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Foreword

The twentieth century ended with the vision of smart dust: a network of wirelessly
connected devices whose size would match that of a dust particle, each one a self-
contained package equipped with sensing, computation, communication, and power.
Smart dust held the promise to bridge the physical and digital worlds in the most
unobtrusive manner, blending together realms that were previously considered well
separated. Applications involved scattering hundreds, or even thousands, of smart
dust devices to monitor various environmental quantities in scenarios ranging from
habitat monitoring to disaster management. The devices were envisioned to self-
organize to accomplish their task in the most efficient way. As such, smart dust
would become a powerful tool, assisting the daily activities of scientists and engi-
neers in a wide range of disparate disciplines.

Wireless sensor networks (WSNs), as we know them today, are the most note-
worthy attempt at implementing the smart dust vision. In the last decade, this field
has seen a fast-growing investment from both academia and industry. Significant
financial resources and manpower have gone into making the smart dust vision a
reality through WSNs. Yet, we still cannot claim complete success. At present, only
specialist computer scientists or computer engineers have the necessary background
to walk the road from conception to a final, deployed, and running WSN system.
Nevertheless, the path unfolds into a huge design space, paved with a number of
potential issues, challenges, and pitfalls. Devices cannot be randomly scattered in
most cases, and may still require a significant amount of manual tuning to provide
satisfactory performance. Probably, no other field in computer science or computer
engineering has hitherto faced similar challenges. Most of the challenges stem from
the intimate interactions between the WSN and the real world that it is immersed in.

As researchers in WSNs, we are confronted with these issues on a daily basis. As
an example, we recall the weeks spent working on a structural monitoring deploy-
ment with lab-mates and advisers, trying to figure out the reason why nodes kept
rebooting at a specific hour in the evening. After lengthy and painful debugging ses-
sions, having hypothesized many esoteric explanations for the weird behavior, we
discovered that a kind cleaning lady, coming every day at the same time, used to
spray soap over our nodes, which caused them to reboot. The people involved in the
project learned in this manner the importance of packaging, even during the testing
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viii Foreword

phases. Nevertheless, all WSN researchers who dare to push their research up to the
deployment phase must continue to learn lessons like this every day ... the hard way!

This book comes as an invaluable aid to address the issue above by providing a
unified view on the methodologies and best practices for deploying WSN systems.
We believe that this book will work as a guide for researchers and practitioners to
drive their own WSN-related activities. In Part I of the book, based on a number
of successful experiences in the field, the editors elicit the concept of “design for
deployment”. Indeed, by considering the issues tied to the deployment activity early
on, the design space shrinks and several pitfalls and issues can be anticipated, saving
effort, time, and money.

Part II of the book, on the other hand, includes seven contributions from authori-
tative researchers in the field describing their own experiences in deploying WSNs.
Every contribution was carefully chosen by the editors to highlight specific facets
of the subject matter. Challenges such as data losses, sensor miscalibration and fail-
ures, harsh environments, large-scale systems, and heavily-regulated environments
are covered by pointing out the specifics of the issue at hand and the various (not
necessarily successful) solutions applied. Learning from others’ mistakes is as valu-
able as reading of their successes.

We are thus confident that “Wireless Sensor Networks: Deployment and Design
Frameworks” has the potential to be a stepping stone for both WSN beginners and
also more experienced researchers and practitioners, bringing the Wireless Sensor
Network outside the computer laboratory and applying it in the real-world, fulfilling
its visionary role as a useful tool for scientists and engineers.

Stockholm, Sweden Luca Mottola
March, 2010 Thiemo Voigt



Preface

Wireless sensor networks are one of the most promising technologies of the new
millennium. The opportunities and challenges of programming networks of small,
lightweight, low-power, computation- and bandwidth-limited nodes have attracted
a large community of researchers and developers. This technology’s unique set of
capabilities and limitations produces an exciting and complex design space, but one
that can easily overwhelm newcomers to the field. In addition, deploying sensing
into the physical environment produces its own set of challenges and can push sys-
tems into failure modes and problems that are difficult to discover or reproduce in
the laboratory.

We believe that deployment is an irreplaceable step in the process of develop-
ing sensor network hardware and software solutions. This book aims to facilitate
the development and deployment of new embedded sensing solutions by collecting
a wealth of practical design, development and deployment experience from prior
efforts. To this end, seven chapters provide detailed overviews of deployed sys-
tems, each with a specific message or focus. Examining the successful projects
presented here reveals a unifying approach: design for deployment. Incorporating
deployment into the design process exposes a different set of requirements and con-
siderations. Low data fidelity or sparse data, harsh deployment environments, data
rates exceeding the network’s communication capabilities, limited in-situ debug-
ging opportunities, and end-user requirements and usability issues are examples of
challenges that arise in even the most carefully planned deployments.

By designing with deployment in mind, many of these stumbling blocks can be
avoided. Part I of the book lays out the design for deployment approach in detail and
attempts to formulate a useful body of knowledge for the practical developer. These
chapters advise on:

1. Choosing an appropriate design view and hardware base as the starting point for
development in a particular project,

2. Planning and accounting for the deployment environment,
3. Making best use prototyping and iteration, and
4. Mitigating the design space in terms of its key parameters – data rate, budget,

network size, maintenance, deployment environment and usage model.
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x Preface

The case studies found in Part II cover:

1. Effective implementation of data-reduction algorithms for high data-rate
applications,

2. Incorporating in-network processing into real-time sensing and actuation
systems,

3. Dealing with data loss, sensor failure and system maintenance,
4. Containing cost in high data rate applications by using hybrid topologies,
5. Deploying large-scale networks,
6. Developing for harsh environments, and
7. Satisfying stakeholders in heavily-regulated environments.

Taken as a whole, this book provides a deployment-driven entry point for those new
to sensor networks as well as a wealth of practical experiential knowledge useful to
the seasoned practitioner. Our hope is that the information presented here will lead
to more – and better – future sensor network deployments.

Coventry, UK Elena Gaura
Boston, USA Lewis Girod
2010 James Brusey

Michael Allen
Geoffrey Challen
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Concepción, Chile, epino@ieee.org

Thomas Schoellhammer The Center for Embedded Networked Sensing, UCLA,
Los Angeles, CA, USA, tschoell@cs.ucla.edu

Thomas Stair Department of Emergency Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA 02115, USA, tstair@partners.org

Andrew Taylor University of New South Wales, Sydney, Australia,
ataylor@cse.unsw.edu.au

Van Nghia Tran University of New South Wales, Sydney, Australia,
vantran@cse.unsw.edu.au

Matt Welsh Harvard School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02139, USA, mdw@eecs.harvard.edu

km@ecs.soton.ac.uk
naik@iiitd.ac.in
machado@ucsd.edu
epino@ieee.org
tschoell@cs.ucla.edu
tstair@partners.org
ataylor@cse.unsw.edu.au
vantran@cse.unsw.edu.au
mdw@eecs.harvard.edu


Part I
Wireless Sensor Networks Design

for Deployment



Chapter 1
Introduction

Elena Gaura, Michael Allen, Lewis Girod, James Brusey,
and Geoffrey Challen

Abstract The chapter introduces the topical focus and aims of the book. The
book’s practical, experience driven outlook onto the domain of embedded wire-
less networked sensing systems is justified and the potential gains for the reader are
highlighted. The authors promote the adoption of a deployment based, experiential
research approach as key to the successful development of new wireless sensing
applications. By providing a map of the practical design and deployment problems
treated in various chapters, the introduction aids the reader identify at a glance where
the issues most related to their current work are discussed within the book.

1.1 The Promise and the Challenge of Sensor Networks

Since the late 1990s, the potential of Wireless Sensor Networks (WSNs) to
revolutionise our understanding of and interaction with the environment has cap-
tured the imagination and enthusiasm of both academia and industry. Experimental
applications have been proposed to address virtually every aspect of society from
scientific research and compliance verification to health care and industrial moni-
toring. These applications have provided motivation for the development of WSN
systems and theory, leading to an exciting period of research, with many theoretical
achievements and much promise.

However, while many of these applications have been explored through proofs of
concept, few have passed successfully into the commercial domain. The difficulty in
making this transition comes from several sources. While some of these are techni-
cal challenges in the computer science and engineering domains, there are also many
challenges for which computer science researchers are less well-prepared, such as
managing deployment logistics and a deep understanding of the needs and problems
of unrelated disciplines. Unfortunately, these non-CS challenges are equally critical

E. Gaura (�)
Cogent Computing Applied Research Centre, Coventry University, Coventry, UK
e-mail: e.gaura@coventry.ac.uk

E. Gaura et al. (eds.), Wireless Sensor Networks: Deployments and Design Frameworks,
DOI 10.1007/978-1-4419-5834-1 1, c� Springer Science+Business Media, LLC 2010
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impediments to defining, developing, deploying and commercializing WSN appli-
cations. A few authors, such as Langendoen et al. [3], have published discussions of
the surprises that lie in wait when bringing a system from the lab to the field, but in
general these “negative” results are underrepresented. This book is intended to pro-
vide a comprehensive discussion of design and deployment problems and provide
some guidance for future development.

In the early stages of WSN research, few proposed applications had well-
characterized, domain-specific performance requirements. In the absence of clear
specifications, many WSN systems were either developed as examples to showcase
a particular technology, or were developed to support a very specific application.
By and large, projects suffered from the intrinsic difficulties in making these two
disparate research programs meet.

Today, as the vision of WSNs has grown more widespread, there is no shortage
of well defined applications that fit the model of low-cost distributed sensing sys-
tems. To give but a few examples, climate-change and environment-related sensing
applications form a rich domain, which includes improving the understanding and
modeling of the carbon cycle, and detecting and monitoring air and water borne
pollutants in urban and agricultural environments. Cyber-physical systems form an-
other broad application area which focuses on systems to improve the safety and
efficiency of infrastructure.

With such compelling applications on the horizon and a ten year research his-
tory, we would like to be able to proclaim that building new applications is simply a
matter of integrating existing components. Unfortunately, while there has been enor-
mous progress to date, the published research turns out to be less valuable than one
might hope: delivering a working fielded application still requires an expensive and
specialized research and development effort. The reason for this is circular, rooted
in the diversity of potential applications over the last decade, relative to actual ap-
plication of the technology. In the absence of clearly defined application needs and
a robust industrial market, many of the components that have been developed thus
far have been either too generic to be readily applied, or well specified but targeted
at a divergent application.

This situation presents both challenges and opportunities. The opportunities are
clear: there is great political drive to implement systems to address society’s press-
ing needs. At the same time the challenges must not be underestimated. Successfully
deploying environmental or cyber-physical applications, for example, will require
understanding and solving complex, cross-disciplinary problems, in addition to the
problems that arise in the computer science and engineering domain. The logistical
difficulties of deploying and testing these systems under realistic conditions need
careful consideration: prototype deployments are generally required to work out the
many aspects of systems that can not be addressed in simulation; these deployments
will require another set of tools to aid in deployment, eg. methods of visualizing the
state of the running system with constrained network access, software update pro-
cesses to support rapid iteration, etc. Many of the parameters of such systems will
also need to be tuned and validated based on data that must ultimately be collected
from fielded nodes. Fortunately, researchers can be aided in this effort by studying
the prior experience and practice in prosecuting WSN deployments.
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The goal of this book is thus to document the experiences of some successful
WSN deployments through case studies, and to refine that knowledge into guidance
for those striving to resolve real-life applications using wireless sensing. We feel, as
domain practitioners, that it is essential to reflect upon and understand the challenges
that have been faced thus far in the advancement towards the vision of pervasive and
ubiquitous wireless sensors. Although we have come some way, long and strenuous
development cycles are still needed to deliver production-ready WSN systems that
meet real needs. The authors hope that the book will ease the development effort for
both new applications and new practitioners.

1.1.1 Goals of this Book

This book’s primary aim is to help the practitioner to approach the design of
WSN-oriented application systems from an informed standpoint. To be success-
ful in development and deployment of WSNs, it is important to build upon the past
achievements and experiences of others, and to follow examples of good design;
this book enables both. We hope that the book will help the practitioner avoid some
of the common pitfalls of first time designs and deployments and set realistic expec-
tations of success at various stages of the design–prototype–deploy cycle. To meet
these aims, the book:

1. Reviews the state of the art with respect to WSN practical advances and the
drivers and roadblocks for wide WSN technology adoption

2. Presents seven notable real-life WSN designs for deployment and the associated
researchers’ experience

3. Provides informed, systematic support towards new application design and im-
plementation, for those working towards shorter development for deployment
cycles

4. Synthesizes strategies for design and deployment, based on specific experiences
presented as case studies, that can be applied to new projects in academia and
industry

5. Highlights key issues and trade-offs encountered when mitigating constraints in
the WSN design parameter space for real-life applications.

1.1.2 How can this Book Help the Beginner WSN Practitioner?

This book sprang from the authors’ desire to share the joy and frustrations experi-
enced while designing and deploying WSN systems. Over the team of editors and
contributors, it seems that the observation “everything that can go wrong will go
wrong” applied well to their real-life WSN deployments. It follows that many of
the common problems encountered leading up to and during real-life deployments
of WSNs can be better understood if deployment experiences, lessons and best-
practice approaches are shared within the community.
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Many times the experience gained in a deployment spurs algorithmic and system
design advancements with wider impact and applicability than the specific motivat-
ing application context. Several of the case studies in this book contain examples
of these types of discovery, for example: (1) the development of Vigilance, a sys-
tem designed to monitor deployments and expose the impact that missing data has
on the applications expecting it (Chap. 6); (2) the development of Lazy Grouping
and Adaptation, sophisticated in-network processing algorithms to resolve latency
issues in data-intensive acoustic monitoring applications (Chap. 5); (3) the devel-
opment of Lance, a wide applicability design framework for WSN applications
(Chap. 4).

The editors’ exposure to WSN projects conducted by research teams across the
world revealed that many projects are ending short of full blown in-situ deployments
for numerous reasons:

� Time and budgetary restrictions limiting practical implementation and
deployment.

� Difficulty in translating the theoretical ideas into a deployable prototype.
� Taking an inflexible approach to design and development that leaves little scope

for dynamic adjustment.
� Lack of certain, important experience in development teams (common examples

are systems and hardware development experience and concrete application mo-
tivation and expertise).

� Ignoring the deployment process and target environment during the design
process.

� Expecting complete success in a first-time deployment rather than planning for
iteration.

Thus, in an attempt to minimize the problems above, the book has the following
contributions:

1. It brings together reports of successful deployments, consolidates individual app-
lication experience, and identifies general approaches and lessons to be learned;
the seven application-oriented chapters focus on the design processes followed
by the application designers, identifying best practice and framing the generic
concepts and wider applicability of the respective implementations.

2. It motivates the use of application centric approaches for the rapid development
of WSN systems.

3. It provides the reader with practical hints and strategies for design, development
and deployment planning, and guides technology choices.

4. It brings forth several generic concepts, tools and algorithms developed as an
outcome of deployment experience and thorough understanding of real-life ap-
plications needs.

The strength of this book lies in its practical nature: we believe that the best way
to convey important WSN concepts and ideas is through experience with real-world
systems. This need for real-world experience leads us to conclude that taking an
application centric viewpoint on the development of WSN systems is the key to
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success, not only for the small and medium scale applications considered in this
book but also towards larger, more densely deployed and miniaturized WSNs.

The authors base their writing on a wealth of both practical and theoretical
experience with WSN systems and the belief that research effort should not go undi-
rected. Much of the next few years’ effort in the domain must be focused towards
wider adoption of the technology by increasing trust in its value and demonstrating
its robustness and reliability. To achieve this, experience of applying WSN tech-
nology in earnest to real-world problems must become more widespread within the
WSN research community.

It is assumed that the reader is already familiar with wireless sensor networks
as a technology, but not experienced in the development for deployment aspects of
WSN-based applications. Furthermore, it is assumed that the reader wants to quickly
understand the underpinning concepts necessary for developing their own real-life,
application-oriented WSN system, and wants to be able to approach the deployment
process with a realistic view of the common pitfalls, expectations, and measures for
success.

The book is design and deployment-oriented: as such, it does not provide a full
treatment of popular WSN research areas, such as energy management, media ac-
cess for wireless communication or routing protocols. To further understand these
areas, the interested reader should consult the following books:

� Wireless Sensor Networks: A Systems Perspective by Bulusu and Jha [1]
� Principles of Embedded Networked Systems Design by Pottie and Kaiser [4]
� Protocols and Architectures for WSNs by Karl and Willig [2]
� Wireless Sensor Networks: An Information Processing Approach by Zhao and

Guibas [5].

1.2 Guide to Using this Book

This book has two distinct parts and the reader is encouraged to read them in either
order: going from the generic to specific (Part I followed by Part II) or by first
selectively reading Part II chapters that treat issues of interest.

1.2.1 Part I: Design Strategies for Deploying Sensor Networks

The first part of this book discusses strategies for designing deployable sensor net-
works, culled from the experiences documented in the case studies in Part II.

Chapter 2 takes a holistic view on the main trends and drivers for both the re-
search achievements in the WSN domain and the WSN productization efforts. The
chapter introduces the characteristics of deployed WSN applications, discusses how
they differ from lab-based experiments and distills some general design strategies
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from past deployment experiences, with particular reference to applications fea-
tured in Part II of the book. A survey of platforms that are currently commercially
available to use as starting points for WSN applications is presented, as well as a
discussion on the past and current markets for WSN applications and products. The
chapter explains the tensions between the theoretical and practical achievements,
between the vision-led and industrially focused system development approaches,
and between advocacy and the true market response, with a view of promoting a
practical development path for forthcoming WSN applications.

Chapter 3 approaches the design of real-world WSNs from the perspectives of
software life cycle and key design parameters. The chapter highlights the value of
iterative development-deployment cycles and synthesizes essential lessons delivered
in the application specific chapters in Part II. It brings to the fore the key constraining
factors which will influence most of the WSN applications design decisions. The
most commonly encountered design parameters and the trade-offs they ensue are
treated, together with examples of how they shaped the system design choices in the
applications reported in this book.

1.2.2 Part II: Case Studies

Chapters 4 to 10 describe seven real-life, application-led case studies selected from
among the most successful and exciting real-life deployments reported since 2004.
Each of the chapters has a different set of core constraints that have influenced
the application design, such as size, cost, interactivity, network lifetime and human
factors. Together, the Part II chapters cover a wide range of monitoring-based appli-
cation classes, from soil and animal habitat monitoring, to volcano, glacier, border
and patient monitoring applications. Each application faces different requirements,
reflected in the choices of system design, implementation and hardware platform.
When considered in the context of new applications design or implementation, these
chapters provide a comprehensive treatment of the most commonly encountered is-
sues in WSN systems development.

To guide the reader in identifying the most relevant material, we present a struc-
tured overview of the Part II chapters in the following three tables. This summary
is intended to give the reader an understanding of the issues that differentiate the
systems built in each of the chapters, as well as the common challenges that these
applications faced and the constraints that influenced their design, implementation,
testing and deployment.

Table 1.1 summarizes the most important parameters differentiating the chapters.
Note that each chapter explores a different primary theme, in order to represent the
spectrum of relevant and important issues currently seen in the WSN field. Most
of these applications were built using commercially available platforms such as the
8-bit Mica2 mote, the 16-bit TMote sky, and the 32-bit Gumstix platform, although
all of these applications required some degree of custom hardware. Multi-tiered
network designs, in which 8- and 32-bit platforms are combined into a single system,
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Table 1.1 Summary of case studies

WSN Number
Chapter Application Primary theme Year(s) platform of nodes Deployments

4 Volcano
monitoring

Addressing data
quality with
iterative
deployment

2004–
2007

Mica2,
TMote

3–16 3

5 Marmot
localization

Timeliness with
high data rate
sensing

2007–
2009

Custom
32-bit

8 1

6 Soil
monitoring

Dealing with
sensor faults
and missing
data

2005–
2008

Mica2 11 1

7 Toad
monitoring

Low power
acoustic
detection and
classification

2003–
2008

Stargate,
Mica2

5 3

8 Intruder
monitoring

Large scale
deployment

2003–
2005

Stargate,
Mica2

1,200 1

9 Glacier
monitoring

Full system
engineering

2002–
2008

Custom 8
C 32-bit

20 5

10 Patient
monitoring

Mobility and
sensing

2006–
2007

Cricket Mote,
ipaq

14 2

are described in two case studies: toad monitoring (Chap. 7) and intruder monitoring
(Chap. 8). A multi-tiered design allows more processing capability on some nodes
while keeping the overall cost of the network within budget.

Some insight into the maturity and growth of each project can be inferred from
the number of years the project was active, number of deployments and number
of nodes used in deployments. Chapter 8 describes the largest network by at least
two orders of magnitude. Although its development was geared towards one full
deployment, the network had to be iteratively scaled during testing and validation.
In contrast, Chaps. 4 and 9 describe systems with an iterative increase in network
size, where the networks grew with each successful deployment.

Table 1.2 presents a cross-chapter breakdown of constraints/requirements im-
posed by the motivating application. The table’s columns are as follows: lifetime
refers to the need for nodes to manage power usage in order to maximize lifetime,
node cost refers to the need for the monetary cost of nodes to be low, N/W scale
refers to the need for the network to be large (or scalable), form factor refers to the
need for the sensor nodes to be small and light, online refers to the need for the data
and information produced by the WSN to be available in an on-line or real-time
manner so that actuation (generated by the user or some automated procedure) is
enabled, mobile refers to the need for the sensor nodes to be mobile during their
operation and user interaction refers to the need for the network to respond to user
interaction as part of its normal operation.
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Table 1.2 Table of shared constraints/requirements

Chapter/ Life- Node N/W Form Resource User
application time cost scale factor limits Online Mobile interaction

4: Volcano
monitoring

X X X X

5: Marmot
localization

X X

6: Soil
monitoring

X

7: Toad
monitoring

X X X X

8: Intruder
monitoring

X X X

9: Glacier
monitoring

X X X

10: Patient
monitoring

X X X X X

It is clear from the table that node cost is a constraining factor in many of the
case studies presented in this book, showing that, in general, real-life deployments
are greatly affected by the amount of funds available on a given project. The best ex-
ample here is found in Chap. 8, where 1,200 nodes were present in the network – in
this case, great care had to be taken to choose the correct platform that fulfilled the
requirements. The systems in Chaps. 4, 6, 7 and 9 are constrained by node/network
lifetime as they are long-term deployments. In the case of glacier monitoring, for
example, sensor nodes are left within the glacier for several months at a time, many
thousands of miles away from the research laboratory. Long term monitoring ap-
plications also mean that the deployments are generally unattended, complicating
system control and maintenance.

In Chap. 10’s application, sensor nodes are attached to patients, and must meet
rigorous requirements for health and safety as well as maintaining a level of comfort
in order for the user to agree to wear them. Moreover, the system needs to function
within a rigorously regulated environment. Thus, form factor and user-interaction
are important constraints.

The marmot localization system in Chap. 5 appears to be less constrained than
many of the other case studies; this is because the system is not required to be
deployed for long periods, is attended during deployment, and has the benefit of a
powerful processor and increased resources compared to standard mote platforms.
However, along with the systems in Chaps. 7 and 8, there is a requirement for on-
line operation, where the system information is used to make decisions in a timely
manner – for Chap. 5 the decisions are to be based on acoustic event detection and
localization of animals, for Chap. 7 the theme is event detection and classification
of animals, and for Chap. 8 it is event detection, classification and localization of
vehicles and humans in a military scenario.
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Table 1.3 Table of challenges found in the case studies

Chapter/
app.

Capture
phenom.
correctly

In-
network
process
decision

Data
rate <

B/W

Evaluate/
integrate
improve-
ments

Faulty/
missing
data

Mainte-
nance

Manage
network
scaling

Time
sync.

4: Volcano
monitoring

X X X X X X

5: Marmot
localization

X X X X X

6: Soil monitoring
X X X

7: Toad monitoring
X X X

8: Intruder
monitoring

X X X X

9: Glacier
monitoring

X X X X

Whilst resource limits (referring to the node capabilities, for example commu-
nication bandwidth available to nodes and the local processing capability) is not a
requirement as such, like other headings in this table, the column is meant to reflect
how the hardware chosen for the project has influenced other design choices. As
we will show in Table 1.3, the hardware choice has considerable implications for
meeting most of the generic application challenges.

Although the case studies in Part II present deployed systems that were developed
for different motivating applications, with different specifications and goals, sev-
eral generic challenges are apparent in all chapters. To this end, Table 1.3 presents
the main challenges. The solutions and lessons described in individual chapters are
generically applicable to most monitoring applications classes. Since Chap. 10 fo-
cuses on mobility-based sensing in body sensor networks, the challenges faced are
different than the relatively static monitoring applications presented in Chaps. 4–9;
for this reason Chap. 10’s challenges are omitted from the table. In the table, Cap-
ture phenomena correctly refers to the challenge of determining the required rate
at which to sample the phenomena and the inter-node spacing necessary to ensure
adequate coverage. Chapter 8 deals with this problem in the context of intruder de-
tection, classification and localization by establishing a specific network deployment
density based on the required accuracy for the system, and placing nodes in a regu-
lar grid over the area of interest. Chapter 6 looks at increasing the spatial density of
temperature and soil moisture measurements to identify small-scale environmental
variations.

Maintenance refers to the challenges presented by the maintenance of a long-
term sensor network deployment. For each chapter dealing with Maintenance, the
issue has a different significance for the motivating application, leading to different
system design decisions. The soil monitoring case study in Chap. 6 finds that post-
deployment sensor maintenance is actually harmful to the deployment, as it disrupts
the monitored phenomena; therefore maintenance is deferred until absolutely nec-
essary, and missing or faulty data is replaced by sophisticated prediction for as long
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as possible. In Chap. 9, the deployment site on a glacier is so remote and seasonally
affected that maintenance can only be carried out during specially timed visits.

In-network processing decision refers to the decision made in some of the case-
studies to perform some of the end-to-end system processing directly on the sensor
node. Chapter 5 shows that the need for dynamic in-network processing was deter-
mined only after the full deployment took place. In Chap. 4, the decision to process
some data locally, at the node, in order to reduce the amount of data required to
be sent (and thus increase network lifetime), was taken after a thorough analysis
of deployment data. By assigning “value” to the data gathered by nodes, only the
important data was transmitted in further prototypes. Chapter 7 comes to a simi-
lar conclusion in deciding that, because only toad calling events are of interest to
the system’s main goals, these events must be detected, filtered and compressed to
minimize the network usage and enable lower-power operation. The generic lesson
learned from each of these examples is that dynamic in-network processing should
be seen as a tool to help address a particular problem, rather than a design principle
for the system – avoid processing in-network unless there is a clear need. As can
be seen from the table, the need for in-network processing correlates well with the
Data rate > Bandwidth challenge, where the aggregate volume of data generated by
the sensor nodes is greater than the bandwidth of the sensor network.

Manage network scaling refers to the challenges encountered when attempting
to increase the scale of an existing network or build a large network from scratch.
In Chap. 8, a network of greater than a thousand nodes is created. To achieve the
deployment of a network of such magnitude, the testing and validation process
iteratively increased the network size, going from simulation to testbed to full de-
ployment. In Chap. 4, increasing the number of nodes in the network also increases
the amount of data generated about the volcanic events being monitored. Since the
bandwidth cannot support the transmission of all data (another example of the Data
rate > Bandwidth challenge) it is of utmost importance to decide which data are
most valuable, given the expense to the node of sending the data.

Evaluate/integrate improvements refers to the challenges that are raised when
problems during deployment are identified and subsequent improvements have been
proposed. Both Chaps. 4 and 5 present examples of deployment-related problems
that caused performance issues or system failures. Both chapters present solutions to
their respective problems that are either evaluated in simulation, laboratory-testing
or in a new deployment. In order to enable post-deployment analysis of problems,
both chapters show that it is necessary to keep detailed documentation and ac-
quire log information, and diagnostic data alongside the actual sensor data gathered.
Gathering as much diagnostic data as possible during deployment can help identify
problems and aid various investigations which were not considered in the field. Di-
agnostic data will also enable the designer to quantify the improvements made in
all steps of testing, from simulation to emulation to deployment. Deployment raises
the hardest challenge, as conditions are likely to change, meaning the researcher
cannot isolate all the parameters desired (as might be possible with simulation, for
example).
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Faulty/missing data refers to the challenge of dealing with both data loss and
node failure, resulting in missing data. As previously mentioned, Chap. 6 consoli-
dates this problem with choosing the correct time to perform maintenance on failed
sensors, and in doing so must utilize suitable techniques for predicting data.

Time synchronization is a ubiquitous challenge in WSN systems. Since sensor
nodes are not connected to a central data acquisition unit, and must communicate
wirelessly, the data they sense must be timestamped. Without some form of time
synchronization, it becomes impossible to correlate measurements spatially. The
accuracy that data must be synchronized to across a WSN depends on the applica-
tion’s processing requirements and the rate at which data is being gathered; Chap. 4
has a high rate requirement on data sampling (100 Hz), and uses a GPS unit in con-
cert with a time synchronization service to synchronize the network. However, bugs
in the time synchronization service cause irregularities in the data, requiring off-line
repairs of the data to correctly align it. In Chap. 9, time synchronization across sev-
eral sensor nodes deployed in glaciers is required to be accurate within a second, and
is provided by broadcasting the time from a single GPS unit. Chapter 5 requires high
accuracy time synchronization to correlate acoustic measurements taken at 48 kHz
across nodes separated by tens of meters; in this case, the network is synchronized
purely by local, ad-hoc communication.

Setting itself aside from the generic challenges above, the application described
in Chap. 10 brings forth a new set of constraints to be mitigated in the design and
deployment of a class of WSN systems. Deployment in a heavily regulated environ-
ment, compounded by a large number of stakeholders and issues of mobility and
wearablity form a core theme in this patients monitoring application. These con-
straints limited the choices available to designers, both in technical terms (such as
for example imposing the use of certified, off the shelf subsystems wherever pos-
sible) and regarding the design-deployment-evaluation cycle. Deployment logistics
and the potential impact of the WSN system on existing work practice limited the
scope of the application. The lack of opportunity for iterative deployment greatly
impacted the success of the project in absolute terms. Issues such as these are to be
encountered by most applications where the human factor is central to the applica-
tion scope.

While the above challenges are clearly a focus for the respective chapters, overall,
this book offers a wide coverage of most issues encountered in the process of design,
implementation and evaluation of deployable WSN systems. It is hoped that, upon
using the book, the life cycle of new applications development will be considerably
shortened and many of the hurdles encountered by the authors and contributors here
will be successfully overcome by the reader.

The editors hope that the book will provide the reader with a comprehensive
learning experience and a pleasant journey into one of the most exciting engineering
domains.
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Chapter 2
Learning from Deployment Experience

Elena Gaura, Michael Allen, Lewis Girod, Geoffrey Challen,
and James Brusey

Abstract Early developments in WSNs focused on minimizing the physical size
and energy footprint of the nodes, and on exploring the opportunities and problems
introduced by very large networks of low-cost nodes. In practice, however, deploy-
ing or testing systems at this scale has not been practical. At smaller scales, extreme
resource constraints are often artificial. The evidence from surveying deployed ap-
plications suggests that in general, concerns about size, power, and large network
scales are trumped by practical considerations relating to deployment such as pack-
aging and logistics, and relating to what is commercially available for a reasonable
price. In this chapter we introduce the characteristics of deployed WSN applications
and discuss how they differ from lab-based experiments. We then distill some gen-
eral design strategies from past deployment experiences, with particular reference
to applications featured in Part II of the book. Next, we present a survey of plat-
forms that are currently commercially available to use as starting points for WSN
applications, and finally discuss the past and current market for WSN applications
and products.

2.1 Illustrating the Problem: Three Deployments

Wireless embedded networks are difficult to deploy for a wide-ranging set of rea-
sons. The complexity of the environment in which the system must operate leads
to many problems that catch the designers by surprise. To better illustrate the na-
ture of these challenges, in this section we present three brief case studies. Each
of these case studies gives a succinct overview of the project strategy and then de-
scribes some of the unanticipated problems encountered by the developers during
deployment. The remainder of the chapter is structured as follows:

Section 2.2 describes the evolution of the WSN domain from the motivating
vision of Smart Dust. We discuss views historically adopted by researchers across
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the WSN applications design space, and argue to support an application-centric
approach to WSN design, with forward references to the case studies in Part II.
Further, we analyze the gap between the theoretical and practical advances to date
and thus highlight challenges in applying theoretical developments to real-life
implementations.

Section 2.3 offers an overview of off-the-shelf WSN platforms and comments on
the suitability of the state of the art to support both the researcher and the commer-
cial markets.

Section 2.4 discusses how the prospects for WSN technology adoption have been
improved by demonstrable, real-life application successes and points out the per-
ceived barriers to wide adoption of the technology.

Section 2.5 provides a brief set of strategic recommendations to WSN designers.

2.1.1 Bangladesh Groundwater Monitoring, 20061

In January 2006, we deployed a wireless sensing system in a rice paddy in
Bangladesh to help scientists evaluate the relationship between irrigation and
arsenic contamination in the groundwater. Tens of millions of people in the Ganges
Delta drink well water impacted by arsenic, a massive environmental poisoning pro-
jected to result in two million cancer cases each year. The experiment was designed
and deployed with scientists and civil engineers studying this problem at MIT and
the Bangladesh University of Engineering and Technology. We deployed 50 sensors
connected over a low-power wireless network to monitor a variety of soil chemistry
and hydrological parameters in nine different locations. The base-station collected
26,000 measurements over a period of 12 days. A snapshot from the deployment
process is shown in Fig. 2.1. The results gathered from this and other deployments
are described in [58] and [59].

Our deployment, like others, was plagued with a number of unexpected events.
On the first day in the field, the landowner informed us that our base-station would
likely be stolen if we left it in the field over night. Our delay-tolerant network-
ing layer was immediately put to work, and we received 91% of the data despite
the base-station’s absence for over half of the deployment duration. Without a net-
working layer that cached data locally until it was successfully received at the
base-station, our system would have missed the diurnal activity, which took place
in the early hours of the morning. We successfully addressed the networking issues
with robust system design.

We were less prepared to address the sensor faults due to the unknown nature
of the deployment environment. Our main problem was simply to identify faulty
data in the field. Unfortunately, distinguishing between data that is faulty or simply
unexpected is a challenge even in contexts where the environment is carefully char-
acterized in advance. It was more difficult in Bangladesh, where our ambitiously

1 Nithya Ramanathan, CENS/UCLA and Lorax Analytics.
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Fig. 2.1 Photos from the deployment site in Bangladesh. The photo on the left shows a sensor node
with the case open. The photo on the right shows part of the deployment process. The large metal
cabinet houses the base-station and data collection server. Original images used with permission
of Charlie Harvey, MIT Civil and Environmental Engineering

large network was deployed precisely because there was little a priori knowledge
available about the chemistry of the rice paddy. For example, in one instance, a ni-
trate sensor reporting out-of-range values was miscalibrated, in another instance it
was reporting an accurate, but unexpectedly low, concentration. Without additional
information, it was impossible to determine at the time whether we should replace
the sensor and throw out the data, or mark it as the most interesting sensor and
data in the deployment. Timely interventions were necessary because the deploy-
ment was short-lived. But further analysis was required in many instances before
we could determine the appropriate course of action.

Scientists handled the uncertainty by taking concrete actions in the field. Simply
by being at the site when data was collected, the scientists were able to collect and
incorporate contextual information when detecting and diagnosing faults that the
system could not sense. For example, around day 7 of the deployment, moisture and
chemical concentrations unexpectedly flattened out. Scientists in the field noted that
the farmers had irrigated the field that day, and immediately made the connection
between the two events. When simple observations could not explain unusual sensor
readings, as occurred in our nitrate sensor example described above, a scientist ex-
tracted a water sample for later lab analysis. The scientist inserted a thin tube into the
soil and syringed out several drops at a time. The sample was preserved to limit at-
mospheric exposure, and analyzed in a lab. This process is time- and labor-intensive,
and was therefore avoided when possible. However, results from the lab analysis can
verify anomalous sensor readings, or confirm suspicions of faulty hardware.

Such painstaking human actions and observations were necessary to interpret
much of the data we collected in Bangladesh. Even the process to determine when
further verification was required was done manually because the chemistry of the
rice paddy was relatively unknown. It was not possible to use fully automated fault
detection and remediation tools because in many instances even the scientists could
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not conclusively determine when hardware was faulty without further analysis.
However, real-time feedback on the health of the entire system would have aided
us in focusing our limited resources on data problems that did require in-field vali-
dation and action. As our deployments have matured, we have aimed our efforts at
designing this human-machine system as a whole to maximize the information re-
turned from the system with limited burden on the user. We have designed a system
that uses an automated model designed in advance, and incorporates feedback from
the user at run-time in order to adapt to new environments gracefully. The system
creates an automated model using a small set of features that groups similar sen-
sor data in a low-dimensional space. This reduces fault detection and diagnosis to
simple anomaly detection techniques, which are easily modifiable in real time. Our
work has demonstrated that, if features are chosen well, this partially automated ap-
proach will scale to a large number of points, and adapt to new environments with
little feedback from the user.

2.1.2 Peru Seismic Station Deployment, 20072

The PERUSE Peru Subduction Experiment is an ongoing 5-year project to study the
tectonic structure and behavior of the Nazca oceanic plate that is being subducted
under the South American continental plate. The tectonic behavior in this region is
unusual, and the data collected in the area prior to this project has not been sufficient
to explain the observed phenomena. To address this, PERUSE will deploy a total of
three linear transects of seismic sensors, to form three sides of a open rectangle
facing the coastline.

Each transect will be 300–400 km long and will traverse areas that are moun-
tainous and sparsely populated. The first two lines are currently populated with 50
broadband seismic sensors each placed at 6 km intervals; the third line will be con-
structed with 25 stations taken from each of the first two lines, so that for the final
two years of the project, two lines of 25 stations will be operational concurrently
with a third line of 50 stations.

These scales present problems for traditional broadband seismic stations. Re-
mote seismic stations are typically deployed as standalone units with data storage
for about 1 month of operation. This necessitates frequent visits by researchers to in-
spect operations and collect data. This is very time-consuming, and has high “mean
time to notice failure”, “mean time to repair”, and “mean time to verify” cycles.

In collaboration with geophysicists at Caltech and UCLA, researchers at CENS
have deployed and operated a large-scale seismic wireless research network across a
300 km transect crossing the Andes in southern Peru. We use an ad hoc WiFi (IEEE
802.11b) network to transport data across multiple hops from each of 50 sensor
stations positioned roughly at 6 km intervals. Due to terrain and security concerns,

2 Richard Guy, Technical Project Manager, CENS/UCLA.
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Fig. 2.2 Peru seismic station. From left to right, node hardware internals showing the batteries,
digitizer, and node hardware; overall view of the node installation site, including the seismic sensor
itself inside the PVC tube; WiFi antenna installation. Original images used with permission of Ing.
Victor Aguilar Puruhuaya

the interval between nodes varies somewhat and in many cases we use rather longer
links – up to 50 km in some cases – to connect nodes that would otherwise be
cut off from the network. Ultimately, the data arrives at an Internet-connected ra-
dio relay site where it is transported to UCLA via a conventional consumer DSL
connection [52].

This work follows from a previous deployment in Mexico [38], and leverages
much of the same hardware and software. The Mexico deployment provided op-
portunities to gain large amounts of experience with remote deployments, solar
charging, and long range WiFi. Figure 2.2 shows some of the deployed hardware
and the deployment environment. During the early parts of the Mexico deployment,
the nodes required frequent servicing by research personnel while the bugs were
worked out of the hardware and software. Several novel components were devel-
oped to address the needs of this system, including a Disruption Tolerant Shell [50]
and a method for recovering timing information post-facto [51].

The Disruption-Tolerant Shell (DTSH) provides a way to issue broadcast and
unicast maintenance commands to nodes many hops away from an Internet connec-
tion. Although in principle all of the nodes in the network are continually on-line, in
practice intermittent network problems were commonplace. Network problems had
a variety of causes, including antenna mis-alignment, bad weather, and upstream
node failure. DTSH used a store-and-forward protocol to push requests out to the
network and retrieve results [50].

A second development was motivated by intermittent problems with the GPS
timing on the digitizers. Under some conditions, the device would record data that
had large offsets in timing, caused by availability problems with GPS. Without tight
time synchronization, this data was unusable for the application. To address this
problem, an algorithm has been developed to use features of the data itself to correct
the timing after the data is collected [51].

Since the Peru deployment was based on what had been learned and developed
in the Mexico deployment, we expected that it would go smoothly. While this was
generally true, some unexpected, difficult to debug problems still cropped up. One
of these involved the use of a shared communications tower.

When possible, we used existing towers to mount our antennas, to avoid the cost
of building our own much shorter and weaker masts. These towers typically were
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in use for various types of telephony (e.g., microwave relays and cellular service),
voice radio, or data relaying services, and we tried to learn in advance what fre-
quencies were already in use so that we could both avoid interfering with existing
services and hopefully avoid interference with our own services operating in the
unlicensed 2.4 GHz band. This is relatively easy when a tower is alone on a hilltop
and we have had the necessary preliminary conversations, but is more difficult when
a number of towers from different enterprises are clustered in close proximity on a
hilltop.

We recently began using a 70 m tower that is part of a cluster of five towers (all
50–100 m tall) spread across a 300 m diameter hilltop along a ridge that separates
the large prosperous city of Arequipa from a poor rural region to the southwest. In
casual ground-level (2 m elevation) testing, we knew that the site had spotty WiFi
behavior in Channel 11, but based on our past experience operating this equipment
in Peru and in Mexico, we were confident that we could overcome the problems
with sufficient antenna height and perhaps a bit of RF amplification. We normally
use 200 mW radios for up to 10 km links, but this can be augmented with a 1 W
(or even 2 W) amplifier in extreme circumstances.

However, after installation, we noticed intermittent problems between this relay
hub and its three client sites, which lay at different distances away, from 7 to 30 km.
Sometimes we had very solid connections and multi-megabit throughput from the
farthest node, but kilobit throughput from the nearest node. We could only get the
throughput we expected for a few seconds per minute. The net result was connec-
tions that were unable to keep up with the aggregate 4 kB/s transfer rates we needed
in order to upload the seismic data from upstream sensors.

After a frustrating day of fruitless troubleshooting on site, the team was sched-
uled to return to UCLA. Soon after their return, the relay site went offline com-
pletely. Our Peruvian geophysicist colleague traveled to the site to see if anything
was visibly amiss. There he found that thieves had breached the coils of razor wire
“protecting” the site, and had stolen the solar panel used to recharge the battery
providing energy to our radios, along with two panels from a neighboring mast.

Serendipitously, the engineer who maintained the systems on the other tower was
on site the same day to install a wind-powered generator atop his 30 m mast, and in
the course of friendly conversation we learned that his communications system used
a non-WiFi radio with a transmit frequency centered in the WiFi Channel 11 band,
with target receivers located in the same line of sight as two of ours, and within a
kilometer of our receiver locations. Since his system was not WiFi based, it did not
appear in our channel surveys.

This serendipitous conversation avoided a complex debugging task. While sur-
veys with 802.11 receivers would not reveal this type of interference, it could have
been discovered using a portable spectrum analyzer. However, even the spectrum
analyzer would only help when the interferer is operating. In this example, the site
survey was complicated by directional antennas and by the intermittent nature of the
interference.
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2.1.3 WaterWise: Monitoring an Urban Water Distribution
System (2008)3

WaterWise is a joint project between the MIT-Singapore Research and Technology
Center and the Intellisys center at Nanyang Technical University (NTU) to develop,
deploy, and test a system for monitoring the urban water distribution system in
Singapore. The goal of the project is to develop a system that can provide more
accurate hydrological modeling of the pipeline network, as well as detect, identify
and locate pipe bursts in the system. This is an important capability because bursts
in water pipes are often not discovered until many days after the event, during which
time they can cause damage to other infrastructure.

This project is a continuation of work done at MIT on a similar system called
PipeNet, that was deployed in Boston in 2006 for about 1 year. The initial proposal
for WaterWise would deploy the PipeNet system in Singapore, on a larger scale.
However, this proved to be impractical because, as is often the case with proto-
type implementations, many of the components used in the original system were
either obsolete or not commercially available. Further, the algorithms that would be
required to process the data and detect events were not established with certainty,
because thus far the data sets collected from fielded nodes were relatively small.

Given that new hardware would need to be developed, and based on prior ex-
perience with the requirements of a new deployment, we proposed a conservative
three-phase deployment plan in which the deployment could be scaled up over time.
This process of scaling up served three purposes: (1) it made the early deployments
more manageable, when the entire system was under development and in flux; (2)
it meant that the cost of the initial version could be larger and less energy efficient,
enabling it to be rapidly integrated from off-the-shelf modules without requiring a
large investment in customization and optimization; and (3) it permitted the more
“brute force” data collection strategy required to produce a data set to drive algo-
rithm development and more efficient sampling regimes. Table 2.1 describes the
three phase plan we proposed.

From the description of Phase 1, it might seem overly conservative. With only
5 nodes, few power constraints, and no complex networking strategy, where is the
difficulty? However, despite the conservative nature of this strategy, we found that
it was in fact achievable but difficult, and we also found that we needed to tune the
plans along the way. Among the issues we encountered are the following:

� Although the first phase was slated for 5 nodes, we manufactured 10 boards so
that we would have extras. However, even this oversupply has been insufficient
because after seeing the data, our customer was anxious to deploy additional
Phase 1 nodes to collect data at other locations. As a result we may fabricate a
“Version 1.5” that addresses some bugs in in Version 1 but is otherwise substan-
tially the same.

3 Lewis Girod, MIT/CSAIL.
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Table 2.1 Milestones, time-line and objectives of the three phase deployment plan for WaterWise.
The schedule has slipped relative to the original proposal: by end 2009 only 8 nodes were deployed

Phase Size Objective

1 (2008) 5 In this phase, we will fabricate new prototype hardware and address
many packaging, mechanical, and logistical issues. The system will
support full time, full rate data collection, recorded to server via 3G;
this data set will support algorithm development and validation.
Controlled experiments can also be performed with full data
collection. Power requirements are unconstrained, with the
assumption that the node has batteries to last 1 week that are
recharged by mains or solar.

2 (2009) 25 In this phase, we will refine the hardware and experiment with different
platforms in a transition to a lower cost, lower power system. These
nodes will be deployed in addition to the original set.

3 (2010) 100 In this phase we will validate the new design from phase 2 with a
deployment at scale.

� In our original vision for Phase 1, the nodes were powered from light poles, with
solar charging as a last resort. However, because getting power from the light
poles turned out to be unexpectedly difficult to arrange, all of the Phase 1 nodes
needed solar charging, using panels mounted only 10 feet off the ground. Getting
the solar charging system to work required much iteration with panel size and
location, negotiations with city authorities to trim foliage, and manual battery
replacement. Two years into the project, we are now beginning to get access to
light pole power.

� We spent a considerable amount of effort designing and fabricating watertight
node packages so that the nodes could be located inside the manhole. However,
power issues, hardware bugs, battery replacement, and ongoing software devel-
opment have all required frequent access to the node hardware. We had expected
this initially, and had intended the first nodes to be located above ground in a
junction box, perhaps later moving underground. However they have remained
above ground longer than expected and only now, in the second year, is the first
node going underground. Figure 2.3 shows a node installation and hardware.

� Our original plans for 100 nodes were based on our best guess as to what was re-
quired. However, limitations in the number of tapping access points make larger
scale deployments difficult. In addition, as we learn more about the application, it
may be the case that a smaller number of carefully selected measurement points
will work as well or better than a larger network.

We are presently (January 2010) entering Phase 2 of the project, having slipped
about 1 year from the original time-line. Thus far the project has been quite suc-
cessful, and even with the deviations from the original plan it is approximately on
schedule. We are currently rolling out an intermediate version node to replenish our
inventory and possibly to replace existing nodes where that is desirable, and we are
beginning work on a new, lower cost, lower power version in parallel with ongoing
work on algorithm development.
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Fig. 2.3 The WaterWise System. From left to right: the node installation with solar panel; a view
of the inside of the junction box, showing the batteries, solar charge controller, and the node itself
in its watertight packaging; and a tapping point assembly installed inside a manhole, with a elec-
tromagnetic flow meter installed during calibration tests. Original images used with permission of
Amitsur Preis, SMART Center

2.1.4 Discussion

These three examples provide snapshot views into deployment projects. In these
examples we can see that application specifics are a driving factor in the even-
tual design, and that every deployment, no matter how well planned, encounters
the unexpected. The complexity of the real-world environment in which these sys-
tems must operate is often a source for these complications, whether from thieves,
weather, or bureaucrats.

Another common thread in these examples is that, while the eventual ideal de-
sign will require a clear understanding of the problem and may require optimization
across many layers, this is not practical for prototyping. Because many WSN appli-
cations are breaking new ground, a prototyping phase cannot be avoided. This is in
stark contrast with more mature areas such as IT or web services, where comprehen-
sive application solutions exist commercially and there are many large consulting
organizations with extensive experience solving applications that are likely to be
very similar to yours.

These examples also demonstrate the importance of a broad blend of skills on
the team. Including experts in the application domain is critical to ensure that the
data produced by the system supports the application. Within the system design
team, it is important to include those with both hardware and software expertise. If
the design process focuses excessively on only part of the possible solution space
(e.g. more hardware or software focused), this will often lead to systems that are
more difficult to implement and support. In many cases a small hardware fix could
also be implemented purely in software, but the software solution is much more
complicated, or fundamentally less reliable; and the converse is often true as well.
Teams with agility in both realms will be much more effective and the resulting
projects will be much more practical.



24 E. Gaura et al.

2.2 WSN Design Strategies

The Smart Dust project that sparked the initial wave of WSN research field left
researchers with a legacy of “must have” characteristics, namely that wireless nodes
be small, low-power and disposable, and that networks of nodes be massively scal-
able, intelligent and self-configuring. In this section, we present the journey from
the original Smart Dust vision to the WSNs being prototyped and deployed today,
based on a number of examples from research and commercial implementations.
We analyze typical constraints imposed on WSN systems and present a perspective
on the utility of both practical and theoretical design.

2.2.1 From Smart Dust to Today’s WSNs

WSNs began as a technology with the Smart Dust vision [40, 69], which promised
to: (1) allow unprecedented detailed monitoring of phenomena, (2) capture their
essence by revealing fine grained, complex dynamics and, (3) translate the findings
into information-heavy field-phenomena or global representations. Such WSNs,
coupled with models of the physical phenomena under investigation, would enable
knowledge generation, provide the ability to design and integrate knowledge-based
decision and actuation systems, and generate valuable and trustworthy predictions.

Thus, WSNs have been seen as the cornerstone for the fully integrated “sense-
model-predict-act” systems of tomorrow in a variety of engineering and social
contexts. However, after a decade of intensive research there are still a large number
of challenges to be overcome before this grand vision becomes reality. Currently
available commercial and research products do not yet achieve the Smart Dust vi-
sion of being invisible and maintenance free embedded systems that are easy to
develop, deploy, and use.

In the Smart Dust vision, WSNs were envisioned to overcome application cost
primarily through large scale, low effort deployment of low cost nodes. The large
deployment scales and redundant measurements were intended to compensate for
several inherent disadvantages stemming from the use of extremely low cost nodes;
the economies of scale were presumed to drive a low unit cost and hence ensure fast
industrial up-take of this disruptive technology. Furthermore, to contain node cost,
the sensors would be low quality and poorly calibrated; the nodes themselves would
be extremely resource-limited in order to reduce the power costs; the nodes would be
one-use disposable devices, with little care taken in the physical deployment strate-
gies (e.g. scatter them from the air). Given this proposal, early research challenges
focused primarily on scalability and on software design for extremely resource con-
strained nodes. Research into scalable networks would leverage over-deployment
for fault tolerance, self-healing network features, and efficient multi-hop protocols.
Research that focused on resource-constrained nodes investigated small-footprint
operating systems, low power communication, and distributed and collaborative
processing with a goal of achieving years of functional life on a small battery.



2 Learning from Deployment Experience 25

While hundreds of research questions on the themes above were posed and an-
swered in the first years of the new millennium, the majority of ideas and concepts
contributed to the field could only be explored theoretically or validated through
simulation. A minority of works have been tested experimentally and a small sub-
set of these have been demonstrated in-situ, limiting the industrial impact of WSN
systems.

Nonetheless, the contribution of in-situ demonstrations to the field has been in-
valuable. Most importantly, tackling real-life applications in real-life deployment
environments has helped identify pressing research challenges not found in the
Smart Dust agenda. In resolving a well-motivated real-life application, the devel-
oper of a prototype system can usually only afford a small number of relatively
expensive sensor nodes. This leads to a range of considerations that run counter to
the premises of the Smart Dust vision and which are discussed in more detail in later
chapters:

� In order to satisfy the requirements of the application with a limited number of
nodes, the developer must be concerned with the fidelity of the data that the nodes
are sensing, and must develop a means of fulfilling the application even when this
data is simply not continuously available (see Chap. 6).

� Many applications involve acquisition and communication of data at high rates,
well beyond the capabilities and power available to most highly miniaturized
devices, dictating the development of nodes with a large processing, power and
physical footprint (see Chaps. 5 and 8).

� Keeping the system cost low implies sophisticated design and careful architecting
of the WSN systems (see Chap. 7).

� Harsh deployment environments can hinder even small scale, carefully planned
deployments (see Chap. 9).

� Working with the end user and complying with procedures and regulations
in sensitive environments severely limits the WSN technological choices (see
Chap. 10).

� Acquiring and delivering enough accurate data to gain insight into the researched
phenomena is often surprisingly difficult to achieve, even when the system design
is based closely on previously developed hardware and software which purports
to solve the problem (see Chaps. 4, 6 and 9).

Many successful application solutions have indeed been developed in spite of (and
often by explicitly ignoring) the tenets of the Smart Dust vision: sensor nodes do
not need to be as small as possible, nor excessively resource-constrained; useful
problems can be solved with small scale networks; more expensive, well-calibrated
sensors are often the best choice; random deployment is neither generally necessary
nor desirable.

An extreme, rather holistic example of how one view does not fit all comes
from the Plug system developed by Lifton et al. [49]. Plug is intended for inhab-
ited environments (such as the home and the workplace), is powered through a
mains outlet (and thus has no energy-related concerns) and has a comparatively
large size (20 cm � 7 cm � 12 cm) and weight (1 kg). However, despite its physical
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Fig. 2.4 The VoxNet System. From left to right: the node hardware with the case open, showing
the sensor interface board (the CPU modules are under the battery); one of the nodes, deployed in
Colorado, USA in 2007; a VoxNet node locating a marmot. Original images used with permission
of Lewis Girod, MIT/CSAIL

footprint, it is as unobtrusive as any other power bar, and supports multi-modal
sensing, actuation capabilities and wireless communication. Its utility as a sensor
network platform lies with the tight integration of the observed and the observer:
the primary role of the Plug is to measure how the observer interacts with the envi-
ronment, essentially setting itself in sharp contrast with the common view of sensor
nodes hidden throughout the environment and not interacted with (the deploy-and-
forget Smart Dust concept).

Another example comes from VoxNet [2] (presented in Chap. 5), a WSN system
used in bio-acoustic sensing that requires sensor sampling rates on the order of
several kHz and is exploratory in nature (i.e., the application requirements change
as phenomena exploration experience is gathered). This type of application can be
prototyped using powerful embedded computers, eliminating the need to optimize
the system in the early stages of development (see Fig. 2.4). Although the node’s
power consumption is high and the battery lifetime is on the order of hours, this was
not an immediate problem because the initial deployments could accommodate daily
recharge. The development effort that would have gone to optimization was instead
invested in making VoxNet a turn-key system that was easy for field biologists to
use and adapt.

Experiences such as those above have contributed to the conclusion that the most
useful research in WSNs is driven by finding successful solutions to problems posed
from outside the WSNs research community and that the motivation for the WSN
development needs to be driven by realistic business models. Only when the work is
motivated by application specialists and beneficiaries of the technology, will WSN
research move from a set of technological solutions in search of problems to become
a widely-adopted, thriving technology. WSN application developers must formally
define requirements, specify, design, implement and deploy while considering re-
alistic field conditions and stakeholders (i.e., clients and/or application motivators,
be they researchers in the dedicated application domain or commercial end-users).
WSNs developed to provide research instruments that enable new insight into a vari-
ety of previously unquantified or unobserved phenomena should also conform with
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the above. There is a long and costly development process from proof of concept
through prototypes and pilot deployments, to finally providing the application re-
searchers with a robust, repeatable, commercially available instrument which could
become the norm in their branch of study.

In summary, practical WSN researchers have learned what are the essential in-
gredients to developing fit for purpose WSN systems: (1) the application dictates the
choice of development methods, techniques and tools; (2) advances beyond the state
of the art should be sought selectively in the context of any given application (i.e.,
not every application requires a minimal size and energy footprint and sophisticated
in-network collaborative behavior); (3) self-posed questions and solutions bring
marginal benefit to the field and no benefit to WSN adoption efforts; (4) letting the
application and the application specialists drive and inform, respectively the WSN
development is essential; (5) the specialists need to have strong business cases for
WSN use, otherwise the work will remain at the stage of research feasibility studies.

2.2.2 Design Spaces and Design Views

The design space of WSN systems is complex, and often requires making trade offs
that affect the design of both hardware and software components, while concurrently
meeting the application requirements. This is further complicated by the shortage of
pre-existing platforms and standards resulting from a limited commercial market.
Römer [66], presented twelve qualitative metrics to describe the design space of
existing, deployed WSN applications. The metrics are useful to help identify broad
differences or commonalities between present and future WSN applications or ap-
plication classes. The design space metrics can be categorized as follows:

� Node properties: mobility, size, cost, power source, communication modality
� Network properties: heterogeneity, deployment process, communication topol-

ogy, coverage, connectivity, expected lifetime

The design process ranks these properties based on the application requirements,
on the constraints imposed by hardware and software platform choices, and on the
environment(s) in which the system must be deployed.

The authors here propose that there are three views on this design space that can
drive the development process for WSN systems (in terms of both hardware and
software). These are: the application-centric view, the network-centric view and the
device-centric view.

The application-centric view maintains that the application’s requirements dic-
tate the software and hardware functionality that should be developed. Therefore,
network and middleware protocols should be designed and implemented as needed.
Several systems have successfully adopted this approach, for example the iterative
development and deployment of a volcano monitoring project [70, 72] and the de-
velopment of a WSN to monitor glaciers [55, 56, 60]. Both of these systems are
discussed in detail in this book.
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The strength of taking the application-centric view is that given a wide enough set
of specific applications and deployment experiences, the services and protocols that
are generically useful, reusable and important will naturally emerge. Those compo-
nents will then become encapsulated as off-the-shelf software components and tools
for WSNs. An example drawn from the literature is the Flooding Time Synchroniza-
tion Protocol (FTSP) which was originally developed as part of a sniper localization
system [47]. This approach has gone on to be the de facto time synchronization
mechanism in mote-based WSN research, and is integrated into TinyOS 2.1 (the
most recent version as of writing) by default.

The network-centric view focuses on directly designing generic components for
building sensor networks as a first principle, so that arbitrary applications at arbitrary
scales can be accommodated. Examples include MAC protocols [63,77], multi-hop
routing protocols [37, 39], localization algorithms [44, 57], data collection [32] and
dissemination protocols [48]. Network-centric research forms the bulk of the early
period of WSN research (from the late 1990s to early 2000s), as researchers tried to
prepare for the reality of cheap generic devices that could be deployed in their thou-
sands. Because network-centric work must formulate a model of application usage
and network scalability, these approaches are typically evaluated through a combi-
nation of toy applications and network simulations. Although this presents a lower
barrier to entry for researchers, the resulting work is often not readily applied in
realistic deployment scenarios [1, 65]. Simulations are only as good as the assump-
tions that they make about the motivating application, the deployment environment
and the behavior of the sensor nodes. Many research simulations employ assump-
tions about radio propagation that have been broadly disproved through empirical
study [53,74–76]. This casts doubt on all but the most carefully circumscribed wire-
less network simulation results. The end result is that if network-centric approaches
are to be realistically used, they must also be evaluated realistically. While this trend
is becoming more common, it is by no means the standard in WSN research.

Finally, the device-centric view builds WSN design choices around an existing
hardware platform, meaning that the platform dictates the extent to which the appli-
cation goals can be met as well as the type of protocols which can be implemented
on the device. Thus, it is important to select a platform that makes a good fit to the
target application. When real-life application functionality must be fitted to the capa-
bilities of an unreasonably constrained platform, the application functionality must
be stripped down to match platform capability, or else extra custom hardware must
be added [43,47]. Conversely, under-constrained platforms can pose logistical prob-
lems, in particular regarding battery lifetime. However, using an under-constrained
system permits the designer to gain experience with the problem before optimizing
the design, thus reducing the engineering effort required for a proof of concept.

The device-centric view is a popular option in computer science research as, by
using commercially available devices with software support, researchers avoid a
costly and often impractical process of hardware design and consruction. Highly
constrained sensing devices like the Mica2 [23] and the TelosB [64] have been
adopted as de-facto general-purpose WSN platforms. These platforms are optimized
for small size and low energy usage by using low bandwidth radios, kilobytes of
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RAM and program memory, and low processing power (microcontrollers instead of
microprocessors). However, using these platforms it is difficult to implement appli-
cations that are more complex than simply sampling and forwarding data wirelessly.
Whilst this type of optimization should not be ignored, these restrictions increase
the difficulty of performing exploratory development of applications and related
processing.

Some classic examples of platform capability heavily affecting the application
performance have been in the range estimation and self-localization area of WSN
research. Several efforts using the Mica2 for acoustic ranging and self-localization
have had to work around the limited platform capabilities, trading off precision,
range and accuracy for reduced processing and memory footprints [43, 67, 73, 74,
78]. It is interesting to note that highly accurate range estimation solutions using
marginally more processing power or memory had been demonstrated in parallel to
constrained systems research [31,46,61], adding further weight to the limitations of
the device-centric view. It should also be noted that the platform constraint has lead
to a novel set of self-localization techniques using interferometry [41, 42, 54] that
would probably not be considered from an application-centric point of view.

To summarize, the device-centric view forces optimization before applications
are fully realized when the chosen platform is overly resource constrained. The
network-centric view tries to produce generic answers without fully understanding
the differences between applications that prevent generality. Both of these ap-
proaches imply that device constraints take precedence over meeting the application
requirements, or that a generic enough set of protocols or approach will be sufficient
to describe any possible application. It is the authors’ opinion that these views are
flawed, and that in order to understand the realistic benefits of WSNs for a particular
domain, it is important to adopt an application-centric view. In application-centric
development, the requirements of the application are the over-riding priority. These
requirements do not necessarily have to be met using a specific approach: it is far
more important to provide a working system that meets the application goals than
treating in-network or distributed processing as first principles.

Part of enabling wider adoption of WSNs is about being able to provide meaning-
ful results from in-situ deployments. Once the application needs have been met, and
the performance of the deployed system has been evaluated in-situ, the system and
platforms can be optimized to meet other criteria in the design space, such as size
and energy consumption. Similarly, many network features that are an a priori part
of the Smart Dust vision, such as in-network processing and collaborative behav-
ior, will only need to be implemented in an application-centric effort if they emerge
from the application needs. One example is the development of the VoxNet acoustic
sensing platform described in Chap. 5. When the system was initially deployed by
biological researchers, all of the raw acoustic data was recorded and later uploaded:
the system did not perform any local processing of the acoustic data. Subsequent
analysis of the network data transfer rates from in-situ deployments revealed that
in some cases, nodes could reduce their own data transmission times by processing
some data locally and sending smaller amounts of data; the decision of when to do
this could be made dynamically based on the current state of the network. Addition-
ally, taking a network-wide approach to what data was important to the application



30 E. Gaura et al.

allowed for reducing the number of transmissions that needed to be made (regard-
less of local processing or not). Neither of these refinements were design choices
in the initial development of the system, in which the aim was simply to meet the
application goal of localizing an acoustic source in an on-line manner. However,
local processing was later shown to be useful in reducing network usage and thus
end-to-end localization latency.

2.2.3 Meeting Application Requirements

The importance of meeting application requirements is a unifying thread in the case
studies presented in Chaps. 4–10. To best prepare the reader for that material, we
distill some generic lessons and principles that apply to the examples in this book
as well as future applications the reader may encounter. Application-centric designs
typically encounter two key challenges: technological and development constraints,
and translating requirements from the application domain into the WSN context.

Technological and development constraints include constraints on what is pos-
sible. No system is failure-proof, but wireless links, limited energy, and embedded
hardware further fundamentally limit the reliability of most WSN systems. Unfore-
seen hardware and systems failures, and limited operational visibility impose limits
on reliability in a deployed setting. Development constraints including time and
budget constraints, environmental conditions, and hardware availability and capa-
bilities, are also key limiting factors.

The second key challenge in developing a WSN system to support a specific
application is ensuring that the sensing requirements are informed by domain ex-
perts. This process of translating the requirements from the application domain
to those of a WSN system can be quite challenging and requires good commu-
nication with the domain experts. In this process, three key aspects should be
considered:

Ensure that the right thing is sensed and that it is sensed correctly. To correctly
measure a phenomenon, the sensor hardware must be properly configured and cou-
pled to the phenomenon, and the sampling parameters must be adequate, including
sample rate, sample resolution, and acceptable noise level. If the sample rate is be-
low the Nyquist rate for the signal, ensure that proper filtering is implemented in the
front end. When measurements are made at multiple points, ensure that the spatial
density is adequate. Ensure that sample timing is recorded with sufficient accuracy,
and that timestamps are sufficiently consistent across nodes. These considerations
will affect how many nodes are required, the data rate that must be processed at each
node, and will define system level requirements such as location discovery and time
synchronization. For applications that are exploratory in nature, the sensing require-
ments may not be known a priori (i.e. existing domain measurements may not be
adequate to make these estimates). In these cases, iterative deployment is necessary,
where the application requirements become refined as more data is gathered and
analyzed.
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Ensure that the network performance matches the application. The wireless
network must be capable of allowing data transfer that meets application require-
ments for timeliness. Because wireless communication performance is dynamic,
sufficient provision must be made to provide headroom in supporting the minimum
data transmission requirements of the application. Understanding how the relevant
phenomena should be sensed (in space and time) will help to understand the volume
and pattern of data transmission, as well as the expected network topology. If the
size of the required network is small then complex multi-hop routing algorithms
may not be required, or may be assumed to have a very limited maximum number
of hops. Similarly, if the data generated is small and infrequent, on-node processing
techniques may not be required. In choosing or designing communication protocols,
it is important to be aware that simulation results often do not resemble observed
behavior in the field and that this may drastically affect the performance of a fielded
system.

Ensure that the system captures system performance data and application meta-
data in addition to the required application data. Application data must be cap-
tured and analyzed correctly, and must be correctly viewed by the target user.
Correctness of data refers not only to sensor calibration, but also to whether values
sensed are within expected ranges and thus are not faulty or unreasonable. Record-
ing and analyzing additional application data and metadata can enable increased
tolerance of the application to system or sensor failures. The system should be ap-
propriately instrumented so that the systems developer can monitor its operation at
run-time. Appropriate system instrumentation is important both to verify that the
system is running correctly, as well as to collect data that will improve the perfor-
mance of the system on subsequent iterations.

Successful WSN applications should be operable by non-developers, which
means that they must be easy to operate and common functions must be readily
accessible. Whilst this is in part a usability issue, it also points to a problem: what
might seem an intuitive interaction for a computer scientist or engineer could be
completely confusing for the intended user. Whilst a systems engineer may be in-
terested in information which helps them understand and diagnose the state of the
system, the domain expert is far more likely to be concerned with the correct pre-
sentation of sensor data gathered by the network to help them make inferences or
even reconfigure the sensor network. It is only through working closely with domain
experts that these issues can be addressed.

WSN developers concerned with implementation and deployment have taken the
above to heart over the past few years and their efforts have pushed the boundaries
of the domain repeatedly beyond the “sense and send” systems common till a few
years back. Many of the field’s theoretical advances, however, share little of these
concerns, contributing instead proofs for sophisticated protocols to support large
scale networks, constrained as envisioned by the Smart Dust concept.

When comparing the reported practical successes with the theoretical achieve-
ments – whether with regard to scale, physical size, complexity, yield or system life
– a large gap between the two is apparent. The next section reasons around this is-
sue, indicating the potential gains for the domain should the theoretical and practical
communities join forces.
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2.2.4 The Practical–Theoretical Divide: Open Research
Questions and the Value of Deployment

Since its inception, the sensor network research community has incorporated
(albeit disproportionately) both theoretical work and practical concerns, evidencing
the uptake of WSNs by both the computer sciences and engineering communities.
Conferences such as the ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks (IPSN), for example, have offered dual tracks, one
featuring work with theoretical groundings, the other intended to showcase tools,
deployment experiences, and efforts grounded in the realities of deploying systems.

Unfortunately, while the theoretical and practical scientists frequently march un-
der the same banner, there has been less exchange between them than might be
optimal for the forward progress of the field as a whole. Sometimes the two commu-
nities seem to be talking past each other entirely. Theoreticians show little interest
in the practical considerations of operating real systems in the field, or of even the
practical implications of implementing and deploying the algorithms they them-
selves propose. As a result, they tend to produce approaches based on numerous
assumptions that researchers who have deployed real systems know to be false, fur-
ther damaging the chances of their ideas being incorporated into real systems.

On the other hand, practitioners shy away from exploiting the latest theoretical
advances into their built systems, fearing that theoretically-grounded improvements
will prove illusory in more realistic environments, or that complex algorithms will
prove difficult to understand and debug once fielded. As a result, their overly-
conservative approach coupled with the amount of time and resources necessary to
build and field a real system, results in highly-incremental advances and generally
slow progress.

As one example, the so-called “unit disc model” of wireless radio propagation
was the basis for many early theoretical works on wireless ad-hoc networking. The
unit disc model assumes that a node can communicate perfectly with all nodes
within some fixed radius, and cannot communicate with any nodes outside of the
disc. As one might expect, this assumption simplifies the radio propagation model
and allows the behavior of complex algorithms running on top of ad-hoc networks
to be quickly simulated, and in certain cases allows desirable properties of these al-
gorithms to be proven. Unfortunately, as all practitioners know, the unit disc model
does an extremely poor job of squaring with the complex reality of wireless wave
propagation, where multi-path, fading, obstacles and many other complications
challenge any simple model of wireless radio propagation. And for practitioners,
the fact that the unit disc model does not match empirical reality is reason enough
to discard anything that follows.

This dismissiveness comes at a price, since there are doubtless many theoretical
results rooted in the unit disc model that would work reasonably well even with the
assumptions of that model relaxed, or with simple workarounds to improve their ro-
bustness in real-life settings. But the assumptions that are necessary for theoreticians
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to make in order to prove desirable properties become sufficient for practitioners to
discard the entire effort. Along the same lines, theoreticians sometimes abandon
algorithms and research efforts once they pass the point where it becomes hard to
reason about their behavior in well-defined ways, which unfortunately is sometimes
right at the point where their behavior might actually be useful. Properties of a sys-
tem that can be guaranteed assuming a fully-connected topology become impossible
to guarantee once that assumption is relaxed. It is possible that the system still has
the desired properties, and this could be verified by simply implementing and de-
ploying it, but the interest wanes for the theoretically-oriented researcher.

This fundamental inability to agree on which open questions qualify as research
and on how to address them seems poised to widen the gap between the two groups
over time, as theoretical work forges ahead less and less rooted in real systems
challenges while systems builders react by almost entirely eschewing theoretical
contributions when constructing their applications.

A focus on real-life applications and deployment (taken as a natural step in a
WSN project), can provide a meeting point for the two communities and help ad-
dress this widening gap. By addressing real application goals, both groups are forced
to “get real”: theoretical work must stand up to the vagaries of reality, while prac-
titioners must build systems more complex than simple sense-and-send to accom-
modate demanding applications. However, this represents a difficult challenge for
both groups, and it is as yet unclear to what extent the research and WSN user com-
munities actively incentivize joint proceeds. Theorists are unlikely to need practical
validation in order to publish papers. System builders can strengthen their arguments
through successful deployment, but the emphasis on success pushes them away from
complex algorithms or system designs and towards problems too simple to really re-
quire the sort of combined approach that would really benefit both communities.

The reality is that the grand vision of Smart Dust is still a long way off, and
there are many way points to cross before we can build anything approximating the
systems envisioned by early WSN researchers. Getting there will require concerted
and combined efforts from both sides of the practical/theoretical divide, as well as
progress in the commercial sphere to generate the volumes required to bring down
hardware costs.

Ideally, deployments should incorporate the best efforts from both practical and
theoretical advances; we show later that they have an important role to play in setting
future research agendas that theorists and practitioners can work towards together,
supported by commercial developers. The ultimate aim of all three communities is
widespread adoption of the WSN technology, and as such it is not uncommon to see
WSN researchers start spin-off companies in order to see their research endeavors
become commercial success. Numerous examples of successful spin-offs exist, such
as Sentilla, Dust Networks and Arch Rock (all of whom happen to be founded by
alumni or faculty from the University of California, Berkeley); these companies
have brought to market products that draw heavily from the founders’ pioneering
theoretical and practical research in networked sensing.
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2.3 Starting Points for Development: Existing Platforms

In keeping with the potential for WSN technology to transform sensing and actua-
tion, there are a range of WSN platforms and solutions available to purchase on the
market today, comprising both sensor node hardware and sink-side software infras-
tructure. Some of these solutions are full, end-to-end products aimed at a particular
application, some are generic solutions which can be configured to meet a variety of
target applications, and some are fully customizable platforms that are suitable for
experimental research. Each of these different classes of solution target a different
part of the WSN market: application-specific solutions are targeted at commercial,
industrial or home users who require a complete, end-to-end solution that enables
a very specific application with minimal configuration; generic solutions provide a
means to prototype WSN applications within a limited design space; and research
platforms allow a researcher to experiment fully with WSN development.

For the researcher, the more application-specific solutions are often less expen-
sive, but they may not be extensible enough to be applied to a particular research
problem. It is therefore up to the user to be able to identify these different platforms
and choose which is most appropriate for the application at hand. This section aims
to support this choice by providing an overview of popular solutions from each cat-
egory as well as their limitations.

Section 2.3.1 discusses end-to-end solutions, Sect. 2.3.2 discusses generic solu-
tions and Sect. 2.3.3 discusses research platforms. Finally, Sect. 2.3.4 comments on
the suitability of the state of the art to support both the researcher and the commer-
cial markets these platforms aim to serve.

2.3.1 End to End WSN Solutions

End to end application solutions to wireless sensing are full hardware and soft-
ware systems targeted at a specific application; as such they can be bought off the
shelf and used out of the box. Application-specific solutions will either be wire-
replacement in existing wired sensing systems or used for novel applications that
can only be enabled through WSN technology. Typically, these systems consist of
a number of sensing nodes with pre-installed, configurable software, a gateway de-
vice to connect the network to a desktop or server, and a server-side application
suite that allows visualization or manipulation of gathered data. Other functional-
ity may include the ability to set and receive warnings via text message or email
when certain data threshold points are reached in the data being sensed. Table 2.2
shows a selection of several commercially available WSN-based systems, includ-
ing the company that markets them, the wireless technology used and the target
application. Most of the solutions shown transmit in the 2.4 GHz ISM band and
use protocols built on top of 802.15.4 MAC and PHY standards, such as ZigBee
or 6LowPan; only Grape Networks’ solution does not. The first four rows in Table
2.2 are wire-replacement solutions, where the company has adapted its traditional
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Table 2.2 End-to-end, application-specific WSN solutions, showing the company, wireless tech-
nology, target application and class

Company Wireless Technology Target application Application class

PPM Technology ZigBee Indoor air-quality Wire replacement
MicroStrain 802.15.4/FDMA High data rate sensing Wire replacement
Soil Instruments 2.4 GHz Structural monitoring Wire replacement
OnSet 802.15.4 Environmental monitoring Wire replacement
Grape Networks Custom/433 MHz Microclimate monitoring New application
ArchRock 6LowPan (IPv6) Intelligent energy analytics New application
Sentilla 802.15.4 Intelligent energy analytics New application
SynapSense 802.15.4 Data center monitoring control New application

wired sensing hardware to support wireless technology, improving deployment con-
venience and allowing remote data collection for users. Soil Instruments [20] enable
wireless sensing for structural health monitoring with compatible sensors from their
range; PPM Technology [17] provide indoor air-quality monitoring equipment for
home and industrial settings; extensively used in environmental monitoring for agri-
culture and research, OnSet Corp [16] provide wirelessly enabled data loggers to
which their smart sensors can be attached; and MicroStrain [14] provide a high data
rate solution, where high rate data can be streamed wirelessly (although in node
processing is not supported).

The remaining products shown in Table 2.2 are for novel applications en-
abled by WSN technology. First, Grape Networks [11] has a specific environmental
monitoring product designed for monitoring vineyard conditions. The product’s
functionality is simple but robust: temperature, humidity and solar radiation are
sampled at each node and this data is relayed back to a central server. Unlike
many other available WSN platforms, the product uses a nonstandard communi-
cation protocol, which complicates integration with other platforms. The Grape
Networks’ Water Management platform enables fine-grained automated irrigation
management; the operator can set thresholds via the Internet and register for alerts.

In keeping with the green, energy saving related WSN opportunities mentioned
in Chap. 1, the final four rows in Table 2.2 show companies that have focused on
very specific energy-monitoring applications. Using WSNs to monitor power usage
of household or industrial devices can save money on energy bills and can enable
greener, more efficient operation. Clearly, the climate issue is a strong motivator for
these systems and there is a good case for widespread adoption if current trends con-
tinue. Sentilla [19] (originator of the TMote Sky platform) has focused its attention
solely on intelligent energy analytics, a technology that allows end users to monitor
energy usage using a WSN with a view to cost cutting and efficiency improvements.
Arch Rock [7] has taken a similar approach with their Energy Optimizer solution
based on their 6LowPan platform offerings. 6LowPan provides IPv6-based commu-
nication to nodes in the network, and simplifies integration of WSN data streams
with existing enterprise infrastructure. Another company, SynapSense [21], offers
a very specific solution for data center energy management/cooling control. This
solution combines sensing with actuation, and creates a closed-loop system that
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can be installed in data centers, dynamically applying cooling where required. The
advantage of this technology to the end-user is that it is a proven solution: the system
performs this task out of the box with minor configuration, requires no additional
wiring and lasts for months or years between battery changes.

None of these systems are customizable outside of the limited tuning and config-
uration interfaces that the software provides. Limiting the number of configuration
options focuses the functionality of the software, simplifying it such that the user
can easily install and maintain it. However, this makes the products unsuitable for
use outside of the anticipated application.

2.3.2 Generic Solutions

The next class of commercial WSN systems can be broadly classified as generic
solutions. Compared with the application-specific solutions in Sect. 2.3.1, these sys-
tems are targeted at a broader class of applications. As such, these products do not
aim to provide a comprehensive solution to a specific problem, instead providing
software tools and hardware to enable a variety of applications to be prototyped and
implemented. A strong focus here is on hardware and software that non-WSN ex-
pert vendors or original equipment manufacturers (OEMs) can use to integrate into
systems that will be sold on to an end user.

In this class of WSN products, it is common to see development kits. These are
starter packages, containing enough sensing hardware for a user to set-up a small
network, collect and display some rudimentary data (such as temperature), as well
as potentially reprogram the system with different applications. The typical contents
of a development kit are one or more sensing (and/or routing) nodes, a gateway
device and server-side software to collect and visualize data, as well as a library and
associated API or integrated Software Development Kit (SDK) to allow the user
to develop their own software. The extent of the system’s reconfigurability varies
greatly from product to product.

Table 2.3 shows a selection of generic solutions, the wireless technology they
focus on and the product’s target application class. Most of these products are tar-
geted at home or industrial monitoring and automation, and all provide sensor nodes

Table 2.3 OEM WSN solutions, showing the company, wireless technology and appli-
cation driver for the products

Company Wireless Technology Application driver

Dust Networks WirelessHART Multiple industry (WirelessHART)
Sensinode 6LowPan (IPv6) Multiple industry (MBUS focus)
Millennial Net 2.4 GHz Multiple industry
Jennic ZigBee PRO Multiple industry/home
Ember ZigBee Multiple industry
TI/Labview 802.15.4 Embedded control systems
EnOcean 868 MHz/315 MHz Multiple industry/home (energy harvesting)
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that boast long battery life and reliable multi-hop, mesh networking. Products are
differentiated by the target application class, the type of network communication
protocols they use and the level of reconfigurability provided through the API/SDK.

Dust Networks [8] provide WSN sensor nodes and gateway devices for industrial
applications and automation, focusing on WirelessHART [6] and ISA100 standard
compatibility and allowing existing HART systems to be easily adapted to WSNs.
Dust Networks’ main selling points for their sensing system are WirelessHART
compatible nodes with low power consumption (a quoted 7–10 year lifetime), an
adaptive, frequency-hopping, multi-hop mesh network, data security and 99.99%
reliability in data transfer, as well as a set of development libraries and associated
API which allow the user to write HART programs. EnOcean [10] focus specif-
ically on an energy harvesting platform that can harvest and store all the energy
required to operate, through solar, thermal or vibration energy harvesting circuitry.
They provide a catalog of sensors from third parties that can be used directly with
the hardware (that is they are approved for use). Ember [9] offer a product whose
multi-hop networking components are based on the ZigBee PRO communication
stack. This allows Ember’s products to support the ZigBee PRO application pro-
file set, allowing applications to be built for home automation, energy monitoring
and industrial automation. Sensor nodes have ports for various types of sensors to
be attached (although they do not provide lists of approved sensors), and a soft-
ware API and SDK allows guided application development for applications within
the ZigBee PRO application profile set. Texas Instruments/Labview [13] provides
WSN modules that can be programmed within the LabView environment, allow-
ing a WSN to be integrated into existing LabView software. This can enable those
familiar with LabView style visual programming to work easily with WSN nodes.
Sensinode [18], Millennial Net [15], and Jennic [12] are further examples of compa-
nies that provide development kits; of note here is Millennial Net’s five data models,
which are different data collection modes that their sensor nodes can be run in, to
reflect the type of application the user desires: periodic sampling (sense and send),
event driven (based on specific event), store and forward (sample then download),
polling (request data centrally) or on-demand (grab data from nodes whilst in prox-
imity). Finally, both Sentilla [19] and Arch Rock [7] provide development kits to
allow vendors to prototype with similar hardware to that of their flagship end-to-
end solutions (see Sect. 2.3.1).

This class of WSN systems provides a route for interested clients to try proof of
concept wireless sensor networks, and afford enough reconfigurability to allow for
many sensing applications. However, as with the application-specific WSN systems,
the more targeted the usage models are, the more difficult it is for the user to adapt
the system for more general or entirely different applications.

2.3.3 Research Platforms

The type of WSN systems that fall into the COTS WSN research platforms category
are those that are highly customizable, are intended to be used by researchers that are



38 E. Gaura et al.

familiar (or will quickly become familiar) with them. Research platforms lower the
barrier to entry for applied research: practitioners can carry out WSN research with
known platforms within the research community without the need to develop their
own platforms. The main distinction between the platforms discussed in this sec-
tion and the generic solutions presented in the previous section is that, the research
platforms are intended for researchers to experiment with the wireless aspects of the
platform, for example MAC protocols and multi-hop routing algorithms. In these
cases, the researcher may want to try various approaches through experimentation.
The same is not true for the generic products that are oriented toward providing a
wireless solution that a full system can be built upon, or a system to meet a specific
application need.

Table 2.4 gives an overview of commercially available sensing platforms for
WSN research (this does not include custom research platforms that are not publicly
available), including the relative pricing of individual platforms. In general, WSN
research platforms can be divided into two categories: mote class and microserver
class platforms.

Mote platforms are typically based on 8 or 16-bit flash microcontrollers, with
�1 kB of RAM, �100 kB Flash memory, and a wide variety of readily accessi-
ble I/O ports and built-in ADCs. Mote modules typically integrate a low power
RF interface supporting 802.15.4, ZigBee or Bluetooth, or in some cases support-
ing a custom or user-defined MAC. These platforms are suitable for research into

Table 2.4 The reader should note that only commercially available platforms are included.
It should also be noted that not all 802.15.4 compatible radios are ZigBee compliant (ZigBee
is a stack which sits on top of the MAC and PHY layers defined by 802.15.4). 802.15.4 uses
the 2.4 GHz part of the ISM band for communication

Platform MCU/CPU Comms Node cost Target apps

AmbioMote MCU custom 2.4 GHz $200 SHM type
Arduino MCU/8-bit ZigBee or Bluetooth AC45–95 hobby/gadget
BTnode MCU/8-bit 800 MHz and Bluetooth AC165 research
Cricket MCU/8-bit 868 MHz $195 localization
Iris MCU/8-bit 802.15.4 $115 research
MicaZ MCU/8-bit 802.15.4 $99 research
Mica2 MCU/8-bit 433 or 868 MHz $99–125 research
SquidBee MCU/8-bit ZigBee AC130–150 hobby/gadget
TNode/KeyNode MCU/8-bit 315–868 MHz AC65–99 research
Mulle MCU/16-bit 802.15.4 or Bluetooth AC139–149 research
Pioneer MCU/16-bit 802.15.4 $499 industrial
MSP430

(Scatterweb)
MCU/16-bit 433 or 868 MHz AC98 research/industrial

Shimmer MCU/16-bit 802.15.4 and Bluetooth AC199 medical monitoring
TelosB/TMote MCU/16-bit 802.15.4 $99 research
Gumstix

Verdex/Overo
CPU/32-bit Bluetooth $129–219 hobby/gadget

IMote2 CPU/32-bit 802.15.4 $299 research
SunSPOT CPU/32-bit 802.15.4 $750 / 2 hobby/gadget
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communication protocols, low power operation and simple sensing applications;
however they are not well-suited to applications that require substantial on-node
processing at high rates.

Microserver class platforms provide 3–4 orders of magnitude greater computa-
tional and I/O capabilities, in exchange for larger energy requirements. These plat-
forms often have a slightly larger form factor than a Mote, and are typically based
on a 32-bit microprocessor, often a smartphone class application processor with ad-
vanced features such as multiple pipelines, large caches, frequency and voltage scal-
ing, and SIMD or hardware floating point support. These platforms typically host
megabytes of RAM and flash storage and a range of high-speed I/O interfaces such
as MMC, SDIO, USB, and Ethernet. Many platforms support integrated RF inter-
faces such as Bluetooth or WiFi, with ZigBee being less common but relatively easy
to integrate via a serial interface. These platforms often support built-in audio inter-
faces, and can readily support high data rate collection and processing. The relative
pricing, capability, and form factor of platforms in not related to their functionality:
a sensing platform with a 32-bit processor can be purchased for similar prices to 8 or
16-bit microcontroller-related devices, and can be found in a similar sized device.
Some of these platforms cater for specific classes of application, for example the
Shimmer platform is purposely developed to cater for mobility based applications:
being lightweight, with small form factor, and having a suite of accelerometers, it
lends itself well to a variety of medical/health-care related applications.

2.3.4 Discussion

This section has provided some insight to the aspects of WSN research which are
currently considered to be commercially viable, notably, wire replacement, reliable
data collection, low power operation and mesh networking. The problems that the
solutions in Sect. 2.3.1 address are based around wire replacement and simple sens-
ing and data archiving, with limited reconfigurability. True end-to-end solutions will
typically address a specific problem, and provide a complete solution for the con-
sumer. As such, these products are marketed in terms of their application-related
benefit, rather than the specific wireless technology employed, or the specifications
of the nodes; these products are not suitable for reconfiguring to meet a different
application.

With the generic solutions presented in Sect. 2.3.2, there is a stronger focus on
reconfigurability – allowing extra sensors to be added to node hardware, and provid-
ing an SDK to re-program sensor nodes to run user-configured applications. These
systems still abstract away the wireless, mesh-networking side of the WSN, mak-
ing them unsuitable for research related to new communications protocols, but does
make them well-suited to OEMs who are producing or integrating wireless sensing
into products. There is little emphasis on the areas which WSN research still finds
challenging, most notably in-network processing and high data rate sampling. For
most systems that are currently available, the on-node complexity is still low: nodes
can sample data (usually at low rates) and forward it (potentially over multiple hops)
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to a base station, where it can be displayed or archived. Finally, the research plat-
form class of sensing hardware has the most customizable hardware and software
potential, but is also the most complex to develop for.

As previously noted, many of the platforms surveyed in this section have made
their way from the academic research labs to the market in relatively short periods
of time. Successful technology transfer to the commercial sector has been enabled
not only by the application of research but also by a deep understanding of the
industrial community’s needs and a clear identification of the barriers to be over-
come in order for the WSN products to be adopted. The next section, whose title
has been borrowed from one of (Dust Networks’ CTO) Kris Pister’s presentations
on the subject [62], offers a wider perspective on the issues around the commercial
perception of the WSN technology, and points to the perceived barriers to WSNs’
wide adoption.

2.4 Who Is Taking Off: the WSNs or the Market Analysts?

There is no doubt that the drive provided by early, extremely ambitious visions of
pervasive computing has left a mark on the WSN research domain by encouraging
more theoretical advances than practical work.

Practical work is seen by many researchers as justifiable and essential only when
the concepts and knowledge are ready to be translated into marketable products,
and the industrial need for WSN products to date has been tepid. Realistically, ad-
vances in WSNs have always been characterized by a technology push rather than
a market pull. Hence it is understandable that, in the absence of a firm market with
specific and specified demands/requirements, much of the WSN research work has
been either purely theoretical or limited to practical feasibility studies. However,
the promise of great WSN products and great sales has always been on the hori-
zon: prompted by a single obvious financial incentive of eliminating wiring costs
encountered in existing measurement systems, enthusiastic analysts predicted in-
flated markets and raised both researchers’ and investors’ expectations since the
early years of this millennia.

The authors maintain that real-life applications successes have a high impact on
the technology’s adoption prospects. Sturdy, demonstrable and sustainable solutions
to clearly specified problems and the dissemination of those solutions through com-
mercialization would contribute greatly to wider adoption of the WSN technology.
Moreover, ensuring fast uptake would also imply that the said commercial WSN
products would enable end-user, application specific customization without exten-
sive developments or need for specialist involvement of WSN teams. Some of the
off-the-shelf WSN systems available today permit customization, albeit at a basic
data acquisition level (see for example the home monitoring solutions offered by
ArchRock [7], EnOcean [10] and a handful of other companies). However, bridging
the gaps between data and information, or data and actuation, for example, remain
in the realm of the computer scientist rather than being facilitated for the end-user.
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Thus, in between the concerns of the WSN research community and the technol-
ogists, sit the market for WSN systems and solutions and its stakeholders. Gartner’s
infamous Hype Cycles for Emerging Technologies [30] captured the commercial
and user perception of WSN technology over the past few years and allow insight
into the remaining barriers to adoption for WSNs.

2.4.1 WSN Forecasts and Gartner’s Hype Cycle

Introduced in 1995 as a commentary on the common patter of human response
to technology, Gartner’s Hype Cycle provides a cross-industry perspective on the
technologies and trends that managers should consider in developing emerging-
technology portfolios. Gartner’s Hype Cycle characterizes the typical progression of
an emerging technology from over enthusiasm through a period of disillusionment
to an eventual understanding of the technology’s relevance and role in a market or
a domain. Each phase is characterized by distinct indicators of market, investment
and adoption activities [30].

The Gartner cycle aims to provide a model to discern hype from viability and to
estimate when visionary claims will pay off, if at all. In this model, a technology’s
relevance to solving real business problems and exploiting new opportunities is en-
capsulated by the cycle’s “time to maturity” prediction. Gartner’s Hype Cycle [30]
consists of five phases that can be used to categorize emerging technologies (shown
in Fig. 2.5): the technology trigger represents the initial press hype in the technology,
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Peak of Inflated
Expecta�ons

Trough of
Disillusionment

Slope of
Enlightenment

Plateau of
Produc�vity

Visibility

Time

Fig. 2.5 Gartner’s Hype Cycle (Image reproduced with permission)
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the peak of inflated expectations represents the press-led unrealistic over-hyping
over the technology, the trough of disillusionment represents the lack of hype as
the technology fails to meet expectations, the slope of enlightenment represents a
business-led resurgence in applied use of the technology, and the plateau of produc-
tivity represents the steadying state of use and acceptance of the technology in its
particular market.

With the benefit of hindsight, Gartner’s predictions for the WSN technology (de-
noted as Mesh Networks) featured in the 2005–2009 Hype Cycles [25–29] paint
an accurate view of the domain’s evolution as driven by research, with numerous
attempts to break through commercially, in association with the emergence of stan-
dards and remaining high costs of WSN systems. The Technology Trigger for WSNs
was clearly the Smart Dust concept that generated enthusiasm in many circles, from
funding bodies to the popular press [40, 69].

2005 is taken, in what follows, as a discussion point, given that sensor networks
were best positioned in the cycle at that time; WSNs were predicted to reach the
Plateau of Productivity within 2–5 years, and hence see mainstream adoption and
proven viability and technological pay-off, as shown in Fig. 2.6 [5, 33].

At the time, market analysts saw a wealth of opportunity for WSNs, particu-
larly as wire replacements within the classical MEMS markets and smart metering.
16 million sensor nodes were predicted to be dispatched by 2009; the smart me-
tering market was estimated at $1.6B for 2009, rising to $5–7B by 2014; more
enthusiastic predictions were for a $50B total WSN market in 2014. To date, the
market did not live up to these expectations. Much of these strong predictions came
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from pure analysis of wiring costs, overestimating the maturity of the technology
at the time and underestimating the costs of applications development, deployment,
maintenance and hardware. The WSN market reality in 2005 was $326 M, mostly
within the manufacturing industry; examples include cargo and long-range asset
tracking [3], building automation and industrial equipment monitoring [4].

Overestimating the technology maturity was also potentially prompted by the
launch, in 2005, of many WSN products. 2005 was also probably the peak year in
the number of research platforms produced by various research groups. Moreover,
by 2005, standards for low-power, low-data rate communication stacks had become
established: the initial 802.15.4 MAC and PHY later standards for low-power, low-
data rate communication had existed since 2003, and the initial ZigBee specification
that built routing and network formation on top of 802.15.4 had existed since 2004.
Since 2005, ZigBee and 802.15.4 have seen significant revisions (in both 2006 and
2007) and new standards have arisen, such as 6LowPan (IPv6 over 802.15.4, re-
leased in 2007) and WirelessHART (a wireless, low power version of the HART
systems control protocol) [6].

Following Hype Cycles were in comparison much more conservative, predicting
technology maturity in 10 years (2006), and showing cycles of advance and regres-
sion between the Slope of Enlightenment and Peak of Inflated Expectations (2006,
2007, 2009). A parallel can be drawn here with the state of the art in research in
2006, for example, a year when many open questions were brought forth by diffi-
cult deployments resulting from projects started in 2003–2004 [22,45,68,71]. This,
together with the difficulties faced by commercial adoption pioneers (such as the
deployed systems’ unsuitability for harsher environments, the exaggerated mainte-
nance needs, the user data overload, and the slow standardization processes) might
explain the field’s perceived stagnation and regression of expectations. As new po-
tential markets opened, the predictions for WSNs continued to flourish, however,
over the years. Of note are those related to the areas emerging from the global en-
ergy crisis, such as smart metering, demand response, HVAC control, and generic
Home Area Networks [34–36].

In his thorough analysis of the discrepancy between the WSNs’ real market value
and the analysts views, Pister [62] highlights the barriers to adoption, as identified
by various OnWorld surveys: reliability, standards, ease of use, power consumption,
development cycles and node size, in this order of importance. Not surprisingly, the
above are not the challenges set by the Smart Dust vision but the very challenges
brought forth by the WSNs practical deployers community.

However, with installation, connection and commissioning costs expected to drop
considerably through the use of mesh networking and the recent availability of long-
life robust products, presently, the future looks brighter for the domain than ever
since inception.

To conclude on the above, wide adoption of WSNs is yet to be witnessed, partly
due to hype and inflated expectations, early adopters disappointment and the very
real barriers of cost, reliability, standards and maintenance needs. These barriers
are currently being lifted by better products making their way to the market, the
emergence of some potential killer application for WSNs (discussed next) and
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helped without doubt by frequent and sustained deployment of research products.
Resolving in-situ, real-life applications can help considerably both in terms of the
learning and experience gained by the developers but also by boosting confidence
of buyers. Such systems will be practical proofs of technology viability and its ap-
plicability.

2.4.2 Current and Forthcoming WSN Research
and Commercialization Opportunities

It is clear that, as with many emerging technologies, political shifts will drive WSN
innovation, economic growth affects WSN penetration, and regulatory influences
strongly affect markets. It is also commonly accepted that the class of “green issues”
is presently at the forefront of the world’s political agenda. Drawing from these, it
is conceivable that the widespread use of WSNs could be, at least in the short to
medium term, within the environmental monitoring area.

Environmental monitoring and the associated large class of “environmental” ap-
plications could, potentially be the killer application WSN researchers and vendors
have been looking for. There are several key factors supporting the assertion:

1. The economies of scale – all environmental applications (be them to do with
the outdoor natural environment monitoring or indoor monitoring) involve large
geographical scale deployments and require hundreds, thousands or millions of
instantiations; for the built environment for example, millions of buildings, res-
idential and commercial have monitoring needs hence billions of sensors would
need to be deployed;

2. Political drive – global warming is, and will likely continue to be, a high po-
litical agenda issue with a number of economic packages put in place to cater
for the forthcoming “green” standards and policies. Examples here are the 2009
USA’s “incentive package” for smart energy monitoring, the real-time energy
grid, cleantech, etc. Policy will not only push towards rapid WSN development
but has also brought both the WSN companies and the technology itself at the
forefront of the research and commercial agenda. At the time of writing (January
2010), many WSN products vendors have already focused their WSN business to
the “green” issue, delivering generic WSN environmental monitoring solutions;

3. End user scale – given that nearly 70% of the average household utility bill could
be influenced by WSN applications to temperature and lighting control, house-
hold energy usage monitoring and interactive energy management might provide
the largest class of WSN users - the world’s population.

Whilst the above are likely to drive down the cost of hardware, encourage further
emergence of standards and lead to increased reliability systems with easy-to-use
functionality, the same application domain provides researchers with a large number
of challenging opportunities: slow data rate sense-and-send solutions suitable for
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rapid productization are welcomed within the environmental monitoring domain,
as well as sophisticated high data rate systems (such as those dedicated to struc-
tural and seismic monitoring for example); both need to be initially catered for
by the academic researchers, on the theoretical and practical camps. Further, en-
vironmental applications imply a need for long life, often beyond that offered by
batteries and sophisticated energy management techniques alone. Research (fol-
lowed by technological adoption) into energy harvesting technologies integration
as well as user-driven information extraction strategies will need to be delivered
by the research community. Cheaper, higher accuracy MEMS sensors and on-chip
packages are needed. More reliable, scalable communications, web integration and
integration into existing IP infrastructures are essential and need development. All
above form a full research chain from the development of MEMS to the WWW.

Once adopted, the WSN technology is likely to influence strongly other economy
sectors: the Industrial Sector is likely to undergo work-flow churn as WSN appli-
cations increase safety, reliability and efficiency of industrial facilities. Frequency
agility requirements are driving evolution toward industrial standards. Automatic
Meter Reading (AMR) management proves a very significant opportunity in the
Utilities Sector and finally, the growth of personal and national security demand
drives considerable growth in WSNs, in border control, access, and defense.

2.5 Summary of Strategic Recommendations

This chapter discussed the push-pull tensions between a variety of facets of WSN
design and development. The tenets of the Smart Dust vision often contrast with
the challenges faced by developers striving to provide solutions to real-life, clearly
defined applications. Based on our investigation of deployment case studies, we can
make several recommendations that we believe will improve the tractability and
overall impact of WSN applications:

1. Collaborate with end-users to formally define application requirements and eval-
uation criteria.

2. Involve end-users throughout the development cycle, demonstrating end-to-end
results at intermediate stages, and

3. Maintain a clear motivation for development, ideally based on a realistic business
model.

Throughout this process, strong end user involvement and leadership is essential
to motivate the need for the WSN solution and to define system requirements and
performance criteria. Having the right technical blend in the development team is
equally important, in order to support both hardware and software development.
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A key part of a successful development strategy is the application centric ap-
proach to system design. We flesh out this strategy by stressing several essential
aspects of development common to most WSN applications:

1. Ensuring that the right thing is sensed and that it is sensed correctly,
2. Ensuring that the network performance matches the application, and
3. Ensuring that the system captures system performance data and application meta-

data in addition to the required application data.

These, together with care for the system’s usability and functional accessibility by
the end-user form the starting point to a successful application.

Although generic solutions to implement and deploy the grand pervasive comput-
ing vision have yet to arise, the drivers for the WSN domain are stronger than ever
and much has been learned within the past years. Such solutions need to be sought
now and the uptake of the technology in a variety of domains will enable exactly
that: finding the answers for the real-life problems which WSNs will impact most.
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Chapter 3
Designing for Deployment

Michael Allen, Geoffrey Challen, James Brusey, Lewis Girod,
and Elena Gaura

Abstract This chapter introduces the design for deployment process, emphasizing
the importance of gathering application requirements, applying a sound testing strat-
egy and debriefing post-deployment. A set of key WSN design parameters are
identified and explained in the context of the real deployments described in Part II.
A case is made for deploying iteratively, as a method of progressively refining the
system to best meet requirements. Finally, a selection of key lessons are drawn from
the experience represented by the deployment case studies.

3.1 Introduction

Negotiating the design space for WSNs can be daunting even for the experienced
designer. Apparently straightforward application requirements give rise to complex
tensions within the design space and lead to a difficult optimization process in terms
of hardware choices, software support, network topology, deployment planning,
and maintenance strategy.

This chapter provides a starting point for designers engaging in the complex
decision-making process towards a successful deployment. It starts, in Sect. 2, with
a description of the stages of the design for deployment process, emphasizing the
importance of certain stages such as gathering requirements, and testing at differ-
ent levels of abstraction, along with the need to iterate over the process several
times. Following this, Sect. 3 provides an analysis of several key design parameters
in the context of the Part II chapters. Section 4 focuses on iteration, particularly
deployment iteration, and shows how it was an important part of several success-
ful deployments described in Part II. The final section provides a brief summary of
key lessons drawn from these deployments. Scattered throughout the chapter, illus-
trative quotes from later chapters provide a link between the theoretical discussion
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here and real deployment experience. Note that these quotes are provided as a taster;
the associated chapter should be consulted for the full context.

3.2 The Design for Deployment Process

The following design for deployment process was derived partly drawing from the
extensive experience represented by the later deployment chapters and partly by
reflecting on the authors’ collective experience with WSN development. Key differ-
ences between the design for deployment process and a more traditional software
development life cycle are: the need for several distinct forms of testing; the focus
on deployment and associated evaluative debrief; and the importance of iteration,
particularly over the deployment phases.

As with other software, WSN development begins with gathering requirements
and initial code implementation, continues with testing in more and more realis-
tic environments, and finally produces a system to deploy. Figure 3.1 provides an
overview of the design for development process. Lessons learned at each stage can
be incorporated as the development process continues. Learning may also result
in a return to an earlier point in the process if, for example, problems discovered
during testing or deployment and/or consultation with the applications scientist or
end-user produce a need to reimplement portions of the system or reconsider the
design requirements. Iteration can continue until application requirements are met.
Alternatively, iteration allows for new application goals to be incorporated over the

gather requirements

design

implement

simulation test

emulation test

lab testbench

deployment

debrief

Fig. 3.1 The design for deployment process model: example including potential back loops
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lifetime of the project, producing a lineage of systems meeting similar but different
needs within the same application space.

While a great deal of attention is frequently paid to later stages of the design
for deployment process, such as implementation, testing and deployment, carefully
gathering application requirements early in the WSN design process is key to
later success. This is demonstrated by several of the deployments discussed in
Part II of the book; see particularly Chaps. 4, 9, and 10. It can also be particu-
larly helpful to return to the application requirements following the development
of the prototype system and initial deployment; at that point, developers and end-
users alike have become more familiar with the capabilities of the technology and
the challenges unique to the deployment environment will have made themselves
apparent.

Post deployment, the debriefing stage evaluates how successful the deployment
actually was. Perhaps data was gathered successfully but on analysis, the data is un-
usable. In some cases, the system may have performed poorly against requirements
suggesting a redesign or changes to the implementation; in other cases, the problem
may be the requirements themselves and they must therefore be revisited. In several
of the later chapters, analysis of early deployment results led to devising additional
systems and software to improve the quality of the data gathered (particular exam-
ples are Lance and Vigilance in Chaps. 4 and 6, respectively).

Since WSN systems tend to be based on display-less, low-power computers, it is
extremely difficult to find software bugs or diagnose their cause, either in the labo-
ratory or in the field, while that software is running on the target platform. As much
as possible should be done to eliminate bugs, therefore, prior to running on the tar-
get and prior to deployment in the field. For example, communication simulation
tools can be used to test protocols prior to implementation. Once implemented, an
emulation environment or test harness allows further testing without the restrictions
of the target platform.

Finally, a laboratory testbed provides a final testing stage before deployment,
using the target platform (typically with multiple nodes). In the ExScal deployment
(Chap. 8) several memory leaks and illegal access exceptions were only discovered
at this final testing stage. In principle, however, bugs identified at later testing stages
should trigger the generation of regression tests; that is, the emulation or simulation
should be revised so that a similar problem would be found with less effort in
the future.

A Stargate could achieve up to 44 kHz sam-
pling rate, which was more than enough for
our system. However, it could only process
about 5% of the inputs sampled at 22 kHz
in our initial implementation because of its
slow floating point emulation. – Chap. 7

The cost associated with testing
and/or not discovering bugs until the
system is deployed strongly encour-
ages the use of off-the-shelf hard-
ware and software since such sys-
tems tend to be more mature and
more robust than custom developed
ones. The SMART system described
in Chap. 10 gives several examples of using commercial products instead of custom
ones motivated in part by the stringent requirements of medical environments. The
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GlacsWeb project in Chap. 9 uses custom hardware, due to the lack of a suitable
off-the-shelf platform, but reduces the complexity of software debugging by mostly
using high-level scripting languages.

In summary, a phased testing approach, with each phase increasing in realism,
can help to ensure successful deployment first time. Using commercial or mature
systems can help but does not necessarily ensure success. In the end, iterating the
development process several times, possibly even revising the original requirements,
may be necessary to develop a WSN system that can cope with the deployment envi-
ronment and deliver the desired results. The process as a whole, and in particular, the
emphasis on iteration is designed to respond to the difficult nature of deploying wire-
less sensor networks and to ensure that the end result meets the application goals.

The next section focuses on the design phase and in particular, points to several
key design parameters that fundamentally affect the overall WSN design.

3.3 Key Design Parameters

The motivating application establishes what functionality is required of the WSN
system as well as dictating the physical environment in which it will be deployed.
The importance of formally specifying application requirements is evident through-
out every chapter in this book – each of the chapters in Part II have concrete
motivating applications, informed by domain specialists, that have led to successful
systems design and deployment.

When considering how to respond to requirements, certain design parameters
are particularly influential on the overall design and should thus be considered first.
A selection of these key parameters are examined below.

3.3.1 Sampling Rate and Data Rate

One of the most important design parameters to consider is data rate. Roughly
speaking, the data rate for any sensor node corresponds to the sampling rate times
the bits per sample, although the exact relationship may be more complex if there
are a variety of sensor types and not all sensors are sampled at once. Assuming a
fixed available wireless network bandwidth and a certain number of nodes sharing
the medium, the transmitted data rate for any node is limited. Therefore, beyond a
certain data rate, it becomes impractical to transmit every bit that is sensed.

Instead, the data must be filtered, summarized, compressed, or somehow re-
duced prior to transmission. Processing on-node (or in-network) is often desirable
because, even though processing power tends to be limited, the energy saving from
transmitting smaller or less frequent packets typically outweighs the energy cost
associated with performing the processing. The deployments in Chaps. 4, 5, and 7
all faced the problem of too high a data rate for the limited bandwidth available
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(see below for the different methods applied). Note that a high sampling rate has
other design consequences; for example, it means that the node will be awake more
often, thus reducing its effective lifetime.

3.3.1.1 Dealing with a High Data Rate

In our case, the scientific objectives were known in
advance. This allowed us to design a system based
on intensive data processing at the sensor nodes,
rather than data recording. – Chap. 7

Applications that sample at a
higher data rate than the avail-
able transmission bandwidth
need to either increase band-
width (by running cables,
say) or reduce the amount
of data transmitted. Data reduction techniques generally fall into three
categories:

� Event detection, where transmissions are only made when something interesting
occurs (e.g., VoxNet, Chap. 5);

� Data compression, where the data is compressed before transmitting (e.g., Cane
Toad Monitoring, Chap. 7); and

� Filtering, where data is reduced to a summary before transmitting (e.g., Lance,
Chap. 4).

In addition to transmitting the reduced versions, original data might be stored locally
in case it is later required (e.g., Chaps. 4, and 5).

It is important not to lose data that may be
useful to the domain expert – this is the rea-
son that the spill to disk functionality exists.
– Chap. 5

Adding data reduction mecha-
nisms usually complicates the design
of a sensor system. The system ar-
chitecture and software must be more
complex and becomes more difficult
to test. If the complete raw data set is
not being saved for future analysis, the correctness of the data reduction critically
affects the quality of the data gathered, and additional ground truth data must be col-
lected in order to validate the system. In addition, processing in-network typically
increases the complexity of the network protocols and topology. This is especially
true of data reduction schemes that leverage sensing redundancy across multiple
nodes (e.g., see Chap. 7).

When using event detection or filtering, it is important to understand both the
phenomena and the behavior of the sensors. To create good filters and event detec-
tors, it is usually necessary to first acquire a sizable sample data set – preferably
based on the intended sensors, fitted as they would be in the final system. A proto-
type sense-and-send wireless system or even a data logger might be used to gather
this data set. Extra sensors can be used at this stage to help validate the system and
characterize the sensors. For example, a duplicate sensor could be used at the same
location to check the accuracy of a base sensor.
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3.3.2 Cost

The cost of a system is a key design parameter that guides the choice of hardware
platform used. However it is not just the choice of hardware that influences the cost
of a deployed WSN system. Instead, it is important to consider the whole lifetime
costs including purchase, development, deployment, and maintenance of the final
system. These costs need to be weighed against the value of the information ob-
tained from the system.

Design choices may change where costs are incurred in the lifecycle of the
system. The use of a commercial off-the-shelf system (or COTS) may significantly
reduce development costs while possibly increasing purchase costs. In Chap. 10, for
example, the sensing and wireless hardware used in patient health monitoring is re-
quired to meet electrical safety standards requirements and thus an additional cost
factor for a custom system is the certification cost. In contrast, Chap. 7 gives the ex-
ample of a network to monitor cane-toads composed entirely of Stargate nodes. This
solution satisfied the application goals, but was too expensive to create sufficiently
large, low-maintenance networks. Subsequently, a two-tier solution using cheaper
motes was employed to increase network lifetime and reduce cost. There was a
penalty to bear here, in terms of the development effort required to tune the al-
gorithms to run on the more constrained platform, but this was offset against the
reduced equipment cost.

Sadly, 2006 was the year when the whole of
the front part of the glacier broke off and
all of the equipment was lost. – Chap. 9

When deployment is properly
considered, cost becomes an impor-
tant motivator to ensure that suffi-
cient effort is spent on development
and testing. With many real applica-
tions, deployment costs are high even if the installation is successful first time.
Deployments often take place in remote locations (such as the volcano deployment
in Ecuador in Chap. 4, or the glacier deployments in Norway and Iceland in Chap. 9)
and installation may be laborious (consider the 1,000-node network deployment in
Chap. 8). For this reason, it is important to put extra effort into development and
testing to avoid failure at the deployment stage.

We completed marking all locations (983
XSMs and 203 XSSs) in 27 working hours
with a team of 8 people. Laying out the
equipment took longer: about 24 working
hours with 14 people. – Chap. 8

Finally, long-term WSN deploy-
ments will typically require peri-
odic maintenance, the cost of which
should be accounted for in the over-
all design. Common examples in-
clude battery replacement and repair
of sensors and nodes, but more subtle
examples might include obstruction mitigation, such as cutting foliage growth that
has covered a solar panel or blocked communication paths. Some sensors, in particu-
lar reactive chemical sensors, have difficult maintenance requirements. For example,
the water quality sensors used in a WSN project in Bangladesh required frequent re-
calibration (see Chap. 2).
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... the cost of maintenance (which includes
the monetary cost, as well as the cost of en-
vironmental disturbance) may be too high
to pay. – Chap. 6

The implications of a system’s
maintenance needs go beyond finan-
cial cost. The need for maintenance
can greatly restrict the way in which
sensors can be used in the context of
long-term deployments, and in some
cases may make a proposed system untenable. For deployments in remote or harsh
environments, access to perform maintenance may be limited. Thus opportunities
for maintenance need to be carefully exploited. For the glacier deployment dis-
cussed in Chap. 9, the glacier is physically inaccessible for the majority of the year
and thus maintenance trips must be carefully planned. If any failure occurs, repair
or replacement cannot be performed until the next maintenance period, risking the
loss of valuable data in the interim.

Maintenance cost can become a fundamental design constraint in its own right.
In Chap. 6, a maintenance support tool called Vigilance was developed to help
minimize the data loss caused through environmental disturbance when sensors are
repaired.

In summary, when considering the implications of cost as a design parameter,
it is important to consider the costs occuring over the whole lifecycle. Also, costs
should be weighed against the benefits brought by the system and the information it
provides.

3.3.3 Network Size and Density

Rather than mask the presence of failed
sensors, and the effect of missing data, tools
are needed to both help compensate for
the loss of data, as well as to estimate the
amount of uncertainty introduced by miss-
ing data. – Chap. 6

The third key parameter is network
size and/or density. Large networks
that employ large numbers of nodes
tend to be based on small, low-power,
inexpensive motes at the lowest tier.
For large systems, it may be worth-
while to custom build rather than use
COTS, in order to contain cost and
to allow for integration of application specific sensors. Typically, use of inexpen-
sive sensors leads to lower accuracy and resolution of the resulting data compared
to that produced by more expensive options. Inexpensive sensors tend to be less
reliable also. These problems can be offset somewhat by the use of spatial redun-
dancy, where correlation in data from sensors close to one another can be exploited
to improve the overall accuracy of the system. For large networks, particularly
where density is high, it may be possible to use low-power radio transceivers and
multi-hop protocols to reduce the energy requirements associated with transmitting
data.
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The grid topology not only enabled us to
provide coverage in a cost efficient man-
ner but it also enabled us to design energy
efficient data transport protocols, such as
logical grid routing ... – Chap. 8

Both small and large network
deployments are described in Part
II. For example, project ExScal,
presented in Chap. 8, is the first
thousand-node network deployed in
a real environment. Given the limited
sensing range of each node, even a
uniform arrangement of the nodes across the deployment area could not guaran-
tee full coverage. This meant that the density had to be increased at the boundary of
the network to initially detect intruders accurately, whilst providing coarser track-
ing within the network. Post deployment, the developers point out the importance
of choosing sensors with wide individual coverage to contain sensor density needs.

A contrasting limitation to sensing range that also affects network size and den-
sity is radio communication range. For example, the deployment density of sensor
nodes for VoxNet in Chap. 5 is limited by the need to keep each node within range
of two neighbors to ensure that time synchronization is highly accurate. In that case,
given the radio range for the IEEE 802.11b radio used, a uniform arrangement with
average inter-node spacing of 50 m is used to ensure this.

3.3.4 Deployment Environment

The deployment environment affects many aspects of the design of a successful
system, from the choice of radio, through to the packaging of each mote, and is
thus a key design parameter. Wireless communications is often heavily affected by
environmental conditions, and most importantly, it is often difficult to assess the
impact of the environment prior to deployment. Furthermore, even after a system
has been deployed, there may be subsequent impact on communications as the
environment changes over time, causing periods where wireless communication is
disrupted.

... only 33.7% of packets are delivered on
average. The causes included unreliable
wireless links and high degree of channel
contention ... – Chap. 8

For example, in populated en-
vironments, radios operating in the
same frequency bands as sensor net-
works can cause unexpected losses
in connectivity and data rate, as dis-
cussed in the short case study on the
Peru seismic network in Chap. 2. In the glacier deployment described in Chap. 9, the
effect of ice formation drastically affected the usable frequency spectrum for data
transmission from buried nodes.

Reasons for sensors to become Byzantine
were waving tall grass, extreme heat, or
rain. – Chap. 8

In addition to affecting wireless
communication performance, the en-
vironment can also affect the place-
ment of sensors. For example, in the
soil sensor deployment described in
Chap. 6, temperature sensors deployed below the soil could not be deployed at the
chosen sites due to a layer of rock just below the surface. This emphasizes the
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importance of understanding the practical problems brought by the environment,
and making sure the site is adequately surveyed prior to deployment.

Finally, packaging is often critical to ensure that sensors and processors are kept
dry, well protected, and able to be tested, debugged, or replaced. It may take sev-
eral deployment iterations, however, before the packaging fully meets all of these
requirements. An example of this iterative process is given in Chap. 9.

3.3.5 Deployment Duration

... batteries were exhausted, and various
wires were frayed and broken, which led
to either no measurements reported, or er-
roneous measurements, both of which pro-
duce a gap in the dataset. – Chap. 6

The intended deployment duration
can influence the type and number of
batteries required by nodes, and the
power conservation techniques that
need to be employed. In short-term
sensor network deployments, battery
consumption does not have to be con-
sidered a primary concern. For example, in Chap. 5, the VoxNet platform is only
required to be deployed for eight hours at a time, in an attended context. This
means that nodes can operate continuously without power management consider-
ations, sampling data at tens of kHz.

... the time window in which to monitor
marmots meant that a non-trivial software
bug causing a return to the accommodation
could effectively hamper the day’s work. –
Chap. 5

However, in deployments that
have target lifetimes of weeks,
months or even years, it is impor-
tant to have suitable strategies to
prioritize data collection and con-
serve node energy. In Chap. 4, the
deployment duration needs to be in
the order of months. To enable this, the authors developed the Lance framework for
data collection. Lance uses the intrinsic value of the data being collected, the current
battery levels of the sensor nodes, and the known cost of transmitting the data in
order to determine which data should be collected to optimize both the network
lifetime and the application goals. In Chap. 9, the sensor network is also required to
function for several months without maintenance, hence per-node data sampling rate
is kept very low (order of minutes), and radio communication is kept to a minimum.

3.3.6 Target Audience and Interaction Model

The final design parameter considered here is that of the target audience and in-
teraction model. Many of the deployed systems described in this book are aimed
at domain scientists and are deployed by the original system developers. For these
systems, usability has not been the focus. Rather the focus tends to be towards en-
suring data quality.



60 M. Allen et al.

It is critical that interactive use not impact
any ongoing data collections that the sys-
tem is tasked with. – Chap. 6

As WSN technology becomes
mainstream, applications will be
aimed at non-expert users. For such
systems, visualization of the system
status and the data being gathered
will become more important. The system should be robust enough to be able to deal
with network formation, reconfiguration and data transfer in a way that is transparent
to the user. For systems aimed at non-technical users, it becomes more important to
design in features to support not simply deployment but also day-to-day operation,
maintenance and reconfiguration.

In Chap. 5, for example, VoxNet’s usage model expects the scientist to: (1) use
the network as an interactive, exploratory tool and (2) be in close proximity to the
network during deployment. VoxNet’s design therefore must support on-line inter-
action, enabled through: (1) a control console, which allows the user to address the
network from a central point, issuing commands and new software during the de-
ployment, and (2) a spill to disk service, which logs all raw data gathered during
deployment. Thus, the user could request to view the acquired raw data at the con-
trol console during the deployment and tune event detection parameters.

The involvement of a domain scientist dur-
ing deployment was a critical part of the
process. – Chap. 5

To summarize, this section dis-
cussed several key parameters to con-
sider when designing a real-world,
deployable WSN application. The
design process is complex, and it is
often difficult to understand all of the issues affecting the design without going
through a deployment cycle. In the next section, the importance of deploying it-
eratively – gradually improving the design based on deployment experience – is
discussed further.

3.4 Iterative Deployment

... designing and building for a long time
then deploying a perfect system was not
feasible ... mainly due to the unknown na-
ture of the environment. – Chap. 9

Iteration is not just important dur-
ing the design, implementation and
testing phases of WSN development,
but also central to successful deploy-
ment. As Fred Brooks once famously
stated, “plan to throw one away; you
will anyhow” [1]. Some form of failure in any early deployment iteration is to be ex-
pected. However much can be learned from these early deployments. Environmental
effects can be more adequately assessed. Software bugs that only occur during de-
ployment can be uncovered. Through deployment, both the system developers and
the end-user gain a better understanding of the real requirements. Finally, a trial
deployment can reveal much about ability of the sensors and sensor systems to ac-
curately measure the phenomena under investigation.
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Unfortunately, distinguishing between data
that is faulty or simply unexpected is a chal-
lenge even in contexts where the environ-
ment is carefully characterized in advance.
– Chap. 2

Nonetheless, iterative deployment
also brings a new set of challenges
when compared with a single outing.
While repeated deployment increases
the probability of deployment suc-
cess, experience suggests that suc-
cess is not guaranteed. While it is
usually possible, on each iteration, to solve problems that occurred previously, ex-
perience is so sparse and the domain so challenging that the chance of finding new
problems on each iteration is still high.

3.4.1 The First Deployment Iteration

Although lab testing was useful in the early
stages of development, it was the deploy-
ment at remote sites that forced us to think
about what tools and features were still
lacking in Hyper’s design. – Chap. 6

The first iteration of a series of de-
ployments is different from a single,
unrepeated deployment. Sometimes a
single deployment is so ambitious or
lengthy that it is too difficult or costly
to repeat. Both ExScal and SMART
projects, described in Chaps. 8 and
10, respectively, present good examples of this type of deployment. In con-
trast, a first iteration deployment will tend to be lighter, faster, and with limited
goals.

Based on our experience ... we were wary
of reprogramming the network unless ab-
solutely necessary. – Chap. 4

Two basic goals that should be in-
cluded are: to assess the challenges
presented by the environment; and
to check the requirements with the
end-users. The system should be kept
simple with a focus on quick solutions that have well-understood properties. Com-
plex hardware or software is generally not desirable at this stage; first, because a
complex solution may be more sophisticated than the application requires; and, sec-
ond, because any increase in complexity increases the risk of bugs. Both the volcano
and cane toad monitoring projects, explored in Chaps. 4 and 7, respectively, be-
gan with a simple proof-of-concept or pilot deployment and leveraged the lessons
learned to design a more mature follow-on.

Unlike a purely laboratory-based system,
once the fieldwork logistics started in
spring, the deadlines were fixed and un-
movable. – Chap. 9

Prioritizing simplicity and fast de-
velopment for a first deployment
leads to preferences for off-the-shelf
hardware, existing software compo-
nents, and simple system design. Fast
development is often essential be-
cause deployment schedules are pre-determined by the phenomena under investi-
gation. Development of custom hardware and software should be avoided if there



62 M. Allen et al.

are existing solutions. Planning to “throw one away” may be a good strategy, but
constructing a quick and simple version allows the replacement to be done in stages
rather than en masse. This can significantly improve the design process for future
deployments, since rather than starting from scratch each time, the last artifact can
be used as a starting point and development confined to well-defined areas of the
system.

Finally, speed and simplicity reduce the amount of effort invested in any one
feature, making such a feature easier to abandon post-deployment if it proves un-
successful, unimportant or uninteresting.

3.4.2 The Second Deployment Iteration

Most deployments have reported issues
with data quality, and dealing with the re-
sulting data loss or corruption is inevitable
during the analysis phase of almost all de-
ployments. – Chap. 6

The second deployment iteration
aims to resolve issues uncovered dur-
ing the first deployment. In most
cases, the first system was proba-
bly unable to meet the application
requirements, and results and experi-
ence from the first deployment can be
used to identify and address the most crippling weakness of the original system. The
initial volcano monitoring prototype (Chap. 4) delivered data of a quality that did not
meet the scientific requirements, resulting in a renewed focus on data quality during
the design of the second system. Often, rapid reaction to exposed weaknesses can
even occur during the deployment itself. The VoxNet project, described in Chap. 5,
shows an example of a single deployment during which many important issues were
addressed while in the field.

Starting with more powerful computing
platforms allowed the development of ro-
bust detection and classification systems
that were immediately useful to ...[the do-
main scientists]..., and then allowed us to
focus on how to migrate such functional-
ity into cost-effective low-power computing
platforms. – Chap. 7

The second deployment may be
an ideal time to design and deploy
hardware solutions more appropriate
for, or tailored to, the specific ap-
plication. This can slow the process
of producing a second system but if
done properly the hardware platform
may be able to last for several de-
ployment iterations, thus justifying
the associated development cost.

Developers should avoid the temptation to begin completely anew and discard
all of the software developed for the initial deployment. Instead, a form of triage is
required; components or features will be found to be either: unrecoverable (need-
ing to be scrapped), still feasible but needing attention, or meeting requirements
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sufficiently well that they can be left alone. Methodical post-deployment assessment
is critical to ensuring that future development efforts are not wasted.

Finally, in contrast with the first deployment, more effort is required to ensure
that the resulting system can be evaluated in terms of meeting the application goals.
Designing the evaluation strategy for a deployed system can be challenging and
cannot be left until after the deployment is completed.

Post deployment analysis of system log data
is a vital part of fixing or recreating prob-
lems in controlled environments [but] it is
not always clear exactly what logging data
will become useful during post analysis. –
Chap. 5

Debugging and logging tools be-
come critical in this context. Building
debugging infrastructure into the sys-
tem early in the design process, as
suggested above, speeds the devel-
opment process initially and can also
be critically important in the field as
well. If properly designed, debug-
ging tools can be used to record useful information about the system during the
deployment, information that can both aid in debugging potential problems and
support a post hoc evaluation of the system’s performance after the deployment
ends. The overhead for collecting log data needs to be considered as far as its
effect on the other system goals, since transmitting status or other non-essential
information over the radio during the deployment consumes energy and can reduce
the system’s lifetime.

3.4.3 Subsequent Deployments

Once a first proof-of-concept and second more substantial deployment have been
completed, iterative deployment moves into a new, more stable phase. Continuing
to deploy real systems can be an exciting opportunity if the engagement with the
problem and understanding of the application deepens on each successive iteration.
Multiple future iterations may also give the development team the opportunity to test
various different approaches or sub-applications in a realistic context, meaning that
each individual deployment can be tailored to a particular specific goal and perhaps
not need to tackle as much at once as the second deployment.

However, continued iteration runs into challenges. If deployment experiences
become repetitive and little new knowledge is gained then it may be difficult to
justify the expense and stress of returning to the field. If the developers find that
they have met the initial application requirements, system development can begin to
isolate and iterate on other potential goals. Nodes can be made smaller or their cost
reduced; the network lifetime can be extended; the size and extent of the network can
be increased. Part II contains examples of systems that adjusted their expectations
and goals once an initial system was judged successful. For example, the cane toad
monitoring project described in Chap. 7 illustrates how a shift in focus can occur
after initial project goals are met. The revised goal was to develop a new system
that was more cost-effective by replacing portions of the original infrastructure with
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the resource-poor, miniaturized devices. The volcano monitoring system described
in Chap. 4 also proceeded from initial deployments that established the feasibility
of the sensing platform into the development of a generic framework for optimizing
high-resolution signal collection.

The experience from successive deploy-
ments provided clear lessons, which, if
heeded, can drastically improve the perfor-
mance and reliability of future systems. –
Chap. 9

While deployments can be excit-
ing, motivating experiences for all
involved, their cost has to be justi-
fied with regard to the overall project
goals. Well-planned, well-executed
deployments can provide insight that
no laboratory experiment can match.
Poorly-planned, sloppy deployments will consume resources without contributing
much to the understanding of the application problem or WSN design in gen-
eral. If each deployment is treated with the care and rigor due an expensive and
time-consuming experiment, then these field experiences will inspire innovative, re-
warding and successful WSN installations.

3.5 Lessons from the Field

The deployment case studies in the Part II chapters provide a number of lessons that
can roughly be divided into: lessons about development, about performing a deploy-
ment, and about learning from the deployment experience. The most important and
general lessons drawn from Part II are summarized here for the reader. This is in-
tended to provide a focused checklist to consider when embarking on development
for deployment.

3.5.1 Development Lessons

Try not to re-invent the wheel – use existing software and hardware where possi-
ble. When considering the software or hardware design, it is important to perform
a survey of current solutions to determine what is currently available, and whether
significant custom development is actually required.

If suitable existing components or solutions already exist and can be integrated,
significant time and effort can be saved in the overall system development. As a
note of caution, when considering commercially or freely available components, it
is important to test their functionality experimentally, and ensure that the integration
work does not outweigh the time and effort that would be expended in developing
custom components to the same standard.

When developing custom components, there is a natural desire to develop generic
electronics and systems that can be used to support multiple applications. However,
high levels of optimization (for power consumption, resolution, accuracy, etc) and
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genericity are goals often at odds with each other and create a design tension. Of the
two, optimizing for a particular application is probably more manageable.

Simulate first. When developing and testing algorithms that will be used in a
WSN system, it is vital they are verified with some form of simulation before de-
ployment on actual hardware. This separates any platform-related implementation
issues from any fundamental algorithmic problems. Simulation is usually speedy
and cheap; at the preliminary/proofing stage, significant amounts of hardware do
not have to be available.

On the other hand, be aware that accurate simulation is complex and that it is
generally necessary to use a special language to describe algorithms. An alternative
is to use some form of emulator or test harness. An emulator differs from a simulator
in that it allows the final program code to be tested directly.

Build in support, to ease the deployment process. A basic concept when building
a prototype circuit board is to include test points. The same idea applies to software:
it is important to be able to monitor and verify the WSN functionality on-site, dur-
ing deployment. A good example here is the Hyper routing service used in Chap. 6,
which supports easy grafting into the network of a mobile sink, allowing the de-
ployer to quickly verify that the data collection and transmission process is working
as expected.

Visual cues are easy to implement and can be helpful in verifying that each node
is operating as expected. For example, a status LED can be used to provide evidence
to the deployer that the equipment is functioning, is correctly configured, and able
to communicate with the network. For situations where the LED would be rarely
used and the power budget is limited, a useful trick is to add a mechanical switch to
turn off LEDs (as discussed in Chap. 9).

Instrument the system with logging for debugging and optimizing system per-
formance. During the deployment lifetime, it is important to be able to characterize
the system’s performance and determine its weaknesses. Performance of the system
could be monitored for example by logging data transfer times, times of event oc-
currences, battery levels, multi-hop routes as well as any debugging-related software
output.

It is important to relate system logs to some global time source, so that the overall
state of the network can be understood during post-hoc analysis. Problems relating
to network protocols or transient environmental events become almost impossible to
diagnose unless some form of local trace or log has been kept by each node and that
entries in the log have a time-stamp that can be related to other node timestamps. A
sophisticated time synchronization protocol may not be needed, of course. Sending
a message to the base station with the local time offset may be sufficient.

Failure to recognize the importance of logging data with global timestamps can
cause significant problems. For example, early deployments of VoxNet (Chap. 5)
suffered from a lack of time-stamping in certain system logs, making it practically
impossible to analyze the data traces after the deployment.
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3.5.2 Deployment Lessons

Even deployments that appear to be simple will take a lot of planning and effort, and
may require more time than expected. Each deployment presents new challenges
that have little to do with the software and hardware development issues.

Allocate adequate time for deployment and actual system operation. It is im-
portant to build in some slack to the deployment schedule, in order to allow for
emergencies and unexpected problems. It will take time to iron out any problems
that occur in field, such as difficulties with the placement of sensors or delays in
ensuring correct system operation. In Chap. 5, several problems arose in field due to
equipment being unavailable for testing before deployment. This prompted several
days of integration that ended up taking time away from in-situ deployment.

Prepare an equipment checklist and include spares. The one piece of labora-
tory equipment left behind (e.g., multi-meter, soldering iron, etc) will be the one
needed. Spare components, nodes, cables, and laptops help to minimize the risk of
a deployment failing due to a minor hardware fault.

Be prepared for devices and software, which were working in the laboratory, to
malfunction in the field. An example of this sort of problem is shown in Chap. 9,
where radios were not able to communicate over the expected distances due to the
mountainous terrain.

Focus on data quality. Ensure that the data being gathered is correct. The sensor
network’s job is not done by simply sensing and delivering data – the developer
must be concerned with the quality of the data that is coming out of the network,
especially if the sensor network is being used as a science instrument, as many of
the examples in this book are.

3.5.3 Learning from the Deployment Experience

The implication of iterative deployment is that improvement is sought with each
new deployment. Two important, closely related lessons are given below, to be con-
sidered in the context of system refinement and iteration.

Optimize last and only optimize as needed. The primary goal for a deployed
sensor network is to meet the base requirements of the application. Only after these
requirements are met should the developer consider refinements that improve the
efficiency, cost-effectiveness, or complexity of the system. Chaps. 4 and 7 provide
several excellent examples of iteration being applied to meet different constraints
after the basic application requirements were met.

Let the application requirements drive the iteration process. Most often, the
data generated from the first (possibly exploratory) deployment of a system enables
new observations, and points to processing or decision making that can be auto-
mated by the WSN system. Iterative development and deployment should be driven
by the value added in meeting the application goals, and reflect the evolution of
these goals as a result of the successful first iteration.
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3.6 Summary

Applying Wireless Sensor Networks to real-world problems is both hugely exciting
and greatly challenging. The challenges come partly from interfacing computers
with the real world and partly from the uncertainties associated with distribution
and wireless communication. Despite these challenges, as the case studies given in
the rest of the book show, real-world WSN systems are possible and they can be
both enormously rewarding and successful.
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Chapter 4
Volcano Monitoring: Addressing Data Quality
Through Iterative Deployment

Geoffrey Challen and Matt Welsh

Abstract Deploying wireless sensor networks to support geophysics presents an
interesting challenge. High data-rates required by geophysical instrumentation pre-
clude continuous data collection from even moderately-sized networks. However,
geoscientists are used to working directly with complete signals, and therefore un-
comfortable with in-network processing that could reduce bandwidth by reporting
data products.

Over five years of working with seismologists we have developed a lineage of
solutions driven by their scientific goals. Three field deployments have provided
valuable lessons and helped drive each successive design iteration. We began by
addressing datum quality, encompassing per-sample resolution, accuracy, and time
synchronization. Later deployments focused on holistic data quality, which requires
considering constraints limiting full data collection in order to maximize the value
of the limited data retrieved. This chapter uses our three deployments to demonstrate
the benefits of iteration. The first two illustrate our work on datum quality, while the
last presents a new approach to optimizing overall dataset quality.

Keywords Volcano � Sensor network � Data quality � Optimization � Deployment
� Time synchronization � Lance

4.1 Introduction

Beginning in 2004, computer scientists from Harvard University joined forces with
seismologists from the University of New Hampshire, the University of North
Carolina, and Instituto Geofı́sico, Escuela Politécnica Nacional, Ecuador, to begin
a collaboration aimed at using sensor networks to further the study of active volca-
noes. As of early 2009 our collaboration has spanned three successful deployments,
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multiple scientific publications and generated a large number of interesting ideas to
explore. We have been fortunate to be a part of this long-running partnership.

From a simple starting point – a handful of nodes streaming continuous data
from a single sensor per node – we have developed a sophisticated resource-aware
architecture carefully balancing the value of the data to the application against the
network-wide cost of extraction. These design changes were motivated by the sci-
ence goals, responsive to changing hardware platforms, and driven by experience
gained deploying prior iterations. Because each of the three deployments is already
well-documented, one of our goals is to illuminate the design process by linking
successive artifacts together while maintaining the thread of data quality as an ap-
plication driver.

From the beginning of our work, providing high quality data has remained a
part of our research agenda. This focus emerged out of both the scientific goals,
and constraints of the devices we have deployed. Because seismologists are used
to processing high-resolution data from multiple stations, wireless sensor networks
– while considerable less burdensome than existing instrumentation – must pro-
vide data of similar quality before they can be used for scientific study. The scale
promised by augmenting existing seismological instrumentation with wireless sen-
sor network hardware is new, but the existence of data processing techniques means
that the requirements are already firmly in place.

Designing wireless sensor network applications in this space has required work
to meet some of the data quality requirements while finding ways of creatively re-
laxing others. Specifically, we have found it necessary to deliver high-resolution
data meeting strict timing requirements, but found flexibility in terms of providing
a complete data set from every node covering all moments of time.

4.1.1 Overview of Seismoacoustic Monitoring

Volcanic monitoring has a wide range of goals, related to both scientific studies
and hazard monitoring. Figure 4.1 displays an overview of several instruments that
might be used, the signals that they collect and example configurations used dur-
ing deployments. The type and configuration of the instrumentation depends on the
goals of a particular study. Traditionally, dispersed networks of seismographs, which
record ground-propagating elastic energy, are utilized to locate, determine the size
of, and assess focal mechanisms (source motions) of earthquakes occurring within a
volcanic edifice [2]. At least four spatially-distributed seismographs are required to
constrain hypocentral (3D) source location and origin time of an earthquake, though
using more seismic elements enhances hypocenter resolution and the understanding
of source mechanisms. Understanding spatial and temporal changes in the character
of volcanic earthquakes is essential for tracking volcanic activity, as well as predict-
ing eruptions and paroxysmal events [9].

Another use of seismic networks is the imaging of the internal structure of a vol-
cano through tomographic inversion. Earthquakes recorded by spatially-distributed
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Fig. 4.1 Sensor arrays for volcanic monitoring

seismometers provide information about propagation velocities between a particular
source and receiver. A seismically-active volcano thus allows for three-dimensional
imaging of the volcano’s velocity structure [1, 16]. The velocity structure can then
be related to material properties of the volcano, which may be used to determine the
existence of a magma chamber [6,10]. Dense array configurations, with as many as
several dozen seismographs, are also an important focus of volcanic research [3,13].
Correlated seismic body and surface wave phases can be tracked as they cross the ar-
ray elements, enabling particle motion and wavefield analysis, source back-azimuth
calculations, and enhanced signal-to-noise recovery.

4.1.2 Opportunities for Wireless Sensor Networks

Networks of spatially-distributed sensors are commonly used to monitor volcanic
activity, both for hazard monitoring and scientific research [17]. Typical types of
sensing instruments include seismic, acoustic, GPS, tilt-meter, optical thermal, and
gas flux. Volcanic sensors range from widely dispersed instrument networks to more
confined sensor arrays. An individual sensor station could consist of a single sen-
sor (e.g., seismometer or tilt sensor), or an array of several closely-spaced (102 to
103 m aperture) wired sensors, perhaps of different types. Multiple stations may be
integrated into a larger network installed over an extended azimuthal distribution
and radial distance (102 to 104 m) from the volcanic vent. Data from various sta-
tions may be either recorded continuously or as triggered events and the acquisition
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bandwidth depends upon the specific data stream. For instance, seismic data is often
acquired at 24-bit resolution at 100 Hz, while tilt data may be recorded with 12-bit
resolution at 1 Hz or less.

Unfortunately, the number of deployed sensors at a given volcano is usually lim-
ited by a variety of factors, including: monetary expenses such as sensor, commu-
nication, and power costs; logistical concerns related to time and access issues; and
archival and telemetry bandwidth constraints. Due to their small size, light weight,
and relatively low cost, wireless sensor nodes have an important role to play in aug-
menting and extending existing seismic instrumentation, providing the increased
spatial resolution necessary to support seismic applications like tomography.

Sensor data at a station may be recorded locally or transmitted over long-distance
radio or telephone links to an observatory located tens of kilometers from the vol-
cano. At the receiving site, data is displayed on revolving paper helicorders for rapid
general interpretation and simultaneously digitized for further processing. How-
ever, due to the expense and bandwidth constraints of radio telemetry, high-quality,
multi-channel data acquisition at a particular volcano is often limited. These analog
systems also suffer from signal degradation and communication interference.

As a result, many scientific experiments use a stand-alone data acquisition system
at each recording station. The digitizer performs high-resolution analog-to-digital
conversion from the wired sensors and stores data on a hard drive or Compact Flash
card. However, these systems are cumbersome, power hungry (�10 watts), and re-
quire data to be manually retrieved from the station prior to processing. Depending
on the size of the recording media, a station may record several days or weeks’
worth of data before it must be serviced. Deploying a wireless sensor network with
telemetry to the base station allows real time data collection, network monitoring
and retasking not possible with untelemetered systems.

4.1.3 Overview of Three Deployments

In total, we have performed three deployments of iterations of our system at active
volcanoes in Ecuador. Figure 4.2 shows the location and layout of the second and
third deployment. All three are summarized below:

1. July, 2004, Volcán Tungurahua: We deployed three infrasonic monitoring nodes
continuously transmitting at 102 Hz to a central aggregator node, which relayed
the data over a wireless link to the observatory approximately 9 km away. Our
network was active from July 20–22, 2004, and collected over 54 h of infrasonic
signals.

2. August, 2005, Volcán Reventador: This deployment featured a larger, more ca-
pable network consisting of sixteen nodes fitted with seismoacoustic sensors
deployed in a 3 km linear array. Collected data was routed over a multi-hop
network and over a long-distance radio link to a logging laptop located at the
observatory 9 km away from deployment site. Over three weeks the network cap-
tured 230 volcanic events.
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Fig. 4.2 Deployment locations. (a) and (b) show the locations of our second and third volcano
deployments, in 2005 and 2007. (a) shows 17 nodes deployed on Reventador Volcano; (b) shows
eight nodes deployed on Tungurahua Volcano
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3. July, 2007, Volcán Tungurahua: We returned to Tungurahua Volcano in 2007 and
deployed eight sensor nodes in order to test Lance, a framework for optimizing
high-resolution signal collection (described Sect. 4.7). The network was opera-
tional for a total of 71 h, during which time we downloaded 77 MB of raw data.

4.1.4 Datum v Dataset Quality

Reviewing our previous work, we have found it useful to divide our focus on data
quality into two separate concerns, datum quality and dataset quality. The former
encompasses the quality of any one data point, and requires addressing sampling
rates, resolution, fidelity, and accurate timestamping. Datum quality does not con-
sider broader measures such as the value of the data to the application, coverage
or latency. Such higher-level metrics are incorporated in the idea of dataset qual-
ity, which considers the entire corpus of data presented to the application or end
user. This distinction is important because each requires separate techniques to
address.

Placed in this context, our first two deployments served to push the datum quality
to a level acceptable to the domain scientists. Through the experience that came with
iteration, at the end we were able to convince ourselves that we had built a system
capable of meeting the science datum quality goals [20]. Because the application
we chose happened to have fairly well-established datum quality requirements, this
work was iterating towards a fixed target.

Our interest in dataset quality reflects the inherent limitations of sensor network
devices. Due to storage, bandwidth or power limitations, at some point as the size of
the network grows or the target lifetime increases, it becomes infeasible to collect
all signals from all nodes during the entire deployment. Thus the question emerges:
what data should be collected in real time and what data should not? If the network
is provisioned with adequate storage and the deployment is of fixed length, data
not delivered in real-time may be eventually recovered manually; otherwise it will
be lost.

Returning a partial dataset to the end user also requires sorting the wheat from
the chaff. Either some of the data has to be interesting enough to justify eliding a
great deal of the rest, or some of the data has to be uninteresting enough to justify
dropping it entirely. Our application, volcano monitoring, falls more into the first
category, since seismologists would never concede that any signal is, prima facie,
uninteresting. However, they do have metrics allowing the value of a signal to be es-
timated and compared against others, which allows system resources to be directed
at the most valuable signals. Because seismological applications may benefit suffi-
ciently from the increased network resolution made possible by small, low-power
sensors, the discarded data that these networks imply is tolerable.

The high sample rates and per-sample resolution of seismic signals meant that
it only took a medium-size network to make full-signal streaming data collection
infeasible. Given that the problem worsens as the network size grows and target
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lifetimes increase, and our long-term goal is to deploy a perpetually-powered
network of several hundred nodes – an order of magnitude larger than any of our
efforts to date – addressing this problem remains central to our ongoing research.

4.1.5 Structure of this Chapter

We begin by describing the key changes made between our initial deployment at
Tungurahua Volcano in 2004 and our second more significant effort at Reventa-
dor Volcano in 2005. Between these two deployments we made a large number of
changes addressing both datum quality – including hardware board development and
time synchronization rectification – and dataset quality – including reliable transport
and event-driven data collection. We discuss iterative improvements to the interface
board and time synchronization in Sects. 4.2 and 4.3 below, and outline the event
triggered approach in Sect. 4.4.

After beginning to address the datum quality requirements, we focused on devel-
oping techniques that would advance the science goals by allowing the size of the
network or the duration of our deployments to be increased. This meant addressing
the dataset quality component. Our research in this area has been a great deal more
speculative since our seismologists are not used to working with incomplete data
sets, and while some of the flaws in earlier systems drove our initial research direc-
tion, work in this area became largely driven by the constraints inherent in wireless
sensor network nodes: storage, bandwidth, and power. Our work in this area cul-
minated in Lance [21], an architectural framework for optimizing dataset quality in
the presence of constraints such as storage, bandwidth and energy. Sections 4.5 and
4.7 describe successive iterations of this framework, which emerged as part of our
third deployment in 2007, while Sect. 4.6 describes the policy module component
common to both.

Finally, addressing either datum or dataset quality in isolation, even while hold-
ing one of them fixed, does not address overall data quality or application-driven
quality metrics. Collected data is expected to be put to use in service of some broader
scientific goal, which likely has complex data quality requirements not easily dis-
tilled into separate datum and dataset goals. We outline future directions intended
to bridge this gap and conclude in Sect. 4.8.

4.2 Sensor Interface Board

Of any system component, the hardware interface board received the most sig-
nificant internal redesign on the way to our second deployment in 2005. Our
proof-of-concept deployment deployed nodes fitted with a simple hardware inter-
face board interfacing the Mica2 motes at use at the time with a single microphone.
The Mica2’s 10 bit ADCs were used to collect acoustic signals at 100 Hz, the



78

Fig. 4.3 2004 Volcano Mote. A Mica2 mote with simple sensor interface board allowing a single
microphone to be attached as shown

sampling rate necessary to capture volcanic infrasound. Sampling was driven by the
Mica2’s onboard oscillator and the standard TinyOS Timer component. Figure 4.3
shows a Mica2 mote with the hardware interface board attached.

In particular, the following set of limitations of the original board had to be ad-
dressed in order to provide the datum quality required by the scientists:

1. Resolution: Scientific analysis required a per-sample resolution of at least 16 bits,
with greater than 20 being ideal. The Mica2 motes used for the original deploy-
ment provided only 10 bits of resolution and later designs, such as the TelosB,
provided only 16.

2. Filtering: The ideal filter for the seismic and infrasonic data our nodes were col-
lecting is a hard cutoff at 50 Hz. Unfortunately, upon review the original sampling
board had a passive filter with a 3 dB point of 5 Hz which meant that desirable
components of the signal were being attenuated.

3. Number of Channels: Fitting each node with both seismometers and micropho-
nes, as we wanted to do for the second deployment, required allowing multiple
sensors to be attached to each node. Our original board was built to interface
a single sensor.

4. Timing: We expected that providing the high-fidelity timing necessary to track
fast-moving pressure waves across the network would require both a stable tim-
ing source driving the per-node sampling and a way of interpreting local times
across multiple nodes. Multi-hop time synchronization is discussed separately
below, but the timing process necessitated a stable local source that would pro-
duce clean per-sample intervals.
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Fig. 4.4 The second iteration of our volcano monitoring sensor node, fielded at Reventador in
2005 and Tungurahua in 2007

5. Isolation: When testing our Tungurahua deployment before fielding it we noticed
that, due to poor isolation between multiple chips on the Mica2, radio trans-
missions were interfering with signal collection. The large amount of current
required to drive the CC1000 radio was flooding the ground plane and causing
the onboard ADC voltage reference to shift. While our original system worked
around this in software, providing clean data for scientists would require isolating
the sampling components from sources of potential interference.

4.2.1 2005 Board Redesign

Initially, we considered using the TMote Sky’s onboard ADCs. The TMote had a
single 16 bit ADC – which we believed to be well-isolated from other circuitry on
the node – and the ability to perform DMA sampling from the ADC into onboard
RAM while leaving the CPU in a low-power state. However, several limitations
of the TMote led us towards a standalone board. First, the 16 bit resolution of the
onboard ADC was not quite enough to support our application. Had this been the
sole limitation we may have settled for 16 bits, but a separate board meant we could
select higher-resolution ADCs. In addition, the TMote had a single 16 bit ADC, and
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we were worried about multiplexing this between multiple channels. Second, we
were concerned with providing a stable filter centered at 50 Hz. Building a passive
filter at that low of a frequency is difficult, so we concluded that the filtering would
have to be done by an oversampling ADC. Performing the filtering on the TMote
would have required oversampling at rates it was not capable of.

For these reasons we moved to a standalone sensor interface board providing
its own reference voltage (ensuring isolation), ADCs (allowing us to choose the
resolution and number of channels and implement digital filtering), and clock source
(ensuring a highly-accurate sampling rate). Offloading this much functionality to a
hardware board was risky since it left us little room for error in the design and
fabrication, but it significantly simplified the code running on the nodes themselves.
As it turned out, the fully built-out application we deployed at Reventador Volcano
consumed almost all of the TMote Sky’s 48 kB of program memory, leaving little
room for the functions we offloaded to the interface board.

As deployed in 2005 we were quite happy with the performance of our external
sensor interface board. The analysis in [20] revealed no significant deficiencies in
the board design. There was some initial confusion about the sampling rate which,
due to the precision of the oscillator and the settings on the ADC, turned out to be
slightly less than exactly 100.000 Hz, but it was consistent across multiple nodes
meaning that data collected from several stations could be lined up and processed
together. We designed software allowing us to modify the ADC settings on-the-fly
and this came in handy during the deployment when we realized that the hardware
gain settings were too low. We were able to modify them in software and address
the problem without returning to the deployment site.

4.2.2 Performance and Future Designs

The external interface board was not without its drawbacks. In particular, the over-
sampling ADCs we chose consumed a large amount of power, around 8 mA per
ADC. When combined with other board components, such as the reference voltage,
3 to 5 V conversion necessary to power certain components, and external oscilla-
tor, the sensor interface board ended up consuming around 60 mA of current, or
around 3 times more than the TMote with radio and CPU fully active. As men-
tioned previously, there is no way to power down the interface board remotely, nor
would we be able to without immediately losing data since the ADCs are sampling
at tens of kHz. For the Reventador deployment we provisioned around this high
power consumption by deploying larger (D cell) batteries and replacing them sev-
eral times. This can be seen as a tradeoff between datum quality – which necessitates
the high-power external sensor interface board – and a reduction in dataset qual-
ity through shorter system lifetimes or higher-duty cycles due to increased power
consumption.

It is likely that the next iteration of this board will take on several additional
challenges. First, we will strive to lower the power consumption while maintaining
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high fidelity through the use of newer ADCs which can hold down their current
consumption even while performing the several factors of oversampling necessary
to perform digital filtering. Second, we are increasingly interested in the ability
to support multiple applications. Thus any future sensor board design, either built
in-house or purchased as-is, will be expected to support multiple applications and
sensor types. Our current board is, in its choice of ADCs and hardware-filtering,
somewhat tailored to the volcano application. We’d like to move away from this if
possible.

These two future goals are in many ways at odds with each other, since the chal-
lenge of reducing the power consumption of a board designed for a very specific
purpose is different and potentially more manageable than the challenge of design-
ing a general-purpose yet low power board. This is a design tension that we expect
to continue to play out in future hardware revisions.

4.3 Time Synchronization

Unlike the sensor interface board, in which a simple prototype led directly to a more
successful second effort, achieving high precision time synchronization between
nodes is a battle we have continued to fight through multiple design iterations. In-
deed, at present we are not yet certain a suitable solution has truly been found, or
whether this challenge will emerge again while preparing the next deployment. The
problem of accurate timing is one shared by multiple applications and deployment
efforts, and significant effort has taken place in this area.

The need for accurate timestamping arises directly from the analyses performed
on seismic and infrasonic volcano data, with the required precision dependent on
the intended use and other aspects of datum quality such as the sampling rate.
Seismic signals can move across a deployed array at thousands of meters per sec-
ond, with acoustic signals moving at the speed of sound, (roughly 300 m/s). If two
neighboring stations are deployed 100 m apart (possible with good line of sight
and powerful antennas) a seismic signal can cross that gap in tens of millisec-
onds and an acoustic signal in hundreds of milliseconds. At a typical seismological
sampling rate of 100 Hz this means that seismic wave arrival times at the two
stations might only differ by one or two samples, necessitating precise time syn-
chronization if the propagation of these waves is to be accurately captured. Thus our
target accuracy for timestamping has typically been 10 milliseconds: a single sample
interval.

Wired seismic instrumentation frequently deploys a single GPS receiver at
each station, with the power required to operate GPS-driven timestamping a less
significant component of the station’s power budget. While we considered this ap-
proach (as described below), we ultimately rejected it due to its prohibitive power
consumption.



82

4.3.1 Single-Hop Time Synchronization

Our first deployed system made use of a simple time synchronization approach ap-
propriate in a single-hop environment. A single node was attached to a Garmin GPS
“puck”, which provides a highly-accurate (within 1 microsecond) pulse-per second
output. This was trapped by an interrupt pin and, when triggered, that node sent
out a broadcast radio message that should reach all other nodes. Upon receiving
the message, each sampling node marked the sample that it was in the process of
collecting. Beginning with this mapping between some of the samples (roughly one
out of every 100) and the GPS per-second pulse, an accurate timestamp can be as-
signed to each sample via linear interpolation. (A more complete description of this
protocol is contained in previously-published [18] work.)

This simple approach has many desirable properties, particularly when the two
enemies of time synchronization in wireless sensor networks – skew and drift – are
considered. Skew reflects the fact that all oscillators are not created equal, and that
two oscillators sold as identical will, in fact, differ by some small amount. This is
particularly true of the less expensive crystals used on low-cost wireless sensor net-
work nodes. Drift names the tendency of the true rate of any particular oscillator to
change over time, due to environmental changes such as temperature and humidity.
Thus even if two oscillators start out perfectly synchronized changes to their local
environments would cause them to drift apart slowly over time. Because the GPS
PPS is guaranteed to be accurate and displays no drift, the accuracy of the broadcast
message rate can be guaranteed. And, even in the presence of skew and drift on the
receivers, as long as the drift rates are bounded the interpolation between neigh-
boring PPS signals should yield accurate results. However, the single-hop approach
obviously does not work in a multi-hop environment where the multiple sampling
nodes cannot all hear the GPS broadcast.

4.3.2 Adaptation to Multi-Hop Using FTSP

During the three deployments we have performed, a single GPS node was deployed
near a large power source (car battery) that also powered other pieces of critical
infrastructure (the root of the spanning tree and long-distance point-to-point serial
communication linking the deployment site to the volcano observatory). Provision-
ing multiple GPS nodes with the power necessary to enable acceptable system
lifetimes would have greatly increased our deployment burden, and so a software
solution was sought.

We ended up deploying a new wireless sensor network protocol called FTSP
(Flooding Time-Synchronization Protocol) [8], which was released around the time
that we completed our deployment at Tungurahua. FTSP allows a network of nodes
deployed into a multi-hop topology to share a single global clock by providing
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mappings between a local timestamp on any node and the global timebase. Our
plan was to timestamp our data by performing two mappings: the first would map
the local time on each node into the global FTSP time; the second would map
the global FTSP time into the GPS time. We would rely on FTSP to perform
the first mapping and deploy a single node with GPS to allow us to perform the
second.

4.3.3 Observed FTSP Instabilities

During the testing that preceded our 2005 deployment at Reventador a number of
problems were seen with FTSP in a lab setting. Sometimes the global time would
become wildly inaccurate for a period of time before settling back to being quite
accurate. We were unable to track down the source of this instability, although we
did make multiple changes to the protocol in attempts to harden it and tailor it for our
particular application. However, the faults we observed in the lab were all temporary
in nature, and we believed that although FTSP did not seem to be always accurate it
was stable and able to correct itself when it got off track.

The behavior we observed upon deploying the system was radically different. We
did see, periodically, the small, correctable bits of instability that we had observed
in the lab. However, we also noticed longer stretches of instability that seemed un-
correctable by FTSP itself. The only solution to rectify the timing on nodes that
entered into this state was to reboot them, which forced them to resynchronize upon
protocol restart. While we eventually built monitoring and automatic reboots into
the system driver software running at the base station, allowing automatic reboots
of nodes with troubled timing, the stretches of timing outages frustrated our attempts
to collect clean, well-timestamped data.

Figure 4.5 shows an example of the FTSP instability observed in the field. The
global time reported by two nodes suddenly jumps off by several hours, and the
nodes do not resynchronize until rebooted 4.5 h later. It turns out that two bugs
combined to cause this problem. First, it was discovered that the TinyOS clock driver
would occasionally return bogus local timestamps.1 Second, FTSP does not check
the validity of synchronization messages, so a node reading an incorrect value for
its local clock can corrupt the state of other nodes, throwing off the global time
calculation.

The failures of the time synchronization protocol made establishing the correct
GPS-based timestamp for each data sample extremely challenging. To do so, we de-
veloped a time rectification approach which filters and remaps recorded timestamps
to accurately recover timing despite these failures. Figure 4.6 shows an overview of
the process. The first step is to filter the global timestamps recorded by each node,
discarding bogus data. Second, we build a model mapping the local time on each

1 This bug was fixed in February 2006, several months after our deployment.
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Fig. 4.5 Example of FTSP instability observed during field deployment. The global time value
reported by sensor nodes and the GPS node is plotted against the time that the base station received
the corresponding status messages. All nodes are initially synchronized, but starting at 1,230 GMT,
nodes 212 and 250 report incorrect global times for the next 4.5 h. When the nodes eventually
resynchronize, the global timestamps of other nodes initially experience some instability

Fig. 4.6 Time rectification process overview

node to FTSP-based global time. Third, we use the GPS timestamp information to
build a second model mapping FTSP time to GMT. Finally, both models are ap-
plied to the timestamps recorded in each data block producing a GMT time for each
sample.
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4.3.3.1 Timestamp Filtering

We begin by filtering out status messages appearing to contain incorrect global
timestamps. To do this, we correlate global timestamps from each node against a
common reference timebase and reject those that differ by more than some thresh-
old. For this, we use the base station laptop’s local time, which is only used for
filtering FTSP timestamps, not for establishing the correct timing. The filtering pro-
cess in is many ways similar to prior work [14, 15] on detecting adjustments in
network-synchronized clocks.

We use the following abbreviations: LT is the local time of a node; GT is the FTSP
global time; BT is the base station’s local time; and GMT is the true GMT from the
GPS signal. The single GPS node periodically sends a message logged by the base
station consisting of the triple (GT, GMT, BT). We use linear regression on this data
to produce a reference timebase mapping BT to GT.2 Nodes periodically report their
status through a heartbeat message, which includes their local (LT) and global (GT)
times, and for each node status message logged by the laptop (LT, GT, BT), we
map BT to the expected GTref using the reference timebase. If jGTref � GTj > ı,
we discard the status message from further consideration. We use a threshold of
ı D 1 sec. Although radio message propagation and delays on the base station can
affect the BT for each status message, a small rejection threshold ı makes it unlikely
that any truly incorrect FTSP timestamps pass the filter. Indeed, of the 7.8% of
timestamps filtered out, the median GT error was 8.1 h.

4.3.3.2 Timestamp Rectification

The goal of time rectification is to assign a GMT timestamp to each sample in the
recorded data. In order to do so, we build two models: one mapping a node’s local
time to global time, and another mapping global time to GMT. Figure 4.7 shows
an example of this process bridging a small local timing instability of the kind de-
scribed previously.

From those status messages that pass the filter, we build a piecewise linear model
mapping LT to GT using a series of linear regressions. Models are constructed for
each node separately, since local times vary significantly between nodes. Each re-
gression spans up to 5 minutes of data and we initiate a new regression if the gap
between subsequent (LT, GT) pairs exceeds 5 minutes. Each interval must contain at
least two valid status messages to construct the model. We take the LT value stored
in each data block and use this model to recover the corresponding GT value.

The next step is to map global time to GMT. Each of the GPS node’s status
messages contain a (GT, GMT) pair. As above, we build a piecewise linear model
mapping GT to GMT, and apply this model to the GT values for each data block.
Finally, we assign a GMT value to each sample contained in the block, using linear

2 We assume that the global time reported by the GPS node is always correct; indeed, the definition
of “global time” is the FTSP time reported by the GPS node.
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Fig. 4.7 Time rectification example. The raw (LT, GT) pairs collected from the node show that it
experiences a period of FTSP instability. The time rectification process removes the errant times-
tamps creating an accurate mapping between LT and GT created using a linear regression on the
remaining timestamps

interpolation between the GMT values assigned to the first sample in each block.
This process makes no assumptions about sampling rate, which varies slightly from
node to node due to clock drift.

4.3.4 Evaluation

Evaluating our time rectification process proved difficult, primarily because we had
no ground truth for the timing of the signals recorded in the field. However, by repro-
ducing the deployment conditions in the lab, we were able to measure the accuracy
of the recovered timing in a controlled setting. In addition, as described earlier, two
GPS-synchronized data loggers were colocated with our sensor network, providing
us the opportunity to directly compare our time-rectified signals with those recorded
by conventional instrumentation.

4.3.4.1 Lab Experiments

Our first validation took place in the lab. Feeding the output of a signal generator
to both a miniature version of our sensor network and to a Reftek 130 data log-
ger allowed us to directly compare the data between both systems. The miniature
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Raw error Rectified error

1 hop, 50th percentile 1.52 ms 1.42 ms
1 hop, 90th percentile 9.86 ms 6.77 ms

6 hops, 50th percentile 2.63 ms 2.18 ms
6 hops, 90th percentile 13.5 ms 6.8 ms

Fig. 4.8 Timestamp errors in a 6-hop lab testbed. This table shows the 50th and 90th-percentile
timing errors on both the raw FTSP timestamps, and rectified timestamps

network consisted of a single sensor node, routing gateway, and GPS receiver node.
The same software was used as in the field deployment. The Reftek 130 logs data to
a flash memory card and timestamps each sample using its own GPS receiver.

The results showed a consistent 15 ms offset between the time-rectified signals
recorded by the sensor node and the Reftek data logger. We discovered that this
offset was due to delays introduced by the digital filtering performed by the ADC
on our sensor board (see Sect. 4.2.1). Adjusting for this delay resulted in an indis-
cernible offset between the sensor node and Reftek signals. While this experiment
does not reproduce the full complexity of our deployed network, it does serve as a
baseline for validation.

In the second lab experiment, we set up a network of 7 sensor nodes in a 6-hop
linear topology. The topology is enforced by software, but all nodes are within ra-
dio range of each other, making it possible to stimulate all nodes simultaneously
with a radio message. Each node samples data and sends status messages using the
same software as the field deployment. The FTSP root node periodically transmits
a beacon message. On reception of the beacon, each node records the FTSP global
timestamp of the message reception time (note that reception of the beacon mes-
sage is not limited by the software-induced topology). Because we expect all nodes
to receive this message at the same instant (modulo interrupt latency jitter) we ex-
pect the FTSP time recorded at each node to be nearly identical. The FTSP root also
records the time that the beacon was transmitted, accounting for MAC delay. The
experiment ran for 34 h, during which time FTSP experienced instabilities similar
to those seen during our deployment.

This allows us to compare the true global time of each beacon message trans-
mission and the apparent global time on each receiving node, both before and after
subjecting the data to our time rectification process. We call the difference between
the true and apparent times the timestamp error. Figure 4.8 shows the results for
nodes one and six hops away from the FTSP root. After rectification, 99.9% of the
errors for the one-hop node and 93.1% of the errors for the six-hop node fall within
our 10 ms error envelope.

4.3.4.2 Comparison with Broadband Station

Although time rectification works well in the laboratory, it is also necessary to
evaluate its accuracy on the data collected during the field deployment. For this
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purpose, we made use of one of the broadband seismometer stations colocated with
our sensor network. The RVEN (for “Reventador vent”) station was located 56 m
from sensor node 213 (See Fig. 4.2b). Given their proximity, we would expect the
seismic waveforms captured by both RVEN and node 213 to be well correlated.
Some time shift between the two signals would be expected: a seismic wave pass-
ing each station could be as slow as 1.5 km/sec, so the time lag between the signals
could be as high as 37 ms. However, due to differences in the seismometers and
the placement and ground coupling of the sensors, we would not expect perfectly
correlated signals in every case.

We identified 28 events recorded by both RVEN and node 213. The data for
node 213 was time rectified as described earlier, and the RVEN data was times-
tamped by the Reftek’s internal GPS receiver. We applied a bandpass filter of 6–8 Hz
to each signal to reduce sensor-specific artifacts. The cross-correlation between the
signals produces a set of of lag times indicating possible time shifts between the two
signals. Due to the periodic nature of the signals, this results in several lag times at
multiples of the dominant signal period. For each lag time, we visually inspected
how well the time-shifted signals overlapped and picked the best match by hand.

Figure 4.9 shows an example of this process that demonstrates excellent correla-
tion between the RVEN and node 213 signals with a 29 ms time shift. Figure 4.10
shows a scatter plot of the best lag times for all 28 events. Of these, only 5 events
fall outside of a C=� 47 ms window defined by the distance between the stations
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Fig. 4.9 Comparison of RVEN and node 213 signals. This figure shows two seismic waves
recorded by sensor node 213 and a broadband seismometer located 56 m away. After time rec-
tification, a 29 ms time shift produces an excellent match

G. Challen and M. Welsh



4 Volcano Monitoring 89

08/13/05 03:38:08
06:16:46
08:17:51
15:24:58

08/15/05 04:48:27
07:07:52
09:11:28
16:04:37
19:29:08

08/16/05 04:04:56
09:45:14

08/17/05 00:22:39
02:09:47
05:07:31
14:00:43
16:48:26

08/18/05 00:52:31
03:43:05
04:54:30
06:26:50
13:28:54
14:23:06
15:31:06
17:59:49
21:33:01

08/19/05 00:16:22
01:52:09
02:33:30

47–47 0

E
ve

nt
 T

im
e 

(G
M

T
)

Time Lag (ms)

Fig. 4.10 Lag times between Node 213 and RVEN. The best lag time between the two stations is
shown for 28 events. best time lag between the two stations is shown. Most time shifts into the
C=� 47 ms window that we would expect given the distance between the two stations and up to
10 ms of timing error

(C=� 37 ms) and our acceptable sampling error (10 ms). We have high confidence
that our time rectification process was able to recover accurate timing despite fail-
ures of the FTSP protocol.

4.3.5 Lessons Learned

Overall there were many lessons we took away from our experience with data times-
tamping. First, due to the fact that development of the time rectification technique
took several months after the system was dismantled, we missed a critical window
during which the scientific interest in our data peaked. Arriving in the field with an
end-to-end solution ready to take the output of our network and mold it into a form
suitable for scientific inspection would have been ideal, and is highly advisable
for deployments where scientist have clear datum quality expectations going in, as
ours did.

In addition to being unprepared for the issues we observed in the field, we also
did not think through the impacts of presenting half-baked data to the seismologists
we were working with. Particularly given our worries about other parts of the sys-
tem that did end up performing satisfactorily, like the sampling board and driver
(Sect. 4.2), bulk data transfer protocol and event detection mechanism, we were ex-
cited when any signals at all showed up at the base station. In our rush to deploy
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the system we had not prepared an adequate data analysis and visualization envi-
ronment, and much of this was developed on-the-fly as the deployment progressed.
Due to this late and rushed development, none of the initial tools did any of the
post-hoc timing rectification that we eventually had to perform in order to make the
data suitable for scientific study. Instead, we devised primitive tools allowing data
from multiple stations to be plotted together.

Unfortunately, these stacked plots were interpreted very differently by the com-
puter scientists and seismologists. To the computer scientists these were evidence
that the network was sampling data, detecting events and successfully retrieving
data using our bulk data-transfer protocol, namely things were working. Less con-
cerned with the inner workings of our system the seismologists appreciated little
of this. To them, these poorly-synchronized signals were instead evidence that our
signal timing was extremely broken, a fear that persisted for some time after the
deployment as we worked hard together to rectify and validate the timestamps. The
exposure of this intermediate data product to consumers unprepared for it should
serve as a cautionary tale about how much of the internal engineering of a deployed
sensor network application to reveal externally.

Validating the timestamps on the data we did collect was also quite frustrating
and illustrates to what degree we were unprepared for the severity of the timing
challenge. The several wired data loggers deployed alongside our network all had
attached GPS units providing extremely accurate signal timing. Had we thought to
attach a single sensor both to one of our wireless stations and, by simply splitting
the output signal, to one of the wired stations we could have easily cross-checked
the timing with a known ground truth (i.e. the identical signal). In a remarkable
oversight we never thought to do this, meaning that we had no two identical inputs
available to reveal any inaccuracies in the timing information for the signals we
collected. It would also have been useful to spend more time hardening FTSP before
the deployment, and to have built in more logging and visibility into its operation to
help us at least have an idea, in situ, of how well it was functioning.

While further work in this area would have been possible, our interests after
the 2005 deployment tended more in the direction of improving dataset quality.
Given our techniques to rectify the timestamps provided by FTSP were already in
place going forward, little additional work was done in this area. In addition, FTSP
has continued to be maintained and was canonized as an official mainline part of
TinyOS in version 2.1.1 Given the importance of accurate timestamping to many
sensor network applications, certainly ones in the scientific space, it is extremely
encouraging that the sensor network community has indicated its willingness to
continue to test and maintain this critical component.

4.4 Event Detection

While our proof-of-concept deployment had each node attempting to stream a con-
tinuous signal over a single radio hop to the base station, this approach did not scale
to more nodes deployed into a multi-hop topology. In fact, it didn’t even work that
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well with the small number of nodes we deployed in 2004. Analysis of our data
showed many dropouts and periods of missing data caused by simple packet deliv-
ery failures. Some nodes were impacted more than others, but all deployed nodes
displayed this weakness.

Going into the 2005 deployment we knew that we needed a more scalable ap-
proach. The one that we developed was, in its own way, a precursor to the more
intensive dataset work that would develop into a separate data-collection frame-
work. What we decided to do was exploit the network’s monitoring capability to
help decide what data was interesting, and capture that data at the expense of other
signals.

The way that this worked was as follows. Nodes were programmed to locally
detect interesting seismic events and transmit event reports to the base station. If
enough nodes triggered in a short time interval, the base station attempted to down-
load the last 60 seconds of data from each node. The download window of 60 s was
chosen to capture the bulk of the eruptive and earthquake events, although many
volcanic events can exceed this window (sometimes lasting minutes or hours). To
validate our network against existing scientific instrumentation, our network was
designed for high-resolution signal collection rather than extensive in-network pro-
cessing.

Nodes run an event detection algorithm that computes two exponentially-
weighted moving averages (EWMA) over the input signal with different gain
settings. When the ratio between the two EWMAs exceeds a threshold – indicating
that the signal’s short term average has exceeded its long-term average by a large
amount – the node transmits an event report to the base station. If the base station
receives triggers from 30 of the active nodes within a 10 s window, it considers the
event to be well-correlated and initiates data collection.

The bulk-transfer phase operated as follows. The base station waits for 30 s fol-
lowing an event before iterating through all nodes in the network. The base sends
each node a command to temporarily stop sampling, ensuring the event will not be
overwritten by subsequent samples. For each of the 206 blocks in the 60 s window,
the base sends a block request to the node. The node reads the requested block from
flash and transmits the data as a series of 8 packets. After a short timeout the base
will issue a repair request to fill in any missing packets from the block. Once all
blocks have been received or a timeout occurs, the base station sends the node a
command to resume sampling and proceeds to download data from the next node.

At Reventador this event detection approach proved difficult to properly cali-
brate. We discovered that it detected a small percentage of the seismic events located
by one of our domain scientists during a particular window of time. The reason for
this was probably the parameters chosen for the EWMA algorithm, which produced
a system that was not sensitive enough. Calibrating the system a priori using data
collected from the targeted volcano would have been ideal, but was difficult to do
given the difference in frequency response between our instruments and the ones
that had been deployed at the volcano previously. Other weaknesses of the event-
triggered approach to data collection led us to move away from it in subsequent
deployments.
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4.5 Addressing Storage and Bandwidth Limitations

The simple event-based triggering we deployed at Reventador volcano in 2005 dis-
played a number of weaknesses that had to be addressed in order to build a more
scalable system. In particular, these limitations led to significant loss of data and the
overall approach would not have scaled as the size of the network or the lifetime
target increased. After analyzing the performance of the 2005 network we identified
three key weaknesses:

1. Lack of Data Prioritization: Our event-triggered system attempted to download
data corresponding to well-correlated seismic events. However, the event detec-
tor operated in a binary fashion, leaving it unable to prefer certain events over
others. Because we required each node to make an individual, local decision as
to what constituted an “interesting” event, the efficacy of the system as a whole
was largely dependent on this parameter. After analyzing the data collected at
Reventador we determined that the original threshold was likely set far too low,
causing our network to trigger on less than 5% of the actual seismic events ob-
served by wired stations during the deployment. Without the ability to prioritize
events setting a threshold means either risking underutilization if the threshold is
too high or being unable to distinguish between extremely-interesting and less-
interesting triggers if it is too low.

2. FIFO Storage Management: Due to the limited flash storage available on each
TMote Sky, each node could only store around 20 minutes of continuous sen-
sor data. When an interesting event occurred, to avoid overwriting data about
to be requested for download we disabled sampling on each node until the data
corresponding to the event in question had been downloaded. Due to the high
download latency imposed by reliable transfer over multiple lossy links, and the
high event frequency, a large portion of the network was offline for a significant
amount of time after each triggered seismic event. This led to data loss.

3. FIFO, Non-Preemptive Download Policy: Following each triggered event we
downloaded signals from each node in turn until the entire event was captured.
As previously mentioned, this download process took a significant amount of
time during which many nodes were not sampling. This meant that smaller, less
interesting events could prevent the detection of larger, potentially more interest-
ing ones if the small event occurred slightly earlier in time, since the network
would still be busy downloading the small event when the large event occurred.
Given that many large eruptions are preceded by small precursor earthquakes,
this meant that many such large events failed to be recorded at all.

As an initial response to these challenges we developed a utility-driven archi-
tecture for optimizing the value of downloaded data in the face of storage and
bandwidth constraints. Putting aside the datum quality issues this architecture at-
tempts to address dataset quality directly by allowing the application to express
preferences for some data over others and having the system attempt to maximize
the value of the downloaded data while meeting constraints on storage, bandwidth,
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energy and target lifetime. Based on experiences with earlier systems the design of
a new system, Lance, was guided by several overarching design principles:

1. Decouple mechanism from policy. When possible we wanted to begin to abstract
the development of our approaches to dataset problem away from the volcano ap-
plication context, making Lance suitable for use in multiple application domains.

2. Simplicity through centralized control. As previously described, we had signifi-
cantly simplified the design of our volcano-monitoring network by aggregating
functionality on the base station. Lance continues this approach, again treating
nodes as slave devices.

3. Low overhead for maintenance traffic. The drawback of a centralized solution
can be high overhead for the associated control and maintenance traffic. We
wanted to avoid this if possible by dividing decision making between local
per-node components and global components running at the base station and op-
timizing the communication patterns between the two.

This architecture developed through two iterations, the second of which was pub-
lished as Lance [21]. The first and second version of this system share a policy
module architecture allowing applications to tailor the data collection strategy. The
two iterations differ, however, in significant ways, with most of the changes result-
ing from our 2007 deployment at Tungurahua Volcano. The first system presents
an ordinal (ordering-only) conception of utility, addresses storage and bandwidth as
constraints, and attempts to maximize the value of the collected data without consid-
ering cost. The second moves to a cardinal (ordering and exchange) conception of
utility, focuses on energy and bandwidth as constraints, and develops and deploys
a cost model as part of the maximization process. This and the two sections that
follow place these efforts into the broader context of an approach to dataset quality.

4.5.1 Overview of Lance

Figure 4.11 provides an overview of the Lance architecture. Sensor nodes sam-
ple sensor data, storing the data to local flash storage. Each application data unit
(ADU) consists of some amount of raw sensor data, a unique ADU identifier, and a
timestamp indicating the time that the first sample in the ADU was sampled. ADU
timestamps can either be based on local clocks at each node, or tied to a global time-
base using a time synchronization protocol such as FTSP [8]. The size of an ADU
should be chosen to balance the granularity of data storage and download with the
overhead for maintaining the per-ADU metadata. In the applications we have stud-
ied, an ADU stores several seconds or minutes of sensor data, not an individual
sample. ADUs are stored locally in flash, which is treated as a circular buffer.

Ideally, nodes would be able to compute the value vi of an ADU locally, as
the data is sampled. However, since the value might depend on factors other than the
ADU’s data, such as data computed at other nodes, Lance assigns values vi at the
base station based on global knowledge of the state of the network. However, this
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Fig. 4.11 Lance architecture. The architecture of both the priority- and utility-driven versions
of Lance is quite similar. The interpretation of the assigned utility values differs, but the major
architectural components are the same

requires nodes to communicate some low-bandwidth information on the ADU con-
tents to the base station. For this purpose, each node applies an application-supplied
summarization function, computing a concise summary si of the contents of the
ADU as it is sampled. Nodes periodically send ADU summary messages to the base
station, providing information on the ADUs they have sampled, their summaries,
timestamps, and other metadata. As a special case, if a node is able to assign the
ADU’s initial value directly, this is used as the summary.

The Lance controller receives ADU summaries from the network. The controller
also estimates the download cost Nci for each ADU, based on information on net-
work topology as well as a model of energy consumption for download operations.
The ADU summaries and cost are passed through a series of policy modules, which
provide application-specific logic to assign the value vi to each ADU. The resulting
values are passed to the Lance download manager which is responsible for perform-
ing downloads, using a reliable data-collection protocol, such as Flush [5].

4.5.2 Cardinal v Ordinal Utilities

One significant difference between the first and second versions of Lance is the
meaning of the utility values assigned to each ADU. Utility values are intended
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to reflect the value of that signal to the application, with higher utilities indicating
more valuable data. Accurate and efficient utility assignment – while a difficult and
application-specific challenge – is crucial to the Lance approach.

The first version used ordinal utilities (or priorities), meaning that the assigned
utilities established an order among available ADUs but did not reflect the relative
importance of one ADU versus another. Given priorities, an ADU assigned priority
100 can only be assumed to me more valuable that one assigned an ADU 99. It
might be 100 times more valuable. It might be only 2 times more valuable. The fact
that ordinal utilities produce a strict ordering and nothing else simplified the poli-
cies of the first system. The storage manager could easily prioritize available flash
on each node, and the download manager simply downloaded the available ADU
with the highest utility, regardless of the resources necessary to do so. Since ordinal
utilities do not allow the value of an ADU to be weighed against the cost (in system
resources) required to download it, they render the notion of cost unnecessary.

The second iteration of Lance used cardinal utilities, which not only produce an
ordering but also imply relative value between ADUs. So an ADU assigned utility
100 is assumed to be twice as valuable as one assigned utility 50. This formulation
allows the incorporation of cost into the optimization framework, as described later
in Sect. 4.7.

4.5.3 Utility Functions

Implicit in Lance is the idea that, when addressing dataset quality, wheat must be
separated from chaff. We rely on a utility function to do so, regardless of whether the
utility is interpreted as a cardinal or ordinal one. In general utility functions can be
quite complex, depending not only on the data acquired at a particular node but also
on the distribution of data across the network, availability of storage, bandwidth,
energy and other resources, and so forth. To help designers construct complete sys-
tems without starting from scratch, Lance attempts to cleanly separate the policies
governing how to divide data into interesting and uninteresting piles from the mech-
anisms governing the collection of data after the division is performed.

To leverage global knowledge while reducing the resource consumption on each
node, we separate local knowledge from global by effectively dividing the utility as-
signments between node-specific (the utility calculator that runs on each node) and
network-wide (the policy module chain described in the next section) components.
The node-level utility calculator operates only based on inputs available on a sin-
gle node and must run on a resource-constrained sensor network node, limiting the
amount of computation it can perform. In contrast, the network-wide policy mod-
ules running on the powered base station have access to a global view of the network
and significantly augmented resources. As such they can use global, historical and
out-of-band information to further refine the initial utility assignment performed on
the node itself.
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Communication between the node-level and network-wide portions of the util-
ity function is overhead with respect to the application goals, and so a practical
requirement limiting the usage of Lance is keeping the traffic between these two
components to a minimum. The utility functions we have developed in the context
of the volcano application have typically limited this overhead by having the output
of the node-level utility function be a single scalar value, which can be efficiently
transmitted to the base station. There is no requirement that the node-level utility
function produce such simple outputs, but it does aid in reducing the overhead in-
herent in the utility assignment process.

As a concrete example tying Lance to previous work, the distributed event de-
tector deployed at Reventador in 2005 could be easily reimplemented in Lance. The
node-level utility calculator uses the ratio of two EWMAs to assign a binary utility,
either one or zero, to each ADU. At the network level, a policy module aggregates
these assignments and, when enough overlap within a particular time window, it
marks that entire segment of data with a unit utility value (all other time windows
receive utility zero). Because each “interesting” set of signals receives the same
utility value, Lance does not distinguish between them and will download them in a
LIFO fashion.

4.5.4 2007 Deployment

To evaluate the performance of Lance in a real field setting, we undertook a
one week deployment of eight sensor nodes at Tungurahua Volcano, Ecuador,
in August 2007. The priority-driven version of Lance was used to manage the
bandwidth resources of the sensor network, as described below. Time and budget
constraints prevented us from deploying a larger network for longer period of time.
Our primary goal was to validate Lance’s operation in a field campaign, as well as
to identify challenges that only arise in real deployments. Our experiences during
this deployment led to further refinements of Lance described in the next section.

The sensor network was operational for a total of 71 h, out of which the Lance
download manager ran for a total of 56 h. During this time, Lance successfully
downloaded 1,232 ADUs, or 77 MB of raw data. An additional 308 downloads failed
due to timeout or stale summary information, for an overall success rate of 80%.
11,012 unique ADU summaries were received from the network, representing an
aggregate of 688 MB of sampled data. Lance therefore downloaded approximately
11% of the data produced by the network. Figure 4.12 summarizes the number of
ADUs downloaded and the mean throughput for each node.

4.5.4.1 RSAM v EWMA Node Level Utility Calculator

The system as initially deployed computed the RSAM [12] (Reduced Seismic
Amplitude Measurement) as the value for each ADU. This approach was intended
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Fig. 4.12 Download
performance during the
deployment

Node ADUs downloaded Mean throughput

100 311 651.0 B/s
101 131 446.8 B/s
102 262 445.8 B/s
103 292 424.4 B/s
104 150 256.8 B/s
105 66 453.7 B/s
106 20 253.4 B/s

Total 1,232 431.5 B/s

to prioritize data based on the overall level of seismic activity. We experienced
two problems as soon as the system was fielded. First, the RSAM calculation was
sensitive to DC bias in the seismometer signal, causing Lance to generally prefer
downloading ADUs from one or two nodes (those with the largest positive bias).
We were able to work around this problem using policy modules, described in the
next section.

The second problem with the RSAM utility calculator was caused by the un-
characteristically low level of seismicity at the volcano throughout the deployment.
We observed only about 20 volcano-tectonic earthquakes and no clear explosions,
whereas the previous week, Tungurahua exhibited dozens of earthquakes each
day. As a result, the RSAM utility calculator was generally unable to distinguish
between actual seismic activity and noise. Given the low level of volcanic activity,
after the first 25 h of the deployment we chose to reprogram the network to use a
different utility calculator designed to pick out small earthquakes from background
noise. This function computes the maximum ratio of two EWMA filters over the
seismic signal; it is similar to that described in [20]. Due to code size limitations on
the motes, it was necessary to manually reprogram each node with the new utility
calculator, which took two teams about 4 h.

We return to the 2007 deployment later in this chapter in two other contexts.
First, we discuss policy modules, a useful feature that spanned both the priority-
and utility-driven versions of Lance. We illustrate their use with examples from
our field deployment. Finally we present the mature, utility-driven Lance, and also
include an evaluation of its performance based on data collected during our 2007
deployment.

4.6 Policy Modules

Policy modules provide an interface through which applications can tune the oper-
ation of the download manager. As previously described, along with the node-level
utility assignment they make up the utility function responsible for providing input
to the download manager. Lance requires that policy modules be efficient in that
they can process the stream of ADU summaries received from the network in real
time. In practice this is not difficult to accomplish, as the rate of ADU summary
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reception is modest, and the base station (typically a PC or laptop) is assumed to
have adequate resources. For example, a 100-node network with an ADU size of
60 s would receive an ADU summary every 600 ms. Typical policy modules take a
small fraction of this time to run.

One of the main benefits of policy modules is that they permit significant changes
to the network’s behavior without requiring changes to the node-level utility as-
signment. Changing the latter would typically involve reprogramming sensor nodes.
Based on our experience at Reventador we were wary of reprogramming the net-
work unless absolutely necessary. Although systems such as Deluge [4] permit
over-the-air reprogramming, any changes to the sensor node software could result
in unexpected failures that can be very difficult to debug without manual inter-
vention. On the other hand, introducing new policy modules at the base station is
relatively straightforward, and can be quickly reversed without risking sensor node
failures.

4.6.1 Example Policy Modules

Policy modules can be used to encapsulate a wide range of data collection goals, and
make it easy to customize Lance’s behavior for specific applications. While we pro-
vide a standard toolkit of general-purpose policy modules, application developers
are free to implement their own modules as well. By composing modules in a linear
chain, it is easy to implement various behaviors without requiring a general-purpose
“policy language.”

Priority thresholding: filter is perhaps the simplest example of a policy mod-
ule that filters out ADUs with a utility below a given threshold T . This type of
filtering can be used to force a drop of low-valued data. Conversely, the boost
utility module sets the utility for an ADU above a given threshold to a very high
value, ensuring that it will be downloaded next.

Priority adjustment and noise removal: Policy modules can be used to remove
the effects of noise or correct for node-level utility bias, for example, based on poor
sensor calibration or differences in site response. Moreover, since each node com-
putes the initial ADU utility based only on local sensor data, it may be necessary to
normalize the ADU utilities in order to compare utilities across nodes.

adjust adds or subtracts a node-specific offset to each ADU utility in order to
correct for differences in sensor calibration.smooth applies a simple low-pass filter
on the raw utility values to remove spikes caused by spurious sensor noise. Likewise,
debias is intended to remove sensor-specific DC bias in the utility values assigned
by the node’s prioritization function.debias computes the median utility value for
a given node over a given time window. It then subtracts the median from each ADU
utility before passing it along to the next module in the chain.

Likewise, when a sensor network contains multiple sensors with varying sensi-
tivity, it is natural to prioritize data from more sensitive instruments. In cases where
networks are deployed to monitor fixed physical phenomena, it may be desirable
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to prioritize data from nodes located close to the phenomena being observed. The
adjust module can be used to scale raw utilities based on a sensor’s location,
signal-to-noise ratio, or other attributes.

Priority dilation: Another useful policy is to dilate a high (or low) utility value
observed in one ADU across different ADUs sampled at different times or differ-
ent nodes. This can be used to achieve greater spatial or temporal coverage of an
interesting signal observed at one or more nodes. The timespread detects ADUs
with a utility above some threshold T , and assigns the same utility to those ADUs
sampled just before and just after.

Likewise, the spacespreadmodule groups ADUs from across multiple nodes
into time windows and assigns the maximum utility value to all ADUs in that win-
dow. Define a window W.t; ı/ as the set of ADUs such that t �ı � ti � t Cı where
t represents the center of the window and ı the window size. spacespread de-
termines the maximum ADU in the window p� D argi2W max pi and sets p0

i D p�
for each ADU in W .

Correlated event detection: The correlated module is used to select ADUs
that appear to represent a correlated event observed across the entire sensor network.
correlated counts the number of ADUs within a time window W.t; ı/ with a
nonzero utility value. If at least k ADUs meet this criterion, we assume that there
is a correlated stimulus, and the utility values for all ADUs in the set are passed
through. Otherwise, we filter out the ADUs in the window by setting p0

i D 0 for
each ADU in W .

As an example of composing policy modules to implement an interesting behav-
ior, consider the chain

filter.T / ! correlated.k/ ! spacespread

This policy filters incoming utilities, rejects time-correlated sets with fewer than
k ADUs above the threshold, and assigns the maximum utility across the set
to all ADUs. This can be useful in systems that wish to perform collection of
time-correlated data, but avoid spurious high-utility data from just a few nodes.
This policy is equivalent to the volcano earthquake detector used in our previ-
ous work [20], expressed as a simple policy module chain, and demonstrates, as
mentioned in the previous section, that our distributed event detector can be reimple-
mented as a Lance utility function with both node- and network-level components.

4.6.2 Evaluation and Use at Tungurahua

We evaluated the usefulness of the policy module architecture through testbed
experiments, as well as during our field deployment in 2007. For the testbed ex-
periment, we use a distribution of ADU data values based on a 6-h seismic trace
collected at Reventador Volcano, Ecuador in 2005 [20]. The raw seismic data is
divided into ADUs of 36 kB and ADU values vi are assigned by computing the ratio
of two EWMA filters on the data, which assigns greater value to ADUs that contain
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earthquakes. For each node in a 25 node topology, the ADU values from the seis-
mic trace are attenuated based on a hypothetical signal source and assigned to each
of the 25 nodes based on their location with respect to the signal source. We then
enable a policy module chain that assigns higher priority to ADUs that correspond
to correlated seismic activity across the network.

Figure 4.13 shows the result of this experiment running on the MoteLab testbed.
The upper portion of the figure shows the ADU values over time; the middle portion,
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Fig. 4.13 Usage of policy modules to affect download distribution. Here we illustrate the use of
policy modules. The graph compares the download behavior of the system with and without a
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activity. The graph is colored at a particular timestamp and node ID if we downloaded that signal
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the set of ADUs downloaded by the system with no policy modules in use; and the
lower portion, the ADUs downloaded with the policy module chain in use. As the
figure shows, the policy modules cause the network to prefer correlated seismic
events and download an ADU from all nodes in the network when such an event
is detected. Gaps in the set of ADUs downloaded are due to download timeouts. In
one case, a single ADU is downloaded spuriously due to an incorrect value being
reported by that node to the base station. This use of policy modules shows the
drastic change in the system behavior that can be achieved without reprogramming
the sensor nodes themselves.

Our deployment at Tungurahua Volcano allowed us to evaluate the ability to
change download policies at the base station without reprogramming nodes, one
of the significant advantages policy modules provide. As described in Sect. 4.5.4.1,
the RSAM utility calculator initially deployed at Tungurahua was sensitive to DC
bias, which caused Lance to continuously download signals from one or two nodes
with large DC biases.

This problem was easily corrected, without any node software changes, by intro-
ducing a policy module at the base station to process the raw RSAM values received
from each node and filter out the DC bias. This was achieved by computing the me-
dian RSAM value over each 30-minute window of raw RSAM values on each node,
and subtracting the median from the RSAM. Figure 4.14 shows the result of the ap-
plication of the filter, with the debiasing effect clearly visible. The ability to change
and correct download behavior from the base station without modifying sensor node
code proved extremely useful in this case, particularly in that it permitted the rapid
iteration necessary to properly craft the appropriate filter.

4.7 Optimizing for Energy and Bandwidth Usage

After completing our 2007 deployment at Tungurahua we redesigned our original
Lance system and shifted its focus. Instead of optimizing for storage and bandwidth,
we instead chose to optimize primarily for energy, with bandwidth as a secondary
concern. Several changes to the hardware and software environment explain this
shift in emphasis.

First, storage management began to seem less pressing as the promise of sensor
network nodes with large attached flash memories seemed to be becoming a reality.
The TMote Sky deployed at Reventador had only 1 Mbit of flash, meaning we could
only store around 20 min of signal (from two channels, 24 bits per sample at 100 Hz).
In contrast, the SHIMMER mote developed for medical monitoring can be fitted
with a flash card allowing it to store as much as 2 GB of data, meaning that deployed
in support of the volcano application it could conceivable store over 41 days of full-
resolution sampled data (assuming 2 data channels sampled at 100 Hz with 3 bytes
per sample). The idea behind managing storage was that it was necessary in order to
preserve the highest-utility ADUs until the network controller would get around to
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Fig. 4.14 Effect of DC bias on RSAM summarization function. Each point represents the ADU
value received at the base station, and the triangles indicate those ADUs that were downloaded by
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downloading from the node with the largest positive bias. However, (b) shows what happens after
applying a simple debiasing policy module at the base station. This filter removes the DC bias
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downloading them. Once storage sizes swelled it seemed like a simple FIFO storage
policy would allow plenty of time for interesting data to be downloaded.

Second, support for radio duty cycling entered the TinyOS tree and began to be
used by our group. This shifted our focus from thinking about bandwidth as a con-
straint to thinking about the energy associated with operating the radio in order to
download data as a constraint. In contrast to the early Lance system, which deployed
a “greedy” download manager which strove to download as much data from the net-
work as possible, once the radio could be easily disabled when not in use it became
natural to want to consider the cost of downloading signals and not necessarily run
the downloads in a greedy fashion.

4.7.1 Refocusing on Energy Usage

Shifting the system’s concern to energy usage required several changes to the Lance
architecture: a move from ordinal to cardinal utilities, and the development of a cost
model.

Replacing the ordinal utilities with cardinal ones allowed us to compare the rel-
ative value of different “baskets” of ADUs in a meaningful way. Two ADUs, each
with a utility of 50 were considered equivalent to the application as a single one
with utility 100. This meant that instead of simply downloading the highest-utility
ADU available in the network at a given moment, we needed a way of determining
which was the best ADU in terms of both the value but also the system’s ability to
extract it.

Given our high data rates, we were already restricted by bandwidth alone to
downloading only a portion of all of the data sampled by every node in the net-
work. Once we began using low-power listening (LPL) [11] to duty cycle the radio
extracting data also had an impact on energy consumption as well. Thus, achiev-
ing a target lifetime could be accomplished by downloading data at slower rates,
allowing node radios to be powered off when not in use. Either bandwidth or energy
could have driven the cost model, but given the dependence of energy consumption
on bandwidth usage (and lack of a similar relationship in the other direction) we
chose to represent the cost necessary to download an ADU as the energy required to
retrieve it.

Compared with our original ordinal utility efforts, the new version of Lance con-
tributed several ideas. First was a way of estimating, a priori, the energy necessary to
extract an ADU from the network. This was necessary so that both the cost and value
of each ADU could be considered before download decisions were made. For value,
we leverage the same two-part utility-assignment framework described earlier. The
cost estimation component is described below.

In addition, once the cost and value had been assigned to each ADU, the prob-
lem of deciding which to download can be framed as an optimization problem. We
described a way of producing an optimality bound by mapping an offline version of
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this problem to a well-studied optimization problem, and use this optimality bound
to evaluate several online algorithms suitable for real-time decision making. These
contributions are also described in further detail below.

4.7.2 Cost Estimation

Each ADU has an associated cost Nci that represents the energy requirement to down-
load the ADU from the network. Nci is a vector fc1

i ; c2
i ; : : : ; cn

i g where c
j
i represents

the estimated energy expenditure of node j when ADU i is retrieved. The key idea
is that we explicitly model both the energy cost for downloading the ADU from its
“host” node ni and the energy cost for each node along the routing path from ni to
the base station which must forward packets during the transfer. In addition, we also
model the energy cost to nodes that overhear transmissions by nodes participating in
the transfer. This energy cost on intermediate nodes is non-negligible, since reliable
transfer protocols involve a potentially large number of retransmission. However,
the overhearing cost is typically small, since modern low-power MAC protocols
quickly return to sleep when overhearing transmissions to another node. The cost
vector Nci therefore depends on the network topology.

Lance estimates the download energy cost vector Nci for each ADU sampled by
the network. We assume that nodes are organized into a spanning tree topology
rooted at the base station. The cost is a function of many factors, including the
reliable transport protocol, each node’s position in the routing tree, radio link quality
characteristics, and the MAC protocol.

Given the complex dynamics that can arise during a sensor network’s operation,
we opt to use a simple conservative estimate of the energy cost to download an
ADU from a node. Our approach is based on an empirical model that captures three
primitive energy costs involved in downloading an ADU. The first, Ed , represents
the energy used to download an ADU from a given node which includes the energy
cost for reading data from flash and sending multiple radio packets (including any
retransmissions) to the next hop in the routing tree. The second, Er , represents the
energy cost at intermediate nodes to forward messages during the ADU transfer. The
third, Eo, represents the energy cost to nodes that overhear transmissions during a
transfer. For simplicity, we assume ADUs of fixed size and compute Ed , Er , and Eo

based on the time necessary to download an ADU from the target node.
Using this simple model, we set the elements of the cost vector Nci as follows.

cn
i D Ed for the node n hosting the ADU, and cm

i D Er for nodes m along the
routing path from n to the base station. We set co

i D Eo for nodes that are assumed
to be within one radio hop of any of the nodes involved in the transfer. Estimating
Nci therefore requires knowledge of the current routing topology. This information is
readily available: the periodic summary messages, sent to the base station by every
node, include the node’s radio neighbors and parent in the routing tree. Cost vectors
can be easily recomputed whenever the routing topology changes.

To ensure that all nodes meet the lifetime target L, Lance models the energy
availability at each node using a token bucket with depth D and fill rate C=L,
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corresponding to the mean discharge rate. D is determined by the target lifetime L,
the battery capacity B and the background drain rate R. In general, D D B �L � R,
so D represents the energy remaining after the node reserves enough to ensure it can
meet its target lifetime at the background level.

4.7.3 Lance Optimizer

The Lance optimizer is responsible for scheduling ADUs for download, based on
knowledge of the set of ADUs currently stored by the network, their associated
values, and costs. In our design, Lance attempts to download a single ADU at
a time, in order to prevent network congestion, although it may be possible to
download multiple ADUs simultaneously, depending on the network topology. A
download completes either when the entire ADU has been received or a timeout
occurs.

Lance’s optimization process attempts to maximize the value of the ADUs re-
trieved while adhering to the lifetime target L. In essence, we seek a greedy heuristic
approximation of the multidimensional knapsack solution that would be used by an
oracle with complete knowledge of the ADUs sampled by the network over all time.
The optimizer first excludes ADUs that would involve nodes without enough energy
to perform a download. That is, if the token bucket for a given node m has E.m/

joules, ADUs for which E.m/ < cm
i are excluded from consideration. Note that as

the bucket fills, the ADU may become available for download at a later time. We
call these ADUs infeasible, and the remaining feasible.

To determine the next ADU to download, the optimizer considers the value vi of
each ADU and its associated cost Nci . We consider three scoring functions that assign
a download score to each feasible ADU; the ADU with the highest download score
is downloaded next. In the case of ties, an arbitrary ADU is chosen.

The first scoring function, value-only, simply downloads the feasible ADU with
the highest value vi . Note that value-only will meet the network’s lifetime target
(since only feasible ADUs are considered) but does not rank ADUs according to
cost. The second scoring function, cost-total, assigns the score Ovi by scaling the
value of the ADU by its total cost: Ovi D vi=

P
j c

j
i . The feasible ADU with the

highest score is then downloaded from the network. This approach penalizes ADUs
stored deep in the routing tree, which have a higher overall cost than those located
near the base station.

The third scoring function, cost-bottleneck, scales the ADU value vi by the cost
to the node that is an energy bottleneck for downloading this ADU. That is, let b

represent the node with the minimum value of E.b/ such that cb
i > 0. cost-bottleneck

sets the score Ovi D vi=cb
i . The intuition behind this scoring function is that the most

energy-constrained node should be considered when scoring ADUs for download.
We evaluate all three scoring functions in the next section and show that they yield
very different results in terms of spatial distribution and energy efficiency.
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We evaluate each scoring function against an optimal solution calculated by using
knowledge of all future ADUs and solving the multi-dimensional knapsack problem.
Since an online solution is required, this provides an upper bound on the achievable
performance of the online scoring functions.

4.7.4 Evaluation and Results

Prior work [21] presents a thorough and detailed evaluation of Lance on a variety
of real and synthetic workloads, evaluated both in simulation and in experiments
on a large sensor network testbed [19]. We present a subset of these results here to
further the discussion.

4.7.4.1 Simulation and Testbed Experiments

We began by evaluating Lance using a realistic system simulator which allowed
parameters – ADU size, distribution of ADU values, network topologies, download
speeds, energy costs and target lifetimes to be easily varied. Our simulations focus
first on evaluating the candidate scoring functions described above, and secondly on
assessing the performance of Lance as the parameters above are varied.

Our first simulation experiment used a simple 10-node linear topology.
Figure 4.15 shows both the performance of each scoring function against the offline
optimal system and a breakdown of the estimated energy consumed on each node
during the simulation. We divide each node’s energy usage into three components:
downloading energy consumed by the node when it is transferring one of its own
ADUs to the base station, forwarding energy consumed while transferring data
upstream for a downstream node, and overhearing energy which accounts for the
small overhearing penalty imposed by the TinyOS LPL implementation on nodes
that overhear (but are not participating in) nearby transfers.
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ment. The left graph shows the amount of data value downloaded from each node, while the right
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overhearing components. Node 1 is closest to the base station
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The energy costs for various operations are modeled as follows. The background
current drain of each node is set to 2 mA, based on empirical measurements of a
TMote Sky sensor node performing high-data-rate sampling and storing to flash.
We also measured the current consumption to download an ADU from a sen-
sor node, and derived the energy costs for downloading (Ed D 17:6 mA), routing
(Er D 16:9 mA), and overhearing (Eo D 2 mA). Our experiments assume that each
node can only overhear its parent in the routing tree; developing more detailed over-
hearing models is the subject of future work. Computing the components of the cost
vector for a particular ADU is done by multiplying the current consumption by the
ADU download time for each node either downloading, routing, or overhearing the
transmission.

Figure 4.15 confirms the intuition behind the scoring function behavior. value-
only downloads roughly equal value from each node, but fails to match the op-
timal performance. cost-total downloads more data from nodes near the sink.
cost-bottleneck comes close to matching the optimal solution, retrieving over 99%
of the value retrieved by the optimal solution.

To confirm our intuition we ran a set of simulations using a more realistic 25-
node tree topology and using a variety of different ADU value distributions. We
draw ADU values from several distributions in an attempt to understand Lance’s
behavior as the properties of the sampled data change. Three value distributions are
used: uniform random, exponentially distributed, and Zipf with exponent ˛ D 1. We
also make use of an ADU value distribution based on a 6 h seismic signal collected
at Reventador Volcano, Ecuador in 2005 [20] for a later experiment. Table 4.16 sum-
marizes the results, showing that the cost-bottleneck scoring function outperforms
the other two in most cases, with optimality values between 87.1% and 96.9%. The
one exception is the 4-month Zipfian data set, where cost-total slightly outperforms
cost-bottleneck.

Scoring Functions
Value Cost Cost

Distribution Lifetime Only Total Bottleneck

Uniform
4 months 62.4% 90.5% 93.2%
11 months 43.4% 68.0% 96.9%
18 months 44.6% 49.0% 90.0%

Exponential
4 months 83.9% 85.1% 88.0%
11 months 70.4% 82.0% 93.0%
18 months 67.2% 72.8% 91.2%

Zipfian
4 months 84.7% 91.4% 87.1%
11 months 63.8% 91.1% 96.2%
18 months 53.1% 86.9% 93.8%

Fig. 4.16 Optimality of different scoring functions. This table summarizes simulation results eval-
uating the three different scoring functions. Results are shown for several different lifetime targets
and value distributions. cost-bottleneck out-performs the others in almost all cases
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Fig. 4.18 Optimality and energy use in the 50-node testbed experiment. Lance achieved near-
optimal performance during this 8-h testbed experiment, retrieving 98% of the value obtained by
the offline optimal algorithm

We also ran Lance on our MoteLab [19] Wireless Sensor Network Testbed, in a
50-node configurations shown in Fig. 4.17. These experiments stress the system in
a realistic setting subject to radio interference and congestion, and exercise the mul-
tihop routing protocol, Fetch reliable data-collection protocol, and ADU summary
traffic generated by the nodes. For these experiments, we injected artificial ADU
values directly into each node rather than relying on the nodes sampling real sensor
data; this approach allows us to perform repeatable experiments that explore a wider
range of ADU value distributions. We use the cost-bottleneck scoring function.

Figure 4.18 shows the results of a 50-node testbed experiment using a Zipfian
data distribution and a target lifetime of 6 months. The upper portion of the figure
shows the amount of data value obtained by Lance from each node, compared to the
optimal solution (which was computed offline). Nodes are sorted by decreasing op-
timal value. As the figure shows, Lance achieves very close to the optimal solution,
with an optimality of 98% overall. In some cases, Lance incorrectly downloads more
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data from some nodes and less data from others; this is due to the inherent limita-
tions of an online solution that cannot foresee future ADU values. The lower portion
of the figure shows the energy breakdown for each node with downloading, forward-
ing, and overhearing costs shown. Some nodes consume more than others because
of their location in the routing tree. For example, node 103 in uses a great deal of
energy for routing packets as it is one hop from the base station, although no ADUs
are ever downloaded from that node.

4.7.4.2 2007 Deployment Analysis

While the earlier, priority-based version of Lance was used to drive our 2007 de-
ployment at Tungurahua, we were still able to analyze this system’s performance
using utility-based metrics. To evaluate Lance’s behavior with respect to an “opti-
mal” system, we took the 8,483 RSAM summaries received during a 16-h period
when the debiasing filter (see Sect. 4.6.2) was enabled. Using this information, we
compute the set of ADUs that the optimal system would have downloaded, with
complete knowledge of all ADUs but limited to the same time duration the origi-
nal network was operating. We assume the download throughput for a given node
is always the mean throughput for that node observed during the deployment (see
Fig. 4.12). This calculation ignores energy constraints because the deployed system
did not consider energy costs.

An optimal system would have downloaded 392 out of the 8,483 ADUs, whereas
the actual system downloaded 418 ADUs during this time.3 The total value of ADUs
downloaded by the optimal system is 10,678, whereas the value of the actual net-
work was 10,629, for an optimality of 99.5%. Lance did an exceptional job of
extracting the highest-value data from the network using our online heuristic al-
gorithm.

We can perform a similar analysis during the period of time during which the
network was using the EWMA-based summarization function. As with the RSAM-
based summarization function, we estimate the optimal set of ADUs that an oracle
would have downloaded. During a 25-h period, the network reported 11,012 unique
ADU summaries. An optimal system would have downloaded 554 ADUs with total
value 5,77,377. The actual network downloaded 518 ADUs with a value of 5,39,115,
for an optimality of 93.3%.

As a final evaluation metric, we wish to consider how well Lance, configured in
this manner, was able to download seismic signals representing earthquakes. Given
the low level of volcanic activity, it turns out that most of the ADUs downloaded by
Lance contain no discernible seismic signal. In fact, upon manual inspection of the
518 ADUs downloaded during this period, we identified only 20 ADUs showing a
clear earthquake signal, corresponding to only 9 separate seismic events. Note that

3 The optimal system would download fewer ADUs than the real system due to the variation in the
throughput to each node: the optimal system would download more ADUs from nodes with lower
throughput, thereby limiting the total number of ADUs it could download.
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Fig. 4.19 Lance download behavior overlaid with average ADU value. The top plot shows the
continuous seismic signal collected by a single node. The lower plot shows the average value of
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we did not configure Lance to explicitly download correlated earthquakes by using
an appropriate policy module (described in Sect. 4.6), so we would not expect a high
degree of coverage for the same event across multiple nodes.

Figure 4.19 shows the behavior of Lance during a representative 83-minute pe-
riod. In the figure, we have broken time into windows of one-half an ADU duration
(55 s in this case), and computed the mean ADU value as well as the number of
downloaded ADUs that overlap each time window. As the data shows, elevated seis-
mic activity is well-correlated with an increase in the ADU value from across the
network, as well as the number of downloaded ADUs. Moreover, the few cases of
clear seismic activity in the trace (at times 1,11,000, 1,12,700, and so forth) tend to
have more ADUs downloaded. Of the 9 separate seismic events, a total of 27 ADUs
were downloaded, representing a per-event “coverage” of 3 ADUs per event. This
represents just under half of the 7 nodes participating in the network.

4.7.4.3 Results Summary

To summarize the results, we found that the cost-bottleneck scoring function al-
lows Lance to approach optimal performance across a variety of network sizes,

G. Challen and M. Welsh
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bandwidth distributions and target lifetimes. By directing scarce energy resources
towards the most valuable data, the overall efficiency of the network considered as
a whole can be significantly increased.

4.8 Conclusions and Future Work

Based on our experience with data quality spanning three deployments and multiple
system components we see many directions for future work. Every component of
datum and dataset quality mentioned here is open for future research and continued
development.

While we have made progress in pinning down the the datum quality require-
ments specific to this domain, work continues on hardware-software codesign, time
synchronization and reliable data collection. We are currently designing a sensor
interface board for the iMote2 intended to support the volcano application as well
as other high data-rate sensing tasks, and are revisiting many of the original design
decisions that produced the volcano monitoring board described here. Recent efforts
within our group have continued to work on reliable time synchronization in other
settings such as body sensor networks. And we have begun a redesign of the data
collection component inspired by approaches such as Hop [7] that seek to reduce
power consumption and improve performance over lossy, low-power links.

As the Lance work brings out, there are tradeoffs possible between a deployed
networks target lifetime and the quantity and quality of the data provided to the ap-
plication. Lance takes a position on one end of a sliding spectrum in that it holds the
system lifetime constant, treating it as an input parameter that must be met, and then
tries to turn other knobs to maximize the output data quality given other constraints.
Another approach would be to hold the output data quality constant and try to allow
the system to last as long as possible while providing data at a minimum fidelity
set by the application. Between these two endpoints there are multiple approaches
which would tend to trade off application data quality for increased system lifetime.
Given the difficulties inherent in performing this tradeoff, we have not yet explored
this interstitial area. However, this area seems quite fertile for future work.

In addition, maximizing the output of a deployed network under resource con-
straints requires continuing to build strong connections between the notion of data
quality operative within the network and the actual needs of the application. In
Lance, we do not dictate that applications use a simplified scalar score to indi-
cate data quality, but our architecture tends to push applications in this direction.
Many applications, however, may not be able to reduce a complex set of consid-
erations into a single scalar value. Enriching this interface may help allow further
dataset quality optimizations. In general, however, the interface between the end
user’s goals and the simplified metrics operating within the network must receive
further attention to ensure the broader applicability of solutions that attempt in-
network optimization.
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In this chapter we have attempted to zero in on data quality issues inherent in
the development of a sensor network supporting the monitoring of active volcanoes.
Through our experience in this area spanning three deployments we have grappled
with many aspects of data quality, from where the sensor meets the sensor node up to
complicated optimization approaches running at the base station. We have attempted
to narrate, in a helpful way, our experiences in this area, and hope that some of the
struggles we have elucidated will smooth the waters for other deployments.
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Chapter 5
VoxNet: Reducing Latency in High Data Rate
Applications

Michael Allen

Abstract High data-rate sensing is a challenging aspect of WSN research due to
the large amounts of data generated by each sensor node. When data is being gen-
erated faster than it can be transported over multiple network hops, there is a need
to apply on-node, in-network event detection, filtering and other data processing
techniques. Although contingent on the specific application, signals in the audible
acoustic spectrum must typically be sampled at kHz rates. This makes acoustics a
particularly challenging phenomena in the high date rate class.

In the context of high data-rate sensing, this chapter describes in detail the de-
ployment of a specific application on a platform for distributed acoustic sensing
applications called VoxNet. The application, on-line source localization of animals
from their vocalizations is a compelling tool for evolutionary biologists; timely in-
field position estimates can enable biologists to augment their observations.

A ten-day deployment of VoxNet highlighted several important problems which
could not have been predicted in advance, largely related to the instrumentation of
the system and end-to-end latency from event detection to position estimate. Using
the extensive log data gathered during the deployment, two strategies to improve
end-to-end system timeliness were developed. These are Lazy Grouping, a central-
ized algorithm which performs on-line grouping of event data and facilitates its
collection from the network, and an Adaptation policy which allows nodes in the
network to individually and dynamically evaluate whether to process data locally
based on previous data transfers. Whilst the design and evaluation of these refine-
ments is based on application-specific experiences, the techniques themselves are
transferable to a variety of high data rate applications.
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5.1 Introduction

In wireless networked sensing, applications which require sensor nodes to sample
data at high rates (on the order of 100 Hz or more) face a number of challenges
which can be ignored when sampling data at lower, sub-hertz rates. Data generated
at high rates often cannot be streamed across a multi-hop network at the same rate.
The sense and send approach, where all raw data is collected at a central point is
not applicable in these cases. Instead, local processing techniques must be used to
reduce the amount of data which must be sent over the network. Furthermore, if
a phenomena must be sampled at a high rate, it is hard to conserve energy by duty
cycling.

Assuming the lower threshold of high data rate applications to be 100 Hz [32],
it is clear that the higher the data rate, the more pressing these challenges become.
Audible acoustics applications, where data must be sampled at tens of kHz, are
indicative of the higher end of the high data-rate spectrum.

This chapter uses the motivating application of acoustic detection and localiza-
tion of marmots in their natural habitat to inform the design and deployment of
VoxNet: a distributed, rapidly deployable hardware and software platform for dis-
tributed acoustic sensing. The motivating application requires that marmot calls are
detected by nodes within the network, and that these node-level events are correlated
across the network and processed to result in a position estimate which the user can
act upon.

While the design of VoxNet was motivated by bio-acoustics applications, it holds
the potential to be applied in other domains thanks to a flexible, deployable hardware
platform and a high-performance distributable programming interface.

As the first of its contributions, this chapter provides a detailed account of the
ten-day deployment of the first VoxNet system iteration [3]. In particular, several is-
sues were found to affect the end-to-end latency of the system in providing position
estimates during its deployment.

The second contribution of this chapter is the design and proof-of-concept eval-
uation of two system refinements based on the observations and system logs made
in-situ – Lazy Grouping and Adaptation. These refinements aim to reduce end-to-
end latency of position estimation and improve timeliness by reducing the amount
of data sent over the network.

Lazy Grouping is an event grouping and data collection approach that aims to
reduce latency by gathering only data that is closely grouped in time and thus cor-
responds to a network-wide event. Adaptation aims to reduce latency by allowing a
node to decide whether to process a specific part of the localization data flow locally.
This decision is made dynamically, based on recent transfer history, and allows the
node to adapt to changing network conditions.

Data transfer latency is an issue for many high data rate applications, and al-
though the refinements presented here are defined in the context of the specific
marmot localization application, both solutions can be applied to a variety of event-
based acoustic sensing applications.

This chapter is organized as follows: in Sect. 5.2, the motivating marmot lo-
calization application is discussed. In Sect. 5.3, the architecture and design of
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VoxNet is presented. The in-situ deployment of the marmot localization application
is described in Sect. 5.4 and the subsequent latency-related problems discussed in
Sects. 5.5–5.7 present the design and evaluation of Lazy Grouping and Adaptation
respectively. Finally, Sect. 5.8 discusses future work for VoxNet.

As with other chapters in this book, the deployment experiences presented are
valuable for the novice deployer. The deployment and latency problems are de-
scribed in Sects. 5.4 and 5.5. From these sections, the reader should get a good
understanding of the importance of in-situ deployment as a key step in identifying
areas for system improvement. The reader should also find several useful techniques
to address the unpredictable setbacks that occur during deployment as well as the the
vital importance of correct instrumentation of a deployed system to support off-line
performance analysis.

5.2 In-situ Acoustic Source Localization

The field of bioacoustics research is broadly concerned with the reception of acous-
tic signals made by animals. One particular aspect of bioacoustics research focuses
on understanding the purpose behind certain acoustic signals produced by animals
and how these relate to the environment in which they are produced.

In bioacoustics, counting the number of individuals present in a given recording,
known as acoustic census, is important for the researcher to help estimate the popu-
lation size in a given area. Acoustic census is possible because many mammals and
birds produce loud alarm calls, territorial calls, and songs that are species-specific,
population-specific, and often individually identifiable [23]. As such, these vocal-
izations can be used to identify the species present in an area, and potentially to
count individuals. Acoustic monitoring for census has been shown to be useful for
cane-toad monitoring [9], elephants [25], birds [17] and whales [11].

Recognizing animal and bird calls and distinguishing between different individ-
uals can be a difficult problem. For example, performing an accurate census of birds
in dense, tropical forests requires a skilled ornithologist. Furthermore, some animal
vocalizations are out of the range of human hearing, such as the infrasonic signals
produced by elephants [25].

In this chapter, the focus is on acoustic localization of animals. This is for sev-
eral reasons: firstly, the localization of animals is a key component in census since
determining the position of an animal based on its call can help the scientist disam-
biguate similar calls. Secondly, localization can also help the scientist understand
territorial behavior of the animal of interest. Thirdly, source localization is a chal-
lenging problem in distributed acoustic sensing.

The particular sound source being considered in this chapter is the marmot, a
medium-sized rodent native to the western United States. Marmots are notable for
their high pitched alarm calls when they sense danger. Localization in this case is
helpful for understanding where an animal was when it made a call, and why it
made the call – to warn others, or protect itself, for example. Although marmots
call relatively infrequently, they are prone to bouts of alarm calls, where 20 or more
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calls are made in a single position, with an interval of around 1 s between each call.
A marmot call is short, lasting around 40 milliseconds, with a center frequency of
5-6 kHz; it is also high energy, making it noticeable against background noise.

5.2.1 Enabling In-Situ Automation and Interaction

Traditionally, bioacoustics researchers gather data by wiring one or more acoustic
sensors to a multi-channel recorder situated near the animal habitat of interest. The
researcher attends the deployment and keeps a detailed log of interesting acoustic
events to aid and complement data post-analysis in the lab.

This approach commonly results in several hours’ worth of continuous acoustic
recording, which must be manually examined off-line by the scientist. Researchers
find sections of audio that warrant further analysis by listening to the full streams as
well as examining the data in the frequency domain using spectrograms. They use a
variety of domain-specific applications and frameworks for data acquisition, event
detection and analysis, such as Raven [6] and Ishmael [24]. General purpose audio
processing and recording tools such as Audacity [22] and Baudline [5] also allow
the user to investigate the characteristics of audio signals. Often they can be used in
combination with general purpose tools like Matlab [7] to perform ad-hoc process-
ing that mimics the functionality of more specialized processing frameworks.

Relying exclusively on off-line analysis is limiting: by the time the analysis is
completed, the experiment is over, and opportunity to collect additional data about
important events have passed. Furthermore, in-field analysis opens up possibilities
for active observations such as call and response.

Although a prototype WSN for recording time-synchronized acoustic data from
multiple nodes (using the Acoustic ENSBox platform) has been presented [14], it
does not provide any on-line processing capabilities. A WSN-based system would
be a good fit for a tool to enable in-field, on-line analysis; data could be collected
and processed by nodes, and presented to the user. Additionally, wireless operation
would allow for convenient physical reconfiguration and larger spatial coverage dur-
ing experimentation, when compared to a wired approach.

5.2.2 Usage Scenario

In the intended usage scenario, a scientist wants to detect marmot alarm calls and
determine the location of marmots, relative to the known positions of their burrows.
By obtaining the marmot position estimates as the system is running, the scientists
can augment their written log-traces with pictures of animals under observation. Ide-
ally, these pictures could be taken by automated imagers which are actuated based
on the results of the position estimate provided by the localization system.
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Such a localization system may also enable the scientist to record additional data
about the current habitat conditions, such as what caused the animal alarm call, and
which animal raised it. This requires that position estimates are delivered as close
to real-time as possible, in order to enable actuation and image collection.

The user’s expectation is that a position estimate will arrive in a timely manner, so
that it can be used to make specialist application related observations and decisions.
Therefore, the timeliness of the system is an important measure of its end-to-end
performance. Unlike a soft or hard real-time system, specific timing deadline is not
imposed on the system for converting detections to position estimates; however, the
longer the user has to wait for the result, the less likely it is that the information can
be of use. Therefore, the focus of the system is on presenting results as quickly as
needed.

Since the target users of this system are not wireless sensing experts, it is crucial
that the system be easy for them to deploy, initialize, and configure/reconfigure. To
be useful as a field tool, there must also be facilities for reconfiguration and tuning
during operation.

5.2.3 Localization Algorithm and Components

In this work we used a source localization algorithm taken from previous, re-
lated, proof-of-concept work to localize marmots off-line from synchronized audio
streams gathered in-situ [1] and adapted it to cater for the on-line nature of the usage
scenario.

Figure 5.1 shows the conceptual flow for on-line source localization. Possible
alarm calls are detected using an on-line event detector that runs on each node in
the network [2]. When a node detects an event, it computes a bearing estimate using

Fig. 5.1 The data flow for an on-line source localization system
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the Approximated Maximum Likelihood (AML) algorithm. Bearing estimates taken
from multiple points are fused together provide an estimate of the caller’s location.

The on-line event detector is based on an adaptive threshold. The detector esti-
mates the noise in the channel using two Exponentially Weighted Moving Average
(EWMA) filters, for mean and variance, assuming the noise in the channel is
Gaussian. Any deviations from the estimate of noise level computed beyond a
pre-determined threshold are flagged as events of interest. To provide application
specific filtering, only the energy from pre-determined frequency bands are used
in estimating noise or events. The energy bands of interest are determined a pri-
ori according to the characteristics of the acoustic phenomena. The energy of the
signal is determined in the frequency domain as the magnitude of the sum of the
pre-determined frequency bands of interest.

The Approximated Maximum Likelihood algorithm is a maximum-likelihood
based direction of arrival estimator. The estimator is equivalent to beamforming,
but is calculated in the frequency domain based only on the strongest frequency
components. The output of the AML is a 360 element vector, where each element
represents the likelihood that the sound came from a given direction relative to the
node’s orientation.

The data fusion algorithm combines the AML vector from each node to deter-
mine the most likely position of the marmot call. This is performed by a brute force
search of a pre-defined 2D space around the area covered by the nodes. Each point
in the search space is assigned a pseudo-likelihood value based on the projection
of the AML vectors from each node; this is essentially finding the region of max-
imum agreement of AML vectors. The largest aggregate value in the search space
represents the most likely position of the marmot.

Under controlled experimentation, this AML and data fusion approach yielded an
RMS positional error of 0.7 m when the source was inside the convex hull created
by the sensors, and 2.07 m when the source was outside of the convex hull [2].
This result was based on a network of six Acoustic ENSBox [14] nodes placed in a
rectangular configuration over 35 m by 60 m, with a 10 cm resolution search space.

Having introduced our motivating application, in the next section we describe
VoxNet, the platform that supports the marmot localization application. The design
of VoxNet is motivated by specific experience with bioacoustics-related sensing ap-
plications, but is intended to be general enough to support a variety of distributed,
wireless, acoustics-based applications.

5.3 The VoxNet Platform

VoxNet is a hardware and software platform for distributed acoustic sensing. This
section describes both hardware and software, covering the overall system architec-
ture and individual software layers that make up the VoxNet platform.
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Fig. 5.2 The VoxNet system architecture, showing both on-line and off-line operation contexts.
The control console is the user interface to both contexts

5.3.1 System Architecture

The full VoxNet architecture operates in two contexts: on-line and off-line.
Figure 5.2 provides an overview of this architecture, representing a framework
where programs can be written, compiled, and disseminated, and the results can be
archived and visualized.

VoxNet is made up of several hardware components: a network of nodes, a gate-
way, a control console, the compute server and the storage server. Nodes form the
main part of the on-line operation of the system, sensing and potentially processing
audio data. The gateway provides a connection to relay traffic between the control
console and the network of nodes. The control console provides a unified interface
for both the on-line and off-line portions of the platform. It hosts the interaction
tools, and acts as a sink to the programs running in the network. Results and diag-
nostic data are returned to the control console for display and visualization. A PDA
may also be used to visualize data from network streams whilst mobile in the field.
The storage server archives data acquired by nodes for later retrieval and process-
ing. The compute server provides a centralized unit for off-line data processing and
analysis.

5.3.2 Interaction Model

Distributed VoxNet applications are written in the WaveScript macroprogramming
language [15], abstracting the programmer from the particular details of the net-
work and specifics of the hardware platforms being used. WaveScript programs can
operate over either real-time data streams or archived data residing in a distributed
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Fig. 5.3 The on-line, interactive development cycle for VoxNet

system of sensors and back-end servers. This model enables users to tune and further
develop applications during pilot deployments, and enables the system to be used
as an interactive measurement tool while it is deployed. Figure 5.3 shows the in-situ
development cycle. This is important for many short-term scientific deployments,
because it allows a scientist to immediately explore newly observed phenomena. By
design, this model allows room for iterative improvement based on in-situ deploy-
ment experiences. As the system becomes more familiar to the user, their needs and
expectations of the system’s in-situ operation can be further refined.

When running on-line, WaveScript programs are created, compiled and dissemi-
nated to the network via the control console. Data arriving at the control console can
be visualized as well as archived to a storage server. This data includes application
specific streams, as well as logging data and operational statistics. When in off-line
operation, streams of results and offloaded raw sensor data can be archived to a stor-
age server and later processed off-line, using the same user interface. Applications
that would previously have run on the control console and nodes, can be run on the
compute server with data queried from the storage server.

5.3.3 Hardware

The basic node hardware used in VoxNet is a revision of the Acoustic ENSBox
prototype [14]. Based on in-field experiences with the original Acoustic ENSBox,
additional hardware components were added, and packaging was significantly im-
proved to enable easier and more robust deployment.

The VoxNet node (shown in Fig. 5.4) shares the same main processor board as
the original Acoustic ENSBox, based on the Sensoria Slauson board: a 400 MHz
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Fig. 5.4 The VoxNet
hardware platform

PXA 255 processor with 64 MB memory, 32 MB on-board flash and two PCMCIA
slots. The two PCMCIA slots house a 4 channel sound card with 48 kHz sampling
rate and a 200 mW 802.11 b wireless card with up to 200 m transmission range.

In addition to the main processor board, the VoxNet node utilizes an auxiliary
processor, the Gumstix Connex 400, connected to the Slauson by wired Ethernet.
The Gumstix hosts an 8 GB Compact Flash card that can archive data streams from
the Slauson.

VoxNet nodes currently consume 7.5 W when running, and have an 8-h lifetime
from an internal 5,400 mAh Li-ion battery. To support duty-cycling, the VoxNet
node includes a Mica2 mote [4] that is always on, linked to the Slauson board via
a serial line. The Mica2 manages several peripheral components, namely: two indi-
cator LEDs, an external attention button, a GPS module, a 3-axis accelerometer and
temperature sensor. It can also control power to the other components of the system,
including the Gumstix, Slauson, the audio output power amplifier and audio input
preamplifiers. Software on the Mica2 allows the Slauson to power the system down
for a specified interval and awaken when the attention button is pressed. The Mica2
CC1000 radio is not currently used, but could be utilized to implement over-the-air
wake-up of the main processing board.

The VoxNet node is a self-contained unit installed in an 1,150 Pelican case with
the microphone array integrated into the lid of the case; it has a total weight of
2.3 kg. The microphone modules detach and pack inside the box for shipping, and all
external connectors are weather-resistant and sealed. The microphones are protected
by a waterproof latex cap and an artificial fur wind screen. During deployments
nodes have survived repeated exposure to precipitation.
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5.3.4 Software

The VoxNet software stack is made up of three integrated layers:

� The high level application layer, provided by the WaveScope stream processing
engine, which handles compilation, optimization, and operation over the net-
work.

� The distribution and interaction layer, which provides a collection of sub-
application level control and visualization tools important for tracking resource
availability, troubleshooting and usability in the field and in off-line computa-
tions.

� The platform drivers and services layer, which supports the operation of the
interaction and application layers on the specific hardware used in VoxNet.
This layer includes core components such as time synchronization and multi-hop
network communication.

5.3.4.1 High Level Application Layer

In VoxNet, applications are run using the WaveScope stream-processing engine.
The WaveScope project is an ongoing effort which started in 2006 at MIT with
an aim to develop a stream processing system for high-rate sensor networks with
data sampling at rates of hundreds to tens of thousands of Hertz per node [15, 16].
WaveScope programs are written using the custom stream-processing programming
language, WaveScript. Similar to other stream-processing languages, WaveScript
structures programs as a set of communicating stream operators, also known as ker-
nels or filters. To write a program, the user writes a script that concatenates stream
operators to form a directed graph. Stream operators consume one or more input
streams, and produce one or more output streams. Users can write custom stream
operators directly in WaveScript to augment the existing library of operators.

The WaveScript compiler converts the high-level application representation into
efficient C code for either the sink (x86-based) or VoxNet node (ARM-based). The
WaveScope engine used in VoxNet requires that users write both the sink and node
side of the executables separately, and define where network communication takes
place – that is, at which point the data streams must travel from node to sink.
Two WaveScript operators are provided to allow this functionality, toNet() and
fromNet(). toNet() maps a local data stream onto a named network stream,
and fromNet() subscribes to the named network stream, outputting it as a local
data stream.

The high level data flow graph for the WaveScript implementation of the marmot
localization application is shown in Fig. 5.5. Stream variables that flow between
operators are shown in light gray, with text in hangle bracketsi, and stream op-
erators are shown in dark gray. Audio data acquired by a node is directed into
WaveScope by the Audio operator as four channels (ch1 to ch4). Stream ch1 is
passed through the eventDetector operator, which produces a stream of tuples
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Fig. 5.5 The high-level graph of the WaveScope localization application. Operators and named
streams are shown. The corresponding node and sink-side code is shown on the right hand side of
the figure

called events, which correspond to the start and end times of marmot calls. The
events stream is passed through the sync library operator, along with the four
original audio channels. The sync operator outputs a four channel stream of raw
data (detections) which corresponds to the data ranges specified in events.
The detections stream flows through the toNet operator into a named network
stream (det-stream).

At the sink, the fromNet operator receives data from any nodes which are
publishing det-stream, outputting a detections2 stream. detections2
flows through the AML operator, producing amls – a stream of angle of arrival es-
timates. amls flows through the grouping operator temporalCluster, which
time-correlates AML results, producing a stream of grouped data (clusters).
This flows through a data fusion operator to produce a stream of position estimate
maps, which are output to the user.

Implementing the marmot localization application using the WaveScript pro-
gramming language and optimizing the compiler resulted in a 30% reduction in
processor load and 12% in memory usage on-node when compared to an EmStar-
based implementation on the same hardware [3].

5.3.4.2 Distribution and Interaction Layer

VoxNet implements network streams and a range of control and visualization tools
to support the dissemination of applications from the control console to nodes, and
the display of node health and application related-feedback. These tools are de-
scribed below.

Network Stream Subscription. To support the flow of WaveScope streams across
network boundaries in VoxNet, a TCP/IP based network stream abstraction using
an advertise-subscribe model was developed. In this model, nodes or sink advertise
streams that they serve, allowing clients to subscribe to them. The network stream
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abstractions are used for all types of communication in the VoxNet system, including
visualization, log messages, control messages and pushing new compiled programs.
Networked streams are conceptually the same as WaveScope streams, flowing uni-
directionally from one point to another. Additionally, a networked stream advertised
by a node can flow to multiple clients.

To enable the network stream abstraction in VoxNet, the sink and each node in
the network run subscription servers, which are responsible for creating new streams
to be advertised, managing subscribers to each advertised stream, and subscribing to
streams advertised by other nodes or the sink. Streams are identified by a descriptive
name such as detections that must be unique to a given subscription server, but is
not required to be globally unique.

Networked streams are intended to be 100% reliable to preserve the flow of data
in WaveScope applications. To ensure reliable data transmission, the stream abstrac-
tion is built upon TCP/IP. The implementation of the network stream abstraction
was built using EmStar’s [13] event driven TCP server and client libraries as base
functionality.

There are some well-known streams that are exposed by nodes and the sink dur-
ing normal operation of VoxNet:

� Control stream (Sink). Allows the sink to send commands to all nodes in the
network. All nodes subscribe to this stream.

� Log stream (Node). Allows nodes to send information to the sink. The sink sub-
scribes to the control streams of all nodes known to the discovery server.

� File stream (Sink). Allows the sink to send data files such as new binaries to the
nodes.

Discovery Service and Control Console. The control console is a centralized point
of contact for the network that is responsible for node discovery, application dis-
semination, resource usage tracking, error logging, and profiling statistics. It serves
as a mediator between users who want to install a program and the VoxNet dis-
tributed system, and hosts all appropriate compiler tools and scripts. The discovery
service hosted on the control console maintains a list of active VoxNet nodes and
back-end server machines, and tracks their capabilities and resource availability.
When VoxNet nodes or servers start up, they connect to the control console at a
well-known address and register with the network.

Control Tools. To control the VoxNet deployment, we developed the WaveScope
shell (WSH): a text-based command-line interface to the control console, similar
to the UNIX shell. WSH is implemented using GNU readline, and is based on the
remote broadcast shell (RBSH) [12]. WSH communicates with nodes over the con-
trol stream, which all nodes in the network subscribe to by default. As the control
console also subscribes to all nodes’ control streams by default, log messages sent
over this stream are passed to WSH for display to the user.

WSH can send arbitrary UNIX commands to nodes, as well as commands to
pause and restart the current application, flush current stream buffers and send files
from the control console to the node, such as new binaries. The shell also provides a
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tabular display showing the current status of each node registered via the discovery
protocol. Each stream a node currently exposes is displayed, along with the current
send-buffer status for that stream, i.e. how much data is queued to send.

Finally, WSH provides a network test functionality, where all or a subset of nodes
can be requested to send back arbitrarily sized amounts of data, with the resulting
latency measured for each node. This can be used to diagnose network latency, and
was extensively used during deployment.

Spill to Disk. Experience with field scientists showed that even in cases where de-
tection and localization can be performed on-line, there is also value in recording
a raw data set for future processing. While this desire may diminish as confidence
is gained in data reduction algorithms, it will always be important in the testing
phases of any new algorithm, as well as for interactive use, for example to replay
and re-analyze recent data. To address these concerns, a spill to disk functionality
was developed. The spill to disk component saves correctly time-stamped raw data
streams to the flash card in the VoxNet node. In the main WaveScope program, an
extra toNet operator is included so that the main processor advertises and serves the
raw data being gathered as a network stream visible to the supervisory co-processor
(the Gumstix). A subscription client on the Gumstix receives the data over the wired
network from the main ENSBox processing board, and marshals it to files on its
flash card, properly annotating with global timestamps.

5.3.4.3 Platform Drivers and Services Layer

In addition to the reusable tools and components described above, there are many
platform-specific elements used to support VoxNet. Many of these are hardware
drivers (such as audio acquisition), diagnostic software, and glue components. The
two most important features are described below.

Time Synchronization and Self-localization. VoxNet inherits a time synchronization
service and a self-localization subsystem previously developed for the Acous-
tic ENSBox [14], and adds additional glue to integrate these features into the
WaveScope engine. Reference Broadcast Synchronization [10] is combined with
a protocol to propagate global time from a node synchronized to GPS [20]. Times-
tamps in VoxNet systems are converted to global time before being transmitted over
the network or saved to persistent storage.

IP Routing. VoxNet implements IP routing from each node back to the gateway
node using an existing user-space implementation of the Dynamic Source Routing
algorithm (DSR) [19]. The networking layer sitting above TCP in VoxNet was de-
veloped in a single-hop context, and using DSR was the quickest and easiest path to
moving this single hop communication to a multi-hop context.

This particular implementation dynamically installed routing entries into the
kernel routing table, allowing nodes to automatically forward traffic on behalf
of one another [27]. Although DSR can establish routes between any two nodes
on-demand, it was only used to find and maintain routes between the sink and nodes.
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This is because from an application perspective, the sink was the only end point
which nodes required communication with. To maintain paths, nodes send a special
ping message to the sink every minute. The gateway forwards traffic between the
Pseudo-IBSS network and a normal wired or wireless LAN.

5.4 In-Situ Deployment

From the 8th to 18th of August 2007, the VoxNet platform was deployed and tested
in-situ at the Rocky Mountain Biological Laboratory (RMBL) in Gothic, Colorado,
USA, where biologists have been studying marmot behavior for 30 years. Four peo-
ple in total were present at RMBL to deploy VoxNet in-situ: the three-man VoxNet
development team and a biologist studying marmot behavior, using the Acoustic
ESNBox purely as a data acquisition tool. Throughout VoxNet’s deployment, the
biologist provided expert advice and guidance where required, and assisted with the
physical deployment. The involvement of a domain scientist during deployment was
a critical part of the process. Observations and intuitive decisions made by the sci-
entist helped inform the deployment sensing goals, and identified ways the system
could be made easier to use.

In the months leading up to the deployment, it was not possible to perform full
system trials because the Acoustic ENSBox nodes utilized in VoxNet were being
used by the domain scientist at RMBL to record time-synchronized acoustic data of
marmots. The deployment therefore represented the first end-to-end outdoor trials
of VoxNet. Out of the ten-day period set aside for short deployments, a week-long
on-site integration and partial system testing period was required in Colorado from
the 8th to the 14th of August.

In total over the ten day period, four attended deployments of the VoxNet net-
work were undertaken. During each attended deployment, a network of eight nodes
was deployed when marmots are typically active, from mid-morning until early af-
ternoon. The eight nodes were deployed in the same location over an area of 140 m
by 70 m (2.4 acres), as shown in Fig. 5.6. Each node was between 40–50 meters
away from its nearest neighbors.

The node positions were chosen by the biologist based on expert knowledge:
the deployment area encompassed three well-known marmot burrow locations.
The node positions were kept consistent over different deployment days by remov-
ing only the nodes at the end of each deployment, keeping stands in place.

The gateway node and control console were placed in turn at two sites during the
experiments. The first was 200 m west of the deployment, in a car-park. The second
was 100 m southwest of node 100 (see Fig. 5.6). When at the second position, all
nodes were within one hop of the gateway node, meaning that multi-hop communi-
cation was unnecessary. Both positions were far enough from the deployment area
that they minimized interference with the marmots.

During deployment, the marmot localization application as described in
Sect. 5.2.3 was run on the VoxNet platform. A laptop connected via Ethernet to the
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Fig. 5.6 The physical deployment of the eight nodes at RMBL. The nodes were deployed over
a 140 m by 70 m area. The gateway and control console were deployed at two locations during
the deployment, approximately 200 m west of node 104 in the car park, and approximately 100 m
southwest of node 100 in an open, grassed area. Data SIO, NOAA, U.S. Navy, NGA, GEBCO,
Image c� 2010 DigitalGlobe c� 2010 Google

gateway was used as the control console, as well as for the sink-side processing of
the marmot localization application: the AML and position estimation. The control
console was time-synchronized with the VoxNet nodes through the gateway, using a
custom time sync service. The WaveScope shell (WSH) provided the interface to the
control console, allowing control commands to be sent to the nodes from the laptop,
as well as providing real-time updates of node status. Throughout the deployment,
the WSH logged all detections and control stream messages that were generated by
the nodes in the network as well as local debug and network data. Each node also
recorded logging information for off-line analysis: link quality, network topology
and application debugging output.

During the deployments, it was necessary to induce marmot calls to test the mar-
mot localization application. This was achieved by a member of the deployment
team walking slowly and quietly into the deployment area, and then making a sud-
den movement at the marmots. Usually, a single marmot would signal alarm and all
would run back to their burrows temporarily. When many marmots were together,
this behavior could result in multiple marmot calls.

5.4.1 Discussion of Problems Encountered During Deployments

Each of the deployments was intended to test the VoxNet platform and the marmot
localization application in a realistic environment. It was important to understand
the problems arising from running the localization application on-line, with real
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marmots, and under the supervision of a domain expert. This allowed a comprehen-
sive picture to be built of the necessary improvements for further design iterations.

In this section we summarize the general problems we encountered while de-
ploying VoxNet. It was not always suitable to solve problems in-situ: laptops were
running on batteries, and log data needed to be gathered, consolidated and ana-
lyzed. Additionally, development and controlled experimentation was required, both
of which were not suitable to be performed at the deployment site.

Although the deployment area was within five miles of the accommodation, the
time window in which to monitor marmots every day was limited. This meant a non-
trivial software bug causing a return to the accommodation could effectively hamper
the day’s work. In addition, the biologist present throughout the deployment had to
use the Acoustic ENSBox nodes to record continuous audio data streams on some
of the days set aside for deployment. VoxNet could not be deployed on these days.

Weather conditions were hazardous for the gateway and control console: they
were not waterproofed, so had to be protected from the rain. Additionally, too much
sun made the laptop screen very difficult to read; a solution to this problem is shown
in Fig. 5.7.

The screen glare problem was compounded by the fact that battery life at the
control console was limited. Often, the screen brightness had to be reduced in order
to conserve battery life. Several times, it was necessary to change laptops in order to
keep experimentation running. This proved difficult for consolidation of data post-
deployment. Ideally the battery life of the control console should match the lifetime
of the nodes, or at least the intended duration of the deployment.

Fig. 5.7 Dealing with the problems of screen glare during in-situ experimentation
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Each of the deployments identified a specific problem that had been overlooked
or underestimated during the laboratory-based development of VoxNet. Therefore,
with each deployment, the general operation of VoxNet was improved. The rest of
this section describes each deployment in more detail.

5.4.1.1 Deployment One

The first deployment was made on August 14th, 2007 and involved running the full
marmot localization application. There was light rain falling over the deployment
area and as the gateway and control console were not weather-proofed, they were
deployed at the car park (position one), inside the car.

VoxNet’s multi-hop routing component was initially enabled for the deployment,
but encountered a problem that had not been seen previously in lab or initial in-situ
testing. The implementation of the DSR algorithm would find very long paths from
node to sink of up to eight hops that would change often and appeared not to settle. It
was not understood why this occurred, and time did not allow for a detailed analysis
of the routing component. It is possible there was a bug in the implementation. To
resolve the problem it was decided to limit the maximum length of a routing path
between node and sink to be three hops. This change was implemented after the
deployment, and worked for the remaining deployments.

The marmot localization application was run in single hop mode whilst still at
the car park, as the weather had cleared by this point. When detections were trig-
gered at each node, a data transport problem became apparent. It was found that
nodes could transmit short log messages of around 30 bytes back to the sink to indi-
cate that detections had been made, but detection data was not getting back quickly
enough for detections to be fused together. This meant there was no suitable input
for the localization algorithm which consequently was not invoked once. Instead,
nodes were repeatedly getting disconnected from the control console as they tried
to send data. The initial assumption was that this was due to poor quality of network
links, so a decision was made to move the gateway and control console to position
two, as shown in Fig. 5.6, to see if this would help with disconnection problems.
Moving the gateway closer to the nodes did not seem to change the rate of discon-
nections, so it was decided to bring the nodes in to consolidate and analyze the data
set that had been gathered. The total time from position one (car park) deployment
to consolidation at position two was 25 min. Post-deployment, problems were found
with the log data. The raw detection data messages sent from nodes had detection
timestamps in the node’s local clock rather than the network time. Additionally, the
sink-side application recorded a log message when detection data from nodes ar-
rived at the sink, but neglected to record the id of the node in this message, or the
time it arrived at the sink. This meant the latency between detection at the node and
arrival time at the sink could not be determined. This would have shown how long
detections were taking to arrive and infer if moving the gateway did indeed help.
The only data that could be gathered from the sink-side logs was that the detection
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data being sent from nodes were varying in size, either 32 kB, 65 kB or 128 kB.
The detection lengths should have all been 32 kB, so the extra data generated would
have been filling up nodes’ sending queues. This could have meant that data was not
received at the sink because it was getting dropped, although there was no log in-
formation to support this. This configuration error was subsequently fixed to make
sure any detection sent by the node was limited to be 32 kB in size. During the
25 min period, 86 detections were made by all nodes, but only 46 were received at
the sink. This may be partly due to the fact that the application was stopped before
nodes had cleared their data buffers, when feasibly they might have transmitted the
remaining data.

Finally, the link information that was logged at each node showed that link
quality improved between all nodes and the gateway after moving the gateway to
position two. However, it was not clear from the gathered log information whether
this had an effect on the latency of transmissions.

5.4.1.2 Deployment Two

The second deployment took place on August 16th, 2007. Starting at 11am, the
VoxNet network was set-up in single-hop mode with the gateway in position two,
running the marmot localization application for several hours. Subsequently, the
application was stopped and VoxNet set into multi-hop mode. The intent was to
gather marmot detection data in single-hop mode, and then troubleshoot multi-hop
communication and data transfer latency as seen in deployment one, before finally
starting the marmot application in multi-hop mode. Controlled experiments were
carried out for 30 min, to be followed by the evaluation of the localization applica-
tion. However, the multi-hop deployment had to be cut short due to poor weather
when a storm interrupted deployment. As the rain started, the gateway was moved
from position two to position one inside the car. The rain caused the marmots to
retreat to their burrows, and the raindrops hitting the microphones and node cases
caused the event detectors to constantly trigger. It was expected that the network
would become heavily congested, and that nodes would drop data as their trans-
mit queues overflowed. Over the course of just 436 s (7 1/4 min), 2,890 detections
were triggered at a rate of around 6 per second network-wide. At the control server
side, 342 detections arrived at the sink. This highlights a problem in the event de-
tector that makes it susceptible to false detections (discussed further in Sect. 5.5.2).
This episode gives an insight into the behavior of the marmot localization applica-
tion running in VoxNet during heavy load. Each node dropped in the region of 90%
of detection data queued to send. Despite these data losses, the system did not stop
working, demonstrating that it could deal with network overloading in a graceful
manner.

After the deployment, we discovered that the changes made to the VoxNet ap-
plication to improve logging output had neglected to record the node id associated
with the raw detection, meaning that the single-hop data gathered was unusable.
Fortunately, the data would not have been useful under these conditions as during
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rainfall marmots retreat back into their burrows, preventing further observation. In
such a case, the scientist would either temporarily stop the application, or abort the
experimentation for the day. In unattended deployments where the WSN is expected
to be autonomous, it may be useful for the network to identify a change in weather
conditions as a reason to temporarily stop processing data.

5.4.1.3 Deployment Three

The third deployment took place on August 17th, 2007. The weather was bright and
sunny, so we decided to move the gateway node to position two. In the deployment,
we attempted to manually write logs detailing marmot behavior: recording the rough
locations where marmots called from and how many calls were detected. This was
done in an attempt to relate events recorded by the system to real marmot events, an
aspect that had been neglected in the two previous deployments.

Only seven of the eight nodes were used as the eighth node was experiencing
intermittent problems causing it fail to respond to network communication. We be-
lieve this failure was caused by the rainfall in the previous deployment day. The
nodes were deployed for 2 h 10 min. Within that period, the application was run in
multi-hop mode for around 1 h 25 min, and in single-hop mode for around 45 min.

During the deployment, three periods of marmot activity were induced by mem-
bers of the deployment team. The first period of activity lead to a set of eight
detections over a two-minute period approximately where the sixth, seventh and
eighth alarm calls were from different marmots but very close together. Figure 5.8
shows a graph of detection time from first detection on the x axis vs node id on the
y axis. The individual marmot calls are evident on the graph as tightly grouped, ver-
tically aligned detections across several different nodes. Notably, the sixth, seventh
and eight calls are situated around the 80 s mark, where there are indeed multiple
detections from each node within a small space of time. After this point, the control
console was swapped over to a different laptop and the application restarted.

The second period of activity was a bout of twenty-eight calls made by one
marmot as a member of the team slowly approached it. Calls were made at in-
tervals of roughly one second. Photos were taken, but unfortunately the raw data
corresponding to the set of detections was not recovered from the control console
post-deployment, and was inadvertently overwritten during the next day’s deploy-
ment. Attempts made to induce another bout were unsuccessful.

The third period of activity yielded a set of six marmot calls, but the data cor-
responding to these were lost in the same manner as the marmot bout. To further
frustrate, the version of the sink-side application running at the control console had
not been updated to reflect the logging changes from Sect. 5.4.1.2, where the node
id was recorded along side the AML and detection data. Thus, the log data taken by
the WSH and the sink-side application were not sufficient to draw a graph similar
to Fig. 5.8.
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Fig. 5.8 A set of events taken from deployment three, dated 17th August, 2007. The x axis shows
time since the first detection in seconds and the y axis shows node id. Each data point represents
the time a detection was triggered at a node

5.4.2 Deployment Four

The fourth deployment took place on the 18th of August, 2007. The marmot local-
ization application was run for just over 2 h whilst marmot alarm calls were induced
by a team member. The gateway and control console were placed at the car park,
and the network was started in single-hop mode. A larger antenna was available to
use that provided one-hop communication to all nodes from the car-park gateway
location.

Whilst the manual data logs about marmot behavior introduced in deployment
three were reasonably helpful, it was decided that one of the nodes would record
a time-synchronized audio stream in parallel with the marmot localization applica-
tion. This recording could subsequently be used as a reference stream for the events
detected by nodes during the deployment. The resulting data set of raw data files
totaled 3.8 GB – four channels of 16-bit audio sampled at 48 kHz for around 2 h.

Within a 2 h period (7,194 s), a total of 683 detection events were sent to the sink
by nodes in the network. Just 5 out of 683 detections were dropped for a 99.3%
success rate. Although 100% data reliability was expected, the data drops were ob-
served to be due to the overflow of the network buffers (512 kB per stream), which
dropped new data during periods of network congestion and high detection rates
(i.e. tail dropping). This indicated that the arbitrary buffer sizes chosen for streams
were too small for the volume of detections that each node was experiencing.
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5.4.3 Summary

This section has described a number of issues which affected the deployment:

� Data logging issues the logging data being gathered was not always sufficient to
isolate problems or allow for off-line processing.

� Multi-hop routing the multi-hop routing implementation caused enough prob-
lems that it was necessary to run the system in single-hop mode to isolate other
problems.

� Time constraints and weather there were only small time windows each day
when marmots were active, and poor weather meant marmots did not surface
from their burrows during these times.

� Data transport issues the volume of data had an effect on how quickly data could
be transported to the sink.

� Phenomena issues marmots sometimes had to be encouraged to chirp, in order
to stress-test the system.

Although we experienced many problems throughout the deployment process we
considered it to be a success. We were able to identify and debug many problems,
and managed to record some useful data about VoxNet’s in-situ operation.

The first iteration of several real-life deployments is often marked by low data
yield and quality, as well as debugging and operational difficulties. This trend is
documented in many other systems including volcano monitoring [31], redwood
tree micro climate monitoring [28], a precision agricultural monitoring [21] and soil
contaminant monitoring [26]. At a superficial level, the source of these problems is
lack of adequate preparation. However, trying to predict the behavior of even the
simplest WSNs before deployment is very difficult because it is practically impos-
sible to think of every potential failure point of a system before deployment. This
is partially due to the fact that some obscure failure conditions are only revealed
during in-situ operation, and partly because it is hard to know what failure modes
are most likely to occur, i.e. some may not be predicted at all but may turn out to
be the most important. In many cases, it is only through experiencing unpredictable,
obscure problems that the deployment and operation of a system can be made more
reliable and robust.

However, comprehensive preparation is difficult for first system iterations, due
to the physical difficulty of deployment, as well as prediction of corner cases which
will cause system to stop working, but only become apparent in unpredictable en-
vironments. In general, a rule of thumb favored by the author is that everything
that can go wrong, will go wrong. To combat this, it is important that the WSN
deployer be prepared for unpredictable eventualities by scheduling enough time for
the deployment and making sure the system is suitably instrumented for gathering
debugging and log data. Although only four days were used for deployment here, all
of the ten days available were used to improve VoxNet’s reliability and robustness.

This section has shown how important it is that a deployed system always gathers
debugging and logging data so that (a) if it fails, the location of the problem in the
code can be quickly identified and (b) performance information can be derived. Post
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deployment analysis of system log data is a vital part of fixing or recreating prob-
lems in controlled environments. In some cases, these changes may be attempted
during the time allotted for deployment, but in other cases the system modifications
must be introduced post-deployment, back in the lab. For the latter case, it is not
always clear exactly which logging data will become useful during post analysis.
The goal should be to log as much informative data as possible without severely
compromising the running of the system.

The next section discusses an issue found to be problematic during deployment:
latency of data transfers. We focus on this because it has a general appeal to other
high data-rate applications.

5.5 Factors Affecting Timeliness

When a WSN-based system is required to provide feedback to a user in the field,
timeliness is an important consideration. The user or the network may need to act on
the feedback to enable other observations or actuation. In the case of the application
at hand, the scientist wants to know where the marmot is quickly so that a picture
may be taken. If the animal moves before the position estimate is made then the
feedback is no longer timely, and most likely not useful.

Many monitoring applications which run in an on-line manner are event-based
in nature – the system must react to the occurrence of an event, be it a structural
fault, gunshot or animal call. When the phenomena being sensed must be sampled
at high rates, the amount of data generated means that some data processing must
be performed locally. Therefore, maintaining timeliness is a difficult trade-off. It is
affected by the requirements of the motivating application, the speed and reliability
of the wireless communication channel between nodes, and the processing power
available locally at each node. Since at least one of these factors - usually the wire-
less communication - is dynamic and can change radically over a short time period,
it is important to address this trade-off dynamically.

In the marmot localization processing chain, there are three contributors to the
end-to-end latency of position estimates and thus timeliness in the system: node
latency, network latency and sink latency. Node and network latency are due to on-
node event detection and the transfer of that detection data to the sink. Sink latency is
due to the processing of detection data through the AML and data fusion algorithms,
and the graphical presentation to the user.

During deployment, we observed that network transfer was by far the largest and
most variable contributor to end-to-end latency in the system, ranging from tens of
milliseconds to several seconds. The on-node event detection ran in real-time, and
the processing load on the sink was nominal, consuming on the order of tens of
milliseconds.

This section looks at the factors which induce position estimation latency from
an application-oriented perspective. The rationale for this is as follows: the network
latency an individual node experiences is affected by the amount of data the network
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must carry at any given point. This in turn is affected by the volume of events that
are being triggered at each node. These events may be real, or they may be false
positives. Solutions can address this problem locally in two ways. First, from an
individual node’s point of view: how do I reduce the amount of data I send based on
local information? Second, from a network-wide point of view: how can the overall
amount of data sent be reduced based on network information?

5.5.1 Event Frequency

Recall from Sect. 5.2 that how frequently marmot calls are made is reasonably well
understood: individual marmots call relatively infrequently, but that several marmots
may call within a short period, or a single marmot may produce a bout. However,
in the context of the system, event frequency refers not only to the rate at which the
animals call, but also to the rate at which the event detector running on the nodes is
triggered. In an ideal scenario, the trigger rate and the call rate would be identical.
In practice, false positives trigger a node’s event detector, as discussed later in this
section. Nonetheless, as the frequency of events being detected by each node in
the network increases, it follows that the amount of data that needs to be sent back
to the sink will increase. At each node, outgoing data is queued, meaning it will
take longer to transfer the most recent detections if there is already data waiting to
be sent.

To show the effects of event frequency on data queues, and the subsequent trans-
mission times, we consider an example from a data trace of actual detection events
from the system running in-situ, at RMBL. Seven of the eight nodes were used (node
108 was not used), with each node one hop from the sink.

Figure 5.9 shows the effect of a large number of detections across the network in
a short period of time. The data shown on the graph is for a period of 3 s, when 19
detections were triggered across various nodes. Each data point represents a detec-
tion, where the x axis is the detection time, and the y axis is the number of events
that were queued network-wide when the detection was made. The graph shows
how data can quickly accumulate in the network. Ultimately, this shows that the
event frequency, and hence local and aggregate queue size will have an effect on the
time taken to transfer data to the sink.

5.5.2 False Detections

As previously mentioned, false positives can increase the end-to-end latency of the
localization system. There are two ways in which false detections affect the on-line
operation of the system. First, the event detector at each node can be triggered by
events which are not marmot calls; these are false positives. Since each node will
send the data corresponding to any detection it makes to the sink, unnecessary data is
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Fig. 5.9 A graph of detections being sent or queued vs. detection time from data gathered at
RMBL. Each point on the graph is a detection made by a node, where the x axis is the time since
the first detection in the deployment was made and the y axis is the aggregate instantaneous number
of events either queued or being transmitted across the whole network

being sent. For example, it was noted that hand claps could trigger the event detector.
Network-wide, a loud enough clap could be picked up by several nodes, representing
a network-wide false positive. Furthermore, uncorrelated weather events such as
rainfall and strong winds were observed to trigger the event detectors frequently, as
shown in Sects. 5.4.1.2 and 5.4.2.

Second, if non-marmot events trigger several nodes in the network simultane-
ously, the data generated may still be processed as though it were a proper animal
call. In this case, unnecessary processing is performed at the sink that results in a
useless output.

One approach to addressing the problem of false positives is to attempt to reduce
them locally, at the node. A suitable candidate for this approach is the application
of automated classification techniques. Events detected using the energy-based de-
tection technique could be submitted to a more rigorous examination to determine
if they require further processing, for example through the AML. Work has been
presented in the literature on the use of Hidden Markov Models (HMMs) to classify
species of acorn woodpecker [29] and other types of bird [30]. HMMs are a pop-
ular approach for automated speech recognition (ASR) of human voices. In [30],
the HMM is trained against reference bird calls to create observation vectors, which
can be used to classify the signal as it evolves. The observation vectors can be cre-
ated using techniques such as building Mel-Ceptstrel Coefficients (MFCCs), Linear
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Predictive Coding (LPC) or Artificial Neural Networks (ANNs) [18]. Through ex-
perimentation, MFCCs are seen to be more suited to recognition of bird song than
LPC, due to sharp transitions that are present in bird calls [30]. Whilst the evalua-
tion of an observation vector in a trained HMM is not computationally complex, the
creation of the observation vector may require significant processing.

Aside from its uses to aid event detection, classification is a generally impor-
tant component of the higher-level sensing goal for smart bio-acoustics sensing:
automated census for different species of animals and birds. It is clear that with
suitable consideration for real-time operation on an embedded node, classification
techniques could be a good candidate to help reduce false detections; however, these
techniques have not been implemented or tested on the VoxNet nodes to date.

5.5.3 A Case for Dynamic Processing

It is already understood that high data rate applications preclude the streaming of
raw data from nodes to a sink. However, it may also be the case that the filtered
streams of data produced by nodes cannot be delivered in a timely manner either. Ex-
amples of this have already been shown in this section, where events are generated
frequently, some of which may be false positives. Since the effect of event gener-
ation may have a dynamic effect on the network latency, it is important to have a
dynamic means to adaptively adjust based on the current state of the network.

In the case when the network is congested, it makes most sense for a node to
consider processing some of its data locally. In some cases it may take less time for
a node to perform some local processing rather than gamble with high latency on a
congested network.

It was established in [3] that for the localization application, the angle of arrival
algorithm (AML) could be processed locally on a VoxNet node. This processing
takes longer than it normally would at the sink – 2.4 s vs 0.08 s, but results in sig-
nificantly less data that must be sent to the sink – 32 kB for audio, 800 bytes for the
AML vector. In [3], a simulation was carried out based on empirical measurements
from the field to determine whether there were real conditions under which it was
beneficial to process the AML locally. Figure 5.10 is a graph based on the results
in [3]. The graph is organized by number of hops between node and sink, and shows
the aggregate time for both AML processing and data transmission. The data was
gathered by measuring the time taken for nodes to send either 32 kB or 800 B in a
three-hop network. For the given data set, there is a trade-off point that lies between
two and three hops from the sink; beyond this point, it makes sense for a node to
process data locally if possible [3].

This shows that if a trade-off can be drawn between locally processing and net-
work transmission, the general solution to the trade-off can be found by determining
when to enforce this dynamic local processing.

This section discussed the application-related issues found during the deploy-
ment of VoxNet which affected the end-to-end latency. Specifically, these issues
were focused around the generation and transmission of unneeded data by nodes.
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Fig. 5.10 Simulation results showing the difference in end-to-end latency between processing at
the sink and sending raw data (left hand side), and processing at the node and sending the AML
result to sink (right hand side). Each bar contains two parts: the AML processing time (lower part)
and the data transfer time (upper part). The x axis shows the number of hops from the sink, where
2(a) and 2(b) are different branches of the routing tree

This unneeded data was a result of false detections, or a rapid build up of events
over a small period of time. Furthermore, the sending of uncorrelated detections to
the sink presents unnecessary data transmission.

The following two sections present two approaches to reduce end-to-end latency
and thus improve timeliness based on application related, deployment-observed
problems. These are Lazy Grouping, which provides network wide data filtering
and collection, and an Adaptation policy which allows a node to decide whether to
process data locally or send to the sink based on the dynamic state of the network.
Even though they are evaluated with respect to the marmot localization applica-
tion, in the context of high data-rate, event-based applications, these approaches are
generally applicable.

5.6 Lazy Grouping

An important aspect of meeting the goal of only sending data that supports the
application’s overall aim is to provide some way of deciding if data is useful before
sending it. In the context of the motivating marmot localization application, data
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Fig. 5.11 The flow of Lazy
Grouping’s on-line grouping
(1, 2) and data collection
stages (3, 4, 5)

sent by the nodes is only useful if it is being used as part of a position estimate
calculation. The Lazy Grouping algorithm is a potential solution to this problem.
This approach is inspired by Bentley’s lazy evaluation strategy of never evaluating
an item until it is needed, thus avoiding evaluation of unnecessary items [8]. The rest
of this section describes Lazy Grouping in detail and justifies the approach through
simulation.

The overall flow for Lazy Grouping is shown in Fig. 5.11. Lazy Grouping oper-
ates in two phases: detection grouping and data collection. When the event detector
of a node n is triggered by an acoustic event of interest, a detection event d with
locally unique sequence number s is created. Each detection dn;s consists of a seg-
ment of audio a corresponding to the detection, and a timestamp t indicating the
start of the detection. The node saves this detection event to a local buffer B and
also sends a detection notification message dnotify to the sink, containing the node’s
ID n and the timestamp of the detection t .

The sink receives detection notifications from nodes in real-time, and continu-
ously organizes them into groups g according to two rules: identity and temporal
consistency.

Identity consistency asserts that node IDs within a group are unique. If I.x/ gives
the node ID associated with detection x then,

I.x/ D I.y/ ) x D y (5.1)

for all x; y 2 gj .
Temporal consistency asserts that the timestamps in all detections in a group are

within a certain time window of each other; this is called an uncertainty factor, and
denoted as u. The center of the window is determined to be the average timestamp
value of the current detections in the group m.gj /. The logic followed when trying
to add a new detection notification to a group is:

1. If the absolute difference between the detection timestamp and the current mean
of the group is less than the uncertainty value (jT .di/ � m.gj /j � u), then the
detection should be added to the current group.



142 M. Allen

2. If the absolute difference between the detection and the current mean of the group
is greater than the uncertainty value (j.T .di / � m.gj /j > u) and the difference
is positive (.T .di/ � m.gj // > 0), then a new group gj C1 should be started
(because the event happened more recently than the current group and is not part
of it).

3. If the absolute difference between the detection and the current mean of the group
is greater than the uncertainty value (jT .di / � m.gj /j > u) and the difference
is negative (.T .di/ � m.gj // < 0), then the event happened before the current
group gj .

Each group gj has a watchdog timer w which is used to trigger its data collection
phase, conditional on there being at least x detections in group (enough to perform
a position estimate). In the data collection phase for a group, the sink sends out
requests to nodes for the transmission of full detections dn;s. Upon receiving a re-
quest, a node locates and extract the relevant detection data from its local buffer and
sends it back to the sink. When the sink has received all of the detections for a given
group it triggers the next stages of the processing in the position estimation data
flow: AML, followed by data fusion.

5.6.1 Lazy Grouping Experimentation

Two simulations were carried out, using data gathered during the deployment period
at RBML, in order to validate Lazy Grouping. The first simulation used the RMBL
in-situ data trace with an off-line implementation of Lazy Grouping, in order to
determine the algorithm’s potential for reducing data transmissions. The second
simulation used the same in-situ data trace in conjunction with a set of data trans-
fers gathered from a controlled experiment from the same network configuration at
RMBL to observe the relative reduction in latency in gathering data corresponding
to groups. All of the data gathered and used in these simulations was from a one-
hop rather than a multi-hop network, thus latency from multi-hop transfer is not
considered.

5.6.1.1 Experiment One: Data Reduction

The goal of the first experiment was to quantify the reduction in data transfer that
could be possible using Lazy Grouping. It was expected that Lazy Grouping would
provide significant benefit when applied to the RMBL data set. The experiment was
performed using simulation. To achieve this, an off-line version of the Lazy Group-
ing algorithm was run over a real event stream gathered at RMBL. The off-line
version of Lazy Grouping only simulated the creation of groups, not the request-
ing and transferring of data – this was simulated in the second experiment. In the
RMBL data set seven nodes all one hop from the sink sent back any events that were
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triggered by their event detectors regardless of whether they were actually marmot
calls or not. For each detection that arrived at the control console, the sending node
ID, global time of detection and time taken to transfer the data were recorded. In this
data stream, the amount of data sent per detection was 128 kB, rather than 32 kB,
due to a misconfiguration of the system which was not possible to rectify during the
deployment. This disparity in data size does not affect the analysis presented here.
The amount of detection data transferred during the actual in-situ experimentation
was 44.125 MB, corresponding to 353 events. When the off-line Lazy Grouping
algorithm was run over the data set using an uncertainty factor of 440 ms, and a
minimum group size of 3 detections, the amount of data that would have been re-
quested by the sink was 15.75 MB, corresponding to 126 detections. This represents
a 64% reduction in data transferred – a positive indication of the data reduction po-
tential of the Lazy Grouping approach. In total, 24 groups were made: 14 groups
with 3 detections each, 16 groups with 4 detections each and 4 groups with 5 detec-
tions each. No groups larger than 5 were found.

Figure 5.12 shows a window of the first 18 min of the RMBL data trace, with
time since the first detection on the x axis, and node id on the y axis. Detection
events are marked as dots and events which have been grouped together are marked
with squares. To aid understanding, the mean timestamp of each group is shown as
a vertical line. This shows the filtering effect of the Lazy Grouping approach and
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Fig. 5.12 A plot showing the result of grouping detections to decide which data should be sent to
the sink by nodes. Each point on the plot is a detection, made by a node (shown on the y axis) at a
certain time (shown on the x axis). Vertical lines show the mean of the group to which detections
marked as squares belong to. All other detections are discarded
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Fig. 5.13 Rejection of detections that are not close enough to the mean of the event group. In this
case, the detection from node 112 was more than 440 ms away from the mean established by the
detection timestamps from nodes 109, 104, 103 and 100

gives an indication of the number of detections that can be disregarded based on
the temporal and identity consistency rules. Figure 5.13 shows a particular group
of detections from Fig. 5.12, highlighting how the temporal consistency rule rejects
detections which are not within the uncertainty factor of the group’s mean.

5.6.1.2 Experiment Two: Latency Reduction

The goal of the second experiment was to simulate the data collection phase of Lazy
Grouping to demonstrate the potential for end-to-end latency reduction. Recall that
the Lazy Grouping data collection phase consists of the following steps: (1) receive
detection notifications from nodes, (2) send out requests for data and (3) receive raw
data responses from nodes. More formally, assume that a group gi containing n.gi /

detections is created by the Lazy Grouping algorithm.
Assume `g D fgi gn.gi /

iD1 is the set of latencies for collecting data from all nodes
in a group g, where each element of `g is determined by

`g D qi � .draw;i C ddet;i C dreq;i / (5.2)

where q is the number of detections the i th node had waiting to be sent in its local
queue before the current request, ddet is the time taken for the i th node to send a
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detection notification and dreq is the time taken for the sink to send a data request
to the i th node. The overall latency l.gi / to gather the data from the group gi is
therefore

l.gi / D max
g

`g (5.3)

The simulation of Lazy Grouping’s data collection process as discussed above was
implemented in Matlab. The simulation iterated through the list of detections be-
longing to the groups created by the Lazy Grouping algorithm in experiment one.
The list was ordered by detection time. For each detection, qj was inferred by count-
ing the number of detections node j had made as of the current position in the list
and subtracting the number of detections the sink had received; this could be in-
ferred from the reception time logged for detection.

The other parameters needed to calculate li (draw, ddet and dreq) were determined
from empirically gathered data. Eight 128 kB and twenty-two 800 B simultaneous
seven-node data transfers were requested during controlled experimentation in a
one-hop network at RMBL. For each 128 kB or 800 B data request, the start of the
first transmission and the arrival of the last transmission were recorded, giving the
total time to gather 128 kB or 800 B from all seven nodes. The mean of the twenty-
two 800 B transfer times were used to model both ddet and dreq.

For comparison, the time taken to gather the groups in the in-situ data trace were
calculated, simulating what would happen if the on-line grouping algorithm was
simply grouping data as it arrived at the sink, rather than requesting it. To do this,
the earliest detection time and latest arrival time of the detections in each group were
found. The results of the Lazy Grouping simulation and the latency from the normal
event stream are shown in Fig. 5.14. The bars represent mean time taken to collect
the data for the group, with error bars representing the min and max times.

There is a clear improvement in the time taken to gather a group of data using
Lazy Grouping. The best improvement in data collection time is seen when collect-
ing data for groups of five detections: the average time goes from twenty seconds to
five seconds, a reduction in latency of 75%. In general, the trend indicated by both
sides of Fig. 5.14 is that larger clusters take longer to gather. This is particularly no-
table in the non-Lazy Grouping simulation. However, the latency increase is likely
caused by an increased amount of data being sent, due to nodes’ event detectors
being triggered more often.

This is exactly the kind of situation that Lazy Grouping can address, and it does
so by ensuring that only useful data is sent.

5.6.2 Discussion

It is clear that applying filtering without considerable in-field experimentation or
consultation with the domain expert in choosing the relevant parameters would
not be sensible. It is intended that features such as Lazy Grouping are made avail-
able to allow the domain expert to apply some knowledge to tune application
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Fig. 5.14 A graph showing the potential benefit of Lazy Grouping’s data collection process in
simulation. For comparison, the time taken for the data to arrive at the sink for the original data
trace is shown. The error bars represent the min and max times for each transfer, and are ordered
by group size

related-parameters to improve application (and network) performance in-situ.
During this tuning, it is important not to lose data that may be useful to the do-
main expert – this is the reason that the spill to disk functionality exists, where a full
data set can be gathered for offline analysis, but not preclude any on-line, in-field
analysis that may be of great interest to the domain expert (see Sect. 5.3.4.2).

The Lazy Grouping approach is suitable in the marmot localization application
for reducing the amount of data that is sent over the network when it is likely that
event detectors will yield large numbers of uncorrelated detections, which can be
assumed to be false positives. If a nodes event detector is triggering due to many
false detections, this will cause the transmission of significant amounts of useless
raw data back to the sink (useless in terms of performing marmot localization).

This evaluation of Lazy Grouping did not consider multi-hop data transmission.
The most apparent effect in using Lazy Grouping over multiple network hops would
be the increase in latency for transmission of both detection notifications and raw
detection data.

In general, Lazy Grouping is likely to be suitable for event-based applications
where simply sending data about every event occurrence still creates too much data
to send over the network. This will likely happen when large numbers of events
occur, or the event detection on nodes is noisy, possibly due to a lack of processing
resources.

The advantage of this approach is that the processing required is relatively
lightweight. Lazy Grouping uses closeness in time to determine whether a set of
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detection events are correlated, i.e. refer to the same event. As presented here, Lazy
Grouping does not prioritize collection of data, and does not distinguish between
actual marmot calls and false positives.

A more fully-featured system might utilize on-node event classification to
discriminate marmot calls from false positives before detection notification. It
is clear that this would help reduce the amount of false positive, but this should be
traded off against the potential increase in processing requirements.

5.7 Adaptation Policy

Section 5.5.3 made a case for local processing of the AML algorithm when the
network latency is higher than the cost of processing the related data locally. This
section presents a node-level approach to determining when this decision should be
made, known as an Adaptation policy.

The Adaptation policy uses data that is available from the running system to
make the choice to process locally or not, by means of a dynamic estimator. The
policy is as follows:

If taml � n.qaml/ < Ò.d/ then the node should process locally

Here, taml is the time to taken process an AML locally on a node, n.qaml/ is the
number of raw detections waiting to be processed locally and Ò.d/ is the estimated
time that the current detection will take to transfer over the network `.d/.

Each node must record the latency of all raw data transfers it makes: the latency
of these previous transfers is used to estimate how long the next transfer will take.
The node determines how long a transfer took by recording its start time locally
and subtracting this from the timestamp recorded by the sink when the transfer was
completed; the completion timestamp is provided to the node as part of the sink’s
acknowledgement that the given message was delivered successfully.

Two different implementations of the dynamic estimator function to estimate
`.d/ are presented in this section: Ò

1.d/ and Ò
2.d/. Both of these implementations

use the time taken for previous transfers to predict the next transfer. Ò
1.d/ uses a

goodput measurement, which is the measure of useful data received divided by the
time taken to transmit. Ò

2.d/ uses a pseudo-goodput measurement, which measures
the time elapsed from the detection being placed on the outgoing queue until it
was received at the sink. Both estimators for `.d/ determine their predictions as
the amount of data that must be sent on the path from node to sink, divided by the
goodput (or pseudo-goodput) estimate, which is calculated from previous transfers.
The estimate of `.d/ using Ò

1.d/ is

Ò
1.d/ D n.qsend/ � D=gk (5.4)

where n.qsend / is the number of detections queued to send including the current
detection, D is the amount of data to be sent, and gk is the mean goodput of the last
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k transfers the node has made. The amount of data to be sent D is given by

D D h � s.draw/ (5.5)

where h is the number of hops the node is from the sink and s.draw/ is the size
(in kB) of a raw detection, so that the forwarding of data over multiple hops is
considered. The mean goodput gk is calculated from the last k transfers on a per-
node basis as

gk D 1

k

nX

iDx�k

Di

ti
(5.6)

where x is the number of transfers sent so far, ti is the time taken for the i th transfer
and Di is the total amount of data that was sent over the path between node and
sink for a given transfer, as in Equation 5.5. This allows the node to use an arbitrary
number of previous transfers to help in predicting the time that the next transfer
will take.

The pseudo-goodput estimate Ò
2.d/ for `.d/ is

Ò
2.d/ D D=pk (5.7)

where pk is the mean pseudo-goodput derived from the past k raw data transfers.
The pseudo-goodput differs from the mean goodput g in that it includes the time
spent on the message queue qi . The mean pseudo-goodput pk is

pk D 1

k

nX

iDx�k

Di

qi C ti
(5.8)

where qi is the time each detection spends on the message queue. The pseudo-
goodput estimate Ò

2.d/ may be easier for the higher level system to determine,
because qi Cti is determined by timestamping when the data was queued to send and
when the transfer was completed, rather than when the data transmission actually
began.

5.7.1 Evaluation

The dynamic estimator was evaluated as a proof of concept in simulation, using
realistic data traces gathered in-situ. Simulation was carried out using Matlab based
on data traces gathered from in-situ experimentation. This section describes the ap-
proach used to gather the data traces, how they were used in simulation, and the
analysis of the results obtained.

The evaluation of the Adaptation policies through simulation had two goals. The
first evaluation goal was to quantify the correctness of choices made by the policy.
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The second evaluation goal was to determine the accuracy of the dynamic estima-
tors Ò

1.d/ and Ò
2.d/. Accuracy refers to how closely the predicted and actual data

transfer latencies were. Accurate prediction of transfer latency allows the Adap-
tation policy to be generally suitable in making local processing decisions where
the local processing operation takes an arbitrary amount of time. In addition to the
latency prediction, the factors which could affect the accuracy of the transfer latency
predictions were also evaluated: the amount of previous transfers to use in latency
estimation, and the amount of time a local processing operation took.

5.7.2 Gathering Empirical Data

In total, we gathered three data traces: one from live system operation with real
event detectors running (taken from RMBL in 2007), and another two traces from
controlled outdoor and indoor experiments at CENS, UCLA, using the test func-
tionality of the WSH discussed in Sect. 5.3.4.2.

All experiments used seven nodes, and a gateway with laptop attached to act as
the sink and host the control console. For each experiment, the network topology
was consistent for the experimental period, shown in Fig. 5.15. Table 5.1 summa-
rizes the data sets. It should be noted that the multi-hop topology used in the CENS
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Fig. 5.15 The multi-hop routing trees used in experimentation. Note that the RMBL, CO experi-
mentation was single-hop, thus is not shown here

Table 5.1 A description of the data sets gathered, including location, network topology and
data source

Experiment location Topology Data source Per-detection size

RMBL, CO, 2007 single-hop in-situ events 128 kB
Royce Hall, UCLA, 2008 dynamic multi-hop request plan 32 kB
CENS Lab, UCLA, 2008 fixed multi-hop request plan 32 kB
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Laboratory was created by using MAC address filtering at each node to enforce a
particular multi-hop topology, that is the DSR component could only find the par-
ticular multi-hop topology enforced.

Both the Royce Hall and CENS experiments were divided into phases, where in
each phase an increasing number of nodes were requested to simultaneously send
data, starting with one node and ending with all seven. At each phase, there were
21 data requests sent, and each node in the network was requested to send data an
equal number of times, so that the latency experienced by an individual node could
not dominate the data set. The time in between each data request was either 1 or 5 s,
to simulate event patterns of varying frequency; each experiment was run twice.

For each data transfer in each experiment the node ID, detection time, time the
detection was placed on the queue and time the sink received the full detection mes-
sage were recorded. The size of the message and the number of hops the node was
from the sink were also recorded. In addition to these raw measures, the goodput,
number of detection events in outgoing message queue and aggregate number of
detection events in the network were derived. These traces provided enough data to
enable simulations of the Adaptation algorithms to be run off-line.

5.7.3 Simulation

To simulate the operation of the Adaptation policy, the data transfer records were
duplicated into two lists: one sorted by event detection timestamp to simulate the or-
der in which they were detected, and the other sorted by detection arrival timestamp
to simulate the order in which the transfers were received at the sink. Therefore, for
any event detection record, it was possible to determine all of the transfers that had
previously occurred for that particular node, allowing computation of the k most
recent transfer latencies. For the simulation k D 3 was used, as it was found to be
the best trade-off between historical transfer latency and latency prediction accu-
racy. The detection list was iterated through, and for each data transfer record, both
latency estimators Ò

1.d/ and Ò
2.d/ were used to predict the transfer latency.

5.7.4 Performance

For each detection event that is triggered at a node, the goal of Adaptation is to
correctly decide whether it will take longer to process raw detection data locally or
to send it to the sink. Therefore, the best way to evaluate the dynamic estimator is to
compare the processing choices made with the choices that ensure minimum system
latency, referred to as the correct choices. The Adaptation policy chose to process
locally if the estimated time taken to transfer Ò.d/ was greater than the time taken
to process the raw detection through the AML algorithm locally taml , assuming no
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Table 5.2 The relative performance comparison between the Ò
1.d/ and Ò

2.d/

latency estimators. The Estimates were made using the mean of the last three
received transfers for each node

Experiment Ò
1.d/ (%) Ò

2.d/ (%)

RMBL 74.79 70.54
Royce 94.07 96.3
Lab 97.87 97.02

AML processing queues. Every choice made by a policy was classed as correct if it
met one of the following criteria, otherwise it was classed as incorrect;

� The decision is to adapt and the actual transfer time was greater than taml seconds
– correct because sending would have taken longer.

� The decision is not to adapt, and the actual transfer time was less than taml

seconds – correct because sending would have taken less time.

The choices for all of the transfers were recorded according to these criteria, and
compared to what would have been the correct choices determined from the actual
transfer latencies. Table 5.2 shows the percentage of correct choices made by both
dynamic estimators.

There is clearly a difference in the latency estimator performance that is depen-
dent on the data set. For the Ò

1.d/ and Ò
2.d/ latency estimators, the correct choice

percentage is very high for both Royce and Lab data sets – between 94% and 97%,
but around 20–25% lower for the RMBL data. One explanation for this may be the
difference in detection data size for the RMBL experiments: 128 kB for RMBL as
opposed to 32 kB for both Royce and Lab data sets.

5.7.5 Accuracy

This section examines the accuracy of both Ò
1.d/ and Ò

2.d/ in predicting the latency
of raw data transfers. The accuracy of latency estimates has a bearing on the generic
suitability of the Adaptation policy. If the estimates provided by Ò

1.d/ and Ò
2.d/

are sufficiently accurate, the dynamic estimators can be used to make choices for
arbitrary local processing times (rather than the specific taml). The metric Merr used
to evaluate the accuracy of the latency estimates made by Ò

1.d/ and Ò
2.d/ compared

to the actual transfer latencies `.d/ is given by

Mi;err D .. Ò
i .d/ � `i .d//=`i.d// � 100 (5.9)

where Ò
i .d/ is the estimated latency (estimated by Ò

1.d/ or Ò
2.d/) and `.d/ is

the observed latency. This metric describes the estimate Ò
i .d/ as a percentage of
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Table 5.3 The accuracy of transfer latency prediction. The columns show the percentage of
relative error between estimated and observed latency, and each cell shows the percentage of
predictions which fell within that interval. For example, 67.71% of transfers were within 50%
of the actual value for the RMBL experiment

% of estimates within error bound

Experiment ˙50% error ˙25% error ˙10% error

RMBL ( Ò
1.d/) 66.86 46.46 27.20

RMBL ( Ò
2.d/) 67.71 49.01 28.33

Royce ( Ò
1.d/) 70.99 43.99 16.91

Royce ( Ò
2.d/) 75.88 47.76 18.75

Lab ( Ò
1.d/) 89.54 62.67 28.40

Lab ( Ò
2.d/) 90.14 63.52 28.66

the actual latency. If Mi;err is positive, the error is an over-estimate, and an under-
estimate if negative. This allows for comparison of error across different latencies
in a way that the absolute error would not be suited to. For example, a prediction of
0.01 s seconds when the actual latency was 0.10 s is only 0.09 s error, but a predic-
tion of 1 s when the latency was actually 10 s shows a 9 s error. Using Mi;err would
show they have both been under-estimated by 90% (� 0.9).

The evaluation was performed as follows: the results of applying Ò
1.d/ and Ò

2.d/

to the all of the detection transfer records in the RMBL, Royce and Lab data traces
were used with the actual latencies for each transfer to calculate Mi;err. Table 5.3
shows the results across each of the data traces (RMBL, Royce, Lab) with respect
to three arbitrarily chosen accuracy bounds: ˙50%, ˙25% and ˙10% of the actual
latency. For each bound, the percentage of all latency estimates for a given exper-
iment that were within these bounds are shown. The specific bounds were chosen
to represent increasing degrees of accuracy: ˙10% error in latency prediction could
be considered very accurate, ˙25% considered moderately accurate and ˙50%
considered not particularly accurate.

Bearing these classifications in mind, the results in Table 5.3 do not show partic-
ularly accurate performance. An ideal result for the latency estimators would be to
have a large percentage of the data transfers be classed as very accurate, i.e. within
˙10% all of the time. However, for each of the three data traces, the latency esti-
mates provided by Ò

1.d/ and Ò
2.d/ were classed as very accurate only 17%-29% of

the time, depending on experiment. Furthermore, the latency estimates for RMBL
and Royce are classed as not very accurate around 66%–75% of the time.

Overall, the accuracy of latency estimates was best for the Lab data set, where
around 90% of all transfers were at least within ˙50% of the actual latency, although
this is still classed as not very accurate. The Ò

2.d/ latency estimator shows better
performance on the whole than the Ò

1.d/ latency estimator, although they are never
further than 5% apart in the different error bounds categories.
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5.7.6 Effects of Varying Local Processing Time

An important part of understanding the general suitability of the dynamic estimators
is their performance with respect to different on-node processing latencies rather
than just the previously observed time to process the AML. To evaluate this, the
Ò
2.d/ latency estimator was run over the RMBL, Royce and Lab data sets. Only one

estimator was used because both latency estimators showed similar performance in
previous results. For all transfers in all data sets, twenty different local processing
times were evaluated, ranging from 0.5 s to 10.0 s in 0.5 s intervals.

Figure 5.16 shows a graph of the total correct decisions made by the dynamic
estimator for each local processing time, and over each data trace. The x axis is
local processing time and the y axis is the total percentage of correct choices the
policy made. For the Royce and Lab data sets in Fig. 5.16, the Ò

2.d/ latency es-
timator performs increasingly well in making Adaptation decisions, never falling
below 80% correct in total. Both Royce and Lab data sets see an increase in correct
decision percentages as the local processing time increases. However, the RMBL
data set shows a different pattern: the correct choice percentage starts very high and
reduces dramatically around the 2–2.5 s mark. In order to better understand the rea-
son for the dip in correct Adaptation decision percentages, in Fig. 5.17 we plot two
bar graphs for the Royce and RMBL data sets, showing the breakdown of total cor-
rect choices by choice type: either to process locally (adapt) or not (do not adapt).
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Fig. 5.16 A graph showing different processing times vs correct percentage of Adaptation choices
for the three different experimental data traces used
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Fig. 5.17 The relative breakdown of choices for each data set. Black shows correct decisions to
adapt, and white shows correct decisions not to adapt

The x axis represents the processing time, in 0.5 s intervals, and the y axis represents
the percentage of correct choices made with the latency estimator.

For the Royce data set in Fig. 5.17(a), apart from the 0.5 s local processing time
the relative breakdown of correct choices is more in favor of not processing locally
and the correct choice percentage increases as local processing time increases. This
is because as the processing time increases, the network’s latency is much less than
the local processing latency, hence more do not adapt choices are made.

For the RMBL data set in Fig. 5.17(b), the correct Adaptation decision percent-
ages are entirely dominated by choices to process locally between 0.5 and 1.5 s.
As the local processing time increases, the total percentage of correct Adaptation
decisions decreases and more choices to not process locally are seen. The total per-
centage of correct decisions is worst at 2.5 s, and increases gradually from then on,
where a similar trend to the Royce data set is seen.

Taking the median transfer times across all transfers in each data set reveals a
potential cause for the disparity in performance. The Royce data set and the Lab
data set had median transfer latencies of 0.58 s and 0.55 s respectively, whereas the
Royce data set had a median transfer latency of 2.98 s. This difference in median
transfer latency between RMBL and the other data sets is most likely related to the
difference in the size of the raw detections that were transferred; in the Royce and
Lab experiments each detection was 32 kB and in the RMBL experiment each de-
tection was 128 kB, so hence would have taken longer to transfer. When comparing
the median transfer latencies with the local processing times in Fig. 5.16, the point
at which the lowest correct decision percentage occurs is around the point at which
the median transfer time is located.

This means that the dynamic latency estimator gets the least correct decisions
around the point at which the median transfer time is roughly the same as the local
processing time. Based on the accuracy experiments, this makes sense: unless the
latency estimators’ predictions are very accurate, they will perform worst at this
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point. It is be expected that a more accurate latency estimator would improve the
percentage of correct choices when the median transfer time is roughly the same as
the local processing time.

5.7.7 Summary

The aim of the Adaptation policy is to help improve the end-to-end timeliness of the
acoustic localization system by allowing nodes to decide whether to process locally
or not, based on observed network conditions. The decision to process locally or not
was made using the predicted latency of the transfer, based on the recorded latency
of previous transfers. Two separate latency estimators were proposed and evaluated:
Ò
1.d/ and Ò

2.d/.
The approach used is generally applicable, as it could be used for arbitrary data

payload sizes, arbitrary local processing times and arbitrary network sizes. This is
because latency estimates are based on real data transfers that occur in the network,
and are size-adjusted depending on the current number of hops the node is from the
sink.

The latency estimators did not require direct consideration of lower-level layer
specifics, such as TCP performance under high traffic, loss and congestion, and vari-
able bit-rate transmissions. Instead, application level data was used: when a packet
was sent or queued to be sent, and when it arrived, as well as the number of hops a
node was from the sink. This data was easier to gather, and simple to use.

5.8 Conclusion

This chapter highlighted many of the challenges present in developing and deploy-
ing WSN systems to support high data rate applications.

A specific example of a high data rate application was used – the on-line source
localization of marmots in their natural habitat. This was a suitable motivating
application because it required the monitoring of a high data-rate phenomena –
audible acoustics in real-time, in order to give feedback to the user of the sys-
tem. The source localization algorithm was implemented on VoxNet, a platform
for distributed acoustic sensing applications. VoxNet’s design was influenced by
experiences with bio-acoustics based applications.

The in-situ deployment of VoxNet provided two important experiences which
could not have been determined from lab test or simulations. Firstly, the deployment
showed up several bugs and instrumentation issues – namely to do with system data
logging and multi-hop networking. Secondly, the deployment experience and post
analysis of logging data showed the directions in which the system could be refined
in order to improve in-field performance. These experiences could only have been
gained through the physical deployment and usage of the system alongside a domain
expert. Experience with the domain expert allowed informed decisions to be made
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with respect to both the original design of VoxNet and its use during deployment.
Experiences with the scientist, and real phenomena in the field provided motivation
for improving the timeliness of the system.

Data transfer latency was identified as a key factor in the end-to-end timeliness
of the marmot localization application that ran on the VoxNet platform. Latency was
a side-effect of too much data being generated by nodes in the network, due to false
positives and frequent triggering of the event detector.

Two approaches were proposed to help reduce this latency, Lazy Grouping and
an Adaptation policy. Both were evaluated as a proof-of-concept, using data traces
gathered through controlled in-situ experimentation. Information logged during de-
ployment of the system allowed the refinements to be tested as a proof-of-concept.

Whilst the simulation results from performing off-line evaluation of Lazy Group-
ing and Adaptation indicated their potential to be useful in deployments, this does
not constitute a full evaluation. This proof-of-concept evaluation represents only
the first step in a full evaluation; a full deployment is vital and will reveal the cases
where these mechanisms do not work or could be improved. However, this is beyond
the scope of this chapter.

In general, acoustics represent a good example of a high data-rate phenomena
which cannot easily be streamed over a multi-hop network. Therefore, it is the
contention of the authors that the themes and approaches used in this chapter are
suitable for many different high-date rate applications, not just audible acoustics-
based localization.
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Chapter 6
Failure Is Inevitable: The Trade-off Between
Missing Data and Maintenance

Thomas Schoellhammer

Abstract Fixing sensor faults is intuitively important, but in a class of applications
where the environment is easily disturbed, there is a trade-off: maintenance re-
quires disruption of the phenomena, so that for a period after maintenance the
measurements made are not meaningful. An instance of such an application is
soil monitoring. Because of its spatial heterogeneity, in-situ sensing via wireless
sensor networks is a natural fit to monitoring soils. However, deploying a sen-
sor below ground requires disturbing the soil. After a settling time, which can be
weeks or more, measurements can then be trusted to reflect the state of the soil
prior to excavation. Maintenance requires a similar operation, and affects all nearby
sensors, not simply the one being fixed. In the San Jacinto Mountains, soil moni-
toring sensors were deployed to measure the flux of CO2 from the ground to the
atmosphere. The deployment consisted of several sites, where each site monitored
soil temperature, moisture, and CO2 concentration at multiple depths. The sensors
within a site were within a few centimeters of each other. This chapter addresses the
trade-off between fixing a broken sensor, and leaving it broken, by designing and
implementing a system to both fill in missing data and keep the scientist informed
about the need for maintenance. The result is potentially half as much maintenance,
which translates into far more reliable data being collected.

Keywords Sensor failure � Sensor deployment � Mobility � Environmental
monitoring � Fault tolerance � In-field interaction � Data estimation � Data
imputation � Data uncertainty � Application-cognizant

6.1 Introduction

The carbon cycle describes the movement of carbon in its various forms be-
tween the air, the ocean, and the ground [10]. One carbon compound that is
also a greenhouse gas is carbon-dioxide. Biologists and ecologists recognize that
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understanding the carbon cycle is crucial to understanding and monitoring global
warming. A significant component of the carbon cycle is the CO2 that evolves from
the ground. The constant metabolism of microbes living in the soil produces CO2

as a byproduct. For this reason, the concentration of CO2 is generally higher in the
soil than in the atmosphere, causing CO2 to diffuse upwards through the soil. This
flux of CO2 through the soil is, therefore, of great interest to biologists and ecolo-
gists. Although it is possible to measure how much CO2 is coming out of the soil
by taking measurements at the soil surface, determining where within the soil CO2

is being produced needs to be done in-situ.
Unfortunately, soils are notoriously difficult to monitor in-situ. This difficulty

arises for many reasons, not least of which are that soils are heterogeneous. Soil
composition varies spatially in unexpected ways, which then affects how phenom-
ena are played out within the soil. It is the norm for soil structure to be unpredictable,
(for example, patches of clay may exist among otherwise homogeneous sand) and
therefore, for phenomena to display markedly different behavior despite seemingly
similar environmental conditions or close physical proximity. Monitoring only a few
sites may lead to incorrect scientific conclusions due to unfortunate deployment lo-
cations. Because of the spatial heterogeneity of soil, and the need for in-situ sensing,
embedded networked sensing is a natural fit to monitoring soil ecology.

However, the application of embedded sensing technology is only the beginnings
of a solution because of the impact that embedding sensors has on the soil itself.
In-situ instrumentation of the soil is a destructive operation. A hole must be dug,
sensors then placed, and the hole filled, all of which alters the soil’s structure and
composition. Because of this disturbance, after installation, scientists are uncom-
fortable using the data collected from sensors for several weeks, even months, as
the soil resettles to something akin to its original condition. The time spent waiting
for a soil deployment to be ready to collect credible data can be enormous, and this
time cost means that any sensor failures can be particularly heart wrenching. When
failures do occur, which is inevitable and potentially frequent [15] due to the harsh-
ness of soil environments and the delicacy of many chemical soil sensors, domain
scientists are confronted with a dilemma.

Domain scientists can allow the fault to persist, but then they have to deal with
the gaps in the data set from the broken sensor. On the other hand, they can fix the
sensor, which may address the problem, but then the settling time must elapse again
before using the data from the fixed sensor and its neighbors. In some environments,
it could take months for soil to settle. This settling time leads to a long gap in the data
stream from these sensors. In addition, fixing a sensor may also lead to further data
loss: it has been found that nearby sensors can also break during the maintenance
procedure [24], and in the case of soils, nearby sensors may be disturbed during the
maintenance procedure, resulting in the loss of credibility for those sensors as well.
Thus, fixing one sensor can lead to paying the settling cost, weeks of unreliable
measurements, for several sensors.

The deployment dilemma arises whenever the cost to deploy a sensor and the cost
to fix a sensor are comparably expensive. Three concrete deployment scenarios are
remote deployments, deployments where the cost of sensing hardware is extremely
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high, and monitoring animals that are sensitive to disturbance. A remote deployment
scenario, where the primary cost to deploy or fix a sensor is the time and resources
spent traveling to and from the deployment site, encourages technicians to consider
alternatives to maintenance when sensors break. Similarly, deployment scenarios
where the hardware cost dominates also fall into this class of deployment, as there
may be a limited amount of replacement hardware, or the monetary cost of fixing
every faulty sensor is prohibitive. Finally, the impact of disturbance is not unique
to soil deployments, but is prevalent in several deployment scenarios, such as bird
behavior monitoring [1].

Most deployments have reported issues with data quality [15, 22–24, 27], and
dealing with the resulting data loss or corruption is inevitable during the analysis
phase of almost all deployments. Although the intuitive reaction to tolerating faults
is to suggest the deployment of more sensors to increase the sensing density or to
add redundant sensors, physical constraints may make this approach impossible.
The physical size of each sensor (a practical constraint of the technology), and the
desired spacing between sensors (a constraint imposed by the scientific inquiry)
may leave little space for extra sensors nearby. Furthermore, even in cases where
there is enough physical space, the sensing technology itself may impose spacing
requirements beyond the size of the sensor itself: soil moisture sensors often use
the dielectric effect to estimate the water content of the soil, and nearby metal ob-
jects (such as other soil moisture sensors) can adversely affect the measurement
process [4].

In this chapter, we first begin by describing in detail a soil monitoring deployment
called the AMARSS transect [25, 26], that uses traditional wired data loggers. We
then describe the hardware, software, and deployment process we used to augment
this transect with wireless sensing nodes, done in order to increase the spatial density
of sensing and to provide access to data in real-time. We use our experiences to
demonstrate the dilemma faced by scientists when dealing with missing data and
broken sensors. We conclude with a solution that we have developed to aid scientists
in addressing this dilemma. The system we have built, called Vigilance, is designed
to monitor deployments that periodically collected data from a set of sensors, and to
expose the impact of missing data on applications that expect it.

6.2 Difficulties in Traditional Soil Monitoring

Nestled in the San Jacinto Mountains of California, at an elevation of about 1600 m,
the James San Jacinto Mountain Reserve (or simply James Reserve) is a biologi-
cal field station and reserve owned by the University of California. The habitat is
primarily conifer and hardwood forest, and is home to several habitat monitoring
systems. A handful of conventional weather stations, large wireless micro-climate
mote arrays, cameras, and robotic elements collect vast amounts of environmental
data [5]. One deployment in particular, called the AMARSS (Automated Minirhi-
zotron and Arrayed Rhizosphere Sensor System) transect is used to research soil
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Fig. 6.1 Each site consists of
a data logger and transmitter
above ground, with bundles
of sensors buried at depths of
2 cm and 8 cm

ecology at dense spatial and temporal scales [25, 26]. Ten sites within a 72 m tran-
sect measure micrometeorologic conditions (air temperature, relative humidity, rain,
and photosynthetically active radiation) above ground, and temperature, moisture,
and CO2 concentration at 2 cm, and 8 cm below ground. Figure 6.1 illustrates the
layout of the deployed sensors at each site, and Fig. 6.2 shows a schematic of the
AMARSS deployment, showing the locations of the ten original sites within the
transect.

Since October 2005 the deployment has collected over 26 million measurements
using traditional data loggers to store data from sensors. A technician who visits
each site periodically collects the data via a wired connection. Without real-time
data collection, problems with the data loggers can persist for long periods of time
before they are recognized by the visiting technician and fixed.

Once the data is collected, it is added to a repository to be analyzed by do-
main scientists, who are studying the carbon cycle. Their primary objective is to
estimate the flux of CO2 from the soil. By looking at the CO2 concentration dif-
ference between a pair of CO2 sensors, and correcting for soil temperature and
moisture, scientists can estimate how much CO2 is evolving from the soil, and ap-
proximately where it is coming from. The model used to calculate CO2 flux between
two depths is:

F D ˛ .T2 C T8/1:75

�
C8

T8

� C2

T2

�

(6.1)

where F is the flux, C is the CO2 concentration (in ppm), T is the temperature
(in Kelvin), and ˛ is a proportionality constant related to various soil properties.
The subscripts refer to the depth (in centimeters) of each sensor. The change in
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Fig. 6.2 Layout of the
AMARSS transect

temperature is typically about 20 K, which is only about 5% of the absolute temper-
ature, as compared with CO2 concentration which can change by about 50% each
day. For this reason, this model is particularly sensitive to the values of the CO2

sensors, and largely insensitive to below ground temperature. Therefore, the CO2

sensors are more valuable to the application of estimating CO2 flux than the tem-
perature sensors are. In addition to estimating the CO2 flux, there is also interest
in determining how much heat is stored in the soil. The model for heat storage is
described by:

G D ˛1.T2 � T8/ � ˛2

�
T2 � T8

�t

�

(6.2)

where T is the temperature (as above), ˛1 and ˛2 are proportionality constants, and
�t is the sampling period. The heat storage model does not use CO2 concentration
as an input, and is therefore independent of it.

It is difficult to apply the mathematical model used to estimate CO2 flux and
heat storage because of faults throughout the data set. There are two predominant
types of fault; glitches and fail-stop faults. Glitches cause erroneous measurements
at random times, causing one or two fallacious measurements to be recorded. These
are infrequent and can often go unnoticed: before computing CO2 flux, the data is
averaged over non-overlapping time windows of one hour to make a clean data set,
making their presence unnoticeable. The second type of fault is a fail-stop, which
comes in two forms: either no data is reported (usually because the sensor’s battery
is exhausted), or bogus data is returned. Bogus data can be easy to identify, as the
values often appear to be random, or stuck at a single value. Bogus data can occur
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due to failed sensing hardware, or something as simple as forgetting to connect the
sensor. For both types of fail-stop faults, the result is a gap in the data stream that
will persist until a technician intervenes. The result can be weeks, often months of
data that is erroneous, and therefore, missing, from the perspective of the analysis.

For the data gathered, scientists have dealt with sensor failure by dividing the
AMARSS transect (shown in Fig. 6.2) into three regions (upper, middle, and lower)
and aggregating the data within each region to produce a data stream that is not
missing any data (for the most part). Within each region there are multiple sensing
sites (two in the upper region, and four at each of the middle and lower regions).
The raw data from sensors of the same type, deployed at the same depth, and within
the same region are averaged for each hour to produce a single value. The result is
a cleaned data stream that will be used for analysis that consists of one value per
sensing modality, per depth, per region, per hour. In the history of the AMARSS
transect, there is only one time where all the nodes within a region failed, resulting
in missing data for the analysis.

This averaging procedure effectively masks the presence of failed sensors and
allows analysis (i.e. the application of the CO2 flux and heat storage models) to
proceed as if there were no failed sensors during the deployment. If two identical
data collections, one with no failures and the other with several, by chance resulted
in the same cleaned data stream the results of the analysis would be identical. Swaths
of missing data in the raw data set are in no way reflected as uncertainty in the
final results. However, the interpretation of scientific results may vary drastically
depending upon the uncertainty.

6.3 Wireless Sensor Network Deployment

It was the spatial variability of CO2 flux estimates that inspired the deployment of
more sensors at the AMARSS transect. These sensors were used to increase the
spatial density of sensors, in order to capture variability in smaller areas, rather than
to increase the amount of area covered by the deployed sensors. The deployment
design itself was augmented to add a new sensing site between each of the existing
five pairs of data loggers, and to densely instrument a 2 m by 1 m area that was not
previously being monitored near the middle region of the transect.

In the Summer of 2006, this incremental upgrade to the spatial resolution was
performed using Mica2 [3] motes to provide real-time data collection for these new
sites. The wireless connectivity of the Mica2 motes provided data to scientists in
real-time, avoiding the need for a technician to visit the sensors unless a fault was
detected. The locations of the added sites can also be seen in Fig. 6.2.

The augmentation process benefited from the marriage of two cultures, that of
the soil scientists and of computer scientists. The soil scientists are primarily con-
cerned with where and how the sensors are placed, while the computer scientists
were concerned with network connectivity, and reliable data collection. Here, we
describe the deployment procedures used, and then briefly talk about the design of
the software running in-network that made it possible.
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6.3.1 Deployment

During the augmentation process, we were constantly assisted by one of the soil sci-
entists who is interested in the data generated at the transect. His help was invaluable
for a number of reasons. First, during the deployment process it would be easy to
damage the existing sensing sites. It would seem that a spacing of 2 m between ad-
jacent sites would provide plenty of space in which to operate. However, a healthy
margin around each existing site was enforced to ensure lots of space between where
we walked and worked, and where the existing sensors were buried, so as to avoid
any disturbance. This only gave us about a 1 m of usable space to work within. Sec-
ond, he was experienced in deploying below ground sensors, something the rest of
us had never done. When digging a hole, it is important to leave one vertical wall of
the hole as intact as possible. It is into this vertical wall that sensors will be pushed.
It is also against that wall that the depth of each sensor will be determined.

Finding a particular depth at which a sensor should be placed is surprisingly
difficult because it is not clear where the surface begins. As seen in Fig. 6.3, the
surface of the soil is not smooth and continues to change. Further, sitting on the
soil is a layer of decaying plant matter, referred to as mulch. The mulch slowly
blends in with the soil, making it difficult to identify the top of the soil’s surface.
As a result, it is nearly impossible to precisely deploy a sensor at 2 cm below the
surface, for example. According to our domain scientists, the surface was defined
as the point where granite is first visible within the soil composition. Sensor depths
were measured from this point. The sensors were placed by hand, using a translucent
ruler that was placed in the hole in order to identify the soil surface and sensor depth.
After placing all the sensors, the soil that was removed is placed back in the hole,
and then it is critical to be careful with the wires that emerge from the soil. One
accidental tug will dislodge the sensors. There is not much earth holding a sensor at
a depth of 2 cm in place.

Fig. 6.3 Temperature sensors
just after installation
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The sensor wires then need to be routed into an enclosure, mounted about 1 m
above the ground on a stake, where they will be connected to the mote. Not sur-
prisingly, another source of difficulty was dealing with the enclosures that would
house the motes during their stay at James Reserve. Each enclosure would house
two Mica2 motes, along with four D-cell batteries, many wires, and ample opportu-
nity for any number of wires to become frayed, broken, or crossed. The enclosure
design itself was poor because the sensor connection wires and the Mica2 motes
could not enter through the same aperture. The sensing wires themselves entered the
box through a small hole in the bottom of the box, and the motes entered through a
large door in the side of the box. For this reason, the motes and their sensors could
not be assembled outside of the field. They had to be assembled in the enclosures
themselves: the wires would have to be run through the hole in the bottom of the
box, and then out the main door. Once there, they were attached to the mote, and
then the whole mass of Mica2 mote, battery pack, and sensing wires were jammed
into the enclosure. Two complete Mica2 motes per box was a tight fit. This cramped
space caused all manner of difficulty when either changing batteries or looking for
something that had gone wrong. The sensing devices themselves (buried below the
ground) were difficult to deploy properly but did not fail during the duration of the
deployment. However, batteries were exhausted, and various wires were frayed and
broken, which lead to either no measurements reported, or erroneous measurements,
both of which produce a gap in the data set.

6.3.2 In-Situ Interaction

At the time of this deployment, systems research to date had focused primarily upon
mechanisms to create energy efficient wireless sensor networks. The usage model
for these systems has generally been that a remote operator both tasks the network
and analyzes the data. From our experience with early wireless sensor networks
for environmental monitoring, we had recognized the need for these systems to
also support and serve interactive users in the field. The need for interaction arises
throughout the system life cycle, from designing, to debugging, to deployment test-
ing, ongoing system health maintenance, as well as for visualization and analysis
by users while in the field in order to support the collection of, and correlation with,
manual observations. It is critical that interactive use not impact any ongoing data
collections that the system is tasked with. A requirement that emerges from this
interactive, in-the-field, usage scenario is the need for a data tasking and routing
architecture that supports mobile and transient users who can submit queries.

The Hyper [21] system was thus developed, which has the following features,
key to supporting mobility of the user and the addition of new sensing nodes to a
network:

� Fast neighborhood assessment.
� Efficient tree convergence to offer a mobile user low latency access to a network.
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� Multiple collection tree support for concurrent use by several mobile users and a
fixed collection server.

� A link transmission policy that infers disconnection and reduces needless
radio use.

� A storage system for delay tolerant transmission (when routes temporarily fail)
and support of lonely mote clouds (when routes intentionally do not exist for
long periods until mobile users connect to them).

All of these features are inspired by our own experience using and maintaining
distributed sensing systems.

6.3.2.1 Mobility Usage Scenarios

From our experience deploying real systems at James Reserve and that of biologists
using them, we have observed the following dominant scenarios for mobile users:

� Users remain in each location for several minutes. Technicians go to a location
to add a new node, add new sensors, or change batteries. Users go to a loca-
tion to verify data, annotate data, or manipulate the environment and observe
the response. These tasks are all short-lived relative to the duty-cycled, latency
insensitive data gathering style of many existing systems. The chief concern in
supporting this sort of behavior is in providing a connection to the mote network
as quickly as possible.

� Even when moving, users rarely switch transmission domains. Radio links are
on the order of 50 m. After working with a node a user typically moves to a
neighboring node.

� Connectivity is not necessary during periods of mobility. In-field users interact
with nodes while seated near those nodes. The only reason for movement is to
relocate near other nodes. Disconnections caused by large movements are not
problematic or undesirable because sensor data services are not typically needed
during transition (it is unwise to hike and look at your laptop simultaneously).
Data that is stuck in-network due to the user moving somewhere else can either
be dropped in-network, or be stored until a connection is re-established, depend-
ing on the user’s tolerance for delay. This aspect of the usage scenario is very
different from cellular connectivity or mobile IP, where the technical challenge
is in maintaining a connection that provides timely delivery through a series of
hand-offs and where disruptions in the connection are always undesirable.

� A network often has a dedicated and stationary server that collects data from it.
� Disconnected operation of sensor nodes is a common case. Some deployment

sites are so remote that it is not cost effective to construct a multiple-hop routing
tree to a permanent server-class collection sink. For these lonely cloud deploy-
ments, sensor nodes must store the information they collect until a user acting as
a data mule can get close enough to them to establish network connectivity and
offload their data.
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6.3.2.2 Supporting In-Field Interaction

An in-field user is particularly latency sensitive; thus establishing a connection
quickly is important. To connect by mote radio, Hyper provides three services de-
signed to set up a connection with low latency: fast neighborhood evaluation, fast
tree formation, and routing support for multiple sinks.

Fast neighborhood evaluation allows a newly activated node to quickly learn
about what other nodes are nearby, and get an estimate of the link quality to each
node. This is done by sending out a series of beacon packets that demand a response
from all those that receive them. Beacon response packets indicate the number of
beacons that have been received thus far. Link quality for a given neighbor is es-
timated from the number of beacon responses received from that neighbor, as well
number of beacons received by that neighbor, as indicated in the most recent beacon
response packet. Although it appears that an acknowledgment implosion is possible,
in practice, node densities in our deployments are not high enough to warrant ad-
dressing this directly. The medium access control layer used by the radios performs
well enough.

After evaluating the neighborhood, a node chooses its neighbor with the best es-
timated link quality as its parent in all aggregation trees that the network is currently
participating in, and requests the ID of the root nodes that are currently active. In
this way, a new node can quickly graft onto existing routing trees. Although the graft
may not create the optimal routing tree, in practice this works well. Newly grafted
nodes send a message to each sink to inform them that they have connected success-
fully. Nodes can participate in several data collections simultaneously, and do so by
treating each routing tree as distinct. No effort is made to aggregate packets, or to
multicast a single packet if two sinks request the same data. In addition to quickly
learning about its one hop neighbors and grafting itself onto existing routing trees,
new nodes can also request the current time as well as the current queries that are
running in the network, so as to begin data collection as soon as possible. All of this
has been tuned to take about 3 s.

For reliability, Hyper uses both link layer retransmissions and link layer acknowl-
edgments, as well as persistent storage to queue packets. This not only ensures that
data is saved despite transient network failures, but allows for networks of nodes that
have been intentionally disconnected from a sink to collect data in remote regions
were not even ad hoc infrastructure is available. Such lonely motes experience long-
term disconnections, during which data is stored to persistent storage, followed by
brief periods of connection when data is communicated in bulk to a data mule that
visits the deployment site.

Hyper was tested extensively both in lab, and at remote sites outdoors [21].
Although lab testing was useful in the early stages of development, it was the de-
ployment at remote sites that forced us to think about what tools and features were
still lacking in Hyper’s design. While deployed in-situ at the AMARSS transect,
Hyper achieved a delivery rate of close to 99%.
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6.4 Problems in Data Analysis

The AMARSS transect was diligently cared for to ensure that the network remained
connected, batteries were replaced just before or soon after exhaustion, and broken
wires were fixed quickly. However, after collecting a lot of data from the AMARSS
transect and analyzing it, it was clear that a large amount of data was faulty or
missing. After filtering out the faulty data, we were left with a data set with many
holes from the perspective of estimating CO2 flux and heat storage. Some amount
of missing data would need to be tolerated for the sake of avoiding the resettling
time for all of the sensors at a collection site in addition to the cost of maintenance,
which is high: hours of travel time to visit the site, and at least a few hours of field
work, and expensive sensing hardware. This implies that the missing data need be
filled in somehow to allow the estimation of CO2 flux and heat storage to proceed
as usual.

Several WSN-related solutions to filling in missing data exist, notably BBQ [8],
Presto [13] and work by Rossi et al [18]. Both BBQ [8] and Presto [13] propose
using models that assume very little about the phenomenon being sensed to pre-
dict senor data within some tolerance. BBQ captures temporal correlations using
a Kalman filter, and spatial correlations using a multivariate Gaussian distribution.
After a learning phase, BBQ pulls data from the network whenever it cannot be
modeled with sufficient accuracy. Presto uses a seasonal ARIMA model to model
time series from each node. In addition to pulling data that cannot be predicted ac-
curately, sensor nodes push data that does not conform to a local model. This allows
Presto to save energy and capture unexpected events.

In contrast to using general modeling techniques, intimate knowledge of the en-
vironmental structure and the phenomenon can be used to accurately model sensor
data. In [18], a one dimensional diffusion process is simulated, and a distributed set
of sensors collects data, and fits parameters to a set of partial differential equations
that describe the physics of diffusion. Once the parameters have been fit, sensor
nodes can save energy by only sending model parameter updates to the base station.
In these three cases, the data of interest is the raw sensor data (BBQ also supports
queries for the average over a set of samples). Modeling is used to save energy for
sensing devices by reducing the number packets that need to be communicated.

Because soil structure is notoriously heterogeneous and constantly changing (due
to tree litter and root growth) relying on detailed structural knowledge is imprac-
tical. However, fully nonparametric techniques, like neural networks and Gaussian
processes are governed by specific optimal rates of convergence on their learning ca-
pabilities. With little or no assumed structure, these techniques place a heavy burden
on the data collected. As the number of parameters to estimate increases, the need
for data explodes. In our soil deployment – which is small – ten sites comprise 130
sensors, not including nearby weather stations, imagery, and other auxiliary sources
of information that ecologists want to correlate. An approach that disregards known
structure may suffer for lack of data to train on. An ideal solution would take into
account both: when structure is present, a more efficient estimator is possible, and
less data is needed.
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Aside from the techniques employed to estimate missing data, it should also be
noted that BBQ, Presto, and Rossi et al.’s work are aimed at applications where
access to the raw data is desired, but the node lifetime should be maximized.

In our motivating application, there are two challenges that are at odds with max-
imizing data yield: first, not all sensors are equally amenable to estimation from
available data sources; second, not all sensors have an equal impact on the esti-
mation of CO2 flux (or heat storage). Because not all sensors (or combinations of
sensors) are equally predictable or valuable, critical faults ought to be addressed
quickly, while other faults can perhaps be allowed to persist until it is convenient
to address them (or until they themselves become more critical). Clearly, a failed
CO2 sensor has no bearing on the estimation of heat storage. Although obvious in
the case of heat storage, we have found that the importance of each of the vari-
ous inputs to a scientific model may not be apparent to the technicians tasked with
maintaining a deployment. Furthermore, the domain scientists interested in the data
being collected may have little desire to be involved in the administrative tight loop
of managing the sensor deployment, or may simply be unreachable.

Without the help of an expert, and without expending the energy of acquiring
domain expertise, technicians are presented with a dilemma: when a sensors is
observed to be faulty, should it be fixed? The wrong (and costly) answer to this
question is “yes” or “no” depending on what is broken. A fix applied when a fault is
not critical results in all the sensors at a site being disturbed, and therefore the loss
of all data at that site until the soil resettles. A fault allowed to persist when the fault
is critical can mean that the rest of the data collected from the site may be difficult
to use, or useless, to the domain scientist. A single maintenance philosophy (e.g. fix
all faults as soon as they arise) will yield poor results at some point.

Thus, in our application domain, scientists are interested in derived quantities,
and are confronted with the reality of failures, some of which can be tolerated. Prior
work in fault detection for sensor networks focuses on faults that effect transport
in unexpected ways, so that the severity of a fault is proportional to the number of
packets lost, corrupted, or delayed [14, 16, 17, 19].

The lack of consideration in the literature for the severity of faults and mainte-
nance with respect to the missing data problem lead to the development of a new
solution, called Vigilance. Vigilance is meant to run on-line and process data as
it is collected, to provide a technician with expert decisions as to whether mainte-
nance should be performed or not. Vigilance was developed, tested, and vetted using
data collected from the AMARSS transect, and is currently awaiting its first oppor-
tunity to operate on-line during deployment. In the remainder of this chapter, we
illustrate the design of Vigilance, and then test it by simulating failures within the
collected AMARSS data, and show that it accurately predicts missing data, exposes
the impact that missing data has on the certainty of derived results, and suggests
proper maintenance.
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6.5 Design of Vigilance

Our design goal is to assess the impact of a fault on an application in real time.
Rather than wait for a user to notice missing data or to proactively replace damaged
sensors as they break (and perhaps cause disturbance or accidental damage), we
want to provide the administrator with just enough information to understand the
impact of a fault on the application and to make timely and informed maintenance
decisions.

Figure 6.4 shows the high-level structure and data flow of Vigilance. Vigilance
runs at or near the sink of the network; it is supplied with time-series of raw sen-
sor data, an application model that implements an equation, such as Equation 6.1
or 6.2, and a parameter that specifies how much uncertainty a user is willing to tol-
erate in the application model’s output. The application models we consider require
a complete set of inputs (referred to as a data vector) to produce output. When a
fault causes sensor data to go missing, Vigilance estimates the missing data so that
the application model can operate on a complete data vector. Data is labeled to dif-
ferentiate real data from estimated data. Estimated sensor data, by its nature, has an
associated statistical uncertainty that may impact the time series data the application
produces by introducing uncertainty in the output of the application model.

Vigilance’s primary outputs are warnings, when the application uncertainty goes
above a user-defined threshold, and a prioritized list of maintenance suggestions.
In addition, Vigilance provides a complete raw sensor data stream with missing
elements filled in and time series data produced by applying an application model
to the raw data from each deployment site. These latter two outputs may sim-
plify higher-level application logic and may reduce redundant estimation processing
across applications that would otherwise have to estimate missing data themselves.

The remainder of this section discusses three of Vigilance’s major components,
which estimate missing sensor values, propagate uncertainty in these estimates from
the input of an application model to its output, and then produce maintenance
suggestions.

Fig. 6.4 Overview
of Vigilance
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6.5.1 Estimating Missing Data

Vigilance estimates missing data elements from a raw data stream as the first step
in quantifying the impact of data loss. Raw sensor data arrives as tuples of the form
htime; sensorID; label; valuei. The time and sensor ID uniquely determine when and
where the sample was taken. The label describes the contents of the value field and
take a value of measured, missing, or estimated. The label measured
indicates that the sample was taken successfully and that the value field contains
the result. The label missing indicates that some problem has occurred: either the
sample did not arrive before some time out, or the value was deemed to be faulty.
Tuples are added to the data stream labeled missing when expected data does not
arrive within a timeout period.

Vigilance expects data to be organized on regular time boundaries, which, for
example, occur every five minutes for our soil monitoring deployment. For each
unique time stamp, Vigilance’s estimation unit looks for missing data across all
sites. Those vectors labeled measured are emitted unchanged. For each vector la-
beled missing the value of the missing data is replaced with a probability density
function (pdf) that encodes the “best” single estimate of the missing data (the mean
of the pdf) as well as the uncertainty (how the distribution spreads out from the
mean). The more narrow the pdf, the more certain we are that the true value of the
missing data is close to the mean of the pdf, indicating that the mean is an accu-
rate estimator. A new vector, having the same time stamp and sensor ID is emitted,
but the value field contains the pdf, and the label reads estimated. Note, that
when estimating missing data, it is important that the data that the model is trained
on resemble the inputs from which missing data is being predicted, as a mismatch
may result in estimates that claim to have low variance, but are inaccurate. We leave
for future work the step of deciding when the training data is suitable to predict
missing data.

To create a pdf for the missing data, the estimation unit first trains a model to
predict the values of missing data. While there are several procedures for learning a
regression function (local polynomials, neural networks, support vector machines),
and we have experimented with many, we use Polymars [12] because it provides
a balance between model complexity and interpretability that is particularly well
suited to our goals. Polymars is a flexible tool that can capture various smooth pat-
terns easily (e.g., temperature time series), but may not be appropriate for modeling
abrupt changes, as may be seen in target tracking scenarios, or for modeling alarms.
A model trained by Polymars predicts the values of the broken sensor (which we
refer to as the response, y) from data sources derived from the available sensor
data (which we refer to as the predictors, x). The response and the set of predictors
can be represented as a table, where the values in the first column correspond to
the response, and each subsequent column corresponds to a particular predictor. In
this table, each row is referred to as an observation. Polymars produces a function
that, given the predictors for any particular observation, produces a fitted value that
approximates the response for that observation. The difference between an observa-
tion’s response and its fitted value is referred to as a residual.
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In order for Polymars to train a model that will predict accurately, some of the
predictors should correlate well with the response. We first explain the set of pre-
dictors we use and then motivate our use of Polymars over other adaptive fitting
techniques.

Predictor Construction

Predictor construction is the process by which each available raw data stream (e.g.
CO2 at 2 cm) is transformed into a new stream that may correlate better with the
values of a broken sensor. Predictors are used as input to Polymars, which then es-
timates lost data. Analogous sensors (those sensors of the same type, at the same
depth, but at different sites) in our deployment often display highly correlated be-
havior. For example, in the soil deployment, all sites are affected by the sun in a
similar way, and so analogous sensors typically behave similarly. While there may
be site specific parameters (e.g. shading, organic litter) that lead to minor differences
in behavior, the differences are small compared to the amplitude of the signal. Thus
we use analogous sensors to construct predictors that leverage spatial correlations
between sites.

Companion sensors (those sensors of the same type, at the same site, but at differ-
ent depths) can also display highly correlated albeit time-lagged behavior. For ex-
ample, within a single site, solar radiation received at the soil surface propagates
downward through the soil. Shallow sensors experience a change in temperature,
and at a later time deeper sensors experience a dampened version of the same
change. Similarly, increases in CO2 concentration at lower depths eventually re-
sult in increased CO2 concentration closer to the surface as CO2 rises. Temporal
correlations can be seen within a site by looking at the cross-correlation function
of companion sensors. If the lag between two companion sensors is known, then a
sensor can be used as a powerful predictor for its companion. Unfortunately, the lag
seen between companion sensors is neither constant within a site over the course of
a year, nor is it the same for all sites at a particular time of year.

Through analyzing more than a year of sensor data traces, we have found that
the lag between companion sensors falls within a small range. Lag between two
sensors observing the same phenomenon occurs in several different sensing modal-
ities, typically when there is some sort of diffusion process at work, and there are
standard statistical tools for determining it; for example, in the soil deployment,
regardless of site, the absolute lag between companion temperature sensors or com-
panion CO2 sensors was always less than three hours. Rather than try to determine
the lag for each pair of companion sensors, for each site, for each time of year,
we take a simpler approach that works well regardless of season, site, and sensing
modality. Each operational sensor that is local to a broken sensor is used to generate
several shifted versions of itself, with lags ranging from �3 hours to C3 hours, in
10 min increments. The set of shifted time series makes up our set of predictors that
capture temporal correlations. A handful of these predictors will correlate well with
historical data from the broken sensor, irrespective of what type of sensor is broken.
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Model Generation

A model is trained from the set of predictors so that missing data can be estimated.
Here, we provide a brief overview of the operation of Polymars; the reader is re-
ferred to [12] for details. Polymars is not necessarily the right modeling procedure
for every observational deployment. However, its ability to model smooth data well
makes it applicable to a wide range of microclimate monitoring deployments. More-
over, in Vigilance, it is straightforward to replace Polymars with another modeling
technique, which may be desirable when, for example, the data collected is either
not smooth, or when the user has knowledge of a more application-specific model-
ing technique. Polymars is an adaptive function estimation routine, meaning that it
will identify both the important components in a model (i.e. which predictors to use)
as well as their functional form (i.e. how they are used). In essence, given a set of
predictors fx1, x2, x3g, Polymars expresses a function f in terms of a constant, the
main effects (each predictor by itself), and the two factor interactions (the product
of two predictors), to approximate the response, y:

f .x1; x2; x3/ D ˛0 C ˛1x1 C ˛2x2 C ˛3x3

C˛12x1x2 C ˛13x1x3 C ˛23x2x3

Polymars finds the values of the ˛’s that produce a good fit, preferring models with
fewer terms (i.e. with more ˛ values set to zero) when additional terms offer only
a marginal improvement to the approximation of y by f . Several standard tools
exist to analyze a model with this functional form in order to help an investigator
understand why the model fits the data well. Higher order interactions, as a rule, are
more difficult to interpret, and for this reason Polymars forgoes them (e.g., note the
absence of ˛123x1x2x3).

After training a model f , the set of residuals r , computed from all observations,
is saved and associated with f . If f fits the data well then the distribution of r

will be narrow and centered at zero. We use the distribution of fitting residuals as
an indicator of how well f will be able to predict the value of missing data: the
more narrow the distribution of residuals, the more accurate the predictions. When
a prediction e is made using f , e is added to the distribution of fitting residuals r ,
and the result is taken as an empirical distribution for the missing data.

6.5.2 Application Uncertainty

Vigilance’s propagation unit determines whether the pdfs for missing data made by
the estimation unit induce too much uncertainty in the application. When data is
missing, the uncertainty in the output of the application model is also represented as
a pdf. The wider a sensor data pdf is, the wider the application output pdf may be.
The width of the application output pdf is compared to the application threshold,
which is user specified. A narrow width (below a threshold) indicates a tolerable
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application uncertainty and thus that the estimates for missing sensor data are
sufficient for the application’s purposes. Conversely, a wide pdf suggests that
the sensor data estimates are too uncertain, and thus that maintenance is re-
quired.1 A warning that indicates the site and its broken sensors is displayed to
the administrator.

The propagation unit uses the application model, the application threshold, and
the fixed sensor data as input. Vigilance keeps a function pointer that references the
application model, which takes a vector of values as input and produces a single
value as a result. Vigilance assumes that there is a set of data per time stamp that
is to be processed by the application, and part of Vigilance’s configuration specifies
the application model as a function, as well as what set of data should be passed
to it. For our deployment, the data values for a single site and time are passed to
the application model, although nothing prevents passing data from multiple sites
together.

The set of vectors for a particular site i and time stamp t are gathered together to
make Xit, referred to as the sensor input. If the sensor input vector contains no filled
in data, then it is passed to the application model, FA, and the result Yit is emitted.

Yit D FA.Xit/

When one or more elements of the sensor input vector are pdfs then Vigilance uses
the application model to produce a pdf describing Yit.

To estimate how input uncertainty propagates through the application model, a
missing data method called Multiple Imputation (MI) [20] is applied. Because each
missing input is approximated by a pdf, samples can be drawn from each pdf, and
placed in their corresponding positions within the sensor input vector to produce
a complete input vector, suitable for the application model to operate on. Several
complete versions of the sensor input vector are created this way, and each is pro-
cessed by the application model to create a set of application results. The operation
of MI is illustrated with a small example.

Suppose a transform T takes an input vector of the form ha; bi and produces a
single output c.

T .ha; bi/ D c (6.3)

If b is missing, T cannot operate. However, using a pdf bpdf that describes the dis-
tribution of b given the value of a, this limitation of T can be circumvented. Several
samples are drawn from bpdf to create several candidate values for b, referred to as
imputations, and denoted by

b.1/; : : : ; b.n/

Each imputation is used to create several candidate input vectors

ha; b.1/i; : : : ; ha; b.n/i

1 It can also point to the need to reexamine the model being used.
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Each instance is processed by T as normal, creating a set of possible results.

T .ha; b.1/i/ D c1

:::

T .ha; b.n/i/ D cn

The mean of the results n�1
P

i ci is used as the best estimate of c, and the distance
between the 2.5% and 97.5% quantiles of the results (referred to as the 95% con-
fidence interval) is used as an estimate of the uncertainty in c due to b’s absence.
Although we focus on this quality metric (the 95% confidence interval) others are
possible (such as the standard deviation) and Vigilance could use them as well.

MI is the only missing data method we know of that allows complete data analy-
sis techniques, such as the soil CO2 flux and heat storage models, to be used without
modification. In addition to its simplicity, MI has several advantages over other
missing data methods. First, the collector of the (incomplete) data set may have a
good idea as to why particular elements went missing. This allows the collector to
publish a data set where those missing elements are explicit, and simultaneously
provide candidate values (or a generative model) for each missing element that cap-
tures the collector’s insight. Second, the collector may not know who plans to use
the data or for what purpose. The collector can provide multiple candidate values
for each element of missing data, which allows for a clean separation between the
data producer and the data consumer. Third, candidate values can be generated from
multiple prediction models, allowing model uncertainty to be reflected in the analy-
sis as well. Fourth, MI can be expressed in a Map-Reduce framework [7], allowing
it to be efficiently parallelized. As observational sensing systems grow in size, the
amount of missing data due to faults will grow as well. MI offers a scalable means
of estimating the impact of missing data on application inference.

After sampling the pdfs to generate several candidate instances of the the sensor
input vector, each is transformed by the application model, and the set of application
results is collected into a pdf. Vigilance uses the mean of the application pdf as the
single best estimate of Yit, and takes the width of the 95% confidence interval as an
estimate of spread in the application output. The more narrow the 95% confidence
interval, the more confident we are that the true value of Yit is close to the mean.
The size of the 95% confidence interval is compared to the application threshold,
and intervals that exceed the threshold are flagged. The output of the propagation
unit is a vector containing the time, the site ID, the mean value, and the 2.5% and
97.5% quantiles htime; site; value; lowQ; highQi.

6.5.3 Maintenance Suggestions

When the application uncertainty exceeds user-defined limits, the maintenance
advisor suggests fixes that could be performed and provides estimates of how much
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the uncertainty will decrease (as measured by the narrowing of the 95% confidence
interval) by doing so. The maintenance advisor takes the output tuples of the prop-
agation unit, as well as the fixed data stream from the estimation unit, and stores a
time series of application results and fault combinations for each site. The mainte-
nance advisor considers one site at a time. For each site, the maintenance advisor
determines the unique fault combinations that have occurred at that site over time.
For each unique fault combination, the maintenance advisor takes the average of the
associated 95% confidence intervals. Thus, the maintenance advisor can see how
the application 95% confidence interval has widened on average as faults have ac-
cumulated at a site. Therefore, the maintenance advisor can estimate how the 95%
confidence interval will shrink at a site if faults are fixed in the opposite order in
which they occurred. The maintenance advisor produces messages that indicate the
site ID, the fault combination, and the associated 95% confidence interval. In gen-
eral, this approach is desirable, however, the specific constraints of the phenomenon
being monitored may preclude its use. For example, in our soil deployment, fixing
any sensor at a site disturbs the whole site. For this reason, when the maintenance
advisor suggests necessary maintenance, all sensors at a site should be fixed, not
just those that have the most impact.

6.6 Implementation of Vigilance

Vigilance has been implemented and extensively tested using real soil monitoring
data, and two real soil monitoring applications. However, to date, Vigilance has not
yet been integrated with the soil monitoring deployment’s collection server, thus our
presentation of its real time behavior is derived from offline analysis. Various fault
combinations are simulated by labeling some data as missing. Because of Vigi-
lance’s heavy reliance on statistical analysis, it is implemented entirely in R [2], a
free statistical computing package. Vigilance can therefore be easily integrated into
existing workflow platforms that support R processing boxes, such as Kepler [6].
This section describes the implementation details of our data estimation and model
output uncertainty process.

6.6.1 Missing Data Estimation

For each faulty data point, Vigilance takes an inventory of the available sensors that
can be used to generate the set of predictors described in Sect. 6.5. To generate the
shifted version of the available local sensors that Vigilance uses, it must wait three
hours from the time a piece of data goes missing to the time when it can address the
fault. For this reason, Vigilance currently operates three hours behind the current
time. This amount of time could be reduced, as in practice we only see shifts of
about one hour being used by Polymars. After collecting the available predictors,
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Polymars produces a model capable of predicting the missing data, as well as the set
of fitting residuals. In our implementation, all neighboring nodes that are available
at the time of a fault are used as predictors, and local sensors are used if they are
available for a six hour time window that surrounds the fault time.

6.6.2 Uncertainty Propagation

When elements are missing from a sensor input vector, Xit, Vigilance independently
draws several random elements from each of the constituent pdfs to produce sev-
eral instance of Xit. The number of sensor data input vectors Vigilance generates
grows exponentially with the number of missing elements in the sensor input vec-
tor. Specifically, when k elements are missing, I D max.20; 10k/ estimated vectors
are constructed. Empirically, we found that 20 offers good results when the vector is
missing only one element. After creating and processing the I instances, the mean
and 2.5% and 97.5% quantiles are calculated from the set of application results.
When none of the values are missing from the sensor input vector, Vigilance passes
the complete vector directly to the application model.

6.6.3 Maintenance Suggestions

The maintenance advisor keeps a time series of the application output’s 95% confi-
dence interval for each site. Per site, the historical data is scanned for times where
one or more faults were present. Because faults are often persistent, the same fault
scenario may be seen for several different time stamps. The average 95% confidence
interval size is calculated over the set of time stamps that all exhibit a particular fault.
This creates a mapping between each fault scenario that the site has experienced, and
the average application uncertainty resulting from that fault scenario. Whenever a
new tuple arrives that exhibits a failure at a site, the maintenance advisor scans its
history of data to update the mappings between fault scenario and average 95% con-
fidence interval size for that site, and produces a warning that indicates the site, the
95% confidence interval size, and the sensors that have failed.

6.7 Evaluation

We show that Vigilance can reduce required maintenance by accurately filling in
missing data, quantifying the resulting uncertainty in the application, and then by
calling attention to only those sites that require maintenance because they induce
uncertainty that exceeds user-defined constraints. We expect Vigilance’s modeling
technique to predict missing values accurately and to differentiate faults by their
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respective severity. We begin by evaluating the prediction accuracy and coverage of
our modeling technique. We show that Vigilance predicts data up to twenty times
more accurately using its specially crafted set of predictors compared to simply
using the set of analogous sensors for prediction, which is commonly done in the
literature.

We quantify how Vigilance’s suggestions affect maintenance efforts and network
uptime. Using a simulated data set and a typical sensor failure probability, we show
that Vigilance reduces the required maintenance by a factor of three, and increases
the amount of usable data collected by a factor of three.

Next, we discuss the implications that Vigilance has for deployment design. We
discuss how, using Vigilance as a deployment design tool, we can now formulate
a deployment upgrade or new deployment plan as a decision problem, amenable to
optimization. Lastly, we illustrate Vigilance memory, and processing requirements
and its scalability.

6.7.1 Methodology

Simulations are performed on a data set that spans almost 19 days. Faults are
simulated by deliberately withholding data, which is then used as ground truth for
the simulation results. The time at which a fault starts is chosen at random, and the
fault duration, referred to as the gap size, is varied from five minutes (one sample)
to one day. All combinations of sensor failures have been simulated, and selected
results are presented. Only temperature and CO2 sensors faults were simulated be-
cause both application models that we examine are insensitive to the range of soil
moisture values seen within our simulation data set. In addition, only results from
where either one or two sensors are broken (referred to as single fault scenarios,
and double fault scenarios, respectively) are presented because larger failure sce-
narios exhibit intolerable application performance and always require maintenance.
Each failure scenario is simulated twenty times, and the 2.5%, 25%, 50%, 75%, and
97.5% quantiles are calculated. Simulations were run on a quad-core Intel Xeon,
running at 2 GHz, with 5 GB of memory. Vigilance does not take advantage of mul-
tiple cores, and simulations were run four at a time.

6.7.2 Prediction Accuracy

We look at how well a model made by Polymars using our full set of predictors
performs on novel data compared to other methods. We compare a model trained
from our choice of predictors (referred to as pm) with predictions made by mod-
els trained on different subsets of predictors. The first subset only uses the set of
temporal predictors derived from sensors local to a failure (referred to as temporal).
This includes predictors derived from all other local sensors that are operational, not
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just the companion sensor to the failed sensor. The second model only uses the set
of neighbor sensors that are analogous to the failure (referred to as spatial). As a
baseline, we also compare the prediction accuracy of the above models predictions
made by a linear least-squares line. The ten closest points to a missing point are
used to fit the line because, experimentally, we determined that they offer good re-
silience to noise while avoiding the incorporation of non-local data for small gaps.
We find that pm produces predictions that are on the same order as the manufacturer
specified accuracy of the sensors, outperforms the other prediction methods (with
minor exceptions), and has prediction accuracy that is nearly constant over a range
of gap sizes.

For each fault scenario and gap size, the prediction error is computed for twenty
trials, and the quartiles of the prediction error over all trials is computed. Because
the distribution of prediction error is roughly symmetric and centered around zero,
the interquartile range is computed, and is used to compare prediction accuracy.
Throughout this evaluation, we refer to the prediction error interquartile range as
simply the prediction range.

Figure 6.5 shows the size of the interquartile range for the four single fault
scenarios, for each prediction model. Over the four single fault scenarios, the
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Fig. 6.5 The prediction error interquartile range for the temperature and CO2 sensors. The best-fit
line performs marginally better than other models for small gaps. The performance of other models
is steady across the range of gap sizes
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least-squares linear fit has a prediction range comparable or smaller than any of
the other prediction models when the gap size is less than 30 minutes, and in some
cases (the 8 cm temperature and the 2 cm CO2), it is smaller for up to a gap size
of 3 hours. What this suggests is that for short gaps in measurements of a smoothly
varying phenomenon, a complex prediction model need not be trained, and only a
small amount of temporally local data from the faulty sensor is needed to accurately
predict missing data. However, as gap sizes become larger than about 4 hours, the
least-squares line performs poorly.

Interestingly, pm, spatial and temporal exhibit nearly constant prediction range
over the set of gap sizes, with pm having the smallest range among the three (with
some minor exceptions), which is expected as pm is trained on a superset of pre-
dictors. For the 2 cm and 8 cm temperature sensors, the prediction range for pm
is approximately 0.2ıC, and temporal’s range is comparable. The data sheet for the
temperature sensors quotes an accuracy of ˙0:7ıC, implying that further refinement
in prediction accuracy may be unnecessary. For the 2 cm CO2 sensor, the prediction
range for pm and temporal is approximately 50 ppm, and for the 8 cm CO2 sensor
the range is approximately 80 ppm for both. The higher variability in CO2 concen-
tration at 8 cm makes it more difficult to predict, however the data sheet for the CO2

sensors quotes an accuracy of ˙150 ppm, again implying that further refinement in
prediction accuracy may be unnecessary. Throughout all the single fault scenarios,
spatial exhibits poor performance, with a range of approximately 4ıC and 150 ppm
at 2 cm, and approximately 2ıC and 500 ppm at 8 cm, for temperature and CO2, re-
spectively. This brings to light the huge boost in prediction accuracy that a modeling
technique that leverages the structure of the problem has over more general tech-
niques: the set of temporal predictors, which simulate a diffusion process, enable a
prediction accuracy that is about 20 times better than simply using spatial data.

When predicting a single broken temperature sensor, the inaccuracy due to
spatial does not affect the estimation of CO2 flux significantly, and in fact, our
collaborators currently do something similar to estimate temperature data when a
temperature sensor fails, so as to avoid maintenance. However, a single broken CO2

sensor requires maintenance if spatial is being used to estimate its missing data. As
will be shown in Sect. 6.7.4, using pm, even a single broken CO2 sensor can be
tolerated resulting in far less maintenance, and more usable sensor data.

Figure 6.6 shows the prediction range of the four most difficult double fault sce-
narios, where both companion sensors are broken (e.g. both temperature sensors,
or both CO2 sensors). The other eight double fault scenarios exhibit performance
similar to the four single fault scenarios listed above (e.g. when predicting the 2 cm
temperature sensor, and the second fault is one of the CO2 sensors then the perfor-
mance is similar to the single fault scenario where only the 2 cm temperature sensor
is broken) and are omitted for brevity. The accuracy of line and and spatial are
unaffected in the double fault scenarios since they do not depend upon other sensors
that are local to the failure.

For both temperature sensors, the prediction range for pm is approximately
0.4ıC, while for temporal it has jumped to between 1ıC and 2ıC in the absence
of local information. This shows the utility of companion sensors when predicting
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Fig. 6.6 The prediction error interquartile range for the double fault scenarios. Only double fault
scenarios where both companion sensors are broken are shown

temperature. Whereas pm can fall back on neighboring analogous sensors, temporal
has to rely loosely upon the available CO2 and moisture sensors. The model for tem-
poral produced by Polymars for either temperature sensor when only a single failure
is present shows a heavy reliance upon the companion temperature sensor. There-
fore, when the companion temperature sensor has also failed, and the neighboring
analogous sensors are not available, the accuracy degrades significantly.

For the 2 cm CO2 sensor, the prediction range for pm is about 150 ppm, and in-
creases to about 250 ppm for the 8 cm CO2 sensor (recall that there is more variation
in CO2 concentration at 8 cm compared with 2 cm). For temporal, the range is about
200 ppm for 2 cm and jumps to about 300 ppm for the 8 cm sensor.

6.7.3 Coverage

We look at how uncertainty in sensor data estimates made by pm propagates through
the CO2 flux application model. Vigilance calculates the 95% confidence interval
for CO2 flux for each fault. The frequency with which the 95% confidence interval
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Fig. 6.7 The median coverage and interquartile range for the temperature and CO2 sensors

actually contains the true flux value is called the coverage. We show that coverage
for the four single fault scenarios is around 80% for gap sizes up to about half a
day, and degrades for larger gap sizes. For each fault scenario and gap size, the
coverage was computed for twenty trials, and the median coverage per gap size and
interquartile range was determined.

Figure 6.7 shows coverage in the four single fault scenarios. For small gaps,
the coverage is near 100%, but for a day-long gap it can be as low as 60% for
temperature and 80% for CO2 in the single fault scenarios. Although not shown,
the coverage for the multi-fault scenarios hovers near 100% regardless of gap size,
because the distribution is unusably wide. The coverage indicates that Vigilance’s
operating parameters need further tuning. Because Polymars simultaneously deter-
mines the model form and fitting parameters, the residuals are not independent, and
as a result, the distribution of residuals is optimistically tight. Estimating confidence
intervals for adaptive estimation routines is a subject of current research in statis-
tics [11]. There are procedures proposed to widen the confidence intervals to correct
for this [9], and this is left for future work. This result does not affect the major con-
tribution of this work, which is to identify the relative severity of faults, and thus
does not affect implications for deployment design, upgrade, and maintenance, dis-
cussed in Sects. 6.7.4 and 6.7.5.
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6.7.4 Maintenance

Here we show that using Vigilance to monitor a simulated deployment similar to
our own, maintenance is reduced by a factor of three for reasonable sensor failure
rates, and the amount of data collected is three times more compared with doing
maintenance whenever a fault occurs. First, we present the 95% confidence interval
calculated by Vigilance for both the CO2 flux and heat storage applications under
various fault scenarios, and identify the set of scenarios that require maintenance to
sustain the performance of both. We then use this information to simulate a deploy-
ment similar to our own, where both CO2 flux and heat storage are being estimated
for a year.

Table 6.1 shows the 95% confidence interval size for both applications under
the fault scenarios considered. In the first column, a fault in one of the tempera-
ture sensors is indicated by a T , a fault in one of the CO2 sensors is indicated by
a C, and the subscripts indicate the depth of the sensors, in centimeters. For the
CO2 flux application, a width of more than 10 ppm m�2 s�1 cannot be tolerated,
and for heat storage, a width of more than 50 W m�2 cannot be tolerated. There
are several things to note about this table. First, there are clearly differences in
maintenance requirements. Flux estimation tolerates the failure of both temperature
sensors, while heat storage estimation cannot. Heat storage estimation can tolerate
the failure of both CO2 sensors, but flux estimation cannot. Second, looking at a sin-
gle application, the relative size of the 95% confidence interval indicates the relative
importance of various fault scenarios to that application. Knowing the relative im-
portance, it is possible to prioritize maintenance for an application. Although in our
deployment, the need to disturb a site implies that all faults within the site should be
addressed, one can imagine a deployment where if the settling time is small enough
an administrator could begin to ask which k out of the N faults over a deployment
should be addressed to maximize the application data yield, or minimize the main-
tenance while maintaining some yield. Third, it is easy to see how the application

Table 6.1 The width of the
application 95% confidence
interval. Looking at the fault
scenarios for a single
application indicates the
relative importance of the
fault scenarios to the
application. Looking across
applications, maintenance
decisions vary

Heat
Fault CO2 Flux Storage
Combination ppm m�2 s�1 W m�2

T2 0.05 22.59
T8 0.03 16.95
T2 T8 0.31 129.9 (fix)
C2 4.37 0
C2 T2 5.06 22.59
C2 T8 5.04 16.95
C8 6.60 0
C8 T2 7.60 22.59
C8 T8 7.51 16.95
C2 C8 21.6 (fix) 0
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will suffer as faults accumulate. For example, assuming the CO2 flux application
threshold was actually seven, if sensor C2 is already broken, then another failure in
either temperature sensor would be critical, and an administrator may be inclined to
take preventative measures. Fourth, when looking at multiple applications, the set
of intolerable fault scenarios can be easily identified. Fifth, maintenance can be pri-
oritized across multiple applications. For example, given M applications, each with
their own preferences about which k out of N broken sensors to fix, which should
be fixed Or, given C amount of money and the costs for each sensor type which
sensors should be fixed?

From Table 6.1, to satisfy both applications simultaneously, Vigilance can toler-
ate at most the failure of one CO2 sensor and one temperature sensor. Currently,
in our soil deployment, CO2 sensors are “important” so that when one breaks
maintenance is performed. Temperature sensors are “important” to the heat storage
application. Therefore, if both heat storage and CO2 flux are being monitored then
any temperature sensor failure or CO2 sensor failure will engender maintenance if
Vigilance is not being used, reducing the total amount of usable data collected for
both applications.

To quantify this, we simulate a deployment similar to our own, where a each of
ten sites has two CO2 sensors and two temperature sensors, and we compare the
data yield when Vigilance is not used to the data yield when Vigilance is used. We
simulate one year data collection, where each sensor has a probability P of failing
each day, and maintenance incurs a settling time of twenty days before usable data
is again produced. When not using Vigilance, any failure causes maintenance to
occur. When using Vigilance, as long as at least one temperature sensor and one
CO2 sensor are operational at a site then maintenance is not performed and data
usable for both CO2 flux and heat storage estimation is collected. The proportion of
usable data (at the granularity of a day) is computed. The failure probability is fixed
for each trial, and twenty trials were run per failure probability.

Figure 6.8 shows the percent of total amount usable data that could have been
collected over the course of a year for each of the two deployment scenarios. The
percent of useful data for each failure probability is represented by its interquartile
range (the thick segments), and the symmetric 95% quantile range2 (the thin seg-
ments). Note that the results are staggered so that the segments do not overlap, and
does not indicate a difference in failure probability.

As the probability of sensor failure increases, the percent of usable data drops
rapidly when not using Vigilance. With a failure rate of 1.5%, the median amount
of usable data is 30%. The amount of usable data decays far more gracefully when
using Vigilance, where the amount of usable data is 76% for a failure rate of 1.5%,
increasing the amount of usable more than a factor of two. Although a failure prob-
ability of 1.5% seems high, a failure could be any event that requires a sensors to
be removed from the ground. For example, a sensor may need recalibration peri-
odically, and recalibration also requires disturbing the soil. An example of a soil

2 This is the distance between the 2.5% and 97.5% quantiles
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Fig. 6.8 A simulated deployment where the amount of usable data retrieved using Vigilance is
compared to a deployment without Vigilance

sensor that needs frequent recalibration is an Ion Selective Electrodes (ISEs), used
in ground water contaminant monitoring, and may require recalibration every two
to eight weeks, leading to a “failure” rate of �1.5%.

Figure 6.9 shows the number of sites that need maintenance per day on average,
with and without Vigilance. With a failure rate of just of 2%, a deployment with-
out Vigilance incurs one maintenance operation per day, Vigilance, by comparison,
allows sensors to fail with a probability of almost 8% to incur one maintenance
operation per day, Over the range of failure probabilities shown, Vigilance incurs
about three to four times fewer maintenance operations per day.

6.7.5 Deployment Design Implications

Using the data collected, we make specific design suggestions for our soil deploy-
ment, and offer it as anecdotal evidence to Vigilance usefulness in deployment
design in general. In addition, we discuss how using Vigilance, a deployment up-
grade or a new deployment plan can be formulated as a decision problem, amenable
to optimization.

An important take-away from the prediction accuracy results from Sect. 6.7.2 are
the implications of how to incorporate sensing resilience into deployment design,
both for improving the design of the existing deployment, as well as the making
more robust designs for future deployments. First, given a limited budget of sensors,
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Fig. 6.9 A simulated deployment where the number of sites that require maintenance per day
when using Vigilance is compared to a deployment without Vigilance

redundant sensors should be placed where there is most variability. In the case of
temperature, if three sensors are to be placed at two different depths (e.g. 2 cm and
8 cm) then the extra sensor should be placed at 2 cm. Similarly for CO2, an ex-
tra sensor should be placed at 8 cm since there is more variation there. Looking
at the predicting accuracy for the two temperature and two CO2 sensors, we see that
the 2 cm temperature is the most difficult of the temperature sensors to predict, and
the 8 cm CO2 sensor is the most difficult of the CO2 sensors to predict. Second, the
comparison of pm to spatial and temporal reveal whether spatial or temporal cor-
relations are most important for aiding prediction accuracy. Better fault resilience
for CO2 readings can be achieved by putting more sensors within the same stack
of soil, as opposed to instrumenting more sites to increase the number of analogous
sensors. Because spatial’s performance in the single fault scenarios is poor, this im-
plies that CO2 may leverage local data more than spatial data. Looking at the double
fault scenarios, both pm and temporal perform comparably, implying that the lack of
the companion CO2 sensor is most detrimental to prediction CO2. Temperature, on
the other hand, achieves a high degree of resilience from a diversity of sites as well
as local data. Again, spatial’s performance in the single fault scenarios is poor, but
pm performs well in the double fault scenarios while temporal does not, implying
that temperature prediction can fall back on spatial data if need be, in addition to
other local sensors. In addition, Table 6.1 also indicates weaknesses in a design for
a particular application. Not only is it clear that the CO2 flux application is sensi-
tive to the failure of CO2 sensors, but the relative importance of the CO2 sensors is
also evident.
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There results of Sect. 6.7.4 show that deployment maintenance can be posed as an
optimization problem. The settling time is a cost associated with doing maintenance,
and there are certainly other costs that we have only briefly touched on, such as
the number of maintenance operations and the monetary cost of sensing hardware.
In addition to the costs, there is a set of constraints on the applications that are
being supported: the confidence interval size must be less than some user specified
threshold. Given a set of applications constraints, and deployment costs, it becomes
possible to specify a deployment plan as an optimization problem e.g. maximize the
amount of usable data collected while minimizing the sensing hardware cost.

6.7.6 System Performance

Here, the processing and memory requirements of Vigilance are shown to be rea-
sonable. For the estimation unit, the time to estimate missing data increases linearly
with the number of missing elements, requires only about 30 s for almost 300 miss-
ing data points, and is dominated by the time to train a model. For the propagation
unit, the time to process a set of candidate vectors increases linearly with the size of
the set, and requires about 500 s to process about 5.5 M candidate vectors. Although
the size of the set of candidate vectors increases exponentially as the number of
faults at a site increases, the operations of the propagation unit can be easily ex-
pressed in a Map-Reduce [7] framework, and is therefore highly scalable.

Table 6.2 shows the quartiles of processing time for both the estimation unit and
the propagation unit as a function of the number of faults. The number of faults
dictates the number of models trained (one model is needed per sensor in these sim-
ulations), and the time to train a model is roughly constant when the amount of
training data is fixed. The median estimation time increases linearly as the number
of models trained increases. The propagation time is a function of the number of
imputations that need to be generated, and candidate vectors processed. Because
the number of imputations increases exponentially with the number of faults the
processing time of the propagation unit increases exponentially. Although an expo-
nential run-time is anathema in systems research, there are two things to keep in
mind. First, the maximum number of sensor faults that a node can sustain is small

Table 6.2 The quartiles for estimation time and propagation time as a function of the number of
faults, in seconds. The gap size in all cases is one day. The estimation time scales linearly with the
number of faults at a site, and the propagation time scales exponentially

Estimation Time Propagation Time

Faults 25% 50% 75% 25% 50% 75%

1 24.70 24.93 30.89 40:99 41:17 41:25

2 42.16 44.08 46.76 44:61 45:24 46:41

3 54.91 56.77 60.36 81:57 81:65 81:66

4 60.83 66.16 74.98 462:6 463:18 467:6
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Table 6.3 The quartiles for estimation time and propagation time as a function of the
gap size, in seconds. The number of faults in all cases is one. The estimation time and
propagation time both scale linearly with the gap size

Estimation Time Propagation Time

Gap Size 25% 50% 75% 25% 50% 75%

5 min 17.44 20.41 24.07 3:44 3:64 3:96

10 min 16.95 19.28 21.41 3:57 3:87 4:02

15 min 16.83 18.96 21.57 3:69 4:02 4:17

30 min 16.49 18.94 21.31 3:61 3:97 4:27

1 h 17.43 19.89 21.66 3:81 4:16 4:43

3 h 17.09 19.17 21.60 4:32 4:66 5:16

6 h 20.70 22.60 23.66 5:28 5:59 6:01

12 h 24.41 25.90 27.90 6:91 7:63 8:04

24 h 27.03 29.05 31.58 10:7 11:6 12:2

(there are only six below ground sensors per site). Second, each imputations could
be processed in parallel, and then all the results are collected, using Map-Reduce.

Table 6.3 shows the quartiles of processing time for both the estimation unit
and the propagation unit as a function of the gap size, when there is only one fault
and the amount of training data is held constant. The time to build a model domi-
nates the estimation time for small gaps, requiring about 17 seconds. When the gap
size is larger than six hours, the time to estimate missing data begins to dominate
the time to train. Given a fixed number of faults, the number of candidate vectors
that the propagation unit needs to process is constant for each time where data is
missing. From Table 6.3, the run-time increases linearly for the propagation unit as
the gap size increases.

The memory requirements of Vigilance are currently dominated by the amount
of sensor data that is stored, and by the amount of memory required to store the
fitting residuals. The run-time environment, R, uses about 8 B for each variable.
Our data set, made up of about 5,500 observations with 61 values per observation,
fits into just over 2.5 MB of memory, and a Polymars model takes almost 3 KB.
The residuals associated with the model depends upon the amount of training data,
which was bout 5,000 observations. Thus, the fitting residuals required almost as
much storage as the data set itself. Fortunately, the distributions of residuals suggest
that they can be approximated by a Gaussian distribution, which would reduce the
amount of storage needed to about 16 B.

6.8 Conclusion

For many practical embedded sensing deployments, failures are inevitable. In ad-
dition, as deployments increase in scale, the odds that no component has failed
becomes slim. Similarly, the frequency of maintenance procedures may become
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impractical, or demand a batching strategy. Furthermore, the cost of maintenance
(which includes the monetary cost, as well as the cost of environmental disturbance)
may be too high to pay. Finally, it is not always clear what “redundancy” means for
sensor deployments since a sensor’s operation is determined by its pose, and no two
sensors can have identical pose.

Rather than mask the presence of failed sensors, and the effect of missing data,
tools are needed to both help compensate for the loss of data, as well as to estimate
the amount of uncertainty introduced by missing data. In our own soil deployment,
reluctance to disturb the soil inspired the study of just how important each sensor
input was to the scientific applications at hand, and ultimately the development of
one solution to the problem of dealing with missing data. Vigilance both exposes
the effect of missing data on the actual applications that ecologist are studying, as
well as giving technicians expert knowledge about what maintenance is critical to
perform. Knowledge of the phenomenon and environmental structure is leveraged
by choosing predictors that will likely correlate well with the response, and an adap-
tive fitting procedure chooses the relevant set of predictors. Vigilance complements
these techniques by exposing the severity of faults from the application’s perspec-
tive. Vigilance’s application-centric viewpoint is similar to [28], where the efficacy
of a wireless sensor network for monitoring the seismic activity of a volcano is
compared to standard seismology sensors.

Vigilance accurately characterizes missing data with a pdf by using a carefully
constructed set of predictors that leverages spatial and temporal correlations, in con-
junction with Polymars, an adaptive fitting procedure. Vigilance is able to propagate
the uncertainty in missing data estimates through an application model, and there-
fore estimate how the uncertainty due to the absence of requisite inputs affects the
certainty of a scientific application. Differences in maintenance requirements across
applications and weaknesses in a deployment’s design can be identified, and using
Vigilance to monitor a deployment can reveal where collocating sensors may be
most beneficial. Vigilance paves the way to formalizing the sensor deployment, de-
ployment maintenance, and deployment upgrade processes, casting them as decision
problems.
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Chapter 7
Cane Toad Monitoring: Data Reduction
in a High Rate Application

Wen Hu, Nirupama Bulusu, Thanh Dang, Andrew Taylor,
Chun Tung Chou, Sanjay Jha, and Van Nghia Tran

Abstract This chapter describes our experiences developing wireless, acoustic
sensor network systems for a high rate sensing application: monitoring amphib-
ian populations in northern Australia. Our goal was to use automatic recognition
of animal vocalizations to census the populations of native frogs and an invasive
introduced species, the Cane Toad. This application falls within the large class of de-
tection and classification applications based on acoustic signals, which also includes
condition-based maintenance, vehicle classification, and in particular monitoring
birds and animals. As most applications in this class, amphibian monitoring is chal-
lenging because it requires high frequency acoustic sampling (10 kHz), complex
signal processing and calls for low cost and long-lived unattended system operation
in a challenging environment, characterized by significant environment noise as well
as flooding, extreme heat and humidity and occasional forest fires. These design and
deployment challenges were addressed over several phases. An initial system ad-
dressed the challenges of weather-proof, unattended operation. Our second system
focused on miniaturization and driving down system costs. Our final system en-
abled fast in-network frog classification at the motes themselves using compressed
sensing. Our experience shows that compressed sensing works in practice and can
be a powerful tool in developing and implementing not only cane toad monitoring
applications, but other high rate sensing applications.

Keywords Wireless sensor networks � Acoustic sensing � High rate � Hybrid
architecture � Machine learning � Lightweight classification � Compressive sensing

7.1 Introduction

This chapter explores the use of low-power, wireless acoustic sensor network
technology for monitoring amphibian populations in remote areas of Australia’s
Northern Territory.
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Fig. 7.1 The Cane Toad and its 2003 Australian distribution [17] used with permission copyright
ACM 2009

The cane toad (Bufo marinus), see Fig. 7.1, was introduced to Australia in the
1930s in the belief that it would control pests in sugar cane crops [20]. Since the
introduction of approximately 100 individual cane toads in the 1930s, they have
progressively spread through north-eastern Australia and are estimated to number
over 200 million in Australia. Their expanding distribution, density and ecological
characteristics have raised grave concerns regarding their potential adverse impact
on Australia’s native fauna. Figure 7.1 illustrates their 2003 distribution. Of partic-
ular concern is the ecosystem of Kakadu National Park, a vast World Heritage area,
recently colonized by cane toads [7].

A team of zoologists at the University of Queensland, headed by Dr. Gordon
Grigg, wanted to study the impact of cane toads on the native fauna. In particular,
they focused on the impact of cane toads on native frog species. The reasons for this
are multi-fold. There are more than 20 unique frog species in the Kakadu National
Park, considered by zoologists to be indicator species of an ecosystem’s health. Sec-
ondly, native Australian frog species that share diets and habitats with the cane toad
are potentially most susceptible to it. One way to characterize the impact of the cane
toad on native frog species is to census frog species through acoustic observations.
Male frogs sing, and the frog calls, referred to as vocalizations or aural signatures,
are distinct for each frog species. However, some unique environmental conditions
make it challenging to study cane toad impacts through manual, short field trips.
The cane toads are currently active in Australia’s remote territories. Most of the
frog species are active during the monsoon season, and their activity depends on
the rainfall. Since the rainfall is unpredictable, short field trips are not particularly
useful. During the monsoon season, roads are often inaccessible. Moreover, extreme
humidity and heat conditions make field work challenging. An ideal solution to this
problem is a sensor network deployed in the study area that could operate unat-
tended and monitor the impact of cane toads in the areas such as Kakadu National
Park from acoustic observations.

In the late nineties, the zoologists approached Andrew Taylor, one of the authors
of this chapter and an expert in artificial intelligence, to develop on-line algo-
rithms for automated recognition of frog species, including the cane toad, based on



7 Cane Toad Monitoring: Data Reduction in a High Rate Application 195

Table 7.1 Comparison of various systems

Versions Pilot[29] Second Final

Goal Automated acoustic census
of amphibian populations

Miniaturization Miniaturization

Challenges Remote, hostile environment
significant external noise

Data reduction Data reduction

Contributions Weather-proof operation robust
classification algorithm

Signal capture on motes
hybrid architecture

Lightweight
classification

acoustic vocalizations. The goal was to build monitoring stations that could operate
unattended and census frog species throughout the year. These monitoring stations
would support a multi-year study on the impact of the cane toad on native fauna.
The project team consisted of three zoologists and one computer scientist.

In this chapter, we describe the development of an acoustic sensor network sys-
tem for cane-toad monitoring over several stages, focusing on the motivation for
each iteration, and the design decisions made. A unique feature of this application
is that the emphasis was always on in situ classification of frog species, rather than
on collecting raw high rate acoustic data for future analysis as is the case in the
volcano monitoring deployment described in Chap. 4. As far as the zoologists were
concerned, the ability to perform data processing at the sensors was a desirable
feature right from the outset. Each iteration increased the amount of acoustic data
processed at a low power, resource-constrained embedded device, while reducing
the amount of data transmitted to, or processed at a resource-rich, higher capability
device. The various project stages are contrasted in Table 7.1.

In the pilot deployment starting 1996, Taylor et al., developed software to
census frog populations from their vocalizations based on machine learning algo-
rithms [29]. They deployed 12 independent frog monitoring stations, each about
25 km apart, in the Kakadu and the Roper valleys of the Northern Territory. Au-
tomatic monitoring of frog species consists of many resource-intensive tasks. The
pilot deployment had purely resource-rich devices to monitor cane toads. Each of
these monitoring stations contained a solar panel, a battery, power management elec-
tronics, a microphone with preamp, a temperature sensor, a rain gauge, and a Pleb
single board computer [3]. These monitoring stations could operate unattended for
a year in hostile conditions, such as flooding, cyclones, humidity and animal inter-
ference. The frog species classification software could recognize vocalizations of up
to 9 frog species distinguishable to the human ear, and up to 22 frog species in to-
tal. However, these monitoring stations had no communications capability amongst
themselves. Condition monitoring and data collection were only possible with ex-
pensive, typically annual, site visits. The high deployment cost severely restricted
the study area.

In 2003, Nirupama Bulusu, Wen Hu and Sanjay Jha began a collaboration with
Andrew Taylor to investigate whether it was possible to implement his frog cen-
sus system on ultra low-power embedded devices such as the motes, that had
recently become available. We wanted to focus on miniaturization as a way to drive
down deployment costs. Not only was it challenging to implement classical signal
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processing techniques on the motes, even sampling the acoustic signal proved to be
a considerable hurdle. It appeared that the only way to use the motes was to perform
raw data collection and transmit all the raw data back to a base station for further
processing. However, communication was well known to be a major energy drain in
wireless embedded devices. Thus, our primary design challenge in miniaturization
was data reduction.

The second system we developed [16] was a hybrid system that consisted of both
resource-rich and resource-impoverished sensors, where resource-impoverished
sensors extended sensing coverage and were used for simple tasks such as collect-
ing acoustic samples, and resource-rich sensors were used for resource-intensive
tasks such Fast Fourier Transforms (FFTs) and greedy decision tree machine learn-
ing procedures. To enable the hybrid system, we developed algorithms to account
for the sampling, processing, communication and energy bottlenecks of resource-
impoverished sensors – (1) high frequency sampling, (2) thresholding and noise
reduction, to reduce data transmission by up to 90%, and (3) sampling scheduling,
which exploits the sensor network redundancy to increase effective sample pro-
cessing rate. Machine learning based acoustic classification of frog species required
sensors to sample the signal at the Nyquist rate and transfer the samples to higher-
capability devices for processing. Unfortunately, this approach was communication
intensive and not scalable because even with thresholding, at peak, the sensors sam-
pled the signal at a high rate (10 kHz) and expended a lot of energy and bandwidth
in transferring the samples.

The goal of our final system was to further reduce the data transmitted by
low-power motes to extend system lifetime. Literature in the area of compressive
sensing [5] showed that a few random samples could capture the signal structures
well, provided that the signal was sparse in some domain. Building on this, for our
third system, we designed a light-weight classification algorithm that was executed
at the resource-constrained sensors (MicaZ mote class devices), overcoming the lim-
itations of the earlier system. The main intuition for this approach was that animal
vocalizations in general, and cane-toad vocalizations in particular, have simple re-
peated patterns without the variation prevalent in human speech. This implied that
simple feature extraction should work for animal classification. Our approach was
to estimate the signal envelope from randomly-sampled data at a much lower sam-
pling rate than the signal Nyquist rate and match this envelope with the candidate
signal envelope. It required a low sampling rate (100 Hz), small memory (2 kB) and
was computationally feasible on resource-constrained sensors. It did not require pre-
cise timing, which would have been difficult to implement on resource-constrained
sensor devices.

Throughout, our work built on lessons from previous sensor deployments for
habitat monitoring [23, 28], health [26], education [27], structural monitoring [24],
predictive maintenance [19], volcano monitoring [31] and precision agriculture [10].
Early deployments such as some of those cited above were mostly homogeneous
systems and collected simple environmental parameters. More recent sensing sys-
tems acquire signals at much higher frequencies, perform complex signal process-
ing, and in situ detection, classification and localization of sources. Like us, some
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of these efforts rely on tiered architectures [12, 13] to tackle high rate applications.
Our work can be considered complimentary to other systems which support dis-
tributed acoustic embedded acoustic sensing applications, such as Acoustic ENS-
Box [11], VoxNet [2] (see Chap. 4), EnviroMic [22] and Vango [14]. A variety of
other techniques, systems and applications of embedded acoustic sensor networks
have been reported in the literature and their features inspired various aspects of
our work, as surveyed briefly in the reminder of this section. A common feature
of these systems is their reliance on powerful nodes to support the data acquisition
and extensive processing. In contrast, our experience shows that it is possible to im-
plement high rate sensing and classification applications on low power embedded
devices. Similar techniques could potentially be applied to other acoustic classi-
fication based sensing applications, such as vehicle classification, condition based
maintenance, detection and classification of animal species. However, it is necessary
to characterize the sparseness of the signal before random sampling methods can be
applied. Additionally, lightweight algorithms must be tested to ensure robustness
to noise.

From amongst the works reported, the following are of particular significance:
To reduce the number of transmissions, task decomposition and collaboration

have been investigated in a bird monitoring application using acoustic sensor net-
works [30]. Like us, they try to reduce data and transmissions by preprocessing
acoustic data at each sensing node.

Ali et al. [1] developed an acoustic localization algorithm for marmots, medium
sized rodents, by combining bearing estimates to the marmot source from multiple
sensors. As this is quite a complex algorithm, it has been implemented on powerful
platforms, such as the Acoustic ENSBox and VoxNet.

EnviroMic [22] is a distributed recording system to enable scientists to collect
bird calls in a study area over a period of time, that they could analyze later. Like
us, EnviroMic focuses on miniaturized, low-power embedded devices (motes) for
cost-effective monitoring. EnviroMic stores raw data at the motes themselves. If a
mote has limited memory, its raw data can be transferred to another mote. Data is
not transmitted to a higher capability device for storage, but retrieved by manually
collecting the motes at the end of the study. Unlike our application, EnviroMic is
not intended to support in situ classification.

Vango [14] is a programming framework to support data reduction in bandwidth
constrained sensor networks, by performing in-network processing on low power
motes. A program can be specified as a linear filter chain in Vango. This is compli-
mentary to our work in that the matched filter developed in the third iteration of our
system could be one of the filters provided by Vango to facilitate rapid deployability
of mote-class devices.

Acoustic ENSBox [11] is a multi-sensor system in which each sensor hosts an
array of 4 microphones, to support distributed acoustic sensing applications. ENS-
Box hardware can be used to replace Stargates in either our pure or hybrid system.
Therefore, the acoustic ENSBox can be seen as a complement of our work.

More recently, the marmot localization system has been implemented on the
VoxNet integrated hardware/software platform for acoustic monitoring applications,
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as described in Chap. 5. The VoxNet platform would be very useful for pilot
studies, in particular making it less cumbersome to collect and label training data
for monitoring frog species. In contrast to marmot localization, our goal is to
investigate which parts of application can be offloaded to inexpensive but resource-
impoverished Mica motes.

7.2 Background: Pilot Deployment

In this section, we provide a brief overview of the pilot deployment [29], discussing
system goals and challenges, hardware used, the frog vocalization recognition algo-
rithm and lessons from the deployment. Our subsequent systems, which focus on
low-power embedded devices, build upon this work.

7.2.1 Goals and Challenges

The goals of the project were twofold. The first goal was the design of a software
system to enable automated census of amphibian populations. The second goal was
the deployment of monitoring stations running this software, that could operate
unattended through the monsoon season, eliminating the dependence on field work.

The first goal of developing a software system for automated census of amphibian
populations proved to be quite challenging. The key idea was to use acoustic features
in the time and frequency domains (see Fig. 7.4) to distinguish the vocalizations of
different amphibians. These features included call rate, call duration, amplitude-
time envelope, waveform periodicity, pulse-repetition rate, frequency modulation,
frequency and spectral patterns. Frog vocalizations are much simpler than human
speech but they had to be recognized in very difficult conditions with multiple com-
peting uncooperative “speakers” which were distant from the microphone and with
a variety of noise sources such as wind, rain and insects present. A second chal-
lenge was the collection of accurately labeled training data that could be used in
automated classification algorithms.

7.2.2 Hardware

Twelve monitoring stations were deployed in the Roper and Kakadu valleys of
northern Australia and were powered using solar panels. Each station consisted of
a single board computer, a microphone, temperature, humidity and rainfall sensors.
The Pleb, a single board computer, was built at the University of New South Wales,
based on a 200 MHz StrongArm processor [3]. Hardware internals are shown in
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Fig. 7.2 Hardware Internals for the Pilot Deployment (Source: Andrew Taylor)

Fig. 7.3 Station mounted on a Tower (Source: Andrew Taylor)

Fig. 7.2. Data about detected frog species was logged onto flash memory once every
5 min. The stations were mounted on towers (see Fig. 7.3) or tripods to minimize
external interference, and packaged to be weather-proof.

7.2.3 Frog Vocalization Recognition Algorithm

The demands of the difficult acoustic environment did not allow the recognition
algorithm to segment or isolate individual vocalizations. Recognition consisted of
three steps. The first step was generating a time-frequency spectrogram of the
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Fig. 7.4 The waveform graph of Cyclorana cryptotis. Amplitude (an unsigned ADC reading
between 0–255) vs. time (s) [17] used with permission copyright ACM 2009

Fig. 7.5 The spectrogram graph of Cyclorana cryptotis. Frequency (Hz) vs. time (s) [17] used
with permission copyright ACM 2009

acoustic signal. The second step was using the spectrogram as an input for a ma-
chine learning algorithm to classify frog species. The third step was a voting process
to improve the classification reliability of the machine learning algorithm.

7.2.3.1 Spectrogram Generation

The input signal (the vocalization) was converted into a spectrogram of time-
frequency pixels (see Fig. 7.5) by a Fast Fourier Transform (FFT) algorithm.

The spectrogram was broken into slices of 1 ms length. The frog vocalization
recognition algorithm examined each slice of the spectrogram and tried to estimate
the local peaks. The local peaks are frequency bins that had more energy than neigh-
boring frequency bins. Attributes extracted from occurrences of these local peaks
along with attributes extracted from the signal waveform were used to identify indi-
vidual species of frogs. This was accomplished using classifiers, built by a machine
learning algorithm, described next.
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7.2.3.2 Machine Learning

Quinlan’s machine leaning system, C4.5 [25], was used to build the classifiers.
C4.5 is a supervised learning system, requiring training data. This training data was
provided based on vocalizations of 22 individual frog species that were manually
selected from high quality recordings gathered in earlier biological research. Vocal-
ization of each species used a sound sample of 5–20 s. Additionally training data
sounds of cricket species were introduced because crickets were prevalent in the de-
ployment area. As cricket vocalizations share a few qualities with frog vocalizations,
classifying them explicitly boosted the reliability of frog species classification.

7.2.3.3 Voting Process

Identification of frog species from individual local peaks only produced a classifica-
tion accuracy of 50%. To increase the reliability of the system, a hierarchical voting
process was used to identify the existence of each frog species (see Fig. 7.6). There
were three levels of identifications in the system. For a specific species that had a
vocalization lasting for 300 ms and wherein each vocalization consists of a num-
ber of mini nodes which were 30 ms long, the system worked as follows. Level 0
was 30 ms long. The identification of a species proceeded to the next level (level 1)
of length 300 ms if the number of local peaks occurring within 30 ms exceeded a
threshold value. Similarly, the identification process proceeded to level 2 of length
3 s if the local peaks occurring within 300 ms exceeded another threshold value. If a
certain number of level 2 vocalizations were identified within 3 s, the species was
identified reliably.

7.2.3.4 Evaluation

The algorithm was tested with extensive field data prior to the pilot deployment.
The zoologists collected 29 recordings of frog calls in the field area, varying the
recording length from 3–30 min, and the distance to the nearest frog from 2–70
meters. Initially, the algorithm was able to correctly classify 8 different species that
were distinguishable to humans, and missed one species. In some cases, the calls
of two ecologically similar frog species were indistinguishable to humans. These
species were grouped together. Additional training data was necessary to remedy
this problem.

Additionally, the algorithm performance during deployment was measured.
The ground truth was established using expert zoologists. One zoologist visited
the monitoring station on wet nights and found that the system detected 12 species
observed by him, and missed only one species. It additionally detected 3 species
that were not observed by the zoologist, as they were heard very sporadically.
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Fig. 7.6 The flow chart
of a hierarchical-decision frog
species classification
algorithm [17] used
with permission copyright
ACM 2009

7.2.4 Lessons

The Roper and Kakadu valley deployment by Taylor et al. [29] successfully
achieved unattended operation for more than an year, withstanding adversarial
conditions ranging from human and animal interference to cyclones, monsoon heat
and humidity, flooding, and dry season fires. All but one station were found to be
working correctly during the first annual visit. Surprisingly, the microphones did not
fail despite adversarial conditions. Even though there was frequent lightning in the
areas, and the monitoring stations were mounted on tall poles, there were no ensu-
ing failures due to lightning. Whenever there was continuous rain over several days
(causing disruption to the solar power supply), the stations simply re-booted and
resumed operation without losing their time base. The machine learning algorithm
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initially misidentified two species, but after modification of the temporal segments
used to recognize the species, performed robustly even in the presence of significant
noise and interference.

However, the system had a few limitations. First, the system needs to be pre-
trained to recognize the required sounds, from an existing library of recorded
sounds. Training can be time-consuming. Secondly, the monitoring stations were
very expensive, greatly limiting the scale of deployment. In addition to expensive
single board computers, the monitoring stations incurred unexpectedly high costs
for large solar panels and packaging, which run into several thousands of Australian
dollars.

The latter problem motivated us to investigate whether low-power motes could
lower costs. However, motes were very sharply resource-constrained with respect to
sampling, processing and storage capability in comparison to single board proces-
sors. Not only was it difficult to generate a frequency spectrogram on a mote, even
sampling an acoustic signal at 10 kHz was very challenging on the motes. In the next
few sections, we describe the development of an acoustic sensor network system
for cane-toad monitoring over several stages, reducing in each iteration the amount
of data transmitted and increasing the data processed at the low power embedded
device.

7.3 Iteration 2: Hybrid Sensor Networks

Following the pilot deployment, we developed a hybrid sensor network for the
cane-toad monitoring application during the period July 2004 to December 2005.
The hybrid sensor network consisted of resource-rich devices acting as cluster-
heads, augmented by resource-poor devices to extend network coverage. This
section describes the the goals and challenges, the hardware used and the system
architecture, followed by performance evaluation and lessons learned from this iter-
ation of the project.

7.3.1 Goals and Accomplishments

The goal of this iteration was to study whether the pilot system could be made more
cost effective using miniaturized sensors based on ultra low-power embedded plat-
forms. The accomplishments of this iteration included the development of a hybrid
system prototype that can classify frog species and the addition of ad hoc networking
capabilities to the cluster nodes, which enable on-line cluster-node reprogramming,
reconfiguration, and real-time result delivery. A final accomplishment is the exten-
sion of network coverage by adding inexpensive but resource-impoverished nodes
to the system and an evaluation of the hybrid system performance over short-term
indoor and outdoor deployments.
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7.3.2 Challenges

Classifying frog species using ultra low power embedded platforms was challenging
because analyzing frog calls required:

� High Frequency Sampling. To differentiate the calls of cane toads from other 8
native frog species and other environmental noises such as the sound of rain or
crickets, the cane toad monitoring system must be able to provide a sampling rate
of at least 10 kHz. Note that the 10 kHz sample rate was an empirical result. This
sampling rate is extremely challenging on ultra low power embedded platforms.

� Complex Signal Processing. To classify frog species using a machine learning
algorithm, the first step is to use a 256-point Fast Fourier Transform (FFT) to
produce a spectrogram in the frequency domain from the sampled acoustic inputs
in the time domain. The FFT algorithm needs significantly greater computation
power and memory than available on ultra low power embedded platforms.

These challenges have been met through a hybrid system prototype. The hybrid
system uses the hardware described in the next section.

7.3.3 Wireless Sensor Hardware

We used two hardware platforms for our sensor network: Mica2 and Stargate.
Mica2 (see Fig. 7.7) is the third generation of Berkeley mote manufactured com-
mercially by Crossbow [6]. The mote had a 7.7 MHz Atmega processor running
TinyOS [15] 1.x and 512 kB on-board flash memory, it could transmit at a maxi-
mum data rate of about 19 kB/s and was powered by two AA size batteries. We used
the Mica2 sensors as our resource-poor sensors.

Stargate, also manufactured by Crossbow, is a high performance processing plat-
form running the ARM-Linux operating system that offered much more resources
than the Mica motes in terms of computation power, memory, energy and transmis-
sion capabilities. A Stargate had a 400 MHz Intel PXA 255 processor and 96 MB
memory in total (64 MB SDRAM and 32 MB flash memory). It could be powered

Fig. 7.7 Mica2 and Stargate [17] used with permission copyright ACM 2009



7 Cane Toad Monitoring: Data Reduction in a High Rate Application 205

by a Li-Ion battery and can support Wi-Fi (11 Mbps when using IEEE 802.11 b)
transmissions. We used Stargates as our resource-rich sensors because they can
be interfaced with motes and can therefore communicate directly with the Mica2
sensors over the wireless channel.

The next section describes two system prototypes that were built using the above
hardware.

7.3.4 Cane Toad Monitoring Prototypes

7.3.4.1 Pure: Stargates Only

Since our frog-detection system involved many resource-intensive tasks, as a first
step, it was natural to use the resource-rich Stargates to build such a system. A Star-
gate could achieve up to 44 kHz sampling rate, which was more than enough for
our system. However, it could only process about 5% of the inputs sampled at
22 kHz in our initial implementation because of its slow floating point emulation.
We addressed this problem by using an integer-only Fast Fourier Transform (FFT)
implementation, which enabled all inputs to be processed at the 22 kHz sampling
rate. This compared well the pilot deployment, which could only process 25% of the
inputs [29]. Note that the minimum required sampling frequency was still 10 kHz;
the use of 22 kHz sampling with the Stargate was simply due to availability.

Figure 7.8 shows the information processing architecture of the Stargate only
system. The Stargate sampled acoustic data using a microphone via a Universal Se-
rial Bus (USB) port. The sound spectrogram was then generated to convert input
signals in time domain to frequency domain. The sound attributes, including the
number and timing of local peaks, were extracted from the spectrogram and used
as the inputs of machine learning classifiers. There was one classifier for each frog
species. To increase the correctness and reliability of the recognition, a hierarchical
recognition structure was employed, termed as voting process in the figure and de-
scribed in Sect. 7.2.3.3. Note that the training (classifier building) process was done
on a server machine prior to deployment. Then the classifiers were transferred and
stored in Stargates.

Moreover, equipped with a wireless transmission channel, our Stargate devices
could also communicate and coordinate with each other to form an ad-hoc network.
This network provided real time feedback to the user when connected to the Internet.
Furthermore, it could estimate the migrate directions of the cane-toad by analyzing
the network-wide cane-toad existence snapshots at different times.

7.3.4.2 Hybrid: Stargates and Mica2s

The major problem of the pure system introduced in Sect. 7.3.4.1 was the high cost
of the Stargate nodes. Therefore, we introduced a hybrid mixture of Stargates and
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Fig. 7.8 The information processing architecture of the Stargate only system. The offline informa-
tion processing at the server is performed prior to deployment [17] used with permission copyright
ACM 2009

Mica2 motes to achieve a more cost-effective system. Mica2s could be scattered
to collect acoustic samples. However, it would have been challenging (if not im-
possible) to implement resource-intensive tasks such as FFT and machine learning
procedures on a tiny device such as the Mica2 that had a 7.7 MHz Central Processing
Unit (CPU) and 4 kB Random-Access Memory (RAM). Hence, the resource-rich
Stargates were used for this task. The Mica2 performed some preliminary process-
ing to reduce the transmission sizes and environmental noise before it transferred the
samples to the Stargate. Then the Stargate used these inputs to detect and classify
frog species.

Figures 7.9 and 7.10 show the information processing architecture and the net-
work architecture respectively of the Hybrid system. In the hybrid system, the
Mica2s sampled acoustic signals, and compressed the samples before sending them
to the Stargate via the radio channel. Upon receiving data from the satellite motes,
the Stargate decompressed the received data before processing them. These classifi-
cations are relayed back to the server.
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Fig. 7.9 The information processing architecture of the Hybrid (Stargates and Mica2s) system.
The offline information processing at the server is performed prior to deployment [17] used with
permission copyright ACM 2009

Network Architecture and Protocols. We used a cluster-based network architecture
in the second iteration of the system. The Stargates act as the cluster heads and the
Mica2 motes are the leaf nodes. Although the theoretical data rate of Mica2 nodes
is 20 kB/s, we were able to achieve only a data rate of 13.632–14.036kB/s in our
experiments. The packet delivery rate was very high (approximately 99%) when
the nodes were very close to each other (10 m). Since the bottleneck of the system
was wireless bandwidth (see sampling scheduling in Sect. 7.3.4.2), the Mica2 motes
were limited to one hop away from the cluster head. Therefore, no routing protocol
was used. The communication schedule inside a cluster was controlled and signaled
by the cluster head, i.e., the cluster head polled the Mica2 motes periodically. On the
motes, we used Carrier Sense Multiple Access (CSMA), the default Medium Access
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Fig. 7.10 The network architecture of the Hybrid system [17] used with permission copyright
ACM 2009

Control (MAC) protocol in TinyOS 1.x, with centralized scheduling by the cluster
heads (Stargates). There was no explicit time synchronization across the Mica2s, as
we subtracted the recording period (15 s) from the message receive time to obtain
the sampling time.

Device Packaging. We found the Pleb package [29] suitable for Stargates. We found
HelioMote packaging [21] suitable for the Mica2 motes. Both packages were tested
to be water-proof, and suitable for long term outdoor deployment.

We made one modification to the machine learning algorithm used in the pilot
deployment. Our hybrid system built one classifier for each frog species vocalization
and made a decision about the existence of each frog independently, which was
different to Taylor’s system that had one classifier for all frog species. To make
the hybrid system effective, we further designed and implemented the following
algorithms.

High Frequency Sampling. The Mica could sample at up to 200 Hz normally. With
the original HighFrequencySampling component [18], the Mica could only
achieve up to 6.67 kHz sampling rate after turning off the wireless radio while sam-
pling. Because we needed a sampling frequency of at least 10 kHz, we modified the
clock rate of the Analog-Digital Converter (ADC) on the sensor board to provide
such a high sampling rate. We did not notice any adverse impact on the Micas by
changing the clock rates.

Thresholding and noise-reduction. To reduce environmental noise and transmis-
sion sizes, we designed and implemented a simple yet effective algorithm. It divided
the entire time period into a number of 1 ms time slices. Therefore, there were 10
samples in each time slice when sampling at 10 kHz. If the amplitude level of the
whole period was under a threshold (for example, from �20 to C20), we called
it a silent/noise-only period. For a silent/noise-only period, we used one special
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Fig. 7.11 The waveform graphs of Cyclorana Cultripes without (top) and with (bottom) noise
reduction. The samples were collected by Mica2s sampling on the field [17] used with permission
copyright ACM 2009

character of one byte to substitute for the whole period of 10 bytes. This reduced
transmission sizes by up to 90%. When a Stargate received the packet, it replaced
the special character with ten silent values to recover the original signal. The envi-
ronmental noise was also reduced as shown in Fig. 7.11. The frequency signatures
of the frogs’ calls were preserved with a carefully chosen silent/noise-only thresh-
old of 32.

Sampling Scheduling. The bottleneck of our hybrid system was the transmission
link between Micas and a Stargate. With our thresholding algorithm, it took 30 s to
transfer a 15 s segment of acoustic samples, which resulted in about a 30% process
rate. To increase the process rate, we designed and implemented a scheduling al-
gorithm which exploited the sensor network redundancy. Based on their locations,
two Micas were grouped together if they detected the same acoustic signal. Then,
the Stargate controlled the sampling and transferring periods of two Micas such that
when one Mica was transferring, the other was sampling. Thus, the processing rate
was increased to 50%, which is 60% more than that of a single Mica.
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Our expectation was that the hybrid system could perform as well as a
resource-rich pure system. This expectation was met, as the results in the next
section demonstrate.

7.3.5 Evaluation

To evaluate the performance of our systems, we tested them over a range of sce-
narios. Our performance metrics included not only criteria such as transmission
sizes and operational latency, but also application-determined criteria, in this case,
whether the frog species was correctly identified.

� Test environments. In our experiments, the playbacks of 9 individual frog species
calls and 7 different mixtures of frogs’ calls were used as sound sources. Each
mixture was created by mixing calls from 2–3 different species of frogs. For 6 of
the mixtures, the cane toad was present; in the 7th mixture, cane toad was absent.
Within a sound segment, multiple calls from each frog species selected in that
particular mixture are present. Our Stargate system consisted of a Stargate with a
Logitech USB Microphone that responded to 100–16 kHz frequencies. In the hy-
brid system, Mica2 used the standard microphone on MTS300CA sensor board.
We tested the systems in both indoor and outdoor deployments. The indoor tests
were conducted in our lab where external noise was minimal. The outdoor tests
were conducted over half a day on a field with environment noises such as insect,
bird calls and wind present. The Mica2s were powered using two AA batteries,
and the Stargates were powered by four AA batteries. For the outdoor tests, the
Mica2s and the Stargates were placed on boxes, at a height of approximately
10 cm from the ground. In both deployments, data logs were downloaded from
the Stargate via WiFi.

� Performance test results. The test results are summarized in Table 7.2. The data
in the table presents results from a series of 6 experiments for each test case. The
results were identical across all the experiments. For IND, a trial was Correct if

Table 7.2 Test results for our two prototypes with respect to frog species identification [17] used
with permission copyright ACM 2009

Stargate Hybrid

IND MIX IND MIX

Indoor Correct 9 5 9 5
Wrong 0 2 0 2
Cane toad: False positive or negative 0 0 0 0

Outdoor Correct 9 5 9 4
Wrong 0 2 0 3
Cane toad: False positive or negative 0 0 0 0

IND – 9 types of individual frog’s call
MIX – 7 types of mixtures of frog’s calls
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our system identified correctly the frog species; in case of MIX, a Correct trial
meant all frog species in the mixture were correctly identified by the system.
A Wrong trial had one or more false positives or false negatives. In all our MIX
experiments, we were able to correctly identify the presence of cane toad even
when we did not get the other species right. Both indoor and outdoor tests showed
that our systems recognized the individual calls of 9 species of frogs successfully.
Not surprisingly, it was more difficult to recognize the mixed calls of different
frog species. The system gave incorrect results between similar species a few
times. The pure Stargate system achieved one more correct recognition outdoors
than the hybrid system since it operated at wider frequency ranges. Note that we
also tested the pure system sampling at 11 kHz, and the performance results were
similar to those of hybrid system. The Hybrid system performed better indoors
than outdoors because of outdoor environmental noise. However, it never gave
incorrect results for the cane toad species (our principal species, see rows 3 and
6 in Table 7.2) since the cane toad had a very different vocalization compared to
the other native species.

� Transmission sizes. We studied transmission patterns for the hybrid system dur-
ing a short-term outdoor deployment in a park, lasting half a day. In this deploy-
ment, there were two Mica2s and one Stargate. We collected the calls of frogs in
field using Mica2s and stored them as raw data. Then, we used our thresholding
algorithm to compress the raw data before transmissions. The results summa-
rized in Table 7.3 show that the algorithm achieved 25–45% compression ratios
under different scenarios. The lower bound of the compression ratio was 10%
that occurred when the whole sampling period was silent. Since the frogs were
only active during mid-night, the system operated within that period. The thresh-
olding algorithm was more effective under long periods of silence.

� Latency. The Stargate only system provided real time user feedback. The hybrid
system had a 45 s latency, which included 15 s sampling time, and 30 s transmis-
sion time. This latency was inconsequential for our purposes.

� Cost. The costs of the two prototypes have differed greatly since the cost of Mica
was projected to drop dramatically. Therefore, we believed that the hybrid model
was more suitable for the cane-toad monitoring application.

Table 7.3 Compression ratio observed for different scenarios [17]
used with permission copyright ACM 2009

Frog(s) Original Size Compression Size Compression Ratio

1 99,366 26,319 26.59%
2 99,622 25,561 25.66%
3 99,622 32,699 32.82%
4 99,544 36,688 36.86%
5 99,466 41,623 41.85%
1 – Bufo marinus call
2 – Notaden melanoscaphus call
3 – Cyclorana cryptotis call
4 – Mixed sound of 1 and 3
5 – Mixed sound of 1, 2 and 3
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7.3.6 Lessons

The central design decision in this iteration was the use of a hybrid system
architecture. We also built the pure Stargate only system to transition from the
system described in Iteration 1 to a WiFi capable platform and to provide a direct
performance comparison to the hybrid system. The hybrid architecture allowed us
to augment resource-rich devices with low power embedded devices to extend sens-
ing coverage. We were able to successfully sample the signal on motes and extend
process rates using the sampling scheduling algorithms. An unexpected result from
evaluating the hybrid system was that its classification performance was slightly
less robust to outdoor noise than the pure system, even when it was sampling at
comparable frequency and using the same classification algorithm.

The pure Stargate only system was ready to be deployed with a well-designed
outdoor package, a good water-proof microphone with pre-amp to increase sensing
range from approximately 3–100 m, an external antenna to increase transmission
range, a high volume battery and a 200 mA solar panel with solar recharging circuit.
However, the hybrid system needed further engineering efforts for robust, long-term
deployment. In the hybrid system, the motes also needed a pre-amp.

Another major challenge for outdoor sensor deployment was energy conserva-
tion at the motes. The battery energy of the motes depleted very quickly. This was
because the machine learning algorithm for acoustic species classification required
motes to sample the signal at the Nyquist rate (10 kHz) and transfer the samples to
Stargates for classification. Unfortunately, this approach was energy and bandwidth
intensive because the motes expended a lot of energy and bandwidth in transfer-
ring the samples to a Stargate over the wireless channel. Adding solar panels to the
motes to harvest energy could not completely remedy the problem, because of the
irregularity of power supply, and because the frog species typically are most active
at night. In retrospect, to prepare the system for deployment, we could have simply
added large flash memories to the motes themselves to temporarily store data dur-
ing periods of low energy availability. However, since raw acoustic data would have
been recorded at a very high rate, memory requirements would have been very large.
These problems motivated us to address the design challenge of signal processing
on the mote itself. In the next section, we describe our final system which features
lightweight acoustic classification on the mote.

7.4 Iteration 3: Lightweight Classification

In our final system design, our goal was to develop a lightweight acoustic clas-
sification algorithm that could be implemented at the resource-constrained motes.
This had the potential to preserve the energy of the motes, by reducing the raw data
transmitted by the motes to prolong the sensor network lifetime.
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The Nyquist-Shannon sampling theorem posits that if a function x.t/ contains no
frequencies higher than C Hertz, it is determined completely from its ordinates at a
series of points spaced 1=2 C apart. Thus, the Nyquist rate of sampling a signal is
given by twice its highest frequency component. However, recent results in compres-
sive sensing theory [5] have shown that a small number of random samples (much
lower than the Nyquist-Shannon criteria) could capture the signal structures well,
provided that the signal was sparse or compressible, that is, the signal contained
many coefficients close to zero when represented in some domain (e.g., Fourier si-
nusoids, time domain).

Building on this result in compressive sensing, two proposed approaches [4, 9]
have performed detection and classification on randomly sampled data, without ac-
tually reconstructing the signal. Boyle et al. [4] showed that we can classify signals
from the histogram of the signal random samples. Unfortunately, the histograms
were difficult to recover under noise. We also considered the smashed filter [9]
to classify signals using random samples. The smashed filter is a variant of the
matched filter, a popular technique in signal processing that calculates the correla-
tion between a known signal and an unknown signal to verify if the unknown signal
matches the known signal. However, it was computationally infeasible to use the
smashed filter on resource-constrained devices for a large number of samples.

To overcome the limitations of previous approaches, we designed a light-weight
classification algorithm that could be executed at the resource-constrained MicaZ
mote class devices. The main intuition for this approach was that animal vocal-
izations in general, and cane-toad vocalizations in particular, have simple repeated
patterns without the variation prevalent in human speech. This implied that sim-
ple feature extraction should work for animal classification. Our approach was to
estimate the signal envelope from randomly-sampled data (without explicitly re-
constructing the signal) and match this envelope with the candidate signal envelope.
As shown in Sect. 7.3, Nyquist rate sampling at 10 kHz required the mote to suspend
other tasks. Our approach differed from using a low pass filter or a uniform sampling
rate in that we can capture a similar amount of information by using significantly
fewer random samples than by using uniform samples. This approach required a
low sampling rate, modest computation and memory resources, enabling resource-
constrained sensors to classify high frequency signals. It also did not require precise
timing, which was difficult on resource-constrained sensor devices.

Our classification algorithm had three main steps – random sampling, envelope
extraction, and matched filtering (Fig. 7.12).

7.4.1 Random Sampling

We believed random sampling to be suitable for low-power sensor devices such
as motes, because it is fairly straightforward to program the sensors to compute
a random sequence of time a priori and schedule sample times according to the
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Fig. 7.12 Lightweight
acoustic classification [8]
used with permission
copyright IEEE 2008

sequence. However, timing control can be difficult. If two sampling times in the ran-
dom sequence are extremely close (say 10 and 10.00001 s), the sensor must sample
at a very high frequency (100 kHz) for the short time period (between 10 and
10.00001 s). To overcome this, we generated random indices in a short time range
(for example, (0, 1)) and scaled them to a much larger time range (for example,
(0, 100)). The scale factor was the shortest time period between two samples.

The sampling time was chosen randomly in a short time period � and dilated to
the full time scale � . The sampling time was determined by the following equation:

sampleTime D randsequence C jitter;

where randsequence was determined by the equation:

randsequence D M � randsample.n=M; m/;

where n was the signal length, M was the down sampling factor, m was the to-
tal number of measurements, and M was the minimum time interval between each
sample. Function randsample .a; b/ picks b arbitrary numbers with an independent
and identical distribution (i.i.d) from 1 to a. We selected m numbers randomly from
the time scale � , Œ1; n=M � and dilated the numbers to the time scale � , Œ1; n� by
multiplying each number by M . Each number corresponds to the time when a sam-
ple should be taken. The sampling times were random from 1 to n and at least M

time units apart. This ensured that we not only collected fewer samples but also
sampled at a rate M times lower than the Nyquist rate.

To increase the sampling time randomness, we introduce jitter: We generate jitter
using the equation:

jitter D s � round.randn.m; 1//

where s was the scaling factor that controls how large the jitter was. Function
randn .a; b/ generates an a � b matrix with random entries, chosen from a nor-
mal distribution with zero mean and variance one. s should not be too large because
it might create two samples that are very close together and require the sensor to
sample at a high rate. s also should not be too small because after rounding, it might
not create any jitter. We empirically choose s D 2 in this application.
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7.4.2 Envelope Extraction

The envelope of a signal x.t/ was the boundary within which the signal was
contained. The signal envelope could be estimated by applying a low-pass filter or
smoothing the signal. We simplified the computation by just windowing the signal
and taking the maximum absolute value of the samples in each non-overlap window.

We subdivided the recorded samples x.t/, 0 � t � n�1 into K non-overlapping
smaller segments as follows:

xi .t/ D x.iL C t/w.t/ 0 � t � L � 1; 0 � i � K � 1

where w.t/ D 1 for 0 � n � L � 1 was basically a rectangular window of duration
L. L should not be too large to preserve enough points in the envelope. L also
should not be too small to improve the robustness of envelop estimation. In this
application, L can be varied from 10 to 100 without impacting the accuracy of
envelope estimation.

The envelope was then estimated as:

y.i/ D K�1
max
iD0

xi .t/

Sensors could compute the envelope very efficiently because they only needed to
examine the maximum value of the incoming samples in each window. Therefore,
sensors could compute the envelope as they sampled the signal. In general, a frog
often makes several calls continuously. Hence, we used a threshold " to separate
each call. Each envelope was normalized to have unit energy. The set of envelopes
of frog calls was denoted as ym.i/ where m was the discrete time index of the
call. Figure 7.13 shows an example of frog calls and the envelopes. Using the same
techniques, we also extracted the benchmark envelopes of all the frog species using
the training signals. We denoted this set of envelopes as Y m

k
.i/ where k was the

index of the frog species.

Fig. 7.13 Example of a frog
call and three extracted
envelopes [8] used with
permission copyright IEEE
2008
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Fig. 7.14 Envelopes of toad
calls [8] used with permission
copyright IEEE 2008
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7.4.3 Matched Filter

After the set of frog call envelopes ym.i/ were recorded, we applied the matched
filter of ym.i/ with Y m

k
.i/ to detect the frog species. Figure 7.14 shows the call

envelopes of different fog species, which were used as an input to the matched
filter. The matched filter, used extensively in signal processing and communication
to detect a signal, could be performed efficiently by convolution. The classified frog
species k was defined as:

k D argk max
mX

1

ym.i/ � Y m
k .�i/;

where � denotes the convolution operator, which is defined as

.f � g/.n/ D
1X

mD�1
f .m/g.n � m/;

where f and g were two signals; m is the discrete time index of the signals; n is the
discrete time index of the correlation vector; and, k could be interpreted as the frog
type whose calls have the maximum correlation with the benchmark calls.

7.4.4 Evaluation

We conducted several experiments indoors and outdoors during May 2008 to study
the effectiveness of our algorithm. Here, we report on the results from indoor experi-
ments conducted on May 15th, 2008. Depending on the frog type, we used between
5–20 values to represent a frog call envelope. The benchmark envelopes can be
stored using less than 2 kB of memory. We recorded the songs from three different
frog species and mixed them randomly. Each song is about 60 s. Then, we performed
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random sampling on the motes, extracted the recorded signal envelopes and ran the
matched filter. For each signal, we iterated 50 times by generating 50 random sample
sets. We varied the down sampling factor from 5 to 200 in steps of 5. We measured
the following metrics:

� True positive rate, the percentage of times that the frogs were correctly classified
� False negative rate, the percentage of times that the frogs were present but could

not be detected
� False positive rate, the percentage of times that the frogs were absent but were

detected

In general, we wished to have a high true positive rate and a low false negative rate.
The low false negative rate was critical because we did not want to miss a frog.
Ideally, the false positive rate should also be low. However, it was less critical if
this rate was high because sensors could trigger a more capable server to verify the
result. It was preferable to detect a frog incorrectly rather than miss a frog.

In the first set of results, we could see that even with a down sampling factor of
more than 100, the true positive rates were above 90%. The true positive rates for
Bufo marinus and Notaden melanoscaphus were always 100% (Fig. 7.15). These
rates degraded slowly as the down sampling factor approached 200. In Fig. 7.16, the
false negative rates start at about 5% and increase gradually to 20% as the down
sampling factor increased from 5–200. Notably, the false positive rates were high:
about 50% for Bufo marinus and Cyclorana cryptotis (Fig. 7.17). However, as we
mentioned before, a false detection of a frog could be potentially verified by trig-
gering a higher computation backend server to check the result.

7.4.5 Lessons

Our experience showed that random sampling could be successfully applied in
practice to reduce the number of required measurements for a high rate sensing
application, provided that the signal was compressible in some domain. Fortunately,

Fig. 7.15 True positive
classification rate when down
sampling factor varies from
5–200 [8] used with
permission copyright IEEE
2008
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Fig. 7.16 False negative
classification rate when down
sampling factor varies from
5–200 [8] used with
permission copyright IEEE
2008
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Fig. 7.17 False positive
classification rate when down
sampling factor varies from
5–200 [8] used with
permission copyright IEEE
2008
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this happens to be true not just for frog species, but for many animal signals
(crickets, bird calls, etc.). With our lightweight classification algorithm, it was pos-
sible to process all data on the low power embedded device itself.

However, there was a trade-off between classification accuracy and the down
sampling factor. We did not expect false positives to be as high as they were, rel-
ative to the machine learning algorithm used in previous iterations of the system.
We can use more features in the signal, such as a complete frequency representation
of the signal, which may require a higher sampling rate, to improve the classifica-
tion accuracy. We also did not expect the down sampling factors for given detection
rates to vary significantly across different frog species. In retrospect, both results
seem fairly obvious. This is because the machine learning algorithm is adaptive to
noise, and is as such inherently more robust than the matched filter. The down sam-
pling factor depends to some extent on the compressibility of the source signal (e.g.
frog call), or the minimum number of coefficients needed to represent the signal.
Typically, the minimum number of coefficients can be empirically determined by
analyzing recordings of the frog call. Since the source signal is different for differ-
ent frog species, the down sampling factor can be different.

For any objects or animal species that must be detected using vocalizations,
if their aural signatures are compressible, then the detection could ostensibly be
performed on a mote, without using a single board computer. If high detection
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accuracy is needed, then these detections should be verified using higher capability
devices. We are currently investigating approaches that dynamically adjust the down
sampling factor in response to the signal being measured, rather than using pre-
set factors.

7.5 Conclusions

Cane toad impact monitoring based on aural call patterns is characterized by high
frequency sampling, complex signal processing for in situ classification, wide-area
sensing coverage and long-lived unattended operation requirements. A pilot deploy-
ment of single-board computer based monitoring stations in the northern territories
of Australia was unexpectedly robust to weather conditions, however it was expen-
sive as it featured powerful computing devices and expensive packaging.

In the second phase, we built a hybrid sensor network of low-power motes and
more powerful Stargates for monitoring amphibian species. Our system could rec-
ognize the calls of several frog species in northern Australia. A thresholding and
noise-reduction algorithm reduced data transmission sizes by up to 90%. To enlarge
the sampling frequency for a given monitoring period, we designed a sampling
scheduling algorithm which exploited the redundancy of sensor networks and in-
creased the system process rate by up to 60%. System evaluation of indoor and
outdoor deployments demonstrated the feasibility and usability of a hybrid systems
approach in terms of minimizing cost while extending sensor coverage. However,
for long term outdoor deployments, the variability of renewable energy supply
makes the use of motes merely for collecting and transferring high rate data im-
practical.

In the latest phase, we developed a lightweight algorithm to classify cane toads at
the motes themselves, addressing the above problem. It built on compressive sens-
ing theory which showed that a small number of random samples could embed
the signal structures well. In contrast to prior work, the algorithm could be read-
ily implemented on sharply resource-constrained sensors such as the MicaZ motes,
without any specialized hardware (e.g. DSP chips). It required only about 2 kB of
memory for classification and allowed sensors to sample an acoustic signal at a rate
100 times lower, than the original 10 kHz Nyquist rate of the signal. Our experi-
mental results on real world cane-toad vocalizations showed that we could classify
cane toads with more than 90% accuracy and less than 5% miss rate. This algorithm
clearly was not the optimal algorithm for detection and classification in general.
However, this algorithm had the potential to significantly extend sensor network
lifetime, by enabling motes to perform the classification themselves. It also mini-
mized classification time to under a second, as opposed to the 45 s latency incurred
in the hybrid system developed in the second iteration.

Our experience shows that the theory of compressive sensing has practical ben-
efits and that miniaturization is possible for high data rate sensing applications,
including acoustic applications, such as vehicle classification, condition based
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maintenance, and detection of birds, cetaceans and bats. However, it is necessary
to characterize the sparseness of the signal before random sampling methods can
be applied. Ideally, the signal sparseness and sampling frequency should be ad-
justed dynamically. Additionally, lightweight algorithms must be tested to ensure
robustness to outdoor noise.

The machine learning algorithms and lightweight classification algorithms used
to classify amphibian species were robust. However, both these types of algorithms
need to be trained using preliminary data which can be cumbersome. The devel-
opment of machine learning algorithms that do not require pre-training and can
categorize and store sounds for post-hoc identification would make these systems
more readily deployable. Scientists can share bioacoustic libraries of categorized
sounds (e.g. birds, frog calls, crickets) using sound wikis that can be used to moni-
tor large proportions of fauna, potentially revolutionizing biodiversity monitoring.

We have shared our experiences designing and deploying an acoustic sensor
network for cane-toad monitoring. We believe that hybrid architectures can be a
cost-effective method for implementing high rate sensing applications. However,
they are only scalable and cost-effective when the ratio of resource-poor sensors
to resource-rich sensors is high. We believe that data reduction at resource-poor
sensors, enabled by advances in compressed sensing, offers a lot of potential in im-
proving the scalability of hybrid solutions.

In our case, the scientific objectives of the zoologists were known in advance.
This allowed us to design a system based on intensive data processing at the sen-
sors, rather than data recording. Starting with more powerful computing platforms
allowed the development of robust detection and classification systems that were
immediately useful to zoologists, and then allowed us to focus on how to migrate
such functionality into low-power computing platforms that could be cost-effective.
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Chapter 8
ExScal: Dealing with Scale1

Vinayak Naik and Anish Arora

Abstract ExScal (for Extreme Scale) project deployed a 1;000C mote network and
a 200C peer-to-peer ad-hoc 802.11 b network of stargates in a 1.3 km by 200 m re-
mote area in Florida, USA during December 2004. In comparison with deployments
of networks of mote and stargate-class devices fielded to date, the ExScal applica-
tion remains relatively complex and large in size. The goal of the project was to
deploy a dense wireless sensor network “tripwire” that detects, tracks, and classifies
multiple intruders of different types, such as people and vehicles, in a long perimeter
region. Networks such as this are envisioned to protect pipelines that are vulnerable
to sabotage and borders between nations that are prone to illegal crossing.

The primary application requirements were as follows: (1) low cost over the du-
ration of deployment, (2) accuracy and timeliness of detection, and (3) low human
effort over the duration of deployment. The chapter describes how these require-
ments were met. It justifies the choice of sensing and communication modalities and
packaging of nodes to meet the low cost over the desired lifetime of the network; it
describes the topology of deployment and systems’ software architecture chosen to
meet the accuracy and timeliness of detection; finally, it describes the strategy used
for node emplacement and the software tools components devised to handle faults,
in order to lower the human effort. We report our processes of evolving the system
from design to deployment emphasizing the role of simulation and testing in that
process. We end the chapter by reporting the observed faults, their distribution, and
the accuracy of intrusion detection achieved by the deployed application.

Keywords Multisensor systems � Computer networks � Routing � Network fault
diagnosis � Network fault tolerance � Wireless sensor networks � Distributed
computing � Signal processing � Embedded systems
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8.1 The ExScal Application and Its Demands

The ExScal project aimed to deploy a dense wireless sensor network “tripwire”
that detects, tracks, and classifies multiple intruders of different types (such as
people and vehicles) over a long region’s perimeter. Applications of this concept
are envisioned for protection of pipelines that are vulnerable to sabotage, bor-
ders between nations that are prone to illegal crossing, and areas abutting critical
plants/thoroughfares that are vulnerable to terrorist threat. The primary requirements
identified for this applications type are:

1. Low cost over the duration of deployment. This translates to selection of: sensing
and communication modalities that have desirable range and enable low power
operation, appropriate packaging, as well as node layouts that avoid nodal redun-
dancy. Mission lifetime is 1–6 months.

2. Accuracy and timeliness of detection. To achieve accuracy and timeliness,
we must have a low false alarm and low omission rates in detection, tracking,
and classification. Since the physical terrain is not assumed to be constrained, the
network must deal with breaches anywhere along the long perimeter. Response
must be in near real-time, within a few seconds of intruder events, over the mis-
sion lifetime, even if intrusions are random, rare or ephemeral. Quality of service
from the application is required even if some nodes in a region are misplaced or
their components fail, during deployment or operation.

3. Low human effort over the duration of deployment. This applies to all surveil-
lance phases, including the placement of the nodes as well as in the operation,
monitoring, maintenance, and reconfiguration of the network.

The ExScal project built upon an earlier field demonstration, A Line in the Sand
[1], where we manually positioned one laptop base station and 90 Mica2 “motes”
(with magnetometer and micropower impulse radar sensors) over a 25 m by 10 m
grassy area. A new architecture needed to be evolved to scale the system from 90 to
10,000 motes and to scale perimeter area by 1;000 to 10,000 times, while still meet-
ing complex application requirements. The following architecture design principles
were adopted.

1. To contain cost, we designed nodes that have sensing and communication ranges
substantially larger than Mica2 motes; Sect. 8.2 describes these nodes: the XSM
(for Extreme Scale Mote) sensor nodes and the XSS (for Extreme Scale Stargate)
backbone communication nodes.
The nodes were arranged in a planned topology, specifically a regular, hierarchi-
cal structure, to efficiently cover the region. Tier 1 of the hierarchy consisted of a
grid of XSMs, Tier 2 consists of grid of XSSs, and Tier 3 consisted of one master
operator node. Section 8.3 describes the topology in detail. Application services
exploit knowledge of this topology for efficiently utilizing system resources.

2. To meet the desired quality of detection, we decomposed the ExScal appli-
cation into multiple components that execute in different phases of operation.
Section 8.4 describes these components. Decomposition simplifies the design,



8 ExScal: Dealing with Scale 225

allows us to configure and manage each component separately (at run time if
need be), and reduces operational resource requirements. Importantly, it frees us
from using common services for all components, instead we can use different
services optimized for components needs. However, decomposition introduces a
new challenge of interfacing components and also new failure scenarios.

3. For cost-effective human manageability, ExScal operated by command and con-
trol: Tier 3 initiates, monitors, and regulates the operations of all XSSs; in turn,
each XSS likewise monitors and manages a section of (normally 20–50) XSMs.
The operator maintained/reconfigured ExScal effectively based on the feedback
obtained from the network. Section 8.5 describes the management aspects of the
application. Autonomous functions, specifically, configurable recoverability for
components, tolerance to several classes of faults (often by self-stabilization),
and adaptation to certain classes of variable, non-uniform environments all sup-
port containment of human effort.

Thorough system testing was important due to the large number of system compo-
nents. Each component needed to be tested both individually and when integrated
with other components. Section 8.6 explains the role of simulation and emulation
(testbed), and outdoor testing to gain confidence in the system. Section 8.7 describes
some of the experimental results obtained.

Data and other literature on the project is available on the ExScal website,
http://www.cse.ohio-state.edu/�exscal.

8.1.1 ExScal Status and Some Project Facts

We started work on ExScal in September 2003 with a mandate to cover a 10 km by
1 km perimeter with 10,000 sensor nodes. To this end, we designed the two types
of nodes and had 10,000 XSMs and 300 XSSs manufactured (these nodes are now
commercially available from Crossbow). The footprint of the code we designed for
ExScal was 200 kB for an XSM and 2 MB for an XSS. We designed ExScal scenar-
ios for node configuration at the factory, for field marking, for node deployment at
site, for network configuration in the field, for ExScal operation, and for network
teardown.

We executed the afore-mentioned scenarios over a 2 week period in December
2004, during which we collected data on field marking accuracy, deployment
yield, localization accuracy, sensing performance and variability, environment data
(especially wind data collected via microphones), communications and network
management performance at each tier, and intruder traces. Our experiments were
conducted with 1;000C XSMs and 200C XSSs deployed over a 1.3 km by 200 m
opening in a forest in Florida, USA. The scale of the final experiment was mandated
by a change in the security policies of our sponsor, as a result of which, ExScal was
transitioned into a new phase under a classified setting.

At the time of writing this chapter (2009), 4 years have passed since the deploy-
ment. Three major papers have been written: one is about the end-to-end system,
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the second looks at faults and their effect on the performance of the system [2], and
the third focuses on distributed sensing techniques [3]. The current book chapter is
heavily based on the first paper. The authors have added sections on the system’s
software architecture of the system, and use of testbeds in debugging.

8.2 The Hardware Platform

XSM We designed the eXtreme Scale Mote (XSM) [4] for ExScal, especially to
obtain (1) increased sensing range with respect to persons and vehicles as well as in-
creased communication range (as compared with extant motes), and (2) long-lived,
retaskable operation for timely detection of rare, random, and ephemeral events.
Figure 8.1 shows a picture of the XSM enclosure and internals.

The XSM infrared and acoustic sensors were designed for low-power continuous
operation and include asynchronous processor wakeup circuitry. Based on signal
processing techniques further described in Sect. 8.4, the sensing ranges achieved by
the detectors are as stated in Table 8.1.

The reliable communication range between on-the-ground XSMs typically
exceeds 30 m in outdoor settings (although there is variability in this range based on
ground conditions, humidity, etc.). The XSM lifetime approaches 1,000 h of contin-
uous operation on two AA alkaline batteries. Recoverable retasking is addressed by

Fig. 8.1 The eXtreme Scale Mote. The XSM circuit board has a 300 � 300 footprint and the en-
closure’s dimensions are 3:500 � 3:500 � 2:500. The one-touch input (on/off switch) and one-listen
output (buzzer) are mounted on the base next to the batteries. The XSM platform integrates an At-
mel ATmega128 L microcontroller, a Chipcon CC1000 radio operating at 433 MHz, a 4 Mbit serial
flash memory, quad infrared, dual-axis magnetic, acoustic sensors, and weatherproof packaging.
XSMs are commercially available under the tradename of MSP410CA Mote Security Package
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Table 8.1 Sensing ranges for
intruders. SUV abbreviates
Sport Utility Vehicle and
ATV abbreviates All Terrain
Vehicle. Original Table used
with permission of IEEE [23]

Sensor Intruder Sensing range (m)

Magnetometer SUV 7
PIR SUV 30

Person 12
Acoustics ATV 5

Fig. 8.2 The eXtreme Scale Stargate. Each XSS has an Intel 400 MHz XScale R processor
(PXA255) with 64 MB SDRAM, 32 MB FLASH, type II PCMCIA slot, USB port, and 51-pin
mote connector; packaging is watertight. Original Figure used with permission of IEEE [23]

using a grenade timer [4,22] that periodically forces a system reset. We provide the
rationale behind the use of grenade timer in Sect. 8.4.1.

XSS As its name suggests, the eXtreme Scale Stargate [5] includes a Linux-based
Stargate computer [6]. It also includes a GPS unit, which connects via the Stargate
daughter card USB port; the sensor we chose has a positioning error of up to 10 m.
We used regression techniques and geometric algorithms to rectify the errors. The
XSS node is pictured in Fig. 8.2.

XSSs communicate with each other via their 2532 W-B high power IEEE
802.11b card, which is connected to a 9 dBi antenna. The antenna is 1.82 m long.
With this setup, we observed over 700 m reliable communications in the field at full
power. XSSs communicate with nearby XSMs via the Chipcon CC1000 radio in a
Mica2 that is connected to Stargate via a 51-pin connector.

The current required for various stargate operations is significant: 70 mA for pro-
cessor operation, 90 mA for GPS operation, a total of 440 mA when in 802.11 b
receive mode and 810 mA in the 802.11 b send mode. Given this requirement and
the Stargate limitations for wake-up-on-radio and fast processor duty cycling, we
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chose to power each XSS by a lead-acid battery that provides 6 V DC with total
current draw of 105 Ah, and focused our attention on the energy efficiency of the
XSS protocols/programs.

8.3 Topology, Coverage, and Deployment

Topology As discussed in Sect. 8.1, ExScal used a planned topology for node
placement so as to efficiently cover the protected region. Note that since 7 m is the
lowest sensing range for an intruder (see Table 8.1 – magnetometer-based detection
of SUVs) it is straightforward to see that no deployment of 10,000 nodes over a
10 km by 500 m area or of 1;000 nodes over a 1.3 km by 200 m area can cover all
points in the region.

Fortunately, ExScal application scenarios did not require sensor coverage at all
points within the interior of the region; barrier coverage [7] is sufficient. That is, if
intruders were detected multiple times soon after they enter the region – they could
thus be classified and finely-tracked initially. This region is away from the asset.
The intruders remained undetected only in bounded regions in the interior (near the
asset) – they could thus still be coarsely-tracked within the interior. We therefore
deployed sensors more densely at the boundary of the region than in its interior,
where we assumed the high-value asset being secured lies (see Fig. 8.3). The “thick”
line of sensors at the outer boundary of the region consisted of five rows of XSMs.
For ease of deployment, alternate rows were staggered by half the spacing between
consecutive sensors in a row so as to provide close to optimal coverage.

Coverage Considering Table 8.1 and Fig. 8.3, if any intruder crossed the thick line,
it is detected by least five sensors. More specifically, an Sports Utility Vehicle (SUV)
is detected by at least five magnetometer sensors and 30 PIR sensors; a person is
detected by at least 10 PIR sensors; and an All Terrain Vehicle (ATV) is detected by
at least 55 sensors that included magnetometer and PIR. The net result is that, even if
some intruder detection messages are lost due to network unreliability, classification
and fine-grain tracking of intruders is still possible when they entered the region
through the thick line.

The interior of the region consisted of a grid of “thin” lines, each containing a
single row of sensors. These enabled bounded-uncertainty tracking of intruders as
they crossed from one thin line region to another.

In terms of reliable communication connectivity, this node placement ensured
that each XSM could reliably communicate with 10–32 other XSMS in the thick
line and 3–6 other XSMs in the thin lines. That said, since multi-hop reliability in
the bandwidth-constrained Tier 1 network could be insufficient after 5–6 hops, we
partitioned the Tier 1 topology into sections of 20–50 XSMs each and emplaced an
XSS in each section to serve as a communication bridge between its XSMs and the
Tier 3 base station. XSSs were thus spaced 90 m apart and each XSM could reach
two XSSs within 5–6 Tier 1 hops. A total of 45 XSSs were needed for the Tier 2
communication backbone network.
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Fig. 8.3 ExScal Topology. Dots represent XSMs and triangles represent XSSs. Only the XSSs
represented with empty triangles are used as communication bridges between the XSM network
and the base station. Original Figure used with permission of IEEE [23]

Additional XSSs were manually positioned for executing experiments to vali-
date that the XSS network scales to meet the original objective of the 10,000 node
ExScal network. The full peer-to-peer ad hoc 802.11 b Tier 2 network consisted of
the 203 XSS arranged in a 7 � 29 grid. After conducting radio connectivity tests,
we found out that at full power, each XSS in this grid communicated reliably with
109–202 other XSSs; at low power, the numbers were substantially lower but were
still sufficient to tolerate the failure of several XSS without partitioning the Tier 2
network.

Deployment For field ground truth measurement and node emplacement, after
considering several alternatives involving laser range finders, walking meters, and
ropes for triangulation, we settled on using commonplace surveying equipment,
which not only provided us with submeter accuracy (within 0.2 m and with high
likelihood within 0.1 m), but also saved both time and effort. We used a Leica Total
Station 307, 3 Leica Reflectors mounted on prism poles, and a 45 m nylon rope with
9 m markings on it. A surveying expert helped with the marking process; see [8] for
details.
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The submeter accuracy we achieved in marking out the locations was not
necessitated by the ExScal application, since our planned topology satisfied its
coverage and connectivity requirements even if the actual separation between con-
secutive XSMs on the ground was off by 5 m (i.e., 14 m instead of the ideal 9 m).
However, the submeter accuracy gave us finer ground truth so as to measure the
accuracy of the localization process and the effect of less accurate placements on
the quality of the results.

We completed marking all locations (983 XSMs and 203 XSSs) in 27 working
hours with a team of eight people. Laying out the equipment took longer: about 24
working hours with 14 people. The grid topology not only enabled us to provide
coverage in a cost efficient manner but it also enabled us to design energy efficient
data transport protocols, such as logical grid routing and Spinkler, described in detail
in Sect. 8.4.3.

8.4 The Software Architecture

As discussed in Sect. 8.1, ExScal met its quality of detection requirement by be-
ing decomposed into several components. Specifically, these are: a Trusted Base
component, a Deployment component, a Localization component, and a Perimeter
Security component.

8.4.1 The Trusted Base and Its Deployment Components

At Tier 1, each XSM had a trusted base program, Nucleus. Nucleus included a boot-
loader that executed every time a node starts and that offered an API to the running
program by which to switch to another program binary (including Nucleus itself);
the switch involved rebooting the XSM.

For convenience, we bundled with Nucleus a deployer response subcomponent
as well as power management features. During deployment, we desired basic con-
firmation that each node was awake and functioning as we placed it on the ground.
To this end, Nucleus exercised the sounder each time it was booted, and sent out
multiple radio messages containing the node’s unique identifier and network ad-
dress. This served as feedback to the deployer as to when to move on and begin
installation of the next XSM. Since the network deployment could take several
hours, to avoid battery depletion in the interim, the power-saving sleep system in
Nucleus was immediately enabled after the startup confirmation. This system used
low-power listening [9], making it possible for the nodes to wake up only to receive
radio messages and then go immediately to sleep.

Nucleus also included a subcomponent that provided node testing and network
management functionality: specifically, it included Deluge [10] for dissemination of
new programs and SNMS [11] for sending commands and collection of health/status
information to all XSMs in a section via their Tier 1 network.
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Fig. 8.4 Hierarchical network topology

Nucleus’ dissemination component enabled sending commands to all XSMs in a
section, e.g., to wakeup the section from sleep mode. A section is defined as a group
of 50 XSMs, which were headed by one XSM as shown in Fig. 8.4. The wakeup
command was sent as a normal message, but with a long preamble that would trig-
ger a sleeping node to wake up. After awakening, the dissemination component in
Nucleus would periodically retransmit the long-preamble wakeup message, to help
wakeup the rest of the section. Nucleus’ other network-based commands imple-
mented sleep, reboot, and switch.

Once a Tier 1 section was woken up, its health was determined by querying
over the node identification and status over the multihop network. Queries were
injected by the XSSs associated with that section into the Tier 1 network using the
dissemination component described above; this formed a routing tree rooted at the
XSS; a separate data collection component then returned the results to the XSS.

Finally, Nucleus used the grenade timer [4] to provide protection against Byzan-
tine failure in our task-specific components. A Byzantine failure is a fault, in which
a component of some system not only behaves erroneously, but also fails to behave
consistently when interacting with multiple other components. After being rebooted
by an expiring grenade timer, the Nucleus bootloader always fell back to executing
Nucleus. This ensured that after a failure, the nodes were left in a known state from
which we could recover the system.

The binary bundle of Trusted Base and Deployment components was mutually
exclusive to that of Location and Perimeter security component. Nucleus is the
Trusted Base and Deluge and SNMS are its Deployment components. In other
words, an XSM is either one of them at a time and not both. Since the bundle of
Trusted Base and Deployment components contained only three components, which
were Nucleus, Deluge, and SNMS, we do not present its architecture diagram.

8.4.2 The Location Component

This component assigned the grid position labels to Tier 1 and Tier 2 nodes. The
grid locations were used by the Tier 1 routing protocol. Our design separated the
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concern of manual deployment of nodes to grid locations from the concern of how
nodes acquire grid positions. We used GPS to record spatial coordinates: at Tier 2
this was done by attached hardware, and Tier 2 copied the GPS data to Tier 3. For
Tier 1 we did the same, however to economize on equipment, we manually recorded
GPS data for each XSM and then uploaded results to Tier 3. Algorithms at Tier 3
then computed grid information to associate with each node identifier of the other
tiers, and network protocols at these tiers delivered the output to each node. The grid
information consists of association of the identifier to its grid coordinates.

Snap to Grid Imprecise physical deployment and inaccurate or missing GPS data
complicated the transformation from GPS coordinates to grid positions. Errors of
four or more meters could be expected for GPS readings at Tier 1, which made
resolution of a grid with 9 m spacing and with (say) 1 m deployment error, nontrivial.
Thus regression techniques and geometric algorithms needed to be developed. The
resulting algorithm was called snap to grid (or simply, Snap).

The inputs to Snap were the ideal template of GPS coordinates for the grid, with
a grid label for each node, and the set of recorded GPS data and corresponding
node ID. The output of Snap was a list of grid labels and the associated node ID,
which was subsequently used to determine routing information, later disseminated
via Tier 2 and Tier 1 protocols. Briefly, Snap works by iteratively rotating and trans-
lating a bounding box of the input set of points until the box roughly aligns with the
template; then by using linear regression to obtain a refined estimate of the slope of
(say) one column of the input set, a further rotation improved the alignment. Finally,
translation was improved by minimizing the sum of distances between input point
and its nearest template point(s), again calculated iteratively using bounding boxes.
The same technique also yielded the required matching between input point and
template grid position.

Figure 8.5 shows typical input and output for a small portion of the grid. The
plot on the left uses latitude/longitude coordinates, whereas the plot on the right
uses synthetic grid-coordinates of Snap. This example has several points missing as
well as errors in GPS position in the input.

The primary subcomponent of the Location component was Snap. It is executed
at Tier 3. The dissemination of Snap’s output was done by the Tier 1 and Tier 2
communication protocols, which are explained in Sect. 8.4.3 Since Snaps is a single
program, we do not present the software architecture diagram of the Location com-
ponent. The architecture of the communication protocols is explained in Sect. 8.4.3.

8.4.3 Perimeter Security Component, OpAp

OpAp stands for Operation Application. This is the application that obtained data
from sensors, detected whether there was an intrusion, and, if there was an intrusion
classified the intruder, and tracked it. Figure 8.6 describes the software architecture
of the OpAp component at Tier 1. At Tier 1, OpAp included the magnetometer,
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Fig. 8.5 Left: Input to Snap program. X and Y axes are latitude and longitude. Pluses represent
reported GPS locations of the nodes. Missing locations are shown as blanks. Right: Output of Snap
program. X and Y axes are synthetic grid-coordinates of Snap. The matching of input with template
points are represented by crosses. Note that the missing locations in the middle row are filled in by
crosses. Original Figure used with permission of IEEE [23]

Fig. 8.6 Software architecture diagram of OpAp. The arrows indicate hierarchy. The software
subcomponent at the root of the arrow is at the higher level in the hierarchy

infrared, and acoustic sensor chains that detected intruders; only one of these
chains is described below, as an example. A sensor chain was a sequence of op-
erations starting from sampling the ADC, filtering the noise, to raising a detection
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event. Detection events, along with their timestamp (Tier 1 OpAp executed a time
synchronizationprotocol that synchronized mote clocks to within 1 ms of each other)
and grid location, were sent via the Tier 1 and then the Tier 2 network to the Tier 3
node, which classified and tracked intruders. We used Tsync time synchronization
protocol where all the nodes synchronized their time to that of a root node. The code
is available under contrib/minitasks/02/osu/timesync repository in TinyOS 1.x.

Tier 1 Motion Detection using Passive Infrared Sensors PIR sensors are com-
monly used for motion detection in automatic light switch and home security
products; they are made of a crystalline material whose surface charge varies in
response to the received infrared radiation emitted from warm objects such as the
human body (Fig. 8.7).

For most indoor applications a simple analog detector circuit – typically a multi-
stage amplifier and a two-level comparator – has satisfactory performance. However,

Fig. 8.7 PIR sensor from Kube Electronics with integrated cone optics and 90 degree field of view.
Four such sensors provide 360 degree coverage for the XSM. Original Figure used with permission
of IEEE [23]
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Fig. 8.8 Raw PIR sensor values for an SUV (35 km/h). (a) Time domain (X-axis represent raw
sensor readings). (b) Frequency domain (X-axis represent frequency in hertz and Y axis represents
time in seconds) The darker the color more the energy. Original figure used with permission of
IEEE [23]

comparator-based detectors produce frequent false alarms in outdoor environments
due to heat drifts and sunlight. Figure 8.8 shows raw signal values obtained from
the PIR sensor for an SUV traveling four times across the field of view of the PIR
sensor at 35 km/h. We observed that simple threshold based detectors caused false
alarms even for very high threshold values. A frequency domain analysis of the
same data revealed that target signature and the background variation occurred in
non-overlapping bands, enabling reliable detection. A human walking at a moderate
speed of 5 m/s occupied the 0.5–1.5 Hz band, a vehicle traveling 35 km/h signature
was within the 1–5 Hz band, whereas background variations were confined to the
0–0.5 Hz band.

To increase detector robustness, we used a polyethylene film in the PIR windows,
to reduce the effect of sunlight, and a digital bandpass filter to process raw sensor
values to isolate the target energy from the slower background variations due to
heat drifts. Raw signal values were first passed through a band pass filter with a
pass band of 0.4–2 Hz. The energy of the filter output over a sliding time window
was calculated by low pass filtering the instantaneous power. A low pass filter with
a low cutoff frequency of 0.3 Hz was used to smooth detection events to prevent
the PIR activity event from being broken into multiple events. Figure 8.9 depicts
the output signal of the detector. We observed a 12 m reliable range for humans
walking at a speed of 3 km/h and a 25 m reliable range for a midsize SUV traveling
at 35 km/h.

Tier 1 communications OpAp’s performance requirements demanded that XSM
detection packets be transported reliably and in real-time to the corresponding XSS.
Nevertheless, we found that with the MintRoute’s [21] distance-vector routing and
queue management in TinyOS, only 33.7% of packets from XSMs are delivered to
the XSSs on average. The causes for such low packet delivery rate included unreli-
able wireless links and high degree of channel contention in the presence of bursty



236 V. Naik and A. Arora

Fig. 8.9 Output signal of PIR sensor signal chain. X-axis represents time in seconds and Y-axis
represents computed energy by the signal chain. The peaks above the threshold of 4:5 � 104

represent activity. Original figure used with permission of IEEE [23]

convergecast, where a huge burst of data packets needed to be transported reliably,
in real-time, and simultaneously. The convergecast is a pattern of data traffic, where
the destination of the routes is a unique node. In our case, the destination was the
Tier-1 base station for each section of 50 XSMs.

To address the high packet loss rate, we used the Logical Grid Routing (LGR)
protocol [12]. The LGR mapped the Tier 1 network onto a logical grid and only
used links that are reliable in the presence of bursty convergecast. In LGR, each
node locally determined, via information on its grid location, its potential parents
and then distributed traffic uniformly across all the potential parents. LGR was fault-
tolerant and recovered from faults quickly. With LGR, up to 81% of data packets
were delivered from XSMs to the corresponding XSSs.

To further improve reliability, we used the Reliable Bursty Convergecast (RBC)
transport protocol [13]. The RBC dealt with the loss of per-hop acknowledgments
and retransmission-incurred contention as follows: to improve channel utilization
and to reduce ack-loss, it used a windowless block acknowledgment scheme that
guarantees continuous packet forwarding and replicates the acknowledgment for a
packet; and to alleviate retransmission-incurred channel contention, it used differ-
entiated contention control. It also had mechanisms to handle varying ack-delay
and to reduce delay in timer-based retransmissions. Testbed experiments showed
that LGR with RBC delivers on average 99% of the data packets from XSMs to
the corresponding XSSs in real-time, sufficing for the requirements of reliability
and timeliness in Tier 1 communications. LGR and RBC are suitable for any other
perimeter security applications, which have grid topology.



8 ExScal: Dealing with Scale 237

Tier 2 communications The Tier 2 network was configured in IEEE 802.11 peer-
to-peer ad hoc mode. Its architecture was composed of three reliable, power efficient
transport services, namely Initd, Learn On the Fly (LOF) [14], and Sprinkler [15].

Initd–An Unstructured Broadcast Service: Initd was used to initialize the XSS net-
work. Initialization consisted of the Tier 3 base station contacting each XSS and
collecting their GPS locations. Initd used controlled diffusion to energy efficiently
construct a one-shot tree rooted at the base station; the tree was used in the GPS
location collection.

LOF–A Structured Convergecast Service: LOF was used to transport a message
from any XSS to the base station. LOF exploited geographic location information
to construct a shortest path tree rooted at the base station. The metric to construct
the tree was link quality in terms of delay and the geographic distance advanced
towards the root. To save power and to improve estimation fidelity, LOF used data
traffic instead of beacon messages to estimate the link quality. Initially when the
nodes boot up, there is a short period when the nodes send beacons. However, later
link quality is solely estimated using data traffic. Given that the link quality changes
over time, LOF probabilistically switches its forwarders to sample other routes.

Sprinkler–A Structured Broadcast Service: Sprinkler was used to disseminate bulk
data (up to say 200 kB) to all XSSs. It exploited geographic information to con-
struct a connected dominating set (CDS) and a transmission schedule for the XSSs
in the CDS. The cardinality of the CDS was minimized to optimize the number of
transmissions. The CDS XSSs used broadcasts to transmit messages; their sched-
ule avoided the hidden terminal effect to ensure reliability and timeliness, without
significant message retransmission.

One challenge in composing ExScal was interfacing of multiple software and
hardware components. One example, where interfacing of two components failed
is a connection between Initd and Sprinkler services at Tier 2. At each XSS node,
Initd service gave the location of the node to Sprinkler service. In some of the cases,
GPS on a node was unable to get a fix and hence the node was not located. In that
case, Initd gave (0,0) as a grid-location to Sprinkler. Note that (0,0) was a valid
grid-location for Sprinkler. When Sprinkler computed a CDS, it mistakenly placed
unlocated nodes at (0,0) location. This led to an incorrect CDS, resulting in a failure
while disseminating data. Therefore, while interfacing two components, it is impor-
tant to verify the semantics of the parameters passed between those components.

Tier 3 OpAp logic To classify an intruder as person, SUV or ATV, OpAp measured
for each sensor modality the influence field of the intruder on that sensor modality
[1, 3], i.e., the area surrounding the intruder within which it was detectable by a
sensor of that modality. Thus, for instance, with respect to an ATV, an SUV had
a relatively larger magnetic influence field, a relatively smaller acoustic influence
field, and a comparable PIR influence field.

To measure influence fields, OpAp aggregated detections over a time interval
(typically 500 ms), since multiple XSMs may detect the intruder at a given location
at different times, due to differences in hardware and synchronization. It clustered
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spatially collocated detections of the same sensor modality in the interval, calculated
cluster sizes, and classified accordingly. The component also maintained a history
of decisions made in the recent past intervals, to increase or decrease the confidence
of classification. Processing of intervals lagged real-time to accommodate network
jitter, yet end-to-end classification of intruders was within 5 s. The system was able
to classify and track multiple objects moving concurrently through the network as
long as a minimum distance threshold separated them.

To track an intruder, OpAp estimated the centroid of a convex hull enveloping
all of the nodes detecting that intruder. Depending on the type of intruder and its
current estimated position, the tracking module also computed an expected region
for the intruder location in the next time interval, based on the velocity of the type
of the intruder. It then correlated the tracked objects from successive windows in
order to construct a continuous track per intruder for the entire time it spends in the
network. If the estimated location of an intruder did not lie in the expected regions
of any of the currently tracked intruders, a new intruder was detected and a new
track was created. When no new information was associated with a particular target
for a certain interval of time, the track was removed.

OpAp also maintained health information of the XSMs by keeping track of fre-
quent outlier nodes and nodes that did not respond; it used this information to refine
the classification of intruders.

8.5 Management

ExScal used two distinct approaches for management. The first was a multi-tier
command-and-control framework that allowed its operator to perform management
operations from the Tier 3 base station: operator commands were disseminated using
Sprinkler over the Tier 2 network to a management daemon running on each XSS.
Based on the command type and its scoping rules, XSSs then either locally executed
the command or invoked a Tier 1 management process, such as Deluge, SNMS,
or OpAp-specific “dynamic reconfiguration”. Examples of SNMS commands are
sleep and wake-up. New configurations ranged from simple parameter updates to
activating or deactivating modules such as sensor chains; an optimized version of
the reconfiguration service at Tier 1 piggybacked configuration updates on routing
heartbeat messages, thereby conserving network bandwidth. The results of com-
mands, which were likewise obtained locally or aggregated from the XSM network,
were then communicated by each XSS to the Tier 3 base station using LOF.

The second approach was one of local, autonomous management wherein each
node used several local managers to detect and correct different types of low-level
faults and maintained node consistency. For instance, each XSM used a “mode
manager” to handle transitions between different component phases of ExScal and
used local decisions to resolve any detected inconsistencies with its neighbors’
modes based on policies specified by the network operator. Each XSM also used
multiple component-level managers to monitor health predicates. For instance, the
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XSM OpAp module that aggregated detection events from the sensor chains for dis-
patch to the base station used a “rate monitor” to count number of events. If the
number of event per unit time crossed a pre-defined threshold, the module stopped
sending messages. This prevented highly sensitive XSMs or XSMs in noisy envi-
ronments from flooding the network with false detections. Finally, each XSM had
a manager, which used outputs from the component health managers and from a
watchdog timer based monitor to detect if the component was in a persistent failure
state where it would repeatedly deadlock or its components would repeatedly misbe-
have. In such cases, the manager could choose to either run the component in a safe
configuration by disabling certain modules, or simply return control back to Nucleus
whereby the faulty component could be replaced. Again, such decisions were based
on policies pre-specified by the operator. The difference between a watchdog timer
and a grenade timer [22] is that the former can be delayed but the latter cannot be.
Given the large number of components, which were implemented by a large number
of programmers, the operator of the system did not have complete knowledge of the
working of all the components. Hence, to recover from an extreme failure where a
component was stuck, we used a watchdog timer. The grenade timer was used for
the catastrophic failure where a component did reset a watchdog timer regularly but
looped continuously.

In the ExScal network, we used synchronous duty-cycling, which means all the
nodes wake up and sleep synchronously using a clock that is synchronized with
a single global clock. The wake and sleep scheduling was done by the operator.
A drawback of the synchronous approach is that the nodes have to exchange time
synchronization packets, which consumes energy. A team at the Indian Institute of
Science (IISc) is working on a project with the same application as that of ExScal.
The project is using Telosb motes with a different version of PIR sensor. The IISc’s
project is using asynchronous duty-cycling. In asynchronous duty-cycling [16], the
nodes do not all wake up and sleep at the same time. Although the asynchronous
approach saves on time synchronization packets, the nodes may have to wake up
for a larger amount of time while forwarding intrusion detection packets to the base
station. Thereby, they may be spending more energy than those using a synchronous
approach. In ExScal, our duty-cycling policy was based on a command-and-control
framework.

8.6 Testing Prior To, and During the Final Deployment

Testing was done in simulation, using an indoor testbed, and with a scaled-down ver-
sion outdoor. For simulations, we used TOSSIM [19] for Tier 1 and Emstar [20] for
Tier 2 and 3. The most significant advantage behind using TOSSIM and Emstar is
that the simulation code is same as that of the actual deployment code. This reduces
time in writing code and also improves fidelity of the simulations. However, not all
errors are caught during simulations since the architecture of the machine running
simulated code is x86 hence different from that of XSM’s Atmega and XSS’s ARM
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architectures. Bugs such as memory leaks or segmentation faults may not be caught
through simulation. Additional testing with a testbed is thus needed to help catch
these sorts of problems. Kansei was developed for this purpose.

Kansei is a testbed of 210 XSMs hooked individually onto 210 XSSs. The
stargates are connected using both wired and wireless Ethernet. The wired chan-
nel is used to collect measurements of performance of wireless protocols at a
central server. Kansei provided a testbed infrastructure to conduct experiments with
802.11 b networking and XSMs. It was conceived to test the middleware services
for the Tier-2 network. Kansei exports a web interface on which experiments can be
scheduled and the results retrieved.

The XSSs are arranged in a 15 � 14 grid, with an inter-node separation of 3
feet in X and Y axes, inside the Kansei testbed [17]. Each XSS is equipped with a
SMC2532W-B high power IEEE 802.11 b card, which is connected to a 3 dBi an-
tenna of length 1.82 m via a fixed attenuator of �20 dB [17] as shown in Fig. 8.10a.
The nodes are raised from the ground at 4 feet. Each stargate is connected to the
server via wired Ethernet. All the control and data traffic is communicated via wired
Ethernet (green Ethernet cables in Fig. 8.10b) to avoid interference with experimen-
tal traffic. The network is configured in IEEE 802.11 b ad hoc mode. The frequency
is set to 2.462 GHz (channel number 11). The environment contains another IEEE
802.11 network in an infrastructure mode, which is operating at 2.437 GHz (chan-
nel number 6). Kansei does not operate that network. According to IEEE 802.11
standard, the 2.462 GHz and 2.437 GHz frequencies (channel separation of 5) are
non-interfering. This was corroborated experimentally by Robinson et al. [18]. The
sensitivity threshold of the card was set to maximum. In other words, the signal at
the receiver is not attenuated via software control.

Developers for Tier 2 used Kansei to debug the code. In the actual deploy-
ment, catching segmentation faults due to invalid memory access are hard because
there is no console for the nodes. In Kansei, each node is connected to the wired
Ethernet, which in turn is connected to a PC with a console. Thus, debugging the
segmentation faults becomes easier. Figure 8.11 shows a screenshot of the console,
running Emview-based visualization for Sprinkler. In case of a segmentation fault

Fig. 8.10 The Kansei testbed. (a) Anatomy of a wireless node. (b) Arrangement of nodes in
Kansei testbed
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Fig. 8.11 Emview-based visualization of the network topology and progress of Sprinkler’s data
dissemination in Kansei. Each object consisting of a half-circle and a rectangle represent a node.
The number in the half-circle is the ID of the node. The number in the rectangle is the number of
packets received by the node. In this figure, all the nodes have received 101 packets. The number,
above the object, represents the ID of the reprogramming session. In the figure, the session ID is 11

at a node, the node was highlighted on the screen. The visualization also provided
information about which service experienced the fault and in which function call.

Upon design, the developers tested their code multiple times in the simulation
and testbed environments before the final deployment. Simulation was used to test
the changes quickly and the testbed was used to test more rigorously. In addition
to these two testing environments, the developers performed testing in an outdoor
environment. The scale of the outdoor deployment was smaller than that of the fi-
nal fielded network. It consisted of about 50 nodes for Tier 1 and 10 nodes for
Tier 2. However, the number of iterations for the outdoor deployments was far less
than that of simulations and testbed. The primary goal of the outdoor testing was
to understand the behavior of the system in terms of sensing accuracy and message
reliability, when deployed in a real environment.

8.7 Results and Conclusions

We measured ExScal network yield for realistic intruder scenarios. The end-to-
end routing yield was 85.27% (with Tier 1 at 86.72% and Tier 2 at 98.32%).
We found the deployment faults (at 5.37%), localization faults (at 11.4%), and
reprogramming faults (at 5.5%) to all be uniformly distributed across the region.
In most cases, protocol designs were primarily responsible for tolerating the faults;
policy-based managers dealt with nodes that experienced “lagger” and Byzantine
contract-violation faults. The number of Byzantine sensors in the networks was 1%.



242 V. Naik and A. Arora

Reasons for sensors to become Byzantine were waving tall grass in the wind, ex-
treme heat, or rain. If the battery voltage of the nodes fell below a critical value,
the nodes observed arbitrary sensing values. We found the overall Tier1–Tier2 net-
worked sensors reliability to be 73%.

In the absence of prior estimates of the faults, we conservatively selected net-
work density to be twice the minimum required. Given the significant coverage and
communication redundancy in our planned topology (cf. Sect. 8.3), the spatial uni-
formity of faults, and our architectural design principles (cf. Sect. 8.1), we found
that with this yield the ExScal application was able to meet its requirements at the
1;000C node scale, as was validated in the presence of persons, ATVs and SUVs
traversing through its thick line and thin lines, and in management operation tests to
reconfigure, change parameters, upload programs, and query health. We also stud-
ied the scaling of density, size, and path length in the Tier 2 network. Given the
predictable patterns we observed, we believe that our hierarchical design will also
meet ExScal requirements at the scale of 10,000 nodes. Our belief is based on the
latency provided by the Tier-1 and Tier-2 network. For larger number of nodes, the
increased latency in delivering messages at both the tiers would cause increased
delay at the Tier-3 base station.

In summary, the take-away lessons for an extreme-scale sensor network project
are as follows:

To contain cost, select nodes that have large sensing and communication ranges.
Plan a topology – specifically a regular, hierarchical structure – which covers the
regions efficiently. Exploit knowledge of this topology while designing the services
for efficiently utilizing system resources.

To meet the desired quality of detection, decompose the entire system into mul-
tiple components which execute in different phases of operation. Decomposition
simplifies the design, allows us to configure and manage each component separately
(at run time if need be), and reduces operational resource requirements. Importantly,
it frees us from using common services for all components; instead we can use
different services optimized for components needs. However, decomposition intro-
duces an additional task of checking the components agree on the semantics of the
passed parameters.

For cost-effective human manageability, operate by command and control. The
operator initiates, monitors, and regulates the operations. He maintains the system
based on the feedback obtained from the network. Autonomous functions, specif-
ically, configurable recoverability for components, tolerance to several classes of
faults (often by self-stabilization), and adaptation to certain classes of variable, non-
uniform environments all support containment of human effort.

To gain confidence in the correctness of such a large system, test the system
on multiple platforms; simulation, emulation (testbed), and outdoor testing will all
reveal different faults. The platforms are mentioned in the ascending order of cost
to perform tests at a given scale and the accuracy of detecting errors.
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Chapter 9
Glacier Monitoring: Deploying Custom
Hardware in Harsh Environments

Kirk Martinez and Jane K. Hart

Abstract This chapter describes experiences with designing and deploying sensor
networks in a glacial environment. In the final version of the system, the nodes were
designed to be sufficiently robust for the harsh environment, to be small enough to fit
into a borehole and to have a design lifespan of 4 years on a battery. The nodes were
a completely custom design based on a PIC microcontroller and supporting sensors
to measure and report pressure, case strain, conductivity, pitch, roll and an LED and
photodiode to measure reflectivity. The nodes reported data via an RF transceiver to
a basestation based on the Gumstix ARM/Linux module. Over the course of 4 years
of development, the design of the system evolved and design changes were evident
in nearly every element of the system, from the platform used at the base station to
the design of the sensor node to the choice of radio frequencies.

Keywords Deployment � Power management � Environmental sensing � Glaciers

9.1 Motivation for the Glacsweb Project

The aims of the Glacsweb project were to aid the understanding of subglacial
processes, especially to investigate their links with climate change, as well as de-
veloping the next generations of environmental sensor networks [11]. The project
developed all its own custom sensor network hardware and software. This was partly
due to the lack of suitable off the shelf hardware and the need for annual develop-
ment cycles but it also helped us to fully understand every element of the complex
systems involved. The Glacsweb project deployed groups of nodes (called here
probes) under temperate valley glaciers in Norway and Iceland. The progression
of the system developments led to new data streams that had never been produced
before in terms of both time-span and the range of sensors used. Between 2003 and
2006, 30 nodes were deployed in Briksdalsbreen, Norway. Subsequently, a further
8 nodes were deployed in Skalafellsjökull, Iceland in 2008.
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The study of glaciers is a vital part of the research into understanding the Earth’s
response to climate change. The water stored as ice in ice caps and valley glaciers
is used, for example, to provide drinking water, hydroelectric power and supplying
rivers. Global warming is melting glaciers at a rapid pace, which will cause consider-
able problems in the future [14,20]. Glacier behavior is controlled by the interaction
of ice and sediment, both within and underneath the glacier. These interactions are
complex and have been the subject of many studies by glaciologists (e.g., [1, 18]).
What was needed was an alternative to wired sensors [5,7,15], which would provide
longer term and embedded sensing [9,10]. Typical wired glacier sensors contain one
sensor per cable. The set of sensors include: water pressure sensors, strain gauges
on a rod, and tilt cells or a reel-spool movement detector (a multi-turn potentiometer
wound with wire to a fixed point). Nonetheless, if a fist-sized object could contain
sufficient sensors to measure these parameters with a wireless link, it could replace
the wired counterparts. The longevity of sensors would hopefully be improved due
to the lack of wire-break risk, leading to both more data collected and more realistic
subglacial sensing. Thus, in summary, the main probe requirements were to measure
tilt, temperature, pressure, strain, conductivity over a period of years.

Associated with these requirements, the main glaciological objectives were:

� To produce a long term record of water pressures changes in the ice and sub-
glacial sediment (till) in order to investigate subglacial and englacial hydrology.

� To produce the first ever record of three-dimensional probe movement, which
can be used to test models of fundamental flow of inclusions within a viscous
medium and demonstrate the rate of movement throughout the year.

� To carry on the first ever study of till temperatures within the till, in order to
examine heat balance.

� To enable an investigation of the relationship between water pressure, till strength
(case strain, resistance), and till temperature in order to understand till sedimen-
tation, and till rheology.

In terms of sensor networks research, the requirements of the system led to a wide
range of research questions including:

� How would the telemetry work? What frequencies are suitable in ice?
� What communications system would be needed to handle the varying conditions?
� Which sensors could be used? Which were most appropriate?

Fig. 9.1 Panoramic photograph of Skalafellsjökull, Iceland, site of the 2008 deployment, Photo-
graph by K. Martinez



9 Glacier Monitoring: Deploying Custom Hardware in Harsh Environments 247

� How can a node survive on battery power for many years in such conditions?
� Would the electronics design have to be compromised to place it within the probe

cases?
� What materials could be used to make the probe cases?
� How would the command and control be designed to ensure the safety of the

nodes and data?

All these research issues led to developments in the lab and during fieldwork.
Some would only be solved by full deployments while others could be tested well
in the lab. It was already clear at an early stage that designing and building for
a long time then deploying a perfect system was not feasible. This was mainly
due to the unknown nature of the environment. After several development cycles
we have learnt generically useful skills and techniques that enable sensor network
deployments. Without the benefit of this knowledge, WSN researchers may find
deployments extremely frustrating and prone to failure.

9.2 System Design

Our system comprises low power sensor network nodes placed in and under the ice,
a base station on the surface, and communication links back to the UK.

The operating requirements are shown in Table 9.1, and our prototyping was
based on these considerations. The sampling rate of the probes was initially fixed
at once per four hours, partly because changes were expected to be slow but also
to save power. Measurements from previous wired sensors were used in order to
estimate a sensible sampling rate. With better power management, the last sys-
tem deployed in Iceland was able to increase the sampling rate to once every hour.
Although a complex adaptive sampling algorithm had been developed for the project
[16], this was deemed too risky to be deployed in the field.

Repeated access to the glacier was not feasible, thus our approach was to plan
a major deployment round every summer, with minor 2–4 person trips in either
autumn or spring. A typical deployment cycle would involve design, testing and
production of an incremental change to the systems within one year. These field
visits were particularly important for highlighting radio communication issues but

Table 9.1 Operating requirements

Operating air temperatures �20 to C30ıC
Temperature in ice/till �1 to C1ıC
Radio frequencies required to transmit through 100 m temperate ice Less than 500 MHz
Maximum diameter of probe case to fit borehole Less than 0.1 m
Maximum depth of ice 100 m
Maximum ice pressure 900 kPa
Maximum water pressure 1,200 kPa
Battery life 4 years
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Base Station

Fig. 9.2 The overall architecture with a single base station on the glacier surface controlling the
probes in the ice/till. A long-range radio modem linked the base station to a PC in an Internet café
3 km away. Image used with permission copyright Springer 2009 (from [9])

also physical issues such as the effect of high pressure on the probe case. Core
software could often be kept the same; the main changes typically involved the radio
network. Similarly, some hardware modules such as power supplies, transceivers or
amplifiers could often be reused. This yearly cycle forced us to be selective about
which system components were the focus of each development cycle, otherwise
key components may not have been completed on time. Unlike a purely laboratory-
based system, once the fieldwork logistics started in spring, the deadlines were fixed
and unmovable.

We expected long radio-disconnection periods but the users (glaciologists)
wanted every data sample, even if it was delivered months later. Therefore, we used
a large ring buffer (6,000 readings) for the data in each probe in order to store data
for up to a year. The base station used the same principle, storing all datasets on
compact flash, even after they were transferred to the UK.

GPS time synchronization of all the subsystems meant that it was easier to coor-
dinate the system as it provided a globally synchronized clock source. Broadcasting
the GPS time to all probes daily was used as a way to keep synchronization within
seconds and hence save power by narrowing safety margins on wake-up schedules.
While probe clocks remain synchronized, the disparity between base station time
and probe time could drift by around 1 min per year.

Power management was the key to satisfying the requirement for long-term sys-
tem life. Since a daily data transfer was acceptable, the radios on every unit were
completely off most of the time and limited time windows were given to those tasks
that used them (e.g., 1–3 min per day, maximum 3 retries per packet). The base
stations only power-on units such as radios or GPS during their use.

9.2.1 Deployment

Fieldwork logistics should not be underestimated. In Norway, we took advantage of
the well-established track up to the glacier, produced by the tourist industry. In the
first years, it was even possible to occasionally use a horse and cart to carry heavy
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equipment up the mountain. Unfortunately this mode of transport was replaced with
battery driven vehicles because the increased summer temperatures lead to increased
glacier melting leading to increased discharge in the connecting waterfall, which
frightened the horses. An unpredicted outcome of “global warming”!

The probes were deployed by drilling holes in the ice, down to the bed, using a
hot-water drill. The drill equipment weighs 200 kg and needs to be either airlifted
by helicopter on steep glaciers or driven on, if access allows. The drill requires a
constant supply of water, which means that summer is the only possible deployment
time for probes. Nevertheless, other times of the year were found to be reasonable
for base station developments. By drilling for a further 10–15 min at the bottom,
a hole was formed in the sediment into which the probes could be placed. Some
probes were placed in the ice by drilling a shallower hole. The boreholes could be
empty of water or half full, presenting the users with difficult deployment scenarios,
as the probes may not have survived a drop down the hole. The solution was to lower
them down loosely attached to fishing line.

The base station needed to be stable on the glacier, which is constantly moving
(about 15 cm/day) and melting (in summer this could be 20 cm/day). Our design
was to build a pyramid structure that cut into the ice and needed no anchors (as
these would just melt-out). In practice, a rope anchored down a deep hole (15 m)
could also be used as a backup. On one occasion, when the base station fell into an
opening crevasse, it was held by the combination of the rope anchor and the RS232
cable attaching it to the wired radio.

Melkevol’s Internet café at the bottom of the valley proved to be an ideal place
to link a small PC to the ISDN line (64 kbit/s) in order to provide a communication
link between the glacier-based WSN and the Internet. Initially, we tested 2.4 GHz
radio modems but discovered that this frequency is particularly poor in mountainous
regions with no line of sight. We then tried 500 mW 466 MHz modems and found
them to be more suitable to the conditions. Although ISDN is slow by modern stan-
dards, the bandwidth bottleneck, when dialing in from the UK, was the 9,600-baud
radio modem link between the Internet café and the base station. Nonetheless, there
was an unexpectedly long latency on the ISDN link, which hampered any interactive
programming or debugging over this link. A later upgrade to ADSL in the Internet
café made reverse connections from the UK much easier (and cheaper). Nonethe-
less, tuning the PPP link on the radio modems took much longer than expected and
the link could sometimes fail. PPP is a standard point-to-point protocol, which sim-
plified our work by allowing TCP/IP protocols to be used over the serial connection
but which is complex to configure. When connected remotely, the programmers al-
ways had to consider what the consequences would be if the radio link went down
for the day when only half way through a delicate operation, due to the unstable
nature of the PPP link.

9.2.2 Probe Evolution

When we started developing in 2001, there was no commercial hardware usable for
the probes. We also felt that building a completely custom design would let us learn
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more about the system issues. Later on, when commercial WSN nodes became com-
mon, it was still preferable to use our own hardware since it had power control and
full sensor interfaces such as amplifiers and bridges (for strain and conductivity).
The radio systems available on commercial nodes are also not suitable since they
typically use a frequency that is too high (e.g., 2.4 GHz) or have insufficient power
(e.g., 10 mW). We used either our own power amplifier with a transceiver or a high
power unit (e.g., 100 mW) since tests with 10 mW radios showed them to be limited
in range to tens of meters through ice.

The diameter of the probes was determined by the typical width of the boreholes.
Eventually the electronics was miniaturized sufficiently for the probe cases to shrink
accordingly and hence fit down the hole more easily. The probe case designs were
tested in a high-pressure water testing facility in the National Oceanographic Centre
in Southampton, so the probe enclosures could be tested for water leaks. In practice
there was a considerable amount of craft required to place the sensors in the cases,
seal behind them with potting compound and finally sealing the probe cases. The
choice of polyester for the cases was due to its RF properties, low water absorption
and strength (see Fig. 9.3).

The probe electronics improved with each version in terms of power consump-
tion. Reducing the sleep current was the main objective and this was eventually
reduced from 10 to 1 �A. Subtle changes were needed to reduce energy leakage and
lower the noise from the power supplies so that sensors were not affected.

When we started developing the probes there was no established operating sys-
tem available for WSN nodes and so we developed our own. This had the advantage
that we understood what every line of code was doing and could test each module
easily. Nonetheless, the bespoke operating system took time to create and lacks any
inherited modules obtained from an open source package such as TinyOS or Con-
tiki. The overall structure of the code was maintained for a number of years because
its features and risks were well known. It was tightly coupled to our custom packet
structure and its command structure as well as its design methodology.

Each probe has a range of sensors, which had to be selected carefully. The origi-
nal temperature sensor, which was a standard package with a wide operating range,
did not provide fine enough resolution given that it would spend most of its life at

Fig. 9.3 Left hand figure shows the probe electronics (from 2006) with the Radiometrix transceiver
and custom antenna. Right hand figure presents the end view of a probe showing the resistance
bolts, pressure gauge (centre) and LED/sensor (bottom)
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around 0:5ıC. The coarse resolution meant that the data steps were large .0:06ıC/

in comparison with the small temperature variations. A custom thermistor design
would require more electronics and calibration. The probe tilt was measured using
a MEMS accelerometer. A 3-D visualization program was produced to show the
probe’s motion. Without this, the raw acceleration data would be difficult to inter-
pret. The conductivity sensor simply used a pair of stainless steel bolts, which was
a more robust design than using an off-the-shelf conductivity sensor. A pressure
gauge was selected that would operate at pressures up to 50% higher than the pre-
dicted maximum under the ice. Case strain was measured using strain gauges, which
were part of a Whetstone bridge. These were glued to the inside of the case and pro-
tected from the other electronics with a plastic cover. In practice, the strain gauges
were the least reliable of all the sensors (with a 50% failure rate), presumably due to
their delicate wiring. A light reflecting sensor was added to later probes to provide
more information about the nature of the material the probe was embedded within.
This consisted of a LED and photodiode. A side-benefit of this sensor was the fact
that the probe showed some activity when sampling, which made prototypes easier
to debug.

All of the sensors required calibration, mainly to determine their zero offset.
A practical change that was made over the years is placing precision resistors on the
PCB rather than using many tuning potentiometers for sensor amplifier settings. Us-
ing precision resistors meant that the systems required separate calibration readings
to be stored but avoided the space use and risk of potentiometers on board. The cali-
bration data and conversions could be carried out on the final server or in the probes.
The latter approach makes browsing the incoming data easier and secures the cal-
ibration data in the probes. So from the user’s perspective that is better, however
developers may want access to the raw data for debugging purposes. In practice,
both raw and calibrated data were stored on the base station in separate files.

Although published figures for ice suggested losses of only 10 dB over 100 m
[6] even at 868 MHz we found that transceivers at that frequency were not usable.
Switching to 433 MHz we achieved a range of 35 m and later at 173 MHz we ob-
tained over 100 m range. Measurements showed that when the glacier surface was
wet most of the radio losses were caused by the top 20 m of ice. This led to a deci-
sion to place an additional transceiver at least 20 m down a borehole attached by an
RS232 cable [9]. The transceiver for several deployments was standardized around
the Radiometrix BiM unit [17] tuned to 173.25 MHz but powered at 100 mW rather
than the default 10 mW. Compared to modern transceivers this unit is primitive –
requiring careful driving of its analogue input stage and bit balancing (we used
Manchester encoding then later FEC – Forward Error Correction). The transceiver
interface was trickier than normal systems because the digital input was directly
driving the FM deviation and the output was analogue and needed a fast compara-
tor in order to capture data properly. A small, round PCB was used to mount the
antenna and provide a small ground plane for it (see Fig. 9.3).

Many of the features of the radio communications were designed to maximize
the performance of the system according to the user’s needs while balancing system
risks. For example only three retries due to packet errors were allowed in order to
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prevent excessive amounts of energy being used while attempting to transmit only
one day’s data. In this environment, poor communications are likely to be caused
by unfavorable environmental conditions and thus communications performance
should eventually improve when the weather changes. When a new radio design
was produced it would only be completely tested during the deployment, due to the
difficulty of accessing a glacier at other times of the year. For example, the tuned
173 MHz helical antennas made in 2006 were tuned only after an experiment on the
glacier transmitting data between two test holes.

In order to simplify the task of building the first systems, we used a star net-
work topology, which was quick to build and easy to debug although it reduced the
range of the network. Implementing one of the published multi-hop, ad-hoc net-
work routing algorithms was considered too risky for the first deployments. Power
management, robustness and sensor integration were the main elements emphasized
initially. Adaptive behavior was also minimized in the base station initially in order
to ensure higher reliability and ease of control. These pragmatic choices led us to
have a working system within two years with only one main developer. The archi-
tecture later evolved to include ad-hoc networking [4] and a more advanced radio
design. A TDMA-based ad-hoc protocol was designed around the fairly static envi-
ronmental conditions. Sadly, 2006 was the year when the whole of the front part of
the glacier broke off and all of the equipment was lost [3]. This meant the new pro-
tocols could not be evaluated in-situ. Some principles, such as: long-term store and
forward design to preserve the data, using GPS time to synchronize all systems, and
using script languages for the main control code have been maintained throughout.

9.2.3 Base Station Evolution

A reliable base station is a vital component of a sensor network. Power consumption
considerations led us to initially build a complex PIC-based base station PCB that
contained all the functionality needed to switch power, wake-up and communicate.
However many of the peripherals that had to be used, dGPS, radio modem, weather
station, required software that was not suited to the PIC. Also the expectation of
producing a perfect system and not needing to update its software was clearly over-
ambitious. Fortunately low power ARM-based boards running embedded Linux had
emerged which would solve the software issue. The increased sleep power these re-
quire would be compensated for by large batteries and wind/solar generators and
later designs had comparable sleep requirements.

Figure 9.4 shows the evolution of the base station design. A design lesson we
learnt was to have switchable LEDs for debugging and terminals that are easy to
use in cold weather. The Bitsy [2] Unix system provided a platform for software
development that could be mirrored on a laptop. This made it easier for a developer
to build and debug an application separately, especially for serial-connected periph-
erals such as the GPS, weather station and GSM. Unfortunately the sleep power
was fairly high (120 mW) and the build environment lagged behind developments
on other embedded Linux platforms. This led to the use of the Gumstix [8] platform
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Fig. 9.4 (a) Early PIC-based base-station (2004), (b) Deployed PIC-based base station (2005)
showing an increased use of screw terminals and common connectors. (c) Bitsy-based basestation
(2006) with modular switched power-supplies, (d) Gumstix-based system (2008)

for the Linux part even though sleep/standby was not a solved issue for the ARM.
A microcontroller was used to control power to the peripherals. The latest base sta-
tion deployed in Iceland used our custom MSP430 add-on PCB [12, 13] that also
controlled power to the Gumstix. Rather than using a standby mode of the ARM (as
in the Bitsy), the microcontroller powers-up the Gumstix, which, while using more
energy in start-up, results in a low sleep power (72 �W) and hence longer life in
this situation. In Norway, the wind power in the winter was enough to maintain high
battery charge. In Iceland snow prevented any charging by burying the blades of the
wind generator and preventing them turning, so the lower sleep power was essential.

One lesson learnt from prototyping on a different platform (e.g. laptop) is that
small differences in hardware, even in serial port handling, can cause problems
once the code is run on the embedded platform. Issues with “sleeping” level trans-
lators (RS232 devices designed to save power but which can cause problems) and
USB-to-serial converters were difficult to diagnose. The overall power consumption
of a sleeping base station was once measured as 12 mA, which was entirely due to
the commercial solar regulator used. Although debugging LEDs could be switched
off, the internal circuit of the regulator was not designed for low power situations.
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Fig. 9.5 Battery voltage of the base station in Iceland

Testing in the laboratory is best carried out on the real hardware even if it is more
time consuming.

The graph showing base station battery voltage in Fig. 9.5 demonstrates how the
voltage rises and falls diurnally due to solar charging and has bursts of high val-
ues on windy days due to wind power charging. The right half shows the different
behavior due to synchronizing with the reference system’s once-per-day GPS sam-
pling, which causes regular dips. These data show that a daily average of the battery
voltage is needed in order to reduce the noise in the estimate of the usable energy
reserves.

The experience from successive deployments provided clear lessons, which, if
heeded, can drastically improve the performance and reliability of future systems.
Enclosures and cases are one area where years of experience already exist (e.g.,
in the housing of weather stations and seismic monitoring systems). Connectors,
which are an unfortunate necessity when solar panels, antennas and external sensors
are used, are another area where learning from commercial systems and past expe-
rience is essential. We found that “Pelican” cases and large, over-specified (in terms
of maximum rated voltage and current load) connectors (e.g., Amphenol MS3102)
were an essential part of the project’s risk-reduction and have been used extensively
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Fig. 9.6 Percentage of expected data (per month) obtained each year: 2004–2006 Briksdalsbreen;
2008–2009 Skalafellsjökull

in commercial products. Another lesson was labeling the external connectors to al-
low a non-expert to interact with the system (“disconnect the GPS”, for example).
We typically enclosed the core base station electronics in a smaller box within the
main case, to protect it from rain. This requires double the number of connectors
for external modules but is far safer and allows the main electronics to be removed
safely for debugging elsewhere.

Figure 9.6 presents rate of decay of the deployed systems, which shows that the
probes are slowly lost over time. However, it can be seen that the success rate has
improved each year. The actual reason for the disappearance of probes is unknown
as there is typically very little information that changes drastically before they van-
ish. There are no sudden sensor reading changes to indicate that a probe is about
to be crushed or moved away. Battery power was discarded as a failure issue as the
predicted lifetime is long and the measured voltage is always high. It is more likely
that they are suddenly crushed or washed away by a subglacial stream.

9.2.4 WSN Advantages for the User

Previous glacier sensing used wired instruments. However wired sensors cannot
move freely in their environment and it is difficult to know how this affects the data.
The cables are also prone to damage within a shearing glacier. Moreover, wired
deployments require large quantities of cable, which were heavy to carry as well as
difficult to manage on the ice surface. Radio linked sensors have range restrictions
in a star-configuration but are easier to manage. Ad-hoc networking clearly makes
probe positioning easier than wired sensors as well as reducing the risks of restricted
radio range. WSN nodes can be placed in locations that would be almost impossible
with other techniques, for example in a subglacial shear zone where a cable would
soon be damaged.
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Fig. 9.7 Probe water pressure data from Briksdalsbreen till probes

The deployments reported on in this chapter provided long-term records stretch-
ing over several years. Figure 9.7, for example, shows the pressure data for three
probes acquired during two years. Simply acquiring continuous data over such
a long period is a major improvement because several years and sites can be
compared.

Overall, the Glacsweb project was very successful and the results can be summa-
rized as follows:

� It was demonstrated that the deployed WSN system works very well. In 2004–
2005, a total of 859 days of probe data (36,078 sensor readings) were received
and one probe lasted for the whole year. After further development in 2005–
2006, a total of 1,208 days of probe data (50,715 sensor readings) were received,
and three probes lasted for the whole year. In Iceland 784 probe-days (169,000
readings) have been collected between August 2008 and December 2009.

� It was shown that annual water pressure changes were more complex than re-
ported elsewhere in the literature. The probes showed a similar pattern of low
winter water pressures, a two-stage spring event associated with the opening of
the glacier hydrological system, and high summer water pressure (Fig. 9.6) [19].

� The amount and nature of clast (probe) movement within the till was quantified
for the first time, and this data was used to demonstrate how obstacles move
within a sheared viscous material, which has important implications for other
environments such as debris flows and shear zones as well as till fabric studies
[9, 10, 18].

� We were able to measure till temperatures over the whole year for the first time.
We were able to compare our results with theoretical modeling to show two im-
portant processes occurring at different times of the year: (a) melt-water inputs
cooled the till, (b) high friction (deformation) increased till temperatures.

� We were able to demonstrate that during high water pressure, the till behaved as
a linear Bingham viscoplastic flow. This data is required for glacier modeling, as
well as being a vital contribution to the ongoing debate concerning till rheology.
Winter low water pressures were associated with low water contents and high
till strengths resulted in brittle deformation; high spring water pressures, high
water contents and low tills strengths resulted in basal sliding, bed separation
and hydrofracture; the summer intermediate water pressures were associated with
ductile deformation. It is the superimposition of these processes over the year that
produces the dynamic range of structures observed in both modern and ancient
subglacial sediments.



9 Glacier Monitoring: Deploying Custom Hardware in Harsh Environments 257

9.3 Summary of Recommendations and Observations

Wireless sensor networks are best developed and deployed in close collaboration
with the domain experts. Any first deployment should be expected to reveal hidden
issues and may well seem unsuccessful but it is a necessary step to producing a
working system. In developing WSN systems fit for in-field deployment, a wider
range of expertise is needed than might be expected, including mechanical engi-
neering, testing, calibration, rapid prototyping, physics, and good humor. Planning
for unexpected fieldwork is essential because the natural environment is so unpre-
dictable and these trips also allow for incremental improvements or debugging.

For the deployments reported here, there is still an issue of usability (as with
most sensor networks), partly due to the timescales involved in Glacsweb: the con-
figuration and management of the system was rather unfriendly to end-users, in
comparison with data loggers and off-the-shelf telemetry systems already used by
the environmental monitoring community; the off-the-shelf systems can be con-
figured by end-users with the aid of a manual. It is hoped that through long-term
deployments together with real users involvement, WSN technology can advance to
the stage where it is as commonly used.
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Chapter 10
Adding the Human Element: Experience
with a Wireless Patient Monitoring System

Dorothy Curtis, Esteban Pino, Thomas Stair, and Lucila Ohno-Machado

Abstract This chapter describes how the design and deployment of a wireless
sensor network for patient monitoring was affected by human factors. The wire-
less sensor network was deployed and studied in the waiting area of an emergency
department at an urban academic hospital in the United States. The broader appli-
cation of this work is in the area of disaster management. The challenges were in
the integration of this new technology into a pre-existing environment for caring for
patients with minimal disruption. These challenges included operation restrictions
mandated by the hospital’s Institutional Review Board, choice of an appropriate
localization subsystem, limited power, concerns about fire hazards, theft, and hospi-
tal security during the eighteen-month deployment. Issues such as user acceptance,
patient mobility and expectations of multiple stake holders are also discussed.

Keywords Emergency department decision support � Wireless sensor networks
� Ambulatory patient monitoring � Body sensor networks � Medical sensors � Personal
digital assistants � Motes � Location tracking � Multiple stakeholder involvement.

10.1 Introduction

Wireless sensor networks bring monitoring to applications and phenomena that have
been difficult or costly to monitor until now. One of these areas is monitoring pa-
tients waiting for medical care in busy emergency departments at hospitals. While
some wireless sensors networks face challenging technical problems up front, such
as high data rates or difficult weather conditions, placing a wireless sensor network
on humans in a medical environment brings a different sort of challenge: the addi-
tion of the Human Element. Patients can be unpredictable and caregivers can take
issue with the deployment at any time.
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The hospital environment is complex and stressful: caregivers are focused on
dealing with potentially life-threatening medical problems and do not want new
technology to interfere with the performance of their duties; patients are interested
in receiving care promptly. This environment is also protected by hospital rules and
any experimental procedures or devices need to be approved by an Institutional
Review Board (IRB).

The Scalable Medical Alert and Response Technology (SMART) system [6–8,
16, 17, 19, 22] monitors patients in the waiting area of an emergency department of
a hospital. The SMART system, which monitors up to ten patients at a time, was
deployed in the Emergency Department at the Brigham and Women’s Hospital in
Boston for eighteen months, between June, 2006, and December, 2007: 172 patients
were monitored and 91 patients completed surveys. These surveys show that the
system was well accepted.

10.1.1 Waiting Patients Need to Be Monitored

SMART is designed to provide continuous monitoring capabilities useful for assist-
ing caregivers in recognizing important changes to patient health. Even in hospitals,
generally considered safe, well-attended environments, patients spend time in areas
where significant changes to their status may go unnoticed. Recent news articles
have reported patients dying in the waiting rooms of emergency departments due
to deteriorations not caught in time by hospital staff [1, 3, 4]. Further, caregivers
have been chagrinned to find patients unconscious in restrooms. SMART aims to
ensure that patients in hospital environments are noticed and located when their
health deteriorates to the point that they need immediate care, even when they are
not immediately visible to the Emergency Department (ED) staff.

To illustrate where SMART fits into an emergency department (ED), we describe
how a patient who has just arrived interacts with the ED. First the patient describes
his complaint, in a few words, to a clerk at the Registration Desk. Then the patient
waits to be triaged by a nurse who briefly evaluates his condition and assigns him
an Emergency Severity Index (ESI) [21, 23], which ranges from 1 to 5. An index
of 1 indicates that the patient should receive a bed and attention from a caregiver
immediately. Other values indicate that the patient should remain in the Waiting
Area until a caregiver and a bed become available. Typically patients with “short-
ness of breath” or “chest pain” are assigned index numbers of 2 or 3. While these
numbers indicate a high degree of urgency, the patient may in effect remain in the
waiting area for several hours before a caregiver and a bed become available. While
waiting, patients typically walk around the waiting area, visit the restrooms, or step
outside for a smoke or some fresh air. During this time, however, a patient’s status
may deteriorate and the busy triage staff may not notice. Even if the staff receives
an alarm concerning the patient’s vital signs, they still need to locate the patient
immediately. These are the patients and staff for whom SMART was designed.
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10.1.2 Brief Overview of SMART

The SMART system itself consists of several subsystems: the patient monitor-
ing subsystem, the central computer, the caregiver subsystem, and the location
subsystem. The patient monitoring subsystem collects vital signs data from patients
and forwards them to the central computer, which is called SMART Central.
SMART Central performs several functions: (1) collects and saves data; (2) analyzes
patient data for conditions needing caregiver attention; (3) maintains location infor-
mation for patients and caretivers; (4) generates alarms to caregivers showing the
patient’s problem and location. The SMART system also includes Personal Digital
Assistants (PDAs) for caregivers. With these PDAs, caregivers can receive alarms,
indicate whether they will respond to these alarms, list the roster of patients wearing
SMART pouches, and display patients’ vital signs and locations in real-time and at
earlier times. By maintaining location information on both patients and caregivers,
alarms can be sent to the caregiver nearest the patient with a problem. Figure 10.1
shows the flow of data through the SMART system.

The patient monitoring subsystem, the SMART pouch, is worn by the patient, as
shown in Fig. 10.2. Figure 10.3 shows the pouch which contains a PDA, a sensor
box, ElectroCardioGram (ECG) leads and an oxygenation level sensor (SpO2). The
SMART operator, an Emergency Medical Technician (EMT) who administers the

Fig. 10.1 Data flow through the SMART system



262 D. Curtis et al.

Fig. 10.2 Patient wearing
a SMART pouch

Fig. 10.3 Internals of a SMART pouch

SMART system, attaches the ECG leads to the patient’s chest (or arms) and waist
and the SpO2 sensor to one of the patient’s fingers. These sensors are connected
to a Cricket Mote-based [5] sensor box which is, in turn, connected to the PDA.
The PDA collects and timestamps the signals from the sensors and transmits them
wirelessly to SMART Central.
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The SMART system also includes a location tracking subsystem. This allows
SMART Central to know where caregivers, patients and equipment are located and
to assign an alarm to the caregiver closest to the patient.

The SMART system, which currently monitors up to ten patients at a time, was
deployed in the Emergency Department at the Brigham and Women’s Hospital in
Boston for eighteen months, between June, 2006, and December, 2007: 172 patients
were monitored and 91 patients completed surveys. These surveys show that the
system was well accepted.

10.2 Application Goals and Requirements

The proposal to build the Scalable Medical Alert and Response Technology
(SMART) system was developed in response to a Broad Area Announcement
(BAA) by the National Library of Medicine (NLM), US National Institutes of
Health (NIH). This announcement sought proposals in the area of application of
next generation communications technologies to healthcare issues. This BAA was
announced shortly after the September 11, 2001 attacks on the United States when
systems to assist in disaster management were a top priority.

While supporting caregivers at a disaster site was our initial motivation, we ulti-
mately decided to build a system that would be useful in urban hospital emergency
departments. While new equipment can be introduced at disaster drills, these are
limited in scope and time. Deploying the SMART system in an emergency de-
partment allowed us to study the feasibility of monitoring a number of patients
wirelessly in a more controlled environment than at a disaster site. At times an over-
crowded urban hospital emergency department approximates a disaster site when
there are too many patients for the caregivers to monitor. An additional benefit
occurs by having caregivers use the SMART system on a daily basis: emergency
department caregivers gain familiarity with the system and will be able to use it
effectively at a disaster site.

There are many stakeholders in this environment: patients, caregivers, the hospi-
tal IRB, engineers, and system designers. In the beginning, we believed we had
representatives for these stakeholders on the team and that we understood their
requirements. The patient wishes to receive good care from the hospital. The care-
givers wish to provide the best possible care to all the patients at the hospital, but
have limited time. The Institutional Review Board (IRB) at the hospital is also a
proxy for both patients and caregivers: it seeks to protect the patients from harm
and to maintain the current level of care provided to patients. The engineers want to
build a reliable, maintainable system. The system designers want to see if this sys-
tem can be integrated into the emergency department and whether it will improve
care for the patients in the waiting area. However, we found, in practice, not all
stakeholders were aware of all requirements when the study started.
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The initial requirements were that

� The design of the system and study protocol be acceptable to the hospital’s
Institutional Review Board (IRB).

� The system integrate well with the existing procedures of the Emergency
Department and not interfere with the Emergency Department’s existing op-
erations, either by distracting caregivers or by overloading their network.

� The patient monitoring system work within limited power and weight, be accept-
able to patients and preserve their mobility.

� The system maintain position information for patients and caregivers, so that
caregivers can find patients who are out of sight, such as in a restroom, when
their status deteriorates and can allocate resources base on location.

10.3 Component and Sub-System Selection

The components that were needed were (1) patient monitoring node with integrated
sensors for vital signs, (2) a caregiver node, (3) a location subsystem and (4) a
central processing node. Since the goal of our project was to evaluate the fea-
sibility of monitoring patients wirelessly in a specific context, we wanted to use
reliable components. Using off-the-shelf, consumer or commercial grade hardware
components reduced cost, shortened design time, and helped convince the hospital
representatives that our devices were safe for use with patients. This latter point is
particularly important for systems used in medical contexts, because there is a po-
tentially lengthy approval process required for devices that come into contact with
patients. A custom design might have resulted in a more lengthy review process.
In designing the software, we preferred components with which the development
team had experience to save on design time. For wireless communication we chose
802.11 b because the infrastructure has low cost and is commonly available and eas-
ily deployed.

10.3.1 Patient Monitoring Node Selection

For the patient monitoring node, we needed a wearable platform that had the ability
to connect to multiple sensors, and had sufficient battery lifetime to collect patients’
vital signs data and forward them wirelessly via 802.11 b to the central computer.
We chose the commercially available HP iPaq Model 5,500 PDA (personal digital
assistant) for collecting patients’ vital signs data and forwarding them to the central
server. This platform came with an ARM-based Intel XScale 400 MHz PXA255
processor, 128 MB of RAM, and 802.11 b wireless networking built-in. To simplify
integration with the sensors, we used the optional “backpack” that provided extra
battery power and slots for two PCMCIA cards. For an operating system, we chose
to install the “Familiar” version of Linux [9]. We chose this over Windows CE
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because several developers had familiarity with this operating system on the HP iPaq
platform from prior work in Project Oxygen [14], and it enabled us to modify the
operating system if that became necessary. For software development, we wanted
a strongly typed higher level language. Initially we used Java on the iPaq, but after
encountering memory limitations, we switched to Python.

To collect the patients’ vital signs, we needed to choose sensors and integrate
them with the iPaq. To this end we designed a sensor box that connected via se-
rial ports to the patient monitoring node. The sensor box was based on the Cricket
Mote, commercially available from Crossbow. We chose the mote initially because
we planned to use Crickets for our location subsystem. It also provided a “daughter
card” for interfacing with other sensors. Although the Cricket includes an integrated
low power, short-range radio stack based on the Chipcon CC1000, we elected to use
the 802.11 b interface on the iPaq to build our network. Using 802.11 b had two
distinct advantages: it could make use of commercially available wireless infras-
tructure components, such as routers and devices with built-in 802.11 b support,
and it eliminated the additional complexity of a multi-hop network. Further it was
estimated to be much more reliable than a multi-hop network.

The patient monitor included two medical sensors: SpO2 and ECG, which we
interfaced via the sensor box. We used an SpO2 sensor from Nonin to detect the
oxygenation level in a patient’s blood. Because we could not find a suitable ECG
sensor with an acceptable price, form factor and open interface, we designed and
built our own as a daughter card for the mote. The challenge in designing our own
ECG sensor was acceptable signal quality. Our initial design based on a single op
amp with two lead wires connected to the patient needed to be upgraded to use two
op amps and three lead wires to achieve acceptable signal quality.

10.3.2 Caregiver Node Selection

The caregiver module had fewer requirements than the patient module: the primary
requirements were support for a GUI, portability, and wireless communication with
the SMART Central computer. While the display on the patient node was optional,
it was a requirement for the caregiver node. By using the same HP iPaq PDA for the
caregiver node as for the patient node, we retained a similar programming environ-
ment and hardware spares could be used for both purposes.

10.3.3 Location Subsystem Selection

We used the following criteria to evaluate potential location subsystems:

a. Approximate price of $25/tag, with a higher acceptable unit cost for the detection
infrastructure.

b. Tags for people should be small, lightweight and easily worn; tags for equipment
should be easily attached.
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c. Room level location granularity.
d. Ease of installation, both indoors and outdoors; high availability; low mainte-

nance.
e. Scalability: minimum: 10 patients, two caregivers, no equipment; maximum:

1,000s of patients, 100s of caregivers, 100s of pieces of equipment.
f. Caregivers should be able to turn off location tracking during breaks.

As originally proposed, there were two location subsystems, one for people (patients
and caregivers) based on Cricket [18] and another for equipment based on RFID for
several reasons. RFID looked like a good choice for equipment tracking because the
tags are very low cost, whereas Crickets are preferable for tracking people because
they can also be extended to support the medical sensors.

Although Cricket was an expensive solution, its cost could be amortized over the
Cricket Mote’s dual use for both location and ECG sensing. This also contributed
to wearability because it eliminated the need for an additional component inside the
SMART pouch. The installation can be quite easy, both indoors and outdoors, be-
cause the beacon infrastructure needed to support the Cricket system is wireless and
battery powered. There is a trade off here between ease of installation and main-
tenance: if the beacons are run on batteries, the batteries must be replaced every
three weeks.

Since the Cricket location architecture is based on passive receivers, it is scalable
to an arbitrary number and density of receivers. Beacons, the active component of
the system, are deployed at a fixed density that roughly corresponds to the granu-
larity of location. Passive receivers also facilitate the protection of the caregivers’
privacy: by default the central computer does not receive localization information.
The software at the receiver can choose to share this information with others. This
could be important for caregivers who might choose not to share their location dur-
ing breaks.

After a period of evaluation, we decided that the Cricket Location system did not
meet our criteria for accuracy: the receivers occasionally indicated that a nearby pa-
tient was far away. We considered several possible algorithms for filtering outliers,
both receiver and server-based. However, we were unable to implement a solution
based on Cricket, due to limited development resources.

By this point, we had reviewed several other indoor location systems, including
a successful demonstration of the Sonitor Indoor Positioning System in the wait-
ing area of the hospital’s emergency department [20]. This demo showed that the
system worked well and met many of our criteria: the tags were small and light-
weight; the accuracy was reasonable; the system was commercially available; and
a company was there to stand behind the installation. The Sonitor location infras-
tructure is composed of installed receivers that can operate via either a wired or a
wireless network, although they require wired power. The room-level accuracy that
Sonitor achieves is due to the fact that its ultrasound transmissions do not penetrate
walls, but it is probably not a good choice for outdoor use. The system scalability
was adequate for our immediate needs, but its use of emitter-based tags makes it
architecturally less scalable than the Cricket system.
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Initially we had planned to demonstrate equipment tracking using inexpensive
RFID ($5–$25, vs. $200 for a Cricket tag), with the more expensive detectors
(�$5,000) installed at the doorways. However, because the ED has an “open plan”
layout and the doorways were wide (10–15 feet), this was not feasible using the
detectors available at the time, because of their limited detection range. The pro-
jected cost was raised further, since two RFID detectors are required to infer the
direction a tag is going through a doorway. Given the challenges associated with
equipment tracking, we decided to focus on people tracking, as it was more critical
to our application.

10.3.4 Central Server Selection

A standard, commodity PC running Linux provided a reasonable basis for SMART
Central. On SMART Central we used ORNetDB [13], a streaming database written
in CCC that had been developed for another project. We modified this system to
support multiple patients. ORNetDB defined the protocols for use with the PDAs
and the Java-based user interface software on SMART Central.

10.3.5 Building Through Integration

The SMART system had many components and a limited development budget: its
goals were attainable in large part through the use of off-the-shelf components. We
encountered some limitations in using this approach. For instance, our initial choice
for SpO2 sensor used Bluetooth to communicate with the patient node. However, the
Bluetooth implementation in Familiar Linux was not stable and we lacked the re-
sources to expend sufficient effort to fix the Bluetooth driver in the operating system.
These stability problems in the Familiar driver were eventually fixed, but we did not
take advantage of it because by then we had committed to use the sensor box ap-
proach. Many components were independent of the hardware platform we used: for
example, because the vital signs sensors were serial-port based, we could debug and
evaluate them attached to an office PC. The patient nodes operated independently of
each other, and all connected directly to the hospital WiFi infrastructure, rather than
using cooperative multi-hop protocols as is common in many other wireless sensor
networks (WSNs). In retrospect, choosing a different platform would have given us
more flexibility in choosing larger batteries. The HP iPaq 5,500 is compatible with
only specific models of a “smart” battery.

In choosing the location subsystem, we were challenged by the infancy of the
field: there was no obvious choice. So we did a standard component selection:
we made a list of criteria and invited several vendors in to present their products.
We tried to visit working installations of the systems or asked the vendor do on-site
demonstrations. Although this was time-consuming, it facilitated good assessments
of the availability and the accuracy of the systems.
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10.4 Software

The SMART system software comprised a broad set of components, including
medical signal analysis and event detection, decision support, location tracking, an
administrative web interface, and end-to-end sensor data acquisition and logging. In
this section we describe these components and how they fit together into a coherent
system. A large part of the complexity arose because the system needed to inte-
grate several different types of hardware: Motes, iPaqs running Linux, the Sonitor
infrastructure, and a Linux PC. Although care was taken to minimize the number
of different operating environments involved, software needed to be written in three
different environments: TinyOS on the Mote platform; Familiar Linux on the iPaqs
for the patients and caregivers; and Fedora Linux, Postgres, Apache, and Python on
the SMART Central PC.

The SMART software can be considered as four main components: two separate
end-to-end systems that connect SMART Central to the patient and caregiver re-
spectively, a location system implemented by Sonitor, and SMART Central, which
includes the logging, analysis, and decision support features as well as a web
front end.

The patient monitoring system required software on the iPaq to collect three
data streams: ECG data from the Mote-based ECG, SpO2 readings from an off-
the-shelf sensor serial interface, and battery level. Once sensed, this data was
time-stamped and forwarded to SMART Central, where it was processed in real
time and stored into a database. For the Mote-based ECG sensor, custom developed
firmware sampled the ECG sensor at 200 Hz and reported the data back to the iPaq
via a serial port. The clocks on the PDAs and SMART Central were synchronized
with each other using the standard NTP protocol [11].

The caregiver module connected to SMART Central and displayed real-time
information to the caregiver. This information included (1) the roster of patients be-
ing monitored; (2) the display of a patient’s current vital signs, including the ECG
tracing in near real-time; (3) the display of a patient’s vital signs since the begin-
ning of monitoring; (4) incoming alarms. The caregiver module also handled the
caregiver’s response to an alarm, if any: the caregiver could (1) “accept” the alarm;
(2) indicate that he was “busy”; (3) forward the alarm to another caregiver; or (4)
do nothing. To prevent unauthorized access to patient data, the caregiver module
needed to automatically lock the screen if the caregiver had not interacted with the
PDA for a period of time.

SMART Central acted as an intermediary between the patient and caregiver sys-
tems and served to interpret and log patient data. Raw and derived patient data,
caregiver alarms and responses, and the location history for both patients and
caregivers was logged to a Postgres database. This database also recorded patient
demographic information and anonymous survey information, input via a web ap-
plication written for an Apache web server. This web server also updated a browser’s
map to display the locations of the patients and caregivers.

Because of performance limitations of the Postgres database for streaming
data, we used an internally developed streaming database called ORNetDB to



10 Adding the Human Element: Experience with a Wireless Patient Monitoring System 269

process near real-time streams of vital signs data and provide those streams to other
modules. Part of the ECG signal processing was accomplished inside the ORNetDB
directly, including signal quality estimation (noisy vs. no signal vs. acceptable qual-
ity), heartbeat detection, and classification of heart rate. ORNetDB also provided
data streams to other modules: the caregiver module on the caregiver iPaq, the
process which logged the raw data into Postgres, and the SMART Central decision
support program. The protocol by which raw sensor data were transported from
the patient monitoring tags to SMART Central was also implemented as part of
ORNetDB.

SMART Central processed the raw location data and used it to assign positions
to patients and caregivers and to support decision-making. The SMART Central
decision support program consisted of modules to

a. Further analyze the ECG signal to classify each patient’s heart rhythm into one
of the following: normal sinus, bradycardia (slow), tachycardia (fast), irregular,
ventricular fibrillation, ventricular tachycardia, asystole, “noisy”, or “leads off”.

b. Process the SpO2 signal: check it against thresholds and check for disconnection.
c. Display near real-time vital signs data to users at SMART Central and at the

caregiver’s PDA.
d. Decide whether any patients’ vital signs were beyond thresholds or otherwise

needed attention (e.g., “leads off”); select a caregiver to alert; send alarms; handle
caregivers’ responses or their failure to respond to alarms.

For the purposes of demos and debugging, we also wrote “playback” programs to
replay patient data into the standard data processing flow.

10.5 Preparations for Deploying SMART in the Hospital

The deployment process in a hospital environment differs substantially from the
process in many other contexts where WSNs are used, and much of this differ-
ence is associated with the regulatory environment that hospitals impose. Unlike
other environments where development and debugging can be done iteratively “in
the field”, health care systems in hospitals must be implemented and characterized
before they are allowed to be applied to real patients. Consequently, much of the
early design and development could only be done in controlled test environments
and with development team members as test subjects.

Before the system could be applied more broadly, any studies needed to be
approved by the hospital’s Institutional Review Board (IRB). This board meets pe-
riodically to review written proposals for research to be conducted at the hospital,
to ensure patient safety, privacy, and ethical pursuit of research while maintaining
the hospital’s level of service to patients. Only after approval from the IRB could
the system be fully tested with real patients in the ED.

As a part of this process, a biomedical engineer affiliated with the hospital must
approve all electronic equipment that will be used on patients. He easily approved
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the HP iPaq PDA because it was considered “consumer electronics.” The sensor
box was also readily approved because it was powered by standard AA batteries.
One caveat was that the HP iPaq PDA was not to be plugged into wall power while
the patient was wearing it, to reduce potential electrical hazards. The SpO2 sensor
developed by Nonin [12] had already been approved by the FDA. The biomedical
engineer reviewing the equipment did recommend that we protect the electronics
from fluids, so we housed the sensor box and iPaq in a water-resistant pouch. To pre-
vent the spread of disease among the patients being monitored, we also developed a
process for cleaning the outside of the pouches.

The plans submitted to the IRB included the patient consent form and a detailed
description of the research and study plan. These plans included a description of
possible negative outcomes to the patients from participating in this study and our
plans for handling such situations; for example, we expected that some patients
would develop a rash on their skin due to the adhesive on the electrodes. The physi-
cians involved in the study were required to provide telephone contact information
for dealing with these problems.

As a result of the IRB review, the original plan for deploying the system needed to
be redesigned. The IRB determined that providing PDAs to the existing caregivers
might distract and overburden them and thus interfere with the hospital’s current
level of service to patients. To resolve this problem, we hired a dedicated EMT
(Emergency Medical Technician) known as the “SMART Operator” to supervise the
SMART Central system. The SMART Operator obtained consents from the patients
and handled all alarms.

The Operator was also required to watch the patients’ raw ECG tracings and other
vital signs at SMART Central, since, by virtue of the additional patient monitoring,
the hospital would be held responsible if the patient’s condition deteriorated and an
alarm was not issued due to system malfunction. Additionally, the SMART Operator
provided a point of contact for the team and reported any problems and successes to
the development team.

The IRB was also concerned about interference with the hospital’s network, so
they required that we deploy our own wireless network. We deployed an off-the-
shelf wireless router to allow the iPaqs and Sonitor detectors to connect to SMART
Central. Because the router was not connected to the Internet, we did not expect
that anyone would attempt to use it. However, this resulted in an unexpected fail-
ure mode: occasionally there were laptops in the waiting room that were statically
configured to connect to the 192.168.0/24 subnet. These connections sometimes
consumed router resources that the patient iPaqs expected to use. For our immediate
purposes we handled this problem by changing the subnet that our router and clients
used. However, this points to a more general problem: if a system such as SMART
were life-critical, the network would need to be secured against use by devices not
part of SMART.

To facilitate maintenance of the sensor boxes in the SMART pouches, the final
version had two improvements (see also [2]): (1) external connectors for all the
cables allowing them to be detached and replaced without opening the box; and (2)
“hatches” for the AA batteries allowed the batteries to be replaced without opening
the sensor box.
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10.6 The Hospital Deployment Experience

The SMART system was deployed for 18 months at the Brigham and Women’s
Hospital in Boston, Massachusetts, USA, in the waiting area of the Emergency
Department. The objective of the deployment was to study the feasibility of us-
ing a wireless patient monitoring system in such an environment. The system as
configured was able to monitor ten patients at the same time. Caregiver PDAs
were available but not normally used because of the IRB’s concerns about distract-
ing the caregivers. The PDAs connected to our WiFi router by 802.11 b wireless
networking; SMART Central was installed on a standard PC and connected to the
router by wired Ethernet. Location support for the deployment was provided by the
Sonitor infrastructure, made up of 15 ultrasound detectors that connected to SMART
Central by Ethernet. Some Sonitor receivers were connected directly to the router
using wired Ethernet, while others were connected wirelessly using ASUS wired-
to-wireless Ethernet access points.

This deployment lasted approximately 18 months, from mid-June 2006 through
December, 2007. During this time, we monitored 172 patients who presented with
“chest pain” or “shortness of breath”, and collected 152 h of data for off-line
analysis. Three patients were reprioritized on the basis of the SMART system’s
monitoring.

10.6.1 Installation and Operation of the Location System

Sonitor performed the deployment of their indoor location system at the hospital.
We encountered both installation and operational problems with the Sonitor system.
During installation, the ED personnel were concerned about dust from inside the
ceiling drifting down onto the waiting patients while power and network cabling was
run through the ceiling. To minimize impact on patients, this work was done early in
the morning. After the system was operational, we encountered some power supply
failures. The current required to support both the Sonitor detector and the wireless
adapter exceeded the specification of the power supplies, causing some of them to
fail. Sonitor quickly identified the problem and replaced the power supplies.

A second operational problem arose during the deployment, when a few of the
detectors went missing. It is unclear whether the devices were stolen or whether
they were removed by hospital personnel who were unaware of their purpose. This
might have been prevented by adding labels that indicated that they were part of
an authorized study in the hospital, as suggested in previous work [2]. As the study
went on, we considered replacing the missing components, but in the end we chose
not to replace them. Ultimately we found that, while this location system was good
enough to track patients at room level accuracy, it was less operationally critical that
we anticipated: since we were monitoring between zero and four patients per day
(usually only one at a time), it was easy enough for the SMART Operator to track
the patients visually. In a larger scale deployment, location would be more critical.
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10.6.2 Battery Life and Power Management

To achieve a reasonable lifetime (>3 h) for the HP iPaq, we disabled the screen
on the patient monitors. Because there were no problems requiring the use of the
display during deployment, this was acceptable. The three hour limit was reasonable
for patient monitoring in the emergency department’s waiting area, as the patients
were usually summoned into the ED proper about an hour after receiving a SMART
pouch. There was only one instance where we needed to replace a patient’s pouch
because of low battery during monitoring.

A more complex problem with power emerged from the fact that the PDA only
reported valid battery levels if the battery was fully charged when the PDA booted
up. This problem was not discovered during the development process, because the
PDAs were always kept plugged in when they were not in use. However, at the
hospital, leaving the PDAs plugged in was considered a fire hazard. Because they
could not be left charging, the reported battery levels were not reliable. The SMART
Operator handled this situation by plugging in several PDAs when he arrived so that
he could be certain that they would be “mostly” charged up when given to a patient.

10.6.3 Choosing a Location for SMART Central

We chose the location of the SMART Central computer with two goals in mind:
(1) allow the SMART Operator to visually monitor the patients and (2) keep the
system in a secure place while SMART was not in use. A hall off the waiting area
seemed like an ideal spot. The hall was locked with a door, so the system would be
secure when not in use and the door could be open when that SMART Operator was
present.

The concern with fire hazards at the hospital arose again when there were too
many papers in the area around SMART Central. The solution here was to buy a
small filing cabinet. The lesson is that in a context dedicated to some purpose, all
potential problems that might detract from that purpose must be minimized: the
environment must be cleaner and safer than an “average” environment.

10.7 Discussion

The SMART project encompassed a variety of challenges, from the mobility of the
patients to the appearance of new stakeholders during deployment, as well as the
technical challenges of minimizing false alarms.
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10.7.1 Hospital Deployment Life-Cycle

When developing a system for deployment in a hospital environment, pre-
deployment tasks need to be budgeted carefully. If everything seems ready, the
deployment may happen sooner than appropriate. In certain contexts, prototypes
can be useful for getting feedback from the stakeholders, however they may be
misleading because they may not reflect deeper-seated engineering issues.

Once the system is deployed, there are several barriers to iterating any part of it.
For hardware on the patient, any change to the device would need to be re-approved
by the biomedical engineering department and by the IRB. Even something as minor
as adding a question to the survey form entails re-approval by the IRB. Changes are
also to be avoided because the deployment is part of a study and changing the pa-
rameters of the study part-way through may invalidate previous datasets. Reporting
the results of a study on a statistically significant number of patients is an important
consideration for deploying a wireless sensor network in a hospital environment.

10.7.2 Preparing for the Reality of the Hospital Environment

We have previously discussed some of the impediments to deployment that are
unique to specialized operating environments such as hospitals. In particular, the
IRB process held the system to a higher standard prior to a real deployment. Apart
from the particular test involved in the study itself, all of the testing needed to be
done ahead of time so that the hardware and procedures to be used could be finalized
prior to the IRB.

Testing with healthy volunteers is an important part of this testing process. While
the IRB is still involved, some of its usual concerns do not apply because healthy
volunteers are not considered as vulnerable a population as patients. In our early
test deployments with healthy volunteers, we needed to develop crowd management
techniques, because the healthy volunteers tended to be more numerous and less
subdued than real patients. For the final healthy volunteer session, we asked the
volunteers to arrive at fifteen minute intervals, so that we could meet with each one
individually to get their consent, give them a pouch, place the electrodes and collect
their demographic data. This proved far more manageable than having the healthy
volunteers start up their own patient PDAs and place the electrodes themselves.

Testing with healthy volunteers helped us debug the system and some of the pro-
cedures for deployment, but it did not catch all the problems. While much of the
system can be tested this way, the healthy volunteers behave quite differently and
have very different sensor profiles compared with the real patients. First, the move-
ment profile of healthy volunteers produced less noise in the ECG signals, which
ultimately produced fewer false alarms than we saw with real patients. Second, read-
ings taken from healthy subjects should not trigger the alarms and decision support
parts of the system, so much of the system would not generally be exercised.
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To better understand this process, we report on the development of the ECG
processing algorithms, beginning with a prototype and ending with a system that
could be deployed. The ECG processing algorithms were prototyped in MATLAB
[10] by a graduate student specializing in biomedical signal processing. Several
test data sources were used to test and validate the MATLAB implementation: (1)
Physionet data [15]; (2) data collected with our ECG sensor from a patient simulator
programmed to produce electrical signals consistent with various heart arrhythmias;
and (3) data collected from some of the people working on the project.

After testing the algorithms themselves, they needed to be re-implemented in
order to be integrated into SMART Central. We tested the integrated version in de-
ployments using healthy volunteers. While these healthy volunteers did not have any
cardiac arrhythmias, they provided a test of the ECG analysis algorithms running in
real time on the real hardware.

However, real patient data turned out to be different from our data collections.
The major evidence of this was that the system produced many more false alarms
than we expected based on healthy volunteers. These were largely due to noise in
the ECG signal due to patient motion. We were able to reduce the false alarm rate
after reviewing the algorithm and implementation. Reviewing the implementation
revealed several bugs that were repaired. We removed more false alarms by modify-
ing the algorithms to fuse the ECG information with that provided by the SpO2. We
considered other approaches for detecting patient motion, such as via the location
sensor or via an accelerometer within the sensor box. However, the particular loca-
tion sensor we were using was not sensitive enough for this purpose and we lacked
the development budget and time to explore the accelerometer option.

Ultimately, the final version of the system still had too many false alarms. We
learned that it is important to collect a significant amount of “real data” as soon as
possible. We recommend submitting an early application to the IRB so that data
from real patients can be collected early on to help the developers produce a robust
system. If this can be done early enough in the process, the hardware design can
be modified if necessary (e.g., adding additional sensors). Whenever false alarms
were a problem, the SMART Operator handled them by reviewing the raw data that
produced the results and only passing them along to the ED staff when the findings
merited it.

10.7.3 Working with Stakeholders During the Deployment

As has been discussed, there were many stakeholders involved in both the design
and the deployment of SMART Central. Through our regular, weekly meetings, the
engineers stayed in contact with the physicians who gave feedback on the features
of the system. This practice in general was helpful in keeping all the team members
aware of the status of the project. It did lead the development team, however, to focus
on developing user interface software. This software is easy to demo and helps the
user community better understand the vision we are presenting. Maintaining strong
ties with the physicians required a non-trivial amount of time.
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The Institutional Review Board (IRB) represented the interests of the patients and
the existing practices of caregivers in the emergency department. We initiated our
testing with healthy volunteers with an initial proposal restricted to healthy people.
Thus, we deferred the proposal involving interaction with patients until most of the
system was working.

Beyond the IRB, from time to time emergency room staff members would ad-
vocate for themselves or the patients: there were complaints about potential fire
hazards due to charging the PDAs, excess paper in and around SMART Central,
and, as described above, concern about toxic dust falling from inside the ceiling
while cables were being run. After about six months of operation, the security de-
partment (a previously unknown stakeholder) notified us that the door to the back
hall where SMART Central was located, needed to be kept locked. The SMART
Operator adapted to this request by staying in the back hall with the system and
opening the door once in a while to check on the patients, although he was not too
happy about this request because he was be isolated from his patients and relegated
to a small closed space.

In general, the stakeholder landscape in a hospital environment is complex, and
it is difficult to identify all of the potential stakeholders ahead of time and resolve
all potential issues. Many times, it is difficult to envision the full impact of a deploy-
ment until it is underway.

10.8 Future Work: Disaster Management

At a disaster site, a sensor system cannot rely on fixed infrastructure, and requires
that the disaster management team deploy their system quickly so that they can
provide service to the victims of the disaster. The main issue at a disaster site is
that the victims far outnumber the caregivers, which implies that patient monitoring
devices should be substantially cheaper than the other parts of the system. Since
there are few caregivers, their first priority is to stabilize and triage the victims and
then arrange transportation for those victims who need it. Between the victims who
need immediate care and the mostly well victims are those in need of monitoring:
they are not urgently ill, but their status is worrisome and might deteriorate. Having
a portable, wireless patient monitoring system that includes a location system is a
reasonable way to keep track of these patients while they wait for transportation, so
caregivers can find them easily if their condition deteriorates.

10.9 Conclusions

Deploying a wireless sensor network into a sensitive or specialized environment
such as a hospital is challenging. Beyond collecting and analyzing data, the WSN
must be acceptable to the human subjects who will wear the monitoring devices
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and the use of the WSN has to fit in an environment with an existing workflow and
comply with constraints that the development team may have not anticipated. The
hurdles between design and deployment make it difficult to collect “real data” early
in the project.

Identifying stakeholders and communicating with them effectively was critical
to the success of the project. During the deployment we stayed in contact with
the emergency department staff, communicated with the hospital’s Institutional
Review Board, and complied with requests from the hospital security group and
the triage staff.

In building WSN systems, one aspect is choosing the appropriate technologies
to be used. While some technologies are mature and used by consumers, others are
still evolving. In this project, we attempted to choose and use location systems even
though the technology was not mature at that time.

The administrative challenges we faced in deployment are not fundamental road-
blocks to eventual widespread use of wireless patient monitoring systems, but they
complicate the development process. These issues also favor different development
strategies. Whereas the design of many WSNs is focused on physical resource con-
straints such as energy or small size, systems deployed in a hospital environment
must instead be optimized for logistical and administrative constraints. For exam-
ple, a less efficient solution based on consumer electronics may be much easier to
get through the regulatory process than an experimental system that is extremely
power-efficient.

In conclusion, the SMART system has shown potential to identify life threaten-
ing situations and to alert caregivers automatically. Although the system produced
more false alarms than were desirable, we believe that the false alarm rate could be
improved using a larger patient dataset and minor algorithmic changes. In addition,
a case can be made that there will always need to be a human in the loop to control
the system and to check its results. By developing and testing user interface com-
ponents such as the SMART Central GUI, we have taken steps toward addressing
that need.

Given an aging population, we expect that the need for pervasive systems like
this one will become essential to delivering high quality healthcare with minimum
cost in non-disaster situations.
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