being an example that
has received some attention. Because the structural damping is usually
represented empirically even within the framework of linear aeroelastic
mathematical models, not much is known about the fundamental mech-
anisms of damping and their impact on flutter and LCO.
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All of these nonlinear mechanisms have nevertheless received atten-
tion by the mathematical modeling community and several have been
the subject of wind tunnel tests as well. In some cases good correla-
tion between theory and experiment has been obtained for limit cycle
oscillation response.

11.5. Efficient Computation of Unsteady
Aerodynamic Forces: Linear and Nonlinear

The literature on unsteady aerodynamic forces alone is quite exten-
sive. A comprehensive assessment of current practice in industry is given
by Yurkovich, Liu and Chen [17].An article that focuses on recent de-
velopments is that of Dowell and Hall [18]. They also developed a bib-
liography of some five hundred items available in electronic form from
the authors. Other recent and notable discussions include those of Ben-
nett and Edwards [19] and Beran and Silva [20]. Much of the present
focus of work on unsteady aerodynamics is on developing accurate and
efficient computational models. Standard computational fluid dynamic
[CFD] models that include the relevant fluid nonlinearities are simply
too expensive now and for some time to come for most aeroelastic analy-
ses. Thus there has been much interest in reducing computational costs
while retaining the essence of the nonlinear flow phenomena.

There are three basic ideas that are currently being pursued with
some success in retaining the accuracy associated with state-of-the-art
CFD models while reducing aerodynamic model size and computational
cost, [18,20]. One is to consider a small (linear) dynamic perturbation
about a (nonlinear) mean steady flow. The steady flow may include
both the effects of a shock wave and flow separation, but any shock
or flow separation region motion is considered in the dynamically lin-
ear approximation. That is, it is assumed that the shock motion or
the separation point motion, for example, is linearly proportional to the
motion of the structure. This is sufficient to assess the linear stability
of the aeroelastic system, but not to determine LCO amplitudes due
to nonlinear aerodynamic effects. Of course in those cases where the
structural nonlinearities are dominant, this simpler aerodynamic model
is all one needs to determine LCO. This approach has enormous com-
putational advantages as the computational cost is comparable to that
of a steady flow CFD model since the unsteady calculation per se uses
a linear model. And if a structural parameter study is conducted to
determine the flutter boundary, the computational cost is no more than
for classical aerodynamic methods.

Moreover this approach can be extended to NONLINEAR unsteady
flows by expanding the flow solution in terms of a Fourier series in time.



Nonlinear Aeroelasticity (Dowell, Edwards and Strganac) 559

This assumes the flow motion is periodic in time of course and is most
effective if the number of important harmonics needed in the Fourier
Series is small. However this is true of many (but not all) flows of
interest. Here the computational cost is a small multiple (say a factor
of three) of the cost of a steady flow solution. This is the second major
idea, and the harmonic balance method is much faster for determining
the LCO than a time marching methods typically by one to two orders
of magnitude.

The third major idea is to determine the dominant spatial modes of
the flow field and use these, rather than many local grid points, to rep-
resent the flow. This is a class of so called Reduced Order Models. The
reduction is from the very large number of local grid points (on the order
of a million or more) to a small number of spatial modes (typically less
than one hundred). The reduction in computationalcost for aeroelastic
analysis is several orders of magnitude, i.e., a factor of one thousand or
more. This approach has been used for potential flow, Euler flow and
Navier-Stokes flows (with a turbulence model) for small dynamic pertur-
bations about a nonlinear mean steady flow (recall the first major idea
discussed above). Current research is underway to consider nonlinear
unsteady flows. Kim and Bussoletti [21] have discussed how one can con-
struct an optimal reduced-order aeroelastic model within the framework
of time linearized CFD models. While in principle fluid eigenmodes can
be used, and indeed they provide the underlying framework for reduced
order modeling, the technique known as proper orthogonal decomposi-
tion has proven to be the most computationally attractive method for
constructing a set of global modes for the reduced order model. With a
reduced order model, the aeroelastic computations are no more expen-
sive than using classical aerodynamics. Moreover one can compute the
true aeroelastic damping and frequency of each system mode.

A parallel approach to the last idea is to use the ideas of transfer
functions (sometimes called describing function s in the nonlinear case)
in the frequency domain or Volterra series in the time domain to create
small computational models from large CFD codes [18, 20]. In this
approach the form of the transfer function or describing function (or its
time series equivalent) is assumed and the coefficients of the reduced
order model are determined from data generated by the CFD code in
a time simulation. A good discussion of this approach is contained in
Beran and Silva [18] and in a series of papers by Silva [22-27]. Again
this approach is most fully developed for the dynamically linear case and
the dynamically nonlinear case is currently a subject of active research.
Raveh, Levy and Karpel [28] have offered a recent and useful discussion
of how these ideas can be implemented within the framework of an Euler
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based, CFD model and provided an example of the well studied AGARD
445.6 wing. Also see Raveh [29].

All of these ideas, individually or in combination, provide the promise
of dramatic reductions in computational costs for unsteady transonic
flows including the effects of shock motion and flow separation. In ad-
dition progress continues to be made in improving the computational
efficiency of time marching simulations Farhat et al[30, 31]. And the
ideas of dynamic (time) linearization and reduced order modeling can
be used in either the time or frequency domains. For a more thorough
discussion of these ideas, see Chapter 9.

11.6. Correlations of Experiment/Theory and
Theory/Theory

Much of what we know about the state of the art with respect to
nonlinear aeroelasticity comes from the study of correlations between
experiment and theory and between various levels of theoretical models.
Hence the remainder of this chapter is largely devoted to such corre-
lations and the lessons learned from them. The correlations selected
are to the best of our knowledge representative of the state of the art.
We shall consider correlations for aerodynamic forces per se, transonic
flutter boundaries, and limit cycle oscillations.

Aerodynamic forces
Roughen, Baker and Fogarty [32] have compared the results of several
theoretical models with the experimental data from the Benchmark Ac-
tive Controls Technology (BACT) wing. The BACT wing is a rect-
angular planform with a NACA 0012 airfoil profile. The model has a
trailing edge control surface extending from 45 % to 75% span. Previ-
ously Schuster et al [33] had compared results from a Navier-Stokes CFD
model (ENS3DAE) to these experimental data. Roughen et al used an
alternative Navier-Stokes CFD model (CFL3D) and also a classical po-
tential flow model (Doublet Lattice). Correlations were made at several
subsonic to transonic Mach numbers. As they note,

“For the purely subsonic condition (M=.65)....there is relatively good
agreement between the doublet-lattice results, the Navier-Stokes results
and the test data. This is not surprising because the flow is entirely sub-
sonic and well behaved (there is no shock wave and no flow separation).”
However at M=.77 “transonic effects begin to become apparent in these
results. For the most part, the observations about the results and the
qualitative correlation between doublet lattice, Navier-Stokes, and ex-
perimental results are similar to the subsonic results. However, there are
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Figure 11.2. Steady State Pressure Distribution for BACT Model

some important differences that appear in the neighborhood of the su-
personic pocket (near the mild and relatively weak shock wave).....There
is clearly a bump in the unsteady pressure magnitude (near the shock
wave position).....Little nonlinear amplitude dependence is seen (how-
ever) except near the trailing edge.”

For M=.82 there is a strong shock near 40% chord. “The presence of
the shock is also clearly evident in the steady-state pressure distribution
shown in Figure 11.2. The effects of the shock are also quite obvious
in the unsteady pressure results. See Figure 11.3. In the unsteady
pressure magnitudes, there is a clear peak in the unsteady pressure at
approximately 35% local chord in the experimental results and at 40%
local chord in the Navier-Stokes results. The peak, which represents the
shock doublet Ashley [34] caused by the unsteady motion of the shock,
is absent in the linear doublet lattice results [N5K code]. Quantita-
tively, the correlation of the shock doublet peak between experimental
and Navier-Stokes results is disappointing. The CFD results predict a
shock doublet of approximately double the amplitude of that seen in the
experimental results.... possible contributors to this inaccuracy (in the
theory) are the chordwise grid resolution and the Baldwin-Lomax tur-
bulence model.. Correlation between CFD solutions and the experiment
is excellent away from ...the shock.”

More recent calculations for this configuration have improved the
quantitative results from the CFD mathematical models, but not wholly
resolved the differences between theory and experiment at the highest
Mach number, M-.82. See the valuable and insightful discussion of re-
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Figure 11.3. Unsteady Pressure Distribution of BACT Model

sults using the CFL3D and ENS3DAE computer models by Bartels and
Schuster [35].

Another valuable correlation among several theoretical results and
that of experiment is based upon the experimental work of Davis and
Malcolm [36]. Several investigators have compared the results of tran-
sonic potential flow and Euler flow models with these experimental
data. A NACA 64A010A airfoil was studied, again in the high sub-
sonic/transonic Mach number range. See Fig. 11.4 for a comparison
of lift and moment magnitude and phase for a pitching airfoil. As can
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Figure 11.4a. Lift Magnitude due to Pitching +/ − 1◦ at the quarter-chord for
M = 0.8 vs Reduced Frequency k ≡ ωb

U∞ for NACA64A010 Airfoil

Figure 11.4b. Lift Phase
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Figure 11.4c. Moment Magnitude

Figure 11.4d. Moment Phase
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Figure 11.5. Unsteady Lift Magnitude vs. Unsteady Angle of Attack Magnitude

be seen the general trends are well predicted by all theories with the
Euler model being in somewhat better agreement with the experimental
data overall. The most recent Euler results were obtained using the Har-
monic Balance method and the number of data points calculated were
correspondingly more numerous. For this comparison the mean angle
of attack of the airfoil was a 0 degrees. However Davis and Malcolm
also considered a mean angle of attack of 4 degrees for which the flow is
separated and results for the magnitude of the unsteady lift are shown in
Fig. 11.5 for both mean angles of attack as a function of the amplitude
of the oscillating or unsteady angle of attack. What is immediately clear
is that for the mean angle of attack of zero there is a significant range
of unsteady angle of attack for which the aerodynamic flow is dynami-
cally linear. However that range is much smaller when the mean angle
of attack is increased to 4 degrees and the flow is separated. Results
from both potential flow and Euler flow models correlate well with the
experiment for a mean angle of attack of 0 degrees when the flow is at-
tached, but not for the case of a mean angle of attack of 4 degrees when
the flow is separated. It would be very valuable to have results from a
Navier-Stokes model for the latter case. McMullen, Jameson and Alonso
[37] have also done calculations for this set of experimental data using
the harmonic balance method and obtained similar results. They have
done a careful grid convergence study as well.
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Finally the valuable study of Krieiselmaieer and Laschka [38] is noted.
In this work they develop a time linearized Euler model and compare
the results obtained to those from a fully dynamically nonlinear Euler
model. The cases considered are a NACA 0012 airfoil in subsonic flow,
the NACA 64A010 in transonic flow and a 3% parabolic arc airfoil in
supersonic flow, as well as the three-dimensional flow about the LANN
wing. Their principal conclusions are that the computational cost of the
time linearized code is about an order of magnitude less than that of
the fully nonlinear code (consistent with the findings of other investiga-
tors) and that the results from the two theoretical models are in good
agreement for the cases and parameter ranges investigated. As already
noted previously, a time linearized flow model is sufficient to predict the
flutter boundary per se, but of course cannot predict LCO amplitudes.

A recent NATO report by a Research and Technology Organization
Working Group Ruiz-Calavera [39] provides a comprehensive experimen-
tal data base drawn from many sources in the literature for the verifi-
cation and validation of computational unsteady aerodynamic computa-
tional codes. Comparisons of the experimental data with selected aero-
dynamic computer models and codes are also provided. Additional such
theoretical/experimental correlations may be expected using this unique
collection of data. See especially the paper 8C by Schuster and Bartels
in [39]

11.7. Flutter Boundaries in Transonic Flow
AGARD 445.6 Wing - Bennett and Edwards [19] have discussed

the state of the art of Computational Aeroelasticity (CAE) in a rela-
tively recent paper and made several insightful comments about various
correlation studies. The NASA Langley team pioneered in providing
correlations for the AGARD 445.6 wing in the transonic flow region. In
Figure 11.6 a comparison of flutter speed index (FSI) and flutter fre-
quency is shown as a function of Mach number between the results from
experiment and theory. The theoretical results are for transonic nonlin-
ear potential flow theory without (CAP-TSD) and with (CAP-TSDV) a
boundary layer model to account for viscous flow effects; and also for an
Euler (CFL3D-Euler) and Navier-Stokes (CFL3D-NS) flow model. For
this thin wing, there are no significant transonic effects in the steady
flow over the wing surface at the Mach numbers with experimental re-
sults except for M=0.96 where there is a very weak shock on the surface.
For the subsonic conditions, all computational results are in very good
agreement with experiment. The two low supersonic test conditions have
been problematic for CAE. Inviscid computations have produced high
flutter speed index values relative to the experimental FSI and viscous
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Figure 11.6a. Flutter Speed Index and Flutter Frequency vs. Mach Number for
AGARD 445.6 Wing

computations have accounted for about one half the difference between
theory and experiment. Several investigators have now done similar Eu-
ler calculations and obtained similar results Farhat and Lesoinne [40-42];
Ravfeh, Levy and Karpel [43]; Thomas, Dowell and Hall [44, 45]. The
excellent agreement of the wholly linear theory results with experiment
should probably be regarded as fortuitous. Also and interestingly, Gupta
[46], who also used an Euler based CFD model, obtains results in better
agreement with experiment at the low supersonic conditions, though in
less good agreement with experiment than the other Euler based results
at subsonic conditions. Thus, CAE computations for this low super-
sonic region have unresolved issues which probably involve details such
as wind tunnel wall interference effects and flutter test procedures, as
well as CAE modeling issues.
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Figure 11.6b. Flutter Frequency vs. Mach Number

HSCT Rigid and Flexible Semispan Models - Two semispan
models representative of High Speed Civil Transport (HSCT) configura-
tions were tested in the NASA Langley Research Center Transonic Dy-
namics Tunnel (TDT) in heavy gas. A Rigid Semispan Model (RSM) was
tested mounted on an Oscillating Turn Table (OTT) and on a Pitch And
Plunge Apparatus (PAPA). The RSM/OTT test Scott et al [47] acquired
unsteady pressure data due to pitching oscillations and the RSM/PAPA
test acquired flutter boundary data for simple pitching and plunging
motions. The FSM test Silva et al [48] involved an aeroelastically-scaled
model and was mounted to the TDT sidewall. The test acquired un-
steady pressure data and flutter boundary data. Figure 11.7 Scott et al
[47] shows the unexpectedly large effect of mean angle of attack upon
the flutter boundaries for the RSM/PAPA model. Flutter of thin wings
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at subsonic conditions is typically independent of angle-of-attack within
the linear flow region. Figure 11.8 Silva et al [48] shows a summary of
the flutter and high dynamic response regions for the RSM. Squares indi-
cate conditions where forced response measurements due to trailing edge
control surface oscillations were made. The ’analysis’ flutter boundary
is from an early finite element model. Updated modeling places the (lin-
ear) flutter boundary slightly above the indicated ’hard flutter’ point. A
region of increased response in first wing bending (8.5 Hz.) was encoun-
tered in the Mach number range of 0.90-0.98. Finally, an narrow region
of LCO behavior, labelled ’chimney’, was encountered for M = 0.98-1.00
and over a wide range of dynamic pressures. Response frequency ranged
from 11.9 to 14.0 Hz. and the region was traversed a number of times
prior to encountering the hard flutter point at M = 0.979 and q = 246
pounds per square foot where the model was lost.

Benchmark Active Control Technology (BACT) Model -
This rectangular wing model had a panel aspect ratio of two and a
NACA 0012 airfoil section. See Bennett et al [50,51] and Ruiz-Calavera
[39,49]. It was mounted on a pitching and plunging apparatus which
allowed flutter testing with two simple degrees of freedom. It was
extensively instrumented with unsteady pressure sensors and accelerom-
eters and it could be held fixed (static) for forced oscillation testing or
free for dynamic response measurements. Data sets for trailing-edge
control surface oscillations and upper-surface spoiler oscillations for a
range of Mach numbers, angle of attack, and static control deflections
are available. The model exhibited three types of flutter instability
illustrated in Figure 11.9.

A classical flutter boundary is shown, for α = 2 deg as a conventional
boundary versus Mach number with a minimum, the transonic ‘dip’,
near M = 0.77 and a subsequent rise. Stall flutter was found, for α > 4
deg near the minimum of the flutter boundary (and at most tunnel
conditions where high angles of attack could be attained). Finally, a
narrow region of instability occurs near M = 0.92 consisting of plunging
motion at the plunge mode wind-off frequency. This type of transonic
instability has sometimes been termed single-degree-of-freedom flutter.
It is caused by the fore and aft motion of symmetric shocks on the upper
and lower surfaces for this wing. It was very sensitive to any biases
and does not occur with nonzero control surface bias or nonzero alpha.
Such a stability boundary feature is often termed a ‘chimney’ since the
oscillations are typically slowly diverging or constant amplitude (LCO)
and it is found, sometimes, that safe conditions can be attained with
small further increases in Mach number. Note that the Mach number
for the plunge instability decreases slightly with increasing pressure.
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Figure 11.7. Flutter Dynamic Pressure vs. Mach Number for Various Mean Angles
of Attack

Isogai Case A Model-Another benchmark case often used for the-
oretical/theoretical comparisons is the famous Isogai Case A, again for
a NACA 64A010 airfoil with certain structural parameters that lead to
a complex transonic flutter boundary for a plunging and pitching airfoil.
A recent study is that by Hall, Thomas and Dowell [52,53] that includes
comparisons with the earlier results of Isogai [54], Ehlers and Weatherill
[55] and Edwards et al [56]. The latter results were all obtained using
nonlinear potential flow models (in some cases they were time linearized,
which should make no difference for determining the flutter boundary per
se), while the results of Hall et al were obtained using a time linearized
Euler model. There is encouraging agreement among all models for this
complex transonic flutter boundary as seen in Figure 11.10. Note the
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Figure 11.8. Dynamic Pressure vs. Mach Number: Depicting Regions of Distinct
Response for HSCT Model.

rapid change in flutter speed index as the Mach number is varied. This is
associated with a change in the critical flutter mode (eigenvector). Two
additional studies by Prananta et al [57] and Bohbot and Darracq [58]
have included turbulence modeling for this case. Their results show that
viscosity reduces the extent of the transonic dip in the flutter boundary
significantly and eliminates the double valued FSI that are seen over a
portion of the Mach number range in the inviscid calculations. Bohbot
and Darracq also show a significant decrease in LCO amplitude due to
viscosity at M=0.9025.

Bendiksen[59-61] has made two important observations about tran-
sonic flutter boundaries. One is with respect to an experimental study
done some years ago at NASA Langley to consider the effects of airfoil
thickness ratio Dogget, Rainey and Morgan [62] for the same airfoil pro-
file. Bendiksen notes that the family of results for the variation of flutter
speed index with Mach number for the several thickness ratios can be
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Figure 11.9. Dynamic Pressure vs. Mach Number: Depicting Regions of Distinct
Response for BACT Model

reduced to a single curve when the data are replotted using (nonlinear
potential flow) transonic steady flow similarity variables. These similar-
ity parameters rescale the aerodynamic pressure using non-dimensional
parameters that combine the Mach number and thickness ratio. Es-
sentially this rescaling shows an equivalence between changes in Mach
number and thickness ratio in the transonic range. As the rescaling is
based upon steady flow similarity variables, it presumably works best
when the reduced frequency is small as might be the case for bend-
ing/torsion flutter, but perhaps not for single degree of freedom flutter
due to negative damping. See, for example, Dowell et al [63] for a discus-
sion of various types of flutter that may occur. Implicitly the success of
this rescaling also supports the more general observation that for tran-
sonic flow it is important to model accurately the position and strength
of the shock wave for steady flow conditions before attempting unsteady
aerodynamic or aeroelastic calculations.

The other important point made by Bendiksen is that in the transonic
range the flutter speed index may vary rapidly, not only because of a



Nonlinear Aeroelasticity (Dowell, Edwards and Strganac) 573

change in flutter type or mode (as has been noted by several investi-
gators), but also because of the substantial changes in mass ratio that
may occur in wind tunnel test trajectories. This may explain in part
the so called “chimneys” in flutter boundaries that have been observed
in transonic flutter wind tunnel test data.

In this regard it is interesting to note that Denegri [2] presents flight
test data showing LCO at nearly constant Mach number over large vari-
ations of altitude. Many “typical LCO” encounters result in termination
of testing due to increasing response levels with each increase in Mach
number because of concern for aircraft safety. Some “non-typical LCO”
encounters are reminiscent of the “chimney” feature in that response lev-
els increased to a maximum and then decreased with increasing Mach
number.

11.8. Limit Cycle Oscillations
Airfoils with stiffness nonlinearities
Many investigators have considered such a configuration with a variety
of nonlinear stiffness modes. For a description of the work on freeplay
nonlinearities including a discussion of the literature, see the article by
Dowell and Tang [64] which focuses on correlations between theory and
experiment. In general good quantitative correlation is found for simple
wind tunnel models and the basic physical mechanism that leads to
LCO appears well understood. Among the important insights developed
include the demonstration that the LCO amplitude and the effect of
mean angle of attack on LCO amplitude both simply scale in proportion
to the range of freeplay present in the aeroelastic system.

Here we consider in more depth the valuable and recent work of the
Texas A&M team [65-70]. They have conducted experiments with their
Nonlinear Aeroelastic Test Apparatus (NATA) in a low speed wind tun-
nel, and these investigations of typical section models provided valida-
tion of their theoretical models. See Figure 11.11. The NATA testbed
has been used to investigate both linear and nonlinear responses of wing
sections as well as the development of active control methods. Three
wing sections have been used in their research: a NACA 0015 wing sec-
tion without a control surface; a NACA 0015 wing section with a 20%
chord full span trailing edge control surface; and, a NACA 0012 wing
section with a 15% chord, full span leading edge and a 20% chord, full
span trailing edge control surfaces. The pitch and plunge stiffness of the
NATA is provided by springs attached to cams with shapes prescribed
to impart specific response. For example, a parabolic pitch cam yields
a spring hardening response tailored to mimic the response of interest.
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Figure 11.10. Flutter Speed Index vs. Mach Number for Isogai Case A

With such a nonlinear pitch cam in place, the system will experience
LCO response. It is noteworthy that similar nonlinear spring hardening
behavior has been observed in static measurements of the F/A-18 wing
Thompson and Strganac [70]. A polynomial representation of the spring
hardening behavior provides a quite effective model of the response. En-
coders are use to measure all motions.

The experimental and analytical efforts of O’Neil, et al used a model
with a nonlinear structural stiffness. In these studies, the stiffness grew
(i.e., spring-hardened) in a smooth, continuous manner with amplitude
of motion. The effect on flutter of a structure with stiffness that grew
in a cubic manner was investigated, and the results showed that LCOs
occurred and the stability boundary was insensitive to initial conditions.
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Figure 11.11. The Nonlinear Aeroelastic Test Apparatus (NATA) in Texas A&M’s
2’x3’ Wind Tunnel

As the freestream velocity was increased, the amplitude of the LCO
increased and less time was required to reach the LCO. A representative
result for LCO shown as phase plane diagrams is presented in Figure
11.12.

Nonlinear internal resonance behavior
Unusual findings from a wind tunnel experiment have been a motivation
for studies of the possible presence of internal resonance’s in aeroelas-
tic systems. Internal resonance (IR) occurs as a result of nonlinearities
present in the system, and leads to an exchange of energy between the
system modes. The amount of energy that is exchanged depends on the
type of nonlinearity and the relationship of the linear natural frequencies.
IR exists when the linear natural frequencies of a system are commensu-
rable, or nearly so, and the nonlinearities of the system provide a source
of coupling. Commensurability is defined as

m1ω1 + m2ω2 + . . . + mnωn ≈ 0

where mn are positive or negative integers, and ωn are the natural fre-
quencies of the system. Although an integer natural frequency ratio
does not guarantee IR, it does form a necessary condition for IR. IR has
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been shown to exist in many systems, and its presence depends on the
geometry, composition of nonlinearities and boundary conditions.

During wind tunnel tests by Cole [71] intended to verify the aeroelas-
tic stability of a new wing design, an unexpected flutter-type response
occurred at dynamic pressures much lower than analysis had predicted.
It is important to note that predictive tools based upon linear theory
were used. For the physical structure, the natural frequency of the sec-
ond bending mode of the wind tunnel model was slightly more than
twice the natural frequency of the first torsional mode. However, since
frequencies in an aeroelastic system depend on the aerodynamic loads,
a system’s frequencies may be tuned as the velocity changes. In Cole’s
experiments, a resonance-type condition may have been reached before
linear flutter conditions. Consequently, it was considered that the inac-
curate predictions were due to the limitations presented by the use of
linear theory.

In an attempt to explain the unexpected experimental results, Oh,
Nayfeh and Mook [72] developed an experiment to examine the struc-
tural dynamic behavior of Cole’s experiments. These experiments were
conducted in the absence of any aerodynamic loads. They determined,
theoretically and experimentally, the linear natural frequencies and the
mode shapes, and also experimentally showed that an antisymmetric vi-
bration mode of a cantilever metallic plate was indirectly excited by a 2:1
internal resonance mechanism. To explain the experimental results, they
referred to the study of Pai and Nayfeh [73] in which they considered
nonlinear beam theory. The two-to-one IR was present since the natural
frequency of the second bending mode being nearly twice the natural
frequency of the first torsional mode. Their experiment consisted of a
base excitation being applied to a cantilevered platewith the same aspect
ratio as Cole’s wing. However, in this study the second bending mode
was excited by a shaker rather than by aerodynamic forces.

Internal resonance has been used to suppress the vibrations of flex-
ible structures. Studies show that during the resonance, the nonlinear
modal amplitudes exchanged energy back and forth over time, even in
the presence of damping. It was also shown that in the presence of an
external excitation, the internal resonances give rise to coupling between
the modes, leading to several motions including nonlinear periodic, al-
most periodic, and chaos.

Although many researchers have investigated IR in various types of
mechanical systems, relatively little attention has been given to the study
of IR in aeroelastic systems. Stearman, et al [74] studied resonances in
aeroelastic systems, and showed that both combination-type and para-
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metric resonances can occur. These resonances occurred if

Ωf ≈ 2ωn/k and Ωf ≈ |ωi ± ωj|/k

where k is an integer, Ωf is the frequency of the external forcing function,
ωi, ωj and ωn are normal mode frequencies. Their study explored the
use of statistical techniques to analyze flight test data.

Gilliatt et al [75] and Chang et al [76] both studied the possible pres-
ence and effects of internal resonances in aeroelastic systems. Gilliatt,
in particular, was motivated by the experimental findings of Cole. The
two degree-of-freedom model of O’Neil’s research was a basis for the
study, and a quasi-steady aerodynamic model was extended to include
stall effects which introduced strong cubic nonlinearities into the equa-
tions of motion. The system parameters were selected to permit the
aeroelastic frequencies to pass through a 3:1, 2:1, and 1:1 ratio as the
flowfield velocity was increased. Gilliatt found that the presence of cubic
nonlinearities in the aeroelastic system led to a 3:1 internal resonance.

Delta wings with geometrical plate nonlinearities
At low Mach numbers, see for example Tang and Dowell [77], good corre-
lation has been demonstrated between theory and experiment for LCO
amplitudes and frequencies. Since these results are well documented
elsewhere, see also Dowell and Tang [64], here the recent work of Gord-
nier et al [78,79] that has extended these correlations into the transonic
range is emphasized. In Figure 11.13 a cropped delta wing planform
is shown. This configuration had been investigated experimentally by
Schairer and Hand [80] and the theoretical calculations were done by
Gordnier et al using both Euler and Navier-Stokes flow models. Initially
the theoretical calculations were done using a linear structural model,
which gave predicted LCO amplitudes much greater than those observed
experimentally. This led Gordnier to include nonlinearities in the struc-
tural model (tension induced by bending) via Von Karman’s nonlinear
plate theory that provided much improved correlation between theory
and experiment. See Figure 11.14 which shows a plot of LCO ampli-
tude versus flow dynamic pressure at a fixed transonic Mach number.
Note that the effects of viscosity are modest based upon the comparisons
of results using the Euler vs Navier-Stokes models. Also the much im-
proved agreement obtained with the nonlinear structural model suggests
that aerodynamic nonlinearities per se are not as significant for this con-
figuration as are the structural nonlinearities as Gordnier notes in his
conclusions. Perhaps the most significant impact of this example is to
illustrate that even for a transonic flow, there are cases where structural
nonlinearities may be dominant.
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Figure 11.12. Large Amplitude LCO’s, Induced by a Hardening in Structural Stiff-
ness, as Measured with the NATA

It is also interesting to note that for this example that the most signifi-
cant aerodynamic nonlinearity was associated with leading edge vortices
rather than shock motion. This nonlinear aerodynamic flow mechanism
has also been studied by Mook and colleagues, e.g. Preidikman et al
[81] at low Mach numbers in a series of papers. As Gordnier and Mook
note nonlinear vortex flow phenomena may be important when struc-
tural nonlinearities are weaker and the corresponding structural motions
greater. Of course if the mean angle of attack is sufficiently large (say
10 degrees or more) then vortex formation may be important for even
smaller wing oscillations.

Very high aspect ratio wings with both structural
and aerodynamic nonlinearities
Notable contributions have been made by Patil, Hodges and Cesnik [82,
83] and Tang and Dowell [84]. This case has been discussed in some
depth by Dowell and Tang [64] and that discussion will not be repeated
here. In summary, however, both structural geometrical nonlinearities
(associated with torsional motion and bending both transverse and par-
allel to the beam /rod chord) and aerodynamic nonlinearities (associated
with flow separation and wing stall ) have been shown to be important.
Also wing stall has been shown to lead to hysteretic LCO response with
increases and decreases in flow velocity. The correlation of theory and
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Figure 11.13. Planform of a Cropped Delta Wing

experiment is good, albeit the extant theory uses a semi-empirical model
to account for wing stall. Again it would be highly desirable to use a
Navier-Stokes flow model for correlation with this experiment and indeed
this case is a good benchmark for such flow models.

Further recent work has been done by Kim and Strganac [85] who used
the equations of Crespo da Silva [86] to examine store-induced LCOs for
the cantilevered wing-with-store configuration. These equations contain
structural coupling terms and quadratic and cubic nonlinearities due to
curvature and inertia. Several possible nonlinearities, including aerody-
namic, structural, and store-induced sources, were considered. Struc-
tural nonlinearities were derived from large deformations. Aerodynamic
nonlinearities were introduced through a stall model. Store-induced non-
linearities were introduced by kinematics of a suspended store. All of
these nonlinearities retained cubic nonlinear terms. To examine system-
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Figure 11.14. LCO Response vs Dynamic Pressure: Correlation of Experiment with
Various Theoretical Models for Cropped Delta Wing

atically the response characteristics, phase plane analysis was performed
and the effect of each nonlinearity, as well as combinations of the non-
linearities were studied. Although various forms of nonlinear responses
were found, of interest was the finding of LCO response at speeds be-
low the flutter velocity. Furthermore, an unstable boundary was found,
above which responses were attracted to the LCO and below which the
responses were attracted to the nominal static equilibria. Of special im-
portance, such subcritical response was found for only the case in which
complete consideration of structural, aerodynamic, and store-induced
nonlinearities was given. This suggested that studies of nonlinear aeroe-
lasticity must sometimes consider a full aircraft configuration. A repre-
sentative result is shown in Figure 11.15.
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Thompson and Stragnac [70] studied the effects of structural nonlin-
earities and store configuration nonlinearity. Thompson showed that al-
though store-induced kinematic nonlinearities might be considered neg-
ligible in practice, they may introduce atypical behavior that would not
be predicted by linear system analysis.

Nonlinear structural damping
Even linear aeroelastic models often use empirical models of structural
damping; thus little is known fundamentally about how to model struc-
tural damping for LCO. However an interesting and insightful hypoth-
esis has been offered by Chen, Saarhaddi and Liu [87]. If one assumes
that the structural damping increases with amplitude of structural mo-
tion (there is some experimental evidence to suggest this may be the
case), and if the negative aerodynamic damping associated with flutter
remains sufficiently small beyond the flutter boundary, then the nonlin-
ear increase in structural damping may offset the negative aerodynamic
damping and this will lead to a nonlinear, neutrally stable motion, i.e.,
LCO. Liu et al have performed calculations based upon this hypothe-
sis that appear consistent with some of the LCO observed in the F-16
aircraft.

Large shock motions and flow separation
These aerodynamic nonlinearities are both the most difficult to model
theoretically and also to investigate experimentally. Hence it is perhaps
not surprising that our correlations between theory and experiment are
not yet what we might like them to be. As a corollary one might observe
that it will in all likelihood be easier to design a favorable nonlinear
structural element to produce a benign LCO, than to assure that flow
nonlinearities will always be beneficial with respect to LCO.

NACA 64A010A Conventional Airfoil Models - In Figure
11.16 recent results are shown for the LCO of a NACA 64A010 air-
foil in plunge and pitch as predicted by an Euler flow model Kholodar,
Thomas, Dowell and Hall [88]. Here the LCO amplitude is plotted ver-
sus the flutter speed index (FSI) for a range of Mach number. As can
be seen the LCO is relatively weak (the curves of the figure are nearly
vertical) for most Mach numbers. And for those Mach numbers where
the LCO is relatively strong, it can be either benign (the curves bend to
the right) or detrimental (the curves bend to the left) leading to LCO
below the flutter boundary. This example also points out the substan-
tial amount of data needed to assess LCO under these circumstances. A
Navier-Stokes model has also been used to assess LCO of this configu-
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Figure 11.15. LCO Response of the Cantilevered Wing-With-Store Configuration

ration for a more limited range of parameters. The results (not shown)
indicate a modest effect of viscosity provided the mean angle of attack
is sufficiently small and no flow separation occurs.

NLR 7301 Supercritical Airfoil Models - Another configuration
of interest is the supercritical airfoil, NLR 7301, which has been studied
experimentally by Schewe and his colleagues [89-92]. This has in turn
inspired several theoretical studies using either an Euler or Navier-Stokes
flow model. A correlation among several theoretical models and the
result of experiment is shown in Figure 11.17. This figure is drawn
from the paper by Thomas, Dowell and Hall [93] who used a harmonic
balance LCO solution method. Results are also shown from Weber et al
[94] and Tang,L. et al [95] both of whom used the more computationally
demanding time marching technique. Note that there is only a single
data point from the latter as is the case from the experiment. However it
is clear that to have a more meaningful correlation it is highly desirable
to provide results for LCO amplitude over a range of FSI and Mach
number. Hence it is not yet clear what the conclusion should be with
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Figure 11.16. LCO Amplitude vs. Reduced Velocity for NACA 64A010 Airfoil

respect to correlation between theory and experiment. It does appear
that the several theoretical results are in reasonable agreement. More
correlations with the experimental data are needed.

Computational conditions are sensitive and care must be taken to
achieve reasonable steady initial pressure distributions for this configu-
ration. Also, the LCO conditions appear to be very sensitive to details
of the computations. Tang,L. et al give results from the CFL3D-NS
code illustrating effects of turbulence models, single-block and multi-
block (parallel), multigrid subiterations, and time step. Agreement for
the LCO motion amplitudes has been difficult to achieve for this case
even including the effects of wind tunnel wall interference. Castro et al
[96].

AGARD 445.6 Wing Models- The AGARD 445.6 wing has been
discussed earlier in terms of its flutter boundary; now we turn to very
recent results from Thomas, Dowell and Hall [97] for LCO. The corre-
lation between theory and experiment for the flutter boundary is again
shown in Figure 11.18 where the Euler flow model is that of Thomas
et al. The flutter boundary correlation is consistent with that discussed
earlier relative to Figure 11.6. But now we have in additional results for
LCO amplitude versus FSI for various Mach number. See Figure 11.19.
Note that a value of first mode non-dimensional modal amplitude of
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Figure 11.17. LCO Amplitude vs. Reduced velocity for NCR 7301 Supercritical
Airfoil

ξ = .012 as shown in this figure corresponds to a wing tip deflection
equal to one fourth of the wing half-span. Note also that in general the
LCO is predicted to be weak and there is no Mach number for which a
benign LCO is predicted. Indeed the strongest LCO is detrimental and
occurs at the low supersonic Mach numbers, i.e. M=1.141 and 1.072.
This means that LCO may occur below the flutter boundary at these
two Mach numbers and perhaps this explains at least in part why flutter
(or LCO) in the experiment occurs below the predicted flutter boundary.

Small amplitude LCO behavior for the AGARD 445.6 wing has also
been calculated by Edwards [98]. The majority of published calculations
for this wing model (actually a series of models with similar planforms)
are for the “weakened model �3” tested in air, since this test covered the
largest transonic Mach number range and showed a significant transonic
dip in the flutter boundary. The focus on this particular configuration
may be in some ways unfortunate, in that the model tested in air re-
sulted in unrealistically large mass ratios and small reduced frequencies.
Weakened models �5 and �6 were tested in heavy gas and had smaller
mass ratios and higher reduced frequencies. Very good agreement was
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Figure 11.18. Flutter Speed Index vs. Mach Number for AGARD Wing 445.6: Com-
parison of Theory and Experiment

obtained with experiment for flutter speed index using the CAP-TSDV
code over the Mach number range tested. For the highest Mach number
tested, M=0.96, it was noted that damping levels extracted from the
computed transients were amplitude dependent , an indicator of non-
linear behavior. It was also found that small amplitude divergent (in
time) responses used to infer the flutter boundary would transition to
LCO when the calculation was continued further in time. The wing tip
amplitude of the LCO was approximately 0.12 inches peak-to-peak, a
level that is unlikely to be detected in wind tunnel tests given the levels
of model response to normal wind tunnel turbulence.

MAVRIC Wing Flutter Model - This business jet wing-fuselage
model Edwards [98,99] was chosen by NASA Langley Research Center’s
Models For Aeroelastic Validation Involving Computation (MAVRIC)
project with the goal of obtaining experimental wind-tunnel data suit-
able for Computational Aeroelasticity (CAE) code validation at tran-
sonic separationonset conditions. LCO behavior was a primary tar-
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get. An inexpensive construction method of stepped-thickness aluminum
plate covered with end-grain balsa wood and contoured to the desired
wing profile was used. A significant benefit of this method was the ad-
ditional strength of the plate that enabled the model to withstand large
amplitude LCO motions without damage.

The model was instrumented with three chords of unsteady pressure
transducers and eight accelerometers. It was tested in air and in heavy
gas and with three wingtip configurations: clean, winglet, and pencil
tipstore. Figure 11.20 shows the Flutter Speed Index (FSI) boundary
versus Mach number from an earlier test of this model Edwards [100],
including computed CAE code comparisons. The experimental flutter
boundary shows a gradual decrease in dynamic pressure, reaching a min-
imum at M = 0.89. The structural modifications and added instrumen-
tation resulting in the MAVRIC model had very little effect upon the
flutter boundary. Both the Transonic Small Disturbance CAP-TSDV
and the higher level CFL3D codes are in good agreement with experi-
ment at the lower Mach numbers. Both inviscid codes, CAP-TSD and
CFL3D-Euler, increasingly depart from experimental values approaching
the minimum FSI value. This emphasizes the necessity of the inclusion
of viscous shock-boundary layer interaction effects for LCO-like motions.
Both viscous codes, CAP-TSDV and CFL3D-NS, are in good agreement
with experiment at M = 0.89 where small amplitude, time-marching
responses were used to identify the flutter boundary.

The behavior of the MAVRIC model as flutter was approached dur-
ing the wind tunnel test indicated that wing motions tended to settle
to a large amplitude LCO condition, especially in the Mach number
range near the minimum FSI conditions. Figure 11.21 [Edwards, 1996]
indicates the ability of the CAP-TSDV code to simulate these large
amplitude LCO motions. Large and small initial condition disturbance
transient responses clearly show the six inch peak-to-peak wingtip mo-
tions observed in the tests. Such large amplitude aeroelastic motions
have not been demonstrated by RANS codes which have difficulty main-
taining grid cell structure for significant grid deformations. Figure 11.22
Edwards et al [99] shows the map of the regions of LCO found in the
MAVRIC test in the vicinity of the minimum FSI (clean wingtip, deg.).
Numbers for the several contours in the figure give the half-amplitude of
wingtip LCO motions, in g’s, in the indicated regions. Two regions, sig-
nified by ’B’, are regions where ’beating’ vibrations were observed. For
this test condition, wing motions are predominantly of the wing first
bending mode at a frequency of 7-8 Hz. (wind-off modal frequency is
4.07 Hz.). Two chimney features are seen, at M=0.91 and at M=0.94.
Edwards discusses flutter model responses which are indicative of more
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Figure 11.19. LCO Amplitude vs. Reduced Velocity for Various Mach Numbers:
AGARD 445.6 Wing

complex nonlinear behaviors than are commonly attributed to LCO.
Thus, flutter test engineers are familiar with responses such as ’burst-
ing’ and ’beating,’ commonly used as indicators of the approach to flutter
(and LCO).

Clipped-Tip Delta Wing Control Surface Buzz Model -
Parker et al [101] describe a test of a clipped-tip delta wing model
with a full span control surface. The leading-edge sweep was 60 deg.,
the biconvex wing profile had thickness of 3 percent of local chord,
and the constant chord control surface length was approximately 13
percent of the root chord. The control surface was mounted on two
flexure springs. The tests were conducted in air which is of concern
since there are known to be severe Reynolds number and/or transition
effects for this tunnel at dynamic pressures below 50-75 pounds per
square foot Edwards et al [99]. Pak and Baker [102] have performed
computational studies of this case. They compare the experimental
buzz boundary with time-marching transient responses calculated with
the CFL3D-NS code and the CAP-TSDV code, respectively. Both
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Figure 11.20. Flutter Speed Index vs Mach Number for MAVRIC Model

codes capture LCO behavior near the experimental buzz conditions
with the higher level code appearing to have better agreement for the
experimental trend versus Mach number. The responses offer excellent
insight into issues and problems of the use of CAE time-marching codes
for LCO-like studies. The record lengths of a number of the responses,
which are extremely expensive to compute, are not sufficient for clear
determination of the response final status. Also, LCO behaviors can
result from very delicate force balances and settling times to final LCO
states can require many cycles of oscillation.
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Figure 11.21. Transient Response Leading to a LCO: Simulation for MAVRIC Wing

Residual Pitch Oscillations on the B-2 - The B-2 bomber en-
countered a nonlinear aeroelastic Residual Pitch Oscillation (RPO) dur-
ing low altitude high speed flight. See Dreim et al [13]. Neither the
RPO or any tendency of lightly damped response had been predicted by
wholly linear aeroelastic design methods. The RPO involved symmetric
wing bending modes and rigid body degrees of freedom. It was possi-
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ble to augment the CAP-TSDV aeroelastic analysis code with capability
for the longitudinal short-period rigid body motions, vehicle trim, and
the full-time active flight control system including actuator dynamics.
This computational capability enabled the analysis of the heavyweight,
forward center of gravity flight condition. The simulation predicts open
loop instability at M = 0.775 and closed loop instability at M = 0.81 in
agreement with flight test. In order to capture the limit cycle behavior of
the RPO it was necessary to include modeling of the nonlinear hysteretic
response characteristic of the B-2 control surfaces for small amplitude
motions. This is caused by the small overlap of the servohydraulic con-
trol valve spool flanges with their mating hydraulic fluid orifices. With
this realistic actuator modeling also included, limited amplitude RPO
motions similar to those measured in flight were simulated as shown.
A lighter weight flight test configuration exhibited very light damping
near M = 0.82 but did not exhibit fully developed RPO. Instead damp-
ing increased with slight further increase in speed, typical of hump mode
behavior. The CAP-TSDV simulations did not capture this hump mode
behavior.

Rectangular Goland Wing Model With Tip Store - We con-
clude this section with a discussion of the recent and valuable papers
by Beran et al [103] and Huttsell et al [104]. In the paper by Beran et
al comparisons were made between the predictions of a fully nonlinear
potential flow plus boundary layer model (CAP-TSDV) and the results
from classical fully linear theory (doublet lattice). The Goland wing was
used for this study which is a rectangular planform with a 4% parabolic
arc airfoil. In Fig. 11.23 flutter boundaries and what is termed a LCO
boundary are shown for the two theoretical methods. Results for the
wing alone and for a wing with a tip store are given. Beran et al note
that for this configuration the aerodynamic effect of the tip store is small,
but the effect of tip store dynamics (inertia) is important as seen in the
figure. Note also that the two flow models give results in good agreement
for the subsonic Mach number range, but differ substantially in the tran-
sonic range. Beran et al distinguish between the flutter boundary (for
the wing plus tip store) and the LCO boundary. However based upon the
work of others that show that rapid changes in flutter (and LCO) modes
may occur, it seems likely that these are both flutter boundaries per se.
At the subsonic Mach number it is likely that no LCO was observed in
these time simulations because the LCO is very weak. That is at sub-
sonic Mach numbers the time simulation shows a rapidly exponentially
diverging oscillation typical of a linear dynamical system. LCO was ob-
served over a narrow range of transonic Mach number (again consistent
with the findings of other investigators for other configurations) where
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Figure 11.22. Dynamic Pressure vs. Mach Number Contours of Constant LCO Am-
plitude for MAVRIC Wing

the aerodynamic nonlinearity is strong enough that a time simulation
will reach a finite steady state LCO amplitude in a reasonable amount
of computational time. However if the initial disturbance to the system
is small enough or there is little hysteresis in the dependence of LCO
steady state amplitude on speed index, then the boundary for the onset
of LCO should be essentially the same as the flutter boundary. There is
some mild hysteretic LCO behavior for this configuration as is discussed
further in the paragraph after next.

In Figure 11.24a the LCO amplitude is shown as a function of flow
velocity for various theoretical models. Results are shown with and
without store aerodynamics (again the differences are small) and with
and without the effects of viscosity. As can be seen there is little effect
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Figure 11.23. Flutter and LCO Boundaries: Velocity vs. Mach Number for Goland
Wing

of viscosity on the flow velocity at the onset of flutter and LCO, but
the effect on LCO amplitude per se is substantial. (The abrupt increase
in LCO response for the inviscid model may be indicative of unrealistic
shock motions.) Recall the results of Thomas, Dowell and Hall [93] for
the NLR 7301 airfoil which showed similar behavior when comparing
LCO response from inviscid and viscous flow models. And also recall
the results of Bohbot and Darracq [58] for the Isogai Case A.

In Figure 11.24b inviscid flow results are shown for various mean an-
gles of attack. The results are qualitatively similar, but the effect of
increased angle of attack is to increase the flow velocity at which flutter
and LCO occur.

In Figure 11.25, the results of Figure 11.24 are shown again for in-
creasing flow velocity (Perturbed Rigid IC) and decreasing flow velocity
(Path Following IC). The results display hysteresis with the LCO ampli-
tude observed being path dependent. As the flow velocity is increased
and given a sufficiently small initial condition (IC) disturbance, no flut-
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Figure 11.24. LCO Response vs Flow Velocity. An Example of Hysteresis for Goland
Wing

ter or LCO is seen until a velocity of about 390 ft/sec; but when the
airfoil is then allowed to oscillate in the LCO and the flow velocity is
now decreased, LCO continues until a lower velocity is reached of about
385 ft/sec. Although the range of flow velocity over which hysteresis
is observed is relatively small in this example, there is every reason to
expect that for other parameter choices the range of hysteresis can be
greater.

Time Marching Codes Compared to Various Experimental
Results - In the paper by Huttsell et al [104] several state of the art

time marching CFD codes are used to investigate flutter and LCO for
challenging cases drawn from flight or wind tunnel tests. The CAP-TSD,
CAP-TSDV, CFL3D and ENS3DAE codes are all used. The results are
extremely helpful in providing a realistic assessment of the state of the
art of these codes and they are also indicative of future needs for improve-
ments. For the F-15 example, difficulty was encountered in producing a
computational grid with negative fluid volumes being encountered. For
the AV8-B a steady state flow field could not be found due to oscillations
in the numerical solver from one iteration to the next. These difficulties
are not unusual for CFD codes in the present authors’ experience. Some-
times the difficulty in achieving a steady flow solution is attributed to
shedding in the flow field, but in the absence of a full nonlinear dynamic
CFD calculation, that must remain a speculation. For the B-2 exam-
ple encouraging agreement was obtained for the frequency and damping
variation of the critical flutter (and LCO) mode as a function of flight
speed using the CAP-TSDV code. For the B-1 estimates of the damping
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Figure 11.25. LCO Response vs. Flow Velocity for Goland Wing

associated with LCO were favorably compared to those found in wing
tunnel tests using the CFL3DAE code. It is not entirely clear what the
“damping” of an LCO means, however, since by definition LCO is a neu-
trally stable motion. Two control surface “buzz” cases were considered
and CFL3DAE had some success in predicting the behavior observed in
the wind tunnel for a NASP like configuration.

As Huttsell et al note, additional work is needed to improve CFD
model robustness, computational efficiency and grid generation defor-
mation strategies.

Abrupt wing stall
Although not usually classified as a nonlinear aeroelastic response or
LCO, abrupt wing stall (AWS) appears to share some of the same ba-
sic characteristics. A joint Navy/NASA/ Air Force program over the
last several years has addressed this class of phenomena Woodson [105].
Chambers [106] has presented a valuable historical account of AWS and
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drawn lessons learned from a number of aircraft programs. Much of the
recent work on AWS has been motivated by experiences with the F-18.

Briefly AWS is encountered when the aircraft is at a sufficiently high
angle of attack for flow separation to occur and the flow then begins to
oscillate including shock oscillations if the local Mach number is large
enough. For large angles of attack sonic conditions may be reached
locally even for relatively low free stream Mach numbers. This oscillating
flow may be asymmetric from one wing to the other and therefore the
aircraft will roll. If this rolling motion is a transient the motion is usually
called “wing drop” while if it is periodic in the roll angle it is called
“wing rock”. Wing rock has been modeled Nayfeh, Elzebda, Mook [107],
Ericcson [108] as a limit cycle oscillation due to nonlinear self-excited
coupling between the aerodynamic flow and the rolling motion of the
aircraft. Wing drop has been modeled by including this effect Kokolios
and Cook [109] and also the oscillating aerodynamic rolling moment
that may occur even in the absence of aircraft motion. This oscillating
aerodynamic moment is due to a nonlinear self-excitation of the flow in
the absence of aircraft motion and thus this moment is an “external”
excitation as far as the vehicle motion is concerned.

Since the dominant aircraft motion is rigid body roll rather than the
an elastic structural mode of the wing, for example, abrupt wing stall
is not usually thought of as being an aeroelastic issue per se. Yet from
a dynamics perspective many of the issues with respect to aerodynamic
modeling and aircraft motion are similar to those nonlinear phenomena
discussed previously in this paper. Valuable free-to-roll wind tunnel
model studies have been performed at NASA Langley Research Center
by Lamar et al [110] as have some CFD simulations of AWS. Several
sessions and papers devoted to this topic have been presented at the
recent 2003 AIAA Aerospace Sciences Meeting.

Uncertainty due to nonlinearity
There has been recent and renewed interest in the impact of uncertain-
ties on aerospace system response. Here two scenarios that have been
reported by operators of current aerospace systems are discussed and
the relationship of uncertainty to nonlinearity is noted.

Scenario I

One scenario that has been reported is the following. An aircraft in
straight and level flight does not experience flutter or LCO; however
when the aircraft is maneuvered LCO does occur and then when the air-
craft is returned to straight and level flight the LCO persists. The ques-
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tion is, how has the maneuver generated LCO that persists in straight
and level flight when LCO did not occur before the maneuver?

With the framework of a linear aeroelastic model, such behavior is
not possible , but an explanation is possible for a nonlinear aeroelastic
system as a result of hysteresis. That is, if the disturbance to a nonlinear
system is sufficiently small, LCO will not occur, but if a sufficiently large
disturbance is applied to the system, e.g., a maneuver, then LCO may
be induced. And once LCO exists, it may persist even if one returns to
the nominal original flight condition. Such behavior has been observed
in both mathematical and experimental wind tunnel models where the
nonlinear effect producing the LCO and hysteretic response is due to
either structural freeplay or flow separation.

In this scenario the uncertainty is because two different nonlinear
response states are possible at the same parameter condition (flight speed
and altitude) and the prior history of the system is critical in determining
its response.

Scenario II

In another scenario that has been observed, two distinct, but nominally
identical systems (aircraft) are flown through the same trajectory and
one encounters LCO but the other does not. The question is, how is this
possible? Again insights obtained from nonlinear aeroelastic models may
offer an explanation.

Consider an aircraft with freeplay as an example. Now it is very
difficult to maintain the same amount of freeplay in each and every
aircraft. So what might happen if two otherwise identical aircraft have
different amounts of freeplay? For the aircraft with the smaller freeplay,
the LCO amplitude (which scales in proportion to the magnitude of
freeplay) might not be noticeable because it is too small. However for the
aircraft with the larger freeplay the LCO may be detectable. From recent
theoretical and experimental studies of freeplay as discussed by Dowell
and Tang [64], not only is it known that LCO amplitudes increase in
proportion to the magnitude of the freeplay, but also that the magnitude
of the angle of attack required to suppress LCO due to freeplay scales
in proportion to the magnitude of the freeplay. Thus the aircraft with
the larger freeplay will not only have a LCO of larger amplitude, but it
will also experience freeplay over a larger range of angle of attack, again
making it more likely that LCO will be observed.

These two scenarios and their possible explanation point up the im-
portance of developing a fundamental understanding of the underlying
structural and fluid nonlinearities that may occur in aeroelastic systems
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in dealing with the uncertainties and apparent paradoxes that have been
observed in practice.

Concluding Remarks

Substantial progress has been made in modeling and understanding
nonlinear aeroelastic phenomena. Experimental and theoretical investi-
gations have shown good correlation for a number of nonlinear physical
mechanisms. As a broad generalization, one may say that our under-
standing of and correlation among alternative theoretical models and ex-
periment is further advanced for nonlinear structural mechanisms such
as freeplay and large deflection geometric nonlinearities of beam s and
plates, than it is for nonlinear fluid mechanisms such as large shock
motions and separated flows. Nevertheless accurate and much more
computationally efficient theoretical models are now becoming available
for nonlinear aerodynamic flows and there is cause for optimism in ad-
dressing these issues going forward.

As has been emphasized throughout this chapter, a number of physi-
cal mechanisms can lead to nonlinear aeroelastic response including the
impact of steady flow fluid or static structural nonlinearities in chang-
ing the flutter boundary of an aeroelastic system. Of course dynamic
nonlinearities play a critical role in the development of limit cycle os-
cillations, hysteresis in flutter and LCO response, and the sensitivity of
both to initial and external disturbances.

The good news for the flight vehicle designer is that because of non-
linear aeroelastic effects, finite amplitude oscillations can in some cases
replace what would otherwise be the rapidly growing and destructive
oscillations of classical flutter behavior. A careful consideration and de-
sign of favorable nonlinearities offers a new opportunity for improved
performance and safety of valuable wind tunnel models, flight vehicles,
their operators and passengers. And once nonlinear aeroelastic models
have reached a state of maturity sufficient for their consideration in the
design process, then active and adaptive control can potentially provide
for even greater flight vehicle performance. The discussion of active and
adaptive control is beyond the scope of this paper, but the reader may
wish to consult the work of Heeg [111], Lazarus, et al [112, 113], Ko,
et al [67-69], Block and Strganac [66], Vipperman, et al [114], Bunton
and Denegri [7], Clark et al [115], Frampton et al [116], Rule et al [117],
Richards et al [118] and Platanitis and Strganac [119].
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Chapter 12

AEROELASTIC CONTROL

12.1. Introduction

Aeroelastic phenomena, as described throughout this text, occur due
to a feedback effect between the unsteady aerodynamics and the struc-
tural dynamics of an airfoil or vehicle. This two-way exchange of en-
ergy is what distinguishes aeroelastic phenomena from driven vibration
problems in structural dynamics. The presence of feedback also pro-
vides much common ground between the disciplines of control theory
and aeroelasticity. In particular, the concept of stability is central to
both fields, and the accuracy of models are judged largely on the ability
to predict the conditions under which an instability will occur.

In control theory, linear time invariant (LTI) models form the basis for
most types of analysis and design. Models of this form, and extensions
to linear parameter varying systems, will be assumed for the methods
discussed in this chapter. The dynamics of lightly damped structures
are well described by this type of model. Using spatial expansions based
on orthogonal functions [1], low order models can be constructed that
predict vibration accurately, particularly for small displacements. Fluid
dynamics, however, exhibit behavior on a wide range of scales and often
are sensitive to nonlinearities present in the physics. Nevertheless, as was
discussed in Chapter 9, many important cases of aeroelastic phenomena
can be predicted with time-linearized aerodynamic models. These mod-
els can account for effects such as shock, separation and even turbulence
in the steady solution, and the dynamic behavior is treated as a linear
perturbation about this solution. With this linear dynamic simplifica-
tion, tools such as eigenvector analysis or singular value analysis become
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possible, and aerodynamic models may be reduced in order similar to
what is commonly done with finite element structural models.

In this chapter some basic concepts from control theory will be re-
viewed, including state-space modeling, balanced realization theory, and
extensions to linear parameter varying models. This is a relatively nar-
row presentation of control theory, and the content is in no way meant
to be comprehensive. Rather the intent is to introduce the reader to
possibilities with simple examples serving as vehicles for the concepts
presented. The broader area of controlling aeroelastic vehicles is de-
scribed in the work on aeroservoelasticity from Noll [2], the literature
survey of Livne [3], and a series of results from NASA sponsored research
programs [4,5].

Specifically, active flutter suppression is developed for two example
systems, a typical section model and a flexible delta wing. Experimen-
tal results are presented for both with feedback control based upon fixed
as well as gain-scheduled compensators. A unifying theme to the pre-
sentation is the applicability of Hankel singular values from the initial
model reduction stage, aerodynamic, structural, or aeroelastic, to the
design of actuator and sensor systems for selectively targeting modes
of the system. Thus, we have chosen to provide an integrated design
perspective for the presentation of aeroelastic control.

12.2. Linear System Theory
The design of feedback control systems is dominated by the use of lin-

ear time invariant (LTI) input/output models. The concepts described
below are detailed in standard linear systems texts including [6-9], and
are provided here largely to introduce the notation and terminology,
which are also standard but may vary somewhat from previous notation
in this book.

System interconnections
The state-space model of an LTI system that is driven by inputs u ∈ Rp

and observed by outputs y ∈ Rq is,[
ẋ
y

]
=
[

A B
C D

] [
x
u

]
(12.1)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, and D ∈ Rq×p. This complete
model is often denoted by a single symbol, G, that can be either the
transfer function matrix

G(s) = C(sI − A)−1B + D, (12.2)
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where s is a Laplace transform variable [8], or equivalently a state space
realization

G(s) :=
[

A B
C D

]
. (12.3)

State-space models can be developed at a subsystem level and combined
by various interconnections into full system models. Several important
interconnections are shown in the block diagrams of Figure 12-1. Note
that outputs appear on the left in these block diagrams, consistent with
the equations they represent. The series connection of two systems G1

and G2, as shown in Figure 12-1a, is

G1(s)G2(s) :=

⎡
⎣ A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

⎤
⎦ (12.4)

and the parallel connection, as shown in Figure 12-1b, is

G1(s) + G2(s) :=

⎡
⎣ A1 0 B1

0 A2 B2

C1 C2 D1 + D2

⎤
⎦ (12.5)

Finally the feedback connection of systems G1 and G2 as shown in Fig-
ure 12-1c is,⎡

⎣ A1 + B1R
−1
u D2C1 B1R

−1
u C2 B1(I + R−1

u D2D1)
B2R

−1
y C1 A2 + B2R

−1
y D1C2 B2R

−1
y D1

(I + D1D2R
−1
y )C1 D1R

−1
u C2 D1(I + D2R

−1
y D1)

⎤
⎦
(12.6)

where
Ru = (I − D2D1)−1, Ry = (I − D1D2)−1 (12.7)

and simplifies considerably if either system is strictly proper (i.e., D1 or
D2 is zero).

G1 G2
uy uy

G1

G2

y uG

G

1

2

Σ

(a) Series (b) Parallel (c) Feedback

Figure 12.1. Interconnection of systems G1 and G2

The feedback connection is often defined in terms of a linear fractional
transformation (LFT) on the systems involved. The LFT is a convenient
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formalism for feedback effects and is commonly used in robust control
design. It provides the ability to view uncertainty in a model as an un-
known feedback effect and in so doing unifies many methods of analysis
and design [9,10]. To understand the mechanics of an LFT explicitly,
consider the mapping [

z
q

]
=
[
M11 M12

M21 M22

] [
w
v

]
(12.8)

and the feedback relationship v = ∆q, as shown in Figure 12-2a. The
relationship between z and w is given by the lower LFT,

z =
(
M11 + M12∆(I − M22∆)−1M21

)
w

= Fl(M, ∆)w
(12.9)

vq

wz
M

∆
wz

q v

∆

M

(a) Lower LFT, Fl(M, ∆) (b) Upper LFT, Fu(M, ∆)

Figure 12.2. Linear Fractional Transformation of ∆ on M

Similarly, the upper LFT results if ∆ relates w and z as shown in
Figure 12-2b, and this is given by,

q =
(
M22 + M21∆(I − M11∆)−1M12

)
v

= Fu(M, ∆)v
(12.10)

A useful property of the LFT is that algebraic combinations of LFTs
which occur due to parallel, series, or feedback connections preserve the
LFT structure. Therefore, systems with multiple LFTs can be repre-
sented by a single LFT of augmented dimensions. The general linear ro-
bust control problem is represented by the block diagram of Figure 12.3,
where ∆ represents the effect of uncertainty on the system model, and
K represents a feedback control law. The closed-loop transfer function
of interest is

Tzw = Fl(Fu(T, ∆), K). (12.11)

The linear optimal control problem involves finding K to minimize Tzw

with ∆ = 0, while robust control seeks the same objective with only
limited knowledge of the uncertainty model ∆.
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q

y u

v

wz

∆

T

K

Figure 12.3. General LFT framework for linear robust control problems

In principle the uncertainty ∆ can be made large enough to contain
all the feedback effects of aerodynamics on a system. Then the aeroe-
lastic control problem is just regulation of the structural model while
retaining stability in the presence of the uncertainty. Such a design is a
first pass at including aerodynamics in a structural vibration problem,
however, the performance would be limited by the large uncertainty. To
obtain acceptable performance an explicit model for the aerodynamics
is needed. A method for obtaining suitable reduced order models will
be outlined in Section 12.3.

Controllability and observability
The LTI system of (12.1) is said to be controllable if for any initial
condition, x(0), any target state, x1, and any final time, tf , there exists
an input signal, u(t), defined in the interval t ∈ [0, tf ] that will cause the
system to satisfy x(tf) = x1. In fact this control signal can be explicitly
calculated as,

u(τ) = −BTeAT (tf−τ)Wc(tf)−1(eAtf x(0) − x1); (12.12)

where Wc, the controllability Gramian, is

Wc(tf) =
∫ tf

o
eAτBBTeAT τdτ. (12.13)

The condition for existence of this signal is the invertablility of the ma-
trix Wc(tf) for any final time tf . For stable systems, only the infinite
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time Gramian, Wc(∞) need be calculated. The solution to (12.3) with
infinite final time can be found from the positive definite solution to the
Lyapunov equation,

AWc + WcA
T + BBT = 0 (12.14)

If the matrix Wc is full rank, and therefore invertible, the system is said
to be controllable. Otherwise the system has at least some states which
are not controllable from the input.

A dual problem to that of system controllability is observability. A
system is said to be observable if for any time tf > 0, the initial state
x(0) can be determined from the output history y(t) over the interval
t ∈ [0, tf ]. The infinite time observability Gramian can be found as the
solution to,

ATWo + WoA + CTC = 0. (12.15)

and the system is observable if Wo is full rank.
Controllability and observability of a system is a standard assumption

for many problems involving the design of optimal control laws. In prac-
tice it is rare to find models built from physical principles that contain
non-obvious unobservable or uncontrollable subspaces. However these
Gramians can provide more information about a system than just a dis-
crete test of controllability or observability. The numerical conditioning
of Wc (Wo) provides measure of the relative degree of controllability (ob-
servability). For example if the singular values of Wc are spread over a
wide range, then the inverse will be ill-conditioned and from (12.12) one
would expect large control forces to reach a nominal x1, say on the unit
ball, ‖x1‖ = 1.

Clearly the conditioning of this matrix depends upon the units, and
more generally on the coordinates, of the internal state vector x. These
coordinates are not unique and an LTI system will have a family of
equivalent models related by similarity transformations. Transforming
the state vector by any nonsingular matrix T as x̂ = Tx, yields equivalent
realizations with the same input/output properties.

G(s) = C(sI − A)−1B + D :=
[

T−1AT T−1B
CT D

]
. (12.16)

A particularly useful coordinate system is called balanced coordinates,
and is defined as the coordinate system in which the observability and
controllability Gramians are diagonal and equal, Wc = Wo. For a stable,
observable and controllable system such a realization always exists and
is, by convention, ordered in such a way as to relate the first state of
the model to the largest singular value of Wc, the second state to the
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second largest singular value of Wc, and so forth. These singular values
are called the Hankel singular values (HSV) and they play an important
role in model reduction as well as system realization theory [11,12]. The
technique for calculating transformations to balanced coordinates was
first introduced in [13] and is described in detail in several textbooks,
including [7,9,10].

It should also be noted that the absence of controllability and/or
observability isn’t always a negative thing. Control system design can
be accomplished as long as one can control or observe the modes of
the system that are important for the desired performance. As will be
discussed later in Section 12.4, we can use the concept of Hankel singular
values in the context of controllability and observability to selectively
couple to some modes and intentionally minimize coupling to others.
This leads to the incorporation of control concepts in the physical design
of a system.

12.3. Aeroelasticity: Aerodynamic Feedback
From spacecraft pointing to automotive ride quality many problems

in structural dynamics involve the response of a system to external dis-
turbances. Aeroelastic responses differ from these in that the source of
the disturbance is strongly influenced by the structural response. This
coupling is itself a feedback effect with the aerodynamics providing a
flow-dependent feedback that can destabilize the system either through
divergence or flutter. To study the aeroelastic problem as a feedback
interconnection it is convenient to develop approximate LTI models in
state-space form.

In this section state-space LTI models are constructed for two simple
aeroelastic systems. The first is a typical section airfoil coupled with
reduced order 2D potential flow. The combined system is shown to
match standard results in the prediction of flutter, and also to match
published results in the prediction of limit cycle oscillations. The second
system is a uniform delta wing coupled to a reduced-order 3D potential
flow model. Both these models are sized with consideration to available
experimental hardware.

Development of a typical section model
The typical section airfoil shown in Figure 12.4 is standard in the analysis
of rigid-body aeroelastic flutter [14,15] and was covered in some detail
in Chapter 3 of this book. The structural model for the system can
be obtained by expressing the kinetic and potential energies in a set
of generalized coordinates and applying Lagrange’s equation [1]. The
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Figure 12.4. Typical section airfoil model

potential energy is stored exclusively in the systems springs and can be
written as

U =
1
2
(
Khh2 + Kαα2 + Kββ2

)
. (12.17)

where the coordinates and spring constants are as shown in Figure 12-4.
The kinetic energy is given by

T =
1
2

∫ b

−b
ρ(x)ṙ(x)2dx. (12.18)

where ρ(x) is the linear density, r(x) gives the position of the airfoil in
an inertial frame and b is the semi-chord. For small angles, motion in the
horizontal direction is negligible and the motion in the vertical direction
can be written

r(x) ≈
{
−h − (x − e)α −b < x < c

−h − (x − e)α − (x − c)β c < x < b
(12.19)

where e is the elastic axis, c is the flap hinge-line, and by convention
h, the vertical displacement of the elastic axis, is positive downward.
Substituting this approximation into (12.18) yields,

T =
1
2
(Mḣ2+Iαα̇2+Iββ̇2)+α̇β̇Sα+β̇ḣSβ+α̇β̇(Iβ+(c−e)Sβ). (12.20)

where the mass is

M =
∫ b

−b
ρ(x)dx, (12.21)
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and the inertias and mass imbalance terms are defined as,

Iα =
∫ b

−b
ρ(x)(x − e)2dx Sα =

∫ b

−b
ρ(x)(x − e)dx (12.22)

Iβ =
∫ b

c
ρ(x)(x − c)2dx Sβ =

∫ b

c
ρ(x)(x − c)dx. (12.23)

Lagrange’s equation,

∂

∂t

(
∂(T − U)

∂q̇i

)
− ∂(T − U)

∂qi
= Qi, (12.24)

relates the motion in coordinates qi to forces Qi in those coordinates.
Choosing generalized coordinates as pitch(α), flap(β), and plunge(h)
and substituting (12.20) and (12.17) into (12.24) yields the following
equations of motion,⎛

⎝ Iα Iβ + (c − e)Sβ Sα

Iβ + (c − e)Sβ Iβ Sβ

Sα Sβ M

⎞
⎠
⎛
⎝α̈

β̈

ḧ

⎞
⎠ +

⎛
⎝Kα 0 0

0 Kβ 0
0 0 Kh

⎞
⎠
⎛
⎝α

β
h

⎞
⎠ =

⎛
⎝Mα

Mβ

−L

⎞
⎠

(12.25)

where Mα, Mβ, L are torque about the elastic axis, torque about the flap
hinge, and lift force, respectively. With the choice of state vector,

xs =
[
α β h α̇ β̇ ḣ

]T (12.26)

and position measurements, y, this can be written in state-space form
as, ⎡

⎣ ẋs

y

⎤
⎦ =

⎡
⎣ 0 I 0

M−1K 0 M−1

I 0 0

⎤
⎦
⎡
⎣ xs

u

⎤
⎦ (12.27)

where the mass matrix M is first term in (12.25) and K is the diagonal
stiffness matrix from (12.25).

Aerodynamic model, 2D
The structural model above must be coupled to an aerodynamic model
to form the complete system. Analytic aerodynamic models, such as
those of Theodorsen [14], have been used to study harmonic oscillations
of the aeroelastic structure and used to predict important features, such
as the flutter boundary. Approximations to these solutions are possible,
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Figure 12.5. Arrangement of point vortices and control points for two dimensional
vortex lattice aerodynamic model.

both in the frequency and time domain [16-18], and have been used
to study a variety of aeroelastic problems, including the typical section
model [19-21].

In this work a vortex lattice formulation is used to represent the
aerodynamics, and balanced model reduction is applied to generate a
reduced-order model. The vortex-lattice approach admits general non-
harmonic motions, as well as harmonic oscillations and can be extended
to airfoils with more complex geometries. Balanced model reduction re-
tains fidelity in the aerodynamic model with respect to external effects
on the structure. Extensions of this type of model reduction to larger
and more complex fluid dynamic models is an active area of research
[22-24].

The fluid is assumed to be incompressible, irrotational, and inviscid.
Following the development in [25] the 2D airfoil and a finite portion of
the wake behind the airfoil is divided into N equal length elements, as
shown in Figure 12.5. Each panel element has a point vortex of strength
γ at the quarter chord and a collocation point at the three-quarter-chord.
The 2D wash at the collocation points on the airfoil can be described by
the potential equation,

wn
i =

N∑
j=1

Kijγ
n
j , i = {1, 2, . . . , M} (12.28)

where the wash, wi is described at M points on the airfoil, and influenced
by vortex strength γj both on the airfoil (1 ≤ j ≤ M) and in the wake
(M + 1 ≤ j ≤ N). For a 2D system the kernel function Kij is given by,

Kij =
1

2π(xi − ζj)
(12.29)

where xi and ζj are the ith wash collocation and jth point vortex loca-
tions, respectively.
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The first wake term, γn
M+1, is given by the time rate of change of the

circulation about the airfoil, as shown in (12.30). The vorticity simply
convects along the wake with the freestream, as in (12.31). Since the
wake is finite, vorticity on the final wake element is allowed to accumulate
with a relaxation factor α̂ < 1, as given in (12.32). Together these
conditions,

γn+1
M+1 = −

M∑
j=1

(γn+1
j − γn

j ) (12.30)

γn+1
i = γn

i−1, for i = {M + 2, M + 3, . . . N − 1} (12.31)

γn+1
N = γn

N−1, +α̂γn
N (12.32)

along with (12.28) constitute N linear equations in the N unknowns γi.
The set of N equations can be written in matrix form,

Γn+1 = AΓn + Bwn (12.33)

where A ∈ RN×N,B ∈ RN×M are constants, Γ = [γ1, γ2, . . . γn]T is a
state vector. The input to this system is the normal wash and is fully
defined by the airfoil motion. Enforcing a non-penetration condition on
the airfoil, for the geometry of Figure 12.4 and small angle conditions,
the wash is given by,

wj =

{
αU + α̇(xj − e) + ḣ for xj < c

(α + β)U + (α̇ + β̇)(xj − e) + ḣ for xj > c
(12.34)

Finally, outputs from the aerodynamic model relevant to the coupled
system are the moment about the elastic axis, moment about the flap
hinge, and the lift. These can be calculated as,

Mα =
∫ b

−b
ρ(e − x)∆p

Mβ =
∫ b

−b
ρ(c − x)∆p

L =
∫ b

−b
ρ∆p

(12.35)

where the pressure difference across the airfoil is given by Bernoulli’s
equation,

∆p = Uγ(x) +
d

dt

∫ x

−b
γ(x̂)dx̂ (12.36)
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The discretization of these integrals yields the expression of lift and
moments as linear sums of γi and so forms an output equation for the
state model,

y = CΓn + Dwn (12.37)

where the outputs are lift and moments, y =
[
Mα, Mβ, L

]T .

Balanced model reduction
The model described by (12.33) and (12.37) is conveniently in the form
of a discrete-time state-space system. This model can be converted to
continuous-time, and coupled directly with (12.25) for aeroelastic anal-
ysis. However the vortex lattice model can be quite large, with a state
for each discrete vortex. For efficient control design this model needs to
be reduced to one of lower order.

One method of model reduction is to transform the aerodynamic
model into a new coordinate system where the new states are orthogonal
distributions of vorticity, ordered by their coupling to the input/output
mapping. Such an ordering is achieved by transformation of the model
into balanced coordinates. Model reduction then involves simply trun-
cating the less important states.

For the reduced model to be applicable to the widest range of con-
ditions it is useful to non-dimensionalize the inputs and outputs before
balancing. Here we take non-dimensional time to be s = tU/b and the
non-dimensional input from the airfoil to be,

û =
[
α, β,

h

b
,

dα

ds
,

dβ

ds
,

dh/b

ds

]T

(12.38)

and the outputs to be lift and moment coefficients,

ŷ = [Cα, Cβ, CL]T

=
[

Mα

2πρU2b2
,

Mβ

2πρU2b2
,

L

2πρU2b

]T (12.39)

To illustrate the level of model reduction possible, a vortex lattice
model was constructed for a simple flat plate airfoil with 20 vortices
along the plate, and an additional 160 vortices in the wake. Figure 12.6
shows the Hankel singular values for each state in the balanced system.
Since the states are ordered, simply truncating the model will yield a
reduced order model whose magnitude error is, at worst, twice the sum
of the truncated Hankel singular values [9]. Therefore, if a system Ga is
a state-space model corresponding to the N vortex lattice equations and
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Ĝa is a nth order model found through balancing, the following holds

‖Ĝa − Ga‖∞ < 2
N∑

i=n

σi (12.40)

where σi is the ith Hankel singular value. For practical purposes states
whose contribution to the input/output map is three or four orders of
magnitude below the dominant state may be truncated without signifi-
cant errors. For the simple flat-plate airfoil a 5th order model was real-
ized, corresponding to truncating all states whose contribution was three
orders of magnitude down from the dominant state. The error bound for
this case, calculated as twice the sum of the truncated singular values, is
1.6%. This is an upper bound on magnitude error (over all frequencies)
in the prediction of lift and moment outputs, from harmonic plunge and
pitch inputs.

Figure 12.7 shows the transient response of this system to a step input
in angle of attack. The response matches well with the Wagner function,
an analytic solution to this problem [15] given as

φ(s) =
2
π

∫ ∞

0

(
J1(J1 + Y0) + Y1(Y1 − J0)
(J1 + Y0)2 + (Y1 − J0)2

)
sin(ks)

k
dk (12.41)

where Ji and Yi are Bessel functions of the first and second kind, respec-
tively, and are functions of the reduced frequency, k.

Combined aeroelastic model
The structural and aerodynamic models developed above can be cou-
pled to form a model for the aeroelastic system. At a given flowspeed
the dynamics are linear, and we can use eigenvalues of the system to
assess stability properties. Figure 12.8 shows a root locus type plot
of the system’s eigenvalues as flowspeed is varied. The two oscillatory
poles are related to the pitch and plunge dynamics of the typical section
model. The real poles, and others outside the range of the plot, are re-
lated to flap dynamics and to the 5th order reduced-order aerodynamic
model. For this example, the typical section has an elastic axis at 0.4
semichords forward of the center, and flap hinge 0.6 semichords aft of
the center. Mass and inertial properties are also chosen as in reference
[19], where a similar analysis is done using both an analytic solution to
the aerodynamics and an approximation using rational functions. The
results here, which are based on the reduced order vortex lattice code,
compare well with these previous results. This root locus plot shows a
behavior typical of bending-torsion flutter. From an undamped struc-
tural model, the initial effect of flow is to add damping to the all the
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modes. As the frequencies of pitch and plunge dominated motions co-
alesce the lower frequency becomes undamped, eventually destabilizing
at the flutter boundary.

Finally, although the dynamics predicted by this model are linear it is
possible to incorporate structural non-linearities into the model without
dramatically changing the formulation. Previous studies on a typical
section model [20,21,26] have shown a nonlinear spring response in the
flap will produce limit-cycle behavior at flowspeeds well below the linear
flutter boundary. To incorporate such an effect into the model it is
useful to isolate the nonlinearity as a feedback effect. This corresponds
to having a nominal linear model in an LFT configuration with the
nonlinearity. In the structural model of (12.25) the flap spring stiffness,
Kβ, can be set to zero, and its effect replaced with an outer feedback
loop between flap position and the moment applied to the flap. Such an
arrangement is shown in Figure 12.9, where the nonlinearity is deadband
in the response of the flap spring.

This system has two distinct linear regions. Within the deadband
region it appears that there is no physical restoring spring in the flap
position, and outside the region it has the a nominal stiffness Kβ. The
switching between these systems, however, is discontinuous and occurs
twice per flap oscillation. The dynamics, therefore, exhibit a variety
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elastic axis 1/4 chord e -0.063 m
Hingeline 3/4 chord c 0.063 m
Mass M 1.72 Kg
Pitch Inertia Iα 7.07e-3 Kg m2

Flap Inertia Iβ 1.68e-4 Kg m2

Wing Mass Imbalance Sα 4.49e-2 Kg m
Flap Mass Imbalance Sβ 2.03e-3 Kg m
Pitch Stiffness Kα 19.6 Nm/rad
Flap Stiffness, Kβ 2.0 Nm/rad
Plunge Stiffness, Kh 1480 N/m

Table 12.1. Physical parameters for typical section model
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Figure 12.9. Coupled aeroelastic system with deadband nonlinearity

of nonlinear behavior. The work here uses physical parameters as in
Table 12.1, consistent with those used in [20] and a 5th order aerody-
namic model as described above. The simulations were executed directly
from the diagram of Figure 12.9 using integration routines within the
commercially available (Mathworks, Inc.) Simulink software. With the
deadband set to zero, the system was linear and had a predicted flut-
ter boundary of 23.4 m/s, with an unstable oscillation at 6.1 Hz. With
a deadband of 2.12 degrees, however, the system exhibited limit cycles
starting at about 28% of the linear flutter speed. These limit cycles,
shown in Figure 12.10 at 30% of the flutter speed, compare well with
earlier results [20].
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Figure 12.10. Limit cycle behavior of nonlinear system at 30% of linear flutter speed

Development of a delta wing model
True flutter phenomena occur due to distributed flexibility in an aircraft
wing, conditions which are only coarsely approximated by the rigid body
dynamics of the typical section model. A more realistic system, that still
lends itself to analytic study, is a uniform and flexible delta wing [27,28].
Here a delta wing model is developed which incorporates piezoelectric
sensors and actuators to allow for aeroelastic control. The model also
serves as a basic design platform for shaping the open-loop dynamics of
the structure through optimal actuator and sensor placement, as detailed
in the next section.

Basic physics of the delta wing model include the structural and trans-
duction device dynamics, and their interaction with the unsteady aero-
dynamic loads. The structural model is readily developed through finite
element analysis or an assumed modes approach as outlined by Richard
et al., [29]. For the purpose of this example, the structural model is
formed using the assumed modes method outlined in [30]. This gen-
eral approach follows the work of Anderson et al., [31] by finding the
assumed mode shapes applicable to a clamped-free-free-free (CFFF )
rectangular plate and transforming these functions into a trapezoidal
domain. A one-hundred mode (two-hundred state) model is generated
with Lagrange’s equations (the products of ten assumed chordwise and
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ten assumed spanwise beam modes), and the model is later reduced to
include fifty states.

Initially, the out-of-plane assumed modal displacements of a rectan-
gular CFFF plate are represented as the product of clamped-free (η)
and free-free (µ) beam modes for a given assumed plate mode (i) as in
Equation 12.42, where the i indice extends over all combinations of j
and k. These beam mode products are used for simplicity since they
satisfy the geometric (and natural ) boundary conditions for the CFFF
plate.

Φi(x, y) = ηj(x)µk(y) (12.42)

The beam modes are defined based upon the general beam solution
(Equation 12.43) with boundary conditions specific to the problem.

W (x) = A1sin(γix) + A2cos(γix) + A3sinh(γix) + A4cosh(γix) (12.43)

The free-free case requires: W ′′(0) = 0, W ′′′(0) = 0, W ′′(L) = 0,
and W ′′′(L) = 0, giving the mode shapes described in Equation 12.44.
The clamped-free case requires the conditions: W (0) = 0, W ′(0) = 0,
W ′′(L) = 0, and W ′′′(L) = 0, which yields the mode shapes described
by Equation 12.45. The eigenvalues are represented by parameters αj

and βk, and Lx and Ly are the x and y dimensions of the plate.

ηj(x) = cos(αjx) + cosh(αjx) + A[sin(αjx) + cos(αjy)]

A =
[
cos(αjLx) − cosh(αjLx)
sin(αjLx) − sinh(αjLx)

]
(12.44)

µk(y) = cos(βky) + cosh(βky) + B [sin(βky) + sinh(βky)]

B =
[

sin(βkLy) − sinh(βkLy)
cos(βkLy) + cosh(βkLy)

]
(12.45)

Using the assumed mode shapes developed for the rectangular plate,
a coordinate transformation is performed to map them into non-
dimensional trapezoidal coordinates. The transformation is shown in
Figure 12.11. The transformation is normalized by span (Sp) and root
chord (C) dimensions to yield a unit square, and the taper ratio (TR)
is defined as the tip chord dimension divided by the root chord. By this
definition, the delta wing would have a taper ratio of zero but numeri-
cal considerations limit this value to a finite taper ratio: TR = ε > 0.
In addition to this transformation, the Jacobian is required due to in-
tegration of the shape functions necessary in the model development.
Allowing for the intermediate step of non-dimensionalizing x and y by
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Figure 12.11. Coordinate transformation from dimensionalized rectangular to non-
dimensional trapezoidal domain.

C and Sp respectively (yielding x̂ and ŷ), the Jacobian is defined as
follows:

J
(

x̂, ŷ

u, v

)
≡
∣∣∣∣∣∣

∂x̂
∂u

∂x̂
∂v

∂ŷ
∂u

∂ŷ
∂v

∣∣∣∣∣∣ =
Sp

2C
[1 − v (1 − TR)] (12.46)

These transformations along with the Jacobian allow for the integration
of assumed rectangular plate mode shape functions necessary for the
calculation of energy functions used to develop the equations of motion.

Upon developing expressions for the kinetic and potential energy, La-
grange’s equations (Equation 12.24) can be applied to obtain the struc-
tural equations of motion, which upon solving the discrete eigenvalue
problem resulting from the assumed-modes approach, can be expressed
in the following well recognized form:

[
ṙ
r̈

]
=

[
0 I

−ω2 −2ζω

] [
r
ṙ

]
+

[
0
I

] [
R
]

(12.47)

with r and R representing modal states and forces. The ζ matrix is
a diagonal representation of approximate proportional modal damping
coefficients, introduced to bound the response at resonance, and ω is the
matrix of system natural frequencies.

For the example presented, the geometric and material parameters
were selected to model a wing of appropriate mass and stiffness to fa-
cilitate experimental implementation in the low-speed wind tunnel lo-
cated at Duke University (Table 12.2). These parameters correspond to
a model of appropriate dimensions and sufficient flexibility to produce
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Geometry 45o LE × 90o TE delta, clamped at root

Proportions 0.381 m (15 × 15 in.)

Material Acrylic

Thickness (hs) 1.58 × 10−3 m (0.062”)

Elastic Modulus (Es) 4.2 × 109 N/m

Poisson Ratio (vs) 0.45

Density (ρs) 1.009 × 103 kg/m3

Table 12.2. Delta wing model parameters

Figure 12.12. Invaccuo mode shape node-line predictions for first four structural
modes.

flutter within the operating range of the wind tunnel. The material
properties were obtained from [32] as average properties for acrylic.

At this point in the development, the model can be used to predict
the no-flow mode shapes of the wing and associated natural frequencies
for a given set of parameters. Plots of these predicted mode shapes with
nodal lines can be seen in Figure 12.12.

Transducer effects
To complete the design model, one must incorporate the dynamics of
the transduction devices. Here, induced-strain, surface-mounted, piezo-
electric transducers were selected for actuators and sensors.

A technique for incorporating the electro-mechanical coupling effects
of surface mounted piezostructures was developed in [33]. A brief pre-
sentation of the model is discussed herein; however greater details of the
modeling specific to the example here can be found in [34]. The piezo-
electric patches relate to the structure through the Θ and Cp matrices
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shown in Equations 12.48 and 12.49.

[Ms + Mp] q̈ + [Ks + Kp] q = BfF + ΘV (12.48)

Y = ΘTq + CpV (12.49)

The general definitions of the Θ and Cp matrices are shown in Equa-
tions 12.50 and 12.51, with the first part of the integrand in Equation
12.50 representing the mechanical portion and the later electrical part
being coupled to it through the piezoelectric material constant matrix,
eT . The Mp and Kp terms in Equations 12.48 and 12.49 represent the
mass and stiffness characteristics of the patches and are generally small
compared to the corresponding terms for the wing structure. The details
of Equations 12.50 and 12.51 can be found in [33] or [30].

Θ =
∫

Vp

[LwΦrRs]TeT [RELϕΦv]dVp (12.50)

Cp =
∫

Vp

[ΦvLϕRE]TεS[RELϕΦv] dVp (12.51)

These equations can be substantially simplified for cases involving thin
patches with symmetric strain constants (d31 = d32), which are part of
the eT and εS terms. The simplified equations are taken from [30] and
are shown in Equations 12.52 and 12.53 for mode j. In the simplified Θ
equation, the electro-mechanical coupling constant is composed of the
piezoelectric strain constant for the x and y directions, the piezoelectric
modulus of elasticity and the Poisson’s ratio (d31, Ep, νp). The inte-
grated potential distribution term consists of the plate and patch thick-
nesses, (hs, hp), and the chord length, (C). The integrand involves only
the jth mode shape function for the plate with the limits of integration
corresponding to the x and y domains of the patch. The full matrix has
rows corresponding to particular modes (j) and columns correspond-
ing to patches (m). For this simplified case, the capacitance function
(Cp) forms a diagonal matrix whose entries consist of the piezoelectric-
dielectric constants, area, and thicknesses (εS

m, Apm, hpm). The diagonal
nature of Equation 12.53 reflects the fact that capacitance is only rele-
vant for the collocated sensoriactuator case (i.e., when the transducer is
used for both sensing and actuation [35].)

Θj =
(

d31Ep

1 − νp

)(
hs + hp

2C2

)
∫ y2

y1

∫ x2

x1

[
∂2Φjm(x, y)

∂x2
+

∂2Φjm(x, y)
∂y2

]
dxdy (12.52)
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Cp =

⎡
⎢⎢⎣

εS
1 Ap1
hp1

0
↘

0 εS
1 Apm

hpm

⎤
⎥⎥⎦ (12.53)

These equations are used to model the effect of piezoelectric patches
(sensors or actuators) mounted on the delta wing structure. The compu-
tational difficulties in this approach result from the integral in Equation
12.52. As long as the patches are rectangular and orthogonal to the
base, simple numerical integration schemes can be used. However, for
calculating odd-shaped, rotated, or numerous patches, straightforward
use of this method is too computationally intensive.

To address this issue, a contiguous grid was developed over the entire
surface of the wing [36]. A compromise between computational effi-
ciency and accuracy determines the resolution of the grid. The general
idea is to save, in advance, the calculated electromechanical coupling
characteristics of very small piezoelectric elements, which can be used
later, through numerical integration, to compute the electromechanical
coupling coefficient for individual actuator or sensor patches. The size
of these elements allow for further simplification of Equation 12.52 as
shown in Equation 12.54. The justification for this is quite straightfor-
ward. If the individual elements used to represent a distributed sensor
or actuator are sufficiently small compared to the wavelengths of the
modes of interest, a zero-order approximation to the integral can be
used. Therefore, by taking the value of the shape function at the center
of an element (xc, yc) and multiplying by the area (AE), the integral can
be approximated as follows:

∫ y2

y1

∫ x2

x1

[
∂2Φjm(x, y)

∂x2
+

∂2Φjm(x, y)
∂y2

]
dxdy ≈[

∂2Φjm(xc, yc)
∂x2

+
∂2Φjm(xc, yc)

∂y2

]
AE (12.54)

Due to the linear nature of the electro-mechanical coupling effects of
the patches, large patches can be constructed by summing the effects
of elements within the large patch boundaries as illustrated in Equation
12.55 with the variables Θm and ΘE corresponding to an overall patch
and its component elements respectively, and N being the number of
constituent elements. Similarly, the capacitance effects can be deter-
mined by summing the component element capacitance effects. Since all
of the elements are of constant dimensions, the capacitance is the same
for all elements and the summation reduces to the simple expression of
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Figure 12.13. Patch building through summation of piezoelectric elements.

Equation 12.56.

Θm =
N∑

E=1

ΘE (12.55)

Cpm = NCpE (12.56)

Using this approach allows for the necessary element characteristics to
be calculated once for a given wing geometry. The process requires that
the ΘE and CpE vectors be calculated for all of the elements and saved
for later patch construction. The computational advantages gained from
this approach result from the fact that much of the required computa-
tions are performed outside of the optimization routine - apriori. Thus,
the cost of calculating the elements’ coupling does not factor into the
efficiency needs of the algorithm. Computational gains and modeling er-
rors that result from this approach can be found in the work of Richard
[34].

Aerodynamic model, 3D
A reduced order aerodynamic model was developed based upon the vor-
tex lattice approach. Thus, assumptions include subsonic, inviscid, in-
compressible, and irrotational flow as has been previously discussed in
this chapter and book. The first step in the process is to develop a
grid for the wing and wake as illustrated in Figure 12.14 with vorticity
points at the quarter chord, and downwash observation points at the
three-quarter chord of each grid block. The grid is structured such that
the grid blocks are of like size and shape in the unit square computa-
tional domain consistent with the structural model. The grid used in
this example has 8 chordwise blocks, 15 spanwise blocks, and 4 chords
of wake leading to a model with 600 vorticity states.

As detailed in the previous section, the order of this model can be
readily reduced using balanced realization theory. Applying this model
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Figure 12.14. Vortex lattice construction grid for wing and wake.

Figure 12.15. Relative magnitude of Gramians in balanced system.

reduction technique, it was possible to reduce the number of states in-
cluded in the aerodynamic model from 600 to 50. The relative magni-
tudes of the balanced system Gramians (i.e., the HSVs) are illustrated
in Figure 12.15. The sum of all of the truncated Gramians totals less
than 5% of the non-truncated Gramian sum.

Coupled system
The aeroelastic system is developed by coupling the structural and aero-
dynamic models through feedback. The two systems were constructed
with this goal in mind and their input/output requirements were mod-
eled so as to facilitate this step. Once coupled, the model can be used
to predict characteristics such as flutter speed, flutter frequency, mode
shape progression with flow, and general system response traits for any
flow speed below the linear instability boundary. It is now possible to



Aeroelastic Control (Clark and Cox) 635

6 5 4 3 2 1 0 1 2
0

10

20

30

40

50

60

70

80

Real Axis

Im
ag

in
ar

y 
A

xi
s 

(H
z)

Instability
Point

Figure 12.16. Aeroelastic root migrations with flow.

use this model to predict the onset of flutter (based on the assumption of
linear instability being the driving mechanism). By plotting the aeroe-
lastic system roots at progressively increasing flow speeds, trends of root
migration can be followed that clearly show the roots of the second mode
moving into the right half plane (Figure 12.16). In contrast, each of the
other modes show substantially increased damping, and thus, reduced
response. The instability takes place at a flow speed of 31.5 m/s for
the system parameters outlined in Table 12.2. Although the non-linear
effects involved with flutter can be expected to somewhat alter the fre-
quency of oscillation, it can be expected to be in the vicinity of the 18
Hz prediction of the linear model.

The aeroelastic model can also be used to predict the progression of
mode shapes with increasing flow speed. Since the root migration identi-
fies the second mode as the mode of interest, the emphasis here is placed
on how that mode shape changes as the system approaches flutter. The
areas of lowest average maximum displacements are shown in Figure
12.17 with respect to increasing flow speed. This figure clearly shows
the nodal centers moving toward the interior of the wing as the flow
speed is increased. This pre-flutter, combined torsional/bending mode,
in addition to the clear trend shown in Figure 12.16, points to the fact
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Figure 12.17. Mode shape progression of second aeroelastic mode with flow speed.

that flutter results from a coalescence of the first structural mode (pri-
marily bending) and the second structural mode (primarily torsional).
This is consistent with the concept of modal coalescence described in
this text. There is also the implication that the ideal placement of sen-
sors and actuators for control of this mode should change between the
no-flow case and the pre-flutter case.

12.4. Open-Loop Design Considerations
In a feedback control system, the actuator input signals are created

by modifying the temporal response of the sensor signals with a com-
pensator. The optimum controller - temporal compensator, is usually
realized by frequency-shaping the system open- and closed-loop transfer
functions [30]. Although much can be accomplished with the optimiza-
tion (and in practice the iterative tuning) of a control law, the final per-
formance of a system depends very much on how difficult the problem
is to begin with. Previous work in adaptive structures has also shown
that optimum compensator design may be augmented by considering
the design of the spatial compensator of the control system [30]. Spatial
compensation is defined as the influence of the type, placement, size, and
shape of the transducers on the open-loop response and, as a result, the
closed-loop temporal compensator design. When combined, the tempo-
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ral and spatial compensator’s form the complete control system for any
structure.

While much of an airframe design may be fixed by other criteria, the
choice of actuator and sensor locations is often determined by a com-
bination of physical restraints and requirements of the control system.
These choices frame the dynamics, and if possible, it is best to make
those decisions an integral part of the design, with an eye toward the
final control objectives. The Hankel Singular Values (HSVs) that play
a key role in model reduction can also be utilized early in the design to
facilitate the choice of actuator and sensor locations.

HSVs and the modal model
In models with lightly damped dynamics the HSVs can be related di-
rectly to modal parameters through a very simple expression. For the
purpose of development, cast the structural model from the actuator
input, u(t), to the measured output of the sensor, y(t), in modal form
such that

q̈ + diag(2ζiωi)q̇ + diag(ω2
i )q = B̂u

y = Ĉq (12.57)

where ωi and ζi are the natural frequency and damping ratio of the ith
mode, respectively. Defining the state vector as

x = [q̇1, ω1q1, . . . , q̇Nm , ωNmqNm ]T (12.58)

produces a state space representation such that

ẋ = Ax + Bu

y = Cx (12.59)

where A = diag(Ai), B = [BT
1 , . . . ,BT

Nm
]T , C = [C1, . . . ,CNm ]. The

submatrices are defined as

Ai =
[ −2ζiωi −ωi

ωi 0

]
(12.60)

Bi =
[

bT
i
0

]
(12.61)

and

Cj = [cj,0] (12.62)
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where bT
i is the ith row of B̂ and cj is the jth column of Ĉ [37].

Williams [37] demonstrated that the square of the ith HSV of a lightly
damped structure can be approximated by the following expression:

σ2
i ≈

[
bT

i bi

] [
cT

i ci

]
(4ζiωi)

2 , (12.63)

where σi is the approximation of the ith HSV. As indicated in equation
(12.63), the ith HSV is proportional to the time constant (τi = 1/(ζiωi))
of the ith structural mode and the modal participation coefficients for
each actuator and sensor. The numerator of equation (12.63) thus pro-
vides a measure of the degree of coupling between the actuator inputs
and measured outputs relative to the structural modes. Physically, the
HSV is a measure of the amount of energy that can be stored in the
system from the inputs and the amount of energy that can be retrieved
by the outputs [38]. Thus, the HSV can be used to measure the effective-
ness of a particular actuator/sensor pair for coupling, or not coupling,
to structural modes.

From a practical perspective, it should be noted that not all models
can be described purely in modal form, and in fact, most experimen-
tal models, obtained from system identification, will often incorporate
first-order dynamics as well with real poles. However, when optimizing
actuator/sensor designs, one usually targets the lightly damped modes
of the system since the actuator/sensor design is an integral part of the
structural dynamics. Thus, one can effectively ignore the first order dy-
namics in this portion of the design, but certainly not in the design of
the temporal compensator.

Optimization strategy
There are numerous means for optimization; however, the one thing
common to all schemes is the choice of the cost function, which effectively
defines the problem. Since the Hankel singular values provide a measure
of the degree of coupling for a chosen path, one must decide how to use
this information in design.

The design metric for frequency-shaping with spatial compensators
is developed from the work presented by Smith and Clark [39], Clark
and Cox [40], Lim [41], and Lim and Gawronski [42]. As detailed in
these references, methods for optimizing or selecting the appropriate
spatial aperture (i.e, size and location) of actuators and sensors using
Hankel singular values of the open-loop controllability and observability
Gramians are developed.

The first step in developing any compensator design metric is to cast
the control problem into proper form. Figure 12.18 shows a block dia-
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Figure 12.18. Block diagram of generalized plant with feedback controller.

gram of the two-port or two-input, two-output (TITO) closed-loop sys-
tem. The system T (s) is composed of the generalized plant, P (s), with
controller, K(s). The transfer matrix P (s) in Figure 12.18 represents
the dynamics of the adaptive structure and transducer coupling, and is
written in equation form as:[

z(s)
y(s)

]
=
[

Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

] [
w(s)
u(s)

]
. (12.64)

As shown by Figure 12.18 and Equation (12.64), P (s) is partitioned
according to the input-output variables, and four sub-matrices are iden-
tified. The upper-left transfer matrix, Pzw, represents the path from the
input disturbance signals to the measured performance. The lower-right
transfer matrix, Pyu, is the path from the input actuator signal to the
response of the sensor, and is determined by the selection of transducer
type, placement, size, and/or shape. The cross transfer matrices Pzu

and Pyw show that the design of the control transducers also affects sys-
tem performance and that the disturbance signals affect the measured
outputs, respectively.

Each transfer matrix is formed from the states of the system and the
respective input-output characteristics. When optimized, the design of
the spatial compensators ideally alters the coupling characteristics of the
system for increased performance and robustness.

The Hankel singular values (HSVs) from the input actuator signal to
the sensor output are written as

σyu = diag(σyu1, . . . , σyun, . . . , σyuNm). (12.65)
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The HSVs defined by Equation (12.65) provide a measure of the degree of
coupling between each of the Nm modes associated with the transducer
path of the control problem.

A spatial compensator design metric based entirely upon evaluating
Equation (12.65) was presented by Lim and Gawronski [42]. In this case,
the HSVs defined by Equation (12.65) were computed from a predeter-
mined set of candidate transducer locations and the optimum location
is defined by the path which provided the greatest HSV measurement.
The conclusion being that selecting transducer locations with the largest
degree of coupling increases control system efficiency and, thus, perfor-
mance.

Lim [41] recognized that the purpose of the control problem defined
in Figure 12.18 is to reduce/control the measure of performance, z(s),
and that Equation (12.65) could be weighted by a measure of the sys-
tem performance to provide for spatial compensator designs that are
efficient at coupling the modes with the greatest effect on the measured
performance.

Again using HSVs, a measure of the degree of coupling of each mode
associated with the performance-disturbance path, Pzw, is

Σzw = diag(σzw1, . . . , σzwn, . . . , σzwNm) (12.66)

and the design metric defined by Lim [41] is written as

Jqp ≡
Nm∑
i=1

σ2
ypuqi

σ̄2
yui

σ2
zwi, (12.67)

where Jqp is the metric for the q-th candidate sensor and p-th candidate
actuator. The value σ̄2

yui is the squared HSVs of the system where all
possible actuators and sensors are considered; it is used to normalize
the HSV calculations. As shown in [41], Equation (12.67) is a computa-
tionally efficient means of determining transducer designs that increase
system performance.

Based upon Equation (12.67), Clark and Cox [40] developed a de-
sign metric which also provided for system robustness. This metric
emphasizes coupling to modes within the bandwidth of control, but de-
emphasizes coupling to modes outside the performance bandwidth. This
metric was later refined by Smith and Clark [39] as well as Richard and
Clark [34]. Defining a binary selection vector with 1’s corresponding to
the targeted modes of the system and 0’s elsewhere, a metric can be
developed to emphasize actuator/sensor selection that provides desired
coupling to select modes and effectively penalizes coupling to modes
unimportant in the control system design. Thus, one can effectively im-
pose a level of roll-off in the frequency response by penalizing coupling
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to higher-order modes. This can be readily implemented by constructing
binary selection vectors related to modes desired for performance, Λperf

(with unity on-switches and zeros as off-switches), and a binary selec-
tion vector to identify modes unimportant for performance, identified
as Λrobust here. It should be noted that an ideal actuator/sensor choice
would be one that coupled only to the modes desired for enhanced con-
trol system performance. This would lead to an identified system model
with very few modes in the identified path and thus a low-order compen-
sator – an inherently simpler design problem. The two metrics (desirable
and undesirable) can be expressed in terms of the HSVs as follows:

Jperf =
N∑

i=1

Λperf
σyui

σ̄yui

σzwi (12.68)

Jrobust =
N∑

i=1

Λrobust
σyui

σ̄yui

σyui (12.69)

These two metrics yield scores for a given actuator/sensor pair that
correspond to their beneficial and detrimental modal coupling. Note that
each metric is normalized by σ̄yui , which as detailed by Lim, represents
the root-mean-square of the sum of the HSVs over all possible actuator-
sensor paths for a given mode. This approach works well when one is
trying to select an actuator and sensor from a fixed array of candidate
sensors and actuators (i.e., when all possible actuator-sensor paths are
known in advance). However, when designing without such constraints,
one must provide a normalizing estimate, and the simplest estimate is
to use the maximum for each mode over a given set of actuator-sensor
candidates. This does not guarantee that the normalized metric will
be less than unity, but it will be of order unity for scaling purposes.
The performance metric used in the delta wing model presented can be
expressed as follows:

J =
Jperf

Jrobust
(12.70)

Thus, J is maximized when Jperf is large and Jrobust is small, indicating
that the actuator-sensor path maximizes coupling to the desired modes
and minimizes coupling to modes that are not important for controlling
the desired dynamic response of the structure.

Optimization results
A genetic algorithm was used to optimize the design of the actuator and
sensor concurrently so as to achieve the desired coupling and decoupling
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to modes within the bandwidth of interest. Details of the optimization
can be found in the work of Richard [34]. However, the primary mode
targeted for coupling is the second mode since this mode is observed to
destabilize as the flutter boundary is approached. Coupling to higher
order modes (greater than the sixth mode) is penalized to impose a level
of roll-off in the frequency response from input to output and reduce
coupling to modes unimportant for control. Coupling to other structural
modes (below mode seven) is neither emphasized or penalized so as
not to overly constrain the design. Thus Λperf = [0 1 0 0 . . . ] and
Λrobust = [0 0 0 0 0 0 1 1 1 . . . ]. A genetic algorithm was structured so
as to allow for optimization of the angle of orientation and dimensions
of the actuator and sensor. For the case presented, the dimensions of
the actuator were constrained to a maximum of 2 inches in both x and
y.

The initial conditions for actuator and sensor dimensions and orien-
tation were selected arbitrarily, and hundreds of cases were executed to
determine if the optimization would lead to similar results. The design
results are presented in Figure 12.19. Several design results are depicted
in this figure, and it should be noted that the results emphasized in bold
are representative of the design used for the experimental test system.
The optimal actuators are located closest to the leading edge of the delta
wing and the sensors are depicted near the trailing edge. The dominant
peak in the frequency response corresponds to the second structural
mode, and the diminished coupling at higher frequency is readily noted,
which is a form of “loop-shaping” by design. A plot of the performance
metric as a function of the number of iterations within the optimization
routine is also displayed. As indicated by the results, despite the fact
that the initial conditions for the actuator and sensor dimensions and
orientation were selected arbitrarily, the optimal results are very similar.

12.5. Control Law Design
The general diagram of Figure 12.3 provides a basis for understanding

much of modern and robust control design. The control objectives are
best viewed in terms of the transfer function path through the system
Tzw. This path is defined by the control designer and not limited by
physical inputs or outputs of the system. Through the application of
static, or possibly dynamic, weighting functions on this path a wide
variety of possible performance objectives may be defined.

With ∆ = 0 the problem of finding a K that minimizes the perfor-
mance path ‖Tzw‖ is a linear optimal control problem. With appro-
priately chosen inputs, w, and outputs, z, minimizing the H2 norm is
equivalent to the linear quadratic regulator problem with optimal esti-
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Figure 12.19. Optimization results for patches with maximum 2x2 inch actuators.

mation (LQR/LQG) [43]. In addition to minimizing ‖Tzw‖ when ∆ = 0,
requiring stability for the interconnection Fl(Fu(T, ∆), K) for non-zero
∆ is the robust control problem. Typically, ∆ is an unknown but norm
bounded and the problem is scaled such that ‖∆‖∞ < 1. Then the
stability requirement can be enforced (with some conservatism) by the
small-gain condition ‖Tqv‖∞ < 1. This forms the basis of robust control
design via H∞ methods [9].

In both the case of quadratic regulation and robust control the opti-
mization problem is to find a state-space system K that will minimize
‖Tzw‖. With the controller K an LTI model of the same order as the
augmented plant matrix T , this optimization problem reduces to the
solution of two coupled second order algebraic equations, called Riccati
equations. Although the algebraic Riccati equations must be evaluated
numerically, efficient procedures exist to do this and the time required
to solve the problem depends on the order of the system, and not the
problem data. This avoids some of the pitfalls of nonlinear optimization,
and helps account for the wide generality of modern control theory.
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In this section quadratic optimal control laws (the H2 problem) are
posed for both the typical section and delta wing models. Rationale
for the system augmentation and control weightings are detailed and
predicted extension of the flutter boundary under active control is shown
for both models.

Control of the typical section model
Consider the typical section model defined above with the trailing edge
flap as the control surface and position measurements available from
each axis.

The control design includes weights typical of Linear Quadratic Gaus-
sian (LQG) control laws, including a trade-off between performance and
control effort and between sensor noise and process noise. This basic
design technique has been successfully applied to a typical section airfoil
under a variety of experimental conditions [44-46].

Pitch-plunge coupling is known to be the flutter mechanism in this
system, with the system destabilizing quickly (with respect to variations
in flow speed) after the frequencies of these motions coalesce. With the
goal of extending the flutter boundary a reasonable control objective
would be to reduce coupling in the system for the model just below the
flutter boundary. To achieve this an objective function, Tzw, is defined
as the transfer function from a disturbance in plunge to the response
in pitch. This will cause the control action to try and alter dynamics
of the closed-loop system such that the coupling between these motions
is reduced. Without further augmentation, however, the optimization
problem is not well posed. The coupling can be made very small, but
this will require control authority exceeding that available from the flap.
To limit control effort, outputs of the the objective path, Tzw, are aug-
mented with the control signal. In a similar fashion the plunge distur-
bance input is augmented with additive inputs at the sensors, and this
is used to reduce the sensitivity of the control action to sensor noise.

Figure 12.20 shows the problem in block diagram form, with the de-
sign weights shown as triangular signal gain blocks. Without loss of
generality the performance weight, Q, and the level of disturbance input
Qw can be set to unity, as these weights are trade-offs in the optimiza-
tion problem with the control effort R and sensor noise Qv, respectively.
The sensor noise level Qv was set independently for each channel, and
at a level which gives a physically appropriate sensor/noise ratio. Here,
given the resonate response near the flutter boundary, the sensor noise is
scaled to be two orders of magnitude below the peak harmonic response
at the sensors from a unit disturbance input. The only remaining design
freedom is the level of the control effort penalty. This was determined
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Figure 12.20. Block diagram showing system augmentation for H2 control design
problem

through iterative design, checking closed-loop response to ensure the sys-
tem does not saturate the control surface, in either harmonic or transient
response.

In Figure 12.21 the open and closed loop transfer functions are shown
from the disturbance (a force in plunge) to the change in angle of attack.
Although the closed loop response is still lightly damped, it is signifi-
cantly attenuated due to the action of control. Therefore, although
this model may not have significantly more damping than the open-loop
model, the attenuated coupling should allow for an increased flutter
boundary. The root loci of Figure 12.22 confirms that this is the case.
Under closed loop control the flutter boundary is extended by 19% to
27.8 m/s, and the locus is altered such that flowspeed variations cause a
change in frequency, rather than damping, in the region near the design
condition.

There are, however, some obvious limitations to this approach. In
the design only the performance of the control law at a single flowspeed
is considered. By choosing an open-loop model near the flutter bound-
ary we have operated on a critical region, however, at points off of this
flow condition the performance is not optimized. From the loci in Fig-
ure 12.22 it can be seen that the closed loop system is actually unstable
for all flowspeeds up to 11.2 m/s. Also, although the flutter bound-
ary is extended damping is actually decreased at most flowspeeds in the
closed-loop response. In practice this may lead to unacceptably large
vibrations, or show a sensitivity to model errors. Some of this could
be addressed by tuning the control weights and by including additional
transfer functions in the performance path. However, as will be seen in
a later section, by using linear parameter varying models and convex op-
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Figure 12.22. Root Loci as flowspeed is varied from 0 m/s (Circle) to 30 m/s (X).
The closed-loop system is unstable below 11.2 m/s and above 27.8 m/s

timization for the control design it is possible to incorporate eigenvalue
constraints directly and to optimize performance over a range of flow
conditions.
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Control of the delta wing model
Through H2-synthesis, a temporal compensator can be designed so as to
minimize the response of the second mode in order to extend the flutter
boundary. Since the dynamics of the system vary as a function of flow-
speed, one must select a flow speed for design unless gain scheduling is
incorporated. For the example presented, the pre-flutter condition of 30
m/s was selected for design.

Figure 12.20 shows the H2 design problem in block diagram form as
detailed in the previous section. Control design for the delta wing is
consistent with the approach outlined for the typical section model, and
uses the same system augmentation in defining the optimization path
Tzw. The performance weight, Q, and the level of disturbance input
Qw are again set to unity. The sensor noise level Qv was set at a level
which gives a physically appropriate sensor/noise ratio, approximately
two orders of magnitude below the peak response.

Given that the actuator-sensor path was designed so as to provide roll-
off at higher frequencies, this results in a control design that effectively
precludes any significant emphasis on high-frequency dynamics since the
signal to noise ratio is poor by design at higher frequencies . The remain-
ing degree of freedom in design is the level of the control effort penalty.
An iterative design process was conducted, checking closed-loop response
to ensure the system does not saturate the piezoelectric transducer.

Results illustrating the migration of the closed-loop poles as a function
of flow-speed are depicted in Figure 12.23 along with the migration of
the open-loop poles. As indicated, the predicted instability of the closed-
loop system occurs at a flow-speed of 39 m/s, yielding a 20 % extension
of the flutter boundary.

12.6. Parameter Varying Models
Gain scheduling of control laws is a technique for overcoming some

of the limitations of single-point designs, and has been successfully ap-
plied in a variety of aerospace and industrial systems [47]. Of relatively
recent interest in control theory is the use of Linear Matrix Inequalities
to design gain-scheduled controllers [48,49] using an extension of linear
models to systems with linear or affine parametric dependence. Such
models are called Linear Parameter Varying (LPV) and take the form,

S(θ) =
[

A(θ) B(θ)
C(θ) D(θ)

]
(12.71)
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Figure 12.23. Closed-loop aeroelastic root migrations.

for a parameter vector θ ∈ RN. Since the dependence of the state
matrices on θ is affine we can write,

S(θ) = S0 +
N∑

i=1

θiSi (12.72)

This structure includes a much wider range of dynamic models than
LTI systems, and provides acceptable approximations to many nonlinear
problems of engineering significance. Stability, system norms, and other
properties can be established for models where the variations are slow,
remain within constant bounds, or are arbitrarily fast. By allowing this
same form for the control law, controllers can be designed which are
implicitly gain-scheduled and vary with parameters of the plant.

Linear matrix inequalities
The design of LPV gain-scheduled control laws follows a similar develop-
ment as linear optimal control, but the optimization problem results in
a series of linear matrix inequalities (LMIs) as constraints, with an ob-
jective function that is linear or affine in the problem’s unknowns. With
constraints posed as an LMI, or combinations of LMIs, the resulting op-
timization problems are convex, and very efficient numerical techniques
exist for their solution [50,51]. The development of control synthesis
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methods using LMIs is an active area of research and will be summa-
rized only briefly here. The interested reader is referred to the references
for background on the use of LMIs in system theory [52-54], the formula-
tion of LMI control objectives [55-58], and the design of gain-scheduled
controllers for LPV systems [48,49,59,60].

A Linear Matrix Inequality (LMI) is a system of equations in which
some unknown or decision variable is written as an affine function of
symmetric matrix quantities. The equation is satisfied if the matrix
function is either strictly positive (or negative) definite. The canonical
form for such an equation is,

F (x) = F0 +
m∑

i=0

xiFi > 0 (12.73)

where x ∈ Rm, and Fi = FT
i ∈ Rn×n. The greater-than symbol implies

that F (x) is positive definite, that is,

qTF (x)q > 0, ∀q ∈ Rn (12.74)

Individual LMIs can be combined in a straightforward manner by diago-
nally augmenting the equations into a larger LMI. For example, the pair
of conditions that F (x) > 0 and G(x) < 0 can be written as the single
LMI, [

F (x) 0
0 −G(x)

]
> 0 (12.75)

All LMIs can be written in the canonical form of (12.73), however, some-
times these equations arise more naturally in matrix form with the un-
knowns appearing as elements of a symmetric matrix. So long as prod-
ucts of unknowns do not appear in these equations, the LMIs still have
a convex solution and can be transformed into the form of (12.73) by
finding the terms Fi as a basis for F (x) corresponding to the ith variable
[52].

LMI controller specifications
In this section two useful controller specifications, the H2 norm of a
transfer function and a regional pole placement condition, are developed
in terms of linear matrix inequalities involving the state-space models.
With these criteria defined in terms of LMIs, it will be possible to pose
convex optimization problems for control laws which address the issues
of control design for various flow conditions and allow direct control over
system eigenvalues.
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The H2 norm of a system is the sum of the root-mean-square (RMS)
responses to unit impulses and can be written,

‖G‖2 =

√√√√ m∑
i=1

∫ ∞

0
ŷ2

i (t)dt. (12.76)

where ŷi is the response to a unit impulse δ(t) on the ith input. For a
finite H2 norm the system’s feed through matrix D must be zero, and
the output is given by,

ŷi(t) = CeAtBiδ(t). (12.77)

Substituting ŷ into (12.76) yields,

‖G‖2
2 = trace

∫ ∞

0
ŷT ŷ dt

= trace BT

(∫ ∞

0
eAT tCTCeAtdt

)
B

= trace BTWoB

(12.78)

where Wo, the observability Gramian, is calculated as the solution to
the following Lyapunov equation,

ATWo + WoA + CTC = 0. (12.79)

Therefore, a system’s H2 norm will be below a level, γ, if a solution
P > 0 exists such that,

ATP + PA + CTC < 0 (12.80)
trace BTPB < γ2 (12.81)

Making the variable substitution Q = P−1 and introducing a free vari-
able Z > 0 this condition can be written,

QAT + AQ + QCTCQ < 0

BTQ−1B − Z < 0

trace Z < γ2

(12.82)

Finally, the Schur complement (see e.g. [52] ) of (12.82) yields the fol-
lowing LMIs,[

AQ + QAT QCT

CQ −I

]
< 0,

[
Z BT

B Q

]
> 0, trace Z < γ2 (12.83)
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which are jointly convex in the unknowns Q, Z, and γ2.
Existence of Q > 0 and Z > 0 that satisfy the inequalities in (12.83)

establish that the system’s H2 norm is below γ. Determination of such
solutions can be found numerically as a convex feasibility problem. Fur-
thermore, a convex optimization problem may be posed that exploits
the freedom in Q and Z to find a minimal value γ2. This value of γ is
the system H2 norm.

In order to address system damping directly it is desirable to specify
in the controller design that closed loop poles are contained in regions of
the left-half plane. Pole-placement is a traditional technique in control
design, but it is seldom used in high order systems because uniquely spec-
ifying all the eigenvalue locations produces a highly constrained problem,
and can require large amounts of control effort. Regional pole placement
defines regions of the left half plane where closed loop poles may reside,
and unlike exact pole-placement allows additional design freedom for
minimizing the control effort required.

Following the development in [57,61], let a region of the complex plane,
D be defined by the symmetric matrix L, square matrix M , and the
condition,

D = {z ∈ C | L + Mz + MT z̄ < 0}, (12.84)

where z̄ is the complex conjugate of z. The matrix A will have its
eigenvalues in the region D if there exists a matrix X > 0 such that,

L ⊗ X + M ⊗ (AX) + MT ⊗ (XAT) < 0 (12.85)

where ⊗ is the Kronecker product. The Kronecker product of two ma-
trices creates a block matrix, whose (ith, jth) block is the second operand
scaled by an element of the first. Specifically for C = A ⊗ B we have,

C =

⎡
⎢⎣A11B · · · A1,mB

...
. . .

...
An1B · · · AnmB

⎤
⎥⎦ (12.86)

Several important regions can be described by (12.84), for example
with

L = α, M = 0 (12.87)

the region is defined by z + z̄ < −α which requires eigenvalues to have
a real component more negative then −α/2. In this case of L = 0 the
region is just the left-half plane and the LMI condition of (12.85) reduces
to the familiar Lyapunov equation for stability of state-space systems,

AX + XAT < 0, X > 0 (12.88)
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A condition of minimum damping, ζ = cos(θ), is a region of the left
half plane bounded by cones of angle θ off the real axis. This region is
described by (12.84) with L = 0 and

M =
[

cos(θ) − sin(θ)
− sin(θ) cos(θ)

]
, (12.89)

and the LMI constraint is the existence of a matrix X > 0 that solves,[
sin(θ)(AX + XAT) cos(θ)(AX − XAT)
cos(θ)(XAT − AX) sin(θ)(AX + XAT)

]
< 0 (12.90)

More complex geometries are possible with other choices for L and M ,
and arbitrary convex regions can be defined by looking at the intersection
of the regions outlined above. Since in all cases the constraint equation
is an LMI, the solutions to multiple constraints remains convex and
numerically tractable.

An LMI design for the typical section
It is possible to use these LMI equations to pose convex optimization
problems and solve for Lyapunov matrices that verify if a system’s H2

norm is below a certain bound or its eigenvalues exist within a specified
region. However, the power in this method is not in the analysis of
systems, but it is in the ability to work directly from a set of analysis
equations to pose a control synthesis problem, and to extend this to the
synthesis of controllers for parameter varying plants. There are several
additional steps which must be taken to achieve this end. Specifically
these steps are: the assumption of a common Lyapunov function for all
constraints, a nonlinear substitution of variables to restore convexity to
the synthesis problem, and a finite parameter expansion on which to
gain schedule the resulting controller. We treat these conditions only
briefly here, and refer the reader to the references for a more complete
development.

The synthesis of a controller requires that a single common Lyapunov
function be used to enforce the design constraints. This means that
the term Q in the H2 norm bound of (12.83) and the term X in the
pole placement criteria of (12.90) must be equal. This is the primary
source of conservatism in the control law synthesis. It is possible for a
system to meet both criteria, but this may not be provable with a single
Lyapunov function. Although it is difficult to quantify the conservatism
in general, in practice many problems allow sufficient freedom that this
process, sometimes called Lyapunov shaping, yields suitable results.

In the control synthesis problem, the system of interest for the LMI
conditions is the closed-loop model after feedback has been applied.
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With the controller model unknown, this introduces additional un-
knowns into the LMI conditions as can be seen from substituting (12.6)
for the system in (12.83) and (12.90). These unknowns appear in the
equations in products with one another, and therefore the resulting ma-
trix inequality is not linear in the unknowns and cannot be solved by
convex optimization. However, as was developed in [58], a combination
of congruence transformation and substitution of variables exists which
converts this problem into one which has a linear dependence on a new
set of unknowns. Once solved this variable substitution can be inverted
to yield a state-space model for the controller.

The extension of the control synthesis problem to LPV models is
straightforward. Since changes in flowspeed will be slow compared to
the dynamics of the system the dynamic effects due to the rate of change
in flowspeed can be safely ignored. The aerodynamic model depends on
flowspeed and dynamic pressure, and it can be written in state-space
form in terms of an expansion with U and U2,

Sa(θ) =
[

A(θ) B(θ)
C(θ) D(θ)

]

=
[
A0 B0

C0 D0

]
+
[
A1 B1

C1 D1

]
U +

[
A2 B2

C2 D2

]
U2

(12.91)

The design constraints are then written for systems over a grid of speeds
throughout the range of interest. Solving the optimization problem over
the grid of constraints will yield a fixed control law that can operate
over this range. However, the proposed control structure may be given
the same functional dependence as the plant model, and performance
greatly improved through gain scheduling. That is, each unknown of
the optimization problem is written as a quadratic function of flowspeed.
This triples the number of unknowns, but gives rise to a resulting control
law that is gain-scheduled as a function of the aerodynamics.

The procedure outlined above was followed for the typical section
model, producing a gain-scheduled controller for flutter suppression, see
Cox [70]. For the H2 norm condition the system was given the same
performance weights as the previous example, except now the H2 norm
optimization is carried out over grid of flowspeeds extending to 30 m/s,
approximately 27% past the open loop flutter boundary. Furthermore,
the pole placement condition was also part of the constraint set and
this required that all the system’s eigenvalues have at least 5% damping
throughout the flow range.

Performance of the resulting gain-scheduled controller is shown in the
root locus plot of Figure 12.24 for a flowspeed range of 5 m/s to 30 m/s.
The flowspeed range here does not extend to zero speed, as it was too
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difficult for the system to achieve the damping specification at these low
flowspeeds with only an inertial response from the flap actuator. The
transfer function of the path from a disturbance force in plunge to the
response in pitch at a flowspeed of 23 m/s is shown in Figure 12.25. The
peak attenuation of this path is less than for the single objective, single-
point design shown in Figure 12.21. The response, however, is much
more damped due to the inclusion of the pole placement constraint and,
unlike the single-point design, well damped responses occur over the
entire range of flow conditions.
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Figure 12.24. Root Loci as flowspeed is varied from 5 m/s (Circle) to 30 m/s (X)
with gain-scheduled LPV control law. Closed-loop system retains minimum of 5%
damping through the design range.

12.7. Experimental Results
In this section experimental results are presented for aeroelastic con-

trol of both the typical section and delta wing models. Physical param-
eters for these models correspond to those detailed in Tables 12.1 and
12.2. The delta wing results are based on a system with sensor and actu-
ator placement designed for optimal coupling to the destabilizing flutter
mode. The control law design is based on an identified LTI model for a
flow condition just below the flutter speed. The typical section design is
also based upon identified models, however, these models have an LPV
form and the design criteria includes performance specifications over a
range of flow conditions. The resulting typical section control law is also
in LPV form, and therefore operates as a gain scheduled controller.
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Typical section experiment
The typical section model provides a convenient analytic tool due to
its relatively tractable modeling, yet it exhibits may of the dynamic
features of more complex systems. Experimental investigations based on
a typical section rig can also be informative, if for nothing else, in order
to verify the practicality of control designs and to expose any sensitivity
in the methods to more realistic conditions. The model shown in the
photographs of Figure 12.26 is a rigid airfoil with a NACA-0012 profile
with an actuated full length trailing edge flap. Similar hardware has
been the focus of previous studies in both active control of flutter [44]
and in experimental investigations of limit cycle oscillations [20,21,26,62-
64]. The model was mounted in the Duke University wind tunnel in a
support system that provides flexible and lightly damped response to
motions in both pitch and plunge. The flap was also held with a restoring
spring and connected to a linear induction motor for control. The model
was instrumented with variable differential transformers (RVDTs) that
provide position measurements in each axis. Physical properties for the
model are similar to those provided in table 12.1, with the addition of a
0.32 Kg motor mounted near the elastic axis.
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(a) Full span typical section model
(b) Actuator and flexible support
rig

Figure 12.26. Photos of typical section model mounted in flexible support wind tun-
nel mount

LPV system identification
Under different flow conditions the typical section model varies dra-
matically. In order to apply system identification, data was taken at
a number of flowspeeds below the flutter boundary. The system’s flap
actuator was driven by white noise and outputs from the three position
sensors were recorded. Independently each of these data sets could be
fit quite accurately with a low order model using subspace identification
algorithms [11,12,65]. However, the coordinate system used for these re-
alizations is not consistent and it cannot be made consistent without full
measurement of the state. Here full measurement is clearly not possible
since the state includes dynamics associated with modes of the unsteady
flow.

The ambiguity of coordinates makes this collection of identified mod-
els unsuitable for LPV control. Solving for a parameter dependent Lya-
punov function over a grid of models is not meaningful if the internal
state vector is not consistent among these different grid points. One
method to determine an LPV model that reflects the experimental data
is to use the identified model of the system at zero flowspeed and cou-
ple this to an analytic model for the aerodynamics. In order to couple
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this model to the aerodynamic model, however, inputs are required for
forces in the pitch and plunge directions. To obtain these experimentally
would require calibrated force transducers in these directions that did
not impart mass or stiffness loading to the structure.

Here an alternative approach was taken using optimization codes de-
signed for tuning of specific parameters in a model [70]. The model at
zero flowspeed was identified using a subspace identification algorithm.
This was reduced to 8 states with little loss of fidelity. The missing
information in coupling the identified structural model and the analytic
aerodynamic model is the influence matrix, B, that defines the effect of
moment and force inputs on the identified state. Moments in the flap
should closely follow inputs to the flap actuator, however there is no
guidance in choosing influence coefficients for forces in pitch and plunge.
With the pitch and plunge influence coefficients free and the flap con-
strained to be a scaled version of the actuator input, the problem has 17
unknown parameters. A key to improving the solvability of this problem
was to choose a decoupled coordinate system for the structural model.
In modal coordinates the A matrix is block diagonal and the effect of
perturbations in elements of the B matrix is more clearly delineated,
improving convergence of the nonlinear optimization.

With the structural model in modal canonical form a set of param-
eters was found that allowed the model to fit well at a flowspeed of
21 m/s. This is a condition where the influence of aerodynamics is sig-
nificant but far enough below the flutter point where the response is not
dominated by a single resonance. The model was most accurate at this
condition, however, it was still fairly accurate at other flow conditions
indicating that the optimization problem was not over-parameterized. A
comparison of the experimentally determined spectra and the frequency
responses of the LPV identified model is shown in Figure 12.29, at the
end of this section.

Another measure of the models accuracy is is ability to predict the
transition to flutter. The LPV model can be evaluated at any flowspeed,
and used to determine the systems eigenvalues . Figure 12.27(a) shows a
root locus for the identified model as a function of increasing flowspeed.
The locus starts with lightly damped motion in pitch, plunge and flap.
As flow increases both initially gain damping, then the plunge mode
starts to lose damping, and eventually becomes unstable. This is simi-
lar to the behavior of the analytic typical section model shown in Fig-
ure 12.22a. The most notable difference being the lower flap frequency
(due to loading from the control actuator), and the presence of damping
in the identified model. An experimental test of the model revealed that
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flutter occurred at 25.1 m/s, slightly below the predicted flutter speed
of 26.8 m/s from the identified LPV model.
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Figure 12.27. Root Locus of (a) open-loop identified LPV model, with a flutter
prediction at 26.8 m/s. In (b), predicted closed-loop locus with LPV design and
constraint of 5% damping.

Closed-loop results
A controller was designed using the identified LPV model and following
the same multiobjective procedure described in Section 12.5. The goal
was a reduced H2 transfer function from a plunge disturbance to an out-
put that included both pitch and plunge. The regional pole-placement
conditions were set to 5% damping in all the modes, over a flow range
that extended from 8 m/s to 30 m/s. The solution to this problem was
found through convex optimization of the resulting LMIs, using semidef-
inite programming software described in [66]. The resulting continuous
controller was discretized through a Tustin transformation, and imple-
mented digitally at a sample rate of 250 Hz.

A series of manual disturbance tests were performed for the open and
closed loop system at several flowspeeds below the flutter boundary.
These results, presented in Figure 12.30, show the increase in damping
of plunge motion in the closed loop system. The damping increase is
greatest at the intermediate flowspeed of 16 m/s, and decreases again
at higher flowspeeds. There is also an increase in the frequency of the
response with flowspeed. This is consistent with the location of the
dominant poles in the predicted closed-loop root locus of Figure 12.27(b).
The system remains stable and relatively well damped past the open-
loop flutter boundary as shown in the response plots of Figure 12.28.
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Figure 12.28. Closed loop disturbance response in plunge for flow conditions above
the open-loop flutter boundary

Finally, a white noise dither signal was added at the flap for both open
and closed loop operation. This provided a calibrated input from which
full bandwidth responses could be computed from the signals auto and
cross spectra. The open and closed-loop frequency responses below the
flutter boundary are shown in Figure 12.31. Above the flutter boundary
only closed loop response is available, and this is shown in Figure 12.32.
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Figure 12.31. Comparison of open (solid) and closed (dashed) loop transfer functions
from spectral data with flap excitation.
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Figure 12.32. Closed loop transfer functions from spectral data with flap excitation.
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Figure 12.33. Comparison of predicted and measured delta wing mode shapes

Delta wing experiment
Material properties for the experimental test-rig were provided in Table
12.2. In order to test the no-flow simulation results against experimen-
tal measurements, the test rig is driven by an acoustic disturbance, and
point velocities are measured with a laser vibrometer (VPI 4000 scanning
laser). The first step in the process is to measure the frequency response
between the band-limited random acoustic disturbance and point veloc-
ity measurements. From these measurements, the resonant frequencies
of the structure are easily identified. The structure is then driven with a
harmonic input corresponding to each of the measured resonant frequen-
cies, with velocity measurements being obtained over a grid covering the
entire wing. These grid measurements yield an RMS velocity magnitude
map over the entire surface for a given frequency, providing a graphical
image of the mode shape. A comparison of these simulated and mea-
sured structural mode shapes for the wing without transducers can be
seen in Figure 12.33.

The frequencies of these modes, and the analytic predictions, are listed
in Table 12.3. These frequencies prove to be somewhat sensitive to
certain parameter modifications, most notably thickness. Tests showed
a variation of nearly ±3% over the entire wing structure which may
contribute to the observed errors.

The actuator for the active wing is constructed from 0.015 inch nomi-
nally thick PZT material with silver electrode layers. The sensor is made
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Predicted Measured % Error

Mode 1 6.5 Hz 5.75 Hz 3.8%

Mode 2 25 Hz 24.75 Hz 1%

Mode 3 33 Hz 32.5 Hz 1.5%

Mode 4 60 Hz 59.75 Hz 0.5%

Table 12.3. Comparison of predicted and measured delta wing frequencies

from two layers of 0.003 inch polyvinylidene fluoride (PVDF) material.
These dual sensor layers are wired in parallel and oriented orthogonal to
each other in order to eliminate the directional bias typically associated
with this material.

For control system design, system identification was employed to ob-
tain an estimate of the transfer function from actuator to sensor. Since
the structural response of the wing is modified upon attaching the ac-
tuator and sensor, system identification is important to the successful
implementation of a compensator. Although analytic models are critical
to understating a physical system and its dynamic behavior, there is no
substitute for an experimentally identified model of the system when de-
signing a controller. Factors such as damping, actuator dynamics, and
phase effects from signal conditioning circuitry are often omitted or ig-
nored in analytical models, but are critical to the accurate prediction of
the system response.

Subspace system identification techniques, such as the Eigensystem
Realization Algorithm (ERA) [67], and the N4SID algorithm [68], allow
for the generation of state-space models from multivariable input/output
data sets generated with a frequency rich input signal. Order for the
identified model can be prescribed, or determined by over-fitting the
data and choosing a reasonable truncation point by looked at the Hankel
singular values. The later approach was taken for this work.

Wind tunnel testing of the non-active wing demonstrates a flutter
boundary of 35 m/s at 19 Hz showing a 10 % variation in the observed
flutter boundary from the predicted response of 31.5 m/s at 18.5 Hz.
Here, the flutter boundary is considered to be the point at which clear
harmonics appear in the measured frequency response. The analysis
and design presented is restricted to linear modeling techniques. As was
shown in [69], structural non-linearities can lead to limit cycle oscillations
(LCOs) consistent with those observed in this experiment. However,
as will be shown, the LCO can be eliminated and the onset of flutter
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delayed by designing a compensator based on a pre-flutter, linear model
of the system.

As predicted by the analytical model, the wing response is domi-
nated by the second mode as the flow speed progresses toward the flutter
boundary. Additionally, a gradual reduction in the frequency of the sec-
ond mode from a no-flow frequency of 25 Hz toward a flutter frequency
in the vicinity of 18 Hz is also observed and consistent with the predicted
response.

To demonstrate the progression of the mode shape as a function of
flow speed, the second mode was driven harmonically, and the laser vi-
brometer was used to measure point-velocities over a grid sufficient for
generating a contour plot of the mode shape. These plots are generated
for flow speeds varying from 0 m/s to the pre-flutter condition of 31
m/s. A comparison of the experimentally determined mode shape pro-
gression with the predicted progression can be seen in Figure 12.34. The
inferred nodal regions in the experimental plots demonstrate a tendency
in low velocity areas similar to that found in the analytical model. The
experimental results are limited by noise due to turbulence as well as
nonlinearities in the response associated with LCO that dominates at
the onset of flutter.

Given the observed correlation between the experimental and analyt-
ical model, the final test involves the design and implementation of a
dynamic compensator using the optimally designed actuator and sensor.
The compensator is designed from an identified model of the experimen-
tal test structure. However, the chosen inputs and outputs for the design
are consistent with that of the analytical model, and the compensator is
designed through H2 synthesis. The controller is implemented on a dig-
ital signal processor and interfaced through analog to digital and digital
to analog converters with the hardware.

Experimental results from the closed-loop response are presented in
Figure 12.35. The flutter boundary is increased from 33.5 m/s to 37.8
m/s – a 13% increase. The magnitude of both the open-loop frequency
response (measured at 33.5 m/s) and the closed-loop frequency response
(measured at 37.5 m/s) from the actuator to the measured velocity at
the tip of the wing is illustrated in Figure 12.35. The harmonics used
to define the onset of flutter are clearly observed as evidenced by the
dramatic spikes in frequency intervals of approximately 18 Hz in the
open-loop response. The lack of harmonics in the closed-loop response,
in addition to the substantial reduction in magnitude of the second mode,
shows significant control effect.
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Figure 12.34. Progression of second mode shape with flow speed

12.8. Closing Comments on Aeroelastic
Control

Within this chapter, we have presented a unified approach to aeroe-
lastic system modeling and control based upon linear analysis tools.
These models capture the basic physics (structural, aerodynamic, or
aeroelastic) and are often suitable for design purposes, even in systems
where nonlinear considerations are required for final verification anal-
ysis. Model reduction was shown to enable significant simplification,
without a critical loss of accuracy, by focusing on physically relevant
input/output paths and a bandwidth of interest. Such model reduc-
tion was shown to be not only useful in the design of compensators,
but also in the physical design of systems to determine optimal actuator
and sensor placement. These models were also extended to encompass
parameter varying systems, and shown to permit explicit design of gain
scheduled control laws.

Although the models presented within this chapter are relatively sim-
ple, the basic tools used are applicable to more complex aeroelastic sys-
tems and afford the same advantages to designers. The “great divide” in
design frequently occurs when the design of the structure and that of the
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1 at 37.5 m/s

control system are separated. When properly integrated, one can effec-
tively design the structure to be controlled, which can greatly reduce the
order of the compensator required to achieve the desired objective and
further improve robustness with respect to performance and stability.

There are a number of frontiers yet to be addressed if we are to tran-
sition these tools to modern day design practice. Reduced-order aerody-
namic models which incorporate the effects of compressibility, viscosity,
and/or nonlinearity are critical to extending the applicability of the ap-
proach presented to a wider range of missions and models. Furthermore,
one must also address the impact of model uncertainty in such systems
and develop design philosophies which minimize the effect of uncertain-
ties on closed-loop performance. Finally, although gain scheduling over-
comes some of the pitfalls of single-point control designs, the final answer
may be in adaptive control systems that combine both the identification
of parameter dependent models and the design of control laws. Each of
these are topics of active research interest, and exploiting the progress in
these areas in the multidisciplinary field of aeroservoelasticity will pro-
vide opportunities to improve radically the design and performance of
future aircraft.
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Chapter 13

MODERN ANALYSIS FOR COMPLEX
AND NONLINEAR UNSTEADY FLOWS
IN
TURBOMACHINERY

In this chapter, we review the state of the field of computational un-
steady aerodynamics, particularly frequency domain methods used for
the calculation of the unsteady aerodynamic forces arising in turboma-
chinery aeroelasticity problems. While the emphasis here is on turbo-
machinery aerodynamics, the methods described in this paper have ana-
logues for the analysis of isolated airfoils, wings, and even whole aircraft,
as well as rotorcraft.

The two main aeromechanics problems in turbomachinery are flutter
and gust response. In the flutter problem, the unsteady aerodynamic
loads acting on a cascade of turbomachinery airfoils arise from the mo-
tion of the airfoils themselves. In the gust response problem, the original
excitation arises away from the blade row in question. Typical sources
of excitation are wakes or potential fields from neighboring blade rows
or support structures (struts), inlet distortions, and hot streaks from the
combustor.

More recently, a third class of aeromechanical problems has been iden-
tified [1]. This class of problems is akin to galloping of power lines or
buffeting of aircraft wings. Examples include so-called separated flow
vibrations and non-synchronous vibrations. In separated flow vibra-
tions, the flow over a row of airfoils is separated, or nearly so. The
flow itself is unstable, producing unsteady air loads with broadband fre-
quency distributions that excite the airfoil at all frequencies producing
a large response at the natural structural frequencies of the airfoil. Non-
synchronous flow vibrations, on the other hand, are similar to separated
flow vibrations in that the source of the excitation is thought to be a
fluid dynamics instability (rather than an aeroelastic instability), except
that non-synchronous vibrations can also occur well away from a stalled
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condition and the response tends to be at a single frequency. If this fluid
dynamic natural frequency happens to be close to a structural natural
frequency, then the fluid dynamic instability frequency can “lock on”
to the structural frequency of the airfoils resulting in a large-amplitude
vibration.

Most unsteady flows of interest in turbomachinery aeromechanics are
periodic in time, and for many of these flows, the unsteadiness in the
flow is also relatively small compared to the mean steady flow perse.
Thus, the flow may be decomposed into two parts: a nonlinear steady
or mean flow, plus a dynamically linear small perturbation unsteady
flow. In general, the steady flow is described by a set of nonlinear par-
tial differential equation, whereas the unsteady small-perturbation flow
is described by a set of linear variable coefficient partial differential equa-
tions that are hyperbolic in time. Because the unsteady perturbation
flow is periodic in time, we may, without loss of generality, represent the
unsteady flow as a Fourier series in time with coefficients that vary spa-
tially. Each Fourier coefficient is described by a set of partial differential
equations in which time does not appear explicitly. Such equations are
called “time-linearized” equations, and their solution is the one of the
main topics of this chapter.

Working in the frequency domain rather than the time domain has a
number of distinct advantages. The available frequency solution tech-
niques tend to be much more computationally efficient than the equiva-
lent time domain techniques. Additionally, certain parts of the unsteady
flow problem – for instance, the description of the behavior of acoustic,
vortical, and entropic waves – are simplified in the frequency domain.

In the case where the unsteadiness in the flow is large, the time-
linearized equations are not valid. Fortunately, however, the unsteady
flow may still be calculated in the frequency domain using a recently
developed harmonic balance technique.

Finally, although the emphasis in this chapter is on unsteady aero-
dynamics associated with aeromechanical problems, frequency domain
techniques can be used to solve of wide variety of problems, including
performance, unsteady heat transfer, aeroacoustic, and flow stability
problems.

13.1. Linearized Analysis of Unsteady Flows

Recently, a number of investigators have developed linearized Euler
and Navier–Stokes solvers to predict unsteady flows in turbomachinery.
To motivate these methods, consider the two-dimensional Euler equa-
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tions, given by
∂Û
∂t

+
∂F̂
∂x

+
∂Ĝ
∂y

= 0 (13.1)

where Û is the vector of conservation variables, and F̂ and Ĝ are so-
called flux vectors. These are given by
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where ρ̂ is the density, û and v̂ are the x and y components of velocity,
p̂ is the static pressure, ê is the total internal energy, and ĥ0 is the total
enthalpy.

The flow is assumed to be composed of a mean flow plus an unsteady
perturbation flow that is harmonic in time, so that

Û(x, y, t) = U(x, y) + u(x, y)ejωt (13.3)

where the perturbation amplitude u(x, y) is small compared to the mean
flow U(x, y), and ω is the frequency of the unsteadiness. This assump-
tion is substituted into the Euler equations, Eq.(13.1), and the result
is expressed as a perturbation series in the small parameter. The col-
lected zeroth-order terms result in the steady Euler equations, which are
solved using now conventional computational fluid dynamic techniques.
The collected first-order terms give the linearized Euler equations, i.e.,

jωu +
∂

∂x

(
∂F
∂U

u
)

+
∂

∂y

(
∂G
∂U

u
)

= 0 (13.4)

where ∂F/∂U and ∂G/∂U are steady flow Jacobians. These equations
are solved subject to appropriate so-called “upwash” boundary condi-
tions at the airfoil surface, far-field boundary conditions, and periodic-
ity conditions that allow the computational domain to be reduced to a
single blade passage.

One of the earliest linearized Euler solvers was developed by Ni and
Sisto [2]. So that they could make use of more traditional time marching
CFD algorithms, Ni and Sisto introduced a pseudo-time term into the
linearized Euler equations, i.e.

∂u
∂τ

+ jωu +
∂

∂x

(
∂F
∂U

u
)

+
∂

∂y

(
∂G
∂U

u
)

= 0 (13.5)

where now u = u(x, y, τ). This additional term makes the equations
hyperbolic in pseudo time, and hence they may be marched in time using
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traditional CFD techniques. As time advances, the solution reaches a
steady state and the additional term goes to zero. Thus the solution
to the original linearized Euler equations [Eq. (13.4)] is obtained. The
results of this early analysis, however, were limited to flat plate cascades
with homentropic flows.

Hall and Crawley [3] discretized the linearized Euler equations using
a finite volume scheme, and assembled the resulting equations into a
large sparse set of matrix equations which were then solved using LU
decomposition. Shock fitting and shock capturing were used to explicitly
model the motion of wakes and shocks. However, due to the complexity
of the shock fitting algorithm, only a few model transonic flows problems
were computed. Nevertheless, this work demonstrated the feasibility of
using the linearized Euler equations to model transonic flows, at least
for cases where the motion of the shock is not too large.

In recent years, a number of investigators [4-8] have continued to
develop the linearized Euler technique using pseudo time marching.

The time-linearized technique has been extended to three-dimensional
inviscid (Euler) flows [9,10] and to two and three-dimensional viscous
(Navier–Stokes) flows [11-13] in turbomachinery.

The time-linearized frequency-domain approach has a number of dis-
tinct advantages over a conventional time-domain approach. By using
pseudo time marching, conventional steady CFD techniques may be used
to solve the time-linearized equations. Thus, acceleration techniques
such as local time stepping and multiple grid acceleration techniques
may be used to accelerate convergence. Furthermore, by using complex
periodicity conditions, the computational domain can be reduced to a
single blade passage. The result is that time-linearized solutions can
be obtained in computational times comparable to the time required to
obtain a steady flow solution.

One feature of most linearized Euler and Navier-Stokes solvers is the
use of harmonically deforming computational meshes [7]. The use of
the deforming grid eliminates the need for a troublesome extrapolation
term from the upwash boundary condition applied at the airfoil surface,
but also produces an inhomogeneous term in the linearized Euler equa-
tion, Eq. (13.4), that depends on the mean flow and the prescribed grid
motion.

One important aspect of a linearized Euler analysis is how shocks are
treated. Two approaches have been used. Hall and Crawley [3] used
shock fitting to model shocks within a linearized framework. Shock fit-
ting, while providing explicit descriptions of the shock motion, is some-
what difficult to implement for general cascade flows which may have
rather complicated shock features. For this reason, shock capturing is
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Figure 13.1. Trajectory of shock in a channel or on airfoil surface and corresponding
effect on unsteady flow quantities.

favored. However, until recently it was not known whether shock cap-
turing correctly predicts the unsteady aerodynamic loads induced by the
unsteady shock motion.

The situation is shown graphically in Fig. 13.1. Shown are the mean
and unsteady shock trajectories on the surface of an airfoil or channel.
Also shown are typical unsteady flow quantities, e.g., pressure. In a
linearized analysis, the motion of the shock appears as an impulse in
pressure. At this impulse, the pressure is not small (in fact it is of the
same order as the mean flow pressure), and therefore, one might conclude



680 A MODERN COURSE IN AEROELASTICITY

Figure 13.2. Steady surface pressure for the Tenth Standard Configuration transonic
compressor cascade.

that the linearization would break down at this point. Lindquist and
Giles [14] argued that to obtain the proper shock impulse, one must
faithfully linearize a conservative discretization of the Euler equations.
Hall et al. [8] demonstrated that the correct shock impulse is produced if
a conservative discretization of the Euler equations is used, and further,
that the shock is smoothed so that it is smeared over several grid points.

A typical transonic analysis is shown in Figs.13.2 and 13.3. Shown
in Fig.13.2 is the computed steady distribution for the Tenth Standard
Configuration [15,16], one of a series of Standard Configurations used
to validate unsteady aerodynamic models. Shown in Fig.13.3 is the
computed unsteady pressure distribution on the airfoils of this cascade
for the case where the airfoils vibrate in plunge with a reduced frequency
ω of 1.287 with an interblade phase angle σ of -90 deg. Shown are
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Figure 13.3. Real and imaginary surface pressure for the Tenth Standard Config-
uration cascade vibrating in plunge with a reduced frequency ω of 1.287 with an
interblade phase angle σ of -90 deg.
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Figure 13.4. Computed steady streamline patterns for a modern front stage com-
pressor rotor.

two solutions, one computed with a time-linearized flow solver, and one
computed using a conventional time-domain flow solver [17]. Note the
very good agreement between the two solutions everywhere except at the
shock impulse. However, even though the details of the shock impulse
differ between the two solutions, the integrated force is very nearly equal.
The integrated unsteady lift differs by just 2 percent.

The time-linearized approach can also be applied equally viscous
and/or three-dimensional flows. As an example, consider the case of the
front stage of a modern front stage transonic compressor rotor shown
in Figure 13.4. Shown are the blades of the rotor together with the
computed streamlines associated with the steady flow at a particular
operating condition. These results were computed using a steady Navier-
Stokes flow solver that uses the Spalart-Allmaras [18] turbulence model
to predict turbulent viscosity. Note the clearly visible tip vortex due to
leakage flow through the tip clearance.

Next, the rotor blades are assumed to vibrate in their first bending
mode (and at the natural frequency of that mode) with zero interblade
phase angle.

Figure 13.5 shows the computed steady and unsteady pressure distri-
butions for this compressor rotor near the midspan of the blade com-
puted using the time-linearized technique. A shock impulse is seen in
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Figure 13.5. Unsteady pressure distribution near the midspan station of a front stage
compressor rotor. The airfoil vibrates in its first bending mode with an interblade
phase angle of zero.

the unsteady pressure distribution on the surface of the airfoil at about
35 percent of the chord.

13.2. Analysis of Unsteady Flows in Multistage
Machines

Unsteady fluid motion is essential to gas turbine engine operation.
Only through unsteady flow processes can a machine do work on a fluid
to increase its total enthalpy. This unsteadiness is provided in com-
pressors and turbines by relative motion of adjacent stators and rotors.
Unfortunately, this motion also produces undesirable aeroacoustic and
aeroelastic phenomena, i.e. tonal noise and forced blade vibrations in-
duced by rotor/stator interactions. Furthermore, the aeroelastic (flut-
ter) stability of a rotor can be profoundly influenced by the presence of
nearby stators and rotors.

Most current unsteady aerodynamic theories model a single blade row
in an infinitely long duct, ignoring potentially important multistage ef-
fects. However, unsteady flows are made up of acoustic, vortical, and
entropic waves. These waves provide a mechanism for the rotors and sta-
tors of multistage machines to communicate with one another. For ex-
ample, consider the case of a row of vibrating rotor blades (see Fig. 13.6).

The blades will respond aerodynamically, producing acoustic, vorti-
cal, and entropic waves which propagate away from the rotor. Some of
these waves will then impinge on the neighboring stators. The stators



684 A MODERN COURSE IN AEROELASTICITY

1

4

3 2

N = k0 + kB2N = k0 + kB2

N = k0 + nB1 + kB2 N = k0 + nB1 + kB2

ω ' = ω0 + (k0 + kB2 )Ω

ω ' = ω0 + (k0 + kB2 )Ω ω = ω0

ω = ω0

N = k0

STATOR ROTOR

ω = ω0 − nB1Ω

5

ΩR

x

θ
′θ

′x

Figure 13.6. Kinematics of mode scattering and frequency shifting in a multistage
machine.

will in turn respond aerodynamically, again producing waves, some of
which will impinge upon the original rotor, and so on. In other words,
wave behavior makes unsteady flow in turbomachinery fundamentally a
multistage phenomenon.

The basic time-linearized Euler and Navier-Stokes approach can be
extended to the case of multistage flows [19]. For a given multistage fan
or compressor, one first generates a computational mesh for each blade
row. Unlike time-domain multistage analyses, the computational mesh
for each blade row need only include a single passage.

Having generated a computational mesh, the steady flow is computed
using the steady Euler or Navier-Stokes equations and conventional
computational fluid dynamic (CFD) techniques, with so-called “mixing
planes” (the inter-row computational boundaries of the computational
grid) used to couple together the solutions computed in the individual
blade rows. The solution in each blade row is computed independently,
except that at each time step in the pseudo time marching, the circum-
ferentially averaged flow at the exit of one blade row is made to match
the circumferentially averaged flow at the inlet of the next blade row.

For the unsteady flow solution, the process is similar. However, in-
stead of a single solution in each passage, several linearized unsteady flow
calculations are performed simultaneously in each blade row, one corre-
sponding to each spinning mode retained in the model. Each spinning
mode is identified by a set of integers that describe the scattering pro-
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Figure 13.7. Pressure contours at the midspan of a front stage compressor.

cess that creates the mode (n and k in Fig. 13.7). These integers, along
with the freqquency and interblade phase angle of the initial disturbance
and the blade counts in each blade row, determine the interblade phase
angle and frequency of the mode. The only coupling among the various
spinning modes is at the inter-row boundaries.

The advantages of this approach are several. First, unlike time-
domain techniques where many blade passages are required to model
each blade row, only a single passage is required. Second, as in the sin-
gle blade row computations, a pseudo time marching technique is used
to march the solution to steady state, and acceleration techniques such
as multigrid may be used. Finally, as a practical matter, only a handful
of spinning modes are usually need to obtain accurate solutions. These
three factors mean that memory requirements and computational time
required to compute the unsteady multistage solution are greatly re-
duced compared to time domain solvers. A typical unsteady multistage
flow calculation might take on the order of just ten times the computa-
tional time required for a single steady blade row flow computation.

As an example, consider the case of the front stage of a modern com-
pressor. This three-dimensional configuration consists of three blade
rows (IGV/rotor/stator). Figure 13.7 shows the static pressure distri-
bution near the midspan location computed using a steady Euler mul-
tistage flow solver. Note, that the contours at the inter-row boundaries
are not continuous since the only the circumferential averages of the
flows in each blade row match at the boundaries.

Next, the middle blade row (rotor) is assumed to vibrate in its first
bending mode and frequency. Figure 13.8 shows the real and the imag-
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Figure 13.8. Unsteady pressure distribution on the surface of rotor blades vibrating
in first bending with σ = −30.o

inary parts of the unsteady pressure on the rotor row for an interblade
phase angle of -30. deg. The multistage solution was computed us-
ing one and eight spinning modes in the coupling procedure. One can
see that there is significant difference between the isolated and coupled
(multistage) computations.
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Figure 13.9. Generalized force acting on rotor blades vibrating in first bending.

The unsteady pressure distribution can be integrated to obtain the
unsteady modal force acting on the rotor blades due to their vibration.
Figure 13.9 shows the real and imaginary parts of the computed gener-
alized forces on the rotor blades as a function of interblade phase angle.
Note the significant difference between the forces computed using a single
blade row (the rotor) and three blade rows (the rotor and the upstream
IGV and downstream stator). Clearly, multistage effects are important.
However, the generalized force computed using just one spinning mode
is in very good agreement with the force computed using eight spinning
modes, indicating the dominant coupling is in the fundamental mode.

These results, and earlier two-dimensional results produced by Hall
and Silkowski [20-22], confirm that the aerodynamic damping of a blade
row that is part of a multistage machine can be significantly different
than that predicted using an isolated blade row model. This is an im-
portant result since most unsteady aerodynamic theories currently used
in industry assume that the blade row can be modeled as isolated in
an infinitely long duct. However, a good estimate of the aerodynamic
damping can be obtained using just a few spinning modes in the model.
In fact, most of the unsteady aerodynamic coupling between blade rows
occurs in the fundamental spinning mode, that is, the spinning mode
associated with the original disturbance. Scattered modes are relatively
less important.

Although not shown here, Hall and Silkowski [20-22] have shown that
the two neighboring stator blade rows adjacent to a rotor have the
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strongest influence on the unsteady aerodynamic response of the rotor.
The next nearest blade rows are less important, but can have a modest
influence. As a practical matter, this means that only three blade rows
need to be included in most unsteady flow computations.

13.3. The Harmonic Balance Method for
Nonlinear Unsteady Aerodynamics

A number of investigators have developed frequency domain analyses
of nonlinear unsteady flows [23-31]. While the methods differ some-
what in detail, most can be viewed as a form of harmonic balance. To
motivate the development of the harmonic balance analysis, and for
simplicity, we assume for the moment that the flow in a blade row is
two-dimensional, inviscid, and non-heat-conducting, with constant spe-
cific heats. Thus, the flow may be modeled by the two-dimensional Euler
equations, Eq. (13.1).

In this paper, we consider unsteady flows that are temporally and
spatially periodic. In particular, temporal periodicity requires that

U(x, y, t) = U(x, y, t + T ) (13.6)

where T is the temporal period of the unsteadiness. Similarly, for cascade
flow problems arising from vibration of the airfoils with fixed interblade
phase angles σ, or incident gusts that are spatially periodic, spatial
periodicity requires that

U(x, y + G, t) = U(x, y, t + ∆T ) (13.7)

where G is the blade-to-blade gap, and ∆T is the time lag associated with
the interblade phase lag. As an example, consider a cascade of airfoils
where the source of aerodynamic excitation is blade vibration with a
prescribed interblade phase angle σ and frequency ω. Then T = 2π/ω
and ∆T = σ/ω.

Because the flow is temporally periodic, the flow variables may be
represented as a Fourier series in time with spatially varying coefficients.
For example, the conservation variables may be expressed as

ρ(x, y, t) =
∑

n

Rn(x, y)ejωnt

ρu(x, y, t) =
∑

n

Un(x, y)ejωnt

ρv(x, y, t) =
∑

n

Vn(x, y)ejωnt
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ρe(x, y, t) =
∑

n

En(x, y)ejωnt (13.8)

where in principle the summations are taken over all integer values of
n. In practice, these series are truncated to a finite number of terms,
−N ≤ n ≤ +N .

Next, at least conceptually, we substitute the series expansions for ρ,
ρu, ρv, and ρe into the Euler equations, Eq. (13.1).

The result is expanded in a Fourier series, with terms grouped by fre-
quency. Using a traditional harmonic balance approach, each frequency
component must vanish. Collecting the resulting harmonic balance equa-
tions together into one vector equation gives

∂F̃(Ũ)
∂x

+
∂G̃(Ũ)

∂y
+ S̃(Ũ) = 0 (13.9)

where

Ũ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0

U0

V0

E0

R+1

U+1

V+1

E+1
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, S̃ = jω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 · R0

0 · U0

0 · V0

0 · E0

+1 · R+1

+1 · U+1

+1 · V+1

+1 · E+1
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13.10)

The vectors F̃ and G̃ are much more complicated, but can be writ-
ten as a nonlinear functions of the vector of Fourier coefficients of the
conservation variables Ũ.

Finally, we note the conservation variables are real quantities, so that

U−n = Un (13.11)

where Un is the complex conjugate of Un. Thus, we only need to store
Fourier coefficients for non-negative n. If N harmonics are retained in
the Fourier series representation of the flow, then 2N +1 coefficients are
stored for each flow variable (one for the zeroth harmonic or mean flow,
and 2N for the real and imaginary parts of the remaining harmonics).

Computation of the harmonic fluxes is difficult and computationally
expensive; on the order of N3 operations are required, so that the cost
of the harmonic balance analysis grows rapidly with the number of har-
monics. Also, this approach is not readily applicable to viscous flows,
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because turbulence models tend to be quite complex, and not readily
expressed in simple algebraic forms.

To alleviate these problems, we note that alternatively, one can recon-
struct the Fourier coefficients of the conservation variables Ũ and the
flux vectors F̃ and G̃ from a knowledge of the temporal behavior of U,
F, and G at 2N + 1 equally spaced points over one temporal period. In
other words,

Ũ = EU∗ (13.12)

where U∗ is the vector of conservation variables at 2N +1 equally spaced
points in time over one temporal period, and E is matrix that is the
discrete Fourier transform operator. Conversely,

U∗ = E−1Ũ (13.13)

where E−1 is the corresponding inverse Fourier transform operator. Sim-
ilar expressions hold for the flux vectors.

Substitution of Eq. (13.12) into Eq. (13.8) gives

∂EF∗

∂x
+

∂EG∗

∂y
+ jωNEU∗ = 0 (13.14)

where N is a diagonal matrix with n in the entries corresponding to the
nth harmonic. Pre-multiplying Eq. (13.14) by E−1 gives

∂F∗

∂x
+

∂G∗

∂y
+ S∗ = 0 (13.15)

where
S∗ = jωE−1NEU∗ ≈ ∂U∗

∂t
(13.16)

The product jωE−1NE is just the spectral operator that approximates
∂/∂t. The advantage of Eq. (13.15) over the original form of the har-
monic balance equations, Eq. (13.9), is that the fluxes in Eq. (13.15) are
much easier to compute. The fluxes are simply computed at each of the
2N +1 time levels in the usual way, using Eq. (13.2). Also, the alternate
form of the harmonic balance equations can easily be applied to more
complex flow equations, such as the Navier-Stokes equations, whereas
the original form, Eq. (13.9), cannot.

To solve the harmonic balance equations, we introduce a “pseudo-
time” term so that the equations may be marched to a steady state con-
dition using a conventional computational fluid dynamic scheme. Using
the harmonic balance form of the Euler equations as an example, we let

∂U∗

∂τ
+

∂F∗

∂x
+

∂G∗

∂y
+ S∗ = 0 (13.17)
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where τ is a fictitious time, used only to march Eq. (13.17) to steady
state, driving the pseudo time term to zero. Note that pseudo-time har-
monic balance equations, Eq. (13.17), are similar in form to the original
time-domain form of the Euler equations, Eq. (13.12).

In Eq. (13.17), we use a spectral operator to compute the time S∗
term, as described in the previous section. As presented, this opera-
tor requires O(N2) operations to compute. However, the calculation of
the flux vector terms is greatly simplified, requiring only O(N) computa-
tions. As a practical matter, the flux calculations, and other calculations
requiring O(N) computations, require much more computational time
than the relatively simple time derivative term. Thus, the computational
time scales like the number of Fourier terms retained in the solution.

Although the harmonic balance technique has been described using
the Euler equations, the method can be readily applied to the Navier-
Stokes equations. As an example, we apply the harmonic balance tech-
nique to a representative flutter problem. We consider a two-dimensional
section near the tip of the front stage transonic rotor of a modern high
pressure compressor.

At this spanwise station, the inflow Mach number M is 1.27, the inflow
angle Θ, measured from the axial direction, is 59.3◦, and the Reynolds
number Re is about 1.35×106. The computational grid used is an H-O-
H grid, which has good resolution near the airfoil surface for resolving
viscous boundary layers, as well as good resolution in the far field for
modeling outgoing waves.

Shown in Fig.13.10 is the steady flow (i.e., no unsteady disturbances)
in the blade row computed using a grid with 193×33 nodes in the O-
grid section. Note the fairly complex shock structure, with a shock
extending from the leading edge both above and below the airfoil. This
shock impinges on the suction surface of the airfoil, causing a local strong
adverse pressure gradient, which causes the boundary layer to separate.
The rapid growth of the boundary layer results in an oblique shock
forming just upstream of the separation point. Also, the flow accelerates
over the front portion of the pressure surface resulting in a weak normal
shock at about 40 percent of the chord on the pressure surface.

Next, we consider the unsteady aerodynamic response of the rotor
for the case where the airfoils vibrate harmonically in pitch about their
midchords with a reduced frequency ω equal to 1.0 (based on chord
and upstream velocity), an interblade phase angle σ equal to 30◦, and
amplitude α. Shown in Fig. 13.11 is the mean pressure distribution (the
zeroth Fourier component) computed for a pitching amplitude α = 1.0◦.
The harmonic balance solution was computed using one, three, five,
and seven harmonics (N = 1, 3, 5, and 7). Note that the mean pressure
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Figure 13.10. Computed steady pressure (top) and Mach number (bottom) contours
for transonic viscous flow through front stage compressor rotor.

distributions computed with various numbers of harmonics are different.
However, the solutions converge rapidly as the number of harmonics is
increased.

Next, we consider the first harmonic of the unsteady pressure dis-
tribution on the airfoil surface. This component is important, because
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Figure 13.11. Zeroth harmonic (mean flow) of unsteady pressure distribution for
front stage compressor rotor airfoils vibrating in pitch with ω = 1.0 and σ = 30◦, and
α = 1.0◦.
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it is the only component that contributes to aerodynamic damping for
harmonic pitching motion of the airfoil. Shown in Fig. 13.12 is the first
harmonic of the unsteady pressure on the airfoil surface, scaled by the
amplitude of the pitching amplitude. As in the case of the mean flow,
the unsteady pressure distributions computed with various numbers of
harmonics are different, but again the solutions converge rapidly as the
number of harmonics is increased.

To demonstrate the influence of nonlinearities on the unsteady flow,
we again plot the zeroth and first harmonics of the unsteady flow in
Fig. 13.13. In these results, the larger amplitude motion solutions are
computed using five harmonics so that the results are converged in the
harmonic balance sense. The pressure distributions are plotted for sev-
eral pitching amplitudes. The pressure distributions associated with the
larger amplitude pitching motion is seen to be substantially different
from the small amplitude case. In the small-amplitude case, the mean
pressure distribution shows signs of very sharp shocks. For the larger am-
plitude motion, the shocks get “smeared” out. Physically, this is because
the shocks oscillate, and when temporally averaged, the shocks appear
smeared. Of course, when viewed at any instant in time, the shocks are
sharp. Also shown are the real and imaginary parts of the first har-
monic of the unsteady pressure. In the small-amplitude case, very large
and narrow peaks of pressure are seen. These are the so-called “shock
impulses” associated with the unsteady motion of the shock. As the am-
plitude of the pitching vibration is increased, these peaks are reduced
and spread out, because the shock motion is larger and the resulting
shock impulse is spread over a larger chordwise extent.

By appropriate integration of the first harmonic of the unsteady pres-
sure distribution, one can obtain the first harmonic of the pitching mo-
ment. The imaginary part determines the aeroelastic stability of the
rotor. In the absence of mechanical damping , the rotor is stable only if
the imaginary moment is less than zero for all interblade phase angles.
Shown in Fig. 13.14 is the pitching moment as a function of interblade
phase angle for several pitching amplitudes. For small amplitude mo-
tions, the rotor is unstable for interblade phase angles σ between −10◦
and +60◦. Thus, the amplitude of an initially infinitesimal motion will
grow. As the motion grows, however, the aerodynamic damping of the
least stable interblade phase angle goes to zero. This is seen more clearly
in Fig. 13.15. Shown is the pitching moment for σ = +30◦ as a function
of pitch amplitude computed using one, three, five and seven harmonics.
Clearly, the solution computed with just one harmonic is not converged
(except at very small amplitudes), and gives erroneous results. However,
with three or five harmonics, the solution is converged to engineering ac-
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Figure 13.12. First harmonic of unsteady pressure distribution for front stage com-
pressor rotor airfoils vibrating in pitch with ω = 1.0, σ = 30◦, and α = 1.0◦.
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Figure 13.13. Unsteady pressure distribution for front stage compressor rotor airfoils
vibrating in pitch with ω = 1.0 and σ = 30◦. Top: zeroth harmonic. Middle and
bottom: first harmonic.
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Figure 13.15. First harmonic of unsteady pitching moment for front stage compressor
rotor airfoils vibrating in pitch with σ = 30◦.
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curacy. Note that the imaginary moment is positive (unstable) for small
amplitude motions, but goes to zero at a pitching amplitude of about
0.7◦. Thus, the blade will vibrate in a stable limit cycle with with this
pitch amplitude. It is also remarkable that the nonlinear fluid dynamics
effects are important at such a small geometric displacement.

We next consider the computational efficiency of the present method.
Shown in Fig. 13.16 are the convergence histories for the steady flow
and harmonic balance calculations. Note that except for N = 7, the
steady flow solver and harmonic balance flow solver converge in about
the same number of iterations. For the N = 7 case, the harmonic balance
solution does not converge. Fortunately, we have found that three to five
harmonics are more than adequate to obtain mode converged solutions of
the zeroth and first harmonic components of the unsteady flow, and the
harmonic balance solver usually converges for this number of harmonics.
Finally, the CPU time per iteration of the harmonic balance flow solver
for one, three, five, and seven harmonics was found to be 2.15, 4.62, 7.45,
and 10.29 times the cost per iteration of the steady flow solver. Even
using seven harmonics, the cost to compute the fully nonlinear, viscous,
transonic flow about a vibrating blade row is only about ten times the
cost of a comparable steady flow calculation.

13.4. Conclusions

Frequency domain techniques for computing unsteady flows in turbo-
machinery have evolved considerably over the past two decades. These
techniques are capable of computing both small-disturbance unsteady
flows (using the time-linearized approach) and large amplitude flows
(using the harmonic balance approach). In addition, the time-linearized
approach has been applied to the difficult but important problem of
computing unsteady flows in multistage machines. In all cases, the
frequency domain solvers have a number of distinct advantages over
their time-domain equivalents. Using complex periodicity conditions,
the computational domain can be reduced to a single blade passage (in
each row). Furthermore, using the pseudo time marching technique, the
governing Euler and Navier-Stokes equations can be solved using steady-
state acceleration techniques such as local time stepping and multigrid
acceleration. The result is that computing these very complex unsteady
flows in turbomachinery is only slightly more expensive than solving a
steady flow problem.
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Figure 13.16. Convergence history for steady flow solver (top) and harmonic balance
flow solver (bottom) with σ = 30◦, ω = 1.0, and α = 1.0◦.
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Appendix A
A Primer For Structural Response To
Random Pressure Fluctuations∗

A.1. Introduction
In this appendix we shall treat the response of a structure to a convecting - decaying

random pressure field. The treatment follows along conventional lines after Powell [1]
and others. That is, the pressure field is modelled as a random, stationary process
whose correlation function (and/or power spectra) is determined from experimental
measurements. Using this empirical description of the random pressure, the response
of the structure is determined using standard methods from the theory of linear
random processes [2,3]. The major purpose of the appendix id to provide a complete
and detailed account of this theory which is widely used in practice (in one or another
of its many variants). A second purpose is to consider systematic simplifications to the
complete theory. The theory presented here is most useful for obtaining analytical
results such as scaling laws or even, with enough simplifying assumptions, explicit
analytical formulae for structural response.

It should be emphasized that, if for a particular application the simplifying as-
sumptions which lead to analytical results must be abandoned, numerical simulation
of structural response time histories may be the method of choice [4,5]. Once one is
committed to any substantial amount of numerical work (e.g., computer work) then
the standard power spectral approach loses much of its attraction.

A.2. Excitation-Response Relation For The
Structure

In the present section we derive the excitation-response relations for a flat plate.
It will be clear, however, that such relations may be derived in a similar manner for
any linear system.

∗This Appendix is based upon a report by E.H. Dowell and R. Vaicaitis of the same title
Princeton University AMS Report No. 1220, April 1975.
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The equation of motion of the small (linear) deformation of a uniform isotropic
flat plate is

D∇4w + m
∂2w

∂t2
= p (A.1)

where w is the plate deflection, p the pressure loading and the other terms are defined
in the Nomenclature. Associated with (I.1) are the natural modes and Frequencies of
the plate which satisfy

D∇4ψn − ω2
nmψn = 0 (A.2)

where ωn is the frequency and ψn(x, y) the shape of the nth natural mode. In standard
texts it is shown that the ψn satisfy an orthogonality condition∫∫

ψnψmdxdy = 0 for m �= n (A.3)

If we expand the plate deflection in terms of the natural modes

w =
∑

n

qn(t)ψn(x, y) (A.4)

then substituting (A.4) into (A.1), multiplying by ψm and integrating over the plate
area we obtain

Mm[q̈m + ω2
mqm] = Qm m = 1, 2, . . . (A.5)

where we have used (A.2) and (A.3) to simplify the result. Mm and Qm are defined
as

Mm ≡
∫∫

mψ2
mdxdy

Qm ≡
∫∫

pψmdxdy

· ≡ d/dt

(A.6)

For structures other than a plate the final result would be unchanged, (A.5) and
(A.6); however, the natural modes and Frequencies would be obtained by the appro-
priate equation for the particular structure rather than (A.1) or (A.2). Hence, the
subsequent development, which depends upon (A.5) only, is quite general.

Before proceeding further we must consider the question of (structural) damping.
Restricting ourselves to structural damping only we shall include its effects in a gross
way by modifying (A.5) to read

Mm[q̈m + 2ζmωmq̇m + ω2
mqm] ≡ Qm (A.7)

where ζm is a (nondimensional) damping coefficient usually determined experimen-
tally. This is by no means the most general form of damping possible. However, given
the uncertainly in our knowledge of damping from a fundamental theoretical view-
point (see[6]) it is generally sufficient to express our meager knowledge. If damping is
inherent in the material properties (stress-strain law) of the structure, the theory of
viscoelasticity may be useful for estimating the amount and nature of the damping.
However, often the damping is dominated by friction at joints, etc., which is virtually
impossible to estimate in any rational way.

Now let us turn to the principal aim of this section, the stochastic relations between
excitation (pressure loading), and response (plate deflection or stress). We shall obtain
such results in terms of correlation functions and power spectra.
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The correlation function of the plate deflection w is defined as

Rw(τ ; x, y) ≡ lim
T→∞

1

2T

∫ T

−T

w(x, y, t)w(x, y, t + τ)dt (A.8)

Using (A.4) we obtain

Rw(τ ; x, y) =
∑
m

∑
n

ψm(x, y)ψn(x, y)Rqmqn(τ) (A.9)

where

Rqmqn(τ) ≡ lim
T→∞

1

2T

∫ T

−T

qm(t)qn(t + τ)dt (A.10)

is defined to be the cross-correlation of the generalized coordinates , qm. Defining
power spectra

Φw(ω; x, y) =
1

π

∫ ∞

−∞
Rw(τ ; x, y)e−iωτdτ (A.11)

Φqmqn(ω) ≡ 1

π

∫ ∞

−∞
Rqmqn(τ)e−iωτdτ (A.12)

we may obtain from (A.9) via a Fourier transform

Φw(ω; x, y) =
∑
m

∑
n

ψm(x, y)ψn(x, y)Φqmqn(ω) (A.13)

(A.9) and (A.13) relate the physical deflection, w, to the generalized coordinates ,
qm.

Consider next similar relations between physical load p and Generalized force Qm.
Define the cross-correlation.

RQmQn(τ) ≡ lim
T→∞

1

2T

∫ T

−T

Qm(t)Qn(t + τ)dt (A.14)

Using the definition of Generalized force (A.6)

Qm(t) ≡
∫∫

p(x, y, t)ψm(x, y)dxdy

Qn(t + τ) ≡
∫∫

p(x∗, y∗, t + τ)ψn(x∗, y∗)dx∗dy∗

and substituting into (A.14) we obtain

RQmQn(τ) =

∫∫∫∫
ψm(x, y)ψn(x∗, y∗)

·Rp(τ ; x, y, x∗, y∗)dxdy dx∗dy∗
(A.15)

where we define the pressure correlation

Rp(τ ; x, y, x∗, y∗) ≡ lim
T→∞

1

2T

∫ T

−T

p(x, y, t)p(x, y, t)p(x∗, y∗, t + τ)dt (A.16)

Note that a rather extensive knowledge of the spatial distribution of the pressure is
required by (A.16).
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Again defining power spectra

ΦQmQn(ω) ≡ 1

π

∫ ∞

−∞
RQmQn(τ)eiωτdτ (A.17)

Φp(ω; x, y, x∗, y∗) ≡ 1

π

∫ ∞

−∞
Rp(τ ; x, y, x∗, y∗)e−iωτdt (A.18)

we may obtain from (A.15)

ΦQmQn(ω) =

∫∫∫∫
ψm(x, y)ψn(x∗, y∗)

·Φp(τ ; x, y, x∗, y∗)dxdy dx∗dy∗
(A.19)

Finally, we must relate the generalized coordinates to the Generalized forces . From
(A.7) we may formally solve (see [2], for example or recall Section 3.3)

qn(t) =

∫ ∞

−∞
In(t − t1)Qn(t1)dt1 (A.20)

where the ‘impulse function’ is defined as

In(t) ≡ 1

2π

∫ ∞

−∞
Hn(ω)eiωτdω (A.21)

and the ‘transfer function’ is defined as

Hn(ω) ≡ 1

Mn[ω2
n + 2ζniωnω − ω2]

Also

Hn(ω) =

∫ ∞

−∞
In(t)e−iωτdt

which is the other half of the transform pair, cf (A.21).
From (A.20) and (A.10)

Rqmqn(τ) = lim
T→∞

1

2T

∫∫∫ T

−T

Im(t − t1)In(t + τ − t2)Qm(t2)dt1dt2dt

Performing a change of integration variables and noting (A.14),

Rqmqn(τ) =

∫∫ ∞

−∞
Im(ξ)In(η)RQmQn(τ − η + ξ)dξdη (A.22)

Taking a Fourier transform of (A.22) and using the definitions of power spectra (A.12)
and (A.17), we have

Φqmqn(ω) = Hm(ω)Hn(−ω)ΦQmQn(ω) (A.23)

Summarizing, the relations for correlation functions are (A.9), (A.15) and (A.22)
and for power spectra (A.13), (A.19) and (A.23). For example, substituting (A.19)
into (A.23) and the result into (A.13) we have

Φw(ω; x, y)
∑
m

∑
n

ψm(x, y)ψn(x, y)Hm(ω)Hn(−ω)

·
∫∫∫

ψm(x, y)ψn(x∗, y∗)

·Φp(ω; x, y, x∗, y∗)dxdy dx∗dy∗ (A.24)

This is the desired final result relating the physical excitation to the physical response
in stochastic terms.
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A.3. Sharp Resonance or Low Damping
Approximation

Often (I.24) is approximated further. Two approximations are particularly popular
and useful. The first is the ‘neglect of off-diagonal coupling’. This means omitting
all terms in the double sum except those for which m = n. The second is the ‘white
noise’ approximation which assumes that Φp is essentially constant relative to the
rapidly varying transfer functions Hm(ω). Making both of these approximations in
(A.24) we may obtain the mean square response

w̄2(x, y) ≡ Rw(τ = 0; x, y) =

∫ ∞

0

Φw(ω; x, y)dω

≈ π

4

∑
m

ψ2
m(x, y)

M2
mω3

mζm

∫∫∫
ψm(x, y)ψm(x∗, y∗)

·Φp(ωm; x, y, x∗, y∗)dxdy dx∗dy∗ (A.25)

Of course, only one or the other of these approximations may be made, rather than
both. However, both stem from the same basic physical idea: The damping is small
and hence, Hm has a sharp maximum near ω = ωm. That is

Hm(ωm)Hn(−ωm) � |Hm(ωm)|2

Hm(ωn)Hn(−ωn) � |Hn(ωn)|2

and the ‘neglect of off-diagonal coupling’ follows. Also

∫
Φp|Hm(ω)|2dω ≈ Φp(ωm)

∫
|Hm(ω)|2dω

and (A.25) follows by simple integration.
Not that if we take the spatial mean square of (A.24) then using orthogonality

(for a uniform mass distribution)one may show that the off-diagonal terms do not
contribute (see Powell [1]).

Finally note that if we desire stress rather than deflection, then it may be shown
that analogous to (A.25)one obtains

σ̄2 =
π

4

∑
m

σ2
m(x, y)

M2
mω3

mζm

∫∫∫∫
ψm(x, y)ψm(x∗, y∗)

·Φp(ωm; x, y, x∗, y∗)dxdy dx∗dy∗ (A.26)

where σm is stress due to w = ψm.
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Nomenclature

a Plate length
b Plate width
D Eh3/12(1 − v2), Plate bending stiffness
E Modulus of elasticity
Hn Plate transfer function
h Plate thickness
In; I Plate impulse function; see equation (A.21)

K2
n =

mω2
na4

D

Mm Plate generalized mass
m Plate mass/area
n normal
p Pressure on plate
Qm Generalized force on plate
qn Generalized plate coordinate
R Correlation function
t Time
w Plate deflection
x, y, z Cartesian Coordinates
∇2 Laplacian
Φ Power spectral density
ρm Plate density
σ stress
τ Dummy time
ζm Modal damping
ωm Modal frequency

References for Appendix A
1 Powell, A., Chapter 8 in book, Random Vibration, edited by S.H. Crandall, Tech-

nology Press, Cambridge, Mass., 1958.

2 Laning, J.H. and Battin, R.H., Random Processes in Automatic Control, McGraw-
Hill, New York, N.Y., 1956.

3 Lin, Y.K., Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York,
N.Y., 1967.

4 Dowell, E.H., Aeroelasticity of Plates and Shells, Noordhoff International Publish-
ing, Leyden, The Netherlands, 1974.

5 Vaivaitis, R., Dowell, E.H., and Ventres, C.S., “Nonlinear Panel Response by a
Monte Carlo Approach”, AIAA Journal, Vol. 12, No. 5 (May 1974) pp. 685-691.

6 Lazan, B.J., Damping of Materials and Members in Structural Mechanics, Perga-
mon Press, New York, N.Y., 1968.



Appendix B
Some Example Problems

Problems such as these have been used successfully as homework assignments.
When used as a text, the instructor may wish to construct variations on these prob-
lems.

B.1. For Chapter 2
Questions

Typical section with control surface, see Figure B.1.

1. Compute qREV ERSAL for finite Kδ and show it is the same as computed in the
text for Kδ → ∞.

2. Compute qDIV ERGENCE explicitly in terms of Kα, Kδ, etc.

Beam-rod model

3. Compute qDIV ERGENCE using one and two models with uniform beam-rod
eigenfunctions.

Assume

GJ = GJ0[1 − y/l]

How do these results compare to those for

GJ = GJ0 ∼ constant?

Answers

711
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Figure B.1.

1. The two equations of static moment equilibrium are as follows:

eqS

(
∂CL

∂α
α +

∂CL

∂δ
δ

)
+ qSc

∂CMAC

∂δ
δ − Kαα = 0 (about elastic axis)

qSc

(
∂CH

∂α
α +

∂CH

∂δ
δ

)
− Kδ(δ − δ0) = 0 (about high axis)

These equations are given in matrix form as follows:

[ eqS ∂CL
∂α

− Kα eqS ∂CL
∂δ

+ qSC ∂CMAC
∂δ

qSC ∂CH
∂α

qSc ∂CH
∂δ

− Kα

][ α
δ

]
=
[ 0

−Kδ · δ0

]
Solving for α and δ, one obtains

α =

∣∣∣∣ 0 eqS ∂CL
∂δ

+ qSc ∂CMAC
∂δ

−Kδ · δ0 qSc ∂CH
∂δ

− Kδ

∣∣∣∣
∆

=
Kδ · δ0qS

(
e ∂CL

∂δ
+ c ∂CMAC

∂δ

)
∆

(B.1)

δ =

∣∣∣∣ eqS · ∂CL
∂α

− Kα 0̇

qSc ∂CH
∂α

−Kδ · δ0

∣∣∣∣
∆

=
−Kδ · δ0

(
eqS ∂CL

∂α
− Kα

)
∆

(B.2)

where

∆ ≡
∣∣∣∣ eqS ∂CL

∂α
− Kα eqS ∂CL

∂δ
+ qSc ∂CMAC

∂δ

qSc ∂CH
∂α

qSc ∂CH
∂δ

− Kδ

∣∣∣∣ (B.3)

If control surface reversal occurs when q = qR, then

L = qS

[
∂CL

∂α
α +

∂CL

∂δ
δ

]
= 0

for q = qR, i.e., [
∂CL

∂α
α +

∂CL

∂δ
δ

]
= 0 (B.4)

at q = qR
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Substitution of (B.1) and (B.2) into (B.4) gives

0 =
∂CL

∂α
· Kδ · δ0

∆
qRS

(
e
∂CL

∂δ
+ c

∂CMAC

∂δ

)
− ∂CL

∂δ
· Kδ · δ0

∆

(
eqRS

∂CL

∂δ
− Kα

)

=
Kδ · δ0

∆

(
�������
eqRS

∂CL

∂α

∂CL

∂δ
+ qRS

∂CL

∂α

∂CMAC

∂δ
− eqRS

�����∂CL

∂α

∂CL

∂δ
+ Kα

∂CL

∂δ

)

=
Kσ · δ0

∆

(
qRSc

∂CL

∂α

∂CMAC

∂δ
+ Kα

∂CL

∂α

)
Thus the reversal dynamic pressure qR for finite Kδ is

qR =

Kα
Sc

(
∂CL
∂δ

/
∂CL
∂α

)
−∂CMAC

∂δ

which is identical with qR when Kδ→∞!
2. The divergence dynamic pressure is determined by ∆ = 0. That is,(
eqS

∂CL

∂α
− Kα

)(
qSc

∂CH

∂δ
− Kδ

)
− qSc

∂CH

∂α

(
eqS

∂CL

∂δ
+ qSc

∂CMAC

∂δ

)
= 0

q2S2c2

(
ē · ∂CL

∂α

∂CH

∂δ
− ē

∂CH

∂α

∂CL

∂δ
− ∂CMAC

∂δ

)

−qSc

(
Kα · ∂CH

∂δ
+ Kδ · ē ∂CL

∂α

)
+ KαKδ = 0

(ē ≡ e/c) (B.5)

If A �= 0 (A is defined below),

q =
1

Sc
· B ±√

B2 − 4AC

2A

where

A ≡ ē

(
∂CL

∂α

∂CH

∂δ
− ∂CH

∂α

∂CL

∂δ

)
− ∂CMAC

∂δ

B ≡ Kα
∂CH

∂δ
+ Kδ ē

∂CL

∂α

C ≡ KαKα

Then divergence occurs when AB > 0 and B2 − 4AC ≥ 0 (for which e.g., (B.5) has
two positive roots), and the divergence dynamic pressure q is

qD = min

[
1

Sc
· B +

√
B2 − 4AC

2A
,

1

Sc

B −√
B2 − 4AC

2A

]

If A = 0, then divergence occurs when B > 0, and the divergence dynamic pressure
qD is

qD =
1

Sc
· C

B

To sum up, divergence occurs when
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(a) {
ē

(
∂CL

∂α

∂CH

αδ
− ∂CH

∂α

∂CL

∂δ

)
− ∂CMAC

∂δ

}(
Kα

∂CH

∂δ
+ Kδ ē

∂CL

∂α

)
> 0

and(
Kα

∂CH

∂δ
− Kδ ē

∂CL

∂α

)2

+ 4KαKδ

(
ē
∂CH

∂α

∂CL

∂δ
+

∂CMAC

∂δ

)
≥ 0

and the divergence dynamic pressure qD is

Kα
∂CH

∂δ
+ Kδ ē

∂CL

∂α
−
√(

Kα
∂CH

∂δ
− Kδ ē

∂CL

∂d

)2

qD =
+4KαKd

(
ē ∂CH

∂α
∂CL
∂δ

+ ∂CMAC
∂δ

)
2Sc

{
ē
(

∂CL
∂α

∂CH
∂δ

− ∂CHL
∂α

∂CL
∂δ

)
− ∂CMAC

∂δ

}
when

ē

(
∂CL

∂α

∂CH

∂δ
− ∂CH

∂α

∂CL

∂σ

)
− ∂CMAC

∂δ
> 0

and

Kα
∂CH

∂δ
+ Kδ ē

∂CL

∂α
+

√(
Kα

∂CH

∂δ
− Kδ ē

∂CL

∂α

)2

qD =
+4KαKδ

(
ē ∂CH

∂α
∂CL
∂δ

+ ∂CMAC
∂δ

)
2Sc

{
ē
(

∂CL
∂α

∂CH
∂δ

)
− ∂CH

∂α
∂CL
∂δ

}
when

ē
∂CL

∂α

∂CH

∂δ
− ∂CH

∂α

∂CL

∂δ
− ∂CMAC

∂δ
< 0

or,
(b)

ē

(
∂CL

∂α

∂CH

∂δ
− ∂CH

∂α

∂CL

∂δ

)
− ∂CMAC

∂δ
= 0

and

Kα
∂CH

∂δ
+ Kδ ē

∂CL

∂α
> 0

and the divergence dynamic pressure qD is

qD =
KαKδ

Sc
(
Kα

∂CH
∂δ

+ Kδ ē
∂CL
∂α

)
3. The equation of static torque equilibrium for a beam rod, see Figure B.2, is

d

dy

(
GJ

dαe

dy

)
+ My = 0 (B.6)

where

My = MAC + Le

= qc2CMAC0 + eqc
∂CL

∂α
(α0 + αe)

(B.7)
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l

c

dy

Figure B.2.

If we put γ = [1 − y/l] and y = lȳ, then, from (B.6) and (B.7), we have

d

dȳ

(
γ

dαe

dȳ

)
+

qcel2 ∂CL
∂α

GJ0
αe = − qcl2

GJ0

(
c · CMAC0 + e

∂CL

∂α
α0

)
(B.8)

(1) Eigenvalues and functions for constant wing properties. Putting

λ2 ≡ qcel2 ∂CL
∂α

GJ0

we have the characteristic equation as follows

(B.7) → d2αe

dȳ2
+ λ2αe = 0 (γ = 1 for constant wing properties)

Hence, αe = A sin λȳ + B cos λȳ.
As boundary conditions are

αe =0 at ȳ = 0 → B = 0

dαe

dȳ
=0 at ȳ = 1 → Aλ cos λ − Bλ sin λ → cos λ = 0

(If λ = 0 then αe ≡ 0, which is of no physical interest.)
So

Eigenvalues: λm = (2m − 1)
π

2
, m = 1, 2 . . .

Eigenfunctions: αm = sin λmȳ

We first find the divergence dynamic pressure for the wing with constant properties.
Let

αe =
∑
m

anαn, K ≡ − qcl2

(GJ)0

(
cCMAC0 + e

∂CL

∂α
α0

)
=
∑

n

Anαn

Then ∑
n

an

(
d2αn

dȳ2
+ λ2αn

)
= K
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As
d2αn

dȳ2
= −λ2

nαn

so ∑
n

an(λ2 − λ2
n)αn = K

∑
n

an

∫ 1

0

(λ2 − λ2
n)αnαmdȳ =

∫ 1

0

Kαmdȳ =
1

2
Am

since ∫ 1

0

αnαmdȳ =
1

2
δmn

=
1

2
m = n

= 0m �= n

Hence

am

2
(λ2 − λ2

m) =
1

2
Am

am =
Am

λ2 − λ2
m

Thus

αe =
∑

n

An

λ2 − λ2
n

· αn

αe → ∞ when

λ = λm = (2m − 1)
π

2

hence, the divergence dynamic pressure qD, corresponds to the minimum value of λm,
i.e., π/2. Thus

qD =
GJ0

cel2 ∂CL
∂α

π2

4

for constant wing properties.

(2) GJ = GJ0(1 − y/l) = GJ0(1 − ȳ), variable wing properties. We assume for sim-
plicity that only the torsional stiffness varies along span and that other characteristics
remain the same.

Putting

αe =
∑

n

bn · αn, K ≡ − qcl2

GJ0

(
cCMAC0 + e

∂CL

∂α
α0

)
=
∑

n

Anαn

and

λ2 ≡ qcel2

GJ0

∂CL

∂α

we get from (B.8) ∑
n

bn

{
d

dȳ

(
γ

dαn

dȳ

)
+ λ2αn

}
= K
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therefore
∑

n

bn

∫ 1

0

{
d

dȳ

(
γ

dαn

dȳ

)
+ λ2αn

}
αmdȳ =

∫ 1

0

Kαmdy =
1

2
Am

therefore [Cmn]{bn} =
1

2
Am(for finite n) (B.9)

where

Cmn =

∫ 1

0

{
d

dȳ

(
γ

dαn

dȳ

)
+ λ2αn

}
αmdȳ

= −
∫ 1

0

γ
dαn

dȳ

dαm

dȳ
dȳ +

λ2

2
δmn

(γ dαn
dȳ

αm = 0 at ȳ = 0 and 1 because of the boundary conditions for eigenfunctions.)

(1) One mode model. The assumed mode is as follows:

α1 = sin λ1ȳ = sin
π

2
ȳ → dα1

dȳ
=

π

2
cos

π

2
ȳ

Equation (B.9) is

C11b1 =
A1

2
(B.10)

where

C11 = −
∫ 1

0

(1 − ȳ)

(
dα1

dȳ

)2

dȳ +
λ2

2

therefore C11 =
λ2

2
− π2 + 4

16

From (B.10),

b1 =
A1

λ2 − π2+4
8

Then divergence occurs when

λ2 =
π2 + 4

8

and

qD =
GJ0

cel2 ∂CL
∂α

π2 + 4

8
= (qD)const. wing prop. × 0.703

(2) Two mode model. Assumed modes are

α1 = sin λ1ȳ = sin
π

2
ȳ ⇒ dα1

dȳ
=

π

2
cos

π

2
ȳ

α2 = sin λ2ȳ = sin
3

2
πȳ ⇒ dα2

dȳ
=

3

2
π cos

3

2
πȳ

Equation (B.9) is as follows:[
C11 C12

C21 C22

] [
b1

b2

]
=

1

2

[
A1

A2

]
(B.11)
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where

C11 = −
∫ 1

0

(1 − ȳ)

(
dα1

dȳ

)2

dȳ +
λ2

2
=

λ2

2
− π2 + 4

16

C12 = −
∫ 1

0

(1 − ȳ)
dα2

dȳ

dα1

dȳ
dȳ = −3

4

C21 = −
∫ 1

0

(1 − ȳ)
dα1

dȳ

dα2

dȳ
dȳ = C12 = −3

4

C22 = −
∫ 1

0

(1 − ȳ)

(
dα2

dȳ

)2

dȳ +
λ2

2
=

λ2

2
− 9π2 + 4

16

Then equation (B.11) is as follows:[
λ2 − π2+4

8
− 3

2

− 3
2

λ2 − 9π2+4
8

] [
b1

b2

]
=

[
A1

A2

]

Thus divergence occurs when∣∣∣∣∣ λ2 − π2+4
8

− 3
2

− 3
2

λ2 − 9π2+4
8

∣∣∣∣∣ = 0

therefore λ2 =
5π2 + 4

8
± 1

2

√
π4 + 9

qD is given by the smaller value of λ2, i.e.,

qD =
GJ0

cel2 ∂CL
∂α

×
(

5π2 + 4

8
− 1

2

√
π4 + 9

)
=(qD)const.wingprop. × 0.612

Question

Beam-rod model, see Figure B.3

4. For a constant GJ , etc. wing, use a two ‘lumped element’ model and compute
the divergence dynamic pressure. Neglect rolling. Compare your result with the
known analytical solution. How good is a one ‘lumped element’ solution?

Answer
4.
(a) Two lumped element model

α(y) =

∫ 1

0

CαM (y, η)M(η)dη (B.12)

where
CαM (y, η): twist about y axis at y due to unit moment at η

M(η) =

∫ b

a

p(ξ, η)ξdξ
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ξ

η
e

a.c
a

b

c , e.a

x

y

Figure B.3.

Equation (B.12) in matrix form is

{α} = [CαM ]{M}∆η (B.12)

where from structural analysis,

[CαM ] =

[
l/4
GJ

l/4
GJ

l/4
GJ

3l/4
GJ

]
(B.13)

and CαM (i, j) is the twist at i due to unit moment at j. Using an aerodynamic ‘strip
theory’ approximation, the aerodynamic moment may be related to the twist,

{M} = qce
∂CL

∂α

[
1 0
0 1

]
{α} = qce

∂CL

∂α
{α} (B.14)

From (B.12) and (B.14), one has

{α} = [CαM ]{M}∆η = qCe
∂CL

∂α
[CαM ]∆η{α}

or rewritten, using ∆η = l/2,[[
1 0
0 1

]
− 1

2
qce

∂CL

∂α

l

4GJ

[
1 1
1 3

]]
{α} =

{
0
0

}
(B.15)

Setting the determinant of coefficients to zero, gives

| | = 0 → 2Q2 − 4Q + 1 = 0 (B.16)

where

Q =
l2

8GJ
qce

∂CL

∂α

Solving (B.16), on obtains

Q =
2 ±√

2

2
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2.46

2.0

1.0

1 2 3 NUMBER  OF  ELEMENTS

ANALYTICAL  SOLUTION

Q

Figure B.4.

The smaller Q gives the divergence qD

qD =4(2 −
√

2)
GJ/l

(lc)e ∂CL
∂α

.
=2.34

GJ/l

(lc)e ∂CL
∂α

(b) One lumped element model

α = qce
∂CL

∂α
CαM∆ηα

where

∆η = l, CαM =
l/2

GJ(
1 − qCe

∂CL

∂α

l/2

GJ

)
α = 0

therefore qD = 2
GJ/l

(lc)e ∂CL
∂α

Recall that the analytical solution is (cf. Section 2.2)

qD =
(π

2

)2 GJ

l
/(lc)e

∂CL

∂α

= 2.46 · · ·
A comparison of the several approximations is given below. In the two element model
the error is about 5%, see Figure B.4.

Question

5. Consider a thin cantilevered plate of length l and width b which represents the
leading edge of a wing at supersonic speeds. See Figure B.5.

The aerodynamic pressure loading (per unit chord and per unit span) at high
speeds is given by (Section 3.4 and 4.2)

p =
2ρU2

(M2 − 1)
1
2

∂w

∂x
Sign convention: p down, w up
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Figure B.5.

where M is the mach number and w is the transverse deflection (not the down-
wash!). Compute the divergence speed.

(1) Work out a formal mathematical solution, without numerical evaluation, using
classical differential equation methods.

(2) How would you use Galerkin’s method with an assumed mode of the form

w = a{2(1 − x/l)2 − 4

3
(1 − x/l)3 +

1

3
(1 − x/l)4}

to obtain a numerical answer? What boundary conditions on w does the assumed
mode satisfy?

Answer

(1) The governing equilibrium equation is

EI
∂4w

∂x4
= −p = − 2ρU2

(M2 − 1)
1
2

∂w

∂x

Define

K ≡
[

2ρU2

(M2 − 1)
1
2

] [
1

EI

]
then the equation above becomes

∂4w

∂x4
+ K

∂w

∂x
= 0 (B.17)

The boundary conditions are:

w(l) =
∂w

∂x
(l) =

∂2w

∂x2
(0) =

∂3w

∂x3
(0) = 0 (B.18)

The characteristic equation of differential equation (B.17) is

γ4 + Kγ = 0 (B.19)
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The roots are γ1 = 0 and γ2, γ3, γ4 such that γ3 = −K. Now

(−K)
1
3 = K

1
3 ei 1

3 (π+2nπ), n = 0, 1, 2

and defining K1 = K
1
3 the roots γ2, γ3, γ4 become

γ2 = K1eiπ/3 = K1[cos π/3 + i sin π/3] = K1

[
1

2
+ i

√
3

2

]
γ3 = K1eiπ = K1[cos π + i sin π] = K1[−1]

γ4 = K1ei5π/3 = K1

[
cos

5π

3
+ i sin

5π

3

]
= K1

[
1

2
− i

√
3

2

]

Therefore w(x) has the form:

w(x) = b1 + b2e
−K1x + eK1(x/2)

[
b3 cos

(
K1

√
3

2
x

)
+ b4 sin

(
K1

√
3

2
x

)]

w′(x) = −b2K
1e−K1x +

K1

2
eK1(x/2)

[
(b3+b4

√
3) cos

(
K1

√
3

2
x

)

+ (b4 − b3

√
3) sin

(
K1

√
3

2
x

) ]
w′′(x) = b2K

12
e−K1x +

(
K1

2

)
eK1(x/2)

[
(2
√

3b4 − 2b3) cos

(
K1

√
3

2
x

)

+ (2
√

3b3 + 2b4) sin

(
K1

√
3

2
x

) ]

w′′′(x) = −b2K
13

e−K1x − K13
eK1(x/2)

[
b3 cos

(
K1

√
3

2
x

)
+ b4 sin

(
K1

√
3

2
x

)]
(B.20)

Using boundary conditions (B.18), we obtain from (B.20),

w(l) = 0 = b1 + b2e
−K1l + eK1 1

2

[
b3 cos

(
K1

√
3

2
l

)
+ b4 sin

(
K1

√
3

2
l

)]

∂w

∂x
(l) = 0 = −− b2K

1e−K1l +
K1

2
eK1 l

2

[
(b3 + b4

√
3) cos

(
K1

√
3

2
l

)

+ (b4 − b3

√
3) sin

(
K1

√
3

2
l

) ]
∂2w

∂x2
(0) = 0 = b2K

12
+

(
K1

2

)2

(2
√

3b4 − 2b3)

∂3w

∂x3
(0) = 0 = −b2K

13 − b3K
13

(B.21)

The condition for nontrivial solutions is that the determinant of coefficients of the
system of linear, algebraic equations given by (B.21) be zero. This leads to

e−
3
2 K′′

= −2 cos

(√
3

2
K′′

)
(B.22)
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z
x

y

h

Figure B.6.

where

K′′ ≡ K1l

In order to find the solution to equation (B.22), one would plot on the same graph
as a function of K′′ the right and left sides of this equation and note the points (if
any) of intersection. The first intersection for K′′ > 0 is the one of physical interest.
Knowing this particular K′′, call it K′′

D, one may compute

U2
D =

K
′′3
D (M2 − 1)

1
2 EI

2ρl3

to find the speed U at which divergence occurs.
(2) This is left as an exercise for the reader.

Questions

Sweptwing divergence

6. Derive the equations of equilibrium and associated boundary conditions, (2.6.1,
2.6.2, 2.6.11 and 2.6.12) from Hamilton’s Principle. Note that Hamilton’s Principle
is the same as the Principle of Virtual Work for the present static case.

For a constant property sweptwing undergoing bending only, use classical solution
techniques to compute the lowest eigenvalue corresponding to divergence. That is
from (2.6.10), (2.6.11), (2.6.12), show that λd = −6.33.

Now use Galerkins method to compute an approximate λD. For h, assume that

h = a0 + a1ỹ + a2ỹ
2 + a3ỹ

3 + a44̃

From the boundary conditions (2.6.11), (2.6.12) show that

a0 = b0 = 0

a3 = −4a4

a2 = 6a4
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and thus h = a4(ỹ
3 − 4ỹ3 + 6ỹ2). Using this representation for h, compute λD. How

does this compare to the exact solution?

Now consider both bending and torsion for a constant property wing. Assume

α = b0 + b1ỹ
2 + b2ỹ

3

Determine the possible form of α from the boundary conditions.
Determine λD for GJ/EI = 1, ē/c̄ = 0.5, l/c̄ = 10. Compare to the ear-

lier result for bending only. Plot your result in terms of λ̃D vs Λ where λ̃D ≡
q(∂C̄L/∂α)(c̄l3/EI).

B.2. For Section 3.1
Question

Starting from

U =
1

2

∫∫∫
[σxxεxx + σxyεxy + σyxεyx + σyyεyy] dx dy dz

and

εxx = −z
∂2w

∂x2

εyy = −z
∂2w

∂y2

εxy = −z
∂2w

∂x∂y

σxx =
E

(1 − ν2)
[εxxνεxy]

σyy =
E

(1 − ν2)
[εyyνεxx]

σxy = εxy = σyx

w = w(x, y) only

1. Compute U = U(w)
2. For w = −h(y) − aα(y), compute U = U(h, α)
3. Using a kinetic energy expression

T =
1

2

∫∫∫
ρ

(
∂w

∂t

)2

dx dy dz

compute T = T (h, α)
4. Assume h(y) = qhf(y)

α(y) = qαg(y)

where f, g are specified.
Determine equations of motion for qh, qα using Lagrange’s Equations, where the

virtual work done by aerodynamic pressure, p, is given by

δw =

∫∫
pδw dx dy
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5. Return to 1; now assume

w =
∑
m

qmψm(x, y)

where ψm is specified. Determine equations of motion for qm.

Answer
1. Potential energy U :

U =
1

2

∫∫∫
(σxxεxx + σxyεxy + σyxεyx + σyyεyy) dx dy dz

where

εxx = −z
∂2w

∂x2

εxy = −z
∂2w

∂x∂y
= σyx

εyy = −z
∂2w

∂y2

σxx =
E

1 − ν2
(εxxνεyy)

σxy =
E

1 + ν
εxy

σyy =
E

1 − ν2
(εyyνεxx)

Thus

σxxεxx + σxyεxy + σyxεyx + σyyεyy

=
E

1 − ν2
(εxx + νεyy) · εxx + 2

E

1 + ν
ε2xy +

E

1 − ν2
(εyy + νεxx)εyy

=
E

1 − ν2
(ε2xx + 2νεxx + ε2yy) +

2E(1 − ν)

1 − ν2
ε2xy

=
E

1 − ν2

{
z2

(
∂2w

∂z2

)2

+ 2ν · z2

(
∂2w

∂x2

)(
∂2w

∂y2

)
+ z2

(
∂2w

∂y2

)2

+2(1 − ν)z2

(
∂2w

∂x∂y

)}

=
Ez2

1 − ν2

{(
∂2w

∂x2

)
+

(
∂2w

∂y2

)2

+ 2ν

(
∂2w

∂x2

)(
∂2w

∂y2

)
+ 2(1 − ν)

(
∂2w

∂x∂y

)2
}

U =
1

2

∫∫∫
Ez2

1 − ν2

[ (∂2w

∂x2

)2

+

(
∂2w

∂y2

)2

+ 2ν

(
∂2w

∂x2

)
(

∂2w

∂y2

)
+ 2(1 − ν) ×

(
∂2w

∂x∂y

)2 ]
dx dy dz

=
1

2

∫∫
D

[(
∂2w

∂x2

)2

+

(
∂2w

∂y2

)2

+ 2ν

(
∂2w

∂x2

)(
∂2w

∂y2

)
+ 2(1 − ν)

(
∂2w

∂x∂y

)2
]

dx dy

(B.23)
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where

D ≡ E

1 − ν2

∫
z2dz

2. For w = −h(y) − xα(y)

w = −∂2h

∂y2
− x

∂2α

∂y2

∂2w

∂x∂y
= − ∂α

∂y

∂2w

∂x2
=0

Hence, from (B.23), we have

U =
1

2

∫∫
D
[ (∂2h

∂y2

)
+ 2

(
∂2α

∂y2x

)2

+ 02 + 2ν ·
(

∂2h

∂y2
+

∂2α

∂y2
· y
)
· 0

+ 2(1 − ν)

(
∂α

∂y

)2 ]
dx dy

=
1

2

∫∫
D
[ (∂2h

∂y2

)2

+ 2

(
∂2h

∂y2
x

)(
∂2α

∂y2

)
· x +

(
∂2α

∂y2

)2

x2

+ 2(1 − ν)

(
∂α

∂y

)2 ]
dx dy

(B.24)

Using the estimates,
∂α

∂y
∼ α

l
, x ∼ c,

h

l
∼ α

we see the second and third terms can be neglected compared to the first and fourth
for c/l � 1. Thus U becomes

U =
1

2

∫
EI

(
∂2h

∂y2

)2

dy +
1

2

∫
GJ

(
∂α

∂y

)2

dy

where

EI =

∫
Ddx, GJ =

∫
2D(1 − ν)dx

Note that if h
c
∼ α is used as an estimate, then to deduce the final expression for

U from (B.24), it is required that
∫

Dxdx = 0 which defines the “elastic axis”.
3. For w = −h(y, t) − α(y, t)x,

T =
1

2

∫∫∫
ρ

(
∂w

∂t

)2

dxdydz

=
1

2

∫
[mḣ2 + 2Sαḣα̇ + Iαα̇2]dy

where: m ≡ ∫
ρ dxdz; Sα ≡ ∫

ρx dx dz; and Iα ≡ ∫
ρx2dxdz.

Recall

δW =

∫
−Lδhdy +

∫
Myδαdy
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Using the above expression for U, T and δW , one can derive the governing partial
differential equations for h and α and the associated boundary conditions from Hamil-
ton’s principle.

4. Now w(z, y, t) = qh(t) · f(y) + qα(t)g(y)x and therefore

frac∂w∂t = q̇hf(y) + q̇αg(y)x · ≡ d

dt

T =
1

2

∫∫∫
ρ

(
∂w

∂t

)2

dxdydz

=
1

2

∫∫∫
ρ(q̇hf(y) + q̇αg(y)x)2dxdydz

=

∫∫∫
ρρ(q̇2

h{f(y)}2 + 2q̇hq̇αf(y)g(y)x + q̇2
α{g(y)}2x2)dxdydz

=
1

2

[
q̇2

h

∫∫∫
ρ{f(y)}2dxdydz + 2q̇hq̇α

∫∫∫
ρf(y)g(y)x dxdydz

+ q̇2
α

∫∫∫
{g(y)}2x2dxdydz

]
=

1

2
(q̇2

hMhh + 2q̇hq̇αMhα + q̇2
αMαα)

(B.25)

where

Mhh ≡
∫∫∫

ρ{f(y)}2dxdydz

Mhα ≡
∫∫∫

ρf(y)g(y)x dxdydz

Mαα ≡
∫∫∫

ρ{g(y)}2x2dxdydz

(B.26)

For w = qh(t)f(y) + qα(t)g(y)x the potential energy is given as follows:

′ ≡ d

dy(
∂2h

∂y2

)
= qhf ′′(y),

∂α

∂y
= qαg′(y),

∂2α

∂y2
= qαg′′(y) into (II.24)

U =
1

2

∫∫
D[{qhf ′′(y)}2 + 2qhf ′′(y)qαg′′(y)x + {qαg′′(y)}2x2

+ 2(1 − ν){qαg′(y)}2]dxdy

=
1

2

∫∫
D[q2

h{f ′′(y)}2 + 2qhqαf ′′(y)g′′(y)x + q2
α[{g′′(y)}2y2

+ 2(1 − ν){g′(y)}62]]dxdy

=
1

2

[
q2

h

∫∫
D{f ′′(y)}2dxdy + 2qhqα

∫∫
Df ′′(y)g′′(y)x dxdy

+ q2
α

∫∫
D{g′′(y)}2x2 + 2(1 − ν){g′(y)}2

]
dxdy

=
1

2
[q2

hKhh + 2qhqαKhα + q2
αKαα]

(B.27)
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where

Khh ≡
∫∫

D{f ′′(y)}2dxdy

Khα ≡
∫∫

Df ′′(y)g′′(y)x dxdy

Kαα ≡
∫∫

D[{g′′(y)}2x2 + 2(1 − ν){g′(y)}2]dxdy

(B.28)

Virtual work

δW =

∫∫
pδw dxdy

where

δw = δh + δαx = f(y)δqh + g(y)xδqα

Therefore δW =

∫∫
p(f(y)δqh + g(y)xδqα)dxdy

= δqh

∫∫
pf(y)dxdy + δqα

∫∫
pg(y)x dxdy

= Qhδqh + Qαδqα

where

Qh ≡
∫∫

pf(y)dxdy

Qα ≡
∫∫

pg(y) · x dxdy

(B.29)

The Lagrangian, L ≡ T − U , may be written

=
1

2
(q̇2

hMhh + 2q̇hq̇αMhα + q̇2
αMαα)

−1

2
(q2

hKhh + 2qhqαKhα + q2
αKαα)

∂L

∂q̇h
= q̇hMhh + q̇αMhα,

∂L

∂qh
= −qh · Khh − qαKhα

Therefore
∂L

∂q̇α
= q̇hMhα + q̇αMαα,

∂L

∂qα
= −qhKhα − qαKαα

Then Lagrange’s equations of motion are

d

dt

(
∂L

∂q̇h

)
− ∂L

∂qh
= Qh → Mhhq̈h + Mhαq̈α + Khhqh + Khα · qα = Qh

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
= Qα → Mhαq̈h + Mααq̈α + Khαqh + Kααqα = Qα

(B.30)

where Mhh, Mhα, Mαα, Khh, Khα, Kαα, Qh and Qα are given in (B.26), (B.28) and
(B.29).

5. When

w(x, y, t) =
∑
m

qm(t)ψm(x, y)
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∂2w

∂x2
=
∑
m

qm
∂2ψm

∂x2

∂2w

∂y2
=
∑
m

qm
∂2ψm

∂y2

∂2w

∂x∂y
=
∑
m

qm
∂2ψm

∂x∂y

(
∂2w2

∂x2

)
=
∑
m

∑
n

qmqn
∂2ψm

∂x2

∂2ψn

∂x2(
∂2w2

∂y2

)
=
∑
m

∑
n

qmqn
∂2ψm

∂y2

∂2ψn

∂y2(
∂2w2

∂x2

)(
∂2w

∂y2

)
=
∑
m

∑
n

qmqn
∂2ψm

∂x2

∂2ψn

∂y2(
∂2w2

∂x∂y

)
=
∑
m

∑
n

qmqn
∂2ψm

∂x∂y

∂2ψn

∂x∂y

Then from (B.23) the potential energy is

U =
1

2

∫∫
D
[∑

m

∑
n

qmqn
∂2ψm

∂x2

∂2ψn

∂x2
+
∑
m

∑
n

qmqn
∂2ψm

∂y2

∂2ψn

∂y2

+2ν
∑
m

∑
n

qmqn
∂2ψm

∂x2

∂2ψn

∂y2
+ 2(1 − ν)

∑
m

∑
n

qmqn
∂2ψm

∂x∂y

∂2ψn

∂x∂y

]
dxdy

=
1

2

∑
m

∑
n

qmqn

∫∫
D
[∂2ψm

∂x2

∂2ψn

∂x2
+

∂2ψm

∂y2

∂2ψn

∂y2
+ 2ν

∂2ψm

∂x2

∂2ψn

∂y2

+2(1 − ν)
∂2ψm

∂x∂y

∂2ψn

∂x∂y

]
dxdy

=
1

2

∑
m

∑
n

qmqn · Kmn

(B.31)

where

Kmn ≡
∫∫

D
[∂2ψm

∂x2

∂2ψn

∂x2
+

∂2ψm

∂y2

∂2ψn

∂y2
+ 2ν

∂2ψm

∂x2

∂2ψn

∂y2

+ 2(1 − ν)
∂2ψm

∂x∂y

∂2ψn

∂x∂y

]
dxdy

Note Kmn �= Knm!
Kinetic energy

∂w

∂t
=
∑
m

q̇mψm(x, y)

therefore

(
∂w

∂t

)2

=
∑
m

∑
n

q̇mq̇nψmψn
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T =
1

2

∫∫∫
ρ

(∑
m

∑
n

q̇mq̇nψmψn

)
dxdydz

=
1

2

∑
m

∑
n

q̇mq̇n

∫∫∫
ρψmψn dxdxdz

=
1

2

∑
m

∑
n

q̇mq̇nMmn

(B.32)

where

Mmn ≡
∫∫∫

ρψmψn dxdydz

Virtual work

δW =

∫∫
pw dxdy

=

∫∫
p

(∑
m

δqmψm

)
dxdy

δW =
∑
m

δqm

∫∫
pψmdxdy

=
∑
m

Qmδqm

(B.33)

where

Qm ≡
∫∫

pψmdxdy

Lagrangian:

L = T − U =
1

2

∑
m

∑
n

q̇mq̇nMmn − 1

2

∑
m

∑
n

qmqnKmn

∂L

∂q̇j
=

1

2

∑
n

q̇nMjn +
1

2

∑
m

q̇mMmj =
1

2

∑
m

q̇m(Mjm + Mmj)

=
∑
m

q̇mMmj (Mmj = Mjm)

∂L

∂qj
= −1

2

(∑
n

qnKjn +
∑
m

qmKmj

)
= −1

2

∑
m

(Kmj + Kjm)

Lagrange’s equations of motion

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
=
∑
m

q̈mMmj +
1

2

∑
m

qm(Kmj +Kjm) = Qj (j = 1, 2 . . .) (B.34)

Note: Kmj + Kjm = Kjm + Kmj , i.e., coefficient symmetry is preserved in final
equations.

B.3. For Section 3.3
Question.
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Figure B.7.

Use the vertical translation of and angular rotation about the center of mass of
the typical section, see Figure B.7, as generalized coordinates.

a. Derive the equations of motion.

b. Determine the flutter dynamic pressure and show that it is the same as discussed
in text. Use steady or quasi-steady aerodynamic theory.

Answer

T =
m

2
ḣ2

cm +
Icm

2
α̇2

U =
1

2
Kh(hcm − αxk)2 +

1

2
Kαα2

δW =

∫
pδw dx where w = −hcm − xα

is the vertical displacement of a point on airfoil. Thus

δW =

∫
p(−δhcm − xδα)dx

= δhcm

(
−
∫

pdx

)
+ δα

(
−
∫

pxdx

)
= δhcm(−L) + δα(My)
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where My is the moment about c.m and

M

MQhcm = −L ≡ −
∫

pdx

Qα = My ≡ −
∫

pxdx

T − U =
m

2
ḣ2

cm +
Icm

2
α̇2 − Kh

2
(hcm − αxk)2 − Kα

2
α2

From Lagrange’s equations,

− mḧcm − Kh(hcm − αxK) −
∫

pdx = 0

− Icmα̈ + KhxK(hcm − αxK) − Kαα −
∫

pxdx = 0

(B.35)

Substituting∫
pdx = qS

∂CL

∂α
,

∫
pxdx = −qS(e + xk)

∂CL

∂α
α, h = h̄ept

and α = ᾱept into the above equations, we obtain[
(mp2 + Kh) −Khxk + qS ∂CL

∂α

−KhxK Icmp2 + Khx2
k + Kα − qS

(
e + xk

∂CL
∂α

) ]{
h̄ept

ᾱept

}
=

{
0
0

}

The condition that the determinant of the coefficient matrix is zero gives

Ap4 + Bp2 + C = 0 (B.36)

where

A = mIcm = mIα − S2
α (Icm = Iα − mx2

k, Sα = mxk)

B = m

[
Khx2

k + Kα − qS(e + xk)
∂CL

∂α

]
+ KhIcm

= m

[
Kα − qSc

∂CL

∂α

]
+ Khα − SαqS

∂CL

∂α

C = Kh

[
�����
Khx2

k + Kα − qS(���e + xk)
∂CL

∂α

]
+ Khxk

(
����−Khxk +����

qS
∂CL

∂α

)
= Kh

[
Kα − qSe

∂CL

∂α

]
These A, B, and C are the same as in equation (3.3.51), Section 3.3, in the text. Thus
we have the same flutter boundary.

p2 =
−B + [B2 − 4AC]

1
2

2A

(a) B > 0 (A > 0, C > 0 ← divergence free.) If p2 is complex (not real), then
instability occurs.

Therefore B2 − 4AC = 0 gives the flutter boundary, i.e.,

Dq2
F + EqF + F = 0
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or

qf =
−E ± [E2 − 4DF ]

2D

where

D ≡
{

(me + Sα)S
∂CL

∂α

}2

E ≡
{
−2(me + Sα)[mKα + KhIα] + 4[mIα − S2

α]eKS
∂CL

∂α

}
F ≡ [mKα + KhIα]2 − 4[mIα − S2

α]KhKα

The smaller, real, and positive qf is the flutter dynamic pressure.
(b) B < 0. Note that B = 2

√
AC before B = 0 as q increases. Hence flutter

always occurs for B > 0.

Question.

Prove that
1.

φhF (τ) = φFh(−τ)

and
2.

ΦhF (ω) = HhF (−ω)ΦFF (ω)

This is a useful exercise to confirm one’s facility with the concepts of correlation
function and power spectral density.
Answer

1. Prove that φhF (τ) = φFh(−τ). We start with the definition of the cross-
correlation function:∗

φhF (τ) = lim
T→∞

1

2T

∫ +T

−T

h(t)F (t + τ)dt (B.37)

The response h(t) is given by

h(t) =

∫ t

0

IhF (t − τ1)F (τ1)dτ1 (B.38)

Here we have taken h(t) in dimensional form and IhF (t) represents the response to
an impulse. Substituting (B.38) into (B.37),

φhF (τ) = lim
T→∞

1

2T

∫ +T

−T

∫ +∞

−∞
IhF (t − τ1)F (τ1)F (t + τ)dτ1dt

∗A short proof goes as follows. Define η ≡ t − τ. Then dη = dt and t = η − τ; using these
and (B.37) the proof follows by inspection.
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(One may change the limit (0, t) in the inner integral to (−∞, +∞) since the impulse
will be zero for (t − τ1) < 0.) Let t′ ≡ t − τ1 ⇒ τ1 = t − t′ and interchange the order
of integration. Then dτ1 = −dt′ and

φhF (τ) = −
∫ −∞

+∞
IhF (t′) lim

T→∞
1

2T

∫ +T

−T

F (t − t′)F (t + τ)dtdt′

= −
∫ −∞

+∞
IhF (t′)φFF (τ + t′)dt′

Thus

φhF (τ) = +

∫ +∞

−∞
IhF (λ)φFF (τ + λ)dλ (B.39)

where λ ≡ t′ = dummy variable.
We follow the same procedure for φFh(τ).

φFh(τ) = lim
T→∞

1

2T

∫ +T

−T

F (t)h(t + τ)dt

= lim
T→∞

1

2T

∫ +T

−T

F (t)

{∫ +∞

−∞
IhF (t + τ − t2)F (t2)dt2

}
dt

let t′′ = t + τ − τ2. ⇒ dt′′ = −dτ2, τ2 = τ + t − t′′

φFh(τ) = −
∫ −∞

+∞
IhF (t′′)

{
lim

T→∞
1

2T

∫ +T

−T

F (t − t′′ + τ)F (t)dt

}
dt′′

= −
∫ −∞

+∞
IhF (t′′)φFF (τ − t′′)dt′′

= −
∫ +∞

−∞
IhF (λ)φFF (τ − λ)dλ

Let τ → −τ :

φFh(−τ) = +

∫ +∞

−∞
IhF (λ)φFF (−τ − λ)dλ

but φFF (τ) = φFF (−τ) and hence

φFh(−τ) = +

∫ +∞

−∞
IhF (λ)φFF (+τ + λ)dλ (B.40)

Comparing (B.39) and (B.40) we see that

φhF (τ) = φFh(−τ)

2. Prove that ΦhF (ω) = HhF (−ω)ΦFF . By definition, the spectral density func-
tion is the Fourier transform of the correlation function.
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Transforming the cross correlation function defined by (B.39).

ΦhF (ω) ≡ 1

π

∫ +∞

−∞
φhF (τ)e−iωτdτ

ΦhF (ω) =
1

π

∫ +∞

−∞

∫ +∞

−∞
IhF (t)φFF (τ + t)eiωτdtdτ

=
1

π

∫ +∞

−∞

∫ +∞

−∞
IhF (t)e+iωτφFF (τ + t)e−iωτ−iωtdtdτ

=

∫ +∞

−∞
IhF (t)

{
1

π

∫ +∞

−∞
φFF (τ + t)e−iω(τ+t)dτ

}
e+iωtdt

By definition
1

π

∫ +∞

−∞
φFF (τ ′)e−iωτ ′

dτ ′ = ΦFF (ω)

Let τ ′ ≡ τ + t, and substitute in RHS of equation for ΦhF . Then

ΦhF (ω) =

∫ +∞

−∞
IhF (t)e+iωtΦFF (ω)dt

Now, since

HhF (ω) =

∫ +∞

−∞
IhF (t)e−iωtdt it follows that

ΦhF (ω) =HhF (−ω)ΦFF (ω)

B.4. For Section 3.6
Typical section flutter analysis using piston theory aerodynamics

Pressure: p = ρa
[

∂za
∂t

+ ∂za
∂x

]
Motion: za = −h − α(x − xEA)∗

Upper surface: pU = ρa
[
−ḣ − α̇(x − xEA) − Uα

]
Lower surface: pL = −ρa

[
−ḣ − α̇(x − xEA) − Uα

]
Net pressure: pL − pU = 4ρU2

2M

[
ḣ
U

+ α̇
U

(x − xEA) + α
]

Lift: L ≡ ∫ 2b

0
(pL − pU )dx

= 4ρU2

2M

{[
ḣ
U
− α̇xEA

U
+ α

]
2b + α̇

U
(2b)2

2

}
Moment : My = − ∫ 2b

0
(pL − pU )(x − xEA)dx

= xEAL − 4ρU2

2M

[
ḣ
U
− α̇xEA

U
+ α

]
(2b)2

2

−4ρU2

2M

α̇

U

(2b)2

3
(B.41)

∗x is measured from airfoil leading edge: b is half-chord of airfoil
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Assume simple harmonic motion,

h = h̄eiωt

α = ᾱe1ωt

L = L̄eiωt

My = M̄ye1ωt

L̄ =
4ρU2

2M

{ iω

U
2bh̄

+

[−iωxEA

U
+ 1 +

iω

U

(2b)

2

]
2bᾱ

}
≡ 2ρb2ω2(2b)

{
(L1 + iL2)

h̄

b
+ [L3 + iL4]ᾱ

}

Thus from equation (3.6.3) in Section 3.6,

L1 + iL2 =
2ρU2

M
iωρ2b

U

2ρb2ω2(2b) 1
b

=
i

M

U

ωb
(B.42)

and

L3 + iL4 =

2ρU2

M

[
−iωxEA

U
+ 1 + iω(2b)

U2

]
2b

2ρb2ω2(2b)

=
1

M

(
U

bω

)2 [−iωb

U

xEA

b
+ 1 +

iωb

U

] (B.43)

Questions

(1) Derive a similar equation for

M1 + iM2 and M3 + iM4

(2) Fix ωh
ωα

= 0.5, rα = 0.5, xα = 0.05

xea

b
= 1.4, M = 2

Choose several k, say k = 0.1, 0.2, 0.5, and solve for(
ω

ωα

)2

and
m

2ρ∞bS
≡ µ (S ≡ 2b)

from (3.6.4) using the method described on pp. 107 and 108. Plot k vs. µ and ω/ωαvs
µ.

Finally plot U
bωα

≡ ω/ωα

k
vs µ. This is the flutter velocity as a function of mass

ratio.

Answers
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Recall equation (3.6.3) and again from Section 3.6,

M̄y = −2ρb3ω2(2b)

{
[M1 + iM2]

h̄

b
+ [M3 + iM4]ᾱ

}
Comparing the above and (B.41), one can identify

M1 + iM2 =
iU

Mbω

[
1 − xea

b

]
M3 + iM4 =

1

M

(
U

bω

)2 [
−xea

b

]
+ i

1

M

U

bω

{[
1 − xea

b

]2
+

1

3

} (B.44)

Recall the method described in Section 3.6 for determining the flutter boundary.

1. Evaluate real and imaginary parts of equation (3.6.4) and set each indi-
vidually to zero.

2. Solve for (ωα/ω)2 in terms of the mass ratio,µ, from the imaginary part of the
equation.

3. Substituting this result into the real part of the equation, obtain a quadratic in
µ. Solve for possible values of µ for various k. To be physically meaningful, µ must
be positive and real.

4. Return to 2. to evaluate ω/ωα

5. Finally determine U
bωα

= U
bω

ω
ωα

= 1
k

ω
ωα

.

In detail these steps are given below.

1. Real part

µ2

{[
1 −

(ωα

ω

)2
(

ωh

ωα

)2
]

r2
α

[
1 −

(ωα

ω

)2
]
− x2

α

}

+µ

{
−1

k2M

(
1 − xea

b

) [
1 −

(ωα

ω

)2
(

ωh

ωα

)2
]

+
xα

k2M

}
− 1

3k2M2
= 0

(B.45)

Imaginary part

µr2
α

[
1 −

(ωα

ω

)2
]
− 1

k2M

(
1 − xea

b

)

+

[(
1 − xea

b

)2

+
1

3

] [
1 −

(ωα

ω

)2
(

ωh

ωα

)2
]

µ

−
[
1 − xea

b

]
µxα −

[
1 − xea

b

] [
µxα − 1

k2M

]
= 0

(B.46)

2. Solving for (ωα/ω)2 from (B.46),

(ωα

ω

)2

=
r2

α +
(
1 − xea

b

)2
+ frac13 − 2xα

(
1 − xea

b

)
r2

α +
(

ωh
ωα

)2 [(
1 − xea

b

)2
+ 1

3

] (B.47)

Note (B.47) is independent of µ and k; this is a consequence of using piston theory
aerodynamics and would not be true, in general, for a more elaborate (and hopefully
more accurate) aerodynamic theory.
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Substituting the various numerical parameters previously specified into (B.47)
gives (ωα

ω

)2

= 2.099 or
ω

ωα
= 0.69 (B.48)

3. Using (B.48) in (B.45) along with the other numerical parameters gives

−0.133µ2 +
0.121

k2
µ − 1

12k2
= 0 (B.49)

Solving for µ,

µ1,2 =
0.45

k2
± 1

k

[
0.21

k2
− 0.63

] 1
2

(B.50)

Note that there is a maximum values of k possible, kMAX = [0.21/0.63]
1
2 . Larger k

gives complex µ which are physically meaningless. Also note that µ → 0.67, ∞ as
k → 0.

4. ω/ωα is evaluated in (B.48) and for these simple aerodynamics does not vary
with µ or k.

5. From (B.48) and a knowledge of k, U/bωα is known.

The above results are tabulated below.

k µ1 µ2 U/bωα

0.0 0.67 ∞ ∞
0.1 0.69 89.6 6.9
0.2 0.72 22 3.45
0.3 0.75 9.28 2.3
0.4 0.81 4.3 1.73
0.5 0.937 2.66 1.38
0.57 1.39 1.39 1.21

From the above table (as well as equation (B.50)) one sees that for 4µ < 0.67,
no flutter is possible. This is similar to the flutter behavior of the typical section at
incompressible speeds. At these low speeds mass ratios of this magnitude may occur
in hydrofoil applications. Although no such applications exist at high supersonic
speeds, it is of interest at least from a fundamental point of view that this somewhat
surprising behavior at small µ occurs there as well.

B.5. For Section 4.1
Question

1. Starting from Bermoulli’s equation, show that

â

a∞
∼ M2

∞
û

U∞
2. Previously we had shown that the boundary condition on a moving body is

(within a linear approximation)

∂φ̂

∂z

∣∣∣
z=0

=
∂za

∂t
+ U∞

∂za

∂x
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What is the corresponding boundary condition in terms of p̂?
3. Derive approximate formulae for the perturbation pressure over a two-

dimensional airfoil at supersonic speeds for very low and very high frequencies .

Answer

1. Bernoulli’s equation is

∂φ

∂t
+

∇φ · ∇φ

2
+

∫ p

p∞

dp1

ρ1(p1)
=

U2
∞
2

Since

a2 ≡ ∂p

∂ρ
and

p

ργ
= constant

we may evaluate integral in the above to obtain

U2
∞
2

∂φ

∂t
+

u2

2
=

a2 − a2
∞

γ − 1
, u ≡ |∇φ|

Assume

a =a∞ + â

u =U∞ + û

φ =U∞x + φ̂

where â � a∞, etc. To first order

−M2
∞

û

U∞
− 1

a2∞

∂φ̂

∂t
=

2

γ − 1

â

a∞
+ terms (â2, etc)

This means that M2
∞(û/U∞) and â/a∞ are quantities of the same order, at least for

steady flow where ∂φ̂/∂t ≡ 0.
2.

∂φ̂

∂z

∣∣∣
z=0

= Dza; D ≡ ∂

∂t
+ U∞

∂

∂x
(B.51)

By the linearized momentum equation

−∂p

∂x
= ρ∞Dû

but

û = ∇xφ̂

therefore p̂ = −ρ∞Dp̂

therefore − ∂p̂

∂z
= ρ∞

∂

∂z
(Dφ̂)

= ρ∞
∂

∂z
(D(φ̂)) = ρ∞D

(
∂

∂z
φ̂

)

From (B.51) and the above
−∂p

∂z

∣∣∣
z=0

= ρ∞D2za
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∂p

∂z
= −ρ∞D2za at z = 0 (B.52)

3.

∇2φ − 1

a2∞

[
∂

∂t
+ U∞

∂

∂x

]2

φ = 0

where
∂φ

∂z
Big|z=0 =

∂

∂t
za + U∞

∂

∂x
za ≡ w

off wing
∂φ

∂z

∣∣∣
z=0

= 0 thickness case

This does not matter here, because there are no disturbances ahead of wing in super-
sonic flow.

φ
∣∣∣
z=0

= 0 lifting case,

For a two dimensional solution, let φ(x, z, t) = φ̄(x, z)eiωt and w = w̄eiωt. Thus

∂2φ̄

∂x2
+

∂2φ̄

∂z2
− 1

a2∞

[
−ω2φ̄ + 2iωU∞

∂φ̄

∂x
+ U2

∞
∂2φ̄

∂x2

]
= 0

Recall u, v, w = 0 for x ≤ 0 (leading edge) in supersonic flow. Taking a Laplace
transform (quiescent condition at x = 0)

Φ ≡
∫ ∞

0

φ̄e−pxdx

then

p2Φ +
∂2Φ

∂z2
− 1

a2∞
[−ω2Φ + 2iωpU∞Φ + p2U2

∞Φ]

or
d2Φ

dz

[
−p2 − ω2

a2∞
+

2iωpM

a∞
+ p2M2

]
Φ ≡ µ2Φ

Thus

Φ = Be−µz

Now
dΦ

dz

∣∣∣
z=0

= W, W ≡
∫ ∞

0

w̄e−pxdx

Thus
dΦ

dz

∣∣∣
z=0

= −µB, B = −W

µ

Hence

Φ = −w

µ
e−µz

so

φ̄|z=0 =

∫
L−1

{
− 1

µ

}
w̄(ξ, ω)dξ

For low frequencies , we can ignore the ω2 terms so

µ2 ∼= (M2 − 1)

{
p +

iMω

a∞(M2 − 1)

}2
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− 1

µ
=

−1√
M2 − 1

(
1

p + iMω
a∞(M2−1)

)

L−1

(−1

µ

)
=

−1√
M2 − 1

exp[−iMωx/a∞(M2 − 1)]

and

φ̄|z=0 =
−1√

M2 − 1

∫ x

0

exp[−iMω(x − ξ)/a∞(M2 − 1)]w̄(ξ, ω)dξ

and if we select our coordinate system such that w(0) = 0, for low frequencies the
perturbation pressure, p̂, is from Bernoulli’s equation

p̂ =
ρ∞eiωt

√
M2 − 1

[
− iω exp[iω(t − Mx/a∞(M2 − 1))]

(M2 − 1)

×
∫

exp[iMωξ/a∞(M2 − 1)]w̄(ξ, ω)dξ + U∞w̄(x, ω)
]

∼= ρ∞eiωt

√
M2 − 1

U∞w̄(x)

(B.53)

For high frequencies ,

d2Φ

dx2
=

[−ω2

a2∞
+

2iωpM

a∞
+ (M2 − 1)p2

]
Φ

∼=
[

iω

a∞
+ pM

]2

Φ

when we ignore the (−p2) term compared to those involving ω. Then,

−1

µ
∼= −1

pM + iω
a∞

and

φ̄|z=0 =

∫
L−1

(−1

µ

) ∣∣∣
x−ξ

w̄(ξ, ω)dξ

by the convolution theorem. Now

L−1

[
−1

pM + iω
a

]
=

−1

M
exp(−iωx/a∞M)

so

φ̄|z=0 = − 1

M

∫ x

0

exp[−iω(x − ξ)/a∞M ]w̄(ξ, x)dξ

and from Bernoulli’s equation therefore

p̂ =�
�

ρ∞
M

iω exp[iω(x − x/a∞M)]

∫ x

0

exp(iωξ/a∞M)w̄(ξ, ω)dξ

+
ρ∞U∞

M
exp[iω(t − x/a∞M)] exp(iωx/a∞M)w̄(x, ω)

−������
ρ∞U∞

M

iω

a∞M
exp[iω(t − x/a∞M)]

∫ x

0

exp(iωξ/a∞M)w̄(ξ, ω)dξ

p̂ ∼= ρ∞U∞
M

w̄(x, ω)eiωt for high frequencies
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This is known as the (linearized, small perturbation) piston theory approximation.
It is a useful and interesting exercise to determine pressure distributions, lift and
moment for translation and rotation of a flate plate using the piston theory.∗ The
low frequency approximation considered earlier is also useful in this respect.

∗Ashley, H. and Zartarian, G., ‘Piston Theory - A New Aerodynamic Tool for the Aeroelas-
tician’, J. Aero. Sciences, 23 (December 1956) pp. 1109-1118.
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27. W.S. Hall: The Boundary Element Method. 1993 ISBN 0-7923-2580-X
28. J. Angeles, G. Hommel and P. Kovács (eds.): Computational Kinematics. 1993

ISBN 0-7923-2585-0
29. A. Curnier: Computational Methods in Solid Mechanics. 1994 ISBN 0-7923-2761-6
30. D.A. Hills and D. Nowell: Mechanics of Fretting Fatigue. 1994 ISBN 0-7923-2866-3
31. B. Tabarrok and F.P.J. Rimrott: Variational Methods and Complementary Formulations in

Dynamics. 1994 ISBN 0-7923-2923-6
32. E.H. Dowell (ed.), E.F. Crawley, H.C. Curtiss Jr., D.A. Peters, R. H. Scanlan and F. Sisto: A

Modern Course in Aeroelasticity. Third Revised and Enlarged Edition. 1995
ISBN 0-7923-2788-8; Pb: 0-7923-2789-6

33. A. Preumont: Random Vibration and Spectral Analysis. 1994 ISBN 0-7923-3036-6
34. J.N. Reddy (ed.): Mechanics of Composite Materials. Selected works of Nicholas J. Pagano.

1994 ISBN 0-7923-3041-2
35. A.P.S. Selvadurai (ed.): Mechanics of Poroelastic Media. 1996 ISBN 0-7923-3329-2
36. Z. Mróz, D. Weichert, S. Dorosz (eds.): Inelastic Behaviour of Structures under Variable

Loads. 1995 ISBN 0-7923-3397-7
37. R. Pyrz (ed.): IUTAM Symposium on Microstructure-Property Interactions in Composite

Materials. Proceedings of the IUTAM Symposium held in Aalborg, Denmark. 1995
ISBN 0-7923-3427-2

38. M.I. Friswell and J.E. Mottershead: Finite Element Model Updating in Structural Dynamics.
1995 ISBN 0-7923-3431-0

39. D.F. Parker and A.H. England (eds.): IUTAM Symposium on Anisotropy, Inhomogeneity and
Nonlinearity in Solid Mechanics. Proceedings of the IUTAM Symposium held in Nottingham,
U.K. 1995 ISBN 0-7923-3594-5

40. J.-P. Merlet and B. Ravani (eds.): Computational Kinematics ’95. 1995 ISBN 0-7923-3673-9
41. L.P. Lebedev, I.I. Vorovich and G.M.L. Gladwell: Functional Analysis. Applications in Mech-

anics and Inverse Problems. 1996 ISBN 0-7923-3849-9
42. J. Menčik: Mechanics of Components with Treated or Coated Surfaces. 1996

ISBN 0-7923-3700-X
43. D. Bestle and W. Schiehlen (eds.): IUTAM Symposium on Optimization of Mechanical Systems.

Proceedings of the IUTAM Symposium held in Stuttgart, Germany. 1996
ISBN 0-7923-3830-8

44. D.A. Hills, P.A. Kelly, D.N. Dai and A.M. Korsunsky: Solution of Crack Problems. The
Distributed Dislocation Technique. 1996 ISBN 0-7923-3848-0

45. V.A. Squire, R.J. Hosking, A.D. Kerr and P.J. Langhorne: Moving Loads on Ice Plates. 1996
ISBN 0-7923-3953-3

46. A. Pineau and A. Zaoui (eds.): IUTAM Symposium on Micromechanics of Plasticity and
Damage of Multiphase Materials. Proceedings of the IUTAM Symposium held in Sèvres,
Paris, France. 1996 ISBN 0-7923-4188-0

47. A. Naess and S. Krenk (eds.): IUTAM Symposium on Advances in Nonlinear Stochastic
Mechanics. Proceedings of the IUTAM Symposium held in Trondheim, Norway. 1996

ISBN 0-7923-4193-7
48. D. Ieşan and A. Scalia: Thermoelastic Deformations. 1996 ISBN 0-7923-4230-5
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49. J.R. Willis (ed.): IUTAM Symposium on Nonlinear Analysis of Fracture. Proceedings of the
IUTAM Symposium held in Cambridge, U.K. 1997 ISBN 0-7923-4378-6

50. A. Preumont: Vibration Control of Active Structures. An Introduction. 1997
ISBN 0-7923-4392-1

51. G.P. Cherepanov: Methods of Fracture Mechanics: Solid Matter Physics. 1997
ISBN 0-7923-4408-1

52. D.H. van Campen (ed.): IUTAM Symposium on Interaction between Dynamics and Control in
Advanced Mechanical Systems. Proceedings of the IUTAM Symposium held in Eindhoven,
The Netherlands. 1997 ISBN 0-7923-4429-4

53. N.A. Fleck and A.C.F. Cocks (eds.): IUTAM Symposium on Mechanics of Granular and Porous
Materials. Proceedings of the IUTAM Symposium held in Cambridge, U.K. 1997

ISBN 0-7923-4553-3
54. J. Roorda and N.K. Srivastava (eds.): Trends in Structural Mechanics. Theory, Practice, Edu-
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55. Yu.A. Mitropolskii and N. Van Dao: Applied Asymptotic Methods in Nonlinear Oscillations.
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56. C. Guedes Soares (ed.): Probabilistic Methods for Structural Design. 1997
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58. D. François, A. Pineau and A. Zaoui: Mechanical Behaviour of Materials. Volume II: Visco-
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59. L.T. Tenek and J. Argyris: Finite Element Analysis for Composite Structures. 1998
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60. Y.A. Bahei-El-Din and G.J. Dvorak (eds.): IUTAM Symposium on Transformation Problems

in Composite and Active Materials. Proceedings of the IUTAM Symposium held in Cairo,
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61. I.G. Goryacheva: Contact Mechanics in Tribology. 1998 ISBN 0-7923-5257-2
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64. R. Wang: IUTAM Symposium on Rheology of Bodies with Defects. Proceedings of the IUTAM
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67. F.J. Fahy and W.G. Price (eds.): IUTAM Symposium on Statistical Energy Analysis. Proceedings
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68. H.A. Mang and F.G. Rammerstorfer (eds.): IUTAM Symposium on Discretization Methods in
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69. P. Pedersen and M.P. Bendsøe (eds.): IUTAM Symposium on Synthesis in Bio Solid Mechanics.
Proceedings of the IUTAM Symposium held in Copenhagen, Denmark. 1999

ISBN 0-7923-5615-2
70. S.K. Agrawal and B.C. Fabien: Optimization of Dynamic Systems. 1999

ISBN 0-7923-5681-0
71. A. Carpinteri: Nonlinear Crack Models for Nonmetallic Materials. 1999
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72. F. Pfeifer (ed.): IUTAM Symposium on Unilateral Multibody Contacts. Proceedings of the
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73. E. Lavendelis and M. Zakrzhevsky (eds.): IUTAM/IFToMM Symposium on Synthesis of Non-

linear Dynamical Systems. Proceedings of the IUTAM/IFToMM Symposium held in Riga,
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75. J.T. Pindera: Techniques of Tomographic Isodyne Stress Analysis. 2000 ISBN 0-7923-6388-4
76. G.A. Maugin, R. Drouot and F. Sidoroff (eds.): Continuum Thermomechanics. The Art and
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77. N. Van Dao and E.J. Kreuzer (eds.): IUTAM Symposium on Recent Developments in Non-linear

Oscillations of Mechanical Systems. 2000 ISBN 0-7923-6470-8
78. S.D. Akbarov and A.N. Guz: Mechanics of Curved Composites. 2000 ISBN 0-7923-6477-5
79. M.B. Rubin: Cosserat Theories: Shells, Rods and Points. 2000 ISBN 0-7923-6489-9
80. S. Pellegrino and S.D. Guest (eds.): IUTAM-IASS Symposium on Deployable Structures: Theory

and Applications. Proceedings of the IUTAM-IASS Symposium held in Cambridge, U.K., 6–9
September 1998. 2000 ISBN 0-7923-6516-X

81. A.D. Rosato and D.L. Blackmore (eds.): IUTAM Symposium on Segregation in Granular
Flows. Proceedings of the IUTAM Symposium held in Cape May, NJ, U.S.A., June 5–10,
1999. 2000 ISBN 0-7923-6547-X

82. A. Lagarde (ed.): IUTAM Symposium on Advanced Optical Methods and Applications in Solid
Mechanics. Proceedings of the IUTAM Symposium held in Futuroscope, Poitiers, France,
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83. D. Weichert and G. Maier (eds.): Inelastic Analysis of Structures under Variable Loads. Theory
and Engineering Applications. 2000 ISBN 0-7923-6645-X

84. T.-J. Chuang and J.W. Rudnicki (eds.): Multiscale Deformation and Fracture in Materials and
Structures. The James R. Rice 60th Anniversary Volume. 2001 ISBN 0-7923-6718-9

85. S. Narayanan and R.N. Iyengar (eds.): IUTAM Symposium on Nonlinearity and Stochastic
Structural Dynamics. Proceedings of the IUTAM Symposium held in Madras, Chennai, India,
4–8 January 1999 ISBN 0-7923-6733-2

86. S. Murakami and N. Ohno (eds.): IUTAM Symposium on Creep in Structures. Proceedings of
the IUTAM Symposium held in Nagoya, Japan, 3-7 April 2000. 2001 ISBN 0-7923-6737-5

87. W. Ehlers (ed.): IUTAM Symposium on Theoretical and Numerical Methods in Continuum
Mechanics of Porous Materials. Proceedings of the IUTAM Symposium held at the University
of Stuttgart, Germany, September 5-10, 1999. 2001 ISBN 0-7923-6766-9

88. D. Durban, D. Givoli and J.G. Simmonds (eds.): Advances in the Mechanis of Plates and Shells
The Avinoam Libai Anniversary Volume. 2001 ISBN 0-7923-6785-5

89. U. Gabbert and H.-S. Tzou (eds.): IUTAM Symposium on Smart Structures and Structonic Sys-
tems. Proceedings of the IUTAM Symposium held in Magdeburg, Germany, 26–29 September
2000. 2001 ISBN 0-7923-6968-8
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90. Y. Ivanov, V. Cheshkov and M. Natova: Polymer Composite Materials – Interface Phenomena
& Processes. 2001 ISBN 0-7923-7008-2

91. R.C. McPhedran, L.C. Botten and N.A. Nicorovici (eds.): IUTAM Symposium on Mechanical
and Electromagnetic Waves in Structured Media. Proceedings of the IUTAM Symposium held
in Sydney, NSW, Australia, 18-22 Januari 1999. 2001 ISBN 0-7923-7038-4

92. D.A. Sotiropoulos (ed.): IUTAM Symposium on Mechanical Waves for Composite Structures
Characterization. Proceedings of the IUTAM Symposium held in Chania, Crete, Greece, June
14-17, 2000. 2001 ISBN 0-7923-7164-X

93. V.M. Alexandrov and D.A. Pozharskii: Three-Dimensional Contact Problems. 2001
ISBN 0-7923-7165-8

94. J.P. Dempsey and H.H. Shen (eds.): IUTAM Symposium on Scaling Laws in Ice Mechanics
and Ice Dynamics. Proceedings of the IUTAM Symposium held in Fairbanks, Alaska, U.S.A.,
13-16 June 2000. 2001 ISBN 1-4020-0171-1

95. U. Kirsch: Design-Oriented Analysis of Structures. A Unified Approach. 2002
ISBN 1-4020-0443-5

96. A. Preumont: Vibration Control of Active Structures. An Introduction (2nd Edition). 2002
ISBN 1-4020-0496-6

97. B.L. Karihaloo (ed.): IUTAM Symposium on Analytical and Computational Fracture Mechan-
ics of Non-Homogeneous Materials. Proceedings of the IUTAM Symposium held in Cardiff,
U.K., 18-22 June 2001. 2002 ISBN 1-4020-0510-5

98. S.M. Han and H. Benaroya: Nonlinear and Stochastic Dynamics of Compliant Offshore Struc-
tures. 2002 ISBN 1-4020-0573-3

99. A.M. Linkov: Boundary Integral Equations in Elasticity Theory. 2002
ISBN 1-4020-0574-1

100. L.P. Lebedev, I.I. Vorovich and G.M.L. Gladwell: Functional Analysis. Applications in Me-
chanics and Inverse Problems (2nd Edition). 2002

ISBN 1-4020-0667-5; Pb: 1-4020-0756-6
101. Q.P. Sun (ed.): IUTAM Symposium on Mechanics of Martensitic Phase Transformation in

Solids. Proceedings of the IUTAM Symposium held in Hong Kong, China, 11-15 June 2001.
2002 ISBN 1-4020-0741-8

102. M.L. Munjal (ed.): IUTAM Symposium on Designing for Quietness. Proceedings of the IUTAM
Symposium held in Bangkok, India, 12-14 December 2000. 2002 ISBN 1-4020-0765-5

103. J.A.C. Martins and M.D.P. Monteiro Marques (eds.): Contact Mechanics. Proceedings of the
3rd Contact Mechanics International Symposium, Praia da Consolação, Peniche, Portugal,
17-21 June 2001. 2002 ISBN 1-4020-0811-2

104. H.R. Drew and S. Pellegrino (eds.): New Approaches to Structural Mechanics, Shells and
Biological Structures. 2002 ISBN 1-4020-0862-7

105. J.R. Vinson and R.L. Sierakowski: The Behavior of Structures Composed of Composite Ma-
terials. Second Edition. 2002 ISBN 1-4020-0904-6

106. Not yet published.
107. J.R. Barber: Elasticity. Second Edition. 2002 ISBN Hb 1-4020-0964-X; Pb 1-4020-0966-6
108. C. Miehe (ed.): IUTAM Symposium on Computational Mechanics of Solid Materials at Large

Strains. Proceedings of the IUTAM Symposium held in Stuttgart, Germany, 20-24 August
2001. 2003 ISBN 1-4020-1170-9
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109. P. Ståhle and K.G. Sundin (eds.): IUTAM Symposium on Field Analyses for Determination
of Material Parameters – Experimental and Numerical Aspects. Proceedings of the IUTAM
Symposium held in Abisko National Park, Kiruna, Sweden, July 31 – August 4, 2000. 2003

ISBN 1-4020-1283-7
110. N. Sri Namachchivaya and Y.K. Lin (eds.): IUTAM Symposium on Nonlnear Stochastic Dynam-

ics. Proceedings of the IUTAM Symposium held in Monticello, IL, USA, 26 – 30 August,
2000. 2003 ISBN 1-4020-1471-6

111. H. Sobieckzky (ed.): IUTAM Symposium Transsonicum IV. Proceedings of the IUTAM Sym-
posium held in Göttingen, Germany, 2–6 September 2002, 2003 ISBN 1-4020-1608-5

112. J.-C. Samin and P. Fisette: Symbolic Modeling of Multibody Systems. 2003
ISBN 1-4020-1629-8

113. A.B. Movchan (ed.): IUTAM Symposium on Asymptotics, Singularities and Homogenisation
in Problems of Mechanics. Proceedings of the IUTAM Symposium held in Liverpool, United
Kingdom, 8-11 July 2002. 2003 ISBN 1-4020-1780-4

114. S. Ahzi, M. Cherkaoui, M.A. Khaleel, H.M. Zbib, M.A. Zikry and B. LaMatina (eds.): IUTAM
Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of
Engineering Materials. Proceedings of the IUTAM Symposium held in Marrakech, Morocco,
20-25 October 2002. 2004 ISBN 1-4020-1861-4

115. H. Kitagawa and Y. Shibutani (eds.): IUTAM Symposium on Mesoscopic Dynamics of Fracture
Process and Materials Strength. Proceedings of the IUTAM Symposium held in Osaka, Japan,
6-11 July 2003. Volume in celebration of Professor Kitagawa’s retirement. 2004

ISBN 1-4020-2037-6
116. E.H. Dowell, R.L. Clark, D. Cox, H.C. Curtiss, Jr., K.C. Hall, D.A. Peters, R.H. Scanlan, E.

Simiu, F. Sisto and D. Tang: A Modern Course in Aeroelasticity. 4th Edition, 2004
ISBN 1-4020-2039-2

117. T. Burczyński and A. Osyczka (eds.): IUTAM Symposium on Evolutionary Methods in Mech-
anics. Proceedings of the IUTAM Symposium held in Cracow, Poland, 24-27 September 2002.
2004 ISBN 1-4020-2266-2

118. D. Ieşan: Thermoelastic Models of Continua. 2004 ISBN 1-4020-2309-X
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