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Preface

The support vector machine (SVM) has been developed in the statistical learning
theory and later adopted in machine learning, statistics, and signal processing. SVM
has been applied to solve a variety of practical problems. Recent advances have
seen diverse developments and applications of the SVM. This book would like
to summarize these progresses in robotics, computer vision, pattern recognition,
computer security, neural and medical image analysis, soft biometrics, etc. The
selected studies will present how to formulate their application, use basic SVM
algorithm, and extend SVM algorithm for their application. It will motivate the
readers to think about their own applications and come up with solutions using
related SVM techniques.

Chapter 1 presents an SVM application in robotics. They modified the basic SVM
method to an augmented-SVM approach, which combines gradient observations
with the standard observations of function values, then applies in robotics for
better performance. Chapter 2 proposes a simplified multi-class SVM approach
and applies for multi-class pattern recognition problems. Chapter 3 proposes two
novel approaches for transfer learning, inductive transfer learning and transductive
transfer learning, where a domain adaptation kernelized SVM was developed
with two extensions. They evaluate the performance of the proposed method in
a biochemical process with real-world datasets. Chapter 4 discusses the SVM for
security applications in adversarial environments, e.g., malware detection, intrusion
detection, and spam filtering. Chapter 5 presents the application of the SVMs for
image categorization, i.e., classifying visual images into different object categories.

Chapter 6 describes an SVM application in neuroimage analysis. Neuroimage
analysis is to characterize the group difference captured by the SVMs with
anatomically interpretable patterns, providing insights into the unknown mechanism
of the brain. The authors introduce the SVM-based methods to the neuroimage
analysis. Discriminative patterns are decoded from the SVM through distinctive
feature selection, SVM decision boundary interpretation, and discriminative learn-
ing of generative models. Chapter 7 studies the SVMs for the imbalanced data
problem, where an imbalanced set of samples are used for training the SVMs.
They use in two biomedical applications, the abnormal ECG beat annotation and
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vi Preface

detection of abnormal regions in colonoscopic images, where the imbalanced data
problem exists. Chapter 8 presents the applications of the SVMs for extracting and
recognizing soft biometrics, such as human age, gender, and ethnicity from facial
images. Soft biometrics is different from the traditional biometrics, such as face
recognition or iris, fingerprint recognition. It can be used in business intelligence.
The author focuses on the SVMs to learn an estimator or recognizer to extract the
soft biometrics. A combination of SVM regression and classifiers has also been
developed for age estimation.

We would like to sincerely thank the contributors of each chapter. The book
would not be possible to be edited without their great contributions. Hopefully
these excellent research works and related reviews give readers a broad and deep
representation of recent development of the SVM algorithms and applications.

Golden Valley, MN, USA Yunqian Ma
Morgantown, WV, USA Guodong Guo
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Chapter 1
Augmented-SVM for Gradient Observations
with Application to Learning Multiple-Attractor
Dynamics

Ashwini Shukla and Aude Billard

Abstract In this chapter we present a new formulation that exploits the principle of
support vector machine (SVM). This formulation—Augmented-SVM (A-SVM)—
aims at combining gradient observations with the standard observations of function
values (integer labels in classification problems and real values in regression) within
a single SVM-like optimization framework. The presented formulation adds onto
the existing SVM by enforcing constraints on the gradient of the classifier/regression
function. The new constraints modify the original SVM dual, whose optimal
solution then results in a new class of support vectors (SV). We present our approach
in the light of a particular application in robotics, namely, learning a nonlinear
dynamical system (DS) with multiple attractors. Nonlinear DS have been used
extensively for encoding robot motions with a single attractor placed at a predefined
target where the motion is required to terminate. In this chapter, instead of insisting
on a single attractor, we focus on combining several such DS with distinct attractors,
resulting in a multi-stable DS. While exploiting multiple attractors provides more
flexibility in recovering from unseen perturbations, it also increases the complexity
of the underlying learning problem. We address this problem by augmenting
the standard SVM formulation with gradient-based constraints derived from the
individual DS. The new SV corresponding to the gradient constraints ensure that
the resulting multi-stable DS incurs minimum deviation from the original dynamics
and is stable at each of the attractors within a finite region of attraction. We show,
via implementations on a simulated ten degrees of freedom mobile robotic platform,
that the model is capable of real-time motion generation and is able to adapt
on-the-fly to perturbations.

A. Shukla (�) • A. Billard
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
e-mail: ashwini.shukla@epfl.ch; aude.billard@epfl.ch

Y. Ma and G. Guo (eds.), Support Vector Machines Applications,
DOI 10.1007/978-3-319-02300-7__1,
© Springer International Publishing Switzerland 2014
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2 A. Shukla and A. Billard

1.1 Introduction

Dynamical systems (DS) have proved to be a promising framework for encoding
and generating complex motions. A major advantage of representing motion using
DS-based models [3,10,15,16] is the ability to counter perturbations by virtue of the
fact that re-planning of trajectories is instantaneous. These are generative schemes
that define the flow of trajectories in state space x ∈ R

N by means of a nonlinear
dynamical function ẋ= f (x). DS with single stable attractors have been used in pick
and place tasks to control for both the motion of the end-effector [2, 7, 12] and the
placement of the fingers on an object [17]. Assuming a single attractor, and hence
a single grasping location on the object, constrains considerably the applicability
of these methods to realistic grasping problems. A DS composed of multiple stable
attractors provides an opportunity to encode different ways to reach and grasp an
object. Recent neuro-physiological results [5] have shown that a DS-based modeling
best explains the trajectories followed by humans while switching between several
reaching targets. From a robotics viewpoint, a robot controlled using a DS with
multiple attractors would be able to switch online across grasping strategies. This
may be useful, e.g., when one grasping point becomes no longer accessible due to a
sudden change in the orientation of the object or the appearance of an obstacle along
the current trajectory. Here we present a method using which one can combine—in
a single dynamical system—multiple dynamics directed toward different attractors.

The dynamical function f (x) is usually estimated using nonlinear regression
functions such as Gaussian Process Regression (GPR) [11], Gaussian Mixture
Regression (GMR) [7], and Locally Weighted Projection Regression (LWPR) [13].
However, all of these works modeled DS with a single attractor. While [7,10] ensure
global stability at the attractor, other approaches result in unstable DS with spurious
attractors.

Stability at multiple targets has been addressed to date largely through neural
networks approaches. The Hopfield network and variants offered a powerful means
to encode several stable attractors in the same system to provide a form of content-
addressable memory [4, 9]. The dynamics to reach these attractors was, however,
not controlled for, nor was the partitioning of the state space that would send
the trajectories to each attractor. Echo-state networks provide alternative ways to
encode various complex dynamics [6]. Although they have proved to be universal
estimators, their ability to generalize in untrained regions of state space remains
unverified. Also, the key issue of global stability of the learned dynamics is
achieved using heuristic rules. To our knowledge, this is the first attempt at
learning simultaneously a partitioning of the state space and an embedding of
multiple dynamical systems with separate regions of attractions (ROAs) and distinct
attractors.
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Fig. 1.1 Combining motions using naive SVM classification-based switching. (a, b)—Two
different dynamics with distinct attractors which are to be combined. (c)—Employing a simple
switching scheme leads to crossing over of some trajectories shown in red. (d)—Zoomed in around
the boundary, showing the fast switching near the boundary

1.2 Identifying Dynamic Constraints

A naive approach to building a multi-attractor DS would be to first partition the
space and then learn a DS in each partition separately. This would unfortunately
rarely result in the desired compound system. Consider, for instance, two DS
with distinct attractors, as shown in Fig. 1.1a, b. First, we build an Support Vector
Machine (SVM) classifier to separate data points of the first DS, labeled +1, from
data points of the other DS, labeled−1. We then estimate each DS separately using
any of the techniques reviewed in the previous section. Let h : RN �→ R denote
the classifier function that separates the state space x ∈ R

N into two regions with
labels yi ∈ {+1,−1}. Also, let the two DS be ẋ = fyi(x) with stable attractors at
x∗yi

. The combined DS is then given by ẋ = fsgn(h(x))(x). Figure 1.1c shows the
trajectories resulting from this approach. Due to the nonlinearity of the dynamics,
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trajectories initialized in one region cross the boundary and converge to the attractor
located in the opposite region. In other words, each region partitioned by the SVM
hyperplane is not a region of attraction for its attractor. In a real-world scenario
where the attractors represent grasping points on an object and the trajectories are to
be followed by robots, crossing over may take the trajectories towards kinematically
unreachable regions. Also, as shown in Fig. 1.1d, trajectories that encounter the
boundary may switch rapidly between different dynamics leading to jittery motion.

To ensure that the trajectories do not cross the boundary and remain within
the region of attraction of their respective attractors, one could adopt a more
informed approach in which each of the original DS is modulated such that the
generated trajectories always move away from the classifier boundary. Recall that
by construction, the absolute value of the classifier function h(x) increases as
one moves away from the classification hyperplane. The gradient ∇h(x) is hence
positive, respectively negative, as one moves inside the region of the positive,
respectively negative, class. We can exploit this observation to deflect selective
components of the velocity signal from the original DS along, respectively opposite
to, the direction ∇h(x). Concretely, if ẋO = fsgn(h(x))(x) denotes the velocity
obtained from the original DS and

λ (x) =
{

max
(
ε,∇h(x)T ẋO

)
if h(x)> 0

min
(−ε,∇h(x)T ẋO

)
if h(x)< 0

, (1.1)

the modulated dynamical system is given by

ẋ = f̃ (x) = λ (x)∇h(x)+ ẋ⊥. (1.2)

Here, ε is a small positive scalar and ẋ⊥= ẋO −
(

∇h(x)T ẋO
‖∇h(x‖2

)
∇h(x) is the component

of the original velocity perpendicular to ∇h. This results in a vector field that flows
along increasing values of the classifier function in the regions of space where
h(x)> 0 and along decreasing values for h(x)< 0. As a result, the trajectories move
away from the classification hyperplane and converge to a point located in the region
where they were initialized. Such modulated systems have been used extensively for
estimating stability regions of interconnected power networks [8] and are known as
quasi gradient systems [1]. If h(x) is upper bounded,1 all trajectories converge to
one of the stationary points {x : ∇h(x) = 0} and h(x) is a Lyapunov function of the
overall system [1, Proposition 1]. Figure 1.2 shows the result of applying the above
modulation to our pair of DS. As expected, it forces the trajectories to flow along the
gradient of the function h(x). Although this solves the problem of “crossing-over”
the boundary, the trajectories obtained are deficient in two major ways. They depart
heavily from the original dynamics and do not terminate at the desired attractors.
This is due to the fact that the function h(x) used to modulate the DS was designed

1SVM classifier function is bounded if the Radial Basis Function (RBF) is used as kernel.
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Fig. 1.2 Trajectories
obtained by modulating the
two original DS with an SVM
classifier function. The
resulting trajectories flow
along directions which
register an increase in the
value of the classifier function
which in turn leads to the
bifurcation at the SVM
decision boundary

solely for classification and contained no information about the dynamics of the two
original DS. In other words, the vector field given by ∇h(x) was not aligned with the
flow of the training trajectories and the stationary points of the modulation function
did not coincide with the desired attractors.

In subsequent sections, we show how we can learn a new modulation function
which takes into account the three issues we highlighted in this preliminary
discussion. We will seek a system that (a) ensures strict classification across ROA
for each DS, (b) follows closely the dynamics of each DS in each ROA, and (c)
ensures that all trajectories in each ROA reach the desired attractor. Satisfying
requirements (a) and (b) above is equivalent to performing classification and
regression simultaneously. We take advantage of the fact that the optimization in
support vector classification and support vector regression has the same form to
phrase our problem in a single constrained optimization framework. In the next
sections, we show that in addition to the usual SVM support vectors (SVs), the
resulting modulation function is composed of an additional class of SVs. We analyze
geometrically the effect of these new support vectors on the resulting dynamics.
While this preliminary discussion considered solely binary classification, we will
now extend the problem to multi-class classification.

1.3 Problem Formulation

The N-dimensional state space of the system represented by x ∈ R
N is partitioned

into M different classes, one for each of the M motions to be combined. We collect
trajectories in the state space, yielding a set of P data points {xi; ẋi; li}i=1...P
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where li ∈ {1,2, · · · ,M} refers to the class label of each point.2 To learn the set
of modulation functions {hm(x)}m=1...M , we proceed recursively. We learn each
modulation function in a one-vs-all classifier scheme and then compute the final
modulation function h̃(x) = max

m=1···M
hm(x). In the multi-class setting, the behavior of

avoiding boundaries is obtained if the trajectories move along increasing values of
the function h̃(x). To this effect, the deflection term λ (x) presented in the binary
case Eq. (1.1) becomes λ (x) = max

(
ε,∇h̃(x)T ẋO

)
;∀x∈R

N . Next, we describe the
procedure for learning a single hm(x) function.

We follow the classical SVM formulation and lift the data into a higher
dimensional feature space through the mapping φ : RN �→ R

F where F denotes the
dimension of the feature space. We also assume that each function hm(x) is linear in
feature space, i.e., hm(x) = wT φ (x)+ b where w ∈ R

F ,b ∈ R. We label the current
(m-th) motion class as positive and all others negative such that the set of labels for
the current subproblem is given by

yi =

{
+1 if li = m
−1 if li 	= m

; i = 1 · · ·P.

Also, the set indexing the positive class is then defined as I+ = {i : i∈ [1,P]; li =m}.
With this, we formalize the three constraints explained in Sect. 1.2 as:

Classification Each point must be classified correctly yields P constraints

yi
(
wT φ (xi)+ b

)≥ 1 ∀i = 1 . . .P. (1.3)

Lyapunov Constraint The gradient of the modulation function must have a posi-
tive component along the velocities at the data points. This
ensures that the modulated flow is aligned with the training
trajectories. We have the constraint

∇hm(xi)
T ˆ̇xi = wT J(xi) ˆ̇xi ≥ 0 ∀i ∈ I+ (1.4)

where J ∈ R
F×N is the Jacobian matrix given by J =[

∇φ1(x)∇φ2(x) · · ·∇φF (x)
]T

and ˆ̇xi = ẋi/‖ẋi‖ is the nor-
malized velocity at the i-th data point.

Stability The gradient of the modulation function must vanish at the
attractor x∗ of the positive class. This constraint can be
expressed as

∇hm(x∗)T ei = wT J(x∗)ei = 0 ∀i = 1 . . .N (1.5)

where the set of vectors {ei}i=1···N is the canonical basis
of RN .

2Boldfaced fonts represent vectors. xi denotes the i-th vector and xi denotes the i-th element of
vector x.
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Incorporating Gradient Observations with Augmented-SVM

Existing variants of the SVM methodology aim at learning (a) Classifiers—
which satisfy certain inequality constraints and (b) Regressors—which satisfy
equality constraints at the data points. Also, in both cases, the constraints
are solely defined on the scalar function value. In the A-SVM framework
presented in the next sections, we will combine both inequality and equality
constraints within the same optimization framework. Moreover, the con-
straints will be enforced not only on the function value but also on its gradient.

1.3.1 Primal and Dual Forms

As in the standard SVM [14], we optimize for maximal margin between the
positive and negative classes, subject to constraints (1.3)–(1.5) above. This can be
formulated as:

minimize
w,ξi

1
2
‖w‖2 +C ∑

i∈I+
ξi

subject to

yi
(
wT φ (xi)+ b

) ≥ 1 ∀i = 1 · · ·P
wT J(xi) ˆ̇xi + ξi > 0 ∀i ∈ I+

ξi > 0 ∀i ∈ I+
wT J(x∗)ei = 0 ∀i = 1 · · ·N

⎫⎪⎪⎬
⎪⎪⎭
. (1.6)

Here ξi ∈ R are slack variables that relax the Lyapunov constraint in Eq. (1.4).
We retain these in our formulation to accommodate noise in the data representing
the dynamics. C ∈R+ is a penalty parameter for the slack variables. The Lagrangian
for the above problem can be written as

L(w,b,α,β ,γ) =
1
2
‖w‖2 +C ∑

i∈I+
ξi− ∑

i∈I+
μiξi−

P

∑
i=1

αi
(
yi(wT φ (xi)+ b)− 1

)

− ∑
i∈I+

βi
(
wT J(xi) ˆ̇xi + ξi

)
+

N

∑
i=1

γiwT J(x∗)ei (1.7)

where αi,βi,μi,γi are the Lagrange multipliers with αi,βi,μi ∈ R+, and γi ∈ R.
Employing a similar analysis as in the standard SVM, we derive the dual by setting
the derivatives of the Lagrangian w.r.t all the variables and multipliers to zero, we get
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∂L
∂w

= w−
P

∑
i=1

αiyiφ (xi)− ∑
i∈I+

βiJ(xi) ˆ̇xi +
N

∑
i=1

γiJ(x∗)ei = 0.

⇒w =
P

∑
i=1

αiyiφ(xi)+ ∑
i∈I+

βiJ(xi) ˆ̇xi−
N

∑
i=1

γiJ(x∗)ei;

(1.8)

∂L
∂b

=
P

∑
i=1

αiyi = 0; (1.9)

∂L
∂ξi

=C−βi− μi = 0 ∀i ∈ I+. (1.10)

Combining (1.10) with the constraints that all the Lagrange multipliers βi and μi be
positive, we obtain

0≤ βi ≤C ∀i ∈ I+. (1.11)

Using (1.8), (1.9), and (1.10) in (1.7) we get the dual objective function to be
maximized as

L̂(α,β ,γ) =
P

∑
i=1

αi− 1
2

wT w. (1.12)

Note that although the dual has the same general form as the dual in the standard
SVM formulation, it differs in the expression of the term w. Expanding using (1.8)
we have

wT w =

(
P

∑
i=1

αiyiφ(xi)
T + ∑

i∈I+

βi ˆ̇xT
i J(xi)

T −
N

∑
i=1

γieT
i J(x∗)T

)

(
P

∑
j=1

α jy jφ(x j)+ ∑
j∈I+

β jJ(x j) ˆ̇x j−
N

∑
j=1

γ jJ(x∗)e j

)

=
P

∑
i=1

(
P

∑
j=1

αiyiα jy jφ(xi)
T φ(x j)+ ∑

j∈I+

αiyiβ jφ(xi)
T J(x j) ˆ̇x j−

N

∑
j=1

αiyiγ jφ(xi)
T J(x∗)e j

)

+ ∑
i∈I+

(
P

∑
j=1

βiα jy j ˆ̇xT
i J(xi)

T φ(x j)+ ∑
j∈I+

βiβ j ˆ̇xT
i J(xi)

T J(x j) ˆ̇x j−
N

∑
j=1

βiγ j ˆ̇xT
i J(xi)

T J(x∗)e j

)

−
N

∑
i=1

(
P

∑
j=1

γiα jy jeT
i J(x∗)T φ(x j)+ ∑

j∈I+

γiβ jeT
i J(x∗)T J(x j) ˆ̇x j−

N

∑
j=1

γiγ jeT
i J(x∗)T J(x∗)e j

)
.

(1.13)

Rewriting in matrix form,
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wT w =
[
αT β T γT

]⎡⎣ K G −G∗
GT H −H∗
−GT∗ −HT∗ H∗∗

⎤
⎦
⎡
⎣α

β
γ

⎤
⎦ (1.14)

where K ∈ R
P×P,G ∈ R

P×|I+|,G∗ ∈ R
P×N ,H ∈ R

|I+|×|I+|,H∗ ∈ R
|I+|×N ,H∗∗ ∈

R
N×N are given by

[K]i j = yiy jφ (xi)
T φ (x j) ; [H]i j = ˆ̇xT

i J(xi)
T J(x j) ˆ̇x j

[G]i j = yiφ(xi)
T J(x j) ˆ̇x j ; [H∗]i j = ˆ̇xT

i J(xi)
T J(x∗)e j

[G∗]i j = yiφ(xi)
T J(x∗)e j ; [H∗∗]i j = eT

i J(x∗)T J(x∗)e j

⎫⎪⎬
⎪⎭ . (1.15)

where [.]i j denotes the i, j-th entry of the corresponding matrix. Further using
the relations (1.19) and (1.20) from Appendix 1, we can rewrite the above block
matrices in terms of the kernel function and data:

[K]i j = yiy jk(xi,x j) ; [H]i j = ˆ̇xT
i

∂ 2k(xi,x j)

∂xi∂x j
ˆ̇x j

[G]i j = yi

(
∂k(xi,x j)

∂x j

)T
ˆ̇x j ; [H∗]i j = ˆ̇xT

i
∂ 2k(xi,x∗)

∂xi∂x∗ e j

[G∗]i j = yi

(
∂k(xi,x∗)

∂x∗
)T

e j ; [H∗∗]i j = eT
i

∂ 2k(x∗,x∗)
∂x∗∂x∗ e j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (1.16)

These can be further expanded given a choice of the kernel. Expansions for the
RBF and the nonhomogeneous polynomial kernel are given in Appendix 2.

Using Eqs. (1.9), (1.11), (1.12), and (1.14) the dual optimization problem can be
stated as

minimize
α ,β ,γ

1
2

[
αT β T γT

]⎡⎣ K G −G∗
GT H −H∗
−GT∗ −HT∗ H∗∗

⎤
⎦
⎡
⎣α

β
γ

⎤
⎦−αT 1

subject to

0≤ αi ∀i = 1 · · ·P
0≤ βi ≤C ∀i ∈ I+

∑P
i=1 αiyi = 0

⎫⎬
⎭ . (1.17)

Note that the Lagrange multipliers γi are completely unconstrained as they
correspond to the equality constraints in the primal. Also, since the matrices K,
H, and H∗∗ are symmetric, the overall Hessian matrix for the resulting quadratic
program is also symmetric. In our implementation, we use the MATLAB® quadprog
solver to solve this quadratic program. We initialize the iterations by setting αi as
the solution to the standard SVM classification problem. All βi and γi are set to
zeros. Once the optimal solution for the above problem is obtained, the modulation
function can be written as
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Fig. 1.3 Isocurves of f (x) = ˆ̇xT
i

∂k(x,xi)
∂xi

at xi = [0 0]T , ˆ̇xi = [ 1√
2

1√
2
]T for the RBF kernel with width

σ . (a) σ = 1. (b) σ = 0.5

h(x) = wT φ (x)+ b

=
P

∑
i=1

αiyiφ(xi)
T φ (x)+ ∑

i∈I+
βi ˆ̇xT

i J(xi)
T φ (x)−

N

∑
i=1

γieT
i J(x∗)T φ (x)+ b

=
P

∑
i=1

αiyik(x,xi)+ ∑
i∈I+

βiẋT
i

∂k(x,xi)

∂xi
−

N

∑
i=1

γieT
i

∂k(x,x∗)
∂x∗

+ b (1.18)

This modulation function has noticeable similarities with the standard SVM
classifier function. The first summation term on the right-hand side is composed of
the α support vectors (α-SV) which act as support to the classification hyperplane.
The second term entails a new class of support vectors that perform a linear
combination of the normalized velocity ˆ̇xi at the training data points xi. These β
support vectors (β -SVs) collectively contribute to the fulfilment of the Lyapunov
constraint in Eq. (1.4) by introducing a positive slope in the modulation function
value along the directions ˆ̇xi. Figure 1.3 shows the influence of a single β -SV for

the RBF kernel k(xi,x j) = e−1/2σ 2‖xi−x j‖2

with xi at the origin and ˆ̇xi = [ 1√
2

1√
2
]T .

Observe that the smaller the kernel width σ , the steeper the slope. The third
summation term is a nonlinear bias, which does not depend on the chosen support
vectors, and performs a local modification around the desired attractor x∗ to ensure
that the modulation function has a local maximum at that point. b is the constant
bias which normalizes the classification margins as −1 and +1. We calculate its
value by making use of the fact that for all the data points xi chosen as α-SV, we
must have yihm(xi) = 1. We use the average of the values obtained from different
support vectors.

Figure 1.4 illustrates the effects of the support vectors in a 2D example by
progressively adding them and overlaying the resulting DS flow in each case.
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Fig. 1.4 Progressively adding support vectors to highlight their effect on shaping the dynamics
of the motion. (a) α—SVs largely affect classification. (b)—β -SVs guide the flow of trajectories
along their respective associated directions ˆ̇xi shown by arrows. (c, d) The two γ terms force the
local maximum of the modulation function to coincide with the desired attractor along the X and
Y axes respectively

The value of the modulation function hm(x) is shown by the color plot (white
indicates high values). As the β -SVs are added—as shown in Fig. 1.4b—they force
the flow of trajectories along their associated directions. In Fig. 1.4c, d, adding
the two γ terms shifts the location of the maximum of the modulation function to
coincide with the desired attractor. Once all the SVs have been taken into account,
the streamlines of the resulting DS achieve the desired criteria, i.e., they follow the
training trajectories and terminate at the desired attractor.

1.4 Application Examples

In this section, we validate the presented A-SVM model on 2D (synthetic) data
and on a robotic simulated experiment using a seven degrees of freedom (DOF)
KUKA-LWR arm mounted on a three-DOF Omnirob base to catch falling objects.
A video of the robotic experiment—simulated and real—is provided at the project
url http://asvm.epfl.ch. Next, we present a cross-validation analysis of the error

http://asvm.epfl.ch
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Fig. 1.5 Resulting flow of
the synthetic four-attractor
example. Color plot depicts
the value of the one-vs-all
classifier function which has
local maximums at all the
four attractors

introduced by the modulation in the original dynamics. A sensitivity analysis of
the region of attraction of the resulting dynamical system with respect to the model
parameters is also presented. We used the RBF kernel for all the results presented
in this section. As discussed in Sect. 1.2, the RBF kernel is advantageous as it
ensures that the function hm(x) is bounded. To generate an initial estimate of each
individual dynamical system, we used the technique proposed in Khansari-Zadeh
and Billard [7].

1.4.1 2D Example

Figure 1.5 shows a synthetic example with four motion classes, each generated from
a different closed form dynamics and containing 160 data points. The color plot
indicates the value of the combined modulation function h̃(x) = max

m=1···M
hm(x) where

each of the functions hm(x) is learned using the presented A-SVM technique. A total
of nine support vectors were obtained which is <10 % of the number of training data
points. The trajectories obtained after modulating the original dynamical systems
flow along increasing values of the modulation function, thereby bifurcating towards
different attractors at the region boundaries. Unlike the dynamical system in Fig. 1.2,
the flow here is aligned with the training trajectories and terminates at the desired
attractors. To recall, this is made possible thanks to the additional constraints Eqs.
(1.4) and (1.5) in our formulation.

In a second example, we tested the ability of our model to accommodate a higher
density of attractors. We created eight synthetic dynamics by capturing motion data
using a screen mouse. Figure 1.6 shows the resulting eight-attractor system.



1 Augmented-SVM for Gradient Observations 13

−1.5 −1 −0.5 0 0.5 1 1.5
1.5

−1

0.5

0

0.5

1

1.5

2

X

Y

Fig. 1.6 A DS with eight attractors learned using only a few representative trajectories (black
dots) from each DS. The bifurcation boundaries, as well as the dynamics of each DS need to be
estimated from these trajectories

1.4.2 Error Analysis

As formulated in Eq. (1.6), the Lyapunov constraints admit some slack, which
allows the modulation to introduce slight deviations from the original dynamics.
Here we statistically analyze this error via fivefold cross validation. In the four-
attractor problem presented above, we generate a total of ten trajectories per motion
class and use 2:3 training to testing ratio for cross validation.

We calculate the average percentage error between the original velocity (read
off from the data) and the modulated velocity [calculated using Eq. (1.2)] for the

m-th class as em =
〈 ‖ẋi − f̃ (xi)‖

‖ẋi‖ × 100
〉

i:li=m
where < . > denotes average over the

indicated range. Figure 1.7a shows the cross-validation error (mean and standard
deviation over the fivefolds) for a range of values of kernel width. The general trend
revealed here is that for each class of motion, there exists a band of optimum values
of the kernel width for which the testing error is the smallest. The region covered
by this band of optimal values may vary depending on the relative location of the
attractors and other data points. In Fig. 1.5, motion classes 2 (upper left) and 4 (upper
right) are better fitted and show less sensitivity to the choice of kernel width than
classes 1 (lower left) and 3 (lower right). We will show later in this section that this
is correlated with the distance between the attractors. A comparison of testing and
training errors for the least error case is shown in Fig. 1.7b. We see that the testing
errors for all the classes in the best case scenario are less than 1 %.
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Fig. 1.8 Test trajectories
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1.4.3 Sensitivity Analysis

The partitioning of space created by our method results in M ROA for each
of our M attractors. To assess the size of these regions and the existence of
spurious attractors, we adopt an empirical approach. For each class, we compute the
isosurfaces of the corresponding modulation function hm(x) in the range [0,hm(x∗)].
These hypersurfaces incrementally span the volume of the m-th region around its
attractor. We mesh each of these test surfaces and compute trajectories starting from
the obtained mesh-points, looking for spurious attractors. hROA is the isosurface
of maximal value that encloses no spurious attractor and marks the ROA of the
corresponding motion dynamics. We use the example in Fig. 1.4 to illustrate this
process. Figure 1.8 shows a case where one spurious attractor is detected using a
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Fig. 1.9 Variation of rROA with varying model parameters. (a) datt = 1.0. (b) datt = 0.2

larger test surface (dotted line) whereas the actual ROA (solid line) is smaller. Once
hROA is calculated, we define the size of ROA as rROA = (h(x∗) − hROA)/h(x∗).
rROA = 0 when no trajectory except those originating at the attractor itself lead to
the attractor. rROA = 1 when the ROA is bounded by the isosurface h(x) = 0. The
size of the rROA is affected by both the choice of kernel width and the distance
across nearby attractors. This is illustrated in Fig. 1.9 using data points from class
1 of Fig. 1.5 and translating the attractors so that they are either very far apart (left,
distance datt = 1.0) or very close to one another (right, datt = 0.2). As expected,
rROA increases as we reach the optimal range of parameters. Furthermore, when
the attractors are farther apart, high values of rROA are obtained for a larger range of
values of the kernel width, i.e., the model is less sensitive to the chosen kernel width.
With smaller distance between the attractors (Fig. 1.9b), only a small deviation from
the optimum kernel width results in a considerable loss in rROA, exhibiting high
sensitivity to the model parameter.

1.4.4 3D Example

We validated our method on a real-world 3D problem. The attractors here represent
manually labeled grasping points on a pitcher. The 3D model of the object was
taken from the ROS IKEA object library. We use the seven-DOF KUKA-LWR
arm mounted on the three-DOF KUKA-Omnirob base for executing the modulated
Cartesian trajectories in simulation. We control all ten DOF of the robot using the
damped least square inverse kinematics. Training data for this implementation was
obtained by recording the end-effector positions xi ∈ R

3 from kinesthetic demon-
strations of reach-to-grasp motions directed towards these grasping points, yielding
a three-class problem (see Fig. 1.10a). Each class was represented by 75 data
points. Figure 1.10b shows the isosurfaces hm(x) = 0;m ∈ {1,2,3} learned using
the presented method. Figure 1.11a, b show the robot executing two trajectories
when started from two different locations and converging to a different attractor
(grasping point). Figure 1.10c shows the flow of motion around the object. Note
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Fig. 1.10 3D Experiment. (a) shows training trajectories for three manually chosen grasping
points. (b) shows the isosurfaces hm(x) = 0;m = 1,2,3 along with the locations of the correspond-
ing attractors. (c) shows the complete flow of motion

Fig. 1.11 Ten-DOF mobile robot executes the generated trajectories starting from different
positions and hence converging to different grasping points (attractors). (a) Trajectory 1. (b) Tra-
jectory 2

that the time required to generate each trajectory point is O(S) where S denotes the
total number of support vectors in the model. In this particular example with a total
of 18 SVs, the trajectory points were generated at 1,000 Hz which is well suited for
real-time control. Such a fast generative model allows the robot to switch on-the-fly
between the attractors and adapt to real-time perturbations in the object or the end-
effector pose, without any re-planning or re-learning. Results for another object—a
champagne glass with two attractors—are shown in Fig. 1.12. We performed high
speed experiments in which the glass is falling and the robot needs to catch it at one
of the two attractors. This requires real-time adaptation to the constantly changing
position and orientation of the object. The robot might need to switch between the
attractors and move the end-effector toward the chosen attractor. Figure 1.13 shows
the experiments in simulation and with the real KUKA robot. Full videos explaining
the A-SVM methodology and these experiments are available at http://asvm.epfl.ch/
download.php.

http://asvm.epfl.ch/download.php
http://asvm.epfl.ch/download.php
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Fig. 1.12 (a) Two attractors placed on a champagne glass and their corresponding classification
surfaces. (b) Complete flow of motion around the object

Fig. 1.13 (a)—Simulation experiment of catching a falling object with the ten-DOF KUKA-
Omnirob. The robot switches between attractors (green to magenta) as the object falls down.
(b, c)—Real seven-DOF KUKA arm catching the falling object at different grasping points
(attractors) in different throwing situations
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1.5 Conclusions

We presented the A-SVM model for combining nonlinear dynamical systems
through a partitioning of the space. We reformulated the optimization framework of
SVM to encapsulate gradient-based constraints that ensure accurate reproduction of
the dynamics of motion. The new set of constraints result in a new class of support
vectors that exploit partial derivatives of the kernel function to align the flow of
trajectories with the training data. The resulting model behaves as a multi-stable
DS with attractors at the desired locations. Each of the classified regions is forward
invariant w.r.t the learned DS. This ensures that the trajectories do not cross over
region boundaries. We validated the presented method on synthetic motions in 2D
and 3D grasping motions on real objects. Results show that even though spurious
attractors may occur, in practice they can be avoided by a careful choice of model
parameters through grid search. The applicability of the method for real-time control
of a ten-DOF robot was also demonstrated.
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grant agreement number 248258. The authors would also like to thank Prof. François Margot for
his insightful comments on the technical material.

Appendix 1: Kernel Derivatives

For scalar variables xi,x j ∈R and any feature transformation φ : R �→ R
F we define

a valid Mercer kernel as k(xi,x j) ≡ φ(xi)
T φ (x j). If ′ denotes the derivative w.r.t

the state variable, then the identities φ ′(xi)
T φ (x j) =

∂k(xi ,x j)

∂xi
and φ ′(xi)

T φ ′(x j) =

∂ 2k(xi,x j)

∂xi∂x j
follow directly from the definition of the kernel. We can rewrite these

identities for vector variables xi,x j ∈ R
N by taking the derivative w.r.t one of the

components (say n-th) as
(

∂φ(xi)
∂x(n)

)T
φ(x j) =

∂k(xi,x j)

∂xi(n)
. Expanding the first vector

term we get

⇒
[

∂φ1(xi)

∂x(n)
,

∂φ2(xi)

∂x(n)
, · · · , ∂φF(xi)

∂x(n)

]
φ (x j) =

∂k(xi,x j)

∂xi(n)
.

Stacking the above equation in rows for n = 1 . . .N, we get

⎡
⎢⎢⎢⎢⎢⎣

∂φ1(xi)
∂x(1)

∂φ2(xi)
∂x(1) · · · ∂φF (xi)

∂x(1)
∂φ1(xi)
∂x(2)

∂φ2(xi)
∂x(2) · · · ∂φF (xi)

∂x(2)
...

...
...

...
∂φ1(xi)
∂x(N)

∂φ2(xi)
∂x(N) · · · ∂φF (xi)

∂x(N)

⎤
⎥⎥⎥⎥⎥⎦

φ(x j) =

⎡
⎢⎢⎢⎢⎢⎣

∂k(xi,x j)

∂xi(1)
∂k(xi,x j)

∂xi(2)
...

∂k(xi,x j)

∂xi(N)

⎤
⎥⎥⎥⎥⎥⎦
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⇒ J(xi)
T φ (x j) =

∂k(xi,x j)

∂xi
(1.19)

where J denotes the standard Jacobian matrix for a vector valued function. Similarly,
by writing the derivatives w.r.t (n,m)-th dimension and putting them as the
corresponding element of a Hessian matrix we get

J(xi)
T J(x j) =

∂ 2k(xi,x j)

∂xi∂x j
. (1.20)

Appendix 2: Specific Kernel Expansions

The above formulation is generic and can be applied to any kernel. Here we give the
RBF kernel-specific expressions for the block matrices in (1.15).

RBF Kernel

[K]i j = yiy jk(xi,x j) = yiy je
−d‖xi−x j‖2

[G]i j = yi

(
∂k(xi,x j)

∂x j

)T
ˆ̇x j =−2dyie

−d‖xi−x j‖2
(x j− xi)

T ˆ̇x j

Replacing x j by x∗ in the above equation we get

[G∗]i j = yi

(
∂k(xi,x∗)

∂x∗

)T

e j =−2dyie
−d‖xi−x∗‖2

(x∗ − xi)
T e j

[H]i j = ˆ̇xT
i

∂ 2k(xi,x j)

∂xi∂x j

ˆ̇x j = ˆ̇xT
i

[
∂

∂xi

{
−2de−d‖xi−x j‖2

(x j− xi)
}]

ˆ̇x j

= 2de−d‖xi−x j‖2 [ ˆ̇xT
i

ˆ̇x j− 2d
{

ˆ̇xT
i (xi− x j)

}{
(xi− x j)

T ˆ̇x j
}]

.

Again, replacing x j by x∗,

[H∗]i j = ˆ̇xT
i

∂ 2k(xi,x∗)
∂xi∂x∗

e j = 2de−d‖xi−x∗‖2 [ ˆ̇xT
i e j−2d

{
ˆ̇xT

i (xi−x∗)
}{

(xi−x∗)T e j
}]

.
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Replacing xi also by x∗,

[H∗∗]i j = eT
i

∂ 2k(x∗,x∗)
∂x∗∂x∗

e j = 2d
(
eT

i e j
)
.

Polynomial Kernel

[K]i j = yiy jk(xi,x j) = yiy j(xT
i x j + 1)d

[G]i j = yi

(
∂k(xi,x j)

∂x j

)T
ˆ̇x j = yid(xT

i x j + 1)d−1xT
i

ˆ̇x j.

Replacing x j by x∗ in the above equation we get

[G∗]i j = yi

(
∂k(xi,x∗)

∂x∗

)T

e j = yid
(
xT

i x∗+ 1
)d−1

xT
i e j.

[H]i j = ˆ̇xT
i

∂ 2k(xi,x j)

∂xi∂x j

ˆ̇x j

= ˆ̇xT
i

[
∂

∂xi

{
d(xT

i x j + 1)d−1xi

}]
ˆ̇x j

= ˆ̇xT
i

[
d(xT

i x j + 1)d−1 ∂xi

∂xi
+ xi

∂
∂xi

{
d(xT

i x j + 1)d−1
}]

ˆ̇x j

= ˆ̇xT
i

[
d(xT

i x j + 1)d−1IN + d(d− 1)(xT
i x j + 1)d−2xixT

j

]
ˆ̇x j

= d(xT
i x j + 1)d−2 [(xT

i x j + 1) ˆ̇xT
i

ˆ̇x j +(d− 1)
(

ˆ̇xT
i xi

)(
xT

j
ˆ̇x j
)]
.

Again, replacing x j by x∗,

[H∗]i j = ˆ̇xT
i

∂ 2k(xi,x∗)
∂xi∂x∗

e j

= d(xT
i x∗+ 1)d−2 [(xT

i x∗+ 1) ˆ̇xT
i e j +(d− 1)

(
ˆ̇xT

i xi
)(

xT
∗ e j

)]
.

Replacing xi also by x∗,

[H∗∗]i j = eT
i

∂ 2k(x∗,x∗)
∂x2∗

e j

= d(xT
∗ x∗+ 1)d−2 [(xT

∗ x∗+ 1)eT
i e j +(d− 1)

(
eT

i x∗
)(

xT
∗ e j

)]
.
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Chapter 2
Multi-Class Support Vector Machine

Zhe Wang and Xiangyang Xue

Abstract Support vector machine (SVM) was initially designed for binary
classification. To extend SVM to the multi-class scenario, a number of classification
models were proposed such as the one by Crammer and Singer (J Mach Learn Res
2:265–292, 2001). However, the number of variables in Crammer and Singer’s dual
problem is the product of the number of samples (l) by the number of classes
(k), which produces a large computational complexity. This chapter sorts the
existing classical techniques for multi-class SVM into the indirect and direct ones
and further gives the comparison for them in terms of theory and experiments.
Especially, this chapter exhibits a new Simplified Multi-class SVM (SimMSVM)
that reduces the size of the resulting dual problem from l× k to l by introducing
a relaxed classification error bound. The experimental discussion demonstrates
that the SimMSVM approach can greatly speed up the training process, while
maintaining a competitive classification accuracy.

2.1 Introduction

Support vector machine (SVM) originally separates the binary classes (k = 2) with
a maximized margin criterion [6]. However, real-world problems often require the
discrimination for more than two categories. Thus, the multi-class pattern recogni-
tion has a wide range of applications including optical character recognition [27],
intrusion detection [18], speech recognition [11], and bioinformatics [2]. In practice,
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the multi-class classification problems (k > 2) are commonly decomposed into a
series of binary problems such that the standard SVM can be directly applied. Two
representative ensemble schemes are one-versus-rest (1VR) [36] and one-versus-
one (1V1) [21] approaches. Both one-versus-rest and one-versus-one are special
cases of the Error Correcting Output Codes (ECOC) [8] which decomposes the
multi-class problem into a predefined set of binary problems. A main issue of this
approach is to construct a good ECOC matrix. Another proposals [4, 7, 12, 38] are
to directly address the multi-class problem in one single optimization processing.
This kind of models combines multiple binary-class optimization problems into
one single objective function and simultaneously achieves classification of multiple
classes. However, a larger computational complexity is required for the size of the
resulting Quadratic Programming (QP) problem.

Moreover, Szedmak et al. [33] proposed a multi-class model for L1-norm SVM.
In their formulation, the one-versus-rest framework is used. A potential problem
with one-versus-rest is that when the number of classes is large, each binary
classification becomes highly unbalanced. The unbalanced classification problem
occurs when there are many more samples of some classes than others. In this case,
standard classifiers tend to be overwhelmed by the large-scale classes and ignore
the small ones. The SVM algorithm is constructing a separating hyperplane with
the maximal margin. Since only support vectors are used for classification and many
majority samples far from the decision boundary can be removed, SVM can be
more accurate on moderately unbalanced data. However, SVM is sensitive to high
unbalanced classification since it is prone to generating a classifier that has a strong
estimation bias towards the majority class and would give a bad accuracy in the
classification performance for the minority class, which is discussed in the work of
Chawla et al. [5] and Tang et al. [34]. Wang and Shen [37] proposed a method that
circumvents the difficulties of one-versus-rest by treating multiple classes jointly.
Suykens and Vandewalle [32] extended the LS-SVM methodology [31] to the multi-
class case. A drawback of LS-SVM is that its solution is constructed from most of
the training examples, which is referred to as the non-sparseness problem. Xia and
Li [39] presented a new multi-class LS-SVM algorithm whose solution is sparse
in the weight coefficient of support vectors. Fung and Mangasarian [10] followed
the PSVM (proximal SVM) [9] idea and applied it to the multi-class problem. This
approach is closely aligned with the one-versus-rest method. For each decomposed
subproblem, the solution is similar to its binary case (PSVM) which classifies new
samples by assigning them to the closer of the two parallel planes that are pushed
apart as far as possible.

This chapter revisits the main multi-class methods including indirect and direct
ones for SVM. Especially, in this chapter we introduce a new Simplified Multi-class
SVM (SimMSVM) [13]. The SimMSVM gives a direct solution for training multi-
class predictors. Following Crammer and Singer’s work, SimMSVM introduces a
relaxed classification error bound. By doing so, the resulting dual problem only
involves l variables, where l is the size of training samples. That is, solving a single
l-variable QP is enough for a multi-class classification task. We then investigate
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the theoretical properties of the loss function of SimMSVM, including the Fisher
consistency issue. We also give the experimental comparisons and find that the new
simplified model achieves significant speed-up compared with its original model [7].

2.2 Indirect Multi-Class SVM

2.2.1 SVM Classification

SVM seeks to find the optimal separating hyperplane between binary classes by
following the maximized margin criterion [6]. Given training vectors xi ∈ Rd ,
i = 1, . . . , l, in two classes, and the label vector y ∈ {1,−1}l, the support vector
technique requires the solution of the following optimization problem:

min
w∈H,b∈R,ξi∈R

1
2

wT w+C
l

∑
i=1

ξi

subject to yi(wT ϕ(xi)+ b)≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l, (2.1)

where w ∈ Rd is the weight vector, C ∈ R+ is the regularization constant, and the
mapping function ϕ projects the training data into a suitable feature space H so as
to allow for nonlinear decision surfaces. A common method to solve (2.1) is through
its dual:

min
α∈Rl

1
2

αT (K� (yyT ))α− eT α

subject to 0≤ α ≤Ce, yT α = 0, (2.2)

where e ∈ Rl is a vector of all 1’s, K ∈ Rl×l is the kernel matrix, and � denotes
the Hadamard–Schur (elementwise) product. Symbols in bold represent matrices or
vectors, as particular case, the symbol 0 represents the vector with all components
set to 0.

Instead of (2.1), Mangasarian and Musicant [25] proposed a new SVM
formulation:

min
w∈H,b∈R,ξi∈R

1
2

(
wT w+ b2)+C

l

∑
i=1

ξi

subject to yi(wT ϕ(xi)+ b)≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l, (2.3)
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whose dual becomes a bound-constrained problem:

min
α∈Rl

1
2

αT ((K+ eeT )� (yyT )
)

α− eT α

subject to 0≤ α ≤Ce. (2.4)

The motivation behind (2.3) is that, it is supposed easier to handle its dual
problem (2.4) without linear constraint. Hsu and Lin [15] demonstrate that (2.3)
is an acceptable formulation in terms of generalization errors though an additional
term b2/2 is added to the objective. This method is implemented in the software
BSVM [16] which is proved to have fast convergence in the literature [15].

2.2.2 One-Versus-Rest Approach

The one-versus-rest (1VR) approach [36] constructs k separate binary classifiers
for k-class classification. The m-th binary classifier is trained using the data from
the m-th class as positive examples and the remaining k− 1 classes as negative
examples. During test, the class label is determined by the binary classifier that
gives maximum output value. A major problem of the one-versus-rest approach is
the imbalanced training set. Suppose that all classes have an equal size of training
examples, the ratio of positive to negative examples in each individual classifier is

1
k−1 . In this case, the symmetry of the original problem is lost.

2.2.3 One-Versus-One Approach

Another classical approach for multi-class classification is the one-versus-one (1V1)
or pairwise decomposition [20]. It evaluates all possible pairwise classifiers and thus
induces k(k− 1)/2 individual binary classifiers. Applying each classifier to a test
example would give one vote to the winning class. A test example is labeled to
the class with the most votes. The size of classifiers created by the one-versus-one
approach is much larger than that of the one-versus-rest approach. However, the size
of QP in each classifier is smaller, which makes it possible to train fast. Moreover,
compared with the one-versus-rest approach, the one-versus-one method is more
symmetric. Platt et al. [28] improved the one-versus-one approach and proposed
a method called Directed Acyclic Graph SVM (DAGSVM) that forms a tree-like
structure to facilitate the testing phase. As a result, it takes only k− 1 individual
evaluations to decide the label of a test example.
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2.3 Direct Multi-Class SVM

2.3.1 Weston and Watkins’ Multi-Class SVM

Instead of creating several binary classifiers, a more natural way is to distinguish
all classes in one single optimization processing, as proposed by Vapnik [36],
Weston and Watkins [38], and Bredensteiner and Bennett [4]. For a k-class problem,
these methods design a single objective function for training all k-binary SVMs
simultaneously and maximize the margins from each class to the remaining ones.
Here, we take the method by Weston and Watkins as an example. Given a labeled
training set represented by {(x1,y1), . . . ,(xl ,yl)} of cardinality l, where xi ∈Rd and
yi ∈ {1, . . . ,k}, the formulation proposed in [38] is given as follows:

min
wm∈H,b∈Rk,ξ∈Rl×k

1
2

k

∑
m=1

wT
mwm +C

l

∑
i=1

∑
t 	=yi

ξi,t

subject to wT
yi

ϕ(xi)+ byi ≥ wT
t ϕ(xi)+ bt + 2− ξi,t,

ξi,t ≥ 0,

i = 1, . . . , l, t ∈ {1, . . . ,k} \ yi. (2.5)

The resulting decision function is

argmaxm fm(x) = argmaxm(w
T
mϕ(x)+ bm). (2.6)

The main disadvantage of this approach is that the computational time may be very
high due to the enormous size of the resulting QP.

2.3.2 Crammer and Singer’s Multi-Class SVM

Crammer and Singer [7] presented another “all-together” approach by solving the
following optimization problem:

min
wm∈H,ξ∈Rl

1
2

k

∑
m=1

wT
mwm +C

l

∑
i=1

ξi

subject to wT
yi

ϕ(xi)−wT
t ϕ(xi)≥ 1− δyi,t − ξi,

i = 1, . . . , l, t ∈ {1, . . . ,k}, (2.7)

where δi, j is the Kronecker delta (defined as 1 for i = j and as 0 otherwise).
The resulting decision function is
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argmaxm fm(x) = argmaxmwT
mϕ(x). (2.8)

Note that the constraints ξi ≥ 0, i = 1, . . . , l, are implicitly indicated in the margin
constraints of (2.7) when t equals yi. In addition, (2.7) focuses on classification
rule (2.8) without the bias terms bm, m = 1, . . . ,k. A nonzero bm can be easily
modeled by adding an additional constant feature to each x (see, e.g., [26]).

2.3.3 Simplified Multi-Class SVM (SimMSVM)

2.3.3.1 Rationale of SimMSVM

Although Crammer and Singer’s multi-class SVM gives a compact set of
constraints, the number of variables in its dual problem is still l× k [7]. This value
may explode even for small datasets. For instance, an English letter recognition
problem with 2,600 samples (100 samples per letter) would require solving a QP
of size 2,600× 26, which will result in a large computational complexity. Here,
we follow Crammer and Singer’s work and further introduce a simplified method
named SimMSVM for relaxing its constraints [13]. By doing so, solving one single
l-variable QP is enough for a multi-class classification task.

Before we describe the new direct multi-class SVM method [13], we first
compare the loss function of the above two “all-together” approaches. For a training
example xi, we let

ζi,m = 1− fyi(xi)+ fm(xi), (2.9)

for m ∈ {1, . . . ,k} \ yi. If ζi,m > 0, it depicts the pairwise margin violation between
the true class yi and some other class m. In Weston and Watkins’ work, their loss
function adds up all positive margin violation (ζi,m > 0),

ξ (1)
i = ∑

m	=yi

[ζi,m]+ , (2.10)

where [·]+ ≡max(·,0). In the original work proposed by Weston and Watkins [38],
the term ζ adopts the “2” rather than “1” as follows:

ζi,m = 2− fyi(xi)+ fm(xi),

Here in order to compare the work proposed by Weston and Watkins [38] with the
other methods consistently, we scale the “2” into “1,” i.e. adopt the Eq. (2.9). As for
Crammer and Singer’s approach, sample loss counts only the maximum positive
margin violation
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f1 − f2 = 1

f1 − f2 = 0

f2 − f3 = 0

f1 − f3 = 1

f1 − f3 = 0

x1

x2

x1,2 < 0 x1,3 < 0

x2,3 < 0
x2,2 < 0 Class 1

Class 2

Class 3

Fig. 2.1 Multi-class classification visualization. Class 1, 2, and 3 are represented by circles,
rectangles, and triangles, respectively. The bold lines represent some possible class boundaries.
The two dash lines are two positive margins for the first class. The pairwise margin violations for
two examples from the first class, ζ1,2 and ζ1,3 for x1, and ζ2,2 and ζ2,3 for x2, are depicted in the
figure

ξ (2)
i =

[
max
m	=yi

ζi,m

]
+

. (2.11)

Figure 2.1 gives a multi-class classification graphical illustration, where three
classes are represented as circles, rectangles, and triangles, respectively. The bold
lines represent some possible decision boundaries. We plot the two positive pairwise
margins for the first class (shown in dash lines). For a correctly classified example

x1, we have ξ (1)
1 = 0 and ξ (2)

1 = 0, i.e., no loss counted, since both ζ1,2 and ζ1,3

are negative. On the other hand, for an example x2 that violates two margin bounds
(ζ2,2,ζ2,3 > 0), both methods generate a loss.

In order to reduce the problem size, the number of constraints should be
proportional to l instead of l × k. To construct the multi-class predictors of
SimMSVM, we introduce the following relaxed bound

ξ (3)
i =

[
1

k− 1

k

∑
m=1,m	=yi

ζi,m

]

+

. (2.12)

That is, we suffer a loss which is linearly proportional to the average of directed
distances between an example and its pairwise margins. For the above example
shown in Fig. 2.1, the loss (2.12) yields no loss for x1 as the other two loss functions.

To clearly analyze the SimMSVM, we compare the three loss functions (2.10)–
(2.12). The loss (2.10) adds up all positive margin violation (ζi,m > 0). The
loss (2.11) counts only the maximum positive margin violation. The loss (2.12)
represents a linear proportion to the average of directed distances between a sample
and its pairwise margins. Thus, the relationship between these losses is
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Table 2.1 The rate of fyi be the maximum value of f1, . . . , fk for the ten datasets

Dataset Iris Wine Glass Vowel Segment

Rate 98.67% 99.44 % 89.25 % 100.00 % 99.70 %
Dataset Waveform DNA Satimage Letter USPS
Rate 94.20 % 98.45 % 99.66 % 99.97 % 99.93 %

ξ (1)
i ≥ ξ (2)

i ≥ ξ (3)
i . (2.13)

Figure 2.1 gives a visual example for the three loss functions (2.10)–(2.12).
According to their definition, the corresponding losses for the sample x2 that violates
two margin bounds in Fig. 2.1 are

ξ (1)
2 = ζ2,2 + ζ2,3

ξ (2)
2 = max{ζ2,2,ζ2,3}= ζ2,3

ξ (3)
2 = (ζ2,2 + ζ2,3)/2

From the inequality (2.13), the relationship in Fig. 2.1 for the losses is

ξ (1)
2 ≥ ξ (2)

2 ≥ ξ (3)
2 .

In order to clearly explore the chosen loss function, we rewrite the relaxed loss
function (2.12) as

ξi =

[
1− fyi(xi)+

1
k− 1 ∑

m	=y

fm(xi)

]

+

. (2.14)

In other words, the SimMSVM will yield no loss for a training example xi if
fyi(xi)≥ 1+ 1

k−1 ∑m	=yi
fm(xi). Although we cannot guarantee if ξi = 0 that fyi(xi)>

fm(xi) for all m 	= yi, it is most likely that fyi will be the maximum value of f1, . . . , fk.
To further explore this statement, we empirically study the problem in all of the ten
datasets. Table 2.1 gives the rates that fyi be the maximum value of f1, . . . , fk

and thus validate the claim about the loss function of SimMSVM. In this sense,
the (2.14) is reasonable as a classification criterion.

In theory, the relaxed loss function (2.14) may incur more classification error
since it fails to upper-bound the 0− 1 loss. In practice, we admit some tolerable
classification error in order to obtain a significant speed-up in the training pro-
cess. The experimental result in Sect. 2.3.4 demonstrate that, SimMSVM gives
competitive accuracies with the other multi-class SVM approaches on real world
datasets. On the other hand, the multi-class hinge losses of Weston and Watkins [38],
Crammer and Singer [7] both satisfy as the upper bound of 0− 1 loss. However, in
practice, they all involve a QP of size l× k and thus cause a high computational
complexity for a relatively large number of classes.
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2.3.3.2 Architecture of SimMSVM

Induced by the above error bound, the unbiased primal problem of SimMSVM
comes up as follows:

min
wm∈H,ξ∈Rl

1
2

k

∑
m=1

wT
mwm +C

l

∑
i=1

ξi

subject to wT
yi

ϕ(xi)− 1
k− 1 ∑

m	=yi

wT
mϕ(xi)≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l. (2.15)

Note that the number of margin constraints (2.15) has already been reduced to l.
To solve the optimization problem (2.15) we use the Karush—Kuhn—Tucker
(KKT) theorem. We add a dual set of variables, one for each constraint and get
the Lagrangian of the optimization problem

L(W,ξ ,α ,λ ) =
1
2

k

∑
m=1

wT
mwm +C

l

∑
i=1

ξi−
l

∑
i=1

λiξi

−
l

∑
i=1

αi

(
wT

yi
ϕ(xi)− 1

k− 1 ∑
m	=yi

wT
mϕ(xi)− 1+ ξi

)
. (2.16)

By differentiating the Lagrangian with respect to the primal variables, we obtain
the following constraints that the variables have to fulfill in order to be an optimal
solution:

∂L
∂wm

= 0⇐⇒ wm = ∑
i:yi=m

αiϕ(xi)− 1
k− 1 ∑

i:yi 	=m

αiϕ(xi), (2.17)

∂L
∂ξ

= 0⇐⇒ Ce = λ +α, (2.18)

subject to the constraints α ≥ 0 and λ ≥ 0.
By elimination of wm, ξ , and λ , the dual problem of (2.15) is reduced to the

following succinct form

min
α∈Rl

1
2

αT Gα− eT α

subject to 0≤ α ≤Ce. (2.19)

The Hession G is an l× l matrix with its entries

Gi, j =

{
k

k−1 Ki, j, if yi = y j,
−k

(k−1)2 Ki, j, if yi 	= y j,
(2.20)
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where we abbreviate the kernel value κ(xi,x j)≡ ϕ(xi)
T ϕ(x j) for Ki, j . Furthermore,

let V be an l× k matrix defined as:

Vi, j =

{
1, if yi = j,
−1
k−1 , if yi 	= j.

(2.21)

We have

G = K� (VVT ). (2.22)

Since the kernel matrix K and VVT are both positive semi-definite, so is their
Hadamard product G. In the next section, we show that, up to a change of
variables, (2.19) is equivalent to the dual problem of Crammer and Singer’s
approach with an additional constraint.

In order to avoid the division operation in the kernel computation of (2.20), we
further let ᾱ = k

(k−1)2 α . Therefore, we rewrite (2.19) as

min
ᾱ∈Rl

1
2

ᾱT Ḡᾱ− eT ᾱ (2.23)

subject to 0≤ ᾱ ≤ C̄,

where C̄ = k
(k−1)2 C, and

Ḡi, j =

{
(k− 1)Ki, j, if yi = y j,

−Ki, j, if yi 	= y j.
(2.24)

As for the decision function, from (2.17) we obtain

f ∗m(x) = ∑
i:yi=m

α∗i κ(xi,x)− 1
k− 1 ∑

i:yi 	=m

α∗i κ(xi,x)

=
k

k− 1 ∑
i:yi=m

α∗i κ(xi,x)− 1
k− 1

l

∑
i=1

α∗i κ(xi,x)

︸ ︷︷ ︸
the same for all f ∗m

. (2.25)

Finally, the resulting decision function can be simplified as

argmax
m

f ∗m(x) = argmax
m ∑

i:yi=m

α∗i κ(xi,x). (2.26)

Thus, each class model is built upon its own support vectors.
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Table 2.2 Dataset
description

#Training #Test #Class #Attr
Dataset data (l) data (k) (d)

Iris 150 0 3 4
Wine 178 0 3 13
Glass 214 0 6 9
Vowel 528 0 11 10
Segment 2,310 0 7 19
Waveform 5,000 0 3 21
DNA 2,000 1,186 3 180
Satimage 4,435 2,000 6 36
Letter 15,000 5,000 26 16
USPS 7,291 2,007 10 256

2.3.4 Example: A Comparative Study

In this section, we validate the accuracy and efficiency of the new SimMSVM
algorithm on several multi-class pattern recognition problems including Iris, Wine,
Glass, Vowel, Segment, and Waveform from the UCI repository [1], DNA,
Satimage, Letter from Statlog collection [19], and USPS [17]. For all the datasets
except DNA, we linearly scale each attribute to be in the range [−1,1]. Table 2.2
gives a detailed description about these datasets. Here we compare the new
SimMSVM with some classical multi-class algorithms in terms of classification
and computation time. Moreover, we also analyze the scaling behavior of the
SimMSVM with the sample size and the number of classes in terms of training time.
All the experiments are performed using the tool of BSVM [16] on a 1.50 GHz Intel
CoreTM2 Duo PC running Windows XP with 1 GB main memory.

2.3.4.1 Classification Performance Comparisons

The tool of BSVM is used in the experiments. BSVM is developed to efficiently
solve the bound-constrained problem (2.4). We find that the only difference
between (2.19) and (2.4) is the Hessian of the objective function. To proceed the
SimMSVM algorithm and take advantage of its sophisticated implementations,
we only need to modify the kernel evaluation part of BSVM. For the one-
versus-one (1V1) and one-versus-rest (1VR) approaches, we formulate their binary
subproblems by (2.3) and solve each of them using BSVM. For the two so-called
all-together methods proposed by Weston and Watkins and Crammer and Singer,
their major disadvantage remains to the enormous size of the optimization problems.
To tackle these difficulties, Hsu and Lin proposed decomposition methods for
these two approaches, respectively. The implementations are integrated into BSVM
as well.

In conclusion, we adopt BSVM for three reasons: (1) BSVM uses a simple
working set selection which leads to a faster convergence for difficult cases.



34 Z. Wang and X. Xue

The use of a special implementation of the optimization solver allows BSVM to
stably identify bounded variables. (2) The implementations of Weston and Watkins’
approach [38] and Crammer and Singer’s approach [7] are integrated into BSVM.
We can formulate the binary subproblems of the one-versus-one and one-versus-rest
approaches and solve each of them using BSVM. (3) For the SimMSVM algorithm,
we just modify the kernel evaluation part of BSVM. Furthermore, it should be stated
that as described in Hsu and Lin [14], the BSVM software includes a decomposition
implementation of Crammer and Singer’s approach Crammer and Singer [7] for
multi-class problems. The other three approaches (one-versus-one, one-versus-
rest, and Weston and Watkins’ approach) are also based on BSVM for the fair
comparison. Therefore, the experiments of this manuscript are all implemented in a
fair condition.

The most important criterion for evaluating the performance of the multi-class
SVM is the classification accuracy. For all the five methods, we use the gaussian
RBF kernel

κ(xi,x j) = exp
(−γ‖xi− x j‖2) , γ ≥ 0.

We follow the strategy used in Hsu and Lin [14] and use model selection
to get the optimal parameters. The hyper-parameter space is explored on a
two-dimensional grid with γ = [10−2,10−1,100,101] and the regularization
parameter C = [10−1,100,101,102,103]. We use two criteria to estimate the
generalized accuracy.

For the used Iris, Wine, Glass, Vowel, Segment, and Waveform, we randomly
subdivide each dataset into ten disjoint subsets. Then for each procedure, one
of the subsets is used for testing and the others for training, where the tenfold
cross-validation strategy is employed in the training set so as to select the optimal
parameter C and γ . In order to evaluate the variability over different random splits
for each dataset, the whole procedure above is repeated five times and the final
experimental results are averaged. For the used DNA, Satimage, Letter, and USPS
where both training and testing sets are available, we randomly draw the subsets of
the original training set for training in order to evaluate the variability over different
choices of the training set on each dataset. Here the 70 % data points are randomly
chosen from the original training set, where the tenfold cross-validation is used for
parameter selection on the selected training set. Then we train on the 70 % dataset
with the optimal pair (C,γ) and predict for the test set. The whole procedure above
is repeated five times and the results are averaged. We present the comparison results
in Table 2.3, where “W&W” denotes the method proposed by Weston and Watkins
and “C&S” indicates Crammer and Singers approach.

Table 2.3 shows the optimal classification accuracy and their corresponding
number of support vectors (SV). Both the average standard deviation of the
classification accuracy and the number of SV are also reported in Table 2.3 so as to
evaluate the statistical significance of the cross-validation results and the number of
SV are not integers since they are the average values of the tenfold cross-validation.
From Table 2.3, we can find that the SimMSVM gives competitive accuracies with
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the method by Crammer and Singer. In detail, we observe that: (1) not all the 1VR
and 1V1 approaches outperform “all together” approaches (i.e., W&W, C&S, and
SimMSVM) in the used ten datasets; (2) all the five implemented methods give the
comparable results. The experimental results in the previous work such as Hsu and
Lin [14] also suggest that no one is statistically better than the others for the 1VR
and 1V1 approaches and all together approaches.

Since the test time of the W&W, C&S, and SimMSVM depends on the
number of SV, we analyze their decision function expressions. Suppose that
there are kernel function κ(xi,x) and let k and nSV be the number of class
and SVs. The computational complexity of Eq. (2.25) (i.e. argmax

m
f ∗m(x) =

argmax
m

∑
i:yi=m

α∗i κ(xi,x)) is O(nSV ) since each SV is operated once for testing.

According to Hsu and Lin [14], Eq. (2.6) (i.e., argmax
m

fm(x) = argmax
m

(wT
mϕ(x)+

bm)) can be rewritten as

argmax
m

fm(x) = argmax
m

l

∑
i=1

(cm
i Ai−αm

i )(κ(xi,x)+ 1)

where Ai = ∑m αm
i , cm

i = 1, if yi = m and cm
i = 0, otherwise. Furthermore, Eq. (2.8)

(i.e., argmax
m

fm(x) = argmax
m

wT
mϕ(x)) can be rewritten as

argmax
m

fm(x) = argmax
m

l

∑
i=1

αm
i κ(xi,x)

Therefore, the computational complexity of Eqs. (2.6) and (2.8) is O(knSV ).
A quantitative test time comparison of the used datasets among these methods is
also given in Table 2.4. From this table, the SimMSVM has a comparable test time
to the multi-class SVM methods W&W and C&S.

2.3.4.2 Computational Complexity Comparisons

We have claimed that the SimMSVM achieves a significant speed-up compared with
the method by Crammer and Singer for its simplified model. To demonstrate it, we
report the average training time of the above model selection procedures. Due to
the limit of the space here, we select the six out of ten datasets for comparison, e.g.,
Vowel, Segment, Waveform, Satimage, Letter, and USPS. For the six datasets, we
report the average cross-validation time of the five competitive methods as shown
in Figs. 2.2 and 2.3. Each row of Figs. 2.2 and 2.3 has the parameter γ with the
value 10−2, 10−1, 100, and 101, respectively, and the C varies from 10−1 to 103

in a log scale. For the parameter pair (C,γ) for each learning algorithm, we report
the average time on ten runs of the cross-validation. Most of the standard deviation
values are below 0.05 in the experiments.

Figures 2.2 and 2.3 show that the SimMSVM has the best computational
cost for most of the parameter combinations. For example, the 18 out of 20
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Fig. 2.2 Cross-validation time (in seconds) comparison as a function of C for γ = 0.01, 0.1, 1,
and 10 on (a) Vowel dataset, (b) Segment dataset, (c) Waveform dataset

parameter combinations in Vowel dataset by the SimMSVM outperform the other
methods. All the parameter combinations in Satimage dataset by SimMSVM lead
to better performance. Totally, the 81.7 % combinations by SimMSVM are the
most efficient one for the used six datasets. In fact, it gives a significant speed-up
from Crammer and Singer’s approach (95.8 % combinations by SimMSVM perform
better). Although the BSVM has applied decomposition methods for the two “all-
together” approaches, their training speed remains slow especially for the relatively
small γ . Since we find that the optimal parameters (C,γ) are in various ranges for
different classification cases in the experiments, it is necessary to carry out more
parameter pairs to obtain the optimal model. If the training speed is an important
issue, the SimMSVM could be an option.

2.3.4.3 Speed vs. Data Size and Number of Class

In this subsection, we give a detailed analysis for the effect of the number of classes
and the training set size on the SimMSVM. We compare the SimMSVM with the
other multi-class SVM approaches on two datasets with the large training samples:
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Fig. 2.3 Cross-validation time (in seconds) comparison as a function of C for γ = 0.01, 0.1, 1,
and 10 on (a) Satimage dataset, (b) Letter dataset, (c) USPS dataset

Letter and USPS. First, we restrict the analysis to binary-class case for the first
two classes, then proceed to a multi-class analysis by gradually adding a new class.
As described in Figs. 2.2 and 2.3, different kernel parameters (C,γ) would cause
different computational time. For fairness, we choose the default parameter values
of the BSVM package for the comparison: C = 1,γ = 1/k. Figure 2.4 summarizes
the results.

For the two “all-together” multi-class SVM approaches, we have to solve an
(l × k)-variable QP. For the one-versus-rest approach, instead we need to solve
k l-variable QPs. As for the SimMSVM, we solve a single l-variable QP, which
is not affected by k. Figure 2.4 validates that the training time of SimMSVM
scales slowly as the number of classes and dataset increase. We show an increasing
training set size by keeping the number of class number (k = 26 for Letter and
k = 10 for USPS ) constant and adding training samples to each class. Each learning
algorithm is repeated with five times and we report the average training time in
Fig. 2.5. We further show an increase of class number by keeping the training set
size constant. In the experiments, we set the constant training set size to be 5,000
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Fig. 2.5 Training time (seconds) vs. increasing training set size by keeping constant the class
number on (a) Letter dataset, (b) USPS dataset

for Letter and 3,000 for USPS. The number of the training samples of each class is
reduced accordingly while the class number increases. Figure 2.6 summarizes the
results.

From Figs. 2.4, 2.5, and 2.6, it can be found that the SimMSVM takes the least
computational cost in most cases except the USPS. In the USPS, the SimMSVM has
a comparable computational cost to that of the one-versus-one method. The reason
for this phenomenon is that the optimization for the dual problem of SVM with the
1V1 is much lower than that of the SimMSVM in the large-scale case. In this case,
the advantage of the SimMSVM might be counteracted with that of the optimization
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Fig. 2.6 Training time (seconds) vs. increasing class number by keeping constant the training set
size on (a) Letter dataset, (b) USPS dataset

for the traditional SVM dual problem with 1V1. Compared with the other three
algorithms (one-versus-rest, the C&S, and the W&W), the SimMSVM here has a
significant advantage, which can demonstrate the efficiency of SimMSVM.

2.4 Discussions for SimMSVM

2.4.1 Relation to Binary SVM

In binary case where k = 2, from (2.17), the SimMSVM approach will produce w1

and w2 where w1 =−w2. Let w = 2w1 and target +1 for the positive class and −1
negative, (2.15) is equivalent to

min
w∈H,ξ∈Rl

1
2

wT w+ 2C
l

∑
i=1

ξi

subject to yiwT xi ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l, (2.27)

which is the unbiased binary SVM formulation.
Lee et al. [22] proposed a variant of multi-class SVM by modifying the target

values so that the positive class has target +1 and the negative class has target− 1
k−1 .

For notational convenience, we define vm for m = 1, . . . ,k as a k-dimensional vector
with 1 in the m-th coordinate and− 1

k−1 elsewhere. If the label of a training example
xi is coded in vector form as vyi , the margin constraints of (2.15) can be rewritten as
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vT
yi

WT ϕ(xi)≥ 1− ξi, (2.28)

where W = [w1, . . . ,wk]. Thus, it can be found that SimMSVM can be degenerated
into the unbiased binary SVM.

Note that the transpose of the label vector vyi is exactly the i-th row of V
defined in (2.21). From (2.22), the Hessian G contains not only a similarity measure
between data samples but also their label information. In addition, we find that
SimMSVM can be easily extended to the multi-label classification framework in
which an instance may be simultaneously relevant to several labels. Multi-label
classification is useful for text categorization, multimedia retrieval, and many other
areas. In SimMSVM, we solve a multi-label classification problem by using the
same dual formulation (2.19) except for a different representation of the label vector
vyi . For example, if a training example is relevant to r out of k labels simultaneously,
we can set its label vector so that the relevant labels have target + 1

r and the other
labels − 1

k−r , where the values of the k labels are taken into two categories with

+ 1
r and − 1

k−r . We then compute the Hessian G from (2.21) and solve the dual
problem (2.19) to obtain the optimal α∗.

The resulting discriminant function is given as follows:

f ∗m(x) =
l

∑
i=1

vyi,mα∗i κ(xi,x), (2.29)

where vyi ,m is the m-th element of vyi . Since the values of the k labels are taken into
two categories with + 1

r > 0 and − 1
k−r < 0, the label set Y for the test sample x is

determined as:

Y = {m| f ∗m(x)> 0,m ∈ {1 . . .k}} (2.30)

2.4.2 Relation to Crammer and Singer’s Multi-Class SVM

In [7], the dual problem is given as follows:

min
α∈Rl×k

1
2

l

∑
i=1

l

∑
j=1

k

∑
m=1

Ki, jαi,mα j,m−
l

∑
i=1

αi,yi

subject to
k

∑
m=1

αi,m = 0,

αi,m ≤ 0 for all m 	= yi,

αi,yi ≤C,

i = 1,2, . . . , l, m = 1, . . . ,k. (2.31)
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Let M be the l× k dual matrix whose (i,m)-th element is the dual variable αi,m,
and let

α = [α1,y1 ,α2,y2 , . . . ,αl,yl ]
T . (2.32)

We then rewrite the dual objective function of (2.31) as

1
2

tr(MT KM)− eT α. (2.33)

From the linear constraint of (2.31), every k dual variables associated with the
same xi follows the sum-to-zero constraint. If αi,yi = 0 for some xi, we have αi,m = 0
for all m 	= yi. We carry over the notion of support vectors to the multi-class setting,
and define support vectors as examples with [αi,1, . . . ,αi,k] 	= 0. A support vector
xi plays a positive role in its class model since αi,yi > 0, while punishing some
other classes for those αi,m < 0. In order to reduce the size of dual variables, we
further add to (2.31) a seemingly aggressive constraint that all those αi,m (m 	= yi)
corresponding to the i-th sample are of the same value (share equal punishment):

αi,m =− 1
k− 1

αi,yi , for all m 	= yi. (2.34)

Thus, the sum-to-zero constraint of (2.31) is satisfied accordingly. As for the
objective function of (2.31), from (2.34) we have

k

∑
m=1

αi,mα j,m =

{
k

k−1 αiα j , if yi = y j,
−k

(k−1)2 αiα j , if yi 	= y j,
(2.35)

where we simply denote αi,yi as αi, for i = 1, . . . , l.
To sum up, Crammer and Singer’s dual formulation (2.31) with additional

constraint (2.34) is exactly the same as (2.19), which is the dual of SimMSVM.

2.4.3 Relation to One-Class SVM

There are also One-class SVMs, which solve an unsupervised learning problem
related to probability density estimation. Two approaches that extend the SVM
methodology have been proposed in [30,35]. The dual problem of the support vector
domain description (SVDD) method described in Tax and Duin, [35] using RBF
kernel is as follows:

min
α∈Rl

1
2

αT Kα− eT α

subject to eT α = 0,

0≤ α ≤C. (2.36)
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If we ignore the equality constraint of (2.36), the only difference between (2.19)
and (2.36) is the Hessian of the quadratic objective function. In fact, SVDD treats all
training samples involved as one class, and the support vectors (those xi with αi > 0)
usually appear at the boundaries of data distribution. The next lemma proves that the
Hessian G = K� (PPT ) of (2.19) will endow the SimMSVM with discrimination
power between all classes.

Lemma 1. By solving the dual optimization problem (2.19), the decision value for
the m-th class fm(x) = ∑i:yi=m αiκ(xi,x) is not trivially 0 when the RBF kernel is
adopted, i.e., there is at least one support vector for each class.

Proof. Prove by contradiction. From the Karush—Kuhn—Tucker optimality condi-
tion of (2.19), a vector α is a stationary point of (2.19) if and only if there are two
nonnegative vectors λ and μ such that

Gα− e = λ − μ,

λ T α = 0, μT (Ce−α) = 0,

λ ≥ 0, μ ≥ 0.

We rewrite this condition as

(Gα)i > 1 if αi = 0,

(Gα)i = 1 if 0 < αi <C,

(Gα)i < 1 if αi =C.

Assume that the m-th class has no support vectors, i.e., αi = 0 for all i where
yi = m. Since (2.20) indicates that Gi j ≤ 0 for all yi 	= y j when using a gaussian
RBF kernel, we have (Gα)i = ∑ j:y j 	=m Gi jα j ≤ 0, which contradicts the above KKT
condition. �

2.4.4 Fisher Consistency Issue

In binary case where the class label y∈ {−1,+1}, we denote P+(x)=P(Y=1|X=x).
Then a binary loss function ξ ( f (x),y) is Fisher consistent if the minimizer of
E [ξ ( f (X),Y )|X = x)] is the same as sign(P+(x) − 1

2). In other words, Fisher
consistency requires that the loss function should yield the Bayes decision boundary
asymptotically [3, 23, 24]. In the multi-class setting where y ∈ {1, . . . ,k}, we let
Pm(x) = P(Y = j|X = x). Suppose ξ (f(x),y) is a multi-class loss function, we
denote the minimizer of E(ξ (f(X,Y )|X = x) as f∗= ( f ∗1 , . . . , f ∗k ). Fisher consistency
requires argmaxm f ∗m = argmaxmPm.
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In the next lemma, we show that the loss (2.14) is Fisher inconsistent. For
remedy, we introduce additional constraints to force the loss function of SimMSVM
to be Fisher consistent.

Lemma 2. The loss (2.14) is Fisher inconsistent when k≥ 3.

Proof. From the above Fisher consistency definition, we have

E

{[
1− fY (X)+

1
k− 1 ∑

M 	=Y

fM(X)

]

+

}

= E

{
k

∑
y=1

Py(X)

[
1− fy(X)+

1
k− 1 ∑

m	=y

fm(X)

]

+

}
.

For any fixed X = x, the goal is to minimize

k

∑
y=1

Py(x)

[
1− fy(x)+

1
k− 1 ∑

m	=y

fm(x)

]

+

. (2.37)

We let

gy(x) = fy(x)− 1
k− 1 ∑

m	=y

fm(x), (2.38)

for y = 1, . . . ,k. Therefore, (2.37) is equivalent to

k

∑
y=1

Py(x) [1− gy(x)]+ . (2.39)

Clearly, ∑k
y=1 gy(x) = 0. From the proof of Lemma 1 in [24], we know that the

minimizer g∗ satisfies g∗m ≤ 1, ∀m = 1, . . . ,k. Thus, the problem (2.37) reduces to

max
g

k

∑
m=1

Pm(x)gm(x)

subject to
k

∑
m=1

gm(x) = 0,

gm(x)≤ 1, m = 1, . . . ,k. (2.40)

It is easy to verify that the solution of (2.40) satisfies g∗m(x) = −(k− 1) if m =
argmin jPj(x) and 1 otherwise. We then rewrite (2.38) as

fy(x) =
k− 1

k
(gy(x)+A) , (2.41)
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where A = 1
k−1 ∑k

m=1 fm(x). We have

argmaxm f ∗(x) = argmaxmg∗(x). (2.42)

Therefore, the loss function (2.14) is not Fisher consistent when k ≥ 3. �
Although Fisher consistency is a desirable condition, a consistent loss may

not always lead to better classification accuracy [15, 24, 29]. However, if Fisher
consistency is required for the loss function of SimMSVM, one alternative solution
is to add further constraints

(k− 1) fy(x)− ∑
m	=y

fm(x)+ 1≥ 0, (2.43)

for y = 1, . . . ,k. These constraints (2.43) amount to gm(x) ≥ − 1
k−1 . We have the

following Lemma:

Lemma 3. The maximizer g∗ of E[gY (X)|X = x], subject to ∑k
m=1 gm(x) = 0 and

− 1
k−1 ≤ gm(x)≤ 1, ∀m, satisfies the following: g∗mx) = 1 if m = argmaxmPm(x) and

− 1
k−1 otherwise.

For the detailed proof, please see Lemma 5 in [24]. �
Lemma 3 justifies that, with additional constraints (2.43), the loss function of

SimMSVM is Fisher consistent. Fisher consistency is an attractive property for a
loss function, the related Fisher consistency issue can be studied detailedly in the
future work.

2.5 Conclusion

In this chapter, we discuss the main approaches for the multi-class SVM and
especially introduce a new SimMSVM algorithm that directly solves a multi-class
classification problem. Through modifying Crammer and Singer’s multi-class SVM
by introducing a relaxed classification error bound, the SimMSVM reduces the size
of the dual variables from l× k to l, where l and k are the size of training data and
the number of classes, respectively. We here prove that the dual formulation of the
proposed SimMSVM is exactly the dual of Crammer and Singer’s approach with an
additional constraint. The experimental evaluations on real-world datasets show that
the new SimMSVM approach can greatly speed-up the training process and achieve
competitive or better classification accuracies.
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Chapter 3
Novel Inductive and Transductive Transfer
Learning Approaches Based on Support
Vector Learning

Zhaohong Deng and Shitong Wang

Abstract In this chapter, two novel transfer learning approaches based on support
vector learning are involved. For inductive transfer learning, the knowledge-
leverage-based TSK fuzzy system (KL-TSK-FS) is proposed, which demonstrates
the good privacy-protection abilities and strong adaptability for the situations where
the data are only partially available from the target domain while some useful
knowledge of the source domains is available. For transductive transfer learning,
domain adaptation kernelized support vector machine (DAKSVM) and its two
extensions are proposed, which can reduce the distribution gap between different
domains in an RKHS as much as possible by integrating the large margin learner
with the proposed generalized projected maximum distribution distance (GPMDD)
metric.

3.1 Introduction

3.1.1 Background

Recently, transfer learning has been studied extensively for different applications
[1], such as text classification and indoor WiFi location estimation. Referring to
Fig. 3.1 and the explanations given in Table 3.1, transfer learning is an approach to
obtain an effective model of data from the target domain by effectively leveraging
the useful information from source domains in the learning procedure.

Situations requiring transfer learning are becoming common in real-world appli-
cations. The modeling of fermentation process [2] is one example where the transfer
learning is required. In the target domain of a microbiological fermentation process,
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Modeling task of 
target domainUseful information 

of source domain

Fig. 3.1 An illustration of transfer learning for regression

Table 3.1 Some terms used for transfer leaning in the text

Terms Explanations

Domain A domain is a situation where a modeling task is to be accomplished. It is
usually characterized by: (1) the data collected in this domain and (2) the
learning task to be performed in this domain

Target domain In transfer learning, it is referred to as the domain with insufficient data for
proper modeling while a modeling task is required to be effectively
implemented

Source domain It is the domain related to the target domain, with similar data distribution and
learning task. There may be differences between the source domain and the
target domain, but it is assumed that the source domain can provide some
useful information for the modeling task of the target domain

the data collected may be insufficient or some of the data may be missing due to the
deficiency of the sensor setup. Thus, we cannot effectively model the fermentation
process for this domain with the collected data. However, data available from other
similar microbiological fermentation process could be sufficient and considered as
source domains for the target domain. Hence, transfer learning can be exploited
to make use of the information from the source domain to improve the modeling
effect of the target domain, thereby resulting in a model with better generalization
capability. In this case, transfer learning is an effective solution to the corresponding
modeling task because it can enhance the model by leveraging the information
available from the source domains, such as the data collected in other time frames
or with other setups.

A comprehensive survey about transfer learning can be discovered in [1]. In
general, the existing work about transfer learning can be categorized into three
types: (1) transfer learning for classification [3–15]; (2) transfer learning for
unsupervised learning (clustering [16, 17] and dimensionality reduction [18, 19]);
and (3) transfer learning for regression [20–24]. According the setting whether there
are the labeled data in the target domain available, all the transfer learning methods
can also be classified as inductive transfer learning methods and transductive
learning methods. While there are a few labeled data for the supervised learning
in the inductive transfer learning methods, all the data are unlabeled in the target
domain for the transductive learning methods and the unsupervised learning is
implemented accordingly While there are a few labeled data for the inductive
transfer learning, all the data are unlabeled in the target domain for the transductive
learning method. Among the existing transfer methods, a lot of them are based on
the support vector learning. In this chapter, we mainly focus on the novel support
vector learning-based methods for the inductive and transductive learning.
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3.1.2 Support Vector Learning-Based Inductive
Transfer Learning

In the inductive transfer learning setting, the target task is different from the source
task. In this case, some labeled data in the target domain are required to induce an
objective predictive model for use in the target domain. The representative inductive
transfer learning algorithms are reviewed below. Dai et al. [25] proposed a boosting
algorithm with the support vector machine (SVM) as the learner, TrAdaBoost,
which is an extension of the AdaBoost algorithm, to address the inductive transfer
learning problems. TrAdaBoost attempts to iteratively reweight the source domain
data to reduce the effect of the “bad” source data while encouraging the “good”
source data to contribute more for the target domain. Wu and Dietterich [26]
integrated the source domain (auxiliary) data and SVM framework for improving
the classification performance. Evgeniou and Pontil [27] borrowed the idea of
hierarchical Bayesian to SVMs for multitask learning. The proposed method
assumed that the parameter, w, in SVMs for each task can be separated into two
terms. One is a common term over tasks and the other is a task-specific term.

3.1.3 Support Vector Learning-Based Transductive
Transfer Learning

For support vector learning-based transductive transfer learning, a major com-
putational problem is how to reduce the difference between the distributions of
the source and target domains. There have existed several works describing how
to measure the distance between distributions [28, 29]. Intuitively, discovering a
good feature representation across domains is crucial [13, 30]. A good feature
representation should be able to reduce the distribution discrepancy between two
domains as much as possible, while at the same time preserving the underlying
geometric structures (or scatter information) of both source and target domain data
as much as possible. Ben-David et al. [31] used an example of hyperplane classifiers
to show that the performance of the hyperplane classifier that could best separate
the data could provide a good method for measuring the distribution distance for
different data representations. Along these same lines, Gretton et al. [32] showed
that for a given class of functions, the measure could be simplified by computing the
discrepancy between two means of the distributions in a reproducing kernel Hilbert
space (RKHS), thus resulting in the maximum mean discrepancy (MMD) measure.
Inspired by the ideas of both transductive SVM (TSVM) and MMD, Brian et al. [28]
proposed a so-called large margin kernel projected (LMPROJ) TSVM paradigm for
domain adaptation problems based on the projected distance measure in an RKHS.
The basic idea of LMPROJ is to minimize the distribution mean distance between
source and target domain data by finding a feature translation in an RKHS. By the
same way of LMPROJ, based on multiple kernel learning framework, Duan et al.
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also proposed a domain transfer SVM (DTSVM) for domain adaptation learning
(DAL) problem such as video concept detection. Further details about DTSVM can
be found in [29].

3.1.4 Main Work in This Study

In this study, one support vector learning-based inductive learning approach and
one support vector learning-based transductive learning approach are proposed,
respectively.

3.1.4.1 Support Vector Learning-Based Inductive Transfer Learning
with Knowledge-Leveraged Fuzzy Logic Systems

As support vector learning-based fuzzy system modeling is a type of important
modeling methods [2, 33], it is promising to incorporate transfer learning with
the fuzzy model. To the best of our knowledge, however, the study of transfer
learning for support vector learning-based fuzzy system modeling has not yet
been reported before. For support vector learning-based fuzzy system modeling,
transfer learning is very useful in real-world modeling tasks where traditional
fuzzy modeling methods may not work very well. For example, the trained fuzzy
systems are much weaker in generalization capability when the training data are
insufficient or only partially available [34, 35]. The situation is common in real-
world applications in which the sensors and setups for data sampling are not steady
due to noisy environment or other malfunctions that lead to insufficiency of data for
the modeling task.

In order to tackle the problems with traditional support vector learning-based
fuzzy system modeling as described above, a feasible remedy strategy is to boost
up the performance by taking advantage of the useful information from source
domains (or related domains), which can be the data in the domains, or the relevant
knowledge like the density distribution and/or fuzzy rules. The simplest way to
obtain the information from source domains is to directly use the data, collected
from the source domains, but this approach leads to two major challenges. First,
due to the necessity of privacy protection in some proprietary applications, such
as the aforementioned fermentation process, the data of the source domains cannot
always be obtained. Under this situation, the knowledge about the source domains,
e.g. the density distribution and model parameters, can be obtained more easily to
enhance the modeling of the target domain. Second, drifting phenomenon may exist
between the source domain and the target domain, which makes it inappropriate to
directly use the data from the former in the latter, or negative effect on the modeling
task will be produced. These two issues should be properly addressed in order to
develop an effective transfer learning modeling strategy for fuzzy systems.
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In this study, a support vector learning-based fuzzy system modeling approach
with knowledge-leverage capability from source domains is exploited for the
inductive transfer learning. In view of its popularity, the Takagi–Sugeno–Kang-
type fuzzy system (TSK-FS) is chosen to incorporate with a knowledge-leverage
mechanism and hence the knowledge-leveraged TSK-type fuzzy system (KL-TSK-
FS) is proposed. A novel objective criterion is proposed to integrate the model
knowledge of the source domains and the data of the target domain, and the induced
fuzzy rules of the model are learned accordingly. The knowledge of the source
domain will effectively make up the deficiency in learning due to the lack of data
in the target domain. Hence, the proposed system—KL-TSK-FS is more adaptive
to the situations where the data are only partially available from the target domain
while some useful knowledge of source domains is available. Besides, the proposed
method is distinctive in preserving data privacy as only the knowledge (e.g., the
corresponding model parameters) rather than the data of the source domain is used.

3.1.4.2 Support Vector Learning-Based Transductive Transfer
Learning with DAL

As we may know well, mean (or expectation) and variance (or scatter) are two main
features characterizing the distribution of samples which measure order one and
order two statistics, respectively. However, most existing DAL methods for support
vector learning-based transductive learning focus only on the first-order statistics
matching which attempts to make the empirical means of the training and testing
instances from source and target domain to be closer in an RKHS [36]. Intuitively,
it is not enough to measure the distribution distance discrepancy between two
domains to some extent only by considering the mean of the distribution of samples
[13, 29, 36]. Hence, the state-of-the-art DAL MMD-based methods [28, 29, 37],
which are only focused on the first-order statistics of the data distributions still have
considerable limitation in the generalization capacity for specific domain adaptation
transfer learning problems. What is more, since LMPROJ or DTSVM only focuses
on the consistency of domain distributions in an RKHS, they sometimes project the
data onto some noisy directions of separation which are completely irrelevant to the
target learning task [13], and even result in poor performance.

In this study, we claim that it is indispensable to consider both mean and variance
(or scatter) of data distribution in order to efficiently measure the distribution
discrepancy between source and target domains. This motivates us to definitely
utilize both MMD and scatter information of both domains to sufficiently eval-
uate their distribution discrepancy. In order to overcome the drawbacks of the
MMD-based methods, we proposed a novel domain adaptation kernelized SVM
(DAKSVM) using GPMDD discrepancy metric on RKHS embedding domain
distributions, which can simultaneously consider both the distribution mean and
scatter discrepancies between source and target domains. The idea is to find an
RKHS for which the means and variances of the training and test data distributions
are brought to be consistent, so that the labeled training data can be used to learn a
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model for the test data. Particularly, we aim to obtain a linear kernel classifier based
on the Representer Theorem [32], in an RKHS, such that it achieves a trade-off
between the maximal margin between classes and the minimal discrepancy between
the training and test distributions.

Compared with the existing state-of-the-art DAL methods, our main contribu-
tions include the following aspects: (1) the proposed methods inherit the potential
advantages of classical TSVMs and MMD-based methods described as above,
and further extend them to DAL; (2) as a novel large margin domain adaptation
classifier, the proposed methods can reduce the distribution gap between different
domains in an RKHS as much as possible, since they effectively integrate the large
margin learner with the proposed GPMDD metric; (3) in addition, we propose two
extensions to the standard formulation of DAKSVM based on both v-SVM and
least-square SVM (LS-SVM), respectively.

The rest of this chapter is organized as follows. In Sect. 3.2, inductive transfer
learning with support vector learning-based fuzzy systems is proposed; in Sect 3.3,
transductive transfer learning with support vector learning-based domain adaptation
transfer learning SVM by using the GPMDD metric is proposed; in Sect. 3.4, the
experimental results about the proposed inductive transfer learning approach are
reported; in Sect. 3.5, the experimental results about the proposed transductive
transfer learning approach are reported; and The conclusions are given in the final
section.

3.2 Inductive Transfer Learning with Support Vector
Learning-Based Fuzzy Systems

3.2.1 Support Vector Learning-Based Fuzzy Systems

Support vector learning has been extensively used in the machine learning methods,
such as kernel methods and other intelligence modeling methods. In this section, the
support vector learning-based fuzzy systems, which have strong learning abilities
and nicer interpretation properties, are introduced to develop the inductive transfer
learning method.

3.2.1.1 Concept and Principle of TSK-FS

Classical fuzzy logic system models include the TSK model [38], Mamdani–Larsen
(ML) model [39], and generalized fuzzy model [40]. Among them, the TSK model is
the most popular one due to its effectiveness. In this study, the TSK model is adopted
to develop the KL-TSK-FS for implementing the inductive transfer learning.

For TSK fuzzy logic systems, the most commonly used fuzzy inference rules are
defined as follows:
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TSK Fuzzy Rule Rk:

IF x1 is Ak
1∧ x2 is Ak

2∧·· ·∧ xd is Ak
d (3.1)

Then f k (x) = pk
0 + pk

1x1 + · · ·+ pk
dxd k = 1, · · · ,K

In Eq. (3.1) AkK
i is a fuzzy subset subscribed by the input variable xi for the kth

rule; K is the number of fuzzy rules, and ∧ is a fuzzy conjunction operator. Each
rule is premised on the input vector x= [x1,x2, · · · ,xd]T , and maps the fuzzy sets in
the input space Ak⊂Rd to a varying singleton denoted by fk(x). When multiplicative
conjunction is employed as the conjunction operator, multiplicative implication as
the implication operator, and additive disjunction as the disjunction operator, the
output of the TSK fuzzy model can be formulated as

y0 =
K

∑
k=1

μk (x)

∑K
k′=1μk′ (x)

· f k (x) =
K

∑
k=1

μ̃k (x) · f k (x) , (3.2a)

where μk(x) and μ̃k (x) denote the fuzzy membership function and the normalized
fuzzy membership associated with the fuzzy set Ak. These two functions can be
calculated by using

μk (x) =
d

∏
i=1

μAk
i
(xi) (3.2b)

and

μ̃k (x) = μk (x)/
K

∑
k′=1

μk′ (x). (3.2c)

A commonly used fuzzy membership function is the Gaussian membership
function which can be expressed by

μAk
i
(xi) = exp

(
−(xi− ck

i

)2

2δ k
i

)
, (3.2d)

where the parameters ck
i , δ k

i can be estimated by clustering techniques or other
partition methods. For example, with fuzzy c-means (FCM) clustering, ck

i , δ k
i can

be estimated as follows:

ck
i =

N

∑
j=1

u jkx ji/
N

∑
j=1

u jk, (3.2e)

δ k
i = h ·

N

∑
j=1

u jk

(
x ji− ck

i

)2
/

N

∑
j=1

u jk, (3.2f)
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where ujk denotes the fuzzy membership of the jth input data xj = (xj1, · · · ,xjd)T ,
belonging to the kth cluster obtained by FCM clustering [41]. Here, h is a scale
parameter and can be adjusted manually.

When the antecedents of the TSK fuzzy model are determined, let

xe =
(
1,xT

)T
, (3.3a)

x̃k = μ̃k (x)xe, (3.3b)

xg =
((

x̃1)T
,
(
x̃2)T

, · · · ,(x̃K)T
)T

, (3.3c)

pk =
(

pk
0, pk

1, · · · , pk
d

)T
(3.3d)

and

pg =
((

p1)T
,
(
p2)T

, · · · ,(pK)T
)T

, (3.3e)

then Eq. (3.2a) can be formulated as the following linear regression problem [33]

yo = pT
g xg. (3.3f)

Thus, the problem of TSK fuzzy model training can be transformed into the
learning of the parameters in the corresponding linear regression model [2, 33].

3.2.1.2 Support Vector Learning-Based TSK-FS Training

Given a training dataset Dtr = {xi, yi|xi ∈Rd, yi ∈R, i= 1, · · · , N}, for fixed
antecedents obtained via clustering of the input space (or by other partition
techniques), the least-square (LS) solution to the consequents is to minimize the
following LS criterion function [29], that is,

min E
pg
=

N

∑
i=1

(yo
i − yi)

2 =
N

∑
i=1

(
pg

T xgi− yi
)2

= (y−Xgpg)
T (y−Xgpg) , (3.4)

where Xg = [xg1, · · · ,xgN]T ∈RN×K · (d + 1) and y= [y1, · · · ,yN]T ∈RN .
The most popular LS criterion-based TSK-FS training algorithm is the one

used in the adaptive-network-based fuzzy inference systems [42]. For LS criterion-
based algorithms, a main shortcoming is that they usually have weak robustness for
modeling tasks involving noisy and/or small datasets. Besides the LS criterion-based
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TSK-FS training methods, the more promising TSK-FS training methods are the
support vector learning-based training algorithms, which are reviewed as follows.

Support Vector Learning-Based TSK-FS Training with L1-Norm Penalty

In addition to the LS criterion, another important criterion for TSK-FS training is
the ε-insensitive criterion [33]. Given a scalar g and a vector g= [g1, · · · ,gg]T , the
corresponding ε-insensitive loss functions take the following forms, respectively

[33]: |g|ε = g− ε (g> ε), |g|ε = 0 (g≤ 0) and |g| ε =
d

∑
i=1

|gi| ε . For the linear

regression problem of the TSK-FS in Eq. (3.3f), the corresponding ε-insensitive
loss-based criterion function [33] is defined as

min
pg

E =
N

∑
i=1

|yo
i − yi| ε =

N

∑
i=1

∣∣pT
g xgi− yi

∣∣ ε (3.5a)

In general, the inequalities yi−pT
g xgi < ε and pT

g xgi− yi < ε are not satisfied for
all data pairs (xgi,yi). By introducing the slack variables ξ+

i ≥ 0 and ξ−i ≥ 0, Eq.
(3.5a) can be equivalently written as

min
pg,ξ+

i ,ξ
E =

N

∑
j=1

(
ξ+

i + ξ−i
)

(3.5b)

s.t.

{
yi−pT

g xgi < ε + ξ+
i

pT
g xgi− yi < ε + ξ−i

, ξ+
i ≥ 0,ξ−i ≥ 0 ∀i.

Further, by introducing the regularization term [30], Eq. (3.5b) is modified to
become

min
pg,ξ

+,ξ+
E =

1
τ

N

∑
j=1

(
ξ+

i + ξ−i
)
+

1
2

pg
T pg (3.5c)

s.t.

{
yi−pT

g xgi < ε + ξ+
i

pT
g xgi− yi < ε + ξ−i

, ξ+
i ≥ 0,ξ−i ≥ 0 ∀i,

where τ > 0 controls the trade-off between the complexity of the regression model
and the tolerance of the errors. Here, ξ+

i and ξ−i can be taken as the L1-norm penalty
terms and thus Eq. (3.5c) is an objective function based on L1-norm penalty terms.
TSK training algorithm of this type is referred to as support vector learning-based
L1-TSK-FS, which has the similar learning way as the classical SVM. The dual
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optimization in Eq. (3.5c) is a quadratic programming (QP) problem, which can be
expressed as

max
α+,α−

− 1
2

N

∑
i=1

N

∑
j=1

(
α+

i −α−i
)(

α+
j −α−j

)
xT

gixgi−
N

∑
i=1

ε
(

α+
j +α−j

)

+
N

∑
i=1

yi

(
α+

j −α−j
) (3.5d)

s.t.
N

∑
i=1

(
α+

j −α−j
)
= 0, α+

j ,α
−
j ∈ [0,τ] ∀i.

Compared with the LS-criterion-based algorithms, the support vector learning-
based L1-TSK-FS with the ε-insensitive criterion has been shown to be more robust
when dealing with noisy and small datasets.

Support Vector Learning-Based TSK-FLS Training with L2-Norm Penalty

Instead of the L1-norm penalty terms in Eq. (3.5c), another representative support
vector learning-based TSK-FS learning method is the one developed by employing
the L2-norm penalty terms [3]. The insensitive parameter ε is also added as a penalty
term in the objective function. This is similar to the approaches used in other existing
L2-norm penalty-based methods, e.g. L2-norm support vector regression (L2-SVR)
[43]. For TSK fuzzy model training, the ε-insensitive objective function based on
L2-norm penalty terms is then given by

min
pg,ξ

+,ξ+,ε
g
(
pg,ξ

+,ξ+,ε
)
=

1
τ
· 1

N

N

∑
j=1

((
ξ+

i

)2
+
(
ξ−i

)2
)
+

1
2

pT
g pg +

2
τ
· ε

(3.6a)

s.t.

{
yi−pT

g xgi < ε + ξ+
i

pT
g xgi− yi < ε + ξ−i

∀i.

Compared with the L1-norm penalty-based ε-insensitive criterion, the L2-norm
penalty-based criterion is advantageous because of the following characteristics: (1)
the constraints ξ+

i ≥ 0 and ξ−i ≥ 0 in Eq. (3.5c) are not needed for the optimization;
(2) the insensitive parameter ε can be obtained automatically by optimization
without the need of manual setting. Similar properties can also be found in other
L2-norm penalty-based machine learning algorithms, such as L2-SVR [43]. For
convenience, the L2-norm penalty-based ε-insensitive TSK fuzzy model training
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is referred to as L2-TSK-FS in this chapter. Based on the optimization theory, the
dual problem in Eq. (3.6a) can be formulated as the following QP problem.

max
α+,α−

−
N

∑
i=1

N

∑
j=1

(
α+

i −α−i
)(

α+
i −α−i

) ·xT
gixg j−

N

∑
i=1

Nτ
2

(
α+

i

)2−
N

∑
i=1

Nτ
2

(
α−i

)2

+
N

∑
i=1

α+
i · yi · τ−

N

∑
i=1

α−i · yi · τ
(3.6b)

s.t.
N

∑
i=1

(
α+

j +α−j
)
= 1, α+

j ,α
−
j ≥ 0 ∀i

Notably, the characteristic of the QP problem in Eq. (3.6b) enables the use of
core-set-based minimal enclosing ball (MEB) approximation technique to solve
problems involving very large datasets [43]. The scalable L2-TSK-FS learning
algorithm (STSK) has thus been proposed in this regard [3].

3.2.2 Inductive Transfer Learning with Support Vector
Learning-Based TSK-FS

3.2.2.1 Framework of Knowledge-Leveraged Inductive Transfer
Learning with TSK-FS

Most inductive transfer learning algorithms are developed to learn from the data
in the source domain directly with some strategies. Recently, the transfer learning
from the knowledge in the source domain rather than the original data is investigated
with the knowledge-leveraged transfer learning framework [44], by observing the
characteristics of two types of the learning ways below from the source domain,
i.e., from the original data and from the induced knowledge.

1. For the data in the source domains, it is the original information and is also the
most commonly used information for transfer learning. However, the data are not
always available in some situations. For example, many data samples cannot be
made open due to the necessity of privacy protection in the real world. Moreover,
even if the data of source domains are available, it may not be always appropriate
to directly adopt these data for the modeling task in the target domain due to the
following issues: first, it is difficult to control and balance the similarity and
difference of distributions of the source and target domains by using the data
directly; secondly, there possibly exists a drifting between the distributions of
different domains and thus some data from the source domain may result in an
obvious negative influence on the modeling effect of the target domain.
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Data of target domain
(insufficient)

Learning from data of target
domain and knowledge of
source domains simultaneously

TSK-FS obtained for the
modeling task of the target
domain

Target 
Domain

Source 
Domain Knowledge of

source domains

Fig. 3.2 Framework of knowledge-leveraged TSK-FS learning

2. For the knowledge in the source domains, it is another kind of important
information. The types of knowledge are diverse, such as density distribution and
model parameters. Most of them can be obtained by some learning procedures in
the past. For example, the model parameters for the source domain can be learned
by a certain modeling algorithm based on the data collected from that domain in
a certain historical modeling task. Despite the fact that most of the knowledge
obtained cannot be inversely mapped to the original data, it is a good property
from a privacy preservation point of view and the important information from the
source domains to improve the modeling effect of the target domain.

Thus, the characteristics above show that it should be more appropriate to exploit
the use of knowledge rather than data from the source domains to enhance the
modeling/learning performance of the models obtained in the target domain. As
shown in Fig. 3.2, a generalized learning framework was proposed in [44] for
knowledge-leveraged transfer learning. Under this framework, the model in the
target domain can be learned from the data in the target domain and the knowledge in
the source domain simultaneously. In this study, the knowledge-leveraged inductive
transfer learning for the support vector learning-based TSK-FS will be studied
accordingly.

3.2.2.2 Inductive Transfer Learning with Support Vector
Learning-Based TSK-FS

To take advantage of knowledge-leveraged learning mechanism for TSK-FS,
KL-TSK-FS is proposed by using support vector learning and the L2-norm
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penalty-based TSK-FS learning strategy with the corresponding knowledge-
leverage mechanism. The goal is to effectively use the knowledge of the source
domains to remedy the deficiency caused by data insufficiency in the target domain
and develop an efficient learning algorithm for TSK-FS.

Objective Criterion Integrating the Knowledge of Source Domain

For a TSK-FS constructed by the support vector learning-based technique, the
corresponding model parameters obtained in the source domains can be regarded
as the knowledge. To develop an effective KL-TSK-FS for model learning of the
target domain, we propose an optimization criterion which is integrated with the
knowledge of the source domain as follows:

min
pg

N

∑
i=1

∣∣∣pg
T xgi− yi

∣∣∣
ε
+λ (pg−pg0)

T (pg−pg0) . (3.7)

The optimization criterion in Eq. (3.7) contains two terms. The first term refers
to the learning from the data of the target domain for the desired TSK-FS. This term
is included so that the desired TSK-FS will fit the sampled training data of the target
domain as accurate as possible. The second term refers to the knowledge-leverage
of the source domain, with pg0 denoting model parameters learned from the source
domains. The purpose is to estimate the desired parameters by approximating the
model obtained from the source domains. The parameter λ in Eq. (3.7) is used to
balance the influence of these two terms and the optimal value can be determined by
using the commonly used cross-validation strategy in machine learning. As in L2-
TSK-FS [20], we introduce the terms structure risk and ε-insensitive penalty into
Eq. (3.7) to obtain the following objective criterion

min
pg,ξ+

,ξ−,ε

1
τ
· 1

N

N

∑
i=1

((
ξ+

i

)2
+
(
ξ−i

)2
)
+

1
2

(
pT

g pg
)

+
2
τ
· ε +λ (pg−pg0)

T (pg−pg0)

(3.8)

s.t.

{
yi−pT

g x
gi
< ε + ξ+

i

pT
g x

gi
− yi < ε + ξ−i

,∀i

In fact, the former three terms in Eq. (3.8) are directly inherited from the
L2-TSK-FS [20] and the last term is referred to as the knowledge-leverage term
which is used to learn the knowledge from the source domains. Based on the
objective criterion in Eq. (3.8), we can derive the corresponding learning rules for
the proposed KL-TSK-FS.



62 Z. Deng and S. Wang

Parameter Solution for KL-TSK-FS

Given the optimization problem in Eq. (3.8), Theorem 1 below is proposed for
parameter solution.

Theorem 1 The dual problem of Eq. (3.8) is a QP problem as shown in Eq. (3.9).

max
α−,α+

− 1
2(1+2λ )

N

∑
i=1

N

∑
i=1

(
α−i −α+

i

)(
α−j −α+

j

)
xT

gixg j− Nτ
4

N

∑
i=1

((
α+

i

)2
+
(
α−i

)2
)

− 2λ
1+2λ

N

∑
i=1

(
α−i −α+

i

)(
pT

g0
xgi + yi

)
+ λ

1+2λ pT
g0

pg0

(3.9)

s.t.
N

∑
i=1

α−i +
N

∑
i=1

α+
i =

2
τ
, α−i ≥ 0,α+

i ≥ 0.

Proof By using the Lagrangian optimization theorem, we can obtain the following
Lagrangian function for Eq. (3.8)

L
(
pg,ξ

+,ξ−,ε,α+,α−
)
=

1
τ
· 1

N

N

∑
i=1

((
ξ+

i

)2
+
(
ξ−i

)2
)

+
1
2

(
pT

g pg
)
+

2
τ
· ε +λ (pg−pg0)

T (pg−pg0)

+
N

∑
i=1

α+
i

(
yi−pT

g xgi− ε− ξ+
i

)
+

N

∑
i=1

α−i
(
pT

g xgi− yi− ε− ξ−i
)
. (3.10)

According to the dual theorem, the minimum of the Lagrangian function in Eq.
(3.10) with respect to pg,ξ+,ξ−, ε is equal to the maximum of the function with
respect to α+,α−. Then the following equations can be considered as the necessary
conditions of the optimal solution:

∂L
∂pg

= pg + 2λ (pg−pg0)−
N

∑
i=1

(
α+

i −α−i
)

xgi = 0, (3.11a)

∂L

∂ξ+
i

=
2

Nτ
ξ+

i −α+
i = 0, (3.11b)

∂L

∂ξ−i
=

2
Nτ

ξ−i −α−i = 0, (3.11c)

∂L
∂ε

=
2
τ
−

N

∑
i=1

α−i −
N

∑
i=1

α+
i = 0. (3.11d)
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From Eqs. (3.11a)–(3.11d), we have

pg =

2λ pg0 +
N

∑
i=1

(
α+

i −α−i
)

xgi

1+ 2λ
, (3.12a)

ξ+
i =

Nτ·α+
i

2 , (3.12b)

ξ−i =
Nτ·α−i

2 , (3.12c)

N

∑
i=1

α−i +
N

∑
i=1

α+
i =

2
τ
. (3.12d)

Substituting Eqs. (3.12a)–(3.12d) into Eq. (3.10), we obtain the dual problem for
Eq. (3.8), i.e.,

max
α−,α+

−1
2(1+2λ ) ·

N

∑
i=1

N

∑
i=1

(
α+

i −α−i
)(

α+
j −α−j

)
xT

gixg j− Nτ
4 ·

N

∑
i=1

((
α+

i

)2
+
(
α−i

)2
)

− 2λ
1+2λ ·

N

∑
i=1

(
α+

i −α−i
)

pT
g0

xgi +
N

∑
i=1

(
α+

i −α−i
)

yi +
λ

1+2λ ·pT
g0

pg0

s.t.
N

∑
i=1

α−i +
N

∑
i=1

α+
i =

2
τ
, α−i ≥ 0,α+

i ≥ 0, ∀i. (3.12e)

Since the optimal solution of the dual problem, i.e., (α+)∗ , (α−)∗ , is independent
of λ

1+2λ ·pT
g0

pg0 , Eq. (3.12e) is equivalent to the following equation:

max
α−,α+

−1
2(1+2λ ) ·

N

∑
i=1

N

∑
i=1

(
α+

i −α−i
)(

α+
j −α−j

)
xT

gixg j− Nτ
4
.

N

∑
i=1

((
α+

i

)2
+
(
α−i

)2
)

− 2λ
1+2λ ·

N

∑
i=1

(
α+

i −α−i
)(

pT
g0xgi + yi

)
+

N

∑
i=1

(
α+

i −α−i
)

yi

s.t.
N

∑
i=1

α−i +
N

∑
i=1

α+
i =

2
τ
,α−i ≥ 0,α+

i ≥ 0. (3.12f)

Thus, Theorem 1 is hold.
It is clear from the above results that the optimization problem in Eq. (3.9) for

TSK-FS training can be transformed into a QP problem that can be directly solved
by the traditional QP solutions [45].
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With the optimal solution (α+)∗ , (α−)∗ of the dual problem in Eq. (3.9), we can
get the optimal solution of the primal problem in Eq. (3.8) based on the relations
presented in Eqs. (3.12a)–(3.12d). The optimal model parameters of trained TSK-
FS, i.e., (pg)∗ , is then given by

(pg)
∗ =

2λ pg0 +
N

∑
i=1

((
α+

i

)∗ − (α−i )∗)xgi

1+ 2λ
, (3.13a)

which can be further expressed as

(pg)
∗ = γpg0 +(1-γ)pgc, (3.13b)

with γ = 2λ
1+2λ , pgc =

N

∑
i=1

((
α+

i

)∗ − (α−i )∗)xgi.

From Eq. (3.13b), we can see that the final optimal parameter (pg)∗ obtained
for the desired TSK-FS contains two parts, i.e. γ · pg0 and (1− γ) · pgc. While
(1− γ) ·pgc can denote the knowledge learned from the data of the target domain,
γ · pg0 can be taken as the knowledge inherited from the source domains. Thus, the
final model parameter (pg)∗ is a balance between these two kinds of knowledge.

Learning Algorithm For KL-TSK-FS

Based on the findings in the previous section, the learning algorithm of the proposed
KL-TSK-FS is developed and described as follows:

Algorithm KL-TSK-FS

Step 1 Introduce the knowledge of the source domains, i.e., the model parameter.
Step 2 Set the balance parameters τ , λ in Eq. (3.8).
Step 3 Use the antecedent parameters of the fuzzy model obtained from the

source domains and Eqs. (3.2d) and (3.3e) to construct the dataset xgi

for the corresponding model task, i.e., the linear regression model in
Eq. (3.3f), associated with the fuzzy system to be constructed for the
target domain.

Step 4 Use Eqs. (3.9) and (3.13a) to obtain the final consequent parameters (pg)∗

of the desired TSK-FS in the target domain.
Step 5 Use the antecedent parameters inherited from the source domains and the

consequent parameters obtained in step 4 to generate the fuzzy system
for the target domain.
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Computational Complexity Analysis

The computational complexity of the above algorithm is analyzed as follows.
The whole algorithm includes two main parts: (1) acquisition of the antecedent
parameters of the fuzzy system and (2) learning of the consequent parameters.
For the first part, since the antecedent parameters are inherited directly from the
reference scene as the available knowledge, the computational complexity is O(1).
For the second, the consequent parameters are obtained by solving the QP problem
in Eq. (3.9) and the complexity is usually O(N2) for typical QP problems. However,
it can be further reduced to O(N) with some sophisticated algorithms, such as the
working set-based algorithm [33]. Therefore, the computational complexity of the
proposed algorithm is between O(N) and O(N2), depending on the QP solutions
used. In this study, we adopt the working set-based QP solution [33] for solving the
QP problem concerned.

3.3 Transductive Transfer Learning with DAKSVM

3.3.1 Concepts and Problem Formulation

In this subsection, we introduce several definitions to clarify our terminology and
propose our algorithm and analysis on the domain adaptation transfer learning
problems.

Definition 1 (Domain) A domain D is composed of both feature space
χ and marginal probabilistic distribution P(X), i.e., D= {χ , P(X)}, where
X= {xi}N

i=1 ∈ χ .

Definition 2 (Task) Given a specific domain D= {χ , P(X)}, a task is composed
of both tag space Y and target prediction function f (·), i.e., T = {Y, f (·)}, where
f (·) learned from the training dataset {xi,yi}, where xi ∈X, yi ∈Y. The function
f (·) can be used to make prediction for the tag f (x) corresponding with X. From a
probabilistic point of view f (x)=P(y|x).

Definition 3 (Domain Adaptation Learning, DAL) Given a source domain Ds

with its learning task Ts and target domain Dt with its learning task Tt, respectively,
we refer to domain adaptation learning (DAL) as the following problem: given a
set of labeled training dataset Xs = {(xi,yi)}i ∈Ds×{±1}, where yi ∈Ys⊂Y is the
class label corresponding to xi, from source domain Ds. Thus, we need to make
prediction ft(·) for some unlabeled test dataset Xt = {xj}j ∈Dt from target domain
Dt. Ds with its task Ts and Dt with its task Tt are different, respectively, in the same
feature space. When Ds =Dt and Ts =Tt, DAL will be degenerated into classical
machine learning problems.

Given an input space X and a label set Y of classes, a classifier is a function as
f (x) : X→Y which maps data x∈X to label set Y. In the context, let us consider two
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datasets Xs = {(xs1,ys1), . . . ,(xsn,ysn)} drawn from X×Y with probabilistic distribu-
tion Ps(xs,ys) and Xt = {xt1, . . . ,xtm} drawn from X with probabilistic distribution
Pt(xt,yt) where yt needs to be predicted, which are composed of n source domain
and m target domain patterns, respectively, and usually 0≤m<< n. xs and xt are
denoted by d-dimensional feature vectors with respect to Xs and Xt, respectively.
The classical large margin learning machines (such as SVMs) work well under such
hypothesis as Ps(xs,ys)=Pt(xt,yt). However, DAL can make accurate prediction for
the unlabeled target data to some extent by learning a classifier under even such
hypothesis as Ps(xs,ys) 	=Pt(xt,yt). The performance of DAL depends on both the
complexity of the investigated problems and the correlation between Ps(xs,ys) and
Pt(xt,yt) [6]. In this chapter, the proposed method is formulated under the following
hypothesis:

1. There are only one source domain and one target domain sharing the same feature
space in DAL problems, which is the most popular hypothesis used by the state-
of-the-art methods.

2. A training dataset Xs = {(xsi,ysi)}i is available for Ds while a testing dataset
Xt = {(xtj,ytj)}j is available for Dt with ytj which is unknown.

3. Ps(xs,ys) 	=Pt(xt,yt) and Ps(ys|xs) 	=Pt(yt|xt).

3.3.2 Distribution Discrepancy Metrics on RKHS Embedding
Domain Distributions

Kernel methods are broadly used as an effective way of constructing nonlinear
algorithms from linear ones by embedding datasets into some higher dimensional
RKHSs [46]. A generalization of this idea is to embed probabilistic distributions into
RKHS, giving us a linear method for dealing with higher order statistics [47, 48]. Let
a complete inner product space H of functions F, and for g∈F, g : X→R, where
X is a nonempty compact set, if the linear dot function mapping g→ g(x) exists
for all x∈X, we call H as an RKHS. Under the aforementioned conditions, g(x)
can be denoted as an inner product: g(x)=< g, φ (x)>H , where φ : X→H denotes
the feature space projection from x to H. And the inner product of the images of
any points x and x′ in feature space is called kernel k(x,x′)=< φ (x), φ (x′)>H . It is
pointed out in [48] that RKHS with Gaussian kernel is universal.

Definition 4 (Integral Probability Metric on RKHS Embedding Distributions
[2]) Given the set Θ of all Borel probabilistic measures defined on the topological
space M, and the RKHS (H, k) of functions on M with k as its reproducing kernel.
For any P∈Θ, denotes by Pk :=

∫
Mk(.,x)dP(x). If k is measurable and bounded,

then we may define the embedding of P in H as Pk∈H. Then, the RKHS embedding
distributions distance between two such mappings associated with P, Q∈Θ is
defined as follows:

γk (P,Q) = ||Pk−Qk ||H (3.14)
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We may say k is a characteristic kernel (CK) if the mapping P �→Pk is injective
[48], in which case γk(P,Q)= 0 if and only if P=Q [49]. Hence γk is viewed as the
distance metric on Θ. The RKHS embedding distributions cannot be distinguished
when k is not a CK, thus leading to the failure of RKHS embedding distribution
measure. Hence, it is a key factor for the success of RKHS embedding distribution
measure that whether k is a CK or not. Fortunately, many popular kernel functions,
such as polynomial kernel function, Gaussian kernel function, and Laplace kernel
function, are all CK and universal ones [48]. Particularly, it is worth noting that
Gaussian kernel mapping can provide us an effective RKHS embedding skill
for the consistency estimation of the probability distribution distance between
different domains [48]. Hence, in the sequel, we adopt the Gaussian kernel

function kσ (x,z) = exp
(
− 1

2σ 2 ||x− z || 2
)

, where x, z∈X, and σ denotes the kernel

bandwidth, as the reproducing kernel in Hilbert space in this work. It is worthy to
note that instead of using a fixed and parameterized kernel, one can also use a finite
linear combination of kernels to compute γk.

For domain adaptation transfer learning problems, let Ds and Dt denote source
and target domain, respectively, and Xs ∈Ds, Xt ∈Dt denote sample from Ds and Dt,
respectively, with probability measures Ps and Pt, respectively. Let Pxs,xt denote the
joint probability measure of Xs×Xt. Assume all measures are Borel ones and Xs, Xt

are two compact sets. Besides, let an RKHS H of a class of functions F with kernel
k, then for g∈F, g : X→R, where X is a nonempty compact set, there exists the
reproducing property as follows: < g(·), k(x,·)>= g(x), < k(x,·), k(x′,·)>= k(x,x′),
where <,> denotes inner product operator. Thus, by Definition 1, the unbiased
empirical estimator of maximum mean distance (MMD) on RKHS embedding
domain distributions is defined as [50]:

MMD(F,Xs,Xt) =

∥∥∥∥∥
1
n

n

∑
i=1

ϕ (xi)− 1
m

m

∑
j=1

ϕ (z j)

∥∥∥∥∥
2

, (3.15)

where xi ∈Xs, zj ∈Xt.
Specifically, by Definition 1, we can have the following definitions on RKHS

embedding distribution distance metric.

Definition 5 (Projected Maximum Mean Distance Metric on RKHS Embedding
Domain Distributions) Let linear function f : f (x)= 〈w, φ (x)〉, where w is a
projection vector. Then the projected maximum mean distance metric on RKHS
embedding domain distributions is defined as follows:

γKM ( f ,Xs,Xt) =

∥∥∥∥∥ 1
n

n

∑
i=1

wT ϕ (xi)− 1
m

m

∑
j=1

wT ϕ (z j)

∥∥∥∥∥
2

= wT

(
1
n

n

∑
i=1

ϕ (xi)− 1
m

m

∑
j=1

ϕ (z j)

)(
1
n

n

∑
i=1

ϕ (xi)− 1
m

m

∑
j=1

ϕ (z j)

)T

w,

(3.16)

where xi ∈Xs, zj ∈Xt.
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Definition 6 (Projected Maximum Scatter Distance Metric on RKHS Embed-
ding Domain Distributions) Let linear function f : f (x)= 〈w, φ (x)〉, where w is a
projection vector. Then, along the same line of Definition 2, the projected maximum
scatter distance metric on RKHS embedding domain distributions is defined as

γKS ( f ,Xs,Xt) = wT

∣∣∣∣∣
1
n

n

∑
i=1

ϕ (xi) [ϕ (xi)]
T − 1

m

m

∑
j=1

ϕ (z j) [ϕ (z j)]
T

∣∣∣∣∣w, (3.17)

where x∈Xs, z∈Xt.

Definition 7 (GPMDD Metric on RKHS Embedding Domain Distributions) By
Definitions 2 and 3, generalized projected maximum distribution distance metric on
RKHS embedding domain distributions with probabilistic distribution p, q∈P is
defined as

γKMS ( f ,Xs,Xt) = (1−λ )γKM ( f ,Xs,Xt)+λ γKS ( f ,Xs,Xt) , (3.18)

where λ ∈ [0,1] and when λ = 0, γKMS = γKM . The parameter λ is treated as a
balance between probabilistic distribution mean and scatter (or variance). When λ
increases, γKMS is biased in favor of preserving the distribution scatter consistency
between both domains. When λ decreases, γKMS is biased in favor of preserving
the distribution mean consistency between both domains. Hence, the proposed
method can preserve both the distributions consistency between domains and the
discriminative information in both domains.

It can be guaranteed by the following theorem that the GPMDD between both
domains can be measured sufficiently.

Theorem 1 [51] Let F is a unit ball defined in some universal RKHS H with a
kernel k(·,·), which are all defined in a compact metric space. And let Xs, Xt are two
compact sets generated from Borel probability metrics p and q, respectively, in the
metric space with p and q. Then γKMS(F,Xs,Xt)= 0 if and only if p= q.

3.3.3 Domain Adaptation Kernelized Support Vector Machine

Inspired by the idea of manifold regularization, MMD-based methods for transduc-
tive transfer learning (e.g., LMPROJ [28] and DTSVM [29], etc.) can be formulated
as follows:

f = min
w∈HK

C
n

∑
i=1

ξi +
1
2‖w‖2

K +λ γKM ( f ,Xs,Xt)

s.t.
yi
(
wT φ (xi)+ b

)≥ 1− ξi,

ξi ≥ 0, i = 1, . . . ,n

(3.19)
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where w is a normal projection vector, k is a kernel with φ a kernel mapping, HK is
a set of functions in the kernel space, λ is a balance parameter, and γKM(f,Xs,Xt) is
the projected distribution mean distance metric between source and target domains,
where xi ∈Xs.

However, Eq. (3.6) discloses a key limitation of MMD-based methods to some
extent, i.e., they ignore considering sufficiently the potential scatter statistics, which
may include underlying discriminative information in both domains for DAL, such
that they may lead to “overfitting” phenomenon in some specific pattern recognition
applications. Therefore, in this chapter, we propose a robust DAKSVM regularized
by GPMDD metric on RKHS embedding domain distributions, which partially
extends the ideas of classical SVMs and MMD. The key goals of our methods are
to find a feature transform such that the mean and variance distances between the
distributions of the testing and training data are minimized sufficiently, while at
the same time maximizing the class margin or certain classification performance
criterion for the training data, thus learning a robust model to effectively make
prediction for target domain.

3.3.3.1 Objective Function of DAKSVM

For simplicity, firstly we only consider binary pattern classification problems, and
secondly we propose a so-called least-square DAKSVM (LSDAKSVM) based on
the classical LS-SVM [52] as an extension to the standard DAKSVM method for
multi-class pattern classification problems.

For DAL problems, DAKSVM aims to find a linear transform f (x)=wTϕ(x) in
a universal RKHS with Gaussian kernel mapping, where w is a linear projection
vector, in order to minimize the distribution discrepancy between-domain as well
as to reduce the empirical risk of the classification decision function as much as
possible, thus implementing transfer learning in cross-domains. DAKSVM can be
formulated as

min f =C
n

∑
i=1

V (xi,yi, f )+γKMS ( f ,Xs,Xt) , (3.20)

where xi ∈Xs is a set of training data and matrix φ (Xs)= (φ (xs1), φ (xs2), . . . , φ (xsn)),
yi ∈Ys is the class label corresponding to xi, C > 0 is a regularization coefficient,
and V measures the fitness of the function in terms of predicting the class labels
for the training data and is called the risk function. The hinge loss function is
a commonly used risk function in the form of V = (1− yif (xi))+ [53] in which
(x)+ = x if x≥ 0 and zero otherwise.

Therefore, the linear function f in Eq. (3.20) represented by a vector w can be
represented as

arg min
w,b,ξ

f =C
n

∑
i=1

ξi + γKMS ( f ,Xs,Xt)

s.t. yi ((w,ϕ (xi) )+b)≥ 1− ζi, i = 1,2, . . . ,n
(3.21)
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In order to solve the primal in Eq. (3.21) effectively, we introduce the following
revised Representer Theorem for DAL problems as follows:

Theorem 2 (Representer Theorem [54] for DAL) For a DAL problem, let
ψ : [0, ∞)→R denote a strictly monotonic increasing function, X=Xs ∪Xt be a
dataset, and c : (X×R2)n→R∪{∞} be any loss function. Then the regularized risk
function is defined as

R( f ) = c((xi,yi, f (xi))
n
i=1)+ψ

(|| f ||2H) , (3.22)

where f ∈H is represented as

f (x) =
m

∑
i=1

βik (xi,x)+
n

∑
j=1

β jk (z j,x) , (3.23)

where k is a kernel, xi ∈Xs, yi ∈Ys, zj ∈Xt and β i is a coefficient.
By Theorem 2, we can have the following theorem.

Theorem 3 The primal of DAKSVM can be formulated as

min
β,ξ,b

f = 1
2β

T Ωβ+C
N

∑
i=1

ξi, (3.24a)

s.t. yi

(
n+m

∑
j=1

β jkσ (xi,x j)+ b

)
≥ 1− ξi, i = 1, . . . ,n,

where xi ∈Xs, xj ∈Xs ∪Xt, Ω is a positive semi-definite kernel matrix with

Ω = (1−λ )Ω1 +λ Ω2 (3.24b)

where Ω1 is a (n+m)× (n+m) symmetrical positive semi-definite kernel matrix
defined as

Ω1 =
1
n2 Ks[1]

n×nKT
s +

1
m2 Kt [1]

m×mKT
t −

1
nm

(
Ks[1]

n×mKT
t +Kt [1]

m×nKT
s

)
(3.24c)

and Ω2 is a (n+m)× (n+m) symmetrical positive semi-definite kernel matrix
defined as

Ω2 =

∣∣∣∣1nKsKT
s −

1
m

KtKT
t

∣∣∣∣ (3.24d)

where Ks is a (n+m)× n kernel matrix for the training data, Kt is a (n+m)×m
kernel matrix for test data, and [1]k× l is a k× l matrix of all ones.
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Theorem 4 The dual of the primal in Eq. (3.24) can be formulated as

min
α

1
2α

T Hφα− 1Tα (3.25)

s.t. 0≤ αi ≤C, i = 1, . . . ,n,

n

∑
i=1

αiyi = 0,

where Hφ = ỸKT
s (Ω)−1KsỸ, and Ỹ = diag(y1,y2, . . . ,yn), yi ∈Ys.

By the same way of the classical SVM, the biased variable bϕ in the kernel space
can be formulated as

bφ =−1
2

(
1
|Xs+| ∑

x∈Xs+

n+m

∑
j=1

β jkσ (x j,x)+
1
|Xs−| ∑

x∈Xs−

n+m

∑
j=1

β jkσ

(
x j,x

))
(3.26a)

Meanwhile, we can get the solution of β with dual theory as follows:

β = (Ω)−1Ks
∼
Yα (3.26b)

3.3.3.2 Learning Algorithm of DAKSVM

The proposed DAKSVM algorithm can be summarized as follows.

Algorithm DAKSVM

Input: Dataset matrix X= ({xi,yi}n
i=1,{zj}m

j=1), xi ∈Xs, yi ∈Ys, zj ∈Xt, set
Gaussian kernel bandwidths σ , σ /γ , respectively, in γKM and γKS of
GPMDD.

Output: Decision function f (x).
Step 1: Determine the parameter γ in γKS of GPMDD such that the scatter

consistency between source and target domains is maximized.
Step 2: Compute the matrices Ω1 and Ω2, respectively, by Eqs. (3.24a) and

(3.24b). In terms of λ given by users to construct matrix
Ω= (1− λ )Ω1 +λ Ω2.

Step 3: For the given C, find out the optimal vector β by applying Theorem 4
to solve the corresponding dual. And then recover the optimal
normal vector w and bias bφ by β;

Step 4: Output the decision function f (x)=wTφ (x)+ bφ .
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3.3.4 Variants and Extensions

3.3.4.1 Least-Square DAKSVM

One variant of DAKSVM is the LSDAKSVM which is also based on the idea of
LS-SVM [52], which can be formulated as:

arg min
w,b,ξ

f = C
2

n

∑
i=1

ξ 2
i + γKMS (p,q)

s.t. (w,φ (xi))+ b = yi− ξi, i = 1,2, . . . ,n.
(3.27)

Along the same line of DAKSVM, the primal of Eq. (3.17) is defined as

min
β,ξ,b

f = 1
2β

T Ωβ+ C
2

n

∑
i=1

ξ 2
i , (3.28)

s.t.
n+m

∑
j=1

β jkσ/γ (xi,x j)+ b = yi− ξi, ξi ≥ 0, i = 1, . . . ,n.

Theorem 5 (Analytic Solution to Binary Class Case) Given the parameter
λ ∈ [0,1], for a binary classification problem, the optimal solution of Eqs. (3.27)
and (3.28) is equivalent to the linear system of equations with respect to variable α
as follows:

[
0 1T

n

1n Ω̃

][
b
α

]
=

[
0

Ys

]
, (3.29)

where 1n = [1, . . . ,1]T , α= [α1, . . . ,αn]T , Ys = [y1, . . . ,yn]T , Ω̃ = KT
s (Ω)−1Ks +

In
C , In is an n-dimensional identity matrix.

As for multi-class classification problems, the traditional skills are to separate a
multi-class classification problem into several binary classification problems in one-
against-one (OAO) or one-against-all (OAA) way. However, the main drawbacks
of these skills deal with high computational complexity and imbalance between
classes. Hence, here we introduce the vector labeled outputs into the solution
of LSDAKSVM, which can make the corresponding computational complexity
independent of the number of classes and require no more computations than a
single binary classifier [55]. Furthermore, Szedmak and Shawe-Taylor [55] pointed
out that this technique does not reduce the classification performance of a learning
model but in some cases can improve it, with respect to OAO and OAA. Therefore,
we represent the class labels according to the one-of-c rule, namely, if training
sample xi (i= 1, . . . , n) belongs to the kth class, then the class label of xi is
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Y i =

⎡
⎣0, . . . ,1︸ ︷︷ ︸

k

, . . . ,0

⎤
⎦

T

∈Rc, where the kth element is one and all the other elements

are zero. Hence, for some multi-class classification problems, the optimal problem
of LSDAKSVM can be formulated as

min
β,ξ,b

f = 1
2 β̃

T Ωβ̃+ C
2

n

∑
i=1

ξ 2
i , (3.30)

s.t. β̃
T

Ks + b = Yi− ξi, i = 1, . . . ,n,

where β̃ ∈ Rn×c, b∈Rc.

Theorem 6 (Analytic Solution to Multi-Class Case) Given the parameter
λ ∈ [0,1], for a multi-class classification problem, the optimal solution of Eq.
(3.30) is equivalent to the linear system of the following equation.

[
b α

][ 0 1T
n

1n Ω̃

]
=
[

0c Ỹs
]
, (3.31)

where 0c = [0, . . . ,0]T , α= [α1, . . . ,αn]T , Ỹs = [Y1,Y2, . . . ,Yn]
T ,
∼
Ω is the same as in

Theorem 6.
Theorems 5 and 6 actually provide us the LSDAKSVM versions for both binary

and multi-class classification problems, respectively. It is clearly shown from Eqs.
(3.20) and (3.23) that LSDAKSVM keeps the same solution framework for both
binary and multi-class cases.

3.3.4.2 μ-Domain Adaptation Kernelized Support Vector Machine

The v-SVM [56] is a typical extension of SVM for classification in which Schölkopf
et al. introduced a new parameter v instead of C in SVM to control the number of
support vectors and the training errors. More details about v-SVM can be found in
[56]. Hence, as the second variant of DAKSVM based on v-SVM, μ-DAKSVM can
be formulated as:

min
β,ξ,b

f = 1
2β

T Ωβ− μρ + 1
N

n

∑
i=1

ξi, (3.32)

s.t. yi

(
N

∑
j=1

β jkσ/γ (xi,x j)+ b

)
≥ ρ− ξi, i = 1, . . . ,n,
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where the variables N = n+m, ρ ≥ 0, μ > 0 and ξ i≥ 0 have the same meaning as in
v-SVM. Similar to v-SVM, the dual of the primal in Eq. (3.32) can be formulated as:

min
α

1
2 αT Hφ α (3.33)

s.t. 0≤ αi ≤ 1
N
, i = 1, . . . ,n,

n

∑
i=1

αiyi = 0,

n

∑
i=1

αi ≥ μ ,

where Hϕ =
∼
YKT

s

(
Ω
)−1

Ks
∼
Y, and

∼
Y = diag(y1,y2, . . . ,yn), yi ∈Ys.

3.3.5 Computational Complexity Analysis

In terms of Algorithm 1, DAKSVM and its variants can be implemented by using
standard SVM solver (e.g., LibSVM [57]) with the quadratic form induced by
matrix Ω aforementioned above, and using the optimal solution to obtain the
expansion coefficients by Eqs. (3.35) and (3.13)–(3.15) respectively. It is worth
noting that our algorithms compute the inverse of a dense Gram matrix Ω which
leads to O((n+m)3) training complexity comparable to SVM. This seems to be
impractical for large datasets. However, for highly sparse datasets, for example,
in text categorization problems, effective conjugate gradient schemes can be used
in a large-scale implementation [58]. For the nonlinear case, one may obtain
approximate solutions (e.g., using greedy, matching pursuit techniques) where the
optimization problem is solved over the span of a small set of basis functions instead
of using the full representation in f (x)=wTφ (x). Besides, CVM [59] may be an
alternative choice in addressing scalability issues occurring in SVM learning. The
testing complexity of DAKSVM depends on the number of support vector learned
from the training stage. In fact, the proposed method DAKSVM and its variants
take less than half a minute to finish the whole prediction for test samples from
target domain in most of the following experiments.
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3.4 Experimental Results of KL-TSK-FS

3.4.1 Experimental Settings

The proposed inductive transfer learning method KL-TSK-FS is evaluated by using
both synthetic and real-world datasets. Details about the evaluation will be described
in detail in Sects. 3.4.2 and 3.4.3, respectively. For clarity, the notations for the
datasets and their definitions are listed in Table 3.2. Here, datasets generated from
the source domain and the target domain are denoted by D1 and D2, respectively.
The proposed support learning-based KL-TSK-FS algorithm is evaluated from the
following two aspects.

1. Comparison with traditional support vector learning-based L2-TSK-FS. The
performance of KL-TSK-FS is compared comprehensively with that of three
L2-TSK-FS methods implemented under different conditions. That is, four TSK-
FS systems are constructed by (a) L2-TSK-FS based on the data in the source
domain, (b) L2-TSK-FS based on the data in the target domain, (c) L2-TSK-FS
based on the data in both the target domain and the source domain, and (d) the
proposed KL-TSK-FS. They are denoted by L2-TSK-FS(D1), L2-TSK-FS (D2),
L2-TSK-FS (D1+D2), and KL-TSK-FS(D2+Knowledge), respectively. With
these four fuzzy systems, the testing data, i.e. D2_test, of the target domain are
used to evaluate their generalization capability.

2. Comparison with regression methods designed for datasets with missing or
noisy data. Three related regression methods are employed to compare with the
proposed KL-TSK-FS for performance evaluation. The three methods include:
(a) TS-fuzzy system-based support vector regression (TSFS-SVR) [60]; (b)
fuzzy system learned through fuzzy clustering and SVM (FS-FCSVM) [61];
and (c) Bayesian task-level transfer learning for nonlinear regression method
(HiRBF) [20].

The methods adopted for performance comparison from these two aspects are
summarized in Table 3.3. The following generalization performance index J is used
in the experiments [2],

Table 3.2 Notations of the adopted datasets and their definitions

Notation Definitions

D1 Dataset generated from the source domain
D2 Dataset generated from the target domain for training
D2_test Dataset generated from the target domain for testing
r Relation parameter between the source domain and the target domain, which is used

to construct the synthetic datasets
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Table 3.3 The methods adopted for performance comparison

Support vector learning and L2-norm
penalty-based TSK-FS modeling methods

Four methods designed for noisy/
missing data

(1) The proposed KL-TSK-FS
(D2+Knowledge)

(2) L2-TSK-FS
(D1) [2]

(1) The proposed
KL-TSK-FS

(5) TSFS-SVR
[60]

(3) L2-TSK-FS
(D2) [2]

(6) FS-FCSVM
[61]

(4) L2-TSK-FS
(D1+D2) [2]

(7) HiRBF [20]

J =

√√√√√√√√√

1
N

N

∑
i=1

(
y′i− yi

)2

1
N

N

∑
i=1

(yi− y)2

, (3.34)

where N is the number of test datasets, yi is the output for the ith test input, y
′
i is the

fuzzy model output for the ith test input, and y = 1
N

N

∑
i=1

yi. The smaller the value of

J, the better the generalization performance.
In the experiments, the hyperparameters of all the methods adopted are deter-

mined by using the fivefold cross-validation strategy with the training datasets. All
the algorithms are implemented using MATLAB on a computer with Intel Core 2
Duo P8600 2.4 GHz CPU and 2GB RAM.

3.4.2 Synthetic Datasets

3.4.2.1 Generation of Synthetic Datasets

Synthetic datasets are generated to simulate the domains in the study and the
following requirements need to be satisfied: (1) the source domain should be related
to the target domain, i.e., the source and target domains are different but related; (2)
some of the data of the target domain are not available or missing. In other words,
the data available from the target domain are insufficient.

Based on the above requirements, the function Y = f (x)= sin(x) ∗ x, x∈ [−10, 10]
is used to describe the source domain and to generate the dataset D1. On the other
hand, the function y= r * f (x)= r * sin(x) * x, x∈ [−10, 10] is used to describe the
target domain and to generate the dataset D2 and testing dataset D2_test for the tar-
get domain. Here, r is a relation parameter between the source domain and the target
domain. The parameter is used to control the degree of similarity/difference between
these two domains. When r = 1, the two domains are identical. On the other hand,
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Table 3.4 Details of the synthetic datasets

Source domain Target domain

Dataset Training set Testing set
Size of dataset Interval with missing data Size of dataset Size of dataset
400 [−6, −3] and [0, 4] 144 200
Relation parameter between the two domains: r = 0.9, 0.85, 0.8, 0.75 and 0.7
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Fig. 3.3 Functions representing two different domains with the relation parameter r = 0.85 and the
corresponding sampled data from these domains: (a) the functions representing the source domain
(Y) and the target domain (y); (b) the data of the source domain and the training data of the target
domain with missing data in the intervals [−6, −3] and [0, 4]

the lack of information (data insufficiency) is simulated by introducing intervals
with missing data into the training set generated for the target domain. The settings
for generating the synthetic datasets are described in Table 3.4. For example, the
two functions used to simulate the two related domains, with the relation parameter
r = 0.85, are shown in Fig. 3.3a. The datasets of the source domain and the training
sets of the target domain, generated with the same relation parameter (i.e. r = 0.85),
are shown in Fig. 3.3b. The figures also show the two data-missing intervals [−6,
−3] and [0, 4] introduced into the dataset.

3.4.2.2 Comparing with the Traditional Support Vector Learning-Based
L2-TSK-FS Modeling Methods

The performance of the proposed KL-TSK-FS and the three traditional L2-norm
penalty-based TSK-FS modeling methods is evaluated and compared using the
synthetic datasets. The experimental results are shown in Table 3.5 and Fig. 3.4.
In Table 3.5 and other tables in this paper, the bold values denote the best results
obtained among all the methods. The following observations can be made from the
results:
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Table 3.5 Generalization performance (J) of the proposed KL-TSK-FS method and the traditional
L2-TSK-FS methods on the synthetic datasets

Interval with
data missing

Relation
parameter
(r)

L2-TSK-FS
(D1)

L2-TSK-FS
(D2)

L2-TSK-FS
(D1+D2)

KL-TSK-FS
(D2+Knowledge)

[−6, −3]
and [0, 4]

0.9 0.1343 0.2858 0.1012 0.0501
0.85 0.1908 0.2813 0.1434 0.0516
0.8 0.2574 0.2864 0.1983 0.1094
0.75 0.3525 0.2841 0.2627 0.1534
0.7 0.4406 0.2821 0.3432 0.2388
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Fig. 3.4 Modeling results of the proposed KL-TSK-FS method and three traditional L2-TSK-FS
methods by using the synthetic datasets shown in Fig. 3.5b: (a) L2-TSK-FS based on the data
of the source domain (D1); (b) L2-TSK-FS based on the data of the target domain (D2); (c) L2-
TSK-FS based on the data of both the reference and target domains (D1+D2); (d) the proposed
KL-TSK-FS (D2+Knowledge)

1. It can be seen from Table 3.4 that the generalization performance of the
knowledge-leverage-based fuzzy system KL-TSK-FS is better than that of the
traditional L2-TSK-FS methods.

2. Figure 3.4a shows the modeling results of the L2-TSK-FS obtained by using the
data of the source domain only. The results indicate that drifting exists between
the source domain and the target domain, as evident from the discrepancies
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between the two curves in the figure. Hence, the generalization performance of
the TSK-FS obtained by L2-TSK-FS from the source domain is weak for the
target domain. The findings show that the use of the data of the source domain
alone is not appropriate for the modeling of the target domain.

3. Figure 3.4b shows the modeling results of the L2-TSK-FS obtained by using
the data of the target domain only. The results indicate that the generalization
performance of the TSK-FS obtained by L2-TSK-FS is even much weaker for
the target domain. An obvious reason is that the data in the training set is
insufficient, which degrades the generalization capability of the obtained TSK-
FS. The prediction performance is especially poor in the intervals with missing
data in the training dataset.

4. Figure 3.4c shows the modeling results of the L2-TSK-FS obtained by using
the data of both the target domain and the source domain. Although the data of
both domains have been used for training, the generalization performance of the
obtained TSK-FS is still not good enough for the target domain. This can be
explained by two reasons. First, drifting occurs between the reference and target
domains, i.e., not all data in the source domain are useful for the modeling task of
the target domain. Some of them may even have negative influence. Second, the
size of the source domain is larger than that of the target domain, which makes
the obtained TSK-FS more apt to approximate the source domain rather than the
target domain.

5. Figure 3.4d shows the modeling results of the proposed KL-TSK-FS. The
following observations can be made by comparing its results with the results
of the three L2-TSK-FS methods, respectively. First, by inspecting Fig. 3.4a, d,
we see that the KL-TSK-FS demonstrates better prediction results than the
L2-TSK-FS which only uses the data of source domain. Second, it is evident
from Fig. 3.4b, d that, by introducing the knowledge-leverage mechanism, the
proposed KL-TSK-FS has effectively remedied the deficiency of the L2-TSK-FS
obtained by the data of the target domain. By comparing Fig. 3.4c, d, we also
find that the KL-TSK-FS has demonstrated better generalization performance
than the L2-TSK-FS which employs the data of both the reference and target
domains. It is noteworthy to point out that the KL-TSK-FS also has better
privacy-protection capability than the methods that use the data of source
domains directly. When the data in the source domains are not available due
to the necessity of privacy protection, or in situations where knowledge are
only partially revealed, methods requiring the data of all domains are no longer
feasible. Therefore, the proposed KL-TSK-FS is particularly suitable for these
situations attributed to its distinctiveness in privacy protection.

3.4.2.3 Comparing with Regression Methods Designed for Missing
or Noisy Data

The performance of the proposed KL-TSK-FS method is evaluated by comparing
its performance with that of three regression methods designed for handling
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Table 3.6 Generalization performance (J) of the proposed KL-TSK-FS method and three related
regression methods on the synthetic datasets

Interval with
missing data

Relation
parameter (r) TSFS-SVR FS-FCSVM HiRBF KL-TSK-FS

[−6, −3] and
[0, 4]

0.9 0.2972 0.3161 0.2621 0.0501
0.85 0.2989 0.3179 0.2619 0.0516
0.8 0.2983 0.3170 0.2687 0.1094
0.75 0.2933 0.3167 0.2639 0.1534
0.7 0.2970 0.3185 0.2611 0.2388
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Fig. 3.5 Modeling results of the proposed KL-TSK-FS method and three related regression
methods using the synthetic datasets in Fig. 3.5b: a TSFS-SVR, b FS-FCSVM, c HiRBF, and
d KL-TSK-FS

noisy/missing data, i.e., TSFS-SVR, FS-FCSVM, and HiRBF. The evaluation is
performed on the synthetic datasets. The experimental results are shown in Table 3.6
and Fig. 3.5, and the following observations can be obtained:

1. KL-TSK-FS has demonstrated better generalization performance than the other
three related methods.

2. The results in Fig. 3.5a, b show that the support vector learning-based fuzzy mod-
eling methods TSFS-SVR and FS-FCSVM are able to give better generalization
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TSK-FS 1

TSK-FS 2

TSK-FS 3

S(h+2)

P(h+2)

X(h+2)

I(h)

I(h)= [S(h), P(h), X(h), h ,Q(h), R(h)]

Fig. 3.6 Illustration of the
glutamic acid fermentation
process prediction model
based on the TSK-FS

performance to a certain extent. For example, although the data in the interval
[−6,−3] are missing, these two methods still demonstrate promising generaliza-
tion capability at this interval. However, the generalization abilities of these two
methods in the other data-missing interval [0, 4] are not satisfactory.

3. Although the transfer learning-based method HiRBF has used the data in both the
target domain and the source domain in the training, it is evident form Fig. 3.5c
that this method cannot effectively cope with the problem caused by the missing
data, still exhibiting poor generalization ability in the two data-missing intervals.

4. Figure 3.5d shows that the proposed method KL-TSK-FS is able to give
acceptable generalization capability in the two data-missing intervals, indicating
that the method has effectively leveraged the useful knowledge from the source
domain and remedy the generalization abilities in the training procedure.

3.4.3 Real-World Datasets

3.4.3.1 The Glutamic Acid Fermentation Process Modeling

To further evaluate the performance of the proposed method, an experiment is
conducted to apply the method to model a biochemical process with real-world
datasets [2]. The datasets adopted originates from the glutamic acid fermentation
process, which is a multiple-input–multiple-output system. The input variables
of the dataset include the fermentation time h, glucose concentration S(h), thalli
concentration X(h), glutamic acid concentration P(h), stirring speed R(h), and ven-
tilation Q(h), where h= 0, 2, · · · , 28. The output variables are glucose concentration
S(h+ 2), thalli concentration X(h+ 2), and glutamic acid concentration P(h+ 2) at
a future time h+ 2. The TSK-FS-based biochemical process prediction model is
illustrated in Figs. 3.6. The data in this experiment were collected from 21 batches
of fermentation processes, with each batch containing 14 effective data samples. In
this experiment, in order to match the situation discussed in this study, the data are
divided into two domains, i.e., the source domain and the target domain, as described
in Table 3.7.
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Table 3.7 The fermentation process modeling datasets

Data of target domain

Data of source domain (D1) Training set (D2)a Testing set (D2_test)

Batches 1–16 17–19 20–21
Size of dataset 224 30 28
aFor training set of the target domain, information is missing at time h= 6, 8, 10, 12

Table 3.8 Generalization performance (J) of the proposed KL-TSK-FS
method and the traditional L2-TSK-FS methods in fermentation process
modeling

Output
L2-TSK-FS
(D1)

L2-TSK-FS
(D2)

L2-TSK-FS
(D1+D2)

KL-TSK-FS
(D2+Knowledge)

S(h+ 2) 0.2792 0.3944 0.2804 0.1239
X(h+ 2) 0.8342 1.1203 1.0642 0.4548
P(h+ 2) 0.2842 0.3255 0.2533 0.1482

3.4.3.2 Comparing with the Traditional L2-TSK-FS Modeling Methods

The experimental results of fermentation process modeling using the proposed
inductive transfer learning method KL-TSK-FS and the traditional L2-TSK-FS are
given in Table 3.8 and Fig. 3.7. The findings are similar to those presented in section
IV-B for the experiments performed on the synthetic datasets. The modeling results
of the KL-TSK-FS are better than that of the three traditional L2-TSK-FS methods.
As the proposed method can effectively exploit not only the data of the target
domain but also the useful knowledge of the source domains, the obtained TSK-
FS has demonstrated better adaptive abilities. It can be seen from the experimental
results that, even if the data in the training data of the target domain are missing,
the generalization capability of the TSK-FS obtained by the proposed KL-TSK-FS
does not degrade significantly. This remarkable feature is very valuable for the task
of biochemical process modeling since the lack of sampled data is common due to
poor sensitivity of sensors in the noisy environment.

3.4.3.3 Comparing with the Regression Methods Designed for Missing
or Noisy Data

The experimental results of fermentation process modeling using the proposed
inductive transfer learning method KL-TSK-FS and three regression methods (i.e.,
TSFS-SVR, FS-FCSVM, and HiRBF) are shown in Table 3.9 and Fig. 3.8. Similar
to the findings presented in Sect. 3.4.2.3 for the experiments conducted with the
synthetic datasets, in general, the proposed KL-TSK-FS has demonstrated better
generalization performance than the other three regression methods in fermentation
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Fig. 3.7 Performance comparison between the proposed KL-TSK-FS method and three traditional
L2-TSK-FS methods in fermentation process modeling: the prediction results of a S(h+ 2) for the
20th batch; b S(h+ 2) for the 21st batch; c X(h+ 2) for the 20th batch; d X(h+ 2) for the 21st
batch; e P(h+ 2) for the 20th batch; and f P(h+ 2) for the 21st batch

process modeling. This can be explained again by the fact that the proposed KL-
TSK-FS has effectively leveraged the useful knowledge from the source domain in
the training procedure such that the influence of the missing data can be properly
reduced.
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Table 3.9 Generalization performance (J) of the proposed KL-TSK-FS method and
several related regression methods in fermentation process modeling

Output TSFS-SVR FS-FCSVM HiRBF KL-TSK-FS

S(h+ 2) 0.3452 0.3750 0.3510 0.1239
X(h+ 2) 0.7295 0.6118 0.7026 0.4548
P(h+ 2) 0.3574 0.4144 0.4117 0.1482
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Fig. 3.8 Performance comparison between the proposed KL-TSK-FS method and three regression
methods in fermentation process modeling: the prediction results of a S(h+ 2) for the 20th batch; b
S(h+ 2) for the 21st batch; c X(h+ 2) for the 20th batch; d X(h+ 2) for the 21st batch; e P(h+ 2)
for the 20th batch; and f P(h+ 2) for the 21st batch
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3.5 Experimental Results of DAKSVM

3.5.1 Experiment Settings

To evaluate the effectiveness of the proposed transductive learning method
DAKSVM and its extensions for DAL problems, we systematically compare them
with several state-of-the-art algorithms on different datasets. We investigate three
classes of domain adaptation problems: (1) a series of two-dimensional synthetic
problems having different complexities with a two-moon dataset, (2) several real-
world cross-domain text classification problems with different domain adaptation
datasets such as 20Newsgroups, Reuters, Email Spam Filtering, web query set,
and Amazon sentiment reviews set, and (3) a real problem in the context of
multi-class classification in intra-domain on face recognition with Yale and ORL
datasets. For all these datasets, true labels are available for both source and target-
domain instances. However, prior information related to the target domain Dt is
considered only for an objective and quantitative assessment of the performances of
the proposed algorithms.

We construct synthetic datasets (two-moon) to exhibit the performance of
the proposed method and choose real-world datasets to show the classification
performance of the proposed method DAKSVM and its extension μ-DAKSVM.
We also carry out a multi-class classification experiment to show the performance
of the proposed method LSDAKSVM in multi-class classification problems.

In the sequel, we will first describe the whole experimental details. Throughout
this experimental part, we use standard Gaussian kernel function as for several
related kernel methods such as SVM, TSVM, KMM, TCA, LMPROJ, and DTSVM.
For multiple kernel learning in DTSVM, according to the setting in [29], we
use four Gaussian base kernels with the bandwidth 1.2δ σ , where δ is set as
{0,0.5,1,1.5}. For our methods, we use the parameterized Gaussian kernel as
kσ /γ (x,xi)= exp(−‖x− xi‖2/2(σ /γ)2) in γKS of GPMDD, where the kernel parame-
ter σ can be obtained by minimizing MMD with the most conservative test, which
follows the setting in [46]. Empirically, we first select σ as the square root of the
mean norm of the training data for binary classification and σ

√
c(where c is the

number of classes) for multi-class classification. The tunable parameter γ can be set
by minimizing GPMDD with the most optimal target test.

Presently, how to choose the algorithm parameters for the kernel methods still
keeps an open and hot topic. In general, the algorithm parameters are manfully set.
In order to evaluate the performance of the algorithm, a strategy, as is pointed out
in [62], is that a set of the prior parameters is first given and then the best cross-
validation mean rate among the set is used to estimate the generalized accuracy.
In this work we adopted this strategy. The fivefold cross validation is used on the
training set for parameter selection. Finally, the mean of experimental results on the
test data is used for the performance evaluation. We chose the percentage overall
accuracy AC% (i.e., the percentage of correctly labeled samples over the number of
the whole samples) as the classification accuracy measure.
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In the context, SVMs (such as SVM or v-SVM, TSVM) is implemented by
the state-of-the-art software package such as LIBSVM [57]. As the experiments in
Sect. 3.4, all the algorithms are implemented using MATLAB on a computer with
Intel Core 2 Duo P8600 2.4 GHz CPU and 2GB RAM.

3.5.2 Synthetic Datasets

3.5.2.1 Generation of Synthetic Datasets

In this subsection, we construct a serial of trials on two-moon datasets to justify
our method DAKSVM. In this toy problem, a serial of two-moon datasets with
different complexities are used to exhibit the generalization capability of the
proposed method DAKSVM on domain adaptation transfer learning. We compare
the proposed method DAKSVM with SVM and LMPROJ on this toy data.

A synthetic dataset containing 600 samples generated according to a bi-
dimensional pattern of two intertwining moons associated with two specific
information classes (300 samples each) is taken as the source domain data, as
shown in Fig. 3.9a. Target data were generated by rotating anticlockwise the
original source dataset 11 times by 10◦, 15◦, 20◦, 25◦, 30◦, 35◦, 40◦, 45◦, 50◦,
55◦, and 60◦, respectively. Due to rotation, source and target-domain data exhibit
different distributions. Particularly, the greater the rotation angle, the more complex
the resultant domain adaptation problem, as confirmed by the values for Jensen–
Shannon scatter (DJS) [6] shown in Fig. 3.10a. The proposed DAKSVM algorithm
is proved to be particularly effective for solving this kind of problems with high
accuracy. Figure 3.9b, c shows the target domain data with the rotation angle 30◦
and 60◦, respectively.

3.5.2.2 Comparing with the Related Methods

Figure 3.9d–i shows the learning accuracy rates of different methods on the datasets
shown in Fig. 3.9b, c. And Fig. 3.10b shows the performance comparison among
different methods on 11 target datasets aforementioned above. From Figs. 3.9b–d
and 3.10b, we can observe that with appropriate learning parameters, the proposed
method can obtain perfect separation between classes even if the rotation angles
range from 10◦ to 50◦. Besides, we can also observe several results as follows:

1. From Fig. 3.9d–i, we can observe that the accuracies of DAKSVM and LMPROJ
are always higher than those by SVM according to a fivefold cross-validation on
source domain data. This result shows that it is unsuitable for SVM on cross-
domain learning. With Figs. 3.9 and 3.10, in some angles range (i.e., from 10◦ to
50◦), the proposed method and LMPROJ can preserve the solution consistency
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Fig. 3.9 Performance of different classifiers on two two-moon datasets with different complexi-
ties. a The original two-moon dataset; b rotation angle 30◦; c rotation angle 60◦; d classification
accuracy for SVM: 95.4 %; e classification accuracy for SVM: 65 %; f classification accuracy for
LMPROJ: 97.3 %; g classification accuracy for LMPROJ: 78.7 %; h classification accuracy for
DAKSVM: 98.7 %; i classification accuracy for DAKSVM: 87.5 %

well with target domain to some extent, which shows that the proposed method
is better than or at least comparable to LMPROJ in this experiment.

2. Figure 3.10b shows that for greater values of rotation angles (i.e., from 50◦ to
60◦), the classification accuracy rates of all methods descend dramatically, which
seems reasonable due to the increase of the complexity of the corresponding
domain adaptation problems; however, the descendant rate of the proposed
method is slower than others due to preserving the distribution consistency of
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Fig. 3.10 Jenson–Shannon divergence values and classification accuracies on target domain data
for different rotation angles: a Jenson–Shannon divergence values for different rotation angles
(DJS); b accuracies exhibited on target domain data for different rotation angles

both means and variances of different domains. When the rotation angle is big
enough, all methods will not be able to keep the solution consistency with target
domain. If this case happens, the hypothesis aforementioned above will not be
satisfied.

3.5.3 Binary Class Text Classification Datasets

In this section, we demonstrate the overall efficiency and effectiveness of the
proposed method DAKSVM and its variation μ-DKSVM on five different real-
world domain adaptation tasks for text datasets such as 20Newsgroups, Reuters,
mail spam filtering, web query classification, and Amazon sentiment reviews
classification.

Except for SVM, KMM, DTSVM, LMPROJ, and the TSVM, we still choose for
comparison another two algorithms from KDD’08. They are cross-domain spectral
classifier [63] and locally weighted ensemble (LWE) classifier [9].

Unlike SVM and TSVM with default parameter values are adopted in most cases,
in order to make our comparison fair, we report the best performance for each
method over a range of parameter selections.

3.5.3.1 Dataset Settings

A brief description of each dataset and its setup is given in this subsection.
Tables 3.10 and 3.11 summarize the datasets and give the indices to some of which
we will refer in our experimental results. For example, dataset 6 is a 20Newsgroup
dataset about Rec. vs. Sci. where the number of positive and negative training
samples is 1,984 and 1,977, respectively, and the number of positive and negative
class testing samples is 1,993 and 1,972, respectively.
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Table 3.11 Web query text and sentiment reviews classification tasks

Task Categories
Number of training
samples

Number of testing
samples

13 Web query Business (B) 1,500 1,200
14 Computers (C) 1,500 1,000
15 Education (E) 2,210 2,500
16 Health (H) 1,180 1,190
17 Sports (S) 1,420 660
18 Amazon sentiment

reviews
Books (B) 1,000 1,000

19 DVDs (D) 1,000 1,000
20 Electronics (E) 1,000 1,000
21 Kitchen (H) 1,000 1,000

20Newsgroups and Reuters

Reuters and 20Newsgroups are two cross-domain text classification datasets com-
monly used by the state-of-the-art DAL classifiers [9, 28–30, 36, 64]. These
datasets both represent text categorization tasks, Reuters is made up of news articles
with five top-level categories, among which, Orgs, Places, and People are the
largest, and the 20Newsgroups dataset contains 20newsgroup categories each with
approximately 1,000 documents. For these text categorization data, in each case the
goal is to correctly discriminate between articles at the top level, e.g. “sci” articles
vs. “talk” articles, using different sets of sub-categories within each top-category
for training and testing, e.g. sci.electronics and sci.med vs. talk.politics.misc and
talk.religion.misc for training and sci.crypt and sci.space vs. talk.politics.guns and
talk.politics.mideast for testing. For more details about the sub-categories, see [65].
Each set of sub-categories represents a different domain in which different words
will be more common. Features are given by converting the documents into bag-
of-word representations which are then transformed into feature vectors using the
term frequency, details about this procedure can also be found in [65]. Table 3.10
shows the more detailed information about the experimental datasets drawn from
the aforementioned above datasets.

Email Spam Filtering

In email spam filtering datasets [66], there are three email subsets (denoted by
User1, User2, and User3, respectively) annotated by three different users. In this
trial, the task is to classify spam and non-spam emails. Since the spam and non-spam
emails in the subsets have been identified by different users, the data distributions
of the three subsets are different but related. Each subset has 2,500 emails, in which
one half of the emails are non-spam (labeled as 1) and the other half of them are
spam (labeled as −1). On this dataset, in terms of [54], we consider three settings:
(1) User1 (source domain) and User2 (target domain); (2) User2 (source domain)
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and User3 (target domain), and 3) User3 (source domain) and User1 (target domain).
For each setting, the training dataset contains all labeled samples from the source
domain. And the samples in the target domain are used as the unlabeled test ones.
We report the experimental results with their means and the standard deviations of
all methods. Again, the word-frequency feature is used to represent each document
as in [66]. The more detailed information about the experimental datasets drawn
from Email Spam Filtering datasets can be found in Table 3.2.

Web Query

We also construct a set of tasks on cross-domain query classification for a search
engine, e.g. Google. We use a set of search snippets gathered from Google as our
training data and some incoming unlabeled queries as the test data. The detailed
descriptions of the procedure can be found in [67]. We use the labeled queries
from AOL provided by [68] (http://grepgsadetsky.com/aol-data) for evaluation. We
consider queries from five classes: Business, Computer, Entertainment, Health, and
Sports which are shown in both training and test datasets. We form ten binary
classification tasks for query classification [64]. The more detailed information can
be seen in Table 3.11.

Sentiment Reviews

The data of sentiment domain adaptation [69] consist of Amazon product reviews
for four different product types, including books, DVDs, electronics, and kitchen
appliances. Each review consists of a rating with scores ranging from 0 to 5, a
reviewer name and location, a product name, a review title and date, and the review
text. Reviews with ratings higher than three are labeled as positive and reviews with
ratings lower than three are labeled as negative, the rest are discarded since the
polarity of these reviews is ambiguous. The details of the data in different domains
are summarized in Table 3.11. The experimental settings are the same as in [69]. To
study the performance of our methods in this task, we construct 12 pairs of cross-
domain sentiment classification tasks as shown in Table 3.6, e.g., we use the reviews
from domain A as the training data and then predict the sentiment of the reviews in
the domain B.

3.5.3.2 Comparing with the Related Methods

Tables 3.12, 3.13, and 3.14 and Fig. 3.11 show the means and standard deviations
of classification accuracies of different methods on the above domain adaptation
transfer learning tasks, respectively. From these results, we can make several
interesting observations as follows:

http://grepgsadetsky.com/aol-data
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1. From Tables 3.12, 3.13, and 3.14, we can see that our method achieves very
promising result. The major limitation of LMPROJ, DTSVM, and KMM is that
they only consider the first-order statistics and thus cannot well generalize their
result. However, since our methods definitely consider both the second-order
and the first-order statistics between the source and target domains, it yields
better generalization capability. It can be observed that our method significantly
outperforms other methods. These empirical results again show that considering
second-order statistics as well as first-order statistics can help us improve the
domain adaptation performance.

2. SVM and TSVM have the worst performance on almost all learning tasks com-
pared to other classifiers, which is consistent with the experimental results of the
above toy datasets. Though obtaining better classification on both 20Newsgroup
and Reuters datasets, TSVM exhibits its worse classification performance on two
web text classification tasks than other methods. It is worth noting that we obtain
a little better results for SVM and TSVM than those typically reported in the
previous literature on the same datasets used in our trials. This is because in order
to make our comparison fair we reported the best results over a set of parameters
for SVM and instead of selecting a default parameter on the training data to be
performed.

3. In Tables 3.12, 3.13, and 3.14 and Fig. 3.11, we can also observe that although
seven methods, i.e., CDCS, LWE, LMPROJ, DTSVM, KMM, DAKSVM, and
its variation μ-DAKSVM, exhibit comparable classification capability on all text
datasets, the proposed method DAKSVM and its variation μ-DAKSVM always
keep significantly high classification accuracy in most cases, which implies that
it is more stable than other methods, particularly on two web text classification
datasets such as web query and sentiment reviews datasets.

4. The results in Tables 3.12, 3.13, and 3.14 and Fig. 3.11 also show that the pro-
posed method DAKSVM and its variation μ-DAKSVM perform relatively better
than MMD-based methods LMPROJ and KMM in almost all datasets, which
justifies that the only emphasis on minimizing distribution mean discrepancy
between both domains is far from sufficiency for domain adaptation transfer
learning. Hence, we should introduce more underlying information, such as
distribution scatter discrepancy minimization, into the regularization framework
of the classifier to further enhance the classification performance. Besides, it is
worth mentioning that DTSVM also obtains fairly robust performance on almost
all datasets by adopting multiple kernel learning scheme. A possible explanation
is that multiple kernel learning skill can improve learning capability for DAL.

5. μ-DAKSVM keeps obviously superior capability over DAKSVM in classifica-
tion accuracy for almost all these datasets, which demonstrates that parameter μ
can be used to enhance the generalization capability of DAKSVM. Therefore, we
use μ-DAKSVM instead of DAKSVM for the performance evaluation hereafter.

6. In order to verify whether the proposed methods are significantly better than
the other methods, we also performed the paired two-tailed t-test [70] on the
classification results of the 10 runs to calculate the statistical significance of
the proposed method μ-DAKSVM. The smaller the p-value, the more significant
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the difference of the two average results is, and a p-value of 0.05 is a typical
threshold which is considered to be statistically significant. Thus, in Tables 3.12,
3.13, and 3.14, if the p-value of each dataset is less than 0.05, the corresponding
results will be denoted “*.” Therefore, as shown in Tables 3.12, 3.13, and
3.14, we can clearly find that the proposed method μ-DAKSVM significantly
outperforms other methods in most datasets.

3.5.4 Multi-Class Face Recognition Datasets

3.5.4.1 Dataset Settings

In this subsection, in order to evaluate the effectiveness of the proposed methods on
multi-class classification problems, we investigate the performance of the proposed
algorithms LSDAKSVM and μ-DAKSVM for face recognition on two benchmark-
ing Yale and ORL face databases. The Yale face database was constructed at the
Yale Center for Computation Vision and Control. There are 165 images about
15 individuals in this database where each person has 11 images. The images
demonstrate face variations under lighting condition (left-right, center-light, right-
light) and facial expression (normal, happy, sad, sleepy, surprised and wink) with or
without glasses. Each image is cropped to be the size of 32× 32 in our experiment.
We randomly select 8 images of each individual to construct the source domain
dataset; the ORL database contains 400 images grouped into 40 distinct subjects
with 10 different images for each. The images are captured at different times, and
for some subjects, the images may vary in facial expressions and facial details. All
the images are taken against a dark homogeneous background with the tolerance for
some side movement of about 20. The original images are all sized 112× 92 pixels
with 256 gray levels per pixel, which are further down-sampled into 32× 32 pixels
in our experiment. We randomly select eight images of each individual to construct
the source domain training set. Figure 3.12a, c shows the cropped images of one
person in Yale and ORL face databases, respectively.

The target datasets are generated by rotating anticlockwise the original source
domain dataset three times by 10◦, 30◦, and 50◦, respectively. Due to rotation,
source and target-domain data exhibit different distributions. Particularly, the
greater the rotation angle is, the more complex the resulting domain adaptation
problem becomes. Thus we construct three face domain adaptation transfer learning
problems for each face database. Figure 3.12b, d shows the face samples with
rotation angle 10◦, respectively.

3.5.4.2 Comparing with the Related Methods

We test the performance of LSDAKSVM and μ-DAKSVM in comparison with
CDCS, LWE, DTSVM, and LMPROJ. In order to do a comprehensive comparison,
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Fig. 3.12 Face examples from the face databases Yale and ORL. a Yale faces for an object; b Yale
faces for an object with rotation angle 10◦; c ORL faces for an object; d ORL faces for an object
with rotation angle 10◦

we also perform the baseline method LS-SVM for face recognition with different
distributions. For the above multi-class classification tasks, μ-DAKSVM, CDCS,
LWE, LS-SVM, DTSVM, and LMPROJ adopt OAO multi-class separation strategy
to finish the corresponding multi-class classification tasks. For each evaluation, ten
rounds of experiments are repeated with randomly selected training data, and the
average result is recorded as the final classification accuracy in Table 3.7. Several
attractive insights can be obtained from these results as follows:

1. The overall accuracy of LS-SVM is lower than any other classifier on all DAL
tasks, which is consistent with SVM.

2. With the increase of rotation angle, the classification performance of all classi-
fiers descends gradually. However, LSDAKSVM seems to decrease more slowly
than other methods. Exceptionally, CDCS and DTSVM exhibit competitive
performance to some extent compared to other methods, particularly on more
complex datasets.

3. As shown in Table 3.15, we can observe that the LSDAKSVM method delivers
more stable results across all the datasets and is competitive as the best method
for the majority of all the other datasets. It obtains the best classification accuracy
more times than any other method. Hence, as discussed in the above section,
LSDAKSVM possesses overall DAL advantages over other methods in the sense
of both computational complexity and classification accuracy.

4. Table 3.15 also shows that although LSDAKSVM seems to have overall advan-
tage over μ-DAKSVM in classification accuracy, μ-DAKSVM is actually
considerably comparable to LSDAKSVM.



3 Novel Inductive and Transductive Transfer Learning Approaches Based. . . 99

T
ab

le
3.

15
M

ea
ns

an
d

st
an

da
rd

de
vi

at
io

ns
(%

)
of

cl
as

si
fic

at
io

n
ac

cu
ra

ci
es

(A
C

C
)

of
al

lm
et

ho
ds

on
Y

al
e

an
d

O
R

L
w

it
h

di
ff

er
en

t
ro

ta
ti

on
an

gl
es

M
et

ho
d

Fa
ce

s
da

ta
L

S-
SV

M
L

M
PR

O
J

LW
E

C
D

C
S

D
T

SV
M

L
SD

A
K

SV
M

μ
-D

A
K

SV
M

Y
al

e
10
◦

61
.7

8
(±

3.
45

)
68

.4
5

(±
0.

56
)

63
.7

8
(±

2.
48

)
62

.4
7

(±
1.

10
)

68
.7

7
(±

0.
54

)
70

.2
4

(±
0.

24
)

69
.9

3
(±

0.
2)

30
◦

58
.3

7
(±

2.
74

)
64

.1
3

(±
1.

07
)

61
.6

6
(±

1.
01

)
60

.7
0

(±
0.

4)
67

.2
8

(±
2.

34
)

66
.4

7
(±

0.
5)

66
.2

(±
0.

6)
50
◦

52
.2

9
(±

2.
12

)
62

.0
8

(±
1.

18
)

58
.7

8
(±

0.
41

)
60

.2
0

(±
0.

34
)

65
.6

3
(±

1.
14

)
63

.0
0

(±
0.

4)
63

.7
(±

0.
34

)
O

R
L

10
◦

76
.3

0
(±

1.
00

)
85

.9
4

(±
1.

40
)

80
.9

0
(±

0.
6)

84
.6

4
(±

0.
2)

84
.8

4
(±

0.
00

)
86

.2
8

(±
0.

04
)

84
.1

8
(±

0.
44

)
30
◦

70
.7

2
(±

3.
04

)
82

.0
0

(±
0.

76
)

79
.3

3
(±

1.
20

)
83

.7
1

(±
2.

10
)

83
.1

9
(±

0.
01

)
83

.1
0

(±
1.

06
)

83
.4

0
(±

0.
00

)
50
◦

65
.7

0
(±

0.
62

)
78

.6
5

(±
0.

20
)

72
.2

2
(±

3.
54

)
79

.9
1

(±
1.

03
)

80
.0

1
(±

1.
14

)
81

.4
6

(±
0.

02
)

78
.1

0
(±

1.
68

)

T
he

be
st

re
su

lt
s

am
on

g
al

lt
he

re
su

lt
s

ob
ta

in
ed

w
it

h
di

ff
er

en
t

pa
ra

m
et

er
s

ar
e

li
st

ed
in

th
e

ta
bl

e



100 Z. Deng and S. Wang

3.6 Conclusions

In this chapter, we propose one inductive learning approach and one transductive
learning approach based on support vector learning, respectively. On the one hand,
the proposed inductive transfer learning method, i.e., KL-TSK-FS, is more adaptive
to the situations where the data are only partially available from the target domain
while some useful knowledge of the source domains is available. Besides, the
proposed method is distinctive in preserving data privacy as only the knowledge
(e.g., the corresponding model parameters) rather than the data of the source domain
is adopted. On the other hand, the proposed transductive transfer learning method
DAKSVM and its two extensions indeed inherit the potential advantages of classical
TSVMs and MMD-based methods and are further extended to DAL. As a novel
large margin domain adaptation classifier, the proposed methods can reduce the
distribution gap between different domains in an RKHS as much as possible, since
they effectively integrate the large margin learner with the proposed GPMDD
metric, in which both the distribution mean discrepancy and the distribution
scatter discrepancy on RKHS embedding domain distributions are simultaneously
considered.
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Abstract Support vector machines (SVMs) are among the most popular
classification techniques adopted in security applications like malware detection,
intrusion detection, and spam filtering. However, if SVMs are to be incorporated
in real-world security systems, they must be able to cope with attack patterns that
can either mislead the learning algorithm (poisoning), evade detection (evasion)
or gain information about their internal parameters (privacy breaches). The main
contributions of this chapter are twofold. First, we introduce a formal general
framework for the empirical evaluation of the security of machine-learning systems.
Second, according to our framework, we demonstrate the feasibility of evasion,
poisoning and privacy attacks against SVMs in real-world security problems. For
each attack technique, we evaluate its impact and discuss whether (and how) it
can be countered through an adversary-aware design of SVMs. Our experiments
are easily reproducible thanks to open-source code that we have made available,
together with all the employed datasets, on a public repository.
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4.1 Introduction

Machine-learning and pattern-recognition techniques are increasingly being
adopted in security applications like spam filtering, network intrusion detection, and
malware detection due to their ability to generalize and to potentially detect novel
attacks or variants of known ones. Support vector machines (SVMs) are among the
most successful techniques that have been applied for this purpose [28, 55].

However, learning algorithms like SVMs assume stationarity: that is, both the
data used to train the classifier and the operational data it classifies are sampled
from the same (though possibly unknown) distribution. Meanwhile, in adversarial
settings such as the above-mentioned ones, intelligent and adaptive adversaries may
purposely manipulate data (violating stationarity) to exploit existing vulnerabilities
of learning algorithms and to impair the entire system. This raises several open
issues, related to whether machine-learning techniques can be safely adopted in
security-sensitive tasks, or if they must (and can) be redesigned for this purpose. In
particular, the main open issues to be addressed include:

1. analyzing the vulnerabilities of learning algorithms;
2. evaluating their security by implementing the corresponding attacks; and
3. eventually, designing suitable countermeasures.

These issues are currently addressed in the emerging research area of adversarial
machine learning, at the intersection between computer security and machine
learning. This field is receiving growing interest from the research community,
as witnessed by an increasing number of recent events: the NIPS Workshop on
“Machine Learning in Adversarial Environments for Computer Security” [43];
the subsequent Special Issue of the Machine Learning journal titled “Machine
Learning in Adversarial Environments” [44]; the 2010 UCLA IPAM workshop on
“Statistical and Learning-Theoretic Challenges in Data Privacy”; the ECML-PKDD
Workshop on “Privacy and Security issues in Data Mining and Machine Learning”
[27]; five consecutive CCS Workshops on “Artificial Intelligence and Security”
[2, 3, 19, 22, 34], and the Dagstuhl Perspectives Workshop on “Machine Learning
for Computer Security” [37].

In Sect. 4.2, we review the literature of adversarial machine learning, focusing
mainly on the issue of security evaluation. We discuss both theoretical work and
applications, including examples of how learning can be attacked in practical
scenarios, either during its training phase (i.e., poisoning attacks that contaminate
the learner’s training data to mislead it) or during its deployment phase (i.e., evasion
attacks that circumvent the learned classifier).

In Sect. 4.3, we summarize our recently defined framework for the empirical
evaluation of classifiers’ security [12]. It is based on a general model of an
adversary that builds on previous models and guidelines proposed in the literature
of adversarial machine learning. We expound on the assumptions of the adversary’s
goal, knowledge, and capabilities that comprise this model, which also easily
accommodate application-specific constraints. Having detailed the assumptions of
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his/her adversary, a security analyst can formalize the adversary’s strategy as an
optimization problem.

We then demonstrate our framework by applying it to assess the security of
SVMs. We discuss our recently devised evasion attacks against SVMs [8] in
Sect. 4.4, and review and extend our recent work [14] on poisoning attacks against
SVMs in Sect. 4.5. We show that the optimization problems corresponding to the
above attack strategies can be solved through simple gradient-descent algorithms.
The experimental results for these evasion and poisoning attacks show that the
SVM is vulnerable to these threats for both linear and nonlinear kernels in several
realistic application domains including handwritten digit classification and malware
detection for PDF files. We further explore the threat of privacy-breaching attacks
aimed at the SVM’s training data in Sect. 4.6 where we apply our framework to
precisely describe the setting and threat model.

Our analysis provides useful insights into the potential security threats from the
usage of learning algorithms (and, particularly, of SVMs) in real-world applications
and sheds light on whether they can be safely adopted for security-sensitive tasks.
The presented analysis allows a system designer to quantify the security risk
entailed by an SVM-based detector so that he/she may weigh it against the benefits
provided by the learning. It further suggests guidelines and countermeasures that
may mitigate threats and thereby improve overall system security. These aspects
are discussed for evasion and poisoning attacks in Sects. 4.4 and 4.5. In Sect. 4.6
we focus on developing countermeasures for privacy attacks that are endowed
with strong theoretical guarantees within the framework of differential privacy. We
conclude with a summary and discussion in Sect. 4.7.

In order to support the reproducibility of our experiments, we published all
the code and the data employed for the experimental evaluations described in
this paper [24]. In particular, our code is released under open-source license, and
carefully documented, with the aim of allowing other researchers to not only
reproduce but also customize, extend, and improve our work.

4.2 Background

In this section, we review the main concepts used throughout this chapter. We first
introduce our notation and summarize the SVM learning problem. We then motivate
the need for the proper assessment of the security of a learning algorithm so that it
can be applied to security-sensitive tasks.

Learning can be generally stated as a process by which data is used to form
a hypothesis that performs better than an a priori hypothesis formed without the
data. For our purposes, the hypotheses will be represented as functions of the form
f : X → Y , which assign an input sample point x ∈X to a class y ∈ Y ; that is,
given an observation from the input space X , a hypothesis f makes a prediction
in the output space Y . For binary classification, the output space is binary and
we use Y = {−1,+1}. In the classical supervised learning setting, we are given a
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paired training dataset {(xi,yi) | xi ∈X ,yi ∈ Y }n
i=1, we assume each pair is drawn

independently from an unknown joint distribution P(X,Y ), and we want to infer a
classifier f able to generalize well on P(X,Y ); i.e., to accurately predict the label y
of an unseen sample x drawn from that distribution.

4.2.1 Support Vector Machines

In its simplest formulation, an SVM learns a linear classifier for a binary clas-
sification problem. Its decision function is thus f (x) = sign(w�x + b), where
sign(a) = +1 (−1) if a ≥ 0 (a < 0), and w and b are learned parameters that
specify the position of the decision hyperplane in feature space: the hyperplane’s
normal w gives its orientation and b is its displacement. The learning task is thus
to find a hyperplane that well separates the two classes. While many hyperplanes
may suffice for this task, the SVM hyperplane both separates the training samples
of the two classes and provides a maximum distance from itself to the nearest
training point (this distance is called the classifier’s margin), since maximum-
margin learning generally reduces generalization error [66]. Although originally
designed for linearly separable classification tasks (hard-margin SVMs), SVMs
were extended to nonlinearly separable classification problems by Vapnik [25] (soft-
margin SVMs), which allow some samples to violate the margin. In particular, a
soft-margin SVM is learned by solving the following convex quadratic program
(QP):

min
w,b,ξ

1
2

w�w+C
n

∑
i=1

ξi

s.t. ∀ i = 1, . . . ,n yi(w�xi + b)≥ 1− ξi and ξi ≥ 0 ,

where the margin is maximized by minimizing 1
2 w�w, and the variables ξi (referred

to as slack variables) represent the extent to which the samples, xi, violate the
margin. The parameter C tunes the trade-off between minimizing the sum of the
slack violation errors and maximizing the margin.

While the primal can be optimized directly, it is often solved via its (Lagrangian)
dual problem written in terms of Lagrange multipliers, αi, which are constrained
so that ∑n

i=1 αiyi = 0 and 0 ≤ αi ≤ C for i = 1, . . . ,n. Solving the dual has a
computational complexity that grows according to the size of the training data as
opposed to the feature space’s dimensionality. Further, in the dual formulation,
both the data and the slack variables become implicitly represented—the data is
represented by a kernel matrix, K, of all inner products between pairs of data points
(i.e., Ki, j = x�i x j) and each slack variable is associated with a Lagrangian multiplier
via the KKT conditions that arise from duality. Using the method of Lagrangian
multipliers, the dual problem is derived, in matrix form, as
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min
α

1
2

α�Qα− 1�n α

s.t.
n

∑
i=1

αiyi = 0 and ∀ i = 1, . . . ,n 0≤ αi ≤C ,

where Q = K ◦ yy� (the Hadamard product of K and yy�) and 1n is a vector of n
ones.

Through the kernel matrix, SVMs can be extended to more complex feature
spaces (where a linear classifier may perform better) via a kernel function—an
implicit inner product from the alternative feature space. That is, if some function
φ : X →Φ maps training samples into a higher-dimensional feature space, then Ki j

is computed via the space’s corresponding kernel function, κ(xi,x j) = φ(xi)
�φ(x j).

Thus, one need not explicitly know φ , only its corresponding kernel function.
Further, the dual problem and its KKT conditions elicit interesting properties

of the SVM. First, the optimal primal hyperplane’s normal vector, w, is a linear
combination of the training samples1; i.e., w=∑n

i=1 αiyixi. Second, the dual solution
is sparse, and only samples that lie on or within the hyperplane’s margin have a
nonzero α-value. Thus, if αi = 0, the corresponding sample xi is correctly classified,
lies beyond the margin (i.e., yi(w�xi + b)> 1), and is called a non-support vector.
If αi = C, the ith sample violates the margin (i.e., yi(w�xi + b) < 1) and is an
error vector. Finally, if 0 < αi < C, the ith sample lies exactly on the margin
(i.e., yi(w�xi + b) = 1) and is a support vector. As a consequence, the optimal
displacement b can be determined by averaging yi−w�xi over the support vectors.

4.2.2 Machine Learning for Computer Security: Motivation,
Trends, and Arms Races

In this section, we motivate the recent adoption of machine-learning techniques in
computer security and discuss the novel issues this trend raises. In the last decade,
security systems increased in complexity to counter the growing sophistication
and variability of attacks; a result of a long-lasting and continuing arms race in
security-related applications such as malware detection, intrusion detection, and
spam filtering. The main characteristics of this struggle and the typical approaches
pursued in security to face it are discussed in Sect. 4.2.3.1. We now discuss some
examples that better explain this trend and motivate the use of modern machine-
learning techniques for security applications.

In the early years, the attack surface (i.e., the vulnerable points of a system)
of most systems was relatively small and most attacks were simple. In this

1This is an instance of the Representer Theorem which states that solutions to a large class of
regularized ERM problems lie in the span of the training data [61].



110 B. Biggio et al.

era, signature-based detection systems (e.g., rule-based systems based on string-
matching techniques) were considered sufficient to provide an acceptable level of
security. However, as the complexity and exposure of sensitive systems increased in
the Internet Age, more targets emerged and the incentive for attacking them became
increasingly attractive, thus providing a means and motivation for developing
sophisticated and diverse attacks. Since signature-based detection systems can only
detect attacks matching an existing signature, attackers used minor variations of
their attacks to evade detection (e.g., string-matching techniques can be evaded by
slightly changing the attack code). To cope with the increasing variability of attack
samples and to detect never-before-seen attacks, machine-learning approaches have
been increasingly incorporated into these detection systems to complement tradi-
tional signature-based detection. These two approaches can be combined to make
accurate and agile detection: signature-based detection offers fast and lightweight
filtering of most known attacks, while machine-learning approaches can process the
remaining (unfiltered) samples and identify new (or less well-known) attacks.

The Quest of Image Spam. A recent example of the above arms race is image
spam (see, e.g., [10]). In 2006, to evade the textual-based spam filters, spammers
began rendering their messages into images included as attachments, thus producing
“image-based spam,” or image spam for short. Due to the massive volume of image
spam sent in 2006 and 2007, researchers and spam-filter designers proposed several
different countermeasures. Initially, suspect images were analyzed by OCR tools
to extract text for standard spam detection, and then signatures were generated
to block the (known) spam images. However, spammers immediately reacted
by randomly obfuscating images with adversarial noise, both to make OCR-
based detection ineffective and to evade signature-based detection. The research
community responded with (fast) approaches mainly based on machine-learning
techniques using visual features extracted from images, which could accurately
discriminate between spam images and legitimate ones (e.g., photographs and
plots). Although image spam volumes have since declined, the exact cause for
this decrease is debatable—these countermeasures may have played a role, but the
image spam were also more costly to the spammer as they required more time
to generate and more bandwidth to deliver, thus limiting the spammers’ ability
to send a high volume of messages. Nevertheless, had this arms race continued,
spammers could have attempted to evade the countermeasures by mimicking the
feature values exhibited by legitimate images, which would have, in fact, forced
spammers to increase the number of colors and elements in their spam images, thus
further increasing the size of such files and the cost of sending them.

Misuse and Anomaly Detection in Computer Networks. Another example of the
above arms race can be found in network intrusion detection, where misuse detection
has been gradually augmented by anomaly detection. The former approach relies
on detecting attacks on the basis of signatures extracted from (known) intrusive
network traffic, while the latter is based upon a statistical model of the normal profile
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of the network traffic and detects anomalous traffic that deviates from the assumed
model of normality. This model is often constructed using machine-learning
techniques, such as one-class classifiers (e.g., one-class SVMs), or, more generally,
using density estimators. The underlying assumption of anomaly-detection-based
intrusion detection, though, is that all anomalous network traffic is, in fact, intrusive.
Although intrusive traffic often does exhibit anomalous behavior, the opposite is not
necessarily true: some non-intrusive network traffic may also behave anomalously.
Thus, accurate anomaly detectors often suffer from high false-alarm rates.

4.2.3 Adversarial Machine Learning

As witnessed by the above examples, the introduction of machine-learning tech-
niques in security-sensitive tasks has many beneficial aspects, and it has been
somewhat necessitated by the increased sophistication and variability of recent
attacks and zero-day exploits. However, there is good reason to believe that
machine-learning techniques themselves will be subject to carefully designed
attacks in the near future, as a logical next step in the above-sketched arms
race. Since machine-learning techniques were not originally designed to withstand
manipulations made by intelligent and adaptive adversaries, it would be reckless
to naively trust these learners in a secure system. Instead, one needs to carefully
consider whether these techniques can introduce novel vulnerabilities that may
degrade the overall system’s security, or whether they can be safely adopted. In other
words, we need to address the question raised by Barreno et al. [5]: can machine
learning be secure?

At the center of this question is the effect an adversary can have on a learner by
violating the stationarity assumption that the training data used to train the classifier
comes from the same distribution as the test data that will be classified by the
learned classifier. This is a conventional and natural assumption underlying much
of machine learning and is the basis for performance-evaluation-based techniques
like cross-validation and bootstrapping as well as for principles like empirical risk
minimization (ERM). However, in security-sensitive settings, the adversary may
purposely manipulate data to mislead learning. Accordingly, the data distribution is
subject to change, thereby potentially violating non-stationarity, albeit, in a limited
way subject to the adversary’s assumed capabilities (as we discuss in Sect. 4.3.1.3).
Further, as in most security tasks, predicting how the data distribution will change is
difficult, if not impossible [12, 36]. Hence, adversarial learning problems are often
addressed as a proactive arms race [12], in which the classifier designer tries to
anticipate the next adversary’s move, by simulating and hypothesizing proper attack
scenarios, as discussed in the next section.
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Adversary Classifier designer

1. Analyze classifier

2. Devise attack 3. Analyze attack

4. Develop countermeasure
    (e.g., add features, retraining) 

Fig. 4.1 A conceptual representation of the reactive arms race [12]

4.2.3.1 Reactive and Proactive Arms Races

As mentioned in the previous sections, and highlighted by the examples in
Sect. 4.2.2, security problems are often cast as a long-lasting reactive arms race
between the classifier designer and the adversary, in which each player attempts
to achieve his/her goal by reacting to the changing behavior of his/her opponent.
For instance, the adversary typically crafts samples to evade detection (e.g., a
spammer’s goal is often to create spam emails that will not be detected), while
the classifier designer seeks to develop a system that accurately detects most
malicious samples while maintaining a very low false-alarm rate; i.e., by not falsely
identifying legitimate examples. Under this setting, the arms race can be modeled
as the following cycle [12]. First, the adversary analyzes the existing learning
algorithm and manipulates his/her data to evade detection (or more generally, to
make the learning algorithm ineffective). For instance, a spammer may gather some
knowledge of the words used by the targeted spam filter to block spam and then
manipulate the textual content of her spam emails accordingly; e.g., words like
“cheap” that are indicative of spam can be misspelled as “che4p.” Second, the
classifier designer reacts by analyzing the novel attack samples and updating his/her
classifier. This is typically done by retraining the classifier on the newly collected
samples, and/or by adding features that can better detect the novel attacks. In the
previous spam example, this amounts to retraining the filter on the newly collected
spam and, thus, to adding novel words into the filter’s dictionary (e.g., “che4p” may
be now learned as a spammy word). This reactive arms race continues in perpetuity
as illustrated in Fig. 4.1.

However, reactive approaches to this arms race do not anticipate the next
generation of security vulnerabilities and thus, the system potentially remains vul-
nerable to new attacks. Instead, computer security guidelines traditionally advocate
a proactive approach2—the classifier designer should proactively anticipate the
adversary’s strategy by (1) identifying the most relevant threats, (2) designing proper
countermeasures into his/her classifier, and (3) repeating this process for his/her new

2Although in certain abstract models we have shown how regret-minimizing online learning can
be used to define reactive approaches that are competitive with proactive security [6].
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Classifier designer Classifier designer

1. Model adversary

2. Simulate attack 3. Evaluate attack’s impact

4. Develop countermeasure
(if the attack has a relevant impact)

Fig. 4.2 A conceptual
representation of the
proactive arms race [12]

design before deploying the classifier. This can be accomplished by modeling the
adversary (based on knowledge of the adversary’s goals and capabilities) and using
this model to simulate attacks, as is depicted in Fig. 4.2 to contrast the reactive
arms race. While such an approach does not account for unknown or changing
aspects of the adversary, it can indeed lead to an improved level of security by
delaying each step of the reactive arms race because it should reasonably force the
adversary to exert greater effort (in terms of time, skills, and resources) to find new
vulnerabilities. Accordingly, proactively designed classifiers should remain useful
for a longer time, with less frequent supervision or human intervention and with
less severe vulnerabilities.

Although this approach has been implicitly followed in most of the previous
work (see Sect. 4.2.3.2), it has only recently been formalized within a more general
framework for the empirical evaluation of a classifier’s security [12], which we
summarize in Sect. 4.3. Finally, although security evaluation may suggest specific
countermeasures, designing general-purpose secure classifiers remains an open
problem.

4.2.3.2 Previous Work on Security Evaluation

Previous work in adversarial learning can be categorized according to the two main
steps of the proactive arms race described in the previous section. The first research
direction focuses on identifying potential vulnerabilities of learning algorithms
and assessing the impact of the corresponding attacks on the targeted classifier;
e.g., [4, 5, 18, 36, 40–42, 46]. The second explores the development of proper
countermeasures and learning algorithms robust to known attacks; e.g., [26,41,58].

Although some prior work does address aspects of the empirical evaluation of
classifier security, which is often implicitly defined as the performance degradation
incurred under a (simulated) attack, to our knowledge a systematic treatment of
this process under a unifying perspective was only first described in our recent
work [12]. Previously, security evaluation is generally conducted within a specific
application domain such as spam filtering and network intrusion detection (e.g., in
[26, 31, 41, 47, 67]), in which a different application-dependent criteria is separately
defined for each endeavor. Security evaluation is then implicitly undertaken by
defining an attack and assessing its impact on the given classifier. For instance,
in [31], the authors showed how camouflage network packets can mimic legitimate
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traffic to evade detection; and, similarly, in [26, 41, 47, 67], the content of spam
emails was manipulated for evasion. Although such analyses provide indispensable
insights into specific problems, their results are difficult to generalize to other
domains and provide little guidance for evaluating classifier security in a different
application. Thus, in a new application domain, security evaluation often must begin
anew and it is difficult to directly compare with prior studies. This shortcoming
highlights the need for a more general set of security guidelines and a more
systematic definition of classifier security evaluation that we began to address in
[12].

Apart from application-specific work, several theoretical models of adversarial
learning have been proposed [4, 17, 26, 36, 40, 42, 46, 54]. These models frame the
secure learning problem and provide a foundation for a proper security evaluation
scheme. In particular, we build upon elements of the models of [4, 5, 36, 38, 40, 42],
which were used in defining our framework for security evaluation [12]. Below we
summarize these foundations.

4.2.3.3 A Taxonomy of Potential Attacks Against Machine
Learning Algorithms

A taxonomy of potential attacks against pattern classifiers was proposed in [4,5,36]
as a baseline to characterize attacks on learners. The taxonomy is based on three
main features: the kind of influence of attacks on the classifier, the kind of security
violation they cause, and the specificity of an attack. The attack’s influence can be
either causative, if it aims to undermine learning, or exploratory, if it targets the
classification phase. Accordingly, a causative attack may manipulate both training
and testing data, whereas an exploratory attack only affects testing data. Examples
of causative attacks include work in [14, 38, 40, 53, 59], while exploratory attacks
can be found in [26,31,41,47,67]. The security violation can be either an integrity
violation, if it aims to gain unauthorized access to the system (i.e., to have malicious
samples be misclassified as legitimate); an availability violation, if the goal is to
generate a high number of errors (both false-negatives and false-positives) such
that normal system operation is compromised (e.g., legitimate users are denied
access to their resources); or a privacy violation, if it allows the adversary to obtain
confidential information from the classifier (e.g., in biometric recognition, this may
amount to recovering a protected biometric template of a system’s client). Finally,
the attack specificity refers to the samples that are affected by the attack. It ranges
continuously from targeted attacks (e.g., if the goal of the attack is to have a specific
spam email misclassified as legitimate) to indiscriminate attacks (e.g., if the goal
is to have any spam email misclassified as legitimate).

Each portion of the taxonomy specifies a different type of attack as laid out in
Barreno et al. [4] and here we outline these with respect to a PDF malware detector.
An example of a causative integrity attack is an attacker who wants to mislead
the malware detector to falsely classify malicious PDFs as benign. The attacker
could accomplish this goal by introducing benign PDFs with malicious features
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into the training set and the attack would be targeted if the features corresponded to
a particular malware or otherwise an indiscriminate attack. Similarly, the attacker
could cause a causative availability attack by injecting malware training examples
that exhibited features common to benign messages; again, these would be targeted
if the attacker wanted a particular set of benign PDFs to be misclassified. A
causative privacy attack, however, would require both manipulation of the training
and information obtained from the learned classifier. The attacker could inject
malicious PDFs with features identifying a particular author and then subsequently
test if other PDFs with those features were labeled as malicious; this observed
behavior may leak private information about the authors of other PDFs in the
training set.

In contrast to the causative attacks, exploratory attacks cannot manipulate the
learner, but can still exploit the learning mechanism. An example of an exploratory
integrity attack involves an attacker who crafts a malicious PDF for an existing
malware detector. This attacker queries the detector with candidate PDFs to discover
which attributes the detector uses to identify malware, thus, allowing his/her to
redesign his/her PDF to avoid the detector. This example could be targeted to a
single PDF exploit or indiscriminate if a set of possible exploits are considered.
An exploratory privacy attack against the malware detector can be conducted in
the same way as the causative privacy attack described above, but without first
injecting PDFs into the training data. Simply by probing the malware detector
with crafted PDFs, the attacker may divulge secrets from the detector. Finally,
exploratory availability attacks are possible in some applications but are not
currently considered to be of interest.

4.3 A Framework for Security Evaluation

In Sects. 4.2.3 and 4.2.3.1, we motivated the need for simulating a proactive arms
race as a means for improving system security. We further argued that evaluating
a classifier’s security properties through simulations of different, potential attack
scenarios is a crucial step in this arms race for identifying the most relevant
vulnerabilities and for suggesting how to potentially counter them. Here, we
summarize our recent work [12] that proposes a new framework for designing
proactive secure classifiers by addressing the shortcomings of the reactive security
cycle raised above. Namely, our approach allows one to empirically evaluate a
classifier’s security during its design phase by addressing the first three steps of the
proactive arms race depicted in Fig. 4.2: (1) identifying potential attack scenarios,
(2) devising the corresponding attacks, and (3) systematically evaluating their
impact. Although it may also suggest countermeasures to the hypothesized attacks,
the final step of the proactive arms race remains unspecified as a unique design step
that has to be addressed separately in an application-specific manner.

Under our proposed security evaluation process, the analyst must clearly scruti-
nize the classifier by considering different attack scenarios to investigate a set of
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distinct potential vulnerabilities. This amounts to performing a more systematic
what-if analysis of classifier security [57]. This is an essential step in the design
of security systems, as it not only allows the designer to identify the most important
and relevant threats, but also it forces him/her to consciously decide whether the
classifier can be reasonably deployed, after being made aware of the corresponding
risks, or whether it is instead better to adopt additional countermeasure to mitigate
the attack’s impact before deploying the classifier.

Our proposed framework builds on previous work and attempts to systematize
and unify their views under a more coherent perspective. The framework defines
how an analyst can conduct a security audit of a classifier, which we detail in
the remainder of this section. First, in Sect. 4.3.1, we explain how an adversary
model is constructed according to the adversary’s anticipated goals, knowledge, and
capabilities. Based on this model, a simulation of the adversary can be conducted to
find the corresponding optimal attack strategies and produce simulated attacks, as
described in Sect. 4.3.1.4. These simulated attack samples are then used to evaluate
the classifier by adding them to either the training or test data, in accordance with the
adversary’s capabilities from Sect. 4.3.1.3. We conclude this section by discussing
how to exploit our framework in specific application domains in Sect. 4.3.2.

4.3.1 Modeling the Adversary

The proposed model of the adversary is based on specific assumptions about
his/her goal, knowledge of the system, and capability to modify the underlying data
distribution by manipulating individual samples. It allows the classifier designer to
model the attacks identified in the attack taxonomy described as in Sect. 4.2.3.3 [4,
5, 36]. However, in our framework, one can also incorporate application-specific
constraints into the definition of the adversary’s capability. Therefore, it can be
exploited to derive practical guidelines for developing optimal attack strategies and
to guide the design of adversarially resilient classifiers.

4.3.1.1 Adversary’s Goal

According to the taxonomy presented first by Barreno et al. [5] and extended by
Huang et al. [36], the adversary’s goal should be defined based on the anticipated
security violation, which might be an integrity, availability, or privacy violation
(see Sect. 4.2.3.3), and also depending on the attack’s specificity, which ranges
from targeted to indiscriminate. Further, as suggested by Laskov and Kloft [42]
and Kloft and Laskov [40], the adversary’s goal should be defined in terms of an
objective function that the adversary is willing to maximize. This allows for a formal
characterization of the optimal attack strategy.

For instance, in an indiscriminate integrity attack, the adversary may aim
to maximize the number of spam emails that evade detection, while minimally
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Fig. 4.3 A representation of the design steps of a machine-learning system [29] that may provide
sources of knowledge for the adversary

manipulating their content [26, 46, 54], whereas in an indiscriminate availability
attack, the adversary may aim to maximize the number of classification errors,
thereby causing a general denial-of-service due to an excess of false alarms [14,53].

4.3.1.2 Adversary’s Knowledge

The adversary’s knowledge of the attacked system can be defined based on the
main components involved in the design of a machine-learning system, as described
in [29] and depicted in Fig. 4.3.

According to the five design steps depicted in Fig. 4.3, the adversary may
have various degrees of knowledge (ranging from no information to complete
information) pertaining to the following five components:

(k.i) the training set (or part of it);
(k.ii) the feature representation of each sample; i.e., how real objects (emails,

network packets, etc.) are mapped into the feature space;
(k.iii) the learning algorithm and its decision function; e.g., that logistic regression

is used to learn a linear classifier;
(k.iv) the learned classifier’s parameters; e.g., the actual learned weights of a linear

classifier;
(k.v) feedback from the deployed classifier; e.g., the classification labels assigned

to some of the samples by the targeted classifier.

These five elements represent different levels of knowledge about the system
being attacked. A typical hypothesized scenario assumes that the adversary has per-
fect knowledge of the targeted classifier (k.iv). Although potentially too pessimistic,
this worst-case setting allows one to compute a lower bound on the classifier
performance when it is under attack [26, 41]. A more realistic setting is that the
adversary knows the (untrained) learning algorithm (k.iii), and he/she may exploit
feedback from the classifier on the labels assigned to some query samples (k.v),
either to directly find optimal or nearly optimal attack instances [46,54] or to learn a
surrogate classifier, which can then serve as a template to guide the attack against the
actual classifier. We refer to this scenario as a limited knowledge setting in Sect. 4.4.
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Note that one may also make more restrictive assumptions on the adversary’s
knowledge, such as considering partial knowledge of the feature representation
(k.ii), or a complete lack of knowledge of the learning algorithm (k.iii). Investigating
classifier security against these uninformed adversaries may yield a higher level
of security. However, such assumptions would be contingent on security through
obscurity; that is, the provided security would rely upon secrets that must be kept
unknown to the adversary even though such a high level of secrecy may not be prac-
tical. Reliance on unjustified secrets can potentially lead to catastrophic unforeseen
vulnerabilities. Thus, this paradigm should be regarded as being complementary to
security by design, which instead advocates that systems should be designed from
the ground-up to be secure and, if secrets are assumed, they must be well justified.
Accordingly, security is often investigated by assuming that the adversary knows at
least the learning algorithm and the underlying feature representation.

4.3.1.3 Adversary’s Capability

We now give some guidelines on how the attacker may be able to manipulate sam-
ples and the corresponding data distribution. As discussed in Sect. 4.2.3.3 [4, 5, 36],
the adversary may control both training and test data (causative attacks), or only on
test data (exploratory attacks). Further, training and test data may follow different
distributions, since they can be manipulated according to different attack strategies
by the adversary. Therefore, we should specify:

(c.i) whether the adversary can manipulate training (TR) and/or testing (TS) data;
i.e., the attack influence from the taxonomy in [4, 5, 36];

(c.ii) whether and to what extent the attack affects the class priors, for TR and TS;
(c.iii) which and how many samples can be modified in each class, for TR and TS;
(c.iv) which features of each attack sample can be modified and how can these

features’ values be altered; e.g., correlated feature values cannot be modified
independently.

Assuming a generative model p(X,Y ) = p(Y )p(X|Y ) (where we use ptr and pts

for training and test distributions, respectively), assumption (c.ii) specifies how an
attack can modify the priors ptr(Y ) and pts(Y ), while assumptions (c.iii) and (c.iv)
specify how it can alter the class-conditional distributions ptr(X|Y ) and pts(X|Y ).

To perform security evaluation according to the hypothesized attack scenario,
it is thus clear that the collected data and generated attack samples should be
resampled according to the above distributions to produce suitable training and
test set pairs. This can be accomplished through existing resampling algorithms
like cross-validation or bootstrapping, when the attack samples are independently
sampled from an identical distribution (i.i.d.). Otherwise, one may consider different
sampling schemes. For instance, in Biggio et al. [14] the attack samples had to
be injected into the training data, and each attack sample depended on thecurrent
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training data, which also included past attack samples. In this case, it was sufficient
to add one attack sample at a time, until the desired number of samples was
reached.3

4.3.1.4 Attack Strategy

Once specific assumptions on the adversary’s goal, knowledge, and capability
are made, one can compute the optimal attack strategy corresponding to the
hypothesized attack scenario; i.e., the adversary model. This amounts to solving
the optimization problem defined according to the adversary’s goal, under proper
constraints defined in accordance with the adversary’s assumed knowledge and
capabilities. The attack strategy can then be used to produce the desired attack
samples, which then have to be merged consistently to the rest of the data to produce
suitable training and test sets for the desired security evaluation, as explained in the
previous section. Specific examples of how to derive optimal attacks against SVMs
and how to resample training and test data to properly include them are discussed in
Sects. 4.4 and 4.5.

4.3.2 How to Use Our Framework

We summarize here the steps that can be followed to correctly use our framework
in specific application scenarios:

1. hypothesize an attack scenario by identifying a proper adversary’s goal, and
according to the taxonomy in [4, 5, 36];

2. define the adversary’s knowledge according to (k.i–v), and capabilities according
to (c.i–iv);

3. formulate the corresponding optimization problem and devise the corresponding
attack strategy;

4. resample the collected (training and test) data accordingly;
5. evaluate classifier’s security on the resampled data (including attack samples);
6. repeat the evaluation for different levels of adversary’s knowledge and/or

capabilities, if necessary; or hypothesize a different attack scenario.

In the next sections we show how our framework can be applied to investigate
three security threats to SVMs: evasion, poisoning, and privacy violations. We then
discuss how our findings may be used to improve the security of such classifiers
to the considered attacks. For instance, we show how careful kernel parameter
selection, which trades off between security to attacks and classification accuracy,
may complicate the adversary’s task of subverting the learning process.

3See [12] for more details on the definition of the data distribution and the resampling algorithm.
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4.4 Evasion Attacks Against SVMs

In this section, we consider the problem of SVM evasion at test time; i.e., how
to optimally manipulate samples at test time to avoid detection. The problem of
evasion at test time has been considered in previous work albeit limited either to
simple decision functions such as linear classifiers [26, 46], or to cover any convex-
inducing classifiers [54] that partition the feature space into two sets, one of which
is convex, but do not include most interesting families of nonlinear classifiers such
as neural nets or SVMs. In contrast to this prior work, the methods presented in
our recent work [8] and in this section demonstrate that evasion of kernel-based
classifiers at test time can be realized with a straightforward gradient-descent-based
approach derived from Golland’s technique of discriminative directions [33]. As a
further simplification of the attacker’s effort, we empirically show that, even if the
adversary does not precisely know the classifier’s decision function, he/she can learn
a surrogate classifier on a surrogate dataset and reliably evade the targeted classifier.

This section is structured as follows. In Sect. 4.4.1, we define the model of the
adversary, including his/her attack strategy, according to our evaluation framework
described in Sect. 4.3.1. Then, in Sect. 4.4.2 we derive the attack strategy that will
be employed to experimentally evaluate evasion attacks against SVMs. We report
our experimental results in Sect. 4.4.3. Finally, we critically discuss and interpret
our research findings in Sect. 4.4.4.

4.4.1 Modeling the Adversary

We show here how our framework can be applied to evaluate the security of SVMs
against evasion attacks. We first introduce our notation, state our assumptions about
attack scenario, and then derive the corresponding optimal attack strategy.

Notation. We consider a classification algorithm f : X �→ Y that assigns samples
represented in some feature space x ∈X to a label in the set of predefined classes
y ∈ Y = {−1,+1}, where −1 (+1) represents the legitimate (malicious) class.
The label fx = f (x) given by a classifier is typically obtained by thresholding a
continuous discriminant function g : X �→R. Without loss of generality, we assume
that f (x) =−1 if g(x)< 0, and +1 otherwise. Further, note that we use fx to refer
to a label assigned by the classifier for the point x (rather than the true label y of that
point) and the shorthand fi for the label assigned to the ith training point, xi.

4.4.1.1 Adversary’s Goal

Malicious (positive) samples are manipulated to evade the classifier. The adversary
may be satisfied when a sample x is found such that g(x) < −ε where ε > 0 is a
small constant. However, as mentioned in Sect. 4.3.1.1, these attacks may be easily
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defeated by simply adjusting the decision threshold to a slightly more conservative
value (e.g., to attain a lower false negative rate at the expense of a higher false
positive rate). For this reason, we assume a smarter adversary, whose goal is to
have his/her attack sample misclassified as legitimate with the largest confidence.
Analytically, this statement can be expressed as follows: find an attack sample x
that minimizes the value of the classifier’s discriminant function g(x). Indeed, this
adversarial setting provides a worst-case bound for the targeted classifier.

4.4.1.2 Adversary’s Knowledge

We investigate two adversarial settings. In the first, the adversary has perfect
knowledge (PK) of the targeted classifier; i.e., he/she knows the feature space (k.ii)
and function g(x) (k.iii–iv). Thus, the labels from the targeted classifier (k.v) are not
needed. In the second, the adversary is assumed to have limited knowledge (LK)
of the classifier. We assume he/she knows the feature representation (k.ii) and the
learning algorithm (k.iii), but that he/she does not know the learned classifier g(x)
(k.iv). In both cases, we assume the attacker does not have knowledge of the training
set (k.i).

Within the LK scenario, the adversary does not know the true discriminant
function g(x) but may approximate it as ĝ(x) by learning a surrogate classifier
on a surrogate training set {(xi,yi)}nq

i=1 of nq samples. This data may be collected
by the adversary in several ways; e.g., he/she may sniff network traffic or collect
legitimate and spam emails from an alternate source. Thus, for LK, there are two
sub-cases related to assumption (k.v), which depend on whether the adversary can
query the classifier. If so, the adversary can build the training set by submitting
a set of nq queries xi to the targeted classifier to obtain their classification labels,
yi = f (xi). This is indeed the adversary’s true learning task, but it requires him/her
to have access to classifier feedback; e.g., by having an email account protected by
the targeted filter (for public email providers, the adversary can reasonably obtain
such accounts). If not, the adversary may use the true class labels for the surrogate
data, although this may not correctly approximate the targeted classifier (unless it is
very accurate).

4.4.1.3 Adversary’s Capability

In the evasion setting, the adversary can only manipulate testing data (c.i); i.e.,
he/she has no way to influence training data. We further assume here that the
class priors cannot be modified (c.ii), and that all the malicious testing samples
are affected by the attack (c.iii). In other words, we are interested in simulating
an exploratory, indiscriminate attack. The adversary’s capability of manipulating
the features of each sample (c.iv) should be defined based on application-specific
constraints. However, at a more general level we can bound the attack point to lie
within some maximum distance from the original attack sample, dmax, which then
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is a parameter of our evaluation. Similarly to previous work, the definition of a
suitable distance measure d : X ×X �→R is left to the specific application domain
[26, 46, 54]. Note indeed that this distance should reflect the adversary’s effort or
cost in manipulating samples, by considering factors that can limit the overall attack
impact; e.g., the increase in the file size of a malicious PDF, since larger files will
lower the infection rate due to increased transmission times. For spam filtering,
distance is often given as the number of modified words in each spam [26,46,53,54],
since it is assumed that highly modified spam messages are less effectively able to
convey the spammer’s message.

4.4.1.4 Attack Strategy

Under the attacker’s model described in Sects. 4.4.1.1, 4.4.1.2, and 4.4.1.3, for
any target malicious sample x0 (the adversary’s true objective), an optimal attack
strategy finds a sample x∗ to minimize g or its estimate ĝ, subject to a bound on its
modification distance from x0:

x∗ = argmin
x

ĝ(x) s.t. d(x,x0)≤ dmax.

For several classifiers, minimizing g(x) is equivalent to maximizing the estimated
posterior p( fx = −1|x); e.g., for neural networks, since they directly output a
posterior estimate, and for SVMs, since their posterior can be estimated as a
sigmoidal function of the distance of x to the SVM hyperplane [56].

Generally, this is a nonlinear optimization, which one may optimize with many
well-known techniques (e.g., gradient-descent, Newton’s method, or BFGS) and
below we use a gradient-descent procedure. However, if ĝ(x) is not convex, descent
approaches may not find a global optima. Instead, the descent path may lead to a
flat region (local minimum) outside of the samples’ support where p(x)≈ 0 and the
classification behavior of g is unspecified and may stymie evasion attempts (see the
upper left plot in Fig. 4.4).

Unfortunately, our objective does not utilize the evidence we have about the
distribution of data p(x), and thus gradient descent may meander into unsupported
regions (p(x) ≈ 0) where g is relatively unspecified. This problem is further
compounded since our estimate ĝ is based on a finite (and possibly small) training
set making it a poor estimate of g in unsupported regions, which may lead to false
evasion points in these regions. To overcome these limitations, we introduce an
additional component into the formulation of our attack objective, which estimates
p(x| fx =−1) using density-estimation techniques. This second component acts as a
penalizer for x in low density regions and is weighted by a parameter λ ≥ 0 yielding
the following modified optimization problem:
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Fig. 4.4 Different scenarios for gradient-descent-based evasion procedures. In each, the function
g(x) of the learned classifier is plotted with a color map with high values (red-orange-yellow)
corresponding to the malicious class, low values (green-cyan-blue) corresponding to the benign
class, and a black decision boundary for the classifier. For every malicious sample, we plot the path
of a simple gradient-descent evasion for a classifier with a closed boundary around the malicious
class (upper left) or benign class (bottom left). Then, we plot the modified objective function of
Eq. (4.1) and the paths of the resulting density-augmented gradient descent for a classifier with a
closed boundary around the malicious (upper right) or benign class (bottom right)

argmin
x

E(x) = ĝ(x)− λ
n ∑

i| fi=−1

k
( x−xi

h

)
(4.1)

s.t. d(x,x0)≤ dmax,

where h is a bandwidth parameter for a kernel density estimator (KDE) and n is
the number of benign samples ( fx = −1) available to the adversary. This alternate
objective trades off between minimizing ĝ(x) (or p( fx =−1|x)) and maximizing the
estimated density p(x| fx =−1). The extra component favors attack points to imitate
features of known samples classified as legitimate, as in mimicry attacks [31].
In doing so, it reshapes the objective function and thereby biases the resulting
density-augmented gradient descent towards regions where the negative class is
concentrated (see the bottom-right plot in Fig. 4.4).

Finally, note that this behavior may lead our technique to disregard attack
patterns within unsupported regions (p(x) ≈ 0) for which g(x) < 0, when they do
exist (see, e.g., the upper right plot in Fig. 4.4). This may limit classifier evasion
especially when the constraint d(x,x0) ≤ dmax is particularly strict. Therefore, the
trade-off between the two components of the objective function should be carefully
considered.
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Algorithm 1 Gradient-descent attack procedure
Input: the initial attack point, x0; the step size, t; the trade-off parameter, λ ; and ε > 0.
Output: x∗, the final attack point.

1: k← 0.
2: repeat
3: k← k+1
4: Set ∇E(xk−1) to a unit vector aligned with ∇g(xk−1)−λ ∇p(xk−1| fx =−1).
5: xk← xk−1− t∇E(xk−1)
6: if d(xk,x0)> dmax then
7: Project xk onto the boundary of the feasible region (enforcing application-specific

constraints, if any).
8: end if
9: until E

(
xk
)−E

(
xk−1

)
< ε

10: return: x∗ = xk

4.4.2 Evasion Attack Algorithm

Algorithm 1 details a gradient-descent method for optimizing problem of Eq. (4.1).
It iteratively modifies the attack point x in the feature space as x′ ← x− t∇E , where
∇E is a unit vector aligned with the gradient of our objective function, and t is the
step size. We assume g to be differentiable almost everywhere (subgradients may be
used at discontinuities). When g is non-differentiable or is not smooth enough for
a gradient descent to work well, it is also possible to rely upon the mimicry / KDE
term in the optimization of Eq. (4.1).

In the next sections, we show how to compute the components of ∇E; namely,
the gradient of the discriminant function g(x) of SVMs for different kernels, and the
gradient of the mimicking component (density estimation). We finally discuss how
to project the gradient ∇E onto the feasible region in discrete feature spaces.

4.4.2.1 Gradient of Support Vector Machines

For SVMs, g(x) = ∑i αiyik(x,xi) + b. The gradient is thus given by ∇g(x) =
∑i αiyi∇k(x,xi). Accordingly, the feasibility of the approach depends on the com-
putability of this kernel gradient ∇k(x,xi), which is computable for many numeric
kernels. In the following, we report the kernel gradients for three main cases: (a) the
linear kernel, (b) the RBF kernel, and (c) the polynomial kernel.

(a) Linear Kernel. In this case, the kernel is simply given by k(x,xi) = 〈x,xi〉.
Accordingly, ∇k(x,xi) = xi (we remind the reader that the gradient has to
be computed with respect to the current attack sample x), and ∇g(x) = w =

∑i αiyixi.
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(b) RBF Kernel. For this kernel, k(x,xi) = exp{−γ‖x− xi‖2}. The gradient is thus
given by ∇k(x,xi) =−2γ exp{−γ‖x− xi‖2}(x− xi).

(c) Polynomial Kernel. In this final case, k(x,xi) = (〈x,xi〉+ c)p. The gradient is
thus given by ∇k(x,xi) = p(〈x,xi〉+ c)p−1xi.

4.4.2.2 Gradients of Kernel Density Estimators

As with SVMs, the gradient of kernel density estimators depends on the gradient of
its kernel. We considered generalized RBF kernels of the form

k
( x−xi

h

)
= exp

(
− d(x,xi)

h

)
,

where d(·, ·) is any suitable distance function. We used here the same distance d(·, ·)
used in Eq. (4.1), but they can be different, in general. For �2- and �1-norms (i.e.,
RBF and Laplacian kernels), the KDE (sub)gradients are, respectively, given by:

− 2
nh ∑

i| fi=−1

exp

(
−‖x− xi‖2

2

h

)
(x− xi) ,

− 1
nh ∑

i| fi=−1

exp

(
−‖x− xi‖1

h

)
(x− xi) .

Note that the scaling factor here is proportional to O( 1
nh ). Therefore, to influence

gradient descent with a significant mimicking effect, the value of λ in the objective
function should be chosen such that the value of λ

nh is comparable to (or higher than)
the range of the discriminant function ĝ(x).

4.4.2.3 Gradient-Descent Attack in Discrete Spaces

In discrete spaces, gradient approaches may lead to a path through infeasible
portions of the feature space. In such cases, we need to find feasible neighbors x
that yield a steepest descent; i.e., maximally decreasing E(x). A simple approach
to this problem is to probe E at every point in a small neighborhood of x: x′ ←
argminz∈N (x) E(z). However, this approach requires a large number of queries. For
classifiers with a differentiable decision function, we can instead use the neighbor
whose difference from x best aligns with ∇E(x); i.e., the update becomes

x′ ← arg max
z∈N (x)

(z−x)
‖z−x‖

�
∇E(x) .

Thus, the solution to the above alignment is simply to modify a feature that satisfies
argmaxi |∇E(x)i| for which the corresponding change leads to a feasible state. Note,
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however that, sometimes, such a step may be relatively quite large and may lead
the attack out of a local minimum potentially increasing the objective function.
Therefore, one should consider the best alignment that effectively reduces the
objective function by disregarding features that lead to states where the objective
function is higher.

4.4.3 Experiments

In this section, we first report some experimental results on the MNIST handwritten
digit classification task [32, 45] that visually demonstrate how the proposed algo-
rithm modifies digits to mislead classification. This dataset is particularly useful
because the visual nature of the handwritten digit data provides a semantic meaning
for attacks. We then show the effectiveness of the proposed attack on a more realistic
and practical scenario: the detection of malware in PDF files.

4.4.3.1 Handwritten Digits

We first focus on a two-class sub-problem of discriminating between two distinct
digits from the MNIST dataset [45]. Each digit example is represented as a grayscale
image of 28× 28 pixels arranged in raster-scan-order to give feature vectors of d =
28× 28 = 784 values. We normalized each feature (pixel) x f ∈ [0,1]d by dividing
its value by 255, and we constrained the attack samples to this range. Accordingly,
we optimized Eq. (4.1) subject to 0≤ x f ≤ 1 for all f .

For our attacker, we assume the perfect knowledge (PK) attack scenario. We
used the Manhattan distance (�1-norm) as the distance function, d, both for the
kernel density estimator (i.e., a Laplacian kernel) and for the constraint d(x,x0) ≤
dmax of Eq. (4.1), which bounds the total difference between the gray-level values
of the original image x0 and the attack image x. We used an upper bound of dmax =
5000
255 to limit the total change in the gray-level values to 5000. At each iteration, we

increased the �1-norm value of x− x0 by 10
255 , which is equivalent to increasing the

difference in the gray-level values by 10. This is effectively the gradient step size.
For the digit discrimination task, we applied an SVM with the linear kernel

and C = 1. We randomly chose 100 training samples and applied the attacks to a
correctly classified positive sample.

In Fig. 4.5 we illustrate gradient attacks in which a “3” is to be misclassified as a
“7.” The left image shows the initial attack point, the middle image shows the first
attack image misclassified as legitimate, and the right image shows the attack point
after 500 iterations. When λ = 0, the attack images exhibit only a weak resemblance
to the target class “7” but are, nevertheless, reliably misclassified. This is the same
effect we observed in the left plot of Fig. 4.4: the classifier is evaded by making the
attack sample dissimilar to the malicious class. Conversely, when λ = 10 the attack
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Fig. 4.5 Illustration of the gradient attack on the MNIST digit data, for λ = 0 (top row) and λ = 10
(bottom row). Without a mimicry component (λ = 0) gradient descent quickly decreases g but the
resulting attack image does not resemble a “7.” In contrast, the attack minimizes g slower when
mimicry is applied (λ = 10), but the final attack image closely resembles a mixture between “3”
and “7,” as the term “mimicry” suggests

images strongly resemble the target class because the mimicry term favors samples
that are more similar to the target examples. This is the same effect illustrated in the
rightmost plot of Fig. 4.4.

4.4.3.2 Malware Detection in PDF Files

We focus now on the problem of discriminating between legitimate and malicious
PDF files, a popular medium for disseminating malware [68]. PDF files are excellent
vectors for malicious-code, due to their flexible logical structure, which can be
described by a hierarchy of interconnected objects. As a result, an attack can be
easily hidden in a PDF to circumvent file-type filtering. The PDF format further
allows a wide variety of resources to be embedded in the document including
JavaScript, Flash, and even binary programs. The type of the embedded
object is specified by keywords, and its content is in a data stream. Several recent
works proposed machine-learning techniques for detecting malicious PDFs use the
file’s logical structure to accurately identify the malware [50, 63, 64]. In this case
study, we use the feature representation of Maiorca et al. [50] in which each feature
corresponds to the tally of occurrences of a given keyword in the PDF file. Similar
feature representations were also exploited in [63, 64].

The PDF application imposes natural constraints on attacks. Although it is
difficult to remove an embedded object (and its corresponding keywords) without
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corrupting the PDF’s file structure, it is rather easy to insert new objects (and, thus,
keywords) through the addition of a new version to the PDF file [1, 49]. In our
feature representation, this is equivalent to allowing only feature increments; i.e.,
requiring x0 ≤ x as an additional constraint in the optimization problem given by
Eq. (4.1). Further, the total difference in keyword counts between two samples is
their Manhattan distance, which we again use for the kernel density estimator and
the constraint in Eq. (4.1). Accordingly, dmax is the maximum number of additional
keywords that an attacker can add to the original x0.

Experimental Setup. For experiments, we used a PDF corpus with 500 malicious
samples from the Contagio dataset4 and 500 benign samples collected from the
web. We randomly split the data into five pairs of training and testing sets with 500
samples each to average the final results. The features (keywords) were extracted
from each training set as described in [50]; on average, 100 keywords were found
in each run. Further, we also bounded the maximum value of each feature (keyword
count) to 100, as this value was found to be close to the 95th percentile for each
feature. This limited the influence of outlying samples having very high feature
values.

We simulated the perfect knowledge (PK) and the limited knowledge (LK)
scenarios described in Sect. 4.4.1.2. In the LK case, we set the number of samples
used to learn the surrogate classifier to nq = 100. The reason is to demonstrate
that even with a dataset as small as the 20% of the original training set size, the
adversary may be able to evade the targeted classifier with high reliability. Further,
we assumed that the adversary uses feedback from the targeted classifier f ; i.e.,
the labels ŷi = fi = f (xi) for each surrogate sample xi. Similar results were also
obtained using the true labels (without relabeling), since the targeted classifiers
correctly classified almost all samples in the test set.

As discussed in Sect. 4.4.2.2, the value of λ is chosen according to the scale
of the discriminant function g(x), the bandwidth parameter h of the kernel density
estimator, and the number of samples n labeled as legitimate in the surrogate training
set. For computational reasons, to estimate the value of the KDE at a given point x
in the feature space, we only consider the 50 nearest (legitimate) training samples
to x; therefore, n ≤ 50 in our case. The bandwidth parameter was set to h = 10, as
this value provided a proper rescaling of the Manhattan distances observed in our
dataset for the KDE. We thus set λ = 500 to be comparable with O(nh).

For each targeted classifier and training/testing pair, we learned five different
surrogate classifiers by randomly selecting nq samples from the test set and averaged
their results. For SVMs, we sought a surrogate classifier that would correctly match
the labels from the targeted classifier; thus, we used parametersC = 100, and γ = 0.1
(for the RBF kernel) to heavily penalize training errors.

Experimental Results. We report our results in Fig. 4.6, in terms of the false
negative (FN) rate attained by the targeted classifiers as a function of the maximum

4http://contagiodump.blogspot.it

http://contagiodump.blogspot.it
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Fig. 4.6 Experimental results for SVMs with the linear and the RBF kernel (first and second
columns). We report the FN values (attained at FP=0.5 %) for increasing dmax. For the sake of
readability, we report the average FN value ± half standard deviation (shown with error bars).
Results for perfect knowledge (PK) attacks with λ = 0 (without mimicry) are shown in the first
row, for different values of the considered classifier parameters, i.e., the regularization parameter C
for the linear SVM, and the kernel parameter γ for the SVM with RBF kernel (with C = 1). Results
for limited knowledge (LK) attacks with λ = 0 (without mimicry) are shown in the second row for
the linear SVM (for varying C), and the SVM with RBF kernel (for varying γ , with C = 1). Results
for perfect (PK) and limited knowledge (LK) with λ = 500 (with mimicry) are shown in the third
row for the linear SVM (with C = 1), and the SVM with RBF kernel (with γ = 1 and C = 1)

allowable number of modifications, dmax ∈ [0,50]. We compute the FN rate
corresponding to a fixed false positive (FP) rate of FP= 0.5%. For dmax = 0, the
FN rate corresponds to a standard performance evaluation using unmodified PDFs.
As expected, the FN rate increases with dmax as the PDF is increasingly modified,
since the adversary has more flexibility in his/her attack. Accordingly, a more secure
classifier will exhibit a more graceful increase of the FN rate.
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Results for λ = 0. We first investigate the effect of the proposed attack in the PK
case, without considering the mimicry component (Fig. 4.6, top row), for varying
parameters of the considered classifiers. The linear SVM (Fig. 4.6, top-left plot)
is almost always evaded with as few as 5–10 modifications, independent of the
regularization parameter C. It is worth noting that attacking a linear classifier
amounts to always incrementing the value of the same highest-weighted feature
(corresponding to the /Linearized keyword in the majority of the cases) until
it is bounded. This continues with the next highest-weighted non-bounded feature
until termination. This occurs simply because the gradient of g(x) does not depend
on x for a linear classifier (see Sect. 4.4.2.1). With the RBF kernel (Fig. 4.6, top-
right plot), SVMs exhibit a similar behavior with C = 1 and various values of its
γ parameter,5 and the RBF SVM provides a higher degree of security compared to
linear SVMs (cf. top-left plot and middle-left plot in Fig. 4.6).

In the LK case, without mimicry (Fig. 4.6, middle row), classifiers are evaded
with a probability only slightly lower than that found in the PK case, even when only
nq = 100 surrogate samples are used to learn the surrogate classifier. This aspect
highlights the threat posed by a skilled adversary with incomplete knowledge: only
a small set of samples may be required to successfully attack the target classifier
using the proposed algorithm.

Results for λ = 500. When mimicry is used (Fig. 4.6, bottom row), the success of
the evasion of linear SVMs (with C = 1) decreases both in the PK (e.g., compare the
blue curve in the top-left plot with the solid blue curve in the bottom-left plot) and
in the LK case (e.g., compare the blue curve in the middle-left plot with the dashed
blue curve in the bottom-left plot). The reason is that the computed direction tends to
lead to a slower descent; i.e., a less direct path that often requires more modifications
to evade the classifier. In the nonlinear case (Fig. 4.6, bottom-right plot), instead,
mimicking exhibits some beneficial aspects for the attacker, although the constraint
on feature addition may make it difficult to properly mimic legitimate samples. In
particular, note how the targeted SVMs with RBF kernel (with C = 1 and γ = 1) in
the PK case (e.g., compare the blue curve in the top-right plot with the solid blue
curve in the bottom-right plot) are evaded with a significantly higher probability than
in the case when λ = 0. The reason is that a pure descent strategy on g(x) may find
local minima (i.e., attack samples) that do not evade detection, while the mimicry
component biases the descent towards regions of the feature space more densely
populated by legitimate samples, where g(x) eventually attains lower values. In the
LK case (e.g., compare the blue curve in the middle-right plot with the dashed blue
curve in the bottom-right plot), however, mimicking does not exhibit significant
improvements.

Analysis. Our attacks raise questions about the feasibility of detecting mali-
cious PDFs solely based on logical structure. We found that /Linearized,

5We also conducted experiments using C = 0.1 and C = 100, but did not find significant differences
compared to the presented results using C = 1.
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/OpenAction, /Comment, /Root and /PageLayout were among the most
commonly manipulated keywords. They indeed are found mainly in legitimate
PDFs, but can be easily added to malicious PDFs by the versioning mechanism. The
attacker can simply insert comments inside the malicious PDF file to augment its
/Comment count. Similarly, he/she can embed legitimate OpenAction code to add
/OpenAction keywords or he/she can add new pages to insert /PageLayout
keywords.

In summary, our analysis shows that even detection systems that accurately
classify non-malicious data can be significantly degraded with only a few mali-
cious modifications. This aspect highlights the importance of developing detection
systems that are accurate, but also designed to be robust against adversarial
manipulation of attack instances.

4.4.4 Discussion

In this section, we proposed a simple algorithm that allows for evasion of SVMs with
differentiable kernels, and, more generally, of any classifier with a differentiable
discriminant function. We investigated the attack effectiveness in the case of perfect
knowledge of the attacked system. Further, we empirically showed that SVMs
can still be evaded with high probability even if the adversary can only learn a
classifier’s copy on surrogate data (limited knowledge). We believe that the proposed
attack formulation can easily be extended to classifiers with non-differentiable
discriminant functions as well, such as decision trees and k-nearest neighbors.

Our analysis also suggests some ideas for improving classifier security. In
particular, when the classifier tightly encloses the legitimate samples, the adversary
must increasingly mimic the legitimate class to evade (see Fig. 4.4), and this may not
always be possible; e.g., malicious network packets or PDF files still need to embed
a valid exploit, and some features may be immutable. Accordingly, a guideline for
designing secure classifiers is that learning should encourage a tight enclosure of
the legitimate class; e.g., by using a regularizer that penalizes classifying “blind
spots”—regions with low p(x)—as legitimate. Generative classifiers can be mod-
ified, by explicitly modeling the attack distribution, as in [11], and discriminative
classifiers can be modified similarly by adding generated attack samples to the
training set. However, these security improvements may incur higher FP rates.

In the above applications, the feature representations were invertible; i.e., there
is a direct mapping from the feature vectors x to a corresponding real-world sample
(e.g., a spam email, or PDF file). However, some feature mappings cannot be
trivially inverted; e.g., n-gram analysis [31]. In these cases, one may modify the
real-world object corresponding to the initial attack point at each step of the gradient
descent to obtain a sample in the feature space that as close as possible to the sample
that would be obtained at the next attack iteration. A similar technique has already
been exploited in to address the pre-image problem of kernel methods [14].



132 B. Biggio et al.

Other interesting extensions include (1) considering more effective strategies
such as those proposed by [46,54] to build a small but representative set of surrogate
data to learn the surrogate classifier and (2) improving the classifier estimate ĝ(x);
e.g. using an ensemble technique like bagging to average several classifiers [16].

4.5 Poisoning Attacks Against SVMs

In the previous section, we devised a simple algorithm that allows for evasion of
classifiers at test time and showed experimentally how it can be exploited to evade
detection by SVMs and kernel-based classification techniques. Here we present
another kind of attack, based on our work in [14]. Its goal is to force the attacked
SVM to misclassify as many samples as possible at test time through poisoning of
the training data, that is, by injecting well-crafted attack samples into the training
set. Note that, in this case, the test data is assumed not to be manipulated by the
attacker.

Poisoning attacks are staged during classifier training, and they can thus target
adaptive or online classifiers, as well as classifiers that are being re-trained on
data collected during test time, especially if in an unsupervised or semi-supervised
manner. Examples of these attacks, besides our work [14], can be found in
[7,9,13,39,40,53,59]. They include specific application examples in different areas,
such as intrusion detection in computer networks [7,39,40,59], spam filtering [7,53],
and, most recently, even biometric authentication [9, 13].

In this section, we follow the same structure of Sect. 4.4. In Sect. 4.5.1, we define
the adversary model according to our framework; then, in Sects. 4.5.1.4 and 4.5.2
we, respectively, derive the optimal poisoning attack and the corresponding algo-
rithm; and, finally, in Sects. 4.5.3 and 4.5.4 we report our experimental findings and
discuss the results.

4.5.1 Modeling the Adversary

Here, we apply our framework to evaluate security against poisoning attacks. As
with the evasion attacks in Sect. 4.4.1, we model the attack scenario and derive the
corresponding optimal attack strategy for poisoning.

Notation. In the following, we assume that an SVM has been trained on a dataset
Dtr = {xi,yi}n

i=1 with xi ∈ R
d and yi ∈ {−1,+1}. The matrix of kernel values

between two sets of points is denoted with K, while Q = K◦ yy� denotes its label-
annotated version, and α denotes the SVM’s dual variables corresponding to each
training point. Depending on the value of αi, the training points are referred to as
margin support vectors (0 < αi < C, set S ), error support vectors (αi =C, set E ),
or reserve vectors (αi = 0, set R). In the sequel, the lowercase letters s,e,r are
used to index the corresponding parts of vectors or matrices; e.g., Qss denotes the
sub-matrix of Q corresponding to the margin support vectors.
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4.5.1.1 Adversary’s Goal

For a poisoning attack, the attacker’s goal is to find a set of points whose addition to
Dtr maximally decreases the SVM’s classification accuracy. For simplicity, we start
considering the addition of a single attack point (x∗,y∗). The choice of its label y∗ is
arbitrary but fixed. We refer to the class of this chosen label as attacking class and
the other as the attacked class.

4.5.1.2 Adversary’s Knowledge

According to Sect. 4.3.1.2, we assume that the adversary knows the training samples
(k.i), the feature representation (k.ii), that an SVM learning algorithm is used (k.iii)
and the learned SVM’s parameters (k.iv), since they can be inferred by the adversary
by solving the SVM learning problem on the known training set. Finally, we assume
that no feedback is exploited by the adversary (k.v).

These assumptions amount to considering a worst-case analysis that allows us to
compute the maximum error rate that the adversary can inflict through poisoning.
This is indeed useful to check whether and under what circumstances poisoning may
be a relevant threat for SVMs.

Although having perfect knowledge of the training data is very difficult in
practice for an adversary, collecting a surrogate dataset sampled from the same
distribution may not be that complicated; for instance, in network intrusion detection
an attacker may easily sniff network packets to build a surrogate learning model,
which can then be poisoned under the perfect knowledge setting. The analysis of
this limited knowledge poisoning scenario is, however, left to future work.

4.5.1.3 Adversary’s Capability

According to Sect. 4.3.1.3, we assume that the attacker can manipulate only training
data (c.i), can manipulate the class prior and the class-conditional distribution of
the attack point’s class y∗ by essentially adding a number of attack points of that
class into the training data, one at a time (c.ii–iii), and can alter the feature values of
the attack sample within some lower and upper bounds (c.iv). In particular, we will
constrain the attack point to lie within a box, that is xlb ≤ x≤ xub.

4.5.1.4 Attack Strategy

Under the above assumptions, the optimal attack strategy amounts to solving the
following optimization problem:
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Algorithm 2 Poisoning attack against an SVM
Input: Dtr, the training data; Dval, the validation data; y∗, the class label of the attack point; x0, the
initial attack point; t , the step size.
Output: x∗, the final attack point.
1: {αi,b}← learn an SVM on Dtr.
2: p← 0.
3: repeat
4: Re-compute the SVM solution on Dtr∪{xp,y∗} using the incremental SVM [20]. This step

requires {αi,b}. If computational complexity is manageable, a full SVM can be learned at
each step, instead.

5: Compute ∇P on Dval according to Equation (4.8).
6: Normalize ∇P to have unit norm.
7: p← p+1 and xp← xp−1 + t∇P
8: if xlb > xp or xp > xub then
9: Project xp onto the boundary of the feasible region (enforce application-specific

constraints, if any).
10: end if
11: until P(xp)−P

(
xp−1

)
< ε

12: return: x∗ = xp

x∗ = argmaxx P(x) = ∑m
k=1(1− yk fx(xk))+ =

m

∑
k=1

(−gk)+ (4.2)

s.t. xlb ≤ x≤ xub , (4.3)

where the hinge loss has to be maximized on a separate validation set Dval =
{xk,yk}m

k=1 to avoid considering a further regularization term in the objective
function. The reason is that the attacker aims to maximize the SVM generalization
error and not only its empirical estimate on the training data.

4.5.2 Poisoning Attack Algorithm

In this section, we assume the role of the attacker and develop a method for
optimizing x∗ according to Eq. (4.2). Since the objective function is nonlinear, we
use a gradient-ascent algorithm, where the attack vector is initialized by cloning an
arbitrary point from the attacked class and flipping its label. This initialized attack
point (at iteration 0) is denoted by x0. In principle, x0 can be any point sufficiently
deep within the attacking class’s margin. However, if this point is too close to the
boundary of the attacking class, the iteratively adjusted attack point may become a
reserve point, which halts further progress.

The computation of the gradient of the validation error crucially depends on the
assumption that the structure of the sets S , E , and R does not change during the
update. In general, it is difficult to determine the largest step t along the gradient
direction ∇P, which preserves this structure. Hence, the step t is fixed to a small
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constant value in our algorithm. After each update of the attack point xp, the
optimal solution can be efficiently recomputed from the solution on Dtr, using the
incremental SVM machinery [20]. The algorithm terminates when the change in the
validation error is smaller than a predefined threshold.

4.5.2.1 Gradient Computation

We now discuss how to compute the gradient ∇P of our objective function. For
notational convenience, we now refer to the attack point as xc instead of x.

First, we explicitly account for all terms in the margin conditions gk that are
affected by the attack point xc:

gk = ∑
j

Qk jα j + ykb− 1

= ∑
j 	=c

Qk jα j(xc)+Qkc(xc)αc(xc)+ ykb(xc)− 1 . (4.4)

As already mentioned, P(xc) is a non-convex objective function, and we thus exploit
a gradient-ascent technique to iteratively optimize it. We denote the initial location

of the attack point as x0
c . Our goal is to update the attack point as xp

c = x(p−1)
c + t∇P

where p is the current iteration, ∇P is a unit vector representing the attack direction
(i.e., the normalized objective gradient), and t is the step size. To maximize our
objective, the attack direction ∇P is computed at each iteration.

Although the hinge loss is not everywhere differentiable, this can be overcome
by only considering point indices k with nonzero contributions to P; i.e., those
for which −gk > 0. Contributions of such points to ∇P can be computed by
differentiating Eq. (4.4) with respect to xc using the product rule:

∂gk

∂xc
= Qks

∂α
∂xc

+
∂Qkc

∂xc
αc + yk

∂b
∂xc

, (4.5)

where, by denoting the lth feature of xc as xcl , we use the notation

∂α
∂xc

=

⎡
⎢⎢⎣

∂α1
∂xc1
· · · ∂α1

∂xcd
...

. . .
...

∂αs
∂xc1
· · · ∂αs

∂xcd

⎤
⎥⎥⎦ , simil.

∂Qkc

∂xc
,

∂b
∂xc

.

The expressions for the gradient can be further refined using the fact that the
gradient step must preserve the optimal SVM solution. This can expressed as an
adiabatic update condition using the technique introduced in [20]. In particular, for
the ith training point, the KKT conditions of the optimal SVM solution are:
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gi = ∑
j∈Dtr

Qi jα j + yib− 1

⎧⎪⎪⎨
⎪⎪⎩
> 0; i ∈R

= 0; i ∈S

< 0; i ∈ E

(4.6)

h = ∑ j∈Dtr (y jα j) = 0 . (4.7)

The form of these conditions implies that an infinitesimal change in the attack point
xc causes a smooth change in the optimal solution of the SVM, under the restriction
that the composition of the sets S , E , and R remains intact. This equilibrium allows
us to predict the response of the SVM solution to the variation of xc, as shown below.

By differentiation of the xc-dependent terms in Eqs. (4.6) and (4.7) with respect
to each feature xcl (1≤ l ≤ d), we obtain, for any i ∈S ,

∂g
∂xcl

= Qss
∂α
∂xcl

+
∂Qsc

∂xcl
αc + ys

∂b
∂xcl

= 0

∂h
∂xcl

= y�s
∂α
∂xcl

= 0 .

Solving these equations and computing an inverse matrix via the Sherman–
Morrison–Woodbury formula [48] yields the following gradients:

∂α
∂xc

=− 1
ζ

αc(ζQ−1
ss −υυ�) · ∂Qsc

∂xc

∂b
∂xc

=− 1
ζ

αcυ� · ∂Qsc

∂xc
,

where υ = Q−1
ss ys and ζ = y�s Q−1

ss ys. We thus obtain the following gradient of
the objective used for optimizing our attack, which only depends on xc through
gradients of the kernel matrix, ∂Qkc

∂xc
:

∇P =
m

∑
k=1

{
Mk

∂Qsc

∂xc
+

∂Qkc

∂xc

}
αc , (4.8)

where Mk =− 1
ζ (Qks(ζQ−1

ss −υυT )+ ykυT ).

4.5.2.2 Kernelization

From Eq. (4.8), we see that the gradient of the objective function at iteration p may
depend on the attack point xp

c = xp−1
c + t∇P only through the gradients of the matrix

Q. In particular, this depends on the chosen kernel. We report below the expressions
of these gradients for three common kernels (see Sect. 4.4.2.1):
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• Linear kernel: ∂Kic
∂xc

= ∂ (xi·xc)
∂xc

= xi

• Polynomial kernel: ∂Kic
∂xc

= ∂ (xi·xc+R)d

∂xc
= d(xi ·xc +R)d−1xi

• RBF kernel: ∂Kic
∂xc

= ∂e−γ||xi−xc||2
∂xc

= 2γK(xi,xc)(xi− xc)

The dependence of these gradients on the current attack point, xc, can be
avoided by using the previous attack point, provided that t is sufficiently small.
This approximation enables a straightforward extension of our method to arbitrary
differentiable kernels.

4.5.3 Experiments

The experimental evaluation presented in the following sections demonstrates the
behavior of our proposed method on an artificial two-dimensional dataset and
evaluates its effectiveness on the classical MNIST handwritten digit recognition
dataset [32, 45].

4.5.3.1 Two-Dimensional Toy Example

Here we consider a two-dimensional example in which each class follows a
Gaussian with mean and covariance matrices given by μ−= [−1.5,0], μ+ = [1.5,0],
Σ− = Σ+ = 0.6I. The points from the negative distribution have label −1 (shown as
red in subsequent figures) and otherwise +1 (shown as blue). The training and the
validation sets, Dtr and Dval, consist of 25 and 500 points per class, respectively.

In the experiment presented below, the red class is the attacking class. That is,
a random point of the blue class is selected and its label is flipped to serve as the
starting point for our method. Our gradient-ascent method is then used to refine this
attack until its termination condition is satisfied. The attack’s trajectory is traced
as the black line in Fig. 4.7 for both the linear kernel (upper two plots) and the
RBF kernel (lower two plots). The background of each plot depicts an error surface:
hinge loss computed on a validation set (leftmost plots) and the classification error
(rightmost plots). For the linear kernel, the range of attack points is limited to the
box x∈ [−4,4]2 shown as a dashed line. This implements the constraint of Eq. (4.3).

For both kernels, these plots show that our gradient-ascent algorithm finds a
reasonably good local maximum of the non-convex error surface. For the linear
kernel, it terminates at the corner of the bounded region, since the error surface is
unbounded. For the RBF kernel, it also finds a good local maximum of the hinge loss
which, incidentally, is the maximum classification error within this area of interest.



138 B. Biggio et al.

mean Σi ξi (hinge loss)

mean Σi ξi (hinge loss)

−5 0 5
−5

0

5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

classification error

−5 0 5
−5

0

5

0.01

0.02

0.03

0.04

0.05

0.06

−5 0 5
−5

0

5

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

classification error

−5 0 5
−5

0

5

0.02

0.025

0.03

0.035

Fig. 4.7 Behavior of the gradient-based attack strategy on the Gaussian datasets, for the linear (top
row) and the RBF kernel (bottom row) with γ = 0.5. The regularization parameter C was set to 1
in both cases. The solid black line represents the gradual shift of the attack point xp

c toward a local
maximum. The hinge loss and the classification error are shown in colors, to appreciate that the
hinge loss provides a good approximation of the classification error. The value of such functions
for each point x ∈ [−5,5]2 is computed by learning an SVM on Dtr ∪{x,y = −1} and evaluating
its performance on Dval. The SVM solution on the clean data Dtr and the training data itself,
are reported for completeness, highlighting the support vectors (with black circles), the decision
hyperplane and the margin bounds (with black lines)

4.5.3.2 Handwritten Digits

We now quantitatively validate the effectiveness of the proposed attack strategy on
the MNIST handwritten digit classification task [32,45], as with the evasion attacks
in Sect. 4.4.3. In particular, we focus here on the following two-class sub-problems:
7 vs. 1; 9 vs. 8; 4 vs. 0. Each digit is normalized as described in Sect. 4.4.3.1. We
consider again a linear SVM with C = 1. We randomly sample a training and a
validation data of 100 and 500 samples, respectively, and retain the complete testing
data given by MNIST for Dts. Although it varies for each digit, the size of the testing
data is about 2,000 samples per class (digit).

Figure 4.8 shows the effect of single attack points being optimized by our descent
method. The leftmost plots of each row show the example of the attacked class used
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Fig. 4.8 Modifications to the initial (mislabeled) attack point performed by the proposed attack
strategy, for the three considered two-class problems from the MNIST dataset. The increase in
validation and testing errors across different iterations is also reported

as starting points in our algorithm. The middle plots show the final attack point.
The rightmost plots depict the increase in the validation and testing errors as the
attack progresses. For this experiment we run the attack algorithm five times by
re-initializing the gradient-ascent procedure, and we retain the best result.

Visualizing the attack points reveals that these attacks succeed by blurring the
initial prototype to appear more like examples of the attacking class. In comparing
the initial and final attack points, we see that the bottom segment of the 7 straightens
to resemble a 1, the lower segment of the 9 is rounded to mimicking an 8, and ovular
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Fig. 4.9 Results of the multi-point, multi-run experiments on the MNIST dataset. In each plot,
we show the classification errors due to poisoning as a function of the percentage of training
contamination for both the validation (red solid line) and testing sets (black dashed line). The
top-left plot is for the 7 vs.1 task, the top-right plot is for the 9 vs. 8 task, and the bottom-middle
plot is for the 4 vs. 0 task

noise is added to the outer boundary of the 4 to make it similar to a 0. These blurred
images are thus consistent with one’s natural notion of visually confusing digits.

The rightmost plots further demonstrate a striking increase in error over the
course of the attack. In general, the validation error overestimates the classification
error due to a smaller sample size. Nonetheless, in the exemplary runs reported in
this experiment, a single attack data point caused the classification error to rise from
initial error rates of 2–5 % to 15–20 %. Since our initial attack points are obtained
by flipping the label of a point in the attacked class, the errors in the first iteration of
the rightmost plots of Fig. 4.8 are caused by single random label flips. This confirms
that our attack can achieve significantly higher error rates than random label flips
and underscores the vulnerability of the SVM to poisoning attacks.

The latter point is further illustrated in a multiple point, multiple run experiment
presented in Fig. 4.9. For this experiment, the attack was extended by repeatedly
injecting attack points into the same class and averaging results over multiple runs
on randomly chosen training and validation sets of the same size (100 and 500
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samples, respectively). These results exhibit a steady rise in classification error as
the percentage of attack points in the training set increases. The variance of the error
is quite high, which can be attributed to the relatively small sizes of the training and
validation sets. Also note that, in this experiment, to reach an error rate of 15–20 %,
the adversary needs to control at least 4–6 % of the training data, unlike in the single
point attacks of Fig. 4.8. This is because Fig. 4.8 displays the best single-point attack
from five restarts whereas here initial points are selected without restarts.

4.5.4 Discussion

The poisoning attack presented in this section, summarized from our previous work
in [14], is a first step toward the security analysis of SVM against training data
attacks. Although our gradient-ascent method is not optimal, it attains a surprisingly
large impact on the SVM’s classification accuracy.

Several potential improvements to the presented method remain to be explored
in future work. For instance, one may investigate the effectiveness of such an attack
with surrogate data, that is, when the training data is not known to the adversary,
who may, however, collect samples drawn from the same distribution to learn a
classifier’s copy (similarly to the limited knowledge case considered in the evasion
attacks of Sect. 4.4). Another improvement may be to consider the simultaneous
optimization of multi-point attacks, although we have already demonstrated that
greedy, sequential single-point attacks may be rather successful.

An interesting analysis of the SVM’s vulnerability to poisoning suggested from
this work is to consider the attack’s impact under loss functions other than the hinge
loss. It would be especially interesting to analyze bounded loss functions, like the
ramp loss, since such losses are designed to limit the impact of any single (attack)
point on the outcome. On the other hand, while these losses may lead to improved
security to poisoning, they also make the SVM’s optimization problem non-convex,
and, thus, more computationally demanding. This may be viewed as another trade-
off between computational complexity of the learning algorithm and security.

An important practical limitation of the proposed method is the assumption that
the attacker controls the labels of injected points. Such assumptions may not hold
if the labels are assigned by trusted sources such as humans, e.g., anti-spam filters
use their users’ labeling of messages as ground truth. Thus, although an attacker
can send arbitrary messages, he/she cannot guarantee that they will have the labels
necessary for his/her attack. This imposes an additional requirement that the attack
data must satisfy certain side constraints to fool the labeling oracle. Further work is
needed to understand and incorporate these potential side constraints into attacks.
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4.6 Privacy Attacks Against SVMs

We now consider a third scenario in which the attacker’s goal is to affect a breach
of the training data’s confidentiality. We review our recent work [60] deriving
mechanisms for releasing SVM classifiers trained on privacy-sensitive data while
maintaining the data’s privacy. Unlike previous sections, our focus here lies primary
on the study of countermeasures, while we only briefly consider attacks in the
context of lower bounds. We adopt the formal framework of Dwork et al. [30],
in which a randomized mechanism is said to preserve β -differential privacy, if
the likelihood of the mechanism’s output changes by at most β when a training
datum is changed arbitrarily (or even removed). The power of this framework, which
gained near-universal favor after its introduction, is that it quantifies privacy in a
rigorous way and provides strong guarantees even against powerful adversaries with
knowledge of almost all of the training data, knowledge of the mechanism (barring
its source of randomness), arbitrary access to the classifier output by the mechanism,
and the ability to manipulate almost all training data prior to learning.

This section is organized as follows. In Sect. 4.6.1 we outline our model of the
adversary, which makes only weak assumptions. Section 4.6.2 provides background
on differential privacy, presents a mechanism for training and releasing privacy-
preserving SVMs—essentially a countermeasure to many privacy attacks—and
provides guarantees on differential privacy and also utility (e.g., controlling the
classifier’s accuracy). We then briefly touch on existing approaches for evaluation
via lower bounds and discuss other work and open problems in Sect. 4.6.3.

4.6.1 Modeling the Adversary

We first apply our framework to define the threat model for defending against
privacy attacks within the broader context of differential privacy. We then focus on
specific countermeasures in the form of modifications to SVM learning that provide
differential privacy.

4.6.1.1 Adversary’s Goal

The ultimate goal of the attacker in this section is to determine features and/or the
label of an individual training datum. The overall approach of the adversary towards
this goal is to inspect (arbitrary numbers of) test-time classifications made by a
released classifier trained on the data, or by inspecting the classifier directly. The
definition of differential privacy, and the particular mechanisms derived here, can
be modified for related goals of determining properties of several training data; we
focus on the above conventional case without loss of generality.
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4.6.1.2 Adversary’s Knowledge

As alluded to above, we endow our adversary with significant knowledge of the
learning system, so as to derive countermeasures that can withstand very strong
attacks. Indeed the notion of differential privacy, as opposed to more syntactic
notions of privacy such as k-anonymity [65], was inspired by decades-old work
in cryptography that introduced mathematical formalism to an age-old problem,
yielding significant practical success. Specifically, we consider a scenario in which
the adversary has complete knowledge of the raw input feature representation, the
learning algorithm (the entire mechanism including the form of randomization it
introduces, although not the source of randomness) and the form of its decision
function (in this case, a thresholded SVM), the learned classifier’s parameters
(the kernel/feature mapping, primal weight vector, and bias term), and arbi-
trary/unlimited feedback from the deployed classifier (k.ii–v). We grant the attacker
near complete knowledge of the training set (k.i): the attacker may have complete
knowledge of all but one training datum, for which he/she has no knowledge of
input feature values or its training label, and it is these attributes he/she wishes to
reveal. For simplicity of exposition, but without loss of generality, we assume this
to be the last datum in the training sample.

4.6.1.3 Adversary’s Capability

Like our assumptions on the attacker’s knowledge, we impose weak limitations
on the adversary’s capability. We assume an adversary that can manipulate both
training and test data (c.i), although the latter is subsumed by the attacker’s complete
knowledge of the decision function and learned parameters—e.g., he/she may
implement his/her own classifier and execute it arbitrarily, or he/she may submit
or manipulate test points presented to a deployed classifier.

Our attack model makes no assumptions about the origins of the training or
test data. The data need not be sampled independently or even according to a
distribution—the definition of differential privacy provided below makes worst-case
assumptions about the training data, and again the test data could be arbitrary. Thus
the adversary may have arbitrary capability to modify class priors, training data
features and labels (c.ii–iv) except that the adversary attacking the system may not
directly modify the targeted training datum because he/she does not have knowledge
of it. That said, however, differential privacy makes worst-case (no distributional)
assumptions about the datum and thus one could consider even this data point as
being adversarially manipulated by nature (i.e., nature does not collude with the
attacker to share information about the target training datum, but that may collude
to facilitate a privacy breach by selecting a “convenient” target datum).
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4.6.1.4 Attack Strategy

While no practical privacy attacks on SVMs have been explored in the past—an
open problem discussed in Sect. 4.6.3—a general approach would be to approximate
the inversion of the learning map on the released SVM parametrization (either
primal weight vector, or dual variables) around the known portion of the training
data. In practice this could be achieved by taking a similar approach as done in
Sect. 4.5 whereby an initial guess of a missing training point is iterated on by
taking gradient steps of the differential in the SVM parameter vector with respect
to the missing training datum. An interpretation of this approach is one of the
simulations: to guess a missing training datum, given access to the remainder of
the training set and the SVM solution on all the data, simulate the SVM on guesses
for the missing datum, updating the guesses in directions that appropriately shift the
intermediate solutions. As we discuss briefly in the sequel, theoretical lower bounds
on achievable privacy relate to attacks in pathological cases.

4.6.2 Countermeasures with Provable Guarantees

Given an adversary with such strong knowledge and capabilities as described
above, it may seem difficult to provide effective countermeasures particularly
considering the complication of abundant access to side information that is often
used in publicized privacy attacks [52, 65]. However, the crux that makes privacy-
preservation under these conditions possible lies in the fact that the learned quantity
being released is an aggregate statistic of the sensitive data; intuitively the more
data being aggregated, the less sensitive a statistic should be to changes or removal
of any single datum. We now present results from our recent work that quantifies
this effect [60], within the framework of differential privacy.

4.6.2.1 Background on Differential Privacy

We begin by recalling the key definition due to Dwork et al. [30]. First, for
any training set D = {(xi,yi)}n

i=1 denote set D ′ to be a neighbor of D (or
D ′ ∼ D) if D ′ = {(xi,yi)}n−1

i=1 ∪{(x′n,y′n)} where (xn,yn) 	= (x′n,y′n). In the present
context, differential privacy is a desirable property of learning maps, which maps
a training set {(xi,yi)}n

i=1 to a continuous discriminant function of the form g :
X → R—here a learned SVM—in some space of functions, H . We say that a
randomized6 learning map L preserves β -differential privacy if for all datasets

6That is, the learning map’s output is not a deterministic function of the training data. The
probability in the definition of differential privacy is due to this randomness. Our treatment here is
only as complex as necessary, but to be completely general, the events in the definition should be
on measurable sets G⊂H rather than individual g ∈H .
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D , all neighboring sets D ′ of D , and all possible functions g ∈H , the following
relation holds

Pr(L (D) = g) ≤ exp(β )Pr(L (D ′) = g) .

Intuitively, if we initially fix a training set and neighboring training set, differential
privacy simply says that the two resulting distributions induced on the learned
functions are point-wise close—and closer for smaller β . For a patient deciding
whether to submit his/her datum to a training set for a cancer detector, differential
privacy means that the learned classifier will reveal little information about that
datum. Even an adversary with access to the inner-workings of the learner, with
access to all other patients’ data, and with the ability to guess-and-simulate the
learning process repeatedly with various possible values of his/her datum, cannot
reverse engineer his/her datum from the classifier released by the hospital because
the adversary cannot distinguish the classifier distribution on one training set, from
that on neighboring sets. Moreover, variations of this definition (which do not
significantly affect the presented results) allow for neighboring databases to be
defined as those missing a datum; or having several varying data, not just a single
one.

For simplicity of exposition, we drop the explicit bias term b from our SVM
learning process and instead assume that the data feature vectors are augmented
with a unit constant, and that the resulting additional normal weight component
corresponds to the bias. This is an equivalent SVM formulation that allows us to
focus only on the normal’s weight vector.

A classic route to establish differential privacy is to define a randomized map L
that returns the value of a deterministic, nonrandom L̂ plus a noise term. Typically,
we use an exponential family in a term that matches an available Lipschitz condition
satisfied by L̂ : in our case, for learning maps that return weight vectors in R

d , we
aim to measure global sensitivity of L̂ via the L1 norm as

Δ(L̂ ) = max
D ,D ′∼D

∥∥∥L̂ (D)− L̂ (D ′)
∥∥∥

1
.

With respect to this sensitivity, we can easily prove that the randomized mechanism

L (D) = L̂ (D)+Laplace(0,Δ(L̂ )/β ) ,

is β -differential private.7 The well-established proof technique [30] follows from
the definition of the Laplace distribution involving the same norm as used in our
measure of global sensitivity, and the triangle inequality: for any training set D ,
D ′ ∼D , response g ∈H , and privacy parameter β

7Recall that the zero-mean multi-variate Laplace distribution with scale parameter s has density
proportional to exp(−‖x‖1/s).
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Pr(L (D) = g)
Pr(L (D ′) = g)

=
exp

(∥∥∥L̂ (D ′)− g
∥∥∥

1
β/Δ(L̂ )

)

exp
(∥∥∥L̂ (D)− g

∥∥∥
1

β/Δ(L̂ )
)

≤ exp
(∥∥∥L̂ (D ′)− L̂ (D)

∥∥∥
1

β/Δ(L̂ )
)

≤ exp(β ).

We take the above route to develop a differentially private SVM. As such, the onus
is on calculating the SVM’s global sensitivity, Δ(L̂ ).

4.6.2.2 Global Sensitivity of Linear SVM

Unlike much prior work applying the “Laplace mechanism” to achieving differential
privacy, in which studied estimators are often decomposed as linear functions of
data [15], measuring the sensitivity of the SVM appears to be nontrivial owing to
the nonlinear influence an individual training datum may have on the learned SVM.
However, perturbations of the training data were studied by the learning-theory
community in the context of algorithmic stability: there the goal is to establish
bounds on classifier risk, from stability of the learning map, as opposed to leveraging
combinatorial properties of the hypothesis class (e.g., the VC dimension, which is
not always possible to control, and for the RBF kernel SVM is infinite) [62]. In
recent work [60], we showed how these existing stability measurements for the SVM
can be adapted to provide the following L1-global sensitivity bound.

Lemma 1. Consider SVM learning with a kernel corresponding to linear SVM in a
feature space with finite-dimension F and L2-norm bounded8 by κ , with hinge loss
(as used throughout this chapter), and chosen parameter C > 0. Then the L1 global
sensitivity of the resulting normal weight vector is upper-bounded by 4Cκ

√
F.

We omit the proof, which is available in the original paper [60] and which follows
closely the previous measurements for algorithmic stability. We note that the result
extends to any convex Lipschitz loss.

4.6.2.3 Differentially Private SVMs

So far we have established that Algorithm 3, which learns an SVM and returns the
resulting weight vector with added Laplace noise, preserves β -differential privacy.
More noise is added to the weight vector when either (1) a higher degree of privacy
is desired (smaller β ), (2) the SVM fits closer to the data (higher C) or (3) the data

8That is ∀x, k(x,x) ≤ κ2; e.g. for the RBF the norm is uniformly unity κ = 1; more generally, we
can make the standard assumption that the data lies within some κ L2-ball.
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Algorithm 3 Privacy-preserving SVM
Input: D the training data; C > 0 soft-margin parameter; kernel k inducing a feature space with
finite dimension F and κ-bounded L2-norm; privacy parameter β > 0.
Output: learned weight vector w.
1: ŵ← learn an SVM with parameter C and kernel k on data D .

2: μ ← draw i.i.d. sample of F scalars from Laplace
(

0, 4Cκ
√

F
β

)
.

3: return: w = ŵ+μ

is more distinguishable (higher κ or F—the curse of dimensionality). Hidden in
the above is the dependence on n: typically we take C to scale like 1/n to achieve
consistency in which case we see that noise decreases with larger training data—
akin to less individual influence—as expected [60].

Problematic in the above approach is the destruction to utility due to preserving
differential privacy. One approach to quantifying this effect involves bounding the
following notion of utility [60]. We say a privacy-preserving learning map L has
(ε,δ )-utility with respect to non-private map L̂ if for all training sets D ,

Pr
(∥∥∥L (D)− L̂ (D)

∥∥∥
∞
≤ ε

)
≥ 1− δ .

The norm here is in the function space of continuous discriminators, learned by
the learning maps, and is the point-wise L∞ norm which corresponds to ‖g‖∞ =
supx |g(x)|—although for technical reasons we will restrict the supremum to be
over a set M to be specified later. Intuitively, this indicates that the continuous
predictions of the learned private classifier are close to those predictions of the
learned non-private classifier, for all test points in M , with high probability (again,
in the randomness due to the private mechanism). This definition draws parallels
with PAC learnability, and in certain scenarios is strictly stronger than requiring that
the private learner achieves good risk (i.e., PAC learns) [60]. Using the Chernoff
tail inequality and known moment-generating functions, we establish the following
bound on the utility of this private SVM [60].

Theorem 1. The β -differentially private SVM of Algorithm 3 achieves (ε,δ )-utility
with respect to the non-private SVM run with the same C parameter and kernel, for
0 < δ < 1 and

ε ≥ 8CκΦ
√

F

(
F + log

1
δ

)
/β ,

where the set M supporting the supremum in the definition of utility is taken to be
the pre-image of the feature mapping on the L∞ ball of radius Φ > 0.9

9Above we previously bounded the L2 norms of points in features space by κ , the additional bound
on the L∞ norm here is for convenience and is standard practice in learning-theoretic results.
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As expected, the more confidence δ or privacy β required, the less accuracy is
attainable. Similarly, when the training data is fitted more tightly via higher C, or
when the data is less tightly packed for higher κ ,Φ,F , less accuracy is possible.
Note that like the privacy result, this result can hold for quite general loss functions.

4.6.3 Discussion

In this section, we have provided a summary of our recent results on strong
countermeasures to privacy attacks on the SVM. We have shown how, through
controlled addition of noise, SVM learning in finite-dimensional feature spaces
can provide both privacy and utility guarantees. These results can be extended to
certain translation-invariant kernels including the infinite-dimensional RBF [60].
This extension borrows a technique from large-scale learning where finding a
dual solution of the SVM for large training data size n is infeasible. Instead, a
primal SVM problem is solved using a random kernel that uniformly approximates
the desired kernel. Since the approximating kernel induces a feature mapping of
relatively small, finite dimensions, the primal solution becomes feasible. For privacy
preservation, we use the same primal approach but with this new kernel. Fortunately,
the distribution of the approximating kernel is independent of the training data, and
thus we can reveal the approximating kernel without sacrificing privacy. Likewise
the uniform approximation of the kernel composes with the utility result here to
yield an analogous utility guarantee for translation-invariant kernels.

While we demonstrated here a mechanism for private SVM learning with upper
bounds on privacy and utility, we have previously also studied lower bounds that
expose limits on the achievable utility of any learner that provides a given level of
differential privacy. Further work is needed to sharpen these results. In a sense,
these lower bounds are witnessed by pathological training sets and perturbation
points and, as such, serve as attacks in pathological (unrealistic) cases. Developing
practical attacks on the privacy of an SVM’s training data remains unexplored.

Finally, it is important to note that alternate approaches to differentially private
SVMs have been explored by others. Most notable is the work (parallel to our own)
of Chaudhuri et al. [21]. Their approach to finite-dimensional feature mappings is,
instead of adding noise to the primal solution, to add noise to the primal objective
in the form of a dot product of the weight with a random vector. Initial experiments
show their approach to be very promising empirically, although it does not allow for
non-differentiable losses like the hinge loss.

4.7 Concluding Remarks

In security applications like malware detection, intrusion detection, and spam
filtering, SVMs may be attacked through patterns that can either evade detection
(evasion), mislead the learning algorithm (poisoning) or gain information about
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their internal parameters or training data (privacy violation). In this chapter, we
demonstrated that these attacks are feasible and constitute a relevant threat to the
security of SVMs, and to machine-learning systems, in general.

Evasion. We proposed an evasion algorithm against SVMs with differentiable
kernels, and, more generally, against classifiers with differentiable discriminant
functions. We investigated the attack’s effectiveness in perfect and limited knowl-
edge settings. In both cases, our attack simulation showed that SVMs (both linear
and RBF) can be evaded with high probability after a few modifications to the attack
patterns. Our analysis also provides some general hints for tuning the classifier’s
parameters (e.g., the value of γ in SVMs with the RBF kernel) and for improving
classifier security. For instance, if a classifier tightly encloses the legitimate samples,
the adversary’s samples must closely mimic legitimate samples to evade it, in which
case, if such exact mimicry is still possible, it suggests an inherent flaw in the feature
representation.

Poisoning. We presented an algorithm that allows the adversary to find an attack
pattern whose addition to the training set maximally decreases the SVM’s classi-
fication accuracy. We found that the increase in error over the course of attack is
especially striking. A single attack data point may cause the classification error to
rise from the initial error rates of 2–5 % to 15–20 %. This confirms that our attack
can achieve significantly higher error rates than random label flips and underscores
the vulnerability of the SVM to poisoning attacks. As a future investigation, it may
be of interest to analyze the effectiveness of poisoning attacks against non-convex
SVMs with bounded loss functions, both empirically and theoretically, since such
losses are designed to limit the impact of any single (attack) point on the resulting
learned function. This has also been studied from a more theoretical perspective
in [23], exploiting the framework of Robust Statistics [35, 51]. A similar effect is
obtained by using bounded kernels (e.g., the RBF kernel) or bounded feature values.

Privacy. We developed an SVM learning algorithm that preserves differential
privacy, a formal framework for quantifying the threat of a potential training
set privacy violation incurred by releasing learned classifiers. Our mechanism
involves adding Laplace-distributed noise to the SVM weight vector with a scale
that depends on the algorithmic stability of the SVM and the desired level of
privacy. In addition to presenting a formal guarantee that our mechanism preserves
privacy, we also provided bounds on the utility of the new mechanism, which state
that the privacy-preserving classifier makes predictions that are point-wise close to
those of the non-private SVM, with high probability. Finally we discussed potential
approaches for attacking SVMs’ training data privacy, and known approaches
to differentially private SVMs with (possibly infinite-dimensional feature space)
translation-invariant kernels, and lower bounds on the fundamental limits on utility
for private approximations of the SVM.
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Chapter 5
Application of SVMs to the Bag-of-Features
Model: A Kernel Perspective

Lei Wang, Lingqiao Liu, Luping Zhou, and Kap Luk Chan

Abstract The Bag-of-features model has recently achieved great success in image
categorisation and become the state of the art. Support vector machines (SVMs)
have played an important role in this process. This chapter first introduces the
fundamentals of the Bag-of-features model in image categorisation. Following
that, it is focused on how the SVM classifiers are applied to this model. In
particular, we show the novel kernels developed to compare images based on
a variety of representations incurred by this model. Also, how the kernels are
implicitly implemented or effectively approximated to work with linear SVMs is
discussed. Through this chapter, we will see that the application of SVMs not
only demonstrates its elegance and efficiency but also raises new research issues
to stimulate the development of SVMs.

5.1 The Bag-of-Features Model

Image categorisation is one of the fundamental tasks in the field of computer
vision. It aims to classify an image to a predefined set of classes according to its
visual content. By appropriately defining the classes, image categorisation can be
used as an effective tool to determine the presence of objects in an image (object
recognition), infer the location of an object in an image (object localisation) or in a
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video sequence (object tracking), classify the scene in an image (scene recognition),
determine the type of human pose in an image (pose recognition) or the action in
a video clip (action recognition), detect the irregular visual patterns (unusual event
detection) or search for similar images or videos from a large database (image/video
retrieval), to name just a few.

Image categorisation has been researched for a long time in the fields of computer
vision and pattern recognition. From the perspective of visual features, most of the
research, particularly for those conducted 10 years ago or earlier, has been focused
on the use of global features, for example, the features based on colour, texture
or shape in a whole image. Although many significant research progresses have
been made along this line, the performance of generic image categorisation is still
far from being satisfactory. A powerful image categorisation model that can be
generally applied is still lacking.

In the past several years, the Bag-of-features model [8,47] has attracted intensive
attention in the field of visual recognition and achieved great success in a wide range
of applications. It has become the state-of-the-art image categorisation model that
can be generally applied. The Bag-of-features model can be viewed as a wonderful
integration of the Bag-of-words model in the field of text analysis [19] and the
local invariant features in the field of computer vision [32, 33]. During the last
decade, a number of excellent local invariant features have been developed, for
example, the well-known Scale-Invariant Feature Transform (SIFT) feature [28].
With the local invariant features, effective, reliable and robust description of visual
content within a small-sized image patch can be obtained. This provides a solid basis
for the transplantation of the Bag-of-words model from text analysis, giving birth to
the Bag-of-features model. The work on texture classification in [25] is among the
earliest work that uses the Bag-of-features model in image categorisation. Generally,
the work in [8, 47] is often regarded as the beginning of the Bag-of-features model
in generic image categorisation.

A basic Bag-of-features model can be described as follows. First, a set of local
image patches is sampled from all training images and characterised by using
a local feature descriptor. After that, common visual patterns shared by these
local feature descriptors are identified. They mimic the “words” in the Bag-of-
words model and are called “visual words.” A collection of visual words forms a
“visual codebook.” Following the Bag-of-words model, each image is represented
by a histogram indicating the frequency of occurrences of each visual word in
this image. In this way, image categorisation can be performed based on the
histogram-based representation, for example, by training a classifier and performing
classification. This basic Bag-of-features model has been significantly extended
since its introduction and more powerful variants are being used. Figure 5.1
shows an image categorisation system based on the basic Bag-of-features model.
The last step “Classification” corresponds to the application of SVMs. However,
the previous steps form the basis for this application and more importantly, the
development of these steps significantly reshapes the application of SVMs in the
image categorisation system. To obtain a clear understanding of this system and
the application of SVMs, this chapter will give a brief introduction of the four key
components of this system in the following parts.
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Fig. 5.1 An image categorisation system based on the basic Bag-of-features model

5.1.1 Feature Extraction

As mentioned above, the advances of local invariant features lay the foundation
of the birth of the Bag-of-features model. The component “Feature extraction”
in Fig. 5.1 is to extract local patches from images and then characterise the
visual content therein. This component consists of two steps, feature detection
and feature description. Feature detection is to identify the locations in an image
where important visual information could exist, which is usually called interest
point detection. A number of excellent interest point detection algorithms have been
developed. They can reliably and consistently identify interest points in an image
even if the image experiences the change of viewpoint, scale or illumination to
some extent. The repeatability of identifying the same interest points in the varying
conditions is essential to generic image categorisation. A comparative study of
the commonly used interest point detectors can be found in [32]. With the recent
progress of the Bag-of-features model, it is found that densely sampling local
image patches can often lead to better classification performance than performing
interest point detection [20]. Dense sampling could extract much more local image
patches than interest point detection and thus has the advantage of avoiding missing
important visual information that helps classification at the later stage. Dense
sampling has now become a common way to extract local patches from images.
To deal with the scaling issue, dense sampling with different-sized local patches is
often used.

Once local image patches are extracted, a variety of local feature descriptors
can be employed. These descriptors are designed to achieve reliable and robust
description of the local patches with respect to varying conditions. The best
known and the most popular descriptor may be the SIFT descriptor [28]. SIFT
actually consists of both feature detector and feature descriptor, but its descriptor is
often individually used by researchers to characterise densely sampled local image
patches. A systematic evaluation of the performance of existing local descriptors
is conducted in [33]. Depending on the size of an image, the total number of
local patches extracted from an image can be in the order of thousands or even
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tens of thousands. Each of them will be represented by a descriptor, which is a
multi-dimensional vector. Note that in this way, each image becomes a bag of
orderless feature vectors or “a set of points” in a multi-dimensional vector space.

5.1.2 Visual Codebook

The Bag-of-features model originates from the Bag-of-words model. However,
images do not contain words by nature. In order to use the Bag-of-words model,
the concept of “visual word” is developed. Visual words can be regarded as a
set of common visual patterns shared by the local patches extracted from images.
For example, the patterns could be corners, T-junctions, L-junctions or any other
frequently observed patterns on the changes of pixel intensities. The k-means
clustering may be the most commonly used method to generate visual words. Let
{x1,x1, · · · ,xn} denote a set of local feature descriptors obtained from the step of
feature extraction, where x ∈ R

d is a d-dimensional vector. For example, d is 128
when the SIFT descriptor is used. The k-means clustering aims to find an optimal
k-cluster-partitioning {C1,C2, · · · ,Ck} of these feature descriptors by minimising the
sum of the within-cluster variances. Let μ i denote the mean of the cluster Ci. This
partitioning can be shown as an optimisation problem

{C1,C2, · · · ,Ck}= argmin
k

∑
i=1

∑
x j∈Ci

‖x j− μ i‖2
2. (5.1)

By solving this problem, the optimal means {μ1,μ2, · · · ,μk} are interpreted
as visual words. A collection of the k visual words forms a visual codebook.
Throughout this chapter, V is used to denote a visual codebook and |V|, whose
value is k here, denotes the number of visual words in the codebook.

In addition to the k-means clustering algorithm, a variety of more advanced
visual codebook generation algorithms have been developed in the past few years.
They generally deal with one or more of the following issues related to k-means
clustering: (1) How to set the optimal k? To address this issue, methods based on
multiple codebook combination, codeword selection and codeword merging have
been proposed [53,55]; (2) How to conduct efficient clustering when d or k is large?
To speed up clustering in this case, special data structures have been used and this
leads to the work of vocabulary tree [36], randomised clustering forests [34] and
fast k-means [41]; (3) Can a partitioning better than that given by the k-means
clustering be obtained? In this line, fixed-radius partition and mean-shift techniques
have been utilised [20]. Also, instead of using Euclidean distance, clustering with
other distances has been developed to better handle the histogram structure of SIFT
descriptors [56]; (4) Can supervised information be incorporated to obtain better
codebooks? When the class label of each image is available, it can be used to design
compact and discriminative visual codebooks. To achieve this, information-theoretic
method [23] and supervised compact codebook generation [27] have recently been
developed.
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Fig. 5.2 The issues of codeword uncertainty and codeword plausibility. Image courtesy of [49]

5.1.3 Feature Coding

Once a visual codebook is created, it will be used as a basis to represent the
visual content of an image. To associate the visual content with the codebook,
the most common way is to assign each of the local feature descriptors extracted
from an image to one of the visual words. For example, this can be done by
evaluating the Euclidean distance between a local descriptor to each visual word
and assigning it to the closest word. This is often known as “hard assignment,” in
which a local descriptor is assigned to one and only one visual word. Although this
assignment is conceptually simple and computationally efficient, more advanced
assignment methods have been developed in the last few years. Generally, these new
methods deal with two issues: (1) how to reduce the quantisation error in the hard
assignment in further? (2) how to consider the underlying manifold structure of
the local feature descriptors? To resolve the first issue, a number of methods have
been developed in the literature, among which kernel codebook and sparse coding
are two representative methods. Kernel codebook is a “soft assignment” method,
which assigns a local feature descriptor to more than one visual words to reduce
quantisation error [49]. In particular, kernel codebook systematically discusses
two main drawbacks, codeword uncertainty and codeword plausibility, in hard-
assignment methods, as illustrated in Fig. 5.2.

Codeword uncertainty means that hard-assignment methods rigidly assign a local
descriptor to one and only one visual word even if it is relevant (close) to multiple
different words. For example, for a local descriptor riding on the boundary of two
clusters, assigning it to either one of the two corresponding visual words could cause
significant quantisation error. Codeword plausibility means that hard-assignment
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methods rigidly assign a local descriptor to a visual word even if this descriptor is far
from all of the words. Again, this could lead to large quantisation error. To handle the
two issues, the kernel codebook proposes to model the degree of relevance between
a local descriptor and each visual word. Its assignment scheme can be expressed as

ωi =
κσ (d(x,vi))

∑|V|i=1 κσ (d(x,vi))
, (5.2)

where κ denotes a kernel used in kernel density estimation with the width of σ ,
x a local descriptor, vi the ith visual word, d(x,vi) the distance between x and
vi, and ωi the coefficient assigned to x with respect to vi. As shown in [49], this
soft-assignment method can well resolve the above two issues caused by hard
assignment.

Sparse coding is the assignment method that represents the state of the art [57].
It is also a soft-assignment method and has an elegant theoretical framework.
The sparsity enforces that only a small number of visual words can be chosen to
represent a local descriptor. In addition, sparse coding not only learns the coding
coefficient but can also jointly learn the visual codebook. Let Vd×k =(v1,v2, · · · ,vk)
denote a visual codebook consisting of k words. Let Uk×n = (u1,u2, · · · ,un) denote
the coding coefficient matrix, in which ui is the coding coefficient for the ith local
descriptor xi. Sparse coding can be expressed as an optimisation problem that aims
to minimise the reconstruction error, subject to a sparsity constraint on the coding
coefficient.

{V�,U�} = argmin
V,U

n

∑
i=1

(‖xi−Vui‖2
2 +λ‖ui‖1

)

s.t. ‖v j‖ ≤ 1, j = 1,2, · · · ,k, (5.3)

where ‖ · ‖1 is the �1 norm used to impose the sparsity constraint and λ is the
regularisation parameter. This optimisation can be efficiently solved in an alternate
manner. By fixing V, the coding coefficient ui for each local descriptor can
be updated one by one by solving an �1-regularised least-squares problem. By fixing
U, the visual codebook V can be updated by solving a least-squares problem with
quadratic constraints.

Locality-constrained Linear Coding (LLC) is another important sparse coding
method, which takes the underlying manifold structure of local descriptors into
account [52]. It argues that locality is more essential than sparsity and that locality
induces sparsity. To enforce locality, LLC encodes a descriptor by the visual words
nearby. This not only induces the sparsity but also makes similar descriptors tend to
share similar coefficients. LLC solves the following optimisation problem,

{V�,U�} = argmin
V,U

n

∑
i=1

(‖xi−Vui‖2
2 +λ‖di⊗ui‖2

2

)
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s.t. u�i 1 = 1, ‖v j‖ ≤ 1, j = 1,2, · · · ,k, (5.4)

where di is a column vector indicating the distance of the descriptor xi from each
visual word and ⊗ denotes a component-wise multiplication. This optimisation
problem can also be solved in an alternate manner.

Sharing the spirit of locality in LLC, a computationally more efficient
coding method called Localised Soft-assignment Coding (LSC) has recently be
developed [26]. LSC proposes to integrate the concept of locality into kernel
codebook, by arguing that shorter Euclidean distances are more reliable in the
presence of data manifold. LSC extends the kernel codebook to the following form,

ωi =
exp(−β d(x,vi))

∑|V|i=1 exp(−β d(x,vi))
, where d(x,vi) =

{‖x− vi‖2
2; if vi ∈N (x)

+∞; otherwise.
(5.5)

where N (x) denotes the local neighborhood of x. LSC can achieve comparable
coding performance as LLC but incurs much less computational cost.

The advent of sparse and localised coding schemes makes a significant change
of the face of the application of SVMs to image categorisation. Together with
the feature pooling scheme to be introduced, these coding schemes consider-
ably improve the classification performance of linear SVM classifiers in image
categorisation.

5.1.4 Feature Pooling

In order to obtain an image-level representation, the coding coefficients of the local
feature descriptors extracted from an image need to be summarised. This process
is often called “Pooling.” Two ways are usually used, including sum-pooling and
max-pooling. Sum-pooling simply adds all the coefficients for each visual word up.
Let z ∈ R

k denote the image-level representation for an image I. Sum-pooling can
be expressed as

z = ∑
ui∈I

ui. (5.6)

If z is set as the mean of the ui’s, it will be called average pooling. Max-pooling
takes the maximum coefficient with respect to each visual word

z = max
ui∈I

ui, (5.7)

where the max operation is performed in a dimension-wise manner. The max-
pooling can magically make linear SVM classifiers work as well as the nonlinear
ones, leading to efficient image categorisation. Formal theoretical analysis has been
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attempted to understand why the max-pooling is superior to the sum-pooling [6,26].
More explanation on this magic in this regard will be given in the later part of this
chapter from a kernel perspective.

In sum, this section introduces a basic image categorisation system using the
Bag-of-features model. In particular, the four key components of this system have
been discussed. This paves the way for us to gain a better understanding of
the application of SVMs to image categorisation.

5.2 Application of SVMs with Histogram-Based
Nonlinear Kernels

When an image-level representation is obtained for each image, an SVM classifier
can be trained and used to categorise new images. Since image classes in a
categorisation task are usually not linear separable, kernel-based SVM classifiers
are generally used in order to obtain good classification performance, especially
at the early stage of image categorisation with the Bag-of-features model. In this
case the kernel function plays a pivotal role, and therefore identifying and designing
appropriate kernel functions has attracted much attention at that stage. Since the
histogram-based representation is widely used in that period, the kernel functions
that can effectively evaluate the similarity of histograms have been researched and
employed.

In the Bag-of-features model, a histogram indicates the frequency of the occur-
rences of each visual word in an image. It is an efficient approximation to the
distribution of different visual patterns in an image. In the literature, a number of
measures have been proposed to evaluate the similarity or dissimilarity between
histograms. In the work of colour indexing [48], histogram intersection is proposed
for object recognition. The work in [43] discusses the histogram dissimilarity
measures and applies them to image retrieval. It groups the measures into bin-to-bin
measures and cross-bin measures. The former includes Minkowski-form distance,
Histogram intersection, Kullback-Leibler divergence, χ2-statistics, while the latter
includes Quadratic-form distance, cumulative histogram distance, and the distance
based on distribution parameters. In [7], the SVMs are applied to classify generic
images based on colour histograms. That work provides insightful discussion on
what kind of kernel functions shall be used to evaluate the similarity of colour
histograms. It shows that Non-Gaussian Radial Basis Function (RBF) kernels can
achieve better classification performance than the commonly used Gaussian RBF
kernels.

Although the SVM classifiers using the above histogram-based kernel functions
can produce promising classification performance, training and testing nonlinear
SVM classifiers incur more computational load, and this becomes a significant issue
for the applications that require real-time classification. In recent years, approaches
with the linear kernel have been proposed to achieve the advantage brought by
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histogram-based nonlinear kernels. The research in this regard generally follows
two lines. The first line is to approximately identify the explicit feature mapping
induced by the nonlinear kernels and then a linear SVM can be straightforwardly
applied. The other line is to derive a new image representation such that a linear
SVM classifier with this new representation can work as well as a nonlinear one.
In doing so, these approaches not only well maintain the original classification
performance but also considerably decrease the computational load in both training
and test stages. In the following parts, the chapter will discuss typical histogram-
based kernel functions and the approaches to approximating them via the linear
kernel.

5.2.1 Histogram-Based Nonlinear Kernels

This part is focused on three kernel functions that are commonly used to evaluate
the similarity of histograms, including the Histogram Intersection Kernel (HIK), the
non-Gaussian RBF kernel and the χ2-RBF kernel.

Recall that z denotes the representation of an image. Let φ(·) be the mapping
function implicitly induced by a kernel function κ(·, ·). Let w and b be the normal
and bias of the SVM separating hyperplane. A nonlinear SVM classifier can be
expressed as

f (z) = w�φ(z)+ b = ∑
i

αiyiκ(z,zi)+ b, (5.8)

where αi and yi are the coefficient and the class label for the ith training sample zi.

5.2.1.1 Histogram Intersection Kernel

Originally proposed in [48] to compare a given image histogram to a pre-
defined model histogram for object recognition, histogram intersection has seen
an important application to image categorisation with the Bag-of-features model.
Let zi and z j denote the histograms corresponding to images i and j. Intersection

of the two histograms is defined as H(zi,z j) = ∑|V|l=1 min(zil ,z jl), where zil is
the l-th bin of zi. A normalised intersection with respect to z j can be defined as

H(zi,z j) = ∑|V|l=1 min(zil ,z jl)/∑|V|l=1 z jl . Usually, it is assumed that the sum of the
bins in the two histograms is same. In this case, the HIK can be expressed as

κ(zi,z j) =
|V|
∑
l=1

min(zil ,z jl). (5.9)

The HIK function defined in this way can be written as an inner product in a
feature space and therefore it is a Mercer kernel [1]. This makes it suitable for SVM
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classifiers which usually need this property to achieve global optimum. Also, as

indicated in [48], for two histograms zi and z j with ∑|V|l=1 zil = ∑|V|l=1 z jl = T , the HIK
has an essential connection with the �1-norm distance between them. That is,

κ(zi,z j) = 1− 1
2T
‖zi− z j‖1. (5.10)

This connection can help understanding the effectiveness of HIK in image
categorisation with the Bag-of-features model. For a class of images containing
the same object, the size of the area occupied by the object could change, leading
to variation on the value of the bins for the visual words associated with the object.
Also, the size of background could be different across these images and this will
also cause variation on the corresponding bins. However, these variations are not
essential and they do not change the object class to which the images belong to. In
this case, an �1-norm distance becomes a better choice because it changes linearly
with the variation while a commonly used �2-norm distance changes quadratically.
It is known that the �2-norm distance corresponds to a linear kernel in the input
space. This may partially explain why directly applying a linear SVM classifier to
histogram representation often shows inferior classification performance. In fact,
the values of the bins of a histogram are not important. Instead, whether a bin
is empty or not (indicating whether the corresponding visual word appears in an
image or not) matters. This case has been observed in image classification with
colour histograms in [7] and the Bag-of-features model in [6].

5.2.1.2 Non-Gaussian RBF Kernel

To control the sensitivity of an RBF kernel function to the difference between two
histograms, the work in [7] proposes a set of non-Gaussain RBF kernels in the
following form

κ(zi,z j) = exp

(
−β

|V|
∑
l=1

|za
il− za

jl|b
)
. (5.11)

It is easy to see that when a = 1 and b = 2, the above kernel reduces to a Gaussian
RBF kernel. When a = 1 and b = 1, it gives rise to a Laplacian RBF kernel

κ(zi,z j) = exp

(
−β

|V|
∑
l=1

|zil− z jl |
)
. (5.12)

Assuming that z j is obtained by perturbing one empty bin of zi by Δh, the non-
Gaussian kernel value between them can be written as

κ(zi,z j) = exp
(
−β (Δh)ab

)
. (5.13)
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Adjusting ab can effectively change the decaying rate of the kernel value with
respect to the perturbation. As can be seen, the commonly used Gaussian RBF kernel
incurs a quadratic exponential decaying rate while the Laplacian RBF kernel has a
linear exponential decaying rate. Experimental study is conducted in [7] to compare
different settings of a and b for colour histogram-based image classification. It is
found that decreasing the value of a and b can effectively improve the classification
performance of SVMs on colour histograms. The best performance is obtained
on the Corel image data set when a = 0.25 and b = 1, and it is significantly better
than the performance obtained by a Gaussian RBF kernel. Note that the change of a
does not affect the non-Gaussian RBF kernel to be a valid Mercer kernel because we
can simply view za

il and za
jl as the input data. At the same time, b has to be confined

between 0 and 2 to make the kernel meet the Mercer’s condition. The application
of SVMs with the Laplacian RBF kernel has also achieved promising classification
performance in image categorisation with the Bag-of-features model.

5.2.1.3 �2-Radial Basis Function Kernel

The χ2-RBF kernel can be traced back to the χ2-test in mathematical statistics
used to compare two distributions. In [44], χ2 is used to evaluate the dissimilarity
between two histograms as

χ2(zi,z j) =
|V|
∑
l=1

(zil− z jl)
2

zil + z jl
. (5.14)

Based on this measure, the work in [7] defines the χ2-RBF kernel as

κ(zi,z j) = exp

(
−β

|V|
∑
l=1

(zil− z jl)
2

zil + z jl

)
. (5.15)

It is not difficult to see that when z j is obtained by perturbing one empty bin of z j by
Δh, the kernel value is κ(zi,z j) = exp(−β Δh), which also has a linear exponential
decaying rate with respect to Δh. The χ2-RBF kernel has been proved to be a Mercer
kernel in [13]. This kernel has been experimentally compared with other kernels
in [58] for image categorisation with an SVM classifier. It is found that the χ2-RBF
kernel can achieve higher classification performance than linear kernel, quadratic
kernel and the Gaussian RBF kernel.

In addition to the above kernels, there is a set of special kernels used by the
SVM classifiers for image categorisation, which is called “additive kernel” [50].
An additive kernel can be written as a sum of the kernels computed based on each
individual dimension of data. This feature makes it be able to work directly with
linear SVM classifiers after appropriate manipulation. The additive kernels will be
introduced in the later parts of this chapter.
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5.2.2 Approximation to Histogram-Based Nonlinear Kernels

One drawback of directly applying the nonlinear kernels introduced in the previous
section is the poor scalability for large-scale data sets. However, the application of
SVMs calls for highly efficient image classification algorithms in order to handle
large-scale tasks.

Nowadays, it is quite often to encounter an image categorisation problem with
over tens of thousands of training samples. For example, the commonly used image
classification benchmarks, PASCAL [11] and Caltech 101/256 [12, 15], contain
around 10,000 images and the more recently developed large-scale benchmarks
such as ILSVRC [10] even have millions of images. However, nonlinear SVMs
become computationally expensive when training sample size is large. In fact,
merely computing the kernel matrix in a nonlinear SVM classifier will take O(n2d)
calculations, where n is the number of training samples and d is the dimensionality
of image representation. For the state-of-the-art image representation, e.g. Bag-of-
features model with a large-sized codebook and spatial pyramid [24], the value of
d can be as large as hundreds of thousands. When n is also large, nonlinear SVMs
will easily become computationally intractable. In addition, the computational cost
of nonlinear SVMs is high in the test stage. The cost of evaluating the decision score
is O(dnsv), where nsv is the number of support vectors, which can be very large, for
example, a few thousands in practice.

Comparing with the nonlinear SVMs, linear SVMs enjoy much higher com-
putational efficiency. First of all, there exist very efficient training algorithms for
linear SVM classifiers [16, 45]. Second, in the test stage, the cost of evaluating
the decision score is just O(d), which can be thousands of times less than that
incurred by the nonlinear SVMs. However, for the histogram-based representation
in the Bag-of-features model, linear SVMs usually yield poorer performance than its
nonlinear counterpart. To achieve both high computational efficiency and excellent
classification performance, the recent literature has leveraged the kernel-induced
feature mapping to transform a nonlinear SVM classifier to a linear one.

Recall that a kernel function κ can be written as the inner product of the feature
mappings φ(·), that is:

κ(zi,z j) = 〈φ(zi),φ(z j)〉. (5.16)

If φ(·) can be explicitly obtained, we can simply transform the input data by this
mapping and apply a linear SVM on the mapped data. In doing so, a nonlinear SVM
can be attained by solving a linear SVM. Unfortunately, the mapping function φ(·) is
generally implicit and may even have infinite dimensions. However, is it possible to
develop a sufficiently good approximation to the feature mapping φ(·)? The answer
is affirmative. Before systematically introducing the state-of-the-art approximation
methods, this section first presents a method that is initially proposed to approximate
the commonly used HIK.
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5.2.2.1 An Approximation to Histogram Intersection Kernel

Recall that HIK is defined as κ(zi,z j) = ∑d
l=1 min(zil ,z jl), where d denotes the

dimensionality of a histogram. This kernel is the sum of the values obtained by the
nonlinear function min(zil ,z jl) in each dimension. Note that the function min(·, ·)
only takes two scalars as the input.

The work in [31] proposes to approximate the HIK as follows. It first develops
a quantised version of the original data. More specifically, that work uniformly
quantises the value of each bin into s scales. q(·) denotes the quantisation function
and it returns the scale into which the input scalar is quantised. u is a function that
maps the quantised scale q(z) (q(z) ∈ {1,2, · · · ,s}) into an s-dimensional vector.
The definition of u is as follows

u(z) = (u1, u2, · · · uk, · · · us)
�, where

uk =

{
1; if k ≤ q(z)
0; otherwise.

(5.17)

where uk denotes the kth dimension of u(z). Then the function min(·, ·) can be
approximated by

min(zil ,z jl)≈ α〈u(zil),u(z jl)〉, (5.18)

where α is a constant scalar. From the definition of u, we can see that if z is
quantised into the q(z)th level, the first q(z) dimensions of u(z) will be “1” and
the remaining dimensions will be “0”. Thus the inner product of u(zil) and u(z jl)
will equal min(q(zil),q(z jl)).

Note that the function u(·) essentially develops an explicit feature mapping
for the nonlinear function min(·, ·). Since HIK is calculated by simply summing
all min(zil ,z jl) (l = 1, · · · ,d) up, we can define the approximate explicit feature
mapping of HIK by concatenating the mapping u(·) at each dimension of zi, that is

φ(zi) = (u�(zi1) · · · u�(zik) · · · u�(zid))
�. (5.19)

From this method, we can see that if a nonlinear kernel can be decomposed into
the sum of a set of dimension-wise nonlinear functions with only two scalars as
the input, it will be convenient to find an approximate feature mapping for such a
nonlinear function. In fact, this kind of kernel is called additive kernel and it has been
shown in the recent literature that for this family of kernels, efficient approximate
feature mappings can be developed with very good approximation accuracy.

5.2.2.2 Additive Kernel and Its Approximation

An additive kernel can be written as the sum of the kernels computed on each
individual dimension of data, that is, κ(zi,z j) =∑d

l=1 k(zil ,z jl). We call the function
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Table 5.1 Examples of additive kernels and their dimension-wise
kernel functions

Linear kernel k(zil ,z jl) = zilz jl

Hellinger’s kernel k(zil ,z jl) =
√

zilz jl

Histogram intersection kernel k(zil ,z jl) = min(zil ,z jl)

χ2 kernel k(zil ,z jl) = 2(zilz jl)/(zil + z jl)

k(·, ·) the dimension-wise kernel function (DKF in short) and an additive kernel can
be fully determined by its DKF. Note that many commonly used kernels in image
classification are additive kernels. Examples of additive kernels and their DKFs are
listed in Table 5.1.

The special structure of an additive kernel suggests that its approximate feature
mapping can be derived by first finding the approximate mapping of its DKF
and concatenating the mappings from all the dimensions. Formally, the lth DKF
can be obtained as: kl(zil ,z jl) ≈ 〈φl(zil),φl(z jl)〉, where φl(·) is the approximate
feature mapping for the lth dimension of z. Note that although DKF usually takes
the same form in each dimension, its approximate feature mapping φl(·) may be
different from dimension to dimension. This is because the feature distribution in
each dimension can be different and to capture these differences we may need
different approximate feature mappings. Once the mapping φl(·) is obtained for each
dimension, an additive kernel can be approximated by κ(zi,z j) ≈ 〈φ(zi),φ(z j)〉,
where φ(zi) = (φ�1 (zi1) φ�2 (zi2) · · · φ�d (zid))

�.
In the following parts, we elaborate two representative methods to develop the

approximate explicit feature mapping for the DKF: (1) additive kernel principal
component analysis (PCA) and (2) homogeneous kernel map.

5.2.2.3 Kernel PCA Approximation to Additive Kernels

The additive kernel PCA method is derived from the classic kernel PCA
approximation to nonlinear kernels [54]. The classic kernel PCA approximation
firstly calculates the feature mapping on a finite number of samples and then uses
Nyström approximation [54] to generalise this mapping to unseen data. In the
following parts, we firstly introduce the classic kernel PCA approximation and then
discuss its additive kernel extension.

1. Kernel PCA Approximation to Nonlinear Kernels

The quality of an approximate explicit feature mapping can be measured by the
incurred approximation error. Formally, this error can be defined as follows:

E(φ) =
∫ (

κ(z,z′)−〈φ(z),φ(z′)〉)2
p(z)p(z′)dzdz′ (5.20)
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where φ(z) is the approximate mapping function which maps a d-dimensional input
data to a d̃-dimensional vector. p(z) is the probability density function and it is
unknown in general. To make this error term tractable, we can estimate p(z) via
non-parametric density estimation method. In specific, p(z) is estimated by using a
finite number, m, of samples such that

p(z) =
1
m

m

∑
i=1

δ (‖z− zi‖), (5.21)

where the function δ (a) = 1 when a = 0 and 0 otherwise. Substituting Eq. (5.21)
into Eq. (5.20), we can turn the integral into the summation and it results in the
following error term:

E(φ) =
1

m2

m

∑
i=1

m

∑
j=1

(κ(zi,z j)−〈φ(zi),φ(z j)〉)2 . (5.22)

As shown in [54], the approximate feature mapping for all m samples can be derived
in a closed form. Let ψl = (φl(z1),φl(z2), · · · ,φl(zm))

� denote a vector consisting
of the lth component of φ(zi), where i = 1, · · · ,m. To avoid the redundancy in the
approximation, constraints that 〈ψi,ψ j〉 = 0 and 〈ψi,ψi〉 = 1 for 1 ≤ i < j ≤ m
are imposed. As a result, the solution of minimising the error in Eq. (5.22) can be
obtained by solving an eigenvalue problem, which is equivalent to the kernel PCA:

Kψl = λlψl , (5.23)

where K denotes the kernel matrix computed on z1, · · · ,zm. To obtain a
d̃-dimensional approximate feature mapping φ(z) for z1, · · · ,zm, the d̃ eigenvectors
of K corresponding to the largest eigenvalues λl are used. For unseen samples, their
mappings can be worked out via Nyström approximation:

φl(z) =
〈κ(z, :),ψl〉

λl
, (5.24)

where l = 1,2, · · · , d̃ and κ(z, :) = (κ(z,z1) κ(z,z2) · · · κ(z,zm))
�.

One problem with this approximation is its computational cost. The complexity
of calculating κ(z, :) is O(md) and the complexity of calculating φl(z) for the whole
d̃-dimensional mapping is O(md̃). In total, the complexity is O(m(d + d̃)). Since
the kernel function κ(·, ·) takes two high-dimensional vectors as input, the mapping
from these two vectors to the kernel value can be complex. In this case, a large
number of samples are usually needed to achieve reasonably good approximation,
making m a number at the order of thousands. Consequently, the calculation of this
approximate feature mapping can be very time-consuming in practice.



170 L. Wang et al.

2. Kernel PCA Approximation to Additive Kernels

Fortunately, for additive kernels the above method can be modified to achieve much
lower computational cost [40]. More specifically, we can build the dimension-wise
approximation through Eq. (5.24) for each DKF of an additive kernel. The work in
[40] adopts this idea and builds the approximate feature mapping by the following
algorithm:

1. For each dimension l, compute the corresponding m×m kernel matrix Kl . The
(i, j)th entry of Kl is calculated by Kl(i, j) = k(zil ,z jl), where k(·, ·) is the DKF
of the additive kernel.

2. For each dimension l, compute the d̃l (e.g. d̃l = 10) largest eigenvalues of
Kl {λl,1, · · · ,λl,d̃l

} and their associated eigenvectors. In total, this step will

generate d× d̃l eigenvalues for all the d DKFs.
3. Sort the d× d̃l eigenvalues and keep the d̃ largest ones. They are re-numbered

as {λ11,λ12, · · · ,λ1n1;λ21, · · · ,λ2n2; · · · ;λd1, · · · ,λdnd ,}, where ∑d
i=1 ni = d̃. Let

{ψ11,ψ12, · · · ,ψ1n1 ;ψ21, · · · ,ψ2n2 ; · · · ;ψd1, · · · ,ψdnd ,} be the associated eigen-
vectors. For a test sample zt , its feature mapping is obtained by concatenating
the mapping for each DKF. For a given l, this mapping is defined as

φli(ztl) =
〈k(ztl , :),ψli〉

λli
, (5.25)

where i = 1, · · · ,nl and k(ztl , :) = (k(ztl ,z1l), · · · ,k(ztl ,zml))
�. Note that in this

method, the dimensions of the approximated feature mapping n1, · · · ,nd can be
different. As argued in [40], this scheme can be more adaptive to the distribution
of each dimension of the input data.

The computational complexity of mapping a sample with the obtained feature
mapping φ(·) is still O(m(d + d̃)). However, since the approximation is now for a
much simpler kernel function (a DKF with two scalar inputs only), a much smaller
number of samples and mapping dimensions are usually sufficient to attain a good
approximation. In [40], it is reported that 128 samples and the same number of
mapping dimensions have been sufficient, which is in contrast to the requirement of
thousands of samples in the classic kernel PCA. Moreover, one can further leverage
the quantisation trick to quantise ztl into finite levels, denoted by q(ztl), and pre-
compute the value of φli(q(ztl)). In this way, the computational complexity can be
further reduced.

5.2.2.4 Homogeneous Kernel Map Approximation to Additive Kernels

One drawback of the kernel PCA approximation to additive kernels lies in the
fact that it is data dependent. That is, the approximate mapping function needs
to be learned from a set of training samples. As a result, an extra training step is
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required before applying the approximation to an additive kernel. In the following
part, we will introduce another approximation method called “homogeneous kernel
map,” which is data independent. Before introducing this method, we need to first
review a method called “random Fourier kernel approximation” which inspires the
homogeneous kernel map.

1. Random Fourier Kernel Approximation to Stationary Kernels

Among the commonly used kernels in the literature, there is another family of
kernels called stationary or translational invariant kernel [42]. It is formally defined
as a kernel satisfying the following relationship:

κ(zi,z j) = κ(zi + c,z j + c). (5.26)

A property of stationary kernels is that there always exists a function K to make
κ(zi,z j) = K (z j− zi) valid. To prove this property, we can simply set c = − zi+z j

2
and substitute it to Eq. (5.26):

κ(zi,z j) = κ
(− zi + z j

2
+ zi,−zi + z j

2
+ z j

)

= κ
(zi− z j

2
,−zi− z j

2

)≡K (z j− zi). (5.27)

It has been proved that by Bochner’s theorem [42] for any Positive Definite function
F (z), there exists a non-negative measure p, such that F (z) is its Fourier transform:

F (z) =
∫

ω
p(ω)e− j〈ω,z〉dω . (5.28)

Note that K (z j − zi) is a Positive Definite function because the corresponding
κ(zi,z j) is assumed to be a Mercer kernel, which always produces a Positive Semi-
Definite kernel matrix. This suggests that K (z j − zi) can be represented as the
Fourier transform of non-negative function p,

K (z j− zi) =

∫
ω

p(ω)e− j〈ω,(z j−zi)〉dω . (5.29)

Since both K and p are real, we can replace e− j〈ω,z〉 by cos(〈ω ,z〉) and rewrite
Eq. (5.29) into

K (z j− zi) =

∫
ω

p(ω)cos(〈ω ,(z j− zi)〉)dω

=

∫
ω

p(ω)(〈cos(ω ,zi〉)cos(〈ω ,z j〉)+ sin(〈ω ,z j〉)sin(〈ω ,zi)〉)dω .

(5.30)
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If K is properly scaled, p(ω) can be viewed as a probability density function.
Hence, Eq. (5.30) can be seen as the expectation of cos(〈ω ,(z j− zi)〉), that is,
K (z j − zi) = Eω(cos(〈ω ,(z j− zi)〉)). This result motivates the work in [42]
to use the empirical mean to approximate the expectation. More specifically,
they randomly draw m frequency components {ω i}, where i = 1, · · · ,m, from
the distribution p(ω) and use the average of cos(〈ω i,(z j− zi)〉) to approximate
E(cos(〈ω ,(z j− zi)〉)) as

E(cos(〈ω ,(z j− zi)〉))≈ 1
m

m

∑
i=1

cos(〈ω i,(z j− zi)〉)� 〈φ(zi),φ(z j)〉, (5.31)

where φ(z) = 1√
m (cos(〈ω1,z〉), · · · ,cos(〈ωm,z〉),sin(〈ω1,z〉), · · · ,sin(〈ωm,z〉))�.

It defines an approximate explicit feature mapping and this method is called random
Fourier kernel map in [42]. Note that this approximation is data independent—the
only input of this approximation method is p(ω), which can be obtained via the
Fourier transform of the given kernel function.

2. Homogeneous Kernel Map Approximation to Additive Kernels

Inspired by the random Fourier kernel approximation and the kernel PCA approx-
imation to additive kernels, the work in [50] develops a unified framework to
build data-independent approximate feature mapping for a large family of additive
kernels, known as γ-homogeneous kernels. Formally, an additive kernel κ(·.·) is
γ-homogeneous if its DKF k(·, ·) satisfies

∀c≥ 0 : k(czil ,cz jl) = cγ k(zil ,z jl). (5.32)

By choosing c = 1/
√

zilz jl , the DKF of a γ-homogeneous kernel can be written as

k(zil ,z jl) = c−γk(czil ,cz jl) = (zilz jl)
γ
2 k

(√
zil

z jl
,

√
z jl

zil

)

= (zilz jl)
γ
2 K (log(zil)− log(z jl)), (5.33)

where the scalar function K (·) is called “kernel signature” and it is defined as:

K (λ ) = k(e
λ
2 ,e−

λ
2 ). (5.34)

Note that the role of kernel signature resembles the function K in the random
Fourier map method previously introduced. In fact, the derivation of the algorithm
in [50] bears a similarity with the one for random Fourier kernel approximation.

The work in [50] proves that a γ-homogeneous kernel κ(·.·) is positive definite
if, and only if, its signature K (·) is a positive definite function. With this result, the
Bochner’s theorem in Eq. (5.28) can be readily applied to the kernel signature:
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k(zil ,z jl) = (zilz jl)
γ
2 K (λ ) = (zilz jl)

γ
2

∫ ∞

−∞
e− jωλ q(ω)dω

=

∫ ∞

−∞

(
e− jω log(z jl )

√
zγ

jlq(ω)
)�(

e− jω log(zil)
√

zγ
ilq(ω)

)
dω , (5.35)

where λ = log zil
z jl

and q(ω) is the Fourier transform of the kernel signature K (λ ).
In this case, by defining

φω (zil) = e− jω log(zil)
√

zγ
ilq(ω), (5.36)

it is easy to verify that

k(zil ,z jl) = 〈φω (zil),φω (z jl)〉, (5.37)

where 〈·, ·〉 is the inner product in a Hilbert space.
However, the feature mapping φω has infinite dimensions. To handle this

situation, the work in [50] proposes an idea that is similar to the discrete Fourier
transform. They first approximate the kernel signature function K (·) by its periodic
version with the assumption that the function K (λ ) has a restrictive domain of
λ , which can usually be satisfied in practice. According to the theory of Fourier
transform, the transform of a periodic signal is discrete. Then they simply choose
the first d̃l frequency components as the feature mapping for the lth DKF.

5.2.2.5 Experimental Comparison

We quote the experimental result in [50] to give an intuition on the effectiveness
of the aforementioned approximate explicit feature mappings. In this experiment,
two methods, additive kernel PCA approximation in Sect. 5.2.2.3 and homogeneous
kernel map in Sect. 5.2.2.4, are compared with the baseline using the original
nonlinear kernel. The evaluation is carried out on Caltech-101 data set with SIFT
as the local feature descriptor. A visual codebook with 600 visual words is created
and a 1× 1+ 2× 2+ 4× 4 spatial pyramid [24] is used. The result is shown in
Table 5.2. As seen, the approximate explicit feature mappings achieves comparable
or even better classification performance than the original nonlinear kernels, but
with much less training time. The speed advantage of the homogeneous kernel maps
over the additive Kernel PCA approximation is due to the fact that the latter requires
an extra training step to learn the mapping function. In addition, an interesting
observation is that the γ = 1/2 variant of the homogeneous kernel performs much
better than the original nonlinear kernel. Note that this variant is equivalent to
calculating the square root of the data first and then applying the nonlinear kernel.
The square rooting operation makes the value in each bin of the histogram more
stable and reduces the negative impact of the “burstiness” phenomenon, which will
be discussed in Sect. 5.3.
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5.3 Application of SVMs with Max-Pooling-Based
Linear Kernel

The motivation of using nonlinear kernel-based SVMs is that they tend to achieve
better performance than linear SVMs for image categorisation with histogram-based
image representation. However, is it possible to design an image representation
with which linear SVMs can achieve the performance comparable or even better
than the nonlinear counterparts? If it is, the computational issue can be readily
removed by adopting linear SVMs for large-scale image classification. Note that
in some sense designing a new image representation for a linear kernel can also
be viewed as inventing a new nonlinear kernel at the level of original image data.
To show this, we can abstract the process of forming an image representation as
a function e(·). A kernel defined based on the original image data can then be
expressed as κ̂(Ii, I j) = 〈e(Ii),e(I j)〉. Thus, if we change the image representation
e(·), we virtually change the image-level kernel κ̂ .

The work in [57] is among the earliest ones that take the above approach.
It combines sparse coding and max-pooling to obtain image representation and
use it for image categorisation. That work shows that with this representation, a
simple linear SVM classifier has been able to attain the performance superior to
the traditional ones in which a nonlinear kernel is employed. Later, the work in [5]
further discovers that the max-pooling step is the key to the success of the system in
[57]. A comprehensive experimental study is conducted in [5] to compare various
combinations of coding and pooling methods. Their results are quoted in Table 5.3.
From the result, three conclusions can be drawn:

1. The use of max-pooling significantly improves the classification performance of
linear SVMs for all the coding methods. The improvement is even significant for
the simplest hard-assignment coding. In that case, a pooled coding vector only
indicates the presence or absence of a visual word in the associated image;

2. By using the max-pooling, linear SVMs can achieve comparable or even
better performance than the counterpart which adopts the sum-pooling and then
nonlinear kernel-based SVMs.

3. Once the max-pooling is used, the classification performance obtained by linear
and nonlinear SVMs becomes similar.

Table 5.3 This table is quoted from [5]

Performance on Scene-15 Performance on Caltech-101

Coding method and kernel Sum-pooling Max-pooling Sum-pooling Max-pooling

Hard-assignment + linear kernel 51.4 ± 0.9 % 64.3 ± 0.9 % 73.9 ± 0.9 % 80.1 ± 0.6 %
Hard-assignment + HIK kernel 64.2 ± 1.0 % 64.3 ± 0.9 % 80.8 ± 0.4 % 80.1 ± 0.6 %
Soft-assignment + linear kernel 57.9 ± 1.5 % 69.0 ± 0.8 % 75.6 ± 0.5 % 81.4 ± 0.6 %
Soft-assignment + HIK kernel 66.1 ± 1.2 % 70.6 ± 1.0 % 81.2 ± 0.4 % 83.0 ± 0.7 %
Sparse coding + linear kernel 61.3 ± 1.3 % 71.5 ± 1.1 % 76.9 ± 0.6 % 83.1 ± 0.6 %
Sparse coding + HIK kernel 70.3 ± 1.3 % 71.8 ± 1.0 % 83.2 ± 0.4 % 84.1 ± 0.5 %

It lists the classification performance obtained by combining different pooling and coding methods
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In sum, we can conclude that max-pooling is an effective way to produce better
image representation and that linear SVMs show excellent performance in classify-
ing the max-pooled coding vectors.

However, why can max-pooling obtain such a “magic” performance?
To understand this, several interpretations have been proposed in the literature.
In the following parts, we discuss three representative ones.

The work in [4] explains the superior performance of max-pooling by showing
that it can generate more discriminative image representations. Assuming the case
of binary classification, that work compares the class separability of each individual
feature generated through max-pooling and sum-pooling. The class separability is
defined as:

ψ =
|E(zk|C1)−E(zk|C2)|

var(zk)
, (5.38)

where zk denotes the value of the kth dimension of a pooled coding vector.
It can be obtained by zk = 1

n ∑n
i=1 uik for sum-pooling or zk = maxn

i=1 uik, where
n is the number of coding vectors in an image and uik denotes the coding value
at the kth dimension of the ith coding vector. C1 and C2 denote two classes.
E(zk|C1) and E(zk|C2) are the expectation of zk in each class, respectively. var(zk)
denotes the variance of zk. To simplify their analysis, they assume that the
{u1k, · · · ,uik, · · · ,unk} are i.i.d. random variables.

For hard-assignment coding, the coding value uik is assumed to be drawn from
a Bernoulli distribution in which uik = 1 with probability α and uik = 0 with
probability 1− α . In the context of hard-assignment coding, this means that a
coding value will be “activated” (= 1) with probability α . Based on this assumption
the class separability with respect to max-pooling and sum-pooling is derived as
follows:

ψsum =
|α1−α2|

√
n√

α1(1−α1)+
√

α2(1−α2)
(5.39)

ψmax =
|(1−α1)

n− (1−α2)
n|√

(1− (1−α1)n)(1−α1)n +
√
(1− (1−α2)n)(1−α2)n

, (5.40)

where α1 and α2 denote P(uik = 1|C1) and P(uik = 1|C2), respectively, that is, the
probability of a coding value being “activated” in each class. As previously defined,
n is the number of coding vectors in an image and it is called “pool cardinality”
in Fig. 5.3. By evaluating the class separability for max-pooling and sum-pooling
with different α1 and α2, it is found that when the activation probability α1 and
α2 are low, the ratio of α1 to α2 is large, and the value of n is small, max-pooling
can achieve better class separability than sum-pooling. This explains the superior
performance of max-pooling.

However, the above analysis cannot be readily used to explain the better
discrimination achieved by max-pooling for the coding schemes where continuous
coding coefficient is used, for example, the sparse coding. [4] To refine the analysis,



5 Application of SVMs to the Bag-of-Features Model: A Kernel Perspective 177

1.0

Pool cardinality

φ
σ1 + σ2
ψmax
ψavg

a

α1 = 0.4, α2 = 0.2

0 1000

300025002000150010005000

4

0 5 10 15 20 25

0.2

0.4

0.6

0.8

200 400 600 800

0.2

0.4

0.6

0.8

1.0

Pool cardinality

Pool cardinality

b

α1 = 1.10−2, α2 = 5.10−3

c

α1 = 1.10−2, α2 = 1.10−4

3

2

1
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n| denotes the difference between
the expectation of the max-pooled features in classes C1 and C2, and σ1 and σ2 are the standard
deviations. ψmax and ψavg are the class separability defined in Eq. (5.39). (a) When α1 and α2 are
relatively large, the peak of the class separability is achieved at small pool cardinalities; (b) With
the decreasing value of α1 and α2, the peak becomes wider (note the change of scale in the x
axis); (c) When α1 and α2 are both small and α1� α2, ψmax becomes larger than ψavg for some
cardinalities (indicated by the shaded area). Image courtesy of [4]

the work in [5] further assumes that the distribution of a coding value in an
image is the mixture of two distributions: a distribution corresponding to the local
descriptors from the object and a distribution corresponding to the local descriptors
from the background [5]. The mixture weights of the two distributions vary from
image to image. Through a more involved analysis, it is shown in [4, 5] that under
certain conditions, max-pooling creates immunity to the variation in the mixture
weights and thus it can lead to better classification performance.

The work in [26] points out that for soft-assignment coding, the coding
coefficient can be viewed as the membership of a local feature descriptor with
respect to different visual words, that is, P(v j|xi), where xi is the ith local descriptor
in an image and v j is the jth visual word. Hence, each dimension in the max-
pooled coding vector can be related to the maximum membership score of the
corresponding word, and this score is proved to be the lower bound of the probability
of finding at least one local descriptor belonging to this word:

P(v j|A ) = 1−
n

∏
i=1

(1−P(v j|xi))≥ max
i=1,··· ,n

P(v j|xi), (5.41)
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where A denotes the set of n local feature descriptors in an image. Assuming the
i.i.d property for the local descriptors, the probability of finding at least one descrip-
tor belonging to the jth visual word can be calculated by 1−∏n

i=1 (1−P(v j|xi)).
As argued in [26], directly computing this probability involves the product of
(1−P(v j|xi)) for all xi and each of them could bring in noise, making the result
unreliable. In contrast, computing the lower bound via the max-pooling scheme
tends to obtain a more reliable estimate since it only considers the largest term.

Based on this interpretation, the work in [26] further generalises the max-pooling
to mixed-order max-pooling to model the higher order occurrence information of a
visual word in an image, that is, the probability that a word occurs more than k times.
As shown in that work, the classification performance can be further improved by
using the mix-order max-pooling.

The analysis in [26] can also be generalised to other coding schemes with
continuous coding coefficient, if the coefficient can be related to the membership
score. From this viewpoint, sum-pooling will not be suitable for this coding scheme
since it may accumulate low membership scores to a high one, which, however, is
not a good indication of the presence of a visual word in such a case. For example, by
the sum-pooling, 100 local descriptors with coding value 0.002 for a given bin will
produce the pooled value of 0.2, which appears to have the same effect of observing
one local descriptor with coding value 0.2. However, it is clear that the former has
much weaker indication of the presence of the corresponding visual word.

Another interpretation of the good classification performance of linear SVMs
with the max-pooling can be obtained from the “burstiness” phenomenon, which
was initially discovered in the text classification [30] and was later observed in
image retrieval with the Bag-of-features model [18]. This phenomenon indicates
that “a visual pattern appears often more frequently than a statistically independent
model would predict” [18]. Basically, it suggests that if one visual pattern appears
once, it will be more likely to occur again in the same image. Intuitively, it can be
understood in the way that the occurrence of some visual concepts will produce
many repetitive local visual patterns. For example, the occurrence of a wall will
produce many local patches corresponding to bricks. However, the size of an object
often changes dramatically from image to image due to scale variation, which makes
the occurrence frequency of its corresponding local visual patterns unstable. As a
result, the sum-pooling of the coding vectors suffers from this instability because it
essentially reflects the occurrence frequency of the visual words. For linear SVMs,
its decision function is merely a weighted sum of the pooled coding values and
thus it tends to be affected by the variation of the occurrence frequency. In contrast,
nonlinear kernel SVMs can mitigate the adverse effect of burstiness phenomenon
by its nonlinear operation. For example, in HIK κ(zi,z j) = ∑d

l=1 min(zil ,z jl), if a
statistically less probable large value occurs at zil due to the burstiness, its impact
will be capped by z jl . However, if max-pooling is used, the linear SVMs will no
longer be affected by the occurrence frequency of a visual word. In some sense, the
max-pooling scheme builds a better image-level kernel and it helps the linear SVMs
achieve better classification performance.
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5.4 Application of SVMs with Point-Set Kernels

5.4.1 Introduction to Point-Set Kernels

Recall that in the Bag-of-features model a set of local feature descriptors is extracted
from an image. Hence, an image can essentially be viewed as a point set in a multi-
dimensional feature descriptor space. In addition to building a visual codebook and
generating an image representation, another line of research measures the similarity
between two images directly based on the associated point sets. This is desirable
from the perspective of SVM application because the similarity can be used as
a kernel function to perform nonlinear SVM classification. Compared with the
approach of building visual codebooks, this approach can lead to a more compact
and conceptually simpler classification system. Better classification result could
even be achieved when appropriate point-set kernels are employed.

A variety of point-set kernels have been developed in the recent literature on
machine learning and computer vision. Generally speaking, point-set kernels are
constructed in two ways. One is to evaluate the similarity between the points (e.g.,
local feature descriptors) in two sets via a common kernel (often called a local
or base kernel) and then combine the kernels to obtain a point-set kernel. The
simplest one may be the sum-match kernel that sums the local kernels between
every pair of points in the two sets. However, in the presence of outliers, this kernel
cannot effectively reflect the set similarity because good matches between points
are often buried by a large number of bad matches. In [51], a sum-max kernel is
proposed, which averages the maximum local kernel value from each point in one
set with respect to the points in the other set. In [29], a sum-exponent kernel is
put forward. It computes the sum of the local kernels over all pairs of points in
the two sets after raising each kernel value to the power p. This allows it to adjust
the weight of each local kernel in the summation instead of treating them equally.
The aforementioned sum-match kernel and sum-max kernel can be regarded two
special cases of the sum-exponent kernel. The work in [3] suggests considering
only the local kernels between the points that can be truly matched by a matching
algorithm and discusses the way to make the obtained point-set kernel to satisfy the
Mercer’s condition. In [46], a general family of set kernels is derived based upon
local kernels. The proposed kernel can combine local kernels in a linear or nonlinear
way, where the nonlinear combination is achieved by mapping each point set onto
a high-dimensional matrix space. In addition, the work in [37] considers the case
where each point corresponds to a pixel in an image or a voxel of a video sequence.
Taking into account the location information of each point, a neighborhood kernel
is defined to compare each pair of points and the point-set kernel is defined as the
average of all the neighborhood kernels.

The other way to construct a point-set kernel is to estimate a probability
distribution of the points in each set and use the similarity between the two
distributions to define a set-level kernel. The work in [21] uses the Bhattacharyya’s
affinity between two distributions to define a kernel for sets of vectors. To ensure
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the kernel to have sufficient representational power, that work maps the vectors onto
a kernel-induced feature space and computes the Bhattacharyya’s affinity of the
probability distributions in the feature space. Similarly, in [35] a Gaussian Mixture
Model (GMM) is used to obtain a probabilistic model of each set and the Kullback–
Leibler divergence between the probabilistic models is used to define a point-set
kernel. The work in [9] is motivated by comparing the distributions of two point
sets before and after the two sets are merged. Intuitively, a strengthened distribution
will be obtained if the two point sets are similar. Following this idea, that work
develops point-set kernels by studying the properties of the concatenation of two
point sets. In addition, the above way of constructing a point-set kernel can be
related to building a kernel based on a generative model, which has been widely
used as a means to combining generative models with discriminative classifiers.
Fisher kernel [17] may be the most commonly used one in this regard and it has
been applied to image classification recently [38, 39].

For image categorisation with the Bag-of-features model, a systematic study
of point-set kernels is conducted in [51]. Among the existing point-set kernels
developed in this area, the Pyramid Matching Kernel (PMK) [14], the Efficient
Matching Kernel (EMK) [2] and the Fisher kernel [38] are three representative
methods. This following parts will introduce the work in [51]. After that, it will
be focused on the PMK, the EMK and the Fisher kernel.

5.4.2 A Kernel Recipe to Local Feature-Based
Image Recognition

A general kernel-based approach is proposed in [51] for image recognition with
local feature descriptors. Its motivation is to combine the representation power of
local features with the excellent discriminative capability of the SVM classifiers. To
achieve this goal, that work proposes a class of new kernels for point sets based on
the commonly used kernels, or equally the local kernels mentioned above. Let Ai =
{xi1,xi2, · · · ,xini} and A j = {x j1,x j2, · · · ,x jn j} denote the two point sets associated
with images i and j, where x is a local feature descriptor. A measure evaluates the
similarity of the set Ai with respect to the set A j is defined as

m(Ai|A j) =
1
ni

ni

∑
p=1

n j
max
q=1

κl(xip,x jq), (5.42)

where κl(x,x′) plays the role of a local kernel and any existing kernel can be used
for it. This measure finds the best match (in terms of the value of the local kernel) of
each local feature in Ai in the set A j and computes the average. Note that m(Ai|A j)
does not equal m(A j|Ai) in general. With such a measure, the work in [51] defines
a new class of kernel as
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κ(Ai,A j) =
1
2
[m(Ai|A j)+m(A j|Ai)] . (5.43)

This kernel is a symmetrical function over the local features. Both the non-Gaussian
RBF kernel and the χ2-RBF kernel in Sect. 5.2.1 have been shown in [51] as
a valid local kernel. In the experimental study, that work compares a nearest-
neighbour classifier with a predefined distance metric and the SVM classifier using
the corresponding point-set kernel. The results on object and face recognition data
sets demonstrate the superiority of the SVM classifier with the new class of point-set
kernels. However, as pointed out in [29], this class of kernels does not necessarily
satisfy the Mercer’s condition due to the use of the “max” operation.

5.4.3 Pyramid Matching Kernel

The work of PMK aims to develop a kernel function for SVM classification that
can efficiently measure the similarity of two point sets [14]. It can be regarded as
combining a set of local kernels to produce a point-set kernel. As indicated by its
name, the PMK builds a pyramid of multi-resolution histograms to quantise the
points in the two sets to be compared. At each resolution, the HIK, introduced in
Sect. 5.2.1.1, is used as the local kernel to evaluate the similarity of the two sets.
The similarity from different levels is then linearly combined to obtain the set-level
similarity, with different weights used for the multiple resolutions.

Recall that x denotes a local feature descriptor in a d-dimensional space. The
PMK partitions the volume occupied by the descriptors in the d-dimensional space
using a set of bins with a gradually increasing size. For example, the side length
of the d-dimensional bins is doubled at each resolution level. By appropriately
scaling the data, the smallest bin size ensures that each individual descriptor will
reside in its own bin, whereas the largest bin size ensures that all the descriptors
will be contained in the same bin. Assigning the local descriptors into these bins
leads to a hierarchy of multi-resolution histograms, and the bin values of this set
of histograms vary with different local descriptor sets. Recall that A denotes
a set of local descriptors extracted from an image. By concatenating the multi-
resolution histograms for the set A , a long vector can be obtained as φ(A ) =
(h−1(A ),h0(A ), · · · ,hL(A ))�, where h−1 indicates the histogram with the highest
resolution for which no descriptor is matched (falling into the same bin) and
hL indicates the histogram with the lowest resolution for which all local feature
descriptors stay in the same bin.

Based on the representation of φ(A ), the PMK evaluates the similarity between
the two sets Ai and A j (or equally the similarity of images i and j) as

κ(Ai,A j) =
L

∑
l=0

ωlnl , (5.44)
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where nl is the number of “new” matches found at the level l and ωl is a weight
indicating the contribution of a match at level l to the final similarity. Note that
a new match at level l means that a pair of local descriptors falls into the same
bin of a histogram at level l but resides in different bins for any level lower than
l (lower levels correspond to the histograms with higher resolutions). The weight
for new matches decreases with the increase of level. This is used to emphasise
that the matches at higher-resolution histograms are more important for similarity
evaluation. The number of matched points at level l, denoted by n̂l , is computed by
histogram intersection as

n̂l =
Tl

∑
i=1

min(hli(A ),hli(B)), (5.45)

where Tl is the number of bins in the histogram hl(·). Based on n̂l , the number
of new matches at each level l can be conveniently worked out as nl = n̂l − n̂l−1.
In addition, to remove the impact of the cardinality of a point set (e.g., a large-sized
point set usually has more descriptors to be matched with the descriptors in other
sets), a normalised version of the PMK is defined as

κnrml(Ai,A j) =
κ(Ai,A j)√

κ(Ai,Ai)κ(A j,A j)
. (5.46)

The PMK is proved to be a Mercer kernel in [14] and it can be efficiently
computed once the two sets of local feature descriptors are given. With the use of
histogram interaction as the local kernel, the PMK works well with two sets having
different cardinalities and can effectively conduct partial matching. This property
is important for image categorisation because (1) the number of local descriptors
from different images is often different; (2) local descriptors can disappear due
to occlusion or the change of view angles, object pose, and scale; (3) irrelevant
or noisy descriptors may appear due to the presence of background clutter. As
experimentally demonstrated in that work, the pyramid matching used by the PMK
can well approximate the result obtained by applying optimal matching between the
points in two sets. The advantages of the PMK over some of the existing point-set
kernels are summarised in [14] as (1) it is computationally more efficient; (2) it is
proved to be positive-definite; (3) it does not need to fit a parametric model to data;
(4) it can handle two sets of different cardinalities. As shown in the experimental
study in [14], this kernel can demonstrate excellent classification performance in
image categorisation tasks.
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5.4.4 Efficient Matching Kernel

The motivation of the EMK [2] is to speed up the training and test phases in which
a point-set kernel is used. Recall that a typical way to construct a point-set kernel is
to combine the local kernels over all pairs of points, leading to a sum-match kernel

κ(Ai,A j) =
1
|Ai|

1
|A j| ∑

x∈Ai

∑
x′∈A j

κl(x,x
′), (5.47)

where Ai denotes a set of points, x is a point (e.g., a local feature descriptor in a
d-dimensional space) in this set and |Ai| is the cardinality of the set. Computing
such a kernel has a computational complexity of O(|Ai||A j|d). This complexity
increases to O(|Ai||A j|dn2) when training an SVM classifier with a set of n training
images. This makes the application of SVMs with such a kernel inefficient in
handling a large-sized training set. Also, such a complexity prevents the obtained
SVM classifier from efficiently classifying unseen images. Assuming that the local
kernel κl(x,x′) can be expressed as an inner product between ψ(x) and ψ(x′) in a
finite-dimensional kernel-induced feature space, the above sum-match kernel can be
rewritten as

κ(Ai,A j) =

〈
1
|Ai| ∑

x∈Ai

ψ(x),
1
|A j| ∑

x′∈A j

ψ(x′)

〉
�
〈
Ψ(Ai),Ψ(A j)

〉
, (5.48)

where it is defined that Ψ(Ai) =
1
|Ai| ∑x∈Ai

ψ(x). As proposed in the work of
EMK, if the implicit mapping ψ(x) is approximated by an explicit mapping φ(x),
the sum-match kernel evaluation can be avoided and a linear SVM classifier will
be sufficient. This will remove the aforementioned computational issue and at the
same time maintain the classification performance brought by the kernel trick.

Let {x1,x2, · · · ,xm} be a set of predefined basis vectors in a d-dimensional
space. Their images under the mapping ψ(·) form a matrix B=(ψ(x1), · · · ,ψ(xm)).
The work of EMK approximates ψ(x) with its projection into the space spanned
by B. The project coefficient z can be obtained by minimising the reconstruction
error

z� = arg min
z∈Rm
‖ψ(x)−Bz‖2

2. (5.49)

The optimal solution z� can be analytically expressed as z� =
(
B�B

)−1 (
B�ψ(x)

)
=(

B�B
)−1

kB(x), where kB(x) is a vector consisting of the (local) kernel values
between x and each of the m basis vectors. Let KB denote the m×m (local) kernel
matrix computed over all the basis vectors. An approximate kernel is defined with
the projection as
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κappro(x,x′) = (Bz�)�
(
Bz′�

)
= kB(x)

�K−1
B kB(x

′) = kB(x)
�C�CkB(x

′), (5.50)

where C is a matrix satisfying C�C = K−1
B . In doing so, the mapping of the

approximate kernel can be explicitly obtained as φ(x) =CkB(x). With this mapping,
the approximate point-set kernel can be defined as an inner product

κappro(Ai,A j) =

〈
1
|Ai| ∑

x∈Ai

φ(x),
1
|A j| ∑

x′∈A j

φ(x′)

〉
�
〈
Φ(Ai)Φ(A j)

〉
, (5.51)

where it is defined that Φ(Ai) =
1
|Ai| ∑x∈Ai

φ(x) = 1
|Ai| ∑x∈Ai

CkB(x). Since this
mapping can be explicitly obtained, it becomes unnecessary to evaluate the kernel
matrix for κappro and a linear classifier can be employed. As can be seen, when the
number of basis vectors, m, is not large, the computation at the training and test
phases can be considerably reduced.

The last issue is to decide the matrix B which consists of the m basis vectors.
By randomly selecting l local feature descriptors, the work of EMK jointly learns
the optimal B and the projection coefficient z for each descriptor by minimising the
total reconstruction error

{B�,z�1, · · · ,z�m}= argmin
l

∑
i=1

‖ψ(xi)−Bzi‖2
2. (5.52)

Applying the result of z� =
(
B�B

)−1 (
B�ψ(x)

)
again, the variable z is removed

and an optimisation problem solely for B is obtained as

B� = argmin

(
−

l

∑
i=1

kB(xi)
�K−1

B kB(xi)

)
. (5.53)

The optimal B is solved by a gradient descent algorithm. This completes the
derivation of the EMK. As seen, the EMK method has no constraint on the type
of local kernels and therefore can be widely applied.

In [2], a linear SVM classifier with the EMK is compared with a linear SVM
classifier and a nonlinear SVM classifier with the Gaussian RBF kernel. For the
latter two, the input is the histogram representation obtained with respect to a
predefined visual codebook. In the experiment, the number of basis vectors m is
1,000 and 100,000 local feature descriptors are randomly sampled to optimise the
matrix B. The results on three benchmark data sets including Scene-15, Caltech-101
and Caltech-256 show that the proposed EMK can help the linear SVM classifier
produce better classification performance than the other two SVM classifiers in
comparison. Also, it leads to much higher computational efficiency in both training
and test stages, especially when the number of training images is large.
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5.4.5 Fisher Kernel

Fisher kernel [17] provides a way to compare samples induced by a generative
model p(x|θ). It maps a sample to a feature vector in the gradient space of the model
parameters θ . The intuition is that similar samples induce similar log-likelihood
gradients of the model parameters. Let xi and x j denote two samples. Fisher kernel
is defined as

κ(xi,x j) = g(xi)
�U−1g(x j), (5.54)

where g(x) = ∇θ log(p(x|θ)) is the gradient vector describing the changing direc-
tion of θ to better fit the model. U is the Fisher information matrix that weights this
similarity measure, for example, normalising the dynamic range of the components
of the gradient vector [38].

Fisher kernel has recently been successfully applied to image categorisation
with the Bag-of-features model [22, 38]. In this application, x (x ∈ R

d) denotes
a local feature descriptor extracted from a set of training images. Based on these
descriptors, a GMM with k components is learned

p(x|θ) =
k

∑
i=1

wiN (x|μ i,Σi) (5.55)

where wi is the mixture weight, μ i the mean vector and Σi the covariance matrix
of the ith component. These model parameters are compactly represented by
θ = {wi,μ i,Σi}k

i=1. All the covariance matrices Σi are assumed to be diagonal and
expressed as Σi = {σ2

i1,σ2
i2, · · · ,σ2

id}. Conceptually, each Gaussian component can
be understood as a visual word.

Let A = {x1,x2, · · · ,xn} be a set of local feature descriptors extracted from
an image. Let L(x|θ ) = log(p(x|θ )) denote the log-likelihood. The gradient
vector g(x) is a concatenation of the partial derivatives of L with respect to all
the parameters, that is, g(x) = (∇wiL(x|θ ); ∇μ i

L(x|θ ); ∇ΣiL(x|θ )). The partial
derivatives with respect to the tth local descriptor, xt , are worked out as:

∂L(xt |θ )
∂wi

=

(
γt(i)
wi
− γt(1)

w1

)
; for i≥ 2,

∂L(xt |θ )
∂ μ i j

= γt(i)

(
xt j− μ i j

σ2
i j

)
,

∂L(xt |θ )
∂σ i j

= γt(i)

(
(xt j− μ i j)

2

σ3
i j

− 1
σ i j

)
, (5.56)
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where i = 1, · · · ,k and j = 1, · · · ,d index the Gaussian components and each
component of a vector. The term γt(i) is defined as γt(i) =

wiN (xt |μ i,σ i)

∑k
i=1 wiN (xt |μ i,σ i)

.

By summing the gradient vectors with respect to the n local descriptors, an image-
level representation can be obtained as

z = U−
1
2

n

∑
t=1

g(xt), (5.57)

where U−
1
2 is used to normalise the dynamic range of each dimension of the gradient

vector. Let z and z′ denote the image representation for images I and I′. A linear
kernel between two images can be defined as

κ(I, I′) = 〈z,z′〉=
ni

∑
p=1

n j

∑
q=1

g(xp)
�U−1g(x′q), (5.58)

where x and x′ are the local descriptors from images I and I′, respectively. It can be
seen that this kernel can be regarded as a point-set kernel between the two images.
This point-set kernel is in the form of a sum-match kernel, where the local kernel is
the Fisher kernel applied to local feature descriptors.

As pointed out in [38], the gradient representation of Fisher kernel on GMM can
be related to the Bag-of-features model in image categorisation. The histogram rep-
resentation of the Bag-of-features model considers only the number of occurrences
of each visual word, which corresponds to the zeroth-order statistics. In contrast,
the Fisher kernel additionally considers the first- and second-order statistics. This
produces a higher-dimensional image representation even when the number of
visual words is small, which could be helpful for classification. Moreover, for this
representation a linear kernel has been able to perform well, avoiding the use of
costly nonlinear kernels.

The work in [38] verifies the advantage of the Fisher-kernel-induced image
representation on two databases, an in-house database and PASCAL VOC2006.
The GMM is trained in an unsupervised way by using the local feature descriptors
extracted from all images. Linear SVMs and Sparse Logistic Regression (SLR)
are investigated. Classification with the Fisher-kernel-induced image representation
achieves comparable or even better performance than the results reported in the
literature. In addition, the Fisher-kernel-induced image representation can bring
computational advantages because it can achieve excellent classification perfor-
mance with small-sized visual codebooks.

5.5 Conclusion

Kernel is the soul of the SVM classifiers and the place where the prior knowledge
of an application is accommodated. The performance of SVM classifiers in an
application largely depends on the appropriateness and efficiency of the employed
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kernels. Without exception, this is also true for the application of SVMs to
image categorisation with the Bag-of-features model. This chapter takes a unique
perspective to review the development of kernels in this application. Focused on
two typical image representations, histogram and point set, the chapter introduces
the representative kernels used by the SVM classifiers for each of them. Also,
the progress of the use of kernels for each image representation has been briefly
shown. For the histogram representation, we can see the trend of avoiding explicitly
using kernels, with the advent of advanced coding and pooling techniques as
well as powerful kernel approximation methods. This trend has also been seen in
the point-set-based representation through the development of EMK. The driving
force of these changes is just the applications of SVMs, which need efficient
image classification methods to handle large-scale tasks, reduce system complexity
and improve recognition performance. We can expect that novel kernels and the
novel ways of using kernels will continue emerging with the applications of SVMs
to image recognition.
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Chapter 6
Support Vector Machines for Neuroimage
Analysis: Interpretation from Discrimination

Luping Zhou, Lei Wang, Lingqiao Liu, Philip Ogunbona,
and Dinggang Shen

Abstract Support vector machines (SVMs) have been widely used in neuroimage
analysis as an effective multivariate analysis tool for group comparison. As neuroim-
age analysis is often an exploratory research, it is an important issue to characterize
the group difference captured by SVM with anatomically interpretable patterns,
which provides insights into the unknown mechanism of the brain. In this chapter,
SVM-based methods and applications are introduced for neuroimage analysis
from this point of view. The discriminative patterns are decoded from SVMs
through distinctive feature selection, SVM decision boundary interpretation, and
discriminative learning of generative models.

6.1 Introduction

Neuroimage analysis works on the digital imaging scans to study the relationship
between the brain anatomies and functions. With the development of medical
imaging techniques, we are now able to “see through” the brain. Analyzing brain
images can provide fundamental insights into how the brain is organized and
responds to the damage such as mental diseases. Pattern recognition plays an impor-
tant role in neuroimage analysis to quantify structural and functional differences
between diverse groups, identify disease precursors or structural trajectories in
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neurodevelopment diseases, or detect brain states associated with a stimulus, etc.
Traditional research in this field is dominated by mass univariate methods. Take the
prevailing voxel-based morphometry (VBM) analysis [1], for example. After
aligning brain images to a common stereotaxic space, significant group differences
are identified by performing univariate statistic tests at each image voxel separately.
Such methods potentially fail to capture the complex group differences induced
by the combination of image voxels [2]. Therefore, support vector machines
(SVMs) [3] have been applied in this field to facilitate multivariate analysis and
achieved many successful applications [4–8].

Different from the traditional classification tasks in machine learning, neuroim-
age analysis cares about not only a good classification performance but also the
nature of the difference between classes. This is because neuroimage analysis is
often an exploratory research upon the unknown mechanism of the brain. Therefore
a scientific insight into the problem is sometimes more important than simply
learning a “black-box” predictor. For instance, we want to localize where the
discrimination is with regard to the anatomical or functional brain regions. In this
chapter, we will introduce the applications of SVM for neuroimage analysis from
this specific perspective. How to identify and decode discriminative information not
only characterizes neuroimage analysis but also touches some fundamental issues
of the learning theory.

In this chapter, three major issues are discussed to achieve interpretable dis-
criminations. First, SVM-based feature selection methods are introduced to identify
the most distinctive features for discrimination (Sect. 6.2). Feature selection is the
most widely used method for localizing discrimination for neuroimage analysis
possibly due to its conceptual simplicity. Second, the optimal separating hyper-plane
obtained by SVMs is utilized for the identification of the anatomically meaningful
group difference (Sect. 6.3). This issue is considered to respect the spatial and
anatomical constraints (Sect. 6.3.1) and to deal with the usage of nonlinear kernels
(Sect. 6.3.2). Third, instead of obtaining the interpretation from the discriminative
classifiers as mentioned above, generative models are built to directly represent
the neuroimaging data, by which the interpretation and further inference can be
conveniently made. The parameters of the generative models are discriminatively
learned via SVMs in order to incorporate the essential class differences (Sect. 6.4).

6.2 Identification of Distinctive Features

The most common approach in pattern recognition used for identifying distinctive
features is arguably feature selection. It can effectively infer which features are more
important for a given recognition task and separate them from the irrelevant and
noisy features. This property fits the application of neuroimage analysis very well
because images are often characterized by a set of predefined features but which
features are indeed useful for a given task cannot be known in advance.

Feature selection has been intensively researched in the field of pattern recog-
nition and many methods have been proposed in the literature. Usually, a feature
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selection method can be categorized into one of the following three groups. The first
group, namely filter methods, uses general purpose criteria that are independent of
a specific classifier. Examples of methods in this group include distance or sep-
arability measures, correlations, and information-theoretic measures. The statistic
tests used in the traditional VBM methods for neuroimage analysis also belong to
this category. The second group depends on a specified classifier and is referred
to as wrapper methods. Examples of wrapper methods include recursive feature
elimination (RFE), C4.5, naive Bayes. The last group is the embedded methods in
which feature selection is essentially a part of the classifier. Sparse SVMs and the
LASSO method are two examples in this group. Generally speaking, filter-based
methods tend to give more generic selection of features that can work reasonably
well with a large family of classifiers. Also, they have the least computational
load among the three groups of methods. The wrapper and embedded methods
can usually achieve better selection performance since they are tightly coupled
with the classifier that will be used for classification. However, they are usually
computationally more intensive.

Feature selection methods from all the above three groups have been applied to
neuroimage analysis in the literature. This section will be focused on the wrapper
and the embedded methods coupled with SVM classifiers. The selected features
not only encode the class discrepancy but also enhance the performance of SVM
classifiers in turn. We will introduce three feature selection methods, namely, RFE
with SVMs (wrapper method), sparse SVMs (embedded method), and multiple
kernel learning (MKL) with SVMs (embedded method).

6.2.1 Recursive Feature Elimination with SVMs

RFE is a backward sequential feature elimination method. It iteratively removes the
irrelevant and noisy features to identify the distinctive ones. In the method of SVM-
RFE, the procedure of RFE is wrapped around SVM classifiers to take advantage
of their excellent classification performance. SVM-RFE is first proposed in [9] for
gene selection and has been successfully applied to neuroimage analysis. In the
following part, RFE with linear and nonlinear SVMs are introduced respectively.

Linear SVM-RFE. Recall that an SVM decision function is f (x) = w�x + b,
where w is the weight vector and b the bias. In each iteration, SVM-RFE removes
the feature that has incurred the least magnitude change in the SVM object function
J(w), which is the squared norm of the weight vector, ‖w‖2, in a linear case. It is
shown that such a change can be evaluated by ΔJ(i) = w2

i , where wi is the ith
component of w and also the weight corresponding to the ith feature. The algorithm
of SVM-RFE works as follows:

1. Given a set of n training samples {x,y}n
i=1, where x (x ∈ R

d) is a vector
consisting of d features and y is the class label of x;

2. Let t denote the number of remaining features, which is initialized by d. Let d′
be the total number of features to be selected;
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3. Train a linear SVM classifier with all the t features and obtain the weight vector
w = (w1,w2, · · · ,wt)

�;
4. Sort the t features based on the change ΔJ(i) = w2

i (i = 1,2, · · · , t) and remove
the feature with the least value;

5. Set t = t− 1. If t > d′, go to step 3 and terminate otherwise.

Note that the order with which the features are removed also induces a ranking of
the d features based on their importance.

Nonlinear SVM-RFE. The above linear SVM-RFE has been extended to the
nonlinear case to fully take advantage of the power of nonlinear SVMs and
effectively identify distinctive features for classes that cannot be linearly separated.
In the nonlinear case, the objective function of SVMs is often expressed in a
dual form as J(α) = 1

2 α�Kα − 1�α subject to appropriate constraints on α . The
vector α (α ∈ R

n) consists of the coefficient for each of the n training samples.
The K is an n× n matrix and its (i, j) entry is yiy jk(xi,x j), where k(·, ·) is a
kernel function employed by the nonlinear SVM classifier. Removing the ith feature
changes K and let K(−i) denote the resulting matrix. To avoid entirely retraining
the nonlinear SVM classifier, α is assumed to be unchanged with the removal of
a feature. In this way, the change of the SVM object function can be expressed as
ΔJ(i) = 1

2 α�Kα− 1
2 α�K(−i)α . Applying the same procedure of linear SVM-RFE

as shown above, features can then be selected and ranked based on a nonlinear SVM
classifier. Note that when the number of features is large, both linear and nonlinear
SVM-RFE can be generalized to remove multiple features together at each iteration
to improve the computational efficiency of feature selection.

SVM-RFE has been adopted by many neuroimage applications for feature
selection. For example, in [10] it is used to identify the brain regions affected by the
mild cognitive impairment (MCI) based on white matter connectivity extracted from
the diffusion tensor imaging (DTI). In [11] SVM-RFE is used to identify the shape
features related to the Alzheimer’s disease (AD) from hippocampal surfaces. It is
also used to identify the distinctive features for a number of mental disorders, such
as AD [12], autism spectrum disorder (ASD) [13], and attention deficit hyperactivity
disorder (ADHD) [14], from structural and functional magnetic resonance imaging
(MRI). In all these applications, SVM-RFE appears to be an efficient tool to select
a small subset of sufficiently discriminative features, with which the SVM classifier
can achieve better classification performance than using all the original features. The
feature ranking obtained by SVM-RFE indicates the relative importance of features
to the discrimination. However, the number of features that should be selected from
the ranking usually needs to be experimentally determined.

6.2.2 Sparse Support Vector Machines

Different from SVM-RFE, sparse SVM can automatically determine which features
to be selected. In a linear SVM classifier, each feature is weighted by the correspond-
ing component of the weight vector w. When a component is suppressed to zero, it
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means that the corresponding feature will not be used for classification. This idea
is used by sparse SVMs to perform feature selection, among which 1-norm SVM is
a representative that has been used for neuroimage analysis [15]. The optimization
problem of 1-norm SVM is expressed as

minw,b,ξ ‖w‖1 +C ∑n
i=1 ξi (6.1)

s.t. yi(w�xi + b)≥ 1− ξi, ξi ≥ 0, ∀i.

Note that the mere (but critical) difference of 1-norm SVMs from the conventional
SVMs lies in the fact that in the objective function ‖w‖2 is replaced by ‖w‖1,
which is the 1-norm of w. Minimizing this norm makes w tend to be sparse;
that is, encouraging the components of the weight vector to become zero. The
above optimization problem can be conveniently converted to a linear optimization
problem

min
w,b,ξ ,v

d

∑
j=1

v j +C
n

∑
i=1

ξi (6.2)

s.t. yi(w�xi + b)≥ 1− ξi, ξi ≥ 0, ∀i;
− v j ≤ wj ≤ v j, j = 1,2, · · · ,d,

where d is the dimensionality of w. Solving this linear optimization problem will
produce a sparse w, which can then be used to identify the distinctive features for
classification.

The 1-norm SVMs have been used to conduct feature selection for classifying
single photon emission computed tomography (SPECT) images from the AD
patients and the healthy subjects [15]. In that work, the normalized voxel intensities
in the SPECT images for each subject are used as the features for classification.
However, the number of training samples is much less than the number of voxels
in that work (less than 100 training samples vs. more than 1,000 voxels). This
causes the notorious “small sample problem” which could hurt the generalization
performance of the obtained classifier. To address this issue, the work in [15]
proposes the 1-norm SVMs to select a small number of important features for
classification. Moreover, that work argues that spatial information should be taken
into consideration so that the results would be consistent with the clinician’s intu-
ition: rather than selecting scattered individual voxels, a region of contiguous voxels
should be selected together. To incorporate the spatial information, that work defines
a binary matrix R whose (i, j)-th entry indicates the spatial relationship between the
ith and jth features. This matrix is then incorporated into the above 1-norm SVMs
as a regulariser for the weight vector w. Accordingly, the optimization problem in
Eq. (6.2) becomes
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Fig. 6.1 Image courtesy of [15]: this image visualizes part of the features (regions of contiguous
voxels) selected by the 1-norm SVMs with spatial information in a 2D view. The selected features
are overlaid on the SPECT image of an Alzheimer’s disease patient

min
w,b,ξ ,v

d

∑
j=1

v j +C
n

∑
i=1

ξi (6.3)

s.t. yi(w�xi + b)≥ 1− ξi, ξi ≥ 0, ∀i;
−Rv≤ w≤ Rv,

where the “≤” in the last constraint is applied component-wisely. Imposing the last
constraint makes the value of wi depend on not only the ith feature but also the
features that are spatially close. The idea of spatial regularization used by the 1-norm
SVM also appears in [16] as introduced in Sect. 6.3.1, where a general framework of
incorporating spatial and anatomical proximities into the traditional 2-norm SVMs
is proposed. That work cannot perform feature selection as the sparse SVMs do via
using 1-norm.

The effectiveness of the 1-norm SVMs with spatial information is experimentally
verified by comparing with human experts, the Fisher’s linear discriminant classifier
and the statistical parametric mapping commonly used in neuroimage analysis. It is
found that the 1-norm SVMs achieve higher classification performance than human
experts and the statistical parametric mapping method. Also, it shows comparable
performance as the Fisher’s linear discriminant classifier on the generalization
performance when the training and the test data are from different institutions.
To demonstrate the effectiveness of the 1-norm SVMs on feature selection, the work
in [15] visualizes a subset of the selected features, as given in Fig. 6.1. As indicated
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in that work, the proposed method selects those meaningfully grouped features that
are more consistent with the clinician’s intuition than the traditional feature selection
algorithms.

6.2.3 Multiple Kernel Learning with SVMs

MKL has been an active research topic in the field of machine learning and pattern
recognition in the last decade. It aims to automatically learn the most suitable
kernel for a given learning task by linearly combining multiple base kernels. The
weights of the combination can naturally reflect the importance of each base kernel
when they are appropriately normalized to become comparable. When a sparsity
constraint is imposed upon the combination weights, MKL can be used to select the
distinctive kernels for a given learning task. MKL can be readily related to feature
selection because a base kernel is often built upon one or a group of features. In this
case, selecting base kernels also selects the corresponding features. Moreover,
MKL brings advantages to feature selection because (1) a group of features can
be conveniently and jointly considered via a base kernel and (2) the potential
importance of features can be more comprehensively evaluated by MKL through
adaptively selecting the base kernels that work best with features. In neuroimage
analysis, MKL-SVM has been used to identify the distinctive features or the
distinctive modality modeled by a set of features.

The MKL algorithm can be briefly described as follows. Let k1, · · · ,km be a set
of base kernels. Let λ = {λ1, · · · ,λm} be a set of weights with the constraints of
λ ≥ 0 and ∑m

i=1 λi = 1. Let k(·, ·) = ∑m
i=1 λiki(·, ·) denote the kernel obtained by a

weighted combination of the m base kernels. Since the weights are all nonnegative,
the kernel k will still be a Mercer kernel as long as all the base kernels are.
In MKL-SVM, a nonlinear SVM using the kernel k is trained and the kernel weight
λi (i = 1, · · · ,m) is jointly learned with the SVM coefficients α . This leads to the
following optimization problem:

minλ J(λ ) (6.4)

s.t. λi ≥ 0, ∑m
i=1 λi = 1,

where the objective function J(λ ) is

J(λ ) = maxα

(
− 1

2 ∑n
i=1 ∑n

j=1 αiα jyiy j ∑m
l=1 λlkl(xi,x j)+∑n

i=1 αi

)
(6.5)

s.t. ∑n
i=1 αiyi = 0, 0≤ αi ≤C,∀i.

This optimization can be efficiently solved, for example, by the reduced gradient
method proposed in the work of SimpleMKL [17]. Note that the constraint
∑m

i=1 λi = 1 will make the optimal solution set, λ1, · · · ,λm, sparse. A number of
kernel combination weights will be set to zero, indicating that the corresponding
base kernels are essentially not used.
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MKL has been successfully applied to neuorimage analysis recently.
For example, it is used to integrate the measurements from different modalities
including MRI, positron emission tomography (PET), cerebrospinal fluid (CSF)
parameters, and genotype [18–20]. Also, it has been applied to fuse different types
of features from the same imaging modality [21]. MKL can efficiently handle a large
number of kernels. When applied to neuroimage analysis, it assigns multiple kernels
of varying types and hyperparameters to each feature group and automatically
determines the optimal kernel weight combination [18,19]. Take the work in [18] for
example, where MKL is used to differentiate MCI (a prodromal of AD) subjects who
progressed to AD (called as MCI converter) and who remained stable. Both imaging
data (MRI and fluorodeoxyglucose PET (FDG-PET)) and biological measures (CSF
assays, NeuroPsychological Status Exams (NPSE), and APOE genotype) are used
in the integrated classification framework provided by MKL. For the imaging data,
different types of kernels are constructed based on a varying number of voxel-wise
features. It is found that the combination of kernels from image modalities can
achieve better classification accuracy than any individual kernel based on imaging
features, showing the advantage of the combination with MKL. Although the major
purpose of [18] is to improve the prediction accuracy of MCI converters with
features from multimodality, it also points out that when linear kernel is used, the
decision boundary of SVMs can be interpreted as a set of voxel weights with the
values of wm = λm ∑i αiφm(xi), which indicates the relative importance of various
brain regions to the disease and can be visualized for inspection. It is found that
MKL classifiers place greater weights on the brain regions highly correlated with
AD, which reinforces the effectiveness of MKL for feature selection.

6.3 Anatomical Interpretation of Decision Boundary

In addition to feature selection, the normal vector of the optimal separating
hyperplane in SVM has been used in literature to identify the spatial or functional
patterns of discrimination when linear kernels are employed [8]. Despite the
simplicity, these initial efforts in this regard have some limitations. Firstly, these
methods tend to produce scattered patterns that lack spatial coherence even with
linear kernel, giving rise to the difficulty for anatomical interpretation [7, 16, 22].
Secondly, these methods cannot deal with nonlinear kernels that have to be used for
many complex linearly non-separable neuroimaging data. In such cases, the kernel
mapping function is too complicated to be resolved explicitly, which impedes the
anatomical interpretation of the discrimination captured in the high dimensional
feature space [23–26]. Solutions to deal with these issues have been proposed in
recent research works, which have significantly advanced the state of the art. They
are introduced as follows.
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6.3.1 Spatial and Anatomical Regularization of Linear SVM

Recall that, given N training samples {xi,yi}, where xi ∈ R
d is the feature vector

with d dimensions and yi the label of the i-th sample, a hard margin linear SVM
solves the following optimization:

min
w,b
‖w‖2 +λ

N

∑
i=1

max(0,yi(w�xi + b)). (6.6)

The variables w and b represent the linear and the bias terms of the decision
function f (x) = w�x+b, respectively. The parameter λ is a weight of penalty to the
misclassification. Geometrically, w is the normal vector of the optimal separating
hyperplane, pointing to the direction where the maximal group difference happens.
With a linear kernel, w has the same dimension as the original feature vector x, and
thus can be used as a pattern template encoding group discrimination.

In neuroimage applications, w is often visualized to reflect the class difference
of interest. When a linear SVM is used, w lies in the same space as the input
features. Take image voxels as the features, for example. Each component of
w, denoted as wi, corresponds to an image voxel. A large value of wi indicates
that the corresponding image voxel has a large contribution to the classification,
and vice versa. Therefore, visualizing w against the brain image can provide an
intuitive and concise visual summary of the complex discriminative patterns for
exploration. In [16, 22], it is pointed out that in order to be appropriately employed
for group comparison, the variable w should agree with some spatial and anatomical
considerations for neuroimage analysis. For example, the components wi should
have similar values if the corresponding image voxels are in a neighborhood or
connected anatomically or functionally. However, as shown in Eq. (6.6), the standard
linear SVM only employs a norm-based constraint on w, which cannot guarantee the
satisfaction of those spatial or anatomical constraints. Consequently, the optimal w
induced by a standard linear SVM often leads to scattered discriminative patterns
that are noisy for interpretation. In the following, we introduce the work in [16,22],
which endeavors to improve this situation.

6.3.1.1 Incorporation of Prior into SVM

Based on the observations mentioned above, spatial and anatomical information
are explicitly introduced into SVM models in [16, 22]. As pointed out in [16, 22],
incorporating prior information into a standard SVM model is often conducted
via kernel design or regularization. That work follows the line of regularization.
In particular, a regularization operator P is introduced into Eq. (6.6) as follows:

min
w,b
‖Pw‖2 +λ

N

∑
i=1

max(0,yi(w�xi + b)), (6.7)
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where P is a linear projection. Let x̃=P−1x. It is straightforward to see that Eq. (6.7)
can be rewritten as a standard linear SVM:

min
w,b
‖w‖2 +λ

N

∑
i=1

max(0,yi(w�x̃i + b)). (6.8)

That shows, the regularized SVM can be viewed as the standard SVM working on
the transformed raw data x̃, or equally, the standard SVM working on the raw data
x with a kernel k(x1,x2) = 〈P−1x1,P−1x2〉.

In [16, 22], a framework using Laplacian regularization for P is proposed
to flexibly handle various requirements of spatial and anatomical proximities.
Such regularization is considered in both discrete and continuous cases. They are
elaborated as follows.

In the discrete case, the regularization is exerted via graphs. For example, when
image voxels are considered, the voxel connectivity (6, 18, or 26) of the image
can be used as the regularization graph. Under this circumstance, the regularization
operator P is defined as P : w �→ e

1
2 β Lw, where L is the Laplacian matrix of the graph

and β controls the degree of the regularization. The graph Laplacian L is determined
by the degree matrix D and the adjacency matrix A of the graph: L = D−A. The
adjacency matrix A represents the connections of the nodes in the graph. If node i
and j is connected, Ai j = 1; otherwise, Ai j = 0. The degree matrix D is a diagonal
matrix Dii = ∑ j Ai j. Such a regularization leads to an SVM classification with a new
kernel kβ (x1,x2) = x�1 e−β Lx2.

In the continuous case, the regularization is exerted via compact Riemannian
manifolds. For example, when cortical surfaces are considered, the discretization
of the surface highly depends on the construction of the surface mesh. In order to
circumvent the possible problems caused by this step, a cortical surface is treated
as a 2D Riemannian manifold in [16, 22]. Compared with the discrete case, the
regularization operator P is now defined as P : w �→ e

1
2 β Δgw, where Δg denotes the

Laplacian–Beltrami operator.
The above is a general framework to incorporate prior, which may take different

forms with different requirements of constraints, such as spatial proximity, tissue
types, anatomical brain regions, and brain connectivities. Take the discrete case, for
example. The regularization graph has to be carefully designed to satisfy the prior
constraints. If spatial proximity is to be enforced, the local voxel connectivity can be
used as the regularization graph and hence a common Laplacian matrix L as men-
tioned above is employed. As pointed out in [22], this is equivalent to preprocessing
the image with a Gaussian smoothing kernel of σ =

√
β . The problem becomes a bit

complicated when anatomical proximity needs to be considered. For example, two
voxels may be linked even when they are in distance because the anatomical brain
regions they belong to are likely to be connected by white matter tracts. Therefore,
the “adjacency” of two voxels is determined by two probabilities: the probability
for a voxel to be located in a specific region of interest (ROI), and the probability
for two ROIs to be connected. Let E ∈ R

d×R be a matrix, where d is the number



6 Support Vector Machines for Neuroimage Analysis: Interpretation from. . . 201

Fig. 6.2 Image courtesy of [16]: Anatomically regularized w for cortical thickness. Color code
indicates the value of the component wi. From (a) to (d), β = 0,2,4,6

of voxels and R is the number of ROIs. The (i, j)-th entry of E corresponds to the
probability for the i-th voxel to be located in the j-th ROI. Let the matrix C ∈R

R×R

be positive semidefinite. The (i, j)-th entry of C corresponds to the probability for
the i-th and the j-th ROIs to be connected. The adjacency matrix A therefore is
A=ECE�. In [16,22], a normalized graph Laplacian L̃ is used: L̃= I− Ẽ�Ẽ, where
Ẽ = D−

1
2 EC

1
2 . In addition, the work in [16, 22] also points out that the spatial and

the anatomical proximities can be combined on graphs or on statistical manifolds
(via Fisher metric).

6.3.1.2 Applications

In [16], the regularized SVMs are applied for the classification of the patients
with AD and the healthy controls by both the gray matter concentration and the
cortical thickness extracted from MRI. Both spatial and anatomical proximities are
considered in the experiment. For the anatomical regularization, atlases are used to
parcellate the brain into a set of ROIs. The image voxels or cortical surface vertices
within the same ROI should contribute similarly to the classification, which could
be reflected by the values of the components of w. A large absolute value of the
i-th component wi indicates a significant contribution to the discrimination, and
vice versa. An example result quoted from [16] on cortical thickness is given in
Fig. 6.2. As shown, the w without regularization (Fig. 6.2a, β = 0) produces noisy
and scattered patterns, while the regularized w produces patterns consistent with
the anatomical partitions. The atrophies in the regions with large absolute values of
wi suggest a high likelihood to be AD, which include the ROIs of hippocampus,
amygdala, parahippocampal gyrus, cingulum, etc. These ROIs agree well with the
neuropathology of AD, indicating that the regularized SVM is a promising tool for
group comparison.
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6.3.2 Discriminative Direction for Nonlinear Kernels

When data are linearly non-separable, kernel SVMs have to be used for accurate
classifications. They work as follows. A kernel mapping function Φ : Rd → F
is implicitly defined by a kernel trick. It maps the feature vectors from their
original input space R

d to a high dimensional feature space F where the originally
linearly non-separable data become linearly separable so that a linear SVM can
be performed there. When kernel SVMs are employed, the group discrimination
stored in w (the normal vector of the separating hyperplane) is only mathematically
meaningful in the higher dimensional space F , which needs to be projected back
into the original input space R

d to obtain anatomical interpretation. However,
computing the inverse mapping of Φ is intractable because Φ is too complicated
to be explicitly defined. To deal with this problem, Golland et al. put forward a
concept called “discriminative direction” in the Rd space [23,24]. When a sample in
one class travels along the discriminative direction, it will gradually become akin
to the samples in the opposite class. During this course, only group difference
appears, whereas the differences caused by individual variation within the same
class are excluded. Comparing the sample before and after such a change can
locate the group difference. Note that different samples in a population may have
different discriminative directions. For example, let us consider two classes of points
lying on two concentric annuli with different radii, respectively. The discriminative
directions are different from point to point, coinciding with the radial direction at
that point. In [23], Golland et al. propose a method to approximate the discriminative
direction and apply it to detect the distinctive difference in hippocampal shapes
between the healthy controls and the schizophrenia patients. Some other studies
also use the discriminative directions to localize the group difference between the
healthy controls and the patients with the AD for ROI-based or voxel-based whole
brain analysis [27, 28]. However, by revisiting Golland’s discriminative direction
in [25, 26], Zhou et al. point out that Golland’s method may have a problem of
generating spurious group difference by neglecting the underlying distribution of the
data. Therefore, they propose a “regularized discriminative direction” to overcome
this problem. This method improves the fidelity of the detected group difference by
confining the solution to the sub-dimensional manifold in the original Rd space.
In the following, we unfold the details about how to infer the discriminative
direction and the regularized discriminative direction, respectively.

6.3.2.1 Discriminative Direction

Let D = {x1,x2, · · · ,xn} (xi ∈Rd) denote a set of n training samples labeled in two
groups. As mentioned earlier, training a kernel SVM implicitly performs a mapping
Φ(·) from an input space R

d to a Hilbert space (known as the feature space) F
with higher or even infinite dimensionality. Then a linear SVM is performed in F
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x + dx
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F

Φ(x + dx)

w

dφ − 〈dφ, w〉 w

dφ

Φ(x)

〈dφ, w〉 wΦ

Fig. 6.3 Image courtesy of [25]: explanation of how to infer the “discriminative direction” by
Golland’s method [23]. A point x in the input space R

d is mapped to a point Φ(x) in the
feature space F . When x moves a small step dx in R

d , a displacement dφ will be induced in
F accordingly. The divergence of dφ from w is dφ − 〈dφ ,w〉 w, which is perpendicular to w.
Minimizing this divergence with respect to dx can make Φ(x) move along w as much as possible
in F . Such a direction dx is the “discriminative direction” at point x in R

d

to infer the optimal separating hyperplane with the corresponding normal vector w.
The dimensionality of w equals that of F , which might also be infinite.

To only reflect the group difference between two classes, ideally we want to
strictly move a data point Φ(x) in F along the direction w that encodes the
group discrimination, and find the corresponding changes in R

d . However this is
problematic, because the kernel mapping Φ(·) often maps the input space Rd onto a
lower dimensional manifold in F , which restricts the possible movement along w.
For example, when a Gaussian radial basis function (RBF) kernel is used, the whole
R

d will only be mapped onto a unit hypersphere in F instead of the whole F .
Forcing Φ(x) to move strictly along the normal vector w will deviate from this
manifold, causing the resulting new Φ(x′) to have no preimage in R

d anymore.
In other words, by forcing the preimage of Φ(x) to exist, Φ(x) cannot move strictly
along w.

In [23, 24], Golland et al. propose to solve this problem by searching for
a direction dx in R

d , whose corresponding movement in F causes minimal
divergence from the normal vector w. The idea is illustrated in Fig. 6.3. Specifically,
when x moves along dx, a displacement dφ = Φ(x + dx)− Φ(x) is induced
in F accordingly. The displacement component of dφ that is perpendicular to
w represents the deviation from w and can be computed as dφ − 〈dφ ,w〉 w.
Minimizing the divergence from w makes the movement of Φ(x) maximally agree
with w. For this purpose, the following optimization is solved:

Find dx = arg min
dx∈Rd

‖dφ −〈dφ ,w〉w‖2 = arg min
dx∈Rd

〈dφ ,dφ〉− 〈dφ ,w〉2

such that ‖dx‖2 = ε
and dφ = Φ(x+ dx)−Φ(x), (6.9)
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Fig. 6.4 Image courtesy of [25]: discriminative direction at a point x̂. A nonlinear mapping Φ
maps the shape descriptor space R

d onto a feature space F , where the two classes (gray and white
dots) become linearly separable. The vector w is the normal of the separating hyperplane found in
F . Move Φ(x̂) along w to a new position Φ(z1) and project it back to R

d as z1. The vector z1− x̂
is the “discriminative direction” at x̂

where ε is a preset small positive real number. It is pointed out in [25] that the
constraint of ‖dx‖2 = ε allows dx to be searched identically along all directions
in R

d . In other words it implicitly assumes that the original feature vectors are
distributed in the whole space of Rd , which may not necessarily be true in practice.

Different from the method in [23], Zhou et al. propose a conceptually simpler
way to approximate the discriminative direction [25,26]. They take advantage of the
preimage techniques [29–31] to reconstruct the approximation of x when moving
Φ(x) strictly along w in F . They minimize a cost function that can be formulated
only in terms of the inner product 〈Φ(xi),Φ(x j)〉, avoiding the explicit manipulation
of the unknown Φ(x).

The idea in [26] is illustrated in Fig. 6.4. For a given feature vector x̂, in F its
image Φ(x̂) is moved along w to a new position Φ(x̂) + sw, where s is a given
step and w has been normalized to a unit vector. Let z denote the best estimate of
the preimage of Φ(x̂) + sw. Then z− x̂ forms the discriminative direction at x̂. The
residual error ρ(z) for reconstructing the preimage z is minimized:

z� = arg min
z∈Rd

ρ(z) = arg min
z∈Rd
‖Φ(x̂)+ sw−Φ(z)‖2. (6.10)

Let us assume a Gaussian RBF kernel is used, e.g., k(xi,x j) = 〈Φ(xi),Φ(x j)〉=
exp(−‖xi−x j‖2/2σ2), so that 〈Φ(z),Φ(z)〉 is constant. Completing the square term
in Eq. (6.10) leads to a simpler cost function

z� = argmax
z∈Rd
〈Φ(x̂)+ sw,Φ(z)〉. (6.11)

As mentioned, in SVM it holds that w = ∑i αiΦ(xi). Eq. (6.11) can be rewritten as

z� = argmax
z∈Rd

k(x̂,z)+ s∑
i

αik(xi,z), (6.12)
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which is only relevant to the inner products k(·). Therefore, the unsolvable mapping
Φ does not have to be computed.

Note that both Golland’s and Zhou’s methods implicitly assume the original
feature vectors occupying the whole input space R

d . Inferring discriminative
direction in these ways may induce spurious group difference as observed in [25],
which is suggested to possibly come from the ignorance of the underlying data
distribution. An example is given in [25] to illustrate this problem. Sharing the
same hypotenuse, two classes of right-angled triangles are given with their right-
angle vertex located in the first and the second quadrants, respectively. All the
right-angle vertices are located on a semi-circle taking the hypotenuse as its
diameter. When moving along the discriminative direction, the right-angle vertex
deviates from the semi-circle where it resides, causing the loss of right-angleness for
the newly generated triangles. This introduces a spurious angle discrepancy when
comparing the triangles before and after the change to locate the group difference.
Therefore, in [25], a regularized discriminative direction is proposed to improve the
fidelity of the detected group difference, and the process is explained as follows.

6.3.2.2 Regularized Discriminative Direction

Instead of looking for the preimage z within the whole input space, in [25] Zhou
et al. propose to compute z within a restricted subspace Ω (Ω ∈ R

d), that is,

z� = argmin
z∈Ω

ρ(z). (6.13)

In [25], two methods are proposed to infer the subspace Ω from data, one from a
local distribution perspective and the other from a geometric point of view.

Recall that x̂ denotes a sample in R
d , whose image Φ(x̂) in F is moved along the

direction of w; and z denotes the best estimate of the preimage of Φ(x̂) during this
movement. Let Nε(x̂) = {x | ‖x− x̂‖ ≤ ε} be a neighborhood of x̂ determined by
the small positive value ε , and p(x | x ∈ Nε(x̂)) be an empirical probability density
function estimated from Nε (x̂).

The local distribution-based regularization requires that within a small movement
step, the obtained preimage z should comply with the local distribution p(x | x ∈
Nε(x̂)), which is modeled as a normal distribution with the mean μ = x̂ and the
covariance matrix Σ = 1

|Nε (x̂)|−1 ∑
xi∈Nε (x̂)

(xi− x̂)(xi− x̂)�. Here |Nε(x̂)| denotes the

number of the training samples within Nε (x̂). Requiring z to comform to this
distribution is to require an adequately large value of p(z|μ ,Σ), or equally an
adequately small value of (z− μ)�Σ−1(z− μ). Therefore, in [25] the following
objective function is minimized:

z� = arg min
z∈Rd

ρ(z)+ 2η (z− μ)�Σ−1(z− μ), (6.14)
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Φ
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w

image of regularized discriminative direction

regularized discriminative direction

Fig. 6.5 Image courtesy of [25]: the regularized discriminative direction is confined on the
sub-dimensional manifold formed by the shape descriptors (the dark dot) in R

d space. It is a
compromise between following the classifier provided discriminative direction w and conforming
to the shape distribution

where η ≥ 0 is a regularization parameter. When η is 0, this problem reduces to the
minimization of ρ(z) in Eq. (6.10).

Equation (6.14) can be extended to handle rank-deficient Σ by decompos-
ing Σ as Σ = ΓΛΓ�, where each column of Γ is an eigenvector and Λ is
diag{λ1, · · · ,λr,0, · · · ,0}. The λi is the i-th positive eigenvalue and r is the rank
of Σ. An optimal solution z� should satisfy:

z� ∈ {z | (Γ�(z− μ))i = 0 for i = r+ 1, · · · ,d}
= {z | z = μ + Γ̂Λ̂

1
2 u}, (6.15)

where u is a vector in R
r. The r× r matrix Λ̂ is diag{λ1, · · · ,λr}. The d× r matrix

Γ̂ = (Γ1, · · · ,Γr) contains the eigenvectors corresponding to Λ̂. Therefore, instead
of optimizing z ∈ R

d , in [25] it is proposed to optimize u ∈ R
r, where r� d in

practice:

u� = arg min
u∈Rr

ρ(μ + Γ̂Λ̂
1
2 u)+ 2η〈u,u〉. (6.16)

This significantly reduces the number of parameters to be estimated. Once u is
obtained, the preimage z can be computed by Eq. (6.15).

Equation (6.15) is geometrically explained in Fig. 6.5 by [25]. Let M be the
manifold where the original feature vectors reside and Tμ(M ) be a tangent plane of
M at μ . The preimage z is restricted to the tangent plane Tμ(M ) which is spanned
by the eigenvectors in Γ̂. Since a manifold can be locally approximated by its tangent
plane, Eq. (6.15) requires the preimage z to conform to the manifold M .

In [25], an approximation (first order Taylor expansion) of Eq. (6.16) is solved
with an analytical solution. It can be theoretically proved that when the regulariza-
tion parameter η = 0, this analytical solution equals to that of Golland’s method
in Eq. (6.9), indicating Golland’s method is a special case of the local distribution
regularized discriminative direction.
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In addition, local geometric constraints are also proposed in [25] to require z
lying in the convex hull of Nε (x̂). That is, z is a convex combination of its neighbors
Nε(x̂): z = ∑n

i=1 ωixi, where ωi � 0, ∑n
i=1 ωi = 1, xi ∈ Nε(x̂), and n is the number

of neighbors. In order to find the regularized discriminative direction, the following
optimization is proposed to solve:

min
ωi
‖Φ(x̂)+ sw−Φ(∑n

i=1 ωixi)‖2

such that ωi � 0

and ∑n
i=1 ωi = 1, (6.17)

and z is then recovered by z = ∑n
i=1 ωixi.

The convex combination method is closely related to the local distribution
constrained method as follows. Recall that in local distribution constrained method,
z follows a normal distribution N(z|μ ,Σ). Therefore, E[z]dist = μ and Cov(z)dist =Σ.
In the convex combination method, it is easy to show that E[z]comb = μ and
Cov(z)comb = (∑i ω2

i )Σ. Since ∑i ω2
i ≤ 1, Cov(z)comb has the same eigenvectors

as Cov(z)dist but smaller eigenvalues. This indicates that the convex combination
method implicitly confines z to the local distribution of its neighbors but in a more
strict manner.

6.3.2.3 Remarks

A common practice for group comparison is to take the group mean as the
representative and reveal the group difference by comparing the group means.
This would be difficult to handle the cases when the complex group difference
varies across the group. The discriminative direction approach effectively deals with
this problem. When SVM is used, instead of comparing the group means, both
the regularized and the unconstrained discriminative directions are applied on the
support vectors for analysis. This is because it is the support vectors that determine
the optimal separating hyperplane in SVM, and thus encode the group difference.

Either the unconstrained or the regularized discriminative direction can be
applied to different kernel classifiers including kernel SVMs. It is a method to
decode group difference that has been already captured by the classifiers. Therefore
the robustness of its result is influenced by the performance of the classifiers. A too
low generalization performance of the classifier may cast doubt on the fidelity of the
detected group difference.

6.3.2.4 Applications

Discriminative direction has been applied in neuroimage analysis for understanding
the anatomical and developmental aspects of mental disorders. Example
applications include: detecting the morphological changes of hippocampi for the
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Fig. 6.6 Image courtesy of [25]: group difference captured by (a) the unconstrained discriminative
direction in [24] and (b) the regularized discriminative direction in [25]. The top row shows the
deformation from digit 5 to digit 8. The bottom row shows the deformation from digit 0 to digit 9

schizophrenia [23] and the AD [25], detecting the morphological changes of corpus
callosum in affective disorder [23], detecting brain spatial pattern changes with
ageing or between sexes [27], and detecting the morphological changes of the
whole brain for the schizophrenia [28]. The movements of support vectors along
the discriminative direction are visualized to reflect the typical patterns of group
difference. In the following, the results of the regularized discriminative direction
applied on hippocampal shape analysis are directly quoted from [25], demonstrating
how this method performs for group comparison.

In [25], the normal morphology of hippocampi is compared between sexes using
the regularized discriminative direction. Since there is a lack of ground truth for
this open problem, the fidelity of the regularized discriminative direction is first
validated on a handwritten digit image database and a facial image database, where
the group differences are clear and visually perceptible.

Two classification tasks are conducted by SVMs with RBF kernel: classifying
two digits from the handwritten images (Fig. 6.6); and classifying left-side view
and right-side view facial images (Fig. 6.7). Selected support vectors (samples) are
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Fig. 6.7 Image courtesy of [25]: group difference captured by (a) the unconstrained discriminative
direction in [24] and (b) the regularized discriminative direction in [25]. During the deformation,
a right-side-view face (the leftmost image) turns towards left gradually (keeping adding class
difference)

moved from one class towards the other along the discriminative direction to reflect
the class difference. It can be seen that the unconstrained discriminative direction
in [24] usually introduces more noisy or spurious differences, while the regularized
discrimination direction appropriately decodes the discrimination by introducing
only the minimal necessary group changes. The individual variability within each
group (i.e., the different handwritten images of the same digit, or the different
owners of the faces for the same view) is excluded by the regularized method from
the detected class discrepancy. It is noticed that in Fig. 6.7 the regularized method
generates facial images during the whole process, while the unconstrained method
cannot guarantee that, indicating the importance of considering only the underlying
data distribution.

In [25], the fidelity of the detected changes is quantitatively measured by esti-
mating how well the newly generated image (by gradually adding class difference)
belongs to the distribution of the training set. This is achieved by the one-class
SVM [32] that estimates the probability density for abnormality detection. One-
class SVMs infer a function f whose values decrease from the densely distributed
areas to the sparsely distributed areas. Figure 6.8 shows the f -values computed
during the course of gradually changing a left-side view facial image into a right-
side view image. As shown, the regularized discriminative direction consistently
achieves larger f values than the unconstrained discriminative direction in [24]
at every step. This demonstrates that moving along the regularized discriminative
direction yields new samples conforming to the distribution of the training set.

After sanity check, the regularized discriminative direction is applied on hip-
pocampal shapes belonging to the male and the female groups of the healthy elderly.
The shapes (normalized by volume) are represented by the surface landmarks
reconstructed from the spherical harmonics (SPHARM) representation [33] of
degree five. An SVM classifier with RBF kernel is employed for classification.
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Fig. 6.8 Image courtesy of [25]: comparing the values of the f function in a one-class SVM for
the deformation of a left-side view facial image towards the right-side view

Support vectors are selected to study the discriminative direction as shown in
Fig. 6.9. The color code indicates the deformation that a hippocampus undergoes
to become alike to the opposite class. From green to red, the amount of protrusion
increases. From green to blue, the amount of shrinkage increases. Consistent with
the results from the sanity check, the regularized discriminative direction generates
more compact changes concentrated in fewer regions but at greater magnitude in
the hippocampal head and tail, while the unconstrained discriminative direction
shows more scattered patterns with usually a compression next to an expansion. The
hippocampal shape difference detected by the regularized discriminative direction
can be cross-validated by the documented findings [34] where the hippocampus
volume loss in the lateral areas of the head and tail is found in males, but
not observed in females. Figure 6.10 shows the f-values of the one-class SVM
applied on the hippocampal shapes. As shown, the regularized discriminative
direction achieves higher values for most of the cases, indicating that the deformed
shapes better agree with the underlying distribution than those obtained by the
unconstrained method.

6.4 Generative Models with Discriminative Learning

Detecting the difference between clinical groups is typically formulated as a
classification problem that aims to optimally separate two groups from each other.
Discriminative methods such as SVMs are often involved into this process. Despite
their efficiency in distinguishing different groups, these methods usually focus on
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Fig. 6.9 Image courtesy of [25]: localized discrimination for sexes on hippocampi of six
individuals (three females on the left, namely individual 1, 2, 3; three males on the right, namely
individual 4, 5, 6) from two perspective views. The top two rows are generated by the regularized
method in [25], and the bottom two rows are generated by Golland’s method in [24]
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Fig. 6.10 Image courtesy of [25]: the values of the f function in a one-class SVM on 18 support
vectors in the hippocampus database obtained by the regularized method in [25] and Golland’s
method in [24]
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the boundary of the separation, which does not lend themselves to good interpre-
tation, especially when the classification models are complicated [25]. However, in
neuroimage analysis the understanding of the group difference is very important,
which may reveal the mechanism behind the mental diseases. Therefore, a number
of research works in this field turn to generative models that are developed to explain
how the neuroimage data could have been generated. The group difference is then
identified by comparing the generative models learned separately from each class.
Due to their capacity of interpretation, generative models are widely used in the
newly emerging field of brain network analysis that aims to understand the alteration
of brain network with respect to the factors such as the brain damage. For example,
group-level brain networks have been built from FDG-PET images by compressed
sensing in [35] and sparse inverse covariance estimation in [36], built from MRI by
pair-wise correlations of cortical thickness in ROIs in [37], and built from functional
MRI images by sparse Markov Random Field in [38].

Although generative methods are amenable to interpretations as they explicitly
infer a representative model for each group, it is well known that generative
methods are not necessarily discriminative and usually have inferior performance in
classification than discriminative methods. For example, when applied to infer brain
networks, generative methods are prone to emphasizing major structures shared
within each group and neglecting subtle structures such as the disease-induced
changes. This may not only make subsequent investigations less meaningful but
can also lead to spurious conclusions.

In this chapter, a recent method [39] that integrates the benefits of generative and
discriminative (SVMs) methods for neuroimage analysis is introduced. Although
that method is based on the application of brain network analysis, the underlying
idea is general and can be adapted to other neuroimage applications. In the
following, the background of the application is first introduced, followed by the
introduction of the associated generative model and the discriminative learning of
the generative model for both discrimination and representation.

6.4.1 Background: Brain Network Analysis

Studying the brain as a complex network of inter-connected brain regions is
becoming a new research trend in neuroimage analysis. It has been applied to a
variety of imaging modalities [36–38, 40, 41] at various spatial and temporal scales
to provide new insights into the brain. The reorganization of brain networks has
been found in many age-related mental diseases, such as the Alzheimer’s disease,
schizophrenia, and stroke, as a response of the brain to the damage.

Mathematically, a brain network can be modeled as a graph. Figure 6.11
illustrates a common process of how to build a brain network. The brain images
belonging to different subjects are aligned (deformably registered) to the same
stereotaxic space to establish correspondence. They are then parcellated into
common regions of interest (ROI) where local image features are extracted. A brain
network is modeled by a graph with each node corresponding to a brain region
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Fig. 6.11 Illustration of brain network construction

and each edge corresponding to the connectivity between regions. The connectivity
could be statistical dependencies (functional connectivity) or causal relationships
(effective connectivity) [42]. Regardless of imaging modality, brain networks can
always be mathematically abstracted as either undirected (for functional connec-
tivity) or directed (for effective connectivity) graphs. The directionality is also of
interest because it may indicate the pathways of how the disease spreads.

The existing works for brain network analysis can be generally categorized
as generative methods [37, 41] or discriminative methods [43–45]. In generative
methods, a representative network is explicitly inferred for each group (e.g., patients
or healthy controls) independently and compared with each other to locate the
differences. In discriminative methods, an individual network is constructed for
each subject. Based on these networks, a discriminative classifier is trained to
directly classify a given subject to one of the groups. As mentioned above, the
group-level brain networks obtained by the generative methods are representative
and good for interpretation, but may not be sufficiently discriminative. To bridge
the gap, the work in [39] proposes a method to combine the advantages of both the
generative and the discriminative methods to learn brain “effective connectivity” for
the Alzheimer’s disease. The bridge is Fisher kernel, which induces sample-specific
feature vectors from generative models for SVMs to use. These Fisher-kernel-
induced feature vectors are functions of the parameters of the generative models.
Therefore, learning these parameters is converted to learn Fisher kernels via mini-
mizing a generalization error bound of SVMs in [39]. In this way, the improvements
of discrimination in both the generative models and the SVM classifiers can be
simultaneously achieved.

6.4.2 Generative Model: Sparse Gaussian Bayesian Network

In [39], brain effective connectivity is built to investigate the directional effect of one
brain region over another from MRI and FDG-PET images, respectively. That work
is based on the generative model of sparse Gaussian Bayesian network (SGBN)
originally proposed in [41].
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Traditional methods to construct directional brain network from neuroimages
usually require prior models of connectivity, which prevents their use from
exploratory research [46, 47]. SGBN provides a data-driven method for large-scale
directional brain network construction. It employs Gaussian Bayesian network (BN)
model and imposes sparsity on the network connectivity.

Specifically, let x = [x1,x2, · · · ,xm]
� be a sample of m features (variables). A BN

G is a directed acyclic graph (DAG) that expresses the factorization of a joint
distribution p(x) = ∏

i=1,··· ,m
p(xi|Pa(xi)), where Pa(xi) denotes the parent nodes

of xi. In a linear Gaussian BN, each node xi is regressed over its parent nodes:
xi = θ�i Pa(xi)+ εi, where θ i is the regression coefficients, and εi is the Gaussian
noise. The matrix Θ = [θ 1, · · · ,θ m] denote the parameters of a GBN. Let Pa(xi) be
a matrix whose j-th column represents a realization of the vector Pa(xi) on the j-th
sample. To learn an SGBN from the data, a constrained sparse regression is solved
in [41] as follows:

min
Θ

m

∑
i=1

‖fi−Pa(xi)
�θ i)‖2

2 +λ1‖θ i‖1 (6.18)

s.t. Θ ji×Pi j = 0,∀i, j = 1, · · · ,m, i 	= j.

where fi corresponds to a realization of the i-th random variable xi on the n samples.
Each variable xi regresses over all the other variables Pa(xi). The matrix P is an
m×m matrix. If there is a directed path from xi to x j, Pi j = 1; otherwise, Pi j = 0.
The constraint enforces the DAG property of the SGBN, that is, there should be no
directed cycles in the graph.

A simple way to use generative SGBNs for prediction is to train, for each class,
an SGBN individually and classify a new sample by assigning it to the class with
a higher likelihood. However, this may ignore some subtle but critical network
differences that distinguish the two classes. Therefore, the work in [39] proposes
to learn the parameters of the generative model from the two classes jointly to keep
the essential discrimination.

6.4.3 Bridge: Fisher Kernel

As pointed out in [48], there are three categories of approaches to combine
generative and discriminative models: blending, iterative, and staged methods.
The last category currently attracts the most attentions. In staged methods, the
discriminative models are usually trained on the features provided by the generative
models. Fisher kernel [49] is a representative method in this family, and adopted
in [39]. Compared with most Fisher-kernel-based methods in the literature, the work
in [39] goes one step further. The Fisher kernel is utilized not only to induce feature
vectors to train SVM classifiers but also to optimize SGBN parameters based on the
performance of SVM classifiers.
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Fisher kernel, introduced in [49], provides a way to compare samples induced
by a generative model p(x|Θ) with model parameters Θ. It is defined as K(x,x′) =
g�x U−1gx′ . The Fisher vector gx = ∇θ log(p(x|θ)) maps a sample x to a feature
vector in the gradient space of the model parameters Θ. The Fisher information
metric U weights the similarity measure, but is often set as an identity matrix in
practice [49]. The intuition of Fisher kernel is that similar objects induce similar
log-likelihood gradients of Θ.

Applying Fisher kernel to SGBN and jointly considering two classes, the
sample-specific feature vector in [39] is defined as ΦΘ(x) = [∇Θ1L (x|Θ1)

�,
∇Θ2L (x|Θ2)

�]�, where Θ1 and Θ2 are the SGBN parameters of the two classes,
respectively. For a given sample x, it holds that:

∂L (x|Θ)

∂θ i
=

∂ ∑m
i=1 log p(xi|Pa(xi),θ i)

∂θ i

=
∂ ∑m

i=1

(−(xi−θ�i Pa(xi))
2

2σ 2
i

− log(2π
√

σi)
)

∂θ i

� S(xi)θ i + s0(xi), (6.19)

where S(xi) is a matrix and s0(xi) is a vector. As shown, the SGBN-induced Fisher
vector ΦΘ(x) is a linear function of the SGBN parameters Θ.

6.4.4 Discriminative Learning via SVM

In order to separate the two classes of the SGBN-induced feature vectors effectively,
the work in [39] jointly learns the parameters of SGBN and the separating
hyperplane of SVMs via Fisher kernel. An efficient approximation of radius-
margin bound, the upper bound of the Leave-One-Out error, is minimized to keep
good generalization of the SVMs. Meanwhile, to maintain reasonable capacity of
representation, the work in [39] explicitly controls the fitting errors of the learned
model during the optimization and ensures the DAG property of the learned SGBN.

In order to incorporate radius-margin bound, 2-SVM with soft margin has to be
used:

min
w,ξ

1
2
‖w‖2

2 +Cξ�ξ (6.20)

s.t. yi(w�Φ(xi)+ b)≥ 1− ξi, ξi ≥ 0, ∀i

where ξ is the slack variables and C the regularization parameter, which are used
to control mis-classification. In [39] the radius-margin bound is introduced into the
SVM classifiers as follows. First, the 2-SVM is rewritten as SVM with hard margin
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by slightly modifying the kernel K := K + I/C, where I is identity matrix and
K(i, j) = 〈Φ(xi),Φ(x j)〉. Then the radius of minimal enclosing ball (MEB), denoted
as R2, is multiplied by the term 1

2‖w‖2 in the objective function. Since the estimate
of R2 may become noisy and unstable when the sample size is small, it is replaced
by the trace-based scatter matrix tr(ST ) [50], where ST = ∑n

i=1(xi−m)�(xi−m),
and m is the mean of total n samples. Therefore, the optimization problem for the
discriminative learning in [39] becomes:

min
Θ,w

1
2

tr(ST )‖w‖2
2 (6.21)

s.t. yi(w�ΦΘ(xi)+ b)≥ 1, ∀i
h(D1,Θ1)≤ T1, h(D2,Θ2)≤ T2,

Θ1 ∈ DAG, Θ2 ∈ DAG.

Here ΦΘ(xi) is the Fisher-kernel-induced feature vector. The function h(·) measures
the squared fitting errors of the corresponding SGBNs for the data D1 and D2

from the two classes. The same DAG constraint is used as in Eqn. (6.18). This
optimization problem can be solved by alternately optimizing the separating
hyperplane w and the parameter Θ.

6.4.5 Applications

In [39], the above method is applied to identify discriminative brain effective
connectivity for the MCI subjects from MR and FDG-PET images. These images
are spatially normalized and segmented into tissues of gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF) and parcellated into ROIs. The network
nodes are constituted by the gray matter volume inside each ROI for MRI, and the
average tracer uptake inside each ROI for PET images. Two MRI data sets and
one PET data set from the publicly accessible database ADNI [51] are used for
the validation. Compared with the generative SGBN models learned in [41], the
method in [39] simultaneously improves the discriminative power of the generative
SGBN models and the discriminative SVM classifier significantly. Specifically,
the discriminative learning step alone increases the test classification accuracy of
the generative SGBNs by 3–5 %. The test classification accuracy of the SVM
classifier using the SGBN-induced Fisher vectors has been increased about 10%
for all three data sets. These improvements of discrimination are achieved with
the cost of at most 1% increase of squared fitting errors as explicitly controlled
by the optimization, which ensures the reasonable maintenance of representation
for the SGBN models. With the learned SGBN models, the structure of the brain
network can be visualized by binarizing the edges Θ with a predefined threshold.
An example result from [39] is given in Fig. 6.12. The change of connections in
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Fig. 6.12 Image courtesy of [39]: structure of connectivity for (a) Normal controls, (b) MCI
patients

the MCI group from the normal control group can be identified by the comparison
of the network structures from the two classes. Moreover, with Fisher kernel, new
features reflecting the changing rate of brain connection strength are introduced,
which enriches the investigation of brain connectivity.

6.5 Conclusion

For the classification tasks in neuroimage analysis, the interpretation of the results
is as important as the discrimination of the classifier. Researchers have spent
significant efforts in this regard to obtain distinctive patterns that are related to
mental disorders or brain cognition. This is not an easy task especially when the
underlying relationships of the data are complex. Three kinds of methods are
introduced in this chapter. The SVM-based feature selection methods aim to identify
a discriminative subset of features that can optimize the performance of SVMs. The
selection of features gives insight into the importance of brain regions related to the
research problem. Alternatively, the interpretation can be obtained from the SVM
decision boundary that encodes the class discrimination. Methods in this category
should respect certain anatomical constraints, such as the ROIs from brain atlases
and the manifold where the data inhabit, in order to improve the fidelity of the
interpretation. The above methods are built directly on the discriminative classifiers
of SVMs that are not designed for data representation, especially for those having
complex structures, such as graphs. In such cases, generative models may be used
for representation, whose discriminative power is obtained from discriminatively
learning the model parameters via SVMs. The methods introduced in this chapter
are representative of the several possible ways to interpret classification results.
With the advent of new neuroimage data and analysis tasks, more research work
and advances can be expected in this area.
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Chapter 7
Kernel Machines for Imbalanced Data Problem
in Biomedical Applications

Peng Li, Kap Luk Chan, Sheng Fu, and Shankar M. Krishnan

Abstract Kernel machines such as the support vector machines (SVMs) have been
reported to perform well in many applications. However, the performance of a
binary SVM can be adversely affected by an imbalanced set of training samples,
known as the imbalanced data problem. One-class SVMs, as a recognition-based
approach, can be used to train and recognize the majority class and such kernel
machines have already been developed. In this chapter, we review and study
the effects of imbalanced datasets on the performance of both one-class SVMs
and binary SVMs. We show that a hybrid kernel machine comprising one-class
SVMs and binary SVMs in a multi-classifier system alleviates the imbalanced data
problem. We also report the deployment of such hybrid kernel machines in two
biomedical applications where the imbalanced data problem exists.
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7.1 Introduction

Kernel machines are algorithms in which kernels are employed to conceptually
map data from an input space into a higher-dimensional feature space where the
data can be processed using linear methods. The mapping is usually nonlinear
and is implemented implicitly through the kernel trick. Many kernel methods
have been developed by the machine learning community, such as support vector
machines (SVMs) [51], kernel-based principal component analysis (KPCA) [36],
kernel-based linear discriminant analysis (KLDA) [35], kernel-based independent
component analysis (KICA) [2] and kernel-based nearest neighbour classifier [38].

SVM, a most widely used kernel machine, was originally developed for two-class
classification. Based on the principle of structural risk minimization, discriminative
binary SVMs, referred to as Binary Support Vector Classifier (BSVC) in this chapter,
have been reported to perform well in many real applications [9, 12, 37]. However,
SVM also suffers from some fundamental problems in statistical pattern recognition,
such as the imbalanced data problem [19], in which the size of the training data
from one class is significantly larger than that of the other class in a two-class
classification task. Such a problem is frequently encountered in many biomedical
applications where data from both positive and negative diagnosis categories are
not available equally. For example, the data kept by a hospital can be mostly on
positive diagnoses where data for negative diagnoses are not all kept. Another
scenario can be in screening or patient monitoring where most cases are diagnosed
as negative and only a small number of cases are diagnosed as positive. This means
the collected data for the two categories are highly imbalanced and they will impact
on the performance of binary classifiers, such as the BSVCs.

One possible solution to the imbalanced data problem is to use “recognition”-
based approach instead of the conventional discriminative two-class classification
approach [18]. “Recognition”-based approach is based on a one-class classification
model in which only the data from one class (usually the class with more training
samples, known as the majority class) are used to train a classifier [47] as opposed
to using data from both classes in traditional two-class classifier training. This can
prevent the adverse influence due to using a less representative smaller dataset of
the minority class and hence avoiding the problem of imbalanced datasets. Two
examples of such one-class classification kernel machines are the one-class Support
Vector Classifier called the (νSVC) [43] and the Support Vector Data Description
(SVDD) [48]. These one-class SVMs (OSVC) are trained using the data from the
majority class only. However, the performance of one-class classifiers is reported to
be seldom superior to the traditional two-class classifiers in real applications [41].
One reason might be that the data distribution of majority and minority classes is
not suitable to be modeled as a one-class classification problem. Another reason
may be due to the fact that only the data from one-class are used in one-class
classifier training and no information about the other class is used. Hence, the
one-class classifiers are to “recognize” the trained class rather than discriminating
two classes.
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To complement the strengths of these two types of kernel machines, this chapter
shows how the hybrid kernel machines, in which the one-class SVMs and binary
SVMs work in tandem as a multi-classifier system, handle the imbalanced data
problem. We also report the use of such kernel machines in a couple of biomedical
applications, namely, abnormal heart beat annotation from ECG waveform and
tumor region detection from colonoscopic images.

In the following sections, we first introduce the one-class and binary SVMs and
investigate how their training can be affected by the imbalanced data problem. We
then present the hybrid kernel machines and show that the classifiers’ performance
can be improved. After that, we include two biomedical applications and show how
the hybrid kernel machines can be used in these applications.

7.2 One-Class and Binary SVMs

In this section, the fundamentals of both discriminative two-class SVMs and
recognition-based one-class SVMs are introduced. Their classification performance
on a particular type of imbalanced data problem is investigated in Sect. 7.5 using an
artificial dataset.

7.2.1 Discriminative Support Vector Machines for Binary
Classification

SVM, a method based on the principles of statistical learning theory [52], can be
applied to classification, regression and concept learning. The SVM is originally
developed for two-class classification (or binary classification) task and it has been
extended for multiple-classification [44]. For the sake of completeness, we briefly
introduce the binary SVM in this subsection.

In two-class classification, an SVM classifier is trained using a training set of
labeled samples in which the two classes are labelled as +1 and −1, respectively,

X = {xi ∈ Rd |i = 1,2, · · · ,N} (7.1)

where N is the number of samples in the training set. Each sample xi is represented
by a feature vector of d dimensions and labelled as yi ∈ {+1,−1}. The classifier
can be represented by a function f (x) : x→ y. The label y can be obtained for each
pattern x by the classifier. It is assumed that the training and test data are drawn from
the same distribution P(x,y). The optimal function f can be found by minimizing
the expected risk

R( f ) =
∫

r( f (x),y)dP(x,y) (7.2)



224 P. Li et al.

data
xi

Mapped Data

M(xi )

Decision HyperplaneDecision boundary

Mapping M

Input Space Kernel-induced Feature Space

Bounded
Support Vector

(w  M(x))-b=0.

(w  M(x))-b=1.

(w   M(x))-b=-1.

Y = +1
Y = -1

Unbounded
Support Vector

Margin

Fig. 7.1 Kernel mapping and optimal separating hyperplane of SVM

where r is a loss function. Conveniently, r( f (x),y) = | f (x)− y| can be defined as 0
for correct classification and 1 for incorrect classification, known as 0/1 loss.

In practice, the underlying probability distribution P(x,y) is usually unknown.
Therefore, the risk R cannot be minimized directly. However, the risk can be
approximated by minimizing the empirical risk

Rem( f ) =
1
N

N

∑
i=1

r( f (xi),yi). (7.3)

The empirical risk Rem converges to the expected risk R when the number of training
samples tends to infinity (N→∞). However, overfitting may occur when the number
of training samples is small [3]. Instead, the expected risk can be estimated while
avoiding overfitting using the Vapnik Chervonenkis (VC) theory and the structural
risk minimization (SRM) principle [51].

In practice, the bound on the expected risk is often difficult to compute.
Fortunately, the decision functions in SVMs are restricted to hyperplanes whose
VC-dimension can be bounded in terms of another quantity, called the “margin”
[51].

Given that the two-class training set X with N samples are not linearly separable,
the data are mapped to another feature space using a mapping M by which
the mapped data M(x) can be separated by an optimal separating hyperplane
expressed as

f (x) = (w ·M(x))− b (7.4)

in which w is a weight vector, b is a bias item. (.) is an inner product. Such a mapping
is illustrated in Fig. 7.1.
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The “margin” is defined as the minimal distance of a sample to the decision
hyperplane f (x). w and b can be scaled so that the closest point to the hyperplane
satisfies |w ·M(x)− b| = 1. Then the margin can be calculated using two samples
from opposite classes M(x1) and M(x2) which have w ·M(x1)− b = 1 and w ·
M(x2)− b =−1, respectively, and thus,

w
‖w‖ · (M(x1)−M(x2)) =

2
‖w‖ (7.5)

The optimization problem then becomes:

min
w,b

1
2
‖w‖2 (7.6)

subject to constraints

yi((w ·M(xi))− b)≥ 1, i = 1,2, · · · ,N (7.7)

For noisy data, some slack variables θi can be introduced to relax the constraints in
(7.7):

yi((w ·M(xi))− b)≥ 1−θi, θi ≥ 0, i = 1,2, · · · ,N (7.8)

The optimization problem in (7.6) can be reformulated as

min
w,b,θ

{
1
2
‖w‖2 +C

N

∑
i=1

θi

}
(7.9)

where C > 0 is a regularization parameter to control the trade-off of the empirical
error and the capacity terms.

The minimization problem in (7.9) is called primal in optimization theory. Its first
item is related to the model complexity and the second item is the empirical risk Rem.
Therefore, minimizing (7.9) can minimize the expected risk R. This problem can be
solved by introducing Lagrange Multipliers βi ≥ 0 and γi ≥ 0, i = 1,2, · · · ,N, and
with the constraints in (7.8), this leads to the dual problem:

max
β

{
N

∑
i=1

βi− 1
2

N

∑
i, j=1

yiy jβiβ j(M(xi) ·M(x j))

}
(7.10)

with constraints

N

∑
i=1

yiβi = 0 (7.11)
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and

C ≥ βi ≥ 0, i = 1,2, · · · ,N (7.12)

This is a quadratic programming problem, which can be solved using standard
algorithms, such as sequential minimization optimization [39]. Related codes can
be found in [1].

In fact, only the inner product is calculated in (7.10) and (7.4). No explicit
mapping M is needed. Such an inner product can be replaced using a kernel function

K(xi,x j) = M(xi) ·M(x j) (7.13)

provided that this kernel K(xi,x j) satisfies the Mercer’s theorem. Then, equa-
tions (7.10) and (7.4) can be reformulated as follows

max
β

{
N

∑
i=1

βi− 1
2

N

∑
i, j=1

yiy jβiβ jK(xi,x j)

}
(7.14)

f (x) =
N

∑
i=1

yiβiK(xi,x)− b (7.15)

Among all possible kernels, the Radial Basis Function (RBF) kernel is a widely
used one,

K(xi,x j) = e
−‖xi−x j‖2

σ2 (7.16)

7.2.2 Recognition-Based One-Class Support Vector Machines

As mentioned at the beginning of this chapter, recognition-based one-class SVMs
can be used to handle the imbalanced data problem by learning from the majority
class samples. We give a brief review of this type of SVMs in the following
subsection.

7.2.2.1 One-Class Classification

One-class classification is also known as novelty detection, outlier detection and
concept learning [47]. The problem formulation in one-class classification is
different from conventional two-class classification. In one-class classification, it
is assumed that only information of one of the classes, the target class, is available,
and no information is available from the other class, known as the outlier class. The
task of one-class classification is to define a boundary around the target class such
that it accepts as much of the targets as possible and excludes the outliers as much
as possible (Fig. 7.2b).
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Fig. 7.2 Typical decision boundaries of (a) Two-class classifier and (b) One-class classifier in a
2-D toy problem

The philosophy behind one-class classification is in agreement with the way that
human beings learn a concept. Suppose one expects to teach a child the concept
of “car.” One only needs to give him or her some examples of cars and it is not
necessary to give the examples of non-“car,” such as truck, bus or train. This is to say,
people can learn a concept using only the examples of the target class. Of course,
the information about non-target or outliers is helpful to improve the discrimination
between the target and the non-target classes. However, using the examples from
only the target class is sufficient to learn the concept of the target and recognize
whether a new pattern belongs to the concept of the “target class.”

To sum up, as illustrated in Fig. 7.2, the decision boundary of two-class classifier
is supported by the samples of both classes and it utilizes the information from
both classes while the decision boundary of one-class classifier is formed using
only the data from one class. The two-class classifier is trained for “discrimination”
purpose but the one-class classifier is trained to “recognize” the target samples
rather than for “discrimination” purpose. Therefore, classification performance of
one-class classifiers is usually worse than two-class classifiers when the data from
both classes are available [41].

In one-class classifiers, a threshold is usually set so that the decision boundary
of the classifier can enclose the target samples as much as possible. This is usually
difficult when no information is available from the other class. One way is to reject
some target to form a tighter boundary. The threshold can be determined based on
the errors of classifying the target class only [47].

One-class classification has been used in many fields. Hojjatoleslami et al.
employed a RBF network for density estimation in the detection of micro-
calcifications in mammograms [14]. Manevitz and Yousef used One-Class Support
Vector Machine for document classification [32]. Tax et al employed Support Vector
Data Description in pump failure detection [48] and image retrieval [49]. A survey
of the one-class classifiers can be found in [33, 34].
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7.2.2.2 Support Vector Data Description

The formulation of SVDD is as follows. Given a set of target data X with N samples,
a nonlinear mapping M is sought to map X into some high dimensional kernel-
induced feature space in which a hypersphere is sought to enclose the mapped target
data M(X) with smallest radius R centered at c. Figure 7.3 illustrates the nonlinear
kernel mapping. The problem becomes

min
{R,c,S}

{
R2 +

1
νN

N

∑
i=1

Si

}
(7.17)

subject to

‖M(xi)− c ‖2≤ R2 + Si, i = 1,2, · · · ,N (7.18)

where Si (Si ≥ 0) are some slack variables to allow soft boundaries, i.e. some target
data are allowed to lie outside of the hypersphere so as to control the trade-off
between two types of errors. ν ∈ (0,1] is a regularization parameter used to control
the trade-off between the size of the hypersphere and the errors. In fact, it is the
upper bound of the fraction of target data located outside the hypersphere.

The above problem can be solved by constructing a Lagrangian. Introducing
constraints (7.18) to cost function (7.17), we have the following dual problem:

max
β

{
N

∑
i=1

βi(M(xi) ·M(xi))−
N

∑
i, j=1

βiβ j(M(xi) ·M(x j))

}
(7.19)
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with constraints

N

∑
i=1

βi = 1 (7.20)

0≤ βi ≤ 1
νN

, i = 1,2, · · · ,N (7.21)

Define function K(·, ·) as

K(xi,x j) = M(xi) ·M(x j) (7.22)

Then, Eq. (7.19) becomes

min
β

{
N

∑
i, j=1

βiβ jK(xi,x j)−
N

∑
i=1

βiK(xi,xi)

}
(7.23)

with the same constraints as (7.19). The cost function of the dual problem (7.23)
is convex and quadratic in terms of the unknown parameters βi. This problem can
be solved by quadratic programming for which some standard algorithms such as
sequential minimization optimization can be employed [43, 47].

Through quadratic programming, the Lagrangian (7.23) is optimized with respect
to β . The center of the hypersphere c and multiplier γi can be calculated using the
optimal solution β . Because ‖M(xi)−c ‖2= R2 holds for all the unbounded support
vectors (USVs), the radius R can be calculated by choosing any of the USVs xs

R =

[
K(xs,xs)+

N

∑
i, j=1

βiβ jK(xi,x j)− 2
N

∑
i=1

βiK(xi,xs)

]−2

(7.24)

Given a new pattern z, the decision function is

f (z) = R2− ‖M(z)− c ‖2= R2−K(z,z)

−
N

∑
i, j=1

βiβ jK(xi,x j)+ 2
N

∑
i=1

βiK(z,xi) (7.25)

If the value of the decision function is greater than zero, the new sample lies inside
the hypersphere and hence is classified as a target. Otherwise, it is classified as an
outlier.

Similar to binary SVMs, kernel function can be used in SVDD. Although
nonlinear mapping has been used to improve the effectiveness of the hyperspherical
description, neither does the explicit nonlinear mapping M(.) appear in the dual
problem of SVDD (7.23), nor in the decision function (7.25). They are expressed
completely in terms of K(xi,x j), which is the advantage of kernel method. In fact,
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since the problem is stated completely in terms of the inner products of the vectors,
the inner products of the patterns can be replaced by a kernel function (7.22),
provided that this kernel K(xi,x j) satisfies the Mercer’s theorem [47].

The Gaussian RBF kernel in Eq. (7.16) provides a very flexible description,
which has been proven in [48]. Because it only depends on xi−x j, K(x,x) is constant
1. Therefore, Eq. (7.23) becomes

min
β

N

∑
i, j=1

βiβ jK(xi,x j) (7.26)

subject to the same constraints as (7.23). The decision function (7.25) can be
reformulated as follows using (7.24),

fd(z) =
N

∑
i=1

βi[K(xi,z)− k(xi,xs)] =
N

∑
i=1

βiK(xi,z)− b (7.27)

where the bias term b is

b =
N

∑
i=1

βiK(xi,xs) =
N

∑
i=1

βie
−‖xi−xs‖2

σ2 (7.28)

Here, the SVDD decision function behaves as a template-matching detector in
the mapped feature space. Since βi 	= 0 holds only for those USVs and bounded
support vectors (BSVs), these patterns form a known template. Given a new pattern,
it is compared with only the USVs and BSVs in the mapped feature space. A pattern
similar to all of the USVs and BSVs tends to have a large negative value in (7.27)
and it is more likely to be an outlier. A pattern different from all of the USVs and
the BSVs tends to have a large positive value in (7.27) and it is more likely to be a
target.

7.2.2.3 �-Support Vector Classifier

Another way of estimating the support of a data distribution in the kernel feature
space is the νSVC. The kernel mapping is different from that of SVDD. The target
data are mapped into a higher-dimensional space called feature space M(x) in which
the dot product can be computed using some kernel function. The mapped target
data are away from the origin as shown in Fig. 7.4, which can be found by solving
the following problem

min
w,Si,b

‖ w ‖2

2
+

1
νN

N

∑
i=1

Si− b (7.29)
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subject to

w ·M(xi)− b+ Si≥ 0, γi ≥ 0, i = 1,2, · · ·N (7.30)

where Si are slack variables. ν ∈ (0,1] is a regularization parameter to control the
effect of outliers and allows for target samples falling outside the decision boundary.
The decision function corresponding to the hyperplane is

f (x) = w ·M(x)− b (7.31)

By similar analysis as in SVDD, this problem can be solved as a quadratic
programming problem which is exactly the same as the dual problem (7.26) in
SVDD when the Gaussian kernel is used. Hence, νSVC and SVDD are equivalent to
each other [43].

7.3 The Imbalanced Data Problem

The imbalanced data problem has received considerable attention in recent years in
the machine learning community. This is the problem when the size of the training
set from one class is significantly larger than that of the other class in a two-class
classification setting. An example is illustrated in Fig. 7.5. This problem is often
encountered in real applications such as in medical screening for abnormalities,
image retrieval, and oil spill in satellite images [5, 23]. In applications such as
medical screening for abnormalities, the data of the normal class can be easily
obtained. On the other hand, the data of the abnormal class are more difficult to be
collected than the normal ones. Therefore, the data from the abnormal class (usually
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available (imbalanced) dataset which is different from the true boundary between the two classes
in (b)

the minority class) cannot represent its true distribution well compared to the other
class (usually the majority class, i.e. the normal class). It can be assumed that the
minority class is positive and the majority class is negative in this chapter and it
is formulated as a simple binary classification problem. Hence, it is logical to use
discriminative binary classifiers such as binary SVMs. However, such classifiers
are designed to minimize the overall misclassification rate on the training set, their
classification performance degrades if they are trained with a highly imbalanced
dataset.

Some attempts have been reported to deal with the imbalanced data problem,
which can be classified into three approaches [17, 19] presented in the following
subsections.

7.3.1 Resampling

The first approach is resampling the training dataset to make it balanced, such as
in [10, 24]. Resampling is probably the most extensively studied approach, which
consists of two main techniques:

1. Undersampling: The data from majority class are down-sampled so that the size
of the majority class matches the size of the minority class. The sampling can be
either done randomly [19] or based on some rules [24]. But the problem is that
some of the information may be lost if down-sampling is not done properly.

2. Oversampling: The data from minority class are over-sampled so that the size of
minority class matches the size of the majority class. Similar to random under-
sampling, random oversampling has been shown to be effective in improving the
classification [19]. There are also some attempts to improve the performance
of oversampling. For example, Chawla et al developed a Synthetic Minority
Oversampling Technique (SMOTE) by generating artificial data (the nearest
neighbors of the original minority data) [4].
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It is unclear which of these two is more effective in solving the imbalanced data
problem [8, 10]. Therefore, some attempts have also been made to combine these
two approaches [4, 10].

7.3.2 Using Different Costs to Two Classes

The second approach is to compensate for the class imbalance by altering the costs
of the minority and majority classes in the training of classifiers. For example,
Karakoulas et al proposed an algorithm called ThetaBoost, which is a boosting
algorithm with unequal loss functions [20]. Some attempts have also been made
to compensate the class imbalance by using different costs to the two classes in the
training of SVMs [53]. Raskutti et al used different penalizing factors for two classes
and resampling for SVM in [41]. Wu et al proposed the class-boundary alignment
algorithm to deal with imbalanced data problem in SVM [56].

7.3.3 Recognition-Based Approach

The third approach is to use recognition-based instead of discrimination-based
learning strategy by leaving one of the two classes totally unused (usually the
minority class). The recognition-based method resembles that of a density esti-
mation without finding the true density explicitly. This is an extreme case where
only the data from one class are used to construct the learning model. For example,
Japkowicz proposed to use an autoencoder to solve the imbalanced data problem
[18]. This method works well when the majority class can be well modelled by
a novelty detector such as an autoencoder. However, a recognition-based method
is usually outperformed by a discrimination-based one due to the exclusion of the
information from the minority class in training the model [41].

7.4 Hybrid Kernel Machine Ensemble

It has been discussed in the previous sections that discriminative two-class SVMs
have problems in dealing with imbalanced datasets and the recognition-based one-
class SVM cannot always do better than two-class SVMs. Basically, a two-class
classifier BSVC benefits from the information from two classes while suffering from
inadequate representation of the minority class. But, a one-class classifier OSVC
benefits from more precise representation of the majority class but is not highly
discriminative. There is a need to develop a classifier which is in-between the one-
class classifier and the two-class classifier. Such a classifier can be named as one and
half (1.5) classifier. By exploiting the different properties of the two types of kernel
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machines, an ensemble can be constructed by combining these two types of kernel
machines. Such an ensemble is called Hybrid Kernel Machine Ensemble (HKME).
HKME is designed to benefit from both discriminative BSVC and recognition-based
OSVC and such an ensemble is expected to perform better in some applications
such as in imbalanced datasets or in other cases where there is a need to combine the
information from these two types of kernel machines. Most of the material presented
in the following subsections has been published in [26].

7.4.1 Hybrid Kernel Machine Ensemble Framework

The hybrid kernel machine ensemble (HKME) framework is illustrated in Fig. 7.6.
A HKME consists of two different types of SVMs, i.e. a discriminative BSVC and
a non-discriminative recognition-based νSVC (or SVDD). Hence, the HKME is
expected to benefit from the strength of both BSVC and νSVC.

HKME is designed for problems where BSVC does not perform well or costly
to construct while νSVC shows good performance. For example, there is a type of
imbalanced data problem in which the majority class is compactly clustered and
the minority class is scattered in the input space. One example is in heart patient
monitoring using ECG. The ECG signal morphologies from normal activities (nor-
mal class) are similar and the data from this class can be easily collected (majority
class), while those from abnormal activities (abnormal class) may exhibit various
morphologies and are more difficult to collect (minority class). A discriminative
model, such as a BSVC, can be trained by manually balancing the data or compen-
sating the imbalance using different costs to the two classes. Thus, the discriminative
model uses the information from both majority class and minority class. However,
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its performance can still be poor due to the poorly represented minority class.
A recognition-based one-class SVM may do better than the discriminative BSVC
in this situation by modeling the well-represented majority class only. Since the
majority class satisfies the assumption of one-class classification where the majority
class is well represented and compactly clustered, it avoids the problem faced
by the binary SVM due to the inadequate representation of the minority class.
However, as a descriptive model, such a recognition-based model is not highly
discriminative because the information from the minority class is left totally unused.
Hence, there is a need to incorporate the information from the minority class to the
recognition-based model or exploit the well-represented majority class further in the
discriminative model. Exploiting the complementary nature of these two different
types of models, a combination of them is expected to perform better than using
either of them separately for the classification of this type of imbalanced dataset.
Hence, constructing a HKME by integrating these two types of kernel machines in
an ensemble is presented here to address this type of imbalanced data problem.

In this framework, a νSVC can be trained using only the data of majority class,
so it can avoid the problem of poor representation of the minority data. On the
other hand, a BSVC can be trained using balanced dataset using oversampling or
undersampling, so it benefits from the information from both classes. The outputs of
the two SVMs can be integrated using some fusion rules. Since the νSVC and BSVC
are trained using different datasets, the training sets of such two kernel machines
can be considered diverse. Furthermore, the different nature of the two SVMs can
further help to increase the diversity. Therefore, the ensemble of such two kernel
machines is expected to improve the classification compared to using either of the
two types of SVMs.

7.4.2 Binary SVM Training

Performance of the classifiers is closely related to the parameters used by the
classifiers. There are two hyper-parameters to be tuned in BSVC when using
the Gaussian RBF kernel, the width parameter σ of the RBF kernel and the
regularization parameter C which is used to control the trade-off of errors. The
hyper-parameters of BSVC can be optimized using cross validation on the training
set. The use of cross validation is able to avoid over-fitting [3]. The values of the
hyper-parameters are chosen so that the errors of both classes on the validation set
are minimized.

Another problem in BSVC is its training using imbalanced datasets. It has been
shown that balanced dataset generally leads to results which are no worse than or
superior to those of using natural class distribution, although it does not always
produce the optimal results [54]. Since BSVC suffers from the imbalanced data prob-
lem, the original dataset can be balanced first using oversampling, undersampling or
SMOTE algorithms aforementioned. The trained BSVC using the balanced dataset
can then be integrated with the one-class SVM to form the HKME.
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Fig. 7.7 (a) Original target dataset and (b) Generated artificial outliers around the target class in
a toy problem in 2-D space

7.4.3 One-Class SVM Training

The hyper-parameters of νSVC or SVDD using Gaussian RBF kernel are the same
as those of the BSVCs, i.e. the width parameter of the RBF kernel σ and the
regularization parameter ν are used to control the trade-off of errors. The parameters
of two-class classifiers can be optimized using cross validation on the training
set. However, the information about the outlier class is assumed to be unavailable
for one-class classifiers, hence the hyper-parameters can only be estimated using
the data from target class or be chosen heuristically. This problem can be solved
by generating artificial outliers [50]. Given a set of target samples, some outlier
samples are generated randomly with the assumption that the outliers are uniformly
distributed around the target class. The union of targets and generated outliers is
used as a validation set to optimize the hyper-parameters of one-class SVM. A toy
dataset and generated artificial outliers are illustrated in Fig. 7.7.

As for the imbalanced data problem in question, there are still some outlier
samples, i.e., data from the minority class. The hyper-parameters may be tuned to
minimize the training error on the whole training set which consists of both majority
and minority classes. But, this might be undesirable if the minority class is not
well represented by the sampled data. This problem will be discussed further in the
experimental section.

7.4.4 Fusion Rules for Integration of Hybrid SVMs

Integrating two SVMs in a hybrid is posed as a decision level fusion problem. It is
nontrivial to properly combine the two sources of information from these two types
of SVMs.
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Many ensemble learning methods have been developed. In this subsection,
several ensemble methods are reviewed to understand how the imbalanced data
problem can be handled by them and these include Decision Template (DET),
Stacking, Average (AVG), Maximum (MAX), Minimum (MIN), Product (PROD)
[22, 25].

Let Ci(x) = {Ci1(x),Ci2(x), · · · ,Cik(x)} be a set of individual classifiers, called
an ensemble, each of which gets an input feature vector x = [x1,x2, · · · ,xd ]

T and
assigns it to a class label yi from Y = {−1,+1}, the goal of the ensemble is to find a
class label Lens for x based on the outputs of k classifiers C1(x),C2(x), · · · ,Ck(x)
corresponding to labels L1(x),L2(x), · · · ,Lk(x). Ci(x) is often an estimate of the
posterior probability P(yi|x).
• Decision template: The decision template DET j for class y j ∈ {−1,+1} is the

average of the outputs of individual classifiers with respect to the training set for
class y j [25]. The ensemble DET assigns the input x with the label given by the
individual classifier whose Euclidean distance to the decision template DET j is
the smallest.

• Stacking (Stacked generalization): Taking the output of individual classifiers
Ci(x) as input to an upper layer classifier and the final decision is determined
by the upper layer classifier [55].

Lens(x) = F(C1(x),C2(x), · · · ,Ck(x)) (7.32)

The upper layer classifiers used here include linear discriminant classifiers
(LDCs) and quadratic discriminant classifiers (QDCs) assuming normally dis-
tributed classes. Because the covariance matrices for the classes are near singular,
QDCs may fail when trying to estimate and invert the covariance matrices [25].

• Average:

Lens(x) = argmax
j

(
k

∑
i=1

Cji(x)
k

)
(7.33)

where j ∈ {−1,+1}. The AVG rule calculates the average of the outputs of the k
individual classifier and assigns the input x to the class with the largest posterior
probability.

• Maximum:

Lens(x) = argmax
j

(
max

i
Cji(x)

)
(7.34)

where j ∈ {−1,+1}. The MAX rule takes the maximum value of the outputs
from the k individual classifier for each class and assigns the input x to the class
with the largest posterior probability.



238 P. Li et al.

• Minimum:

Lens(x) = argmax
j

(
min

i
Cji(x)

)
(7.35)

where j ∈ {−1,+1}. The MIN rule takes the minimum value of the outputs from
the k individual classifier for each class and assigns the input x to the class with
the largest posterior probability.

• Product:

Lens(x) = argmax
j

(
∏

i
Cji(x)

)
(7.36)

where j ∈ {−1,+1}. The PROD rule calculates the product value of the outputs
from the k individual classifier for each class and assigns the input x to the class
with the largest posterior probability.

The problem here is to fuse the outputs of two classifiers. The generally used
majority voting is not suitable here. Furthermore, it can be proved that Maximum,
Minimum, Averaging, Product rules are equivalent to each other when they are
used to combine two classifiers with posterior probability outputs for a two-class
classification task. It has been proved that Maximum and Minimum are equivalent
when combining multiple classifiers for two-class classification in [46]. Due to the
equivalence of MAX, MIN, AVG, and PROD rules for the two-class problem using
two classifiers with posterior probability as outputs, only AVG is investigated in the
following subsection.

7.4.5 Estimating the Posterior Probability for Outputs of SVMs

The outputs of SVMs are not posterior probabilities and are in different ranges, and
hence are not comparable directly. Thus, their outputs have to be normalized for use
in this hybrid. It is observed that the outputs of SVMs show similar forms. One can
estimate the posterior probabilities Pi(y j|x) of the i-th SVM using a sigmoid function
by minimizing the negative log likelihood of the training data [40]

Pi(y j|x) = 1

1+ epi fi(x)+qi
(7.37)

where pi is a coefficient to control the shape of sigmoid function and qi is a
coefficient to control the shift along the horizontal axis ( fi(x)). Thus, the ensembles
can be constructed using these estimated posterior probabilities.

When estimating the posterior probability of BSVC, the training set of the BSVC
has to be balanced. Otherwise, it may lead to biased fitting of a sigmoid to outputs
of nonlinear SVMs [40, 52]. The balancing of the training set can be done using
oversampling such as SMOTE [4].
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To our best knowledge, this is the first attempt to estimating the posterior
probability of νSVC or SVDD. Since there is only the target data for training a
one-class SVM, a set of artificial data can be generated whose sample size is the
same as that of targets [50]. The union of target data and artificial data can be used
to estimate the posterior probability of output from one-class SVC.

The posterior probability generated here is only an estimation of the true
posterior probability. Bias is unavoidable. This may create some problems to the
fusion rules such as MAX or MIN.

7.5 Experimental Results on Artificial Dataset

The performance of the proposed HKME is evaluated on an artificial dataset. The
evaluation measure is as follows.

7.5.1 Evaluation Measure

The decision table of two-class classification outcome for calculating the evaluating
criteria used in this study is illustrated in Table 7.1.

Four classification outcomes are considered, i.e. true positives (TP), true nega-
tives (TN), false positives (FP), and false negatives (FN). Let A+ and A− denote the
classification accuracy rates for positive class and negative class, respectively.

A+ =
T P

T P+FN
(7.38)

A− =
T N

T N +FP
(7.39)

The most commonly used measure is the Average Classification Rate (ACR) which
is the fraction of all correctly classified samples among all the samples, regardless
of the classes:

ACR =
T P+TN

TP+TN +FP+FN
(7.40)

Table 7.1 Decision table of
two-class classification
outcome for calculating the
evaluating measure

Ground Classification outcome

truth Positive Negative

Positive True positive False negative
Negative False positive Truth negative
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In imbalanced datasets, the negative (majority) class dominates. The generally
used ACR is not valid for evaluating the performance of the classifiers in such an
imbalanced dataset. For example, if a classifier classifies all the data as negative
samples, it has A− = 100% and A+ = 0%, but the ACR is still high. Hence, another
measure called the Balanced Classification Rate (BCR) is used in this study. BCR is
the algebraic mean of A+ and A−:

BCR =
A++A−

2
. (7.41)

This measure has been used for evaluating the performance of classifiers on
imbalanced datasets [11, 45]. This measure is more suitable for evaluating the
performance of the classifiers here than the generally used ACR for the following
reason. Only when both A+ and A− have large value BCR can have a large value.
Therefore, the use of BCR can give a balanced assessment of the classifiers for the
imbalanced datasets as the BCR favors both lower false positives and false negatives.

7.5.2 Artificial Dataset

To investigate the effects the imbalanced data have on BSVC and OSVC and
HKME, experiments were conducted using a checkerboard dataset similar to the
one in [56]. The checkerboard data are shown in Fig. 7.8. The negative samples
(majority class) occupy two diagonal squares of the checkerboard in the center
and the positive samples (minority) surrounds the negative samples. The data are
uniformly distributed and it is in agreement to the assumption that the data of the
majority class is compactly clustered and the data of the minority class is scattered
in the input space.

7.5.2.1 Influence of Class Imbalance to Discriminative BSVCs

In order to show the influence of imbalanced dataset on the performance of
discriminative BSVCs, the following experiments were conducted.

In the first experiment, the size of negative training data in the 2×2 checkerboard
data was fixed at 128, the size of the positive training data was reduced from 128
to 4, with increasing imbalance ratio (majority to minority) from 1:1 to 32:1. The
test data consists of 1,000 positive samples and 1,000 negative samples. BSVCs
with RBF kernel were trained using these data. The hyper-parameters of the BSVCs
were optimized using threefold cross validation on the training set. The experiment
was repeated ten times and the average value and standard deviation of the BCRs
achieved by BSVCs are plotted in Fig. 7.9.

It can be observed that BSVC performs well when the training dataset is balanced
which is expected. But its performance deteriorates gradually as the imbalance ratio
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Fig. 7.9 The influence of class imbalance on the performance of BSVC using 2×2 checkerboard
dataset (with negative samples as majority class)

increases. It indicates that discriminative BSVC suffers from the class imbalance.
When the number of minority samples is very small, the data from this class cannot
represent its true distribution well. This can be observed from the larger variation in
the performance of the BSVC when the imbalance ratio is large.
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Fig. 7.10 The influence of class imbalance on the performance of BSVC using 2×2 checkerboard
dataset (with positive samples as majority class)

It is unclear whether BSVC also suffers from the imbalanced data problem when
the two classes are adequately represented while the samples from two classes are
imbalanced. Therefore, the size of negative training data was still fixed at 128 in
the second experiment, while the size of the positive training data was increased
from 128 to 2,048, with corresponding imbalance ratio (minority to majority)
increased from 1:1 to 1:16. Other settings are the same as the first experiment. The
experimental result is illustrated in Fig. 7.10.

It can be observed that the result is similar to that in the first experiment. It
shows that the discriminative BSVC also suffer from the class imbalance when the
data are more precisely represented while the two classes are highly imbalanced.
In summary, it has been shown that the discriminative BSVC suffer from the
class imbalance problem. Hence, some measures have to be taken to alleviate this
problem.

7.5.2.2 The Performance of Recognition-Based OSVMs

It has been mentioned that one approach to address the class imbalance is to
use recognition-based model instead of discriminative model by training a one-
class classifier using the data from the majority class only. However, one-class
classifiers seldom outperform two-class classifiers when the data from two class
are available. One reason is that the one-class classifier is designed for describing
the majority class rather than for discrimination purpose, leaving the information
from another class totally unused. Another reason may be that the concept to be
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Fig. 7.11 The performance of νSVC in terms of BCR using 2× 2 checkerboard dataset, with
negative samples or positive samples as target class for training, respectively

learned is not suitable for description by the one-class classifiers. For example, in
patient monitoring, the concept of “normal” is suitable for description by a one-
class classifier while the concept of “abnormal” is not. This is because the “normal”
class is usually compactly clustered in the input space, while the “abnormal” class
is usually scattered. Furthermore, there is no clear boundary between “normal” and
“abnormal” class. If a one-class classifier is to enclose the scattered “abnormal”
data, it will also include some “normal” data. It may be better to construct a one-
class classifier to enclose the compactly clustered “normal” data. The negative class
of the checkerboard data in Fig. 7.8 seems more suitable to be described by a one-
class classifier than the positive class since it is compactly clustered. This can be
ascertained in the following experiment.

In the experiment, the negative samples and positive samples in the checkerboard
dataset were taken as target class, respectively, to train a νSVC. The number
of training data was varied from 8 to 1,024. The test data consists of 1,000
positive samples and 1,000 negative samples. The hyper-parameters of the νSVC
were optimized using artificially generated dataset described in Sect. 7.4.3. The
experiment was repeated ten times and the average value and standard deviation
of the BCRs achieved by νSVCs are reported in Fig. 7.11.

It can be observed that the νSVC trained using compactly clustered negative
samples outperforms that of using scattered positive samples. This supports the
earlier claim that compactly clustered negative class is more suitable for training
one-class classifiers than scattered positive class. Furthermore, the performance of
νSVC is directly related to number of training samples. It seems that 128 ∼ 256
negative samples have been quite good to train a νSVC in this dataset, whose
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performance is even better than the νSVC trained using 1,024 positive samples.
It has been pointed out that more data is needed in one-class classification than a
two-class classification [47]. So the number of training samples of νSVC should be
large enough to have a good description of the target class. In imbalanced datasets,
a compactly clustered majority class is more suitable for the one-class classifiers to
learn.

7.5.2.3 The Performance of HKME

The proposed HKME is compared to other commonly used methods to deal with
class imbalance using the artificial dataset, including oversampling, down-sampling,
SMOTE and BSVC using different costs to the two classes. The number of negative
samples was fixed at 256, the number of positive samples was decreased so that
the imbalance ratio (negative to positive) is increased from 1:1 to 32:1. When the
imbalance ratio increases to 32:1, the number of positive samples is only eight.
The positive samples are too sparse to represent the true distribution. It is thus
meaningless to decrease the number of positive samples further. The test data
consists of 1,000 positive samples and 1,000 negative samples. The experiment was
repeated ten times and the average value of the BCRs achieved by different schemes
are plotted in Fig. 7.12. The comparison includes the following:
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• Oversampling: The positive class was randomly oversampled (duplication) so
that the training set is balanced.

• Undersampling: The negative class was randomly under-sampled so that the
training set is balanced.

• SMOTE: A balanced dataset was created by adding some artificially generated
data in-between the three nearest neighbors of each data point in the original
dataset.

• Using different costs to the two classes: The BSVC was trained using different
costs to the two classes. The primal problem in (7.9) becomes

min
w,b,θ
{1

2
‖w‖2 ++C+

N+

∑
i=1

θi++C−
N−
∑
i=1

θi−} (7.42)

where N+ and N− are the numbers of positive and negative samples, respectively.
(N+ < N−) and θi+ and θi− are the errors of positive and negative samples,
respectively. The regularization parameter becomes:

C+ =
C

2N+
, yi =+1 (7.43)

and

C− =
C

2N−
, yi =−1 (7.44)

Hence the error of minority negative class is penalized more than for the majority
positive class in order to compensate for the class imbalance.

The parameters of all the BSVCs are optimized using threefold cross validation.
The parameters of the νSVC are optimized using artificially generated outlier data
aforementioned. The BCR achieved by HKME using AVG, DET, LDC, and QDC
fusion rules are shown in Fig. 7.13.

It can be observed from Fig. 7.12 that discriminative BSVC (trained using original
dataset) perform well when the imbalance ratio is not very high, but its performance
deteriorates with the increasing imbalance ratio. HKME using AVG rule performs
the best among all the approaches. The BSVC trained using different costs to the
two classes perform quite well compared to the BSVC trained using the same
cost to the two classes. Undersampling performs better than original BSVC, but
is outperformed by using different costs. SMOTE performs reasonably well. It is
better than both original BSVC and νSVC. Oversampling performs the worst among
all the approaches.

The good performance of HKME may come from the fact that it benefits from the
strength of both of its individual classifiers in the ensemble, the discriminative BSVC
and recognition-based νSVC. This can be explained using their decision boundaries
as illustrated in Fig. 7.14. νSVC performs well due to its ability to model compactly
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clustered target class. But it has to reject some target samples to form a tighter
boundary as mentioned in Sect. 7.2.2, so it tends to push the decision boundary
towards the majority (negative) class. However, discriminative BSVC tends to push
the decision boundary toward the minority positive class. The ensemble of these
two SVM tends to compensate these two different trends and strike a balanced
compromise. As shown in the figure, the decision boundary of HKME is located in-
between two classifiers, which is closer to the ideal decision boundary (two squares
in the checkerboard).

The HKME using four different fusion rules are compared in Fig. 7.13. AVG,
DET, and LDC performs well. But QDC does not perform well in some cases.
This is because the covariance matrices for the classes are nearly singular in these
cases, QDCs failed when trying to estimate and invert the covariance matrices [25].
However, it still performs quite well when it is properly trained.

The performance of other methods in Fig. 7.12 may also be explained using
their decision boundaries on a checkerboard dataset with 256 negative samples and
16 positive samples, as shown in Fig. 7.15. The BSVC tends to push the decision
boundary toward the minority class as aforementioned. Using different costs to
the two classes, the decision boundary tends to be closer to the majority negative
class as shown in Fig. 7.15a. So this approach performs better than BSVC trained
using original dataset. The artificially generated positive data using SMOTE seems
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Fig. 7.14 The decision boundaries of νSVC, BSVC, and HKME using 2×2 checkerboard dataset
(256 negative samples and 16 positive samples) [26]

closer to its original distribution in Fig. 7.15b, which makes the BSVC trained using
SMOTE performs much better than the others. But it must satisfy the assumption that
the samples between the nearest neighbors of a sample are from the same class. Due
to the duplication of the minority samples in oversampling, the BSVC overfits the
minority positive class, which is clearly illustrated in Fig. 7.15c. This leads to poor
performance of oversampling shown in Fig. 7.12, especially when the imbalance
ratio is high. Therefore, random oversampling the minority data is not suitable in
BSVC training for imbalanced datasets. Undersampling the majority class seems to
produce better decision boundary than that using oversampling. But the shape of the
decision boundary is quite different from the ideal one as shown in Fig. 7.15d. This
may be because that some useful information is lost when some samples from the
majority class are removed from the training set. This detrimental effect is especially
obvious when the size of the minority class is very small.

To sum up, HKME performs well in the checkerboard dataset. SMOTE and using
different costs to the two classes seem quite efficient for this dataset. Random
undersampling is better than the BSVC trained using original imbalanced dataset.
Random oversampling is not suitable for BSVC when the imbalance ratio is high.
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Fig. 7.15 The decision boundary of BSVC training using original dataset and those of BSVCs
trained using (a) Different costs to two classes, (b) SMOTE, (c) Over-sampled dataset, and (d)
Under-sampled dataset

7.6 Application of HKME in ECG Annotation
and Colonoscopic Image Analysis

Since HKME is seen to perform well on the artificial dataset, it is deployed in two
biomedical applications in which the problem of class imbalance exists and sharing
similar properties in the distribution of the class samples to the artificial dataset.

7.6.1 Abnormal ECG Beat Annotation for Long-Term
Monitoring of Heart Patients

7.6.1.1 Abnormal ECG Beat Annotation

ECG is a recording of the heart’s electrical activity obtained from electrodes
attached on the body surface of a patient [57]. Different segments of the ECG signal
characterize different cardiac activities. A typical normal ECG beat is illustrated in
Fig. 7.16.



7 Kernel Machines for Imbalanced Data Problem in Biomedical Applications 249

P
P

(Next beat)

Q S

T

ST Segment Baseline

R

PR

Fig. 7.16 A typical normal
ECG beat

The analysis of heart beat cycles in ECG signal is very important for long-term
monitoring and diagnosis of the patients’ heart conditions in an intensive care unit
or at patients’ homes through a telemedicine network. However, it is very costly
for the physicians to analyze the ECG recordings beat by beat since the ECG
recordings may last for hours. Therefore, it is significant to develop a computer-
assisted technique to examine and annotate the ECG recordings automatically, so to
facilitate review by medical experts. This computer annotation will assist physicians
to select only the informative (abnormal) beats for further analysis.

7.6.1.2 Generalization and Imbalanced Data Problem in ECG
Beat Annotation

Generalization Problem

A fundamental assumption in the field of pattern recognition is that the underlying
distribution of the training samples is the same as that of the test samples. However,
such assumption may not hold in practical application. The abnormal ECG beat
annotation problem is one of the examples. Figure 7.17 illustrates the distribution
of the first two principal components of the original 181− dimensional(D) feature
vector of ECG beats obtained by using Karhunen–Loeve transform (PCA) from
4 recordings of MIT/BIH arrhythmia database [13], preserving 69% of the total
variance, where the circles indicate normal ECG beats and the cross signs are
abnormal ones. Although some discriminative information may be lost using PCA,
it can be observed that the distributions of “normal” ECG beats are different among
patients.



250 P. Li et al.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

abnormal
normal

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

abnormal
normal

#106#101

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

#205#119

abnormal
normal

abnormal
normal

Fig. 7.17 Scatterplot of ECG data of four patients in MIT/BIH arrhythmia database [13] showing
the first two principal components of PCA projection

Figure 7.18 illustrates the distribution of the ECG data from 44 recordings
of MIT/BIH arrhythmia database using same PCA projection. Although an ECG
detector can be finely trained using the ECG beats from a large database which
consists of the ECG beats from different patients, it may perform poorly in
annotating the ECG beats of other patients who are not in the database. This is
the problem of poor generalization.

The solution to such generalization problem lies in the incorporation of local
information of a specific patient to the ECG annotator. Since the distribution of the
training samples is not the same as that of the test samples, some information about
the true distribution of samples from each patient has to be added to train the ECG
annotator properly.

In long-term monitoring of patients suffering from cardiovascular diseases,
the normal ECG beats usually dominate the ECG recordings such as in patients
suffering from or suspected to suffer from asymptomatic heart failure, congestive
heart failure, cardiac dysfunction, and cardiac arrhythmias, etc., i.e. the number of
abnormal ECG beats is far less than that of the normal ones. It may take a long time
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Fig. 7.18 Scatterplot of ECG
data of all the ECG data from
44 patients in MIT/BIH
arrhythmia database showing
the first two principal
components of PCA
projection

to collect sufficient and balanced normal and abnormal ECG data to construct a good
classifier; otherwise, the classifier may suffer from the imbalanced data problem
[19].

7.6.1.3 HKME for ECG Annotation

One-Class Classification-Based Approach

A straight way to solve the generalization and imbalanced data problem aforemen-
tioned is recognition-based approach. A one-class classifier, νSVC can be trained
using only about 5 min of normal ECG beats from a patient to adapt to the specific
reference value of the patient. The trained model can then be used to determine
whether the other ECG beats from the same patient belong to the “normal beats.”
Hence the abnormal ECG beats can be annotated automatically for further analysis.
Such model has been proposed in [28].

As there is an innate difference between the normal range of each patient and
that of a group of patient, there is a need to incorporate the local information of
each patient to improve the generalization of the ECG beat annotator. Since the
distribution of training data of the νSVC model is more similar to the ECG beats
of the same patient than those of the data from a large group of patients, the νSVC
model trained properly using about 5 min of the “normal” ECG data from a patient
is expected to perform better than the classifiers trained using the data from a large
group of patients.
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Fig. 7.19 Flowchart of the proposed framework for abnormal ECG beat annotation

HKME-Based Approach

Although the one-class classification-based approach proposed in the previous
section performs well in the abnormal ECG beat annotation, it may be possible to
be further improved. When a physician examines the ECG recordings of a patient,
the physician considers not only the specific reference from each patient to be
examined but also the standard reference from the patient-group due to the innate
difference between the normal range of each patient and that of a group of patient
aforementioned. That is to say, the diagnosis made by the physician is based on
the information from both the patient-group and each specific patient. Motivated
by this, a HKME-based approach is proposed for the ECG beat annotation problem
for long-term monitoring heart patients. The following is based on authors’ earlier
publication in [27].

Figure 7.19 illustrates the flowchart of the proposed Hybrid Kernel Machine
Ensemble (HKME)-based ECG beat annotator. This HKME consists of two base
classifiers, one is a binary SVM trained using the ECG data from a large group of
patients, the other is a one-class classification model, νSVC trained using only about
5 min of normal ECG beats from each patient to be monitored. The final decision
is determined by a fusion rule. The recognition-based νSVC has been described in
the previous section. It represents the specific reference value of the patient. The
discriminative binary SVM is incorporated the global information of a large group
of people and thus it can be regarded as the reference values based on the general
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patient population. Due to different information learned by these two SVMs, they
usually perform differently in classifying the ECG beats in the long-term ECG
recording of the patient. Furthermore, νSVC is a non-discriminative recognition-
based model and BSVC is a discriminative model. Due to the complementary nature
of such two types of SVMs, integration of the two types of kernel machines using
an ensemble is expected to perform better than using either of them separately.

In this study, the raw amplitude of the time domain ECG signals after noise
suppression and baseline shift removal was investigated as feature vectors to
represent the ECG beats. After the R-peak is detected, the ECG signal in a window
of 500 ms is taken as an ECG beat. The lengths of the signal before and after the
R-peak in each beat are 167 and 333 ms, respectively, such that the window covers
most of the characterization of the ECG beat (for an ECG signal sampled at 360 Hz,
180 samples around each R-peak are taken in a window, with 59 samples before the
R-peak and the other 120 samples behind the R-peak). The amplitude of sampled
signal in each window is then taken to form a feature vector of 180-dimensions. It
has been shown that R–R interval (the interval between two consecutive R-peaks)
is useful in recognition of some abnormal ECG beats [6, 16]. Therefore, it is also
included in this study by appending it to the 180-dimensional(D) feature vector. The
length of the feature vector to represent the ECG beat is then 181.

Normalization

There are some variations in the amplitude ranges of ECG signals among the human
beings. Hence a normalization procedure to the ECG feature vectors is necessary;
otherwise, the ECG beats may not be comparable. The feature vectors are divided
by the mean value of R-peaks in the training data of each patient, such that the
maximum amplitude in each ECG beat window is around 1. The normalized ECG
feature vectors are then used for the annotation process using the trained HKME
models.

7.6.1.4 Experiments

Experimental Setting

The proposed HKME-based patient-adaptable ECG beat annotator was evaluated on
MIT/BIH arrhythmia database [13]. The experimental setting is as follows.

1. 22 recordings are selected as local training sets and test sets, in which the number
of abnormal beats is significantly less than that of the normal beats, to be in
agreement to the scenario in long-term monitoring of patients suffering from
cardiovascular diseases. These recordings include # 100, 105, 106, 108, 114,
119, 121, 200, 203, 205, 208, 209, 210, 213, 215, 221, 222, 223, 228, 230, 233,
and 234. Each of the 22 recordings is split into two sets.
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Table 7.2 Results (average ± standard deviation) of abnormal ECG
beat annotation (in percentage)

Classifiers BCR SEN SPE ACR

BSVC 80.3 ± 16.9 81.3 ± 24.5 79.3 ± 29.6 80.2 ± 26.1
νSVC 83.6 ± 14.7 87.5 ± 22.5 79.7 ± 21.3 81.7 ± 18.5
MAX 86.2 ± 16.4 87.0 ± 21.9 85,4 ± 20.6 85.8 ± 19.5
LDC 86.5 ± 16.2 82.6 ± 27.3 90.5 ± 16.1 90.1 ± 14.1
QDC 83.1 ± 17.3 74.6 ± 35.1 91.6 ± 12.2 90.3 ± 10.3
DET 87.5 ± 15.0 83.3 ± 26.6 91.6 ± 13.7 91.2 ± 11.5

• The first 200 normal ECG beats in each of the 22 recordings (about 3 min) are
used as the local training set to construct the νSVCs.

• The first 350 normal ECG beats in each of the 22 recordings (about 5 min) are
used as the training set to train the ensembles.

• The second 1/2 of each of the 22 recordings (about 15 min or 1,000 beats) is
used as test set to evaluate the performance of the ECG annotators.

2. 10,000 ECG beats (with half normal beats and half abnormal beats) from 22
recordings are used as global training set (DBG) to train some classical binary
classifiers for comparison with the proposed HKME-based patient-adaptable
ECG beat annotator. These recordings are # 101, 103, 109, 111, 112, 113, 115,
116, 117, 118, 122, 123, 124, 201, 202, 207, 212, 214, 220, 222, 231, and 232.

Results and Discussion

The annotation results of using the proposed HKME with different fusion rules, the
global binary SVM and the local νSVC are given in Table 7.2.

The reported results are averaged over 22 test ECG recordings as shown in
Fig. 7.20. Test sets #1− #22 correspond to recording 100, 114, 119, 121, 200, 203,
205, 208, 209, 210, 213, 215, 221, 222, 223, 228, 230, 233, 234, 105, 106, and 108
in MIT/BIH arrhythmia database, respectively.

• Overall Performance and Generalization
It is observed from Table 7.2 that all the HKMEs except using QDC rule

outperforms both the global BSVC trained using the ECG data from a large
patient-group and the local νSVC trained using some normal ECG data from
each patient. The generalization of both the global RSVC and the local νSVC can
be improved when the information from these two sources are integrated properly
by the HKME.

The best BCR achieved by HKME is using DET rule, whose BCR is 7.2 and
3.9% higher than the global RSVC and the local νSVC, respectively. DET-based
HKME outperforms both SVMs in more than 80% of the test sets as reported
in Table 7.3. The second best BCR achieved by HKME is using LDC-based
stacking rule, which outperforms both SVMs in about 72% of the test sets.
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Fig. 7.20 Comparison of the annotation results of the global BSVC, local νSVC and HKME (with
DET fusion rule) in each recording of the test sets in terms of BCR

Table 7.3 Number and percentage of test sets
in which HKME outperforms both global BSVC
and local νSVC among all 22 test sets

Fusion rule MAX LDC QDC DT

In number 14 16 11 18
In percentage 63.6 72.7 50.0 81.8

The performance improvement in terms of BCR using MAX rule is observed
in about 64% of the test sets. Its average of BCR is 5.9 and 2.6% greater than the
global BSVC and the local νSVC, respectively. The only exception is QDC rule.
This may be resulted by the fact that the covariance matrices for the classes are
near singular sometimes, these QDC classifiers may fail when trying to estimate
and invert the covariance matrices [25]. It is expected that its performance may
be better if it is properly trained.

It can be observed that the performance of trained HKMEs such as DET and
LDC is better than that of the non-trained HKME, the MAX rule. It shows that the
proper training of the fusion rules is helpful to the improvement of the ensemble
over the base classifiers. These findings are similar to those in previous section.
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Fig. 7.21 A normal colonoscopic image and five colonoscopic images with different types of
abnormalities

7.6.2 Application to Colonoscopic Image Analysis

7.6.2.1 Colonoscopic Image Analysis

In this section, an application of the HKME method to the detection of abnormal
region in colonoscopic images is presented. This work has been published in [29].
Colonoscopy is a minimal invasive procedure of screening the colon and rectum
using a colonoscope. The procedure is used to look for signs of cancer in the colon
and rectum and diagnose the causes of unexplained changes in the bowel such as
inflamed tissue, abnormal growths, ulcers, and bleeding. Analyzing colonoscopic
images for clinical diagnosis of abnormalities relies on the experience and expertise
of the medical experts, which need years of training to acquire. It is thus significant
to develop a computer-assisted technique to help the screening process of these
potentially lethal diseases by the health-care provider.

Previous research on colonoscopic image analysis focused on the classification
between normal tissues and tumors. However, few work has been done to dis-
criminate normal tissues from different kinds of abnormalities including tumors in
colonoscopic images, which is more significant for screening purpose. In fact, many
categories of abnormalities can be seen in colonoscopic images, such as polyps,
tumors, inflammation, bleeding, ulceration, and diverticula (Fig. 7.21) and their
image content shows large variations. The abnormal regions usually do not occupy
the whole image and vary in color, size, and shape, which add more difficulties to
the discrimination of the normal regions from the abnormal ones in colonoscopic
images. In addition, this leads to an good example of imbalanced data problem.

The patch-based approach seems to be a good representation model for image
segmentation in which the full image is cropped into a set of image patches and
these patches can be classified into different categories corresponding to different
types of segments. This approach has been used extensively in many applications,
such as face detection [15], object detection [7], and image segmentation [42].

In this section, a HKME-based approach using multi-size patches is presented
for detecting abnormal regions in colonoscopic images. Multiple sizes of patches
provide multiple level visual cues of the image regions, which can help produce
better perceptually agreeable segmentation. Represented as multi-size patches, the
abnormal region detection in colonoscopic images turns into a binary classification
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problem to discriminate the patches from normal regions (normal class) and
those from abnormal ones (abnormal class). Each pixel in a given image can be
categorized as normal or abnormal using a trained patch-based classifier. Using
multiple sizes of patches, multi-labels can be given to a pixel, the final label of
the pixel can be obtained using the ensemble of these multiple classifiers based on
different patch sizes.

The performance of the ensemble depends on the individual classifiers used.
A set of individual classifiers have to be trained for the binary classification problem
to discriminate the normal patches from those abnormal ones. This problem can be
solved using a discriminative model, such as BSVCs . Such a BSVC-based abnormal
region detection approach in colonoscopic images using multiple-size patches was
published in [30] (A preliminary work by the authors).

Rather than a typical binary classification problem, the abnormal region detection
in colonoscopic images can also be treated as a one-class classification problem.
A lot of patterns from abnormal regions in colonoscopic images for each categories
of abnormalities have to be collected for training a reliable classifier, which means
the concept “abnormal” is not easy to learn. On the other hand, the normal
patterns show smaller variations than those of the abnormal ones and are much
easier to be obtained. This means the concept “normal” can be easier to learn.
Therefore, the concept “normal” can be learned using a one-class classifier, such
as νSVC or SVDD. Such a one-class classification-based abnormal region detection
approach in colonoscopic images was published in [31] (Another preliminary work
by the authors). Trained using only the data from one class, νSVCs try to find
a decision boundary around the training data—called targets, which is different
from the decision boundary of BSVC trained using the data from both normal and
abnormal classes. As explained in the previous section, νSVC tries to represent
of target samples rather than for discrimination purpose. On the one hand, multi-
size patches produce multi-level cues of image content, which in turn produce
a diverse feature set. On the other hand, the combination of the two different
types of kernel machines νSVC and BSVC can produce more diversity to the
ensemble, which may further improve the abnormal detection in colonoscopic
images. Experimental results show that the multi-size patch-based hybrid kernel
machine ensemble method is superior to that of using single patch size only for the
abnormal region detection in colonoscopic images and can produce more perceptual
agreeable image segmentation.

7.6.2.2 HKME for Detecting Abnormal Regions in Colonoscopic
Image Analysis

Figure 7.22 illustrates the flowchart of the proposed HKME-based approach using
multi-size patches for abnormal region detection in colonoscopic images. The detail
is as follows.
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Fig. 7.22 The flowchart of HKME-based approach for abnormal region detection in colonoscopic
images

Image Region Representation Using Multiple-Size Patches

As illustrated in Fig. 7.21, the abnormal regions in colonoscopic images come
from different categories and they vary in location, shape, color, and size. The
representation of these regions has to be considered carefully. It is similar to object
detection in which the abnormal regions are the objects to be detected.

Patch-based approach turns the abnormal region segmentation into a binary
classification problem [21]. As illustrated in Fig. 7.23, each colonoscopic image can
be cropped into a set of overlapping image patches and these image patches can
be categorized as abnormal region class or normal region class by a classifier. The
abnormal regions can thus be segmented from the normal ones.

An open problem in patch-based approach is what patch-size to choose. Com-
pared to large ones, small-size patches (the extreme of a small-size patch is
single pixel) can represent the image regions more precisely, but it contains less
information of the image content than large-size patches (the extreme of large-size
patch is the full image) and usually lead to larger classification error. The large-
size patches contain more information of the object, but small abnormal regions in
these patches may be missed. This is why it is very difficult to determine the
appropriate patch-size to use.

In this section, a multi-size patch-based representation is presented in which
multi-size patches are used simultaneously to represent the image regions in
colonoscopic images. Using patches of multiple sizes aims at overcoming the scale
problem, i.e, an abnormal region may appear at different sizes in different images.
Multi-size patches provide multiple-level representation of the image contents. At
least some among all the patch sizes can better characterize the object. Hence, the
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Fig. 7.23 Patch-based image region representation. (a) Original colonoscopic image, (b) Over-
lapping image patches

Fig. 7.24 Two examples of
patches from colonoscopic
images. The component L, a
and b of the image patches
are illustrated listed in a row

integration of the detection result based on multi-size patches is expected to detect
the abnormal regions more precisely than those based on single-size patches only.
This is the novelty of this method.

The colonoscopic images in RGB color space are transformed into three bands
in CIELab color space through which the color and luminance component can be
processed and analyzed individually. The image is scanned across and cropped into
a set of fixed sizes of patches, respectively. The patches are overlapped by 50%
to ensure that no abnormal region is missed. Here, 3 sizes of the image patches are
investigated for abnormal region detection in the colonoscopic images, namely, 48×
48, 32×32 and 16×16 (pixels). Two samples of the image patches are illustrated in
Fig. 7.24. Feature can be then extracted from these image patches for classification.

Both color and texture features are extracted.

• Color features: The color features are Two-dimensional(D) histograms of the
components a and b in CIELab color space. The number of bins of the histogram
is 8 for 2-D histograms.
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• Textural features: Two-level Discrete Wavelet Transform (DWT)-based statis-
tical features and 1-D histograms of luminance (the number of bins of the
1-D histogram is 16) are employed as textual features. The image patches are
processed using two-level DWT. The mean and standard deviation of the absolute
value of the approximate and detailed coefficients from the two-level DWT
decomposition of the image patches in the three channels of the CIELab color
space are calculated as the textural features.

Altogether 128 features are extracted, giving rise to a feature vector of 128-D.
Then the feature vectors from patches can be used to form the dataset for
classification. A set X of N feature vector xi, X = {xi ∈ R128|i = 1,2, · · · ,N} for
N patches, are labelled as yi ∈ {+1,−1} to indicate whether it is a normal patch or
a patch containing abnormalities.

Learning SVMs for Image Patch Classification

BSVC Learning

Using overlapped image patches, each pixel in the patch can be classified as normal
or abnormal by an SVM classifier corresponding to the patch size. Thus each pixel
in the original image can have at least one label. If a pixel is classified differently
by overlapped patches, the label of the patch that has the largest absolute decision
value (confidence) is chosen as the label of that pixel.

�SVC Learning

The classification between normal and abnormal patches can also be solved by a
one-class classifier, such as νSVC. A νSVC can be trained using the data from
normal image patches for each patch size. Using overlapped image patches, each
pixel in the patch can be classified as normal or abnormal by the trained νSVC
classifier corresponding to the patch size. Thus each pixel in the original image can
have at least one label. If a pixel is classified differently by overlapped patches, the
label of the patch that has the largest confidence is chosen as the label of that pixel.

7.6.2.3 Decision Fusion Using HKME

Since there are many kinds of abnormalities in colonoscopic images showing large
variation, many patterns from abnormal regions in colonoscopic images have to be
collected for training a reliable classifier and it is difficult to collect. This leads to
an imbalanced data problem. One class—“normal” has many training samples and
is easier to model, while the other class—“abnormal” is difficult to model because
it has more diverse distributions than the normal class. Therefore, νSVC is very
suitable for this problem. As a recognition-based model, νSVC tries to describe
the target data rather than for discrimination purpose, it can handle the problem of
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missing information. However, νSVC is often inferior to BSVC for discrimination
purpose. There is a need to combine these two types of kernel machines for this
problem.

A set of 2-SVCs can be constructed for the classification, while ν-SVCs can be
used to provide further decision information. The classification results of the two
kernel machines can be aggregated using an ensemble. The different natures of the
two types of SVMs adds more diversity to the ensemble, which may further improve
the performance of the ensemble.

7.6.2.4 Experimental Results and Discussions

Data Preparation

The proposed approaches were evaluated using a database which consists of 58
clinically obtained colonoscopic images. There are 12 normal images and 46 images
with abnormal regions. The abnormal regions mostly occupy only some parts of the
whole image and the abnormalities include polyps, tumors, inflammation, bleeding,
ulceration, and diverticula, etc. The images are RGB images with the resolution of
256×256 pixels. The pixels in the original images were manually labeled to provide
the ground truths. The detection results were compared with the ground truth and
evaluated.

In the experiment, the numbers of collected image patches for training of
48 × 48, 32 × 32, and 16 × 16 (pixels) patches are 2,002, 2,090, and 2,126,
respectively. The pixels in the original image are manually labeled as the ground
truth for comparison. The patches containing mostly abnormal region were labeled
as a positive sample, otherwise, a negative one. A leave-one-out experiment was
performed to evaluate the performance of the proposed method for abnormal region
detection in colonoscopic images. In each round, one of the colonoscopic images
was selected for testing and the patches from other 57 images were used for training.
The experiment was repeated 58 times, the detected results were compared to the
ground truth image and the average value of the total 58 results was taken as the
final result.

Evaluation Measure

The evaluation criteria are specificity (SPE), sensitivity (SEN), and Balanced
classification rate (BCR). Where SPE is the fraction of normal regions detected
among all the normal regions, SEN is the abnormal regions detected among all the
abnormal regions and BCR is the weighted average of SPE and SEN.

BCR = λ SPE +(1−λ )SEN (7.45)
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Table 7.4 Results of
abnormal region detection
using single patch sizes

Patch size Classifier BCR SPE SEN

48×48 2-SVC 0.744 0.675 0.813
48×48 ν-SVC 0.539 0.991 0.088
32×32 2-SVC 0.738 0.675 0.802
32×32 ν-SVC 0.546 0.998 0.094
16×16 2-SVC 0.745 0.668 0.822
16×16 ν-SVC 0.538 0.946 0.094

where λ ∈ [0,1] can be tuned to favor SPE or SEN. Smaller λ favors more on
SEN, which means that the error on the abnormal class is punished more seriously.
On the contrary, larger λ favors more on SPE, which means that the error on the
normal class is taken more seriously. At the extreme case, only SEN or SPE will
be considered when λ is 0 or 1, respectively. λ = 0.5 is used here, so that SPE and
SEN are treated as equally important. Other values might be selected with respect
to the requirement of the medical experts.

νSVC vs BSVC Using Single Patch Size

In Table 7.4, it is observed that BSVCs outperform νSVC in all the cases which
agrees with the postulate that discriminative models are superior to that of
recognition-based models. BSVCs achieved BCR around 74%, while νSVCs
achieved only 55%. The νSVCs have a very high SPE, but almost completely
fail for SEN. This may be resulted that the training set size used for νSVC was too
small and it also suffered from the curse of dimensionality. Compared to νSVCs,
BSVC have higher SEN while much less SPE, which may be good for adding
more diversity to the ensembles. The best BCR is 74.5% which was achieved using
patches of size 16× 16.

Multi-Size Patch Ensemble of νSVCs or BSVCs

Table 7.5 illustrates the detection results of three patch size ensembles using νSVCs
or BSVCs separately. Obviously, the best ensembles outperform that of the best
SVMs using single patch size, which supports the claim that multi-size patch-
based SVM ensemble can achieve better abnormal region detection in colonoscopic
images. Due to the poor performance of individual νSVCs, the improvement of their
ensemble is limited although there are still some.

HKME Using Single-Size Patches

Table 7.6 shows the detection results of the ensemble of a νSVC and a BSVC based
on single-size patches. Only DET and LDC achieved BCR comparable to the best
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Table 7.5 Detection results (in terms of BCR) of abnormal region detec-
tion using different patch sizes and ensemble schemes

Ensemble MAX AVG PROD MV DET LDC QDC

BSVC 0.737 0.751 0.745 0.751 0.753 0.763 0.765
νSVC 0.532 0.551 0.535 0.551 0.538 0.533 0.536

The ensembles are constructed using same types of SVMs, BSVC or νSVC

Table 7.6 Detection results (in terms of BCR) of abnormal region detec-
tion using same patch sizes by HKME

Patch size MAX AVG PROD MV DET LDC QDC

48×48 0.551 0.551 0.551 – 0.744 0.746 0.540
32×32 0.556 0.556 0.556 – 0.738 0.741 0.548
16×16 0.563 0.563 0.563 – 0.745 0.745 0.736

single classifier and the performance of other ensembles did not outperform the best
single classifier. This may be due to the fact that the νSVC and BSVC are trained
using the same features, which limit the performance of this scheme.

HKME Using Multi-Size Patches

Table 7.7 illustrates the detection results of the HKME ensemble of BSVCs using
all three patch sizes plus 1 to 3 νSVC(s) trained using 1 to 3 patch size(s). Most
of the ensembles show improvement over the best single SVM based on single-
size patches. The performance of LDC and AVG outperforms others. Figure 7.25
illustrates the result of the ensemble of BSVCs using all 3 patch sizes and a νSVC(s)
trained using patches with size of 48× 48. Obviously, the detection results by the
HKME ensemble is closer to the ground truth compared to those using single-size
patches.

The results of detection of abnormal region using learned HKME for four
colonoscopic images are illustrated in Fig. 7.25.

7.7 Conclusion

In this chapter, we briefly reviewed the one-class SVM and two-class SVM. Their
principles of classification are discussed and the strengths and weaknesses for
dealing with imbalanced datasets are illustrated with the checkerboard dataset.
The imbalanced data problem is also discussed and the various ways of handling
such a problem are also presented. The chapter shows that the one-class SVM
and two-class SVM can be integrated into an ensemble classifier to form what
we call the Hybrid Kernel Machine Ensemble—HKME. This ensemble classifier
has been evaluated with artificial dataset. The evaluation results show the benefit
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Fig. 7.25 Detection results of four colonoscopic images. The regions in white are normal regions
detected and the regions in black are abnormal ones
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Table 7.7 Detection results (in terms of BCR) of abnormal region detec-
tion using different patch sizes and HKME

Ensemble MAX AVG PROD MV DET LDC QDC

A+1 0.705 0.761 0.768 0.751 0.753 0.765 0.766
A+2 0.541 0.761 0.659 0.751 0.753 0.764 0.667
A+3 0.588 0.754 0.730 0.751 0.753 0.756 0.730
A+1+2 0.539 0.769 0.598 0.765 0.753 0.765 0.542
A+1+3 0.587 0.765 0.656 0.765 0.753 0.763 0.743
A+2+3 0.538 0.762 0.572 0.765 0.753 0.763 0.559
ALL 0.537 0.565 0.548 0.704 0.751 0.764 0.549

Row A+ ∗ are the results of ensembles using all 3-size patches learned by
BSVCs plus 1-size or 2-size patches learned by νSVC(s) (1 for 48×48, 2 for
32× 32, 3 for 16× 16). Row ALL are the ensemble results using all 3-size
patches and both BSVC and νSVC

of using such an ensemble to handle an imbalanced dataset. It has been shown
that the HKME can achieve better performance than using either one-class SVM
or two-class SVM alone. Discussions are given on the possible reasons for its
better performance. Since such imbalanced data problem exists in many biomedical
applications, and encouraged by the good performance of HKME, it is deployed in
two biomedical applications, namely, abnormal ECG beats annotation and abnormal
region detection in colonoscopic images. Experimental results further confirm the
superiority of using HKME.
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Chapter 8
Soft Biometrics from Face Images Using
Support Vector Machines

Guodong Guo

Abstract Soft biometrics, such as age, gender, and ethnicity, are useful for many
applications in practice. For instance, in business intelligence, it is helpful to
automatically extract and compute the statistics of potential customers, such as the
number of males and females; the number of young, adult, and senior people; or
the number of Caucasian, African American, or Asian people. It is also helpful
to use soft biometrics to improve the performance of traditional biometrics for
human identification, such as face recognition. Different methods can be developed
to recognize the soft biometric characteristics from face images. In this chapter,
we present the application of the support vector machines (SVM) to learn an
estimator or recognizer to extract these soft biometrics. We will mainly focus on
age estimation, while the gender and ethnicity classification will also be discussed.
Both classification and regression will be considered. The combination of regression
and classifiers based on the SVM will also be described which is useful especially
for age estimation.

8.1 Introduction

Support vector machines (SVM) [41] have shown many successful applications in a
variety of areas, including computer vision, pattern recognition, image analysis, bio-
metrics, bioinformatics, etc. The SVMs are graceful in theory (e.g., the large margin
optimization and mathematical programming solver) and have good performance in
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practice (e.g., good generalization capability and high discriminative power). In this
chapter, we show the use of the SVMs and their extensions to extract soft biometric
characteristics from face images.

The typical soft biometric characteristics include age, gender, and ethnicity.
These measures cannot be used to identify a person uniquely. For instance, different
subjects can share the same age, gender, or even the same ethnicity. However,
when two subjects are confused by a face recognizer, the age, gender, and/or
ethnicity might be used to help the discrimination, assuming the two subjects have
some differences in those measures. For example, we have shown that the soft
biometrics, such as gender, ethnicity, weight, and height can help to improve the face
recognition performance [27]. So those characteristics are called “soft biometrics,”
while the traditional biometric cues, such as face, iris, and fingerprints, are assumed
to be unique for each individual.

In addition to helping human identification, the soft biometrics themselves are
also useful for other applications. A typical case is business intelligence, where there
is no need to know the identities of the customers. The real care is the statistics of
the group of customers, such as the number of males and females, young, adult or
senior people, and Caucasian or Asian. These soft biometric characteristics can help
the business owners or managers to know more about the potential customers, do a
better advertisement to the related customers, or introduce commercial products to
the appropriate customers who might be interested in those products.

Among the three soft biometric characteristics, age estimation is probably the
most challenging problem. Our primary focus here is the age estimation, while we
will also consider gender and ethnicity classification. Further, age estimation is a
very special problem. The age labels, e.g., 1, 2, 3 in years, can be considered as
regression values, thus age estimation can be taken as a regression problem. On
the other hand, each age label can also be considered as a separate class, thus
age estimation can also be taken as a classification problem [21, 23]. We study
the performance of the SVM-based classification and regression for age estimation
on different databases. We also present a scheme to combine the regression and
classifiers for an improved performance on age estimation [21, 23]. Further, a
probabilistic fusion is also presented to make the combination automatic without
much parameter adjustment [22].

For gender and ethnicity classification, we show the performance of the SVM
classifiers on large databases. We also present a study of whether the gender and
ethnicity classification is affected by age or not [15, 24].

Soft biometric characteristics have other measures, in addition to age, gender,
and ethnicity. For instance, we have recently developed a computational approach
to body mass index (BMI) prediction in face images [43]. We believe that more
and more soft biometric cues can be extracted along with practical applications.
In this chapter, we just study the most popular soft biometrics, i.e., age, gender, and
ethnicity.

In the following, we briefly introduce the support vector regression (SVR) in
Sect. 8.2 and the SVM in Sect. 8.3. Then in Sect. 8.4 we present a method, called
locally adjusted robust regression (LARR), to combine the SVR and SVM for an
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improved age estimation. In Sect. 8.5 we describe a probabilistic fusion to combine
the SVM and SVR. Some simple introduction of the face image representation is
presented in Sect. 8.6. The experiments are conducted in Sect. 8.7, and finally, we
draw conclusions.

8.2 Support Vector Regression

The basic idea of SVR is to find a function f (y) that has most ε deviation from the
actually obtained target zi for the training data yi, and at the same time is as flat
as possible [41]. In other words, we do not care about the errors as long as they
are less than ε . This property determines the SVR to be less sensitive to outliers
than the quadratic loss function. In comparison with the conventional quadratic
loss function shown in Fig. 8.1a, the ε-insensitive loss function of SVR is shown
in Fig. 8.1b. Given the same input, the ε-insensitive loss function is more robust
than the quadratic function in dealing with outliers.

8.2.1 Linear SVR

Consider the problem of approximating the set of data D = {(y1,z1), . . . ,(yn,zn)},
yi ∈ R

d ,zi ∈ R, with a linear function,

f (y) = 〈w,y〉+ b. (8.1)

The optimal regression function [41] is given by

min
w,ξ

1
2 ‖ w ‖2 + C ∑n

i=1(ξ
+
i + ξ−i )

zi−〈w,yi〉− b≤ ε + ξ+
i

a b

Fig. 8.1 Regression criteria. (a) Quadratic regression loss function. (b) ε-insensitive loss function
which is less sensitive to outliers than the quadratic loss function. Another benefit from this
function is a sparse set of support vectors to represent the regression function, i.e., only points
outside the ε zone contribute to the regression function. The horizontal and vertical axes are y and
f (y), respectively
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subject to 〈w,yi〉+ b− zi ≤ ε + ξ−i
ξ+

i ,ξ−i ≤ 0 (8.2)

where constant C > 0 determines the trade-off between the flatness of f and
data deviations, and ξ+

i ,ξ−i are slack variables to cope with otherwise infeasible
constraints on the optimization problem of (8.2). The ε-insensitive loss function as
shown in Fig. 8.1b is

Lε(y,z) =
{

0, if | f (y)− z|< ε
| f (y)− z|− ε, otherwise

(8.3)

The primal problem of (8.2) can be solved more efficiently in its dual formulation
[41] resulting in the final solution given by

w =
n

∑
i=1

(αi−α∗i )yi, (8.4)

and

f (y) =
n

∑
i=1

(αi−α∗i )〈yi,y〉+ b, (8.5)

where αi,α∗i are Lagrange multipliers. The value of b in Eq. (8.1) can be determined
by plugging Eq. (8.4) into Eq. (8.1) [12].

8.2.2 A Toy Example

To illustrate the SVR idea and see the importance of proper setting of the parameter
ε , we use a toy example that contains 30 points in 2D with 10 in a line and the
remaining 20 being outliers distributed on both sides of the line [20]. Hence the
data contains 67% outliers. Using the SVR algorithm implemented by Gunn [12]
(which provides a user interface) and a linear kernel with ε = 0.02, the result is
shown in Fig. 8.2a. Observe that the line was correctly estimated despite the high
percentage of outliers.

On the other hand, observe that SVR returns 27 support vectors (90% of the
input data) and seven of them are very close to the boundaries (two dashed lines),
but there are actually 20 outliers in the original data. So we cannot simply classify
the support vectors (SVs) as outliers. Increasing the ε value might “drag” the seven
closest support vectors inside the dashed boundaries, and then only the outliers in the
data would be returned as support vectors. However, when we increase ε gradually
up to 0.09, there are still 26 SVs returned which are still not the true outliers, as
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Fig. 8.2 SVR on real 2D data with ε = 0.02 in (a) and ε = 0.09 in (b). Note that the support vectors
(marked by circles) are not the true outliers in either case

shown in Fig. 8.2b. And even worse, the slope of the line has changed significantly.
This demonstrates that using a large ε is not a good idea because it may degrade the
model structure.

Based on this experiment, we observe: (1) the SVR technique can potentially deal
with data containing a high percentage of outliers; (2) classifying support vectors as
outliers is not workable; (3) using a large value for ε is not a good idea for SVR;
and (4) using small ε is preferable, especially when a large number of outliers are
present.

This toy example and the above observations were first presented by Guo et al.
in [20]. The robust regressor, SVR, was applied successfully for outlier detection
and removal in affine motion tracking with the setting of a small ε . Here we adopt
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the same idea but use it for another application—robust age regression. Instead of
using the simple linear regression, we need a nonlinear SVR for the complex aging
patterns.

8.2.3 Nonlinear SVR

A nonlinear regression function may be required in practice to adequately model
the data. It can be obtained by using kernels, in the same manner as a nonlinear
SVM for classification [41]. A nonlinear mapping can be used to map the data into
a high dimensional feature space where a linear regression is performed. Different
kernels, such as polynomials, sigmoid, or Gaussian radial basis functions, can be
used depending on the tasks. For our robust age regression, we found that the
Gaussian radial basis function kernel performs much better than the linear regression
[21, 23]. The reason is that the linear regression cannot model the complex aging
process. A radial basis function is of the form,

k(y,y′) = e−γ‖y−y′‖2
, (8.6)

where γ is a constant to adjust the width of the Gaussian function. Given the kernel
mapping, the solution of the nonlinear SVR is obtained as [41],

〈w,y〉=
n

∑
i=1

(αi−α∗i )k(yi,y), (8.7)

and

f (y) =
n

∑
i=1

(αi−α∗i )k(yi,y)+ b. (8.8)

The difference to the linear regression is that w is no longer given explicitly. Also
note that in the nonlinear case, the optimization problem corresponds to finding the
flattest, or linear regression function in the higher dimensional feature space,1 not
in the input space.

1Note that the feature space means a higher dimensional space in SVR, which is different from the
feature extracted from data in image processing. Actually the extracted features from images are
the input data for SVR in our age modelling.
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8.3 Support Vector Machine

SVM [41] are a class of classifiers that can learn an optimal separating hyperplane
based on the maximum margin criterion. It can use different kernels to make the
linear SVM work on a higher dimensional space to improve the separability between
two classes. The kernel extension is similar to the SVR learning. In the following,
we only briefly introduce the linear SVM. More details on the kernel SVMs can be
referred to [41].

8.3.1 Linear SVM

Given a set of training vectors belong to two separate classes, (y1,z1), . . . ,(yn,zn),
where yi ∈ R

D, zi ∈ {−1,+1}, the linear SVM learns an optimal separating
hyperplane, wy+ b = 0, that maximizes the margin [41]. The SVM learning is to
find the saddle point of the Lagrange functional,

L(w,b,α) =
1
2
‖ w ‖2 −

n

∑
i=1

αi {zi [(w ·yi)+ b]− 1} (8.9)

where αi are the Lagrange multipliers. The Lagrangian has to be minimized with
respect to w, b and maximized with respect to αi ≥ 0. The optimization is usually
transformed to its dual problem,

max
α

W (α) = max
α

{
min
w,b

L(w,b,α)

}
, (8.10)

and the optimal hyperplane is represented by the dual solution, α ,

w =
n

∑
i=1

αiziyi (8.11)

The value of b can be estimated by plugging w into the original equation, wy+b= 0.
In testing, the classification is given by

f (y) = sign(w ·y+ b), (8.12)

for any new data point y. If the training data are non-separable, slack variables ξi

can be introduced. See [41] for more details.
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8.4 Locally Adjusted Robust Regression

Age estimation can be considered as a regression problem. Now, a question may
be asked, is it “good” enough to use the SVR as a robust regressor for human age
prediction? To answer this question, let us look at an estimation result using the SVR
[21]. Figure 8.3 shows the predicted ages (red squares) with respect to the ground
truth ages (black circles). Note that this is not a regression curve. One thousand
data points are sorted in ascending order of the ground truth ages, i.e., from 0 to
91 years for females. The predicted ages are obtained from the SVR method. From
this figure, we observe that the SVR method can estimate the global age trend, but
cannot predict the ages precisely. By inspecting the result carefully, we find that
the SVR predictions give bigger age values for many younger people, and smaller
age values for some older people. In some cases, the estimated age values could be
far away from the true ages, e.g., more than 40 years. This result was based on a
database used in [21].

Why the SVR method cannot show better performance than we expect for age
prediction? The reason can be in two aspects: First, the problem of age prediction is
really challenging because of the diversity of aging variation. Each individual may
age in his/her own way and be affected by external factors, such as health, living
condition, and exposure to weather conditions. Second, the SVR method attempts
to find a flat curve to approximate the data in order to obtain good generalization
capability. As shown in Fig. 8.4, the SVR computes a flat curve within a small ε
tube. But the age data may distribute like the (green) irregular curve. One cannot
expect the SVR to estimate an irregular curve like this because of the over-fitting
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Fig. 8.3 A plot of the true ages (black circles) versus the estimated ages (red squares) for one
thousand female face images. The ages are predicted by the nonlinear SVR with a Gaussian kernel
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Fig. 8.4 Illustration of the idea of locally adjusted robust regression (LARR)

problem. Further, one cannot assign a large ε to enclose all true data points inside
the ε tube, as demonstrated in the toy example in Sect. 8.2.2. So how to model the
aging function by allowing the irregular distribution of true ages?

8.4.1 Local Adjustment of the Regression Result

One feasible solution is to adjust the age regression values locally so that the
estimated age values can be “dragged” towards the true ages. We call it a locally
adjusted robust regression (LARR) [21, 23]. The idea of LARR is illustrated in
Fig. 8.4. Suppose the predicted age value by SVR is f (y), corresponding to the
input data y. The point f (y) is displayed by the black dot on the regression curve.
The estimated age, f (x), may be far away from the true age value, L, shown as
the red dot on the true age trajectory curve. The idea of the LARR method is to
slide the estimated value, f (y), up and down (corresponding to greater and smaller
age values) by checking different age values, t ∈ [ f (y)− d, f (y)+ d], to see if it
can come up with a better age estimation. The value d indicates the range of ages
for local search. Hopefully the true age value, L, is also within this range, i.e.,
L ∈ [ f (y)− d, f (y)+ d].

Therefore the LARR method is a two-step procedure: (1) a robust regression over
all ages of the training data by using the SVR method. This step can be considered
as a global regression process; (2) a local adjustment within a limited range of ages
centered at the regression result.

Now the key issue is how to verify different age values within a specified range
for the purpose of local adjustment. Remember our goal is to “drag” the initially
estimated age value, f (y), by the global regressor, towards the true age, L, as close
as possible. We take a classification approach to locally adjust or verify different
ages, considering each age label as one class. Because only a small number of age
labels are used for each local adjustment, regression methods cannot work properly.
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For our classification-based local adjustment, there are many possible choices of
classifiers, but here we adopt a linear SVM for our local age adjustment. The main
reason is that the SVM can learn a classifier given a small number of training
examples. This has been demonstrated by the author previously for learning in the
small sample case, such as face recognition [16, 18], image retrieval [19], audio
classification and retrieval [14], and face expression recognition [13]. The capability
of learning a classifier in the small sample case is also important for human age
prediction. Usually the number of training examples, e.g., 50, is smaller than the
feature dimension, e.g., 150, in age estimation, even though we perform experiments
on a large database (see Sect. 8.7 for details).

8.4.2 Binary Tree Search with Limited Range

The classical SVMs are designed to deal with the two-class classification problems.
There are three typical ways to extend it to a multi-class classification application.
(1) Learning classifiers for each pair of classes, and taking a binary tree search
in testing; (2) training SVMs for each class against all the remaining classes; and
(3) training SVMs for all classes simultaneously. The last two schemes are not
appropriate for our purpose, because in the local adjustment only partial classes
of age data are involved. If the last two schemes are used, the SVMs have to be
re-trained dynamically for each adjustment, which is computationally expensive.
The first scheme is feasible to fulfill our task since there is no need to retrain the
SVMs online. Therefore, all pair-wise SVM classifiers can be trained off-line. Only
a limited number of classes are involved in the binary tree search for test.

The binary tree structure for multi-class SVM classification has been used
successfully in previous research, e.g., face recognition [16]. In general, the number
of pair-wise comparisons is nc−1 for each test in an nc-class classification problem.
Here the number of pair-wise comparisons is limited to mc−1 when only mc classes
are involved in each local adjustment, and mc < nc. Each age corresponds to one
class label.

8.4.3 Local Search Range Determination

The local search range, mc, is determined by several factors, such as the scale of the
data (large versus small scale) and the performance of the robust regressor (here the
kernel SVR).

It is not trivial to determine the local search range. There are some guidelines
for choosing local search ranges. The larger the search range, the bigger the chance
to contain the true ages within that range. If the search range is too small, the true
age label might not be reached and the local search may find an arbitrary age label.
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On the other hand, if the search range is too big, it also increases the possibility
to obtain an adjusted age that is far away from the true age, because the local
classification is just a locally optimal search.

In our experiments, we specify different ranges and demonstrate the effects of
different local search ranges on the results [21]. The main goal is to show that the
local adjustment can really improve the performance over the robust regressor for
human age estimation.

8.5 Probabilistic Fusion of the SVR and SVM

As presented above, the combination of the SVR and SVM can take advantage
of both classifiers and regression for age estimation. Our first scheme is a LARR
proposed by Guo et al. in [21, 23]. It has been shown that the age estimation
performance can be improved significantly by using the LARR method.

However, the LARR method cannot determine the range of local search for the
classifier. It has to heuristically try different ranges, such as 4, 8, 16, 32, and 64,
and requires the user to choose a best solution among those results. For practical
use of the age information, e.g., in multimedia content analysis and understanding,
it is important to develop an age information extractor automatically without the
user involvement. In other words, the system has to determine the combination
parameters automatically in a data-driven manner. Towards this goal, we interpret
the regression and classification results probabilistically in order to fuse them
automatically [22].

8.5.1 Theoretical Framework

Consider a pattern recognition problem [42] where pattern Z is to be assigned to
one of the m possible labels L = {l1, l2, · · · , lm}. For the age estimation problem, the
labels are human ages (in years), such as 0,1, · · · . Assume we have a regressor R and
a classifier C, each representing the given pattern by a distinct measurement vector,
denoted by xR and xC, respectively. In the measurement space each label or class lk
is modeled by the probability density function (PDF) p(xR|lk) or p(xC|lk), and the
prior probability of occurrence of each label is denoted by P(lk).

According to the Bayesian theory, given measurements xR and xC, the pattern,
Z, should be assigned label l j when the posterior probability of that interpretation is
maximum, i.e.,

l j = argmax
lk∈L

P(lk|xR,xC) (8.13)
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The Bayesian decision rule (8.13) states that all the measurements should be
considered simultaneously in order to make a decision utilizing all the available
information correctly. The computation of the posterior probability functions in
(8.13) depends on knowledge of high-order measurement statistics described in
terms of joint PDFs p(xR,xC|lk), which are generally difficult to obtain. A classical
approach to deal with these kinds of joint probabilities is to assume that all
the measurements are independent for a given pattern. For example, the mutual
independence assumption was used in combining different classifiers in [31].

Here we build a “causal” relation between R and C. Specifically, the classifier C
makes decision based on the output of the regressor R, but the regressor R works on
the input data directly. Therefore

P(xR|xC) = P(xR) . (8.14)

There are two reasons to have this causal relation assumption: (1) To reduce the
measurement space sequentially—the decisions of the first learner could impact or
reduce the measurement space of the second learner. This “early” influence might
simplify the original complex decision problem into a simpler one, and therefore
improve the recognition accuracy of the second learner. As a result, the performance
of the whole system can be improved. (2) To consider the internal structure of
the learners—a regressor usually takes into account all data points, computing in
a “global” style, while some modern classifiers [41] use a pairwise classification
scheme, working in a “local” style. Therefore it might be easier to change the
measurement space of the classifiers instead of the regressors.

Now let us go back to the Bayesian decision rule (8.13) and rewrite it. Based on
the conditioned Bayes’ rule (i.e., Bayes’ rule conditioned on another variable; see
page 10 in [30]), we have

P(lk|xR,xC) =
P(xR|lk,xC)P(lk|xC)

P(xR|xC)
(8.15)

which holds in general. Substituting (8.14) into (8.15) we obtain

P(lk|xR,xC) =
P(xR|lk)P(lk|xC)

P(xR)
. (8.16)

By Bayes’ rule, we have

P(xR|lk) = P(xR)P(lk|xR)

P(lk)
. (8.17)

Plugging (8.17) into (8.16), we get

P(lk|xR,xC) =
P(lk|xR)P(lk|xC)

P(lk)
. (8.18)
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Fig. 8.5 The decision graph of the PFA approach

Now, the decision rule (8.13) becomes:

l j = argmax
lk∈L

P(lk|xR)P(lk|xC)

P(lk)
(8.19)

subject to constraints (8.14). Decision rule (8.19) fuses the posterior probabilities
computed by the regressor and the classifier sequentially. We call this a Probabilistic
Fusion Approach (PFA).

In practice, the denominator of (8.19), i.e., the prior probabilities P(lk), will have
equal values if no strong prior knowledge is given for a recognition problem. In this
case, the decision rule becomes

l j = argmax
lk∈L

P(lk|xR)P(lk|xC) (8.20)

8.5.2 Fusion Strategy

Decision rules (8.19) and (8.20) constitute the basic scheme for combining a
regression measurement with a classification result in a probabilistic way. Now we
develop a specific combination strategy based on decision rule (8.20).

In our sequential probabilistic fusion scheme, the regressor R and classifier
C work sequentially so that the output of the regressor, P(lk|xR), is used as an
intermediate decision which is then fed to the classifier C to affect the measurement
or decision space of the classifier, xC. The classifier C has no effect on the regression
measurement, xR. This causal relation can be depicted by the decision graph in
Fig. 8.5.

To realize the decision process shown in Fig. 8.5, several issues have to be
addressed, including (1) which methods to use for the regression and classification
modules, (2) how to produce the probabilistic output for each method, and (3) how
to alter the measurement space of the classifier based on the regression output.
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8.5.2.1 Selection of the Regressor and Classifier

For the regressor, it should have high performance, since its results will influence
the decision of the classifier in our sequential fusion strategy. A low performance
regressor might “drift” the measurement space badly for the following classifier.
The requirement for the classifier is that its measurement space should be able to
change (e.g., shrink or expand) easily.

Guided by the above consideration, we chose to use a SVM [41] as the classifier,
and the SVR method [41] as the regressor, which were also chosen in [21, 23]. The
difference is that there is no probabilistic computation for the SVM and SVR in the
LARR method [21,23], while here the results of the SVM and SVR are transformed
into probabilities and then fuse them automatically [22] without trying different
local ranges and requiring users’ selection as in [23].

8.5.2.2 Probabilistic Output for SVMs

Standard SVM provide only an estimated target value, e.g., a category label for
classification or a real value for regression. In order to combine the regression
and classification measurements probabilistically, probabilities need to be extracted
from the standard SVM and SVR results.

For the SVM, some methods have been proposed, mainly in the machine learning
literature, to produce probabilistic outputs. For example, Platt [38] proposed a
sigmoid training method to post-process standard SVM output, focusing on a two-
class classification problem. But it is not clear how to extend this method to a
multi-class scenario. In [29], an MAP rule was used on the estimate of the overall
posterior probabilities obtained from the outputs of the pairwise classifiers.

Here we adopt a simple yet efficient method to generate a probability estimate
for the SVM in a multi-class classification problem, using the counts of occurrences
in pairwise comparisons. This simple idea has been used successfully for face
recognition [17], for example.

For an n-class classification problem (n could be less than the total number
of classes m in the original measurement space), the total number of pairwise
comparisons is n(n− 1)/2. The output of the n(n− 1)/2 classifiers is used to
construct a matrix as shown below:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 φ1,2 φ1,3 · · · φ1,n

φ2,1 0 φ2,3 · · · φ2,n
...

. . .
...

...
. . .

...
φn,1 φn,2 φn,3 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Each element in the matrix is equal to 1 or 0. φi, j = 1 if pattern Z is classified as
class i in the pairwise competition between classes i and j; otherwise, φi, j = 0. All
elements in the main diagonal are zeros. Based on the measurement matrix, we can
create a probability measure for the SVM classifier output as

P(lk|xC) =
∑n

j=1 φk, j

∑n
i=1 ∑n

j=1 φi, j
(8.21)

8.5.2.3 Probabilistic Output for the SVR

For the SVR, several methods have been proposed to produce a probabilistic output,
but many of them involve either complex computations or modification of the
SVR formulation. For example, a Gaussian process is integrated into the SVR to
formulate a Gaussian SVM regression model in [10]. A Gaussian (or Laplace with
fatter tails) distribution could be used to approximate the probabilistic outputs for
SVRs. However, the Gaussian approximation may encounter problems in practice,
especially in human age prediction, because of the diversity of aging variations.
Each individual may age in his or her own way and be affected by many different
external factors.

As pointed out in [23], the ages estimated by the SVR method could be far away
from the true age labels. Consequently, a small probability value (possibly close to
zero) could be generated for a true age label when a Gaussian model is used for
transforming the SVR target values into probabilistic outputs. This would inhibit a
correct decision when multiplying the two probabilities in the decision rule (8.19)
or (8.20). In order to avoid such undesirable effects, we propose to use a uniform
distribution centered at the estimated target value, l0, obtained from a regressor, i.e.,
μ = l0. In fact, we found that the Gaussian model gave much worse results than the
uniform distribution in our initial experiment on age estimation which is not shown
here.

The uniform distribution model assumes that only a finite range of age labels
is possible, each with equal probability. The PDF of the uniform distribution
U(μ−Δ,μ +Δ) is given by

p(x) =

⎧⎨
⎩

1
2Δ for μ−Δ≤ x≤ μ +Δ,

0 otherwise,
(8.22)

where [μ−Δ,μ +Δ] is the function support. Now the question is how to estimate
the range of support for the uniform distribution.

Let us look at the SVR prediction error or residual, ζi, with ζi = li− f̂ (Zi), where
li is the true age label for pattern Zi, and f̂ (Zi) is the regression estimate. Recall
that the variance of the uniform distribution satisfies σ2 = 1

12 (2Δ)2, i.e., σ2 = 1
3 Δ2,

so we have Δ =
√

3σ . Thus the function support can be estimated by the sample
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standard deviation. To compute the sample standard deviation, σ , we can collect the
residuals, ζi, on a validation data set, and then compute the standard deviation of
these residuals. Finally, we have

P(lk|xR)←U
(

l0−
√

3σ , l0 +
√

3σ
)
. (8.23)

The uniform distribution (8.23) is simple but works well in our experiments.
To our knowledge, no previous work uses it to model the probabilistic output of a
regressor such as the SVR.

8.5.2.4 Decision Space Deduction

Given the probabilistic outputs, P(lk|xR) and P(lk|xC), for the regressor and
classifier, respectively, the next step is to combine the two probabilities together
to make a final decision for a given pattern. According to the decision rule (8.20),
the two probabilities are multiplied and the label l j corresponding to the maximum
product is selected as the final decision.

Our serial PFA can also be interpreted as a decision space deduction process.
The uniform distribution modeling of the probabilistic output of the regressor
reduces the original label space (all possible ages) into a smaller decision space,[
l0−
√

3σ , l0 +
√

3σ
]
, by using the cutoff boundaries. The reduced decision space

is refined by the classifier to obtain the final decision, l j. As a result, the probabilistic
output of the SVR plays the role of an intermediate decision, as shown in Fig. 8.5,
reducing the search space (i.e., less number of classes to compare) for the classifier
SVM. The LARR method [21, 23] shares the same spirit as the PFA in terms
of decision space deduction, however, it does not address the probabilities for
automatic local range determination.

8.6 Soft Biometrics Computation

We have presented the methods of SVM, SVR, and the combinations of them. These
methods will be used for age estimation on different databases. For gender and
ethnicity classifications, only the SVMs are used, since these problems are typically
considered as classifications.

We only use face images for soft biometrics computation. The face images are
usually detected, aligned, cropped, and resized into the same size. Various features
can be extracted from the face images to characterize the facial appearance. The
specific methods for feature extraction will be briefly introduced in the experiments.
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8.7 Experiments

We conduct experiments for age, gender, and ethnicity estimation, separately.
Different databases might be used for each of the soft biometric measure. Not all
databases are proper to study all of the three soft biometric characteristics.

8.7.1 Age Estimation Results

Age estimation experiments are conducted on the FG-NET and Yamaha Aging
Databases. The FG-NET Aging Database [7] is a publicly available age database
that we adopt for the experiment. The database contains 1,002 color or grayscale
face images with variations of lighting, pose, and expression. There are 82 subjects
(multiple races) in total with the age ranges from 0 to 69 years, and each face
image has 68 labeled points characterizing shape features. The shape features can
be combined with appearance features to form a face representation, called active
appearance models (AAMs) [5]. The AAMs use 200 parameters to model each face
for the purpose of age estimation [11, 46, 47].

The Yamaha Aging database contains 8,000 high-resolution RGB color face
images captured from 1,600 different voluntary Asian subjects in an outdoor
environment, 800 females and 800 males, in the age range from 0 to 93 years. Each
subject has five near frontal images with provided ground truth ages. It has been
used in some previous studies, e.g., [8, 9, 46, 47]. The Yamaha database is much
larger than the FG-NET.

To evaluate the age estimation performance on Yamaha, a face detector was used
to find the face area in each image, and the eye corner locations are labeled for
each face subject. Based on the face and eye corner locations, the face images are
cropped, scaled, and transformed to 60×60 gray-level patches [21,23]. The images
have significant variances in illumination since the photographs were taken in the
outdoor environment. The gray-level values of each face image are normalized to
a normal distribution with zero-mean and one standard deviation in order to reduce
the effect of out-door illumination changes. The database also contains some facial
expression variations and makeup.

The face image patches with the same size of 60× 60 are fed into the manifold
learning module. The age manifold can be embedded in a low dimensional subspace
using different techniques [21]. Some manifold visualizations can be found in [21].
It has been shown in [21] that: (1) The principal component analysis (PCA) method
does not show clear manifold trend of ages. The reason is that the PCA is purely
unsupervised without using any age label information, which seems to be important
for learning the embedded manifold from the complex aging patterns; (2) The
manifold learned by the local linear embedding (LLE, a nonlinear embedding
method) is approximately an ellipsoid with higher ages in the center and lower ages
at periphery; and (3) The OLPP algorithm [4] achieves good visualization of the age
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manifold with a distinct aging trend. Therefore, we used the OLPP method in our
age manifold learning module for age estimation [21].

After the age manifold was learned, each face image can be projected onto the
age manifold to extract a feature vector. We used the first 150 features for each
face image [21, 23]. The system then learns a robust regression function using the
kernel SVR method for females and males separately. Actually the manifold was
learned for the female and male independently. As demonstrated in the toy example
in Sect. 8.2.2, a small ε value should be chosen for the ε-insensitive loss function in
Eq. (8.3). We set ε = 0.02 for our age estimation task. In SVR learning, parameters
C and γ are determined on a validation set. Experimentally we found that a good
choice is C = 40 and γ = 12, separately. To locally adjust the global regression
results, we tried different local search ranges as powers of two, e.g., 4, 8, 16, 32,
and 64 classes, and the results from different search ranges are compared to see
the effect of local adjustment. The purpose of choosing the powers of two is to
simplify the binary search structure. One can observe that the local search range
does influence the age estimation results. The pair-wise linear SVM classifiers were
used for the local adjustment, centered at the age value (or label) obtained from the
global regressor.

We perform a standard fourfold cross validation test to evaluate the accuracy
of our algorithms for age estimation on the Yamaha age database. The test was
executed on the female and male subsets separately. The females and males age
quite differently in the database. For each experiment, about 1/3 of the training
data are used as a validation subset to determine the optimal parameter setting such
as C and γ . Then the parameters are fixed and the whole training data set is used
to learn the robust regression function. The pair-wise linear SVM classifiers are
learned using the same training data and used for local adjustment in testing. Finally
all performance measures are reported on the unseen test data.

The performance of age estimation can be measured by two different measures:
the mean absolute error (MAE) and the cumulative score (CS). The MAE is defined
as the average of the absolute errors between the estimated ages and the ground truth
ages, MAE = ∑N

k=1 |l̂k− lk|/N, where lk is the ground truth age for the test image
k, l̂k is the estimated age, and N is the total number of test images. The cumulative
score [11] is defined as CS( j) = Ne≤ j/N×100%, where Ne≤ j is the number of test
images on which the age estimation makes an absolute error no higher than j years.

Table 8.1 shows the experimental results. The first and second columns in
Table 8.1 show the MAEs for females and males in the Yamaha aging database,
separately. Different ranges, e.g., 4, 8, 16, 32, and 64, were tried for local adjustment
of the global regression results. One can see that the local adjustment truly reduces
the errors of the global regression. For example, the MAE of the SVR is 7 years for
the female (column 1 in Table 8.1), but is reduced to 5.86 (column 1, row 5) when
16 local age classes are used for the LARR method, and so on. Different ranges of
adjustment do have different MAEs. For comparison, we also show the results using
purely the SVM classifiers in the first row. One can see that the classification scheme
has lower errors than the pure regression method for both females and males, but it
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Table 8.1 MAEs of the methods: SVM, SVR, and LARR with
different settings [21, 23]

Various setup Yamaha (Female) Yamaha (Male) FG-NET

SVM 5.55 5.52 7.16
SVR 7.00 7.47 5.16
LARR4 6.83 7.21 5.07
LARR8 6.48 6.81 5.07
LARR16 5.86 5.95 5.12
LARR32 5.29 5.30 6.03
LARR64 5.25 5.38 –

The bold fonts indicate the lowest errors in each case.

has higher error rates than some of the locally adjusted results. The best LARR result
in terms of MAE is 5.25 years for females when the local search range is 64 classes,
while it is 5.30 years for males when the adjust range is 32 classes. The ranges of
local adjustment depend on the data and the global regression results. To illustrate
the MAEs at each age, two pictures for female and male results are displayed in
Fig. 8.6, respectively.

Figure 8.7a, b show the CS measures for females and males separately. We can
observe that the LARR methods (with different ranges for local adjustment) improve
the score significantly over the pure regression method for lower error levels, e.g.,
mc < 10 years. For example, in one year error level, most LARRs with proper ranges
of local adjustment could improve the accuracy by 175 % and 267 % for females and
males separately. This improvement is significant. We also notice that large ranges
are required for local adjustment on the Yamaha aging database. For instance, when
16 age classes are used for local adjustment, the CS curve is explicitly lower than
32 or 64 classes. We do not show the cumulative scores for four and eight classes
here in order to not mess up the figures. Those two CS curves are even lower than
16 classes. One may also notice that the CS curve of SVM classifiers is close to the
LARR32 and LARR64 for both females and males, but the MAEs of the SVM are
higher than the LARR16 or LARR32 as shown in Table 8.1. This indicates that we
need both MAE and CS measures complementarily to measure the performance of
an algorithm in age estimation.

As shown in Table 8.2, we also compare our results with all previous methods
reported on the Yamaha aging database. It turns out our LARR method has the
MAEs of 5.25 and 5.30 years for females and males separately, which are explicitly
smaller than the previous results under the same experimental protocol. Our method
brings about 24 % deduction of MAEs over the best result of previous approaches,
given in [46].

For age estimation on the FG-NET database, we used the same AAM features as
in [11, 46, 47] to evaluate our LARR method [21, 23]. Since the FG-NET database
has small size, we do not learn any age manifold but use the AAM features
directly. Our focus is then to evaluate the performance of the LARR method for age
estimation on the FG-NET database. The popular test strategy, namely leave-one-
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Fig. 8.6 MAEs at each age for females and males on the Yamaha Aging database, obtained by the
LARR method [21]

person-out (LOPO), was usually taken for the FG-NET age database, as suggested
by the existing work [11, 46, 47]. We follow the same strategy and compare our
results with the state-of-the-art methods. The experimental results are shown in the
third column of Tables 8.1 and 8.2. One can see that the LARR method has an MAE
of 5.07 years which is lower than the previous methods listed in Table 8.2 [21]. The
best MAE was obtained using either four or eight classes for local adjustment as
shown in Table 8.1. Increasing the local search ranges for the LARR method will
make the errors larger. For example, the MAE will be 6.03 years when 32 classes
are used for local adjustment. We cannot get the result for 64 classes since there are
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Fig. 8.7 Cumulative scores of the algorithms with different settings for (a) Top: female age
estimation, (b) Middle: male age estimation on the Yamaha Aging database, and (c) Bottom: age
estimation on the FG-NET database, at error levels from 1 to 15 years [21]
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Table 8.2 MAE comparisons of different algorithms [21, 22]

Method Yamaha (Female) Yamaha (Male) FG-NET

WAS [11] – – 8.06
AGES [11] – – 6.77
QM [32] 9.96 10.51 6.55
MLPs [32] 10.99 12.00 6.98
RUN1 [47] 9.79 10.36 5.78
RUN2 [46] 6.95 6.95 5.33
LARR [21] 5.25 5.30 5.07
PFA [22] 5.11 5.12 4.97

at most 63 or 61 age labels in the LOPO test. In other words, there are missing ages
in the FG-NET database. When the pure classifiers, SVMs, are used, the MAE is
7.16, which is much higher than the 5.16 years of the pure regression. One possible
reason is that there is not sufficient data for pair-wise SVM training, while the global
SVR uses all the data in the model. Another observation is that the robust regression
itself (without local adjustment) has an MAE of 5.16 years, which is still lower than
all previous methods shown in Table 8.2. The LARR method further reduces the
MAE to 5.07 years [21].

Figure 8.7c shows the cumulative scores of the LARR method on the FG-NET
database. LARR8 means using eight classes for local adjustment. We do not show
LARR4, LARR16, and LARR32 in order to avoid messing up the display. The
cumulative scores of those ranges are close to LARR8 with slight differences.
LARR8 has higher accuracy than the pure regression by SVR at lower error levels
(1–6), but close to it at higher error levels. The cumulative scores of the pure SVM
are much lower than the pure SVR for most error levels, which indirectly indicates
the significance of constraining the SVM search in a local range. The LARR method
performs much better than the QM and MLP methods. The method of RUN1 [47]
is close to our LARR in low age error levels, but worse than LARR in high levels.
In contrast, the method of RUN2 [46] is close to our LARR in high age error levels,
but worse than the LARR in low error levels. Overall, the LARR method has higher
accuracy than both the RUN1 and RUN2 on the FG-NET database.

Following the idea of combining the SVR with SVMs in the LARR method
[21, 23], we proposed a PFA to combine the classifiers with regression in a
probabilistic manner [22]. The PFA method can avoid the search range selection
in LARR. To validate the PFA method, we performed age estimation experiments
[22] on the Yamaha and FG-NET databases using the same protocol and data. The
experimental results are shown in the last row in Table 8.2. The first and second
columns in Table 8.2 show the MAEs for females and males in the Yamaha aging
database, respectively. The last column shows the MAEs on the FG-NET aging
database. From the table, we can see that the PFA method can improve the age
estimation accuracies over the LARR method, in addition to the determination of
local adjustment automatically.
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Table 8.3 Numbers of male and female faces in
the three age groups of the Yamaha aging database:
young, adult, and senior

Young Adult Senior All ages
(0–19) (20–60) (61–93) (0–93)

Male 1,000 2,050 950 4,000
Female 1,000 2,050 950 4,000
Both 2,000 4,100 1,900 8,000

In summary, we have shown that the SVM and the regression formulations can do
well for age estimation. Age estimation can be considered as either a regression or
a classification problem. Different results might be obtained in different databases,
when classification or regression is applied. We proposed two methods to combine
the SVR and SVM in order to improve the performance in age estimation. Both the
LARR and PFA methods can take advantage of the SVM classifiers and the SVR
for an improved performance.

8.7.2 Gender Classification

Gender classification is an interesting topic in both psychology [3, 44, 45] and
computer vision [2, 28, 34, 48]. In computational approaches, various methods
have been proposed for gender classification based on different facial image
representations and classifier learning. Some typical approaches were listed in [24].
Among the different methods, an earlier work [34] applied the SVM to raw face
images for gender classification.

We have studied the influence of age on gender classification in [24], based on
several face image representations. The Yamaha database was used for the study.
The number of males and females in each age group is shown in Table 8.3. One can
see that it is very balanced for males and females in the database.

In addition to the raw face images, the LBP, HOG, and BIF features were used
for gender recognition experimentally [24]. The goal was to evaluate the influence
of age on gender recognition using several facial representations.

Both LBP and HOG features were extracted from each face image at various
patch positions for the three age groups. Face images are of size 60× 60, and the
patch size is 16× 16 with an interval of eight pixels between neighboring patches.
The HOG operator has eight directions as in [6], and the LBP operator uses the
uniform pattern as in [1]. Since HOG features were initially used with a linear SVM
for pedestrian detection [6], we also show gender classification results based on
linear SVMs (labeled as L-SVM) in addition to nonlinear SVMs with the RBF
kernel (denoted as N-SVM). The LBP operator can be applied to the whole face
image (denoted as LBP(W)) or applied to small patches on the face (denoted as
LBP(P)). The patch-based LBP is much better than the whole face-based LBP in
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Table 8.4 Gender recognition with different repre-
sentations: raw pixels, LBP, HOG, and BIF, using the
linear SVM (L-SVM) or nonlinear SVM (N-SVM)
with the RBF kernel as classifiers [24]

Methods
Young Adult Senior
(0–19) (20–60) (61–93)

Raw + L-SVM 78.59 % 89.91 % 81.17 %
Raw + N-SVM 84.38 % 94.56 % 85.32 %
LBP(W) + L-SVM 68.17 % 72.33 % 63.40 %
LBP(W) + N-SVM 69.65 % 77.08 % 68.40 %
LBP(P) + L-SVM 79.76 % 92.65 % 87.55 %
LBP(P) + N-SVM 81.93 % 94.96 % 90.64 %
HOG + L-SVM 75.83 % 88.00 % 77.13 %
HOG + N-SVM 86.44 % 94.03 % 89.04 %
BIF + L-SVM 83.01 % 94.22 % 91.81 %
BIF + N-SVM 87.13 % 96.03 % 92.34 %
Average(L-SVM) 80.52 % 91.20 % 84.42 %
Average(N-SVM) 84.97 % 94.90 % 89.34 %

gender recognition, as shown in Table 8.4. In each case, the parameters of the SVM
are adjusted to optimal values on a tuning set (part of the training data).

8.7.2.1 HOG Feature

When the HOG features are used with nonlinear SVMs, gender recognition
accuracies were 86.44 %, 94.03 %, and 89.04 %, for the young, adult, and senior
groups, respectively, as shown in row 8 of Table 8.4. When compared with the
“Raw+SVM” approach, the accuracies improved from 84.38 % to 86.44 % for
the young faces, and improved from 85.32 % to 89.04 % for seniors, while the
accuracy of 94.03 % for adults is slightly lower than the 94.56 % based on raw pixel
representation. These results demonstrate that the HOG operator can characterize
shape and improve recognition accuracies for young and senior faces. However, the
two improved accuracies are still much lower than the 94.03 % accuracy for adult
faces. On the other hand, the results indicate that the “Raw+SVM” approach is still
good for gender recognition on adult faces.

We further explain the result [24] as: (1) adult male and female faces have local
shape differences that can be described by the HOG operator and (2) shape changes
in young faces and wrinkles in senior faces result in gradient variations that can be
encoded by the HOG operator to some extent. However, the HOG performs much
better for gender recognition on adult faces than on young and senior faces.

Also notice that linear SVMs performed much worse than kernel SVMs for each
age group, as shown in rows 7 and 8 of Table 8.4.
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8.7.2.2 LBP Feature

When LBP features were used with kernel SVMs, gender recognition accuracies
were 81.93 %, 94.96 %, and 90.64 % for the young, adult, and senior groups,
respectively, as shown in row 6 of Table 8.4. Here “P” represents patch-based
LBP. When compared with the “Raw+SVM” approach, LBP features improved
gender recognition accuracy for seniors (from 85.32 % to 90.64 %), but this is still
lower than the accuracy of 94.96 % for adult faces. More interestingly, the accuracy
reduced to 81.93 % for young faces, which is even lower than the 84.38 % accuracy
of the “Raw+SVM” approach, and much lower than the 94.96 % accuracy for adult
faces. Again, gender recognition performance is very different for the three age
groups using LBP features: high performance for adult faces, lower performance
for senior faces, and very low performance for young faces. Possible reasons for this
phenomenon are: (1) adult male and female faces have local texture differences that
can be described well by the LBP operator and (2) complex textures (e.g., wrinkles)
on senior faces can also be described well by the LBP operator. For young faces,
facial textures are not very rich and the main changes are facial shapes where the
LBP operator does not work well [24].

It should be mentioned that linear SVMs with LBP features did not perform well
for gender as shown in row 5 of Table 8.4. In addition, the LBP operator performed
much worse when applied to whole faces, as shown in rows 3 and 4 of Table 8.4, no
matter what classifier was used.

8.7.2.3 BIF Feature

For the biologically inspired features [26], we need to find the best structure and
setting. To simplify the process, the gender recognition is performed over all ages
first. A twofold cross validation was used as the test scheme. The same divisions
of training and test data are used for all algorithms here, either over all ages or at
separate age groups.

First, we evaluated the C2 features with a nonlinear SVM for gender classifi-
cation over all ages. The feature extraction process is almost the same as that in
[40]. The only difference is the number of prototypes to represent the gender. Since
we have 8,000 images for the two-class classification problem, a small number
of prototypes cannot work well (not shown here). We let the algorithm randomly
select 2,000 prototypes from the female faces for S2 and C2 feature calculations.
An accuracy of 81.05 % was obtained. This result is much worse than the 89.28 %
using the raw pixel representation, the 88.65 % accuracy of the HOG method, and
the 90.53 % of the LBP, shown in Table 8.4. We also randomly selected 2,000
prototypes from the male faces, and the result was 81.00 %—almost the same.
Finally, we also let the algorithm randomly select 4,000 prototypes from both males
and females, and got an accuracy of 83.00 %—still very low. From this experiment,
we believe that C2 features do not work well for gender recognition. We notice that
Meyers and Wolf [33] did not use C2 features in their face recognition problem,



294 G. Guo

but they did not show any results when C2 features were used for face recognition.
Based on our experience, C2 features are not a good choice for face-based gender
classification, although these features demonstrated super performance on object
category recognition [35, 40].

When the proper structure is determined for the BIF features, a better result can
be obtained. More details about the BIF can be found in [24]. The results of BIF with
both linear and nonlinear SVMs are given in Table 8.4. One can see that the kernel
SVM performs better than the linear SVM in each age group. The BIF features
combined with the kernel SVM can perform better than all other approaches in our
comparisons.

8.7.2.4 Summary

We have shown the performance of the SVM for gender classification on a large
database. The nonlinear SVM with the RBF kernel can perform significantly better
than the linear SVM in all cases. Different methods have been used for facial
image representation in the context of gender classification. The BIF features are
better than the LBP and HOG features. More interestingly, we have shown that
the gender classification is affected by ages. The adult faces can provide a much
higher accuracy for gender classification than on young or senior faces. This was
discovered quantitatively for the first time [24].

8.7.3 Ethnicity Estimation

We study ethnicity classification under variations of gender and age [15], using
the SVM [41] as the classifier. We investigate whether the ethnicity estimation
performance is affected by other human attributes, such as gender and age. Towards
this goal, we designed experiments under two situations: (1) using female faces to
learn an ethnicity classifier and then apply to males, and vice versa, and (2) learning
ethnicity classifiers using faces from three age groups, and testing with different age
groups.

The data were selected from the MORPH database [39] for this study [15].
The distribution of the selected data is shown in Table 8.5. The BIF features
[26] were used for facial image characterization combined with manifold learning
techniques [15].

8.7.3.1 Ethnicity w.r.t. Gender

To study whether the performance of ethnicity classification is affected by gender,
we learn the ethnic classifiers using female and male faces, separately. Then we
test the performance on the same and different gender to observe the difference.
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Table 8.5 The distribution of the data selected from
MORPH for the study

Female Male Female and male

White 2,570 7,960 10,530
Black 2,570 7,960 10,530
White and black 5,140 15,920 21,060

Table 8.6 A study of ethnicity estimation with respect to gender [15]

Train. Test

Ethnicity classification concerning gender

Comments

BIF BIF+PCA BIF+OLPP

Accu- Accuracy Accu- Accuracy Accu- Accuracy
racy decrease racy decrease racy decrease

F1 F2 98.7 % – 98.9 % – 99.1 % – Same gender
M1 94.0 % 4.8 % 93.7 % 5.3 % 90.3 % 8.9 % Female→Male
M2 94.1 % 4.7 % 93.8 % 5.2 % 90.4 % 8.8 % Female→Male

F2 F1 98.6 % – 98.9 % – 99.3 % – Same gender
M1 91.4 % 7.3 % 90.9 % 8.1 % 92.3 % 7.1 % Female→Male
M2 91.4 % 7.3 % 91.1 % 7.9 % 92.2 % 7.2 % Female→Male

M1 M2 98.8 % – 98.8 % – 99.1 % – Same gender
F1 96.8 % 2.0 % 97.2 % 1.6 % 97.7 % 1.4 % Male→ Female
F2 96.5 % 2.3 % 97.1 % 1.7 % 97.3 % 1.8 % Male→ Female

M2 M1 98.7 % – 98.7 % – 98.8 % – Same gender
F1 97.5 % 1.2 % 97.6 % 1.1 % 98.3 % 0.5 % Male→ Female
F2 97.1 % 1.6 % 97.3 % 1.4 % 97.6 % 1.2 % Male→ Female

F1 F2 98.7 % – 98.9 % – 99.1 % – Same gender
M1S 93.9 % 4.9 % 93.1 % 5.9 % 89.6 % 9.6 % Female→MaleS

M2S 94.1 % 4.7 % 94.1 % 4.9 % 90.5 % 8.7 % Female→MaleS

F2 F1 98.6 % – 98.9 % – 99.3 % – Same gender
M1S 90.6 % 8.1 % 90.4 % 8.6 % 91.9 % 7.5 % Female→MaleS

M2S 91.7 % 7.0 % 91.7 % 7.3 % 92.5 % 6.8 % Female→MaleS

M1S M2S 98.4 % – 98.6 % – 99.0 % – Same genderS

F1 96.2 % 2.2 % 96.8 % 1.8 % 96.9 % 2.1 % MaleS → Female
F2 95.8 % 2.6 % 96.3 % 2.3 % 96.6 % 2.4 % MaleS → Female

M2S M1S 98.3 % – 98.7 % – 98.8 % – Same genderS

F1 96.4 % 1.9 % 97.3 % 1.4 % 97.6 % 1.2 % MaleS → Female
F2 96.3 % 2.0 % 97.0 % 1.7 % 97.2 % 1.6 % MaleS → Female

There are two ethnic groups, white (W) and black (B). So we have four groups with gender: white
female (WF), black female (BF), white male (WM), and black male (BM). Each of the four groups
is randomly divided into two subgroups for cross validations.

Through comparisons, we can infer the effect of gender difference on ethnicity
estimation [15].

For the selected data shown in Table 8.5, we have four groups, black female
(BF), white female (WF), black male (BM), and white male (WM). Within each
group, the data are randomly divided into two subgroups, labeled as 1 and 2, in
order to do cross validations. Suppose we choose one subgroup from the BF and
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another subgroup from WF to learn the ethnic classifier, labeled as F1 = BF1 +
WF1, without any loss of generality. Then we can test the performance on female or
male faces. Remember that we have another female data set, denoted as F2 = BF2 +
WF2, and two subsets for male faces, M1 = BM1 + WM1, and M2 = BM2 + WM2.
For ethnicity estimation with the same gender, the subset F2 is tested, denoted as F1
→ F2. For different gender evaluation, we use M1 and M2 for testing, denoted as
F1→M1 and F1→M2. Similarly, we can use F2, M1, or M2 for training, and use
the remaining data for testing.

The experimental results are shown in Table 8.6. We have 16 ethnicity classifica-
tion experiments for each face representation. So there are 48 experiments in total,
using the three face representations. The original dimensionality of the BIF is 4,376.
It is reduced to about 500 using PCA, and reduced to about 100 using OLPP. These
numbers are kept the same throughout the experiments.

The 48 experiments can be categorized into three kinds of ethnicity classifica-
tions: same gender, female → male, and male → female. From Table 8.6, we can
observe that (1) for ethnicity estimation using the same gender, the classification
accuracies are very high (from 98.6% to 99.3%) for all three face representations.
This demonstrates that our face representations have very good performance for
ethnicity estimation; (2) for ethnicity estimation of male → female (using male
faces to learn and females to test), the classification accuracies are slightly lower
than using the same gender, ranging from 96.5 % to 98.3 %, but the accuracy
decreases (accuracy difference between the cases of cross-gender and the same
gender using the same training data, divided by the accuracy in the same gender
case) are relatively small, e.g., from 0.5 % to 2.3 %; and (3) for ethnicity estimation
of female→ male, the classification accuracies range from 90.3 % to 94.1 %, with
quite large accuracy decreases, e.g., from 4.7 % to 8.9 %, corresponding to different
face representations.

One might notice that the number of female faces is smaller than males in
Table 8.5. Do the accuracy differences come from the different sample sizes? To
check this issue, we reduce the number of males in Table 8.5 to make the number
of males equal to females. Specifically, we randomly chose partial males from M1
(i.e., 1,285 faces) and from M2 (1,285 faces), denoted as M1S and M2S, respectively.
Now, F1, F2, M1S, and M2S have the same number of faces. Then we use the
reduced data set to re-learn the ethnicity classifiers, and re-perform the 48 ethnic
classification experiments, with the results shown in the lower part of Table 8.6.
One can see that almost the same accuracy decreases can be observed from the
equal-sized-data experiments.

As a result, our study demonstrates that ethnicity estimation is influenced by
gender significantly when the female faces are used for training while males for
testing, i.e., female → male. However, the reversed process (male → female) has
some influence but not very significant. This unsymmetric influence is interesting.
We are not very clear about how to interpret this phenomenon yet; however, we
hope the computational results inspire more psychological studies [37,49,50] to get
a reasonable interpretation.
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8.7.3.2 Ethnicity w.r.t. Age

To study whether ethnicity estimation is affected by age [15], we divided the data
set into three age groups, labeled as A, B, and C. The partition considers the number
of face images in different age groups to make them comparable, since the original
data in MORPH do not have balanced number of faces at each age. Based on this
and the age range (from 16 to 67 years), we determined that age group A contains
ages less than or equal to 25 years, group B has ages greater than 25 but less than or
equal to 40, and group C contains ages above 40. Remember that we still need two
subgroups (1 and 2) within each age group for the purpose of cross validations, and
each subgroup has both black and white faces to learn the ethnic classifier. The final
distribution of the age groups is that A1 (2,756 faces, 16 ≤ age ≤ 25), B1 (4,508
faces, 25 < age ≤ 40), C1 (3,266 faces, 40 < age ≤ 67), A2 (2,756 faces, 16 ≤
age≤ 25), B2 (4,508 faces, 25 < age≤ 40), and C2 (3,266 faces, 40 < age≤ 67).
Not strictly, we name groups A, B, and C as young, middle, and old to make it easier
to interpret the results.

Then we use one age group to train the ethnicity classifier, and the remaining
age groups for testing. There are 30 ethnicity estimation experiments for each
face representation, and there are 120 experiments in total given the three face
representations. The experimental results are given in Table 8.7.

From the table, we can observe that (1) for ethnicity estimation within the same
age group, i.e., A1↔ A2, B1↔ B2, C1↔ C2, the ethnic classification accuracies
can be very high, ranging from 98.3% to 99.1%, using the three face representations.
(2) for ethnicity estimation with different age groups for training and testing, most
of the results still have high accuracies, e.g., from 97.6% to 98.7%, for young ↔
middle, middle↔ old, and old→ young. In comparison with the same age group
results, the accuracy decreases are relatively small, ranging from 0.0% to 1.3%,
using three face representations. In the case of young→ old, the accuracy decreases
are slightly larger, e.g., from 2.0% to 2.7%, but not so significant as the gender
influence on ethnicity estimation in the case of female→ male.

8.7.3.3 Summary

We can reorganize the above experimental results by averaging over the subcases,
so that one can observe the performance more directly. The new results are shown in
Table 8.8. From the results, we can easily observe that (1) ethnicity estimation can
have very high accuracies if it is performed within the same gender and age groups;
(2) our face representations based on biologically inspired features with or without
manifold learning show high performance in ethnicity classification; (3) ethnicity
estimation can be affected in the cross-gender case of female→male, with accuracy
decreases of 6∼8 % in average, which is significantly different from the situations
of the same gender and male→ female; (4) ethnicity estimation is not affected very
much under the situation of cross-age.
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Table 8.7 A study of ethnicity estimation with respect to age [15]

Train. Test

Ethnicity classification concerning age

Comments

BIF BIF+PCA BIF+OLPP

Accu- Accuracy Accu- Accuracy Accu- Accuracy
racy decrease racy decrease racy decrease

A1 A2 98.4 % – 98.5 % – 99.0 % – Same age group
B1 97.7 % 0.7 % 97.8 % 0.7 % 98.2 % 0.8 % Young→Middle
B2 97.7 % 0.7 % 97.8 % 0.7 % 98.4 % 0.6 % Young→Middle
C1 95.9 % 2.5 % 96.0 % 2.5 % 96.8 % 2.2 % Young→ Old
C2 95.7 % 2.7 % 95.8 % 2.7 % 96.3 % 2.7 % Young→ Old

A2 A1 98.5 % – 98.5 % – 98.8 % – Same age group
B1 97.7 % 0.8 % 97.9 % 0.6 % 98.3 % 0.5 % Young→Middle
B2 98.3 % 0.2 % 98.2 % 0.3 % 98.5 % 0.3 % Young→Middle
C1 96.3 % 2.2 % 96.3 % 2.2 % 96.8 % 2.0 % Young→ Old
C2 95.8 % 2.7 % 95.8 % 2.7 % 96.2 % 2.6 % Young→ Old

B1 B2 98.9 % – 98.7 % – 99.1 % – Same age group
A1 98.1 % 0.8 % 98.3 % 0.4 % 98.6 % 0.5 % Middle→ Young
A2 98.5 % 0.4 % 98.2 % 0.5 % 98.7 % 0.4 % Middle→ Young
C1 97.7 % 1.2 % 97.9 % 0.8 % 98.1 % 1.0 % Middle→ Old
C2 97.6 % 1.3 % 97.8 % 0.9 % 98.2 % 0.9 % Middle→ Old

B2 B1 98.7 % – 98.8 % – 99.0 % – Same age group
A1 98.3 % 0.4 % 98.3 % 0.5 % 98.4 % 0.6 % Middle→ Young
A2 98.5 % 0.2 % 98.4 % 0.4 % 98.7 % 0.3 % Middle→ Young
C1 97.9 % 0.8 % 97.8 % 1.0 % 97.7 % 1.3 % Middle→ Old
C2 98.0 % 0.7 % 97.8 % 1.0 % 98.2 % 0.8 % Middle→ Old

C1 C2 98.7 % – 98.7 % – 98.8 % – Same age group
A1 98.1 % 0.6 % 98.1 % 0.6 % 98.1 % 0.7 % Old→ Young
A2 98.1 % 0.6 % 98.3 % 0.4 % 98.2 % 0.6 % Old→ Young
B1 98.4 % 0.3 % 98.3 % 0.4 % 98.6 % 0.2 % Old→Middle
B2 98.4 % 0.3 % 98.4 % 0.3 % 98.6 % 0.2 % Old→Middle

C2 C1 98.3 % – 98.3 % – 98.7 % – Same age group
A1 97.8 % 0.5 % 97.7 % 0.6 % 98.0 % 0.7 % Old→ Young
A2 97.6 % 0.7 % 98.0 % 0.3 % 97.9 % 0.8 % Old→ Young
B1 98.2 % 0.1 % 98.0 % 0.3 % 98.5 % 0.2 % Old→Middle
B2 98.3 % 0.0 % 98.3 % 0.0 % 98.6 % 0.1 % Old→Middle

The data set is divided into three age groups: Young or A (age ≤ 25 years), Middle or B (age ≤
40), and Old or C (age > 40). Each age group is randomly divided into two subgroups for cross
validations.

8.7.3.4 Usefulness of the Study

Our study results have applications in many real problems. For example, for a large
database containing multiple ethnic groups, one may categorize the ethnic groups
before age estimation [25, 36], since the ethnicity estimation is not very sensitive
to age variations from our studies. Categorizing into different ethnicity groups
may reduce the age estimation errors [36] significantly. For the problem of gender
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Table 8.8 A summary of our studies on ethnicity classification versus the changes of gender and
age groups [15]

Ethnicity classification

BIF BIF+PCA BIF+OLPP

Versus Average Accuracy Average Accuracy Average Accuracy
Gender or age accuracy decrease accuracy decrease accuracy decrease

Same gender 98.7 % – 98.8 % – 99.1 % –
Female→Male 92.7 % 6.1 % 92.4 % 6.5 % 91.3 % 7.9 %
Male→ Female 97.0 % 1.7 % 97.3 % 1.5 % 97.7 % 1.4 %
Same genderS 98.5 % – 98.8 % – 99.1 % –
Female→MaleS 92.6 % 6.0 % 92.3 % 6.7 % 91.1 % 8.1 %
MaleS → Female 96.2 % 2.3 % 96.9 % 1.9 % 97.1 % 2.0 %
Same age group 98.6 % – 98.6 % – 98.9 % –
Young→Middle 97.9 % 0.7 % 97.9 % 0.7 % 98.4 % 0.5 %
Young→ Old 95.9 % 2.7 % 96.0 % 2.6 % 96.5 % 2.4 %
Middle→ Young 98.4 % 0.2 % 98.3 % 0.3 % 98.6 % 0.3 %
Middle→ Old 97.7 % 0.9 % 97.8 % 0.8 % 98.1 % 0.8 %
Old→ Young 97.9 % 0.7 % 98.0 % 0.6 % 98.1 % 0.8 %
Old→Middle 98.3 % 0.3 % 98.3 % 0.3 % 98.6 % 0.3 %

classification [24,48] on a large database with multiple ethnic groups, one may also
perform ethnic classification first, and then gender recognition is performed within
each single ethnic group, since in most cases, the ethnicity estimation is not very
sensitive to gender variations based on our studies [15]. We believe that multi-ethnic
databases will be more and more popular in computer vision research, considering
more databases are collected from the Internet, such as in [36]. We expect more
research work will be reported on multi-ethnic face image databases in the near
future.

On the other hand, our study based on computational analysis may inspire
more psychological studies on ethnic grouping [37, 49, 50] related to age and
gender variations. Interpretations about our results could be derived from further
psychological studies.

8.8 Conclusions

We have presented the applications of the SVM to soft biometrics recognition in
face images. The SVM can have very good performance for gender and ethnicity
classification, when combined with appropriate features to characterize the facial
appearance. For age estimation, we showed the performance of the SVM and SVR
on two databases, since age estimation can be considered either a classification or a
regression problem. We found that the two approaches can perform quite differently
on different databases. A better way is to combine them to take advantage of both.
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Two schemes, called LARR and PFA, have been proposed to integrate the SVM
with SVR and validated for age estimation. The performance can be improved
significantly when these schemes are used for age estimation. Further, we studied
the influence of age on gender classification, and also the influence of age and
gender on ethnicity estimation, based on the SVM classifiers. Overall, the SVM
and their extensions are very useful for learning soft biometric characteristics from
face images.
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