


Springer Series on
SIGNALS AND COMMUNICATION TECHNOLOGY



SIGNALS AND COMMUNICATION TECHNOLOGY

Sensor Networks
G. Ferrari (Ed.)
ISBN 978-3-642-01340-9

Grid Enabled Remote Instrumentation
F. Davoli, N. Meyer, R. Pugliese, S. Zappatore
ISBN 978-0-387-09662-9

Usability of Speech Dialog Systems
Th. Hempel
ISBN 978-3-540-78342-8

Handover in DVB-H
X. Yang
ISBN 978-3-540-78629-0

Multimodal User Interfaces
D. Tzovaras (Ed.)
ISBN 978-3-540-78344-2

Wireless Sensor Networks and Applications
Y. Li, M.T. Thai, W. Wu (Eds.)
ISBN 978-0-387-49591-0

Passive Eye Monitoring
R.I. Hammoud (Ed.)
ISBN 978-3-540-75411-4

Digital Signal Processing
S. Engelberg
ISBN 978-1-84800-118-3

Digital Video and Audio Broadcasting
Technology
W. Fischer
ISBN 978-3-540-76357-4

Satellite Communications and Navigation
Systems
E. Del Re, M. Ruggieri (Eds.)
ISBN 978-0-387-47522-6

Three-Dimensional Television
H.M. Ozaktas, L. Onural (Eds.)
ISBN 978-3-540-72531-2

Foundations and Applications of Sensor
Management
A.O. Hero III, D. Castañón, D. Cochran,
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A. Dı́az Pérez, and C.K. Koc
ISBN 0-387-33956-6

Multimedia Database Retrieval
A Human-Centered Approach
P. Muneesawang and L. Guan
ISBN 0-387-25627-X

Broadband Fixed Wireless Access
A System Perspective
M. Engels and F. Petre
ISBN 0-387-33956-6

Distributed Cooperative Laboratories
Networking, Instrumentation, and Measurements
F. Davoli, S. Palazzo and S. Zappatore (Eds.)
ISBN 0-387-29811-8

The Variational Bayes Method
in Signal Processing
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Preface

The idea of this book comes from the observation that sensor networks represent
a topic of interest from both theoretical and practical perspectives. The title under-
lines that sensor networks offer the unique opportunity of clearly linking theory
with practice. In fact, owing to their typical low-cost, academic researchers have
the opportunity of implementing sensor network testbeds to check the validity of
their theories, algorithms, protocols, etc., in reality. Likewise, a practitioner has the
opportunity of understanding what are the principles behind the sensor networks
under use and, thus, how to properly tune some accessible network parameters to
improve the performance.

On the basis of the observations above, the book has been structured in three
parts: Part I is denoted as “Theory,” since the topics of its five chapters are apparently
“detached” from real scenarios; Part II is denoted as “Theory and Practice,” since
the topics of its three chapters, altough theoretical, have a clear connection with
specific practical scenarios; Part III is denoted as “Practice,” since the topics of its
five chapters are clearly related to practical applications.

In Part I, the first chapter, by H. V. Poor, examines ways in which interactions
among nodes in wireless networks can lead to greater efficiencies in the use of
wireless resources. The second chapter, by S. Sundhar Ram, V. V. Veeravalli, and
A. Nedic, develops and analyzes distributed and recursive algorithms for nonlinear
regression-based parameter estimation in sensor networks. The third chapter, by
A. Prasath, A. Venuturumilli, A. Ranganathan, and A. A. Minai, describes a series
of distributed methods for self-organized configuration of heterogeneous sensor
networks, and evaluates their performance using optimal configurations obtained
through an evolutionary algorithm. The fourth chapter, by A. Scaglione, Y.-W. P.
Hong, and B. S. Mergen, discusses cooperative source and channel coding strategies
and their performance in very dense sensor networks. The fifth and final chapter
of this part, by C. Fragouli, K. Argyraki, and L. Keller, provides an overview of
existing and emerging sensor network protocols that enable reliable communication
in the presence of node and channel failures under energy constraints.

In Part II, the first chapter, by S. Palazzo, F. Cuomo, and L. Galluccio, introduces
a taxonomy of the main approaches for data aggregation recently proposed in wire-
less sensor networks and presents a comparison between different data aggregation
perspectives. The second chapter, by J. Lu, Y. Pan, S. Yamamoto, and T. Suda,

vii
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studies data dissemination resilient to large scale sensor failures by replicating data
to a set of sensors forming a geographical trajectory. The third and final chapter of
this part, by D. Akselrod, T. Lang, M. McDonald, and T. Kirubarajan, focuses on a
problem of decision-based control of a network of sensors carrying out surveillance
over a region that includes a number of moving targets, with particular application
to multisensor multitarget tracking.

In Part III, the first chapter, by J. Beutel, K. Roemer, M. Ringwald, and
M. Woehrle, surveys prominent examples of deployment techniques for sensor
networks, identifies and classifies causes for errors and pitfalls, and presents a
number of wireless sensor network specific techniques and tools for an increased
understanding of the causes of such failures. The second chapter, by J.-M. Dricot,
G. Bontempi, and P. De Doncker, begins with a survey of state-of-the-art techniques
for localization and then proceeds to more elaborate and recent approaches, based on
machine learning, automatic data classification, and sensor fusion techniques. In the
third chapter, J.-H. Cui, R. Ammar, Z. Shi, Z. Zhou, S. Ibrahim, and H. Yan, investi-
gates how to smartly utilize surface radios to enhance capability-limited underwater
acoustic sensor networks. In the fourth chapter, by M. C. Vuran and A. R. Silva,
theoretical and practical insights on the problem of communication through soil
for wireless underground sensor networks is provided. The fifth and final chapter
of this part, by D. McIlwraith and G.-Z. Yang, discusses recent advances in body
sensor networks which permit pervasive sensing of detailed physiological signals
from implantable, wearable, and ambient sensors.

Finally, I would like to thank those who have made the realization of this book
possible. First of all, I am indebted to Dr. Cristoph Bauman, my Springer Engi-
neering Editor, for supporting the idea of this book from the very first discussion
at the beginning of 2008. Needless to say, all researchers that have contributed
to this book are kindly acknowledged: without them, this would not have been
possible – I hope that the fact that they are all from academia will not disproof the
very idea of the book. Last, but not least, my sincere gratitude goes to a few members
of our little Wireless Ad-hoc and Sensor Networks (WASN) Lab at the University of
Parma, namely Marco Martalò, Paolo Medagliani, and Stefano Busanelli, for their
help in the editing process and for sharing the interest in sensor networking.

Parma, Italy Gianluigi Ferrari
November 16, 2009
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Part I
Theory



Competition and Collaboration in Wireless
Sensor Networks

H. Vincent Poor

Abstract Wireless sensor networks present a number of challenges to system
designers, including notably the efficient use of limited resources such as bandwidth
and energy. One way that such challenges have been addressed in recent years is
through an examination of interactions among nodes that can lead to greater effi-
ciencies in the use of wireless resources. This chapter examines two types of such
interactions: competition among nodes in infrastructure networks, and collabora-
tion among nodes in ad hoc networks. In the first context, the network is viewed
as an economic system, in which sensors behave as agents competing for radio
resources to optimize the energy efficiency with which they transmit messages. A
game theoretic formalism is used to analyze the effects of various design choices
and constraints on energy efficiency. In the second context, collaborative techniques
for optimizing the use of radio resources are considered. Here, the focus is primarily
on distributed inference, in which distinctive features of wireless sensor networks
can be exploited through collaboration among nodes to effect a tradeoff between
inferential accuracy and energy consumption.

1 Introduction

Over the past 20–25 years there has been considerable interest, and a number of
major research developments, in the physical layer of wireless networks. Promi-
nent examples include multiple-antenna (MIMO) systems [6], multiuser detection
[39, 41], and turbo processing [32], to name just three. These major advances in
the physical layer have made a major difference in the way we think about wireless
networks at the link level. Although of course there remain many interesting and
important open problems at the physical layer, since roughly the turn of this century
interest in the area of wireless has shifted noticeably from the performance of indi-
vidual links to the interactions among the nodes of the network. There are two basic
modes of such interaction, competition and collaboration. Examples of competitive

H.V. Poor (B)
Princeton University, Princeton, NJ, USA
e-mail: poor@princeton.edu

G. Ferrari (ed.), Sensor Networks, Signals and Communication Technology,
DOI 10.1007/978-3-642-01341-6 1, C© Springer-Verlag Berlin Heidelberg 2010
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4 H.V. Poor

behavior in wireless networks include cognitive radio, in which users compete for
spectrum; information theoretic security, in which an intended recipient of a mes-
sage is in essence competing with an eavesdropper; and the use of game theory in the
modeling, analysis and design of networks, in which sensors compete for the physi-
cal resources of a network to accomplish their own objectives. Alternatively, the use
of collaboration among the nodes of a wireless network has also gained currency.
Notable examples include network coding, cooperative transmission and relaying,
multi-hop networking, collaborative beam-forming, and collaborative inference. All
of these topics are areas that have arisen relatively recently in the community and
they involve primarily node interactions rather than link layer issues.

These issues play no less a role in the design and analysis of wireless sensor
networks than in other type of wireless network, and in this chapter, we will examine
these two modes of node interaction by considering an illustrative example of each
type that is particularly relevant to sensor networking. Both of these examples are
addressing the key issue of energy efficiency, one by examining data transfer in a
relatively basic setting, and the other by looking at the overarching application of the
network. The first of these problem is the area of energy games in multiple access
networks, in which sensors compete for wireless resources so as to optimize their
individual energy efficiencies in transmitting data to a common access point, or data
collection site. The other is the problem of collaborative inference, in which sensor
terminals collaborate locally to perform distributed inference without the need to
communicate their data to a common (possibly distant) access point. Each of these
models has a role in practical sensor networks, and which is most relevant to a
given system depends on the particular network deployment. Nevertheless, taken
together, these examples illustrate some of the basic principles and issues arising in
node-level behavior of wireless sensor networks.

2 Energy Games in Multiple-Access Networks

We begin by considering the situation in which wireless sensors communicate their
data to an access point via an infrastructure network using a multiple access proto-
col, as illustrated in Fig. 1. We can think of such a network as being like an economic
system, in which the sensors behave as economic agents competing for resources in
order to maximize their own utilities. (This view of network behavior is sometimes
termed “economorphic” networking – e.g., V. Rodriguez, 2008, personal communi-
cation.) In this case, utility is based on the transfer of data up to the access point as
efficiently as possible. Because this is a multiple access network, the actions of one
sensor affect the utilities of the other sensors. So, we can model this situation as a
competitive, or non-cooperative, game, and we can examine the particular situation
in which the utility to the sensors is measured in terms of energy efficiency – that is,
in bits-per-joule.

More specifically, we can think of a game having K players, where K is the
number of sensors that are competing to communicate to the access point. Each
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Access PointAccess Point

SensorsSensors

Fig. 1 Sensors transmit their data to a common access point via a shared (multiple-access) channel

sensor has a set of strategies, or actions (Ak for the kth sensor), and a utility function.
Setting aside the set of strategies for now, as noted above the utility function of
interest here is the energy efficiency, which can be measured as throughput divided
by transmit power. That is, for sensor k, the utility can be written as

uk = Tk

pk
, (1)

where Tk denotes the sensor’s throughput (or, goodput, as we are interested only
in successful transmissions) and pk denotes the sensor’s transmit power. Since
throughput is measured in units of bits per second, and transmit power in units of
watts, or joules per second, the units of this utility are bits-per-joule, as desired.

The transmit power pk in (1) is a very straightforward quantity, but the through-
put needs to be modeled a bit more carefully in order to have an analytically tractable
problem. Generally speaking, the throughput of a given sensor terminal is its trans-
mission rate multiplied by its frame success rate; i.e., this is the goodput. Adopt-
ing a model from [15], the frame success rate can be modeled as an instantaneous
function, say f , of the received signal-to-interference-plus-noise ratio (SINR) with
which that users transmissions are received at the access point, post processing
but before data detection. This is, of course, an idealization, since we know that
the frame success rate is not always an exact function of the SINR. But this is a
reasonable approximation for many modulation formats and receivers of interest.
The nice thing about this model is that it allows us to abstract the physical layer
into the function f . That is, we can lump the entire physical layer, except for the
SINR, into f . So, f includes all the things you might think as lying in the physical
layer: the modulation, the noise and channel models, the packet length, and so forth.
Because the SINR for a given user contains the transmitted power of that user in its
numerator, and the powers of all the other users in its denominator (recall that this is
a multiple-access channel), we can see why this is a competitive game: if one user
turns up its transmit power, it will positively influence its own SINR and negatively
influence the SINRs of all the other users. So, this is essentially a game on SINR.

Before continuing, we note one minor problem with this model, and a corre-
sponding solution to the problem. Namely, the frame success rate is not zero, even
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when no signal is transmitted, as the receiver has some non-zero (albeit trivially
small) probability of correctly guessing a transmitted packet even in the absence of
observations. This means that the utility is unbounded as pk approaches zero, and
thus, any user can achieve infinite utility simply by transmitting nothing. A useful
way around this problem is that suggested in [15], which is to replace the frame
success rate with an approximation that is zero when zero power is transmitted.
Thus, in this model, the function f will be taken to be of this latter type, in which
case it is known as the efficiency function. A practically meaningful example is

f (γ ) = (
1 − e−γ

)n
, (2)

where γ is the post-processing received SINR, and n is the packet length. The effi-
ciency function of (2) approximates the frame success rate of binary phase shift
keying (BPSK) operating over an additive white Gaussian noise (AWGN) channel.

Let us now examine a specific example of this game, in which we fix the access-
point receiver to be a linear multiuser detector – say, a matched filter, a decorrela-
tor (i.e., zero-forcing detector) or a minimum-mean-square-error (MMSE) detector
(see, e.g., [39, 41]). The set of strategies available to each player in this game is
to vary its transmitter power, up to a maximum possible value, so as to maximize
its own utility; that is, this is a power control game. This game has been studied
in [27] where it is shown that, if the function f is sigmoidal1 then the game has a
Nash equilibrium (i.e., an equilibrium at which no user can unilaterally improve its
own utility). This equilibrium is achieved when each user chooses a transmit power
to attain a certain target SINR, γ ∗, which is given by the solution of the simple
nonlinear scalar equation:

f
(
γ ∗) = γ ∗ f ′ (γ ∗) , (3)

where f ′ denotes the derivative of f . So, for this problem, Nash equilibrium
involves SINR balancing.

This game theoretic problem is in itself quite interesting. For example, the Nash
equilibrium is unique, it has useful iterative properties, there are distributed algo-
rithms, etc. But it also gives rise to a very useful analytical tool. That is, we can
consider the value of utility at the Nash equilibrium to be a measure of the energy
efficiency of the network. Thus, we can examine that equilibrium utility as it is
affected by various network design choices. That is, the Nash equilibrium pro-
vides a design tool for comparing design choices on overall energy efficiency of
the network. For example, we can compare different multiuser receiver choices by
comparing the Nash equilibria arising from the use of those receivers.

Such a comparison was conducted in [27] for the case of BPSK signaling with a
random code-division multiple-access (RCDMA) signaling protocol, and with flat

1 Specifically, we assume that f is continuous, f (0) = 0, limγ→∞ f (γ ) = 1, and that there is a
value of γ such that f is convex to the left of that point and concave to its right. These conditions
guarantee that the utility uk is a quasi-concave function of pk [27].
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fading in the channels and AWGN at the access point. The access point is allowed
to have multiple receive antennas. This model allows for closed-form evaluation of
the utility (i.e., energy efficiency) at Nash equilibrium in the large-system asymptote
when the number of terminals and system bandwidth both increase without bound,
while their ratio (the system load, α) is held constant. Using the efficiency func-
tion of (2), the conclusion of this comparison is that significant improvement in the
energy efficiency of the sensors can be achieved by proper choice of the access point
receiver; in particular, the MMSE receiver offers considerable improvement over
both the matched filter and the decorrelating detector. For example, at 60% load with
the access point using two antennas, the MMSE detector provides twice the utility
to the sensors that the decorrelator does, while the matched filter has zero utility at
equilibrium. This means, with the access point using an MMSE detector, the sensors
can use half the transmit power to achieve the same throughput as they would if the
access point used a decorrelator. Since these two detectors have essentially the same
complexity, the MMSE detector is clearly a superior design choice in this situa-
tion. Similarly, the addition of antennas at the access point can improve energy effi-
ciency, at a rate that is approximately linear with the number of antennas. (Note that
this latter conclusion is reminiscent of the similar well-known relationship between
spectral efficiency and the number of antennas arising in MIMO systems [6].)

An interesting point about these conclusions is that the complexity of the receivers
under consideration is incurred at the access point, whereas the energy efficiency
accrues to the sensors. Typically, the sensors will be battery-powered, and hence
are the most energy-needy, whereas energy efficiency and complexity at the access
point are typically of less concern. Another interesting conclusion of this compari-
son, is that energy efficiency, represented by the utility (1), and spectral efficiency,
represented by the load α, are opposing criteria. That is, increasing the increased
energy efficiency generally comes at the expense of lower spectral efficiency, and
vice versa. This phenomenon is consistent with information-theoretic analyses (e.g.,
[40]), which show that the least energy-per-bit in data transmission is achieved in
many cases in the limit of zero spectral efficiency.

A natural question that arises here is why we would consider a competitive game
in a situation in which there is an access point that could control the transmit power
of the sensor terminals centrally. It turns out, though, that centralized solutions to
this problem yield results similar to those described above, but with much greater
analytical difficulty. For example, we can consider the Pareto, or socially optimal,
solution, at which no user’s utility can be improved without decreasing another’s
utility. Unlike the Nash equilibrium, which we have seen to be very easy to char-
acterize and analyze, the Pareto solution is very difficult to determine, requiring
numerical techniques. Moreover, while it is usually true that the Nash equilibrium
is not generally Pareto optimal, it turns out to be quite close in this situation, as
has been shown in [27]. So, even though we might think about using a centralized
control here, the Nash equilibrium is much cleaner and it is almost the same as
the more global, centralized equilibrium. Moreover, conclusions drawn from the
analysis of the Nash equilibrium can be extrapolated to the behavior to be expected
from centralized approaches where they can be implemented.
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Of course, in wireless networks we are interested in more than just throughput,
and in particular, we are interested in other measures of quality of service (QoS).
Such measures can also be addressed through the above formulation. For example,
the issue of delay QoS has been considered in this context in [25] and [26]. In
[25], delay is modeled in units of packet re-transmissions, resulting in a version of
the Nash game described above with SINR constraints. It is seen that, as one might
expect, delay-sensitive users penalize their own utilities because of their need to con-
tain the number of packet re-transmissions required for successful reception. But,
moreover, the presence of delay-sensitive users also penalizes delay-tolerant users
sharing the same network, as the increased power needed by the delay-sensitive
users increases interference to the other users. These effects can be analyzed pre-
cisely, and the impact of different receiver choices on them is examined in [25]. In
[26], a finite-delay model is examined by introducing queueing of packets at the
terminals, resulting in a QoS model involving both (source) rate and delay. Here, an
SINR-constrained game similarly arises, but the set of strategies for the terminals
is expanded to include the control of transmit power and transmit rate (i.e., band-
width). A new concept – that of the “size” of a user – arises in this formulation, and
it is seen that a Nash equilibrium exists only when the total sizes of all users is less
than one. This gives rise to the need for access control, which can be implemented
through this notion of size, which is a measure of how much of the physical layer
resources a user requires in order to achieve its specified QoS parameters. Again, a
closed-form expression can be obtained for the equilibrium energy efficiency, and
this is used in [26] to examine the effects on energy efficiency of rate and delay
constraints.

This Nash formulation of energy-efficiency in multiple access networks has been
applied to a number of other network design considerations. (An overview of many
such studies is found in [24].) For example, in the area of receiver design, recent
work has generalized the analysis of linear multiuser receivers described above, in
several directions. One of these is the analysis of nonlinear multiuser receivers [23],
such as maximum likelihood, maximum a posteriori probability, and interference
canceling receivers. Using the large-system RCDMA analysis used in [27], it is
seen in this work that Nash equilibria in power control games again entail SINR
balancing. Interestingly, and somewhat contrary to the situation for improving spec-
tral efficiency, it is seen in numerical results that the best of such nonlinear receivers
(i.e., the maximum likelihood detector) does not necessarily give out-size gains in
energy efficiency over the MMSE receiver, particularly when one considers the rel-
ative complexity of these two approaches. Another receiver design problem is that
of equalizer design in systems using ultra-wideband signaling [2–4], in which rich
scatter must be considered. Here, another asymptotic formalism is introduced to
consider the situation in which the equalizer length must grow in proportion to the
system bandwidth in order to adequately exploit the rich scattering environment.
Related results are found in [1] and [20].

Transmitter design for energy efficient data transmission has also been consid-
ered via the Nash game formalism. One problem of this nature is that of carrier
loading for multi-carrier systems [21], in which the game-players’ strategies include
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not only the choice of total transmit power, but also how that power can be dis-
tributed among a set of possible carrier signals. Here, assuming the access point
uses matched filter receivers, Nash equilibria do not always exist. When they do
exist (which numerical results indicate happens with very high probability), sensors
choose a single best carrier on which to transmit and then use SINR balancing. That
is, only one carrier is used by each sensor. This is contrary to what one would nor-
mally do for spectral efficiency, which calls for carrier loading based on waterfilling
[14]. Another transmitter design problem is that of adaptive modulation, considered
in [22], in which the sensors choose their modulation indices for quadrature ampli-
tude modulation. In this case, Nash equilibria call for transmitters to choose the
lowest-order modulation that will support QoS requirements, and then use SINR
balancing. Again, this design runs contrary to spectrally-efficient design, which
would call for using the highest supportable modulation index. A further problem
of this type is that in which sensors in a CDMA setting can choose their transmitter
waveforms, which has been considered in [8], and in related work in [10]. Here,
when loads are less than unity, transmitters choose orthogonal waveforms, as one
might expect, and so the interesting aspects of this problem occur for overloaded
systems. Buzzi and Poor [8] also considers interference canceling receivers, which
do achieve substantial improvement over linear systems in the particular case of
overloaded systems. (An overview of adaptive waveform adaptation based on game-
theoretic analysis is found in [9].)

In summary of this approach, we see that capturing competition among sensor
terminals through a game-theoretic analysis provides a very useful tool for exam-
ining the issue of energy efficiency in multiple-access wireless sensor networks.
Before moving to consideration of a collaborative model, it is of interest to mention
two other economorphic approaches, in which ideas about modes of competition
from economics have been used for network design. The first of these is the use of
auctions in relay systems, in which multiple sensors contend for the services of a
relay in forwarding their messages to the access point [19]. A second is the use of
multi-period coalition games to incentivize sensor terminals located near the access
point in a multi-hop setting to forward messages of more distant terminals [17]. (An
alternative game-theoretic analysis of multi-hop networks is found in [5].) More
generally, these problems fit within the context of cross-layer design of wireless
networks, and a number of related issues in this area are discussed in [11].

3 Collaborative Inference

Collaborative interactions among nodes are perhaps even more natural in wireless
sensor networks than competitive ones are, because of two salient features of such
networks. In particular, all sensor terminals in a wireless sensor network share a
common application, namely inference (i.e., detection, estimation, mapping, etc.);
and the information collected at different sensors is often correlated since closely
spaced sensors will likely have highly correlated measurements of the physical
phenomenon they are sensing. A consequence of these features is that the goals
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of individual sensors can be subsumed to the goals of the overall network (a view
me might call “sociomorphic”). Additionally, even more so than in other types of
wireless networks, resources are often severely limited in wireless sensor networks
because sensors are typically deployed in places where humans do not want to go
or do not often go. So, batteries cannot be recharged and replaced easily in a sensor
network. Collaboration among sensors addresses these features of wireless sensor
networks by having sensors work together to make inferences while conserving the
radio resources of the network. These considerations lead us to examine the problem
of collaborative inference in wireless sensor networks, and in particular we will
consider collaborative learning.

By way of background, we first review briefly the classical supervised learn-
ing problem, in which we start with a set of d-dimensional real-vector inputs (or
observations) X and corresponding real-valued outputs (or targets) Y . The goal of
inference is to predict Y from observation of X , and to accomplish this we would
like to design a function g to map values of X into predictions of Y satisfying
some criterion, for example, minimizing the mean-square error, E{|Y − g(X )|2}. Of
course, if we know the joint distribution of X and Y , the solution to this problem lies
in the province of classical Bayesian inference; in the particular case of minimizing
the mean-square error, the proper choice of g is the conditional mean of Y given X ;
i.e., E{Y |X} (see, e.g., [31]). However, in many applications, and certainly in sensor
networking where sensors are often distributed in unknown territory, the joint distri-
bution between X and Y is unknown. So, we would like to use learning to construct
a suitable function g from a set of examples (or exemplars), say {(xi , yi )}n

i=1, which
are realizations of the inputs paired with the corresponding correct outputs. This is
the classical supervised learning problem, which has been very well studied (see,
e.g., [18]).

Now, we turn specifically to learning in wireless sensor networks. Supposing
that sensors are spatially distributed, we can think of a wireless sensor network as a
distributed sampling device with a wireless interface, as illustrated in Fig. 2. And,
as such, we can consider a learning problem in which each sensor measures some
subset of the set of exemplars {(xi , yi )}n

i=1, so that the exemplars are distributed
around the network. In classical learning theory it is assumed that all of the exem-
plars can be processed jointly, which in our case would correspond to the situation
in which all sensors transmit their exemplars to a central location to be processed. A
wealth of methodology is available for this centralized problem. One such technique
is smoothness-penalized least-squares function fitting within a reproducing kernel
Hilbert space (RKHS) [38], which fits the function g by solving the problem

min
g∈HK

{
n∑

i=1

[g(xi ) − yi ]
2 + λ ‖ g ‖2

HK

}

, (4)

where HK denotes the RKHS associated with a suitably chosen reproducing kernel
K (·, ·) : IRd × IRd → IR, ‖ · ‖2

HK
denotes the norm in HK , and λ controls the

smoothness penalty.
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Fig. 2 Sensors share their data with their neighbors

Here, we wish to address the question of what can be done when the exemplars
are not collected together, but rather are distributed throughout the network in the
above fashion. So, we assume that energy and bandwidth constraints preclude the
sensors from transferring their exemplars to a central collection point for processing,
and thus they must cope with the data locally. A justification for this is the usual
one for distributed networks; i.e., that local communication is efficient relative to
global communication, and certainly in wireless networks that is true. Communica-
tion among neighbors requires less energy and bandwidth than does communication
with a distant access point. This gives us the seed of a model, in which we have the
data distributed according to a physical sensor network that gives rise to a neighbor-
hood structure. These considerations lead to a fairly general model that applies to
this situation and many others, and that shapes the nature of collaboration in such
networks.

In particular, we consider a model in which there are a number, m, of learning
agents which in this setting are sensors, and a number, n, of training examples.
As illustrated in Fig. 3, the topology of the network can be captured in a bipar-
tite graph in which the vertices in one set of vertices represent the m learning
agents, the vertices in the other set of vertices represent the n training examples,
and an edge extends from a learning agent vertex to a training example vertex if
the corresponding learning agent has access to the corresponding exemplar. This
model provides a general framework for examining distributed inference; it is quite
general, encompassing fully centralized processing, decentralized processing with
a public data-base, fully decentralized processing, etc., depending on the number
of vertices in each part of the graph, and on the connectivity. For example, Fig. 4
illustrates the situation of most interest for sensor networks, in which the edges are
determined by the physical topology of the sensor network. (See [35] for further
details, and other examples.) But generally, to analyze this model we do not need
to be concerned with its particular topology. We can simply think about a general
bipartite graph consisting of learning agents connected to a training database, and
examine inference in that context.

A natural approach to consider in such a setting is local learning, in which each
learning agent learns according to kernel regression (4) applied to those exemplars
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Fig. 3 A bipartite graph model for distributed learning

Fig. 4 Distributed learning model for a sensor network sensing a spatio-temporal field

to which it is directly connected; i.e., for local learning at a given learning agent,
the summation in (4) is taken only over those exemplars in the training database to
which that agent is connected via an edge. In this way, each learning agent creates
a local model for what is going on in the entire field being sensed. A problem with
local learning is that it is provable locally incoherent; that is, if two learning agents
examine the same datum, their estimates may not agree on that datum. This is an
undesirable property, and it can be shown that it generally leads to a penalty in terms
of overall fitting error. So, a natural question that arises is whether there is some
way for the agents to collaborate to eliminate this local incoherence, while retaining
the efficiency of locality, i.e., without having to communicate more broadly than
their neighborhoods. One way to do this is to begin with local learning, in which
each of the learning agents performs a kernel regression locally. But rather than
stopping there, after performing local regression, each agent then updates all of the
exemplars to which it has access with its own estimates of the targets. This process
can be further iterated over time in addition to iterating over sensors by adding an
inertia-penalty to the regression.

Such a message-passing algorithm is proposed and analyzed in [35] for the
MMSE regression problem, where it has been shown to have very favorable proper-
ties. In particular, the algorithm converges in norm to a relaxation of the centralized
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kernel estimator as we iterate in time, and the limit is locally coherent. Moreover,
the iterates lie in the span of a finite number of functions so that the estimation
problem being solved at each iteration is actually parameter estimation rather than
function estimation, which is very efficient computationally. Also, the global fitting
error improves with every update. These properties hold for any bipartite graph
of the form described above, regardless of whether it is connected or not. But,
under a connectivity assumption and the assumption of independent and identically
distributed exemplars, the local estimates can all be made to converge in RKHS
norm to the conditional mean by proper programming of the penalty terms. Further
description of this algorithm, together with some illustrative numerical examples, is
found in [35].

The message-passing approach to collaborative inference of [35] provides a gen-
eral formalism for designing and analyzing algorithms for collaborative inference
in a distributed sensing environment. However, there are other ways in which the
constraints of sensor networks can be addressed. For example, another approach
to distributed learning is considered in [33], in which, rather than collaborating,
sensors communicate directly back to an access point via links with very limited
capacity, as illustrated in Fig. 5. Questions then arise regarding whether consistent
learning of regression or classification functions can take place in this setting. These
questions are answered in [33] largely in the affirmative, in that consistent regression
is possible with the transmission of only log23 bits per sensor per decision, while
consistent classification is possible with transmission of only a single bit per sensor
per decision. A further problem of interest is judgment aggregation, considered in
[36], which is related to the problem of local coherence mentioned earlier. This is
a problem that arises in many applications beyond sensor networking, including the
combination of judgments of individuals in panels of experts. A review of these and
related issues in this general area is found in [34].

Another way in which wireless sensors can collaborate locally to save radio
resources is via collaborative, or distributed, beam-forming [29], in which sensors
that cluster together physically can collaborate to form a common message and then
to form a beam on the access point. A number of techniques for implementing this
type of beam-forming have been considered recently (see, e.g., [7, 12, 13, 16, 30,
37]), and [28] provides a recent survey of developments in this area.

Access
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Fig. 5 Distributed learning model with limited capacity links to an access point
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4 Conclusions

As can be seen from the above discussion, the two problems discussed here are
quite rich in themselves. However, they are only representative of a large class of
emerging research problems in which node interaction is the primary consideration.
In discussing these issues, this chapter has focused principally on the work of the
author and co-workers. However, there are many other important issues and inter-
esting contributions in these areas, which can be found in the literature cited in the
references, and in particular in the review papers [2, 9, 24, 28, 30, 34]. Readers
interested in learning more about these subjects are referred to these works.
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Distributed and Recursive Parameter
Estimation

Srinivasan Sundhar Ram, Venugopal V. Veeravalli, and Angelina Nedić

Abstract Parametric estimation is a canonical problem in sensor networks. The
intrinsic nature of sensor networks requires regression algorithms based on sensor
data to be distributed and recursive. Such algorithms are studied in this chapter for
the problem of (conditional) least squares regression when the data collected across
sensors is homogeneous, i.e., each sensor observes samples of the dependent and
independent variable in the regression problem. The chapter is divided into three
parts. In the first part, distributed and recursive estimation algorithms are developed
for the nonlinear regression problem. In the second part, a distributed and recur-
sive algorithm is designed to estimate the unknown parameter in a parametrized
state-space random process. In the third part, the problem of identifying the source
of a diffusion field is discussed as a representative application for the algorithms
developed in the first two parts.

1 Introduction

Sensor networks consist of spatially deployed sensors that sense their local envi-
ronment across time to learn some feature of interest about the underlying field. In
many applications, using a priori information, it is possible to build approximate
parametrized model sets for the feature of interest. In such cases, the problem of
learning the feature simplifies to the problem of estimating these unknown parame-
ters that determine the model that best fits the observed data.

For example, consider sensors deployed to determine the source of a spatiotem-
poral temperature field. A model set for the heat source could be the set of all point
sources with constant intensity. The model set is parametrized by the source location
and the constant intensity, and the sensors measurements have to be used to estimate
these values. The diffusion equation that governs the propagation of heat can then be
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used to map the model for the heat source to a model for the sensor measurements.
Note that the actual source may have an arbitrary shape and have an exponentially
decreasing intensity. In effect, the goal is to only determine the best approximation
for the source among all point sources with constant intensity.

There are multiple advantages to estimating the unknown parameters jointly
using data collected by a network of sensors, rather than individual sensors. First,
measurements made by a single sensor may not be sufficient to uniquely resolve
the parameter. For example, triangulation of sources require distance measurements
format least three sensors that are not on a straight line. Second, there are fundamen-
tal limits on the sampling rate of a sensor. By using multiple sensors, it is possible
to obtain a higher effective sampling rate. Finally, even when multiple sensors add
redundancy, they serve to mitigate the effect of noise in observations.

There are two basic steps in estimation. The first step is to use physical laws to
map the models for the features to models for the sensor measurements. In the heat
source example, the diffusion equation can be used to map the model for the heat
source to a model for the sensor measurements. In this chapter, it is assumed that a
parametrized model for the sensor measurements is available and the focus is only
on the second step, which is to use statistical techniques to determine the form of
the estimator.

The intrinsic nature of sensor networks impose certain challenges. When there
are a large number of sensors spread across a large operational area, it is not energy
efficient to jointly estimate the parameter by collecting all the measurements from
the sensors at a fusion center. Instead, algorithms have to be distributed and the
estimate must be calculated by the network through local communication between
sensors and their neighbors, without the aid of a central fusion center. Further, each
sensor has a limited memory and measurements have to be purged periodically.
Thus, the estimation procedures should also be recursive, and only a constant sum-
mary statistic must be stored and updated when a new measurement is made. Thus
estimation algorithms that are to be used in sensor networks have to be distributed
and recursive. In this chapter, recursive and distributed procedures for (conditional)
least squares estimation are discussed. The chapter is divided into three parts. In the
first part, distributed and recursive estimation algorithms are developed for the non-
linear regression problem. In the second part, a distributed and recursive algorithm
is designed to estimate the unknown parameter in a parametrized statespace random
process. In the third part, the problem of identifying the source of a diffusion field
is discussed as a representative application for the algorithms developed in the first
two parts.

2 Preliminaries

The following notational convention is used. For a matrix A, [A]i, j denotes its
(i, j)-th entry. All vectors are column vectors and the set consisting of the first k
elements of a sequence {r�}�∈N is denoted by rk . A total of m, m ∈ N, sensors are
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spatially deployed and are indexed using the set V = {1, . . . , m}. Throughout this
chapter the variable i ∈ V and the variable k ∈ N. The sensors sequentially and
synchronously sense the underlying field once every time unit. The k-th observation
made by the i-th sensor is denoted by zi,k . We will find it convenient to view {zi,k}
as a sample path of a random process {Zi,k}.

We denote by x , x ∈ 	n , the unknown vector that is to be estimated. To aid in
the estimation, a priori information is used to develop a collection of models, called
a model set, that is parametrized by x . Typically, the random process {Zk}, rather
than the actual observed sample path, is modeled. Thus a model set can be denoted
by {Ẑk(x); x ∈ X}k∈N, where for each x Ẑk(x) is a model, i.e., “guess”, for Zk , and
different models are obtained as x takes different values in the parameter set X .

In some applications, it is possible that the a priori information available is not
sufficient to determine complete model sets for the process {Zk}. One such specific
case is regression. In this application, zk is divided into two parts: a dependent com-
ponent rk , and an independent component uk . The model set only specifies how {Rk}
depends on {Uk}. We will refer to such model sets as regression model sets1 and they
can be represented by {R̂k(x, U k

i ); x ∈ X}k∈N. We will study regression model sets.
Note that there is no loss in generality and the traditional estimation setting is simply
the extreme case when Rk = Zk and Uk = ∅.

A model set captures the information in a “convenient” form [15]. In the heat
source example discussed earlier, we could have taken the model set to be the set of
all rectangular sources with random intensity. A priori information may tell us that
this model set contains a model which is a better approximation to the actual source
than any model in the point source model set. However, one may still work with the
point source model set since it may not be easy to determine the specific model in the
rectangular source model set that is the best. In the context of sensor networks, “con-
venient” is to be interpreted as having the structure to allow distributed and recursive
estimation. Thus we might possibly need to discard some a priori information and
work with less-accurate model sets, compared to a centralized and non-recursive
setting. This is the cost that is to be paid to obtain a distributed implementation.
Specifically, we will discard any information available about the joint statistics2 of
the measurements. Thus we will consider model sets that only specify how {Ri,k}
depends on {Ui,k}. They can be represented as {R̂i,k(x, U k

i ); x ∈ X, i ∈ V }k∈N. We
will refer to such model sets as separable regression model sets.

The estimate of the parameter is the value that determines the model in the model
set that “best fits” the observed data. In this chapter, we will define “best” as the
conditional least-squares criterion, described next. Define

pi,k+1(x, uk+1
i , rk

i ) = E
[
R̂i,k+1(x, U k

i ) | U k+1
i = uk+1

i , {R̂i,�(x, U �
i ) = ri,�}

]
.

1 When Uk = Rk−1, the model set is auto-regressive.
2 Not knowing anything about the joint statistics of the sensor measurements, should not be con-
fused with knowing that they are independent.
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Essentially, pi,k+1(x, uk+1
i , rk

i ) is the best estimate for Ri,k+1 based on the past
and present measurements of the independent variable, and all past values of the
dependent variable, when it is known that the true description of {Ri,k+1}k∈N is
{R̂i,k(x, U k

i )}k∈N. The conditional least squares estimate (CLSE) of [12] is given by:

x∗
N = argmin

x∈X

m∑

i=1

1

N

N∑

k=1

(
ri,k+1 − pi,k+1(x, uk+1

i , rk
i )
)2

. (1)

We refer the reader to [12] for a discussion of the properties of the CLSE.3 The
CLSE estimator has also been studied as the minimum prediction error estimate
(MPEE) in [15].

When the sensors make a large number of measurements, a convenient abstrac-
tion is to consider this number to be infinite. Denote, by x∗ the limit of x∗

N , i.e.,

x∗ = argmin
x∈X

m∑

i=1

lim
N→∞

1

N

N∑

k=1

(
ri,k+1 − pi,k+1(x, uk+1

i , rk
i )
)2

. (2)

The goal is to generate a sequence {xn} in a recursive and distributed manner that
converges to x∗. Traditionally, the convergence is proved only when there exists a
x̄ ∈ X , for which {Ẑk(x̄)} accurately describes {Zk}. This is restrictive and may not
be reasonable, especially considering the that we would like to work with “conve-
nient” model sets. Thus, we will study the properties under more general conditions.
In the following two sections, we discuss two different classes of model sets:

• Simple non-linear regression. This corresponds to the case when R̂i,k(x, U k
i ) is

of the form gi (x, Ui,k) + Ei,k+1, where {Ei,k+1} is an i.i.d. sequence.
• Stationary Gaussian linear state space model sets. This corresponds to the case

when R̂i,k(x, U k
i ) is a parametrized stationary Gaussian linear state space process

with input process {Ui,k}.

3 Simple Non-linear Regression

In the simple nonlinear regression problem, the model sets have the following form:

R̂i,k(x, U k
i ) = gi (x, Ui,k) + Ei,k, (3)

3 When the function in (1) has multiple minima, then each minimum is a CLSE estimate. For
example, this would be the case if less than three sensors were used in the acoustic source local-
ization. In most cases, by increasing the number of sensors, and thus the spatial diversity of the
measurements, it is possible to ensure that the estimation problem is well defined and there is a
unique least squares estimate. Such an assumption would be analogous the observability condition
of [10].
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where {Ei,k} is zero mean noise. The statistics of {Ei,k} are not of any concern in
determining the CLSE. For the model set in (3),

pi,k+1(x, uk+1
i , rk

i ) = gi (x, ui,k+1),

and note that the CLSE in (1) reduces to the well known least squares estimate
(LSE),

x∗ = argmin
x∈X

lim
N→∞

1

N

N∑

k=1

m∑

i=1

(
ri,k − gi (x, ui,k+1)

)2
.

3.1 Algorithms

We next review three different distributed and recursive estimation algorithms that
have been proposed in literature.

3.1.1 Cyclic Incremental Recursive Algorithm

Each sensor designates another sensor as an upstream neighbor and one as a down-
stream neighbor so that they form a cycle. See Fig. 1 for an example. Without loss
of generality, we will index the upstream neighbor of sensor i as i + 1, with the
understanding that the upstream neighbor of sensor m is a fictitious sensor, denote
as sensor 0. Between any two consecutive sampling times, one iteration of the algo-
rithm is performed. In iteration k, sensor i receives the current iterate zi−1,k from
sensor i − 1, updates the iterate using its latest measurement and passes it to its
upstream neighbor, sensor i . The update rule is

z0,k = zm,k−1 = xk−1,

zi,k = PX
[
zi−1,k − 2αk

(
gi (zi−1,k, ui,k) − ri,k

)∇gi (zi−1,k, ui,k)
]
, (4)

z1,n + 1 z2,n + 1 z3,n + 1

z4,n + 1z8,n + 1

z7,n + 1 z6,n + 1 z5,n + 1

Fig. 1 A network of 8 sensors with cyclical incremental processing. The estimate is cycled through
the network. The quantity zi,k is the intermediate value after sensor i updates at time k
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where the initial iterate x0 is chosen at random. Here, αk is the stepsize, PX denotes
projection onto the set X and ∇gi (x) denotes the gradient of the vector function gi

with respect to the vector parameter x . Thus, if x j denotes the j-th component of
the vector x,

[∇gi (x, ui,k)
]
�, j = ∂g(�)

i (x, ui,k)

∂x j
.

The cyclical incremental algorithm can be implemented only when each sensor
identifies a suitable upstream and downstream neighbor. This could be achieved in
a setup phase in a distributed manner using the algorithm proposed in [14]. Note the
existence of a cycle is a stronger assumption than connectivity. We refer the reader
to [23] for a discussion of other implementation issues.

3.1.2 Markov Incremental Recursive Algorithm

In this algorithm, the order in which the sensors update the iterate is not fixed and
could be random. Let N (i) denote the set of neighbors of sensor i and |N (i)| denote
the number of neighbors. Suppose at time k−1, sensor s(k−1) updates and generates
the estimate xk−1. Then, agent s(k − 1) may either pass this estimate to a neighbor
j , j ∈ N (s(k − 1)), with probability

[P]s(k−1),s(k) = 1

m
,

or choose to keep the iterate with the remaining probability, in which case s(k) =
s(k − 1). See Fig. 2 for an illustration. The update rule for this method is given by

x1

x2

x3x4
x5

x6

x7 x8

x9

x10

Fig. 2 A network of 8 sensors with incremental processing. The estimate is randomly passed
through the network



Distributed and Recursive Parameter Estimation 23

xk = PX
[
xk−1 − 2αk

(
gs(k)(xk−1, us(k),k) − rs(k),k

)∇gs(k)(xk−1, us(k),k)
]
, (5)

where x0 ∈ X is some random initial vector. Observe that the value of s(k) depends
only on the value of s(k − 1). Thus, the sequence of agents {s(k)} can be viewed
as a Markov chain with states V = {1, . . . , m} and transition matrix P . If the net-
work topology changes with time, for example, in mobile sensor networks, then the
transition matrix will also be time-varying [26]. Also note that the sensors need not
sense in every slot, and a sensor needs to make a measurement only when it obtains
the iterate. To save energy, sensors without an iterate may enter a sleep mode.

The Markov incremental algorithm has some advantages over the cyclic incre-
mental algorithm. First, the algorithm does not require the setup phase that is
required in the cyclic incremental algorithm. Second, the algorithm requires only
connectivity of the network, which is weaker than the condition imposed on the
network in the cyclic incremental algorithm. However, one can expect the Markov
incremental algorithm to take more time to converge than the cyclic incremental
algorithm. In one sensing interval only one update of the iterate can be performed
as a sensor may choose to retain the iterate for the next iteration and will have to wait
until the new measurement to update the iterate. In contrast, in the cyclic incremental
algorithm in each sampling interval m updates of the iterate are performed.

In the above discussion, the performance of the algorithms as a function of time
was discussed. A better comparison would be to keep the communication costs a
constant, and compare one iteration of the cyclic incremental algorithm with m
iterations of the Markov incremental algorithm. Even in this case one can expect
the cyclic incremental algorithm to converge faster. Since the sequence in which the
agents update the agents in the Markov incremental algorithm is random, the iterate
may be caught in some “corner” of the network and the other agents may receive
the iterate only after a large number of iterations.

3.1.3 Diffusive Nonlinear Recursive Algorithm

In this setting, each agent maintains and updates an iterate sequence. This is fun-
damentally different from the incremental algorithms in which a single iterate
sequence is incrementally updated by the agents. We will use wi,k−1 to denote the
iterate with agent i at the end of time slot k − 1. One iteration of the algorithm
is performed in each sampling interval. Each agent receives the current iterate of
its present neighbors. See Fig. 3 for an illustration. Each agent then calculates the
following weighted sum vi,k−1 given by

vi,k−1 = wi,k−1 + 1

m

∑

j∈N (i)

(w j,k−1 − wi,k−1).

Sensor i then obtains its new iterate wi,k+1 from vi,k according to

wi,k = PX
[
vi,k−1 − 2αk

(
gi (vi,k−1, ui,k) − ri,k

) (∇gi (vi,k, ui,k)
)]

. (6)
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Fig. 3 A network of 8 sensors with parallel processing. Each agent shares its current iterate with
its neighbors

The initial points {wi,0} are chosen randomly.
Similar to the Markov incremental algorithm, this algorithm requires the net-

work to be only connected and does not require a setup phase. Similar to the cyclic
incremental algorithm, each sensor uses its latest measurement to update in every
iteration. However, note that each sensor updates a different iterate sequence. There-
fore, unless the network is “densely connected” and each sensor has a large number
of neighbors, one can expect the performance of the algorithm with time to be worse
than that of the cyclic incremental algorithm. It is not immediately clear, however, if
the performance of the distributed parallel algorithm as a function of communication
costs would be better than the Markov incremental algorithm. The diffusive algo-
rithms are closely related to consensus algorithms [9, 32], and they can be viewed
as general consensus algorithms with stochastic errors.

3.2 Convergence of the Algorithms

The algorithms described above in Sect. 3.1 have been defined for arbitrary
sequences {ri,k} and {ui,k}. However, to study their convergence we would need
to impose some restrictions on the actual measurement sequences.

Assumption 1 The data {zk} is the sample path of an i.i.d. random process {Zk}.

In view of this assumption, it is possible to interpret the algorithms discussed
above as stochastic approximation algorithms [3, 8, 22] and this will form the basis
for the convergence results we state later. Due to Assumption 1,
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x∗ = argmin
X

m∑

i=1

E
[(

Ri,k − gi (x, Ui,k)
)2
]
. (7)

Define fi (x) = E
[(

Ri,k − gi (x, Ui,k)
)]2

and f (x) = ∑m
i=1 fi (x). Observe that x∗

is the minimum of f (x). Suppose that the statistics of Ri,k and Ui,k are explic-
itly known to sensor i . Then, the problem simplifies to minimizing the sum of
deterministic functions, where each function is known to a sensor. This distributed
optimization problem has been studied in [18, 19, 25, 26] and different iterative
distributed algorithms have been proposed. For example, consider the incremental
gradient algorithm. In each iteration, the iterate is cycled through the network. Sen-
sor i updates the iterate in the k-th iteration according to

zi,k =PX
[
zi−1,k − αk∇ fi (zi−1,k)

]

=PX
[
zi−1,k − 2αkE

[(
gi (zi−1,k, Ui,k) − Ri,k

) (∇gi (zi−1,k, Ui,k)
)]]

,

and communicates the updated iterate to sensor i + 1. Note that algorithm requires
sensor i to only know its local function fi .

In the estimation problem, the statistics of Ui,k and Ri,k are not known. If they
were known, the least squares estimate could have been obtained without making
any measurements. Thus, sensor i cannot evaluate the gradient term ∇ fi (zi−1,k) that
is required in the k-th iteration. Instead, if the k-th iteration is performed in the (k +
1)-th sampling interval, i.e., after the k-th observation has been made, sensor i can
approximate ∇ fi (zi−1,k) with an LMS style instantaneous empirical approximation,
i.e,

E
[(

gi (zi−1,k , Ui,k ) − Ri,k
) (∇gi (zi−1,k , Ui,k )

)] ≈ (
gi (zi−1,k , ui,k ) − ri,k

) (∇gi (zi−1,k , ui,k )
)
.

Observe that the incremental algorithm with this approximation is the cyclic incre-
mental recursive estimation algorithm in (4). Thus, in effect the cyclic incremental
recursive estimation algorithm is a stochastic optimization algorithm.

In a similar manner, the Markov incremental recursive algorithm and the diffu-
sive recursive algorithm are obtained from their deterministic counterparts discussed
in [25, 26]. We next formally state the conditions that are required for the conver-
gence of the algorithm. We refer the reader to [25, 26] for the proofs.

Theorem 1 Consider the model set in (3). Let the set X be closed and convex, and
let Assumption 1 hold. Further, let the functions fi (x) be convex and have bounded
(sub)gradients on the set X. If {αk} is chosen such that

∑
k α2

k < ∞ and
∑

k αk =
∞. Then the following convergence results hold:

1. If the network topology allow a cycle that connects all the sensors, then iterates
generated in (4), converge to a minimum of f (x) with probability 1 and in mean
square.

2. If the network is connected, then the iterates generated in (5) converge to a min-
imum of f (x) in mean square.

3. If the network is connected, then the iterates generated in (6) converge to the
same minimum of f (x), for all i ∈ V , with probability 1 and in mean square.
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The convergence results in [25, 26] are more general and deal with general
choices of probabilities in (5) and general weights in (6). While we have no proof,
we believe that the convergence of the algorithms can be extended to the general
case when {Zk} is required to satisfy only the conditions of exponential stability and
stationarity (explained below). This has been verified for the specific case where
gi (x, ·) is linear in x .

Theorem 1 requires the functions fi (x) to be convex. A simple case when this
holds is when gi (x, ·) is linear in x . However, in general the condition is quite
implicit and there seems to be no direct way to verify it. We next state another
convergence result, which is applicable for a different class of functions. We only
state the result and refer the reader to [24] for the essential ideas of the proofs.

Theorem 2 Consider the model set (3) and let the network be connected. Addition-
ally, if the incremental algorithm is used, let the network topology have a cycle. Let
Assumption 1 hold, and let the set X be 	n, or compact and convex. Further, let
the functions fi (x) be differentiable on the set X and let the gradient be Lipschitz
continuous. If the set X = 	n, also assume that the gradients are bounded. If {αk}
is chosen such that

∑
k α2

k < ∞ and
∑

k αk = ∞, then every cluster point of the
iterate sequences generated in (4), (5) and (6) will be a stationary point.

First note that the theorem guarantees only convergence to a stationary point. In
addition, the conditions imposed on the set X are also stronger than the conditions in
Theorem 1. However, note that the conditions imposed on the functions fi are weak,
and easier to verify. For example, a sufficient condition for convergence when X is
compact is for the function gi (x, ·) to be twice continuously differentiable.

3.3 Effect of Quantization

Typically, the iterates are first quantized before they are communicated in wireless
networks. We next study the effect of quantization on the estimation algorithms. The
quantization lattice is the set

Q = {(q1Δ, . . . , qnΔ); q j ∈ Z}.

For a vector x ∈ 	n , we use Q[x] to denote the quantized value of x . We consider
the following two types of quantizers:

• Basic quantizer. The quantized value of a vector x ∈ X , is the Euclidean pro-
jection of x . Thus, Q[x] = PQ[x]. Observe that ‖Q[x] − x‖ is deterministically

bounded by
√

nΔ

2 [23].
• Dither quantizer. The quantized value of a vector x ∈ X , is the Euclidean pro-

jection of x added with a dither signal. Thus, Q[x] = PQ[x + D], where D
is a dither signal whose component are uniformly and independently chosen in
[−Δ

2 , Δ
2 ]. In this case, ‖Q[x] − x‖, is random, statistically independent of x and

uniformly distributed in
[

−√
nΔ

2 ,
√

nΔ

2

]
[2, 10].
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When there is quantization, it is better to use a constant stepsize than a diminish-
ing stepsize. We motivate this through the following discussion. It seems reasonable
to require the algorithms, with quantization, to converge to Q[x∗, ] i.e., the lattice
point that is the closest to x∗. However, this is not the case even when there are
no stochastic errors. To see this consider the standard gradient descent algorithm to
minimize f (x) over the set X = 	 with a basic quantizer without any dither. The
iterates are generated according,

xk+1 = xk − αk∇ f (xk).

Suppose x0 �= Q[x∗], and αk < Δ
2C , where C is the bound on the subgradient of

fi , then it can be immediately seen that xk = x0, for all k. More generally, one can
conclude that stepsizes should always be large enough to push the iterate from a
non-optimal lattice point, but small enough to ensure that the iterate gets caught in
the optimal lattice point.

We will only discuss the quantized cyclic incremental algorithm here. Similar
results can be easily obtained for quantized versions of the other two algorithms.
Formally, the quantized cyclical incremental recursive estimation algorithm is given
by:

z0,k = zm,k−1 = xk−1,

zi,k = Q
[
PX
[
zi−1,k − 2αk

(
gi (zi−1,k, ui,k) − ri,k

) (∇gi (zi−1,k, ui,k)
)]]

. (8)

It is possible to obtain bounds on that the asymptotic performance of the algorithm
by extending the analysis for constant stepsize in [26] to handle quantization by
using ideas similar to those in [23]. Define νi to be some constant such that

νi ≥ sup
x∈X

Var
[(

Ri − gi
(
x .U T

i

)−) (∇gi (x, Ui ))
]
.

Then νi is an upper bound on the variance of the empirical gradient estimate.

Theorem 3 Let the Assumptions of Theorem 1 hold. Additionally, assume that X is
bounded and a constant stepsize α is used. Then, with basic quantization the iterates
{xk} in (8) satisfy

liminf
k→0

E[ f (xk)] ≤ f ∗ +
√

nΔ maxx,y∈X ‖x − y‖
2α

+ α

2

(
m∑

i=1

(
Ci + νi +

√
nΔ

2α

))2

,

and with dither quantization the iterates satisfy

liminf
k→0

E[ f (xk)] ≤ f ∗ +
√

nΔ maxx,y∈X ‖x − y‖
2α

+ α

2

(
m∑

i=1

(
Ci + νi +

√
nΔ

α
√

6

))2

.

Furthermore, the bounds hold with probability 1 for infk≥0 f (xk).
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Observe that with dither quantization it is possible to obtain a better bound.
This indicates that dither quantization may result in smaller errors than basic
quantization.

3.4 Special Case: Linear Regression

We next consider the special case when gi (x, Ui,k) = xT Ui,k, and X = 	n . In a
centralized setting, it is possible to recursively evaluate the exact least squares, i.e,
evaluate x̂N , from x̂N−1 and new measurements [15]. From a stochastic optimization
perspective, the recursive least squares (RLS) algorithm approximates the standard
Newton’s gradient algorithm, where the gradient term is approximated using an
instantaneous empirical approximation and a sample average for the Hessian term
[15]. Attempts have been made to exploit this to develop distributed and recursive
algorithms that perform better than the LMS-type algorithms discussed above. We
discuss these next.

Incremental RLS algorithms can be obtained by scaling the gradient term in the
incremental LMS with a matrix Li,k . Formally,

zi,k = zi−1,k − αk Li,kui,k(uT
i,k zi−1,k − ri,k).

The matrix Li,k is to be viewed as an approximation to the Hessian in the Newton
descent algorithm, which is determined recursively. If we allow the sensors to share
a little more information to evaluate Li,k , then it is possible to implement the least
squares algorithm exactly, in a recursive and incremental manner [16]. Specifically,
the matrix Li,k must have the form

Li,k = Pi−1,k

1 + uT
i,k Pi−1,kui,k

Pi,k = Pi−1,k − αk
Pi−1,kui,kuT

i,k Pi−1,k

1 + uT
i,k Pi−1,kui,k

. (9)

Note that the algorithm requires sensor i −1 to communicate to sensor i the statistic
Pi−1,k , in addition to the iterate sequence. A more communication efficient incre-
mental estimation algorithm can be obtained by replacing the Pi,k in (9) with an
approximation, Qi,k , that is evaluated locally in the following manner

Qi,k = Qi,k−1 − Qi,k−1ui,kuT
i,k Qi,k−1

1 + uT
i,k Qi,k−1ui,k

.

Note that the resulting algorithm requires the sensors to only cycle the iterates. The
matrix Qi,k is recursively evaluated at sensor i using only local information. When
αk is fixed at 1, the estimates do not asymptotically converge to the least-squares
estimate, but only to its neighborhood [30]. While it has not been verified, when
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{αk} diminishes at a suitable rate, one can expect the algorithm to converge to the
least squares estimate.

Similarly, diffusive RLS algorithms can be obtained by scaling the gradient term
in (6) with a matrix Li,k [5, 7, 33]. As stated previously, the matrix Li,k is the “equiv-
alent” of the Hessian in the Newton direction, and can be evaluated in a distributed
and recursive manner in different ways [7, 33]. A diffusive LMS algorithm that is
quite different from the diffusive algorithms discussed so far is proposed in [31].
This algorithm uses a hierarchical network structure, in which a subset of sensors
are designated as “bridge sensors” and a sensor is required to communicate only
with neighbors, that are bridges. However, the algorithm converges only to a region
around the optimal estimate.

3.5 Special Case: Accurate Model Sets

Next consider the case when the model set is accurate, i.e., there exists a x̄ such that

Ri,k = gi (x̄, Ui,k) + Ei,k .

In this case it can be immediately seen that x∗, which is the asymptotic limit of the
least squares estimators, will equal x̄ . For this case, the problem of estimating the
parameter can be viewed as solving a system of equations, rather than an optimiza-
tion problem. Specifically, observe that x∗ is a solution to the following problem:

Determine x such that
m∑

i=1

E
[
Ri,k − gi (x, Ui,k) − hi (x)

] = 0

The statistics of Ri,k and Ui,k are not known but we observe the samples {ri,k} and
{ui,k}. In a centralized setting, Robbins-Monro algorithm [28] can be used to solve
the problem, by generating iterates according to:

xk = xk−1 − αk

m∑

i=1

(ri,k − gi (xi,k, ui,k)).

Distributed versions of these algorithm can developed. In the diffusive algorithms,
proposed in [10], the iterates are generated according to

wi,k+1 = vi,k − αk(vi,k − gi (vi,k, ui,k)).

Similar cyclic and Markov incremental fixed point algorithms can also be devel-
oped. While this approach requires the stronger assumption that the model set be
accurate, it is has the advantage that convergence can be obtained by imposing
conditions directly on gi and hi [10].
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4 Gaussian Linear State Space Model Sets

We next focus on the following class of model sets

Θi,k+1(x) = Fi (x)Θi,k(x) + U T
i,k+1Gi (x) + Vi,k+1(x)

R̂i,k+1(x, U k) = Hi (x)Θi,k+1(x) + Wi,k+1(x), (10)

where {Wi,k+1(x)} and {Vi,k+1(x)} are i.i.d. random processes. The state vector
Θi,k+1(x) is a vector of dimension q and the distribution of Θi,0(x) is such that the
process {R̂i,k(x)}k∈N is stationary. We will also assume that the random processes
{Wi,k(x)}k∈N and {Vi,k(x)}k∈N are zero mean i.i.d. random sequences.4

Note that the (10) is the most general linear system description [15]. Linear state
space models arise naturally, or as approximations to non-linear systems. For exam-
ple, the auto-regressive moving average (ARMA) model set is an important special
case, where

R̂i,k+1(x, Rk
i ) = Ri,k−1gi (x) + Ei,k+1(x).

Here Ei,k+1(x) = Ei,k(x)+ Ni,k(x), with {Ni,k(x)} being an i.i.d. sequence. We refer
the reader to [15] for further discussion.

For the model set in (10), the optimal predictor pi,k+1(x, uk+1
i , rk

i ) will be the
Kalman predictor. Let Ki (x) be the Kalman gain for the state-space system in (10),
which is determined from Di (x), Hi (x), Cov

(
Wi,k(x)

)
, and Cov

(
Vi,k(x)

)
as the solu-

tion to the Riccati equation [15]. Define Fi (x) = Di (x) − Ki (x)Hi (x). The Kalman
predictor, pi,k+1(x, uk+1

i r k
i ), is

φi,k+1(x, uk+1
i , rk

i ) =Fi (x)φi,k(x, uk
i , rk−1

i ) + Ki (x)ri,k + uT
i,k+1Gi (x),

pi,k+1(x, uk+1
i , rk

i ) =Hi (x)φi,k+1(x, uk+1
i , rk

i ). (11)

Note that to evaluate the gradient of pi,k+1(x, uk+1
i , rk

i ) at x , uk+1
i and rk

i are
required. In contrast, in the simple non-linear regression model, pi,k+1(x, uk+1

i , rk
i )

was a function of only ui,k+1 and we could make the algorithm recursive by using an
LMS approximation. Thus, we need to make two approximations (a) an LMS-like
approximation for the gradient, and (b) an approximation to make the LMS approx-
imations recursive. These ideas are based on the recursive prediction error (RPE)
algorithm of [15] and hence we call the incremental algorithm proposed below
the incremental RPE (IRPE) algorithm [27]. Formally, the iterates are generated
according to the following relations for i ∈ V and � = 1, . . . , d,

4 We make the zero mean assumption to keep the presentation simple. The algorithm can be
extended to the case when they are not zero mean.
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xk−1 = zm,k−1 = z0,k, (12)
[

ψi,k

χ
(�)
i,k

]
=
[

Fi (zi,k−1) 0
∇(�) Fi (zi,k−1) Fi (zi,k−1)

] [
ψi,k−1

χ
(�)
i,k−1

]
+
[

Ki (zi,k−1)
∇(�) Ki (zi,k−1)

]
ri,k−1

+
[

Gi (zi,k−1)
∇(�)Gi (zi,k−1)

]
ui,k

[
ζi,k

ξ
(�)
i,k

]
=
[

Hi (zi−1,k) 0
∇H (l)

i (zi−1,k) Hi (zi−1,k)

] [
ψi,k

χ
(�)
i,k

]
,

εi,k = ri,k − ζi,k,

z(�)
i,k = z(�)

i−1,k − αk

(
ξ

(�)
i,k

)T
εi,k,

zi,k =
[
z(1)

i,k . . . z(d)
i,k

]T
.

The initial values for the recursion are fixed at x0 = xs, ψi,0 = ψi,s and χ
(�)
i,0 =

χ
(�)
i,s . Observe that the algorithm has a distributed and recursive implementation. In

iteration k, sensor i first uses its iterates from the previous iteration, i.e., zi,k−1, and
ui,k to evaluate χ

(1)
i,k , . . . χ

(d)
i,k and ψi,k . Sensor i then receives zi−1,k from sensor i −1

and updates it using zi,k−1 to generate zi,k . This is then passed to the next sensor in
the cycle. Thus, sensor i only needs to store zi,k , χ

(1)
i,k , . . . χ

(d)
i,k and ψi,k for the next

iteration. The algorithm is therefore recursive and distributed. Furthermore, note
that sensor i only needs to know its own system matrices Hi (x), Fi (x) and Gi (x).

4.1 Convergence of the Algorithm

The data is assumed to satisfy the following assumption

Assumption 2 For each i ∈ V , the sequence {zk}k∈N is the sample path of station-
ary and exponentially stable random process {Zk}k∈N.

Exponential stability requires zk and zs to be weakly related when t � s. Both
these conditions are quite weak and are satisfied in practice. The precise mathemat-
ical definitions and other details are available on page 170 of [15]. We next state the
convergence result. The proof is available in [27].

Theorem 4 Let Assumption 2 hold and let the network topology allow a cycle
between the sensors. For each x ∈ X, let the system in (10) be stable and let the
matrix functions Fi (x), Hi (x) and Ki (x) be twice continuously differentiable. Let
the step-size αk be such that kαk converges to a positive constant. Then, the iterates
{xk} generated by the IRPE algorithm in (12) converge to a local minimum of f (x)
in (2) with probability 1.
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5 Application: Determining the Source of a Diffusion Field

A diffusion field is a spatio-temporal field that follows the diffusion partial dif-
ferential equation. The diffusion equation models diverse physical phenomena like
the conduction of heat, dispersion of plumes in air, dispersion of odors through a
medium and the migration of living organisms. We study the problem of determining
the source of a diffusion field (specifically, temperature field) generated in a room.

We briefly review the literature on source identification in the diffusion equation.
The point source model is a common model for diffusing sources and has been
extensively used [1, 13, 17, 34]. Usually the intensity is assumed to be a constant
[1, 13, 17] or instantaneous. Localization of sources with time-varying intensity
have been studied in a centralized and non-recursive setting in [6, 20]. These studies
consider a deterministic evolution of the leak intensity and use a continuous observa-
tion model. Most papers study that case when the medium is infinite or semi-infinite
since the diffusion equation has a closed form solution in that case [13, 17]. An
exception is [11] where two dimensional shaped medium is considered.

While centralized recursive source localization has received much interest [13,
17, 20, 21] there are very few papers that discuss a distributed solution. A recursive
and distributed solution to the problem in a Bayesian setting is discussed in [34]. A
related paper is [29] that deals with the problem of estimating the diffusion coeffi-
cient in a distributed and recursive manner. We are not aware of any prior work that
solves the source localization problem using a distributed and recursive approach in
a non-Bayesian setting. We refer the reader to [34] for a more detailed discussion of
the literature.

We will consider two different parametrized model sets for the source (the feature
of interest) and use the algorithms developed so far to determine the parameters.

5.1 Point Source and Constant Intensity Model Sets

We first consider the case when based on a priori information the model set for the
source can be chosen to be the set of all point sources with constant intensity. The
model set is parametrized by the source location x = (x1, x2) and intensity I . Thus
the problem of learning the source simplifies to estimating x and I . Additionally, it is
also known that the warehouse is large, the initial temperature is a constant through-
out the warehouse, and the thermal conductivity is large and uniform throughout the
medium, and known.

To map the model set for the source to a model set for the sensor measurements
we will use the diffusion equation. Let C(s, t ; x, I ) denote the temperature at a point
s at time t when the source is at x and intensity is I . For the source model set
and medium, C(s, t ; x, I ) can be approximated using the steady-state value given
by [17]:

C(s; x, I ) = I

2νπ‖s − x‖ ,
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where ν is the diffusion coefficient. If si is the location of the i-th sensor, then the
model set for its k-th measurement is

R̂i,k(x, I ) = C(si ; x, I ) + Ni,k,

where Ni,k is a zero mean i.i.d. measurement noise. Thus the estimation problem is
a simple nonlinear regression problem with no measurable inputs and can be solved
using the algorithms developed in Sect. 3.

5.1.1 Numerical Results

We illustrate the performance of the algorithms with simulation results. In the simu-
lation experiments the diffusion coefficient ν = 1. The actual location of the source
is x∗ = (37, 48) and the actual intensity value is 10. A network of 27 sensors is
randomly deployed. The initial iterate value is fixed at (50, 50) for the source loca-
tion and 5 for the intensity. The results are plotted in Figs. 4 and 5. Observe that
about 200 iterations are sufficient to obtain a good estimate of the source location
and 1000 iterations to obtain a good estimate of the intensity using the cyclic incre-
mental, Markov incremental and diffusion algorithms. In addition, we observed that
the convergence speed of the algorithm is affected by the initial point. If the initial
points are taken very far from the actual value then there is convergence to other
stationary points in the problem.
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Fig. 4 Estimates of the x and y coordinates generated by the cyclic incremental, Markov incre-
mental and diffusion gradient algorithms
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Fig. 5 Estimate of the intensity generated by the cyclic incremental, Markov incremental and
diffusion gradient algorithms

5.2 Point Source and Time-Varying Intensity Model Sets

Suppose that based on a priori information, the model set that is chosen consists
of all point sources that switch on at time t = 0 with intensity values I (t) = Ik ,
for t ∈ [k − 1, k), where Ik+1 = ρ Ik + Sk . Here, ρ is a known scalar and {Sk} is
a sequence of i.i.d. Gaussian random variables with mean (1 − ρ)μ and variance
(1 − ρ2)σ 2

s , and I (0) is Gaussian with mean μ and variance σ 2
s . Thus the model

set for the source, which is the feature of interest, is parametrized by the location
x = (x1, x2). Note that {Ik} does not parametrize the model set and is an incidental
random process whose statistics are specified. Thus we only need to estimate the
source location.

Additionally the following is known about the medium. Let D denote the room
and ∂ D denote the boundary of the room. The medium is uniform throughout the
room. The temperature at the boundaries of the room is always a constant and at time
t = 0, the temperature is modeled to be a constant everywhere in the room. Without
loss of generality, we fix the constant temperature to be 0, i.e., C(·, 0; ·) = 0.

For the above source model set and medium, the temperature at a point y at
time t is

∂C(y, t ; x)

∂t
= ν∇2C(y, t ; x) + I (t)δ̄(y − x), (13)

with the initial and boundary conditions

C(s, 0; x) = 0 for all s ∈ D,

C(s, t ; x) = 0 for all t ≥ 0 and s ∈ ∂ D.
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Here, ν is the medium conductivity, ∇2 is the Laplacian differential operator and δ̄

is the Dirac delta function. Let si be the location of the i-th sensor. Then the model
set for the sensor measurements is

R̂i,k(x) = C(si , k; x) + Ni,k,

where Ni,k is a zero mean i.i.d. Gaussian measurement noise with known variance
σ 2

n . By using Green’s technique to solve the differential equations, it is possible
to obtain an approximate state-space description for each sensor’s observation pro-
cess. The estimation problem can now be solved using the techniques developed in
Sect. 4. We refer the reader to [27] for a detailed analysis.

5.2.1 Numerical Results

We illustrate the performance of the algorithm with simulation results for the prob-
lem discussed above. In the simulation experiments, l1 = l2 = 100 and diffusion
coefficient ν = 1. The actual location of the source is x∗ = (37, 48). The value
of μ = 1000, ρ = 0.95 and σ 2

s = 1. A network of 27 sensors is deployed. To
ensure complete coverage of the sensing area, we first placed 9 sensors on a grid
and then randomly deployed 3 sensors in the immediate neighborhood of each of
the 9 sensors. The network is shown in Fig. 6. The sampling interval is 10 time units
and the measurement noise variance is set to 0.1.

Observe from Fig. 7 that the IRPE algorithm does not converge to the correct
parameter value. This is because, in the absence of convexity, the algorithms in
general are only guaranteed to converge to a stationary point and necessarily the
global minimum of the cost function.

One way to improve the structure of the cost function is to partially model the
dependence between sensor measurements. The idea is to group sensors in clus-
ters. The dependence between the sensor measurements within a cluster is explic-
itly modeled, while across clusters no model is assumed. Each sensor could then
pass its measurements to a cluster head and the distributed algorithms discussed
could be run between the cluster heads. Note that in this case the pi,k+1 term in
the conditional least squares term in (1) should be the best estimate for Ri,k+1

based on the past and present measurements of the independent variable, and all
past values of the dependent variable, of all the sensors in the cluster. There-
fore, to improve the topology of the cost function the network is divided into 9
clusters of size 3. The cluster heads are the sensors marked by circles in Fig. 6.
At the beginning of each slot, a cluster head collects the measurements from the
sensors in the cluster. A total of 1000 iterations of the IRPE is run between the
cluster heads and the performance is compared with 1000 iterations of the RPE.
Observe from Fig. 7 that the algorithm now converges to the correct parameter
value.
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Fig. 6 A network of 27 sensors. The small circles denote the cluster heads and the squares denote
the sensors. The source is represented by a dot. The arrows indicate the order in which the iterates
are passed in the cluster IRPE
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Fig. 7 Estimates of the x and y coordinates generated by the standard IRPE and the cluster IRPE.
Observe that the standard IRPE converges to a stationary point while the cluster IRPE converges
to the correct source location

6 Discussion

In this chapter we have focused on least squares parameter estimation. All of the
estimation algorithms were based on stochastic gradient optimization algorithms.
Similar ideas can be used to obtain weighted, and robust least-squares estimators,
for the case where the criterion is not necessarily quadratic. If the sensor measure-
ments are independent across sensors, the ideas presented here can be extended to
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obtain distributed and recursive maximum likelihood estimators; the independence
across sensors provides the additive form for the estimation cost function, which
makes it possible to use the distributed stochastic algorithms. Related work, which
we did not discuss in this chapter, is that involving recursive Bayesian estimation
over networks. In [4], the asymptotic convergence of optimal Bayesian estimates is
investigated, under the premise that the network is not very complicated and each
sensor can keep track of the total information flow. In [34], cyclical incremental
Bayesian estimation algorithms are discussed.

There are a number of avenues for future extensions. Perhaps, the most immedi-
ate is the development and analysis of Markov incremental and diffusive algorithms
for Gaussian state space model set. Another avenue involves relaxing the assumption
that the sensors sense and process in a synchronous manner, since this assumption
may not be valid in large networks. At a broader level, it is of interest to develop
recursive and distributed estimation algorithms for estimation in other model sets
that the two specific model sets that we described in the chapter.
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15. Ljung, L., Söderström, T.: Theory and Practice of Recursive Identification. The MIT Press,
Cambridge, MA (1983)

16. Lopes, C.G., Sayeed, A.H.: Incremental adaptive strategies over distributed networks. IEEE
Transactions on Signal Processing 55(8), 4064–4077 (2007)
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Self-Organization of Sensor Networks
with Heterogeneous Connectivity
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Abstract Most research on wireless sensor networks has focused on homogeneous
networks where all nodes have identical transmission ranges. However, heteroge-
neous networks, where nodes have different transmission ranges, are potentially
much more efficient. In this chapter, we study how heterogeneous networks can be
configured by distributed self-organization algorithms where each node selects its
own transmission range based on local information. We define a specific perfor-
mance function, and show empirically that self-organization based on local infor-
mation produces networks that are close to optimal, and that including more infor-
mation provides only marginal benefit. We also investigate whether the quality of
networks configured by self-organization results from their generic connectivity
distribution (as is argued for scale-free networks) or from their specific pattern of
heterogeneous connectivity, finding the latter to be the case. The study confirms
that heterogeneous networks outperform homogeneous ones, though with randomly
deployed nodes, networks that seek homogeneous out-degree have an advantage
over networks that simply use the same transmission range for all nodes. Finally, our
simulation results show that highly optimized network configurations are as robust
as non-optimized ones with respect to random node failure, but are much more
susceptible to targeted attacks that preferentially remove nodes with the highest
connectivity, confirming the trade-off between optimality and robustness postulated
for optimized complex systems.

1 Introduction

Self-organization is seen increasingly as an attractive alternative to design for engi-
neering large-scale complex systems such as sensor networks, robot swarms, multi-
agent systems, self-reconfiguring robots and smart structures [14]. As systems grow
in size, self-organization provides an inherently scalable, flexible and robust way
to obtain effective functionality without the need for global communication or con-
trol. However, most theoretical work on self-organization has focused on physical
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systems or their simplified models (e.g., cellular automata, percolation models,
sandpiles, etc.), where the process is driven by simple rules that have little to do with
domain-dependent performance considerations. In contrast, systems for engineering
applications must accomplish goal-directed tasks, and their self-organization rules
must be based on domain-specific considerations such as bandwidth, capacity, cost,
energy resources, etc. Ultimately, the success (or failure) of such self-organization
procedures must be judged by whether the resulting system has close to optimal per-
formance – an issue seldom considered for abstract models such as cellular automata
or sandpiles.

This is seen most clearly in the area of complex networks, where much of the
work has focused on systems obtained through purely structural self-organization
rules such as preferential attachment [6, 7, 2, 3] or rewiring [56, 3], and the resulting
systems have been characterized primarily in terms of their global structural proper-
ties such as degree distribution or connectedness. Though functional attributes such
as robustness have been studied extensively [5, 35], they are evaluated post facto,
and not explicitly integrated into the self-organization algorithm itself. Even in stud-
ies that have systematically considered the optimization of functional properties
[45, 51, 38, 50], the approach has been to first generate ensembles of networks using
algorithms parameterized by generic quantities such as connectedness, attachment
preference, degree distribution, etc., and then to characterize the results to find the
best set of parameters (see [10] for an exception). However, as pointed out cogently
by Doyle and coworkers [14, 20, 15, 16, 30, 19], even the best networks produced in
such cases are typically far from optimal with regard to specific application domains
and problem instances. The central challenge for complex systems engineering [14]
is to find application-specific self-organization algorithms that have the desirable
attributes of their abstract counterparts but are based on concrete system properties
[34, 32]. In particular, the goal is to find self-organization algorithms capable of
producing systems with optimally structured heterogeneity, which is how custom-
designed systems achieve their performance [16].

In this chapter, we consider a relatively simple but important class of systems –
wireless sensor networks – and present a set of self-organization rules that try to
optimize a specific, application-relevant performance criterion. We show empiri-
cally that the resulting networks are indeed close to optimal, that their performance
derives from the specific structuring of their heterogeneity rather than from simple
generic attributes, and that they represent atypical samples in the overall configura-
tion space. These results are of broad interest in the context of complex networks
(and, indeed, complex systems) because they partially bridge the divide between
purely open-loop self-organization [6, 7, 2, 3, 56] and explicit design. This work
demonstrates that, in a reasonably complex and practical network, it is possible to
obtain most of the benefits of optimized design through self-organization based only
on local information. While we focus only on geometric networks (i.e., networks
where connectivity is based on geometric neighborhoods in physical space), the
ideas may extend to other distributed systems such as swarms [11], where agents
make decisions based on local information while seeking to achieve a globally
desirable configuration.
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A major issue of interest in the complex networks literature is the robustness of
such systems to random node failure and targeted attack. Networks with power-law
degree distribution are much more robust to random failure than random networks,
but more susceptible to targeted attack [6, 4, 5, 58]. While it arises from inherent
structure in scale-free networks, Carlson and Doyle have argued that this “robust-
yet-fragile” attribute also characterizes all highly optimized systems, which achieve
their enhanced performance by trading off robustness to likely problems against
fragility to unlikely ones [20, 15, 16, 30]. We test this empirically on networks gen-
erated through explicit optimization (using genetic algorithms), networks produced
through heuristic self-organization methods, and those obtained by applying simple
uniform rules (e.g., identical out-degree for all nodes). Our results show that, in
the case of geometric networks, all configurations lose fitness with both random
failure and targeted attack. However, the non-optimized configurations are affected
in the same way in both cases while the optimized configurations show very different
responses. Specifically, the latter lose much more fitness under targeted attack than
under random failure. These results are in line with the “robust-yet-fragile” view of
optimized systems.

2 Background and Motivation

Geometric networks are networks where nodes are distributed in a metric space,
and each node connects to all others within a certain range, called the connection
radius of the node. Such networks arise naturally in the context of wireless networks
(including sensor networks), but, to some degree, neuronal networks in the brain can
also be considered geometric [52]. Three attributes are of particular interest for such
networks:

1. Connectedness. It is usually essential to have global connectivity, i.e., have the
network form a single connected component. For example, in wireless sensor
networks, information is typically obtained locally and processed collabora-
tively, which requires connectedness.

2. Network diameter. This is the average length of the shortest paths between all
node pairs – typically measured in the number of edges traversed (termed hops).
Since each hop in a network usually entails some cost (e.g., transmission energy,
wait time, etc.), a small diameter is considered good because it implies more
efficient communication over longer distances.
It is usually more practical to use the average inverse shortest path length
(AISPL), which averages the inverse distances, and can readily represent dis-
connected node pairs with a value of 0 [10].

3. Mean in-degree. The number of incoming edges to a node usually represent the
“loading” faced by that node, and determines the capacity needed by the node to
handle its load. Thus, smaller mean in-degree is considered a desirable attribute.
For example, in wireless networks, the number of nodes that can be heard at the
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location of node i , and the mean in-degree of the network is a simple measure of
congestion interference faced by that node.

In this chapter, we address the problem of obtaining connected geometric net-
works where the diameter and mean in-degree are minimized.

Most of the literature on geometric (typically wireless) networks has focused on
homogeneous networks. These can be divided broadly into two classes: (1) Degree-
homogeneous (DH) networks, where all nodes have the same out-degree, and (2)
Radius-homogeneous (RH) networks, where all nodes have the same connection
radius . It should be noted that each type of homogeneity (radius or degree) usually
implies heterogeneity in the other parameter (degree or radius, respectively), but we
reserve the term heterogeneous networks for those systems where neither radius nor
degree are explicitly homogenized.

There is considerable research on degree-homogeneous networks – especially on
determining the minimum number of neighbors necessary for a network to be con-
nected [28, 49, 36, 57]. In particular, Xue and Kumar [57] show that for a network
with N nodes, C log N neighbors for each node ensure connectivity, where C > 1.
However, recent work indicates that such rules are very sensitive to inhomogeneities
in node distribution [23]. In any case, choosing a fixed number of neighbors is a
device for maintaining connectivity rather than minimizing network diameter or
mean in-degree, which is our primary concern.

In radius-homogeneous networks, there is a critical radius above which the net-
work is globally connected with high probability [18, 44]. This is called the per-
colation radius [48], ρperc. The simplest way to obtain a connected network with
minimal mean in-degree is for all nodes to use a connection radius equal to (or
just above) ρperc. However, this leads to a large diameter. Conversely, diameter can
be minimized if all nodes use a radius much larger than ρperc, but this increases
mean in-degree. Given the spatial distribution of nodes, one can find an “optimal”
radius that represents the best compromise of diameter and mean in-degree, pro-
ducing the optimal RH network. However, it has been shown that significantly
better performance can be obtained by allowing heterogeneity, i.e., letting each
node choose its own radius to maximize overall performance [9, 8, 21]. Unfortu-
nately, assigning these radii is a very difficult combinatorial optimization problem in
large systems, which has prompted several proposals for self-organized approaches
[40, 12, 31, 13, 42, 41, 53, 54].

In the present chapter, we focus on the simplest possible class of heterogeneous
networks, where only two radius choices are available – one smaller than ρperc and
the other larger. The problem is to assign the appropriate value to each node such
that a specific function of diameter and mean in-degree is optimized. The key issues
are:

• To show whether – and to what extent – this heterogeneity allows optimization
beyond that offered by the homogeneous case.

• To propose efficient, scalable self-organization algorithms for configuring near-
optimal heterogeneous networks, and validating their performance.
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Networks with two classes of nodes differentiated by the spatial extent of their
connectivity are interesting from both abstract and concrete perspectives. Since
nodes in geometric networks must connect with all other nodes within their trans-
mission radius, these networks cannot have selective “short-cut” links in the sense
of small-world connectivity [56], and even obtaining power-law connectivity [4]
becomes quite difficult and contrived. However, many interesting properties of
small-world and power-law network models actually arise from the existence of hub
nodes – highly connected nodes that shrink the network’s diameter and enhance its
robustness [6, 4, 5, 58]. In the networks we study, the large radius nodes correspond
to such hubs, and in this sense, these networks are the geometric analog of the classic
complex network models. This chapter addresses the issue of whether they provide
the same sort of advantages in terms of robustness and efficiency.

From a concrete viewpoint, two-level heterogeneous networks can be used to
model many natural and artificial systems. For example, neuronal networks in the
cerebral cortex consist of pyramidal cells with spatially wide-ranging connectivity
and interneurons with more restricted range [22], and “hub-like” architectures in the
cortex have been proposed as the crucial substrate of cognitive processes [47, 46]. In
this chapter, we use wireless networks as the motivating case. Thus, the connection
radius for a node is related to its transmission power, with larger radii requiring
greater energy. Since nodes in wireless networks are typically energy-limited, there
is considerable incentive to minimize diameter without increasing radii, i.e., trans-
mission power, more than necessary [39, 1, 26, 17]. However, it should be noted that
we do not explicitly try to minimize mean radius or total radius, and use the radii
only as tunable parameters to minimize diameter and mean in-degree. We explicitly
avoid specifying details such as handshake protocols, buffer sizes, etc., to maintain
the generic character and scope of this study, which is intended to focus on the broad
issue of self-organized network structures.

It should be noted that wireless networks with short-range and long-range nodes
can arise naturally in many situations. For example, in chapter “Enhancing Under-
water Acoustic Sensor Networks Using Surface Radios: Issues, Challenges and
Solutions” of this volume, Cui et al. describe a network with short-range underwater
nodes augmented by surface radio nodes with larger transmission radius.

3 System Description

We consider a system with N nodes distributed randomly in a unit square. Each
node, i , has a connection radius ri , and projects outgoing connections to every node
j within this radius. This defines the network G(V, E), where V is the set of all
nodes and E the set of all edges representing connections between nodes. Because
nodes can have different radii, the network is heterogeneous, and the edges are
directed. We assume that each node has a unique (randomly generated) identifier,
but this is used only for local identification and there is no globally available lists
of node IDs. We also assume that nodes are aware of their position in a global



44 A. Prasath et al.

coordinate system, which may be based on GPS or self-organized within the net-
work [37, 24, 27]. The position of node i is denoted by li = (xi , yi ), and the set
L ≡ {li }, i = 1, . . . , N , is termed a layout. For simplicity, we assume that each node
can take radius values from a finite set, R = {ρk}, k = 1, . . . , M . Thus, for a layout
with N nodes, there are M N possible assignments of radii. Each such assignment,
Q(L) ≡ {ri }, i = 1, . . . , N , is called a configuration, and corresponds to a specific
graph, G(VQ, EQ), where VQ is the set of nodes in the underlying layout, L , and
EQ is the set of edges induced on this layout by Q (Here (and henceforth), we have
omitted writing the argument L for notational clarity.) The in-degree of node i in
configuration Q is denoted by f I

i (Q), and its out-degree by f O
i (Q).

The AISPL for a configuration, Q, is defined as:

H (Q) = 1

N (N − 1)

∑

i, j∈V (Q)

1/di j

where di j is the distance in hops from node i to j , and 1/di j = 0 if there is no path
from i to j . The mean congestion for a configuration Q is defined as:

C(Q) = 1

N

∑

i∈V (Q)

f I
i (Q)

Given a layout, L , the goal is to find a configuration Q∗ that maximizes the fitness
function, φ = H (Q)/C(Q), thus trying to minimize congestion while keeping the
network diameter as small as possible.

3.1 Whisperers and Shouters

As discussed above, we focus in this chapter on the case of M = 2 (see [42, 41] for
the M > 2 case.) Accordingly, we define two classes of nodes: (1) Whisperers are
nodes with a small transmission radius, ρw, while (2) shouters have a larger radius,
ρs . To obtain a uniform parametrization, the two radii are expressed in terms of the
nominal percolation radius, ρperc as ρw = αρperc and ρs = βρperc, where α < 1 < β.
The nominal ρperc is calculated as in [44]. Each node, i , maintains two adjacency
lists for the nodes within its transmission range. Nodes within whisperer range of
i are listed in its whisper-adjacency list, Aw

i , while the nodes in shouter range but
not in whisperer range, called the ring nodes of i , are listed in the ring-adjacency
list, Ar

i . These adjacency lists are the primary source of information as each node
autonomously decides its transmission radius using local information in order to get
close to an optimum φ value.
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4 Self-Organization Algorithms

The scalability and flexibility of self-organization methods derives from three
attributes:

1. Decentralization of action. Global organization emerges as a result of interaction
between autonomous elements rather than by global prescription.

2. Simplicity of decisions. The decision space in which each element operates is
very simple, and only has a few degrees of freedom.

3. Locality of information. The information used by each element in its decision-
making is local (or limited in some other way).

The first two of these roughly determine what are termed design degrees-of-
freedom (DDOF) [43]. Any successful self-organization algorithm must satisfy
these conditions, and be able to generate near-optimally structured, heterogeneous
configurations with high performance.

We present a series of self-organization algorithms based on a specific heuristic
principle. While the algorithms are similar in terms of the decentralization of action
and simplicity of decision criteria, each algorithm in the sequence takes increasingly
more neighborhood information into account.

Each node in the system faces a binary choice of whether to be a whisperer or a
shouter. The heuristic principle on which our algorithms are based is as follows: If
a node determines that it can reach all its ring-adjacent neighbors indirectly with
connection radius ρw, it becomes a whisperer. Else, it must become a shouter. When
each node makes its choice using this criterion, the connectivity of the network is
ensured, as many nodes as possible become whisperers, and shouters are deployed
only when they are truly useful (i.e., would create connectivity beyond what is pos-
sible with whisperers alone). The nodes apply this criterion asynchronously and
iteratively until the network is relaxed. The key difference among the algorithms is
in the information used to determine whether the criterion is satisfied.

The heuristic described above tries to increase fitness in two ways: (1) It reduces
the denominator of the fitness function (congestion) explicitly; and (2) It keeps the
numerator of the fitness function (AISPL) relatively high by preventing disconnec-
tion. Though the first operation (reducing congestion) tends to decrease the AISPL
and thus works against the second operation, this effect is largely swamped by
the benefit of reduced congestion – especially in larger networks. More complex
heuristics can mitigate this problem somewhat, but we use the current heuristic in
the interest of simplicity.

The algorithms are as follows:

4.1 Basic Self-Organization (BSO) Algorithm

This is the basic algorithm with the least amount of information available to nodes.
The process begins by each node transmitting a message giving its identifier and its



46 A. Prasath et al.

position (a so-called “hello” message) at shouter transmission power. As a result, all
nodes acquire a list of nodes within shouter range of themselves, and their locations.
From this, each node, i , can obtain its whisper-adjacency list, Aw

i , and its ring-
adjacency list, Ar

i . Using these lists, each i determines if all nodes in Ar
i are within

ρw of some node in Aw
i . If all nodes satisfy this criterion, ri = ρw, else ri = ρs .

This algorithm represents the most pessimistic and naive version of the heuris-
tic principle stated above: pessimistic because it assumes that all neighbors choose
whisperer radii, and naive because it checks only for 1-hop links from nodes in Aw

i to
those in Ar

i . Because of this, the algorithm makes maximally conservative choices,
resulting in guaranteed connectivity but more shouters than needed to achieve it.
The latter leads to high AISPL but also relatively high congestion.

4.2 Self-Organization Algorithm A

This algorithm relaxes the “naive” assumption in the BSO algorithm slightly. Each
node obtains additional information on the current radius of the whisper-adjacent
nodes. If a node, j , whisper-adjacent to i is a shouter, node i checks if the nodes
in Ar

i are within ρs of j rather than within ρw. Node i also checks whether a ring-
adjacent node not satisfying this condition is within ρw of a ring-adjacent node
that does (see Fig. 1). Node ri = ρs only if some node in Ar

i fails these tests.
The additional cost of this step is minimal since the additional information used is
the radius choices of i’s whisper-adjacent nodes. The result is that every node that
was a whisperer under BSO remains a whisperer and some that were shouters now
become whisperers. Thus, Algorithm A tends to reduce congestion, but also reduces
AISPL.

node

whisper radius

shouter radius

nodes reachable
within whisper radius
nodes reachable 
by BSO Algorithm
nodes reachable 
by Algorithm A
nodes reachable 
by Algorithm B

i

a

b

u
v

w

x
m

y

z

Fig. 1 A schematic representation of node i running the self organizing algorithm. Nodes a and b
are whisper-adjacent to i , while u, v, w, x , y and z are ring-adjacent
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4.3 Self-Organization Algorithm B

As shown in Fig. 1, it is possible that a node ring-adjacent to i is reachable, but
requires a path through a node that is not a neighbor of i (about which i has no
information in the previous algorithms). Algorithm B addresses this issue, and also
relaxes the “pessimistic” assumption of the BSO algorithm. Here, each node, i ,
also obtains two additional items of information: (1) The current radius choices
of all its ring-adjacent nodes; and (2) The whisper adjacency lists of all its ring-
adjacent nodes. This information is obtained through additional communication fol-
lowing the initial “hello” message. Using the first item of information, i checks for
connectivity from nodes in Aw

i using the actual current radii of neighbors rather
than assuming whisperer radii for all ring-adjacent nodes. It also checks if each
ring-adjacent node that is not reachable from Aw

i has an adjacent node that can be
reached from a reachable ring-adjacent node. If so, the previously unreachable node
is marked reachable because it has a path from Aw

i through a non-neighbor link node
(see Fig. 1). If any ring-adjacent nodes for i are still not reachable, i sets ri = ρs ,
otherwise ri = ρw. As with Algorithm A, this further reduces the total number of
shouters, decreasing congestion further but also decreasing AISPL.

4.4 Self-Organization Algorithm C

The final algorithm we consider augments Algorithm B by using the actual radii
of the link nodes described above. This requires that i have information about radii
of nodes that are not within its ρs radius. This is still possible to obtain locally by
having the ring-adjacent neighbors of i forward the radius information about their
neighbors (which they have in Algorithm B) to i . Algorithm C has the effect of
further reducing the number of shouters over Algorithm B.

Obviously, this progression of algorithms can be continued by having each node
obtain information about a wider area around it, but that also diminishes scalability
which is the main reason for using self-organization. Thus, we focus on simulations
done with Algorithms A, B and C. As pointed out above, each successive algorithm
reduces the number of shouters in the network, and an interesting issue is to see
whether the gain due to reduced congestion is more than the loss due to reduced
AISPL.

To address the main issue of the chapter (i.e., optimality), we also explicitly
obtain optimized configurations for each layout using a genetic algorithm [33]. The
algorithm is run repeatedly with high-mutation episodes, etc., to ensure reasonably
that the configurations obtained are, indeed, very close to optimal in terms of fit-
ness. This is a crucial part of our study. In most cases previous proposals for self-
organization of wireless networks [59, 55, 29, 25], there was no attempt to check
how the results obtained compared with the best achievable. However, we are also
constrained by the computational difficulty of obtaining optimal configurations, and
this has been done only for relatively small networks (200 nodes). Given that the
self-organization algorithms produced solutions close to optimal in this case, we
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expect that the same will hold true for larger systems. This is verified indirectly
by comparing the fitness of randomly generated configurations with those obtained
through self-organization.

Results from our simulations are presented and discussed in the next section.

5 Simulation, Results and Discussion

The simulations described below were done to address the following specific ques-
tions:

1. Are networks optimized through heuristic self-organization comparable in qual-
ity to those obtained by direct optimization?

2. Are the heterogeneous networks obtained through heuristic and direct opti-
mization significantly different from the best radius-homogeneous and degree-
homogeneous networks?

3. Are the optimized networks significantly different from statistically similar ran-
domly generated networks?

4. How robust are the various optimized and homogeneous networks to node failure
and targeted attack?

5.1 Simulations

Simulations were run for networks with 200 and 1000 nodes. The whisperer radius
was chosen as 0.8 times percolation radius (α = 0.8) and shouter radius as 1.25
times percolation radius (β = 1.25). Percolation radius for 200 node network was
set to 0.11, giving ρw = 0.088 and ρs = 0.1375. Percolation radius for 1000 node
network was set at 0.0463, giving ρw = 0.03704 and ρs = 0.05785.

The genetic algorithm (GA) (see Appendix), which was run only for the 200
node case for computational reasons, used a population size of 20, and was run for
4000 generations. It used the fitness φ, which was also used to evaluate all other
networks. Each solution in the GA population was encoded as a vector of length
N (i.e., number of nodes), with the i th element indicating whether the node i was
a whisperer or a shouter. New solutions were generated using two-point crossover
of parents selected through an elitist method. Mutations were applied by switching
whisperers to shouters and vice-versa with a probability of 0.05. To exclude the
possibility for premature convergence, the GA was run 3 times for each layout. Each
run was “punctuated” by mutation shocks (high-mutation iterations) whenever the
algorithm converged to a putative optimum, with at least 3 such punctuations in
each run. Only if the algorithm converged repeatedly to very similar fitness values
within and across runs was the best fitness achieved by the GA treated as optimal
for a layout.

Both degree- and radius-homogeneous networks were compared with optimized
networks. For each layout, a range of degree and radius choices were evaluated for
the DH and RH cases, respectively, and the best one was used for the comparison.
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To compare optimized networks with randomly generated ones, it is necessary
to choose the latter in a way that makes the comparison justified. We did this by
scrambling the radius assignments for networks obtained through the GA for the
200-node case and through Algorithm C for the 1000-node case. Thus, the ratio
of shouters and whisperers in all scrambled networks is identical to that in the
best available configurations for those layouts. The only difference is in the assign-
ment. The relative difference in quality between the two is, therefore, entirely the
result of specific assignment rather than the generic attribute of radius distribution –
reflecting the argument made by Doyle and others [16, 30] that optimal systems
achieve their performance through specific configuration, and are atypical rather
than generic within their class.

In addition to the scrambled networks generated as above, we also generated
random networks with the fraction of shouters distributed around the value for the
optimized cases rather than set equal to it. These networks are termed random net-
works.

5.2 Results and Discussion

5.2.1 Performance Comparison Between Algorithms

Figure 2 shows the best fitness achieved by the GA and the three heuristic opti-
mization algorithms (A, B and C) over 10 different 200-node layouts. Clearly, the
GA outperforms the heuristic algorithms by a small amount in all cases, but the
latter come close to achieving the optimal fitness. Also, there is a small but con-
sistent improvement in performance from Algorithm A through Algorithm B to
Algorithm C.

While it is important that the heuristic algorithms produce configurations with
close to optimal fitness, the utility of these algorithms must ultimately be judged in
comparison with simpler (and faster) non-optimizing algorithms. Figures 3 and 4
show results comparing Algorithm C – the best of the heuristic algorithms – with
the two homogeneous configuration methods – RH and DH – and with scrambled
networks to provide a baseline for performance. Clearly, Algorithm C outperforms
all the non-optimizing configurations consistently for both 200-node and 1000-node
layouts, though it is interesting to note that degree-homogeneous (DH) configura-
tions are also quite good, and much better than radius-homogeneous (RH) config-
urations which are not much better than the scrambled case. This is presumably
because degree-homogeneity is a stronger guarantor of connectivity than radius-
homogeneity.

5.2.2 Comparison with Non-optimized Networks

As discussed earlier, it has been argued that optimized configurations in application
systems must be atypical, i.e., they must fall well outside the space of generic con-
figurations. To test this for our optimized configurations, we randomly scrambled
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Fig. 2 Comparison of fitness for networks produced with Algorithms A,B and C and the GA for 10
different 200-node layouts. The graphs show that self-organized networks produce networks close
to those obtained through the GA. Note that performance improves further as the self-organized
algorithms use more information
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Fig. 3 Comparison of GA, Algorithm C, scrambled and homogeneous networks in the 200-node
case, showing that self-organized networks are better than scrambled or homogeneous ones. The
layouts are the same as in Fig. 2



Self-Organization of Sensor Networks with Heterogeneous Connectivity 51

1 2 3 4 5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1000 node network deployment

N
et

w
o

rk
 f

it
n

es
s

Algorithm C Scrambled RH DH

Fig. 4 Comparison of Algorithm C, scrambled and homogeneous networks in 1000-node case,
showing the advantage of self-organized networks over scrambled or homogeneous ones. The
x-axis indexes 10 independent random layouts of 1000 nodes each

the radius assignments for the best optimized network in each case to generate a
population of networks that had the same radius distribution as the optimal. Figure 5
shows the fitness distribution for this class of 1000-node networks as well as the
fitnesses obtained for the DH and RH cases and the optimized cases. Clearly, the
optimized algorithms all produce fitness well outside the generic range, indicat-
ing that the optimization has produced statistically significant benefits. Of the two
homogeneous cases, RH networks tend to fall in the upper tail of the scrambled net-
work distribution, indicating that they are just very good random samples. However,
the DH networks are well outside the generic fitness range, though still significantly
worse than optimized networks.

Since the scrambled networks all have the same whisperer-shouter ratio, it is
worth investigating whether varying this parameter my produce better configura-
tions. To check this, we generated random networks for each layout with shouter-
fractions ranging from 15% below that in the optimal case to 15% above it. The
results for these random networks are shown in Fig. 6, and are virtually identical
to those for scrambled networks. The main conclusion from both these compar-
isons is that high-quality (near-optimal) networks cannot be produced by sampling
and sifting randomly generated configurations – even those with carefully chosen
shouter-fractions – and an explicit optimization process must be used. This empha-
sizes the necessity for efficient, scalable self-organizing optimization algorithms
such as Algorithm C.
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Fig. 5 Fitness distribution for 100 randomly scrambled networks for a particular layout, obtained
from the best available configuration for the layout. The vertical lines indicate the best fitnesses
obtained through various optimization procedures
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5.2.3 Robustness Evaluation

To consider the issue of robustness, each network configuration was subjected to
systematic deterioration using random failure and targeted attack models. In the
random failure case, randomly chosen nodes were removed from the network along
with all connections to and from these nodes, while targeted attack involved remov-
ing nodes in decreasing order of out-degree. Figures 7 and 8 show the percentage
loss of fitness as an increasing number of nodes is removed. Clearly, all configura-
tions except those produced by Algorithm A have very similar response to random
failure (Fig. 7), but the responses are very different for targeted attack. As seen in
Fig. 8, the optimized configurations lose fitness much more rapidly in this case.
Indeed, the robustness appears to depend inversely on the degree of optimization,
with the GA-derived networks faring the worst followed by Algorithms C, B and A,
with the two homogeneous cases showing the greatest robustness. This is seen very
clearly in Fig. 9, which plots the fitness of networks with 25% node loss against the
fitness of the undamaged networks. Clearly, highly fit optimized networks show a
strong divergence in their response to random failure and targeted attack while the
non-customized homogeneous networks are almost identically affected in the two
cases. Note that, by definition, the random and targeted failure cases are identical
for DH networks.

Interestingly, Algorithm A configurations, which are the most robust in the ran-
dom failure case, behave like non-optimized configurations for low levels of targeted
attack but become more similar to optimized configurations for higher attack levels.
Thus, overall, Algorithm A appears to be the best choice for balancing the benefits
of optimization with robustness.
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6 Conclusion

In this study, we have investigated heterogeneous geometric wireless networks with
two types of nodes: whisperers, projecting over a small radius, and shouters project-
ing over a larger radius. Several interesting conclusions about these heterogeneous
networks have emerged from the study:

1. Given a node layout, very specific assignments of node type are needed to
achieve optimal performance, which is significantly better than that of the best
homogeneous networks.

2. The performance of optimized networks is not just a consequence of the fraction
of hub nodes (shouters) in the population, but depends sensitively on the pre-
cise choice of these nodes. Thus, optimal configurations are atypical rather than
generic in the space of configurations with the same radius distribution.

3. It is possible to find simple, efficient and scalable self-organization algorithms to
produce near-optimal network configurations.

4. Highly optimized network configurations are as robust as non-optimized ones
with respect to random node failure, but are much more susceptible to targeted
attacks that preferentially remove nodes with the highest connectivity. All hetero-
geneous networks thus show a strong “robust-yet-fragile” effect [20, 15, 16, 30].

5. Of all the optimization procedures investigated, Algorithm A, which used the
least amount of neighborhood information, provided the best balance between
performance and robustness. The results suggest that most of the benefits of
heterogeneity can be obtained with minimal loss of robustness by using simple
self-organization algorithms rather than more complex ones.

The study has also produced an interesting conclusion about homogeneous net-
works, showing that, with randomly deployed nodes, networks that seek homoge-
neous out-degree are much better than networks that simply use the same connection
radius for all nodes – though both are worse than heterogeneous configurations.
Interestingly, there is evidence that neuronal networks in the cerebral cortex config-
ure themselves by trying to equalize the synaptic input for each neuron rather than
equalizing the size of the axonal arbors (i.e., projection radius) [52].

Appendix

In order to assess the quality of the results obtained through self-organization, we
generated optimal (or near-optimal) configurations for the 200-node layouts stud-
ied in the simulations. A genetic algorithm was used to produce these optimized
configurations. The algorithm comprised the following steps.

Given a layout L with N nodes, set generation = 1:

1. Generate an initial population of n pop configurations by assigning whisperer and
shouter radii randomly to each node in n pop copies of the layout. Thus, each
configuration is represented by a binary string, ζ k = {ζ k

i } of n pop bits, where
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ζ k
i = 1(0) means that node i in configuration k is a shouter(whisperer). These

strings are the chromosomes representing the respective configurations.
2. Evaluate the fitness of each configuration in the current population using the

fitness function defined above.
3. Select 0.8n pop/2 fittest configurations and 0.2n pop/2 randomly chosen configu-

rations as parents for the next generation.
4. Randomly pair the parents into n pop/2 couples, and generate two offspring from

each couple using two-point crossover, i.e., both chromosomes in the couple
are divided into three parts by breaking them at the same two randomly chosen
points, and recombined into two new chromosomes of length N .

5. Select the n pop/4 fittest configurations and n pop/4 randomly chosen configura-
tions as survivors from the current generation, i.e., not including the new off-
spring.

6. Remove the remaining members of the current generation and replace them with
the offspring to obtain a new population of size n pop.

7. In all but the two fittest survivors:

• If mutation is to be normal, randomly switch 0.05% of the bits from 1 to 0 or
vice versa.

• If the current generation is selected for a mutation shock, randomly switch
0.25% of the bits from 1 to 0 or vice versa. The mutation shock is intended to
break the system out of a local optimum and prevent premature convergence.

8. If termination condition (maximum number of generations) is not met, increment
generation by 1 and repeat from step 2.

References

1. D. Braha, A.A. Minai, and Y. Bar-Yam, Eds., Complex Engineered Systems: Science Meets
Technology, Springer/NECSI, New York, 2006.

2. A.-L. Barabási and R. Albert, “Emergence of scaling in random networks”, Science, vol. 286,
pp. 509–511, 1999.

3. A.-L. Barabási, R. Albert, and H. Jeong, “Mean-field theory for scale-free random networks”,
Physica A, vol. 272, pp. 173–187, 1999.

4. R. Albert and A.-L. Barabási, “Topology of evolving networks: Local events and universality”,
Physical Review Letters, vol. 85, pp. 5234–5237, 2000.

5. R. Albert and A.L. Barabási, “Statistical mechanics of complex networks”, Reviews of Modern
Physics, vol. 74, pp. 47–97, 2002.

6. D.J. Watts and S.H. Strogatz, “Collective dynamics of ‘small-world’ networks”, Nature,
vol. 393, pp. 440–442, 1998.

7. R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of complex networks”,
Nature, vol. 406, pp. 378–382, 2000.

8. M.E.J. Newman, S.H. Strogatz, and D.J. Watts, “Random graphs with arbitrary degree distri-
bution and their applications”, Physical Review E, vol. 64, pp. 026118, 2001.

9. B. Shargel, H. Sayama, I.J. Epstein, and Y. Bar-Yam, “Optimization of robustness and con-
nectivity in complex networks”, Physical Review Letters, vol. 90, pp. 168701, 2003.

10. A.X.C.N. Valente, A. Sarkar, and H.A. Stone, “Two-peak and three-peak optimal complex
networks”, Physical Review Letters, vol. 92, pp. 118702, 2004.



Self-Organization of Sensor Networks with Heterogeneous Connectivity 57

11. G. Paul, T. Tanizawa, S. Havlin, and H. E. Stanley, “Optimization of robustness of complex
networks”, European Physical Journal B, vol. 38, pp. 187–191, 2004.

12. T. Tanizawa, G. Paul, R. Cohen, S. Havlin, and H. E. Stanley, “Optimization of network robust-
ness to waves of targeted and random attacks”, Physical Review E, vol. 1, no. 4, pp. 047101,
Apr. 2005.

13. A. Beygelzimer, G. Grinstein, R. Linsker, and I. Rish, “Improving network robustness by edge
modification”, Physica A, vol. 357, pp. 593–612, 2005.

14. J. Doyle and J.M. Carlson, “Power laws, highly optimized tolerance, and generalized source
coding”, Physical Review Letters, vol. 84, pp. 5656–5659, 2000.

15. J.M. Carlson and J. Doyle, “Highly optimized tolerance: Robustness and design in complex
systems”, Physical Review Letters, vol. 84, pp. 2529–2532, 2000.

16. J.M. Carlson and J. Doyle, “Complexity and robustness”, Proceedings of the National
Academy of Sciences USA, vol. 99 Suppl. 1, pp. 2539–2545, 2002.

17. L. Li, D. Alderson, R. Tanaka, J.C. Doyle, and W. Willinger, “Towards a theory of scale-free
graphs: Definition, properties, and implications (extended version)”, Tech. Rep. CIT-CDS-04
–006, Engineering and Applied Science, California Institute of Technology, 2005.

18. J.C. Doyle, D.L. Alderson, L. Li, M. Roughan, S. Shalunov, R. Tanaka, and W. Willinger, “The
‘robust yet fragile’ nature of the internet”, Proceedings of the National Academy of Sciences
USA, vol. 102, pp. 14497–14502, 2005.

19. R. Nagpal, “Engineering amorphous systems, using global-to-local compilation”, in Complex
Engineered Systems: Science Meets Technology, D. Braha, A.A. Minai, and Y. Bar-Yam, Eds.,
pp. 291–306. Springer/NECSI, New York, 2006.

20. A.A. Minai, D. Braha, and Y. Bar-Yam, “Complex engineered systems: A new paradigm”,
in Complex Engineered Systems: Science Meets Technology, D. Braha, A.A. Minai, and
Y. Bar-Yam, Eds., pp. 1–21. Springer/NECSI, New York, 2006.

21. E. Bonabeau, M. Dorigo, and G. Theraulaz, Eds., Swarm Intelligence: From Natural to Artifi-
cial Systems, Oxford University Press, Oxford, 1999.

22. R. Albert, H. Jeong, and A.-L. Barabási, “Diameter of the world wide web”, Nature, vol. 401,
pp. 130–131, 1999.

23. S.-H. Yook, H. Jeong, and A.-L. Barabási, “Modeling the internet’s large-scale topology”,
Proceedings of the National Academy of Sciences USA, vol. 99, pp. 13382–13386, 2002.

24. A. Van Ooyen and J Van Pelt, “Activity-dependent outgrowth of neurons and overshoot phe-
nomena in developing neural networks”, Journal of Theoretical Biology, vol. 167, pp. 27–43,
1994.

25. L. Kleinrock and J. Sylvester, “Optimum transmission radii for packet radio networks or why
six is a magic number”, in NTC ’78; National Telecommunications Conference, Birming-
ham, Ala., December 3–6, 1978, Conference Record. Volume 1. (A79–40501 17–32) Piscat-
away, NJ, Institute of Electrical and Electronics Engineers, Inc., 1978, p. 4.3.1–4.3.5., 1978,
pp. 431–435.

26. L. Takagi and H. Kleinrock, “Optimal transmission ranges for randomly distributed packet
radio terminals”, IEEE Transactions on Communications, vol. 32, no. 3, pp. 246–257, 1984.

27. J. Ni and S.A.G. Chandler, “Connectivity properties of a random radio network”, IEE Pro-
ceedings – Communications, vol. 141, pp. 289–296, 1994.

28. F. Xue and P.R. Kumar, “The number of neighbors needed for connectivity of wireless net-
works”, Wireless Networks, vol. 10, no. 2, pp. 169–181, 2004.

29. O. Ferrari and G. Tonguz, “Minimum number of neighbors for fully connected uniform ad hoc
wireless networks”, in Proceedings of IEEE International Conference on Communications,
June, pp. 4331–4335, 2004.

30. Y.-C. Cheng and T.G. Robertazzi, “Critical connectivity phenomena in multihop radio mod-
els”, IEEE Transactions on Communications, vol. 37, pp. 770–777, 1989.

31. P. Santi, “The critical transmitting range for connectivity in mobile ad hoc networks”, IEEE
Transactions on Mobile Computing, vol. 4, no. 3, pp. 310–317, 2005.

32. D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor & Francis, London,
UK, 1994.



58 A. Prasath et al.

33. C. Bettstetter, “On the minimum node degree and connectivity of a wireless multihop net-
work”, in MobiHoc ’02: Proceedings of the 3rd ACM International Symposium on Mobile Ad
Hoc Networking & Computing, pp. 80–91, 2002.

34. C. Bettstetter, “On the connectivity of wireless multihop networks with homogeneous and
inhomogeneous range assignment”, in Proceedings of the IEEE Vehicular Technology Confer-
ence, 2002.

35. E. Duarte-Melo and M. Liu, “Analysis of energy consumption and lifetime of heterogeneous
wireless sensor networks”, in Proceedings of IEEE GLOBECOM 2002, November 2002.

36. R. Ramanathan and R. Rosales-Hain, “Topology control of multihop wireless networks using
transmit power adjustment”, in Proceedings of IEEE INFOCOM 2000, pp. 404–413, 2000.

37. S. Borbash and E. Jennings, “Distributed topology control algorithm for multihop wireless
networks”, in Proceedings of the 2002 World Congress on Computational Intelligence, 2002.

38. N. Li and J.C. Hou, “Localized topology control algorithms for heterogeneous wireless net-
works”, IEEE/ACM Transactions on Networking, vol. 13, pp. 1313–1324, 2005.

39. G Srivastava, P. Boustead, and J. Chicharo, “Connected fixed node degree based topologies
in ad hoc networks”, in Proceedings of the 12th IEEE International Conference on Networks
(ICON 2004), pp. 1330–1340, 2006.

40. P. Ranganathan, A. Ranganathan, A. Minai, and K. Berman, “A self-organizing heuristic for
building optimal heterogeneous ad hoc sensor networks”, in Proceedings of the 2006 IEEE
International Conference on Networking, Sensing and Control (ICNSC ’06), pp. 774–779,
2006.

41. P. Ranganathan, A. Ranganathan, K. Berman, and A. Minai, “Discovering adaptive heuris-
tics for ad-hoc sensor networks by mining evolved optimal configurations”, in Proceed-
ings of the 2006 IEEE International Conference on Evolutionary Computation (CEC’06),
pp. 3064–3070, 2006.

42. A. Venuturumilli and A.A. Minai, “Obtaining robust wireless sensor networks through selfor-
ganization of heterogeneous connectivity”, in Proceedings of the 6th International Conference
on Complex Systems, 2006.

43. Y. Wang, X. Wang, D.P. Agrawal, and A.A. Minai, “Impact of heterogeneity on coverage and
broadcast reachability in wireless sensor networks”, in Proceedings of the 15th International
Conference on Computer Communications and Networks, pp. 63–67, 2006.

44. D.J. Felleman and D.C. Van Essen, “Distributed hierarchical processing in the primate cerebral
cortex”, Cerebral Cortex, vol. 1, pp. 1–47, 1991.

45. O. Sporns, G. Tononi, and G.M. Edelman, “Theoretical neuroanatomy: Relating anatomical
and functional connectivity in graphs and cortical connection matrices”, Cerebral Cortex,
vol. 10, pp. 127–141, 2000.

46. O. Sporns and G. Tononi, “Classes of network connectivity and dynamics”, Complexity, vol. 7,
pp. 28–38, 2002.

47. V. Raghunathan, C. Schurgers, S. Park, and M.B. Srivastava, “Energy-aware wireless
microsensor networks”, IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 40–50, 2002.

48. I.F. Akyildiz, W. Su, Y. Sankaasubramaniam, and E. Cayrici, “A survey on sensor networks”,
IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, 2002.

49. W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication
protocol for wireless microsensor networks”, in Proceedings of the Hawaii International Con-
ference on System Science, Maui, 2000.

50. B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “SPAN: An energy-efficient coordina-
tion algorithm for topology maintenance in ad-hoc wireless networks”, in Mobile Computing
and Networking, pp. 85–96, 2001.

51. N. Patwari, J.N. Ash, S. Kyperountas, A.O. Hero, R.L. Moses, and N.S. Correal, “Locating
the nodes: Cooperative localization in wireless sensor networks”, IEEE Signal Processing
Magazine, vol. 22, pp. 54–69, 2005.

52. S. Gezici, Z. Tian, G.B. Giannakis, H. Kobayashi, A.F. Molisch, H.V. Poor, and Z. Sahinoglu,
“Localization via ultra-wideband radios”, IEEE Signal Processing Magazine, vol. 22,
pp. 70–84, 2005.



Self-Organization of Sensor Networks with Heterogeneous Connectivity 59

53. S. Kim, A.P. Brown, T. Pals, R.A. Iltis, and H. Lee, “Geolocation in ad hoc networks using
DS-CDMA and generalized successive interference cancellation”, IEEE Journal on Selected
Areas in Communications, vol. 23, pp. 984–998, 2005.

54. D. Reynolds, J.M. Carlson, and J. Doyle, “Design degrees of freedom and mechanisms of
complexity”, Physical Review E, vol. 66, pp. 016108, 2005.

55. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, 1998.
56. H. Zhang and A. Arora, “gs3: Scalable self-configuration and self-healing in wireless net-

works”, Computer Networks, vol. 43, pp. 459–480, 2003.
57. X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated coverage and connec-

tivity configuration in wireless sensor networks”, in Proceedings of SenSys’03, Los Angeles,
CA, November 2003.

58. B. Krishnamachari, S. Wicker, R. Bejar, and C. Fernandez, “On the complexity of distributed
self-configuration in wireless networks”, Telecommunication Systems, vol. 22, pp. 33–59,
2003.

59. H. Gupta, S.R. Das, and Q. Gu, “Connected sensor cover: Self-organization of sensor networks
for efficient query execution”, in Proceedings of MobiHoc’03, Annapolis, MD, June 2003.



Cooperative Strategies in Dense Sensor
Networks

Anna Scaglione, Y.-W. Peter Hong, and Birsen Sirkeci Mergen

Abstract In this chapter we discuss cooperative source and channel coding strate-
gies and their performance in very dense sensor networks. In particular we investi-
gate how the efficient acquisition of correlated data mandates that the node transmit
cooperatively, instead of contending to report their local information. This is impor-
tant as correlated information it is one of the remaining resource to tap into, to
overcome the capacity limitations of large scale wireless networks. We indicate a
simple approach to attain this objective by converting the data retrieval process into
a querying strategy, where each query is used to convert the correlated data into
cooperative codes, which are broadcasted over the wireless channel. We show that
over a Markovian field the method would provide a reliable mean to broadcast the
correlated information to the whole network with a delay that is on average in the
order of the aggregate entropy of the data field.

Collaboration aids sensor networks operations. In this chapter we argue that the
complexity of a data collection problem and the energy consumption needed can be
made invariant with respect to the network size for a given underlying sensor field.
The way communication requirements can be decreased is by adapting to the under-
lying data structure, and inference objective in a proactive way. Wireless networks,
and sensor networks in particular, are swelling with correlated information. Basic
information theoretic results indicate clearly that data correlation among the trans-
mitter expands the capacity bounds a multiple access channels. We offer evidence
of this fact through an example. The procedure we identify is not optimal, but it
highlights how this intrinsic property of many wireless networking problems can be
turned into a useful resource, especially in networks with large deployments of low
complexity elements, for example simple energy scavenging RFIDs.

Hence, the decision on the network deployment does not have necessarily to favor
a configuration of very accurate sensors deployed at the minimum needed density
over a network crowded with cheap devices but it can find the optimum point in
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terms of energy between these two extremes. The denser network is actually more
versatile and therefore is the solution that we contend is the best.

1 The Role of Correlated Information in Sensor Systems

Consider a network of N sensors, denoted by S ∈{1, 2, . . . , N }, and a random vector
X = [X1, X2, . . . , X N ] that represents the sensors’ data, i.e., Xi is the data at sen-
sor i . We consider X to be a discrete vector of digitized measurements collected at
the nodes.

Both sensing X as well as the process of gathering these data from remote loca-
tions contribute, albeit in different ways, in creating correlated information. Dense
networks are swelling with correlated information and, therefore, considering ways
of using it is a worthy task.

In fact, the measurements X are often intrinsically correlated (at least locally),
because the nodes sense the same underlying phenomenon whose number of degrees
of freedom is in most cases limited, so that P(x) �= ∏N

i=1 P(xi ).
This type of correlation does not translate in obvious ways of encoding cooper-

atively, except for some special cases; nevertheless, it always expands the capacity
attainable over a multiple-access channel [5]. Let Z be the output of the MAC chan-
nel, with as input the vector Y = [Y1, Y2, . . . , YN ]. In a standard MAC channel with
independent inputs, given any subset of the indexes S ∈ {1, . . . , N }, and denoting
by S̄ its complement, and by XS the vector of random variables with indexes in S,
Ahlswede [1] and Liao [10] determined the following limits:

∑

i∈S

H (Xi ) < I (Z ; YS|YS̄). (1)

Cover, El Gamal and Salehi proved that, when the sources are dependent, choos-
ing channel codes that depend on the source variables can widen the capacity region.
To specify the region a caveat is that some random vectors X are such that there exist
functions extracting a common part WS = fS(XS) = gS(XS̄) in the sense introduced
by [6]. One can easily recognize that this would be the case if X were data received
over a broadcast channel transmitting a message W. For correlated data X capacity
region changes in two ways compared to (1): by lowering the left side of the inequal-
ity and by increasing the boundary on the right side. Reliable transmission is pos-
sible if there exist probability mass functions: P(US, )P(YS|US, XS)P(YS̄|US, XS̄)
such that:

H (XS|XS̄) < I (Z ; YS|YS̄, XS̄, US) (2)

H (X|WS) < I (Z ; Y|WS, US) (3)

H (X) < I (Z ; Y), (4)

where US is a suitable auxiliary random variable.
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The authors in [5] noted that the reduction of the left side could be attained
in a decentralized setting using Slepian and Wolf Data Compression [15], but the
expansion of the boundaries is a different effect, indicating that correlation can be
tied not only to greater compression ability but also to a wider capacity region that
can be attributed to cooperative coding. The last of the inequalities, in fact, is the
cooperative capacity and is the only constraint that stands if the messages coincide
exactly and, hence, they are identical to their common part.

The cooperative capacity limit is also very relevant to the problem at hand. This
type of correlated information is generating during the data gathering process itself,
due to the broadcast nature of the wireless medium, because nodes that are inactive
and overhear other sensors’ transmissions are candidates to cooperatively relay the
information that they overhear. Their ability to decode some elements of Y is a
sufficient condition for granting them the ability to cooperate, with a number of
methods that are classified as decode and forward methods. When the information
is decoded and it coincides to the useful X, the relay nodes are bounded by the coop-
erative bound H (X) < I (Z ; Y). As a matter of fact, in perfect agreement with (2),
other alternative exist when these random variables do not have access to common
information.

In some cases, not coding is preferable [7] and, not surprisingly the amplify and
forward method is one example of cooperation that does not rely on the ability of
extracting common information.

The result in [5] points out the sub-optimality of the separation between source
and channel coding when multiplexing correlated data. The question is if it would
take much more complex radio designs than the ones that we currently use to exploit
the untapped resource of correlated information. An indicator that complex encod-
ing is not what is necessarily needed is given by the work of [7].

1.1 Feedback and Correlation

Feedback is also omnipresent in wireless networks. Using a modification of the
Kailath-Schalkwijk scheme Ozarow [11] characterized the capacity of a two-user
additive white Gaussian noise with noise variance N0 and MAC, with users powers
bounded by P1 and P2. He proved that that the capacity is the following convex hull:

⋃
0≤ρ≤1

(
(R1, R2) : 0 ≤ R1 ≤ 1

2
log

(
1 + P1(1 − ρ2)

N0

)
,

0 ≤ R2 ≤ 1

2
log

(
1 + P2(1 − ρ2)

N0

)
;

0 ≤ R1 + R2 ≤ log

(
1 + 1 + P1 + P2 + 2

√
P1 P2ρ

N0

))
.

This region is, again, larger than the limit provided by Ahlswede [1] and Liao
[10]. In the scheme Ozarow proposed, one can see that feedback expands the
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capacity of the MAC channel via a cooperative effect, that is made possible by the
fact that the two sources share now correlated information.

2 Sensor Data Model

In addition to not wanting a complex architecture, one would want to save the sensor
batteries to forward information about their own measurements, dedicating a small,
possibly vanishing, fraction of energy per node to forward information around. Also,
if the sensors are used as relays, the adoption of complex reception strategy to man-
age interference would increase the cost per sensor and, hence, cooperative strate-
gies need to be simple also at the receiver side. Non cooperative multi-hop networks
can trade-off density with relay power, but congestion would inevitably arise as the
network scales up [8] not to mention the cost of computing routes towards specific
sinks.

What we discuss next is a very simple model to rip the benefits of correlation-
induced cooperative coding in dense networks. To have cooperation of correlated
sources what it often lost is the modularity of traditional source and channel coding,
because the encoding technique depends on the structure of the data. In order to
quantify possible benefits of correlated data and determine an appropriate encoding
strategy, here we specify the model for the sensor data that we are going to assume
throughout the chapter.

We considers sensors N = {1, . . . , N } that are in a fixed deployment at locations,
denoted by νi , in the set V = {ν1, . . . , νN }; we assume that they are time synchro-
nized and that are aware of their location νi (the location identifies the sensor as
well so νi and the index of the sensor i will be used interchangeably). For the sake
of simplicity we consider a one-dimensional deployment with equidistant sensors
over a range [0, D], spaced by d = D/N , so that νi = (i − 1)d.

We model X as a first-order shift-invariant Markov sequence with Xi ∈ {0, 1},
for all i . That is, the probability of X = x, for x = [x1, . . . , xN ], can be expressed
as

P(X = x) = P(X1 = x1)
N∏

i=2

P(Xi = xi |Xi−1 = xi−1).

We denote by α = P(Xi = 1|Xi−1 = 0) and β = P(Xi = 0|Xi−1 = 1) the
transition probabilities (see in Fig. 1(a)). Since the Markov chain is shift invariant,
or spatially homogeneous, it is also reversible i.e., Pr(Xi−1 = a|Xi = b) = Pr(Xi =
a|Xi−1 = b) for all a, b ∈ {0, 1}. The stationary distribution of the Markov chain
has state probabilities:

p := P(Xi = 1) = α

α + β
(5)
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0 1

α

β

1 – β1 – α

(a)

0 D1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1

(b)

Fig. 1 The binary Markov data model for the sensors observations X. (a) The two state Markov
chain. (b) The line network

and

q := P(Xi = 0) = 1 − p = β

α + β
. (6)

The correlation coefficient between adjacent nodes is

ρ := Cov(Xi , Xi+1)

σXi σXi+1

= 1 − (α + β) = 1 − ρ̄ (7)

where σ 2
Xi

= E[Xi −E(Xi )]2 = p(1− p) is the variance of Xi and Cov(Xi , Xi+1) =
p(1 − p)[1 − (α + β)] is the covariance between Xi and Xi+1. The pair (p, ρ) and
the pair of transition probabilities (α, β) are one to one.

Let Hb(p) be the entropy of a Bernoulli random variable with success probabil-
ity p. The aggregate rate of the entire network is:

H (X) = Hb(p) + (N − 1)H (Xi |Xi−1) (8)

The first order Markov model may be a first order approximation capturing the
statistics of the data observed by a line of sensors that quantize with 1-bit a continu-
ous random field that is sampled at each location, e.g., Fig. 1(b). When the number
of sensors increases in the fixed interval [0, D] in most cases of practical interest
the transition probabilities will eventually decrease and, therefore, asymptotically
H (Xi |Xi−1) → 0 as the density scales up.

In particular, using the symbol Ω to indicate Landau notation, the following
lemma holds [12]:

Lemma 1 (1) For fixed (p, ρ) H (Xi |Xi−1) is constant, and we have

H (X) = Ω(N ); (9)

(2) for ρ̄ := 1 − ρ ≤ c′/N, for some c′ > 0, and a fixed value of p, we have

H (X) = Ω(log(N )). (10)

Hence, our objective in the following is to show how one can utilize a channel
with finite aggregate throughput of one bit per symbol to convey X using an amount



66 A. Scaglione et al.

of communication resources that scales with N as exactly the same rate of H (X), as
predicted it is possible from (2).

3 A Cooperative Broadcast Mechanism for Network Feedback

We assume that the sensors’ radios are equipped with an ON-OFF keying (Yi = 0/1)
transmitter and an energy detector as receiver, which quantizes the output with
one bit. The time is divided in frames of duration T f that are slotted in P inter-
vals. The initial slot of each frame is dedicated to transmission of data from the
sensors’ source-encoders and it is followed by P − 1 slots for cooperative relay.
Let G[n] ⊂ N be a group of sensors that is scheduled to transmit their state value
during frame n. The source encoder of this group of nodes outputs a node state
b ∈ {1, 0}, equivalent to the Boolean true or false.

We let the ON symbol, which unlike the OFF symbol costs transmission power,
be associated with false a = 0, i.e., Yi [n] = ā for i ∈ G[n]. Next we shall omit the
frame index form the discussion since it is not useful to clarify the relay mechanism.

The set of nodes active is therefore partitioned in two sets G(0) ∪ G(1) = G and
nodes that have state a = 0 will emit a pulse at unison, while G(1) will be silent, with
the rest of the nodes in N /G that are not scheduled to transmit. Denoting by hi j (t)
the channel between transmitter i and receiver j , nodes that are not transmitting will
test two hypotheses on the received signal (ni (t) is additive white Gaussian noise):

H0 : ri (t) = ni (t)

H1 : ri (t) =
∑

j∈G(0)

hi j (t) ∗ p(t) + ni (t) for any G(0) �= {∅}. (11)

We assume that the receiver will measure the energy over a time slot designated for
the transmission and compare it with a threshold that is set to have a prescribed false
alarm probability. Let τ be the energy threshold used to discriminate between the
two hypotheses H0/H1, and assume that a false alarm occurs at any node indepen-
dently and with negligible probability.

The communication architecture has the objective to make every node aware that
G(0) �= {∅}. Since in a large deployment only few nodes will be able to reliably
detect that G(0) �= {∅}, cooperation is needed to render this mechanism robust.

We call the nodes in G(0) the first level L0. If G(0) �= {∅} with some non zero
probability groups of nodes will receive sufficient energy in their signal to cross
the threshold τ and choose hypothesis H1. We call this group level L1. The simple
cooperative policy we set is that nodes in L1 send a pulse in the following slot.
The procedure continues, with every group of nodes whose test is positive for H1

transmit a pulse in the following slot only once. Every group forms a new level of
cooperative transmitters L2,L3 . . . ,LP−1 and so on, for the predetermined number
of slots P − 1 designed to reach the entire network via cooperation.
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This communication mechanism is analogous to what has been called Oppor-
tunistic Large Array (OLA) model [13]. In [14] it was proven that through the OLA,
a message that originates from a particular node can flood the entire network with a
bounded delay, with a constant relay power density.

In particular, assuming a deterministic path loss model |hi j (t)|2 ∝ (1 + di j )2 one
can prove the following [9]:

Lemma 2 Let Ps > τ be the power of a source in G(0) ≡ L0. Let the power of each
relay Pr be such that the aggregate relay power over the network Pr N is finite, such
that the power density Pr/(N D) = μ is constant, no matter how large N is. For a
fixed D, and path-gain |hi j (t)|2 ∝ (1 + di j )2 in the limit for N → ∞ it is sufficient
to have node density μ > (3 + 2

√
2)τ to have probability of detection growing to

one over the entire network within a finite number of levels.

While with deterministic path loss the delay of reception is deterministic, in [14]
it was shown that in random fading a similar scenario applies, and propagation
can even be faster, although the penalty is that nodes can be in outage. The out-
age probability can be made arbitrarily small by increasing the power density, the
source power or by increasing the number of levels of cooperative nodes P −1. The
next section sets the stage for introducing our channel codes, by modeling the OLA
channel we described as a noiseless binary channel that computes the logic OR of
all the Yi for i ∈ G[n].

3.1 The OR Broadcast Channel

Given the simple cooperative mechanism presented, at the completion of each frame
each node will have determined reliably if H1 is true. The output of the channel in
that frame from the designated group G[n] towards every sensor location νi can be
modeled as a noiseless binary output Zi [n], which computes the logic OR of the
sources that are active in the first level, i.e., j ∈ G(0)[n],→ Y j [n] = 1 :

Zi [n] =
⋃

j∈G(0)[n]

Y j [n].

Note that the broadcast mechanism is naturally full-duplex, because nodes that
transmit automatically know that G(0)[n] �= {∅}, so ∀ j ∈ G(0)[n] → Z j [n] = 1 and
everybody else in the network can listen to the OLA signal.

The capacity of independent sources over this OR broadcast channel would
be vanishingly small for a large network in which each sensor observes a binary
sample Xi with generally a marginal entropy H (Xi ) that can be close to 1, no
matter how correlated are the data and how much smaller is H (X) compared to∑N

i=1 H (Xi ) = N H (X1). Because the aggregate channel throughput ∀ j I (Z j ; Y) is
one bit per frame, with independent encoders the time to communicate one sample
per node will have to increase linearly with the number of nodes N in a number of
frames ≥ N H (X1).
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We will discuss next a cooperative source encoder strategy introduced in [12]
that can broadcast the aggregate data X in a number of frames that scales like
N H (Xi |Xi−1).

4 Channel Coding via Query-and-Response Strategies

The structure of our cooperation-inducing encoder is shown in Fig. 2. The key idea
is that each network symbol Z [n] is the answer to a query Q[n] formulated based
on the previous symbols Z [n − 1], Z [n − 2], . . . , Z [1]; these symbols are available
at all nodes, as we explained in the previous section. The objective of the encoder
design is to minimize the communication resources by minimizing the number of
queries needed to obtain a lossless reconstruction of the source codeword X. The
type of queries we investigate are searched over so-called group testing strategies
[2, 4]: each query Q[n] tests the same question over a specific subgroup of nodes G.
Because there are 2N groups that can be chosen, we restrict our attention to groups of
continuous nodes, reducing the problem of optimizing the query to a linear search.

Fig. 2 The query and response cooperative encoder

Denoting by L the total number of queries needed to reconstruct the data X
losslessly. The queries Q[1], Q[2], . . ., Q[L] evolve based on the corresponding
responses Z[1 : L] = [Z [1], Z [2], . . . , Z [L]], until Z[1 : L] and X are one to one.
The first query Q[1] is based on the available knowledge on the prior distribution
P(X). As more data come in, the n-th query Q[n] is formulated based on the con-
ditional distribution P(X|Z[1 : m −1]). L is the total number of queries needed to
reconstruct X iff P(X = x∗|Z[1 : L]) = 1 for the x∗ that corresponds the realized
value of X.

Clearly, the following bounds hold:

H (X) ≤ E[L] ≤ N . (12)

We consider two suboptimal methods inspired by group testing algorithms [2, 4]:
(1) the optimized recursive algorithm, where the optimal set of sensors to be queried
in each time slot is selected by solving a set of recursive equations and (2) the tree
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splitting algorithm, where the group of sensors are chosen through a series of binary
partitions of the network. The first provides very tight bounds for finite N but can
only be computed numerically, the second one provides close forms bounds that are
looser, but amenable to interpretation.

5 Optimized Recursive Group Testing Algorithm

Let L rec(Xi+m
i+1 ) be the minimum number of queries needed to resolve the data

Xi+m
i+1 = [Xi+1, Xi+2, . . . , Xi+m] using the optimized recursive strategy and let:

Ga(m) := E[L rec(Xi+m
i+1 )|Xi = a], (13)

indicate the expected number of queries needed to gather data Xi+1, . . . , Xi+m given
Xi = a. If we know from the initial query that X1 = a, where a ∈ {0, 1}, then
the expected number of queries needed to resolve XN

2 is E[L rec(XN
2 )|X1 = a] ≡

Ga(N − 1). Since X1 = 1 with probability p and X1 = 0 with probability 1 − p,
the expected number of queries under the optimized recursive scheme is

E[L rec(X)] =1+ p ·E[L rec(XN
2 )|X1 =1]+(1− p)·E[L rec(XN

2 )|X1 =0]

= 1+ p · G1(N −1)+(1− p) · G0(N −1). (14)

Notice that Ga(m) is invariant with respect to the index i because of the spatial
homogeneity of the Markov Chain, i.e., E[L rec(Xm+1

2 )|X1 = a] = E[L rec(Xi+m
i+1 )|Xi

= a], for all positive integers i .
Clearly, to solve for E[L rec(X)] in (14), we must determine Ga(N − 1) which

can be done recursively [12]. In fact, after acquiring the knowledge that X1 = a
from the initial query, suppose that we go on to choose the next n sensors, with
i = 2 up to n + 1, and to ask the question b. If all n sensors contain the bit b
(i.e. X2 = b, . . . , Xn+1 = b), no sensor will respond to the query and the data
X2, . . . , Xn+1 are resolved. The expected number of queries needed to resolve the
remaining sensors’ data becomes E[L rec(XN

n+2)|Xn+1 = b] ≡ Gb(N − n − 1),
which follows from the Markov property. On the other hand, if there exists a sensor
that does not contain b (but contains b̄ instead, where b̄ is the complement of b), the
sensor will transmit, indicating that the guess is false, informing that there exists j ∈
{2, . . . , n + 1} such that (s.t.) X j = b̄. Let us denote, in general, by Fa(m, n, b), for
n ≤ m, the expected number of queries needed to gather the data Xi+1, . . . , Xi+m

given that Xi = a and that there exists j ∈ {i + 1, . . . , i + n} such that
X j = b̄:

Fa(m, n, b) := E[L rec(Xi+m
i+1 )|Xi =a, ∃ j ∈{i +1, . . . , i +n}s.t. X j = b̄]. (15)
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With (15), we can also express more generally Ga(m) as

Ga(m) = 1 + min
1≤n≤m,b∈{a,ā}

{
P(E (n)

b |Xi = a)Gb(m − n)

+
[
1 − P(E (n)

b |Xi = a)
]

Fa(m, n, b)
}

, (16)

where E (n)
b := {Xi+1 = b, . . . , Xi+n = b} and where the number of sensors n and

the question b is chosen to minimize the number of queries needed to resolve the
remaining sensors’ data. To solve for Fa(m, n, b) one can introducing the function:

Ja(m, n, b, �) :=E[L rec(Xi+m
i+1 )|Xi =a, ∃ j ∈{i +1, . . . , i +n}

s.t. Xj = b̄, ∃k ∈{i +1, . . . , i +�} s.t. Xk =b], (17)

and determine that the following set of coupled difference equation hold true:

Fa(m, n, b) = 1 + min
1≤�≤m,c∈{b,b̄}

{
αFb(m − �, n − �, b) + [1 − α] Fa(m, �, b), c = b, 1 ≤ � < n

αGb̄(m − �) + [1 − α] Ja(m, n, b, �), c = b̄, 1 ≤ � ≤ m

}

(18)
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Fig. 3 For N = 36 and ρ = 0.15–0.9, we show the performance of the optimized recursive
algorithm (solid line) and the entropy lower bound of (12) (dashed line)



Cooperative Strategies in Dense Sensor Networks 71

Ja(m, n, b, �) = 1 + min
1≤z<n,d∈{b,b̄}

{
βFb(m − z, n − z, b) + [1 − β] Ja(m, z, b, �), d = b, 1 ≤ z < n,

βFb̄(m − z, � − z, b̄) + [1 − β] Ja(m, z, b̄, n), d = b̄, 1 ≤ z < �

}

(19)

with α := P(E (�)
b |E (n)

1ab) and β := P(E (z)
b̄

|E (n,�)
2ab ). These equations can be solved

recursively. The solution is remarkably tight to the Huffman coding bound, as shown
in Fig. 3.

We observe that the proposed querying strategy closely approximates the opti-
mal performance (i.e., the entropy lower bound that can be achieved asymptotically
with Huffman coding). More importantly, the expected number of channel accesses
varies with the entropy of the data as opposed to consuming a fixed number of
channel accesses that are proportional to the number of sensors. The advantage of
the approach is most visible when p is close to 0 or 1 and when ρ is close to 1, i.e.,
the cases where sensors’ data X have low aggregate entropy.

6 Binary Tree Splitting Algorithm

To attain an simple asymptotic trend, we further simplify our querying scheme by
splitting the set of nodes queried in two groups and querying each group twice over
consecutive frames. This method is analogous to the binary tree splitting algorithm
used in the context of collision resolution in [4]. More specifically, suppose that
G[n], n ≥ 1, is the n-th group that is chosen. In this case, we impose the two queries
Q[2n−1]= (G[n], 0) and Q[2n]= (G[n], 1) on the same group in consecutive time
slots. This approach yields a pair of outputs (Z [2n−1], Z [2n]) and provides us with
the ternary information on G[n], namely,

0: (Z [2n − 1], Z [2n]) = (0, 1)
1: (Z [2n − 1], Z [2n]) = (1, 0)
e: (Z [2n − 1], Z [2n]) = (1, 1)

where 0 indicates that all sensors in G[n] contain the bit 0 and, similarly, 1 indicates
that all sensors in G[n] contain the bit 1 and e, called erasure, indicate that the
group values are not uniform. When e is received, the group is partitioned into two
subgroups of equal size as specified by the binary tree splitting algorithm. In both
the first two cases, instead, the query terminates the tree, since the values of the
sensor group tested are resolved.

For example, we consider a network of 16 nodes that are partitioned into a binary
tree, as shown in Fig. 4. For a network of N = 2M nodes, there are M + 1 levels
in the binary tree, i.e., levels 0, 1, . . . , M . In the i-th level of the tree, the network
is partitioned into 2i groups of size equal to 2M−i . The group Gi j denotes the j-th
group in the i-th level of the tree (where j ∈ {0, 1, . . . , 2i −1}), which consists of all
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U30 U31 U32 U33
U34 U35

U36 U37

U20 U21 U22
U23

U10 U11

U00

0 0 0 1 0 0 0 0 01 1 1 1 0 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sensor
index

Xi

Fig. 4 Example of the realization of a sensor field with the binary sequence 0100111100001100.
The sequence of queries are done in the order of the following groups: G[1] = G10, G[2] = G20,
G[3] = G30, G[4] = G40, G[5] = G41, G[6] = G31, G[7] = G21, G[8] = G11, G[9] = G22,
G[10] = G23, G[11] = G36 and G[12] = G37

sensors within its subtree, i.e., Gi j = { j2M−i + 1, j2M−i + 2, . . . , ( j + 1)2M−i }. In
the binary tree splitting algorithm, the sequence of queries starts from the subgroups
of G00, i.e., G10 and G11, and continues splitting and querying the smaller subgroups
each time the larger group results in e. If the query on Gi j , for j < 2i , results in either
0 or 1, the process will go on to query the smallest group that is not yet resolved. If
the test results in an erasure, the vertex Gi j branches into two subgroups where the
group Gi+1,2 j is queried next.

What is important is that the average performance can be expressed analytically,
as follows:

Theorem 1 Consider a network of N = 2M sensors and the binary observations X
modeled by the two-state Markov Chain with the parameters (p, ρ). The expected
number of queries needed to retrieve the data X with the binary tree splitting algo-
rithm is given by

E[L tree(X)] = 4 +
M−1∑

i=1

2i+2ψ(M − i, p, ρ). (20)

where

ψ(M − i, p, ρ) = 1 − p(1 − qρ̄)2M−i−1 − q(1 − pρ̄)2M−i−1

and ρ̄ := 1 − ρ.

Furthermore, using the result above, in [12] we have proven that:

Theorem 2 Let E[Lopt(X)] be the expected number of queries needed by the optimal
Q&R strategy. (1) For fixed (p, ρ),
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E[Lopt(X)] = O(N ) = O(H (X)); (21)

(2) for fixed p and ρ̄ ≤ c′/N for some c′ > 0,

E[Lopt(X)] = O(log(N )) = O(H (X)). (22)

Note that the result is obtained employing the OR broadcast channel, which can
at most convey one bit per frame to the entire network.

Overall this attests that our cooperative Q&R is not limited by the same broadcast
rate upper-bound I (Zi ; Y) = 1 that follows from our specific sensor access archi-
tecture. The interesting fact is that we experience a capacity expansion that follows
gracefully the trend of the source demand, as predicted by [5].

7 Conclusions

One of the key messages of [5] was that the concept of capacity becomes elastic in
the presence of sources that carry correlated information. The take-away message is
that it is possible to stretch the capacity region but that this requires using correlated
channel codes formed using the underlying correlation structure of the data.

Gastpar’s work noted a particularly dramatic effect of this fact by considering
the classic Gaussian CEO problem introduced in [3] over an AWGN MAC channel.
The best scaling law in means squared error performance obtained via optimal dis-
tributed source coding and channel coding were shown to be far worse than those
for uncoded transmission. The question that remains to address is what is the right
approach to rip off the benefits of correlation that is known to exist, in a systematic
way and possibly in a way that is universal. The idea of learning the structure of the
data via queries is what leads to experience a dramatic expansion in capacity in the
example we discussed in detail above. This idea is appealing because it naturally
suggests that one could learn the sources and increase the rate at which the sources
are gathered progressively. But once again it is unlikely that such benefits can come
so close to the compression limits in general, as they did for the Markovian model
we considered. Furthermore, it is unclear and complex to find optimal channel
codes. Seeing through the fog that surrounds this problem is worthwhile because
correlated information it is one of the remaining resource to tap into, to overcome
the capacity limitations of large scale wireless networks.
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Multipath Diversity and Robustness
for Sensor Networks

Christina Fragouli, Katerina Argyraki, and Lorenzo Keller

Abstract Balancing energy efficiency and reliability is a common underlying goal
for most information collection protocols in sensor networks. Multipath diversity
has emerged as one of the promising techniques to achieve such a balance. In this
chapter, we provide a unified framework for the multipath techniques in the lit-
erature and discuss their basic benefits and drawbacks. We also discuss emerging
techniques from the area of network coding.

1 Introduction

The goal of a sensor network is to gather information and communicate it to a col-
lecting entity: sensors typically measure a physical quantity (e.g., temperature) and
communicate their measurements (or functions of their measurements, e.g., sums
or averages) to a common sink. For most applications, sensors communicate to the
sink over a wireless channel, while the sink is connected to a wired network. In this
chapter, we focus on the problem of designing a collection protocol, i.e., a protocol
that conveys information from the sensors to the sink.

A typical requirement for such protocols is energy efficiency: sensors are typi-
cally powered through small, easily depletable batteries; moreover, they are often
installed at inaccessible areas (e.g., forests or mountain slopes), making battery
changing practically infeasible. Hence, a collection protocol must be “energy effi-
cient,” i.e., consume the minimum amount of energy necessary to meet the perfor-
mance standards of the corresponding application. The main source of energy con-
sumption in a sensor is the radio, i.e., transmitting data and listening for/receiving
incoming data (a per-component breakdown of energy consumption for different
sensor platforms can be found in [1]). Hence, one approach to designing energy-
efficient collection protocols is to minimize the number of transmissions necessary
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to convey the required information to the sink. Another, complementary approach
is to enable sensors to predict for which periods they are unlikely to receive data
and turn their radios off during those periods (a collection protocol that uses this
approach is described in [2]).

Energy efficiency is at odds with another typical requirement for collection proto-
cols: reliability in the face of channel and node failures. Compared to wired, wireless
channels are relatively unreliable, subject to fading and random fluctuations. This is
especially so in sensor networks where the environment can change unpredictably
and the sensors themselves can fail (e.g., a landslide can destroy part of a sensor
network monitoring forest conditions). To achieve reliable collection in the face of
such failures, a collection protocol must generate a certain amount of redundant
information – which unavoidably increases both the number of transmissions and
the amount of time for which sensors must keep their radios on.

In this chapter, we describe existing as well as emerging collection protocols
that balance the competing goals of energy efficiency and reliability.1 We restrict
our attention to the simplest scenario, where the goal is to communicate sensor
measurements to the sink,2 while sensors never turn off their radios. The point of
the chapter is to give a flavor of the problems encountered in sensor-network design
and outline the different classes of solutions – we far from cover all work done
in the area. We start by defining a collection protocol and its associated cost in
Sect. 2. Section 3 examines the use of single-path protocols, while Sect. 4 focuses
on multipath protocols. Section 5 reviews basic ideas in the area of network coding,
while Sect. 6 outlines an approach for deploying network coding in sensor networks.
Finally, Sect. 7 concludes this chapter.

2 What is a Collection Protocol?

A fundamental characteristic of wireless communication is that transmissions are
broadcast and can be overheard by multiple nodes in the transmitter’s vicinity, albeit
at different signal levels. For example, in Fig. 1, a transmission by node a11 is over-
heard by nodes a10, a9 and a8 at different signal levels; we say that a10, a9 and a8

are in a11’s range or, equivalently, that they are a11’s “neighbors.” As a result, there
can be multiple paths between each pair of nodes – Fig. 2 depicts all possible paths
between nodes in our example network. A collection protocol essentially determines
which of these paths to use and how, in order to convey information from the sensors
to the sink.

1 Certain applications can have additional/different requirements, e.g., in a sensor network moni-
toring for atmosphere poisoning, alarms must to be delivered with minimum latency.
2 We do not consider the scenario where the goal is to communicate functions of sensor measure-
ments, like sums or averages, to the sink.
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More specifically, a collection protocol can be decomposed into the following
tasks:

1. Acquisition of channel information. Each node learns its neighbors and estimates
the channel quality between itself and each neighbor.

2. Topology construction. Each node builds a routing table that includes a subset
of its neighbors; e.g., when the constructed topology is a tree, each node has a
single next hop to the sink.

3. Topology usage. Each node determines how to route information through the
constructed topology – that is, what exactly to send, how often, and to which
neighbors.

2.1 Path Cost and Channel Quality

Recall that we are interested in balancing reliability and energy efficiency. As men-
tioned in Sect. 1, there are two approaches to reducing energy consumption: reduce
transmissions and reduce the amount of time for which sensors keep their radios on.
Since we are considering a simple scenario where sensors cannot do the latter, in our
context, optimizing for energy efficiency means minimizing transmissions. Hence,
we define the cost of communication as a function of the number of transmissions
required to successfully transfer a certain amount of information between two nodes.
More specifically:

Definition 1 We define the cost of communication from a node a to a neighbor b
as the average number of transmissions that are necessary to successfully transmit a
packet of length L from a to b.
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Fig. 3 A graph with vertices corresponding to sensor nodes and edges between any two nodes
that are within the transmission range of one another. Each edge has a weight proportional to the
number of retransmissions required to reliably transmit information between the nodes it connects

Suppose we know the communication cost between every pair of neighbors in
our network at a given point in time. We can depict this information with a channel-
quality graph, where each vertex represents a sensor and each edge represents a
communication channel between two neighbors; each edge has a weight propor-
tional to the corresponding cost. For example, the graph shown in Fig. 3 says that, if
node a11 broadcasts once, only node a8 is expected to successfully receive the trans-
mitted packet; if it broadcasts twice, nodes a8 and a9 are expected to successfully
receive the packet; if it broadcasts 4 times, all neighbors are expected to successfully
receive the packet.

Definition 2 Given a channel-quality graph, we define the cost of a path as the sum
of the costs of all the edges that make up the path. A minimum-cost path from a
node a to the sink is a path whose cost is less or equal to the cost of any other path
from node a to the sink.

3 Routing on a Tree

A straightforward approach is to connect all sensors to the sink over a tree: (i) Con-
struct a unique, minimum-cost path from each sensor to the sink (such a path is
shown in Fig. 4), such that the union of all constructed paths forms a spanning tree

Fig. 4 A minimum-cost path
from node a11 to the sink.
This is also the minimum-
cost path for nodes a8, a5, a3
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Fig. 5 A tree constructed
from the union of the
minimum-cost paths from the
sensors to the sink
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rooted at the sink (such a tree is shown in Fig. 5).3 (ii) Route each message from
sensor a to the sink along the unique path from a to the sink over the tree.

The Collection Tree Protocol (CTP) [3] implements this approach. Task #1
(acquisition of channel information) is accomplished in a setup phase, where each
node sends out a sequence of numbered beacons that bear its identity; each node
processes the beacons it hears and determines its neighbors; for each neighbor,
it counts how many of its beacons it received, estimates the communication cost
from that neighbor to itself, and sends this information to the neighbor; beacons are
sent with an exponentially increasing interval, which is reset to a small value when
certain routing conditions are met. Task #2 (topology construction) is accomplished
in a distributed manner over multiple rounds: in each round, each node broadcasts
its “distance” to the sink, i.e., the cost of the minimum-cost path from itself to the
sink; moreover, each node processes its neighbors’ advertisements, identifies the
neighbor with the lowest distance to the sink, and chooses it as its “next hop.” For
example, in Fig. 5, in the first round, nodes a1, a2 and a3 identify the sink as their
neighbor; in the second round, nodes a2, a4 and a5 identify node a3 as their neighbor
with the lowest distance to the sink and choose it as their next hop. Finally, task #3
(topology usage) consists of each node transmitting every message it receives to its
next hop. For example, in Fig. 5, a message from node a11 is routed through nodes
a8, a5 and a3.

Routing on a tree faces certain practical challenges:

1. Changing network conditions. The tree can break as a result of a node or chan-
nel deterioration between two neighbors; moreover, due to channel fluctuations,
what used to be an optimal tree may end up using bad-quality paths. To decrease
the amount of loss or delay that can result from such events, it is possible to
repeat tasks 1 and 2, i.e., monitor channel quality and adapt the tree accordingly
(CTP follows this approach). However, it is not possible to adapt to all failures:
suppose that node a11 in Fig. 5 sends a packet to the sink through the constructed

3 We should clarify that a spanning tree constructed in this manner (i.e., the union of the minimum-
cost paths connecting each sensor to the sink) is not necessarily a “minimum-cost spanning tree” as
typically defined in graph theory, where the cost of a tree is equal to the sum of the costs of all links
that take part in the tree. For example, the tree in Fig. 5, which has cost 25, is not a minimum-cost
tree.
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tree (nodes a8, a5 and a3); as the packet reaches node a5, all channels from
node a5 to its neighbors fail; as a result, there is no path connecting a5 to the
sink, and the packet is lost, i.e., a11 fails to communicate with the sink, even
though there still exists a path from a11 to the sink (through nodes a9, a6 and a2).
So, it is possible that the tree is unable to adapt fast enough to certain failures,
especially in large networks, resulting in temporary disconnection of parts of the
network.

2. Depletion of specific nodes. Nodes located close to the root of the tree (e.g., node
a3 in Fig. 5) may end up carrying significantly more traffic than the rest, as they
participate in multiple paths; as a result, their batteries are depleted significantly
faster. Note that these nodes are precisely the ones that need to work in order for
the network to remain connected: if node a3 in Fig. 5 fails, 9 of the remaining 10
nodes are disconnected from the sink.

4 From Tree to Multipath Routing

In the last section, we looked at a collection protocol that constructs a single path
from each sensor to the sink. In contrast, multipath collection protocols construct
multiple paths from each sensor to the sink, allowing more freedom in route selec-
tion. Intuitively, multipath protocols achieve higher reliability than single-path pro-
tocols at the cost of higher energy consumption.

4.1 Topology Construction

A node can be connected to the sink over disjoint or overlapping paths; we now dis-
cuss these two approaches, as well as some associated computer science problems.

4.1.1 Disjoint Paths

The idea is to construct m disjoint paths from each node to the sink. These paths can
be edge-disjoint (Fig. 6), providing reliability in the face of channel deterioration;
or vertex-disjoint (Fig. 7), providing reliability in the face of node failures. Alterna-
tively, a recent proposal suggests that the paths should be “one-hop apart” (Fig. 8),
i.e., if a node is used in one of the paths, none of its neighbors should be used in the
remaining m − 1 paths; the point is to avoid spatially correlated failures [4].

Intuitively, the more constraints we add to path construction, the higher the result-
ing reliability: Fig. 6 shows two edge-disjoint paths; if node a8 fails, both paths
from a11 to the sink are broken. Figure 7 shows two vertex-disjoint paths; if node
a8 fails, a11 can still communicate with the sink through the other path. On the
other hand, more constraints result in higher-cost paths: given the channel-quality
graph of Fig. 3, Fig. 4 shows the minimum-cost path from node a11 to the sink.
If we want to construct two paths from a11 to the sink that are one-hop apart, we
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Fig. 6 Two edge-disjoint
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separated paths connecting
node a11 to the sink

Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

necessarily have to choose the two paths shown in Fig. 8, none of which is equal
to the minimum-cost path. In general, the further away a path is located from the
minimum-cost path, the higher its expected cost.

We should note that it is not always feasible to find paths that satisfy such con-
straints. For example, m edge-disjoint paths exist between two nodes only if the
edge min-cut between them is greater or equal to m; similarly, m vertex-disjoint
paths only exist if the vertex min-cut between the two nodes is greater than m.

4.1.2 Algorithmic Complexity of Disjoint-Path Construction

Consider a collection protocol that builds two disjoint paths from each sensor to the
sink. To minimize the number of transmissions, for each sensor, the protocol must
choose the two paths to the sink that have the minimum overall cost (i.e., the sum
of their costs is less than or equal to the sum of the costs of any other two paths
from this sensor to the sink). This problem is known in computer science as the
“min-sum 2-path” problem, and it has been shown to be computationally hard to
solve (NP-hard). The difficulty comes from the fact that the optimal solution may



82 C. Fragouli et al.

involve two paths neither of which is the minimum-cost path, as Example 1 below
illustrates.

Example 1 Figure 9 shows two sets of paths that connect node a11 to the sink: (i)
The first set includes the minimum-cost path (of cost 7) and the second best path (of
cost 13). The total cost is 20. (ii) The second set includes two paths, each of cost 9.
The total cost is 18, which is the minimum overall cost. This example illustrates that
the optimal solution cannot be obtained simply by ranking paths by cost and taking
the two best paths.

Fig. 9 Two sets of path
choices to connect node a11

to the sink: the first set
includes the minimum-cost
path (going through a1, a5

and a3), and the second best
path (going through a10, a8,
a6 and a2). The second set
includes two paths that have
the minimum sum cost
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So, identifying, for each sensor, two disjoint paths to the sink with the lowest
overall cost is hard. An alternative would be to construct any two disjoint paths,
without looking to minimize the overall cost. We now illustrate that constructing
disjoint paths using heuristics can easily lead to configurations where nodes use
paths of significantly higher cost than necessary.

Example 2 A computationally reasonable way to select two disjoint paths from each
sensor to the sink would be the following:

• Select a minimum-cost path from each sensor to the sink. The union of chosen
paths forms a tree T1.

• Remove all the edges of T1 from the channel-quality graph.
• Considering only the remaining links, select again a minimum-cost path from

every sensor to the sink, which results in a tree T2.

Figures 10, 11 and 12 illustrate this procedure and show a problematic case, where,
in the second tree, node a3 is connected to the sink through a path of cost 9, whereas,
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Fig. 10 The first tree T1 on
the cost graph
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Fig. 11 The remaining cost
graph after removing T1
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Fig. 12 The second tree T2.
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in the original network, there exist edge-disjoint paths of costs 2, 4 and 5, respec-
tively, that connect a3 to the sink.

4.1.3 Braided Paths

The idea is to first construct a “primary” minimum-cost path from each node to the
sink (as described in Sect. 3), then build a “braid” of alternative paths as follows: for
each node on the primary path, build a path that does not include that node [5, 6].

Example 3 Consider the braided path choices depicted in Fig. 13. The minimum-
cost path from node a11 to the sink involves hops through nodes a8, a5 or a3. If node
a8 fails, it can be replaced by the path segment through nodes a10 and a7. Similarly,
node a5 can be replaced through nodes a6 and a2, while node a3 can be replaced
through nodes a4 and a1.

Intuitively, braided paths are more energy-efficient than disjoint paths, simply
because they are more likely to be physically close to the primary (minimum-cost)
path. One would think that this higher energy efficiency would come at the cost
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Fig. 13 Braided paths: in the
path from node a11 to the
sink, if any of the nodes a8,
a5 or a3 fails, there exists an
alternative available path. For
example, node a5 can be
replaced by using the path
segment through nodes a6
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of lower reliability (the reason being that braided paths would be less resilient to
multiple-node failures than disjoint paths). Interestingly, early simulation results
suggest that this may not be the case: it turns out that, in practical scenarios, braided
paths can be as failure-resilient as 2-disjoint and 3-disjoint paths; the intuition is that,
in practice, disjoint paths are not physically separated from one another enough to
survive multiple-node failures [5].

4.2 Topology Usage

There are several choices on how to use multiple paths from a node to the sink;
which one is better depends on the specific application requirements. We group the
proposed uses in five broad categories; the first three are relevant for disjoint paths,
while the others for braided ones.

4.2.1 Replicate Transmissions

Each source (i.e., each sensor that has a message to convey to the sink) sends its
message through all available paths to the sink. This approach is sometimes also
described as flooding.

Flooding is typically proposed in conjunction with disjoint paths, where each
path carries a replicate of the same message to the sink. Indeed, to flood a braided
mesh of paths, we would need the intermediate nodes to suppress incoming packets
if a node has more incoming edges than outgoing edges, as is the case for node a3 in
Fig. 13. Similarly, if a node has more outgoing than incoming edges, it would need
to create copies of a received packet and implement multicasting.

Flooding favors reliability over energy efficiency: it sends each message over
multiple paths, hence, increases the probability of the message reaching the sink in
case of node and channel failures; yet, when no such failures occur, flooding uses
on the order of m times the number of necessary transmissions to get the message to
the sink (assuming m paths are being used). Moreover, when multiple sources send
out messages at the same time, flooding can result in congestion, i.e., collisions and
queue build-up.
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So, flooding is an appropriate choice for applications in which sensors send mes-
sages to the sink infrequently and, when they do, reliability is more important than
energy efficiency.

4.2.2 Independent Transmissions

In this approach, sources use each path to send a different message to the sink.
This approach favors information rate over reliability: each source can send mul-

tiple messages to the sink at the same time; yet, messages sent over paths with node
or channel failures may not be delivered. In practice, this approach is not energy-
efficient either, in the sense that some messages are sent over more-than-minimum-
cost paths. Moreover, similarly to the previous case, when multiple sources send out
messages at the same time, it can result in congestion.

Thus, this approach is suitable for applications where sensors send out messages
infrequently and, when they do, speed of dissemination is of critical importance.
Such an application would be for example, if a sensor wants to send an image of an
intruder to the sink; in such a situation, the sensor needs to transmit multiple packets
to the sink as fast as possible.

4.2.3 Erasure Coding

Consider a configuration where a source is connected to the sink through m disjoint
paths; sending the same message over m paths corresponds to a repetition code of
rate 1/m; sending a different message over each path corresponds to a rate-1 code.
Between these two extremes, the source can use an erasure code of rate k/m: the
source sends m coded packets; if the sink receives any k out of the m coded packets,
it can retrieve the original information.

This approach enables a trade-off between reliability and speed of dissemination.
However, similar to the previous case, it is not energy-efficient, as it uses suboptimal
paths; moreover, similar to both previous cases, it can cause congestion.

4.2.4 Path-Selective Routing

In this approach, each message is routed along a single path from the corresponding
source to the sink. The path is determined dynamically in the following way: each
node that receives the message selects the best next-hop to the sink according to
some local criterion such as:

• what is currently the minimum-cost next hop towards the sink;
• what is currently the minimum-cost path towards the sink;
• which is the next node that has received less traffic, and
• which is the next node that has most remaining energy.

This approach is well suited for braided-mesh topologies, where each node has
multiple choices on how to forward a packet to the sink [5].
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4.3 Room for Improvement

Multipath routing gracefully extends routing over trees to routing over larger topolo-
gies. There is, however, room for improvement regarding the following issues:

• Control traffic. Constructing and maintaining a larger topology requires (signif-
icantly) more control traffic. There is evidence that maintaining more than two
paths per sensor (or more than two incoming and outgoing links per sensor node)
requires control traffic that outweighs the benefits of multipath, as the required
transmissions for control information consume a significant portion of the net-
work resources (energy, wireless bandwidth, processing time) [6]. This problem
becomes more pronounced when the network topology changes fast – in fact, for
mobile sensor networks, constructing and maintaining multiple paths becomes
practically infeasible.

• Algorithmic complexity. Identifying an optimal multipath topology is a computa-
tionally hard problem, even in the case where all topological information (chan-
nel quality between all pairs of nodes) is available at all nodes. Using suboptimal
topologies can reduce the potential benefits of multipath.

• Broadcasting. Existing proposals do not exploit the inherent broadcasting capa-
bility of the wireless medium. For instance, consider an approach where each
node that overhears a packet forwards it to the sink – even though it was not
the packet’s intended receiver. Such an “opportunistic” approach has the poten-
tial to increase reliability (because each packet is forwarded through multiple
paths), but also waste network resources, including battery life (when there are no
node/channel failures). In networks with tens or hundreds of nodes, controlling
the number of redundant packets in the network is practically infeasible.

Ideally, we would like to have a multipath collection protocol that requires
insignificant control traffic (compared to the actual data traffic), is transparent to
the underlying topology changes, and exploits broadcasting. New ideas that have
recently emerged from the area of network coding hold the potential to help towards
this direction; we will next review the basic ideas in network coding and discuss
how they fit in the context of sensor networks.

5 What Is Network Coding

Network coding is a new area that promises to revolutionize the way we treat infor-
mation in a network, and have a deep impact in all network functionalities, such
as routing, network storage, and network design [7–11]. The novel paradigm in
network operation that network coding brings is that, instead of having individual
source packets traversing a network, we instead have combinations of packets, each
bringing some type of “evidence” about the source packets. These packet combina-
tions are created throughout the network: we allow intermediate network nodes to
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process their incoming information packets, and in particular, combine them to cre-
ate new packets. A receiver collecting a sufficient number of such combined packets
can use them to retrieve the original information sent by the sources. The area of
network coding is centered around the application of this basic idea, of dealing with
“evidence” instead of individual packets. The following “classical” example in the
network coding literature illustrates the potential benefits over a wireless medium.

Example 4 Consider a wireless ad-hoc network, where devices A and C would like
to exchange the binary files x1 and x2 using device B as a relay. We assume that time
is slotted, and that a device can either transmit or receive a file during a time slot
(half-duplex communication). Figure 14 depicts on the left the standard approach:
nodes A and C send their files to the relay B, who in turn forwards each file to the
corresponding destination.

The network coding approach takes advantage of the natural capability of wire-
less channels for broadcasting to give benefits in terms of resource utilization, as
illustrated in Fig. 14.

In particular, node C receives both files x1 and x2, and bit-wise xors them to
create the file x1 + x2, which it then broadcasts to both receivers using a common
transmission. Node A has x1 and can thus decode x2. Node C has x2 and can thus
decode x1.

This approach offers benefits in terms of energy efficiency (node B transmits
once instead of twice), delay (the transmission is concluded after three instead of
four time slots), wireless bandwidth (the wireless channel is occupied for a smaller
amount of time) and interference (if there are other wireless nodes attempting to
communicate in the neighborhood). The benefits in the previous example arise from
that broadcast transmissions are made maximally useful to all their receivers.

Note that x1 + x2 is nothing but some type of binning or hashing for the pair
(x1, x2) that the relay needs to transmit. Binning is not a new idea in wireless
communications. The new element is that we can efficiently implement such ideas
in practice, using simple algebraic operations.

Fig. 14 Nodes A and B
exchange information via
relay B. The network coding
approach uses one broadcast
transmission less

Without Network Coding

A B C

A B C

A B C

A B C

With Network Coding

A B C

A B C

A B C
x1

x2

x1 x1

x2x2

x1

x2

x1 + x2 x1 + x2



88 C. Fragouli et al.

5.1 Network Coding in Practice

In Example 3, we implicitly assumed that each node performs fixed encoding oper-
ations. The receivers know these operations, and use this knowledge to decode.
In particular, nodes A and B know in advance that they will receive the linear
combination x1 + x2. In a practical network, where the network structure, delays
and synchronization varies, the selection and knowledge of the linear combination
coefficients needs to be distributed in a decentralized manner.

Fortunately, three ideas, that appeared successively in time, give us an elegant
and flexible way to perform network coding in a completely decentralized manner.
These are:

1. Randomly chose the linear combinations at each network node [12].
2. Append “coding vectors” at the header of each packet to allow the receivers to

decode without need of synchronization [13].
3. Use subspace coding to achieve the same goal as in (2) more efficiently [14].

The first idea determines what intermediate nodes in the network do. The second
and third offer two alternative approaches for the encoding of the data at the sources
and corresponding decoding at the receivers.

5.2 Randomized Network Coding

Assume we have n source packets {x1, . . . , xn} that contain symbols over a field Fq

and we want to convey them to multiple destinations over a network using network
coding. Throughout the network, intermediate nodes perform linear combining of
the source packets. Thus, a destination receives combinations of the form

c1x1 + c2x2 + · · · + cn xn,

where ci ∈ Fq . In the network coding literature, the vector of coefficients

c = [c1, c2, . . . , cn]

is called a coding vector. Each destination can retrieve the data, if it receives n
linearly independent combinations of the source packets, or, n linearly independent
coding vectors. For example, let {ρi } be the combined packets a destination collects,
we can write in a matrix form:

⎡

⎢⎢
⎢
⎣

ρ1

ρ2
...

ρn

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎣

c11 c21 . . . cn1

c12 c22 . . . cn2

. . .

c1n c2n . . . cnn

⎤

⎥⎥
⎦

︸ ︷︷ ︸
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⎣

x1

x2
...

xn

⎤

⎥⎥
⎥
⎦

. (1)
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If the linear combinations are independent, i.e., matrix A is full rank, we can solve
the above equations and retrieve the source packets. The task of network code design
amounts to deciding what linear combinations to form throughout the network so
that each receiver gets a full rank set of equations.

Randomized network coding is based on the simple idea that, for a field size
q large enough, there exist so many valid solutions, that even random choices of
the coefficients allow us to find a valid solution with high probability. Thus we can
simply ask each intermediate node in the network to create and send uniform at
random linear combinations of the packets it has received. The associated proba-
bility of error can be made arbitrarily small by selecting a suitably large alphabet
size [12]. For example, if we could choose the coefficients {ci j } of matrix A in
(1) uniformly at random, the matrix A would be full rank with probability at least
(1 − 1

q )n . In practice, simulation results indicate that even for small field sizes (for

example, using m = 8 bits per symbol, i.e., q = 28) the probability of error becomes
negligible [15].

Randomized network coding requires no centralized or local information, is scal-
able and yields to a very simple implementation. Thus, it is very well suited to
a number of practical applications, such as sensor networks and more generally
dynamically changing networks.

5.2.1 Generations and Coding Vectors

The next question to answer is, even if we randomly select what linear combinations
to perform, how do we convey to the destinations what are the linear combinations
they have received so that they can decode. Moreover, in a network where informa-
tion gets generated at a constant rate, we need to decide what packets to combine
and how often do we decode. To achieve these, we cannot rely on synchronization,
since packets are subject to random delays, may get dropped, and follow different
routes.

The approach in [13] first groups the packets into generations. Packets are com-
bined only with other packets in the same generation. A generation number is
appended to the packet headers to make this possible (one byte is sufficient for
this purpose). The size of a generation can be thought of as the number of source
packets n in synchronized networks: it determines the size of matrices the receivers
need to invert to decode the information. Since inverting an n × n matrix requires
O(n3) operations, and also since waiting to collect n packets affects the delay, it
is desirable to keep the generation size small. On the other hand, the size of the
generation affects how well packets are “mixed”, and thus it is desirable to have a
fairly large generation size. Indeed, if we use a large number of small-size gener-
ations, intermediate nodes may receive packets destined to the same receivers but
belonging to different generations. Characterizing this trade-off is an open research
problem.

As a second step, the approach in [13] appends within each packet header a
vector of length n that describes which linear combination of the source packets
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{x1, . . . , xn} it contains. These vectors are what we called coding vectors. The
encoded data is called the information vector. For example, the coding vector
ei = (0, . . . , 0, 1, 0, . . . 0), where the 1 is at the i th position, means that the infor-
mation vector is equal to xi (i.e., is not encoded). A packet that contains the linear
combination ρ = c1x1 + c2x2 + · · · + cn xn has the coding vector (c1, . . . , cn) and
the information vector ρ.

The coding vectors are updated locally at each node that performs linear com-
bining, to reflect the new linear combination of the source packets that the new
packet carries. For example, if a node receives two packets with coding vec-
tors ei = (0, . . . , 0, 1, 0, . . . 0) and (c1, . . . , cn), with corresponding information
vectors xi and ρ, it can create the new information vector αxi + ρ for some
value α ∈ Fq . To send this new information vector, it will use the coding vec-
tor (c1, . . . ci−1, ci + α, ci+1, . . . , cn). Combining can occur recursively and several
times inside the network.

Each receiver examines the coding vectors of the packets it receives, to learn
what are the linear combinations it has received. In particular, the coding vectors it
receives are nothing but the rows of the matrix A in (1) that determine the linear
equations it needs to solve.

Appending coding vectors to packets incurs an additional overhead. For example,
for a packet that contains 1400 bytes, where every byte is treated as a symbol over
F28 , if we have h = 50 sources, then the overhead is approximately 50/1400 ≈
3.6%.

5.2.2 Subspace Coding

The approach based on appending coding vectors in order to be able to decode at
the receiver is well suited for large packets where the overhead is small. In wireless
sensor networks, and generally, wireless networks, the situation is quite opposite: it
is quite often the case that packets consist of a few bits. In such cases, using coding
vectors can add a significant overhead.

A new approach recently proposed in [14, 16] promises to be helpful in the case
of very short packet lengths. This approach is again designed to work with use of
randomized network coding, and is based on using subspaces as “codewords” to
convey the information from the sources to the receivers. For simplicity we will
here consider a single source transmitting n independent packets to receivers, but
the same approach can easily be extended to multiple sources [17]. We note that
recent work [18–22] has established that subspace coding only offers benefits as
compared to the coding vectors approach for very short block lengths.

Consider a source that would like to convey n independent source packets to
receivers over a network that employs randomized network coding. Assume that
each packet has length λ over Fq . The n packets can take in total M = qnλ values.
Thus the source, for each set of packets, has one of these values to convey.

The source can achieve this as follows. First, it selects to operate over an nL
dimensional vector space V over Fq , i.e., a vector space, where vectors have length
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nL and have elements in Fq . A basis of this space consists of nL linearly indepen-
dent vectors. For example, the space F

3
2 has the basis

{e1 = [1 0 0], e2 = [0 1 0], e3 = [0 0 1]}.

A subspace π is a subset of the vector space V that is a vector space itself. We
can think of subspaces as “planes” that contain the origin. For example, the space
F

3
2 contains 7 two-dimensional subspaces. One such subspace is π1 =< e1, e2 >.

Another is π2 =< e2 + e3, e1 >. It also contains 7 one-dimensional subspaces,
one corresponding to each non-zero vector. Moreover, the subspace (plane) π1 =
<e1, e2 > contains the three “line” (one-dimensional) sub-subspaces π3 =<e1 >,
π4 =<e2>, π5 =<e1+e2>. Therefore, we can define subspaces of lower dimension
as sub-spaces of higher dimensional subspaces. In the above example, we can see
that π3 ⊂ π1 ⊂ F

3
2 = V . We say that two subspaces are distinct if they differ in

at least one dimension. For example, π1 =<e1, e2> and π2 =<e2 + e3, e1> are
distinct.

The source selects a codebook of M distinct subspaces, and each set of n packets
is mapped to a different such subspace. The receivers learn this codebook. To convey
the value of the source packets, the source needs to convey what is the particular
subspace these packets are mapped to. To do so, it inserts in the network a set of
basis vectors (packets) that span the subspace. Assume for example it sends the
vectors {b1, . . . , bk} that span a subspace π . The critical observation is that, the
mixing through randomized network coding intermediate nodes perform, preserves
the subspaces. Indeed, linear operations, no matter what these operations are, can
only create vectors that are in the span of the basis {b1, . . . , bk} and thus within π .
As a result, every node that receives k linearly independent vectors will be able to
identify which is the subspace π that the source has sent. The source has then trans-
mitted information through the choice of the subspace that it sends. This property
makes the use of subspaces for encoding robust to the topology of the network and
to arbitrary linear operations performed at the intermediate nodes.

6 Network Coding for Sensor Networks

Network-coding ideas and techniques have already been successfully applied in
the context of wireless mesh and/or ad-hoc networks (see [23–26] for some exam-
ples). A natural question to ask is, are sensor networks any different? Apart from
the fact that both types of networks are wireless, they differ in almost everything
else that matters when designing a network protocol: topology, traffic patterns,
performance metrics. For example, in wireless mesh/ad-hoc networks, network cod-
ing offers throughput benefits when certain multicast or concurrent-unicast traffic
patterns occur, such as the well known pattern in Fig. 14. These patterns do not
naturally occur in sensor networks, which typically carry many-to-one traffic from
the sensors to the sink; for this traffic pattern, network coding does not offer through-
put benefits. In many sensor-network applications, throughput is not even relevant
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as a metric – as discussed, the two predominant metrics are energy efficiency and
reliability.

There is evidence that network coding can help achieve a better energy effi-
ciency/reliability trade-off than traditional single-path or multipath collection proto-
cols. Intuitively, by allowing nodes to mix incoming packets, network coding intro-
duces each piece of information into multiple paths – i.e., network coding offers
a new way to implement multipath communication. However, before we examine
the potential benefits, we need to solve a crucial practical problem: as the following
examples illustrate, in a sensor network where a large number of nodes communi-
cate short messages to the sink, it does not make sense to use neither coding vectors
nor subspace coding.

Example 5 Consider a sensor network consisting of 100 sensors, where each sensor
periodically communicates a 1-byte message to the sink. Assume that we want to
implement network coding using coding vectors and operations over a field of size
q = 24. In this case, we would need 50 bytes of coding-vector data per packet
to convey just 1 byte of information. Such overhead rules out coding vectors as a
practical design option.

Example 6 Subspace coding offers increased efficiency as it removes the need for
coding vectors. However, designing subspace code for the case where the sources
are not collocated is challenging. Consider for example the case where two sensor
nodes use codebooks consist of subspaces of a vector space F

�
q , i.e.,

Ci = {π (i)
j : 1 ≤ j ≤ |Mi |}, i = 1, . . . , n.

To transmit information to the sink, source i maps a measured value to one such
subspace π and inserts in the network d vectors that span π . In relaying information
towards the sink, the sensor linearly combines all packets it has received (includ-
ing that generated by itself) and transmits the combined packet to the next relays
towards to the sink. As a result, the sink will observe vectors from the union of
subspaces inserted by all the sources. In particular, if source i inserts the subspace
πi , the sink will observe vectors from the subspace π1 + π2 + · · · + πn. Using the
knowledge of the codebooks {Ci }, it needs to decode the sensor data.

To be able to correctly decode at the sink, we need to ensure that every combi-
nation of sensor data results in a distinct union subspace. Assume for simplicity we
have two source nodes, S1 using the codebook C1 = {π1, π2, π3}, while S2 the
codebook C2 = {π4, π5, π6}. Table 1 summarizes all outcomes. For this code to
be identifiable, we want all (or some) entries in Table 1 to correspond to distinct
subspaces. For example, π1 + π4 should be a distinct subspace from π2 + π5.

This problem is hard to solve even for the case of two sources, and a very small
codebook (in our example each node transmits only 3 values). Designing such a
code for 100 sources would be an admirable feat, let alone designing a code that can
also be efficiently decoded.
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Table 1 Coding for two sources

C2/C1 π1 π2 π3

π4 π1 + π4 π2 + π4 π3 + π4

π5 π1 + π5 π2 + π5 π3 + π5

π6 π1 + π6 π2 + π6 π3 + π6

6.1 Code Design

We now describe a network-coding approach for sensor networks. The main intu-
ition in this approach is to attempt to reduce the length of the coding vectors, by
restricting the freedom in the coding operations that intermediate network nodes
have. Indeed, the classic design of coding vectors, allows potentially all source pack-
ets to get combined together; our approach is to employ coding vectors that allow at
most m packets get combined [18]. This is motivated through three observations:

1. Coding vectors allow us to decode the data even if all the sources’ packets get
mixed. However, packets get combined only if their paths to the sink overlap.
For a network symmetrically deployed around a sink, it is unlikely that all paths
will overlap.

2. Not all sensors may be actively measuring during every round. For example,
when sensing anomalies, we expect a small fraction of all potential sources to
send information.

3. We can artificially restrict the number of sources that get combined, by append-
ing to each packet a few bits to count the number of combined packets it contains.

Our design problem can now be stated as follows. Given n sources, the sink is
going to observe packets that contain linear combinations of at most m sources. We
want to design codes that allow us, by receiving each combined vector, to determine
which linear combination of the source packets it contains. Our goal is to utilize
vectors of length � that is much smaller than the number of sensor nodes n.

Our construction utilizes properties of erasure correction codes, and proceeds as
follows. Select a linear code of length n, minimum distance 2m +1, and redundancy
�, with � as small as possible. Consider the � × n parity check matrix H. Assign to
each source as coding vector the 1-dimensional subspace spanned by one column of
H. The source, includes this column in front of the data packet it sends, exactly in
the same way as in the case of the usual coding vectors.

Intermediate nodes combine up to m source packets to create a coded packet,
using randomly selected coefficients. The sink, when receiving each encoded packet
can determine by examining the coding vectors:

• which columns of the matrix H contribute to the resulting linearly combined
vector.

• using this knowledge, the exact coefficients that have been used for the combin-
ing.
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The reason our construction allows to perform these operations, stems from a
well known property the columns of matrix H satisfy. Let A denote the set of these
vectors. Then, if the code has minimum distance 2m + 1, any set of 2m vectors in
A are linearly independent [27]. This directly implies the following properties. For
vectors in A:

(P1) Any set of 0 < β < 2m vectors span a distinct β-dimensional subspace.
(P2) The distance between two subspaces π1 and π2, where each subspace is

spanned by a different set of 0 < β < 2m vectors, equals min{β, 2m − β}.

From property (P1) we see that the sink receives distinct subspace for every distinct
set of m sources, and therefore is able to decode the identities and the information.
Thus, even though there are n = |A| possible sources, we do not need to use vectors
of length proportional to n, but instead, of length � ≥ 2m.

The following example illustrates this procedure.

Example 7 Consider a code with minimum distance 2m + 1 = 5 and a parity check
matrix H of dimension � × n with columns h1, . . . , hn:

H = [h1 h2 . . . hn] (2)

Each source appends a different hi vector in the header of its information packet,
and sends the packet through the network where intermediate nodes combine up to
two packets. The sink receives n packets, and extracts from their header n vectors of
the form yk = αk1hk1 + αk2hk2, for k = 1, . . . n. For each vector yk , the unknowns
are the indices k1 and k2, i.e., which column vectors are combined, as well as the
coefficients αk1 and αk2. From property (P1), the sink can uniquely determine the
column vectors hk1 and hk2 in whose span lies yk . Using this knowledge, it can then
uniquely identify αk1 and αk2. This implies that the k-th packet received at the sink,
contains the linear combination of the packets send by the sources k1 and k2 with
coefficients αk1 and αk2.

Thus to decode, the sink can create an n × n transfer matrix, where row k will
contain exactly two nonzero entries: αk1 at position k1 and αk2 at position k2, and
then solve the system a system of linear equations to retrieve the data.

In order to quantify our savings, we need to examine how � scales with m. This is
related to a well-studied problem in coding theory, namely, for a given code length
n � |A|, and a given minimum distance 2m + 1, what are upper and lower bounds
on the number of codewords A(n, m) this code can have [27]. Using the Gilbert-
Varshamov lower bound and the sphere packing upper bound [27], it can be shown
that for large values of n,

nH2

(
2m + 1

2n

)
≤ � ≤ nH2

(
2m + 1

n

)
, (3)
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Fig. 15 Bounds on the length � of the coding vectors when m = 2 and m = 20 sources get
combined, as a function of the number of sensor nodes n

where H2 is the binary entropy function, namely, H2(p) = −p log p−(1−p) log(1−
p). Figure 15 plots the bounds in (3) as a function of n, for m = 2 and for m = 20.
We conclude that our proposed code design results in using a fraction of the length
n, that goes to zero as the ratio 2m+1

n goes to zero.

Example 8 Using a table of the best codes known [27] we can see for example that,
there exist binary linear codes of length n = 512 with redundancy � = 18 and
minimum distance 2m + 1 = 5. Thus in a sensor network with 512 nodes if at most
m = 2 source vectors get combined, we need to use vectors of length � = 18.

Example 9 An alternative approach to using shortened coding vectors, is to use
smaller generations. In particular, we can assume that we divide the source nodes
into groups, where each group contains m sources, and allow only the packets that
originate from the same set of sources to be combined. A special counter attached
to the header of the packet can specify the generation in which the packet belongs.
This approach differs from our proposed approach in that, it may happen for a node
to have multiple uncoded packets, but not be able to code them together as they
belong in different generations.

6.2 Opportunistic Broadcasting with Network Coding

The idea is the following: when a node sends out a packet, apart from the intended
receiver, some of the node’s neighbors opportunistically overhear and receive the
transmitted packet; each node forwards towards the sink a mix of the packets it
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receives and the ones it opportunistically overhears. Thus, each piece of information
may appear, linearly combined, in a large number of packets across the network.
By propagating multiple packets that contain different linear combinations of the
original data, we can create multiple opportunities for decoding the original data
and achieve increased robustness to path failures.

We now outline a collection protocol that relies on this idea: it constructs a tree
and implements opportunistic broadcasting on top. We first describe how the tree is
used, then how it is constructed.

Consider a sensor network where nodes have formed a tree rooted at the sink.
The network operates in rounds. During each round, each node stores the packets it
receives from its children as well as any packets it opportunistically overhears from
its other neighbors. It starts transmitting as soon as one of the following conditions
is met:

• It has received packets from all its children.
• It has received a packet from at least one child and a time window has expired.
• It has overheard new information that exceeds a predetermined threshold.

A node continues to transmit until its parent signals that it has successfully received
one of its packets, or an upper limit on the number of per-node transmissions is
reached. Each transmission carries a different linear combination of the node’s
received/overheard packets – such that, if a neighbor happens to successfully over-
hear more than one transmissions, each one will bring new information to it.

Example 10 Consider the tree shown in Fig. 5 and assume we use it as described
above. Recall that, in this tree, a node’s parent is not necessarily its minimum-cost
neighbor (it is the next hop on the node’s minimum-cost path to the sink). For
example, consider node a10; to reach its parent, a8, it must transmit on average
twice; however, it can reach a7 by transmitting on average once. Hence, if node a10

transmits until a8 acknowledges receipt of a packet, it is likely to transmit twice,
and a7 is likely to successfully overhear both transmissions, i.e., collect two differ-
ent linear combinations of the packets previously received and overheard by a10.
Similarly, if node a2 transmits until its parent a3 acknowledges receipt of a packet,
its transmissions are likely to be successfully overheard by the sink.

We now discuss how to construct the tree. Assume that we want to ensure that
each transmission be received by at least two neighbors of the transmitting node. We
can implement this requirement in two ways: (i) Hard, where we explicitly mandate
that two neighbors acknowledge reception. This effectively amounts to constructing
two trees, which, as discussed in Example 2, is computationally hard. (ii) Soft, where
we require that on average at least two neighbors receive each transmitted packet.
We choose the latter and implement it as follows.

Consider a node that has multiple neighbors. In the Collection Tree Protocol
(described in Sect. 3), each node chooses its parent so as to minimize the over-
all cost of communicating to the sink. We now revise this as follows: each node
chooses its parent so as to minimize the overall cost of communicating to the sink,
subject to the following redundancy constraint: a node is not allowed to choose as
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Fig. 16 A tree that satisfies
the redundancy constraint:
each node is connected to the
tree through a link that is not
its minimum-cost link, with
the exception of the nodes
that are connected directly to
the sink
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its parent its lowest-cost neighbor, unless it has no other choice. This protocol can
be implemented as easily as CTP, by simply adding the redundancy constraint.

When a node a transmits a packet and its parent b successfully receives it, it is
likely that so do a’s neighbors that are connected to it through better links than b.
The redundancy constraint ensures that, whenever possible, at least one such neigh-
bor exists for each node. The following example illustrates this property.

Example 11 Figure 16 depicts a tree that satisfies the redundancy constraint. In this
tree, node a4 chooses node a1 as its parent, whereas its lowest-cost neighbor is a3.
On average, the packets received by a1 are also received by a3. The cost of this tree
is 34. The cost of the tree constructed by CTP (shown in Fig. 5) was 25. So, we
ensure that on average each packet is received by at least two neighbors at the cost
of increasing transmissions by approximately 35%.

7 Conclusions

In this chapter, we looked at the problem of designing a protocol that performs the
simplest possible sensor-network task: communicate measurements from the sen-
sors to the sink, without any in-network information processing. We described pro-
tocols that balance the competing goals of energy efficiency and reliability, ranging
from a simple tree-based protocol to multipath protocols, and discussed their basic
benefits and drawbacks; we also outlined an emerging protocol based on network
coding. We close by noting that a rigorous study would be necessary to evaluate the
relative value of each approach and how well each is matched to specific application
needs.
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Part II
Theory and Practice



Data Aggregation in Wireless Sensor Networks:
A Multifaceted Perspective

Sergio Palazzo, Francesca Cuomo, and Laura Galluccio

Abstract Wireless sensor network applications usually do not require knowledge
of each individual sensor measurement at the sinks; rather, an overall aggregate
of the data monitored by different sensor nodes could be sufficient. Dealing with
aggregated data is potentially highly convenient in the network perspective because
it leads to a reduction in the overall energy consumption, even if the needed pro-
cessing involves resource consumption. The reason is that through aggregation the
unnecessary packets overhead is avoided and the waste of energy and bandwidth
resources are reduced. Moreover, since during in-network data aggregation some
pre-elaboration of the data can be made, several wireless sensor network appli-
cations may benefit from having this pre-elaborated data and may be facilitated
in handling and processing the sensor measurements. Thus, data aggregation is a
promising approach for improving the performance of sensor networks and has
recently attracted the interest of researchers. In this chapter we provide a survey
of the main approaches at data aggregation recently proposed and compare different
potential perspectives for a data aggregation taxonomy in wireless sensor networks.
Then, we introduce a more comprehensive classification which allows to embrace
the existing ones and to incorporate the different phases of the data aggregation
process: information description, propagation and preservation.

1 Background

The concept of “data aggregation” has been widely used within the computer sci-
ence and communication fields with different meanings. For the only sake of men-
tioning a couple of example, we can refer to the process of gathering personal
account information (“screen scraping”) from various sources; likewise, the concept
can also be applied to advertisement purposes, referring to capture different pieces
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of data, summarizing them according to specific user application requirements, for
purposes such as statistical analysis, content personalization, data mining, etc.

In this networking context, aggregation, which can be defined as “collecting of
units or parts into a mass or whole”, is a generic concept to be applied to various
types of network scenarios, where it might be interpreted as the process of com-
bining and compressing messages/packets into a smaller number of them, though
containing the same information. The intrinsic characteristics of wireless sensor
networks (WSNs) make them a really suitable framework to apply these techniques.

In wireless sensor networks, due to the high density of deployed devices and the
type of monitoring or alerting applications being supported, the interest is usually
not in the knowledge of each individual sensor reading but, rather, on the over-
all estimation of the parameters of interest monitored within a particular area. To
accomplish this, data aggregation techniques can be effectively used. Hence, data
aggregation and/or fusion for WSNs can be specialized as the process of forwarding
and fusing together data coming from different network nodes to provide a unified
feedback to the sink(s).

Numerous application scenarios for data aggregation have recently emerged. As
an example, in chapter “Body Sensor Networks for Sport, Wellbeing and Health”,
body sensor networks (BSNs) are considered and their performance in terms of the
inference process adopted in applications like sports, wellness and health is dis-
cussed. Also in chapter “Body Sensor Networks for Sport, Wellbeing and Health”,
data aggregation is proposed to be combined so as to allow the reduction in the mag-
nitude of data traveling into the network through the selection of the most relevant
features from specific sensors for decision tasks related to the BSN.

Data aggregation usually implies introducing some additional processing at inter-
mediate network nodes so as to reduce the amount of data packets traveling through-
out the network. This is made to counteract redundancy effects, i.e., packets with
redundant information which would uselessly be forwarded throughout the network,
overloading intermediate nodes and wasting energy and bandwidth resources. This
is particularly true in case of event monitoring applications, where sensor nodes
are required to send data to the sink(s) when they detect unusual behavior in the
network. In such scenarios, due to the potentially high density of devices, it is
likely that nodes located in the same area forward almost the same data to the sink,
thus overloading and unnecessarily stressing intermediate network nodes. Another
issue is related to periodic monitoring applications, in which sensor nodes, time
by time, report their data to the sink(s), thus causing a temporal correlation in the
received measurements, when no significant variations in the monitored metrics
happen within consecutive monitoring periods.

It should be pointed out that the impact of useless transmissions is critical in
terms of power consumption, because transmission of a single bit over the radio
causes a consumption at least three orders of magnitude higher than the one required
for executing a single typical instruction at the device processor [46].

Moreover, when considering data aggregation together with reduction in energy
consumption, positive effects on the limitation of network congestion are also
observed. It is well known, in fact, that due to the so-called funneling effect, when
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propagating data towards the sink, nodes few hops away from the sink are the
most stressed, both in terms of energy consumption and amount of traffic to man-
age. Thus, aggregation brings about a reduction in the amount of traffic that these
funneled nodes should forward and, therefore, lessens the chances of incurring in
congestion at these nodes [51, 12], so avoiding possible network partitioning due to
nodes’ misbehavior. Another problem which data aggregation can help to counteract
is related to the effects of error readings. In fact, it is common that potentially com-
promised readings within a sensor network might cause unnecessary actions, when
propagated to the sink. As an example, if a damaged sensor, say D, detects that the
monitored parameter exceeds a predefined threshold and sends the corresponding
alert message, this could cause the sink to transmit unnecessary backward control
messages which are propagated to other nodes in the proximity of D, asking for
confirmation of the previous alert. On the contrary, the use of data aggregation can
be really efficient in avoiding such harmful effects, as a single wrongly operating
device’s piece of data is weighted and averaged with others sent by properly work-
ing devices and, thus, unnecessary actions are not invoked. This error reading effect
could become quite relevant in certain scenarios, e.g., chemical monitoring, fire
alert and disaster relief networks, etc. Hence, avoiding these unnecessary alerts is
important and data aggregation can be very beneficial to this.

However, data aggregation could also cause some drawbacks in network behav-
ior. First, by implying the need for additional processing at network nodes, it leads
to an increase in the complexity of the operations performed by network nodes and,
consequently, in the latency for data delivery. This latency is originated by the need
of intermediate nodes to perform some aggregation, which implies additional time,
mostly consumed during the waiting process, for gathering the required number
of packets before aggregating data and sending them towards the sink. It is worth
highlighting that it is believed (see, for example [46]) that the level of complexity
is tightly related to the delay incurred in data delivery. In most of the application
scenarios, the use of rather simple operations, such as averaging might be enough,
but there may be other cases in which the loss of data is crucial, and aggregation
embraces more complicated (and thus costly) metrics, such as median, consensus,
percentiles, etc. It is clear that when performing aggregation, strict synchronization
among network nodes is required to avoid misinterpretation of data and use of older
information. Also nodes are expected to employ strict synchronization in terms of
appropriate delay to wait before aggregating and sending out the aggregated data.
This is because waiting too long would lead to excessive delivery delay and the
possibility to bring to the sink stale and useless information. On the contrary, by
waiting too short time, we could risk not to exploit aggregation in an efficient way,
thus sending only few aggregated data.

By considering the specific time constraints being required, it looks evident that
aggregation cannot be applied to all application scenarios. As an example, in case of
alarm applications, the additional delay that is a consequence of aggregation might
be detrimental to the timeliness of the data delivery.

When aggregating data packets, attention should also be paid to the way process-
ing of data is performed. In fact, on the one hand, increasing the number of packets
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whose contents can be aggregated together is useful to reduce energy consumption
and bandwidth overloading; on the other hand, this could imply increase in distor-
tion and possible loss of information, since compressing too many packets leads to
losses in terms of data integrity [44]. Hence, an appropriate trade-off in the way
aggregation is achieved is needed.

Summarizing, the main advantages of using data aggregation over wireless sen-
sor networks are (see Table 1):

• Reduction in energy consumption and consequent increase in network lifetime.
• Decrease in the overhead of redundant packets traveling throughout the network,

thus avoiding unnecessary storage and processing.
• Reduction of the overall network load thus giving rise to a mitigation of conges-

tion effects on highly loaded nodes in the network.
• Smart filtering of data sent to the sink(s) and delivered to the control center.

On the other hand, data aggregation also faces some critical aspects, among
which the following ones can be highlighted:

• Increase in data latency and need for strict synchronization between an aggre-
gator node and its neighborhoods, which could become critical in case of delay
sensitive applications.

• Accuracy and data integrity reduction due to inappropriate aggregation; in this
sense, without proper preservation criteria, the data finally delivered to the desti-
nation could be unreliable and useless, due to the increasing level of distortion.

• Need to consider the impact of duplicates in case of use of more complex aggre-
gation metrics; this requires distinguishing between aggregation metrics that are
sensitive to duplicates and those which are not.

• Need of appropriate coding because of the additional processing required by sen-
sor devices.

Table 1 Advantages and disadvantages of using data aggregation

Advantages Disadvantages

Reduction in energy consumption Increase in data latency and need for
synchronization

Decrease in the overhead of redundant packets Possible loss of accuracy and integrity of data
Mitigation of congestion effects Need for minimization of the duplicates

impact
Smart filtering of data Need for appropriate coding

1.1 Terminology

Data aggregation is the process through which a combination of the messages
traveling into the network is used to represent all the information which was
originally conveyed by the initial packets. This methodology brings about several
improvements for the operation of the WSN, especially in terms of energy and
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bandwidth saving. Due to the typical characteristics of data aggregation which
requires that intermediate nodes perform aggregation of the en-route packets travel-
ing towards the sink, aggregation is often referred as in-network aggregation [10].

With respect to data aggregation, WSNs offer an ideal scenario because of data-
centricity, i.e., the focus on the information itself received by the sink, and not on
the messages traveling the network themselves or the nodes which emit them.

Different aspects should be addressed in the data aggregation process: querying
from remote users, collection of nodes measurements, their combination and con-
catenation, compression and mining at the final destination. Accordingly, different
terms and associated functionalities can be discussed (see Fig. 1):

• Data fusion
• Data querying
• Data gathering
• Data concatenation
• Data compression
• Data mining

The term data fusion refers to the combination of different pieces of data into a
single one; one can imagine, e.g., a use case in which the interest is in monitoring
the minimum temperature within a room; in this case, the fusion would be as easy as
taking the minimum value from all the received messages and forwarding a unique
packet. Usually in the literature data fusion is distinguished from data aggregation
in that in the former the focus is mostly on information extraction, while in the latter
the main focus is on data manipulation. This implies that data aggregation can be
seen as a process included in data fusion.

In order to implement a data aggregation procedure, a database representation
is usually employed. The collection of sensing devices is thus seen as a complete
database, on which traditional management operations are carried out. The most
relevant one is data-querying, where data is requested from the network (either
fulfilling any particular criteria or not). In this sense, it is quite likely the use of
SQL-type semantics when describing the required data aggregation operations.

mining

querying

fusion

aggregation

concatenationgathering
compression

Fig. 1 Relationship among the data aggregation terminology
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Data gathering refers to the process of sending and collecting the various sen-
sor nodes measurements at the sink. Consequently the term gathering mostly refers
to the methodology of collection, thus encompassing routing aspects rather than
focusing on the process of information elaboration itself.

Data concatenation refers to elaboration of single messages into a bigger one
(provided that the maximum transfer units of the underlying protocol stack are
compatible with it). This implies reducing the number of packets to be processed,
the energy consumption as well as other side-effects (e.g., the possibility of having
collisions).

Data compression, refers to the use of compression techniques to reduce the
amount of bytes required to code the different pieces of information and, thus,
the traffic load which needs to be processed within the network. An an example,
Slepian-Wolf coding [48] is a promising distributed source coding technique that
can completely remove the data redundancy caused by spatially-correlated observa-
tions. This technique is based on the assumption that each sensor node has an a priori
knowledge of the correlation structure, which depends on the distances between
sensor nodes and the characteristics of the observed phenomenon.

Finally, at the sink, data mining refers to the process of selecting useful informa-
tion from the huge amount of data collected in a sensor network and processing and
filtering them.

It is worth highlighting that the use of any of the aforementioned mechanisms is
not exclusive and a combination of them might be used; in fact, they are normally
employed together, as parts of the same overall process which, in the rest of this
chapter, will be denoted as data aggregation.

1.2 Typologies of Data Aggregation

The performance of the data aggregation procedures depends on the way the data
collected by sensor nodes are worked out and propagated to the sink. To this purpose
we can distinguish between a data aggregation process which reduces the amount
of information propagated throughout the network or not. More specifically, when
aggregation is performed by some intermediate nodes, the aggregators can

• Combine and compress the data packets by preserving their payloads. This
means that there is only a reduction in the header size while the two payloads
are merged together. As an example let us suppose that node 1 sends a tem-
perature measurement, let’s say T1, to the sink, and node 2 sends measurement
T2. Accordingly node 3, being an aggregator, will emit a data packet with the
payload containing T1 + T2. This kind of aggregation is referred to as lossless
aggregation since it does not result in any loss of information. This approach
results particularly useful when the data readings are small in size as compared
to the maximum allowed data packet size, and thus aggregation can be efficiently
performed by merging more packets. Observe that this approach is appropriate
when sensor readings related to different types of measurements are received. As
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an example, if node 1 sends a temperature measurement to the sink, and node 2
sends a pollution measurement, data cannot be merged but can be inserted in a
unique packet.

• Combine and compress the data packets by fusing their payloads. In this case,
both the overhead and the payload of the packet are reduced by putting and
compressing together their contents. As an example let us suppose that node 1
sends a temperature measurement, let’s say T1 to the sink, and node 2 sends mea-
surement T2. Accordingly node 3, being an aggregator, will emit a data packet
with the payload containing the “fused” T1 and T2 measurements. The result of
the “fusion” process depends on the aggregation function being chosen. As an
example, if the aggregation function is average, the average of the two measure-
ments is computed and sent. When considering this kind of aggregation, it is
evident that a lossy process happened since the initial values cannot be recovered
at the sink. However, in the majority of the sensor network applications, knowing
the aggregate at the sink is more than sufficient to keep an updated vision of
the network status. This approach is useful in case of homogeneity in the data
received by the aggregator node.

The performance of the aggregation process is also strictly related to the aggrega-
tion rate, i.e., the number of packets being aggregated per time unit. To this purpose,
different categories can be distinguished as in [49, 10]:

• Periodic simple aggregation, when an aggregator node collects all the received
readings for a fixed amount of time and then puts together the received data with-
out any consideration of any time constraints. This approach, although simple,
can be not very efficient when only few not significant packets are received by the
aggregator which is then forced to send a packet, even when it is not necessary.

• Periodic per-hop aggregation, when a collection tree is considered and an aggre-
gator node issues the aggregate only when it has received a packet from all its
children. Again this approach is very simple, but can lead to inefficient waiting
times when some nodes are less active than others and send data quite rarely.

• Periodic per-hop adjusted aggregation, when a more adaptive tuning of the fre-
quency at which the aggregator nodes issue the aggregate packet is obtained by
adjusting a time out based on the position of the node along the collection tree.

Finally, the performance of the aggregation also depends on the type of aggrega-
tion function being used. The classification proposed in [31] is concerned with the
way the aggregation threats the measurements received to produce an aggregated
data having the value of representative sample. The properties considered for the
classification of the aggregates are:

• Duplicate sensitive where the sensitivity of the aggregates to duplicate readings
being received is considered.

• Exemplary where a representative value over the set of all values is generated but
is unpredictable, thus not giving any guarantees on the reliability of the value.
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• Summary where a representative value is estimated over all values thus giving a
more reliable estimate that derives from considering a more stable value whose
contribution is estimated over all values.

• Monotonic where two partial state records are such that the aggregate is always
higher or lower than the partial state values used for estimating it.

Table 2 Classes of aggregates defined in [31]

Duplicate sensitive Exemplary (E), Summary (S) Monotonic Partial state

Max, Min No E Yes Distributive
Count, Sum Yes S Yes Distributive
Average Yes S No Algebraic
Median Yes E No Holistic
Count Distinct No S Yes Unique
Histogram Yes S No Content-sensitive

In Table 2, the partial state of the aggregates can be in one of the following states:

• Distributive where the partial state records represent the aggregate for the parti-
tion of data where they are computed. Accordingly, the size of the partial state
records is the same as for the final aggregate.

• Algebraic where the partial state records are of constant size and are not them-
selves aggregates for the partitions.

• Holistic where the partial state records are proportional to the size of the set of
data in the partition.

• Unique that are similar to holistic aggregates with the exception that the amount
of state that must be propagated is proportional to the number of distinct values
in the partition.

• Content sensitive where the partial state records are proportional in size to some
(perhaps statistical) property of the data values in the partition.

2 Perspectives for a Taxonomy of Data Aggregation

Several chapters have proposed different approaches to taxonomy of data aggrega-
tion techniques, some of them providing comprehensive summaries and compar-
isons of existing data aggregation solutions. In general it is not possible to identify a
comprehensive and complete classification but different schemes can be envisaged.
The possible perspectives are the following ones:

1. Layer-centric taxonomy, where a classification of the aggregation techniques is
considered in accordance to the specific layer of the protocol architecture of the
WSN which the technique impacts.

2. Ingredient-centric taxonomy, where the key elements of a data aggregation pro-
cedure, referred to as ingredients, i.e., the networking protocols, the aggregation
functions and the data representation [10], are considered.
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3. Performance-centric taxonomy, where the impact of the data aggregation solu-
tions on performance metrics like latency, accuracy, energy, fault tolerance and
security [2] is taken into account.

4. Information-centric taxonomy, where the solutions proposed in the literature are
considered in the perspective of their fitting into the dimensions of the informa-
tion processing performed during data aggregation, i.e., description of informa-
tion, propagation of information and preservation of information, as shown in
Fig. 2.

Description

Information

Preservation

Propagation

Fig. 2 Information processing dimensions being related to data aggregation

In the following sections we will discuss the different classifications and under-
stand the reasoning behind each of them. In doing this, we will privilege the
information-centric taxonomy since it allows to embrace different aspects which are
disregarded by other taxonomies. However, in an attempt of clarity, at the end of this
chapter, Table 3 summarizes how several proposed solutions for data aggregation
can be classified with respect to different taxonomies.

3 Layer-Centric Taxonomy

Although data aggregation is a complex procedure requiring a joint action per-
formed across different layers of the network architecture, a first classification of the
aggregation techniques can be made from a layered perspective. More specifically,
aggregation techniques can be distinguished on the basis of the specific architec-
tural layer mainly involved. As a consequence, we can distinguish an aggregation
approach operating at the link layer from a protocol operating at network or higher
layers. This classification may facilitate the understanding of the main building
blocks needed to perform the aggregation at each layer and, on the other hand, may
highlight the need for cross layer interactions.

When considering aggregation solutions proposed in the literature, we can mainly
distinguish between approaches specifically working at the link layer and solutions
involving a network layer action. Together with this, few solutions implying an
action performed at the application layer have also appeared.
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When performing data aggregation at the link layer, solutions proposed in the lit-
erature are typically based on aggregating data packets at the link level by reducing
the number of contending nodes, taking into account possible data correlation, and
allowing only to a node to send data packets at each time on behalf of other nodes.
This has been proposed for example in [50].

When performing aggregation at the network layer, the focus is usually on aggre-
gator nodes positioning and appropriate design of routing protocols which allow to
force traffic to go through aggregator nodes distributed throughout the network.

Finally, when considering the application layer, techniques are usually related to
use of appropriate semantics to code the data emitted by sensor nodes while also
considering the possibility to exploit spatial and temporal data correlation.

4 Ingredient-Centric Taxonomy

A different perspective in classifying the aggregation techniques is the one proposed
in [10]. In this chapter three basic ingredients of the data aggregation are discussed,
i.e., routing protocols, aggregation functions and representation of data, which cor-
respond to the different phases in the design of the aggregation process.

Concerning the first aspect, i.e., the routing protocols, it represents the basic
ingredient for data propagation into the network. To this purpose, the most appro-
priate path to aggregate data in the most efficient way using the highest number of
data packets should be designed. However, optimal aggregator nodes placement is
still an open problem since algorithms for aggregation tree construction are NP hard
and, thus, heuristic solutions are typically considered. Also, there is need for more
appropriate routing protocols, different from those used in classic ad hoc networks
which do not rely on identification of the shortest path connecting source and desti-
nation so as to minimize delivery delay, but, instead, can be opportunistically tuned
to collect the highest possible number of correlated data packets. This is mainly
related to the data-centric paradigm employed in sensor networks.

Accordingly, when focusing on routing, mainly three routing approaches can be
considered:

• Tree-based approaches where a classic tree scheme rooted at the sink is built
usually following a shortest path methodology.

• Cluster-based approaches that are a traditional alternative to tree-based schemes
and have been proposed for reducing energy consumption in sensor networks.

• Multipath approaches which are a more reliable and robust alternative to both
cluster and tree-based approaches. In this case, data are propagated to the sink(s)
through multiple paths, thus avoiding to have a unique failure point and increas-
ing the chance to have at least one copy of the packet delivered to the sink.

Once the choice on the networking paradigm to be used has been done, the next
step is choosing the aggregation function. With respect to this, the choice is mostly
related to the applications running into the network. In fact, if different choices
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are available, e.g. average, max/min, standard deviation, sum, count, histogram,
etc., the choice of one aggregation function rather than another makes sense only
if the application is known. As an example, let us consider an application aiming at
identifying possible fires in a forest. If the sink sends requests about environmental
temperature measurements to the sensor nodes, providing average values does not
give any significant insight into occurrence of a fire in a specific area.

A third fundamental ingredient for the data aggregation is data representation,
i.e., how to represent the data at the final destination maintaining a suitable insight
into the original data itself. This aspect, as stressed by [10], mainly depends on
the applications. In some cases it may be fundamental to have insight on the exact
location from where a fraction of the aggregated data comes from, as well as on
the time instant such part of data has been captured and processed. Spatial, tempo-
ral and semantic correlation of the readings may be captured by sophisticated data
aggregation protocols.

5 Performance-Centric Taxonomy

An alternative classification of the data aggregation algorithms is proposed in [2].
Here the authors mainly discuss how the aggregation protocols can impact on net-
work performance. In fact, as already discussed, data aggregation protocols can have
significant advantages and drawbacks and strongly impact on network performance.
The following performance metrics are considered:

• Energy efficiency: reducing energy consumption is a primary target in sensor
networks. This is because such a reduction can lead to an increase in network
lifetime. Accordingly, data aggregation can help to reduce the amount of redun-
dancy traveling into the network. To this purpose one of the main concerns is
about how to build the delivery trees to the sink while increasing the chances
to efficiently aggregate at some network nodes. Innovative solutions address-
ing the use of more sophisticated sensors to be placed in appropriate locations
could be considered. In this way simple wireless sensors will be leveraged from
more complex processing. However, attention should be paid to the increase in
energy consumption at aggregator nodes which could cause a decrease in their
lifetime.

• Latency: performing aggregation implies introducing some processing and con-
sequent latency in network delivery. A trade-off between energy and delay is
to be identified. In fact, on the one hand, an increase in the number of nodes
where packets are aggregated leads to a reduction in the global amount of energy
depleted to relay packets but, on the other hand, this would imply waiting longer
at the aggregation points and delaying the final delivery, so causing decrease in
data “freshness”. Observe that minimization of network delay is tightly related
to the choice in the aggregation function. In fact, the higher the complexity in
the aggregation function, the longer the time needed to process the data at each
step.



114 S. Palazzo et al.

• Accuracy: when considering accuracy as an indicator of the number of nodes
who contributed to a specific measurement delivered to the sink, it is evident
that, the higher is the number of nodes, the higher is the delay incurred by the
delivered packet to wait for the collection of the contributions of neighbor nodes
at an aggregator. Consequently, choice of the most appropriate number of nodes
contributing to an aggregate packet can impact on delay and energy consumption
performance. Another aspect related to the accuracy in the delivered information
is the number of data packets fused together which cannot be compressed without
any limitation because of information reconstruction problems and possible loss
of information.

• Fault tolerance: due to the intrinsic features of wireless communications such
as collisions, channel time variability, channel quality degradation and asymme-
tries, transmission of data in this scenario can incur into errors. Also, use of
single path approaches leads to the possibility to loose data when either nodes’
failures, misfunctioning or propagation errors are met. Conversely, reliability can
be improved by means of multipath topologies which, however, would cause
increase in energy consumption and possibility to count more than once the same
sensor reading. This can become critical depending on the kind of aggregation
function being considered.

• Security: one of the most critical aspects when performing aggregation is related
to the resilience to different security attacks, the most simple of which is misbe-
havior of aggregators. In fact, aggregators can send compromised data towards
the sink. To cope with this problem, traditional authentication mechanisms can be
proposed as well as techniques to aggregate encrypted data without decryption.
This however implies that complex procedures should be managed by limited
sensor nodes.

In addition to the performance metrics identified in [2], another key parameter
to be taken into account in the performance evaluation is the network load. A good
aggregation solution should in general reduce the network load and mitigate the
effects of overload that can arise in correspondence to specific network nodes as the
ones close to the sink (funneling effect). To this aim, in [9] the normalized number
of transmissions is used as the metric to compare different protocols. A normalized
number of transmissions represents how effective a protocol is in aggregating pack-
ets and in [9] is defined as the number of transmissions in the network divided by
the number of contributing sources. The number of contributing sources represents
the real number of pieces of information that are generated by all sources in the
network and arrive at the sink.

6 Information-Centric Taxonomy

An information-centric classification of the data aggregation algorithms can also be
proposed. To this purpose, different aspects can be considered:
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• Description of information.
• Propagation of information.
• Preservation of information.

Usually, in the data aggregation literature the above mentioned aspects are sepa-
rately addressed meaning that no overall solutions addressing the various aspects of
a data aggregation information-centric paradigm have been proposed.

When focusing on information description we usually refer to the way sensor
readings, once collected by wireless sensor devices, are processed and formalized
in order to be sent to the sink. Along the path(s) this data will require to be re-
elaborated, modified and processed in the aim of fusing the data at some inter-
mediate aggregators. Information description in wireless sensor networks typically
embraces problems of query processing, data storage, data filtering and mining.

Once the sensor readings have been described, they should be propagated up
to the sink(s). Information propagation can be successful, provided that solutions
of medium access and networking problems are addressed. This implies that also
aspects related to packet scheduling and propagation tree construction are consid-
ered as well as wireless resource sharing, cluster identification or multipath set up
in the aim of increasing robustness and reliability. The above topics could be con-
sidered both under a theoretical and an algorithmic perspective.

Finally, when the aggregated data are received by the sink(s), attention should be
paid to the fidelity of the collected information. In the aim of information preser-
vation, data should be aggregated with the aim of reducing the distortion rate while
maximizing the amount of aggregated information delivered to the sink(s). Also,
considerations on security level aspects should be done. In fact, as discussed above,
aggregation is a process which incorporates data manipulation and, thus, is more
prone to security and/or privacy violations. Accordingly, security solutions for data
preservation should be proposed.

It is evident that the above taxonomy calls for the identification of a trade-off
between contrasting targets. For example, it is intuitive that, if the information has
to be accurately described, i.e., a significant amount of data has to be transmitted,
then propagation might suffer. Similarly, to preserve information, redundancy has
to be added, thus decreasing data propagation efficiency.

In the next sections we will recall protocols and solutions for data aggregation
in accordance to the information-centric classification. This choice is motivated by
the fact that, although the other three paradigms allow to capture interesting per-
spectives of the data aggregation process, the information-centric paradigm better
encompasses the key information processing aspects determined by the overall data
aggregation procedure. The information-centric classification in fact, on the one
hand, allows a detailed understanding of the impact of the data aggregation process
on the information in terms of relevant description, propagation and preservation;
on the other hand, it captures the main functional elements and protocols in the view
of understanding the implementation issues behind each solution and the impact on
performance.
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On the contrary

1. the tentative to associate a data aggregation process to a specific layer of the pro-
tocol stack may result an enforcement, especially in a WSN context, where cross-
layer solutions are typically established; as a consequence the layered paradigm
may not represent comprehensively the main solutions present in the literature;

2. the classification of data aggregation techniques in accordance with the func-
tional paradigm may not capture some aspects related to (i) layers (e.g., some
schemes that mainly operate at the link level are not considered in the functional
paradigm presented in [10]); (ii) some application requirements in capturing the
information (e.g., related to the semantic that can be associated to the sensor
readings);

3. the performance-driven perspective gives a detailed insight into the behavior of
aggregation procedures but does not allow a detailed view of the aspects related
to the algorithms and protocols used to implement such procedures and how they
fit into an architectural perspective.

Observe that the information-centric classification allows to embrace many aspects
not considered by the other data aggregation paradigms. However, the latter can be
superimposed in the sense that the majority of the literature solutions discussed
in the following can be classified according to all the different paradigms. To this
purpose, at the end of the chapter, Table 3 shows how the discussed data aggregation
solutions fit into the different aggregation paradigms.

6.1 Description of Information

In order to properly design the data aggregation process, the semantics needed to
correctly disseminate queries and collect and fuse sensor data should be specified.
With respect to this, only recently some effort has been devoted to these issues.
Chronologically, the first work where aggregation has been discussed in the view of
a wireless sensor network encompassing also semantic aspects is [23]. In directed
diffusion data generated by sensors are named as an attribute-value pair. Interests are
disseminated by a user via the sink node and employed to request specific data from
sensor nodes. Intermediate nodes along the path towards the sink(s) are expected to
aggregate the data. However, in [23], aggregation is considered as an application-
related operation which is assumed to be coded in low level languages like C, thus
implying severe requirements on the user programming competencies. An example
of an interest being disseminated in the directed diffusion paradigm is shown in
Fig. 2 in case of vehicle tracking application.1

Data descriptors too are in a similar form. An effort in the direction of a simplifi-
cation in the semantics used by the user to notify queries is presented in [53]. In this
work a semantic stream framework is proposed, which allows users to diffuse some

1 The pseudo-code is taken from [23].
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T Y P E = wheeled vehicle detecting vehicle location;
I N T E RV AL = 10ms notify events every 10 ms;
DU R AT I O N = 60s overall duration of the monitoring;
RECT = [−200, 200, 100, 350] area where sensors are selected for performing the task;

Fig. 3 Directed diffusion interest

queries from the network in the form of declarative statements. Also constraints
on the quality of the measurements, i.e., confidence intervals, can be supported.
However, this framework does not support the possibility to perform aggregates
into the network.

To cope with complexity problems arising in directed diffusion, a simpler frame-
work where consideration of the semantics behind an aggregation process is pre-
sented in [31]. Aggregation is regarded as a core service to be provided through
system software. In this perspective the authors propose to use high-level program-
ming abstraction to let users request data from the sensor network without taking
into consideration any programming problem and without any correlation to rout-
ing functionalities. To this purpose, the Tiny Aggregation (TAG) Service for sensor
networks has been introduced. In [31] TAG provides an interface for data collection
and aggregation, driven by selection and aggregation facilities in database query
languages. Moreover, TAG allows to evenly distribute the aggregation procedures
among network nodes, thus also reducing energy consumption. Moreover, TAG is
conceived as independent from both the routing details and the programming pro-
cedures. The SQL-like syntax on a single table identified with the one owned by
each sensor node is inspired by TinyDB [33], which is a query processor for sensor
networks. Queries are in the form of the pseudo-code of Fig. 4.

SE L ECT {agg(expr ), attrs} F RO M sensors;
W H E RE {sel Preds};
G ROU P BY {attrs};
H AV I N G {having Preds};
E P OC H DU R AT I O N i ;

Fig. 4 Generic TAG query2

As in the SQL language, in Fig. 4 the SELECT clause is used to specify the
expression (i.e., expr) by which sensor readings are selected. The parameter attrs
specifies the attributes by which sensors are partitioned; agg is the aggregate func-
tion being considered among those discussed in Sect. 1.2. The WHERE clause is
used to filter specific sensor readings based on location criteria. The GROUP BY
clause specifies a partition of the sensor readings chosen according to the attrs

2 The pseudo-code is taken from [31].
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attributes. The HAVING clause filters some groups which do not satisfy specific
predicates (i.e., havingPreds). The EPOCH DURATION clause specifies when the
updates should be delivered.

As an example, a query iterated for 3 min requesting average sensor temperature
measurements on the rooms located on the fourth floor of a hotel and exceeding
27◦C temperature could be in the form shown in Fig. 5.

SE L ECT {AV G(temperature), room} F RO M sensors;
W H E RE f loor = 4;
G ROU P BY room;
H AV I N G AV G(temperature) > 27C ;
E P OC H DU R AT I O N 180s;

Fig. 5 Example of a TAG query about temperature measurements

Basically, only few differences between TAG and SQL queries exist. The output
of TAG queries is a stream of values and not a single value, since sometimes in
monitoring applications it is preferred to have more data than a single value which
better characterize network behavior. The Aggregation, i.e., the agg function, is
here performed using three functions: a merging function f , an initializer i and
an evaluator function e. f has the structure < z >= f (< x >,< y >) where
< x > and < y > are partial state records that register intermediate computation
states at certain sensors which will be required to compute the aggregate; < z >

is a partial state obtained by applying f to < x > and < y >. The initializer i
is needed to say how to instantiate a state record for a sensor value; the evaluator
e instead takes a partial state record and estimates the aggregate. TAG queries can
be characterized through attributes, where each node is provided with a catalog of
attributes. Attributes represent sensor monitored values, such as acoustic volume,
temperature, or sensor parameters such as the residual energy. When a TAG sensor
receives a query, named fields are changed into local catalog identifiers. If a node
does not know the attribute it labels this attribute in its query as NULL.

TAG aggregation is performed in two steps: in the first one, called distribution
phase, aggregation queries are inserted throughout the network. In the second phase,
called collection phase, aggregated values are routed into the network.

The main advantages of TAG are: decrease in communication overhead with
respect to a centralized aggregation approach and reduction in the number of mes-
sages transmitted by a node during each epoch, independently of its depth in the
tree. This allows to save energy resources at nodes closer to the sink.

It is worth mentioning that also the Cougar project [4] discusses the definition
of a sensor database system and illustrates some details about the system developed
within the project itself. However, aggregation is not considered in this scenario and
each sensor is modeled as an abstract data type.

Taking as inspiration the TAG approach, in TiNA [45] temporal correlation is
considered so that energy consumption can be reduced while also preserving the
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quality of data by suppressing sending readings which do not differ much from the
recent ones previously sent by a sensor node.

To this purpose, each query contains an additional field denoted as VALUES
WITHIN tct which is used to let the user specify the temporal coherence tolerance
for the specific reading. As an example, if the VALUES WITHIN tct field is set to
0.2, it means that a sensor node will report back to the user only readings which
differ more than 20% from the previous ones.

As an evolution of the semantic approach proposed in [31], a new Semantic
Sensor data fusion is presented in [21]. In this work the synthesis between the use
of the MicroToPSS middleware constrained by some knowledge on the applica-
tion expressed through an appropriate application ontology is discussed. The focus
is here on a methodology for processing and providing low-level sensor data to
high-level applications. Accordingly, low-level data should be appropriately filtered,
aggregated and correlated from heterogeneous and various sensor network sources.
The final target would be to allow applications to exploit sensor data while disre-
garding low-level languages and interfaces. Accordingly, applications will express
their interest in semantic events that are transformed into sensor network level
events. The employed middleware, denoted as MicroToPSS, allows management
of data flows to support specifically distributed automation applications. The most
interesting aspects of this middleware are the use of an SQL-like language, the
abstraction of tasks which results similar to object oriented abstraction, and the
distributed run-time data flow optimizer which works transparently from the appli-
cation.

A system for semantic data fusion in sensor networks based on MicroToPSS is
proposed in [54]. In this chapter the authors propose to use a content-based pub-
lish/subscribe (CPS) technique [3] to relate application scenarios to semantic data
fusion of low-level sensors data. Their approach takes inspiration from the Micro-
ToPSS middleware and defines semantic level events independently of the sensor
interfaces and applications. The CPS is a messaging model where notifications are
delivered to nodes based on their interests. Different roles are distinguished in CPS:
subscribers, publishers and brokers. Subscribers emit subscriptions, that are filter-
ing constraints on t-uples, which describe the kind of data they are interested in.
These subscriptions are stored by brokers. Publishers issue publications, that are
sets of attribute-based t-uples, to brokers who take care of forwarding publications
to subscribers based on the received notifications. To overcome the limitations of
CPS which is based on a strict and rigorous syntax, a semantic evolution of the CPS
is implemented. The complete scheme of the data flow in the system from sensors
to applications is shown in Fig. 6.3

Each sensor node runs a Micro-ToPSS middleware used to perform data aggre-
gation by acting at the sensor level. Sensor Gateways and CPS clients are used to
provide a bridge between the sensor network and the application domain. Sensor
data are sent to CPS clients and are then re-emitted as publications and issued to

3 The figure is taken from [54].
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Fig. 6 Data flow in the Micro-ToPSS based system from sensors to application

the CPS broker. The broker then takes care of translating sensor data in high level
semantic information through the use of ontologies as defined in [54]. Raw sensor
data can be translated into semantic publications by exploiting the semantic engine
in the brokers. An example of untranslated raw data issued by a sensor could be
(temperature, 300K). This raw data reading can be translated into a semantic pub-
lication in the form (weather, hot). Also aggregated translations are considered. As
an example two readings (temperature1, 300K) and (temperature2, 400K) lead to
an aggregated estimate (temperature, 350K) and a semantic publication in the form
(weather, very hot).

6.2 Information Propagation

The information propagation of aggregated data requires the availability of nodes to
process, transmit and route packets towards the sink(s). Different aspects should be
taken into account and can be combined to suitably aggregate data in the propagation
phase. These aspects are:

1. The way the medium access is managed.
2. The way packets are scheduled.
3. The way propagation path are selected.

Suitable combinations of these aspects lead to efficient data aggregation mecha-
nisms.

6.2.1 Medium Access Management

Authors of [9] highlight that efficient aggregation requires packets to converge both
spatially and temporally, i.e., packets to meet at the same node (spatial convergence)
and at the same time instant (temporal convergence). For spatial convergence, an
anycast-based approach called Data-Aware Anycast (DAA) has been proposed in
[9]. The DAA approach uses anycast at the MAC layer for determining the next-hop
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node at each transmission. Anycasting employs RTS packets to stimulate CTS
responses from neighbors before packet transmission. An Aggregation ID (AID)
is used to associate two packets to be aggregated. This AID of the transmitting
packet is inserted within the RTS and any neighbor that has a packet with the
same AID can respond with a CTS. However, in the DAA approach packets may
not get aggregated if they are spatially separated (more than one hop). For such
a case, authors study a temporal convergence technique to improve performance.
Authors notice that deterministically assigning the waiting time to nodes such that
nodes closer to the sink wait longer before transmission, can avoid the problem of
interference and increase the chance of aggregation. However this results in a fixed
delay for all packets wherever the packets are generated, either close to or far away
from the sink, and the delay incurred by the waiting time is proportional to the size
of the network, which could turn into a disadvantage for large sensor networks.
Therefore, in order to introduce artificial delays and increase temporal convergence
Randomized Waiting (RW) is proposed to be used at the source for each data packet.
Each node when generating a new packet to transmit, delays it by an interval chosen
from 0 to τ , where τ is the maximum delay. The combination of DAA with RW has
shown to improve the normalized load as much as 73% while RW can significantly
reduce the normalized overhead in terms of number of transmissions.

Differently from [9], in [50] in order to increase network performance, spa-
tial correlation is exploited to set up an aggregation-like mechanism working on
medium access control. The authors propose to exploit spatial correlation so as to
decrease the number of transmitted packets using regulation of medium access. To
this purpose, they develop an analytical framework to estimate the distortion suf-
fered at the sink, depending on the number of sensor nodes collecting information
and their correlation parameters. Then, they apply this methodology to the defini-
tion of a MAC scheme which limits the amount of redundant information traveling
throughout the network. This MAC protocol, denoted as CC-MAC, consists of two
components: the Event MAC (E-MAC), which is in charge of filtering correlated
components, and the Network MAC (N-MAC), which manages high priority given to
route-thru packets (i.e., packets that are not newly generated but are crossing router
nodes). The basic functioning of E-MAC and N-MAC is similar to CSMA/CA, but
some modifications are introduced. In E-MAC correlated information regions are
identified where a representative sensor node transmits data for a certain time while
other nodes remain silent. After each transmission a new representative is chosen
as shown in Fig. 7.4 Nodes, upon hearing the representative transmission, do not
transmit if they belong to the same correlation area; hence, redundancy is avoided
and thus overhead reduced. The N-MAC, instead, takes care of prioritizing route-
thru packets with respect to those generated by other concurrent events in other
correlation areas traversed during propagation into the network. Priority is managed
using an IEEE 802.11 PCF like mechanism. Results show the good performance

4 Figure taken from [50].
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Fig. 7 E-MAC and N-MAC

achieved by CC-MAC in terms of increase in energy efficiency, reduction in packet
drop rate and latency.

6.2.2 Packet Scheduling

The way packet transmissions are scheduled also plays an important role when con-
sidered jointly with data aggregation. In [39] an application-aware data aggregation
(AADA) scheme, which adaptively applies different aggregation policies, depend-
ing on the type of packets (i.e., real-time (RT) and non real-time (NRT)), is pro-
posed. Specifically, on the one hand, NRT packets wait at a queue until the number
of accumulated packets is equal to the maximum aggregation limit; on the other
hand, RT packets, which are sensitive to the aggregation latency, are transmitted
as soon as possible, without waiting at the queue. The AADA scheme consists of
three modules: queueing, aggregation, and transmission. In the queueing module, a
FIFO queue with a size of D packets is considered. The RT packets are delivered
to the aggregation module without any queueing. NRT packets, instead, are first
queued in the queueing module and then accumulated in the aggregation queue and
flushed when the FIFO queue is full or a RT packet arrives. At the data aggregation
module, RT and NRT packets can be aggregated into a single packet. The number
of the aggregated packets depends on how soon an RT packet arrives. Namely, an
aggregation packet is composed of zero or one arrived RT packet and zero or mul-
tiple NRT packets that have been accumulated in the aggregation queue. In [39]
an analytical model to evaluate the AADA scheme in terms of the average aggre-
gation degree and aggregation latency is proposed. The numerical results show the
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significant energy saving gain, the effects of the arrival rate of RT packets, and the
impact of the choice of the aggregation threshold. Due to its simplicity, requiring a
simple queueing scheme, the AADA protocol can be easily implemented in resource
constrained wireless sensor nodes.

In [18], the authors propose an adaptive application-independent data aggrega-
tion (AIDA) paradigm where aggregation decisions are made in accordance with an
adaptive feedback-based packet-scheduling scheme that dynamically controls the
degree of aggregation in accordance with time-varying conditions.

The main idea is to have an aggregation module that resides between the data-link
and the network layer which aggregates packets through network unit concatenation.
The aggregation component combines network units into a single AIDA payload to
reduce the overhead incurred during channel contention and acknowledgment. The
use of a separate aggregation layer allows to isolate aggregation decisions from
application specifics. This component is generalized enough to be utilized over a
wide range of applications without incurring the costs of rewriting components to
support application-specific logic. AIDA takes the timely delivery of messages as
well as the protocol overhead into account to adaptively adjust aggregation strategies
in accordance with assessed traffic conditions and expected sensor network require-
ments. Simulation results show that AIDA can adapt to varying traffic situations
and reduce network congestion and transmission energy consumption. AIDA per-
forms lossless aggregation allowing the upper layer to decide whether information
compression is appropriate at the time. Finally, the proposed design enables AIDA
to remain complementary to other data aggregation strategies while providing sig-
nificant time saving benefits in the lower layers of the communication stack. In
[18] an extensive simulation analysis is provided which shows benefits of AIDA
in terms of reduction of end-to-end transmission delay under heavy traffic loads
and reduction in transmission energy consumption. A physical implementation of
AIDA on the Berkeley testbed provides initial evidence of the savings obtainable by
an application-independent aggregation scheme.

6.2.3 Propagation Path Structure

When dealing with information propagation emphasis should be also given to
the path structure used to convey data towards the sink. Data aggregation tech-
niques are typically implemented by using hierarchical structures. Traditionally, two
approaches have been considered: tree-based and cluster-based. However, for some
specific applications, it may be better to implement techniques and protocols which
do not require an explicit maintenance of a structure, thus leading to efficient data
aggregation. These techniques are usually referred to as hybrid-based approaches
(or structure-free). Also, in order to improve reliability, multi-path solutions are
explored.

Tree-Based Approaches

Tree-based protocols are usually built exploiting traditional shortest path routing
trees. The research is focused on how to choose a good routing metric to build the
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trees based on attributes to facilitate data aggregation. Based on directed diffusion,
the authors in [22] propose the Greedy Incremental Tree (GIT) algorithm. GIT
establishes an energy-efficient path and greedily attaches other sources to the estab-
lished path.

In [28] tree based data-centric routing is modeled and its performance is com-
pared with traditional end-to-end routing schemes. With a data-centric protocol, the
sources send data to the sink(s), but routing nodes can inspect the content of the
data, performing aggregation on multiple input packets. Simple aggregation func-
tions (such as duplicate suppression, min, max, etc.) are considered, and multiple
input packets can be aggregated into a single output packet. The impact of source-
destination placement and network density are analyzed with respect to energy costs
and delay associated with data aggregation. Moreover, since the problem of build-
ing an optimal data aggregation tree is generally NP-hard, some suboptimal data
aggregation tree generation heuristics are presented, discussing the existence of par-
ticular polynomial cases. The proposed modeling shows that whether the sources
are clustered close to each other or randomly located, significant energy gains are
possible by using data aggregation. This gain increases when the number of sources
is large, when they are located relatively close to each other and far from the sink(s).
However, the modeling suggests that aggregation latency could be not negligible
and should be taken into consideration during the entire design process. In [28]
three data-centric routing schemes, denoted as Center at Nearest Source (CNS),
Shortest Path Tree (SPT) and a new data-centric version of Greedy Incremental
Tree (GITDC) are compared to illustrate the advantage of data aggregation for
energy saving. The authors observe that GITDC performs better in terms of average
number of transmissions. In [8] a shortest path tree with parent energy-awareness
is proposed. Here the neighbor node having the shortest distance from the sink(s)
and highest residual energy is chosen as parent. One of the drawbacks of the above
tree-based data aggregation protocols is the need to exchange a lot of signalling
in order to build and maintain the tree structure. Also, another serious drawback,
common to the tree structures, is the lack of network connectivity brought about
by the failure of some branches of the tree. This aspect becomes critical in case of
unreliable networks where cluster or hybrid approaches are thus preferred.

Most of these tree-based aggregation routing protocols are not designed for event
tracking applications. GIT can be used in such a scenario, but it suffers from the cost
of pruning branches, which might lead to high cost in moving event scenarios. In
[56] the Dynamic Convoy Tree-Based Collaboration (DCTC) is proposed. Essen-
tially, DCTC tries to balance the tree in the monitoring region to reduce energy
consumption; however it assumes knowledge of distances from the center of the
event to the sensor nodes, which may not be a sensible assumption in all tracking
applications. In addition, DCTC incurs in heavy message exchanges, which is not
desired when the data rate is high, and furthermore, its performance highly depends
on the accuracy of the mobility prediction algorithms.

In [47] a mechanism for data collection, aggregation and dissemination in wire-
less sensor networks is proposed. The key idea is sweeping over the network using
a wavefront which propagates throughout the network, visiting each node only once



Data Aggregation in Wireless Sensor Networks 125

and performing the required computations and scheduling. The sweep is achieved
using some active nodes moving within the network and sending invitations to other
devices to join the wavefront. At each node a potential is considered which, in con-
junction with gradients defined by the Directed Diffusion paradigm, can be used
to guide the sweep. Upon passing the sweep, aggregation of data is performed
(however, no details on the way aggregation can be realistically done are given).
Aggregation inside the sweep region is performed by exploiting a local tree, thus
avoiding the drawbacks of global tree solutions in terms of possible lack of con-
nectivity. Simulation results show that, as compared to TAG, sweeping allows to
decrease the amount of undelivered data and exhibits higher robustness.

Aggregation Tree Construction in a Nutshell

Concerning optimal aggregation tree construction it is a well known NP hard prob-
lem [15]. In fact, it would require the identification of the, so-called, Minimum
Steiner Tree. To understand what the Minimum Steiner Tree is, let us consider a
given graph G = (V, E), where V is the set of nodes, E is the set of possible
interconnections between pins, (u, v) is an edge, w(u, v) is its weight and A is a
subset of the set of vertices A ∈ V . The Minimum Steiner Tree problem consists in
finding the smallest tree connecting all the vertices of the tree A where aggregator
nodes can be located at intermediate positions with respect to given network nodes.

The solution of the Steiner Tree problem has many applications in network
design and wiring layout problems but can be also applied to aggregation tree
construction problems. The Steiner Tree problem can be associated to the mini-
mum spanning tree problem that will be discussed in the following but presents
some differences. In fact, by solving the Steiner Tree problem we find intermediate
node locations where aggregator nodes can be positioned while this is not the case
when solving the spanning tree problem. Unfortunately, as said above, the Steiner
Tree problem is NP hard and, thus, heuristics can be used to solve it. Most typical
approach relies on consideration of the minimum spanning tree problem and on its
solution. Another heuristic relies on identification of the shortest path. If this is the
case, traditional approaches, such as the Bellman-Ford or the Dijkstra algorithms,
can be used for building the tree.

The Minimum spanning tree problem applied to a graph relies on the identifica-
tion of an acyclic subset of the interconnections H ⊆ E that connects all vertices,
while minimizing the total weight. This problem can be typically solved by using the
Kruskal [29] and the Prim [41] algorithms. The Kruskal’s algorithm uses a greedy
approach to solve the spanning tree problem. It creates a forest, i.e., a set of trees;
then it selects a set containing all the graph edges and step-wise removes an edge
with minimum weight from this set. If an edge connects two different trees it is
added to the forest and the tree get unified. Finally, the forest forms the searched
minimum spanning tree. The complexity of the Kruskal’s as well as the Prim’s
algorithm is O(ElogV ) and the algorithm can be run using binary heaps.

The Prim’s algorithm keeps on increasing the size of the tree starting with a
single vertex and spanning over all vertices, until the set of vertices V ′ becomes
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equal to V . In order to add the vertices, an edge (u, v) where u ∈ V ′ and v ∈ V is
chosen if it has the minimal weight. When multiple edges with the same weight can
be identified, an arbitrary choice can be done. Finally, when V ′ = V , the algorithm
stops.

However, due to the limited energy capabilities of the sensor network nodes as
well as the kind of application data, it can happen that the aggregation tree changes
in time. Accordingly, it could be expensive to compute multiple multicast trees and,
thus, a variation of the Steiner Tree problem, called universal Steiner tree problem,
can be considered [24]. Similarly, in [25], the authors propose a single group inde-
pendent spanning tree algorithm, denoted as GIST. This algorithm builds a tree A
so that any sensor group S uses the subtree induced by S on A as its group aggrega-
tion tree. By comparing the performance of this algorithm to those of the minimum
spanning tree and the shortest path in terms of aggregation cost and delay it can
be observed that GIST achieves O(log n) approximate aggregation cost and O(1)
approximate delay, for all groups S. This shows that the algorithm works fine with
respect to traditional approaches.

Cluster-Based Approaches

Differently from tree-based approaches, clustering consists in grouping nodes which
are relatively close to each other while choosing a representative, typically denoted
as clusterhead, to perform packet forwarding and processing on behalf of the entire
group. LEACH [20] and PEGASIS [30] are two representative protocols working
in the perspective of cluster-based approaches. LEACH consists of a distributed
cluster formation technique that enables self-organization of large number of nodes,
algorithms for adapting clusters and rotating cluster head role to evenly distribute
the energy load among all the nodes, and techniques to enable distributed signal
processing to save communication resources. As described in [20], nodes organize
themselves into local clusters, with one node acting as the cluster head. All non
cluster head nodes transmit their data to the cluster head which, once received, per-
forms signal processing functions on the data (i.e., data aggregation), and transmits
them to the remote sink(s). Due to the overhead required to be a cluster head node,
leadership should randomly rotate so as to avoid that these nodes quickly use up
their limited energy and die out. The operation of LEACH is divided into rounds.
Each round begins with a set-up phase when the clusters are established, followed
by a steady-state phase when data are transferred from the nodes to the cluster head
and then to the sink(s).

In [19], authors propose a modified version of LEACH, named LEACH-C, which
uses the base station, i.e., the sink(s), to broadcast the cluster head assignment so as
to extend network lifetime. Based on LEACH, some modifications have been pro-
posed to refine the cluster head election algorithm by letting every node broadcast
and count neighbors at each setup stage, where qualified potential nodes bid for the
cluster head position. This modification scatters cluster heads more evenly across
the network without requiring the participation of the sink(s) but, due to packet
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broadcasting performed at the highest transmission power, only slight improvements
over LEACH are obtained.

Reducing the number of cluster heads is critical to conserve energy, since these
nodes stay awake and transmit to the sink(s) using high power. Accordingly, in [30]
PEGASIS was designed. PEGASIS organizes all nodes in a chain and lets them
play the role of chain heads in turn. Since there is only one head node in PEGASIS
and in addition there is no simultaneous transmission, latency becomes an issue.
To address this, authors propose two chain-based PEGASIS enhancements in [26]
and [5]. These two approaches usually save less energy than their predecessor, but
outperform it in an energy per delay metric that they use. Based on both LEACH
and PEGASIS, authors propose Hybrid Indirect Transmission (HIT) [16], a hybrid
scheme which combines the above ones. HIT still uses LEACH-like clusters, but
allows multi-hop routes between cluster heads and non-head nodes.

Limitations of LEACH- and PEGASIS-based protocols are related to the assump-
tion that the sink(s) can be reached by any node in only one hop, which limits the
size of the network where the approach is applicable. Furthermore, the combination
of CSMA, TDMA and CDMA makes the design complex and cost-inefficient. In
addition, in scenarios where data cannot be perfectly aggregated, LEACH-based
protocols do not perform well, since the cluster head has to send many packets to the
sink(s) using high transmission power. Last, the chain-based nature of PEGASIS-
like protocols makes them suitable only for scenarios where packets can be perfectly
aggregated into one packet of equal size.

Multipath-Based Approaches

If in-network aggregation is performed using a tree-based approach (such as in
TAG [34] and [32]) a single failure results in an entire subtree of values being lost.
In particular, if the failure is close to the sink(s) it could significantly affect the
resulting aggregate. For this reasons solutions based upon multi-path routing were
proposed in [7] and [37] in order to overcome these robustness problems. In these
works it is pointed out that while, for duplicate-insensitive aggregation function,
such as MIN and MAX (where the final results does not depend on the number
of times the same value has been considered), a multi-path approach provides a
fault-tolerant solution, for duplicate-sensitive aggregates, such as COUNT or AVG,
multipath is not satisfactory. In particular in [7] approximate methods, exploiting the
duplicate-insensitive counting sketches previously introduced in [11], are proposed.
The authors extend the well-known approximate counting sketches for COUNT in
order to handle SUM and AVG aggregates. The use of duplicate-insensitive data
structures, which approximate a duplicate-sensitive aggregate, allows to achieve the
robustness typically associated with multi-path routing. In the proposed algorithm,
under the hypothesis of continuous queries, the aggregate is computed once for each
time interval, called epoch. The algorithm consists of two phases. During the first
one the query is distributed across the sensor network using some form of flooding;
each node computes its hop distance from the root and learns the level values of
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its neighbors. In the second phase, time is divided into a series of epochs speci-
fied by the query. An epoch is then sub-divided into a series of rounds, one for
each level, starting with the highest one (the farthest level from the sink(s)). During
each round, the nodes at the corresponding level compute their sketches, combine
them with those received during the previous round and broadcast the aggregate.
In the last round the sink combines the sketches received from its neighbors and
produces the final aggregate. In [37] the problem of double counting of data when
multi-path routing is exploited is addressed. The proposed approach, denoted as
order and duplicate insensitive (ODI), exploits the idea of synopsis that is a small
digest summarizing the partial aggregation obtained at intermediate nodes. Synopsis
consists of generation, fusion and evaluation. The first algorithm allows to produce
the synopsis of data for a given reading generated at a source. Fusion is used to put
together data stored by two synopsis and evaluation is used to derive the final result
as a summary of various synopsis. To preserve the network against duplicates, syn-
opsis is designed so as to guarantee certain properties: commutativity, idempotence
and associativity.

A multipath-based approach for achieving network coding in WSNs and guaran-
teeing robustness is described in the chapter “Multipath Diversity and Robustness
for Sensor Networks”. By using network coding each source packet may appear, lin-
early combined, in a large number of packets through the network. By propagating
multiple packets that contain linear combinations of the source packets, it is possible
to create multiple opportunities for decoding the source data, and achieve increased
robustness to specific node or path failures. From this perspective network coding
can be seen as a form of data aggregation performed by network nodes during the
relay of packets towards the sinks.

Hybrid and Structure-Free Approaches

Although structured solutions, such as tree- and cluster-based approaches are suit-
able for data gathering applications, they incur in high maintenance overhead in
dynamic scenarios, especially in case of event-based applications.

In [35] a hybrid approach to aggregate data in wireless sensor networks is
proposed. The proposed algorithm, called Tributary-Delta, aims at combining the
advantages of tree and multi-path schemes by simultaneously running them in dif-
ferent regions of the network. The motivation of this work lies in the fact that, in
case of high loss rate, it is possible to significantly increase robustness by using
multiple paths towards the sink(s). On the other hand, under low loss conditions,
the tree-based scheme is more suitable. Keeping this in mind, in [35] the area of
interest (where sensing devices are deployed) is divided in two regions: the Delta
region, including the sink, where nodes (called M nodes) use a multi-path scheme
to forward packets and the Tributary region where nodes (called T nodes) use a
tree-based scheme (see Fig. 85).

5 Figure taken from [35].
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Fig. 8 Tributaries and deltas

In order to keep the entire network working properly, the authors introduce a
correctness condition to be satisfied: a multi-path partial result can only be received
by a node running the multi-path scheme. This condition implies that M nodes
form a multi-path “delta”, including the sink, which is fed by trees of T nodes
(“tributaries”) and that nodes running the tree-based scheme can assume that are no
duplicates in their input. The goal of Tributary-Delta algorithm is to adapt the exten-
sion of the aforementioned regions according to the network conditions by dynami-
cally shrinking or expanding the Delta region. This can be obtained by switching the
operating mode of the nodes that lie in the border zone between the two regions. In
particular, users are required to specify a threshold on the minimum percentage of
nodes that should contribute to the aggregate answer. Depending on the comparison
between this percentage and the specified threshold, the sink decides whether to
expand or shrink the Delta region. A proper choice of this parameter is important
since a wider Delta region results in an improvement of answer accuracy (in case of
high loss rate), while shrinking usually results in more nodes running the tree-based
algorithm, thus leveraging to a lower approximation error (in case of low loss rate).
Simulation results show that Tributary-Delta performs better than existing pure tree-
and multi-path-based approaches.

6.3 Preservation of Information

In this section we will discuss some solutions, which have been introduced in the
literature with the aim of preserving the integrity of information, under two differ-
ent points of view. The first one is related to the way aggregation is pursued by
means of manipulating the data. More specifically, in Sect. 6.3.1, we will consider
how the aggregation process impacts the reliability and integrity in the information
delivered at the sink. Then, in Sect. 6.3.2, we will consider possible security threats
met at aggregator nodes in the network which could compromise the reliability of
the information delivered at the sink, possibly causing un-necessary actions into
the network or preventing the sink from restoring the correct functionalities of the
sensor network.
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6.3.1 Preservation of Integrity

When focusing on preservation of integrity in the data aggregation process, attention
should be paid to determine an appropriate trade-off between the need to reduce
energy consumption through exploitation of spatial and temporal correlation in the
transmitted data, and reduction in the distortion rate of the information delivered
to the final user. In fact, if, on the one hand, reducing the amount of data deliv-
ered through aggregation is useful to increase network lifetime, on the other hand,
extreme aggregation can imply the impossibility to recover the original information
or incurring in an excessive distortion rate.

To this purpose in [14] the joint problem of aggregator nodes placement for
deploying a power-efficient sensor network, provided that distortion constraints are
given, is dealt with. To this purpose the authors first address the one-dimensional
problem to figure out some insights on the process. Then, they move to a bi-
dimensional problem, which has been shown in the previous literature to be NP
complex and cannot be solved in polynomial time. Thus, the authors focus on a spe-
cific and simplified network scenario and derive some conclusions by re-addressing
an extended version of the one-dimensional scenario. With respect to the relevant
literature in the field, which addresses the problem of joint rate allocation and appro-
priate transmission structure construction, here the additional distortion constraint
is considered.

The addressed problem can be described as follows. In the area A, N sensor
nodes are deployed. The sample generated by each node can be represented as a
random variable X (u, v, t) where (u, v) are used to describe the location of the node
and t is the time instant. Multihopping is exploited to let sensor nodes send their
samples to the sink. These samples will be delivered, provided that a maximum DM ,
and an average DA, distortion values are guaranteed. DM is the maximum distortion
allowed at each point of A, while DA is the distortion per unit of area A.

To minimize the total cost, the quantity
∑N

j=1 R j · CC ( j) should be minimized
where R j is the total amount of data transmitted by node j and CC ( j) is the trans-
mission cost per bit at node j . The sensing model is assumed to be Gaussian with
zero mean. By denoting as RX (d) the covariance function of the stationary random
field X (u, v), the correlation function is in the form RX (d) = e−a·d where d is the
Euclidean distance.

The chosen communication model is the classical path loss one where the expo-
nent k varies in the range between 2 and 4. Finally, the aggregation model considers
that the total data rate sent from a generic node j can be represented by means of
the entropy as

H ( j) = 1/2 · log(2πe)|Tj |det(R[Tj ]) − |Tj | log Δ (1)
where

• |Tj | is the number of nodes in the subtree of node j , having assumed a pre-
existing tree routed at the sink.

• R(Tj ) the covariance matrix of the nodes in j’s subtree.
• Δ the quantization step in case of uniform quantization.
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The sink, once received the quantized values sent by each of the N nodes, inter-
polates them and obtains the reconstructed value X̂ (u, v). To solve the problem of
minimizing the energy consumption, Voronoi regions are identified for each sensor
j . An example of Voronoi cells in the linear and circular area case are shown in
Figs. 9 and 10. The problem thus reduces to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{∑N
j=1 R j · CC ( j)}

s.t.
1.

⋃
j=1...N Vj = A

2. MSE(u, v) = 2σ 2(1 − e−ad j,i ) ≤ DM

3. 1
A

∫
A MSE(u, v)dudv ≤ DA

(2)

where

• d j,i is the distance between node j and node i ,
• MSE is the distortion error between the quantized and the unquantized sample.

The optimized placement problem is solved in the one-dimensional case by
showing that the shortest path allows to obtain the optimal performance and an
associated Lagrangian optimization problem can be solved in closed form.

In the two-dimensional case, the wheel placement case is considered where nodes
are located radially on the spokes of the wheel and data delivery is done by exploit-
ing multihop towards the sink located in the center of the wheel. The distortion
constraint is such that it is satisfied along the spoke and the optimal number of
spokes and nodes on each spoke are heuristically chosen.

As an evolution of this work, the possibility to exploit Slepian-Wolf (SW) [48]
coding can be considered. SW coding is a kind of source coding technique which
can be exploited to allow un-coordinated communication among sensor nodes while
reducing the amount of data packets delivered to the sink, and still preserving the
entropy of the sensor measurement readings. SW coding can fully remove the data
redundancy caused by the spatially-correlated observations in WSNs. This tech-
nique is based on the assumption that each sensor node has a priori knowledge of
the information correlation structure with respect to other nodes. The Slepian-Wolf
theorem allows to derive some insights into the lossless compression of two or more

1 2 3

Voronoi cell boundaries

L

Sink

r1 r2/2 r3/2

Fig. 9 Voronoi cells in case of linear placement
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Fig. 10 Voronoi cells in case of sink placed at the center of a circular area

correlated data streams in that some correlated streams can be encoded separately,
without any explicit communication performed between nodes, and the compressed
data from all these encoders can be jointly decoded by a single decoder, provided
that each node only knows the joint statistics. This theoretically guarantees that the
output of the decoder is almost an exact reproduction of the correlated streams.

SW coding assumes two correlated random sources, say Z1 and Z2. Each source
can code its data with a rate R j ≥ H (Z j ), with j ∈ [1, 2]. If the two sources were
able to communicate, they could send data with a total rate R1 + R2 = H (Z1, Z2).
Slepian and Wolf showed that, in the hypothesis that their individual rates are at
least equal to the conditional entropies R1 ≥ H (Z1|Z2) and R2 ≥ H (Z2|Z1), two
correlated sources can be coded with a rate equal to their joint entropy also if they
cannot communicate. The SW derivation can be straightforwardly generalized to
the case of k random sources. However, this is only a theoretical, although very
significant, result and no indications about how such an ideal aggregation can be
performed are given.

Due to this intrinsic feature of the SW coding, some evolutions of this technique
applied to clustered systems have been proposed, e.g. [52]. In this work the authors
study the major problems in applying Slepian-Wolf coding for data aggregation in
cluster-based WSNs with an objective to optimize data compression so that the total
amount of data in the whole network is minimized.

In [1], distortion due to possible loss of packets because of high packet loss rate,
both in case of a simple relay node and an aggregator node is being considered. Two
kinds of distortions are addressed: temporal and spatial as related to the considera-
tion of the temporal or spatial correlation among samples. Accordingly the authors
express the temporal distortion as
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D̄n = 2σ 2ts
1

pn
+ 2

γ
σ 2 pne−γ ts

1 − (1 − pn)e−γ ts
− 2σ 2

γ
(3)

being

• σ 2 the variance of the physical phenomenon modeled as a Gaussian random
variable.

• ts the sampling interval.
• pn the probability that a sample received by node n is successfully delivered to

the sink.
• γ the temporal correlation coefficient.

Analogously, the spatial distortion is expressed as

D̂l =
N∑

n=1

∞∑

m=0

pn ·(1− pn)m ·2
∫ L/(2N )

0

(
2σ 2 − 2σ 2 · e

−[
(√

x2+θ2
3 ·m2·t2

s

)
/θ1]θ2

)
dx (4)

where

• L is the length of the considered line network.
• θ1, θ2 and θ3 are correlation constants explicited in [1].

Interesting results are derived since authors find that there exist optimal densities
of nodes such that the spatial distortion can be minimized. Also the distortion in
case of aggregated data is, as expected, more critical than in case of simple relaying
because the loss of some packets leads to loss of a significant portion of the network
data. On the other hand, temporal distortion always increases and, in particular, in
case of data aggregation since longer aggregated packets are sent and thus higher
loss probability and higher temporal correlation are met.

In [13] a number of significant insights concerning the data aggregation process,
which have not been discussed in the literature so far are derived. First, the condi-
tions when aggregation is a costly process as compared to a no-aggregation approach
are derived by considering a realistic scenario where processing costs related to
aggregation of data are not neglected. Then, considering that aggregation should
preserve the integrity of data, the entropy of the correlated data sent by sources is
taken into account so as to reduce the amount of redundant data forwarded to the
sink while performing an overall lossless process. The framework has been used to
investigate the tradeoff between the increase in data aggregation required to reduce
energy consumption, and the need to maximize information integrity.

The conditions when aggregation can be regarded as a non costly process with
respect to no-aggregation are derived as a function of the power needed to trans-
mit, code and keep on the circuitry, taking into account the number of downstream
neighbors along the tree to the sink, as well as the maximum aggregation which
can be applied, provided that the differential entropy of data is saved. This achieves
the trade-off between need to increase the aggregated packets and preservation of
information integrity.
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A discussion on the design of suitable encoding strategies that leverage the cor-
relation induced by cooperative coding in dense networks can be found in chapter
“Cooperative Strategies in Dense Sensor Networks”. In chapter “Cooperative Strate-
gies in Dense Sensor Networks” it is described how to learn the structure of the data
via queries and how to minimize the number of queries needed to obtain a lossless
reconstruction of a source codeword. These coding approaches can be seen as solu-
tions for propagating aggregated data in WSNs with attention to the preservation of
the integrity on one side and the minimization of the network resources on the other
side.

6.3.2 Preservation from Security Threats

Security is a major concern in wireless sensor networks. In fact, due to the deploy-
ment of sensors in open un-attended environments, and to the vulnerability of cheap
network devices whose cryptographic keys can be kept by adversaries, false actions
can be invoked, driven by unreliable data received by the sink(s). When considering
the data aggregation process, security threats are even worsened. In fact, potential
compromised aggregated data can imply that the sink receives wrong information
about events happening in a portion of the entire network. This problem can be
additionally worsened by the position of the aggregator node in the network. In
fact, un-trusted high level nodes, i.e., nodes closer to the sink in a tree structure,
cause more serious problems than compromised low level nodes, i.e., farther away
nodes, because the aggregated result calculated by a high level device derives from
the collection of measurements performed by a higher number of sensors. If we
consider that an aggregator node collects the information sent by multiple sensors,
processes them and sends again this information towards the sink(s), it is important
that the final information collected by the sink is reliable. If this is not, two problems
can arise

• un-necessary actions are activated by the sink(s). As an example, this could hap-
pen when the malicious nodes notify the sink(s) about alarms, when they should
not, only in the perspective of consuming network energy resources, reduce net-
work lifetime and increase future network vulnerability.

• necessary actions are not invoked by sink(s) because menaces are hidden by
malicious nodes. As an example, this could happen when a security violation
happens and malicious nodes are distributed in the network in the aim of hiding
this threats, thus avoiding network protection.

In the literature aggregator nodes have been usually assumed to be honest, i.e.,
to send throughout the network reliable and secure data. However, in a realistic
scenario it should be considered that aggregators can be malicious or very prone to
physical attacks which could compromise the data reported by them, thus leading
to false alarms. Accordingly, some techniques aimed at verifying the content of the
data received by the sink should be devised.

Three types of security threats can be discussed when considering data
aggregation:
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• T1: an aggregator node simply drops the information it is expected to relay to the
sink.

• T2: an aggregator node falsifies its readings so as to modify the aggregate value
it is expected to relay to the sink.

• T3: an aggregator node falsifies or modifies the aggregate generated by messages
received by its children.

While the first threat can be easily identified, the second threat can be solved using
well known approaches for fault tolerance. As an example in [36] an estimation
algorithm to be performed at the fusion center for localizing events by combining
the binary measurements received by many sensor nodes is presented. The main idea
behind Subtract on negative add on positive protocol (SNAP) is to fuse the observa-
tions of all sensors (positive or negative) to efficiently construct a likelihood matrix
by summing contributions of ±1. In other words, sensors with positive observations
add their contributions, while sensors with negative observations subtract theirs. The
power of this algorithm lies in the simplicity. Also, by giving equal importance to
the sensors that did and the ones that did not sense the event, they do not allow any
particular sensor to change the estimation results and this is the basic reason for
the fault tolerant behavior. Moreover, the algorithm is energy efficient since, for the
construction of the likelihood matrix, only single bits need to be transmitted to the
sink. The SNAP algorithm works in three major phases:

1. Grid formation: The entire area is divided into a grid. The number of cells is
chosen as a trade-off between estimation accuracy and complexity. Each sensor
node is associated with a cell (i, j) based on its position.

2. Likelihood matrix (L) construction: For each cell of the grid the likelihood of
a source occurring in the particular cell is calculated based on the binary data
received from each sensor node. To this purpose the Region of Coverage (ROC)
is defined as a neighborhood of cells around (i, j). There are various ways that
one can define the neighborhood and the optimal shape of the ROC depends on
the signal propagation model. Given a uniform propagation model, one could
assume that the ROC is the set of all cells whose centers are within a distance
R from the center of cell (i, j). However, for computational efficiency, a square
approximation is used. Each alarmed sensor adds a positive one (+1) contri-
bution to the elements of L that correspond to the cells inside its ROC. On the
other hand, every non-alarmed sensor adds a negative one (−1) contribution to all
elements of L that correspond to its ROC. Thus, the elements of the likelihood
matrix are obtained by spatially superimposing and adding the ROC of all the
sensor nodes in the field. Figure 116 shows an example of the resulting likeli-
hood matrix after adding and subtracting the contributions of 8 sensors using
SNAP.

3. Maximization: The maximum of the constructed likelihood matrix L , points to
the estimated event location. If more than one element of the likelihood matrix

6 Figure taken from [36].
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has the same maximum value, the estimated event position is the centroid of the
corresponding cell centers.

In Fig. 11 we observe 3 sensors located in the proximity of an event (identified by
the white ellipse) to be notified. For each sensor the ROC is built as represented by
the big squares associated to each point representing sensor node location. The area
is divided in a grid and all ROC squares containing the event location are assumed
to be alerted. The small squares in the alerted bigger squares will increase their
indicator of +1 while the small non alerted squares will add −1 to the indicator.
As a result the overall counters are shown in the figure. The event location will be
identified with the small square with the higher indicator. Thus aggregation of the
information collected by the sensors has been performed by equally weighting the
contributions of the sensors. According to the case shown in Fig. 11, the event will
be located at the baricenter between the centers of the two small squares having
indicator +2.

Fig. 11 Likelihood matrix construction resulting from SNAP in case of 3 sensor nodes, 2 of which
are alarmed and are shown in solid color. The event is correctly localized at the baricenter between
the two grid cells with the maximum value +2

The performance of SNAP was compared against two other estimators: a central-
ized Maximum Likelihood estimator (ML) proposed in [38] and a Centroid Estima-
tor (CE) where the source position is estimated as the centroid of the alarmed sensor
nodes positions. With three estimators, in the absence of faults, the performance
of ML and SNAP is very similar. As the number of faults increases however, ML
is very sensitive to sensor faults and looses accuracy continuously. For low sensor
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faults, it starts loosing accuracy and for greater sensor faults its performance is worse
than the CE. SNAP however, displays a fault tolerant behavior and looses very little
in accuracy even when 25% of the considered 200 sensor nodes exhibit erroneous
behavior.

CE is especially sensitive to the presence of false positives because of noise or
misfunctioning due to overhearing. Since the algorithm essentially treats all alarmed
sensor nodes with equal weight, it is especially sensitive to false positives that occur
far away from the true event location. These can result in large errors when calcu-
lating the centroid of the alarmed sensor nodes’ positions. On the other hand, ML
is extremely sensitive to false negatives. Even a single faulty sensor node inside the
neighborhood of the source can completely throw off the estimation results. This is
a direct result of the construction of the likelihood matrix of ML.

Among the above discussed three security threats in data aggregation, however,
the one which results more critical is the third, i.e., a modification of the data an
aggregator node receives by its children. In fact, in this case no stable solutions
have been yet devised. Some proposals, for example [43], use a key distribution
approach to establish secure communication between aggregating sensors and the
sink. Aggregation is intended in an incremental perspective, meaning that only the
differential data is sent rather than the raw data. The key distribution approach ran-
domly distributes the keys to all network nodes partitioned into groups. A key pool
is distributed to each group and each node randomly selects a subset of these keys.
Sensors use these keys to establish secure communication with group members.
Other keys are used for allowing communication between neighboring grids. A
discovery phase is initiated to let a node discover shared keys with other group
members as well as with neighboring groups. Security level increases when going
to higher levels of the hierarchy towards the sink, so that higher level nodes which
are in charge of sending greater summaries of nodes readings, are more protected
than low level nodes.

However, even if using this security mechanism, nothing guarantees that the data
sent on a secure communication channel between the aggregator node and the sink
is trusted and was not generated by a malicious aggregator node. In other words,
this approach is thought to protect data against channel sniffing but not against
aggregator threats.

Another work proposing a similar approach is the one presented in [27] where
a self-configuring hierarchical clustered architecture for wireless sensor networks
is presented. In this chapter security issues are dealt with in the perspective of a
randomized data authentication procedure based on a unique ID and security code
employed by sensor nodes and sink to randomly verify the trustfulness of the data
received. However, here again the hypothesis of honest sensor nodes is assumed and
threats are only identified with conditions where a security code is captured by an
attacker.

Other approaches aimed at solving the third threat have been proposed in [6,
55, 42]. In [6] the authors deal with the problem of counteracting the, so-called,
stealthy aggregate manipulation, that is a kind of security attack where the attacker
wants to make the user accept false and erroneous aggregation results without
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being recognized by the final user, i.e., the one who manipulates the information
received by the sink(s). In [55] some techniques to allow the user to understand
if the data received by the aggregator is deviating too much from an expected
result, thus revealing possible attacks, is proposed. To this purpose cryptography
is employed as well as a random sampling approach to let the user verify if what
was sent by the aggregator has been compromised by an attacker action or not.
Moreover, a methodology to let the aggregator prove its honesty in aggregating
data is devised as well. In [42] a secure hop-by-hop data aggregation protocol is
proposed. Differently from [55], which was one of the first works where malicious
nodes were considered, here security relies on collaboration among network nodes.
More specifically, in [55], by exploiting the divide-and-conquer paradigm, network
nodes are probabilistically partitioned into multiple logical trees or groups. Accord-
ingly, since a reduced number of nodes will be grouped under a logical tree routed
at a high level aggregator node, the threats related to a compromised high level
node will have a reduced impact. An aggregate packet is generated by each group
and, once a user receives aggregates by all groups, it uses a bivariate multiple-
outlier detection algorithm to figure out if suspicious packets were received. When
a suspicious group is identified, it is forced to take part to an attestation process
to prove its honesty. If a group fails in attesting its honesty, its packets are dis-
carded by the user who, eventually, takes into consideration only packets received
by verified groups. A similar problem is dealt with in [42]. In this chapter the
focus is on use of multi-path networking paradigms for performing aggregation.
Multipath, as discussed in previous sections, is more reliable in case of network
failures with respect to tree approaches but still presents some problems of relia-
bility in case of duplicate-sensitive aggregate metrics such as count and sum. To
this purpose the well known synopsis diffusion [37] approach has been proposed.
However, synopsis diffusion does not provide any support for security and, thus,
in [42] an evolution of synopsis is presented. Here a subset of the network nodes
provide an authentication code as well as data packets responding to a possible
query. These authentication codes are propagated up to the sink and used to esti-
mate the accuracy of the final result so as to filter and discard possible compromised
packets.

In [40] the problem of validating aggregate information sent by sensors located
on mobile vehicles is addressed. More specifically, authors focus on spoofing and
bogus attacks related to injection of fake information into the network that are used
to divert traffic. To cope with these problems especially in case of aggregated data
sent by vehicles, a tamper-proof service is assumed for generating timestamps, ran-
dom numbers and signing the records sent by nodes. Aggregator nodes are thus
solicited to provide a proof that their aggregated record is not modified. For worth of
validation, the aggregator sends the aggregate record as well as a record contributing
to the aggregated one but chosen according to a random number. If this tamper-proof
information fits into the aggregate record the packet is considered reliable. This
mechanism should provide a deterrent to node’s malicious behavior. However, here
again tamper-proof elements are assumed which could be unrealistic in the majority
of the scenarios.
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Table 3 Summary of protocol solutions for data aggregation, classified in accordance to different
taxonomies

Description Propagation Protection

Layered Link [9, 50, 39, 18]
Network [23, 31, 21, 54] [18, 22, 28, 32, 34,

8, 56, 47, 20, 30,
19, 26, 5, 16, 7,
37, 11, 35]

[36, 38, 43, 27, 6,
55, 42, 51, 12]

Application [23, 31, 21, 54, 45] [6, 40]

Functional Routing [23, 31] [22, 28, 32, 34, 8,
56, 47, 20, 30, 19,
26, 5, 16, 7, 37,
11, 35]

[6, 27, 55, 42]

Aggregation [14, 52, 1, 36, 38,
43, 27, 51, 12]

Representation [21, 54, 45] [36, 38, 43, 42, 40]

Performance Energy [23, 45] [50, 39, 18, 22, 28,
56, 20, 30, 19, 26,
5, 16, 13]

[14, 52, 43, 42]

Latency [23, 31] [9, 39, 18, 22, 28,
32, 34, 8, 30, 26,
5, 16]

Fault tolerance [23, 31] [32, 34, 8, 47, 7, 37,
11, 35]

[36, 38, 40]

Security [36, 38, 43, 27, 6,
55, 42]

Accuracy [45] [13] [14, 52, 1, 43, 27, 6,
55]

Network load [9, 51, 12]

7 Conclusions

Data aggregation in wireless sensor networks is a promising approach for counter-
acting waste of resources caused by redundancy traveling throughout the network.
In wireless sensor networks, due to the high density of deployed devices and the
type of monitoring, the interest is typically in an overall view of the network status
and not in each specific node’s reading. More specifically, due to the spatial and
temporal correlation among data collected by sensor devices, some useless infor-
mation can travel into the network, thus causing spreading of both bandwidth and
energy resources.

In this chapter we investigated on the use of data aggregation as a mean for
counteracting this redundancy problems in sensor networks. We highlighted differ-
ent approaches to taxonomy of data aggregation techniques, namely layer-centric,
ingredient-centric and performance-centric. We then presented and discussed data
aggregation by focusing on the information-centric approach which allows a detailed
understanding of the impact of the data aggregation process in terms of information
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description, propagation and preservation, and in the same time captures the main
functional elements and protocols in the view of understanding the implementation
and performance issues behind each solution. In Table 3 we reported the main solu-
tions introduced in the literature by applying both the classical taxonomies appeared
in the literature (rows of the table) and the various perspectives of the information-
centric approach (columns).

As regards the description of the information, all the solutions discussed aim
at facilitating WSN applications to query and collect the information on the basis
of an associated semantic scheme. We pointed out how semantics can be used to
achieve efficient data aggregation able to capture the meaning of the information
that is aggregated. The propagation of the information is instead at the basis of
aggregation functions that are tailored to the medium access, routing and schedul-
ing schemes adopted in the network to propagate the information from sensors to
sinks. Finally, the preservation of the information integrity can be accomplished by
suitable aggregation methods that reduce the amount of information relayed towards
the sink(s), and in the same time assure the preservation of the information itself;
on the other side aggregation can also be accomplished with special care to the
preservation of the information from security threats.

From this overview two main insights can be derived. On the one hand, a need for
abandoning isolated solutions looking for a holistic view is needed. In this view we
believe that the proposed information centric analysis intrinsically provides guide-
lines for approaching the data aggregation issues in WSNs. On the other hand, to
satisfy this requirement, the various approaches for aggregation performed at differ-
ent levels of the network architecture should be made compliant and interoperable
so as to allow an improvement in network behavior under a cross-layer perspective.
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Robust Data Dissemination for Wireless Sensor
Networks in Hostile Environments

Jun Lu, Yi Pan, Satoshi Yamamoto, and Tatsuya Suda

Abstract An important research issue in large scale wireless sensor networks is to
efficiently deliver data per user requests, which is referred to as data dissemination.
This chapter studies data dissemination in wireless sensor networks deployed in
hostile environments. In such type of networks, external catastrophic events can
damage sensors at a large scale, which may cause data loss or disconnect data trans-
mission paths. This chapter presents a novel data dissemination protocol, RObust
dAta Dissemination (ROAD), which can sustain data dissemination when large scale
sensor failures occur. In ROAD, events are differentiated based on types. For each
type of event, data are replicated to a set of sensors forming a specific geographical
trajectory. When facing catastrophic events, since sensors forming a trajectory are
unlikely to be damaged simultaneously, surviving sensors can restore the trajec-
tory and resume data dissemination. Simulation results show that ROAD is robust
against large scale sensor failures while presenting low communication overhead,
high reliability and short response time.

1 Introduction

Recent improvements in affordable and efficient integrated electronic devices have
significantly advanced the technology of wireless sensors. Wireless sensors avail-
able today are equipped with sensing modules, radio transceivers, processing units,
storage and possible actuators. Such sensors form a wireless sensor network (WSN)
and collaborate with each other to perform various functionalities in different appli-
cations, such as environment surveillance, target tracking and disaster rescue. The
utility of a sensor network in these applications derives primarily from the data it
gathers. Thus, one of the key issues of a WSN application is to efficiently deliver
data according to user requests in a large scale sensor network. This is referred to in
the literature as data dissemination.
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While there has been extensive research (e.g., [3, 9, 11, 13, 17, 18, 20]) on
data dissemination for WSNs, most of the existing work assumes a relatively stable
deployment environment, in which large scale sensor failures are unlikely to occur.
This chapter considers WSNs deployed in hostile environments, where robustness
is recognized as an essential issue when network operations become highly chal-
lenging due to large scale sensor failures. While A5 studies multi-path routing
in improving sensor network robustness in data transmission, this chapter focuses
on another aspect – robustness in data dissemination. One example of robust data
dissemination in a hostile environment is battlefield surveillance where a WSN is
deployed to monitor enemy units including soldiers and vehicles. In this scenario,
many allied soldiers are scattered in the field and each may request information
on various enemy units at different times. The WSN should be able to deliver the
requested information even when many sensors have been damaged by external
events such as bomb explosions or fire blasts.

A novel data dissemination scheme will be presented for WSNs in hostile envi-
ronments, RObust dAta Dissemination (ROAD). In ROAD, events are differentiated
based on their types (e.g., events of wildfire or bomb explosions). A global hash
function shared by sensors and sinks maps different types of events to different
geographical trajectories (e.g., lines or curves) as to where data for the types of
events should be stored. As randomly deployed sensors may not precisely reside on
a trajectory, a trajectory is actually formed by a set of sensors with their locations
best approximating the trajectory. Data for a certain type of event are replicated
on the set of sensors forming the corresponding trajectory. Because a trajectory
spans a relatively large range, the probability of all sensors forming the trajectory
failing simultaneously is low. When a few sensors on a trajectory fail, other surviv-
ing sensors can repair the trajectory and restore data dissemination. By replicating
data to sensors that form geographical trajectories, ROAD achieves the following
advantages: (1) robustness against large scale sensor failures, (2) low communica-
tion overhead and short response time of data retrieval, and (3) high reliability under
heavy query loads.

The rest of this chapter is organized as follows: Sect. 2 examines existing work
on data dissemination in the Internet as well as WSNs. Section 3 describes ROAD
in detail, followed by simulation evaluation in Sect. 4 and conclusion in Sect. 5.

2 Related Work

A spectrum of approaches has been attempted for data dissemination over the
Internet, including constructing distributed indexing services in overlay networks.
Examples of such services include the Internet Domain Name System (DNS),
MERCURY [2] and the Distributed Hash Table (DHT) systems exemplified by
Freenet [5], CAN [16] and Chord [19]. These approaches, however, assume an
Internet environment in which two nodes can establish a logical connection over
multiple physical links using transport protocols. Thus, they are not applicable to
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the context of WSNs, in which a logical connection between two sensors may not be
possible due to physical limitations on sensor capabilities or resources (e.g., sensors
may not have enough memory or power to run complex network or transport layer
protocols).

There have also been numerous studies on data dissemination in WSNs.
Intanagonwiwat et al. [11] proposed a scheme called Directed Diffusion to allow

sinks to retrieve data of interest. In their scheme, each sink broadcasts a specific
interest to the network and establishes a gradient to specify the forwarding direction
toward itself. Each sensor matching the interest sends low-rate data, possibly along
multiple paths, following the gradient toward the sink. The sink then reinforces one
good path in order to draw higher quality (higher data rate) events.

Rumor routing [3] presents a simple solution for data dissemination at low cost.
Both event notifications and queries are forwarded randomly through the network.
Each sensor relaying event notification stores the route to the source of the event.
A query is forwarded toward the source sensor when it reaches a sensor storing
event information that matches the query. Since both data publishing and queries
are randomly forwarded, rumor routing cannot guarantee the retrieval of all data
requested by a sink.

Distributed Index for Multi-dimensional data (DIM), proposed in [13], describes
a distributed indexing service for sensor networks to support multi-dimensional
range queries. The sensor field is divided into zones, each owned by a single
sensor. Events are published to and retrieved from the destination zone hashed
from the event attributes. Using a geographic locality-preserving hash function that
maps similar data to physical vicinity, DIM is able to efficiently support multi-
dimensional range queries.

Ratnasamy et al. [17, 18] proposed Data-Centric Storage (DCS) for WSNs. DCS
stores data in sensors in a manner dependent on the type of event. To publish data
for an event, a source sensor hashes the type of the event into a geographical storage
location using a Geographic Hash Table (GHT). It then employs geographic routing
to publish data to the sensors graphically nearest the storage location. To retrieve
data for a type of event, a sink uses the same GHT to obtain the storage location
and sends a query to the storage location. DCS uses a perimeter refresh protocol
to replicate stored data locally to improve robustness against sensor failures and
mobility. Structured replication is utilized to balance the work load of data storage
among sensors. Ghose et al. [9] proposed Resilient Data-Centric Storage (R-DCS)
to improve the scalability and resilience of DCS to sensor failures by strategically
replicating data.

In Two-Tier Data Dissemination (TTDD) [20], upon detecting an event, each
sensor proactively builds a grid structure by storing forwarding information to sen-
sors geographically nearest to the grid points, called data dissemination nodes. To
request data, a sink floods a query within the scope of a grid square (a cell). When
a data dissemination node with the requested data receives such a query, it forwards
the query toward the source, following the grid structure. A sink issues a new query
when it moves more than a cell size from its previous location. The forwarding of
the new query stops at a data dissemination node that has been receiving the data.
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The data dissemination node then forwards the data toward the new location of the
sink. In this way, TTDD can minimize the jitter of received data, even when a sink
is moving continuously.

Tiered Storage ARchitecture (TSAR), proposed in [6], addresses the problem
of data dissemination in a heterogeneous sensor network composed of normal sen-
sors and powerful proxy nodes. The basic idea of TSAR is to separate the storage
of data and metadata (i.e., abstract information describing data). Data are stored
locally at each sensor, and metadata are sent to a nearby proxy node, which com-
municates to other proxy nodes by external high-speed links. Interconnected proxy
nodes construct a distributed index, called the Interval Skip Graph, for the metadata
reported from all sensors. The Interval Skip Graph enables a sink to query and read
data efficiently. By eliminating in-network indexing, TSAR is able to reduce energy
consumption of sensors.

Fang et al. [7] presented a landmark-based data dissemination scheme for sensor
networks in which location information is not available or expensive to obtain. With
a set of pre-selected sensors as landmarks, the network is divided into tiles using the
GLADER protocol [8]. To publish or retrieve data, each sensor hashes the content
of the data to a destination tile and routes the data or query toward the destination
tile using the GLADER protocol. The published data are replicated at intermediate
tiles on the path to the destination tile in order to accelerate later data retrieval.

All of the above mentioned existing approaches for data dissemination in WSNs
assume a relatively stable environment, although some of them can handle indi-
vidual sensor failures by replicating data to several mirror sensors. However, none
of these approaches explicitly address data dissemination in an environment where
large scale sensor failures may destroy all the mirror sensors or disconnect the path
of data retrieval.

3 RObust dAta Dissemination (ROAD)

3.1 Assumptions

In a real sensor network deployment, sensors may be able to identify the detected
event through in-network data processing, which usually involves the collaboration
of multiple nearby sensors. This chapter focuses on data dissemination and simply
assumes that a single sensor, upon detection of an event, can process and identify
the type of the event. Sensors are configured with a global hash function to map
detected types of events to pre-defined trajectories as to where data for detected
types of events should be stored.

This chapter assumes that sensors are static and location-aware. Although equip-
ping a GPS device with each sensor is expensive and thus unrealistic, there are many
sensor localization schemes (e.g., [1, 4, 15]) that allow sensors to obtain their own
locations without GPS. It is also assumed that sensors can obtain their neighbors’
locations through one-hop communication.
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Sensors are assumed to have certain processing capabilities to run ROAD proto-
col. The computation in ROAD is quite simple and affordable for small sensors with
limited processing capabilities.

3.2 Scheme Description

The design of ROAD applied the widely-accepted concept of data-centric stor-
age [17]. In data-centric storage, data are stored within the network based on their
types. Data for different types of events are stored to sensors at different locations.
To retrieve the data of interest, queries are forwarded to the corresponding locations.
ROAD further develops this idea by distributing data for a certain type of event to
a continuous geographic trajectory instead of isolated locations. Data for different
types of events are stored to sensors approximating different trajectories. To retrieve
the event of interest, a sink issues a query to reach the corresponding trajectory
following the shortest path. An overview of ROAD is shown in Fig. 1 to disseminate
data for two types of events.

Although ROAD is designed to accommodate various forms of trajectories, the
current implementation uses straight lines as trajectories because straight lines are
easy to compute, represent, and maintain. The end of this section will discuss how
to extend ROAD to generic trajectories.

ROAD has three major component processes: data publishing, data retrieval and
trajectory maintenance.
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Fig. 1 An overview of data publishing and retrieval through continuous trajectories in ROAD
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3.2.1 Data Publishing

In order to publish data to sensors approximating a trajectory, data are forwarded
in two phases: forwarding data to a sensor on the trajectory and propagating data
to sensors along the trajectory. In phase I, a sensor detecting an event forwards
the data to reach the trajectory. The destination of data forwarding in phase I is
the trajectory, or more precisely, any sensor on the trajectory. In phase II, data are
forwarded to propagate along the path that best approximates the trajectory. The
destinations of data forwarding are all the sensors that form such a path. Note that
existing geographic routing algorithms (e.g., [12]) cannot be applied here as they
forward data to a particular location as the destination.

Phase I – Forwarding Data to a Sensor on the Trajectory

A source sensor identifies the event type upon detection of an event. It then uses
a global hash function to map the event type to a trajectory. Different event types
are hashed to different trajectories such that data for different event types are stored
separately. The event type and data are included in a DATA message sent by the
source sensor. A DATA message can be forwarded in two modes: the greedy mode
and the hole mode.

To forward a DATA message to reach a trajectory, a sensor calculates its own
distance to the trajectory as the distance between its own location and the per-
pendicular foot (i.e., the intersecting location of the perpendicular line from the
sensor to the trajectory). Since it also knows its neighbors’ locations, the sensor
can calculate their distance to the trajectory and decide whether a neighbor is
closer to the trajectory than itself. If closer neighbors exist, the sensor forwards
the message in the greedy mode to the neighbor with the shortest distance to the
trajectory.

In phase I, it is possible that a sensor may not find any neighbor closer to the
trajectory than itself. In that case, a hole is detected. As some existing geographic
routing algorithms (e.g., [12]), ROAD applies the right hand rule to circumvent
the hole, but with a different termination condition. The sensor that initiates the
hole mode sets a hole bit (to notify other sensors of the hole mode) and includes
its own location (i.e., the location of the sensor that started the hole mode) in the
DATA message. It then sends the DATA message to the neighbor chosen using the
right hand rule. The neighbor receiving the DATA message checks whether its own
location is closer to the trajectory than the location of the sensor that started the
hole mode. If its location is closer to the trajectory, it terminates the hole mode by
resetting the hole bit and resumes forwarding of the message in the greedy mode.
Otherwise, it continues forwarding the DATA message using the right hand rule. A
TTL (Time-To-Live) value is used in the hole mode to stop message forwarding
when the trajectory is unreachable.

If a sensor has a neighbor located at the other side of the trajectory, it forwards
the DATA message to the neighbor closest to the trajectory. The neighbor receiving
the DATA message then ends Phase I.
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Fig. 2 An illustration of the major processes of ROAD – data publishing, data retrieval and
trajectory maintenance

A complete scenario of phase I data publishing is shown in Fig. 2. Sensor S has
data to publish and chooses sensor 1 as the next hop, which is the closest to the
trajectory among the neighbors of S. Sensor 1 faces a hole and uses the right-hand
rule to find sensor 2 as the next hop. Sensor 1 then sets the hole bit, stores its own
location as the location of the sensor that started the hole mode, and sends the DATA
message to sensor 2. Sensor 2 realizes it is farther from the trajectory than the sensor
that started the hole mode (i.e., sensor 1) and finds sensor 3 as the next hop using
the right-hand rule. Sensor 3 is closer to the trajectory than the sensor that started
the hole mode (i.e., sensor 1). It resumes forwarding of the message in the greedy
mode by resetting the hole bit, and forwards the DATAmessage to sensor 4. Sensor 4
finds the neighbor sensor 5 at the other side of the trajectory and forwards the DATA
message to the neighbor closest to the trajectory, which is sensor 5. Sensor 5 stops
the forwarding of the DATA message and ends phase I.

Phase II – Propagating Data to Sensors Along the Trajectory

A sensor that ends phase I becomes the sensor that initiates phase II. To propagate
new data toward both ends of the trajectory, two TRAJECTORY messages are sent
by the initial sensor, one for each forwarding direction. Each TRAJECTORY mes-
sage carries the type of the event, the data, and one bit representing the forwarding
direction. TRAJECTORY messages can also be forwarded in the greedy mode or in
the hole mode.

A TRAJECTORY message is forwarded such that (a) the message advances in
the forwarding direction along the trajectory and (b) the message is forwarded by a
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path that best approximates the trajectory. To achieve the above two goals, a sensor
forwarding a TRAJECTORY message evaluates each of its neighbors based on the
following two measures: the relative progress of the neighbor along the forward-
ing direction and the deviation of the neighbor from the trajectory. Specifically, it
first calculates the direction of the TRAJECTORY message as norms . For example,
for a given trajectory y = ax + b, norms is 〈1, a〉 for one direction (e.g., for the
direction where the direction bit is 0) and 〈−1,−a〉 for the other direction (e.g., for
the direction where the direction bit is 1). For each neighbor, the sensor calculates
the relative progress of the neighbor as the projection of the vector from itself to
the neighbor onto norms . If the projection is positive, in other words, if the neigh-
bor makes progress along the forwarding direction, the neighbor is regarded as a
candidate to forward the TRAJECTORY message. For each candidate sensor, the
sensor calculates its deviation from the trajectory as the distance to the trajectory.
Once candidate sensors are identified, and deviation is calculated for each candidate
sensor, the sensor evaluates each candidate based on a weight calculated by the
following equation,

wi = α × d1i − d2i , (1)

where α (α ≥ 0) is a system parameter, d1i denotes the progress of candidate
sensor i relative to the current sensor along norms , and d2i represents the deviation
of sensor i from the trajectory. The neighbor with the larger wi represents a better
approximation to the trajectory, since it must be closer to the trajectory or make
greater progress along the trajectory according to Eq. (1). Therefore, the neighbor
with the largest wi is chosen as the next hop. Ties are broken by choosing the neigh-
bor with a larger sensor ID.

The value of α provides a choice for the relative importance of d1i and d2i in
weight calculation. Specifically, a larger α accentuates the relative importance of
d1i , and thus gives higher priority to sensors with significant progress toward the
forwarding direction. To prevent too much deviation of the forwarding path from
the trajectory, α is adjusted to 0 if the current sensor is more than a Communication
Range (CR) away from the trajectory. This adjustment quickly “pulls” the forward-
ing path back to the trajectory when it deviates too far.

If all of the neighbors have negative projections onto norms , a sensor may not
find any next hop candidate. In this case, a hole is detected. The sensor initiates
the hole mode by setting the hole bit, and storing its own location (i.e., the location
of the sensor that started the hole mode) in the TRAJECTORY message. Similar
to phase I, it then uses the right-hand rule to choose the next hop, starting from
the direction of norms . However, the termination condition of the hole mode in
phase II is different. Since the hole is detected when a sensor that started the hole
mode cannot find a neighbor with positive progress toward the forwarding direc-
tion norms , a sensor terminates the hole mode if its own location has a positive
projection relative to the location of the sensor that started the hole mode; otherwise,
it continues forwarding in the hole mode according to the right hand rule.

The propagation of the TRAJECTORYmessages stops at the end of the trajectory.
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Figure 2 depicts the process of forwarding a TRAJECTORY message. To forward
the TRAJECTORY message toward the upstream direction, sensor 5 that initiates
phase II calculates the weight for the two next hop candidates (i.e., sensors 4 and 6)
and chooses sensor 6 with the larger weight as the next hop. Sensor 6, in turn, relays
the message to sensor 7, which detects a hole. Sensor 7 sets the hole bit, stores
its own location in the TRAJECTORY message and chooses sensor 8 as the next
hop using the right-hand rule. The message is relayed in hole mode from sensor 8
to sensor 9, which stops the hole circumvention and resumes greedy forwarding.
Afterwards, the message is forwarded in greedy mode until it stops at sensor 12,
which is located at the end of the trajectory. Note that the TRAJECTORY message
toward the downstream direction is forwarded in the same way, except for a different
forwarding direction.

When forwarding a TRAJECTORYmessage, sensors store the data and record the
upstream and downstream neighbors on the trajectory. These sensors are called stor-
age sensors. The relationship between neighboring storage sensors is maintained
through periodic ALIVE messages. All one-hop neighbors of these storage sensors
cache the types of events stored at the storage sensors. These neighbors are called
caching sensors, which only store one byte of the type of event for each nearby
trajectory. Since the maximum distance between two neighboring storage sensors is
CR, a later DATA message is guaranteed to encounter a caching sensor or a storage
sensor when crossing the trajectory. When the DATA message reaches a caching
sensor, it will be directed to a nearby storage sensor. A storage sensor receiving a
DATA message then propagates the data along the established trajectory using the
recorded neighbor information. As a result, later data for the same type of event are
merged to the existing trajectory.

3.2.2 Data Retrieval

Data retrieval forwards a query from a sink to the corresponding trajectory and sends
a reply including stored data back to the sink.

A sink applies a global hash function to identify a trajectory. It then issues
a QUERY message including the sink’s location and events of interest through a
nearby sensor. A QUERY message is forwarded in the same way as phase I of data
publishing, which is described in Sect. 3.2.1. For the same reason, if an established
trajectory exists at the expected position for the queried event type, the QUERY
message always encounters a caching sensor or a storage sensor. When the message
reaches a caching sensor, it will be directed to a nearby storage sensor. The storage
sensor then issues a REPLY message with the data of the queried events to the sink
through generic geographic routing (e.g., [12]).

3.2.3 Trajectory Maintenance

Trajectory maintenance provides robustness against sensor failures.
A storage sensor detects the failure of a neighboring storage sensor when the

ALIVE beacon from the neighbor is absent for a certain period. Upon detecting the
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failure, the storage sensor starts a random back-off timer to avoid transmitting simul-
taneous repair messages from different storage sensors. When a storage sensor’s
timer expires, the storage sensor sends a RESTORE message toward the direction
of the failed neighboring storage sensor. The RESTORE message includes the event
type, data, forwarding direction and location of the current storage sensor.

The RESTORE message is forwarded along the trajectory in the same manner
as phase II of data publishing, which is described in Sect. 3.2.1. The intermediate
sensors forwarding a RESTORE message become storage sensors, which store the
data and record the upstream and downstream neighbors. A RESTORE message
stops at a storage sensor that already has a neighboring storage sensor in the for-
warding direction or at the end of the trajectory. As depicted in Fig. 2, a catastrophic
event caused the failures of storage sensors 15 and 16. The RESTORE message from
sensor 14 is forwarded in the downstream direction until it reaches storage sensor
18, which already has a downstream neighbor 19.

However, it is not guaranteed that the trajectory is repaired exactly where it
breaks. For example, in Fig. 2, the RESTORE message hits sensor 18 instead of
sensor 17, causing sensor 18 to have two upstream neighbors, sensors 23 and 17.
In order to eliminate the redundant old branch, the storage sensor terminating the
RESTORE message sends a TRIM message to the old neighbor in the opposite
direction of the RESTORE message. The TRIM message is forwarded along the old
branch until there are no more sensors on the old branch. All sensors receiving the
TRIM message resign from the trajectory by clearing their information on the event
type. As shown in Fig. 2, sensor 18 sends a TRIM message to sensor 17, causing
sensor 17 to delete all the stored information for the event type and to cancel the
back-off timer for the RESTORE message.

3.3 Extensions

3.3.1 Double-Sided Hole Circumvention

When a hole is detected during phase II of data publishing or trajectory maintenance,
part of the resultant trajectory may deviate far from the expected position. When a
query tries to reach such a trajectory, it may not be able to hit the trajectory when
crossing the expected position of the trajectory. In this case, the query fails to find the
data. This case is rare since it only happens when the formed trajectory is concave
and there is a path that crosses the expected position of the trajectory and protrudes
into the concave area. To avoid this problem, we propose double-sided hole cir-
cumvention in which a trajectory is formed or restored along both sides of the hole.
Obviously, no query can reach the expected position of the trajectory without hitting
a storage sensor since the restored trajectory encloses the expected position for the
trajectory. Double-sided hole circumvention incurs more communication overhead
to circumvent a hole than single-sided hole circumvention previously described. For
example, in Fig. 2, while sensor 14 sends a RESTOREmessage in downstream direc-
tion to restore the trajectory, sensor 17 also issues a RESTORE message in upstream
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direction to restore the trajectory through sensors 24 and 25 to sensor 14. Back-off
timers or TRIM messages are not needed in the double-sided hole circumvention.

3.3.2 ROAD for Generic Trajectories

The data publishing and retrieving algorithms in ROAD can be easily extended to a
trajectory of a simple curve without crossing to itself. In phase I of data publishing,
distance from a sensor to a generic trajectory can be calculated as the radius of the
smallest circle centered at the sensor and tangent to the curve. The neighbor with the
shortest distance to the curve is chosen as the next hop. The same right hand rule is
applied: a hole is detected when no neighbor with closer distance to the curve exists,
and a DATA message in the hole mode is forwarded according to the right-hand rule
until it reaches a sensor closer to the curve than the sensor that started the hole
mode. In phase II of data publishing, in addition to the distance to the curve, the
relative progress of a neighbor along the curve can be calculated as the length of
the curve between the tangent points of the current sensor and the neighbor. The
progress is positive if the tangent point of the neighbor is toward the advancement
direction of the current sensor, and negative otherwise. Together with the distance to
a curve, the weight of each next hop candidate can be calculated using Eq. (1). The
next hop candidate with the largest weight is chosen as the next hop. The same right
hand rule can be applied: a hole is detected when no neighbor with positive progress
exists, and a TRAJECTORY message in the hole mode is forwarded according to the
right-hand rule until it reaches a sensor with positive progress relative to the sensor
that started the hole mode. Data retrieval and trajectory maintenance can also be
extended since they also follow phase I or phase II algorithms.

Note that a similar idea to the above forwarding algorithm was discussed in [14],
although with different hole circumvention mode.

3.3.3 Time-Based Load Balancing

One possible criticism of ROAD and many other existing schemes (e.g., [13]
and [17]) is the unbalanced load of data storage. Specifically, sensors near the prede-
fined storage places have a greater chance of becoming storing and distributing data,
and thus, they consume more energy. Our solution to this issue is time-based load
balancing – both the time and type of event are used as hash keys to identify data
storage places. For ROAD, in different time slots, data for the same type of event are
stored to different trajectories. Correspondingly, queries for a certain type of event
are also associated with time – for the same type of event happening in different
time slots, queries are sent to different trajectories. Each type of event has a timeout
period, indicating how long the data should be kept. By carefully designing the
hashing function of time and event type, the load of data dissemination can be well
distributed among sensors.
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4 Simulation Evaluation

The ROAD implementation evaluated here is based on the MIT uAMPS NS-2 exten-
sion [10]. The ROAD extensions (i.e., double-sided hole circumvention, generic
trajectories and time-based load balancing) are not evaluated and will be part of the
future work. In the simulation, ROAD is compared with data-centric storage denoted
by DCS (d = 0, 1, 2) [17, 18], where d means the depth of the structured replication
hierarchy. In structured replication, the entire area is divided into 4d sub-regions,
each containing a storage location for a single type of event. These storage locations
are organized into a tree structure of height (d + 1). DCS (d = 0) refers to the
original DCS design with no structured replication (i.e., only one storage location
for each event type). With structured replication, a sensor detecting an event stores
the data for the event at the closest storage location for the event type. A query is
first routed to the root of the tree and then forwarded to leaves following the tree
hierarchy in a recursive way. Query replies are transmitted following the same path
as queries, but in the reverse direction. Structured replication distributes data storage
over sensors at different locations, and thus improves the scalability. DCS applies
a perimeter refresh protocol to restore data storage from local replications when
sensor failures occur.

In the simulation, 1600 sensors are uniformly deployed in a square area of
200 m×200 m. Fifty sensors are randomly chosen as source sensors and each pub-
lishes data for a random type of event. Data publishing is modeled as a Poisson
process at the arrival rate of 1 data publishing per 30 ss. Afterwards, 400 randomly
chosen sensors each issue a query to retrieve data for a random type of event. The
queries are also characterized as a Poisson process at the arrival rate of 1 query per
second if not otherwise specified. When a query reaches a storage sensor, all the data
for the queried event type are sent to the sink in one message. Four possible event
types are simulated, each hashed to one of the four trajectories crossing the center
of the area. Two of the trajectories are diagonal lines and the other two are parallel
to x and y axes, respectively. The data size for one event is fixed at 100 bytes. α in
Eq. (1) is configured as 1.0.

ROAD is compared with DCS in terms of communication overhead, response
time, reliability and robustness. Note that for either scheme, the communication
overhead does not include the overhead to initialize the network such as the energy
consumed to exchange location information among one-hop neighbors.

4.1 Communication Overhead

Figure 3 shows the average communication overhead per data publishing as mea-
sured in byte×hop. We can see that ROAD incurs more communication overhead
to publish data than DCS protocols. This can be easily understood since ROAD
publishes data to form a trajectory while DCS protocols only store data to a single
location. Furthermore, increasing the depth d of the replication hierarchy reduces
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Fig. 3 Communication overhead per publishing

the cost of data publishing in DCS. This is because the distance between a sink and
the closest mirror sensor becomes smaller when d is larger.

Figure 4 presents the average communication overhead per query as measured in
byte×hop. ROAD has the minimal communication overhead per query. In ROAD,
each sink only needs to reach a nearby storage sensor on the trajectory to retrieve
data, while in DCS a sink needs to reach all storage locations. Since queries and
replies need to follow the replication structure recursively, the cost of query grows
with the depth d of the replication structure as shown in Fig. 4. As expected, in
all the schemes, the communication overhead of both data publishing and query
decreases with the increase of CR because of less communication hops.

Based on the results in Figs. 3 and 4, the total communication overhead for both
data publishing and queries can be derived as shown in Fig. 5. With 50 events pub-
lished and CR of 15 m, ROAD outperforms DCS protocols when the number of
queries is at least 20. Although not shown, similar results can also be obtained for
larger CRs. For example, when CR is 30 m, ROAD outperforms DCS when there
are more than 22 queries. This implies that ROAD is efficient for applications with
many sinks retrieving data. The examples of such applications include battlefield
surveillance and disaster rescue missions, in which many soldiers or rescue team
members are interested in various types of events. For applications with few sinks
requesting data, ROAD incurs more communication overhead than DCS protocols
because most of the communication overhead in such applications is caused by data
publishing.
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4.2 Response Time

For sensor network applications in hostile environments, the system response time
is critical. For example, based on the retrieved data, a solider in a battlefield may
need to take action immediately in order to avoid potential dangers. The response
time is measured as the latency between the time when a query is issued and the
time when a reply for the query is received. Figure 6 compares the response times
for all protocols. ROAD has a response time about 50% faster than the best value
among all DCS protocols, DCS (d = 0). This is because in ROAD, a sink can access
a nearby sensor on the trajectory to retrieve data, while in DCS a sink needs to reach
all possible mirror storage locations following the replication structure.
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Fig. 6 Response time over various communication ranges

4.3 Reliability of Data Retrieval

The reliability of data retrieval is also important. The reliability performance can be
evaluated using the query success rate under various query loads. In the simulation,
the query success rate is measured as the ratio of the amount of data retrieved to
the amount of published data that should be retrieved. For example, if there are 100
type-1 events published and a query for type-1 events retrieves the data for 95 type-1
events, the query success rate is calculated as 95%.

In Fig. 7, the query arrival rate is varied from 1 query per second to 200 queries
per second to simulate a system under different query loads. Under the light load of
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Fig. 7 Reliability of data retrieval as evaluated by query success rate over query arrival rates

1 query per second, all protocols perform well and deliver more than 94% of data.
However, the query success rate of DCS (d = 1) and DCS (d = 2) suffers greatly
when the query arrival rate reaches 50 queries per second. DCS (d = 0) performs
best among the DCS protocols, delivering about 81% of data at the maximal query
arrival rate. Again, ROAD outperforms DCS protocols by providing a success rate of
about 94% at the maximal query arrival rate. The reason for data loss is network con-
gestion caused by numerous queries and replies that are transmitted simultaneously
in the network. In DCS (d = 1) and DCS (d = 2), congestion happens when a large
number of queries and replies are forwarded following the replication hierarchy.
Congestion is alleviated since there is no replication hierarchy in DCS (d = 0). In
ROAD, the load of the queries is distributed over different storage sensors because
each sink can retrieve data from a nearby sensor on the trajectory. As a result, the
chance of congestion is reduced. The high reliability of ROAD favors applications
where queries are frequently issued by many sinks.

4.4 Robustness Against Large Scale Sensor Failures

In order to evaluate the performance of ROAD and DCS in hostile environments,
large scale sensor failures were simulated by randomly generating holes in the field.
A hole is a circular area within which all sensors are regarded to have failed. Two
large scale sensor failure scenarios were simulated.

In the first scenario, data for 50 events were published by 50 randomly chosen
source sensors. After that, 10 holes were randomly generated with various sizes.
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After a certain restoration period, queries were sent from 400 randomly chosen
sensors each for a random type of event.

Figure 8 demonstrates the query success rate with various mean hole radii.
ROAD has a higher query success rate than DCS protocols, especially for large
holes. For example, with the mean hole radius of 32.5 m, ROAD provides about a
71% query success rate while the best DCS protocols can only deliver about 24%
of data. Figures 9 and 10 confirm that ROAD has lower communication overhead
and latency per query than DCS protocols under severe environmental conditions.
Note that the communication overhead and latency are only counted for successful
queries (i.e., queries that retrieve some data from the network).

The second scenario fixed the mean hole radius at 32.5 m but varied the number
of holes. As shown in Figs. 11, 12, and 13, similar results were obtained that ROAD
is more robust and has lower communication overhead and latency per query than
DCS protocols under severe environmental conditions.

When large scale sensor failures occur, query failures can be caused by (1) loss
of published data due to the failures of storage sensors or (2) unsuccessful rout-
ing incurred by damage of intermediate sensors. By publishing and retrieving data
through a trajectory, ROAD relieves the effects of both causes. Since the chance of
all sensors on a trajectory failing simultaneously is low, the data published onto a
trajectory are unlikely to be destroyed. In contrast, DCS protocols deal with sensor
failures through a perimeter refresh protocol – when a storage sensor fails, other
storage sensors on the perimeter will restore the perimeter with new sensors. The
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perimeter refresh protocol has been proven effective against individual sensor fail-
ures. However, since all the sensors on a perimeter are located close to each other,
they may be all destroyed by a large scale sensor failure event, causing data loss. On
the other hand, routing a query to access a trajectory is always easier than reaching
a single location because accessing a trajectory only requires finding a path to any
sensor on the trajectory.

5 Conclusion

This chapter proposes ROAD, a novel data dissemination scheme that publishes and
retrieves data through sensors forming a path that best approximates a geographi-
cal trajectory. ROAD is robust against large scale sensor failures, which makes it
suitable for sensor networks deployed in hostile environments. ROAD also presents
high reliability and low communication overhead of data retrieval, and thus, it is
efficient for applications with a large number of sinks that frequently issue queries.
Simulation results provided a comparison between ROAD and DCS protocols in
terms of communication overhead, response time, reliability and robustness against
large scale sensor failures, and established ROAD as an effective data dissemination
solution for WSN applications in hostile environments.
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Markov Decision Process-Based Resource and
Information Management for Sensor Networks

David Akselrod, Thomas Lang, Michael McDonald,
and Thiagalingam Kirubarajan

Abstract In this chapter, we consider the problem of managing a network of sen-
sors with particular application to multisensor multitarget tracking. We study the
problem of decision based control of a network of sensors carrying out surveillance
over a region that includes a number of moving targets. The objective is to maximize
the information obtained and to track as many targets as possible with the maximum
possible accuracy. Uncertainty in the information obtained by each sensor regarding
the location of the targets is addressed in the problem formulation. The chapter
presents a number of solutions for centralized and decentralized tracking involving
sensor management and distributed information flow control. We consider a dis-
tributed data fusion system consisting of sensors that are decentralized, heteroge-
nous, and potentially unreliable. The objective function for sensor management is
based on the Posterior Cramer-Rao lower bound and constitutes the basis of a reward
structure for Markov decision processes that are used, together with decentralized
lookup substrate, to control the data fusion process. In distributed sensor network
fusion, we analyze three distributed data fusion algorithms: associated measure-
ment fusion, tracklet fusion and track-to-track fusion. The chapter also provides a
detailed analysis of communication and computational load in distributed tracking
algorithms. In centralized sensor network fusion, we introduce a multi-level hier-
archy of MDPs to control each of the sensors in the network. Simulation results
are presented on a representative multitarget tracking problem using a network of
sensors showing a significant improvement in performance compared to the existing
algorithm.

1 Introduction

The problem considered in this chapter is the optimization of the information
obtained by a number of sensors tracking a number of confirmed and suspected
targets. We also consider a distributed data fusion system consisting of sensors that
are decentralized, heterogenous, and potentially unreliable.
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Several sensor management algorithms have been presented in the literature. In
[12] a system architecture for the target assignment and coordinated intercept prob-
lem was developed. The path-planning problem was solved via a Voronoi diagram
and Eppstein’s k-best paths algorithm. As an approach to finding an optimal solution
for the team as a whole, a decomposition strategy that lets team-optimal solutions
to be calculated in a decentralized manner was presented in [62]. A decision and
control scheme that creates a model in which the gain is based on maximizing the
expected number of targets found given some a priori information was presented in
[43]. In that approach a feasible method of cooperation is achieved by considering
other vehicles as stochastic elements. The problem of sensor management and coor-
dinated sensor control in decentralized sensing networks was addressed in [42]. It
builds on techniques established for the related problem of decentralized data fusion.
The methods are based on the use of mutual information gain measures to formulate
local and global objective functions for the sensor network. The approach to coop-
erative control presented in [66] aims to decouple, in part, the central problems of
formation maintenance and maneuver management. For this purpose it introduces to
the group a virtual body that is a collection of linked, moving reference points. The
approach in [44] presents a decentralized on-line control strategy that lets coopera-
tive sensors to engage multiple targets time-optimally. A UAV placement algorithm
described in [79] and [80] proposes a Fisher information based approach for optimal
Ground Moving Target Indicator (GMTI) sensor placement. An information based
criterion, is used to select the path of an sensor such that the total information,
obtainable by the sensors in the sensors as a group, corresponding to the detected
targets, is maximized. A single-level MDP approach for sensor management was
presented in [2]. The criterion used for the policy update provides a robust solu-
tion without compromising the precision of the approach. The approach of using
information-based objective function yielded good results when incorporated in the
MDP reward structure. In [6] a multi-level hierarchy of MDPs with each level in
the hierarchy solving a problem at a different level of abstraction was presented.
The problem of sensor selection in multitarget tracking with unknown associations
of measurements to targets, and also with unknown and potentially time-varying
number of targets was considered in [87].

In this chapter, we are interested in considering the sensor management prob-
lem for multitarget tracking using a tractable approach. In many of the solutions
presented above, polynomial convergence of the proposed algorithms is not guar-
anteed or the computational complexity is not presented. The approach proposed
in this chapter considers sensor placement task as a goal-oriented decentralized
Markov Decision Process (Dec-MDP) with independent transitions and observa-
tions, solved by decomposing it into a number of Markov Decision Processes
(MDPs). The individual Markov Decision Processes communicate with each other
before they update their individual policies. Under certain conditions, the optimiza-
tion problem, presented as a Dec-MDP may be decomposed into a number of MDPs
that can be solved in polynomial time. Therefore, our algorithm will scale up better
in larger environments with a high number of targets than those with higher com-
plexity. The criterion used for the policy update provides a robust solution without
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compromising the precision of the approach. The use of information based objective
function yielded good results when incorporated in the MDP reward structure.

Although a single-level MDP sensor management approach is certainly attractive
in case of multiple targets as the optimization problem need not be solved for each
one of the targets individually, the decision regarding a sensor trajectory may be
suboptimal. The proposed solution is multi-level hierarchy of MDPs controlling
each of the sensors. Each level in the hierarchy solves a problem at a different level
of abstraction. As a result, a sensor will navigate more precisely in a populated MDP
sectors of the higher level as they will be represented by a lower-level MDP process.
However, even using a multi-level MDP structure, the regular solution of MDP
introduces a number of drawbacks to the practical problems solved using an MDP
framework. Choosing just a single action for the given state out of several possible
actions exposes the issue of choosing such action based merely on its yielding the
highest value of state and eliminating another possible actions which yield the same
or somewhat lower value. Also, because of inevitable noise components present in
the system, the action yielding the highest value of state, would not necessarily be
the one yielding the highest value of state if the noise were eliminated from the
system. In addition, choosing a single action for the given state causes a number of
problems in practical applications. One of them is loop formation, especially taking
into account loops mistakenly formed because of processing noisy observations data
on the basis of which the policy was calculated. Another issue is decreasing the
potential coverage of the area under surveillance thus reducing the likelihood of
discovering new targets. In this chapter, we present a Dynamic Element Matching
(DEM) based modification of the classic Value Iteration (VI) algorithm to calculate
the optimal policy of an MDP. A number of newly introduced performance metrics,
such as Mean Opportunity Index, Maximal Opportunity Index and Area Coverage
Index, verify the effectiveness of an MDP policy, especially for quantifying the
impact of the modified DEM-based VI algorithm on the overall performance. The
modified algorithm is applied to control a group of sensors carrying out surveillance
over a region that includes a number of moving targets and demonstrates accuracy
improvement in position and velocity RMSE of the targets under surveillance. The
proposed method provides robust performance while guaranteeing polynomial com-
putational complexity.

In this chapter we also consider the problem of transferring significant amounts
of data through communication channels that are subject to certain capacity lim-
its, associated costs of data transfers, reliability and security issues. A number
of multisensor tracking systems and data fusion techniques have been introduced
in the literature [9, 7, 34, 56, 78]. Several practical distributed tracking algo-
rithms, including distributed track fusion, track fusion using tracklets and distributed
composite tracking have been identified [7]. What is common to many of the above
is that the data from each platform, which may correspond to a different type of data
fusion or data format, are passed to all the other platforms. The assumption that the
available data channel capacity will suffice to carry all the required data will not
hold in applications that feature a large number of platforms with high volumes of
data to be exchanged among them (e.g., a network of airports). A number of works
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present solutions for distributed sensor networks applications and network-centric
data fusion where limited communication capacity is considered. An information
graph approach is introduced in [32]. Using the information graph model, common
information can be identified and removed to produce the optimal estimate. The
approach of using graphical models was also used in [30] to develop distributed
fusion algorithms reducing communication. An agent-based fusion model is pre-
sented in [68], where agents model fusion entities’ capabilities, expertise and inten-
tions and perform fusion based on their intentions. They cooperate with each other to
extract the relevant information in order to achieve their intentions. Issues associated
with distributed multiple target tracking for ad hoc sensor networks are discussed
in [35], which examines the applicability of tracking algorithms developed for tra-
ditional networks of sensors. A decision fusion rule based on the total number of
detections made by local sensors, for wireless sensor networks with a large number
of sensors was proposed in [64]. In [31], distributed fusion and communication man-
agement algorithms for target identification, where information graphs are used to
select fusion architectures that minimize the effect of information double counting
due to communication, were presented. Strategies to determine when a fusion agent
should send its estimate to another fusion agent were also developed. Techniques to
solve data association problems arising in distributed sensing scenarios were pre-
sented in [28], which introduced a communication-sensitive message-passing algo-
rithm for achieving near-optimal performance with substantial savings in communi-
cation. A comparison of two different approaches for sensor selection for distributed
tracking was presented in [22]. An approach for fusing information from diverse
sources based on the quality of the source was presented in [96]. An algorithm for
determining the quality of sensor data in the fusion process was presented in [19].
An information valuation metric for sensor networks was described in [74].

The chapter describes a distributed data fusion system consisting of platforms
that are completely decentralized, independent and heterogenous. The platforms are
also assumed unreliable, i.e., they may join or leave the network at any time, are
not committed to share the information, and may have unreliable communication
channels with limited capacity. When requesting specific information from such a
platform we do not know if the requested information will be provided as we have
only the statistical characteristics describing the ability of the platform to provide
such information. Data transfer from a platform in the system may be interrupted at
any moment. Similarly, a refusal to supply the specific data from a platform does not
mean that the next request will be refused as well. We are considering a situation
where the decisions regarding the data flow of the information in the distributed
data fusion system should be made sequentially based on the currently observable
state that reflects fully or partially the state of the environment. The result of each
decision cannot be fully predicted, but can be accounted for using available statisti-
cal information before the next decision is made.

This chapter also presents a decision mechanism that provides each platform
with the required data for the distributed data fusion process subject to the available
channel capacities and reducing redundancy in the information flow in the over-
all system. The proposed approach, which is based on Markov decision processes
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(MDP) and decentralized lookup substrate (i.e., the way to identify efficiently all
the platforms in the distributed network that possess the required information), will
control the data fusion and information exchange process based, among the other
parameters, on information gain metrics of individual platforms, enhancing the total
distributed system’s reliability as well as that of each participating platform. The
chapter includes a complete solution for the distributed data fusion architecture
timely providing participating platforms with specific decisions regarding obtaining
information that is needed for the data fusion.

We also present three distributed data fusion algorithms – associated measure-
ment fusion, tracklet fusion and track-to-track fusion [37, 81] – to be applied with
the MDP-based data fusion system. We compare the performance based on the
type of the data fusion used. In track-to-track fusion [26, 59] sensor measurements
are used to update the tracks of each of the local trackers. The updated tracks
are then communicated to the other platforms based on the pre-defined policy.
Since compressed information (tracks, not measurements) is shared, using track-
to-track fusion results in suboptimal performance. In addition to that, in the pres-
ence of process noise, this technique requires computation of the filter gains at the
update instances of the received tracks. This step is required to compute the cross-
correlation between the local and received tracks. Hence each local tracker would
be required to compute the filter gains for all tracks at all local trackers. This makes
the algorithm computationally burdensome. In [8, 59] an approximation technique
is presented for the computation of cross-covariance matrices between tracks from
different sources, which is used in this work. In the second fusion approach, the
local tracks are first updated using the measurements available to the corresponding
platform. After a few updates these tracks are decorrelated with the prior informa-
tion and communicated for fusion to the other platforms. The decorrelated tracks
are called tracklets in the literature [40].

The architecture involving tracklets is considered to be a special case of track
fusion. Since they are decorrelated from the local tracks, the tracklets can be treated
as measurements of the track states. In this case no further computation of the
correlation between local tracks and tracklets is required. However, in the pres-
ence of process noise, the tracklets communicated by various platforms cannot be
totally decorrelated from the local tracks. The degree of the residual correlation
depends on maneuvering index [27] of the tracks. In the third fusion architecture,
the sensor measurements are associated with the local tracks maintained in indi-
vidual platforms and only then the associated measurements reports (AMRs) are
communicated to the other platforms [7]. This architecture is easier to implement
than the track fusion algorithms due to the independence of information from differ-
ent sources. That stems from the fact that, unlike local tracks, measurements from
different local platforms can be considered to be independent of each other. We
present convergence and complexity analysis and demonstrate the proposed algo-
rithm using simulation results. The proposed approach does not require any mod-
ification to the individual platforms or communication network connecting them
beside the ability to fuse external data containing required information such as
tracks, tracklets or AMRs with the platform’s own data.
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2 Decision-Based Resource and Information Management

2.1 Problem Formulation

Figure 1 shows the area under surveillance divided into sectors that may contain
a number of targets as well as sensors that need to track these targets. A sensor
actions are contained within a set of possible actions A = {ai |i = 1, . . . , N }. In this
chapter, possible action set includes moving one sector to the North, West, East, or
South. However, it may include much more sophisticated actions. We assume that
with each such action is associated a probability P of reaching the intent of that
action, that besides the action itself depends on the current state of the sensor (e.g.,
the physical location of the sensor) and on the goal to be reached. It means that the
sensor moving to the North could actually have moved to the East.

In each of its possible states the sensor receives a certain reward, and the perfor-
mance of the sensor will be measured by a sum of rewards for the states visited. The
abbreviated objective function is thus formulated as:

π∗ = argmax
π

E
[
Σ∞

t=0Uh([s0, s1, . . .])|π
]

(1)

where π∗ is the policy of actions maximizing the expectation of the utility func-
tion Uh of all the sequence of states [s0, s1, . . .] which resulted from following that
policy.

Fig. 1 Area under surveillance containing a number of targets and sensors

2.2 Sensor Management as a Decision Mechanism

Choosing to take a specific move introduces a new decision to be made regarding
the one to follow. The decision to take a move in a certain direction may not be
carried out as planned because of external conditions or errors in navigation. After
this situation is discovered and the current state is updated, the sensor will have to
make a new decision taking its current state into account. What is important to note
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is that in such a case, the optimal configuration is not achievable by a single decision
or solution. It is rather an outcome of a multi-stage process where to each state of the
system corresponds the optimal action (taking into account the information available
to the sensor) that can be taken in the given state.

In the problem we are considering, we do not seek a solution at a particular
time only. That is, the approach, once having solved an optimization problem we
have formulated, will provide the optimal decision for the next step taking into
account the outcome of the previous one. It means that we are considering a situa-
tion where the decisions should be made sequentially or in a recursive manner. The
result of each decision cannot be fully predicted, but can be accounted for using
available statistical information before the next decision is made. The objective is
to minimize the cost of our actions (or, alternatively, maximize a utility function)
[18, 51]. One of the approaches that could be utilized is using a Markov Decision
Processes – stochastic processes controlled by a decision maker. An infinite-horizon
fully observable MDP is defined by the model M = < S, A, P, R > where S
is the finite set of world states, A is the finite set of actions, P is the transition
probability function, and R is the real-valued reward function. In an MDP, a policy
π ∈ Π is a mapping from states to actions. π : S→A. Because of the Markov
property, the action taken depends on the current state only and not on any of the
previous states. The MDP model is solved using dynamic programming approaches,
which have been described in [13, 16] as well as in many other works. Given a
stationary discrete-time process,

st+1 = f (st , at , wt ), t = 0, 1, . . . , (2)

where st is the state at time t , at is the action at time t that depends only on the
current state st , and wt is the random disturbance; the problem is to find a stationary
policy π . This policy maps each st ∈ S to at ∈ A, which, given an initial state s0,
maximizes the following value function given by

Vπ (s0) = lim
N−→∞

E

{
N−1∑

k=0

γ k R(st+k, at+k)|st = s0

}

=
∑

st+1∈S

P(st+1|st = s0, at )
[
R(st , at ) + γ Vπ (st+1)

]
(3)

where γ is a discount factor, 0 < γ < 1. The random disturbance wt is repre-
sented by the transition probability P in an MDP. Then, the optimal value function
is defined as

V ∗(s) = max
π∈Π

Vπ (s), s ∈ S (4)

The policy π is optimal if Vπ (s) = V ∗(s) for all the states s ∈ S. The optimal V ∗ is
unique and is the solution to the Bellman equation [13]
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V ∗(st ) = max
a∈A

E{R(st , at ) + γ V ∗( f (st , at , wt ))}, ∀ st ∈ S (5)

Discount factor γ expresses the dependence of the value function on current rewards
over future rewards. Using the elements of the MDP, (5) can be expressed as

V ∗(st ) = max
a∈A

(R(st , at ) + γ
∑

st+1∈S
P(st , at , st+1)V ∗(st+1), ∀st ∈ S (6)

Computational complexity of MDPs was analyzed in [67] and it was shown that,
under any of the three cost criteria [60, 67], namely, the expected cost to target,
expected discounted cumulative cost, and average expected cost per stage, the prob-
lem is P-complete.

2.3 Policy Update and Termination Criteria

When a certain policy is calculated, it is assumed that during its execution the
conditions and the state of the environment that contributed to the specific policy
do not change significantly, except for the changes in the environment as a direct
consequence of the actions that are taken. For example, transition probability P and
reward R matrices are supposed to reflect the environment at all times during the
policy execution. It is assumed that the locations of all information sources have not
been changed. Obviously, these assumptions may not hold, at least not for a long
period of time, which means that the policy should be re-evaluated from time to
time as shown in Fig. 2, taking into account any new information that might has
arrived.

This approach is similar to sampling an analog signal, where the sampling fre-
quency reflects the dynamics of the signal, specifically its highest harmonic. In our
case, the environment change rate will also influence the policy update rate. In some
cases, premature policy termination will be performed. We define a criterion for a
premature policy change as exceeding the maximum allowed difference between
the state of the world as we observed it at the beginning of the current policy and
the updated one during the policy execution.

Fig. 2 Policy update stages
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3 Decision-Based Multitarget Tracking

3.1 MDP-Based Structure for Multisensor Multitarget Tracking

The overall problem of sensor management can be formulated as a Dec-MDP pro-
cess possessing the qualities mentioned above, which allows us to decompose it into
a number of MDPs. We specify below all the elements of these MDPs that are solved
optimally to attain the most desirable solution to the decentralized optimization
problem. The problem solved by each of the composing MDPs is an optimization of
the information obtained by a moving sensor carrying out surveillance over a region
which includes a number of confirmed and suspected targets. The overall surveil-
lance region is divided into a number of MDP sectors of which the corresponding
MDP is responsible for a certain part.

In this chapter, we divide the area of surveillance into 25 equal sectors, which
we refer to as MDP sectors. Any target that is situated within the boundaries of the
area will belong to one of these 25 sectors. All the sensors act within the boundaries
of these sectors when each one is responsible for the designated area. The division
to MDP sectors is independent of the division to sectors to be scanned by a sensor.
It is assumed that the sensor is able to detect the targets situated within the MDP
sector only when the sensor is located close to the sector boundaries. The sensor has
to decide on the optimal path to follow in order to cover as many targets as possible
during its operation at the lowest cost. A separate MDP is allocated to each sensor
at each of the levels.

• Set of states S:
The state of the MDP, corresponding to each of the sensors, consists of its location
combined with the states of all the populated sectors that the sensor is responsible
for. A sector is considered populated if it contains at least one target. Once a
certain sector has been visited by a sensor, its status is updated (cleared). Once
the status bits of all the populated sectors are cleared, they will be set again as
the sensor continues the surveillance.

• Set of actions A:
The set A contains all the possible actions that a sensor can take in order to make
its next move. In our case, we have four actions in the set, each one instructing it
to move in either North, South, West, or East direction.

• Transition probabilities Pr (st+1|st , at ):
The sensor has a priori information regarding the targets it needs to visit as well
as other factors which may reduce its chance of survival, chance of getting to the
correct location, etc. For example, if we know that high winds blow in the vicinity
of a certain sector, the chance of the sensor to arrive to the desired location will
be lower. All such information is eventually mapped to the transition probability
matrix Pr that specifies the probability of transition from state st to state st+1

while performing an action at .
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• Real-valued reward function on states R(s):
R(s) contains the value of the immediate reward associated with state s. It is a
tool to specify priorities in getting to specific information source. We can express
R as

R(s) = Θr (s) − (1 − Θ)c(s), 0 ≤ Θ ≤ 1 (7)

where r (s) is the revenue associated with being in state s and c(s) is the cost
associated with it. Coefficient Θ balances between considerations of priority to
reach the state s and the cost of reaching it. For example, in mission-critical or
military applications, Θ will be higher than that in commercial applications.
In the above, r (s) and c(s) are expressed as

r (s) =
N∑

i=1

rw
i (s)rre

i (s) = Rw
s

T Rre
s , rw

1 (s) + . . . + rw
N (s) = 1 (8)

c(s) =
M∑

j=1

cw
j (s)cce

j (s) = Cw
s

T Cce
s , cw

1 (s) + . . . + cw
M (s) = 1 (9)

where Rre
s = [rre

1 (s), . . . , rre
N (s)]T and Cce

s = [cce
1 (s), . . . , cce

N (s)]T are vectors
containing contributing elements of the state revenue and state cost, respec-
tively. Vectors Rw

s = [rw
1 (s), . . . , rw

N (s)]T and Cw
s = [cw

1 (s), . . . , cw
N (s)]T contain

weights, which control the influence of Rre and Cce elements on the revenue r (s)
and the cost c(s), respectively. In general, both cost and revenue weights may
depend on the state, but in many applications they can be independent of the
system state s.

Figure 3 shows the pseudo code of the sensor control algorithm. It has the fol-
lowing key elements:

• Initialization stage, during which the area under surveillance is determined and
the initial parameters are set.

• Sensor movement control stage. During this stage an sensor is controlled accord-
ing to the evaluated MDP policy. After the current policy is calculated, a new
action is determined. This action may not necessarily result in a flight direc-
tion change. If it does, a new maneuver is initiated. Sensor movement direction
changes take place in pre-defined regions, designated as Maneuver zones. When
in a Maneuver zone and in need to change its flight direction, a sensor will engage
maneuver control (i.e., resulting in coordinated turn start).

• Scan decision control. Each sensor decides on the sectors to scan in a process
separate from path selection. In this stage, a fixed number of surveillance sectors
to be scanned are selected.

• In the last stage, information obtained by sensors is processed.
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function SensorControlAlgorithm
1. Initialization: Designate surveillance area. Set initial parameters
2. Sensor movement control.

a. If (NoPolicySet Or ReachedPolicyUpdate)
ChangePolicy:

i. Build updated list of sectors: (a) populated AND (b) unscanned over time limit
ii. Calculate updated TransitionProbabilityMatrix P

iii. Calculate updated RewardFunction R
iv. Calculate MDP policy π

b. ExecuteCurrentAction

• NewManeuverCheck
If(a( si ) = a( si− 1))
ExecuteManeuver: perform movement direction change according to a( si)
Else
ContinueCurrentAction: according to a( si ) . No direction change.

• BoundaryCheck
Until(ReachedNewSector)
ContinueCurrentAction: Perform action according to a( si )

• NewSectorDecisionPoint
If(ReachedPolicyUpdate)
ChangePolicy: Perform steps i to iv from 2-a above.
Else
DetermineNewAction: a( si)
ExecuteCurrentAction: Perform steps in 2-b above.

3. Scan decision control.
4. Process obtained measurements.

Fig. 3 Sensor control algorithm. After the current policy is calculated, a new action is determined.
This action may not necessarily result in a movement direction change. If it does, a new maneuver
is initiated

3.2 Expected Information Gain-Based Reward Structure of MDP
for Sensor Management

In this work, the authors utilize the approach of using information-based objective
function. The objective function is based on the Posterior Cramér-Rao lower bound
(PCRLB) [88]. Let X̂ (Z ) be an unbiased estimate of a r -dimensional random state
vector X , based on measurement vector Z . The PCRLB for the estimation error is
defined to be the inverse of the Fisher Information Matrix (FIM) [91], J , providing
a lower bound of the estimation error:

C(k) � E{[X̂k(Zk) − Xk][X̂k(Zk) − Xk]′} ≥ J (k)−1 (10)
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The r × r dimensional Fisher information matrix J is defined as:

J ≡ E{[∇x log(p(Z , X ))][∇x log(p(Z , X ))]′} (11)

where p(Z , X ) is the joint probability density function of (Z , X ) and E denotes
expectation over (Z , X ).

Assuming independently moving targets, the linear state equation can be decom-
posed into M equations [86]:

Xt
k+1 = Ft

k Xt
k + ν t

k t = 1, 2, . . . , M (12)

In the equations above, M is a number of targets, Ft
k is the state transition matrix

and ν t
k is the process noise of target t . For the linear system (12), the sequence {Jk}

of posterior information for estimating Xk is given by the following recursion [88]:

J (k + 1) = D22
k − D21

k (J (k) + D11
k )−1 D12

k (13)

where [73]:

D11
k = F ′

kΓ
−1

k Fk (14a)

D12
k = −F ′

kΓ
−1 = [D21

k ]′ (14b)

D22
k = Γ −1

k + JZ (k + 1) (14c)

Using the Matrix Inversion Lemma, it can be shown [73] that (13) and (14) are
equivalent to the following recursion:

J t (k + 1) = [Γ t
k + Ft

k J t (k)−1(Ft
k )′]−1 + J t

Z (k + 1) = J t
X (k) + J t

Z (k + 1) (15)

where J t
X (k) expresses the prior information and J t

Z (k + 1) the measurement contri-
bution, respectively. Assuming measurement origin uncertainty, the j-th measure-
ment at the i-th sensor at time step k is given by either

Zi
k = [hi

k]t (xt
k) + [ωi

k( j)]t (16)

if the measurement originated from target t , or by

Zi
k = υ i

k( j) (17)

if it is a false alarm. In the equations above, [hi
k]t is a non-linear function, [ωi

k( j)]t is
a zero mean Gaussian random variable with covariance Rk and υ i

k( j) is distributed
uniformly across the surveillance region. It can be shown [48, 47] that

J t
z (k) =

n∑

i=1

J t
zi

(k) =
n∑

i=1

E{([Hi
k ]t )′ R−1

k [Hi
k ]t } (18)
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where Rk is the measurement noise covariance and (a, b)-th element of matrix [Hi
k ]t

is given by:

[Hi
k ]t (a, b) = ∂[hi

k]t (a)

∂xt
k(b)

(19)

We can see that (13) is equivalent to:

J t (k + 1) = J t
X (k) + J t

Z (k + 1) = J t
X (k) +

n∑

i=1

E{([Hi
k+1]t )′ R−1

k+1[Hi
k+1]t } (20)

which has the same form as the Extended Kalman Filter (EKF) covariance matrix
propagation equation except for the expectation operator. In this chapter, we defined
trace as a scalar performance measure of PCRLB which is proportional to the cir-
cumference of the rectangular region enclosing the minimum achievable covariance
ellipsoid.

The objective function corresponding to M targets for a given sensor is thus given
by:

I (k) =
M∑

j=1

log
(
trace{Jj (k|k)}) =

∑

j

log
(
trace{Pj (k|k)−1}) (21)

where Pj (k|k) is the posterior covariance matrix of the state vector corresponding
to target j at time k.

The reward associated with the state of a sensor corresponding to a specific MDP
sector is expressed as the expected information gain corresponding to this MDP
sector. One MDP sector may contain a number of surveillance sectors – a set of
areas that can be covered during a single sensor radar scan. Then, the reward of the
MDP sector comprising W surveillance sectors is

W∑

f =1

I scan
f m,n(k, s) (22)

where I scan
f m,n(k, s) is the expected information gain from the surveillance sectors to

be covered by a sensor. If there are Nm,n(k) targets in surveillance sector (m, n) (out
of mn surveillance sectors) at time step k, then the expected information gain by
sensor s from this sector is given by

I scan
m,n (k, s) =

Nm,n (k)∑

j=1

log trace{Js, j (k|k)} − log trace{Js, j (k|k − 1)}

=
Nm,n (k)∑

j=1

log trace{Js, j (k|k − 1) + πD(k, s, j)Jzs (k)} − log trace{Js, j (k|k − 1)} (23)
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where Jj (k|k − 1) is the predicted information matrix and Js, j (k|k) is the updated
posterior information matrix corresponding to target j , and πD(k, s, j) is the target
detection probability expressing the reduction in the target originated measurement
contribution to potential information gain [79]. For a GMTI radar, a target will not be
detected if the magnitude of the target’s measured range rate falls below a threshold
ṙmin. Therefore, πD(k, s, j) is given by

πD(k, s, j) = 1 − P{|ṙ(k, s, j)| < ṙmin|ṙ(k, s, j |k − 1), σṙ (k, s, j |k − 1)2} (24)

where ṙ (k, s, j), ṙ (k, s, j |k − 1) and σṙ (k, s, j |k − 1) are the measured range rate,
predicted range rate and the variance of the predicted range rate respectively. If there
are no detected targets in the sector (m, n), I scan

m,n (k, s) is given by

I scan
m,n (k, s) = log trace{Jm,n(k, s)} − log trace{J 0

m,n} (25)

where J 0
m,n is the prior information matrix for sector (m, n) and Jm,n(k, s) is the

expected updated information matrix corresponding to sector (m, n), when scanned
by sensor s. Jm,n(k, s) is expressed as follows:

Jm,n(k, s) = J 0
m,n + π̃D(k, s, m, n)π̃new(k, m, n)H̃ (k, s, m, n)′ R̃(k, s, m, n)−1

H̃ (k, s, m, n) (26)

where π̃new(k, m, n) is the probability of a new target appearing in sector m, n at time
k and π̃D(k, s, m, n) is the probability of detection of that target. Also, H̃ (k, s, m, n)
and R̃(k, s, m, n) are measurement and measurement covariance matrices, respec-
tively.

4 Multi-Level Hierarchy of MDPs for Sensor Management

In a single-level MDP approach, the surveillance area is divided into a number of
MDP sectors. Each MDP sector may contain a number of targets. The informative
value about the targets during one radar scan is represented collectively for that
sector as follows:

J scan
z (k, s) =

T (z)∑

j=1

log trace{Is, j (k|k)} − log trace{I j (k|k − 1)} (27)

where z is an MDP sector containing T (z) targets at time k. Some MDP sectors may
not contain any detected targets. For those sectors, undetected targets are the possi-
ble source of information. Both detected and expected targets in an MDP sector will
define its reward function R(s) where s a state of a sensor. Combination of the state
of the populated MDP sectors as well as the current location of a sensor determines
sensor’s state. The solution of the Bellman equation describing the corresponding
MDP process characterized by its set of states S, actions A, transition probabilities
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Pr as well as the reward function on states R(s) will provide the sensor with the
optimal action a(s) for each of its possible states s. When reaching a neighboring
MDP sector after taking a previous action, according to the state s, a sensor chooses
an action a which corresponds to one of the possible flight directions. The compu-
tational complexity of solving an MDP is P-complete, thus the proposed method is
computationally attractive. In this section, we would like to present existing draw-
backs to a single-level MDP approach. After dividing the area under surveillance
into MDP sectors, all the targets located in the same MDP sector will be represented
collectively. The approach above is certainly attractive with multiple targets as the
optimization problem need not to be solved for each one of the targets individually.
On the other hand, the decision regarding a sensor trajectory may be suboptimal
because some, if not the majority of the targets, may be located away from the
center of an MDP sector. An MDP sector is the lowest discrete level to which the
optimization problem is divided. Therefore, the trajectory will connect centers of
two adjacent MDP sectors ignoring the location of the targets within. One solution
could be increasing the number of MDP sectors. That approach may increase the
complexity of the problem as many of the MDP sectors may not be so densely
populated to justify increasing the overall number of MDP sectors.

The proposed solution is multi-level hierarchy of MDPs controlling each of the
sensors. Each level in the hierarchy solves a problem at a different level of abstrac-
tion. In this chapter, we present two levels of MDP-based sensor management. The
first (highest) level is exactly the same as one in a single-level MDP approach.
The second (lower) level comprises two adjacent MDP sectors from the higher
level, providing an additional level of MDP control for sensors. Figure 4 shows
the surveillance area for two MDP processes and Fig. 5 shows the pseudo code of
the multi-level sensor control algorithm. As a result of a multi-level MDP hierarchy,
a sensor will navigate more precisely in a populated MDP sectors of the higher level
as they will be represented by a lower-level MDP process.

Fig. 4 Multi-level hierarchy of MDPs. Each MDP sector of the upper level is represented by a
number of MDP sectors of the underlying MDP process. Each level in the hierarchy solves a
problem at a different level of abstraction. A sensor will navigate more precisely in populated
MDP sectors of the higher level as they will be represented by a lower-level MDP process
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function MultiLevelSensorControlAlgorithm
1. Initialization: Designate surveillance area. Set initial parameters
2. Sensor movement control.

a. If (NoPolicySetL1 Or ReachedPolicyUpdateL1)
ChangePolicyL1:

b. ExecuteL1Maneuver

• L1BoundaryCheck
Until(ReachedNewL1Sector)
If (L2 enabled And L1SectorIsPopulated)
sensorControlAlgorithm L2
Else
ContinueL1Maneuver according to a( s)

• NewL1SectorDecisionPoint
If (ReachedPolicyUpdateL1)
ChangePolicyL1
Else
DetermineNewActionL1
ExecuteManeuverL1

3. Scan decision control.
4. Process obtained measurements.

Fig. 5 Multi-level sensor control

5 Dynamic Element Matching-Based Modified Value
Iteration Algorithm

5.1 Drawbacks of Finding the Optimal Policy of MDP

A policy π is a mapping from states to actions with a single action at corresponding
to each state st . The policy π is optimal only if the value of each of the states Vπ (s)
is maximized and is equal to the optimal value of state V ∗(s) for all the states s ∈ S.
The optimal V ∗ is defined to be unique and is the solution of the Bellman equation.
Therefore, it is implied that for any state s there could be just one optimal action
a(s).

This approach introduces a number of drawbacks to the practical problems solved
using MDP framework. In practice, a number of actions may have the same or sim-
ilar objective function. Also, noise may cause the wrong action to have the highest
objective function. Choosing an action based merely on its yielding the highest value
of state will thus eliminate another possible actions yielding the same or similar
values of state. Figure 6 depicts a graphical representation of several actions cor-
responding to the highest values of state. In a classical approach only one action
having a highest value will be chosen each time. In addition, choosing a single action
for the given state may cause the following problems in practical applications:
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Fig. 6 Actions corresponding to highest values of different states. In a classical approach only one
action having a highest value will be chosen each time

• Loop formation, especially taking into account loops mistakenly formed because
of processing noisy observation data on the basis of which the policy is calcu-
lated.

• Decreasing the potential coverage thus reducing the likelihood of discovering
new targets in the surveillance area. Obviously, by moving via different paths, a
sensor can identify a larger number of potential targets.

5.2 Dynamic Element Matching

An early description of the Dynamic Element Matching principle was given in a
patent by Van de Plassche [89] from 1976 as a mean of enhancing performance
of current sources. His system is based on a circuit transferring to the output,
according to a cyclic permutation, a number of currents, which differ in their values
due to the mismatches in the manufacturing process. The resulting current has a
value equal to the average value of the currents and a ripple that is formed by the
differences between the currents and thus can be subsequently removed by a low
pass filter. The proposed DEM algorithm reduced errors caused by mismatches in
analog components of current sources by appropriate selection of different current
sources every time it was required. Later, Van de Plassche described a high accu-
racy D/A converter, which employed the DEM principle [90]. Since then numerous
patents and publications emerged [23, 58], describing use of the DEM algorithms
in current generators design, as well as for achieving high integral linearity and low
total harmonic distortion (THD) in D/A and A/D converters, without requiring pre-
cisely matched components. DEM techniques are most commonly used in multi-bit
Delta-Sigma converters to achieve the required integral linearity without the use
of precise component matching by dynamically rearranging the interconnections of
mismatched components. In 2002 there was proposed an approach for incorporating
a two-dimensional DEM technique for improving of a mixed signal WTA (Winner-
Take-All) tracking [1]. There have been proposed many DEM techniques: Dynamic
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Element randomization [24], Dynamic element Rotation [76], Individual level aver-
aging [58], among many others. All of those techniques similar in dynamically
rearranging the interconnections of mismatched components, converting harmonic
distortions resulting from elements mismatch into a wide-bandwidth noise. In the
case of Dynamic Element randomization, the purpose is to remove the correlation
between the mismatch error at one time and the mismatch error at any other time
thus converting it into white noise. The relationship between the in-band RMS noise
divided by full scale and the percentage element mismatch is [65]

σ

[
ninband

V0 M

]
= 1√

R
√

M
σ

[
ΔEi

E

]
(28)

where M is the number of elements (actions in our case), R is an oversampling
ratio (number of occurrences of the same state in the policy) and ΔEi

E is a fractional
element mismatch (value of state mismatch in our case).

5.3 Modified Value Iteration Method

The proposed solution to the issues above is introducing a modified value (or pol-
icy) iteration algorithm utilizing DEM approach. The algorithm will identify several
potential actions yielding highest value of state for a given state. After applying a
certain threshold to the actions yielding highest values of state for each particular
state, a group of several candidate actions are identified for each state. Figure 7
shows a set of actions having highest values of state that have been selected to
form the set of potential candidate-actions. Consequently, one of DEM algorithms
is applied in order to choose the winner-action for a given state. Each time this state
is reached, another winner-action will be chosen based on the DEM method used.
The pseudo-code of the modified VI algorithm is shown in Fig. 8.

Fig. 7 A set of actions having highest values of state that have been selected to form the set of
potential candidate-actions
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Fig. 8 Modified value iteration algorithm. DEM algorithm is utilized to select dynamically the
current action out of several equalized candidates

Figure 9 shows the queueing scheme for the modified Value Iteration VI algo-
rithm. Dynamic Element Randomization or Dynamic Element Rotation can be
incorporated to select action candidates winners in each of the DEM blocks.

To quantify the results and verify the advantage of the DEM-based MDP, we
introduce the following metrics:

• Mean Opportunity Index (MOI). MOI is defined as a mean candidate actions
number per state in a policy. Higher MOI will increase a potential for a better
performance while maintaining the same precision.

• Maximal Opportunity Index (MAX OI). MAX OI is defined as a maximal candi-
date actions number per state in a policy.

Fig. 9 Modified MDP solution scheme. Dynamic element randomization or dynamic element rota-
tion can be incorporated to select action candidates winners in each of the DEM blocks
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• State Coverage Index (SCI). SCI is defined as a mean ratio of a total number of
different states reached during an execution of a policy to a total number of states.

• Area Coverage Index (ACI). ACI is defined as a mean ratio of a total number
of different locations reached during an execution of a policy to a total number
of location. Higher ACI means that the resulting area coverage during a policy
execution is higher. Higher area coverage will result in better detection of new
targets.

Table 1 demonstrates the numerical results in terms of the metrics above while exe-
cuting policies solved using a conventional VI algorithm and a randomized DEM
based VI algorithm respectively. Figure 10 shows the decision maker (sensor) path
where regularly solved MDP is used for path selection. Squares represent sectors
populated by targets, triangles represent sectors with undetected targets not taken
into consideration in the current policy. Figure 11 shows the path in a randomized
DEM based VI algorithm simulation. Area coverage is increased covering part of
previously undetected targets.

Table 1 Opportunity index and state coverage index metrics for an original and randomized DEM-
based VI algorithms

Original VI DEM-based VI Improvement
algorithm algorithm (%)

MOI 1 1.72 72
MAX OI 1 4 400
SCI 0.06 0.08 33.3
ACI 0.56 0.68 21.4

6 Distributed Data Fusion Architecture

The current section presents a solution for controlling the information flow in dis-
tributed data fusion architectures of various types – distributed track fusion, track
fusion using tracklets, or distributed composite tracking [7]. In these aforementioned
approaches, local and remote sensor tracks, tracklets, or AMRs are passed between
platforms to be processed in a distributed data fusion process at each platform.

6.1 Issues in Distributed Data Fusion

We can distinguish between two cases of platforms interchanging data over com-
munication network depicted in Figs. 12 and 13. In Fig. 12, the data from each
platform should be passed to all the other platforms. In the first one, the same data
coming from a certain platform are requested by other platforms as well, which
causes redundancy and overloads the communication channels. Moreover, the task
of providing tracking information from each node (platform) to every other node
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Fig. 10 Regular MDP is used for path selection. Squares represent sectors populated by targets.
Triangles represent sectors with undetected targets not taken into consideration in the current pol-
icy. Connected circles show the decision maker path

Fig. 11 Modified DEM based MDP is used for path selection. Area coverage is enhanced thus
covering part of previously undetected targets
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Fig. 12 Distributed data fusion example. The data from each platform should be passed to all the
other platforms

may be just infeasible taking into account large number of the nodes in the network
and significantly high data rates as opposed to the limitations of the communication
channels capacity. The second approach is shown in Fig. 13. We are considering
a node that requests specific information originating from other nodes. The figure
depicts a special case in which node3 requests information originating from node1.
The most straightforward (and, obviously, not the most optimal) solution would be
requesting this information from the source, i.e., node1. But as can be seen from the
figure, the information originating from node1 is also transmitted to nodes 2 and 4.
It should be noted though that the information (e.g., tracks, tracklets or AMRs)

Fig. 13 Data flow in a distributed data fusion system. Solid lines represent existing data flows.
Dashed and dotted lines represent candidate data flow channels to be decided
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transmitted from a node to other nodes may differ in its characteristics and quality.
Therefore the required information may be obtained from neighboring nodes as
well, as depicted in Fig. 13, thus eliminating redundancy in the transmitted infor-
mation, unnecessary load on the communication channels, time overhead in getting
the information, higher refusal probability, etc. If we consider node3’s request for
data originating from node1, the decision to be made in this case is which of the
platforms – 1, 2 or 4 – should supply the requested information.

6.2 Data Fusion Control as a Decision-Based Approach

Choosing to get some specific information from one of the nearest nodes rather than
from the information source itself introduces new decisions to be made, like, for
example, which of the several available nodes the information should be requested
from. For instance, node3 may request node4 to provide information originating
from node1, but this may not be the most optimal decision. The communication
channel from node4 to node3 may not accommodate the required data rate. It is
important to note that in such a case the optimal configuration is not achievable by
a single decision or solution but is a multi-stage process.

We do not seek a solution at a particular time only before formulating a new
optimization problem for the next step as such approach may be computationally
inefficient. We are rather looking for an approach which, once having solved an
optimization problem we have formulated, will provide the required action or deci-
sion for the next step taking into account the outcome of the previous one. It means
that we are considering a situation where the decisions should be made sequentially
or in a recursive manner. The result of each decision cannot be fully predicted, but
can be accounted for using available statistical information before the next deci-
sion is made. The objective is to minimize the cost of our actions (or, alternatively,
maximize a utility function) [18, 51]. Similarly to the approach applied for resource
management in previous sections, the approach utilized for information control is
based on MDP.

6.3 Data Lookup

When discussing the decision making process, we assumed that the information
regarding the availability of the required information among the nodes is known. In
fact, one of the fundamental problems that has to be addressed in order to apply
the aforementioned decision process is in identifying all the nodes that possess
the required information. The distributed data fusion architecture does not include
any centralized control and consists of the nodes that are decentralized, potentially
unreliable and heterogenous. Locating content in such system becomes therefore a
complex task. Nodes may join, leave or become inaccessible, but this should not
affect the operation of the total distributed system. One solution would be to use



190 D. Akselrod et al.

one of the available distributed lookup protocols to efficiently identify the nodes
that store the desired data. For this purpose we define a space of the keys K . To each
node in the distributed system is assigned a key ni ∈ K . We use a hash function h
to map any particular source of information into the space K as well. For example,
each sensor will be identified by a corresponding key si ∈ K . What is important to
note is that the number of keys that a platform possesses equals the total number
of sources of information it has, including the ones originating from the platform
and the ones that a platform receives from others. The idea is then to assign each
node to keep information about the identity of the information sources, values of
the hash function of which lie in a certain proximity to the platform’s key ni . The
resulting structure is called Distributed Hash Table (DHT). Several architectures of
DHTs have been proposed: Chord [84], CAN [72], Kademlia [61], Tapestry [98]
among others. Figure 14 demonstrates a node look-up process in the Chord DHT
architecture [84]. The shortest available look-up time is O(logN ), where N is total
number of the data sources in the distributed system.

Fig. 14 Key lookup in chord

6.4 MDP-Based Multisensor Fusion for Multitarget Tracking

In this section, we will express the component elements of the Markov decision pro-
cess in terms of the parameters of the optimization problem that we are facing. Here,
the multisensor fusion problem for multitarget tracking is mapped into a collection
of corresponding MDP problems, each one being solved by the corresponding node.
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Each node will have a corresponding set of MDP parameters S,A,P ,R reflecting the
optimization problem this node needs to solve.The current section presents a solu-
tion for controlling the information flow between the platforms. The tracking data
exchanged among those platforms can be of the following types: tracks, tracklets,
or Associated Measurement Reports (AMRs). Subsequently, the tracking data that
are passed between platforms are processed in a distributed data fusion process.
We would like to engage an MDP-based decision mechanism to provide each plat-
form with the required data for the distributed data fusion process while reducing
redundancy in the information flow in the overall system. We will express below
the components of the MDP for information flow control in terms of the parame-
ters of the optimization problem that we are facing. Here, the multisensor fusion
problem for multitarget tracking is mapped into a collection of corresponding MDP
problems, each one being solved by the corresponding node. Each node will have a
corresponding set of MDP parameters S,A,P ,R reflecting the optimization problem
this node needs to solve. Figure 15 shows the fusion control scheme in which a
separate MDP is designated to each active track. A pseudo code for a fusion control
algorithm is shown in Fig. 16.

Fig. 15 Fusion control MDP scheme

Fig. 16 Fusion control algorithm
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6.4.1 Set of States: S

The state of a node has the general structure depicted in Table 2. Each field takes
one or more bits of digital information which are enumerated in the table. Below we
describe the elements of the table:

• Original node. This field specifies the node from which the sought information
originates.

• Supplying node. This field specifies all the nodes that currently receive the infor-
mation originating from the Original node.

• Data available. This field indicates whether the requested data from one of the
Supplying nodes is currently arriving and available.

• Refusals. This field contains the total number of refusals from the corresponding
Supplying node.

Table 2 General structure of the node states
Original Supplying Data
node node Status bit Bit #

platformo1 platformn1 Data avail. 0 0
Refusals 1 1

0 2
platformn2 Data avail. 1 3

Refusals 1 4
0 5

platformn3 Data avail. 1 6
Refusals 0 7

0 8
platformo2 platformn4 Data avail. 1 9

Refusals 0 10
1 11

platformn5 Data avail. 1 12
Refusals 0 13

0 14
platformn6 Data avail. 0 15

Refusals 1 16
0 17

6.4.2 Set of Actions: A

The set A contains all the possible actions that a node can take in order to specify the
requested information sources in its next step of decision making. In our case, we
have n +1 different actions in the set, expressing a request for information from any
of the n nodes possessing the required information and an additional action of not
requesting information at all. It should be noted that one of the existing trade-offs
is requesting information from more than one source. That increases the probability
of a positive outcome (the requested source providing the requested information)
but at the same time increases the overall network load which may have a negative
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impact on the requesting platform itself. Generally, it is acceptable in certain cases
to request information from more than one source taking into account the relative
unreliability of available sources. Obviously, when there is a large number of infor-
mation sources, the policy of requesting information from multiple sources may
be potentially harmful to both the whole distributed data fusion network and the
requesting node itself.

6.4.3 Transition Probabilities: P

The transition probability matrix specifies the probability P(st+1|st , at ) of transition
to a specific state st+1, provided the transition is done from another state st while
performing a certain action at . The platform requesting data from other platforms
has information regarding the holders of the required information as well as the
knowledge of other circumstances that may influence successful reception of this
information – for example, distributed network channels capacity, current load of
the mentioned channels, the load of the nodes that have to supply information. Also,
a specific node requesting information may have a priority rating index that may be
different for various nodes.

For example, under the assumption that all other parameters such as network
channels load, etc., are equal, platformi will have a higher chance to receive the
required information from a certain node only because that node has higher priority
rating index for platformi . Other factors may also influence the probability P –
for example, weather conditions at a certain node that may influence its chances
to successfully transmit the requested information, hardware reliability, survival
probability among many others. Also, a node may be able to learn empirically the
characteristics of other nodes and, thereby, adjust transition probabilities [83]. All
such information is eventually translated into the transition probability matrix. We
can see this process as a mapping of all the relevant features of the external world
into the transition probability matrix described above.

6.4.4 Real-Valued Reward Function on States: R

The vector R contains the values of the immediate rewards associated to being in
a certain state. As mentioned above, we use information based objective function
based on the Fisher information measure [4, 80]:

J =
∑

j

log |I j (k|k)| =
∑

j

log |Pj (k|k)−1| (29)

where Pj (k|k) is the posterior covariance matrix of the state vector corresponding
to target j at time k. It is expressed as follows:

Pj (k|k)−1 = Pj (k|k − 1)−1 + Y j (k) (30)
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where Pj (k|k−1)−1 is the predicted state information (inverse of the state prediction
covariance matrix) and Y j (k) is the new information that is given by:

Y j (k) = H (k, s, j)′ R(k, s, j)−1 H (k, s, j) (31)

where H (k, s, j) is the measurement matrix and R(k, s, j) is the measurement
covariance matrix at the time step k corresponding to the sensor s from which
the incoming measurement has originated and target j . Then, the expected updated
information I j (k|k) can be expressed as follows:

I j (k|k) = I j (k − 1|k) + H (k, s, j)′ R(k, s, j)−1 H (k, s, j) (32)

The reward associated with a measurement arriving from a remote sensor s after
being successfully associated with one of the tracks of the platform is therefore
expressed as the expected information gain corresponding to sensor from which the
measurements originated. If there are Ns AMR’s arriving from the same remote
sensor s which are associated with the tracks of the receiving platform, then the
expected information gain is given by

JNs (k, s) =
Ns (k)∑

j=1

log |Is, j (k|k)| − log |I j (k|k − 1)| (33)

where I j (k|k − 1) is the predicted information matrix and Is, j (k|k) is the updated
information matrix corresponding to target j .

7 Distributed Tracking Algorithms Implementing MDP-Based
Data Fusion System

In this section, we present three distributed data fusion algorithms – associated mea-
surement fusion, tracklet fusion and track-to-track fusion – to be applied with the
MDP-based data fusion system.

7.1 Associated Measurements Fusion

In this architecture, the measurements, which are associated with the local tracks,
are transmitted. Although the sensors may generate a large number of measure-
ments, particularly in a dense clutter environment, only a few of them are associated
with tracks and transmitted. Also, if the positions, measurement covariance and
measurement matrix of all sensors connected to the distributed fusion network are
available to each platform, then the corresponding quantities are not required to
be communicated. Since the measurements are considered to be independent of
the state dynamics, this architecture requires much less computation. When using
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associated measurements fusion each platform performs the following steps: asso-
ciating (either local or remote) measurements with the current tracks and updating
the tracks using the associated measurements. If the associated measurements orig-
inated from the same platform they are transmitted to other platforms using the
communication policy described above.

7.2 Track-to-Track Fusion

In this algorithm, we assume that the trackers on all the platforms start with the
same information about tracks at time t0. The tracks are updated by local trackers on
each platform using the measurements received from the sensors on that platform
up to time t1. At this time the local tracks are broadcasted and each local tracker
updates its tracks using the information received from the other local trackers. Since
the tracks in the local trackers are started with the same initial information and
the targets go through the same noisy transformation process the tracks obtained by
different local trackers are correlated. The computation of the exact cross-covariance
matrices in a track-to- track fusion system would hugely increase either computation
or communication load [81]. This work uses the approximation proposed in [8, 27].
It assumes that at the time of computation of the cross-covariances between local
tracks the covariances of all of the local tracks have already reached the steady
state. The terms of the cross-covariance matrix P× for a one dimensional tracking
problem with state consisting of position and velocity [x ẋ], are found as

p×
i j = ρi j

√
pl

ii pk
j j i, j ∈ {1, 2} (34)

where pl
ii and pk

j j denote elements i , j of covariance matrices Pl and Pk belong-
ing to a certain track originating from platforms l and k; ρi j are unknown cross-
correlation coefficients. There were proposed a number of ways to calculate cross-
correlation coefficients [8, 27]. We used the following values of cross-correlation
coefficients proposed in [8]: ρ11 = 0.15,ρ12 = 0.25,ρ22 = 0.70. For a 2-D tracking
problem with the target state given by [x ẋ y ẏ], the approximate cross-covariance
matrix used in this work is given by

P× =

⎡

⎢⎢
⎣

p×
11,x p×

12,x 0 0
p×

21,x p×
22,x 0 0

0 0 p×
11,y p×

12,y

0 0 p×
21,y p×

22,y

⎤

⎥⎥
⎦ (35)

When using track-to-track fusion each platform performs the following steps: asso-
ciating new measurements to the local tracks and updating them, periodically com-
municating the tracks to the other local trackers, computing the approximate cross-
covariance matrices between tracks, associating the received tracks to local tracks,
fusing the tracks received from the other trackers with the local tracks.
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Denoting the mth track from platform i by T i
m and the corresponding state and

covariances by x̂ i
m and Pi

m , respectively, for a track set {T 1
k1, T 2

k2, . . . , T n
kn

} the maxi-
mum likelihood estimate of the fused track states is given by

x fused
S = (E ′ P̄−1

S E)−1 E ′ P̄−1
S x̄S (36)

where S is the track set {T 1
k1, T 2

k1, . . . , T n
k1}, E = [Inx Inx , . . ., Inx ] is nnx × nx

matrix and nx is the dimension of the state vector. Matrices x̄S and P̄S are given by
(37) and (38), respectively,

x̄S =

⎡

⎢
⎣

x1
k1
...

xn
kn

⎤

⎥
⎦ (37)

P̄S =

⎡

⎢
⎢⎢
⎣

P1
k1

P1,2
k1,k2

. . . P1,n
k1,kn

P2,1
k2,k1

P2
k2

. . . P2,n
k2,kn

...
...

. . .
...

Pn,1
kn ,k1

Pn,2
kn ,k2

. . . Pn
kn

⎤

⎥
⎥⎥
⎦

(38)

The covariance matrix of the fused track is given by

Pfused
S = (E ′ P̄−1

S E)−1 (39)

7.3 Tracklet Fusion

As tracklets are track data not cross-correlated with the common information among
the platforms, for the data fusion purposes they can be treated like measurements
and be associated to tracks of other platforms. That solves the problem of data
synchronization typical to track-to-track fusion considered above. Since not all the
correlation among the versions of the same track maintained by several platforms
can be removed, such an approach is only reliable when dealing with targets having
small maneuvering index. There were proposed a number of methods for calculating
tracklets [40, 41]. In this chapter, we use an algorithm in which a tracklet is the state
of a track decorrelated with the state of the same target at the time when the last
tracklet was transmitted. For this decorrelation operation the older state requires to
be predicted to the time of the more recent one. For tracklet computation, the state of
the corresponding track must be observable from the measurements received after
the last communication of a tracklet corresponding to the track. That is, at least two
measurements are required if the target state vector contains the position and the
velocity. Assuming that the last tracklet was transmitted at the time k, the track was
last updated at time step k + i , and there are enough measurements between time



MDP-Based Resource and Information Management for Sensor Networks 197

step k and time step k + n, the tracklet and the corresponding covariance matrix at
time step k + n are given according to [33] by (40) and (41), respectively. That is,

xl (k + n) = x̂(k + n|k) + P(k + n|k)[P(k + n|k)

− P(k + n|k + i)]−1(x̂(k + n|k + i) − x̂(k + n|k)) (40)

Pl (k + n) = P(k + n|k)[P(k + n|k)

− P(k + n|k + i)]−1 P(k + n|k) − P(k + n|k) (41)

When using tracklet fusion, each platform performs the following steps: associ-
ating new measurements to the local tracks and updating latter, periodically com-
puting the tracklets and communicating them to other platforms, associating the
received tracklets to local tracks using 2-D association [17] and finally fusing the
received tracklets with the local tracks.

8 Simulation Results

8.1 Resource Management

In this section, we present simulation results obtained from a 60 min simulation
involving a number of sensors and targets under surveillance. The surveillance
region dimensions were 42 by 42 km. The simulation included 30 targets and 5
sensors. The sensors in the simulations were of GMTI type. The state of the target
j was of the following form:

x j = [x j ẋ j y j ẏ j ]′ (42)

where x j and y j are 2-D Cartesian coordinates of the target j and ẋ j and ẏ j are
its velocity components. We convert the original measurements obtained from the
sensor s in the form [r (k, s, j) θ (k, s, j) ṙ (k, s, j)]′, where r (k, s, j), θ (k, s, j) and
ṙ (k, s, j) are the range, azimuth angle and range rate of the target j supplied by
sensor s at time tk , respectively, to the measurement vector of the following form

z j = [x j y j ṙ j ]′ (43)

where ṙ s is the speed of target j . The original measurement vector is assumed to
contain independent additive Gaussian noise with variances denoted as σ 2

r , σ 2
θ and

σ 2
ṙ respectively. The measurement covariance matrix R(k, s, j) corresponding to the

converted measurement is given by [9]

R(k, s, j) =
⎡

⎣
R1,1 R1,2 0
R1,2 R2,2 0

0 0 σ 2
ṙ

⎤

⎦ (44)
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The elements of R are

R1,1 = r2σ 2
θ sin2 θ + σ 2

r cos2 θ (45)

R2,2 = r2σ 2
θ cos2 θ + σ 2

r sin2 θ (46)

R1,2 = (σ 2
r − r2σ 2

θ ) sin θ cos θ (47)

The overall surveillance region has been divided into a number of clusters equal to
the number of the sensors deployed. The sensors move at a constant speed of 75 m/s.
In the simulation one point track initialization [97] is applied. The tracker consists of
a Kalman filter with auction-based [17] assignment for measurement-to-track asso-
ciation. A white noise acceleration model is assumed for the targets with process
noise standard deviation of 1 m/s2. The measurement noise standard deviations are
σr = 10 m, σθ = 10−3 rad and σṙ = 1 m/s. The number of false alarms in each
sector follows a Poisson distribution with mean 0.1 and the false measurements are
uniformly distributed in the sector. Figure 17 shows the trajectories of all targets.
Shaded squares designate currently scanned sectors. Figure 18 shows the trajecto-
ries of the five sensors and the targets. Each sensor is responsible for a designated
area and during the policy execution time tracks the targets in this area. For the
demonstrated simulation scenario the total surveillance area was divided into five
equal overlapping regions. During the current policy execution sensors record the
information regarding the targets they track. Occasionally, sensors may spot tar-
gets located in the regions responsibility on which belongs to other sensors. In this
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Fig. 17 The trajectories of the 30 targets. Shaded squares designate currently scanned sectors.
Current positions of the sensors are designated as triangles
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Fig. 18 The trajectories of the 5 sensors and the 30 targets between two consecutive policy updates

case during the policy execution this information is transferred to the corresponding
sensor. When performing a policy update, each sensor takes into consideration the
targets that have been spotted by it, by other sensors as well as the targets potentially
residing in the areas that have not been scanned during the current policy execution.
Then, each sensor forms a list of the sectors, either populated by confirmed targets or
unscanned ones and using information-based objective function approach described
above, reward of each MDP sector is calculated for the next policy. Figure shows 21
the scan decisions for one of the sensors during four consecutive cycles. Ten sectors
were chosen for scan during each cycle. As can be seen from Fig. 18, sensors do not
always succeed to move exactly as planned. One of the reasons of it in the current
simulation is as follows. When a sensor needs to change its course, it starts a coor-
dinated turn in corresponding direction. As a result, at the end of the coordinated
turn, the direction of the sensor may deviate from the planned one. Thanks to the
MDP approach any outcome will have the corresponding optimal action to take.
Controlled by a corresponding MDP, a sensor can perform a coordinated turn with
angular turn rate of up to 0.05 rad/s. The targets move at different speeds. They
include maneuvering targets and move-stop-move ones. The scan time used in this
simulation is 5 s. Figure 19 show four snapshots of the simulation at the times of 1,
5, 10 and 15 min respectively. The sensors are depicted as triangles with the sharp
angles pointing the direction of their movement. The lines represent the tracks and
the stars show the last updates position of the detected targets. The shaded sectors
represent surveillance sectors that have been scanned during the last scan. All the
targets were belonging to one of the seven different groups. Figure 20 shows 50
Monte Carlo run position and velocity RMSE results of the tracks corresponding to
the targets from group one and two. Table 3 shows the summary of the performance
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Fig. 19 Snapshots depicting sensor locations and target tracks. The sensors are depicted as trian-
gles. The lines represent the tracks and the stars show the last updates position of the detected
targets. The shaded sectors represent surveillance sectors that have been scanned during the last
scan
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Fig. 20 The position and velocity RMSE of target 1 (group 1) and target 6 (group 2), respectively



MDP-Based Resource and Information Management for Sensor Networks 201

Table 3 Performance metrics in single-layer MDP hierarchy

Group no. Tar no. Position RMSE (m) Velocity RMSE (m/s)

1. 1 12.7 1.5
2. 6 7.6 1.2
3. 10 7.8 1.2
4. 14 9.5 1.3
5. 19 12.6 1.5
6. 23 9.8 1.3
7. 27 8.9 1.3

metrics for all the groups in the single-layer MDP hierarchy. The results demonstrate
the ability of the proposed approach to maintain an acceptable level of accuracy for
different targets.

Figures shows 21 scan decisions for one of the sensors during four consecutive
cycles. Ten sectors were chosen for scan during each cycle.

Fig. 21 Scan decisions for one of the sensors during four consecutive cycles. Ten sectors were
chosen for scan during each cycle



202 D. Akselrod et al.

0 6 12 18 24 30
0

6

12

18

24

30

x (km)

y 
(k

m
)

Single−level MDP approach

0 6 12 18 24 30
0

6

12

18

24

30

x (km)

y 
(k

m
)

Hierarchical MDP approach

Fig. 22 The trajectories of the first sensor and the 13 targets. Single-level MDP approach (left) and
two-level hierarchical MDP approach (right)

Figure 22 shows the path of the first of the five sensors as well as the 13 targets
when a single-level and a two-level MDP approaches, respectively, were employed.
As can be seen from Fig. 22(left), sensors do not always succeed to move exactly
as planned, which is particularly visible in a single-level MDP approach. Thanks to
the MDP approach, any outcome will have the corresponding optimal action to take.
When using multi-level MDP approach, fine-tuning that takes place at lower levels
of MDP processes corrects navigation errors at higher levels.

Table 4 shows 50 Monte Carlo run position RMSE results of the tracks corre-
sponding to the targets 1 to 13 from the three groups for both methods. The results
demonstrate the ability of the proposed approach to maintain an acceptable level
of accuracy for different targets. The two-level MDP approach demonstrated higher
level of accuracy than the single-level one. Further, we present simulation results
obtained from a 60 min simulation involving four sensors and ten targets under
surveillance. The overall surveillance region has been divided into four clusters,
equal to the number of the sensors deployed. The sensors move at a constant speed
of 40 m/s. Tables 5 and 6 show the summary for position and velocity RMSE respec-
tively for all the targets. As can be seen from the results, the modified algorithm
which included DEM approach demonstrated an average accuracy improvement
in position and velocity RMSE of the targets under surveillance increasing State
Coverage Index by more than 30% resulting in better detection of new targets.

8.2 Information Management

The following test-case will compare the performance of the approach among three
different data fusion methods, namely, associated measurements fusion, track-to-
track fusion and tracklets fusion.

The simulated cluster contains 5 platforms and 8 sensors. Each sensor belongs
to a specific platform associated with a corresponding tracker. Sensors 1 and 2 are
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Table 4 Performance metrics comparison between single-layer and multi-layer MDP hierarchy

Position RMSE (m)

Target no. Single-layer Multi-layer

1. 11.9 8.7
2. 10.6 7.9
3. 10.0 7.2
4. 9.4 7.1
5. 9.6 7.3
6. 10.6 7.6
7. 9.8 7.0
8. 10.2 7.1
9. 11.6 8.2

10. 10.1 7.2
11. 9.3 6.6
12. 9.6 6.9
13. 11.1 8.1

Average improvement 27.6%

Table 5 Performance metrics summary for position RMSE

Position RMSE (m)

Target no. Original algorithm DEM-based algorithm Improvement (%)

1. 19.2 17.7 8.8
2. 18.2 14.6 25.0
3. 13.9 15.4 −9.7
4. 16.8 17.5 −4.0
5. 20.2 13.9 45.9
6. 21.3 14.4 47.2
7. 14.8 16.5 −10.7
8. 18.4 11.6 58.1
9. 17.4 13.0 34.4

10. 15.9 14.7 8.2

Average improvement 20.3

Table 6 Performance metrics summary for velocity RMSE

Velocity RMSE (m)

Target no. Original algorithm DEM-based algorithm Improvement (%)

1. 1.6 1.6 −3.9
2. 1.7 1.7 0.6
3. 1.8 1.6 12.9
4. 1.8 1.5 14.8
5. 1.3 1.0 26.6
6. 1.6 1.2 26.2
7. 1.5 1.3 20.9
8. 1.8 1.5 18.3
9. 1.7 1.6 9.2

10. 1.5 1.7 −9.2

Average improvement 11.7
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connected to tracker1, sensors 3 and 4 to tracker2, sensor 5 to tracker3, sensors 6 and
7 to tracker4 and sensor 8 is connected to tracker5. The sensors are located at xi

s =
[65, 155]′, [80, 140]′, [10,−65]′, [30,−40]′, [−80, 20]′, [−70, 130]′, [−40, 150]′,
[20, 150]′ km, respectively. The original measurements are obtained from the sensor
s in the form [r (k, s, j) θ (k, s, j)]′ where r (k, s, j) and θ (k, s, j) are the range
and the azimuth angle of the target j supplied by sensor s at time tk , respectively.
The standard deviations of range r and bearing Θ of the sensors are [σr , σΘ] =
[40, 2.5], [35, 2], [52.5, 3.5], [30, 2.5], [45, 4.5], [52.5, 3.5], [52.5, 3.5],
[45, 4.5] (m, mrad), respectively. The sampling intervals of the sensors are
2.5, 3.5, 2, 3, 1.5, 2, 2, 1.5 s, respectively. The false alarms are uniformly
distributed in the coverage areas of the sensors with the number of false alarms
Poisson distributed with means of 40, 40, 100, 50, 50, 40, 50, 50, respectively.
The simulation included two closely spaced targets. The scenario of the two target
movements includes several constant velocity stages interleaved with coordinated
turn maneuvers performed at rates |ω| = 4 ◦/s. The initial positions of the targets
are [ξ j , η j ] = [5, 68.6] km, [5, 69.1] km, respectively, and the initial targets veloc-
ity is 300 m/s. Figure 23 shows the coverage areas of the sensors and the targets
trajectory. A white noise acceleration model is assumed for the targets with process
noise standard deviation συ of 15 m/s2. The state of the target j is of the form

x j = [x j ẋ j y j ẏ j ]′ (48)

Fig. 23 Test-case C. Coverage area of the sensors and targets trajectory. Eight sensors belonging
to five different platforms are present
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where x j and y j are the x and y Cartesian coordinates of the target j and ẋ j and ẏ j

its x and y velocity components, respectively. We convert the original measurements
obtained from the sensor s in the form

z = [r (k, s, j) θ (k, s, j)]′ (49)

where r (k, s, j), θ (k, s, j) and ṙ (k, s, j) are the range and the azimuth angle of the
target j supplied by sensor s at time tk , respectively, to the measurement vector of
the form

z j = [x j y j ]′ (50)

using the standard coordinate conversion [9]:

z j = [r j cos Θ j r j sin Θ j ]′ (51)

The measurement covariance matrix R corresponding to the converted measurement
is given by [9]

RL =
[

R11
L R12

L
R12

L R22
L

]
(52)

The elements of RL are

R11
L = r2σ 2

Θ sin2 Θ + σ 2
r cos2 Θ (53)

R12
L = (σ 2

r − r2σ 2
θ ) sin Θ cos Θ (54)

R22
L = r2σ 2

Θ cos2 Θ + σ 2
r sin2 Θ (55)

In the simulation two-point track initialization is applied [9]. Table 7 shows the time-
averaged position and velocity RMSE after 100 Monte Carlo runs for distributed
data fusion system based on associated measurements fusion. The performance of
the mode with no information sharing is the worst. The performance of the mode
in which all the AMRs are transmitted among all the sensors is the best. We can
see that the performance of the MDP controlled mode is much better than that of
the first mode but still worse than that of the second mode. In MDP controlled
mode the maximal number of sensors that could transmit AMRs to platform3 was
first restricted to two sensors and then to four sensors. The information flow in the
system was reduced, which in many cases may justify the reduction in performance.
In many cases the situation in which all the platforms transmit AMRs to all the other
platforms is infeasible. The performance may be increased though by increasing
the maximal allowed number of sensors transmitting remote AMRs to any given
platform. Table 7 also includes the results of an additional simulation in which there
were always picked two sources having the best characteristics – sources number
two and six. The results were inferior to those of an MDP-based approach.
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Table 7 Performance metrics summary, associated measurements fusion

Position RMSE (m) Velocity RMSE (m/s)

Communication mode Target1 Target2 Target1 Target2
All AMRs shared 45.5 45.1 32.4 27.8
No AMRs shared 703.3 664.8 100.7 70.4
MDP controlled, 4 sources 65.5 62.1 35.1 34.9
MDP controlled, 2 sources 72.6 71.1 36.5 36.9
2 best sources 94.4 98.6 45.9 43.3

Table 8 Performance metrics summary, track-to-track fusion

Position RMSE (m) Velocity RMSE (m/s)

Communication mode Target1 Target2 Target1 Target2
All tracks shared 268.2 272.6 60.8 65.9
No tracks shared 993.2 814.5 121.7 103.0
MDP controlled 297.3 301.6 65.9 71.3

Table 9 Performance metrics summary, tracklet fusion

Position RMSE (m) Velocity RMSE (m/s)

Communication mode Target1 Target2 Target1 Target2
All tracks shared 215.1 204.7 58.4 59.8
No tracks shared 749.4 750.4 104.2 104.6
MDP controlled 268.8 250.8 58.8 65.4

Table 8 shows the time-averaged position and velocity RMSE after 100 Monte
Carlo runs for the distributed data fusion system based on track-to-track fusion.
Table 9 shows the time-averaged position and velocity RMSE after 100 Monte Carlo
runs for the distributed data fusion system based on tracklet fusion.

9 Communication Data Rate and Computational Load
in Distributed Tracking Algorithms

The focus of this section will be on the communication cost of the aforemen-
tioned data fusion types. One of the main advantages of network-centric approaches,
where the sensors may be located at significant distances from one another, ver-
sus platform-centric one, where the sensors are located in close vicinity from one
another, is in achieving a higher precision and robustness by the separation of sen-
sors located on distinct platforms [7]. The sharing of tracking data results in tracking
results that are in general more complete, more accurate, and more timely than
those obtained in the case of a single sensor or a single platform. In many cases,
sharing the data provides tracking information that is unavailable for many of the
participating platforms or may be obtained at significantly lower quality. One of the
main barriers in network-centric tracking is the transfer of tracking data from one
platform to another via a communication link capable of transferring the required
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volumes of information. This communication load should be taken into consider-
ation in the design of the tracking system and cannot be ignored. As mentioned
before, the task of providing tracking information from one platform to anther node
may be infeasible because of the limitations of the communication channel capacity.
The decision mechanism, presented in this chapter, provides each platform with
the required data for the distributed data fusion process subject to the available
channel capacities and reducing redundancy in the information flow in the overall
system. Below we will address the communication requirements [7] for each of the
distributed data fusion approaches we are using, namely, associated measurement
fusion, tracklet fusion and track-to-track fusion, using notations and assumptions
described originally in [7].

When associated measurement reports (AMR) arriving from other platforms as
well as from the local sensors are used to form a common tracking picture, the data
rate Ψ for a platform participating in the data exchange process is given by

ΨAM R = Nmeas/scan

δscan
ndata (56)

where δscan is the tracking interval, Nmeas/scan is the number of associated measure-
ments per scan and ndata is the allocated number of bits used by a system to transmit
the data between the platforms:

ndata = nmeas + nmeas acc + nnumber + ntime (57)

where nmeas, nmeas acc, nnumber,and ntime are the bit allocation numbers for a trans-
mitted measurement, its related accuracy information (unique components of a
covariance matrix), track number, and the measurement’s time, respectively. The
bit allocation for AMR-based data consisting of range, bearing and elevation is

nmeas = nrange + nbearing + nelevation (58)

nmeas acc = nr acc + nb acc + ne acc (59)

The resulting data rate is therefore

ΨAMR = Nmeas/scan

δscan
(nrange + nbearing + nelevation + nr acc

+ nb acc + ne acc + nnumber + ntime) (60)

In the case of track-to-track fusion, the data rate is given by

Ψtracklet = Nmeas/scan

δscan
ndata (61)

For the state of the target of the form

x = [x ẋ y ẏ z ż]′ (62)
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where x , y and z are the Cartesian coordinates of the target and ẋ , ẏ and ż are its
x , y and z velocity components, respectively, ndata is given by

ndata = 3npos + 3nvel + nnumber + ntime + 21nacc (63)

where nacc is the number of bits allocated for the 21 unique elements of the state
covariance matrix. The resulting data rate is given by

Ψtrack2track = Nmeas/scan

δscan
(3 npos + 3 nvel + nnumber + ntime + 21 nacc) (64)

The data rate in the case of track-to-track fusion is similar to the track-to-track
one and is given by

Ψtracklet = Nmeas/scan

δscan Nmeas/tracklet
ndata = Ψtrack2track

Nmeas/tracklet
(65)

where Nmeas/tracklet is the measurements number per one tracklet. The resulting data
rate is given by

Ψtracklet = Nmeas/scan

δscan Nmeas/tracklet
(3 npos + 3 nvel + nnumber + ntime + 21 nacc) (66)

9.0.1 Communication and Computational Load Results

Table 10 shows the resulting communication and computational load results for each
of the distributed data fusion approaches.

The tables features different metrics for the data fusion methods used – data
rate Ψ for a platform participating in the data exchange process, computation time
tcomp for the overall simulated time of 200 s, and averaged position RMSE εx RMSE.
Also, the table contains the combinations of the metrics above, for example the
product of required computation time and required data rate – Ψ tcomp. For all of the
metrics and their combinations the higher range means less favorable results, which
makes the comparison easier. The lowest data rate was achieved when using MDP
based associated measurements data fusion, followed by MDP-based track-to-track
or tracklet data fusion simulations. The highest one was registered during track-to-
track or tracklet based data fusion simulations when all the data were shared, both
of which used the same time interval between data transmissions – 10 s. In terms
of computation time, the best results were achieved when using tracklet based data
fusion method when no data were shared among the platforms. The highest com-
putation time resulted in the track-to-track MDP-based data fusion simulation. The
best accuracy was achieved when using AMR data fusion sharing all the informa-
tion, closely followed by MDP-based AMR data fusion results. The worst accuracy
was achieved in track-to-track data fusion simulation when no data were shared
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among the platforms. The best Ψ εx RMSE metrics was achieved when using MDP
based associated measurements data fusion and the worst when using track-to-track
data fusion when all the data were shared among the platforms. In summary, asso-
ciated measurements with MDP-based data fusion yielded the best results in the
majority of the metrics categories and track-to-track data fusion with all tracks
shared gave the worst results in most of them. That could be explained in part by the
need to transmit the elements of covariance matrix combined with the fact that as the
computation of the exact cross-covariance matrices in a track-to-track fusion system
would hugely increase either computation load, approximation techniques are used
to compute them. Similar reasons can be stated for the tracklet data fusion as both
covariance matrices need to be transmitted. Also, due to the common process noise
between the tracks, not all correlations between the various versions of the same
track, maintained by different local trackers, can be removed by using the tracklets.
Therefore, this algorithm is only an approximation and it is reliable only for targets
with small maneuvering index.

10 Conclusions

In this chapter, we presented a solution for one of the main problems in network-
centric tracking – decentralized information sharing among the platforms participat-
ing in the distributed data fusion. We proposed a Markov Decision Process-based
algorithm for controlling the flow of information in a network-centric data fusion
architecture. The proposed decision process-based algorithm for controlling the
information flow in a network-centric data fusion architecture utilizes the approach
of using information based objective function as one of the components in the for-
mulated optimization problem. We demonstrated that the approach led to a substan-
tial reduction in data flow volumes, which also incurred a certain price in terms of
reduction in performance. In order to minimize communication among the nodes,
node lookup is performed using a decentralized lookup substrate. A proposed deci-
sion mechanism provides the platforms, which are decentralized, heterogenous and
potentially unreliable, with the required data for the distributed data fusion process
while reducing redundancy in the information flow in the overall system. The node
lookup is performed in O(log(N )) and the computational complexity of solving
the MDP is P-complete, which shows that the proposed method is computationally
attractive for distributed data fusion applications.

The work applied the suggested approach to three different data fusion methods,
namely, associated measurements fusion, track-to-track fusion and tracklet fusion.
As one of the main barriers in network-centric tracking is the transfer of tracking
data from one platform to another, the analysis included communication load of the
three data fusion methods. This communication load should be taken into consid-
eration in the design of the tracking system and cannot be ignored. As mentioned,
the task of providing tracking information from one platform to anther node may
be infeasible because of the limitations of the communication channel capacity. The
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lowest data rate was achieved when using MDP based associated measurements data
fusion, followed by MDP-based track-to-track or tracklet data fusion simulations.
The highest one was registered during track-to-track or tracklet based data fusion
simulations when all the data were shared, both of which used the same time inter-
val between data transmissions. In terms of computation time, the best results were
achieved when using tracklet based data fusion method when no data were shared
among the platforms. The highest computation time resulted in the track-to-track
MDP-based data fusion simulation. The best accuracy was achieved when using
AMR data fusion sharing all the information, closely followed by MDP-based AMR
data fusion results. The worst accuracy was achieved in track-to-track data fusion
simulation when no data were shared among the platforms. The best Ψ εx RMSE met-
rics was achieved when using MDP-based associated measurements data fusion and
the worst when using track-to-track data fusion when all the data were shared among
the platforms. In summary, associated measurements with MDP-based data fusion
yielded the best results in the majority of the metrics categories and track-to-track
data fusion with all tracks shared gave the worst results in most of them. That could
be explained in part by the need to transmit the elements of covariance matrix com-
bined with the fact that as the computation of the exact cross-covariance matrices
in a track-to-track fusion system would hugely increase either computation load,
approximation techniques are used to compute them. Similar reasons can be stated
for the tracklet data fusion as both covariance matrices need to be transmitted. Also,
due to the common process noise between the tracks, not all correlations between
the various versions of the same track, maintained by different local trackers, can be
removed by using the tracklets. Therefore, this algorithm is only an approximation
and it is reliable only for targets with small maneuvering index.

In this chapter we also provided an efficient solution the problem of collabora-
tive sensor management using Markov Decision Processes. We presented an altered
version of a classical Value Iteration algorithm to calculate the optimal policy for
Markov Decision Processes used to address the problem of collaborative sensor
management and data fusion for multitarget tracking. Dynamic Element Matching
algorithms were successfully used as a core element in the modified algorithm. A
number of new introduced performance metrics, such as Mean Opportunity Index,
Maximal Opportunity Index and Area Coverage Index, verify the effectiveness of a
policy, especially for quantifying the impact of the modified DEM-based Value Iter-
ation VI algorithm on an MDP policy. The modified algorithm, applied to control
a group of sensors carrying out surveillance over a region that included a num-
ber of moving targets, demonstrated an average accuracy improvement expressed
in approximately 20% reduction in position RMSE of the targets under surveil-
lance. State Coverage Index (SCI) was increased by more than 30%. The pro-
posed method demonstrated robust performance while guaranteeing polynomial
computational complexity resulting in better detection of new targets. The authors
also present multi-level hierarchy of MDPs controlling each of the sensors. Each
level in the hierarchy solves a problem at a different level of abstraction provid-
ing sensors with ability to navigate with a higher precision in a densely populated
regions.
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Deployment Techniques for Sensor Networks

Jan Beutel, Kay Römer, Matthias Ringwald, and Matthias Woehrle

Abstract The prominent visions of wireless sensor networks that appeared about
a decade ago have spurred enormous efforts in research and development of this
new class of wireless networked embedded systems. Despite the significant effort
made, successful deployments and real-world applications of sensor networks are
still scarce, labor-intensive and often cumbersome to achieve. In this article, we
survey prominent examples of sensor network deployments, in particular for envi-
ronmental monitoring applications, their interaction with the real world and classify
a number of potential causes for errors and common pitfalls. In the second half
of this work, we present methods and tools to be used to detect failures, identify
and understand root causes. These instrumentation techniques and analysis tools are
specifically designed or adapted for the analysis of distributed networked embedded
systems at the level of components, sensor nodes, and networks of nodes.

1 Introduction

Sensor networks offer the ability to monitor real-world phenomena in detail and at
large scale by embedding wireless network of sensor nodes into the environment.
Here, deployment is concerned with setting up an operational sensor network in a
real-world environment. In many cases, deployment is a labor-intensive and cum-
bersome task as environmental influences trigger bugs or degrade performance in a
way that has not been observed during pre-deployment testing in a lab. The reason
for this is that the real world has a strong influence on the function of a sensor net-
work by controlling the output of sensors, by influencing the existence and quality
of wireless communication links, and by putting physical strain on sensor nodes.
These influences can only be modeled to a very limited extent in simulators and lab
testbeds.
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Information on the typical problems encountered during deployment is rare. We
can only speculate on the reason for this. On the one hand, a paper which only
describes what happened during a deployment seldom constitutes novel research
and might be hard to get published. On the other hand, people might tend to hide or
ignore problems which are not directly related to their field of research. Addition-
ally it is often hard to discriminate desired and non-desired functional effects at the
different layers or levels of detail.

In this chapter we review prominent wireless sensor network installations and
problems encountered during their deployment. The insight into a sufficiently large
number of deployments allows to identify common deployment problems, espe-
cially in the light of system architecture and components used, in order to gain a
broader and deeper understanding of the systems and their peculiarities. In a second
part we survey approaches and methods to overcome deployment problems at the
level of components, sensor nodes, and networks of nodes. A special focus is on
techniques for instrumentation and analysis of large distributed networked embed-
ded systems at run-time.

2 Wireless Sensor Network Deployments

To understand the problems encountered during deployment, 14 different projects
are reviewed with different goals, requirements and success in deploying the sen-
sor network. The key figures for the projects surveyed are given in Table 1. Main
deployment characteristics are included such as the network size and the duration of
a deployment. The column yield denotes the amount of data reported by the sensor
network with respect to the expected optimum, e.g., based on the sample rate.

Table 1 Characteristics of selected deployments

Deployment Year #nodes Hardware Duration Yield Multi-hop

GDI I 2002 43 Mica2Dot 123 days 16% No
GDI II – patch A 2003 49 Mica2Dot 115 days 70% No
GDI II – patch B 2003 98 Mica2Dot 115 days 28% Yes
Line in the sand 2003 90 Mica2 115 days n/a Yes
Oceanography 2004 6 Custom HW 14 days Not reported No
GlacsWeb 2004 8 Custom HW 365 days Not reported No
SHM 2004 10 Mica2 2 days Up to 50% Yes
Pipenet 2004/2005 3 Intel Mote 425–553 days 31% − 63% No
Redwoods 2005 33 Mica2Dot 44 days 49% Yes
Potatoes 2005 97 TNode 21 days 2% Yes
Volcano 2005 16 TMote Sky 19 days 68% Yes
Soil ecology 2005 10 MicaZ 42 days Not reported No
Luster 2006 10 MicaZ 42 days Not reported No
Sensorscope 2006–2008 6–97 TinyNode 4–180 days Not reported Yes

In the above projects, a variety of sensor node hardware has been used as sum-
marized in Table 2. The majority of the early projects used the Mica2 mote [31]
designed at the University of California at Berkeley and produced by Crossbow
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Table 2 Sensor node characteristics
Mica2(Dot) T-Node MicaZ Tmote Sky

Microcontroller ATmega128L ATmega128L ATmega128L MSP 430
Architecture 8 bit 8 bit 8 bit 16 bit
Clock 7.328 MHz (4 MHz) 7.328 MHz 7.328 MHz 8 MHz
Program memory 128 kB 128 kB 128 kB 48 kB
Data memory 4 kB 4 kB 4 kB 10 kB
Storage memory 512 kB 512 kB 512 kB 1024 kB
Radio Chipcon CC1000 Chipcon CC1000 Chipcon CC2420 Chipcon CC2420
Frequency 433 / 915 MHz 868 MHz 2.4 GHz 2.4 GHz
Data rate 19.2 kbps 19.2 kbps 250 kbps 250 kbps

TinyNode Intel Mote Oceanography GlacsWeb

Microcontroller MSP 430 ARM7TDMI PIC 18F452 PIC 16LF878
Architecture 16 bit 32-bit 8 bit 8 bit
Clock 8 MHz 12 MHz <40 MHz <20 MHz
Program memory 48 kB 64kB 32 kB 16 kB
Data memory 10kB (*) 1536 B 368 B
Storage memory 512kB 512kB 0.25 kB 64 kB
Radio Xemics XE1205 Zeevo BT Radio not specified Xemics
Frequency 868 MHz 2.4 GHz 173 MHz 433 MHz
Data rate 152.3 kbps 1 Mbps 10 kbps 9600 bps

Data for Mica2Dot in parentheses.

Technology Inc. or a variant of it (Mica2Dot, T-Node [19]). Its main components
are an Atmel ATmega128L 8-bit microcontroller and a Chipcon CC1000 radio mod-
ule for the 433/868/915 MHz ISM bands. More recent deployments often use the
TI MSP 430 microcontroller due to its energy efficiency and more advanced radio
modules such as the Chipcon CC2420 (implementing the 802.15.4 standard) on the
Tmote Sky [30] or the Xemics XE1205 on the TinyNode [10] sensor nodes.

2.1 Great Duck Island

One of the earliest deployments of a larger sensor network was carried out in the
summer of 2002 on Great Duck Island [31], located in the gulf of Maine, USA. The
island is home to approximately 5000 pairs of Leach’s Storm Petrels that nest in
separate patches within three different habitat types. Seabird researchers are inter-
ested in questions regarding the usage pattern of nesting burrows with respect to the
microclimate. As observation by humans would be both too costly and might disturb
the birds, a sensor network of 43 nodes was deployed for 4 months just before the
breeding season. The nodes had sensors for light, temperature, humidity, pressure,
and infrared radiation and have been deployed in a single hop network. Each sensor
node samples its sensors every 70 s and sends its readings to a solar-powered gate-
way. The gateway forwards the data to a central base station with a database and a
two-way satellite connection to the Internet. During the 123 days of the experiment,
1.1 million readings have been recorded, which is about one sixth of the theoretical
6.6 million readings generated over this time.
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In a book chapter [31], the authors analyze the network’s behavior in detail. The
most loss of data was caused by hardware-related issues. Several nodes stopped
working due to water entering the sensor node casing. As all sensors were read
out by a single analog-to-digital converter, a hardware failure of one of the sensors
caused false readings of other sensors. Due to the transparent casing of the sensor
nodes, direct sun light could heat the whole sensor node and thus lead to high tem-
perature readings for nodes which are deployed above ground. Over time, various
sensors report false readings such as humidity over 150% or below 0%, or too low
or unreasonably high temperature. The temperature sensor of about half the nodes
failed at the same time as the humidity sensor suggesting water inside the packaging.
Although it did not directly cause packet loss as the gateway was always listening,
several nodes did show a phase skew with respect to their 70 s sending interval. A
crash of the database running on the base station resulted in the complete loss of
data for two weeks.

After lessons learned from the first deployment, a second deployment was con-
ducted in 2003 [41]. This time, two separate networks, a single-hop network of 49
nodes similar to the one in the first deployment and a multi-hop network with 98
nodes were deployed. The multi-hop network used the routing algorithm developed
by Woo [52]. Again, the project suffered from several outages of the base station –
this time caused by harsh weather. In the multi-hop network, early battery depletion
was caused by overhearing in combination with low-power listening. In the pre-
deployment calculation, the group did not account for an increased overhearing in
the multi-hop network although it could have been predicted.

2.2 A Line in the Sand

An early project focussing on intrusion detection, classification and tracking of tar-
gets is “A line in the sand” [2]. The system consists of densely deployed sensor
nodes with integrated binary detection sensors that collaboratively detect multiple
objects.

The system implementation was evaluated by repeated deployments of ninety
sensor nodes on three different sites in spring, summer, and fall of 2003 and smaller,
focussed test deployments. The authors describe key problems encountered during
the project. One of the main issues is the unreliability of the network. This is exac-
erbated by using a dense network of sensor nodes, which leads to network satura-
tion and congestion and thus a considerable amount of collisions. Unexpected sys-
tem interaction at scale diminished services for reliable communication. Additional
unanticipated problems occurred due to hardware failures (e.g., debonding or desen-
sitizing of sensors over time) and environmental conditions, exhausted batteries as
well as problems due to incorrectly downloaded software. Unanticipated problems
caused protocols to fail. The authors identify many faults that can be addressed
by better packaging, hardware optimization and allowing for more redundancy, but
indicate that many faults still require proper support for identification and resolution.
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2.3 Oceanography

A small sensor network of 6 nodes was deployed in 2004 on a sandbank off the
coast of Great Yarmouth, Great Britain [43] to study sedimentation and wave pro-
cesses. A node did consist of a radio buoy for communication above the sea and a
sensor box on the seabed connected by a wired serial connection. The sensor box
had sensors for temperature, water pressure (which allows to derive wave height),
water turbidity, and salinity. The authors reported problems with the sensor box
due to last-minute software changes which led to cutting and re-fixing of the cable
between buoy and sensor, and later, to the failure of one of the sensors caused by
water leakage.

2.4 GlacsWeb

The GlacsWeb project [28] deployed a single-hop sensor network of 8 glacier probes
in Norway. The aim of this system is to understand glacier dynamics in response to
climate change. Each probe samples every four hours the following sensors: temper-
ature, strain (due to stress of the ice), pressure (if immersed in water), orientation,
resistivity (to detect whether the probe would be in sediment till, water or ice), and
battery voltage. The probes were installed in up to 70 m deep holes located around
a central hole which did hold the receiver of the base station.

In this deployment, initially, the base station only received data from seven
probes and during the course of the experiment, communication with four probes
failed over time. In the end, three probes were able to report their sensor readings.
The base station experienced an outage. The authors speculate that the other probes
might have failed for three reasons: Firstly, nodes might have been moved out of
transmission range because of sub-glacial movement. Secondly, the node casing
might have broken due to stress by the moving ice. And thirdly, clock drift and
sleeping policy might have led to unsynchronized nodes which hinders communi-
cation.

2.5 Structural Health Monitoring

To assess the structural health of buildings, the Wisden [29] data acquisition sys-
tem was conceived. Each node measures seismic motion by means of a three-axis
accelerometer and forwards its data to a central station over a multi-hop network.
The data samples are time stamped and aggregated in the network to compensate for
the limited bandwidth. In the case of a seismic event, the complete data is buffered
on a node for reliable but delayed end-to-end data transmission.

The authors report a software defect in their system, where an 8-bit counter was
used for the number of locally buffered packets and an overrun would cause packets
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to not be delivered at all. Also, the accelerometer readings showed increased noise
when the battery voltage did fall below a certain threshold.

2.6 Pipenet

Pipenet [39] is a sensor network to monitor pipeline infrastructures allowing for
increased spatial and temporal resolution of operational data. It collects hydraulic
and acoustic/vibrational data at high sampling rates and analyzes the data to identify
and locate leaks in a pipeline. Pipenet uses a tiered architecture with the sensor net-
work tier consisting of a cluster of battery-operated Intel Motes equipped with a data
acquisition board. Sensor nodes are directly connected to the pipe, sense and process
the collected information and directly send it via Bluetooth to the upper tier. First
results of the initial trial from December 2004 to July 2005 are presented. One of
the main problems encountered was battery exhaustion leading to long-term missing
data. Short-term missing data is attributed to a watch-dog rebooting the gateway at
midnight each day, leading to a loss of all messages in transit. Other sources for
packet loss are environmental conditions such as rainfall and snow, where espe-
cially snow had a significant effect on packet loss. Hardware problems due to bad
antennas and insufficient waterproofness attributed to additional problems in one of
the clusters.

2.7 Redwood Trees

To monitor the microclimate of a 70-meter tall redwood tree, 33 sensor nodes have
been deployed along a redwood tree roughly every 2 m in height for 44 days in
2005 [46]. Each node measured and reported every 5 minutes air temperature, rel-
ative humidity, and solar radiation. The overall yield of this deployment has been
49%. In addition to the Great Duck Island hardware and software, the “Tiny Appli-
cation Sensor Kit” (TASK) was used on the multi-hop network. The TinyDB [25]
component included in TASK provides an SQL-like database interface to specify
continuous queries over sensor data. In addition to forwarding the data over the net-
work, each sensor node was instructed to record all sensor readings into an internal
512 kB flash chip.

Some nodes recorded abnormally high temperature readings above 40◦C when
other nodes reported temperatures between 5 and 25◦C. This allowed to single out
nodes with incorrect readings. Wrong sensor readings have been highly correlated
to low battery voltage similar to the report for the Structural Health Monitoring.
This should have not been surprising as the used sensor nodes, Mica2Dot motes,
did not employ a voltage converter and the battery voltage fell below the threshold
for reliable operation over time. Also in this project, two weeks of data were lost
due to a gateway outage. The data stored in the internal flash chip was complete but
did not cover the whole deployment. Although it was estimated that it would suffice,
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initial tests, calibration, and a longer deployment than initially envisioned led to a
full storage after about four weeks. In the end it turned out that the overall data yield
of 49% was only possible by manually collecting all nodes and extracting the data
from the flash memory on each node.

2.8 LOFAR-agro

A detailed report on deployment problems was aptly called “LOFAR-agro – Murphy
Loves Potatoes” [19]. The LOFAR-agro project is aimed at precision agriculture. In
summer 2005, after two field trials, 110 sensor nodes with sensors for temperature
and relative humidity were deployed in a potato field just after potatoes have been
planted. The field trials and the final deployment suffered from a long list of prob-
lems.

Similar to the oceanography project, an accidental commit to the source code
revision control system led to a partially working MAC protocol being installed
on the sensor nodes just before the second field trial. Later, update code stored in
the nodes’ external flash memory caused a continuous network code distribution
which led to high network congestion, a low data rate and thus the depletion of all
nodes’ batteries within 4 days. The routing and the MAC component used different
fixed size neighbor tables. In the dense deployment, where a node might have up to
30 neighbors, not all neighborhood information could be stored, which caused two
types of faulty behavior. Firstly, the routing component of most nodes did not send
packets to the gateway although the link would have been optimal. Secondly, as
both components used different neighbor tables, packets got dropped by the MAC-
layer when the next hop destination was not in its neighbor table. To allow nodes
to recover from software crashes, a watchdog timer was used. Either due to actual
program crashes or due to a malfunction of the watchdog handling, most nodes
rebooted every 2–6 h. This did not only cause data loss for the affected node but
also led to network instability as the entries for rebooting nodes are removed by
their neighbors from their neighborhood tables. As in other projects, the LOFAR-
agro project suffered from gateway outages. In this case, a miscalculation of the
power requirements for the solar-powered gateway caused a regular outage in the
morning when the backup battery was depleted before the sun rises and the solar
cells provided enough power again. The sensor nodes were programmed to also
store their readings in the external flash memory, but due to a small bug, even this
fallback failed and no data was recovered after the deployment. In total, the 97 nodes
which ran for 3 weeks did deliver 2% of the measured data.

2.9 Volcanoes

In August 2005, a sensor network of 16 sensor nodes has been deployed on the
volcano Reventador in Ecuador [47]. Each node samples seismic and acoustic data
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at 100 Hz. If a node detects a local seismic event, it notifies a base stations. If 30%
of the nodes report an event in parallel, the complete data set of the last minute
is fetched from all nodes in a reliable manner. Instead of immediately reporting
all data, which would lead to massive network congestion and packet collisions
with current low-power MAC protocols, the nodes are polled by the base station
sequentially.

The first problem encountered was a software defect in the clock component
which would occasionally report a bogus time. This led to a failure of the time
synchronization mechanism. The team tried to reboot the network but this trigged
another bug, which led to nodes continuously rebooting. After manual reprogram-
ming of the nodes, the network was working quite reliably. A median event yield
of 68% was reported, which means that for detected events 68% of the data was
received. As with other deployments, data was lost due to power outage at the base
station. During the deployment, only a single node stopped reporting data and this
was later confirmed to be due to a broken antenna.

2.10 Soil Ecology

To monitor the soil ecology in an urban forest environment, ten sensor nodes have
been deployed near John Hopkins University in the autumn of 2005. The nodes
have been equipped with manually calibrated temperature and soil moisture sensors
and packed into a plastic waterproof casing. The sensor application was designed to
store all sensor readings in the local flash memory which had to be read out every
two weeks to guarantee 100% sensor data yield in combination with a reliable data
transfer protocol.

However, due to an unexpected hardware behavior, a write to the flash memory
could fail and an affected node would then stop recording data. Further parts of the
data have been lost due to human errors while downloading the data to a laptop
computer. Similar to previous deployments, the software on the nodes had to be
updated and for this the waterproof cases had to be re-opened several times which
led to water leakage in some cases.

2.11 Luster

A recent project for environmental monitoring is Luster [37], a system to monitor
environmental phenomena such as temperature, humidity, or CO2. LUSTER is an
environmental sensor network specifically designed for high reliability. Its main
goal is to measure sunlight in thickets in order to study the relation between light
conditions and the phenomenon of shrub thickets overwhelming grasslands. Luster
is a multi-layer, single-hop architecture replicated into multiple clusters that cover
the entire deployment area: The lowest layer is a cluster of sensor nodes collecting
and transmitting data at a configurable rate to a clusterhead gateway. The gateway
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nodes (Stargate microservers) form a delay tolerant network layer. For redundancy
purposes an additional layer is introduced, the reliable distributed storage layer. This
layer is made up of dedicated storage nodes overhearing data reported by sensor
nodes at the lowest layer and passively storing it on SD cards, for physically retrieval
at a later point in time. Overlapping sensor coverage increases reliability of the
overall system.

The system was deployed at Hog Island. While two problems were caused
by hardware failures, i.e., bad contacts to the sensor, and a non-responding stor-
age node, the problems could be identified in the field using their inspection tool
SeeDTV [22].

2.12 SensorScope

Sensorscope [4, 3] is a system for environmental monitoring with many deploy-
ments across Switzerland. Instead of few accurate and expensive sensors, many
densely deployed inexpensive sensing stations are used to create accurate environ-
ment models. Instead of accuracy of individual sensors, the system design strives
for generating models by high spatial density of inexpensive sensing stations. Each
station is powered by a solar cell, which is mounted onto a flagstaff alongside the
sensors and a TinyNode. Different environmental parameters are captured and gath-
ered for later analysis. Most deployments are in the range of days to a couple of
months. The environments are typically harsh, especially in the high mountain ter-
rain deployments, e.g., on the Grand St. Bernard pass. Similar to the report of the
LOFAR-agro project, the authors provide a detailed overview of issues and lessons
learned in a comprehensive guide [3]. They again stress the importance of adequate
packaging of the sensor nodes, and especially the connectors. With respect to these
particularly harsh environments, substantial temperature variation showed consid-
erable impact on the clock drift. However, while the clock drift typically affects
the time synchronization of the network, in this case, it induced a loss of synchro-
nization of the serial interface between the sink node and the GPRS modem. In
an indoor test deployment, the authors report on packet loss due to interference
where the interfering source could not be determined. Finally, a change of the query
interval of the wind speed sensor, when moving from the lab to the field, caused
counter overruns, which rendered a lot of sensor readings useless.

3 Deployment Problems

Based on the described problems typically found during deployments as surveyed
in the previous section, a classification of problems is presented. Here, a “problem”
is defined as a behavior of a set of nodes that is not compliant with a (informal)
specification.

We classify problems according to the number of nodes involved into four
classes: node problems that involve only a single node, link problems that involve
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two neighboring nodes and the wireless link between them, path problems that
involve three or more nodes and a multi-hop path formed by them, and global
problems that are properties of the network as a whole.

3.1 Node Problems

A common node problem is node death due to energy depletion either caused by
“normal” battery discharge [2, 39], short circuits or excessive leakage due to inade-
quate or broken packaging [41].

Low batteries often do not result in a fail-stop behavior of a sensor node. Rather,
nodes show random behavior below a certain low battery level. In the Redwood
Trees deployment [46], for example, wrong sensor readings have been observed
at low battery voltage. Even worse, a slowly degrading node can also impact the
performance of other nodes in a network ensemble, possibly still having enough
energy.

An increased amount of network traffic, compared to initial calculations, led to
an early battery depletion due to unexpected overhearing (e.g., Great Duck Island
deployment [40], Sect. 2.1) or repeated network floods (e.g., LOFAR-agro deploy-
ment [19], Sect. 2.8). In the Great Duck Island deployment [41], a low-resistance
path between the power supply terminals was created by water permeating a capac-
itive humidity sensor, resulting in early battery depletion and abnormally small or
large sensor readings. Poor packaging [2, 3], bad contacts [37] to sensors or deteri-
orating sensors [2] are typical problems encountered for sensor nodes, especially in
harsh environmental conditions.

Software bugs often result in node reboots, for example, due to failure to restart
the watchdog timer of the micro controller (e.g., LOFAR-agro deployment [19]).
Also observed have been software bugs resulting in hanging or killed threads, such
that only part of the sensor node software continued to operate. Overflows in coun-
ters may also deviate the sensor readings by spoiling a reference interval [3]. In [2]
problems are also attributed to incorrectly downloaded software.

Sink nodes act as gateways between a sensor network and the Internet. In many
applications they store and forward data collected by the sensor network to a back-
ground infrastructure. Hence, problems affecting sink nodes or the gateway must be
promptly detected to limit the impact of data loss (e.g., GlacsWeb deployment [28],
Great Duck Island deployment [40], Redwood Trees deployment [46]). This can
also manifest in temporary errors as reported for the serial link between the sink
and its secondary interface [3] or periodic problems due to watchdog reboots [39].

3.2 Link Problems

Field experiments (e.g., [52, 14]) demonstrated a very high variability of link quality
both across time and space resulting in temporary link failures and variable amounts
of message loss. Interference in office buildings can considerably affect the packet
loss; the source often cannot be determined [3].
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Network congestion due to traffic bursts is another source of message loss. In
the Great Duck Island deployment [40], for example, a median message loss of
30% is reported for a single-hop network. Excessive levels of traffic bursts have
been caused by accidental synchronization of transmissions by multiple senders,
for example, due to inappropriate design of the MAC layer [33] or by repeated net-
work floods as in the LOFAR-agro deployment [19]. If message loss is compensated
for by retransmissions, a high latency may be observed until a message eventually
arrives at the destination. Congestion is especially critical in dense networks, e.g.,
when many nodes detect an event simultaneously and subsequently compete with
the neighbors for medium access to send off an event notification [2].

Most protocols require each node in the sensor network to discover and maintain
a set of network neighbors (often implemented by broadcasting HELLO messages
containing the sender address). A node with no neighbors presents a problem as it
is isolated and cannot communicate. Also, neighbor oscillation is problematic [33],
where a node experiences frequent changes of its set of neighbors.

A common issue in wireless communication are asymmetric links, where com-
munication between a pair of nodes is only possible in one direction. In a field exper-
iment [14] between 5 and 15% of all links have been observed to be asymmetric,
with lower transmission power and longer node distance resulting in more asymmet-
ric links. If not properly considered, asymmetric links may result in fake neighbors
(received HELLO from a neighbor but cannot send any data to it) and broken data
communication (can send data to neighbor, but cannot receive acknowledgments).

Another issue is the physical length of a link. Even though if two nodes are very
close together, they may not be able to establish a link (missing short links). On
the other hand, two nodes that are very far away from each other (well beyond the
nominal communication range of a node), may be able to communicate (unexpected
long links). Experiments in [14] show that at low transmit power about 1% of all
links are twice as long as the nominal communication range. These link character-
istics make node placement highly non-trivial as the signal propagation character-
istics of the real-world setting have to be considered [7] to obtain a well-connected
network.

Most sensor network MAC protocols achieve energy efficiency by scheduling
communication times and turning the radio module off in-between. Clock drift or
repeated failures to re-synchronize the communication phase may result in failures
to deliver data as nodes are not ready to receive when others are sending. In [26], for
example, excessive phase skew has been observed (about two orders of magnitude
larger than the drift of the oscillator).

3.3 Path Problems

Many sensor network applications rely on the ability to relay information across
multiple nodes along a multi-hop path. In particular, most sensor applications
include one or more sink nodes that disseminate queries or other tasking information
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to sensor nodes and sensor nodes deliver results back to the sink. Here, it is impor-
tant that a path exists from a sink to each sensor node, and from each sensor node
to a sink. Note that information may be changed as it is traversing such a path, for
example due to data aggregation. Two common problems in such applications are
hence bad path to sink and bad path to node. In [19], for example, selfish nodes have
been observed that did not forward received traffic, but succeeded in sending locally
generated messages.

Since a path consists of a sequence of links, the former inherits many of the
possible problems from the latter such as asymmetric paths, high latency, path
oscillations, and high message loss. In the Great Duck Island deployment [40],
for example, a total message loss of about 58% was observed across a multi-hop
network.

Finally, routing loops are a common problem, since frequent node and commu-
nication failures can easily lead to inconsistent paths if the software is not properly
prepared to deal with these cases. Directed Diffusion [17], for example, uses a data
cache to suppress previously open data packets to prevent routing loops. If a node
reboots, the data cache is deleted and loops may be created [38].

3.4 Global Problems

In addition to the above problems which can be attributed to a certain subset of
nodes, there are also some problems which are global properties of a network.
Several of these are failures to meet certain application-defined quality-of-service
properties. These include low data yield, high reporting latency, and short network
lifetime [45].

Low data yield means that the network delivers an insufficient amount of infor-
mation (e.g., incomplete sensor time series). In the Redwood Trees deployment [46],
for example, a total data yield of only about 20–30% is reported. This problem is
related to message loss as discussed above, but may be caused by other problems
such as a node crashing before buffered information could be forwarded [39], buffer
overflows, etc. One specific reason for a low data yield is a partitioned network,
where a set of nodes is not connected to the sink.

Reporting latency refers to the amount of time that elapses between the occur-
rence of a physical event and that event being reported by the sensor network to the
observer. This is obviously related to the path latency, but as a report often involves
the output of many sensor nodes, the reporting latency results from a complex inter-
action within a large portion of the network.

The lifetime of a sensor network typically ends when the network fails to cover a
given physical space sufficiently with live nodes that are able to report observations.
The network lifetime is obviously related to the lifetime of individual nodes, but
includes also other aspects. For example, the death of certain nodes may partition
the network such that even though sensing coverage is still provided, nodes can no
longer report data to the observer.
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3.5 Discussion

Orthogonal to the classification in the previous section, the deployment problems in
the surveyed literature fall into two categories: implementation and design defects.
A majority of the problems reported have been caused by problems and defects in
the hardware and software implementation, and can be fixed after they have been
detected, analyzed, and understood. Here, dedicated inspection tools allow to find
the defects quicker.

The two most underestimated problems in the surveyed sensor network deploy-
ments have been the water-proof packaging of the sensor nodes required for an
outside deployment and the provision of a reliable base station which records sensor
data and has to run for months and years. This suggests that sensor nodes should
be sold together with appropriate packaging. However, due to the variety of sensors
used for different applications, a common casing is often not practicable or possible.
The provision of a reliable base station is not specific to wireless sensor networks
and mostly depends on a reliable power supply and software implementation.

4 Understanding the System

To detect the problems discussed in the previous section and to identify their causes,
one needs to analyze the state of the system as it changes over time. Here, the term
system does not only refer to the state of the sensor network, but also to the state of
its enclosing environment as the latter is closely coupled to the state of the sensor
network. The state of the sensor network itself is comprised of the state of the indi-
vidual nodes plus the states of the communication channels between the nodes. The
state of a sensor node can be further refined into the hardware state and the state of
the software executed by the microcontroller. Isolating the contribution of a single
system component from the overall context is a complicated task and care should be
taken to actually design a sensor network in a way that this task is facilitated.

As many sensor networks are real-time systems or have real-time aspects (e.g.,
sensor readout at regular intervals), it is not only important to understand the pro-
gression of the system state over time, but also its exact timing, i.e., when a certain
state is assumed with respect to real time. Especially in the context of a larger
distributed system, in the case of a sensor network even exacerbated by stringent
resource constraints, this is a feat requiring novel tools and methods for analysis.

4.1 Hardware

The sensor node hardware typically consists of three main subsystems: the micro-
controller, a low-power radio and a sensing subsystem, often implemented as an
auxiliary sensor board. Components are connected through buses, e.g., UART or
SPI, and interrupt lines. Each of these components executes concurrently with syn-
chronization between contexts initiated through interrupts on the microcontroller.
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In the following, we discuss the individual component state of these three main
building blocks and discuss how physical characteristics such as power consumption
allow for inferring the overall system state.

Component State. System state is typically referred to as the state of the microcon-
troller and is inferred using an instrumentation technique (cf. Sect. 5). However,
the microcontroller is not the sole functional component attributing to the system
state; the node hardware state machine is the cross-product of each of the individual
component state machines. As an example consider the process of sending a packet:
the microcontroller prepares the packet and sends the packet to the radio buffer, e.g.,
via the SPI bus. While the radio schedules the transmission based on its internal state
machine, the microcontroller can either perform further work or go to a low-power
sleep state. In this interval, the microcontroller has no knowledge of the ongoing
state changes of the radio driver. Finally, when a packet is transmitted, the radio
notifies the processor via an interrupt.

Power Consumption. Each component of a sensor node can be characterized by
its power consumption. Power consumption is dependent chiefly on current state
but also features dynamic, non-linear effects due to capacitances and inductances.
Sensor node components have typically very distinctive power consumption charac-
teristics for their individual state. As an example, Table 3 shows power consumption
for different hardware component states of the microcontroller and the radio. A
detailed overview of current draw of different hardware states is provided in [13].

Table 3 Current consumption for different component states of a Tmote Sky node. Max values
derived from datasheet

Microcontroller Radio Current (mA)

On RX 23
On TX 21
On Off 2.4
Idle Off 1.2
Standby Off 0.021

In the context of a detailed powertrace is is possible to infer system behavior and
system state in a most expressive way. Shown in Fig. 1 is an exemplary powertrace
of an enhanced synchronized low-power listening scheme implemented in TinyOS-
2.x for the Tmote Sky platform. By timing and coordinating packet transmissions
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Fig. 1 A powertrace yields detailed insight into system behavior and anomalies
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between periodic listening/acknowledgement periods (1) a data packet must not be
sent repetitively (2) but only once when the receiving side is ready listening (3) [21].

4.2 Software

The state of the software executed by a microcontroller is defined by memory con-
tents and by the contents of the registers of the microcontroller, in particular the
program counter and the stack pointer. As many microcontrollers feature a Harvard
architecture with separate program memory (flash) and data memory (RAM), the
focus is often on the data memory as the contents of the program memory typi-
cally do not change over time. Many sensor nodes offer additional flash memories.
While earlier systems used these primarily as data sinks for logging (and hence
flash memory contents do not affect program behavior directly), there is a trend to
use these memories in a more interactive way, for example, for file systems or virtual
memories. In this case, flash memory contents may directly affect program behavior
and hence are as important as RAM in understanding the behavior of the system.

Instead of working with a low-level view of the software state directly, one is
often more interested in a higher-level view, e.g., the values of certain program
variables (instead of raw memory contents) or a function call trace (instead of the
content of the program counter). These high-level views also depend on the func-
tionality of the operating system used. In many operating systems such as TinyOS,
there is no strict separation between a kernel and the application. Here, the kernel
is simply a library of functions that is linked to the application code. As there is
no means of isolation and protection, bugs in the application code can modify ker-
nel state and vice versa, such that the complete software state has to be taken into
account to understand the behavior of the system.

Other systems offer a more strict separation and sometimes also isolation mech-
anisms between kernel and application. If this is the case, then one may trust that
the operating system is well-behaved and focus on the application state. Some oper-
ating systems provide a thread abstraction with an individual program counter per
thread. Although threads offer an additional level of abstraction, they also introduce
additional complexity due to interactions between threads (e.g., shared variables,
synchronization, timing aspects of thread scheduling).

4.3 Communication

The contents and timing of messages exchanged between sensor nodes does not
only disclose the nature of interactions between sensor nodes (e.g., neighborhood
relationships, routing topologies), but does also provide hints on the state of indi-
vidual nodes. For example, a lack of messages from a certain node may indicate that
the node has died, or the values of a sequence number contained in a message may
indicate certain problems such as node reboots (after which the sequence number
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counter in the node memory is reset to an initial value). Often dedicated messages
carry system health information that is vital to the deployment, commissioning and
operation of a sensor network application. As a number of deployment reports have
shown, e.g., [42], expressiveness and simple, cleartext access to message payload
is preferential over elaborate coding or even segmentation of data. In the case of
segmentation of context over multiple packets, state cannot be reconstructed if one
of the packets gets lost.

4.4 Environment

Sensor networks are deeply embedded into the physical world and hence the behav-
ior of a sensor network is strongly dependent on the state of the environment. Not
only does the state of the environment control the output of sensors attached to
sensor nodes, but it also influences the wireless communication channel and hence
communication as well as hardware performance (e.g., frequency of oscillators).
Hence, additional infrastructure can be used (e.g., video cameras as in [41, 6])
to measure the state of the environment in a given deployment which is not only
important to obtain ground truth for calibration of the system and individual sensors,
but also to understand the reasons of certain failures, system behavior in general or
degraded performance.

Some sensor networks apply techniques to process or aggregate sensor data in
the network, such that the data collected from the sensor network does not disclose
the output of individual sensors. In such settings it may be helpful to provide access
to the raw output of the sensors in order to understand the system behavior.

5 Node Instrumentation

Node instrumentation is concerned with modifications of sensor nodes (both at the
hardware and software levels) to allow access to the system state. One fundamental
challenge here is to minimize interference with the application in the sense that
introducing instrumentation should avoid so-called probe effects, where instrumen-
tation (i.e., inserting a probe) results in a changed behavior of the system.

5.1 Software Instrumentation

Software instrumentation is required to retrieve the state of the software executing
on the microcontroller. In practice, it is impossible (since there is not enough band-
width to extract this information from the sensor node) and often also not necessary
to extract the complete software state continuously. Instead, only a slice of the state
(e.g., the values of a certain set of program variables) at certain points in time (e.g.,
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when a certain program variable is modified, when a certain function is entered)
suffices in many cases.

Source vs. Binary. Software instrumentation can be achieved at two levels: at the
source level, where the source code of the software is modified, or at the binary
level, where the binary program image (i.e., output of the assembler) is modified.
At the source level, calls to specific functions are inserted, for example to log the
value of a certain variable when a new value is assigned to this variable [35]. At the
binary level, the binary CPU instructions are modified. A particular difficulty with
this approach is that it is not easily possible to insert additional instructions as the
code contains references (e.g., jump instructions) to certain addresses in the code
image. By inserting instructions, these references would be invalidated. A common
technique to avoid these problems are so-called trampolines [8, 44, 53], where an
instruction X at address A in the code image is overwritten with a jump instruc-
tion to an address after the end of the binary image. At that address, a copy of the
overwritten instruction X is placed, followed by instructions to retrieve the software
state, followed by a jump instruction back to address A+1. This way, the layout of
the original binary code image is not changed as the code to retrieve the software
state is appended to the code image.

In some cases, instrumentation of the binary can be performed without actually
modifying the binary code, by linking in additional code that makes references to
the symbols (e.g., of variables or functions) defined in the binary. Marionette [49],
for example, uses this approach to link RPC stubs with the binary to allow remote
access to variables and functions in the code executing on the sensor node. The stubs
are created by parsing an annotated version of the source code of the application.

Instrumentation at the source level is often easier to implement, but may signif-
icantly change the resulting binary code. For example, due to the inserted function
calls the compiler may decide for a different optimization strategy, resulting in a sig-
nificantly different binary code image being created. This may lead to pronounced
probe effects, where the instrumented software behaves very different from the
unmodified software due to changed memory layout, register allocations, or timing
issues. In contrast, binary instrumentation is more complex to implement because
one has to operate at the level of machine instructions, but probe effects are often
less significant because the basic memory layout is not changed.

Operating System vs. Application. Another aspect of software instrumentation is
whether the actual application code and/or the operating system is instrumented. In
some cases it may be sufficient to only instrument the operating system or runtime
environment to trace timing and parameters of kernel invocations, memory alloca-
tions, or context switches. In particular when using a virtual machine to interpret a
byte code representation of the application program, an instrumentation of the byte
code interpreter provides a detailed view of the applications state without actually
instrumenting the application code. Some virtual machines have been developed for
sensor nodes (e.g., [20]), but constrained resources often preclude the use of virtual
machines low-end sensor nodes due to the resulting performance degradation.

Dynamic Instrumentation. Sometimes it is necessary to change the instrumen-
tation during runtime, for example to implement interactive debugging, where one
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wants to place watchpoints that are triggered when the value of a certain variable
changes. While this is typically impossible with source code instrumentation as code
would have to be recompiled and uploaded to the microcontroller, virtual machines
and binary instrumentation do support this. A difficulty with binary instrumentation
is that the program image resides in flash memory rather than in RAM. Changing
the contents of flash memory is not only slow and consumes a lot of energy, but
flash only supports a limited number of write cycles (in the order of thousands)
before it fails [53]. Hence, changes of the binary instrumentation during runtime
should be rather infrequent. This problem does not occur with virtual machines, as
the interpreted program typically resides in data memory (i.e., RAM) – only the
virtual machine itself resides in flash memory.

Specifications. One further aspect of software instrumentation is the way the user
specifies how the software should be instrumented, i.e., which slice of the software
state should be retrieved at what point in time. The most basic way is to specify
the exact locations in the program code (either at source or binary level) where an
instrumentation should be placed and which slice of the program state this instru-
mentation should retrieve. However, this is often a tedious and error-prone process.
For example, when monitoring the value of a certain program variable over time, one
may forget to place an instrumentation after one of the many places in the program
where the value of this variable may be changed.

A more advanced approach inspired by Aspect-Oriented Programming (AOP) is
to let the user specify a certain pattern such that instrumentation is inserted wher-
ever the program code matches this pattern [8]. Example patterns may be of the
form “whenever a function named set∗ is entered, insert a given instrumentation” or
“whenever the value of a variable named state∗ is modified, insert a given instru-
mentation”. An interpreter would read these patterns, match them with the program
code (either source or binary) and place the appropriate instrumentation.

A related approach is based on the notion of events [50]. Here, an event is said
to occur when the software assumes a certain predefined state. Instrumentation has
to be added at all points where the software enters a state that matches the event
definition. One basic way to implement this is to let the user identify all these points
in the program. But in principle, this can also be automated. Upon occurrence of an
event, a notification is generated that identifies the event, often also containing the
time of occurrence and a certain slice of the software state at the time of occurrence
of the event. One example of such events are watchpoints in a debugger [53].

Systems that support pattern-based or event-based instrumentation during run-
time typically include a small runtime system to evaluate the pattern or event spec-
ification in order to identify the points in the code where instrumentation has to be
placed, and to perform the actual instrumentation [8, 44, 53].

5.2 Hardware Instrumentation

Hardware instrumentation enables the extraction of the hardware state but also of
the software state from a sensor node. Note that a hardware instrumentation is not
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strictly necessary. For example, one may send off the software state (extracted using
the techniques described in the previous section) using the radio or by blinking
LEDs. Here, one can place an additional radio receiver or a video camera next to
the sensor nodes to capture the state without physical access to the sensor nodes. In
some cases it is even possible to retrieve parts of the hardware state in this way. For
example, one may use the built-in analog-to-digital converter of the microcontroller
to measure the battery voltage and send it off via radio or LEDs. However, all these
techniques may result in significant changes of the system behavior and thus may
cause probe effects. Hardware instrumentation tries to minimize these effects, but
requires physical access to the sensors nodes, which may be difficult in the field.

Hardware instrumentation of sensor nodes uses the approaches and mechanisms
known from embedded systems [15]. However, for WSN there is a considerable
distinction: a single embedded system is only part of an interacting network. Thus
in the following we describe only approaches from debugging embedded systems,
which are focussed on a system aspect. Traditional embedded debugging methods
for a single node such as flash monitors are not considered. We focus on hardware
instrumentation utilizing a physical connection to the sensor node to extract logical
monitoring information. On the sensor nodes, microcontroller interfaces are used to
drive signals across a wired connection to a monitoring observer. The connection
to an observer may include a converter translating the serial protocol to a standard
interface such as USB or Ethernet.

The simplest approach for hardware instrumentation is to use General-Purpose
IO’s to generate binary flags, representing internal state of the node. While infor-
mation content is limited, such wired pins are very helpful in debugging and have a
minimal overhead in software. Further information can be extracted by using a serial
protocol over the wire. Many microcontrollers provide support for serial protocols in
their interfaces; in particular UARTs (universal asynchronous receiver/transmitters)
are typically included. These interfaces can be used to send monitoring messages
from the node to an observer. The additional information content is payed by
increased, non-deterministic latency of an information message due to buffering
and serialization. Flow control and error handling may be incorporated depending
on monitoring message frequency and instrumentation requirements.

Additionally, microcontrollers typically include JTAG (IEEE 1149.1) function-
ality. JTAG stops the microcontroller and subsequently allows for non-intrusive
extraction of node state to the external observer.1 While, this method is very helpful
in debugging individual nodes, the stopping of the execution induces considerable
probing effects due to the halting of interaction with the system.

A separate HW instrumentation technique for extracting physical information
is observation of power consumption through voltage and current measurements.
While this is traditionally performed with expensive lab equipment such as volt-
age/current meters or oscilloscopes, in [16] a low-cost and distributed hardware

1 Note that our discussion only focusses on information extraction and not on the debugging capa-
bilities of JTAG such as stepping through a program execution.
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instrumentation for power measurements on a testbed is presented. As sensor nodes
have significant differences in power consumption for the microcontroller and the
radio, the power consumption trace allows for extracting information on system
state. A different approach is to focus on energy consumption of different opera-
tions. Using specialized hardware on each sensor node [11], energy attribution to
individual tasks [13] may be derived allowing for additional insights.

6 Network Instrumentation Methods

A number of methods have been developed in recent years to aid development,
testing and deployments of whole sensor network systems. The sheer number of
nodes requires a careful and orchestrated instrumentation in order to allow to inter-
act with a whole network of nodes. In this sense, network instrumentation refers
to the instrumentation of sensor nodes to extract a comprehensive view of a sen-
sor network. There are four different mechanisms for network instrumentation (i)
in-band collection, (ii) local logging, (iii) sniffing and (iv) out-of-band collection.
These approaches will be discussed in the following.

Table 4 Characteristics of network instrumentation methods based on distinct parameters: online
capabilities, supported data volume and physical attachment

Approach Online Data volume Attachment

In-Band Yes Low No
Storage No Low No
On-line Sniffing Yes Low No
Off-line Sniffing No Low No
Out-of-Band Yes High Yes

With in-band collection as shown in Fig. 2 monitoring messages are routed
through the sensor network to a sink, where they are merged and fed to the eval-
uation backend. This is similar to a data gathering approach to collect sensor values
from the network. This approach has the lowest overhead as no additional hard-
ware is required, but results in high interference with the application as all traffic is
transmitted in-band with application traffic through the whole network.

(d)(c) (f)(e)(b)(a)

Fig. 2 Different network instrumentation methods have implications on resources used and the
expressiveness of the results: (a) in-band collection (b) logging (c) offline sniffing (d) online
sniffing (e) wireless testbed (f) wired testbed



Deployment Techniques for Sensor Networks 239

With the logging approach in Fig. 2(b), monitoring messages are stored to a local
node memory (flash) indicated by the small database symbols in the nodes. While
this approach causes no interference with the application traffic, the nodes need to
be collected to download the traces from their memories, resulting in substantial
overhead. As local storage is typically limited by sensor nodes, the amount of mon-
itoring messages is considerably limited.

With the offline sniffer approach in Fig. 2(c), an additional set of sniffer nodes
(depicted as squares) is installed alongside the sensor network to overhear messages
messages sent by sensor nodes. Sniffer nodes store these messages in their (flash)
memories. As in the logging approach, sniffer nodes need to be collected to down-
load messages from their memories, while the sensor network remains operational.
This approach may be used in a completely passive manner without modifying sen-
sor network software or protocols as in [9]. However, one may also modify the
sensor network protocols to include additional information about node states into
messages or to broadcast additional messages in-band with the application traffic
to be overheard by the sniffer nodes. However, other sensor nodes would ignore
these additional messages and would not forward them, resulting in significantly
less in-band traffic compared to the in-band collection.

With the online sniffer approach in Fig. 2(d), sniffer nodes have a second, pow-
erful radio that is free of interference with the sensor network radio (e.g., Bluetooth,
WLAN). Using this second radio, sniffer nodes forward overheard monitoring mes-
sages to a dedicated sink where they are merged and fed to the backend for evalu-
ation. In contrast to the offline sniffer approach, traces are processed online, but a
reliable second radio channel is required. This approach has been used in [34].

Out-of-band logging avoides completely avoids the use of the sensor node radio
for monitoring purposes to as to minimize interference with the application. Instead,
a second, “out-of-band” communication channel is created by wiring the sensor
nodes. However the implementation may differ concerning the transport mecha-
nism for monitoring messages. A wireless testbed approach in Fig. 2(e) is simi-
lar to the online sniffer, but instead of sending monitoring messages in-band with
application traffic, each sensor node is connected by wire (e.g., serial cable) to
an additional node, a so-called observer that forwards the messages over the sec-
ond radio channel to the sink. This approach results in even less interference and
message loss than online sniffing, but requires substantial overhead for wiring.
This approach has been used in [12]. Finally, with the wired testbed approach
in Fig. 2(f), each node is wired to a sink. Monitoring messages are transmitted
over the wire to a sink, where they are merged and fed to the evaluation back-
end in an online fashion. Many testbeds exist that support such a wired channel
to each node, e.g., [48]. In fact, wired testbeds are the most common instrumen-
tation method used to date. However, this approach is typically only feasible in
the lab, while the other approaches could be applied both in the lab and in the
field.

A basic concept in all instrumentation methods is that of an observer, be it inte-
grated as in the in-band case, or external as in the out-of-band case. Any state that
wants to be observed needs to be preserved and made available for extraction and
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further analysis. By doing so, any method used ultimately influences the system
it is applied on. Even in the case of a passive sniffer, care must be taken that the
relevant data necessary for successful observation and analysis is actually exported.
Here, a protocol designer thus must foresee provisions in the protocol design that
allow to reconstruct the necessary context. Additionally, all network instrumentation
methods rely on successful node instrumentation, especially w.r.t the preservation
of timing properties. As stated earlier, wired testbeds are the most commonly used
approach today. However, most testbeds are limited to distinct areas only, e.g., an
office building. As testing has to take into account the influence of the actual envi-
ronment to be encountered at the deployment site, special equipment is required to
simulate environmental impact, for example by incorporating a temperature cycling
chamber into a testbed setup.

7 Analyzing the System

Once access to the system state is provided through node and network instrumen-
tation, system state can be analyzed, e.g. to detect failures. This analysis can be
performed within the network on the sensor nodes themselves, outside of the sensor
network, or with a mixture of both approaches (e.g., some preprocessing is per-
formed in the sensor network to reduce the amount of information that has to be
transmitted).

A fundamental problem that has to be addressed in analyzing the system state is
incomplete information. Not only do limited node and network resources preclude
to extract the complete system state, but often wireless communication with inherent
message loss is used to extract the system state.

7.1 Monitoring and Visualization

Visualization of system parameters and state is an invaluable tool for immediate
feedback. A number of traditional network analysis tools such as Ganglia, Cacti or
Nagios can be readily applied [5], but especially at the deployment site handheld
visual inspection devices [22, 3] provide insight into the operation of the network
and individual nodes. As an example, SeeDTV [22] provides a handheld device,
SeeMote, providing visual support, while being small, light-weight, and providing
long battery lifetime. The SeeDTV application provides different views on the infor-
mation provided by the sensor network such as statistics on the number of available
nodes, status and health (battery level) of an individual selected node, and a detailed
view onto the node’s sampled ADC values. SeeDTV was used in the Luster deploy-
ment and helped to pinpoint 5 malfunctioning nodes, which could be immediately
replaced.

With a focus on the development stage, Octopus [36] is an interactive tool
allowing for visualizing information of system characteristics of a sensor network.
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It additionally provides an interface for interactive reconfiguration of application
parameters. As an example, a user may change the duty-cycle and observe the effects
on the network.

7.2 Inferring Network State from Node States

Often a user is overwhelmed by monitoring the low-level system state extracted
from the sensor nodes. Here, the low-level traces from multiple nodes can be com-
bined to interfere a higher-level state of the network. For example, instead of looking
at the individual routing tables of nodes, one may reconstruct the routing topology
of the network and display it to the user.

SNIF [34] allows to infer the network state from message traces collected with a
sniffer network. Inference is implemented with a data stream framework. The basic
element of this framework is a data stream operator which accepts a data stream
(e.g., a stream of overheard messages) as input, processes the stream (e.g., by remov-
ing elements from the stream or modifying their contents), and outputs another data
stream. These operators can be chained together to form a directed acyclic graph.
There are general-purpose operators that can be configured with parameters (e.g.,
a union operator that merges two data streams) and custom operators which are
implemented by a user for a specific inference task. Ideally, one should be able
to implement a given inference task just by configuring and combining existing
general-purpose operators. However, in practice it is often necessary to implement
some custom operators. LiveNet [9] provides a similar functionality, however the
inference functionality is implemented in an ad-hoc manner using a general-purpose
programming language.

EvAnT and the successive Rupeas DSL [50, 51] provide an event analysis frame-
work for WSNs. Input to the system is a trace of log events collected from the execu-
tion. Each event is a tuple of key-value pairs, minimally including a node identifier
and a type. Traces are represented as sets of events with no particular ordering on
events implied. Rather the user may specify a strict ordering using timestamps or
a partial order based on message ordering on sent and received packets. EvAnT
allows for formulating queries and assertions on the trace. Queries are based on the
EvAnT operators, which use simple predicates and associating functions for com-
bining events. As an example, a routing path is composed by iteratively associating
individual send/receive and forward links across the nodes. A case study in [50]
presents how concise formulations in EvAnT extract information about message
flow. In particular, through subsequent queries on the trace, the underlying problem
of a low-power data gathering application is traced back to time synchronization of
the MAC protocol layer.

7.3 Failure Detection

Failure detection is concerned with automatically identifying system states that rep-
resent failures (i.e., deviations from the system specification). Hence, instead of
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manually scanning traces of node or network states, problematic system states are
automatically identified.

There are two orthogonal approaches to failure detection. Firstly, one can spec-
ify the correct behavior of the system and deviations from this correct behavior
are automatically detected and assumed to be failures. Secondly, one can directly
specify faulty behavior and the actual system state is then matched with the failure
specifications.

The first approach has the advantage that potentially any failure can be detected,
even ones that are unknown a priori. However, it is often non-trivial to specify the
correct behavior of the system as a wide range of different systems states may repre-
sent correct behavior. This is especially true for failures that result from interactions
of multiple nodes, because here one has to specify the correct behavior of the whole
network. In contrast, specifying the correct behavior of a single node is typically
much easier.

One approach to deal with this problem is to focus on certain aspects of the
system behavior instead of trying to specify the complete system behavior. One
example for this approach are assertions, where the user can specify a predicate
over a slice of the system state, formulating the hypothesis that this predicate should
always be true. If the predicate is violated, a failure is detected. Note, however, that
the user may also specify an incorrect hypothesis, so a failed assertion does not
necessarily indicate a failure. Assertions can be non-local both in time (refer to
system state obtained at different points in time) and space (refer to the state of
multiple nodes). For example, passive distributed assertions [35] are local in time
but non-local in space. Other examples for the use of assertions are [35, 44, 50, 23].

Another approach to address the problem of specifying the correct behavior of
a system is to use machine learning techniques to automatically build a model of
the system state during periods when the system is known to behave correctly. In
Dustminer [18], for example, the frequency of occurrence of certain sequences of
events is computed while the system is known to work correctly. If at a later point
in time the frequency of a certain event sequence deviates significantly from the
“correct” frequency, a failure is detected.

It is often easier to directly specify the system behavior that represents a very
specific failure. However, with this approach only failures can be detected that are
known a priori. Many systems build on this approach. For example, SNIF [34] and
Sympathy [32] both offer failure detectors for node crash, node reboot, isolated
nodes with no neighbors, no path to/from sink, and others.

7.4 Root Cause Analysis

It is often the case that a failure may cause a secondary failure. For example, if a
node crashes (primary failure), then this may lead to a situation where other nodes
fail to route data to the sink (secondary failure) because the crashed node was the
only connection to the sink. Here, a user would be interested in knowing the primary
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failure (i.e., the root cause) instead of being overwhelmed with all sorts of secondary
failures.

One technique that has been applied to sensor networks for root cause analysis
are so-called decision trees [32, 34]. As illustrated in Fig. 3 taken from [32], a deci-
sion tree is a binary tree where each internal node is a detector for a specific failure
that may either output Yes (failure detected) or No (failure not detected). The leaf
nodes indicate possible failures that can be detected. To process the decision tree,
we start at the root and execute the failure detector. Depending on the output of the
failure detector, we proceed to one of the child nodes. If the child node is a leaf, the
failure noted in the leaf node is output and we are done. Otherwise, if the node is an
inner node, we evaluate the respective failure detector and so on until we arrive at a
leaf node.

Decisions trees in [32, 34] are empirically constructed, according to the rule that
if failure A can result in a secondary failure B, then the failure detector node for A
should be located on the path from the root of the tree to the node representing the
failure detector for B.

Have Neighbors

No Yes

Have Route
No Yes

Rx Pkts

seYoN

Tx Pkts
No Yes

Node Crashed

Yes No

Node Rebooted

Yes No

Node Crash

Node Reboot

No Neighbors

No Route

Bad Path To Node

Bad Node Transmit Bad Path To Sink

Fig. 3 The decision tree for root cause analysis used by Sympathy [32]

7.5 Node-Level Debugging

Traditional source-level debugging techniques such as placing breakpoints, watch-
points, or single-stepping can also be applied to sensor nodes. For example, in [53],
the GNU debugger gdb is ported to TinyOS. However, this approach is limited
as a sensor node is merely part of a larger network of nodes that often operate
under real-time constraints. Since the timing of program execution is significantly
affected by the debugger, significant probe effects are caused. In the extreme case,
the slowed-down execution of the debugged node may itself lead to failures. Another
problem with this approach is that dynamic modifications of the binary code execut-
ing on the microcontroller are needed to implement the debugger. As the program
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image is stored in flash memory, this leads to excessive wear of the flash memory
and high latency.

7.6 Replay and Checkpointing

Another analysis technique is to reproduce a faulty execution either directly in the
deployed network or in a controlled environment (e.g., lab testbed or simulator).
By varying some of the system parameters during such a replay, one can examine
potential dependencies between these parameters and the faulty behavior, verify that
a certain modification of the system has removed the cause of a problem, or simply
tune the performance of the system.

Envirolog [24] supports repeatability of system executions albeit asynchronous
events. This is grounded on the assumption of scoped event readings, i.e., data is
only transferred via dedicated functions and associated parameters. A log module
is responsible for logging events of interest, i.e., the according function calls with
their parameters into flash memory, thus creating a timestamped event record. In a
subsequent replayed execution, consumers of these events are re-wired to connect to
the replay module, providing the recorded events from flash at the replayed instant
in time. While this allows for repeated tests of different parameter settings, e.g., for
protocol tuning, the results are only valid as long as the re-executions do not change
the occurrence and timing of events. This fundamental problem of timing depen-
dence is avoided with a model-based approach such as Emuli. Emuli [1] focusses
on the capability to emulate network-wide sensing data to sensor nodes. This allows
for analyzing the system execution on a model-based ground truth, whether it is used
for repeatability or exploratory analysis for novel sensing data. Emuli provides time
synchronization and coordination among nodes in order to generate a consistent
network wide model of sensing data.

Checkpointing [27] extracts system state allowing for analysis, transferral between
different execution (test) platforms, e.g., a simulator and a testbed, and for repeata-
bility. However, in contrast to replay repeatability discussed above, checkpoint-
ing only concerns the initial state of an execution, not the subsequent execution
itself. Nevertheless, a consistent state across the system, e.g., concerning the topol-
ogy and neighbor tables in network-centric tests, is invaluable for comparative
tests and analysis of parameter changes. Checkpointing of a single sensor node
concerns the state of the individual components. As program code in program
flash is typically not modified, only RAM state needs to be extracted, which is
typically already provided by the bootloader. Other components such as Exter-
nal Flash, LEDs, and especially the radio require special considerations depen-
dent on the requirements of application and the checkpoint. Dunkels et al. [27]
describe the support in Contiki for storing and loading node state and its current
scope. However, the difficulty of checkpointing lies in the synchronized check-
pointing across all nodes in the network for a consistent snapshot. This is han-
dled by intermittent Linux routers controlling a subset of nodes for freezing and
unfreezing.
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8 Concluding Remarks

In this contribution we have surveyed the most prominent sensor network deploy-
ments and been able to identify selected underlying problems in system design, dur-
ing installation and deployments. A special focus has been made towards problems
arising and relevant in practice with sensor network applications and deployments
in a real environment. We have presented a number of techniques for the instrumen-
tation and analysis, predominantly to be applied at run-time of a sensor network.
With the techniques presented here, a designer of networked embedded systems
should be able to define a suitable and successful design strategy suitable to meet
the requirements specified. With regard to the distributed nature of sensor networks
the typical problems encountered have been classified into node, link, network path
as well as global problems. Likewise, the methods presented in this chapter help to
increase the understanding at various levels, namely at the node, network, and sys-
tem levels. Due to the diversity of applications, requirements and design goals, there
is no single, distinctive approach to the design and deployment of sensor networks
available today.
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Static and Dynamic Localization Techniques
for Wireless Sensor Networks

Jean-Michel Dricot, Gianluca Bontempi, and Philippe De Doncker

Abstract In this chapter, we present several user localization techniques used in the
context of wireless sensors networks. These techniques are introduced with respect
to the three different stages followed in any localization process: (i) the signal
acquisition and the derivation of the corresponding distance model, (ii) the terminal
positioning algorithm, and (iii) the filtering of the estimates over time in order to
provide a dynamic tracking. Moreover, it is shown how an additional sensor (i.e.,
an accelerometer here) can be included in the filter model. The emphasizes is put
on the fusion of the informations derived from the sensors in order to significantly
refine the localization accuracy.

1 Introduction

The term sensor network refers to a set of numerous sensors that are equipped
with processor, memory, and wireless communication capabilities. These nodes are
referred to as motes. A fundamental problem in sensor networks is localization,
i.e., determining the location of the sensors. The location information is then used
to geographically tag the data, perform user tracking, secure informations based
on the location [32], enhance a routing protocol or support the resource discovery
process [22]. In most scenario, the user carries a single sensor, referred to as mobile
beacon (or target) and its location is inferred with respect to the known position of
the fixed sensors of the network also called anchors nodes.

A Generic framework for the localization of target nodes is presented in Fig. 1.
More precisely, localization algorithms can be divided into three main categories:
range-free, range-based, and anchor-free algorithms. In range-free algorithms, the
nodes estimate their locations by using (i) the known location information of
their neighbours and (ii) geometrical considerations. It is assumed that there is no
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Fig. 1 The conceptual architecture of a localization framework

distance, angle, or any metric information available at each node [14, 23, 16, 27, 9].
For instance, the position of the target node is estimated as the centroid of the
positions of the surrounding anchor nodes or by means of more complex geomet-
rical relations. Three range-free localization techniques are presented in Sect. 2:
the centroid, the bounding box, and the point-in-triangle techniques. Though these
approaches offer the lowest level of precision, they are simple to implement, gen-
erate a low overhead in the network communications, and are accurate in most
situations.

Range-based (also referred to as anchor-based) algorithms make use of the dis-
tance estimations between the mobile and the static nodes. The position of some
nodes in the network (called anchors) are known a priori by means of an on-site
measurement or by embedding a GPS receiver in these nodes. The target nodes try
to estimate their position relative to these anchors. For instance, Bahl et al. [2] and
Bischo et al. [3] used Received Signal Strength (RSS) to estimate distances, Ward
et al. [38] used Time of Arrival of signals. The use of the Angle of Arrival of the
signals was presented in [27]. Most of these methods require a high percentage
of pre-deployed anchor nodes in the network. In Sect. 3, we present how a distance
estimator can be computed by means of the radio signal strength, the angle of arrival,
or the time of flight. Then, in Sect. 4 we present the circular and hyperbolic lateration
techniques that are the most common approaches used in range-based localization.
In a third class of localization techniques, the target nodes try to compute their posi-
tion without the help of the anchors. Since it is not possible to derive the absolute
positions of the target nodes, a relative coordinate system is established instead and
the positions of the nodes are computed with respect to this marker. Relative location
is of crucial importance in Location-Aided Routing (LAR) [24] and can be mapped
to an absolute coordinate system by means of a limited amount of anchors equipped
with GPS receivers.

Besides the static localization problem, the movement of the target can be taken
into account in dynamic filtering and tracking schemes. In Sect. 5, a Kalman-class
filter is presented and its expressions are derived in the scenario of a human-worn
localization and tracking system.
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Table 1 Notations used in this chapter, their corresponding interpretation and units

Symbol Interpretation Units

N Total number of anchor nodes –
x Exact position of the target node [m]
x̃ Position estimate of the target node [m]
x̃0 A first position estimate in the case of an iterative localization algorithm [m]
xi Known position of the i-th anchor node [m]
x̃i Position estimate of the i-th anchor node [m]
d Exact distance [m]
di Exact distance between the target and the i-th anchor node [m]
d̃ Estimated (measured) distance [m]
d̃i Estimated (measured) distance between the target and the i-th anchor node [m]
αi Angle of arrival as measured at the i-th anchor node [rad]
ε Imprecision on the angle measurement [rad]
n Decay factor in wireless propagation (also referred to as path loss exponent) –
P Power of the wireless signal [dB]
N (μ, σ ) Gaussian distribution with mean value μ and variance σ –
ψ Variance of the acceleration measured on a sensor worn by a human user ms−2

ωi Scalar value used as a weighting parameter –
tk Time of the k-th sample [s]
Δt Period of time between two samples k and k − 1 [s]
xk Position of the target during the k-th sample [m]
sk Speed of the target during the k-th sample [m]
ak Acceleration of the target during the k-th sample [m]

In Sect. 6, we discuss the notions of accuracy and precision. Indeed, the localiza-
tion process is a noisy estimation and an absolute precision can never be achieved.
Furthermore, some estimators may prove wrong and shall be detected and rejected
automatically.

Section 7 is dedicated to more advanced localization techniques based on Machine
Learning. The discussion starts with some insights on how fusion of sensors can be
performed to further refine the tracking filter. A suitable non supervised linear clas-
sification technique for the data issued from the sensors is presented. This informa-
tion is then used to parameterize a modified Kalman filter. The section ends with a
presentation of data fusion techniques and a Monte Carlo-based method (referred to
as subsampling technique) is presented. It aims at combining the multiple estimates
and further improve the inferred position by limiting the impact of erroneous loca-
tion estimators. Section 8 outlines some open problems and concludes the chapter.
Finally, the notations used in this chapter are synthesized in Table 1.

2 Static Localization Techniques – Range-free

The algorithms presented in this is section are described as range-free since that they
use Radio Signal Strength Indicator1 (RSSI) value measurements but do not rely on
an accurate RSSI-distance conversion model. Relative comparisons between the

1 The RSSI is a measurement of the power present in a received radio signal.
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RSSI values are used instead. The comparison functions have to be monotonic and
calibrated to produce stable estimators or the relative distance between two nodes.

2.1 Weighted Centroid

The centroid method is a simple, efficient method that can be used in dense sen-
sor networks. This method assumes that there exists a set of anchors having (i) a
known position and (ii) and overlapping transmission zones. The idea of the cen-
troid method is to estimate the position of a target as the average value (i.e., the
geometrical centroid) of the positions of the anchor nodes in the transmission zone
of the terminal. Furthermore, the positions of the anchors can be weighted. Figure 2
shows a pictorial illustration of this method. The unknown position is computed as

x̃ =
∑N

i=1 ωi xi
∑N

i=1 ωi

where N is the amount of anchors in the transmission zone of the terminal and
xi is the position (known a priori) of the i-th anchor. Several strategies can be
implemented to assign values to the weights ωi . In [9, 10], the authors propose
to compute the weights with respect to the ratio of successfully received beacons.
More precisely, the mobile node broadcasts several HELLO messages. The anchors
xi , 1 ≤ i ≤ N listen for beacons and compute a connectivity metric. Each weight is
computed as follows:

ωi (t) = n(i)
received(t)

n(i)
sent(t)

where t is the time of reception of the broadcast messages, nreceived(t) and nsent(t) are
the numbers of beacons received and sent up to the time t , respectively. A threshold

x1

x2

x3

x4

x̃

Fig. 2 Illustration of the weighted centroid method
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value γ (usually γ = 90%) is then used so that only the anchors with ωi (t) ≥ γ are
considered.

Another possible approach is to rely on the average value of the RSSI.2 Indeed, if
we consider two anchors i and j , if E [RSSIi ] ≥ E

[
RSSI j

] ⇒ ||x−xi|| ≤ ||x−xj||,
i.e., if the received signal received from anchor i is, on average, stronger than the
signal at anchor j then the node is most probably closer from the anchor i than from
the anchor j . Note that, as shown in the relation (1), this approach only holds on an
average sense since the large scale fading creates fluctuations of the instantaneous
RSSI around its average value. Using this approach, each weight is computed as

ωi (t) = E [RSSIi (t)] − RSSImin

RSSImax − RSSImin

where RSSImin and RSSImax are the minimum and the maximum values of the RSSI
that can be acquired by the sensor node, respectively. These minimum and maximum
values depend on the wireless transceiver considered.

2.2 Bounding Box

The bounding box method is a simple and computationally-efficient localization
technique [33]. The main idea is to construct a bounding box for each anchor and

x1

x2

x3

x

Bounding Box B2

Bounding Box B1

Bounding Box B3 

˜

Fig. 3 Illustration of the bounding box algorithm

2 The value of the RSSI is expressed in terms of received power and is usually between −91 and
0 dBm.
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to compute the intersection of these bounding boxes. Figure 3 illustrates a typical
situation in the case of three anchors. The length of side of the i-th bounding box is
the (approximate) distance estimate to the target, i.e., the value of d̃i as computed
using the techniques such as the ones that will be presented in Sect. 3. The position
estimate is the bounding box (or the center of the bounding box) that is built as the
intersection of all bounding boxes considered, i.e.,

x̃ ∈
{
⋂

i

Bi

}

where Bi is a square box centered on xi and with side length equal to d̃i .
The geometry of the bounding box B = {⋂

i Bi
}

(and the corresponding interval
of confidence for the localization) depends on the topology of the nodes. In dense
sensor networks, the surface of B is limited and the position estimates typically
converges to the true position. Although the accuracy of this technique is inherently
limited, it is simple and fast to implement and to run on sensor nodes. Also, it can be
used as an initial position in localization techniques based on a recursive estimation
of the position [6, 29, 1]. Finally, though the bounding box technique makes use of
distances estimates, it can be considered as range-free since it does not require an
accurate estimate to work properly.

2.3 Point-in-Triangle

The Point-in-Triangle (PiT) algorithm [20] is an area-based, range-free localization
scheme. The approach of PiT is presented in Fig. 4 and works as follows. In a first
phase, the target broadcasts a beacon message. The set of all anchors receiving this
message is built and all possible subsets of three anchors are built. The subset are

x1

x2

x3

x
4

x̃

Fig. 4 Illustration of the PiT algorithm: the estimate belongs to the intersection of all possible
triangles built on the anchors and containing the target
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used to draw the corresponding triangles. For each triangle, a Point in Triangle (PiT)
test, which is described below, is performed to determine if the target belongs to the
area of this triangle. Finally, the target is located at the intersection of all triangles
containing the target.

The geometrical interpretation of this approach is illustrated in Fig. 4 for a sce-
nario with 4 anchors. These anchors define the triangles

T1 = {x1, x2, x3} � x̃,

T2 = {x1, x2, x4} � x̃,

T3 = {x1, x3, x4} � x̃,

T4 = {x2, x3, x4} � x̃,

and the position estimate belongs to the triangle

Ttarget =
4⋂

i=1

Ti .

The unknown location of the target is defined at the centroid of the intersection
triangle Ttarget. The main problem of the PiT scheme is to determine whether a given
node belongs or not to a considered triangle. The PiT test is based on geometry: for
a given triangle T = {x1, x2, x3}, a given mobile point x̃ is outside the triangle if
the gradient of the distance estimate to each vertex of the triangle is positive, i.e.,
the point x̃ moves farther away from the points x1, x2, x3 simultaneously. Figure 5
provides a geometrical interpretation of the Point-in-Triangle test. On the figure to
the right, since the point moves away simultaneously from all three vertices, it is
likely to be outside of the triangle of interest. On the opposite, on the left part of
the figure, x̃ moves closer to x1 and x2 while moving away from x3. This point is
therefore supposed to lie inside the triangle.

x1

x2

x

x3

υ x1

x2

x3

˜
x̃

x̃

υx̃

Fig. 5 Geometrical interpretation of the Point-in-Triangle test. On the figure to the right, the points
away simultaneously from all summits is therefore outside of the triangle of interest. The vector v̄

indicates the movement direction of the mobile target
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3 Distance Estimation Techniques

3.1 Estimation of the Distance Based on the Received Power

In narrowband wireless communications systems, the distance to the emitter can
be inferred at the receiver using the shadowing model [11]. This model makes the
assumption of a rapid decrease of the signal strength with respect to the distance and
adds a random variation in order to take into account the time- and distance-varying
aspects of the signal, also called large scale fading [30]. The mathematical law, in
logarithmic scale, relating the received power and the transmitted power is

Pr(d)[dB] = Pr(d0)[dB] − 10 n log10

(
d

d0

)
+ F (1)

where Pr(d0) is the received power at a reference distance d0 and F is the logarithmic
version (in dB) of a random variable X which takes into account the influence of
the environment on signal propagation, i.e., F = log10 X . Extensive experimental
analysis [31] shows that X has a lognormal distribution, i.e., F ∼ N (0, σ ) (units:
[dB]). The path-loss exponent n (also referred to as decay factor) can be fixed by
means of experimentation: typical values for the path-loss exponent range from 2
(outdoor and or indoor with strong line-of-sight) to 4 (indoor environment with
strong signal attenuation). The reference distance d0 of the measurements is usually
set at d0 = 1 m.

Most wireless sensor networks do present a limited computation power and some
of them do not implement the logarithmic and exponential functions. When the
distance between two sensors is limited (i.e., a few meters away), a Taylor series
development of the logarithm in (1) can be used. Since ln(x) ≈ (x − 1) + Θ(x2) for
a small value of x , the expression (1) can be approximated as

Pr(d)[dB] = Pr(d0)[dB] − 10 n log10 (d) + F

= Pr(d0)[dB] − 10 n
ln (d)

ln(10)
+ F

≈ Pr(d0)[dB] − 10 n
d − 1

ln(10)
+ F (2)

Note that a linear approximation can also be used when the distance between the
nodes is larger but the values of the observed distances are of the same order of
magnitude (local linearity). More generally, the relation (2) shows that E [Pr] =
K1 − K2 d, where K1 and K2 are constants that can be obtained by means of
proper experiment and depends on the specific propagation environment. This rela-
tion shows that the distance between two nodes in a short range of transmission can
be obtained as a linear function of the average power of the signal observed at the
receiver node. In practice, this relation is used to estimate the distance of the target
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Fig. 6 Power at the receiver as a function of the distance

on the basis of power-related measures, like the Radio Signal Strength Indicator
(RSSI).

The RSSI is an indicator of the Signal strength at the instant of the reception
of a message and can be linked to the average reception power of the packet.
Figure 6 illustrates the linearity of the relation between the distance and the RSSI for
a set of experimental measures collected in a factory hall and over small distances.
The received power was estimated by using the Reception Signal Strength Indicator
(RSSI). For instance, a CC2420 radio was used in Fig. 6 and the RSSI value was
obtained as a 8-bit numerical value stored in a register of the radio hardware. The
RSSI value is averaged on 8 transmission symbols (∼ 128 μs) and the approximate
power of a received packet can be calculated from the calibration formula:

P = RSSIvalue + RSSIoffset [dBm]

where RSSIoffset is an correction that is empirically estimated and is around −45 dBm
for the CC2420 radio interface.

3.2 Angle-of-Arrival

The angle-of-arrival (AoA) (sometimes referred to as Direction-of-Arrival – DoA)
technique performs an angulation at several anchor nodes in order to estimate the
position of the target. The determination of angles can be done by means of an
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antenna array capable of adaptative beamforming [36, 12]. More precisely, only
the nodes in charge of the sensing of the AoA must be equipped of beamforming
antenna arrays. The basic principle behind the angle-of-arrival technique is pre-
sented in Fig. 7 in a scenario with two anchor nodes. A pilot signal is sent by the
target and received by at least two anchors. The angle of this pilot signal is computed
at each anchor and defines a region of space where the pilot signal was emitted. If
we denote by αi the angle estimated by the i-th anchor, one has:

x1

x2

x

α1α2

x

y

˜

Fig. 7 Illustration of the angulation (angle-of-arrival) technique

tan αi = yi − ỹ

xi − x̃

where x̃ = (x̃, ỹ) is the position estimate and xi = (xi , yi ) is the (known) position of
the i-th anchor. If more than two anchors are used, a least square fit can be applied
to derive the target’s position estimate.

The error potential of this technique is influenced by the resolution of the antenna
arrays and the order of magnitude of the distance separating the target and the
anchors. Indeed, if the target is found to be at an angle α, the performed measure-
ment implicitly contains an error estimate. If we denote this value by ε, the target
will in fact lie in a region between the angles α−ε and α+ε. Moreover, if the target
is found to be at a distance d̃ of the anchor node, the error on the position (in meters)
is proportional to ε.d̃ = Θ(d̃). Therefore, the localization will be more accurate if
the target is close to the anchor nodes and will degrade linearly with the distance.

Another issue for the AoA technique is the existence of multipath propagation,
which is typically found in indoor locations. These multiple reflections on the walls
and material present in the environment create a multitude of subsequent echos that
are captured by the receiver at the anchor node. These signals come from several,
different angles and cause an indetermination on the actual angle of the target node.
A possible solution to balance this indetermination is to use multiple anchor nodes,
depending on the severity of the multipath propagation.



Static and Dynamic Localization Techniques for Wireless Sensor Networks 259

3.3 Time-of-Flight

In the time-of-flight (ToF) technique, the range measurement is performed on the
basis of the amount of time needed between the emitting of a given signal and its
reception by a receiver. The ToF can involve fast wireless signals or slower forms
signals such as a sound signal (audible or not). For instance, in Fig. 8, a radio signal
is sent to start a counting clock at the receiver. The traveling time of the wireless
signal is supposed to be non-significant and can be neglected. After a fixed interval
of time, the emitter sends an audio signal. This audio signal travels much more
slowly than the wireless signal and reaches the receivers after a measurable travel
time. At that moment, the counting clock is stopped and the distance between the
emitter and the receiver is derived.

Time

reception of the
wireless signal

reception of the
secondary signal
(audio, light,etc.)

Emission
of wireless

signal

Emission
of a slower

signal (audio)

Time of FlightKnown
Delay

Fig. 8 Computation of the time-of-flight by means of two different signals having very different
propagation times

Time

Time of
Flight 

Data Frame Pilot Data Frame

Fig. 9 Illustration of the code phase ranging

Another common technique, used in GSM systems, is to send a periodical pilot
packet. Since the GSM system relies on a Time division multiple access3 (TDMA)

3 A wireless channel multiplexing technique in which each terminal is assigned a different time
slot to communicate. Each terminal transmits in a chronological succession, one after the other, by
using his assigned time slot.
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scheme, the clocks of the base stations and the terminals are synchronized and the
data slots are of a defined and well-known length. This technique is referred to as
pulse ranging and is illustrated in Fig. 9. All pilots are sent at the same time and the
time differences (and, therefore, the ranges) are computed. For instance, in Sect. 4.2,
the hyperbolic lateration technique is presented and it exploits the time differences
estimated from the ToF to infer the position of the user terminals.

4 Static Localization Techniques – Range-based

4.1 Circular Lateration and Multilateration

The circular alteration technique make use of the distance estimation between the
anchors and the target. Figure 10 presents a typical situation for 3 anchors and a
single target node. Let N be the number of fixed nodes (called anchors) whose
positions are known a priori. The goal of the localization procedure is to find the
position of the mobile nodes (referred to as targets ) and labeled : i ∈ {1 . . . N ′}.

We note the real position of the node i in a p-dimensional Euclidean space by a
vector in R

p : xi = (xi1, . . . , xip). Let Xanchors = [xi ] , 1 ≤ i ≤ N , be a matrix of
size p × N . The aim of the method is to find Xtargets = [

x j
]
, 1 ≤ j ≤ N ′. Let x̃ j

be our estimation of x j . If we denote by

d̃i j = ||x̃i − x̃ j || =
√√√
√

p∑

k=1

(x̃ik − x̃ jk)2

the estimation Euclidean distance between two nodes i and j , we can now formulate
the problem as the minimization of

(x 1 , y1)(x 2 , y2)

d1d2

(x 3 , y3)

d3

Fig. 10 The circular lateration technique
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J (x̃) =
∑

1≤i≤N
1≤ j≤N ′

(
d̃i j − ||x̃i − x̃ j ||

)2

where d̃i j is an estimation of the distance di j . It can be shown that this minimization
problem can be expressed under the form of a linear system. In order to derive this
form, the estimation of the distance has to be expressed under the form of a Taylor
development.

Let D denote an interval, a ∈ D a point of this interval, and f : D → R a
function with derivatives up to f (n+1). The Taylor series expansion for x ∈ D of the
function f is the following series around the point (x0, y0) is

f (x0 + Δx, y0 + Δy) = f (x0, y0) + ∂ f (x0, y0)

∂x
Δx + ∂ f (x0, y0)

∂y
Δy

+ Θ2(x0, y0,Δx,Δy)

where Θ2(x, y,Δx,Δy) is the order 2 remainder term. If we denote a first estimate
of the 2D-position x̃0 = (x̃0, ỹ0), the goal of the multilateration technique [33] is
to compute a correction of the estimated position that will be applied to x̃0. This
correction value is noted Δx = [Δx,Δy]. Note that the multilateration technique is
an iterative process and the value of x̃0 can be initialized by means of a range-free
technique presented in Sect. 2.

Let us denote by di the range between the target and the i-th anchor and compute
a first-order decomposition of the distance di

di (x, y) =
√

(xi − x)2 + (yi − y)2

= di (x̃ + Δx, ỹ + Δy)

≈ di (x̃, ỹ) + ∂di

∂ x̃
Δx + ∂di

∂ ỹ
Δy (3)

where

∂di

∂ x̃
= x̃ − xi

d̃i
= ai1

∂di

∂ ỹ
= ỹ − yi

d̃i
= ai2

d̃i =
√

(xi − x̃)2 + (yi − ỹ)2

The expression (3) can therefore be equivalently rewritten as

ai1Δx + ai2Δy = di (x̃ + Δx, ỹ + Δy) − di (x̃, ỹ) (4)

which yields to express the problem as the following matrix equation
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A Δx = b

with

b =

⎡

⎢⎢⎢
⎣

d1(x̃ + Δx, ỹ + Δy) − d1(x̃, ỹ)
d2(x̃ + Δx, ỹ + Δy) − d2(x̃, ỹ)

...
dN (x̃ + Δx, ỹ + Δy) − dN (x̃, ỹ)

⎤

⎥⎥⎥
⎦

, A =

⎡

⎢⎢⎢
⎣

a11 a12

a21 a22
...

aN1 aN2

⎤

⎥⎥⎥
⎦

, Δx =
[

Δx
Δy

]

(5)

Note that the quantity di (x̃, ỹ) is the known distance between the estimated position
and the position of the i-th anchor node. Also, the quantity di (x̃ + Δx, ỹ + Δy)
contains the observed distance between the i-th base anchor and the target. It is
therefore also numerically known.

A close look at (5) shows that the system is overdetermined, i.e., there are more
equations expressed through b and A than unknown values in x. A close solution (in
a least square sense) can be obtained by minimizing the residual quantity

R = (A Δx̃ − b)T (A Δx̃ − b)

which can be achieved by computing the value of R where ∇ R = 0. This gives

− 2AT b + 2AT A Δx̃ = 0 (6)

and

Δx̃ = argmin
x

(A Δx − b)T (A Δx − b) = (AT A)−1AT b

It follows that the updated position estimate is

x̃ = x̃0 + Δx̃

= x̃0 + (AT A)−1AT b

Note that the accuracy of the estimate can be assessed by computing the residual
value between the estimated and the real locations. This value is expressed as

W = ||x − x̃||22 − d

= 1

N

N∑

i=1

√
(xi − x̃)2 + (yi − ỹ)2 − di
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(x1 , y1)(x2 , y2)

d1d2

(a) The locus of the positions that correspond to a given dif-
ference of distances is a hyperbola

(x1 , y1)(x2 , y2)

d1

d2

(x3, y3)

d3

(b) The hyperbolic lateration technique: the target lies at the in-
tersection of all possible hyperbolae created from the range dif-
ferences.

Fig. 11 Geometrical interpretation of the hyperlateration positioning technique

where d = [d1, d2, · · · , dN ]T is the vector containing the observed distance, i.e., the
distance estimated by the anchors nodes by means of the radio signal strength and a
proper signal-to-distance model.

4.2 Hyperbolic Lateration

The circular lateration technique relies on the estimation of the absolute distance
between the target and a set of anchors. The hyperbolic lateration algorithm has
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the same rationale though it relies on the range differences. Figure 11(a) presents a
typical situation where the difference of the range estimates of two anchors di j =
di − d j is used to localize a target. The locus of the all positions P whose difference
of distances from the two fixed anchors (xi , yi ) and (x j , y j ) is the constant value
di j = di − d j describes a hyperbola. The same locus can be created for any number
of additional anchors. As presented in Fig. 11(b), the unknown position of the target
lies at the intersection of all derived hyperbola. As in the case of circular lateration
presented in Sect. 4.1, all differences of range can be expressed as a system of
nonlinear equations:

∀i, j (i �= j) : di j = di − d j

=
√

(xi − x)2 + (yi − y)2 −
√

(x j − x)2 + (y j − y)2 (7)

where di j is the difference of range between the target and the i-th ( j-th) anchor.
The method for solving the system of nonlinear equations is the same as for circular
lateration. More precisely, a Taylor series expansion is derived as

∂di j

∂ x̃
= x̃ − xi

r̃i
− x̃ − x j

r̃ j
� ai j,1

∂di j

∂ ỹ
= ỹ − yi

r̃i
− ỹ − y j

r̃ j
� ai j,2

d̃i =
√

(xi − x̃)2 + (yi − ỹ)2

d̃ j =
√

(x j − x̃)2 + (y j − ỹ)2

and it can written under the same form used in (4). The analogy with the least-square
error minimization and the position estimation detailed in (5) and (6) is straightfor-
ward and is not detailed here.

5 Dynamic Localization and Tracking

Several filtering techniques exist and were successfully applied in the domain of
wireless sensor networks [13, 26, 37]. In this section, we detail the steps of a
dynamic tracking algorithm based on the Kalman-class of filters.

The Kalman filter [8] is a recursive filter that can be used to estimate the dynamic
state of a system at a given time tk by using noisy measurements issued at time
tk−1, tk−2, tk−3, . . ., t0. Kalman filtering applications include radar localization, road
navigation when the GPS is temporarily not available, and control theory (estimation
and forecasting). It proves useful to predict the state of the system at a future time.
The underlying dynamic system model is presented in Figs. 12 and 13. It assumes
that the state of the system xk at time tk can be derived from the state at tk−1 by using
the following model:
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xk = Fkxk−1 + Bkuk−1 + wk−1 (8)

where

• Fk is transfer function of the system that receives as input the previous state xk−1

• Bk is the control-input model that is applied to a control vector uk (open-loop
control [4])

• wk is an additive process variability which is supposed to be a zero-mean Gaus-
sian distributed random value, i.e., wk ∼ N (0, σ w

k )

System space
(hidden)

Observer space
(action/observation)

F x

B H

x

u z

w

v

t=tk
t = tk−1

Fig. 12 Underlying model for the design of the customizable Kalman filter. The variables are noted
as ovals, the transition functions as squares, and the noise processes as a cloud

Real-life space
(hidden)

Observer space
(observed)

Motion
position
speed

position
speed

Estimated
position

Random 
Acceleration

Radio Signal 
Noise

Observation from 
the Accelerometer

t=tkt=tk−1

Fig. 13 Physical interpretation for the Kalman filter presented in Fig. 12. Note that the samples
collected by the accelerometer are only used in the variant proposed in Sect. 7. It is therefore noted
as dashed

The system state is supposed to be observed by means of a noisy measurement of the
real (hidden) system state. According to Kalman’s model in Fig. 12, this measure
can be expressed as: zk = Hkxk + vk , where Hk is the observation model, i.e., the
transfer function of the measurement device and vk is the observation noise which
is supposed to be a zero-mean Gaussian process, i.e., vk ∼ N (0, σ v

k). Starting from
there, several variants will be developed in this chapter.
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The Kalman filtering process is iterative, i.e., the estimation of the current state
of the system only depends only the previous state. In that it is different from batch
estimation techniques which make use of all observations of the past. The state of
the filter is represented by two key variables: x̃k|k and Pk|k where the notation x̃i | j

represents the estimate of x at t = ti given the previous observations zi (0 ≤ i ≤ j):

x̃i | j � x̃i |{z0,z1,...,z j }
Pi | j � Pi |{z0,z1,...,z j }

The matrix P is referred to as the error covariance matrix since it used to represent a
measure of the estimated accuracy of the state estimate. More precisely, it is defined
as

Pk|k−1 � E

[(
xk − x̃k|k−1

) (
xk − x̃k|k−1

)T
]

= cov
(
xk − x̃k|k−1

)

Note that Pk|k−1 is an a priori estimate of the matrix P, which means that it is our
best estimate prior to assimilating the measurement at tk . It will be shown later how
Pk|k can be derived from Pk|k−1.

5.1 Kalman Filtering Loop

The Kalman filtering process is made of two inductive phases: predict and update.
The predict phase uses the state estimate from the previous timestep to produce
an estimate of the state at the current timestep. In the update phase, measurement
information at the current timestep is used to refine this prediction to arrive at a new,
(hopefully) more accurate state estimate, again for the current timestep. The process
steps can be expressed as the following iterations:

I. Time Update

1. Project a state ahead

x̃k|k−1 = Fk x̃k−1|k−1 + Bkuk−1

2. Project the error covariance ahead

Pk|k−1 = FkPk−1|k−1FT
k + σw

k

II. Measurement Update

3. Compute the Kalman gain

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + σ v
k

)−1



Static and Dynamic Localization Techniques for Wireless Sensor Networks 267

4. Update the estimate with measurement zk

x̃k|k = x̃k|k−1 + Kk
(
zk − Hk x̃k|k−1

)

5. Update the error covariance

Pk|k = (I − KkHk) Pk|k−1

5.2 Filtering Process when the Speed and the Position
are Unknown

The problem of localization in the context of wireless sensor networks can be
applied to localizing a mobile target (human operator or vehicle) that moves at a
constant speed and whose acceleration is unknown. In such a situation, the second
law of Newton yields

x(tk) = x(tk−1) + s Δt + a
Δt2

2

where x(tk) and x(tk−1) are the current and previous positions, respectively (units:
[m]); s is the speed (units: [ms−1]), a is the acceleration (units: [ms−2]), and Δt is
the difference of time between t = tk−1 and t = tk , i.e., Δt � tk − tk−1 (units: [s]).
This model can be written under the form equivalent to (8), where the unknown term
xk is the position and the velocity of the target, i.e., xk = [x y sx sy]T . Moreover, on
this model, the acceleration of the target is interpreted as the random variation wk

applied to xk . The relation (8) can be written as

⎡

⎢⎢
⎣

x
y
sx

sy

⎤

⎥⎥
⎦

k︸ ︷︷ ︸
xk

=

⎡

⎢⎢
⎣

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

︸ ︷︷ ︸
Fk

⎡

⎢⎢
⎣

x
y
sx

sy

⎤

⎥⎥
⎦

k−1︸ ︷︷ ︸
xk−1

+

⎡

⎢⎢
⎣

Δt2/2 0
0 Δt2/2
Δt 0
0 Δt

⎤

⎥⎥
⎦

[
ax

ay

]

k

︸ ︷︷ ︸
wk

(9)

Note that, since no friction or external forces are applied to the system, we assume
Bk = 0 and uk = 0. The value of ak is difficult to estimate since it represents the
average acceleration experienced by the target node. Note that, under the Kalman
filter hypotheses, it has to be a zero-mean, Gaussian-distributed rv., i.e., ax,y ∼
N (0, σa) and
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σw
k = cov(wk) = E

[
wkwT

k

]

= σ 2
a

⎡

⎢⎢
⎣

Δt2/2 0
0 Δt2/2
Δt 0
0 Δt

⎤

⎥⎥
⎦

[
Δt2/2 0 Δt 0

0 Δt2/2 0 Δt

]
(10)

A localization algorithm, such the lateration techniques presented in Sect. 4, is used
to estimate the position of the user at each time t = tk . This measurement can be
expressed by the following relation:

zk =
[

1 0 0 0
0 1 0 0

]

︸ ︷︷ ︸
Hk

xk + vk

where vk ∼ N (0, σ v
k) and σ v

k is the variance of the localization process and is
often proportional to the power of the fading, as shown in (1). In most cases, the
localization process gives n estimates of this position, each of them subject to an
incertitude. As then, the vector σ v

k can be approximated by covariance of these n
positions:

σ v
k =

[ n−1
n σ (est)

x 0
0 n−1

n σ (est)
y

]

where σ (est)
x and σ (est)

y are the variance of the n estimates of the positions under the
axes x and y, respectively. Note that, since the multilateration does not evaluate the
speed, some coefficient in Hk are zeroed. Finally, the initial conditions have to be
considered. If we know the initial position of the user, we can set

x0|0 = [x0, y0, 0, 0]T

P0|0 = [0]

On the other hand, if the position is not perfectly known, x0|0 can be initialized using
the best approximate value for (x0, y0) and the covariance matrix can be filled with
a large diagonal value ε, i.e.:

P0|0 = I.ε =

⎡

⎢⎢
⎣

ε 0 0 0
0 ε 0 0
0 0 ε 0
0 0 0 ε

⎤

⎥⎥
⎦
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5.3 Filtering Process for an Unknown Position
and an Approximated Speed

Another variant of the Kalman presented in the last section consists in removing
the speed from the set of unknown state variables and, instead, to infer it from the
previous positions and the update interval. Referring back to the relation (8) and the
Fig. 12, the speed can be seen as the input vector u which is applied to the system.
Also, note that in the relation (8), the value of u is considered at the previous time,
i.e., t = tk−1. As then, it is convenient to approximate this quantity as ũk−1 =
(x̃k−1 − x̃k−2)/(tk−1 − tk−2). This time, only the position of the target is supposed
unknown and the relation (9) becomes:

[
x
y

]

k︸ ︷︷ ︸
xk

=
[

1 0
0 1

]

︸ ︷︷ ︸
Fk

[
x
y

]

k−1︸ ︷︷ ︸
xk−1

+
[

Δt 0
0 Δt

]

︸ ︷︷ ︸
Bk

[
x̃k−1 − x̃k−2

ỹk−1 − ỹk−2

]

k︸ ︷︷ ︸
uk−1

+
[

Δt2/2 0
0 Δt2/2

] [
ax

ay

]

k︸ ︷︷ ︸
wk

The relation (10) can be written as:

σw
k = cov(wk) = E

[
wkwT

k

]

= σ 2
a

[
Δt2/2 0

0 Δt2/2

] [
Δt2/2 0

0 Δt2/2

]

The measurement of the system has the form:

zk =
[

1 0
0 1

]

︸ ︷︷ ︸
Hk

xk + vk

The vector σ v
k can be approximated as in the previous section:

σ v
k =

[ n−1
n σ (est)

x 0
0 n−1

n σ (est)
y

]

6 Accuracy and Precision

In the context of localization, the most important and user-oriented parameters are
the accuracy and the precision of the considered method. Precision refers to the
closeness of the different position estimates around their means (i.e., the position
estimate). On the other hand, accuracy refers to the closeness of the position esti-
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mates to the real position of the target. In the field of estimation theory, the notions
of accuracy and precision are best known under the names of bias and variance of
the estimator, respectively.

Figure 14 illustrates geometrically the difference between these two notions.
More precisely, on the left part of the figure, the position estimator has a great preci-
sion value since all estimates are close to their mean value. However, the estimated
position (i.e., the mean value) is far from the real position of the target. On the
opposite, the right part of Fig. 14 presents a higher degree of accuracy since the
average estimated position is close to the real position, though some estimates are
located far from the average value.

x
x

yy

x

x
Outliers

˜

x̃

Fig. 14 Illustration of the notions of accuracy and precision. On the left figure, the position esti-
mates have a great precision since they are close to their average value. On the right figure, the
degree of accuracy is high since the estimated position matches with the real position

x

y

Fig. 15 Accuracy in the case of a two-dimensional localization process

Note that the estimates that diverge too much from the mean value are referred to
as outliers and can be easily detected. For instance, two decision are rules are often
used:
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1. The position estimate and its corresponding distance to the target exceeds the
maximum radio range. This estimate can be discarded since it would not have
been possible for the anchors to overhear the beacon emitted by the target.

2. The variance of the position estimates is computed and noted as σ . Any node i
where d̃i ≥ γ , where γ is a given threshold, are to be rejected.

It can be shown that, in the case of a random Gaussian error, γ = σ and γ = 2σ

yield 68 and 95% of accuracy, respectively. In Fig. 15, one can see a typical situation
where some outliers (noted as squares) are present in the position estimates (noted as
crosses). On this figure, the variances along the x-axis and the y-axis were computed
and drawn as a dashed ellipsoid.

Finally, it is possible to compute a residue value of the position estimates. This
value is be defined as the average difference between the given, known distances
and the distances to the location estimate:

W = E [ ||xa − x̃||2 − da ]

= 1

N

N∑

i=1

√
(xi − x̃)2 + (yi − ỹ)2 − di

where xa refers to the postion of an anchor node and da is the distance to the location
estimate x̃. A large residue value will signal an inconsistent set of equations in the
lateration technique and leads to a rejection when the value of R is larger than the
radio range.

7 Advanced Localization Techniques – Data Fusion by means
of Machine Learning

One interesting feature of WSN is the presence of multiple sensors at each node.
Therefore, it is possible to take advantage of the combination of heterogenous obser-
vations obtained from these very different sensors. For instance, most sensor nodes
embed a 2-axes accelerometer. In a scenario where the target node is worn by a
human personal, it is therefore possible to determine the motion state of the user
(i.e., motion or stillness) and use this information in the tracking filter. More classi-
cal techniques, such as the fusion of estimators or the supervised or non supervised
classification can also be used to drastically improve the final estimate of the target
node.

The remainder of this section is organized as follows. In Sect. 7.1, the considered
scenario is presented and some empirical considerations are introduced. Next, in
Sect. 7.2, we present how the data collected at the accelerometer can be suitably
and automatically classified. In Sect. 7.3 the Kalman filter introduced in Sect. 5 is
suitably modified in order to take advantage of the additional motion state informa-
tion. Sect. 7.4 motivates the joint use of the Kalman filter together with different data
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fusion schemes. Finally, in Sect. 7.5 a fusion of localization estimators technique is
presented.

7.1 Introduction

In this section, we consider a scenario where a WSN is deployed to provide local-
ization information of the maintenance personal operating in a factory. First, based
on empirical observations, it may be assumed that the natural movement of the
operators is made at constant speed and is, on average, equal to |s| = 1 ms−1.
Second, the velocity of the walking from a workstation to another is subject to a
normal perturbation that is given to the user’s acceleration between two stillness
moments. Furthermore, it can observed that humans start (or stop) walking in about
one second. Since the average natural walking speed is around |s| = 1 ms−1, we can
say, with 95% of accuracy, that the variance of the acceleration is 2σw

a = 1 ms−2

under all directions which is the most pessimistic case. Therefore, the relation (10)
can be written as

σw
k = cov(wk) = E

[
wkwT

k

]

= 1

2

⎡

⎢⎢
⎣

Δt2/2 0
0 Δt2/2
Δt 0
0 Δt

⎤

⎥⎥
⎦

[
Δt2/2 0 Δt 0

0 Δt2/2 0 Δt

]

7.2 Observation of the Sensor Data – Motion vs. Static
Classification

An accelerometer provides measurements about the instantaneous variations of
speed over time. These variations are higher when walking that when standing still,
and can be used to infer the motion state of the user. In [18], an extensive mea-
surement campaign was conducted using an accelerometer embedded in the TMote
Invents. This device provides acceleration measurements along two axes (i.e., verti-
cal and horizontal). During a calibration stage, the accelerations of an operator who
walks and stops at regular intervals is recorded and the data are tagged with the type
of motion observed. Each sample is taken every 4 s. Ten measurements along each
axis were collected at a rate of 100 Hz.

A first conclusions of this extensive measurement campaign is that the absolute
values for the acceleration do not directly allow to distinguish motion from stillness.
On the contrary, the variance of the acceleration enables a discrimination between
the motion and non-motion configurations, as illustrated in Fig. 16. From that on, the
collected data can be automatically put into two classes by means of classification
techniques such as the linear discriminant function [35]. This calibration phase will
be used at a later time to determine to which class a subsequent sample belongs to.
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Fig. 16 Classification of the terminal mobility. It is characterized by the variance of the accelera-
tion along the two axes of the mobile sensor

A Support Vector Machine (SVM) [35] works as follows. Let us consider a given
set of training data

D =
{

(ξi, ci ) | ξi ∈ R, ci ∈ {C1, C2}
}

where ξi is the i-th vector of data and ci denotes the class it belongs to, i.e., C1 or
C2. The objective of linear classification is to identify, in the axes {ψ1, ψ2, . . . , ψn},
the hyperplane

H ≡ A.ψ = b

such that the distance between the hyperplane and the classes C1, C2 is maximum.
Let us consider that a data ψi belongs to the class C1 (C2) if ci = α (ci = −α). Two
parallel hyperplanes can be defined: one for each edge of the data classes.

{
H1 ≡ A.ψi − b = α , ψi ∈ C1

H2 ≡ A.ψi − b = −α , ψi ∈ C2

Figure 17 illustrates this technique in the case of a two-dimensional dataset. The
classes C1 and C2 are represented by the circles and the triangles, respectively. It
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Fig. 17 Illustration of the classification method used in support vector machine

can be seen that the separation hyperplane H can be geometrically interpreted as
the middle of the two hyperplans H1 and H2.

{
A.ψi − b ≥ α , ψi ∈ C1

A.ψi − b ≤ − α , ψi ∈ C2

Finally, in order to increase the robustness of the discrimination, it is usual to con-
sider that the hyperplane must be located as far as possible from both classes. Sim-
ple geometry computation shows that the distance between the two hyperplanes H1

and H1 is

||H1 − H2|| = 2α

||A||

Therefore, the maximization of this quantity implies the minimization of the value
||A||. Finally, the classification problem can be written as the optimization program

{
min ||A||
ci (A.ψi − b) ≥ α, ∀i ∈ 1, . . . , n

(11)

This family of problems is referred to as quadratic programming (QP) optimization
problem and can be solved using standard techniques [34, 28, 5].

Referring back to our static-vs-motion example, the estimation of the variance
of the acceleration along the two axes is x = (σ 2

vertical, σ
2
horizontal). The two classes of

interest are C1 ≡ S and C2 ≡ M, which stands for the static and motion conditions,
respectively. A linear discriminant is derived from (11) and a threshold value is used
γ that determine to which condition the observation belongs to. More precisely, the
sensor node can determine the motion condition of the user by sampling the values
of the accelerometer(s) and computing the linear relations:
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{
ψT A > γ ⇒ x ∈ S
ψT A ≤ γ ⇒ x ∈ M

In the proposed example, a standard SVM is used to identify the parameters A and γ .
The resulting separating line is displayed in Fig. 16 and the observed percentage of
correct classification is about 90%, which shows that the fusion of data generated by
sensors monitoring the mobility condition can be integrated in the localization task.
Moreover, the data fusion module was experimentally shown to both significantly
reduce the error and the variance of the estimate of the mobile target position when
used to suitably customize a recursive filter such as a Kalman filter [18], as presented
in the next section.

7.3 A Data Fusion Approach for the Kalman Filter

Under the hypothesis that the motion state of the user is perfectly known, it is pos-
sible to further refine the Kalman model presented in Sect. 5. More precisely, the
terms corresponding to the unknown speed component in the variable xk can be
set to sx,y = 0 ms−1 or sx,y = 1 ms−1 when the user is in static or in motion,
respectively. The relation (9) becomes:
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where

ηk =
{

0 if user is staticat t = tk
Δt if the user is in motionat t = tk

Note that relation (12) differs from (9) since the value of ηk strictly depends on the
result of the classification algorithm applied to the measurements performed by the
accelerometer. The relation (10) is equivalently modified:

σw
k = cov(wk) = E

[
wkwT

k

] = 1

2

⎡

⎢⎢
⎣

Δt2/2 0
0 Δt2/2
ηk 0
0 ηk

⎤

⎥⎥
⎦

[
Δt2/2 0 ηk 0

0 Δt2/2 0 ηk

]

All previous developments presented in the above sections still hold and can be
re-used as-is. Note that this new approach requires a perfect (or almost perfect)
knowledge about the state of the motion. Moreover, according to this new inter-
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pretation of the Kalman model, this time the acceleration is supposed to be known
and measurable. Since the information derived from the accelerometer contains an
uncertainty (i.e., the sensor performs a noisy measure), we provide a comparison of
both methods, i.e., with and without the a priori knowledge of the user’s motion in
the next section.

7.4 Performance Evaluation of the Fusion Schemes

Several experiments were conducted in the basement of an indoor building made
of large corridors and metal structures. In a first round, the data issued from the
accelerometer were processed. It has been confirmed that the variance of the accel-
eration is a good estimator to detect the user’s behaviour, i.e., whether it is static
or in motion. Figure 18 reports the Root Mean Square Error (RMSE) of the esti-
mated position by the multilateration technique without additional filtering. One
can observe that the average positioning error in our scenario is μ = 5.4 m and
that the technique presents a significant variance (σ = 4.9 m). In a second exper-
iment, shown in Fig. 19, the samples were collected at the accelerometer and the
fusion technique was applied. It can be seen that, in this case, the average RMSE of
the estimation lowers to 3.4 m while, at the same time, the variance of the error is
divided by 3, i.e., σ = 1.6 m.
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Fig. 18 Distribution of the RMSE of the position as evaluated by the multilateration algorithm
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Fig. 19 Distribution of the RMSE of the position after filtering and fusion with the information of
the accelerometer

7.5 Fusion of Localization Estimators

In order to further improve the localization techniques presented in this chapter
and to reduce the variance of the inferred position, the fusion of estimators can
be used. In this method, instead of considering a single estimation of the position,
one generates all possible subsets containing at least k ≥ 3 anchors. The amount of
possible combinations when picking up a subset of k anchors among the N available
distance estimations is

Ck =
(

N

k

)
= N !

k!(N − k)!

For each subset of size Ck , a multilateration technique (i.e., circular or hyperbolic)
is used to determine the Ck position estimates. By repeatedly applying this for all
k ∈ {N , N − 1, N − 2, . . . , 3}, it is possible to get

Ctot =
N∑

k=3

Ck =
N∑

k=3

N !

k!(N − k)!

position estimates. These estimates are linearly combined and multiplied by a
weight that is proportional to the inverse of the amount of subsets that can be
derived, i.e., the more the anchors are used, the higher the weight value. This



278 J.-M. Dricot et al.

Fig. 20 Fusion of estimators and weighting of the estimates

weighted sum is efficient since the combination of multiple estimations reduces
the variance of the estimation and efficiently reduces the bias in the estimation [19].
Figure 20 presents a schematic illustration of the subsampling and weighting pro-
cess. The average position estimate can be computed as

x̃ =
N∑

k=3

ωk

Ck∑

i=1

ωki x̃ki (13)

where x̃ki is the i-th estimate obtained from the fusion of estimators using k anchors
and ωki is the corresponding weight. A simple method consists of employing an
iid. weight, that is, each set of subsamples has the same weight (ωk = 1/N − 3)
and inside each set of level k, the estimates share a same weight (ωki = 1/Ck).
Therefore, the relation

x̃ = 1

N − 3

N∑

k=3

Ck∑

i=1

1

Ck
x̃ki (14)

gives the position estimate that derives from the fusion of estimators method.

8 Open Issues in Localization and Conclusion

In this chapter, we have been presenting several localization schemes to address the
static and the dynamic localization problems in wireless sensor networks. Despite
the increasing attention that the sensor network architectures have received in
this last decade, several open issues remain. First, the security of the localization
architecture can be easily compromised since the sensor network technology is
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based on wireless networks protocols [21]. The robustness against wormholes, Sybil
attacks, and the impact of the compromised networks nodes has been studied in the
past [25]. Moreover, in the context of the localization, it has been shown that a
secure verification of the location estimates may also be mandatory [32].

Second, the computation of the position estimates requires the collection and the
dissemination of a substantial amount of data. Although the most accurate possi-
ble location estimate is an ultimate objective, the achievable level of geographical
granularity and the update frequency are inherently limited by the available shared
bandwidth, which is often low in the context of wireless sensor networks. More-
over, in sensor networks, an ad-hoc architecture is considered and it will have a
strong impact on the performance of the data dissemination and the amount of time
between the sensing and the location derivation (also referred to as time to first fix).
As then, the deployment of a practical localization architecture requires a prior and
in-depth analysis involving very different notions such as: the deployment costs,
the user benefits, the network overhead consumption, and the minimal requirement
constraints. These requirements are expected to vary from one considered scenario
to the other and it is hard to define an holistic architecture that will be suitable and
optimal (or at least, near to optimal) for any situation.

Third, all localization techniques are very sensitive to the deployment environ-
ment, but for different reasons. The range-free algorithms can be subject to diffrac-
tion, which makes angle estimates void. In the case of range-based techniques, the
acquisition of the signal strength is subject to temporal and spatial fading due to
multipath propagation. As a consequence, the presence of an non-homogeneous
propagation environment (e.g., existence of a metallic storage facility, deployment
in a mixed outdoor-to-indoor scenario, architecture of the considered building, etc.)
may lead to inconsistent distance estimates. However, techniques such as the sub-
sampling presented in Sect. 7.5 may help detecting these wrong estimates, though
it remains a very difficult task. Furthermore, if a mobile scenario is considered,
the signal is also subject to shadowing and non-isotropic radiation of the antennas,
which means that the signal arriving at the receiver of the anchors may change
rapidly, even if the target moves only a few meters away.

As a conclusion, several possible techniques can be used to provide an infor-
mation of the position of a target node of the sensor network. For each technique,
an associated error can be evaluated and it is interesting to note that the sources
of inaccuracies are different in each considered approach. Therefore, in order to
address these inaccuracies, an interesting direction is to evaluate the potential of
a data fusion in a multimodel localization context [17, 15]. Indeed, if more than
one localization scheme is used and a Bayesian inference technique [7] is applied,
a more accurate positioning can be obtained by injecting the knowledge acquired
from one technique into the subsequent ones.
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Enhancing Underwater Acoustic Sensor
Networks Using Surface Radios: Issues,
Challenges and Solutions

Zhong Zhou, Hai Yan, Saleh Ibrahim, Jun-Hong Cui, Zhijie Shi,
and Reda Ammar

Abstract In this chapter, we focus on a novel network architecture, UASN-MG,
which has multiple surface gateways for underwater acoustic sensor networks. The
surface gateways communicate with each other using surface radio and form a radio
network on the water surface. Thus, two networks, an underwater acoustic network
formed by underwater sensor nodes and a surface radio network formed by the
surface gateways, are involved. Such a network architecture can bring about many
benefits such as high throughput and energy efficiency. However, integrating mul-
tiple surface gateways into underwater acoustic sensor networks also incurs many
new design challenges. In this chapter, we describe this new network architecture
and its benefits in detail. Then we discuss the design challenges in this new archi-
tecture. Afterwards, three design examples are given, from different perspectives, to
illustrate the techniques that cope with these challenges and optimize the network’s
performance. Finally, we conclude the chapter with discussions on possible future
research directions.

1 Introduction

Underwater acoustic sensor networks have attracted rapidly growing research inter-
ests in last several years [1, 5, 6, 9, 17, 21]. On the one hand, underwater sensor
networks enable a wide spectrum of applications, such as oceanographic data col-
lection, pollution monitoring, offshore exploration, disaster warning, and tactical
surveillance applications. On the other hand, the adverse underwater environments
pose grand challenges for efficient communication and networking.

In underwater environments, radio does not work well due to its quick attenua-
tion in water. Thus acoustic channels are usually employed. The propagation speed
of acoustic signals in water is about 1.5 × 103 m/s, which is five orders of magni-
tude lower than the radio propagation speed in air (about 3 × 108 m/s). In addition,
the bandwidth capacity of underwater acoustic channels is limited and depends on
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both transmission range and frequency [12, 31, 2, 3]. According to [13], nearly
no research and commercial system can exceed 40 km × kbps as the maximum
attainable range × rate product. In comparison, the product for RF (radio fre-
quency) communications yields up to 5000 km × kbps, if we take 802.11b/a/g as
an example. Moreover, underwater acoustic channels are affected by many factors
such as path loss, noise, multi-path fading, and Doppler spread. All these cause
high error probability in acoustic channels. In short, underwater acoustic channels
feature long propagation delay, low available bandwidth, and high error probability.
Besides, underwater sensor nodes are usually powered by battery, which is very hard
to recharge or replace in hash underwater environments. High energy efficiency thus
becomes one of the most important design considerations for such networks. All
these new challenges call for innovative design philosophies and techniques, from
network architecture to every network function and protocol.

Directly tackling the basic hard communication and networking problems have
motivated a large strand of research efforts (such as [22, 23, 27, 32, 35–37]). In this
chapter, we take a very different research route, investigating how (powerful) surface
radios help (limited) underwater acoustics. We introduce a new network architec-
ture, called Underwater Acoustic Sensor Network with Multiple surface Gateways
(UASN-MG). In UASN-MG, gateways equipped with both acoustics and radios are
deployed at water surface, and they can communicate with each other using surface
radios and form a radio network above water. Thus, UASN-MG involves two types
of networks: one is the underwater acoustic network formed by underwater sensor
nodes and the acoustic parts of gateways; the other is the surface radio network
formed by the radio parts of gateways. Different from the heterogenous network
architecture in chapter “Self-Organization of Sensor Networks with Heterogeneous
Connectivity” [25], where sensor nodes are only different in their transmission
range, surface gateway nodes in our UASN-MG are equipped with an extra set
of radio transceiver which makes them much more powerful and costly than the
ordinary underwater sensor nodes.

Compared with traditional underwater sensor networks (with single gateway),
UASN-MG can drastically improve network performance, such as high reliability,
low end-to-end delay, and high energy efficiency. However, introducing multiple
surface gateways into an underwater acoustic sensor network is nontrivial, and in
fact, has lots of design challenges. In this chapter, we elaborate on these challenges.
Three typical design examples are given to show the way to cope with these chal-
lenges and optimize the network’s performance from different perspectives.

The rest of the chapter is organized as follows. We first describe the new network
architecture, UASN-MG, and discuss its benefits and advantages. Then, we discuss
in depth the design challenges for such kind of networks. After that, we give three
design examples. The first example is for the optimal deployment of surface gate-
ways. We model the surface gateway deployment as an integer linear programming
(ILP) problem and optimize the system’s energy efficiency and end-to-end delay.
In the second example, we discuss a new multi-hop routing protocol, depth-based
routing(DBR), which is well suitable for UASN-MGs. DBR utilizes the depth infor-
mation of every node and routes data packets greedily towards the gateways at the
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water surface. Gateways can then forward the received data packets to the central
sink node through the surface radio network. Through this example, we can clearly
see the impacts of multiple surface gateways on the conventional layered protocols
such as the routing protocol. The third example is on the cross-layer design between
the physical layer and the routing layer for energy efficient reliable transfer in
UASN-MGs. In this example, multiple acoustic paths are used to route data packets
to multiple surface gateways. These gateways then do packet combining through the
surface radio links. Power control is also integrated to improve the system’s energy
efficiency. This example clearly shows us the strength of cross-layer design in the
multi-gateway network. We then conclude with some observations and discussions
of future research directions.

2 UASN-MG Architecture and Its Benefits

Figure 1(a) gives an example of UASN-MG. In the plotted network, multiple surface
gateways are deployed. Every gateway is equipped with two sets of transceivers.
One is acoustic transceiver which is used to communicate with underwater sensor
nodes through acoustic channels. The other is radio transceiver which is used to
communicate with the control center or other gateways through radio channels.

As mentioned earlier, two types of networks are involved in this network archi-
tecture: one is the underwater acoustic network which is composed of the under-
water sensor nodes as well as the acoustic parts of the surface gateways; the other
is the surface radio network which is composed of the radio parts of the surface
gateways. These two networks interact with each other through surface gateways.
If an underwater node has data to report to the control center, the data will first
go through the acoustic channels in the underwater acoustic network to one of the
surface gateways, and then through the radio links in the surface radio networks to
the control center.

Compared with traditional underwater sensor networks, UASN-MG introduces
a new surface radio network on the top of the underwater acoustic network. Since
radio channels have much higher bandwidth and are much more reliable than under-
water acoustic channels, multiple gateways can bring a lot of benefits to UASN-MG
with the surface radio network. Next, we will elaborate the advantages of UASN-
MG from the aspects of energy efficiency, reliability and end-to-end delay, which
are three important performance criteria for underwater sensor networks.

• UASN-MG can achieve higher energy efficiency. As shown in Fig. 1(b), in the
traditional underwater acoustic sensor network, when a node has data to report,
it sends the data to the control center, all through acoustic channels. It is well
known that for the same transmission range, acoustic transceiver consumes much
more energy than radio transceiver. While in UASN-MG, every route is a com-
bination of both acoustic links and radio links. Energy thus can be saved by
using the low energy-consuming radio links. More importantly, the new multiple
surface gateway architecture can greatly reduce the collision probability on the
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Fig. 1 Comparison between UASN-MG and traditional underwater network

acoustic channels, which leads to higher energy efficiency. With multiple surface
gateways, underwater sensor nodes only need to send their packets to any of the
surface gateways and it is the responsibility of the surface gateways to forward
the packets to the control center (the final data sink). Hence, the traffic in the
underwater acoustic network is dispersed to multiple surface gateways, instead
of concentrating to one control center as in Fig. 1(b). In this way, the collision
probability can be greatly reduced, especially in the area close to the control
center.

• UASN-MG can greatly improve the network reliability. It goes without saying
that multiple surface gateways contribute to more usable and efficient routes. For
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example, as shown in Fig. 1(b), for the traditional underwater network, node “S”
can only find one path which consists of pure acoustic channels. If any nodes
along this path go wrong, this path is broken and data packets from node “S”
will be lost. However, as shown in Fig. 1(a), for UASN-MG, node “S” can find
routes to gateways “1” and “2”. Both of them can forward the received data to
the control center. Thus, if one route fails, data can still be forwarded to the con-
trol center along the other route. Multi-gateway architecture is also an effective
way to combat the underwater fading environment. If a path to a gateway is in
deep fading, other paths to other gateways might be in good conditions and can
successfully transmit data. Thus, UASN-MG has the potential to provide much
higher reliability than the traditional underwater network architecture.

• UASN-MG can significantly reduce the end-to-end delay. The benefits of the short
delay of UASN-MG come from the following two aspects. First, since traffic
is dispersed to multiple gateways, collision probability in the network will be
reduced, which contributes to the low end-to-end delay since less time will be
spent on the collision resolution process. Second, the acoustic route to a surface
gateway in UASN-MG usually is much shorter than the acoustic route to the
centralized control center in the traditional underwater network. The end-to-end
delay thus can be significantly reduced considering that radio links are much
more reliable and radio signal travels much faster than acoustic signal.

3 Research Challenges and Design Issues

Based on the previous discussions, no doubt UASN-MG has the great potential to
bring significant benefits to underwater applications. To realize these benefits, how-
ever, poses many new design challenges. Approaches in the traditional underwater
network architecture cannot be applied here directly. For example, routing proto-
cols in traditional underwater sensor networks only try to find routes to the control
center. If used in UASN-MG, they do not distribute the traffic among the gateways
smartly in order to optimize the network performance. New protocols which inte-
grate routing and traffic balancing are demanded. In fact, the impacts of UASN-MG
are broad and almost every protocol layer is affected. In the following, we identify
four fundamental research issues. The list is far from complete. We choose them as
case studies in this chapter, with the hope that our research can cast light on this new
direction in the community.

The first issue is how to deploy surface gateways. The network performance is
heavily dependent on the deployment of surface gateways in UASN-MG. An opti-
mal deployment not only improves the system throughput and energy efficiency,
but also decreases the system end-to-end delay and collision probability. However,
finding the optimal gateway locations of surface gateways is very challenging. The
deployment of the gateways is not only related to the gateways themselves, but
also related to the locations of underwater acoustic sensor nodes. Global network
information is needed to formulate a complicated optimization problem, which
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will increase the traffic overhead and computation complexity. In addition, for
mobile underwater sensor networks, the surface gateways should be able to dynam-
ically change their locations to adapt to the movement of the underwater sensor
nodes.

The second issue of UASN-MG is on medium access control (MAC). Existing
MAC protocols designed for the traditional network architecture do not take dif-
ferent roles of nodes into account [4, 14, 20, 26, 32, 36]. However, in UASN-MG,
surface gateways play much more important roles than ordinary sensor nodes. Fur-
ther, the shallow nodes which act as traffic aggregators are much more important
than deeper nodes. An efficient MAC protocol should be adaptive to the roles and
the depths of the nodes. In addition, MAC protocols with multiple channels are
reported to be able to greatly improve network throughput, decrease channel access
delay and lower energy consumption [24, 29, 33]. UASN-MG is a natural network
scenario to incorporate multiple channel technologies into practice. However, how
to efficiently allocate data channels distributively among the surface gateways and
the underwater sensor nodes is a nontrivial problem.

The third issue is on efficient routing for UASN-MG. Although a lot of routing
protocols have been proposed for traditional underwater acoustic networks [11, 19,
23, 37], their performance is quite questionable in UASN-MG. In these protocols,
one or multiple routes to the control center are established and used for data trans-
mission. For example, in [37], a route pipe is established along the vector from
the source to the control center. Since only one sink node exists in the traditional
network, traffic will be merged to this node, which aggravates the collision around
the control center. However, in UASN-MG, a packet only needs to be routed through
the underwater acoustic channels to any of the surface gateways. Thus, traffic is
distributed among these gateways. An intelligent routing protocol for UASN-MG
should allocate traffic evenly and smartly among the gateways and find route effi-
ciently. To devise such an intelligent protocol is not an easy task. Since every node
generates its traffic independently, a node cannot make an optimal routing decision
unless it knows the decisions of other nodes. However, in the long delay distributed
underwater environment, how can a node obtain the decisions and status of other
nodes? In addition, because of the narrow available bandwidth of acoustic chan-
nels, complex routing protocols cause too much communication overhead and thus
cannot be applied here. Efficient routing protocol design for UASN-MG is very
challenging.

The fourth issue is reliable end-to-end data transfer for UASN-MG. Forwarding
data from source nodes to the control center efficiently and reliably is challenging
in harsh underwater environments. Pioneering work such as [35] provides high end-
to-end reliability with low energy cost for traditional underwater acoustic networks.
Multiple gateways in UASN-MG give us more design choices, but they also make
things more complicated. For example, to improve the end-to-end reliability, a node
might transmit multiple copies along multiple roues to multiple gateways simulta-
neously. How to choose these routes and how to coordinate the nodes to provide
certain end-to-end reliability efficiently is a big challenge.
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In summary, existing techniques for traditional underwater networks cannot meet
the needs of UASN-MG. New physical layer, MAC/data link layer and network
layer solutions need to be developed.

4 Design Examples

This seciton gives three design examples in UASN-MGs. In the first example, we
investigate the optimal deployment of surface gateways. We model the surface gate-
way deployment as an integer linear programming (ILP) problem and optimize the
system’s energy efficiency and end-to-end delay. In the second example, we dis-
cuss a new routing protocol, Depth-Based Routing (DBR), which utilizes the depth
information to route data packets greedily towards the gateways at the water surface.
Gateways can then forward received data packets to the central sink node through
the surface radio network. This example clearly shows the impacts of multiple
surface gateways on the design of conventional layered protocols such as routing.
In the third example, we propose a new end-to-end reliable data transfer protocol,
Multi-path Power control Transmission (MPT). MPT is a cross-layer design strat-
egy between the physical layer and the routing layer for multi-gateway underwater
acoustic networks. In MPT, multiple acoustic paths are used to route data pack-
ets to multiple surface gateways. These gateways then perform packet combining
through the surface radio links. Power control is also integrated to improve the sys-
tem’s energy efficiency. This example shows the strength of cross-layer design in
this new network architecture. More details of these design examples can be found
in [10, 38, 39]

4.1 Optimal Surface Node Deployment

In this design example, we study the problem of surface gateway deployment and
present guidelines for deciding the optimal number and locations of surface gate-
ways for a given underwater acoustic sensor network. We focus on optimizing the
cost of surface gateway deployment, by finding the minimum number and the loca-
tions of surface gateway nodes required to achieve a given design objective, which
can be communication delay, energy consumption, fault-tolerance, or a combination
of them. The surface gateway deployment problem is formulated as an integer linear
programming (ILP) problem here.

4.1.1 Network Model

The surface gateway deployment problem can be modeled as a 3-D graph opti-
mization problem. The nodes of the graph represent underwater sensors and candi-
date surface gateway positions. The problem is to choose a subset of the candidate
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surface gateway positions to satisfy a set of flow conservation constraints, interfer-
ence constraints, deployment cost constraints (e.g., the number of surface gateways),
and/or the the network performance requirements.

• Nodes. Let V be the set of all underwater sensor nodes, T be the set of candidate
surface node positions, and V´ be the set of all nodes, i.e. V´= V ∪ T .
Let I (v) be the set of nodes within the communication range of node v, i.e. I (v) =
{w : w ∈ V́, v �= w, d(v,w) ≤ R}, where d(v, w) denotes the distance between v
and w, and R is the communication range of sensor nodes.

• Edges. Let E be the set of all edges e = (v,w), such that v ∈ V, w ∈ I (v). Let
Eout(v) and Ein(v) demote the outgoing and incoming edge set of v respectively.
Then Eout(v) = {e(v, u) : (v, u) ∈ E},∀v ∈ V , and Ein (v) = {e(u, v) : (u, v)
∈ E},∀v ∈ V́. Note that for any surface gateway node, the outgoing edge set is
Φ, since the surface gateways only receive data (no relaying function).

• Data Generation and Flow. Let g(vi ) be the packet generation rate at node vi ∈ V,
and let G be the total data generation rate, i.e., G = ∑

v∈V g(v). Further, we use
f (e) to denote the total data flow (in both directions) on edge e.

• Gateway Presence Indicator. Let x(ti ) be a binary variable that defines the surface
gateway deployment at location ti :

x(ti ) =
{

1 if a node deployed at ti
0 otherwise

, ∀ti ∈ T . (1)

4.1.2 Problem Formulation

Constraint Formulation. With the definition above, we can formulate the constraints
of the network.

• Deployment Constraints. Data can only be received at locations where surface
nodes are deployed:

f (ei ) ≤ x(t j )G, ∀t j ∈ T, ei ∈ Ein(t j ). (2)

In other words, no data will be received at locations without gateways.
• Interference Constraints. The interference model adopted in this work assumes

that a node cannot send while it is receiving, which implies that the total data
transfer rate sent and received at any node can not exceed the maximum capacity
B of its communication link. Thus, for underwater sensor nodes we have

∑

eo∈Eout(v)

f (eo) +
∑

ei ∈Ein(v)

f (ei ) < B, ∀v ∈ V, (3)

and for surface candidate gateways we have

∑

ei ∈Ein(t)

f (ei ) < B, ∀t ∈ T . (4)
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• Per-Node Flow Conservation. Flow conservation implies that for underwater
sensor nodes, the sum of the flows leaving a node equals the sum of the flows
entering that node plus the local data generation rate, that is

∑

eo∈Eout(v)

f (eo) −
∑

ei ∈Ein(v)

f (ei ) = g(v), ∀v ∈ V . (5)

• End-to-End Flow Conservation. Each surface node can act as a sink, and all
surface gateways together form a virtual sink. Thus, a packet generated by any
source, must eventually be received by a surface node. End-to-end flow conser-
vation here means that the total data generation rate must equal the total data
absorption rate by all surface node sensors, that is

∑

t j ∈T

∑

ei ∈Ein(t j )

f (ei ) = G. (6)

• Deployment Cost. For the multi-sink architecture, the deployment cost of sur-
face gateways is of critical concern. To optimize the network performance, such
as minimizing delay or energy consumption, using a limited number of surface
nodes, N , we should include the following constraint:

∑

ti ∈T

x(ti ) ≤ N . (7)

Objective Functions. With an objective function, by solving the set of equations (1)
through (7), an optimal deployment is obtained in the form of an assignment to the
set of binary variables x(ti ). In the following, we present some representative objec-
tive functions we have explored, namely minimizing the expected delay, minimizing
the expected energy consumption, and minimizing the maximum delay.

• Minimizing Expected Delay. The objective is to minimize the expected end-to-
end delay for all packets. The end-to-end delay for a packet is the sum of the
per-hop delay over the entire path from the source that generates the packet to
the sink that receives it. Since queuing delays (caused at MAC or routing layer)
are not considered in this work, the per-hop delay consists of transmission delay
and propagation delay. The delay t on an edge e can be written as

t(e) = ts(e) + tp(e) = L

B
+ l(e)

vp
,

where L is the packet length in bits, B is the channel capacity in bits per second,
l(e) is the distance between the nodes at the two ends of e, and vp is the propaga-
tion speed of sound in water. The expected delay for all packets then can then be
written as
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E[t(e)] = 1

G

(
∑

e∈E

f (e)t(e)

)

,

and the corresponding objective function will be

Minimize
(
E[t(e)]

)
.

• Minimizing Expected Energy Consumption. The objective is to minimize the
expected end-to-end energy consumption, i.e., the energy consumed in the net-
work for a packet to travel from its source to a sink. The energy consumed ε to
transmit a packet over edge e can be written as

ε(e) = πs(e)ts = πs(e)
L

B
,

where πs(e) is the transmission power used on edge e for one unit of data.
Similar to the expected delay, the expected energy consumption can be written
as

E[ε(e)] = 1

G

(
∑

e∈E

f (e)ε(e)

)

,

and the corresponding objective function will be

Minimize
(
E[ε]

)
.

• Minimizing Maximum Delay. The objective functions presented so far reflect the
expected performance of the overall network. A more precise optimization of
performance can consider data packets generated by individual sources sepa-
rately. For example, the objective can be to minimize the worst-case expected
delay seen by data packets originating at any specific source node. To do that, we
define fvs (e) as the portion of f (e) originating at source node vs . It follows that
f (e) = ∑

vs∈V fvs (e),∀e ∈ E . In this case, flow conservation constraints have to
be detailed such that every sub-flow has its own conservation equation as follows.

∑

eo∈Eout(vi )

fvs (eo) −
∑

ei ∈Ein(vi )

fvs (ei )

=
{

g(vs) if vi = vs

0 otherwise
, ∀vs, vi ∈ V,

(8)

and

∑

t j ∈T

∑

ei ∈Ein (t j )

fvs (ei ) = g(vs), ∀vs ∈ V . (9)
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The objective function can then be written as

Minimize

[

Maxvs∈V

(
∑

e∈E

fvs (e)t(e)

)]

.

4.1.3 Simulation Results

Throughout the simulations, we fix the packet length L = 400 bits, the propagation
speed of sound in water vp = 1500 m/s, and the transmission power πs = 1 watt
(we ignore receiving and idle power, which are much less than transmission power).
We also fix the area of network deployment to a square of 600 m×600 m horizontal
extent, and fix the candidate gateway deployment positions to a 5×5 mesh of points
spaced 150 m apart. The communication range for both underwater sensors nodes
and acoustic interface of the surface gateways nodes is R = 150 m. The depth of all
underwater sensors is set to 100 m.
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We vary the number of allowed surface nodes from 1 to 25 nodes and solve
the optimization problem. Results show that an increase in the number of surface
gateways can dramatically enhance the network performance, especially when the
network is lightly loaded. For example, Fig. 2 shows that the expected delay corre-
sponding to B = 50 kbps can be reduced from 0.26 to 0.16 s by using four surface
gateways instead of one, as exactly shows the benefits of the multi-sink architecture.
Figure 3 shows that the average energy consumption also decrease monotonically
with the increase of the number of surface gateways. It is also worth noting that
the improvement gained by adding a surface gateway diminishes as the number
of surface gateways increases. After a certain number (a threshold) of surface gate-
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ways, depending on the underwater deployment (as well as other factors), additional
surface nodes have no positive effect on the performance of the network. This is due
to the fact that when the threshold is reached, every underwater sensor node could
communicate with a surface gateway at the nearest candidate position. Therefore,
any further addition of surface nodes becomes redundant.

In this example, we formulate the surface gateway deployment problem as an
optimization problem, the solution of which gives the minimum number and the
optimal locations of surface gateway nodes, with a variety of optimization goals.
Simulation results confirm the potential for performance improvement using multi-
ple surface gateways: reducing both average delay and energy consumption.

4.2 Efficient Routing Protocol

In this example, we propose a novel routing protocol, called depth-based routing
(DBR), for underwater sensor networks. DBR utilizes the properties of UASN-MGs:
data sinks are usually situated at the water surface. Thus based on the depth informa-
tion of each sensor, DBR greedily forwards data packets towards the water surface
(i.e., the plane of data sinks). In DBR, a data packet has a field that records the
depth information of its recent forwarder and is updated at every hop. The basic
idea of DBR is as follows. When a node receives a packet, it forwards the packet
if its depth is smaller than that embedded in the packet. Otherwise, it discards the
packet. Obviously, if there are multiple data sinks deployed at the water surface,
DBR can naturally take advantage of them. Packets reach any of the sinks are treated
as successfully delivered to the final destination since these water-surface sinks can
communicate with each other efficiently through radio channels, which have much
higher bandwidth and much lower propagation delays.
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To summarize, the main advantages of DBR are as follows. (1) It does not require
full-dimensional location information. (2) It can handle dynamic networks with
good energy efficiency. (3) It takes advantage of multiple-sink network architecture
without introducing extra cost.

4.2.1 Network Model

In the network, multiple surface gateways equipped with both radio-frequency (RF)
and acoustic modems are deployed at the water surface. Underwater sensor nodes
with acoustic modems are distributed in the interested 3-D area, with each likely
to be a data source. They can collect data and also help relay data to the gateways.
Since all the gateways have RF modems, they can communicate with each other
very efficiently via radio channels. Hence, if a data packet arrives at any gateway, we
assume it can be delivered to other gateways or remote data centers efficiently. This
assumption can be easily validated by the fact that acoustic signal propagates (at a
speed of 1.5 × 103 m/s in water) five orders of magnitudes slower than radio (with
a propagation speed of 3 × 108 m/s in air). We do not consider the communication
between surface gateways in this example. Instead, we assume that a packet reaches
the destination as long as it is successfully delivered to any gateway.

Furthermore, we assume that each underwater node knows its depth informa-
tion, namely the vertical distance from itself to the water surface. In practice, depth
information can be obtained easily with a depth sensor. In comparison, obtaining
full-dimensional location information is much more difficult.

4.2.2 Protocol Overview

DBR is a greedy algorithm that tries to deliver a packet from a source node to gate-
ways. During the course, the depth of forwarding nodes decreases while the packet
approaches the destination. If we reduce the depth of the forwarding node in each
step, eventually a packet can be delivered to the water surface. In DBR, a sensor
node distributively makes its decision on packet forwarding, based on its own depth
and the depth of the previous sender. This is the key idea of DBR.

In DBR, upon receiving a packet, a node first retrieves the depth dp of the
packet’s previous hop, which is embedded in the packet. The receiving node then
compares its own depth dc with dp. If the node is closer to the water surface, i.e.,
dc < dp, it will consider itself as a qualified candidate to forward the packet. Oth-
erwise, it just simply drops the packet. In the latter case, the packet comes from a
(better) node which is closer to the surface. So it is not desirable for the receiving
node to forward the packet.

It is very likely that multiple neighboring nodes of a forwarding node are quali-
fied candidates to forward a packet at the next hop. If all these qualified nodes try to
broadcast the packet, high collision and high energy consumption will result. There-
fore, to reduce collision as well as energy consumption, the number of forwarding
nodes needs to be controlled. Moreover, due to the inherited multiple-path feature
of DBR (in which each sensor node forwards packets in a broadcasting fashion
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using an omnidirectional acoustic channel), a node may receive the same packet
multiple times. Consequently, it may send the packet multiple times. To improve
energy efficiency, ideally a node needs to send the same packet only once. We will
address the techniques of suppressing redundant packets in the next section.

4.2.3 Redundant Packet Suppression

To save energy as well as reduce collision, redundant packets need to be suppressed.
There are two major reasons for redundant packets. One is that multiple paths are
naturally used to forward packets. The other is that a node may send a packet many
times. Although multiple paths in DBR can not be completely eliminated, we use
a priority queue to reduce the number of forwarding nodes, and thus control the
number of forwarding paths. To solve the second problem, a packet history buffer is
used in DBR to ensures that a node forwards the same packet only once in a certain
time interval.

In DBR, each node maintains a priority queue Q1 and a packet history buffer
Q2. An item in Q2 is a unique packet ID, which is composed of Sender ID and
Packet Sequence Number. When a node successfully sends out a packet, it inserts
the unique ID of the packet into Q2. When Q2 is full, the new item will replace the
Least Recently Accessed (LRA) item. In other words, Q2 maintains a recent history
of the packets the node has sent.

An item in Q1 includes two components: a packet and the scheduled sending
time for the packet. The priority of an item in Q1 is represented by the scheduled
sending time. More specifically, an item with earlier sending time has a higher prior-
ity. When a node receives a packet, instead of sending the packet immediately, it first
holds the packet for a certain amount of time, called holding time. The scheduled
sending time of a packet is computed based on the time when the packet is received
and the holding time for the packet.

At a node, an incoming packet is inserted into Q1 if it has not been sent by the
node before (i.e., its unique ID is not in Q2) and it was sent from a lower node (i.e.,
a node with a larger depth, dp > dc). If a packet currently in Q1 is received again
during the holding time, the packet will be removed from Q1 if the new copy is
from a node with a smaller or similar depth (dp ≤ dc), or its scheduled sending time
will be updated if the new copy is from a lower node (dp > dc). After a node sends
out a packet as scheduled, the packet is removed from Q1 and its unique ID inserted
into Q2.

4.2.4 Holding Time Calculation

As mentioned earlier, a node uses holding time to schedule packet forwarding. At a
node, the holding time for a packet is calculated based on d, the difference between
the depth of the packet’s previous hop and the depth of the current node. Nodes with
different depths will have different holding times even for the same packet. In order
to reduce the number of hops along the forwarding paths to the water surface, DBR
tries to select the neighboring node with the minimal depth to be the first one to
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forward a packet. It also tries to prevent other neighboring nodes from forwarding
the same packet to reduce energy consumption.

Figure 4 shows an example. Node S is the sender, and nodes n1, n2, and n3

are all its one-hop neighboring nodes. The solid line circle represents the transmis-
sion range of node S. When node S broadcasts a packet, all neighboring nodes will
receive this packet. Node n3 is below S so it discards the packet. Although nodes
n1 and n2 are both qualified forwarding nodes, node n1 is preferred to forward the
packet. The forwarding of node n2 is prevented if it receives the packet from n1

before its own scheduled sending time for the packet.

Fig. 4 Forwarding node selection

Based on the above analysis, we can see that the holding time must satisfy two
conditions: (1) the holding time should decrease with the increase of d; and (2)
the difference between the holding times of two neighboring nodes should be long
enough so that the forwarding of the node with the smaller depth can be heard by
the other node timely (before the lower node starts its own packet forwarding).

Let us still take Fig. 4 as an example to show how we calculate the holding time.
We express the holding time using a linear function of d as follows, where d is the
depth difference of the current node and the previous one.

f (d) = α · d + β (10)

Let d1 and d2 be the depth difference at nodes n1 and n2, respectively. Let us assume
that n1 receives a packet from S at time t1, n2 receives the packet at time t2, and
t12 is the propagation delay between n1 and n2. Then the two conditions can be
represented by the following inequalities:

f (d1) < f (d2), (11)

and

t1 + f (d1) + t12 ≤ t2 + f (d2). (12)
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Substituting f (d) with our linear expression, we have

α ≤ (t2 − t1) − t12

d1 − d2
, (α < 0).

Here α is negative. As long as |α| ≥ (t1−t2)+t12
d1−d2

, both conditions can be met. Consid-

ering the worst positions for n1 and n2, we can choose |α| = 2τ
d1−d2

, where τ = R/v0

is the maximal propagation delay of one hop (R is the maximal transmission range
of a sensor node and v0 is the sound propagation speed in water).

The value of α depends on (d1 −d2), the depth difference of nodes n1 and n2. For
a node’s one-hop neighbors, α can vary between 0 and R, the maximal transmission
range of a sensor node. When (d1 − d2) approaches 0, α → −∞. It shows that we
cannot find a constant α to make condition (2) always satisfied. Instead, we use a
global parameter δ to replace (d1 − d2) for the holding time calculation. Therefore
α = − 2τ

δ
. We guarantee that node n1 will forward a packet first and prevent the

forwarding of node n2 if d1 − d2 ≥ δ.
Let the node with minimal depth have holding time 0. We can compute the β by

solving the following equation:

−2τ

δ
R + β = 0

Substituding α and β in the linear function (1), we have the definition of f (d) as
follows:

f (d) = 2τ

δ
· (R − d), δ ∈ (0, R]. (13)

When a small δ is chosen, nodes have longer holding times (if their depth differences
with the previous forwarder are not exactly R). This may result in longer end-to-
end delays. At the same time, the forwarding at these nodes is more likely to be
suppressed by the forwarding from a neighboring node closer to the water surface,
which results in lower energy consumption.

4.2.5 Protocol Summary

We summarize the packet forwarding algorithm in Fig. 5.
Upon receiving a packet, a node first checks if it is a qualified forwarder for the

packet based on the depth information and the depth threshold dth . If it is not a
qualified forwarder, it searches the packet in Q1 and removes the packet with the
same packet ID since another (better) node has already forwarded the packet. If
the node is a qualified forwarder, it searches the packet in the packet history buffer
Q2. If the packet is found in Q2, it is dropped as it has been forwarded recently.
Otherwise, the node calculates the sending time for the packet based on the current
system time and the holding time and inserts the packet into the priority queue Q1.
Note that if the packet is already in Q1, the sending time is updated to the earlier
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Fig. 5 DBR packet forwarding algorithm

time. Later, the packets enqueued in Q1 will be sent out according to their scheduled
sending times.

4.2.6 Simulation Results

All simulations are performed using the Network Simulator (ns2) [34] with an
underwater sensor network simulation package (called Aqua-Sim) extension. In
our simulations, sensor nodes are randomly deployed in a 500 m × 500 m × 500 m
3-D area. Multiple sinks are randomly deployed at the water surface. The sensor
nodes follow the random-walk mobility pattern. Each sensor node randomly selects
a direction and moves to the new position with a random speed between the minimal
speed and maximal speed, which are 1 and 5 m/s respectively unless specified other-
wise. For the communication between sensor nodes, we set the parameters similar to
a commercial acoustic modem, LinkQuest UWM1000 [16]: the bit rate is 10 k bps;
the maximal transmission range is 100 m (in all directions); and the power consump-
tion in sending, receiving and idling mode are 2 w, 0.1 w, and 10 mw respectively.
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Fig. 6 DBR’s performance with different number of surface sinks (gateways)

The same broadcast Media Access Control (MAC) protocol as in [37] is used in our
simulations. In this MAC protocol, when a node has a packet to send, it first senses
the channel. If the channel is free, it continues to broadcast the packet. Otherwise, it
backs off. The packet will be dropped if the maximal number of backoffs have been
reached.

Figure 6(a) shows how the packet delivery ratio changes with different number
of surface sinks. DBR with multiple sinks has a better packet delivery ratio than
DBR with only one sinks. Since DBR is a greedy algorithm trying to deliver data
packets to the water surface, increasing the number of sinks at the water surface
will increase the chance that a packet is received by a sink. This explains the higher
delivery ratio when multiple sinks are deployed.

The total energy consumption for different number of sinks is shown in Fig. 6(b).
We observe that the energy consumption is almost the same for different number of
sinks. The reason is that in DBR, the number of sinks does not affect the forwarding
process. Therefore, all different settings have almost the same energy consumption.

From Fig. 6(c), we observe that DBR with multiple sinks has a slightly better
average end-to-end delay than DBR with one sink. This is because in the multiple-
sink case, a packet is considered successfully delivered whenever it reaches any of
the sinks.

In this example, we presented Depth Based Routing (DBR), a routing proto-
col based on the depth information of nodes, for UASN-MGs. DBR uses a greedy
approach to deliver packets to the sinks at the water surface. Different from other
geographical-based routing protocols that require full-dimensional location infor-
mation of nodes, DBR only needs the depth information, which can be easily
obtained locally at each sensor node. Further, DBR can naturally takes advantages of
the multiple-sink underwater sensor network architecture without introducing extra
cost.

4.3 Cross Layer Design

In this example, we will present a cross layer design scheme, Multi-path Power-
control Transmission (MPT), for time-critical applications in underwater sensor
networks. MPT views the multiple surface gateways as one virtual sink node. Any
underwater sensor nodes may find multiple routes to this virtual sink node. MPT
takes full advantage of these routes for end-to-end reliable data transfer. Specifi-
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cally, in MPT, multiple copies of a packet are transmitted along multiple routes to
the virtual sink node, these copies are then combined at the destination. Distributed
power control strategies at the physical layer are used to improve the overall energy
efficiency. And there is no hop-by-hop retransmission, as contributes to low end-to-
end delays.

MPT is divided into the following three parts: multi-path routing, source initiated
power-control transmission, and destination packet combining.

4.3.1 Multi-Path Routing

We assume that some multi-path routing protocols such as those in [15, 18] are
available. The basic procedure of multi-path routing is illustrated in Fig. 7. When
the source node has some packets to send, it will flood a “Route Request” mes-
sage to the destination. Any intermediate nodes who receive this “Route Request”
for the first time will forward it. When the destination (the virtual sink node)
receives “Route Request” messages, it will reply with “Route Reply” messages
reversely along the paths of the corresponding “Route Request” messages. The
destination can also make path selection. For example, it can select node-disjoint
paths and send “Route Reply” back on them. After the source node receives the
“Route Reply” messages, the routes between the source and the destination are
established.

From the received “Route Reply” messages, the source node gets to know some
path characteristics, such as the number of available paths, m, and the hop lengths
of the paths. Based on this information, the source node will determine the optimal
number of paths, m∗, and select m∗ paths from m available paths. It also needs to
calculate the optimal power level that every intermediate node on these paths should
use for packet transmission.

Source

Destination

Route Request Route Reply

Fig. 7 Basic procedure of multi-path routing
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4.3.2 Source Initiated Power-Control Transmission

In this phase of MPT, the same packets sent from the source node are transmitted by
the intermediate nodes along all the selected paths using the specified transmission
power. The packet format is shown in Fig. 8. Every packet should include the source
identification (Source ID), the destination identification (Destination ID), as well
as the packet sequence number (Sequence No.) in the packet header. The source
node should also include power parameters in the packet header. These parameters
specify the required power level that every intermediate node should use to relay the
packet. In addition, we assume some coding schemes with strong error correction
capability, such as forward error coding (FEC), are used in the header of every
packet. In this way, the header part of every packet can be decoded correctly with
high probability. Since the packet header is usually much smaller than the data part,
the overhead incurred in the header error correction process is almost negligible.
For the large data part, we do not use any error correction coding schemes because
of their inefficiency in fading environments [7]. But some error detection coding
schemes, such as cyclical redundant checking (CRC), are still used in the data part
to check data errors.

When an intermediate node receives a packet, it will decode and check the header.
If the header is correct or can be recovered by the adopted FEC scheme, this node
relays the whole packet to its next hop with the specified power level without further
checking the data part. Otherwise, it will simply drop the packet.

Source
id

Dest
id

Sequence
no

Power level
parameters

FEC Data CRC

Packet header

Fig. 8 Packet format

4.3.3 Destination Packet Combining

When a surface gateway receives a copy of the original packet from one path (the
data part of this copy may be corrupted during the transmission process), it will
forward this copy to the control center through the surface radio network. the control
center first checks whether this copy is correct or not. If there is no error with this
copy, it successfully receives the original packet. Otherwise, the control center will
keep this corrupted copy in its buffer. After multiple corrupted copies of the original
packet are received, the destination will combine them to recover the original one.

In MPT, we use a simple packet combining technique, which is illustrated in
Fig. 9. Assuming the destination receives m∗ copies of the same packet from m∗

paths, for the i-th bit in this packet, it determines its output bi as

bi =

⎧
⎪⎨

⎪⎩

1
∑m

k=1
bik >

m∗

2
,

0
∑m

k=1
bik <

m∗

2
,

(14)
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DecoderBuffer

b11 b12 b13 b14 ….. b1L

b21 b22 b23 b24 …. b2L

b31 b32 b33 b34 ….. b3L

b41 b42 b43 b44 ….. b4L

… ... … … ... ...

bm*
1 bm*

2 bm*
3 bm*

4 ….. bm*
L

b1 b2 b3 b4 ….. bL

…
..

1st copy

2nd copy

3rd copy

4th copy

m*th copy

Combiner

Fig. 9 Packet combining at the destination

where bik denotes the kth copy of the i th bit. To simply put, if the bits in the
majority of the copies are “1”, then the corresponding bit of the original packet
is decoded as “1”; otherwise, it is decoded as “0”. We choose this “majority voting”
method mainly because of its simplicity. It should be noted that [7, 30] propose more
complicated packet combining schemes, which can further reduce packet error rate.
However, these schemes need to search through all detectable error patterns in order
to recover the original packet, as will introduce significant processing delay and
increase the complexity of the destination node, especially when the data packet
is large. On the other hand, our simple “majority voting” scheme has a constant
processing delay and is simple to implement. Our simulation results in Sect. 4.3.5
show that even this simple packet combining technology can still achieve significant
performance improvement.

4.3.4 Optimal Energy Distribution

In MPT, given m available paths, ni hops on path i (1 ≤ i ≤ m), and the required
end-to-end packet error rate (PER), Preq, the source node needs to distribute trans-
mission energy for each hop along the m path in order to minimize the overall
energy consumption for one packet transmission. This problem can be formulated
as follows:

min
∑

i∈(1,2,....m)

∑

j∈(1,2,....ni )

Ei j L

s.t. Pe ≤ Preq,

0 ≤ Ei j ≤ Emax, (15)
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where L is the packet length in bits; Ei j is the average transmitting energy per bit of
the j th hop on the i th path; Pe is the average end-to-end packet error rate (PER); and
Emax is the maximal transmitting energy per bit of every node, which is stipulated
by the system hardware constraints.

In Eq. (15), the first constraint specifies that the average end-to-end PER, Pe,
should be smaller than the system requirement Preq. The second constraint is to
guarantee the transmitting energy per bit of every node will not exceed its maximal
allowable transmitting energy per bit Emax. In this paper, we ignore the energy con-
sumption for data receiving and processing. This is because in underwater acoustic
communication, data receiving and processing consumed much less energy than
data transmitting [8].

The above optimization problem is hard to solve because of the following rea-
sons: (1) with the import of the packet combining technique, the expression for
the end-to-end PER, Pe, is quite complicated and not convex; (2) In (15), the large

number

(
∑

i∈(1...m)
ni

)

of involved variables leads high computation complexity of

the source node.
In order to solve this complicated optimization problem, we divide the solving

process into two steps. In the first step, we do optimal energy distribution among
all available paths. This optimal distribution needs to guarantee that the average
end-to-end PER requirement can be satisfied. In the second step, we do optimal
energy distribution among all nodes along each selected path.

4.3.5 Simulation Results

Based on NS-2, we implement a simulation package for underwater sensor net-
works.we modify AODV (Ad hoc On-Demand Distance Vector) [28] and make it
support multiple path routing. We gradually change the number of surface buoys
from 4 to 64. Figure 10(a) clearly shows that with the increase of surface buoys, the
average overall energy consumption per packet will decrease. And the decreasing
rate will slow down with the increase of surface buoy. This is because of the higher
collision probability introduced by more surface buoys and more paths.

From Fig. 10(b), we can see that the end-to-end packet delay changes slowly with
the number of surface buoys. This is because with more surface buoys, every node
has higher probability to find shorter path to the surface buoy, which contributes
to a shorter end-to-end packet delay. On the other side, with more surface buoys
and more available paths, higher collision probability is introduced in the networks
and thus more time is wasted in the collision resolution. Figure 10(b) shows us that
in our simulation setting, when the surface buoys reach 36, the end-to-end delay
reaches its minimum.

In this example, we have presented MPT, an energy efficient multi-path transmis-
sion scheme for time-critical services in underwater sensor networks. Our simula-
tion study shows that MPT can achieve high energy efficiency with small end-to-end
delay under certain end-to-end PER requirements.
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Fig. 10 Performance with varying number of surface gateways

5 Conclusions

In this chapter, we discuss a new network architecture, UASN-MG, which has mul-
tiple surface gateways for underwater acoustic sensor networks. Two networks, an
acoustic network formed by underwater sensor nodes and a surface radio network
formed by the surface gateways, are involved in the architecture. UASN-MG brings
about many benefits such as high energy efficiency and reliability. We have dis-
cussed the design challenges of UASN-MG and shown that UASN-MG has impacts
on almost every layer of the protocol stack. To optimize the network’s performance,
We need to examine and re-consider all protocols. Three design examples are given
in this chapter. The first example discuss the optimal deployment of surface gate-
ways, which is formulated as an integer linear programming(ILP) problem to opti-
mize the system’s energy efficiency and end-to-end delay. In the second example, we
discuss a new routing protocol, depth-based routing(DBR), which is well suitable
for UANS-MGs. The third example presents a new cross layer design scheme, multi-
path power control transmission (MPT), which can provide reliable end-to-end data
transfer with high energy efficiency and low end-to-end delay.

For future work in this area, we would like to suggest the following research
directions. (1) Adaptive MAC protocols. In UASN-MG, different nodes play dif-
ferent roles in the network and have different importance to the networks. The
more important nodes should have the higher priorities to access the communication
channel in the MAC layer. Adaptive MAC protocols can change the node’s priority
according its role and its depth information in order to optimize the network’s per-
formance. To the best of our knowledge, no such adaptive MAC protocols have been
proposed so far. (2) Combined optimal deployment of sensor nodes and surface
gateways. To optimize the system performance, we should deploy the underwa-
ter sensor nodes and the surface gateway together. Such a combined deployment
is complicated yet an interesting research topic. (3) Cross-layer optimization for
UASN-MG. Multiple surface gateways greatly complicate the network design and
bring about many issues which cannot be solved solely by a separated layer. A good
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cross-layer design framework is imperative for the further development of efficient
multi-gateway underwater communication systems.
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Communication Through Soil in Wireless
Underground Sensor Networks – Theory
and Practice

M. Can Vuran and Agnelo R. Silva

Abstract Wireless Underground Sensor Networks (WUSNs) constitute one of the
promising application areas of the recently developed wireless sensor networking
techniques. WUSN is a specialized kind of WSN that mainly focuses on the use of
sensors at the subsurface region of the soil, that is, the top few meters of the soil. For
a long time, this region has been used to bury sensors, usually targeting irrigation
and environment monitoring applications, although without wireless communica-
tion capability; WUSNs promise to fill this gap and to provide the infrastructure for
novel applications. The main difference between WUSNs and the terrestrial WSNs
is the communication medium. In fact, the differences between the propagation of
electromagnetic (EM) waves in soil and in air are so significant that a complete
characterization of the underground wireless channel was only available recently.
This chapter presents advanced channel models that were developed to characterize
the underground wireless channel considering the characteristics of the propagation
of EM waves in soil and their relation with the frequency of these waves, the soil
composition, and the soil moisture. Additional important aspects such as the burial
depth, the reflection, the refraction, and multi path fading effects on the EM waves
are also considered. The results from the field experiments in conjunction with the
simulation results, both considering the path loss and the bit error rate, prove the
feasibility of WUSNs. The chapter concludes with an outlook on potential research
topics that are essential for the realization of WUSNs.

1 Introduction

Wireless Underground Sensor Networks (WUSNs), which consist of wireless sen-
sors buried underground, are a natural extension of the wireless sensor network
phenomenon and have been considered as a potential field that will enable a
wide variety of novel applications that were not possible before. Compared to the
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current underground sensor networks, which use wired communication methods
for data retrieval, WUSNs have several remarkable merits, such as concealment,
ease of deployment, timeliness of data, reliability and coverage density [2]. The
realization of wireless underground communication and networking techniques will
lead to potential applications in the fields of agriculture, border patrol, assisted
navigation, sports field maintenance, intruder detection, and infrastructure mon-
itoring. Many of these novel applications will be possible because WUSNs can
provide localized and real-time data about a specific soil region and its surrounding
area.

Despite its potential advantages, several open research problems exist to make
WUSNs feasible. The main challenge is the realization of efficient and reliable
underground wireless communication between buried sensors. Aspects such as tem-
perature, weather, soil composition, soil moisture, and soil homogeneity directly
impact the connectivity and communication success. In fact, underground commu-
nication is one of the few fields where the environment has a significant and direct
impact on the communication performance. In addition to these factors, the burial
depth and the frequency of the EM wave also have strong effect over the wireless
underground communication. Hence, characterization of the wireless underground
channel is essential for the proliferation of communication protocols for WUSNs.

In this chapter, we introduce theoretical models to characterize the underground
wireless channel. The models developed in this chapter characterize not only the
propagation of EM wave in soil, but also other effects on the communication related
to multi path effects, soil composition, water content, and burial depth. The results
obtained from this formalization reveal that underground communication is severely
affected by frequency and soil properties, and more specifically by the volumetric
water content (VWC) of soil. Moreover, the effects of weather and season changes
are investigated by considering two soil types as examples. Such theoretical models
are essential for laying out the foundations for efficient communication in this envi-
ronment. In particular, the 300–900 MHz frequency band, which is suitable for small
size antenna and sensor development, is investigated and the results of field experi-
ments realized at 433 MHz are compared with the theoretical models. Moreover, the
realization of field experiments also revealed important issues not considered in the
theoretical models, such as the effects of the antenna orientation. Finally, challenges
for the feasibility of WUSNs are highlighted.

The rest of this chapter is organized as follows. In Sect. 2, an overview on the
wireless underground communication is provided along with a classification for the
underground networks. In Sect. 3, some recent WSN solutions related to the under-
ground enviroment are presented. The propagation characteristics of 300–900 MHz
EM waves in soil are analyzed in Sect. 4.1. In Sects. 4.2 and 4.3, the characteristics
of the underground channel in soil are modeled taking in consideration the effects of
the reflection of surface as well, the multi path fading, and the volumetric water con-
tent in soil. The results of the underground-to-underground communication exper-
iments, at 433 MHz, are presented in Sect. 5. Then, in Sect. 6, the challenges in
WUSN design are summarized according to the outcomes from the simulations
based on the theoretical model and also from the experimental results.
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2 Classification of Underground Communication Networks

As shown in Fig. 1, Wireless Underground Communication Networks (WUCNs)
can be mainly classified into two: wireless communication networks for mines
and tunnels and wireless underground sensor networks (WUSNs). There exist sev-
eral solutions that focus on underground communication in mines and/or tunnels
[7, 16, 21, 32]. In this context, although the network is located underground, the
communication takes place through the air, i.e., through the voids that exist under-
ground. Consequently, even though the communication in these voids are more chal-
lenging than that in terrestrial WSNs, the channel characteristics exhibit similarities
with the terrestrial WSNs.

Fig. 1 Classification of wireless underground communication networks (WUCNs)

This chapter focuses on WUSNs, which have components, i.e. the sensors, that
are buried underground and that communicate through soil. The majority of the
applications for WUSNs – intelligent agriculture, environmental monitoring, and
security – restricts the buried sensors at the subsurface of the soil, which is defined
as the top few meters of the soil. This region of the soil has generally been classified
into two regions [17]:

• The topsoil region, which refers to the first 30 cm of soil, or the root growth layer,
whichever is shallower.

• The subsoil region, which refers to the region below the topsoil, i.e., usually the
30-100 cm region.

The characteristics of the soil for the topsoil and subsoil regions not only present
different agricultural characteristics but also present distinct scenarios for WUSNs
applications due to two main reasons:

• These soil regions may be distincts in terms of soil texture and water content [17],
which are significant parameters that affect the wireless communication channel,
as we will see in Sect. 4. Moreover, the nodes buried at the topsoil region may
take better advantage of the reflection effect from the surface of ground.

• The plowing and similar mechanical activities occur exactly at the topsoil region.
Hence, for certain agriculture applications, such as crop irrigation management,
the burial depth must be higher than the topsoil region, which may be different
for other applications, such as border patrol. In other words, for certain WUSN
applications, the sensors must be buried at the subsoil region.
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Fig. 2 Classification of communication in WUSNs

Accordingly, as shown in Fig. 1, WUSNs can be classified as a function of the
deployment region: Topsoil WUSN, if the WUSN is deployed in the topsoil region,
or Subsoil WUSN, if deployed in the subsoil region.

In addition to nodes buried underground, the existence of aboveground nodes
is also necessary for WUSN due to data retrieval purposes. Accordingly, two
communication types coexist in WUSNs as shown the Fig. 2. Underground-to-
underground communication refers to the information exchange between buried
sensors for network management and data relay purposes. The data in the network is
then collected through underground-to-aboveground communication. This type of
communication also includes command and control information from aboveground
stations to underground. The classification in Fig. 2 also highlights significant differ-
ences on the challenges related to each option. Underground-to-aboveground com-
munication presents better quality compared to underground-to-underground since
certain portion of the communication takes place over the air [30]. On the other
hand, underground-to-underground communication usually presents more difficult
challenges for the design and the deployment of WUSNs. In this chapter, we focus
on underground-to-underground communication for WUSNs.

3 Recent Developments

In this section, recent developments related to wireless communication for the
underground environment are presented. The majority of such developments are
not actually WUSN applications or, at least, do not present the same challenges
discussed in this chapter. However, the following examples supply an overall vision
about the challenges in this area and also present potential applications for WUSNs.

Wireless sensor networks have been used to monitor underground mines to guar-
antee the safety of mine workers [8, 16]. Similarly, the characteristics of the wireless
channel in tunnels are been investigated [4, 32]. As mentioned in Sect. 2, although
the mine is underground, the communication among the sensors is through the air
in the mine or tunnel.

A shallow depth WSN was used for predicting landslides [28]. This network
consists of MICA2 motes [10] that are interfaced with stain gauges and can operate
at low depths (25–30 cm). In this design, although the sensors are buried under-
ground, the communication takes place over the air. Another similar example is a
sensor network that is constructed to detect the volcano activities. The antenna of
the sensors has to be placed above ground to create reliable links [38].
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Structural health monitoring (SHM) is another application that has gained inter-
est in wireless sensor networks community. Two examples of such WSN applica-
tion is Wisden, a data acquisition system for SHM [24, 40] and Duranode [25].
Although underground systems such as sewers also require structural monitoring,
these approaches only work with communication through air techniques.

The largest residential water management project in Europe uses sensors to
gather information for inspection and cleaning systems in the Emscher sewer system
[12]. Similarly, a sensor network is used in other sewer system where the manhole
cover is converted into the slot antenna and the underground sensors can communi-
cate with the aboveground nodes through radiation from it [21]. Again, although the
system resides underground, the communication between the sensors is performed
through air.

A glacier monitoring network, based on sensor network, was deployed in Nor-
way [20]. This system aims to measure the parameters of ice caps and glaciers using
sensors beneath the glaciers. To avoid wet ice, the base stations are connected to two
wired transceivers 30 m below the surface. Using high transmit powers (100 mW),
these underice sensors can finally communicate with the sensors that are placed
at deeper locations (up to 80 m from the surface). This application is not a typ-
ical underground scenario, however it presents challenges similar to the ones for
WUSNs.

In addition to these applications, there are several experimental work focusing on
the EM wave propagation through soil and rock. As part of the first studies related
to the wireless communication through soil, the electromagnetic field principles of
a vertical electric dipole in a conducting half-space over the frequency range from
1 to 10 MHz is analyzed [35]. Similarly, the communication through soil is regarded
as an electromagnetic wave transfer through the transmission line and experiments
at the frequency range of 1–2 GHz are realized, providing a propagation model [37].

Moreover, experiments using ground-penetrating radars were performed [11, 22,
35, 37]. This specific research area is called Microwave Remote Sensing [6, 9] and
part of the theoretical model presented in Sect. 4 is based on the results from this
research area. As an example of the use of the principles of the surface-penetrating
radar, an experiment was done for determining the attenuation and relative per-
mittivity values of various materials, including soil, at 100 MHz [11]. A typical
application for Microwave Remote Sensing is the detection of landmines based on
differences between the dielectric constants of soil and the landmine. For instance,
it was shown that the soil composition has significant effects on the Ground Pene-
trating Radar (GPR) detection of landmines [22].

Although significant insight in EM wave propagation through soil can be gath-
ered from these works, none of the existing work provides a complete characteriza-
tion of underground communication. More specifically, neither the channel charac-
teristics nor the multi path effects due to obstacles in soil or the nonhomogeneous
feature of soil have been analyzed before. In the following section, these important
issues are addressed aiming the establishment of the foundations for underground
wireless networks.
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4 Underground Channel Model: The Theory

In this section, a brief introduction about the physical properties of the soil is pre-
sented. Also the effects of these physical properties on the underground wireless
communication are explained. The soil is a dielectric material, characterized by a
dielectric constant. The propagation of EM waves is directly related to the dielectric
constant of the material. More specifically, a smaller value of the dielectric con-
stant basically implies better conditions for the propagation of EM waves. The soil
medium behaves as a dielectric material composed of air, bound water, free water,
and bulk soil. If the soil presents small density and high porosity, the performance of
the propagation of EM waves is better due to the high quantity of air. However, the
presence of water in soil has a contrary effect on the communication. The quantity of
water in the soil, which is usually measured as the volumetric water content (VWC)
of the soil, is the main factor that contributes to the EM wave attenuation [19].

The dielectric constant of the soil varies as a function of its components [26].
Soil composition is generally classified in terms of the percent of sand, clay, and
silt, as shown in Fig. 3. Depending on the amount of clay, silt, and sand, the soil
texture receives a particular name or classification [13]. For instance, the point P in
Fig. 3 represents a soil texture with a homogeneous mixture of clay, silt, and sand,
and it is classified as Clay loam.

Fig. 3 Soil texture triangle showing the United States Department of Agriculture (USDA) classifi-
cation system based on grain size (clay: < 0.002 mm, silt: 0.002–0.050 mm, sand: 0.050–2.0 mm).
Point P represents a soil that contains 35% sand, 35% silt, and 30% clay, and is a clay loam. The
soil texture is one of the factors that affect the wireless underground communication
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Besides clay, silt, and sand, the soil also contains water. The VWC of the soil
represents the fraction of water in the soil. However, the water can be classified into
two: the bound water, which corresponds to water molecules tightly held to the sur-
face of the soil particles, and the free water, which corresponds to water molecules
free of action of soil particles [6, 9]. As a result, for the same VWC, a sample of
soil can contain more free water depending on the soil texture. More specifically,
the quantity and also the type of clay determine the amount of bounded water in the
soil. As will be explained later in Sects. 4.1 and 5.5, the dielectric properties of the
bounded water are different from the free water. Therefore, the attenuation of the
EM waves and the change in the signal velocity varies as a function of the amount
of bounded water and the amount of free water. In this way, it is clear that the VWC
parameter alone is not sufficient to characterize the propagation of EM waves, but
the parameters related to the soil texture are also necessary to complement the VWC
information.

Besides the VWC, the frequency of the signal also affects the propagation of
the EM signal through the soil. It is well known that the dielectric constant of the
soil is a non-linear function of the frequency. In other words, it is not simple to
characterize the EM signal propagation as a function of frequency. Therefore, many
studies were performed, for different frequency ranges, in order to determine the
effects in the signal propagation for a specific frequency range. It was shown that
frequency values around 1 GHz present reasonable soil dielectric constant values for
wireless communication and microwave remote sensing applications [26, 19, 15].
Frequency values smaller than 300 MHz could result in smaller attenuation for the
EM signal. However, when the frequency decreases, its wavelength increases and
the size of antenna would also increase. Hence, usually the use of frequency values
smaller than 300 MHz for WUSN scenarios is impractical.

The main difference between the well established techniques in terrestrial wire-
less sensor networks and WUSNs is the communication medium, which prevents
a straightforward characterization of underground wireless channel. The main chal-
lenges related to the use of soil as a communication medium are summarized below:

• Attenuation. EM waves encounter much higher attenuation in soil compared to air
and this fact severely hampers the communication quality. As an example, effi-
cient communication between sensors nodes above and below ground is shown
to be possible only at the distance of 0.5 m when the 2.4 GHz frequency is used
[30].

• Reflection. The ground surface may cause the reflection effect, which can have
positive or negative effects over the communication.

• Multi path fading. Unpredictable obstacles in soil such as rocks and roots of
trees make EM waves being refracted and scattered also cause problems in the
communication.

Since underground communication and networking are primarily affected by the
wireless channel capabilities, advanced models and techniques are necessary to
completely characterize the underground wireless channel and lay out the foun-
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dations for efficient communication through soil. In Sect. 4.1, a basic model for
the underground wireless channel that mainly considers the frequency of the EM
waves, the soil composition, the soil density, and static values for VWC is present.
In Sect. 4.2, the previous model is enhanced with the effects of multi path fading
and reflection from ground surface. Finally, the effects of VWC variations in soil
are considered in Sect. 4.3.

4.1 Signal Propagation Through Soil

The study of the propagation of EM waves through the soil begins with the basic
model of the propagation of EM waves over-the-air, followed by the addition of the
path loss factor specifically considering the properties of soil. From Friis equation
[29], it is well known that the received signal strength (RSS) in free space at a
distance r from the transmitter is expressed in logarithmic form as

Pr = Pt + Gr + Gt − L0 , (1)

where Pt is the transmit power, Gr and Gt are the gains of the receiver and trans-
mitter antennae, and L0 is the path loss in free space in dB, which is given by

L0 = 32.4 + 20 log(d) + 20 log( f ) . (2)

where d is the distance between the transmitter and the receiver in kilometers, and
f is the operation frequency in Mhz.

For the propagation in soil, an additional factor should be included in Friis equa-
tion (1) due the attenuation of the EM wave caused by the soil medium. As a result,
the received signal is expressed as [19]:

Pr = Pt + Gr + Gt − L0 − Ls , (3)

where Ls stands for the additional path loss caused by the propagation in soil, which
is calculated by considering the following two main differences of EM wave propa-
gation in soil compared to that in air:

• The signal velocity, and hence, the wavelength λ, is different.
• The amplitude of the wave will be attenuated according to the frequency.

Therefore, the additional path loss, Ls , in soil is composed of two components:

Ls = Lβ + Lα , (4)

where Lβ is the attenuation loss due to the difference of the wavelength of the
signal in soil, λ, compared to the wavelength in free space, λ0, and Lα is the
transmission loss caused by attenuation with attenuation constant α. Consequently,
Lβ = 20 log(λ0/λ) and Lα = e2αd .
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Considering that in soil, the wavelength is λ = 2π/β and in free space λ0 = c/ f ,
where β is the phase shifting constant, c = 3 × 108 m/s, and f is the operating
frequency in Hz, then, Lβ and Lα can be represented in d B as follows:

Lβ = 154 − 20 log( f ) + 20 log(β) , Lα = 8.69αd . (5)

Knowing that the path loss in free space is L0 = 20 log(4πd/λ0), finally, we have
the main formula for the underground channel that expresses the attenuation caused
by the soil medium. The path loss, L p, of an EM wave in soil is as follows (after the
conversion of the units kilometers and MHz in L0 to meters and Hz, respectively):

L p = 6.4 + 20 log(d) + 20 log(β) + 8.69αd , (6)

where distance, d, is given in meters, the attenuation constant, α, is in 1/m and the
phase shifting constant, β, is in radian/m.

Note that the path loss, L p, in (6) depends on the attenuation constant, α, and the
phase shifting constant, β. The values of these parameters depend on the dielectric
properties of soil which are based on the Peplinski semi-empirical soil dielectric
model [26]. The specific model presented below is related to dielectric properties of
soil in the 0.3–1.3 GHz band.

Using the Peplinski’s principle [26], the dielectric properties of soil can be cal-
culated as follows:

ε = ε′ − jε′′ , (7)

ε′ = 1.15

[
1 + ρb

ρs

(
εα′

s − 1
)

+ mβ ′
v ε′α′

fw − mv

]1/α′

− 0.68, ε′′ =
[
mβ ′′

v ε′′α′
fw

]1/α′

, (8)

respectively, where ε is the relative complex dielectric constant of the soil-water
mixture, mv is the volumetric water content of the mixture, ρb is the bulk density
in grams per cubic centimeter, ρs = 2.66 g/cm3 is the specific density of the solid
soil particles, α′ = 0.65 is an empirically determined constant, and β ′ and β ′′ are
empirically determined constants, dependent on soil-type and given by

β ′ = 1.2748 − 0.519S − 0.152C , β ′′ = 1.33797 − 0.603S − 0.166C , (9)

where S and C represent the mass fractions of sand and clay, respectively. The quan-
tities ε′

fw
and ε′′

fw
are the real and imaginary parts of the relative dielectric constant

of free water. Note that, at this point of the model, the influences of free water and
bounded water are both considered in the above formula. The mass fractions of
sand and clay considered in (9) and also the volumetric water content mv are used
to determine the amount of free water and bounded water in the soil. This distinc-
tion is important because the amount of free water causes a stronger attenuation
effect for EM waves propagation when compared with the effects of the bounded
water.
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The Peplinski principle [26] governs the value of the complex propagation con-
stant of the EM wave in soil, which is given as γ = α + jβ with

α = ω
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⎤

⎦ , β = ω

√√
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(

ε′′

ε′

)2

+ 1

⎤

⎦ , (10)

where ω = 2π f is the angular frequency, μ is the magnetic permeability, and ε′

and ε′′ are the real and imaginary parts of the dielectric constant as given in (8),
respectively. Consequently, the path loss, L p, in soil can be found by using equations
(7), (8), (9), and (10) in (6).

The analysis of the above equations shows that the complex propagation constant
and hence, the path loss of the EM wave in soil, are dependent on the following
factors:

• Operating frequency, f , which is, the chosen frequency for the sensor nodes;
• Composition of soil in terms of sand and clay fractions, S and C , which depend

on the deployment region of the sensor nodes;
• Bulk density, ρb, indirectly expressing the amount of air in the soil, which also

depends on the deployment region of the sensor nodes;
• Soil moisture or volumetric water content (VWC), mv , which depends on the

deployment region as well as time.

The path loss shown in (6) is evaluated using MATLAB and the results are shown
in Fig. 4. Table 1 shows the input parameters for this evaluation, which reflect a
typical soil condition [2, 26].

Table 1 Parameters used in the model evaluation in Fig. 4

Inter-node distance Sand Clay Bulk density Particle density

3 m 50% 15% 1.5 g/cm3 2.66 g/cm3

The operating frequency is chosen between 300 and 900 MHz. The choice for
this smaller frequency range is due to the recent experiments for underground
communication using MICAz nodes. These motes operate in the 2.4 GHz band
and the results show that the communication range can be extended only up to
0.5 m at this band [30]. Hence, lower frequency bands are necessary for feasible
WUSN solutions. However, decreasing operating frequency below 300 MHz also
implies that the size of the antenna will increase, which can also prevent prac-
tical implementation of WUSNs. Considering that recent MICA2 motes operate
in the 400–500 MHz range, while still preserving small antenna sizes, the oper-
ating frequencies between 300 and 900 MHz are interesting for our theoretical
investigation.

The difference between propagation in soil and that in free space is shown in
Fig. 4. The path loss, L p, which is given in (6), is shown in dB versus operating fre-
quency, f , for different values of VWC. The inter-node distance is fixed (d = 3m).
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Fig. 4 Path loss vs. operating frequency and volumetric water content

This evaluation shows that, as the operating frequency, f , increases, the path loss
also increases. This result motivates the use of lower frequencies for underground
communication.

Figure 4 also highlights the effects of volumetric water content on the path
loss, L p. Since the attenuation significantly increases with higher water content,
an increase of ∼ 30 dB is possible with a 20% increase in the volumetric water
content of the soil. This effect is particularly important since water content not only
depends on the location of the network but it also varies during different seasons as
will be investigated in Sect. 4.3.

4.2 Underground Channel Characteristics

In Sect. 4.1, a basic model for the wireless underground channel has been pre-
sented and this model does not take into account the effects of the burial depth
and the heterogeneity in soil. Moreover, besides the attenuation in soil, reflection
from the ground surface and multi path spreading and fading effects also influence
the performance of the wireless underground communication. In order to provide
a complete characterization of the wireless channel in soil, this section adds the
mentioned missing aspects to the original model. First, the effect of reflection from
the ground surface on path loss is analyzed in Sect. 4.2.1. Second, the multi path
effects are characterized by using a Rayleigh channel model and the bit error rate
for underground wireless channel is derived in Sect. 4.2.2.
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4.2.1 Reflection from Ground Surface

For WUSNs, which have the nodes buried at the first few meters layer of the soil, the
underground communication can be visualized as a composition of two main paths
for signal propagation as shown in Fig. 5. The first path is the direct path between
the nodes and the second path is the reflection path due to the ground surface. While
the direct path constitutes the main component of the received signal, the reflected
path also affects communication.

Fig. 5 Illustration of the two-path channel model

Naturally, the reflection effect depends on the burial depth of the nodes. If we
continuously increase the burial depth, there is a point where the effect of reflection
can be neglected and the channel can be considered as a single path. This occurs
because having the reflected path a greater length than the direct path, its soil atten-
uation prevents it to arrive at the receiver node with enough strength. In this case,
only the direct path is considered. Hence, the path loss is given in (6) as investigated
in Sect. 4.1.

However, if the sensors are buried near the surface of ground, the influence of
the wave reflection by ground surface should be considered. It occurs because the
reflected waves are received with enough strength at the receiver, in addition to the
directed waves. This scenario is usually the case for the Topsoil WUSNs applica-
tions with the burial depth generally varying from 0 to 30 cm. In this case, the total
path loss of two-path channel model can be expressed as follows:

L f (d B) = L p(d B) − Vd B , (11)

where L p is the path loss due to the single path given in (6) and Vd B is the attenuation
factor due to the second path in dB, i.e., Vd B = 10 log V.

Consider the case where the sensors are buried as illustrated in Fig. 5. The burial
depths are H1 and H2, the horizontal inter-node distance is L , and the actual inter-
node distance is d. From electromagnetic principles, we can derive the attenuation
factor, V , as follows [4]:
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Fig. 6 Two-path channel model: path loss vs. depth for different operating frequencies

V 2 = 1 + (Γ · exp (−αΔ(r )))2 − 2Γ exp (−αΔ(r )) cos

(
π −

(
φ − 2π

λ
Δ(r )

))
,

(12)

where, Γ and φ are the amplitude and phase angle of the reflection coefficient at
the reflection point P, Δ(r ) = r − d, is the difference of the two paths, λ is the
wavelength in soil, and α is the attenuation as given in (10).

In Figs. 6 and 7, the path loss is shown as a function of depth, H , operating
frequency, and volumetric water content. The evaluations are using (12) in (11). In
these figures, we assume that the sensors are buried at the same depth, i.e., H1 =
H2 = H and hence d = L . Table 2 shows the input parameters for this evaluation.

Table 2 Parameters used in the model evaluation in Fig. 6

Inter-node distance Sand Clay Bulk density Particle density VWC

3 m 50% 15% 1.5 g/cm3 2.66 g/cm3 5%

In Fig. 6, the path loss is shown as a function of burial depth, H , for various
operating frequency, f . It can be observed that for the two-path model, the operating
frequency, f , has a higher impact on the communication channel and the degree of
the effect depends on the bury depth, H . It occurs because the operating frequency
f indirectly appears, as parameter λ, in the formula for the attenuation factor,
V , in (12).
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As shown in Fig. 6, for a particular operating frequency, it is possible to deter-
mine what is the optimum burial depth where the path loss is minimized. This result
is particularly important for the topology design of WUSNs, where the burial depth
of the nodes could be tailored to the operating frequency of these devices. In Fig. 6, it
can also be observed that the effects of reflection, and hence, the fluctuations in path
loss, diminish as the bury depth, H , increases. More specifically, the underground
channel exhibits a single-path characteristic when the burial depth is higher than
a threshold value. As shown in Fig. 6, this threshold value is near 2 m. However,
this value of 2 m is specific for the parameters used in this evaluation and different
values can be provided by the evaluation of the model with different parameters,
such as VWC and soil composition. It is important to observe that, considering the
usual burial depth proposed by many Subsoil WUSNs, it is expected the adoption
of the two-path channel model for all the Topsoil WUSNs and the majority of the
Subsoil WUSNs.

Comparing the results of this model in Fig. 6 with the single-path model results
for the inter-node distance of 3 m, shown in Fig. 4, it is observed that the two path
model presents a slightly smaller path loss, despite the fluctuations based on depth
and volumetric water content. These results highlights that the reflection effects are
generally positive for the underground communication.

The effects of frequency and the volumetric water content are shown in Fig. 7
and the input parameters are listed in Table 3. As shown in Fig. 7, the path loss
fluctuates according to both operating frequency and volumetric water content. This
fluctuation is due to the constructive or destructive interference of the second path
based on the operating frequency and the VWC. This result suggests that dynamic
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Fig. 7 Two-path channel model: path loss vs. operating frequencies and VWC
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Table 3 Parameters used in the model evaluation in Fig. 7

Inter-node distance Sand Clay Bulk density Particle density Depth (H1 = H2)

3 m 50% 15% 1.5 g/cm3 2.66 g/cm3 0.5 m

frequency operation may be necessary in WUSNs, where the operating frequency
could be determined as a function of changes on the volumetric water content. Cog-
nitive radio techniques [1] may be used to allow the adaptation of the WUSN to
such changes normally related to changes on the environmental conditions.

4.2.2 Multi Path Fading and Bit Error Rate

In Sect. 4.2.1, it was presented an enhanced model for the wireless underground
channel that considers the main propagation characteristics of EM waves and also
the effects from the reflected waves. Moreover, the reflection is an aspect that
depends on the burial depth of the nodes. However, the heterogeneity of soil can
still interfere with the communication channel in two ways. First, the surface of the
ground is not smooth and, hence, not only causes reflection, but also refraction. Sec-
ond, the presence of rocks and roots of plants in soil is generally not homogeneous
and results in non-deterministic behavior. Therefore, multi path fading should also
be considered in addition to the basic two-path channel model.

The existence of fixed and mobile obstacles also results in fluctuation and ran-
dom refraction of EM waves in air. Therefore, the amplitude and the phase of the
received signal exhibit a random behavior with time. The multi path fading has
been extensively investigated for the over-the-air wireless communication [29]. It
was observed that, in general, this multi path channel obeys Rayleigh or log-normal
probability distribution.

However, the underground environment for wireless communication does not
present random refractions of the EM waves with time. As will be shown in
Sect. 5.4, the wireless underground channel between two nodes is relatively stable.
On the other hand, the roots of trees, rocks, clay particles and other objects in soil
can still incur reflection and refraction for EM waves similar to the obstacles do
in air. Consider the scenario where the transmitter node has the same inter-node
distance related to multiple receivers that are placed at different locations, at the
same burial depth. It is highly probable that different signal levels will be observed
at the receivers. It occurs because the signal travels through different multi paths.
Therefore, randomness in underground environment is due to the locations of the
nodes rather than time, but it still obeys the Rayleigh probability distribution, where
the variable is location instead of time. Accordingly, we consider that each path in
the underground channel is Rayleigh distributed such that the envelope of the signal
from each path is modeled as an independent Rayleigh distributed random variable,
χi , i ∈ {1, 2}. Consequently, for the one-path model, the received energy per bit per
noise power spectral density is given by r = χ2 Eb/No, which has a distribution
as f (r ) = 1/r0 exp(−r/r0), where r0 = E[χ2]Eb/No and Eb/No can be directly
found from the signal-to-noise ratio (SNR) of the channel.
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For the two-path model case, in a similar way, it is assumed that the received
signal is the sum of two independent Rayleigh fading signals. This model is denoted
as location dependent Rayleigh multi path channel. Consequently, the composite
attenuation constant, χ , in multi path Rayleigh channel is:

χ2 = χ2
1 + (χ2 · Γ · exp (−αΔ (r )))2

−2χ1χ2Γ exp (−αΔ(r )) cos

(
π −

(
φ − 2π

λ
Δ(r )

))
, (13)

where χ1 and χ2 are two independent Rayleigh distributed random variables of two
paths, respectively. Γ and φ are the amplitude and phase angle of the reflection
coefficient at the reflection point P, Δ(r ) = r − d, is the difference of the two paths
and α is the attenuation constant.

Based on the above model, the goal of this section is to investigate the bit error
rate (BER) characteristics of the underground channel. The results from these eval-
uations will supply guidelines to efficiently deal with the underlying challenges in
the design of WUSNs.

It is well known that the BER of a communication system depends mainly on
three factors: the channel model, the signal to noise ratio (SNR), and the modulation
technique used by the system. Considering the channel model derived in Sect. 4.2.1,
the signal to noise ratio (SNR) is given by SNR = Pt − L f − Pn , where Pt is the
transmit power, L f is the total path loss given in (11), and Pn is the energy of noise.
In order to determine the noise power Pn , field experiments were performed using
the BVS YellowJacket wireless spectrum analyzer [41]. The average noise level is
found to be −103 dBm at 30 cm depth, using the YellowJacket [19]. Although this
noise Pn may change depending on the properties of the soil, this value is a repre-
sentative value that can be used to represent the properties of underground BER.

For the evaluations, PSK modulation is considered. More specifically, adopting
the 2PSK modulation scheme, the BER can be represented as a function of SNR as
BER = 0.5erfc(

√
SNR), where erfc(·) is the error function and SNR is the signal to

noise ratio.
In Fig. 8, the evaluation for single- and two-path models are shown as a function

of operating frequency for different VWC levels. It can be observed that the VWC
has an important impact on the BER compared to other parameters. As shown in
Fig. 8, when the VWC increases from 5 to 15%, the BER also increases more than
one order of magnitude. Moreover, the values of BER for the single path model
are higher than the BER values for the two-path model. This shows the positive
effects of the reflected path from the ground surface on BER. As already explained
in Sect. 4.2.1, the two-path Rayleigh fading model is suitable for burial depths less
than a threshold value. For the scenario considered in the evaluations in Sect. 4.2.1,
this threshold value was found to be H = 2 m.

The effect of VWC in the two-path model is also shown in Fig. 8. One can verify
that, even with a high VWC of 25%, it is possible to have a BER <20%, when a low
depth deployment (dual-path model) is adopted with a low operating frequency.
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nel models

Finally, we are interested in knowing the maximum inter-node distance for the
specific case of low depth deployment. We are assuming that the threshold burial
depth is 2 m. In addition to BER, the inter-node distance is also important in the
design of effective networking protocols for WUSNs. In Fig. 9, the maximum inter-
node distance is shown for two-path model as a function of burial depth and the oper-
ating frequency. The BER target is assumed to be 10−3 and the maximum inter-node
distance is found for this target. As shown in Fig. 9, when the frequency increases,
the maximum distance decreases, as expected. Moreover, there are many sequences
where we can observe the improvement of the inter-node distance, increasing the
burial depth. This is true up to a certain burial depth; after this point, the inter-node
distance decreases when the burial depth continues increasing. The behavior of this
sequence is repeated many times. This result suggests that an optimal burial depth
exists for a particular operation frequency, which is important for deployment of
WUSNs.

4.3 Effects of Volumetric Water Content Variations in Soil

The underground channel model presented in Sect. 4.2.2 considers the main parame-
ters that influence the communication performance. The volumetric water content is
the most important soil parameter to be considered in WUSN design [15]. It is also
possible to observe that each evaluation considers a constant value for VWC. For
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instance, in Fig. 9, the simulations assumed that VWC is constant throughout the soil
at different depths. However, experimental results reveal that VWC can also change
with depth [14, 18, 42, 9]. Besides the variation of the VWC related to the soil depth,
significant VWC variations are also observable as a function of weather, period of
the year, and time of the day. Consequently, VWC changes for different depths and
times and so the dielectric constant of soil, causing variations on path loss and BER.
This section investigates the long-term and transient effects of VWC variations at
different depths and times over the wireless underground communication.

4.3.1 Long-Term VWC Effects

Site measurements reveal that the volumetric water content does not linearly change
with the depth [14, 18, 42, 9]. Generally, VWC increases with the depth first and
then decreases with it. However, the variation characteristics as well as the specific
depths where VWC starts to decrease also depend on, among other factors:

• the type of the soil;
• the type of the existent vegetation;
• the nature of the artificial watering process.

Therefore, it is important to know how these VWC variations change the original
results from the model in Sect. 4.2.2.

To investigate the relation of wireless underground communication quality with
the burial depth, experimental data in [42, 18] is used. Two different sites were
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considered: Set 1 and Set 2. The first site has soil with a quasi-homogenous distri-
bution of sand, silt, and clay and the second site has a sandy soil. The VWC values
for different times of the year as well as different depths are shown in Fig. 10. The
properties of each experiment are described as follows:

• Set 1: Black soil with 22.75% sand and 28.1% clay [42].
• Set 2: Sandy soil with 50% sand and 15% clay [18].

The VWC values of these sets are shown in Fig. 10. Accordingly, the VWC
values for Set 1 is significantly higher which implies worse communication through
soil in Set 1 than in Set 2. Furthermore, VWC varies significantly with depth for
Set 1 as well as season. These fluctuations for Set 1 would significantly affect the
communication performance of WUSNs. However, the VWC measured in Set 2 is
relatively constant with respect to both depth and season.
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Fig. 10 Variation of VWC vs. burial depth. Two different types of soil were used. The values taken
at different times of the year are also shown

The next step is to calculate the maximum inter-node distance, for BER ≤ 0.1%,
plugging the values shown in Fig. 10 in the channel model presented in Sect. 4.2.2.
We will compare these results with the case where the VWC is assumed to be uni-
form throughout the soil all time and at different depths. Consequently, the effects
of variations of VWC on the communication performance are shown.

In Fig. 11, the maximum inter-node distance for BER target of 10−3 is shown
as a function of depth for both data sets. The solid lines represent the cases where
the VWC is considered constant throughout all depths for each data set. For Set 1,
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Fig. 11 The maximum inter-node distance vs. depth for the data Set 1 (S1) and Set 2 (S2) at
different times of the year. Maximum distance calculated by considering uniform, that is, constant
VWC at all depths is also shown

V WC = 20%, which is the value measured at 0.3m depth in May according to [42]
and for Set 2, V WC = 3.7%.

First considering the results for the Set 1, it can be observed in Fig. 11 that the
fluctuations estimated by the uniform VWC model are closely followed when depth
is d ≤ 0.8 m. However, at higher depths, longer hop distances are possible since
the VWC decreases with increasing depth as shown in Fig. 10. The seasonal influ-
ence on the communication is also shown in Fig. 11. For burial depths higher than
0.8 m in Set 1, communication range is extended during May and decreased during
September compared to the uniform VWC case. This can be explained by the fact
that higher precipitation in the Set 1 region starts in July. Compared to the uniform
VWC case, although there are differences in the maximum distance, using a single
measurement of VWC it is possible to predict the communication characteristics
accurately for burial depths less than 0.8 m. However, higher variations are observed
when the depth is higher than 0.8 m. The maximum variation of VWC observed
for Set 1 in Fig. 10 is larger than 60%, but verifying the Fig. 11, that variation
actually causes a smaller one, almost 25%, on the maximum inter-node distance.
Although, these results show the importance of the use of nodes equipped with soil
moisture sensors and also environmental adaptive protocols, the differences between
the uniform VWC and the real cases are not so critical as one is initially inclined to
conclude when analyzing the Fig. 10.
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The two sets present distinct types of soils. The black soil considered in Set 1 has
more clay particles than the sandy soil considered in Set 2. As a result, the black soil
holds more water compared to sandy soil, which negatively affects the communica-
tion. On the other hand, the sandy soil considered in Set 2, having lower volumetric
water content, has the potential to improve the communication significantly. This
fact is visible in Fig. 11. As shown in Fig. 10, the VWC for the data Set 2 does
not vary significantly by depth or season. As a result, uniform VWC model closely
matches the maximum distance achieved through actual VWC measurements, as
shown in Fig. 11. Moreover, since the VWC of Set 2 is significantly lower than
Set 1, the communication range is almost doubled. Intuitively, we can conclude that
sandy soil is practically exempt from issues related to VWC variations. However,
this assumption is not completely true as we will see later at the end of this section.

Considering the intense influence of VWC over the underground wireless com-
munication, it is important to consider the relation between the variations in VWC
and the corresponding changes in communication range in more details. This eval-
uation for the Set 1 is shown in Fig. 12, which relates a change in VWC with the
maximum inter-node distance for BER target of 10−3. The x-axis shows the change
in percentage in VWC based on the measured data in Set 1 and the y-axis shows the
corresponding change in maximum inter-node distance. The actual values as well
as the fitted lines for three different months are given in Fig. 12. It is shown that an
increase in VWC results in decrease in communication range. Although quadratic
fitting is used, the relationship is linear. Moreover, the rate of change in distance
with VWC (the line slope), depends on the season. For instance, a 20% decrease in
VWC corresponds to a 10% increase in communication range in July, whereas, in
September, this corresponds to a 4% increase in communication range.

4.3.2 Transient VWC Effects

The temporal analysis of the VWC presented so far considers seasonal changes and
burial depths, i.e., long term changes in VWC. However, there are also transient
scenarios that should be considered. For instance, the effects of a 5 min intensive
rain on the communication are important for network operation. To understand how
the dielectric constant of soil varies under these extreme scenarios, it is important to
analyze the physical properties of soil in more detail.

Basically, if no watering process occurs frequently, the VWC of the soil is related
to the capacity of the soil to hold the water, which depends on the surface area of
its particles. Clay particles with a diameter smaller than 0.002 mm have a surface
area of 8, 000, 000 cm2 per gram. On the other hand, sand particles, with a diameter
larger than 0.05 mm, have a surface area of only 227 cm2 per gram [13]. Considering
that water absorption is a function of the surface area, high values of VWC are
expected for clay soils and low values for sandy soils.

The discussion in Sect. 4 shows that the water in the soil is usually classified
into two based on its interaction with the soil particles. The bound water is tightly
bounded to the surface of the soil particles. The free water is the remaining water in
the soil, free of action of any particle [6]. Both kinds of water cause the elevation of
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Fig. 12 Relationship between change in VWC and change in maximum inter-node distance

the soil dielectric constant, causing problems to the underground wireless commu-
nication. However, the dielectric constant of bounded water is between the dielectric
constants of liquid water and ice. In other words, the effects of the bounded water
are not positive for the EM wave propagation, but the effects of free water are even
worse.

In general, for clay dominant soils, the majority of the VWC is related to the
bound water. In a completely dry soil (VWC=0), the addition of water first causes
the formation of bound water, followed by the formation of free water. From the
point of view of the dielectric constant of the soil, as the VWC is increasing, one
can see, first, a slow elevation of the dielectric constant due to the bounded water
which is being formed. At a certain value of the VWC, called transition level [9],
the slope of the dielectric constant drastically changes, and the dielectric constant
assumes higher values more quickly. This second effect occurs because the bound
water capacity of the soil is reached and the free water starts its formation, causing
an abrupt increase in the dielectric constant. The transition point is smaller for sandy
soils than for clay soils [6, 9]. Consequently, an abrupt elevation of the VWC can
cause a higher variation of the dielectric constant of the sandy soil than the variation
for a clay soil. Usually this scenario is temporary, for instance, for some minutes,
due the fact that sandy soils will not absorb the same amount of water than clay
soil and normally the majority of free water quickly infiltrates through the soil. This
analysis also shows the importance for WUSN design to consider the use of some
nodes equipped with soil moisture sensors.
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As shown is this section, the model in Sect. 4.2.2 can be applied to real world
even with the homogeneous VWC distribution assumption. Nonetheless, the spatio-
temporal variability of the VWC must be controlled. For WUSN design, the adop-
tion of some nodes equipped with soil moisture sensors is necessary. With these
real-time measurements, cross-layer protocols could dynamically adjust the pre-
sented model considering both minor errors caused by the non-homogeneity of the
VWC and also the temporal variation of VWC caused by environment factors.

5 Underground Experiments – The Practice

The characteristics of the underground channel in soil are modeled in Sect. 4 consid-
ering the effects of the reflection of surface and the multi path fading. Moreover, the
theoretical analysis also considers different VWC levels and different frequencies at
the range 300–900 MHz. As shown in Fig. 6, the model highlights the advantages
of using the 300–400 MHz frequency range in terms of better values for path loss
and smaller impact of the VWC over the communication. This section presents a set
of field experiments that were realized to confirm such theoretical assumptions and
also to provide a proof-of-concept of the feasibility of using commodity terrestrial
WSN sensors in wireless underground applications. Finally, the experimental results
also expose additional aspects to be carefully considered in a practical WUSN appli-
cation.

The underground experiments were carried out in Lincoln, NE, USA during
August-November 2008 period [31]. The experiment site is shown in Fig. 13(a).
The analysis of the soil texture is shown in Table 4 according to laboratory analysis
[36]. MICA2 nodes operating at 433 MHz [10] were used in the experiments. As
already discussed in Sect. 4, this operating frequency was chosen since it exhibits
better propagation characteristics than higher frequencies typically adopted for ter-
restrial sensor nodes, e.g. 2.4 GHz. The experiment site was prepared as follows: 10
holes of 8 cm-diameter, with depths varying from 70 to 100 cm, were dug with an
electric auger. A paper pipe with an attached MICA2 node is injected to each hole
at different depths.

Table 4 Soil analysis report

Sample depth Organic matter Texture %Sand %Silt %Clay

0–15 cm 6.4 Loam 27 45 28
15–30 cm 2.6 Clay Loam 31 40 29
30–45 cm 1.5 Clay Loam 35 35 30

For the experiments, a software suite called Small Grid Testbed for WSN Exper-
iments (S-GriT) based on Java and TinyOS 1.1x [33] was developed. This appli-
cation was developed to allow many number of the nodes acting as receivers. The
S-GriT allows configuration of multiple experiments without physically accessing
the buried nodes. More specifically, the following parameters are controlled: number
of messages for each experiment, number of bytes per message, delay between the
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(b) Symbols used for distances in this Sect. 5.

(a) Out door environment of the experiments.

Fig. 13 Symbols used for distances. Outdoor environment for the experiments [31]

transmission of each message, and the transmit power level. A MICA2 mote can
assume one of the three roles in the S-GriT application:

• Manager: is located aboveground and connected to a laptop. It is used by the
operator to configure and start the experiments and also to retrieve the results
from the receivers.

• Sender: is buried underground and receives configuration information from the
Manager, via wireless channel, and broadcasts test messages.

• Receiver: receives the test messages from the sender and prepares a summary
containing the sequential number of each received message and the Received
Signal Strength Indication (RSSI) level related to it.

The experiment setup and the terminology used in representing the results are
illustrated in Fig. 13(b), where dbg is the burial depth of the node, dh is the horizon-
tal inter-node distance, and da is the actual inter-node distance. The superscripts s
and r are used to indicate the sender and the receiver. These values, as well as the
transmit power, are varied to investigate the packet error rate (PER) and received
signal strength (RSS) values of the underground communication.

The experiments are conducted for four values of transmit power, i.e., −3 dBm,
0 dBm, +5 dBm, and +10 dBm. The length of the packet is 30 bytes and the delay
between the packets is 100 ms. Each experiment is consisted of 1000 packets. The
number of packets correctly received by the receiver node is recorded along with
the signal strength for each packet. Accordingly, the PER and the RSS level from
each receiver are collected. To prevent the effects of hardware failures of each indi-
vidual MICA2 node, qualification tests were performed before each experiment.
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Accordingly, through-the-air tests, which consists of 200 packets of 30 bytes, were
performed to (1) determine compliant nodes and (2) confirm that the battery level of
a node is above a safe limit. A node is labeled compliant with a given set of nodes
if (1) its PER varies within 10% of the average PER calculated for the set of nodes
and (2) its RSS average varies, at maximum, ±1 dBm from the average RSS for the
set of nodes. The safe limit for the battery level has been determined as 2.5V for the
MICA2 nodes. We observed that, in general, only 50% of the 11 nodes used were
qualified for each experiment.

We present the results of these experiments to highlight important parameters that
affect the wireless underground communication. In Sect. 5.1, the effects of antenna
orientation, not previously considered in Sect. 4, are presented. The influence of
the burial depth is shown in Sect. 5.2. In Sect. 5.3, the results related to the inter-
node distance parameter are investigated, showing the actual limitations of using
commodities WSN sensors in WUSN applications. The temporal characteristics of
the wireless underground communication channel are analyzed in Sect. 5.4. Finally,
the effects of VWC over the communication are presented in Sect. 5.5. The main
goal of this section is to verify if the experimental results agree with the theoretical
wireless underground communication models presented in the Sect. 4. Additionally,
we will see how field experiments can reveal hidden aspects not considered in the
theoretical study.

5.1 Antenna Orientation

The experiments with the antenna orientation were performed by placing a sender
and a receiver at different angles as shown in Fig. 14(a). The 17 cm-length antenna
of MICA2 is a standard one-quarter wavelength monopole antenna and this length
reflect the wavelength of a 433 MHz wave. The MICA2 antenna has a radiation pat-
tern that does not exhibit a perfect sphere and it matches the dipole antenna model
presented in [27]. This type of antenna, in conjunction with the MMCX connec-
tor, allows a great flexibility in terms of antenna orientation. However, as shown in
Fig. 14(a), the motes always have their antennas placed in the vertical polarization.
The horizontal polarization was not considered because this implies larger holes
for the MICA2 deployment (>19 cm). Also, the hybrid arrangement of antennae,
mixing horizontal and vertical polarizations between the motes, is not even consid-
ered because it is well known that such arrangements are the worst cases in terms
of signal loss. However, considering that all the motes have vertical polarization,
this experiment aimed to answer the question if the way the motes are buried is
critical for WUSNs. As will be shown next, while the antenna orientation is usually
ignored for most WSN applications, it is a critical factor for wireless underground
communication.

The experiments were performed at a depth of dbg = 40 cm and at a distance of
da = dh = 100 cm between the sender and the receiver. In Fig. 14(b), the packet
error rate (PER) is shown as a function of the node orientation. It can be observed
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Fig. 14 (a) The schema used to test the effects of the antenna orientation for the underground-to-
underground communication. (b) PER at the receiver mote [31]
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that the best results (PER<0.1) were obtained in the configuration usually called
back-to-back [27], which is where the angle equals to 0◦. It can also be observed
that when the relative angle varies from 90◦ to 340◦, the PER drastically increases.
If the antenna orientation is between 120◦ and 300◦, virtually no communication is
possible. This issue occurs because of two factors:

• The radiation pattern of the MICA2 antenna is not perfectly symmetric in all
directions.

• When the receiver mote is rotated, besides the antenna orientation, the inter-
node distance also varies. This variation is minimum (<8 cm), but for wireless
underground communication, this small change in the inter-node distance may
be critical.

The implications of this result are not trivial for the WUSN design and implemen-
tation. For instance, consider the case of three MICA2 nodes A, B, and C, linearly
deployed at the same burial depth. Also, the inter-node distance between A and B is
the same as the distance between B and C and the node B is broadcasting. Depend-
ing on the chosen inter-node distance, the quality of the signal from the sender B
will not be the same from the viewpoints of the nodes A and C. Moreover, it is
also possible to have the case where A can communicate with B, but C cannot. The
antenna orientation is also an issue for the WUSN implementation because it implies
that the deployment of the motes is not a trivial burial process. The mote must be
buried with its antenna aligned to a specific direction with a minimum deviation. In
addition to the challenges presented in chapter “Deployment Techniques for Sensor
Networks”, soil medium introduces additional challenges for WUSN deployment.

Although this antenna orientation problem is serious, it will only occur for some
critical inter-node distances. Moreover, the kind of transceiver and antenna used
by the nodes may also minimize the problem. However, the conclusion from this
experiment is that the antenna orientation is an additional constraint that must be
considered for the deployment of WUSNs, usually an aspect not very critical in
traditional WSNs. This is especially true for multi-hop underground networks in
conjunction with critical inter-node distances.

5.2 Effects of Burial Depth

In this section, the effects of the burial depth on the signal strength and PER are
shown. As shown in Table 4, the composition of the soil does not change sig-
nificantly between the topsoil and subsoil regions. Therefore, the results of these
specific experiments, where the burial depth of the receiver is varied, are directly
related to the reflection effects of the ground surface. When the nodes are near the
surface (smaller burial depth), a better quality for the communication is expected
due the positive effects of the reflected waves as explained in Sect. 4.2.1. When the
nodes have higher burial depth, the high attenuation of the soil will prevent that



336 M.C. Vuran and A.R. Silva

some waves arrive at the surface and still have enough strength to be reflected and
to arrive at the receiver.

For these experiments, the horizontal inter-node distance between the sender
and the receiver is fixed (dh = 50 cm), the burial depth of the sender is also fixed
(ds

bg = 40 cm) and the depth of the receiver is varied from 10 to 80 cm using differ-
ent transmit power levels. In Fig. 15(a) and (b), the RSS and PER values are shown,
respectively, as a function of the receiver depth. The actual distance, da , between
the sender and the receiver is also indicated in parenthesis on the x-axis. Each line
in the figures shows the results for different transmit power levels. In Fig. 15(a), the
variance of the RSS is also shown along with the average values for each point.

As shown in Fig.15(a), when we increase the actual inter-node distance, da , the
signal strength decreases as expected. The highest signal strength corresponds to
the receiver depth of 30–40 cm and the signal strength gradually decreases if the
receiver burial depth is smaller than 30 cm or higher than 40 cm. One exception to
this case is dr

bg = 0 cm, where the signal rays from above the ground impact the
received signal strength positively and increase the RSS for each transmit power
level. An important observation is the significant difference of RSS values at the
same inter-node distance but at different burial depths. As commented before, it is
not expected that this difference is being caused by the soil composition, which has
only small variations for this specific experiment site. To see how the burial depth is
affecting the RSS, consider the cases where da=58 cm: an additional attenuation of
20 dB is observed for the same inter-node distance of da=58 cm, when the receiver
is buried at 70 cm compared to the burial depth of 10 cm. This behavior occurs
mainly due to the reflection of the EM signals from the soil surface, which positively
affects the RSS when the nodes are buried closer to the surface. This result validates
the two-path channel model for the wireless underground channel studied in the
Sect. 4.2.2.

It can be observed in Fig. 15(b), that for the receiver burial depth of 70 cm, the
PER increases (0.1 < PER < 0.2) and an increase in burial depth from 70 cm to
80 cm immediately causes a communication loss. It is important to observe that
this behavior occurs for all tested transmit power levels, highlighting the fact that
the burial depth is an important parameter in a WUSN design. This conclusion is
also in accordance with the classification proposed in the Fig. 1, where a distinc-
tion between Topsoil and Subsoil WUSNs is necessary specifically considering the
burial depth of the nodes. It can also be observed in Fig. 15(a) that the RSS values
have a very small variance for all depths and transmit power levels. Hence, for a
given node deployment, the underground communication channel is very stable as
long as the composition of the soil does not change, as will be analyzed in Sect. 5.4.
However, the exception for the stability of underground communication is the effect
of Volumetric Water Content (VWC) which will be explained in Sect. 5.5.
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5.3 Effects of Inter-Node Distance

In this section, the effects of inter-node distance on WUSN design are analyzed. The
results of the presented field experiments show the effects of the inter-node distance
on the signal strength and PER. For our tests, the burial depth of the sender and
the receiver is fixed (ds

bg = dr
bg = 40 cm), and the inter-node distance is varied

from 10 to 100 cm, again using different transmit power levels. In Fig. 16, the RSS
and PER values are shown, respectively, as a function of the depth of the receiver
for different transmit power levels and the variance of the RSS values are also
shown.

As shown in Fig. 16(b), the maximum inter-node distance is found to be between
80 and 90 cm for transmit powers of +5 and +10 dBm, and 50 cm for −3 and 0 dBm.
For transmit powers of −3 and 0 dBm, when the inter-node distance varies from 60
to 70 cm, the significant decrease of the signal strength can be observed in Fig. 16(a),
which results in an abrupt PER increase as shown in Fig. 16(b). The first main
conclusion of these results is that typical WSN nodes, such as the MICA2, are not
adequate for Subsoil WUSNs, at least considering the use of a low power transceiver
(< +10 dBm), the typical antenna of the MICA2, and similar soil environment. In
Sect. 4, it has been found that a path loss of about 30 dB corresponds to an inter-node
distance of 100 cm, which is also observed in Fig. 16(a), where an attenuation of
almost 30 dB for an inter-node distance of 90 cm is observed with transmit power
of +10 dBm. However, more powerful transceivers can make possible the imple-
mentation of Subsoil WUSNs.

The second main conclusion from the burial depth experiments is that there are
very good power management opportunities to be explored. Although more power-
ful transceivers may be necessary for some WUSN solutions, specially for Subsoil
WUSN applications, it does not mean that a higher transmit power level always
results in better communication quality. For instance, in Fig. 16(b), in the region
where the signal is received with good quality (PER<10%), the communication
behavior is very stable for all transmit power levels, including −3 dBm. Based on
these results, for a given inter-node distance, there is a minimum transmit power
for which the underground-to-underground communication has practically the same
reliability when compared to a scenario which uses a higher transmit power level.
This analysis highlights the possibility of efficient power consumption schemes for
WUSNs, even expecting a more demanding energy solution caused by the use of
more powerful transceivers.

5.4 Temporal Characteristics

In this section, the temporal characteristics of the wireless underground channel are
investigated. Accordingly, a 24-hour experiment is performed by fixing the hori-
zontal inter-node distance between the sender and the receiver (dh = 50 cm), the
burial depth of the sender and the receiver (ds

bg = ds
bg = 40 cm), and the transmit
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Fig. 16 Maximum inter-node distance for underground-to-underground communication. Sender
and receiver buried at depth = 40 cm (ds

bg = dr
bg = 40 cm). The inter-node distance dh is varying

from 10 to 100 cm [31]

power at +10 dBm. For comparison, the same experiment is repeated over-the-air,
in an indoor environment with an inter-node distance of 5 m and a transmit power
of +10 dBm. In Fig. 17, the RSS and PER values are shown, respectively, as a func-
tion of time. Each data point shows the average of 30 min of RSS or PER informa-
tion, which corresponds to 150 packets. In Fig. 17(a), the confidence intervals of
the RSS are also shown along with the average values for each point as well as the
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results of the over-the-air experiments. In Fig. 17(b), the temporal evolution of the
cumulative PER is shown for underground communication.

As shown in Fig. 17(a), the maximum variation of the signal strength is only
1 dB. No precipitation event was registered during the period and only a 8◦C vari-
ation is observed on the temperature during the experiment [23]. Compared to the
over-the-air communication, where both the average and the variance of the RSS
vary significantly with time, underground wireless channel exhibits a stable char-
acteristic with time. As shown in Fig.17(b), during the same period of time, PER
is always smaller than 0.5% with a small variance. This result agrees with the
models for wireless underground channel proposed in Sect. 4, which also point
out the high stability of the wireless underground channel. The temporal stability
has important impacts in the design of routing and topology control protocols for
WUSNs.

5.5 Effects of Soil Moisture

In this section, the effects of the volumetric water content (VWC) on the signal
strength and PER are discussed. Accordingly, the burial depth of the sender and the
receiver is fixed (ds

bg = dr
bg = 40 cm), two different inter-node distances (dh = 30

and 40 cm) are used in conjunction with two different VWC levels (dry and wet soil),
and the transmit power is varied. The dry soil experiments refer to tests realized on
Oct 20, 2008, a sunny day, and the wet soil experiments were performed on Oct 22,
2008, a rainy day, when 2.5 ins. of precipitation was recorded [23]. Based on the
oven drying method [39], the different VWCs are measured to be 11% for dry soil
and 18% for wet soil, which corresponds to an increase of almost 60% in VWC. In
Fig. 18(a) and (b), the RSS and PER values are shown, respectively, as a function of
the transmit power level of the sender. Each line in the figures shows the results for
different VWC and inter-node distances.

As shown in Fig. 18(a), for high VWC, i.e., wet soil, the attenuation increases
by 12–20 dB compared to dry soil. The Fig. 18(b) also reveals that the increase of
VWC implies higher PER. As shown in Fig. 18, the negative effect of the VWC over
the quality of the communication is reduced when the transmit power is increased.
This result agrees with the model for wireless underground channel in the Sect. 5.5,
which showed that high levels of VWC have significant negative effects over the
underground communication. Therefore, for a scenario where the natural or artifi-
cial irrigation is expected to occur, the design of WUSN protocols should carefully
consider the variation of the VWC of the soil. For instance, the communication
protocol may consider the volumetric water content measurements of a physical
region to make informed routing decision or even consider to temporarily increase
the transmit power of some of the nodes in order to decrease the adverse effects of
VWC.
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6 Open Research Issues

Considering the main aspects revealed by the theoretical and experimental results,
the following challenges emerge for the design of WUSNs:

6.1 Energy Efficiency

The power consumption is one of the most important factors in the design of wireless
sensor networks [3]. This is even more pronounced in WUSN because of the envi-
ronmental effects. First, the higher attenuation in the underground communication
requires higher transmit power levels to establish reasonable communication ranges.
Second, changing batteries is even harder, if not impossible, in WUSN compared to
its terrestrial counterpart. Consequently, energy efficient solutions are crucial for the
design of WUSNs.

There are many possible methods to save energy in WUSN. Although the under-
ground channel exhibits multi path effects with higher attenuation, it is observed
that the wireless underground channel has been found to exhibit extreme temporal
stability, which is important in the design of routing and topology control protocols.
However, the temporal stability of the wireless underground channel can also be
explored in terms of power saving schemes. As a result, simple modulation schemes
and error control techniques may be sufficient for efficient underground communica-
tion. This in turn decreases the overhead incurred by these techniques and provides
a potential way for saving energy.

It is also important to consider that most underground applications require
less frequent traffic. Consequently, sleep schedules can be incorporated into the
design of MAC schemes. Furthermore, it was shown that, for a given deploy-
ment and soil composition, there is a minimum transmit power for which the
underground-to-underground communication has the same reliability compared to
cases where higher transmit power levels are used. This feature is another potential
way for decreasing the power consumption of the overall WUSN solution.

Compared with typical WSNs, the composition of the specific mentioned fea-
tures of WUSNs reveals the need for the development of WUSNs protocols that
exploit these features aiming reliable communication and energy efficiency.

Although the focus of this chapter is the communication of sensors buried under-
ground, the use of hybrid architectures with aboveground nodes can also dramat-
ically decrease the energy consumption of the overall WUSN solution. In fact,
in a generic WUSN architecture, there may still be some devices, such as sink
nodes, deployed above the ground. Hence, the communication between the under-
ground sensors and the aboveground sinks should also be considered in the WUSN
design.
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6.2 Topology Design

The results for maximum attainable communication range illustrates that under-
ground environment is much more limited compared to terrestrial WSNs. In par-
ticular, at the operating frequency of 300–400 MHz, the theoretical communication
range can be extended up to 5 m. As described in Sect. 4.3, underground commu-
nication is also affected by the changes according to depth. The experiment results
validate the theoretical model, also showing that the burial depth is very important
for the WUSN design due to the effects of reflected rays from the underground-air
interface at the surface. As a result, different ranges of communication distance can
be attained at different depths. This requires a topology structure that is adaptive
to the 3D effects of the channel. Optimum strategies to provide connectivity and
coverage should be developed considering these peculiarities. This provides chal-
lenges in addition to the conventional deployment challenges discussed in chapter
“Deployment Techniques for Sensor Networks”.

Both mentioned theoretical and experimental results related to the inter-node dis-
tance suggest that multi-hop communication is essential in WUSNs. Consequently,
in the design of a WUSN topology, this aspect should be emphasized. However,
even with the use of multi-hop communication, the limitations of the commodity
sensor nodes for WUSNs are also observed. For the specific Subsoil WSUN scenario
used in the testbed (40 cm burial depth), the inter-node distance was smaller than
1 m. In terms of signal attenuation, this corresponds to roughly a 1:20 attenuation
rate compared to through-the-air communication in an outdoor environment [5].
Consequently, a new generation of nodes with more powerful transceivers and/or
more efficient antennas maybe required for the deployment of WUSN applications.
We expect that the use of higher transmit power levels will provide higher com-
munication ranges with still acceptable energy consumption, especially when the
energy-efficient features of WUSNs mentioned before are effectively exploited. The
experimental results also highlighted that the antenna orientation of the underground
nodes plays an important role in the connectivity of WUSNs and must be considered
in the WUSN topology design.

6.3 Operating Frequency

The channel model presented in this chapter clearly illustrates the fact that the
attenuation increases with operating frequency, which motivates smaller frequency
values considering the high attenuation. However, this results in a tradeoff between
the frequency and the antenna size for the WUSN device. Our results show that
300–400 MHz band is suitable for WUSNs. The simulation results show that accept-
able communication ranges are possible. Moreover, there are already sensor motes
working in this band in the market; in fact, our 433 MHz MICA2 choice for the
experiments was motivated by these observations.

As explained in Sect. 4.2, the communication performance at low depth reveals
that using a fixed operating frequency may not be the best option for WUSNs.
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Cognitive radio techniques [1] can be exploited to adapt to the changing environ-
mental conditions. Furthermore, our analysis reveals that the optimal frequency to
reach the maximum communication range varies by depth. Consequently, cognitive
radio techniques can provide an adaptive operation for the WUSNs in this dynamic
environment. Further experimental investigation in this area must be conducted to
investigate the feasibility of this approach.

6.4 Cross-Layer and Environment-Aware Protocol Design

As shown in Sect. 4.3, external factors that directly influence the soil properties also
have a great impact over the communication performance. The network topology
should be designed to be robust to support drastic changes in the channel condi-
tions. The most important soil property to be considered in a WUSN design is the
VWC. Hence, the analysis of the spatio-temporal variation of the VWC in the region
where a WUSN application will be deployed is very important. Furthermore, soil
composition at a particular location should be carefully investigated to tailor the
topology design according to specific characteristics of the underground channel at
that location. For instance, different node densities and inter-node distances should
be investigated for the WUSN deployment in a region that presents significant spa-
tial soil composition heterogeneity.

Besides the effect of soil type, the seasonal changes result in variation of volu-
metric water content, which significantly affects the communication performance.
This specific environment parameter was also investigated through experiments.
The experimental results validated the theoretical results and clearly showed that
the adverse effects of the VWC can be decreased using higher transmit power lev-
els. Therefore, in the protocol design for WUSNs, the environment dynamics need
to be considered. This implies an environment-aware protocol that can adjust the
operation parameters according to its surrounding.

Finally, the feasibility of WUSNs depends on the investigation of multiple novel
factors not considered for traditional terrestrial WSNs. For instance, WUSNs must
be robust enough to environment parameters, such as VWC and soil composition.
To this end, a new generation of sensors with more powerful transceivers may be
necessary. However, there are many specific positive features of the underground
environment, such as the temporal stability, that can be exploited to achieve reli-
able and energy-efficient communication. The use of hybrid architectures, cognitive
radios, and cross-layer protocols that dynamically change the transmit power, packet
size, and encode schema in function of the VWC are some of the options available
for WUSN design.
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Body Sensor Networks for Sport, Wellbeing
and Health

Douglas McIlwraith and Guang-Zhong Yang

Abstract The last decade has witnessed rapid growth of high power, low cost
mobile sensing platforms, finding successful application in a range of environ-
ments – from industrial process monitoring to structure management. To date, the
most challenging deployment arena is the human body and extensive research is
focusing on biocompatibility, signal propagation and power management to permit
pervasive sensing of detailed physiological signals from implantable, wearable and
ambient sensors. By involving users in the management of their own wellbeing,
Body Sensor Networks (BSNs) aid in the delivery of preventative care by detecting
the onset and systematic deterioration of “lifestyle” diseases. When used for sports
performance monitoring, they can also record long-term progress whilst providing
real-time training information that can be used to maximise the effectiveness of
individual sessions. This chapter provides a detailed review of recent developments
in BSNs, highlighting both the technical challenges and deployment issues related
to autonomic sensing, context awareness and distributed inferencing.

1 Introduction

As the quality of healthcare in the western world continues to increase, previously
leading causes of death that include influenza and tuberculosis have given way to
an increase in chronic conditions – most notably cancers, heart disease and degen-
erative conditions such as Alzheimer’s and Parkinson’s [37, 18]. One of the main
characteristics of many common chronic conditions is that their occurrence can be
reduced through a change in lifestyle. For this reason, they are often called lifestyle
diseases. The prevalence of these diseases is so significant that they are now the
major contributors to mortality and morbidity in many countries. In 2006, 35% of
all deaths in the UK were directly attributed to cardiovascular disease [3] and around
one fifth of these could be linked to smoking. Within the same study, it was reported
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that 63% of all heart attacks within Western Europe were due to abdominal obesity.
Clearly, the adoption of healthy and active lifestyles that include regular exercise
and sport will reduce the probability of such complications.

Fortunately, many have now become aware of the benefits that accompany a
health conscious lifestyle and are modifying their behaviour accordingly. The use of
technology can facilitate this change by involving users in their own health and well-
being – providing positive feedback to reinforce active lifestyles whilst presenting
user specific targets to be reached. Such involvement allows for a more efficient shift
in lifestyle as individuals have a more accurate picture of their behaviour as well as
continuous feedback regarding their progress. This can help high risk patients, such
as those who are morbidly obese, make a positive change to their lifestyle through
achievable increases in energy expenditure and modifications to dietary intake. Such
technologies are not restricted in their application and may be used to monitor the
periodicity, duration and efficiency of all exercise – providing feedback to amateur
and professional sports persons alike. This approach also has the potential to deliver
detailed insights into sports technique and enable individual and tailored coaching
to maximise athlete performance.

To this end, recent developments in Body Sensor Networks (BSNs) address many
of the challenges raised. BSNs consist of a number of miniaturised, low power
sensors capable of local processing and wireless communication for distributed,
autonomic sensing in a variety of environments. One subject group that stands to
benefit from advances in BSNs are the elderly, who represent a unique challenge to
pervasive sensing. As general life expectancy has increased more than two – fold
over the past two hundred years [105] and evidence suggests that this trend shall
not cease or be reversed [88], a significant burden will be placed on existing health-
care models requiring a reevaluation of care provision. An attractive solution is to
provide effective health management in a community setting using BSNs, reduc-
ing the cost of care, freeing hospital beds and affording the patient both a higher
level of independence and a better quality of life. This can be achieved through the
monitoring of activity levels, analysis of physiological signals and determination of
behavioural patterns – deviations in any of which may indicate the onset of a decline
in health.

With a current shift towards early intervention and minimally invasive treatment
in healthcare, BSNs plays a key part in post-operative assessment and rehabili-
tation. For laparoscopic surgery BSNs have been used to capture surrogate mea-
sures that are indicative of post-operative complication and infection [8, 9, 103].
For minimally invasive surgery, where patients are usually discharged shortly after
the procedure and allowed to recover at home, the ability to continuously moni-
tor patients’ key physiological indices without impeding their activities (i.e., per-
vasively and ubiquitously) is crucial for future widespread clinical uptake. Where
long-term recovery and rehabilitation is necessary, continuous sensing of gradual
and subtle changes to key physiological and biomechanical indices are essential to
tailor ongoing therapeutic regimes.

These are just some of the areas in which BSNs have already been utilised and,
as devices become smaller, more powerful and more energy efficient, we should
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Table 1 Summarising key application areas for BSNs

Area Applications Studies

Monitoring Elderly and post-operative care, out-patient mon-
itoring, skills assessment.

[7, 9, 54, 103]

Sport Amateur and professional athletics, coaching,
physiotherapy, occupational therapy.

[55, 85, 92, 111]

Lifestyle Human computer interaction, leisure, gaming. [12, 90, 131]
Healthcare solutions Cardiac monitoring and regulation, prosthetic

enhancement, therapeutic technologies.
[27, 101, 104]

expect to see development in many new and exciting avenues of research. As has
been demonstrated to date, BSNs allow for real-time monitoring of physiological,
biomechanical and environmental factors related to their subjects and as such, are of
interest in many related areas of research. Sports scientists, occupational therapists,
physiotherapists, as well as medical professionals and their patients, all stand to ben-
efit from the exciting developments in BSNs which enable continuous monitoring
of subjects within their own environment.

1.1 Body Sensor Networks

BSNs consist of a number of locally fixed, worn or implantable sensors with inte-
grated processing and wireless communication capabilities [132]. In general, each
processing device may have a number of sensors and actuators capable of user-
centric monitoring and modification through the issue of drugs stored in micro-
capsules, electrical stimulation or generation of sound and visual stimuli. In addi-
tion, an expert may mediate between acquired data from the network and actuator
stimuli. This relationship has been defined in a purposefully general manner in order
to encompass the greatest range of applications. We can observe this by consider-
ing that the traditional doctor-patient model also fits within this framework, where
sensors are those utilized by the expert (doctor) and feedback is performed through
consultation and medication. The purpose of BSNs is not to replace, but to augment
this relationship through the design of intelligent networks – offering continuous
feedback to subjects regarding their status. What is significant is that the traditional
episodic measurement in clinical/laboratory settings is replaced by continuous sens-
ing under normal living conditions. In this way, BSNs can be used for preventative
health as well as for sport and training, allowing users to choose actions that impact
their health positively.

1.1.1 Network Topology

BSN topology is an application specific parameter in practical deployment. Many
early applications of BSN have focused on star topologies with limited in-network
processing – where a centralised processing unit that may be worn or external to the
subject is responsible for collecting and storing data [66]. Data can then be queried
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Fig. 1 BSNs consist of a number of ambient, wearable and implantable sensors/actuators with
communication links in between. Information is either presented directly or the data is processed
in a distributed or centralised manner before returning to the user. A centralised approach may
be preferable where the computational requirement of the application exceeds the ability of the
sensor nodes themselves. The network can also be further augmented with an additional tier – for
example in the case of BSNs for healthcare where on-site hardware may pass data to a hospital
repository which may operate upon this further providing storage capabilities and notification of
status to formal and informal carers alike. “Standing Man” illustration courtesy of Philip Reed

by clinicians, doctors or trainers to form a complete picture of subject status from
which feedback can be provided. For more advanced pervasive sensing, a remote
interface can be provided through existing mobile devices [121], allowing medical
and fitness monitoring to occur as the user performs routine activities. Not only does
this provide a more convenient and unobtrusive monitoring platform but it allows for
the acquisition of data less distorted by artificially controlled environments. Other
projects, such as SAPHE [2, 78, 93], have utilised a two tier topology to facilitate
both home-based and ambulatory sensing. When subjects are on the move, a mobile
hub worn or carried by the user collects data from the subjects, sharing this with a
fixed device once returned to the home monitoring environment.

Unfortunately, the adoption of a star topology has a number of drawbacks. Since
the responsibility of aggregation lies with a centralised element, it must be in fre-
quent communication with all other nodes. This can rapidly drain power sources
and limit the period of time which a subject can remain untethered. Furthermore,
centralised elements are both bottlenecks and a single point of failure within the
network, impacting the throughput and reliability of BSNs. One possible solution
lies in the use of intelligent and collaborative mesh networks where no single node is
responsible for data aggregation and processing is performed in-network. For a more
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detailed treatise of data aggregation for sensor networks in general, we refer the
interested reader to the previous chapter on “Data Aggregation in Wireless Sensor
Networks: A Multifacted Perspective”, which provides a taxonomy of aggregation
methods as well as a detailed discussion of the practicalities and considerations
involved.

Where new sensors can be added to existing networks, how these are identified
and distinguished from other network elements is crucial to ensure that nodes do not
erroneously share sensitive data with third parties. A model of communication must
also be adopted in order to balance power usage, load and frequency of update. Exact
communication models will be application and context specific, but it is likely that
sensor subnets will share and summarise sensor data before routing to nodes further
in the network – to provide the advantages of both topologies as well as varied levels
of service delivery.

This highlights the shift from a centralised model to one where intelligence has
been distributed and moved into the network itself. To facilitate this, the develop-
ment of high accuracy inference techniques capable of both distribution and grace-
ful failure is required, so that BSNs may continue to provide safe and reasonable
feedback where resource availability is reduced.

1.1.2 Requirements of Body Sensor Networks

BSNs provide a wealth of new challenges in the co-ordination of distributed resources
as they must exhibit a degree of autonomy once deployed – for issues of trans-
parency, accessibility and convenience. To address these issues systematically, the
phrase autonomic sensing [126] has been used. Autonomic sensing is characterized
by the self -* properties summarised in Table 2, and has been defined as:

Table 2 Summarising the self -* properties of autonomic BSNs [132]

self -* Property Definition

Management The ability of a system to know the extent of itself – its components,
status and limitations.

Configuration The ability of networks to respond to changes in operating environ-
ment without user interaction.

Optimisation The action of continual optimisation dependent on dynamic con-
text.

Healing The property of a system which can detect and preempt problems
and modify resource usage to provide uninterrupted services in light
of these problems.

Protection The ability of mission critical networks to preempt and respond to
attacks from malicious parties.

Adaptation Allowing the network to achieve long term goals through adaptation
of operating techniques and procedures.

Integration Providing methods for seamless interaction with other nodes and
networks that are present within the operating environment.

Scaling The ability of a system to prepare itself for new events and mile-
stones within its life.
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An approach to self-managed computing systems with a minimum of human interference.
The term derives from the body’s autonomic nervous system, which controls key functions
without conscious awareness or involvement [49].

It is worth noting that these properties are not mutually exclusive and arguably
have a great deal of overlap, however they are required to highlight the requirements
for BSNs to work with minimal user interaction. For a system to be truly autonomic,
it must survive in the presence of both errors and interference – adapting to sens-
ing requirements whilst providing optimal or near optimal services – much like a
biological entity. In the following sections, we shall discuss the operating modes of
BSNs and highlight the importance of autonomic operation.

1.1.3 Operating Modes

As we have noted, BSNs are now applied to a variety of problems, from exer-
cise monitoring and surgical skills assessment to elderly care. Through analysis of
emerging trends we note that in general, applications may be classified into one
of three categories: restorative, enhancing and diagnostic [39] – each with its own
unique set of challenges.

Restorative

As suggested by the name, restorative BSNs return a level of function that has pre-
viously been lost. Consider the case of glucose monitoring and insulin delivery in
the treatment of Type I diabetes mellitus. A closed loop BSN can emulate the islet
beta cell activity of a healthy patient, providing a long term cure for the condition
[104]. Cochlear implants [24] also provide an example since, through the collection
of audio signals and direct stimulation of the auditory nerve, the BSN provides
an “electrical ear,” restoring a level of hearing to the deaf patient. Optical nerve
stimulation [47] provides restorative treatment for blindness in some cases, creating
visual cues through direct stimulation of the optic nerve or retina, for example where
sight loss has been caused by outer retinal degeneration.

To date, many restorative technologies can provide only an approximation to
original bodily function. In the case of hearing loss, cochlear implants have advanced
only far enough to use a small number of electrodes to stimulate the auditory nerve
and thus, when compared to the thousands of hair cells this attempts to mimic, the
quality of sound can be poor. Optical stimulation is similarly approximate, with
users only able “see” a series of luminescent dots they must learn how to use these
new visual cues.

Enhancing

BSNs that provide additional capability to a user or improve the users existing
functions are defined as enhancing. It is likely that the advancement of restorative
technologies such as those stated above will eventually reach the level where the
functionality they provide exceeds the natural ability of the patient – this would
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raise important ethical questions for the subject and society as a whole. More imme-
diate examples of enhancing BSNs augment the ability to perform particular tasks
and as such have drawn significant military funding. Under the DARPA ASSIST
(Advanced Solider Sensor Information Systems Technology) project [113], BSNs
have been created to recognise and log the activities of soldiers in real time, provid-
ing a valuable tool for information sharing and debriefing [81]. To improve physical
function such as strength, exoskeletons have been developed with which BSNs are
an integral component. For example, the Robot Suit HAL (Hybrid Assistive Limb)
[45] uses a collection of body worn sensors and actuators in order to enhance the
effective strength of the wearer. Potentiometers at each joint measure angle and use
the calculated centre of gravity to stabilise the wearer – this allows user to move
unimpeded and lift objects that would be too heavy to move unassisted.

Diagnostic

Rather than restore or provide additional function, diagnostic BSNs have been pro-
posed to augment the ability of medical professionals to determine the onset of
disease. In the study of intermittent heart complications Insertable Loop Recorders
(ILRs) [57] provide an implantable and untethered solution to cardiac monitoring.
In other areas of diagnostic sensing, wireless devices have been used to assess the
blood flow to a particular organ or region of tissue [32]. This can provide an early
indication of infarction in by-pass or transplantation surgeries facilitating interven-
tion before tissue death occurs. Such technologies may also allow for blood gases
to be measured in vivo.

It should be noted that the categories above are by no means mutually exclu-
sive. For example, exoskeletal systems can reroute force transmission to provide
enhanced lifting capabilities however, under different circumstances, these devices
could be considered orthoses, enabling those with muscular or skeletal deformation
to walk by reducing the load placed upon their joints and limbs.

1.2 Sensors and Modalities of Sensing

Due to the complexity of the human body and the number of parameters available
for monitoring, health and wellbeing is extremely difficult to assess. With respect
to sensing modalities, biomechanical features are crucial for the analysis of move-
ment as these provide an insight into the efficiency of movement for sport, recovery
in post-operative patients, as well as the wellbeing of elderly patients at risk of
neurological disease. To this end, ambient and visual sensors may provide a less
obtrusive approximation whilst at the same time incorporating contextual informa-
tion. Since biomechanical, ambient and visual sensors only provide data regarding
the external manifestation of subject state, physiological sensors are required to
capture a complete picture of the body. Candidate systems for physiological moni-
toring include the nervous, circulatory, respiratory, gastrointestinal, integumentary,



356 D. McIlwraith and G.-Z. Yang

urinary, immune and endocrine [100] and these are discussed within the following
sections where relevant to the deployment of BSNs.

1.2.1 Biomechanical

To monitor local motion, such as that of the limbs, angular displacement at each
of the joints may be observed using Electric Goniometers (EGs). EGs return vary-
ing electrical voltage dependent upon angle of displacement and have been used
successfully in many studies [58]. Such devices are cheap to manufacture and, pro-
vided they are placed suitably, can provide an accurate insight into the motion of the
body during activity. When coupled with wireless networking, monitoring becomes
untethered allowing for in-place sports monitoring, however such devices may not
prove suitable for contact sport where they may be unintentionally removed from
the subject.

Accelerometers have been extensively investigated in order to determine motion
as they provide an inexpensive solution and result in intuitive data. Through the
placement of accelerometers on the limbs it is possible to determine their motion
along with the impulse on external objects. When worn on the body, individual
signals can provide important information regarding subject sway and displaced
energy. Unfortunately, data obtained can often be difficult to analyse as accelerom-
eter signals are composed of static and dynamic acceleration which cannot be sep-
arated without additional technology. The former is the acceleration due to the
earth’s gravity, and is therefore dependent upon the orientation of the sensor. The
second is the induced acceleration due to motion. Whilst in theory the integra-
tion of accelerometer signal should provide velocity, then displacement once inte-
grated again – the composition of the signal and the inclusion of noise leads to a
high level of drift that renders the calculated displacement inaccurate. Because of
this, the additional use of MEMS gyroscopes has been suggested. Although such
devices typically suffer from similar issues of drift, it has been shown possible to
correct for this using accelerometer data, by frequently resetting the integration
baseline [55].

To detect the transmission of forces through the foot when running and walking,
the use of force plates has been adopted. This allows for gait cycle to be analysed in
detail, such that the point of initial contact with the floor can be determined along
with the subsequent distribution of weight over the foot. This has proved beneficial
for many different applications, from analysis of walking aids, to rehabilitation and
the analysis of running style.

To provide a general sensing platform for biomechanical signals, researchers at
Imperial College London have proposed the e-AR (ear worn, Activity Recognition)
sensor, illustrated in Fig. 2, based upon successful experimentation with the ear
mounted BSN platform [65]. Inspired by the location of the body’s own orientation
sensors within the inner ear, the e-AR sensor is ideally placed to capture the orien-
tation of the head and acceleration of the body as well as the transmission of force
throughout the wearer.
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Fig. 2 The e-AR sensor developed at Imperial College London comprises a Nordic nRF24E1
chipset, built-in 2.4GHz RF transceiver, memory, and an analog-digital converter for data sensed
using a 3-axis accelerometer. This is based upon a miniaturised design of the BSN node [65]

1.2.2 Ambient and Visual Sensors

Accurate motion capture can be performed with optical technology, using one
of many commercial products available from Northern Digital Incorporated, the
Motion Analysis Corporation, Charnwood Dynamics (CodaMotion) and many other
companies. Such systems are excellent for detailed analysis of movement since they
are both accurate and can capture data at a high frequency. With suitable placement
of markers, imaging systems can allow both linear and angular displacement to be
calculated and, when combined with models of muscle motion and exerted forces,
force transmission and joint strain – important factors for sports analysis, rehabil-
itation and patient assessment. Unfortunately, such systems are of limited use for
highly mobile applications as they require multiple cameras, many markers to be
worn and typically only have a limited area of coverage within the range of several
metres.

For situations where detailed motion analysis is not required, Passive Infra Red
(PIR) can be employed to give an indicator of movement within a room. Whilst such
limited information may be useful when a high level of privacy must be maintained,
the type of motion performed by the subject cannot be captured rendering these
devices of limited use for activity recognition. One potential solution, offered by
Lo et al. [67] is to process the scene using a statistical model of the background
[62] and represent subjects as binary blobs. This has the effect that detailed subject
information, such as appearance and identifying features, are removed before further
processing occurs – negating the need for potentially sensitive video information to
be stored and transmitted. Whilst background segmentation allows overall subject
pose to be extracted, crucial for activity recognition in healthcare environments,
self occlusion can provide misleading blob output and remove important movement
information such as that of the limbs. For this reason the use of optical flow, to
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Fig. 3 The ambient blob sensor comprising an image sensor, Blackfin on-board processor, wireless
transceiver and battery. An exploded view of the device can be seen in (a). Once packaged, (b),
the blob sensor can be integrated within the home using a wall mounted bracket, similar to the
installation of a PIR sensor. Image data is processed on-board and in real-time, communicating
derived metrics only to other devices in the vicinity. This provides a significant advantage in terms
of power consumption and ensures potentially sensitive video data is not disseminated

capture motion within the segmented blob, has been proposed [93]. This device,
known as the blob sensor is illustrated in Fig. 3.

1.2.3 Respiratory and Circulatory Monitoring

The interrelated respiratory and circulatory systems offer a rich source of data when
monitoring for sport, healthcare and wellbeing. Both individual performance and
overall fitness can be determined through the calculation of energy expenditure –
and for healthcare potential respiratory and cardiac problems can be screened for
before symptoms become manifest.

In the care of cardiac disease, bedside monitoring of heart rate parameters have
typically involved the use of electrocardiographs (ECG) to measure the electrical
activity of the heart through chest mounted electrodes. ECG output can be utilised to
rule out damage and disease of the heart muscle as well as measure cardiac indices.
Where symptoms of disease are episodic, wearable or implantable devices [95]
can capture abnormal events as part of an outpatient procedure. Several wearable
commercial systems aimed at providing remote monitoring for high performance,
high risk groups, such as the emergency services and military [83], have also been
proposed.

In the study of respiration, spirometry is commonly used to measure both the
volume and rate of air transferred through the lungs. This can be effective for the
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diagnosis and assessment of diseases impacting the respiratory function, such as
Chronic Obstructive Pulmonary Disorder (COPD), emphysema, asthma and cystic
fibrosis. Due to the nature of this test, spirometry parameters cannot be obtained
continually, since the procedure is episodic by nature. Mobile devices have been
designed however, which attach to a mobile phone [35] and could prove valuable in
providing context to continuously acquired variables as part of a larger BSN.

The piezoresistive effect, which imposes a change in resistance due to mechani-
cal stress [94], is used to determine breath rate, whilst other systems proposed have
used Polypyrrole (PPy) coated foam sensors [17] and ultra-wide-band (UWB) radar
[114]. Impedance pneumography has also been used successfully [16] in which an
alternating current, transmitted between two chest mounted electrodes, is used to
determine thoracic change during respiration. This is performed by monitoring the
voltage change across the electrodes which is subject to variance between inhala-
tion and expiration. Whilst a relatively unobtrusive monitoring method, this does
not allow for the volume transferred to be calculated and can be subject to motion
artefacts due to changes in body position and orientation. To address these issues,
inductive plethysmography was proposed [128] to monitor the volume of the thorax
during respiration – which has a direct relationship to the volume of air transferred.
This is performed using wearable bands, producing a magnetic field that induces
voltage dependent on the magnitude of chest expansion.

Photoplethysmography (PPG) has seen significant interest for both the monitor-
ing of respiration and cardiac rhythm [51]. PPG operates by observing either the
transmissive or reflective wavelength absorption as light is transmitted through, or
reflected off, the skin – typically on the finger or earlobe. In the case of transmis-
sive PPG, the light from two LEDs (of different frequencies) passes through the
extremity and the wavelengths of the resulting light is analysed. Since the differ-
ence in wavelength absorption will depend on both the blood engorgement of the
extremity, and the composition of the contained blood, both pulse rate and oxygen
saturation can be extracted. Recent research proposes reflective PPG for the e-AR
sensor [68, 123, 124, 99], however dealing with motion artefacts remains the most
challenging research question.

Near Infra Red Spectroscopy (NIRS) utilises the near infra-red region of the opti-
cal spectrum which exhibits relatively low absorption by the tissues of the body –
allowing for much deeper tissue penetration than with PPG. Dependent upon the
absorption characteristics of the light it is possible to build detailed maps of oxy-
genated sites. Consequently, NIRS has seen significant interest as a method for brain
imaging [122] and as a tool for sports monitoring to measure blood flow and oxygen
consumption by the muscles [29, 28, 41, 63].

1.2.4 Neural, Biological and Chemical Analysis

In the field of neural sensing, several previously mentioned technologies are finding
important clinical application. NIRS has been used to map brain function indirectly
by detecting oxygenated regions within the brain, whilst electroencephalograms
(EEG) perform the same function through the capture of electrical activity. Although
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used extensively in clinical scenarios, for example to characterize seizures [82] and
to monitor brain function in comatose or anaesthetized patients, EEG is beginning
to find application for the control of personal computers [131], prosthetics [42] and
even bridge the gap between brain and appendage, allowing those who have lost
motor function due to nerve or spinal damage to regain a level of function through
Functional Electro Stimulation (FES).

Blood gas and pH sensing is routinely carried out on blood taken during in-
patient procedures. With this technique, the concentration of oxygen and carbon
dioxide is determined which can be important in the care of pre-term babies and the
critically ill. By measuring pH, general information regarding the metabolism can
be garnered, allowing for indirect analysis of kidney function. Currently, blood gas
analysis is performed periodically – requiring blood to be drawn from the patient
and processed either in a laboratory setting or using one of many emerging point-
of-care systems. Unfortunately, whilst bedside systems reduce the turnaround time
in obtaining results, such systems still only offer a snapshot of that person’s status
and, since blood gases can change rapidly, it would be advantageous to obtain con-
tinuous, real-time data. To this end, in vivo blood gas monitors have been proposed
[44, 80, 118] and trialled [127]. Such technologies, fuelled by advances in micro-
electronics, have ignited interest into chip designs that integrate several laboratory
functions (lab-on-a-chip) to screen for many health related issues at a single point
of a care. For example we may be able to deliver virus screening to developing
countries at a fraction of the current cost, allowing for early detection and treatment
that slows the progress of infection [43].

For chemical excretions, the use of smart clothing [71] plays an important role for
many practical applications. Coyle et al. [26] have proposed an approach that uses
dyes optically sensitive to the pH of the absorbed fluid. Consequently, dependent
upon the reflective properties of the clothing, sweat pH can be obtained. As well
as detecting properties of the wearer, such technologies may also be used to sense
parameters of the environment providing invaluable piece-of-mind for workers in
hazardous environments [110].

1.2.5 Implants, Ingests, Actuation and Feedback

A variety of implants have been discussed within the research community, leading
to many clinical trials and commercially available products. ECGs [57], pacemakers
[48] and cardioverter-defibrillators [101] are all now implanted during routine pro-
cedures performed around the world for a variety of conditions. Cochlear implants
have continued to improve since their inception with recent studies targeting the
modiolus [24], enhancing residual hearing rather than destroying it as with previous
systems.

Retinal implants, that restore vision to sufferers of diseases such as macu-
lar degeneration and retinitis pigmentosa, are a relatively new advancement in
implantable technology. Where nerve pathways linking the brain and the eye remain
healthy, the retina may be artificially stimulated to simulate vision. To date, several
such devices, which process images captured from an externally mounted camera
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and transmit these to electrodes mounted on or underneath the retina, have reached
clinical trials [47]. This technology is still in its infancy and, as the number of elec-
trodes used for stimulation is typically several orders of magnitude smaller than the
number of ganglion cells stimulated by light entering the eye, users report that they
can detect features such as edges and light points but the level of detail is low. With
further development we may expect to see restorative vision which is a much better
approximation to that lost through degenerative conditions. Where the optical nerve
has become diseased or the eye has been damaged or lost, a form of vision can still
be provided through the use of cortical implants [72].

As discussed above, functional electro-stimulation (FES) can restore motion to
incapacitated patients in a variety of scenarios. FES has been used both internally
and externally to stimulate muscular contraction for sufferers of drop foot [70],
characterized by a difficulty in turning both the ankle and toes upwards, strokes [27],
who may have partial or total loss of function in their body, and incontinence [73].
FES systems are typically separated into a sensor and stimulator – either of which
may be implanted. Sensors attempt to determine the users intention and provide the
ability to act upon this through muscle stimulus. In the case of drop foot, systems
use inertial sensors to determine which part of the gait cycle the user is currently
engaged in, communicating with the stimulator in order to clear the toes from the
ground before impact. For the treatment of stroke and spinal damage, implantable
sensors can bridge the gap between intention and action through sensors implanted
within the brain or spinal column. Ultimately, fully implantable, closed loop FES
could be used to restore full movement to mobility impaired candidates by providing
artificially implanted nerve pathways [69].

Solutions to insulin delivery have been sought to improve the convenience of
glucose testing and ensure the accuracy of insulin delivery in the treatment of Type I
diabetes. Traditional therapy involves the use of long acting insulin taken at regular
intervals to regulate blood glucose level during normal routine. Once determined,
sufferers are required to calculate and administer the amount of insulin required
to break down carbohydrate introduced at meal times. Such an approach is time
consuming as it requires frequent testing and delivery of insulin. Several advances
have been made in order to automate this process, most notably by using insulin
pumps attached to a subcutaneous delivery system operating at a basal rate; to
replace long acting insulin. Short acting insulin still needs to be introduced after
meal times although this can be performed through the existing delivery system –
negating the requirement for frequent injections. Significant research is ongoing in
order to close the loop for insulin delivery such that the patient no longer need con-
sider their condition [104]. In this way an artificial pancreas that simulates healthy
function could be provided using implantable sensors and delivery devices.

In the field of imaging, many researchers are turning to ingestible devices to per-
form imaging of the internal structure of the body, for example the small intestine,
which is unreachable in its entirety through endoscopy. Such procedures are painless
and allow the upper gastrointestinal (GI) tract to be screened for polyps, which if
left untreated can become cancerous [129]. Whilst unreported, we may imagine the
combination of imaging devices with lab-in-a-pill technology to create a detailed
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overview of GI health, sensing parameters such as temperature [74] and pH [50]
while also recording images during transit through the body. Figure 4 provides a
graphical overview of aforementioned technologies, indicating the typical locations
within the body that sensors would be deployed.

Fig. 4 Illustration of sensing modalities and their physical location within BSNs. “Running Man”
illustration courtesy of Philip Reed

1.3 Directions and Challenges

The use of in vivo sensors poses two unique challenges not encountered in other
areas of remote sensing. Firstly, the development of suitable biosensors, which
respond to the parameter of interest and act as an interface to digital processing and
communication devices, is required. Secondly, issues of biocompatibility are raised
with respect to both the sensor itself and the supporting circuitry so that hardware
does not create adverse effects with the body’s immune system when left in situ.

For extended deployment, issues of power management are important since
implantable devices are not readily accessible for battery replacement or charging.
Possible solutions include the use of an inductive coil, however, to remain power
efficient these are only feasible for implants residing close to the skin. More attrac-
tively, the development of energy harvesting techniques would provide an indefinite
solution without the need for supporting hardware external to the body. The use of
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biofuel cells that can draw sufficient power from biological sources such as blood
glucose is an active area of research with promising initial results [46]. Further-
more, depending on the site of implantation both tissue type and cardiac-respiratory
motion will have an effect on both attenuation and propagation characteristics of
wireless signals. Suitable solutions for successful in-body communication are likely
to involve collaboration in the fields of sensor-placement, antennae design and wire-
less communications.

There are further challenges for practical deployment, since the data obtained is
user-centric and must be treated as potentially sensitive – this highlights the need
for effective but lightweight transmission security which will comply with hard-
ware restrictions and energy expenditure constraints. Also, as data can be readily
moved, copied and applied, there should be strict control over who has access to the
data and what purposes it can be used for. For successful adoption of BSNs, where
deployed in a specific capacity with patient agreement, monitoring outside of this
scope should not be allowed to occur.

Perhaps the most important challenge is to create autonomic BSNs that operate
with minimal interaction from users and are able to respond to changes in both the
environment and the subject. To date, research in this area has focused on the real-
isation of the self-* properties outlined in Table 2, for example self-managing and
self-healing BSNs, and has typically been addressed through research into the use
of context. To create truly autonomous networks, BSNs must acquire large volumes
of data which may require intensive computation for context inference, creating a
significant challenge in the provision of resources. In Sect. 2, we shall discuss the
issues of context and autonomicity further, reviewing current research in these fields
and discussing their impact on future developments in BSNs.

2 Data Modelling and Pattern Recognition

In the previous section, we have provided an overview of BSNs and their structure
along with a review of current an emerging technologies in wearable, ambient and in
vivo technology for user-centric data capture. In this section, we provide a view of
BSNs and emerging issues from an algorithmic standpoint – Fig. 5 provides a road
map of research challenges in data analysis from initial knowledge of the phenom-
ena, through to decision output. Where topics appear in parallel this denotes that
issues are inter-related. Importantly, for the development of useful pervasive sys-
tems, the correct set of procedures must be applied together and with the application
in mind. To this end, the pervasive sensing paradigm must be considered holistically.
The techniques applied at each step towards inference and their subsequent effects
should be considered carefully and result from domain specific knowledge held by
pervasive system designers.

In the field of BSNs, data analysis issues fall within one of three key categories:
signal processing and reconditioning, sensor placement and feature selection and
data modelling and inference. The former describes low level issues regarding the
phenomena under investigation and the processing of data to extract relevant infor-
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Fig. 5 Illustrating the key research areas for data processing within BSNs – from initial knowledge
of the phenomenon through to decision level output. Where topics appear in parallel, this denotes
that they are interrelated

mation. For example, within this category, data may be processed in order to sep-
arate contributions from multiple sources, or features extracted which succinctly
summarise the data. Within the second category, the magnitude of data may be fur-
ther reduced through the selection of the most relevant features or feature sets from
particular sensors for the decision task at hand. In the final category, the underlying
patterns within the data are extracted using model based or statistical techniques so
that patterns may be learned and decisions drawn from previously unseen data.

2.1 Signal Processing and Reconditioning

Where phenomena cannot be extracted cleanly regardless of sensor type and place-
ment, source separation may be used [14] to identify the elements of a compound
signal. A practical example has been proposed by researchers of home-healthcare
systems where multiple occupants may be housed [78]. In this work, a multi-sensor
scenario is considered, which has been shown to increase the accuracy of activity
recognition [93]. Data corresponding to the same subject is matched from different
sources using a feature selection technique that identifies sets with discriminatory
overlap – maximising the likelihood that activity classification will agree when sen-
sors are used independently.
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Where multiple sensors are used, synchronisation must be given careful consider-
ation. For clinical applications, the correlation of data is important for practitioners
searching for causal relationships between patient symptoms as they rely on data
timestamps to provide an insight into patient deterioration. Within sport, victory
can often be forfeit in a fraction of a second, therefore trainers and athletes alike
require high rate, high accuracy synchronisation to leverage the most from their
training regimes.

Post data acquisition, features are extracted to capture specific characteristics
of the data whilst providing a compact representation. Although automatic fea-
ture selection algorithms exist [64], detailed domain specific knowledge of the
data set and the potential trends contained within will help in the generation of
candidates before the application of such algorithms. A further possibility is the
application of dimensionality reduction techniques such as Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), Multidimensional Scaling
(MDS) or Locally Linear Embedding (LLE). Such methods reduce the storage and
transmission requirement of the data whilst retaining its discriminatory power.

2.2 Sensor Placement and Feature Selection

With knowledge of the observation domain, BSN designers may address issues
regarding sensor placement within the environment and on the body, [96, 15] as
well as the type of sensors to be deployed. Various research within the literature has
addressed the problem of sensor selection in pervasive sensing generally [86] and
more recently for BSNs [53]. Whilst sensor selection may occur as an investigative
step in application design, before sensors are deployed permanently, it may also be
performed with the sensors in situ and dependent upon context. Consider the selec-
tion of sensors to determine subject activity. During the investigation stage sensor
selection ensures that sensors are placed to capture the widest range of activities
however, during the data acquisition stage, a subset of these may be activated to
identify individual activities.

2.3 Data Modelling and Inference

For successful data modelling, the phenomena under surveillance must be well
understood. Without detailed knowledge of the underlying problem, application
designers will fail to collect basic data relating to the process under observation and
may misunderstand the relevance of the data that is acquired. Whilst the necessity
for detailed requirements analysis is true of any large project, this can be especially
important within BSNs due to the complexity of the subject and the large number of
parameters available for collection. Although tempting to collect as many parame-
ters as possible and display these back to the user, this can create sensory overload,
overly confuse the problem and create difficulties in automation for closed loop
systems.
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Sensor data or data derivatives can be passed to clustering or classification algo-
rithms for inference, with the requirement that such algorithms should extract the
underlying patterns behind the observed phenomena. Such algorithms can assume
prior knowledge of the domain, for example in the case of Bayesian Networks, or
may be completely statistical in nature. Of specific importance for healthcare and
sport are temporal models such as Conditional Random Fields (CRFs) [60] and Hid-
den Markov Model (HMM) variants [34] as these can model multi-stage activities
or behavioural traits that evolve over time. Algorithm choice is dependent on many
factors including data type, data processing techniques and the magnitude of data
available.

Traditionally, classification algorithms deployed for inferencing in sensor net-
works have been centralised and applied after data has been aggregated from all
sources however, as the computational power of nodes within wireless sensor net-
works increases, so does the possibility for the distribution of such algorithms. Not
only does this remove central nodes as a potential bottleneck and a single point of
failure but it provides a more scalable solution – allowing for the development of
modular networks which can accept requests from heterogeneous sensors to share
the computational burden of inference.

Typically, the distribution problem is considered from one of three standpoints,
taken from the machine learning and sensor fusion communities. Data level, algo-
rithm level, or decision level. Within the first level, data is shared amongst sensors
so that elements of the network have access to data from many disparate sources,
before the decision analysis occurs. In the most naı̈ve implementation, data would
flood the network with the effect that each sensor has access to all data – sensor
nodes are then free to reach their own decisions independently of all others. Unfortu-
nately, such an approach does not leverage the heterogeneity of the network, creates
a high level of redundancy and requires frequent communication between nodes. A
refinement of this approach defines aggregator nodes to compactly represent regions
of data, as discussed in chapter “Data Aggregation in Wireless Sensor Networks: A
Multifaceted Perspective”, however nodes may become overspecialised leading to
partitioning of the network during sensor failure.

In order to provide a solution to this problem, significant research has occurred
at the algorithm level. This requires the decision analysis stage of processing to be
pushed within the network such that each element is responsible for some stage
of a decision that is reached. This entails a high level of coordination from each
network component, ideally with awareness of network delay, power usage, pro-
cessing, memory requirements and quality of service guarantees. To date, research
has investigated distributed pre-processing [30], statistical classification, [87, 10]
and Gaussian mixtures [40]. Supervised learning of decision boundaries has also
seen some interest in the last few years and we refer the interested reader to the
following review [102]. For probabilistic graphical models using prior knowledge,
various methods have been proposed to learn structure in a distributed fashion [61]
and which leverage the similarity of probabilistic inference over tree structures to the
distribution of the sensor nodes in physical space [98, 97]. More recently, distributed
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methods have been proposed for approximate probabilistic inference in dynamic
systems where transient sensors exist [36].

Whilst a promising area for autonomic sensor networks, due to the complexity
involved in the deployment of existing algorithms there have typically been few
practical implementations. Consequently, the future of BSNs may be dominated
by decision level distribution, especially as the individual power of sensor nodes
continues to increase. Recent work [125] has proposed an ASIC comprising digi-
tal control with Neural Network core implementing a Self Organising Map (SOM)
[106]. Neural weights within the SOM are learned off-line before being imported to
an ASIC which is exposed to data gathered from eleven subjects wearing an e-AR
sensor and performing routine tasks [124]. The results presented show high accuracy
for the tasks performed, illustrating the potential for on-node activity recognition.
This may impact the direction of distributed sensing, as inference is performed
on-node by independent sensors and the results are shared over a communications
protocol to enable decision level fusion at each sensor. Since data is shared only
at the decision level, such an approach fails to leverage inter-sensor data interac-
tion for classification. Consequently, where patterns are present and interact over
several sensors, naı̈ve classification will almost certainly fail. This highlights the
importance of preparation when designing BSNs – as detailed understanding of the
problem would preclude decision level fusion for such patterns, requiring the need
for algorithm or data level fusion to occur. In reality, BSNs of the future are likely
to provide distribution on one or more of the aforementioned levels dependent upon
the application at hand.

2.4 Context Awareness

The use of multiple sensors creates a rich dataset which can be leveraged using
machine learning techniques to provide accurate decision level output, however it
may be beneficial or necessary to consider the underlying relationship between data
from different sources. Often it is the case that, when data is considered in light of
other sources, important trends can be revealed and erroneous results removed: this
is known as context awareness. Context-aware computing is a model where envi-
ronment, or context, is a considered factor in the design and use of BSNs. An exact
definition remains elusive, and is still subject to debate in the research community
[112, 22, 108, 31]. Dey and Abowd [1] overview the development of the semantics
of context in computing and what it means for an application to be context-aware.

Since BSNs are user-centric, context is defined in terms of the subject under
observation and can consist of many factors. For health and wellbeing, tempo-
ral factors such as the time of day, week and year can all provide explanations
for behavioural changes whilst environmental factors such as the temperature can
explain sudden deviations in activity levels, for example, people are less likely to
venture outside on a cold day. In the observation of recovery, past medical compli-
cations, age, gender, lifestyle and background may all affect the “normal” baseline
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recovery rate and so may be considered contextual in this sense. Within sport, what
is defined as context will depend on the level of the athlete in question and the sport
undertaken. Training regime, how recently training was conducted and the wind
direction and strength would all affect the performance of a sprinter for example,
but it is likely that changes within many of these parameters will produce only a
small difference for elite athletes and possibly negligible effects for amateurs.

It is worth noting that context in general is difficult to define succinctly and can
vary across applications – thus it is the responsibility of application designers to
build appropriate models that factor variables which may not be explicitly defined
or may be assumed by practitioners at the application level. If we return to Fig. 5, we
see that context awareness has been included at every stage of the data processing
pipeline, this is because context may require consideration at every stage of BSN
design and execution. In extreme cases, a change in context may challenge design-
ers knowledge of the phenomena requiring the deployment of extra sensors, or the
relocation of existing ones. Operating under the assumption that all relevant data is
captured, context changes can affect data selection techniques, network generation
and inference models. This highlights the importance of a holistic approach to BSN
design with each step of the data processing pipeline considered in terms of all
others as well as the target application.

Current research in this area [56] has concentrated on modelling context at the
inference stage of the processing pipeline, with context represented explicitly as a
parameter in the decision making process. In [119] the concept of a Spatio-Temporal
Self Organising Map (STSOM) is introduced, augmenting Self Organising Maps
(SOMs) with temporal pattern recognition. STSOMs track neuron activation pat-
terns in SOMs in order to perform activity recognition that could influence sensed
physiological parameters such as heart rate. Temporal models such as HMMs have
also seen significant treatment in the literature since, by encoding the progression
of output symbols through the use of hidden states, they provide a representation of
temporal context. Conditional Random Fields (CRFs) can be seen as a generaliza-
tion of HMMs that can encode context from much further in the past, as well as the
future, and have therefore seen interest for use in context aware applications [120].

3 Emerging Applications

Due to the ability of BSNs to provide a detailed picture of subject status, we have
seen their successful deployment for a variety of applications. In this section we pro-
vide a review of BSNs within sport, healthcare and wellbeing discussing emerging
work as well as future directions for user-centric sensing.

3.1 Sport

As the research surrounding sports science has begun to mature, we are seeing a
significant impact on the playing fields – narrowing the margins between winning
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and losing at the highest levels of competition. Consequently small modifications
to technique and training patterns can have a substantial impact on competition out-
come. Furthermore, as the popularity of professional sporting events has grown, so
has the size of their supporting industries. Professional athletes and their sponsors
now have greater financial motivation to continue to push the boundaries of skill and
physical capability – to be faster, fitter, stronger and more technically able than the
opposition. In this section, we identify three key areas in which BSNs can contribute
to the performance of athletes and maximise the effectiveness of their training.

Firstly, in order to provide the necessary energy for intense training schedules,
the nutritional composition of food intake is an important factor to ensure athletes
have the required energy to perform along with the necessary conditions to recover
quickly and maximise the overall positive affect on their physiology. Secondly, an
understanding of training techniques and their nature, periodicity and level of exer-
tion is required to ensure maximal physical development without injury and prepare
athletes for competition. Finally, the refinement of technique within each individual
sport is crucial in order to promote efficient movement delivering expended energy
in such a way that it has the greatest affect on the outcome of the competition. For
professional athletes to perform at their highest level each of these areas need to be
considered in light of all others.

All aerobic regimes should include easier and more intensive workouts to provide
a solid basis of aerobic fitness and build up stamina within the core body. The latter
helps build overall muscle strength while lighter sessions allow for the recovery of
overworked muscles, developing both tone and strength. To this end many devices
to assist training schedule are currently on the market, ranging from the Nike +
iPod training assistant, offering audio feedback on distance through a foot mounted
accelerometer and wireless link, to the Polar S-725X Heart Rate monitor which is
user programmable with a multitude of training regimes. These devices have been
developed as an aid to training however the loop remains open – the effectiveness
of their training schedule is assessed off-line and it is up to the wearer to effect any
changes themselves. In the near future, we may expect to see devices to self assess
the efficacy of training schedules and provide recommended changes where appro-
priate. To this end, some basic systems exist, [107, 90], however, the metrics used
to assess success for a given sport are not simple, and for more complex training
regimes a wealth of knowledge is used by coaches to assess physiological impact.
Such information would have to be distilled into the intelligence of BSNs in order
to provide the most effective training aids.

Until now, methods for perfecting the technique of athletes have relied upon the
experience of coaches to determine the most effective way to perform a particular
exercise. For example, a rowing coach will analyse the motion of a rower from the
riverside and suggest actions that will not only improve technique, but also help the
athlete understand why such actions should be undertaken. Because such techniques
are subjective, it can be difficult to evaluate the effectiveness of individual coaches
until the season or competition that is being trained for is complete and the results
have been collated. Furthermore, different athletes are likely to respond in different
ways to the same coach and thus their effectiveness is highly subjective. What may
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Fig. 6 Monitoring the biomechanical and physical indices of a runner using three modalities. An
e-AR sensor worn by the athlete captures sway and general motion of the head and body whilst the
Parotec [133] foot pressure sensor details the specifics of subject gait, for example – which part of
the foot strikes the ground first and the force distribution as the next stride is taken (top right). The
foot sensor can be seen in detail in the bottom right of the picture. Additional information captured
includes the volume of inhalation/exhalation and the gas composition which aids in the calculation
of energy expenditure [25]

be required is a more scientific approach to training which evaluates athlete effi-
ciency allowing for the modification of technique based upon tangible performance
metrics. Such devices, based upon biomechanical theory, would have the advantage
that they could be used by coaches as a training tool, or individually – by amateur
and recreational athletes to maximise the efficiency of individual training sessions.
In the literature, analysis of technique has been performed for a variety of activities.
Swimming [89, 116], skiing, [79, 19], martial arts [23] and climbing [92] have all
seen the use of technology to provide quantitative analysis of technique as opposed
to the qualitative approach offered by one-on-one coaching.
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Fig. 7 Typical rowing technique for one complete “stroke”. Athlete starts at the “back stops”
position (a) with the back straight, legs locked and hands below the pectoral muscles. The oar has
been removed from the water at this point. During the next part of the stroke, the oar is pushed
away smoothly by the hands (b) before the back and legs are engaged, (c) and (d). When the rower
reaches their most forward position, toward the end of phase (d), the oar is place in the water with
a small upward movement of the hands and the legs are engaged to drive the oar through the water.
As the rower reaches the rear of their slider, the back and arms are engaged fluidly, and in that
order ((e) and (f)) before the oar is removed from the water with a small push of the oar handle
downward. “Back stops” is then reached again, completing the cycle (f)

As mentioned above, one application for sports monitoring using BSNs is that
of rowing, illustrated in Fig. 7. Due to the distances covered by crews, traditional
coaching techniques have involved either bank-side parties cycling with the crew
or carried by low-wake motorized boats, who then offer coaching via mega-phone.
Unfortunately, both of these techniques require both physical and mental effort on
behalf of the coaches, placing them under undue stress and redirecting attention
from their crew. Furthermore, the debrief offered to individual crew members at the
end of an outing is not substantiated with evidence, based only upon the subjective
feel the coach had regarding performance – and where boats contain a crew of VIII
the burden of recall placed on coaches becomes substantial. An ideal solution would
be to provide video during outings however, due to practical considerations, this is
not always possible. Alternatively we may deploy BSNs on each oarsman to mea-
sure the efficiency of each stroke. This has several advantages. Firstly, the equipment
required is extremely light representing minimal ballast. Secondly, the BSN can be
used with or without the coach present, thus allowing crews to effectively debrief
themselves when coaches cannot be found. Whilst studies have thus far been limited
to a laboratory setting [117, 77, 76], we expect advances in BSNs to enable real-time
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on-water sensing, providing immediate feedback to oarsmen and their coxswain –
maximizing performance and minimizing the risk of injury due to poor technique
[55].

3.2 Wellbeing

The aim of BSNs for wellbeing is to provide preventative care through target-
based lifestyle management and the promotion of healthy pastimes; to maintain
and improve quality of life through a tangible improvement in health. By improving
general fitness, subjects can partake in medium exertion activities for longer, render-
ing them more active and less susceptible to disease. By leading an active lifestyle
subjects also report reduced time to sleep and are therefore able to obtain a better
nights rest [21]. To date, advances in wellbeing have focused mainly on providing
motivation [75] for usually sedent subjects, either through feedback and positive
reinforcement, or by improving the accessibility of new pass-times through the use
of technology.

Shakra [12, 13, 85] has been developed to provide a metric of distance covered
using mobile phone positioning. When walking or jogging users specify on their
personal mobile phone that exercise has been started then as the carrier of that device
moves around, the varying intensity of the GSM signal as the phone is handed off
between cells is used to determine the overall activity of the owner. These metrics
can be presented back to the user to bring about a change in behaviour when users
do not meet self imposed targets. Interestingly, it has been noted in this study that
one of the most important contributing factors in motivating a continued increase in
activity is social in nature [12], and thus perhaps the most successful applications
of BSNs for wellbeing will consider this basic human need. This may explain the
popularity of the WiiFit balance board and fitness suite, for use with the Nintendo
Wii, which uses weight distribution on the board in order to determine posture and
movement. Typically, games involving this device have a strong multi-player focus,
hinting towards social gaming as the contributing factor in its success. In this vein,
Muller et al. present their work to facilitate social jogging [85], where participants
may be geographically disparate. The advantage of this work is twofold – since
joggers do not need to live in proximity or have similar running paces in order
to communicate and encourage each other. As mentioned above, the Nike + iPod
Sports Kit is commercially available to report on individual progress however, a
more a advanced system that automatically selects particular music tracks based
upon their motivating features has been proposed [90].

BSNs have been able to improve the accessibility of activities for wellbeing
through tentative advances in automating expert knowledge. For those who cannot
afford, or are too busy to commit to regular coaching sessions and fitness classes
this provides a low-cost alternative and allows users to maximise the benefit of their
workouts without being constrained to a particular schedule. To date, many com-
mercial products exist within this category, such as the Polar and Garmin families
for running and cycling. Within the literature low impact, core stability exercises
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such as Yoga [33] and Tai-Chi [59] have also been addressed which can have bene-
ficial impact in terms of overall improvement in flexibility and mobility, leading to
a decreased probability of falls within the elderly [130].

3.3 Healthcare

BSNs were originally envisioned to provide supportive technologies for the elderly
and infirm as well as for sufferers of both acute and chronic conditions. Within
home monitoring environments this can be achieved through the study of behaviour
profiles [5, 11], where deviations from what is considered “normal” can be detected.
Such information can offer a welcome window into the life of an elder, from both the
perspective of the subject and informal carers, such as immediate family and loved
ones – and can be provided through two tier systems similar to that illustrated in
Fig. 1. Recently, the fusion of ambient and wearable sensors has provided increased
accuracy activity recognition for home healthcare environments [93], and is more
robust to failure than using wearable or ambient sensors alone. BSNs may not only
find application for general monitoring and have been used in continuous studies
of gait for suffers of Parkinson’s disease [109, 84]. Such technology allows for
better disease management and provides a quantitative measure of the efficacy of
prescribed medication.

Where surgery may have affected patient motion, as in the case of hip and knee
surgery after injury, or after a stroke [134, 52], sensors can be used to evaluate
recovery by charting the difference between healthy and current gait. Data can then
be presented to rehabilitation specialists and to the users themselves to effect posi-
tive changes in behaviour that facilitate recovery. When combined with traditional
physiotherapy, this ensures that incorrect or damaging habits are not adopted by the
patient between visits.

One of the key applications of BSNs for elderly care management is in the detec-
tion of falls. To date, current research has provided mixed results, since it can be
difficult to distinguish between a relatively rapid motion, such as sitting down, and
an episodic fall. When this is coupled with the requirement for a high sensitivity in
fall detection, and the variety of falls which can occur within the home, the complex-
ity of the problem becomes apparent. Clearly, prevention is better than detection,
and we have seen BSNs deployed to determine both the factors that cause falls
[91] and develop exercises that can provide resilience to falls within the home [38].
For fall detection, many systems have been investigated with many different sens-
ing modalities. In [4], vibration sensors have been used with the reported capacity
to detect the vibration signature generated by the fall of a human body within a
15ft radius. Other approaches have utilised ambient sensors [115, 20] such as the
SINBAD (Smart Inactivity Monitor using Array-Based Detectors) system, which
leverages a wall mounted thermal imaging system for inactivity recognition. Where
subjects move around their home, an array of infra-red sensors track target size,
location and velocity. For fall detection, target motion is analysed for large variation
in vertical velocity before target inactivity is measured and compared to a map of
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Fig. 8 An elderly COPD sufferer participating in trials with an e-AR sensor. The ear mounted
sensor monitors the level of exercise performed and provides feedback, via computer, to both
patient and carer. This provides an insight into daily routine and helps subjects set achievable
goals, ensuring they remain active. This can significantly slow down the deterioration of health
and improve quality of life

acceptable inactivity periods in each segment of the camera’s field of view. This has
the effect of reducing the occurrence of false positives triggered by everyday events,
for example, when a person is sitting down or getting into bed.

The use of BSNs in the treatment of Chronic Obstructive Pulmonary Disor-
der (COPD) – a non-reversible chronic condition characterized by a shortness of
breath – has also recently been proposed [6]. COPD is caused by an inflammation
of the airways and, whilst chronic in nature, moderate exercise is a recommended
treatment which can slow deterioration, leading to a better quality of life. Exercise
can be detected by body worn sensors, such as the e-AR, which then provide feed-
back regarding exertion levels to users – creating a target based system for patients
who find self-motivation difficult. This can be beneficial in many ways. Firstly, it
forces sufferers to breathe more deeply, increasing their intake of oxygen. Secondly,
it increases the efficiency with which the body can utilise oxygen, thirdly, it encour-
ages motion which ensures that other regions of the body do not atrophy or become
prone to poor circulation and finally, it promotes a sense of wellbeing and reduces
the probability of co-morbidity with other conditions such as obesity and diabetes.

4 Conclusions

In this chapter, we have provided an overview of the current and emerging tech-
nologies for BSNs which are set to revolutionize the way in which people of all ages
manage their health. We have seen advances in sensing modalities which shall afford
the next generation of practitioners and users a much deeper insight into the work-
ings of the human body. This will pave the way for evidence based medicine and
truly preventative healthcare – where we may be able to identity key mechanisms of
disease before they cause irreversible damage. With such potential, considerations
for the designers of future BSNs are significant, and it has become clear that for
clinical adoption the responsibility for creating secure BSNs is a key concern.
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Whilst research in BSNs has achieved a great deal in a short period of time,
many challenges still lie ahead. As computational devices continue to shrink, we
must ensure that our community strives to push the boundaries of biosensing, bio-
compatibility and intelligent data processing to keep pace – only in this way will we
achieve our vision of transparent and continuous monitoring for all. Furthermore,
the requirement for autonomous, self-managing BSNs is likely to become more
important as the number of devices ubiquitously included within the environment
continues to grow. This is an exciting time for BSNs, and we believe that advances
in the field will highlight the need for future generations to take care of their most
precious possession – their body.
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