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Foreword

When a thermodynamic system is about to undergo a first order phase tran-
sition, nucleation is the appearance of the first tiny nuclei of the new phase
in a metastable mother phase. Microscopic bubbles appear in a liquid that
starts to boil, and droplets are formed in a condensing vapour. The solidifi-
cation of melted metal in a foundry, the transition from quark-gluon plasma
to hadron matter about 10 milliseconds after the Big Bang, and the freezing
of cryopreservatives as well as strawberries are all phase transitions initiated
by nucleation. Nucleation is a common and basic physical phenomenon, the
details of which are still poorly understood.

Nucleation phenomena have been studied for almost 300 years (Zettle-
moyer 1977). Understanding of the metastable states started to emerge when
Fahrenheit (1724) found out that the freezing point of water is not unique,
but depends on the freezing conditions. For example, boiled, air-free water
in sealed vessels was still liquid after being kept several hours at -9 ◦C. The
addition of ice to supercooled water initialised ice formation. During the eigh-
teenth and nineteenth centuries, other workers extended these observations
to other substances and systems. Lowitz (1795) and Gay-Lussac (1813) in-
vestigated supersaturation phenomena in aqueous salt solutions, and pointed
out the analogy with supercooled water. Gay-Lussac (1819) and Berthelot
(1850, 1860) discovered that the supersaturation of gases dissolved in wa-
ter, the superheating of a liquid above its boiling point, and the formation of
bubbles in over-expanded liquids are phenomena analogous to supercooling.
It was noticed that mechanical operations such as shaking could cause the
supersaturated solutions to crystallise, and that certain seed particles, like
the crystals of the new phase, caused crystallisation, while some other seed
particles were ineffective. Water in small capillary tubes or as small drops in
an immiscible liquid was found to remain in the liquid state far below 0◦C.
De Coppet (1875) measured the time lags before crystallisation occurred in
solutions having a known supersaturation. Ostwald (1879) divided supersat-
urated solutions into two classes, metastable and labile. In the absence of seed
nuclei, metastable solutions are unchanged for unlimited time periods, while
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labile ones crystallise spontaneously in a short period of time. For the same
solute in the same solvent, an increase in concentration turns a metastable
solution to a labile one. Metastable and labile regions were observed also in
supercooled melts. In 1880 Aitken (Aitken 1881, 1897) observed that dust and
salt particles act as condensation nuclei for water vapour in the atmosphere.
Von Helmholtz (1886, 1887, 1890) investigated the formation of mist in a
water vapour jet. If water vapour is led through a nozzle into air, it cools
down and becomes supersaturated. Normally, the jet is hardly visible, but in
the presence of, for example, dust or acid fumes the jet becomes densely white
or coloured.

Laplace (1806) laid a foundation for the classical theory of nucleation by
deriving the condition for the mechanical equilibrium of a surface separating
two phases. W. Thomson (later lord Kelvin) (1870, 1871) used the result
of Laplace and derived the Kelvin (Gibbs-Thomson) equation, which shows
that the saturation vapour pressure over a curved surface of a liquid is greater
than the saturation vapour pressure over a flat surface of the same liquid. J.J.
Thomson (1888) modified W. Thomson’s result and showed that the melting
point of a small crystal is lower than that of a larger one. Ostwald (1900)
adapted the Kelvin equation to show that the solubility of a crystal decreases
when the size of the crystal grows. The Kelvin equation led to qualitative
understanding of supersaturation and supercooling phenomena. The origin
of these phenomena was understood, but the process leading to the phase
change was still obscure. The first step toward understanding the kinetics of
phase change were taken by Gibbs (1906), who suggested that the stability
of the existing phase can be measured by finding out the work needed to
form a nucleus of the new phase within it. When a nucleus of sufficient size is
formed, it tends to grow further until the supersaturation is relieved. Volmer
and Weber (1925) recognised that the metastability is related to the kinetics
of the transition. They realised that the probability of formation of nuclei
is closely related to the formation energy of the nuclei. Szilard and Farkas
(Farkas 1927) described the kinetic mechanism of supersaturated vapours, and
during the thirties and the forties several workers investigated the kinetics of
phase transitions. The classical theory of nucleation was derived by Becker and
Döring (1935), and Zeldovich (1942, 1943). It is based on an approximative,
analytical solution of kinetic equations describing growth and decay of nuclei
in the metastable state.

Many of the pioneers of nucleation studies are responsible for remarkable
achievements that have made them widely famous:

• John Aitken (1839–1919), a Scottish physicist and meteorologist, built his
own apparatus, a koniscope, to study microscopic particles in the atmo-
sphere, and concluded that they are vital to the formation of droplets in
clouds and fogs. Atmospheric particles belonging to a certain size range
are still called Aitken mode particles (Gittings and Munro 2005).
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• French chemist Pierre Eugène Marcelin Berthelot (1827–1907) studied,
among other topics, thermochemistry, organic syntheses and the history
of alchemy. In 1868 he analysed samples of the Orgueil meteorite and re-
ported finding in them hydrocarbons comparable with the oils of petroleum
(EuCheMS 2000).

• German physicist Gabriel Daniel Fahrenheit (1686–1736) lived mostly in
England and Holland making meteorological instruments and, especially,
constantly improving thermometers. He is most famous from the thermo-
metric scale known by his name and still extensively used in the United
States (Encyclopædia Britannica 2005).

• French chemist Joseph Luis Gay-Lussac (1778–1850) studied properties of
gases. In 1808 he came to the conclusion that pressure of a certain amount
of gas is proportional to its temperature. This finding, preceding the full
equation of state of an ideal gas is know as Gay-Lussac’s law. He also took
part in the discovery of the element boron (Bowden and Michalovic 2000).

• American physicist Josiah Willard Gibbs (1839–1903), was the first to
write down the differential form of the first law of thermodynamics. He
derived a large variety of consequences from this equation spanning the
fields of elasticity, surface phenomena, phase transitions and chemistry. He
also wrote a classic book “Elementary Principles in Statistical Mechanics”
(Weart 1976).

• German physicist Hermann Ludwig Ferdinand von Helmholtz (1821–1894)
studied mechanics, heat, light, electricity and magnetism, and concluded
that all them are manifestations of energy, which he called force. He for-
mulated a theory which stated that electric and magnetic forces propagate
instantaneously at distance. He also tried to show that oxidation of food-
stuff was behind the muscular action of animals (O’Connor and Robertson
2001).

• Pierre-Simon Laplace (1749–1827), a French physicist and mathematician,
was active in many fields, which is testified by the various equations carry-
ing his name. He transformed Newton’s mechanics from geometrical nota-
tion to calculus, and proved that the solar system is stable. He was possibly
the first user of the phrase “it is easy to see” in derivations, and as usual,
could not himself fill the gaps afterwards without days of works. He studied
probability, the speed of sound, was first to calculate the value of integral∫∞

−∞
e−x2

dx =
√

π. He determined specific heats for many substances us-
ing a calorimeter of his own design, invented gravitational potential ψ
and showed that it satisfies Laplace’s equation ∇2ψ = 0. He worked on
unified theory of mechanical, thermal and optical phenomena. Laplace’s
integral transform is one tool for solving ordinary differential equations.
Laplace was for a while a minister of the interior during Napoleon’s reign
(Weisstein 2005).

• Wilhelm Ostwald (1853–1932) was born in Riga, but lived later in Ger-
many. He studied electrochemistry and chemical dynamics, and discovered
a law of dilution named after him. In 1909 Ostwald was awarded the No-
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bel Prize for Chemistry for his work on catalysis, chemical equilibria and
reaction velocities (Nobel Foundation 2005b).

• Leo Szilard (1898–1964) was Hungarian born, but later American physicist,
who took part in the studies of nuclear fission. During the second world war
he worked in the Manhattan project toward the nuclear bomb. After the
war he took part in designing nuclear reactors, then started campaigning
for world peace and moved to the field of biology (Simkin 1997).

• Joseph John Thomson (1856–1940) was an English physicist, who stud-
ied cathode rays. He determined that the rays consist of small negatively
charged particles, which, he realised, must be part of all matter. He thus
discovered the first subatomic particle, the electron, and suggested the
plum-pudding model for the atom. In 1906 he was awarded the Nobel
Prize in physics for his research into the discharge of electricity in gases
(Nobel Foundation 2005a).

• William Thomson (1824–1907), also known as lord Kelvin, was a Scottish
physicist. He studied thermodynamics, and proposed the absolute temper-
ature scale scientists most often use. He also observed what is now called
the Joule-Thomson effect, namely the decrease in temperature of a gas
when it expands in a vacuum. He calculated the age of the Earth based on
its cooling rate assuming that it was originally part of the Sun. He became
rich and was created Baron Kelvin of Largs in 1866 due to his participa-
tion in a telegraph cable project after his mirror-galvanometer was used
in the first successful sustained telegraph transmissions in a transatlantic
submarine cable (O’Connor and Robertson 2003).

• Max Volmer (1885–1965) was a German physicist, who studied electro-
chemisty and gave his name to the Butler-Volmer equation describing re-
actions controlled by electrochemical charge transfer process. After the
second world war he was forced to work in the Soviet Union in the area
of atomic physics 1945–1955, after which he returned to (East) Germany
(Katz 2003).

• Yakov Borisovich Zeldovich (1914–1987) was a Soviet physicist. He studied
the oxidation of nitrogen in explosions and other explosion related phe-
nomena like shock-waves and flame propagation. He also took part in the
study of fission in the decay of uranium. Later he took an interest in quark
annihilation and neutrino detection in cosmology. In 1967 he proposed that
the universe was originally homogeneous and isotropic, but expansion has
led to non-isotropy (Tenn 2003).



1

Fundamentals of thermodynamics

In this chapter we briefly list all the thermodynamic concepts needed in classi-
cal nucleation theory. The readers should make sure that they are familiar with
this fundamental thermodynamic machinery and, if needed, refer to textbooks
of thermodynamics to fully understand the basics before heading forward to
phase equilibrium and nucleation theory. This chapter also serves to introduce
the notation used in this book.

1.1 Phases

Different phases have the same molecules or mixtures in them, but they are
ordered differently. Different order means that

• Mobility of molecules with respect to their neighbours differs
• Correlations of molecular locations and orientations differ

If we know the position and orientation of one certain molecule, how much
does that tell us about the neighbouring molecules?

Gas – not a lot
Liquid – somewhat more
Solid state – almost everything

Order increases

We will use the words gas and vapour interchangeably. To be really strict,
vapour is a gas that can condense, so it depends on temperature whether
some gas can be called a vapour as well. Water is clearly a vapour at room
temperature, but argon only at very low temperatures. Fluid is a common
word for liquid and gas.

The order parameter measures the order.

• In gas-liquid-solid transition: the order parameter is density of molecules
ρ = n = N

V [1/ m3] or volume per molecule v = 1
ρ = V

N [ m3]
• In magnetic systems the order parameter is magnetisation, see Fig. 1.1
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• In a binary alloy the order is the pattern of molecules in the lattice, see
Fig. 1.2.

magnetic dipoles

disordered

ordered

Fig. 1.1. Order in magnetic systems.

ordered disordered

Fig. 1.2. Order in binary alloys.

1.2 System, state and state variables

A system is defined as the area we focus on. It is separated from the rest of
the universe, environment, by a real or an imagined wall. Examples:

• Inside a rigid container, the volume and number of molecules con-
stant,

• Inside an imagined box, the volume constant, number of molecules
change.

• A certain set of molecules, the number of molecules constant, volume
changes, imagined wall moves so that it encompasses selected molecules.

• Flexible container (“balloon”) – volume changes, number of molecules con-
stant.

The system interacts with the environment in various ways. The system
can be

• Isolated: no interaction which means no work is done by the system to the
environment or by the environment to the system, and there is no heat or
particle exchange.

• Insulated: no heat exchange.



1.2 System, state and state variables 3

• Closed: no particle exchange.
• Open: both energy (work and heat) and particles can come and go.

State is short for equilibrium state, where nothing changes in the macro-
scopic properties of the system, nothing moves macroscopically (microscopic
thermal motion always exists above 0K temperature), no heat or particles
flow. State is defined by a set of measurable quantities, variables of state, for
example volume (V), pressure (P), temperature (T) and number of molecules
(Ni). All the other quantities describing the system can be calculated when
the variables are measured. The calculated properties are uniquely defined for
each state and they are called functions of state. For example:

U energy
S entropy
ρ = N

V density
µ chemical potential

⎫⎪⎪⎬
⎪⎪⎭ these can not normally be measured directly

All the measured quantities are not necessarily independent. Equation of
state gives the dependences, For example: V = V (P, T,N) or P = P (T, V,N)
or T = T (P, V,N) or N = N(T, P, V ). One variable can be chosen to be a
function of state. We measure the ones that are easy to measure and calculate
the rest. So the division between variables and functions of state is arbitrary –
we can choose. Variables and functions are divided into extensive and intensive
quantities as shown in Table 1.1

Table 1.1. Intensive and extensive quantities.

Extensive: put two similar systems together and the quantity
in the joint system is double the original

N + N = 2N

V + V = 2V

U + U = 2U

S + S = 2S
Intensive: the quantity does not change when doubling the system size

T + T = T

P + P = P
ρ + ρ = ρ

µ + µ = µ

NOTE: Heat and work are not quantities (variables or functions) of state:
there is no point in asking how much heat/work is in a system with certain T ,
P and N . Only changes of heat ∆Q or work ∆W in a process are reasonable
concepts. So do not ever write Q or W , only ∆Q, ∆W , d-Q and d-W . “d-” tells
that change of heat/work between two states A(PA,TA,NA) and B(PB,TB,NB)
depends also on what kind of process took the system from A to B.
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1.3 What is chemical potential?

The definition of chemical potential of component i is (see also p. 11)

µi =

(
∂U

∂Ni

)
S,Ni�=j ,V,A

.

The chemical potential µi is the change in system energy when entropy, num-
ber of particles of components j �= i, surface area and volume are kept con-
stant, and one molecule of component i is added to the system. So it is the sum
of kinetic and interaction energies of one molecule in a certain system. The
chemical potential depends on system temperature (how much kinetic energy
a molecule has), pressure (how close a molecule is forced to other molecules),
and composition (what kind of molecules our molecule i interacts with). It
is difficult to imagine how we could arrange a experimental set-up where en-
tropy is constant. Thus a more practical definition of chemical potential can
be given in terms of free energies which will be introduced in section 3.1.

The most commonly used definition is in terms of the Gibbs free energy
G (p. 46)

µi =

(
∂G

∂Ni

)
T,P,Ni�=j

. (1.1)

As soon as we understand what is Gibbs free energy, it is easy to imagine how
to use this definition: keep the temperature and system pressure constant, add
in one molecule of component i and measure the Gibbs free energy change.
Another definition is

µi =

(
∂F

∂Ni

)
T,V,Ni�=j

,

where F is the Helmholtz free energy (see p. 46).

1.4 What is entropy?

Entropy S describes the macroscopically hidden microscopic possibilities of
variation in the system. Let us think we can measure only the total energy
U of a system, but we know we have 5 particles and 3 possible microscopic
energy levels for each particle with energies 0 J, 1 J and 2 J (see Fig. 1.3):

• If the macroscopic state is U = 10 J we have to have all particles on the
2 J level, 10 J = 5 × 2 J, thus there is only one possibility.

• If the macroscopic state is U = 5 J we can have:
2×2 J + 1×1 J + 2×0 J
1×2 J + 3×1 J + 1×0 J
5×1 J

= 3 possibilities

• Try U = 9,8,7,6,4,3,2,1 J yourself.
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2 J

1 J

0 J
Fig. 1.3. Diagram of energy levels.

The entropy is defined as

S = k lnW, (1.2)

where W is the number of hidden microscopic combinations and k is the
Boltzmann constant 1.38·10−38 J/K. The unit of entropy is that of the Boltz-
mann constant [S] = J/K. For the example illustrated in Fig. 1.3 we have
U = 10 J → S = k · ln1 = 0
U = 5 J → S = k · ln3 > 0.

What is the number of possibilities for a gas with volume V and particle
number N to have energy U? Positions and velocities of all molecules can be
arbitrary, only V , N and U are restricted. Is the number infinite? The answer
is no, because of quantum mechanics: a particle in a box can only have certain
velocities and the place can be determined only to an accuracy given by the
Heisenberg uncertainty principle. Thus entropy is not infinite either.

NOTE 1:{
Temperature T is proportional to the total kinetic energy of particles
Energy U is the total kinetic + interaction energy of particles

kinetic energy can transform to potential energy and back, but the total energy
is conserved in an isolated system.

NOTE 2: Division between what is macroscopic and what is microscopic
depends on the measurement tools/level of modelling or thinking: how small
details we can and want to measure and calculate.

1.5 Laws of thermodynamics

The thermodynamic theory is build on four cornerstones called the laws of
thermodynamics which are listed here.

Zeroth law : “Temperature and thermometer exist.”

First law : “Conservation of energy.”
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dU = d-Q − d-W +
∑

i

µidNi. (1.3)

See Fig. 1.4 for the sign conventions of the quantities in eq. (1.3) listed in

SYSTEM

dS
dQ

dW

dNi

Fig. 1.4. Sign conventions of flows.

Table 1.2

Table 1.2. Quantities needed to formulate the first law of thermodynamics.

dU Change in internal energy of system (function of state)
d-Q Tiny amount of heat that has flown into the system.

d-Q < 0 if heat flows out of the system
d-W Tiny amount of work performed by the system.

d-W < 0 if work is performed by the surroundings
µi Chemical potential for species i in the system

dNi Number of molecules of type i that have moved into the system.
Ni the number of molecules in the system.

In this book we handle systems with many components i = 1,2,...,n. For
example in a three component system
N1 is number of water molecules
N2 is number of sulphuric acid molecules
N3 is number of ammonia molecules

Second law: “For an isolated system, all possible processes occur so that
total entropy increases in time.”

dS
dt

≥ 0. (1.4)
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Spontaneous processes are the ones that happen in an isolated system
without any involvement of the environment. In equilibrium no spontaneous
processes are possible: this implies that it is not possible to increase S by
microscopically reorganising the system while the macroscopic state stays
unchanged. Entropy has its maximum possible value at given conditions,
S = Smax.

Equilibrium in an isolated system ⇔ S has its maximum value

Third law: “When we approach 0 K entropy goes to zero.”

1.6 Reversible processes, volume work and surface work

Reversible process: a process that can also occur in a reversed direction. In the
reversed process all the changes that occurred in the system and also in the
environment must be undone. For a reversible process in an isolated system:

dS ≥ 0 Process possible
−dS ≥ 0 Reverse process is also possible

The only solution to satisfy both of these conditions is to have dS = 0.

Process reversible + system isolated guarantees that S is constant

A reversible process has to be very slow, quasi-static, and always infinitely
close to an equilibrium state. For a reversible process heat flow into the sys-
tem d-Q = TdS. While d-Q is often problematic to define or calculate, as it
depends on how the process is conducted, TdS is the change in the function
of state, and thus unambiguous.

Volume work: Work done when the volume V of the system is changed by
dV (reversibly)

d-WV = PdV

dV > 0 V increases, system “pushes out” – performs work to the environment.
Work done by the system d-WV = PdV > 0 and energy change of the system
dU = −d-WV < 0, which is logical since system loses energy when it expands.

Surface work: Work done when the area A separating two phases is changed
by dA (reversibly)

d-WA = −σdA

σ is surface tension, and its units are [σ] =
[E]
[A]

= J
m2 = Nm

m2 = N
m . The

thermodynamic definition (see p. 11) of surface tension is
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σ =

(
∂U

∂A

)
S,Ni,V

.

Surface tension is the energy change of the system when entropy, number of
particles and volume are kept constant, but the surface area in the system
is increased. Thermodynamic surface tension has natural units J/m2, energy
per unit area. This energy arises due to the fact that molecules on the surface
of, for example, some liquid feel less attraction from their neighbours than
the molecules in the interior of the bulk liquid. Attraction is weaker because
surface molecules are not fully surrounded by other liquid molecules. Weaker
attraction means less negative energy, so the energy of the system rises because
of surface formation.

Mechanically, surface tension is the magnitude F of the force exerted par-
allel to the surface of a liquid divided by the length L of the line over which
the force acts, see Fig. 1.5. Surface tension acts to make the surface area as

F

L

FLower film surface

Upper film surface

View from above

Side view

Fig. 1.5. Apparatus, consisting of a U-shaped wire frame and a wire slider, that can
be used to measure the surface tension of a liquid (Wiley InterScience 1999-2005).

small as possible. The natural unit for mechanical surface tension is N/m,
force per length unit. The values of thermodynamic and mechanical surface
tension should be equal if the former is defined at the surface of tension, see
p. 57.

A practical way of obtaining the value of gas-liquid (or gas-solid) surface
tension from molecular interactions, for example in computer simulations, is
to first calculate the energy of a cubic sample of a liquid, which is in the
middle of a larger liquid container. Then the cube is divided into two parts,
which are taken far away from each other, both still surrounded by liquid from
all other sides but one (see Fig. 1.6). The area of the “cut” surface is A and
the energy difference between the unified and split liquid cubes is ∆E, and
the surface tension is σ = ∆E/(2A).

Surface tension is normally positive σ > 0, and so is the surface area
A > 0, thus when we increase the surface area, surface work is negative
d-WA = −σdA < 0 and the energy change of the system is positive dU =
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A

A

Fig. 1.6. Liquid cube as a whole (left) cut into two halves which are taken far from
each other (right). The free surface of the sample cube after the split is two times
A. The cube is immersed in a large container of the same liquid.

−d-WA = σdA. Again this is logical since increasing the surface area puts more
energy to the system (Think of a balloon: we have to do work to increase the
surface area. In thought experiments a balloon skin is often a good analogy
to use for surface tension).

NOTE: There can be other kinds of work as well, like stirring (typically
not reversible).

1.7 Why is volume work not always P∆V ?

It may sound strange that d-W = PdV only for
a reversible process. Think of a container filled
with gas: When the lid is allowed to move, why
is the work not PdV ?

Because the thermodynamic pressure P = −(∂U
∂V

)
is not equal to the average

force F per area of the lid PF = F
A , which is mechanical pressure on the

lid. The mechanical pressure and density of molecules is different in different
places in the container. The molecules do not move instantly to the extra
space when the lid moves. If the system is heated, temperature rises on one
side of the system first and then the heat transports to the rest of the system:
temperature is not the same everywhere, and the process is irreversible. When
the heating is very slow, the process is almost reversible.
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For an irreversible process : d-Q < TdS, d-W < PdV

dU = d-Q − d-W +
∑

µiNi is still the same for both irreversible and re-
versible processes if the initial and final states are the same. It has to be, since
U is a function of state and dU depends only on final and initial states, not
on the process.

Reversible processes never happen in real life, but we can use them to
calculate changes in functions of state between initial and final equilibrium
states!

1.8 Fundamental equation

We know an expression for the differential of energy, dU , but how does energy
itself, U = U(S, V,Ni, A), look like as a function? This is the question we aim
to answer. We start with the first law for a reversible case

dU = TdS − PdV +
∑

i

µidNi + σdA. (1.5)

The derivation of the fundamental equation is based on realising which of the
variables and functions of state in the first law are intensive and which are
extensive:

INTENSIVE
⇓ ⇓ ⇓ ⇓

dU = T dS− P dV +
∑

i µi dNi+ σ dA
⇑ ⇑ ⇑ ⇑

EXTENSIVE

The extensive variables S, V , N and A can be chosen as variables of state.
U , T , P , µ and σ depend on them as functions of state.1 Let us put λ similar
systems together. Energy and all other extensive variables scale with λ:

λU = U(λS, λV, λNi, λA).

We take the derivative of this equation with respect to λ:

U =S
(

∂U

∂(λS)

)
λV,λNi,λA

+ V

(
∂U

∂(λV )

)
λS,λNi,λA

+Ni

(∑
i

∂U

∂(λNi)

)
λV,λNj �=i,λS,λA

+ A

(
∂U

∂(λA)

)
λV,λNi,λS

1 NOTE: Entropy is not easy to measure, but let us choose it for a moment as a

state variable
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and then set λ = 1:

U =S
(

∂U

∂S
)

V,Ni,A

+ V

(
∂U

∂V

)
S,Ni,A

+ Ni

(∑
i

∂U

∂Ni

)
V,Nj �=i,S,A

+ A

(
∂U

∂A

)
V,Ni,S

.

(1.6)

We can calculate
(

∂U
∂S
)

V,Ni,A
from the first law: set dV = dNi = dA = 0 (V ,

Ni and A constants):

dU

⏐⏐⏐⏐
V,Ni,A

= TdS
⏐⏐⏐⏐

V,Ni,A

⇒
(

∂U

∂S
)

V,Ni,A

= T.

Similarly we can calculate derivatives of energy with respect to volume, par-
ticle numbers and area of the system(

∂U

∂V

)
S,Ni,A

= −P, note here the sign!

(
∂U

∂Ni

)
S,Nj �=i,V,A

= µi

and (
∂U

∂A

)
S,Ni,V

= σ.

These are the actual thermodynamic definitions of T , P , µi and σ. We sub-
stitute T , P , µi and σ in the place of derivatives in eq. (1.6) and we get the
fundamental equation

U = TS − PV +
∑

µiNi + σA. (1.7)

Intensive variables tell us how much does the energy of the system change,
if everything else is kept constant but one of the extensive variables changes
as shown by Table 1.3.

Table 1.3. Relation of intensive quantities to energy changes in processes where
various extensive variables are kept constant.

Constants Changing parameter Energy change

V , Ni, A S T
S, Ni, A V −P
V , Nj �=i, A, S Ni µi

V , Ni,S A σ
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1.9 Gibbs-Duhem and Gibbs adsorption equation

We now derive consistency relations for the changes in intensive quantities. For
systems without surface energy, the consistency relation is called the Gibbs-
Duhem equation and for systems with surface energy, but no volume energy,
the relation is called the Gibbs adsorption equation.

Take the fundamental equation (1.7) for a system with no surface energy
term

U = TS − PV +
∑

µiNi

and form its total differential

dU = TdS + SdT − PdV − V dP +
∑

dµiNi +
∑

µidNi. (1.8)

We compare result (1.8) to the reversible version of the first law of thermo-
dynamics (1.5)

dU = TdS − PdV +
∑

µidNi

and notice that the following Gibbs-Duhem equation must always be satisfied:

SdT − V dP +
∑

Nidµi = 0. (1.9)

In an isothermal case this means∑
Nidµi = V dP. (1.10)

For a system with surface energy, but no volume energy, the fundamental
equation has the form

U = TS +
∑

µiNi + Aσ

and its total differential is

dU = TdS + SdT +
∑

dµiNi +
∑

µidNi + dAσ + Adσ.

Again this is compared with the 1st law (eq. 1.5) :

dU = TdS +
∑

µidNi + σdA

which leads to the Gibbs adsorption equation

SdT + Adσ +
∑

Nidµi = 0. (1.11)

For an isothermal processes this reduces to the Gibbs adsorption isotherm∑
Nidµi + Adσ = 0. (1.12)
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The Gibbs-Duhem and the Gibbs adsorption equation reflect the fact that
thermodynamic relations require different variables/functions of state to be
connected in a certain way. As an example we can think along the following
lines: Definitions of pressure, volume, number of molecules and temperature
feel intuitively clear to us. Entropy is defined through its connection to statis-
tical mechanics (number of microstates). We may have measured or otherwise
arrived at an expression for what we think is chemical potential, but if the
changes of this “chemical potential” do not follow the Gibbs-Duhem equation
when pressure and temperature are changed, we can not call it a “chemical
potential” in a thermodynamic sense. Similar arguments can be used in the
case of surface tension. For spherical droplets, the value of surface tension
depends on the choice of the so-called dividing surface, but only one choice,
surface of tension, is consistent with standard thermodynamics, as will be seen
on p. 57.

The connection between different variables can be put to use: the Gibbs-
Duhem equation with constant temperature and pressure for the two-com-
ponent case reads

dµ1N1 + dµ2N2 = 0.

If we manage to measure the chemical potential for component 1 µ1 as a
function of N1 and N2, this equation can be used to calculate the thermody-
namically consistent µ2, and there is no need to measure it. If we can measure
both chemical potentials, this equation provides means to check the quality
of our measurements.

Problems

1.1. We have five indistinguishable particles and three energy levels 0 J, 1 J,
and 2 J. Calculate the entropy for cases where the total energy is 0, 1, 2, 3,
4, 5, 6, 7, 8, 9 and 10 J. Plot the entropy as a function of energy.

1.2. A pot under the Earth’s gravity field (g = 9.81 m/s2) contains gas and
has a moving frictionless lid (which does not let gas out even when moving).
There are three masses m on the lid.
a) We remove first one mass and then another one. How much work does the
gas do altogether?
b) We remove two masses simultaneously. How much work does the gas do
now?
Note that the processes in a) and b) are irreversible. Do not calculate the work
using the equation of state or other thermodynamic information about the gas,
because you cannot do so in a process passing through non-equilibrium states.
c) What is the way of removing 2m that would give maximum work?
d) What would be the total volume change and work done for an ideal gas
and isothermal process where PV =constant. (Initial state is that with three
masses and in the final state there is one mass on the lid.)
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e) What would be the total volume change and work done for an ideal gas
and adiabatic process (no heat exchange with environment, PVγ=constant,
where γ is the adiabatic constant.)

1.3. Let us have a system obeying virial 3 of state P = kT 1
V

(
1 + B

V

)
with

chemical potential given by µ = kT
(
A + ln 1

V + 2B
V

)
, where A and B are

constants. Compare the partial derivatives(
∂µ

∂T

)
V,N

and (
∂µ

∂T

)
P,N

.
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Phase equilibrium

Before studying the process of phase transitions and nucleation, we need to
understand phase equilibrium in detail. In this chapter we show how the re-
quirement for maximum entropy can be used to derive phase equilibrium
conditions for cases where the two phases are separated by a flat or spheri-
cal surface. We also define saturation ratio and activities which describe how
far from equilibrium a liquid-vapour system is, and derive a practical form
for spherical liquid-vapour equilibrium conditions. As a practical example, we
study phase equilibrium in van der Waals fluid.

2.1 Phase equilibrium for a flat surface

First we look at an insulated rigid (= isolated) box, with two phases l and g
separated by a flat surface (constant area A, dA = 0). The system consists
actually of three parts: phase l, phase g and the surface s. Subscripts l, g and
s refer to quantities associated with different phases. The energy of phase l(g)
is Ul(g), entropy is Sl(g) and the number of molecules in that phase is Ni,l(g).
The volume of the phase is Vl(g). The surface also has some energy Us and
entropy Ss, and some molecules Ni,s can be on the surface, not in either of
the phases l or g. The surface has no volume, only area A. We study reversible
processes where the surface moves. The energy change of the surface in such
a process is

dUs = TsdSs + σdA +
∑

i

µi,sdNi,s.

The energy chance of phase g is

dUg = TgdSg − PgdVg +
∑

i

µi,gdNi,g

and the energy change for phase l is
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Tg

Tl Pl

V N S Ug i,g g g

V N S Ul i,l l l

Pg

Ts A N S Ui,s s s�

Fig. 2.1. Two phases l and g separated by a flat surface in an insulated and rigid
container.

dUl = TldSl − PldVl +
∑

i

µi,ldNi,l.

We can solve the entropy changes from these three equations and get

dSs =
1

Ts

(
dUs − σdA −

∑
i

µi,sdNi,s

)

dSg =
1

Tg

(
dUg + PgdVg −

∑
i

µi,gdNi,g

)

dSl =
1

Tl

(
dUl + PldVl −

∑
i

µi,ldNi,l

)
.

We get the total entropy of the isolated system by adding up the three entropy
contributions

dStot = dSs + dSg + dSl.

We look for equilibrium, so in an isolated system the total entropy must have
a maximum Stot = Stot,max and for reversible processes dStot = 0.

NOTE: Why not dSs = dSg = dSl = 0 as well? Because phases g, l and
surface are not isolated from each other. They exchange energy and particles,
but the whole system is isolated (dStot = 0). The insulated and rigid box does
not allow energy to escape.

When we search for the maximum entropy we have to keep in mind the
following constraints:
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1. Energy is constant

dUtot = dUs + dUg + dUl = 0 ⇒ dUs = −(dUg + dUl).

2. The total volume of the box is constant

dVtot = dVg + dVl = 0 ⇒ dVl = −dVg.

3. The total molecular numbers are constant

dNi,tot = dNi,s + dNi,g + dNi,l = 0 ⇒ dNi,s = −(dNi,g + dNi,l).

4. The area of the flat surface does not change when it
moves without changing its shape

dA = 0.

Now we put all these constraints into the expression for total entropy and
arrive at

dStot =

(
1

Tg
− 1

Ts

)
dUg +

(
1

Tl
− 1

Ts

)
dUl +

(
Pg

Tg
− Pl

Tl

)
dVg

+
∑

i

(
µi,g

Tg
− µi,s

Ts

)
dNi,g +

∑
i

(
µi,l

Tl
− µi,s

Ts

)
dNi,l.

(2.1)

Next we will apply a bit of reasoning very typical in thermodynamics. dStot

has to be zero for all directions: If we change only Ug, but keep Ul, Vg, Ni,g

and Ni,l constant, dStot has still to be zero.

dStot =

(
1

Tg
− 1

Ts

)
dUg,

dUg �= 0 → Tg = Ts.

Similarly, if we change only Ul we get

Tl = Ts(= Tg). (2.2)

and by changing only one of the other variables we get

changed result

Vg :
Pg

Tg
= Pl

Tl
⇒ Pg = Pl (2.3)

Ni,g : µi,g = µi,s

Ni,l : µi,l = µi,s(= µi,g) (2.4)

NOTE: “All directions”-reasoning is only possible if variables Ug, Ul, Vg,
Ni,g and Ni,l are independent; one of them can be changed without affecting
the others. All the constraints have been used before eq. (2.1). For example set
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Ug, Ul, Vg, Vl ,Ni,g and Ni,l are not independent. We have to get rid of Vg or
Vl before applying the trick.

The conclusion is that the chemical potentials, temperature and pressure
have to be same in all the phases, also the surface phase. Generally in equilib-
rium temperature and chemical potentials have to be constant in space and
time. Otherwise heat or particles flow. Pressure has to be constant in time,
but not in space as we shall soon see.

h

Fig. 2.2. Schematic picture of a glass of water.

NOTE: Many textbooks claim that pressure has to be constant also in
space, but this is erroneous. Here is a counter example: Hydrostatic pres-
sure at a depth h in a glass of water (see Fig. 2.2) with density ρ is
P = ρgh + Patmosphere, where g is the gravitation acceleration. This is an
equilibrium system. A time-independent force field (gravity) changes the pic-
ture for pressure. A column of air in the Earth’s atmosphere, however, is not
an equilibrium system. Why? There is a temperature gradient and heat flows.

dS = 0 is not enough to guarantee that we have a maximum of S. It
could be a minimum or an inflection point without being an extrema at all,
or minimum in direction of one variable and maximum in another. For a pure

maximum we also have negative second derivative ∂2S
∂x2

i

< 0 for all independent

variables xi. When the following definitions (for a system with no surface phase
A = 0) are taken into account

CV =
(∂U
∂T

)
V,N

=
(d-Q
∂T

)
V,N

heat capacity at constant volume

KT = − 1
V

(∂V
∂P

)
T,N

isothermal compressibility1

the requirements that the second derivatives of entropy are negative lead to
the stability conditions

CV > 0 Temperature increase requires heat, does not release it
KT > 0 Pressure increase makes volume smaller( ∂µi
∂Ni

)
T,V,Nj

> 0 Chemical potential of a component increases

if the number of molecules increase

1 Sometimes in the literature, compressibility is defined with the opposite sign.
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NOTE: These stability conditions are only valid for the flat surface case!
If the stability conditions are not valid, every small change from equilib-

rium moves the system far away from the original state. Common sense tells
us that CV > 0 and KT > 0 are very sensible conditions, because added heat
increases temperature and added pressure reduces volume. It is also reason-
able that pushing one molecule into a certain volume requires more energy
the more molecules are already present.

If the system is in an unstable equilibrium, small deviations cause a per-
manent change. In stable equilibrium entropy has a real maximum and if the

-S

stable indifferent unstable

Fig. 2.3. Schematic picture of stable, indifferent and unstable equilibrium states.

system spontaneously or by some external interaction is really moved from
the equilibrium, entropy must decrease.

2.2 Phase equilibrium for a spherical surface

Now we look at another, more interesting case, where a spherical surface
separates the phases. Simple geometric reasoning relates the radius, area and
volume of the sphere to each other: radius of the sphere is r and its area is thus
A = 4πr2. When radius r changes by an infinitesimal amount dr, the change
in the surface area is dA = 8πrdr. The volume of the sphere is Vl = 4

3πr3,
and with the radius change dr it changes by dVl = 4πr2dr.

We proceed in the same way as when deriving eq. (2.1) for the change of
total entropy. The only difference is that now we also have a term − σ

Ts
dA aris-

ing from the energy change of the surface (in section 2.1 surface area change
dA was zero, now it is not):

dStot =

(
1

Tg
− 1

Tg

)
dUg +

(
1

Tl
− 1

Ts

)
dUl

+

(
Pg

Tg
− Pl

Tl

)
dVg +

∑
i

(
µi,g

Tg
− µi,s

Ts

)
dNi,g

+
∑

i

(
µi,l

Tl
− µi,s

Ts

)
dNi,l − σ

Ts
dA

= 0 for equilibrium.

(2.5)
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l

A
g

Fig. 2.4. Two phases l and g separated by a spherical surface with area A in an
insulated and rigid container.

It is important to notice that we have not used all the constraints yet, and Vg

and A are still coupled: total volume stays constant which means dVg+dVl = 0,
and leads to dVg = −dVl = 4πr2dr and the area change dA = 8πrdr can be

expressed in terms of the volume change as dA = 2dVl
r . Substitution of the

last relation to eq. (2.5) gives

dStot =

(
1

Tg
− 1

Tg

)
dUg +

(
1

Tl
− 1

Ts

)
dUl

+
∑

i

(
µi,g

Tg
− µi,s

Ts

)
dNi,g

+
∑

i

(
µi,l

Tl
− µi,s

Ts

)
dNi,l

+

(
Pg

Tg
− Pl

Tl
+

2σ

Tsr

)
dVl

= 0 for equilibrium.

Now (but only now!) we can use the “all directions” trick and get the old re-
sults (2.2) and (2.4) for temperature and chemical potential

Tg = Tl = Ts, (2.6)

µi,g = µi,l = µi,s (2.7)

and a new one
Pg

Tg
− Pl

Tl
+

2σ

Tsr
= 0
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which leads to the Laplace equation

Pl = Pg +
2σ

r
. (2.8)

Thus the pressure is higher inside the sphere (assuming σ > 0). This pressure
difference provides the outward force to balance the tendency of the sphere
to shrink because of surface tension (think about a balloon again).

For the future: we have overlooked an impor-
tant issue: where should the surface be placed?
For example: a liquid droplet does not change
to gas abruptly, but the density decreases grad-
ually. Where do we say is the surface of the
droplet? More about this issue later on p. 55.

2.3 Gibbs phase rule

How many phases can be in equilibrium at once? Let us have n particle types
and i = 1, ..., n as the index of the molecule/atom type, and denote number of
phases with p, with k = 1, 2, .., p as the index of the phase. Intensive variables
in each phase are Pk, Tk, x1,k, x2,k, ...xn,k, where mole fractions xi,k are
defined as

xi =
Ni∑
i

Ni

.

xn is not a free variable if x1, x2, ... xn−1 are already set, because xn =
1 −∑n

i=1 xi (If we know that in a two-component system the mole fraction
of sulphuric acid is 0.53, the mole fraction of water is necessarily 0.47). A
complete list of independent variables reads

k = 1: T1,P1,x1,1, x2,1, ... xn−1,1

k = 2: T2,P2,x1,2, x2,2, ...xn−1,2

.

.

.
k = p: Tp,Pp,x1,p, x2,p, ...xn−1,p

Total number of variables is thus Vn = 2 × p + (n − 1)p = p(n + 1).
Conditions which must be valid for all k,k′ pairs are:

Tk = Tk′

Pk = Pk′(±2σ
r )

µi,k = µi,k′ for every i
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For pressures the 2σ
r term arises if the surface is curved, + sign corresponds

to a convex surface of liquid, – sign a concave surface.
It is enough to require that in all the phases the temperature, pressure and
chemical potentials for every component are equal to their value in the phase
labelled k=1.

µi,2 = µi,1
}

(p − 1)n

} number of
conditions
Cn =
(n+2)(p−1)

µi,3 = µi,1

µi,p = µi,1

T2 = T1
}

(p−1)T3 = T1

Tp = T1

P2 = P1 ± 2σ1,2
r
}

(p − 1)P3 = P1 ± 2σ1,3
r

Pp = P1 ± 2σ1,p
r

For a solution to exist we have to have at least as many variables as conditions
Vn ≥ Cn

p(n + 1) ≥ (n + 2)(p − 1)

pn + p ≥ pn − n + 2p − 2

0 ≥ p − n − 2.

This is the Gibbs phase rule

p ≤ n + 2. (2.9)

For a one-component system (n = 1) p ≤ 3, in other words at most three
phases can be simultaneously in equilibrium.

2.4 Phase diagrams

A phase diagram is obtained by drawing the phase equilibrium pressure Pe

that is the same in all phases as a function of phase equilibrium temperature
T which is also the same in all phases (for flat surface, one-component case):
For all components i and all pairs of coexisting phases k and k′ these Pe and
T have to satisfy

µi,k(Pe, T ) = µi,k′(Pe, T ).

The point marked with TP in Fig. 2.5 is the triple point. All the phases
allowed by the Gibbs phase rule co-exist. C is the critical point. If T > Tc,
gas and liquid are not distinguishable as different phases. Vapour that is
in equilibrium with liquid or solid is called saturated vapour (or equilibrium
vapour). The pressure of this vapour, Pe, is the saturation vapour pressure
(often misleadingly shortened to “vapour pressure”) or equilibrium vapour
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Pe

TTc

gas

liquid
solid

TP

C

Fig. 2.5. Phase diagram in one component system.

pressure. If the pressure of vapour is higher than Pe, the vapour would like
to turn to liquid. Why does it always not? The answer to this requires the
concept of free energies and the way the transformation happens is called
nucleation.

2.5 Saturation ratio and activities

Although the theory is applicable to any first-order phase transition, the main
examples of this book concern gas-liquid transition. Liquid and gas phase
activities, and the saturation ratio are concepts used to describe how far from
the equilibrium state the vapour phase is when in contact with liquid. It is
important to understand the definitions of the concepts well to avoid confusion
when working with gas-liquid (or liquid-gas) nucleation.

2.5.1 Pure liquids

For a one-component system, the saturation ratio is defined as

S = Pg/P p
e ,

where Pg is the actual partial vapour pressure of component and P p
e = P p

e (T )
is the saturation vapour pressure over a flat surface of pure liquid (superscript
p refers to pure compound).

NOTE: Saturation vapour pressure is a temperature-dependent property
of the liquid! The liquid determines how dense a vapour should be above its
surface in an equilibrium situation.
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If there are more molecules/atoms in the vapour than equilibrium would
allow, the vapour is supersaturated S > 1. Supersaturation S − 1 is often used
instead of S. Relative humidity is defined as RH = Sw × 100%, and relative
acidity as RA = Sa × 100%. Saturation means RH = 100% ⇔ Sw = 1 and
water has equilibrium vapour pressure. If S < 1 and there is a liquid pool
present, liquid evaporates until there is none left (e.g. drying the laundry),
or saturation is reached, and S = 1 (drying laundry in a poorly ventilated
bathroom). If S > 1, vapour condenses if it is possible. This requires

• liquid pool present
• other surfaces to condense on available (macroscopic, like glasses or win-

dows or microscopic, like small dust particles)

otherwise the excess molecules are trapped in the vapour which tries to nu-
cleate.

Saturation vapour pressure is a very strong function of temperature

Pe(T ) ∼ exp[f(T )], (2.10)

where f(T ) is an increasing function of temperature, typically a polynomial
of T and/or 1/T . Thus the amount of vapour that “fits” to the gas phase
depends strongly on temperature. If the concentration of vapour molecules
in the room stays constant, but the temperature rises, the saturation ratio
goes rapidly down. This can be seen by measuring RH in a sauna (doors and
windows closed) when the temperature is rising/dropping!

2.5.2 Liquid solution

For mixtures, the saturation vapour pressure of component i is expressed as

Pi,e(xi, T ) = Γi(xi, T )xiP
p
i,e(T ),

where xi is the mole fraction of i in the liquid and Γi(xi, T ) is the activity
coefficient. Since only fraction xi of the molecules in the liquid are of type
i, also in the saturated vapour the fraction of these molecules is xi if all the
molecules escape to the vapour equally easily. This is the case in the ideal
mixture, where the activity coefficient is unity, Γi = 1. In a non-ideal mixture
the activity coefficient Γi(xi,l, T ) �= 1 describes the difference in interaction
between different types of molecules: some of them are more/less bound to
the liquid solution than to pure liquid. The liquid phase activity is defined as

Ai,l ≡ Pi,e(xi,l, T )

P p
i,e(T )

= Γixi.

For a mixture, the saturation ratio Si measures how saturated (close to equi-
librium) the vapour i is with respect to the mixed liquid surface
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vapour

liquid

Ideal liquid solution

vapour

liquid

Non-ideal solution: Black molecules stay in liquid

Fig. 2.6. Schematic figure of molecular composition of vapour and liquid in ideal
(top, xi,g = xi,l) and non-ideal (bottom, xi,g �= xi,l) solutions.

Si ≡ Pi,g

Pi,e(xi,l, T )
=

Pi,g

P p
i,e(T )Ai,l

,

whereas the gas phase activity

Ai,g =
Pi,g

P p
i,e(T )

measures how saturated the vapour is with respect to pure liquid i. Saturation
ratio and gas phase activity are related through

Si =
Ai,g

Ai,l(xi,l)
.

Tables 2.1 and 2.2 summarize the definitions of activities and saturation ra-
tios. For the one-component case gas phase activity and saturation ratio are
identical Ag = S = P/P p

e (T ), and liquid phase activity is identically equal to
one Al = 1. 2

2 NOTE: Sometimes in the literature the terms saturation ratio and gas phase ac-

tivity are used exactly in the opposite way compared to this book. This unsettled

terminology is very unfortunate and confusing. It is important to keep in mind

the physics: one of them describes the saturation with respect to pure liquid, and

the other with respect to mixture. The context usually tells which terminology is

used. If an experimentalist tells you that they adjusted their saturation ratio to be

7 and no other information apart from temperature is given, it is most likely our

gas phase activity, because otherwise they would state with respect to which liquid
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Table 2.1. Summary of definitions for saturation activities and saturation ratios.

pure compound mixture

vapour in saturation vapour pressure saturation vapour pressures Pi,e

equilibrium P p
e liquid phase activities Ai,l = Pi,e/P p

i,e

with liquid activity coefficients Γi = Ai,l/xi,l

ambient vapour pressure Pg vapour pressures Pi,g

vapour Saturation ratio S = Pg/P p
e gas phase activities Ai,g = Pi,g/P p

i,e

gas phase activity Ag = S saturation ratios
Si = Pi,g/Pi,e = Ai,g/Ai,l

If the activity coefficient is lower than one, Γi(xi,l, T ) < 1, molecules of
i have stronger attractive interaction in the mixture than in the pure liquid.
Typically Ai,l(xi,l) < 1 since evidently the mole fraction is less than one,
xi,l < 1, and activity coefficients Γi(xi,l) are normally less or equal to one,
and thus the vapour can be supersaturated Si > 1 with respect to mixture
with mole fraction xi,l although it is subsaturated with respect to pure liquid
i, Ai,g < 1. A good example is sulphuric acid-water solution: even when both
of them are subsaturated with respect to pure acid/water they can be highly
supersaturated with respect to H2SO4-H2O solution. The potential energy
due to molecular binding is much higher between a water molecule and a
sulphuric acid molecule than between two water or two acid molecules. In
chemistry words this is due to the fact that sulphuric acid is a proton donor
(acid) and water can act as proton acceptor (base), and thus they form strong
hydrogen bonds.

Table 2.2. Summary of nominators and denominators of activities and saturation
ratio.

denominator:saturation nominator
vapour pressure over saturation vapour pressure ambient vapour pressure

pure compound liquid phase activity Ai,l gas phase activity Ai,g

ideal mixture activity coefficient Γi -

real mixture 1 saturation ratio Si

composition. Our gas saturation ratio alone does not tell how many molecules i
there are in the vapour, we need to know also the composition of the liquid mix-

ture. Our gas phase activity is in that sense more informative than saturation

ratio, we need to know only the saturation vapour pressure of the pure component

to calculate the partial vapour pressure or vapour concentration of i. But satura-

tion ratio, on the other hand, tells us immediately on what side and how close to

equilibrium the vapour is in that specific situation.
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2.6 Conventional form of the gas-liquid equilibrium
conditions

We want to transform the spherical surface phase equilibrium conditions (2.6),
(2.7) and (2.8)

Tl = Tg

Pl = Pg +
2σ

r

µi,l(Pl, xi,l) = µi,g(Pg, xi,g)

to a more practical form in the case of gas-liquid equilibrium.
NOTE: Generally mole fractions in the vapour and liquid are different

xi,l �= xi,g.
In a multicomponent system we have to use one of the Maxwell equations

(which will be derived later on p. 47) to manipulate chemical potentials:(
∂µi

∂P

)
xi,T

=

(
∂V

∂Ni

)
P,T,Nj �=i

.

The partial molecular volume vi is defined as

vi ≡
(

∂V

∂Ni

)
P,T,Nj �=i

, (2.11)

and it measures how much the volume increases when we add one molecule of
type i to the system at constant temperature and pressure. For pure liquids,
the partial molecular volume is simply the volume per molecule v = V/N .

NOTE: The quantities kept constant on either side of the Maxwell equation
are not the same!

Partial molecular volumes can be calculated if we know the density as
a function of composition ρ(xi). Using the fact that volume V and particle
number Ni are extensive quantities we can derive a relation between the partial
molecular volumes, numbers of molecules in the system and the volume of the
system: If we put λ systems together the volume is multiplied by λ

V (λNi) = λV (Ni).

We take the derivative of this equation with respect to λ(
∂V (λNi)

∂λ

)
=
∑

i

(
∂V

∂(λNi)

)
Ni = V (Ni)

and set λ = 1, we get ∑
i

(
∂V

∂Ni

)
Ni = V,

which in terms of the partial molecular volumes reads
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∑
Nivi = V. (2.12)

NOTE 1: This derivation goes just like the derivation of the fundamental
equation on p. 11.

NOTE 2: It follows from eq. (2.12) that

vi ≡
(

∂V

∂Ni

)
Nj ,T

= vi +
∑

k

Nk

(
∂vk

∂Ni

)
Nj ,T

which means we must always have

∑
k

Nk

(
∂vk

∂Ni

)
Nj ,T

= 0.

This is one way of checking that you have correct formulae for partial molar
volumes in your computer code.

Our Maxwell equation can be written as

dµi = vidP when xi and T are kept constant. (2.13)

Take the integral of the liquid chemical potential (keeping xi,l, T constant):∫ Pl

Pg

dµi,l =

∫ Pl

Pg

vi,ldP.

Integration on the left-hand side yields

µi,l(Pl, xi,l) = µi,l(Pg, xi,l) +

∫ Pl

Pg

vi,ldP,

and if the liquid is incompressible vi,l does not depend on P (when xi,l is kept
constant) and we can perform the remaining integral to get

µi,l(Pl, xi,l) = µi,l(Pg, xi,l) + vi,l(Pl − Pg).

Now we use the equilibrium condition for chemical potentials,
eq. (2.7), µi,l(Pl, xi,l) = µi,g(Pg, xi,g) to get

µi,g(Pg, xi,g) = µi,l(Pg, xi,l) + vi,l(Pl − Pg).

Next we move the chemical potentials to the same side of the equation and
use the pressure equilibrium condition (Laplace equation 2.8) Pl = Pg + 2σ

r
and get

µi,l(Pg, xi,l) − µi,g(Pg, xi,g) = −vi,l(Pl − Pg) = −2σvi,l

r
.
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Now we introduce a conventional definition

∆µi ≡ µi,l(Pg, xi,l) − µi,g(Pg, xi,g) (2.14)

and get the Kelvin equation

∆µi +
2σvi,l

r
= 0 for each i. (2.15)

∆µi is often misleadingly called the chemical potential difference between
vapour and liquid. In equilibrium, chemical potential differences between
phases are of course equal to zero! But in ∆µi the chemical potential of the
liquid is taken at vapour pressure, not at liquid pressure.

If we want to calculate the properties of equilibrium droplet using Kelvin
equation (2.15) we know

σ = σ(T, xi) from experimental data
vi,l = vi,l(T, xi) from experimental liquid density data

We still have to convert ∆µi to something measurable. First study the liquid
chemical potential and use eq. (2.13) dµi,l = vi,ldP and incompressibility
again to get

µi,l(Pg, xi,l) = µi,l(Px, xi,l) +

∫ Pg

Px

vi,ldP

= µi,l(Px, xi,l) + vi,l(Pg − Px)

(2.16)

where Px is an (so far) arbitrary liquid pressure.
We manipulate the chemical potential of the vapour by assuming that

the mixture of vapours is an ideal mixture. This means that each component
behaves as if it was alone with total pressure equal to the partial pressure
of that component, Pi,g = xi,gPg. Let µp

i,g(P ) and vp
i,g(P ) be the chemical

potential and partial molecular volume of an independent (pure) vapour i at
pressure P . In this case

µi,g(Pg, xi,g) = µp
i,g(Pgxi,g) = µp

i,g(Pi,g) = µp
i,g(P

′
i,x) +

∫ Pi,g

P ′
i,x

vp
i,gdP, (2.17)

where P ′
i,x is so far arbitrary vapour pressure.

Now we select liquid pressure Px and vapour pressure P ′
i,x so that com-

ponent i of the vapour is in equilibrium with the liquid in a flat surface case,
µi,l(Px, xi,l) = µp

i,g(P
′
i,x). The other components j �= i are not necessarily in

equilibrium at the same time. Since we have selected equilibrium over flat sur-
face, the vapour pressure must be that of the saturated vapour P ′

i,x = Pi,e(xi,l)
and the total vapour pressure Ptot,e(xi,l) ≡

∑
i Pi,e(xi,l) must be equal to the

liquid pressure, Px = Ptot,e(xi,l) .
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Now we can calculate ∆µi by subtracting eq. (2.17) from eq. (2.16)

∆µi = µi,l(Pg, xi,l) − µi,g(Pg, xi,g)

= µi,l(Px, xi,l) + vi,l(Pg − Px)

− µp
i,g(Pi,e(xi,l)) −

∫ Pi,g

Pi,e

vp
i,gdP

= vi,l(Pg − Ptot,e(xi,l)) −
∫ Pi,g

Pi,e(xi,l)

vp
i,gdP.

If (but only if) the vapour is an ideal gas (as well as an ideal mixture) the
ideal gas law gives the partial molecular volume in the vapour

PiV = kTNi ⇒ vp
i,g = V/Ni =

kT

P
(2.18)

and using the definitions of saturation ratio and activities (p. 24) we get∫ Pi,g

Pi,e(xi,l)

vp
i,gdP =

∫ Pi,g

Pi,e(xi,l)

kT

P
dP = kT ln

Pi,g

Pi,e(xi,l)
= kT ln

Ai,g

Ai,l
= kT lnSi.

(2.19)
Thus for an ideal gas

∆µi = vi,l(Pg − Ptot,e(xi,l)) − kT ln
Ai,g

Ai,l
.

Usually kT ln
Ai,g

Ai,l
is much larger than vi,l(Pg − Ptot,e(xi,l)) as can been seen

by the following estimate:
T ∼ 300K, k = 1.38 · 10−23, kT ∼ 4 · 10−21 J
Pg − Ptot,e ∼ 104 Pa (RH=500 %, T=298K),
vi,l ∼ 1/ρl ∼ 10−30m3,
vi,l(Pg − Ptot,e) ∼ 10−26 J � 4 · 10−21 J ∼ kT
and we have for ideal mixture of ideal gases and incompressible liquid a simple
form

∆µi = −kT ln
Ai,g

Ai,l(xi,l)
= −kT lnSi. (2.20)

Combining equations (2.17) and (2.18) and performing the integral in the same
way as in eq. (2.19) we get the general result for the pressure dependence of
the chemical potential of an ideal gas

µp
i,g(Pi,g) = µp

i,g(P
′
i,x) + kT ln

Pi,g

P ′
i,x

. (2.21)
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2.7 Summary of equilibrium conditions for spherical
droplets

Now we have all the required pieces in terms of measurable quantities to use
the Kelvin equation (2.15) to answer two kinds of equilibrium questions :

1. If we have a vapour with known partial pressures (A1,g,A2,g, ...,An,g are
given) what kind of a droplet is in equilibrium with it ? We have n Kelvin
equations (2.15), one for each component, but each of them contains 2σ/r
which is independent of component i. We can solve this i-independent
combination as

2σ

r
=

∆µi

vi,l

from each equation and set them equal to each other to get n−1 equations

∆µ2

v2,l
=

∆µ1

v1,l
⇒

kT ln
A2,g

A2,l(x2,l)

v2,l(x2,l)
=

kT ln
A1,g

A1,l(x1,l)

v1,l(x1,l)
(2.22)

.

.

.

∆µn

vn,l
=

∆µ1

v1,l
⇒

kT ln
An,g

An,l(xn,l)

vn,l(xn,l)
=

kT ln
A1,g

A1(x1,l)

v1,g(x1,l)
(2.23)

which can be used to solve n−1 mole fractions x1,l...xn−1,l. The last mole
fraction is given by

xn,l = 1 −
n−1∑
i=1

xi,l.

and the radius of the droplet is obtained from

r =
2σvi,l

∆µi
=

2σvi,l(xi,l)

kT ln(Ai,g/Ai,l)
(2.24)

for any i. A good way of checking that the composition is correctly solved
is to check that r is really the same if we use different component i in eq.
(2.24).

2. We have a droplet with radius r and composition xi,l. What is the equi-
librium pressure of component i over this surface? Equation

kT ln
Pi,g

Pi,e(xi,l)
=

2σvi,l

r

gives
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Pi,g = Pi,e(xi,l) exp

(
2σvi,l

rkT

)
= Ai,l(xi,l)P

p
i,e(T ) exp

(
2σvi,l

rkT

)

= Γixi,lP
p
i,e(T ) exp

(
2σvi,l

rkT

)
,

(2.25)

where the exponent term describes so-called Kelvin effect and
Pi,e(xi,l) = Ai,l(xi,l)P

p
i,e(T ) = Γixi,lP

p
i,e(T ) is the saturation pressure over

a flat surface. Kelvin effect is the increase of saturation vapour pressure
due to increased curvature of the surface. It is easier for molecules to
escape a curved surface because they are more weakly bound to their
neighbours, and thus the saturation vapour pressure is higher.

2.8 Van der Waals fluid

To give a concrete example of how the equation of state, together with equilib-
rium conditions, can be used to find phase co-existence in practice, we study
a van der Waals fluid. Van der Waals equation is the simplest often used
equation of state that predicts phase separation:(

P +
a

v2

)
(v − b) = kT,

where the molecular volume is v = V
N . Van der Waals equation can be rear-

ranged as

P =
kT

v − b
− a

v2 .

Here b is the smallest possible volume per molecule of the atom/molecule
(hard sphere radius). Now we assume atoms/molecules are not point-like as
in the ideal gas. v is the volume an atom/molecule on average occupies in the
vapour/liquid, parameter a is connected to the attraction between molecules.
The molecules are attracted to each other and the “outward” pressure is
smaller than in the ideal gas (non-attracting), and molecules are within the
attraction distance with a probability ∼ 1/v2.

We draw P as a function of v at a fairly low constant temperature T in
Fig. 2.7 and notice that same P occurs with two or three different volumes v.
What does that mean?
First remember the stability condition (p. 18):

KT = − 1

V

(∂V

∂P

)
T,N

> 0 ⇒ (∂P

∂V

)
< 0,

so P has to decrease with V and points like B′ are completely unstable.
Systems at points A, B and C have lower V , higher density than at points
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Fig. 2.7. Pressure as a function of molecular volume v according to the van der
Waals equation of state at a fairly low temperature. See text for explanation of the
points marked with letters.
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Fig. 2.8. Molecular volume v dependence on pressure P according to the van der
Waals equation of state at a fairly low temperature. v is not a function of P because
one P corresponds to multiple values of v (but P is a function of v). See text for
information about the points marked with numbers.

A′′, B′′ and C′′; A, B and C are liquid, A′′, B′′ and C′′ are gas. For P > PC

only liquid phase exists and for P < PA only gas phase exists.
We would like to know at which pressure gas and liquid are in equilibrium,

in which case PB = P ′′
B = Pe is the saturation vapour pressure. Phase coexis-

tence conditions tell us this. For a flat surface (p. 17):

Pg = Pl on a line perpendicular to P -axis,
Tg = Tl on a T -constant curve, and
µg = µl gives more information.
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Fig. 2.9. Parts of the curve in Fig. 2.8 which correspond to well-defined function
(cut from the points 1,2,3 and 4 shown also in figure 2.8), and the areas I1 − I4

underneath these curves.
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Fig. 2.10. The sum of areas shown in Fig. 2.9, A1 = I2 − I1 and A2 = I4 − I3, with
the signs resulting from integration to positive and negative directions of the P -
axis taken into account. The right-hand figure shows the situation in the coordinate
system of Fig. 2.7.

We need the Gibbs-Duhem equation to convert the chemical potential con-
dition to a practical form. The isothermal Gibbs-Duhem equation (1.9) (or
Maxwell equation 2.13) for a one-component system reads Ndµ = V dP ⇒
dµ = vdP which can be integrated over pressure to give

µ′′
B = µB +

∫ v′′
B

vB

vdP.

We have to express v as a function of P instead of P as a function of v
(Fig. 2.7) to perform this integral. Fig. 2.8 shows the situation when we have
swapped the roles of x and y-axes compared to Fig. 2.7 .

Now the molecular volume v is not a well-defined function of pressure P ,
since several values of v can be obtained with a single P . To perform the
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Fig. 2.11. Liquid pressure Pl(r) and saturation vapour pressure Pg(r) for a spherical
droplet compared to the flat surface saturation vapour pressure Pg(∞).
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Fig. 2.12. Figure corresponding to Fig. 2.10, but for spherical surface. For equilib-
rium the sum of areas A2 + A3 must be equal to area A1.

integral we have to divide the curve into parts where the molecular volume
has an unique value with given pressure. The boundaries of these parts are
shown in Fig. 2.8 as points number 0, 1, 2, 3 and 4. We integrate vdP in
small parts: the first part 0→1, the integral gives

∫ 1

0
vdP = −I1 where I1 is

the area marked in Fig. 2.9 (negative since we go to negative direction in P )
part 1→2 gives

∫ 2

1
vdP = I2, part 2→3 gives

∫ 3

2
vdP = I3 and the final part

3→4 gives
∫ 4

3
vdP = −I4. Fig. 2.10 gives the result when these four parts are

added together with the signs taken into account. The equality of chemical
potentials can be expressed as

µ′′
B = µB + A1 − A2,

where areas A1 = I2 − I1 and A2 = I4 − I3 are shown in Fig. 2.10. So for the
chemical potentials to be equal, the areas A1 and A2 have to be the same.
This area-based method for finding the phase equilibrium is called the Maxwell
construction.
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Fig. 2.13. Binodal and spinodal for van der Waals fluid with parameters corre-
sponding to CO2 (a = 1.00813 · 10−48Nm4 and b = 7.140 · 10−29m3). The curves are
plotted in terms of molecular volume. Also curves showing pressure as a function
of molecular volume according to the equation of state are shown for temperatures
(top to bottom) 310K, 303K (critical temperature), 290K and 260K.

How does the picture look like for spherical droplets? The equilibrium
condition (2.8) tells us that the liquid pressure is higher than the vapour
pressure Pl(r) = Pg(r) + 2σ

r > Pe(r) and due to the Kelvin effect (2.25) the
saturation vapour pressure is higher than for a flat surface Pg(r) = exp(2σvl

rkT ) ·
Pe, with Pe = Pg(∞). A similar series of integrals can be performed as in
the flat surface case, now from Pl(r) to Pg(r) and the conclusion is that, in
equilibrium, areas A2 + A3 in Fig. 2.12 must be equal to area A1.

Now we return to the flat surface case and study how temperature affects
the phase equilibrium. A binodal is the curve formed by equilibrium points B
and B′′ satisfying µB = µ′′

B at different temperatures (Figures 2.13 and 2.14).
If we plot points A and C′′ for different temperatures we get a curve called
spinodal, which restricts the forbidden area where the system is unstable.
When temperature T increases the valley A becomes less deep and at T = Tc

it vanishes. With T ≥ Tc there is only one v for each P . Tc is the critical
temperature above which gas and liquid are not separable phases. Spinodal
and binodal meet at the highest point of both of these curves, and this point
corresponds to the critical temperature Tc and pressure pc above which liq-
uid and vapour are not distinguishable phases. The critical temperature and
pressure can be found by finding the conditions where the P (v) curve has a
point where its first and second derivatives vanish simultaneously.

NOTE: Binodal, spinodal and their relation to critical point are general
features not restricted to the specific case of van der Waals liquid.
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Fig. 2.14. Binodal and spinodal for van der Waals fluid with parameters corre-
sponding to CO2 (a = 1.00813 · 10−48Nm4 and b = 7.140 · 10−29m3). The curves
are plotted in terms of liquid density. Also curves showing pressure as a function of
liquid density according to the equation of state are shown for temperatures (top to
bottom) 310K, 303K (critical temperature), 290K and 260K.
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Fig. 2.15. Pressure as a function of molecular volume v according to the van der
Waals equation of state for CO2 at 260K. See caption to Fig. 2.13 for the parameters.
The binodal and spinodal are also shown, as well as equilibrium vapour pressure and
spinodal pressure.

What happens if we start to slowly increase the vapour pressure of a gas
phase system at a constant temperature, starting at the right-hand edge of
Fig. 2.15, with pressure lower than saturation vapour pressure Pe. The system
follows the curve toward B′′ but does not jump to B at B′′. Instead it follows
the curve from B′′ upward toward C′′. It is still in a metastable equilibrium,
energetically it should jump to the curve above point B, but it is trapped on
the gas side of the curve. When the pressure is increased beyond equilibrium
vapour pressure Pe, the equilibrium molecular volume jumps suddenly from
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Epot
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Fig. 2.16. Potential energy surface with local and global minima.

equilibrium vapour value ve
g to equilibrium liquid value ve

l . Jumps like this
are typical for first-order phase transitions (see p. 128). The fluctuations in
density (ρ = 1/v) are not big enough to transfer the gas to liquid and we
have a supersaturated vapour. If the pressure increases above the spinodal
pressure PC = Pspin, the vapour-liquid transition happens immediately. When
the system is between B′′ and C′′ it can undergo a transition if we leave it
for a long time or disturb it, for example by shaking. If undisturbed, local
fluctuations can form small liquid droplets, but the whole system does not
transform to a liquid. The formation of local areas of the stable phase (liquid
in this case) in a unstable phase (gas in this case) is nucleation: small nuclei
of the stable phase form. If we start with liquid at pressure PC in Fig. 2.15
and lowered it below Pe we have a similar situation: the system should change
phase and become vapour, but it is trapped into the liquid phase. The situation
in nucleation is analogous to a local minimum situation in potential energy
shown in Fig. 2.16. If a ball is at point A, B has a clearly lower energy, but
how to get there? There is a barrier (or mountain, or hill) between A and B.
B is a global minimum, A is only a local one. When pressure is increased for
binodal to spinodal, the barrier gets lower and at spinodal there is not barrier
anymore. Next we will find out what is the type of energy in phase transition
that forms a barrier.

Problems

2.1. Use the Laplace equation and equation for hydrostatic pressure to show
that in a capillary tube the liquid rises to level h where

h =
2σ cos ϑ

mρgR
,

where g is the gravitation acceleration, ρ is the liquid number density, m is
the molecular mass, σ is the surface tension, ϑ is the contact angle between



2.8 Van der Waals fluid 39

liquid and tube wall and R is the radius of the tube (You can take the liquid
surface to be part of a sphere, and h to be the “average” height).

�

2R h

2.2. If you know
A) the number density
B) the mass density of a liquid as a function of
a) mole fractions xi = Ni/

∑
i Ni

b) mass fraction xi,m = Nimi/
∑

i Nimi

derive the expression for partial molecular volume.

2.3. Use the Gibbs-Duhem equation to derive a consistency condition that
has to be satisfied by the activity coefficients in a two-component system.

2.4. Derive expressions for the critical point temperature, pressure and molec-
ular volume of a van der Waals fluid.

2.5. For a van der Waals fluid modelling nitrogen the parameters are
a = 3.65586525 bar dm6/mol2

b = 0.04282639 dm3/mol
a) Plot three isotherms, two below and one above critical temperature in
(P, v)-coordinate system
b) plot the spinodal and the binodal.
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Formation free energy

So far we have studied isolated systems : U, V,Ni are constant. Equilibrium
is determined by maximum of entropy S = Smax. The maximum is found in
respect to some extra parameter(s) x(, y, ...) while keeping U(x, ...), V (x, ...),
Ni(x, ...) constant. x can be for example the position of a dividing wall as in
Fig. 3.1.

GAS 1 GAS 2

x

Fig. 3.1. Isolated system with a dividing wall at position x separating two types of
gases.

Insulated rigid box keeps Utot, Vtot and Ni,tot constant.

Utot = U1 + U2

Ni,tot = Ni,1 + Ni,2

Vtot = V1 + V2.

By maximising S with respect to x we find the equilibrium position of the
dividing wall. A reversible process in a system with Utot, Vtot, Ni,tot kept
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constant means also constant entropy since dStot = 0, the system is always in
equilibrium, and Stot keeps having its maximum value.

What if we have some other set of constants?
Intensive variables P, T, µi can be kept constant by connecting the system
to a bath: A bath is an equilibrium system much bigger than our system.
The intensive properties of the bath (P0, T0, µi,0) do not change even if the
system exchanges heat, volume and/or particles with the bath. The extensive
properties (V0, Ni,0, S0, U0) of the bath can change. The system is so small
that anything coming out of it or going into it is a drop in the ocean for the
bath.

SYSTEM
BATH

T , P ,0 0 0�

Fig. 3.2. The combination of the system and the bath is isolated. The system is
much smaller than the bath.

Heat bath: Exchanges heat with the system, heat flows in and out so that
the temperature of the system stays constant and equal to that of the bath
in quasi-static processes. In real irreversible processes the temperature of the
system is not necessarily well defined or unique at all times.

Pressure bath: Exchanges volume work with the system. The volume of
the system changes so that the pressure stays constant and equal to that of
the bath in quasi-static processes. In irreversible processes the pressure of the
system is not necessarily well defined or unique.

Particle bath: Exchanges particles with the system so that the chemical
potentials of the system stay constant and equal to those in the bath in re-
versible processes. Again in irreversible processes the chemical potential of the
system is not always well defined.

NOTE: In the bath T0, P0, µi,0 are always well defined and thus all the
processes in the bath are reversible. This is a crucial point in what follows

The combination of system and bath is an isolated system. S is entropy of
the system and S0 of the bath, so total entropy is Stot = S +S0. According to
the second law of thermodynamics (1.4) all possible processes occur so that
entropy increases dStot ≥ 0 (dStot = 0 for reversible processes only).
In terms of system and bath entropies this reads
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dStot = dS + dS0 ≥ 0.

The bath always undergoes reversible changes:

d-Q0 = T0dS0,

d-W0 = P0dV0.

Using the reversible form for the heat that entered the bath we can write the
change of total entropy as

dStot = dS + dS0 = dS +
d-Q0

T0
= dS − d-Q

T0
. (3.1)

Conservation laws say that everything that left the system entered the
bath, and vice versa:

•
Heat balance: heat that entered the
system d-Q left the bath. Heat that en-
tered the bath is then d-Q0 = −d-Q

dQ
dQ0

•
Work done by the system d-W enters
the bath.
Work done by the bath is d-W0 = −d-W

dW
dW0

•
Total volume is conserved:
Volume change of the system dV .
Volume change of the bath is dV0 =
−dV

•
Particles that entered the system left
the bath dNi = −dNi,0 but also the
energy they carried must balance:
µidNi = −µi,0dNi,0

dNi

dNi,0

First law for the system reads

dU = d-Q − d-W +
∑

i

µidNi.

We solve the heat d-Q entering the system from the first law

d-Q = dU + d-W −
∑

µidNi

and use the conservation laws above to express the changes in the system
properties in terms of the changes in the bath properties

d-Q = dU − d-W0 +
∑

µi,0dNi,0.

Then we use reversible forms for the changes in bath properties
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d-Q = dU − P0dV +
∑

µi,0dNi,0

and the conservation laws again to return to the system properties

d-Q = dU + P0dV −
∑

µi,0dNi.

When we substitute this to the second law (eq. 3.1) we get

dStot = dS −
dU + P0dV −

∑
i

µi,0dNi

T0
≥ 0.

Now we multiply this by T0 �= 0:

T0dS − dU − P0dV +
∑

i

µi,0dNi ≥ 0

and we get the Clausius inequality

dU − T0dS + P0dV −
∑

i

µi,0dNi ≤ 0. (3.2)

Here T0, P0, µi,0 are properties of the bath and U , S, V , Ni are properties of
the system.

We denote for convenience

dϕ = dU − T0dS + P0dV −
∑

i

µi,0dNi.

Instead of dS ≥ 0 we have dϕ ≤ 0 for all possible spontaneous processes.
In equilibrium no spontaneous process is possible, ϕ can not decrease and so
ϕ must have a minimum (under the prevailing conditions T0, P0, µi,0). We
have a freedom of choosing any function ϕ that gives the correct differential
dϕ = dU −T0dS +P0dV −∑i µi,0dNi and a minimum of so-called free energy
ϕ gives the equilibrium state.

If the contact with the environment is such that dS = dV = dNi = 0,
Clausius inequality reads dϕ = dU ≤ 0, and we can choose ϕ = U . In a
system with constant entropy, volume and number of particles, energy has its
minimum in equilibrium. (How is entropy fixed to a constant value? For the
reversible case a constant S means no heat flow.) Did you ever wonder why
the equilibrium state in, for example, mechanics and electrodynamics is that
of minimum energy? Here is one answer: second law applied to a system with
constant S, V and Ni. For reversible processes with constant S, V , and Ni,
dU = 0, and thus U is constant.

If the contact keeps V,Ni constant, but allows heat flow to and from the
heat bath with temperature T0, Clausius inequality has the form

dϕ = dU − T0dS ≤ 0
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and we can choose
ϕ = U − T0S.

Now we check that the differential of ϕ is correct:

dϕ = dU − T0dS + SdT0

Temperature is constant, dT0 = 0, and we get

dϕ = dU − T0dS,

as we wanted. For this system the equilibrium is found by searching for the
minimum of Helmholtz free energy F

F = U − T0S
In a reversible process which keeps T = T0, V and Ni constant we have

dF = 0, F is constant, since we are always infinitesimally close to equilibrium.

Table 3.1. Summary of conventional free energy definitions.

constants in a re-
versible process

freely exchanged
quantity

Clausius inequality
dϕ < 0

usually chosen ϕ
which has mini-
mum in equilib-
rium

U, V, Ni −T0dS ≤ 0 ⇒ dS ≥ 0 S Entropy (max!)

S, V, Ni dU ≤ 0 U Energy

T = T0, V, Ni heat dU − T0dS ≤ 0
F = U − T0S
Helmholtz free
energy

P = P0, T = T0,
Ni

heat, volume dU − T0dS + P0dV ≤ 0

G = U − T0S +
P0V
Gibbs free
energy

S, P = P0, Ni volume dU + P0dV ≤ 0 H = U + P0V
Enthalpy

T = T0,
µi = µi,0, V

heat, particles dU − T0dS −
∑

µi,0dNi ≤ 0

Ω = U − T0S −∑
µi,0Ni

Grand free en-
ergy or grand
potential

All the conventional free energies have been collected in Table 3.1. You
might wonder what has happened to the surface work terms σdA. We have
assumed that system and bath do not exchange surface energy. If there is
surface energy it is entirely in the system and included in the system energy
U .
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NOTE: To keep the extensive variables V , Ni, U , and S constant we have
to build walls that do not move, and do not let particles, energy or heat through.
But to keep intensive variables P ,µi and T constant we have to build walls
that move freely or allow free particle or heat exchange with the bath.

Free energies are auxiliary functions of the state of the system and the
environment. We could always treat the combination of system and environ-
ment as an isolated system and find the state that maximises entropy. But it
is more straightforward to minimise the appropriate free energy ϕ.

If a system is connected to a bath with P0 and/or T0 and/or µi,0 constant
and we let the situation equilibrate, this means that the internal additional
variables like order or distribution of molecules, position of dividing wall or
surface settle so that ϕ has its minimum value. So a given set of constants
(P0 and/or T0 and/or µi,0) leads to a unique, well-defined value of free energy
ϕeq.

Now we study how the equilibrium value of the free energy ϕeq changes
when we change the bath properties P0 and/or T0 and/or µi,0?

• For a system connected with a heat bath with temperature T0:
ϕeq = Feq = U − T0S, dFeq = dU − T0dS − SdT0

For reversible changes
dU = TdS − PdV +

∑
µidNi and

dFeq = TdS − PdV +
∑

µidNi − T0dS − SdT0

In equilibrium, the temperature is the same as in the bath, T = T0, which
leads to
dFeq = −SdT0 − PdV +

∑
µidNi,

which shows that

µi =

(
∂Feq

∂Ni

)
T,V,Ni�=j

. (3.3)

The Helmholtz free energy F is a suitable thermodynamic potential for
systems which interact with the environment only by exchanging heat.
For those systems F is constant in equilibrium.

• For a system connected with a temperature and pressure bath with T0, P0:
ϕeq = Geq = U − T0S + P0V , and for reversible changes
dGeq = dU − T0dS − SdT0 + P0dV + V dP0

In equilibrium, the pressure and temperature are set by the bath, P = P0

and T = T0, which results in
⇒ dGeq = −SdT0 + V dP0 +

∑
µidNi,

µi =

(
∂Geq

∂Ni

)
T,P,Ni�=j

. (3.4)

The Gibbs free energy G is a wise choice for systems which interact with the
environment by exchanging work and heat. For those systems G is constant
in equilibrium. In phase transitions both pressure and temperature stay
constant, but the order of the system changes. The Gibbs free energy is a
suitable potential for studying phase transitions (see p. 127).
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• For a system connected with a pressure bath with P0

ϕeq = Heq = U + P0V
For reversible changes in equilibrium where P = P0

dHeq = −V dP0 + TdS +
∑

µidNi

Enthalpy H is the natural choice as a thermodynamic potential for sys-
tems which interact with the environment only by exchanging volume
work. Enthalpy is also called the heat function or heat content, since en-
thalpy change for constant pressure processes is equal to the heat exchange.
Enthalpy is thus used to define the heat capacity at constant pressure,
Cp = (∂H/∂T )P = (d-Q/∂T )P .

• For a system connected with particle and temperature bath with µi,0, T0

ϕeq = Ωeq = U − T0S −∑µi,0dNi

For reversible changes in equilibrium T = T0, µi = µi,0

dΩeq = −SdT0 − PdV −∑Nidµi,0

Grand potential Ω is a good thermodynamic potential for systems which
interact with the environment by exchanging heat and particles.

These show nicely that

for constant T0, V,Ni Feq is constant
for constant T0, P0, Ni Geq is constant
for constant P0,S, Ni Heq is constant
for constant T0, V, µi,0 Ωeq is constant

Compare these with Table 3.1 on p. 45.

3.1 Maxwell equations

Take, for example, a system with P, T,Ni constant. Gibbs free energy is the
correct thermodynamic potential for the system, and its differential is dGeq =
−SdT0+V dP0+

∑
µidNi. We can immediately see that the partial derivatives

of the free energy give thermodynamic variables(
∂Geq

∂T0

)
P0,Ni

= −S,

(
∂Geq

∂P0

)
T0,Ni

= V,

(
∂Geq

∂Ni

)
P0,T0

= µi

and because the second derivative can not depend on the order which the
derivatives are taken1

1 This is true only for well-defined functions. Not all mathematical entities are so
well conditioned.
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∂S
∂P0

)
T0,Ni

= −
(

∂

∂P0

(
∂Geq

∂T

)
P0,Ni

)
T,Ni

=

−
(

∂

∂T0

(
∂Geq

∂P0

)
T0,Ni

)
P,Ni

= −
(

∂V

∂T0

)
P0,Ni

.

Similarly from second derivatives we get(
∂V

∂Ni

)
T0,P0,Nj �=i

=

(
∂µi

∂P0

)
T0,Ni

(3.5)

and (
∂S
∂Ni

)
T0,P0,Nj �=i

=

(
∂µi

∂T0

)
P0,Ni

.

According to the definition of partial molecular volume (eq. 2.11) we have(
∂V
∂Ni

)
T0,P0,Nj �=i

≡ vi, and Maxwell equation (3.5) takes the familiar form

vi =

(
∂µi

∂P0

)
T0,xi

,

which we have already used.
NOTE: Since chemical potential as an intensive quantity depends only on

the composition of the system, not the size of it, we can replace constant Ni

with constant xi.
Other free energies U , H, F and Ω can be used to derive more Maxwell

equations:

Internal energy U(
∂T
∂V

)
S,Ni

= −
(

∂P
∂S
)

V,Ni

(
∂T
∂Ni

)
S,V,Nj �=i

=
(

∂µi
∂S
)

V,Ni(
∂P
∂Ni

)
S,V,Nj �=i

= −
(

∂µi
∂V

)
S,Ni

Enthalpy H(
∂T
∂P

)
S,Ni

=
(

∂V
∂S
)

P,Ni

(
∂T
∂Ni

)
S,P,Nj �=i

=
(

∂µi
∂S
)

P,Ni(
∂V
∂Ni

)
S,P,Nj �=i

=
(

∂µi
∂P

)
S,Ni
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Helmholtz free energy F(
∂S
∂V

)
T,Ni

=
(

∂P
∂T

)
V,Ni

(
∂P
∂Ni

)
T,V,Nj �=i

= −
(

∂µi
∂V

)
T,Ni(

∂P
∂Ni

)
T,V,Nj �=i

= −
(

∂µi
∂V

)
T,Ni

Grand potential Ω(
∂S
∂V

)
T,µi

=
(

∂P
∂T

)
V,µi

(
∂S
∂µi

)
T,V,µj �=i

=
(

∂Ni
∂T

)
V,µi(

∂P
∂µi

)
T,V

=
(

∂Ni
∂v

)
T,µi

Gibbs free energy G (also here for completeness)(
∂V
∂Ni

)
T,P,Nj �=i

=
(

∂µi
∂P

)
T,Ni

(
∂S
∂Ni

)
T,P,Nj �=i

=
(

∂µi
∂T

)
P,Ni(

∂S
∂P

)
T,Ni

= −
(

∂V
∂T

)
P,Ni

3.2 Free energy. Free for what?

The free energies ϕ are also called thermodynamic potentials: the potential
has a minimum in the equilibrium. Now we start to see that it is probably a
free energy barrier that the system tries to overcome in phase transitions, but
gets trapped to the “wrong” side of the mountain as in Fig. 2.16.

Let us think of a system connected with a pressure bath with pressure P0,
so that the volume of the system can change, but heat does not flow in or out.
Initially the energy of the system is U0. If we somehow took energy ∆E(> 0)
from the system and if the system was otherwise isolated, the final energy
would be U0−∆E. But now the pressure is kept constant, which results in an
energy change −P0∆V between the system and the bath since system volume
changes. The actual final energy of the system is

U = U0 − ∆E − P0∆V,

and the energy change is

∆U = U − U0 = −∆E − P0∆V,

and the energy taken from the system is

∆E = −(∆U + P0∆V ) = −∆H = −∆ϕ.

So the amount of energy that is available to be taken out of the “system” is not
the internal energy of the system U , but H = U + P0V due to the connection
with the bath. In reality the energy comes both from the system and the bath.
Similar reasoning can be applied to other thermodynamic potentials.
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3.3 Free energy diagrams

The free energy ϕ of the system is a function of the order parameter x (for
example density). In the following we think of homogeneous systems, where
x is the same in the whole system (the whole system is vapour or liquid,
only one phase, no droplets). Fig. 3.3 shows schematic free energy curves in a
one-component system as functions of density with different saturation ratios
S.

j

x

A

B

B

B

A

A

S < 1

S > 1

S = 1

Fig. 3.3. Free energy curves as functions of density x with different saturation ratios
S.

If x is the density of the fluid, minimum A corresponds to vapour (lower ρ).
It is the true global equilibrium state for S < 1. Minimum B corresponds to
liquid (higher ρ). It is the true equilibrium when S > 1. But it can be seen
that the system can be trapped behind a barrier.

If we plot the free energies corresponding to the minima in Fig. 3.3 as
functions of saturation ratio, we obtain Fig. 3.4, where A is the equilibrium
free energy curve with vapour density, B with liquid density. Phase change
should happen at S = 1 because nature should settle to the global minimum
of free energy. Saturation ratio S > 1 drives the phase transition from vapour
to liquid.

NOTE: Instead of temperature T or vapour pressure P as such, the combi-

nation of them in the form of saturation ratio S = P
Pe(T )

is the key quantity

telling us which phase is stable in the prevailing conditions.

3.4 Free energy change in droplet formation

Now we return to the case of a spherical cluster forming in a vapour phase.
We study the free energy change in a process where the initial state (referred
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j

saturation
ratio

S=1

A

A

B

B

Fig. 3.4. Free energy in the equilibrium system as a function of saturation ratio S.
The points forming the curves correspond to the location of the minima A and B in
Fig. 3.3. The arrow shows the route taken by a vapour when saturation is exceeded,
it follows the metastable part of curve A until disturbance, nucleation or reaching
the spinodal pressure drops the system to curve B, which is the stable state when
S > 1.

to by subscript 0) is a homogeneous vapour, and the final state is a cluster
surrounded by the vapour. The temperature of the system is from now on
assumed to be constant and equal to that of the heat bath T0.

In general, the energy of a homogeneous part of the system has the form

U = T0S − PV + σA +
∑

µiNi.

The total energy of the system is a sum of the energies of the surface (no
volume V = 0), and bulk vapour and liquid (no surface area A = 0) contribu-
tions. The initial energy of the homogeneous vapour is

U0 = T0S0 − P0V0 +
∑

µ0
i,gN

0
i,g.

The final energy in the system consisting of the cluster surrounded by vapour
is then

U = T0S − PgVg − PlVl + σA +
∑

µi,gNi,g +
∑

µi,lNi,l +
∑

µi,sNi,s.

In the case of a droplet forming in a vapour there are at least three choices
for the free energy. The choice depends on the conditions of the real nucleation
event (in nature or laboratory) or hypothetical mind experiment. The suitable
free energy is different depending on which quantities are held constant when
the droplet forms.

1. The chemical potentials in the gas phase µi,g = µ0
i,g and total volume

V0 = Vg + Vl are kept constant.
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The grand free energy in the initial state is

Ω0 = U0 − T0S0 −
∑

µ0
i,gN

0
i,g = −P0V0 = −P0(Vl + Vg)

and in the final state

Ω = U − T0S −
∑

µ0
i,gNi,tot = U − T0S −

∑
µ0

i,g(Ni,g + Ni,l + Ni,s)

= −PgVg − PlVl + σA +
∑

(µi,l − µ0
i,g)Ni,l +

∑
(µi,s − µ0

i,g)Ni,s.

The grand free energy change in the droplet formation is then

∆Ω =(P0 − Pl)Vl + (P0 − Pg)Vg + σA

+
∑

(µi,l − µ0
i,g)Ni,l +

∑
(µi,s − µ0

i,g)Ni,s.

Now if we assume that besides the chemical potentials µi,g, the compo-
sition of the gas stays constant, also the pressure must be unchanged
according to the Maxwell equation (2.13), which gives

0 = dµi,g

⏐⏐⏐⏐
xi,g,T

= vi,gdPg ⇒ dPg = 0 ⇒ Pg = P0

and we get for the formation free energy

∆Ω = (P0−Pl)Vl +σA+
∑

(µi,l−µ0
i,g)Ni,l +

∑
(µi,s−µ0

i,g)Ni,s. (3.6)

2. The pressure of the gas is constant Pg = P0, and the total molecular
numbers are unchanged Ni,tot = Ni,l + Ni,g + Ni,s = N0

i,g.
Then the Gibbs free energies in the initial and final states are

G0 = U0 − T0S0 + P0V0 =
∑

µ0
i,gN

0
i,g (3.7)

G = U − T0S + P0Vtot = U − T0S + P0(Vg + Vl) (3.8)

= (P0 − Pl)Vl + σA +
∑

µi,gNi,g +
∑

µi,lNi,l +
∑

µi,sNi,s.

The Gibbs free energy change in the droplet formation is

∆G =(P0 − Pl)Vl + σA

+
∑

µi,gNi,g +
∑

µi,lNi,l +
∑

µi,sNi,s −
∑

µ0
i,gN

0
i,g.

Furthermore, assuming that composition of the gas phase is unchanged
which due to constant pressure and the Maxwell equation (2.13) means
also that the chemical potential is constant µi,g = µ0

i,g, and using the fact
that

Ni,tot = Ni,l + Ni,g + Ni,s = N0
i,g



3.4 Free energy change in droplet formation 53

we get

∆G = (P0 − Pl)Vl + σA +
∑

µ0
i,g(Ni,g − N0

i,g) +
∑

µi,lNi,l +
∑

µi,sNi,s

= (P0 − Pl)Vl + σA +
∑

µ0
i,g(−Ni,l − Ni,s) +

∑
µi,lNi,l +

∑
µi,sNi,s

= (P0 − Pl)Vl + σA +
∑

(µi,l − µ0
i,g)Ni,l +

∑
(µi,s − µ0

i,g)Ni,s.

3. The total molecular numbers are constant Ni,tot = Ni,l+Ni,g+Ni,s = N0
i,g

and the volume of the system Vtot = Vg + Vl does not change.
Then the Helmholtz free energies in the initial and final states read

F0 =U0 − T0S0 = −P0(Vl + Vg) +
∑

µ0
i,gN

0
i,g

F =U − T0S = −PgVg − PlVl + σA

+
∑

µi,lNi,l +
∑

µi,gNi,g +
∑

µi,sNi,s.

The change in the Helmholtz free energy is

∆F =(P0 − Pl)Vl + (P0 − Pg)Vg + σA

+
∑

(µi,g − µ0
i,g)Ni,g +

∑
(µi,l − µ0

i,g)Ni,l +
∑

(µi,s − µ0
i,g)Ni,s.

Assuming that droplet formation does not affect the gas pressure P0 = Pg

and composition means (again due to Maxwell equation 2.13) unchanged
chemical potentials, µi,g = µ0

i,g, we get

∆F = (P0 − Pl)Vl + σA +
∑

(µi,l − µ0
i,g)Ni,l +

∑
(µi,s − µ0

i,g)Ni,s.

NOTE: Only the gas phase is connected to the heat/particle/pressure bath.
So the free energy of the whole system can not be calculated as a sum of free
energies of gas, liquid and surface:

Ω �= Ωl + Ωg + Ωs

G �= Gl + Gg + Gs

F �= Fl + Fg + Fs

Ωl, Ωg, Ωs and so on would be the free energies of liquid, gas and surface if
each of these phases were directly connected to the baths. But now only the gas
phase is connected to the bath, which is the basis or definition of free energies,
and thus free energies for liquid and surface phases are not well defined. But
energy is always the sum of liquid, gas and surface contributions

U = Ul + Ug + Us

and we have started all our derivations from this.
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With the assumptions we made, the change in the free energy is always
the same ∆Ω = ∆G = ∆F . All the assumptions are essentially the same:
the gas tank is large and the cluster is small, so that its formation does not
change the state of the vapour significantly. Equilibrium is found by setting
the derivatives of ∆Ω,∆G or ∆F to zero. We get equilibrium conditions by
keeping the pressure P0 and chemical potential µ0

i,g constant, and taking the
derivatives with respect to

• V , keeping Ni,l and Ni,s constant,
• Ni,l, keeping Nj,l, j �= i and Ni,s∀i constant,
• Ni,s, keeping Nj,s, j �= i and Ni,l∀i constant,

and setting these derivatives equal to zero. Equilibrium is from now on de-
noted by ∗ and occurs of course when the equilibrium conditions (2.7) and
(2.8) are satisfied:

P ∗
l − P0 =

2σ∗

r∗
,

µ∗
i,l = µ∗

i,g = µ∗
i,s.

To get these familiar conditions from derivatives of ∆Ω,∆G or ∆F 2 you have
to use the Gibbs-Duhem equation (1.9) in the isothermal case dT = 0 for bulk
gas and liquid (p. 12)

VgdPg =
∑

Ni,gdµi,g,

VldPl =
∑

Ni,ldµi,l

and the Gibbs adsorption isotherm (1.12) for the surface contribution

−Adσ =
∑

Ni,sdµi,s.

For the equilibrium cluster, also known as a critical cluster, we can use
the equality of chemical potentials and then the Laplace equation (2.8), and
finally the expressions of volume and surface area of a spherical cluster in
terms of its radius r∗ to simplify the formula for the formation free energy
(any of ∆Ω, ∆F or ∆G, denoted generally ∆ϕ)

∆ϕ∗ = (P0 − P ∗
l )V ∗

l + σA =
−2σ∗

r∗
V ∗

l + σ∗A∗ =
−2σ∗

r∗
4

3
πr∗3 + σ∗4πr∗2

which leads to a compact form for the formation energy of the critical cluster

2 NOTE: you really should take the derivative of the final state free energies Ω, G or

F , but initial state free energies Ω0, G0, F0 are constants, so d∆Ω = dΩ − dΩ0 =
dΩ and so on.



3.5 Classical droplet model 55

∆ϕ∗ =
4

3
πσ∗r∗2, (3.9)

which is easy to remember as one third of the surface energy of the cluster.

3.5 Classical droplet model

The density profiles and molecular positions in a real cluster with two compo-
nents are sketched in Fig. 3.5. In this example component 2 is surface active.
It accumulates near the droplet surface.

2
1

ri (R)

RR0,2

1

2

�1,g

�2,g

R0,1

Fig. 3.5. Molecular densities of components 1 and 2 as functions of distance from
the centre of a real spherical droplet and a picture of the molecular positions in
the droplet (cluster). ρ1,g and ρ2,g are the densities of the two components in the
vapour far from the droplet. R0,i is the distance where the density of component i
has reached the vapour phase value.

The classical spherical droplet model simplifies the situation as shown in Fig.
3.6.

We can choose the dividing surface radius r arbitrarily. The liquid inside
the sphere is considered a macroscopic hypothetical bulk liquid. The bulk
density is given by experimental formula for the total density of molecules
in the liquid ρl(xi,l, T ) =

∑
i ρi,l, which we simply call the liquid density. In

homogeneous bulk liquid the densities of individual components are given by

ρi,l = xi,lρl(xi,l, T ).

For an equilibrium droplet the bulk liquid mole fractions x∗
i,l are solved

from equations (2.23)
∆µi

vi,l
=

∆µ1

v1,l
(3.10)
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2

1

ri (R)

R

�1,g

�2,g

r

�2,l

�1,l

Fig. 3.6. Simplified molecular densities of components 1 and 2 as functions of
distance from the centre of a droplet and the cluster model in the classical droplet
model. ρ1,g and ρ2,g are the densities of the two components in the vapour far from
the droplet. ρ1,l and ρ2,l are the densities of the two components in the bulk liquid.
r is the position of the dividing surface.

when we know the vapour densities (pressures) of all the components i. The
number of molecules in our model droplet are given by

Ni,l =
4

3
πr3ρi,l =

4

3
πr3xi,lρl(xi,l, T ).

Partial molecular volumes vi,l are calculated from bulk liquid density ρl, so
they are bulk partial molecular volumes. (They tell us how much the volume
changes when you add one molecule to a large pool of liquid, not to the
cluster.)

NOTE: From now on subscript d stands for droplet, meaning the sum of
bulk liquid and surface phase contributions. Subscript tot most often refers
to the whole system, in other words sum of gas, surface and liquid phase
contributions. Ni,l are often called numbers of molecules in the core of the
cluster, while Ni,d = Ni,l + Ni,s are the total numbers of molecules in the
cluster.

In the real cluster/droplet the total number of molecules is an integral of
the density profile

Ni,d =

∫ Ri,o

0

ρi(R)4πR2dR

where Ri,o is a point where the position dependent the density ρi(r) has
lowered to the vapour level ρi(Ri,o) = ρi,g. The surface excess numbers Ni,s

are introduced as correction terms to the core numbers

Ni,s = Ni,d − Ni,l

and thus
Ni,d = Ni,l + Ni,s.

For the equilibrium droplet component densities ρi,l are set by the equilibrium
conditions (eq. 3.10), and do not depend on the choice of the dividing surface.
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This means that the core Ni,l and surface numbers Ni,s are dependent on the
choice of the positions of the surface, but the total numbers of molecules in
the cluster/droplet Ni,d = Ni,l + Ni,s are independent of it.

NOTE: The liquid mole fraction can not be calculated from the total num-
bers of molecules on the cluster Ni,d

xi,l =
Ni,l∑

Nk,l

�= Ni,d∑
Nk,d

=
Ni,l + Ni,s∑
(Nk,l + Nk,s)

,

so if we know that a cluster has in total 7 water molecules and 4 sulphuric
acid molecules, we do not directly know the composition of the hypothetical
bulk liquid

x2,l �= 4

11
=

N2,d

N1,d + N2,d
.

3.6 Surface of tension

We have actually already made a hidden assumption on the position of the
dividing surface (Abraham 1974). Let’s look at the energy of an equilibrium
droplet in vapour with pressure P 0

g and chemical potential µi,g. The energy
of the system is

U∗ = T0S∗
tot−P ∗

l V ∗
l −P 0

g V ∗
g +σ∗A∗ +

∑
µ∗

i,lN
∗
i,l +

∑
µ∗

i,sN
∗
i,s +

∑
µ0

i,gN
∗
i,g.

For equilibrium, chemical potentials in all the phases are the same

µ∗
i,l = µ∗

i,s = µ0
i,g

and the droplet energy takes the form

U∗ = T0S∗
tot − P ∗

l V ∗
l − P 0

g V ∗
g + σ∗A∗ +

∑
µ0

i,g(N
∗
i,l + N∗

i,s + N∗
i,g)

= T0S∗
tot − P ∗

l V ∗
l − P 0

g V ∗
g + σ∗A∗ +

∑
µ0

i,gNi,tot. (3.11)

If we now move the dividing surface, but keep the physical situation unchanged
U∗, T0, S∗

tot, µ0
i,g, N∗

i,tot, Pg and Vtot = V ∗
l + V ∗

g must stay constant, and also
x∗

i,l defined by equilibrium conditions (3.10) is constant. The Maxwell equation
(2.13) gives the result

dP ∗
l =

1

vi,l
dµ∗

i,l =
1

vi,l
dµ0

i,g = 0,

and thus also P ∗
l is constant.
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By square brackets we denote the derivative associated with the displace-
ment of the dividing surface keeping the real physical system unchanged.
Volume, area and radius are connected through equations V ∗ = 4

3πr∗3,

A∗ = 4πr∗2, dA∗

dr∗
= 8πr∗, and dV ∗

dr∗
= 4πr∗2 = A∗. Taking the derivative

of the energy in eq. (3.11) we get

0 =

[
dU∗

dV ∗
l

]
= −P ∗

l − P 0
g

[
dV ∗

g

dV ∗
l

]
+

[
dσ∗

dV ∗

]
A∗ + σ∗

[
dA∗

dV ∗

]
and using [

dV ∗
g

dV ∗
l

]
= −1

together with
dA∗

dV ∗ =
dA∗

dr∗
· 1(

dV ∗

dr∗

) =
8πr∗

4πr∗2
=

2

r∗

we obtain an equation

0 = −P ∗
l + P 0

g +
2σ∗

r∗
+

[
dσ∗

dr∗

]
· 1

dV ∗

dr∗

A∗

which leads to the generalised Laplace equation

P ∗
l − P 0

g =
2σ∗

r∗
+

[
dσ∗

dr∗

]
. (3.12)

To get the usual Laplace equation (2.8) we have to choose the dividing
surface so that [

dσ∗

dr∗

]
= 0.

This choice is called the surface of tension. If we have chosen the surface of
tension our system satisfies the Gibbs adsorption isotherm (1.12)

Adσ = −
∑

Ni,sdµi,s

and the first law in the form

dU = TdS − PdV + Adσ +
∑

µidNiS

but these basic equations are not valid with some arbitrary choice of dividing
surface. Also the thermodynamic surface tension is equal to the mechanical
surface tension (p. 8) only if we calculate the former at the surface of tension.
There is no concrete physical meaning for the surface of tension: it is the
mathematical choice for the dividing surface that we have to make to be able
to link the surface tension to its experimentally measurable values.

Notice that the Laplace equation (2.8) can be derived in many ways, and
we have gone through three of them.
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1. On p. 21 it was derived by requiring that entropy has a maximum with
respect to all variables, in particular to the volume change of the droplet.

2. On p. 54 it was explained how the Laplace equation can be derived by
finding the extremum of the free energy with respect to all variables, in
particular droplet volume, which is actually just another way of maximis-
ing entropy. Remember that free energies are derived to make it easy to
maximise entropy in a system connected with the environment.

3. Now we derived the Laplace equation from the fact that the energy of
the system can not be affected by the mathematical choice of the dividing
surface, a choice which has no physical significance.

3.7 Equimolar surface and size dependence of surface
tension

The only surface tension we normally know is the one measured for a flat
surface. Surface tension can be very different for small, highly curved droplets.
Now we derive a condition of curvature independence of surface tension using
the Gibbs adsorption isotherm (1.12)

Adσ = −
∑

i

Ni,sdµi,s.

We study an equilibrium droplet for which the chemical potentials and pres-
sure satisfy

dµ∗
i,s = dµ∗

i,l = v∗
i,ldP ∗

l

if the composition x∗
i,l is kept constant (Maxwell 2.13). We change the gas

phase partial vapour pressures so that x∗
i,l stays unchanged, but the size of

the equilibrium droplet grows

A

(
dσ∗

dr∗

)
= −

∑
Ni,svi,l

(
dP ∗

l

dr∗

)
= −

(
dP ∗

l

dr∗

)∑
Ni,svi,l.

Now it is evident that if we want the surface tension to be independent of
the curvature (size of the droplet when composition is constant) we have to
choose the dividing surface so that∑

Ni,svi,l = 0. (3.13)

This surface is called the equimolar surface, because for one-component sys-
tems it means that Ns = 0 and the total number of molecules in the droplet Nd

is the same as the number of molecules in bulk liquid Nl since now Nd = Nl+0.
The choice of equimolar surface is illustrated in Fig. 3.7.

For multicomponent systems it is impossible to choose a surface for which
Ni,s = 0 for all components i at the same time, but it is possible to satisfy eq.
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r(R)

A

B

r R
Fig. 3.7. Density as a function of the distance from the centre of a spherical cluster
in one-component system. The dashed line illustrates the position of the equimolar
surface for which areas A and B are equal.

2
1

ri (R)
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Fig. 3.8. Densities of components 1 and 2 as a function of the distance from the
centre of a spherical cluster in a two-component system. Radius r2 illustrates the
position of the equimolar surface for component 2 for which areas A2 and B2 are
equal, and r1 is the equimolar surface for component 1. For clarity areas A1 and B1

are not marked in this Figure, but they can be seen in Fig. 3.7.

(3.13). If the partial molecular volumes are positive (as they usually, but not
necessarily are) for all components i in a multicomponent case condition (3.13)
lead to negative surface numbers for at least one of the components Ni,s < 0.
Remember that the surface excess numbers are correction terms, not real
numbers of molecules in a certain volume, so the fact that they can be negative
is not unphysical. The theory is based on the idea that surface excess numbers
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are small corrections to the core numbers. If they are comparable in size the
theory is most likely applied to a system where its validity is questionable.
Large negative surface excess can lead to negative total number of molecules,
which is a unphysical result and will be discussed further on p. 124.

For equimolar surface the volume of the cluster can be calculated either
based on total numbers in the cluster Ni,d or numbers in the bulk liquid Ni,l,
as we see with the help of eq. (2.12) (V =

∑
Nivi,l, see p. 28)

4

3
πr3 = Vl =

∑
i

Ni,lvi,l =
∑

i

Ni,lvi,l + 0 =
∑

i

Ni,lvi,l +
∑

i

Ni,svi,l

=
∑

i

(Ni,l + Ni,s)vi,l =
∑

i

Ni,dvi,l.
(3.14)

NOTE: Since we know the surface tension only for the surface of ten-
sion and flat surface, we have to hope that surface of tension coincides with
the equimolar surface, and proceed as if this were the case. This is a crucially
false assumption for surface active systems, where one of the components con-
centrates on the surface. Using surface tension of planar surface for curved
surfaces is called the capillary approximation.

3.8 Conventional form of droplet formation free energy

Now we transform the free energy change in droplet formation given for ex-
ample by eq. (3.6)

∆ϕ = (P0 − Pl)Vl + σA +
∑

(µi,l − µ0
i,g)Ni,l +

∑
(µi,s − µ0

i,g)Ni,s

into a more practical form. P0 is the pressure of the gas phase and the Maxwell
equation (2.13) tells that dµi,l = Vi,ldPl when the composition is constant.
This Maxwell equation can be integrated for an incompressible liquid to get

µi,l(Pl) − µi,l(P0) = vi,l(Pl − P0)

and when we multiply this by Ni,l and sum over all components i and use
result (3.14) we get∑[

µi,l(Pl) − µi,l(P0)
]
Ni,l =

∑
Ni,lvi,l(Pl − P0)

=(Pl − P0)
∑

Ni,lvi,l = (Pl − P0)Vl

which means

(P0 − Pl)Vl = −
∑[

µi,l(Pl) − µi,l(P0)
]
Ni,l.

Now we substitute this to ∆ϕ and get
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∆ϕ = −
∑[

µi,l(Pl) − µi,l(P0)
]
Ni,l + σA

+
∑

(µi,l − µ0
i,g)Ni,l +

∑
(µi,s − µ0

i,g)Ni,s

The terms with µi,l(Pl) ≡ µi,l cancel and using the definition of ∆µ (eq. 2.14)
we get

∆ϕ =
∑

(µ0
i,g − µi,l(P0))Ni,l + σA +

∑
(µi,s(P0) − µ0

i,g)Ni,s

=
∑

∆µi,lNi,l + σA +
∑

(µi,s − µ0
i,g)Ni,s (3.15)

Kelvin equations can be obtained by taking the derivative of (3.15) with
respect to bulk and surface excess molecular numbers one at a time. The
Gibbs-Duhem equation and the Gibbs adsorption isotherm must be used in
the process.

For the equilibrium cluster, chemical potentials in all phases are equal,
µ∗

i,s = µ0
i,g. The formation free energy can be written as

∆ϕ∗ =
∑

∆µ∗
i,lN

∗
i,l + σ∗A∗

and we do not have to worry about the surface excess molecules, but if we
want to plot ∆ϕ as a function of numbers of molecules Ni,d (or Ni,l) and
find the equilibrium point from the figure, we need to know ∆ϕ also for non-
equilibrium clusters.

3.9 One-component case

If we choose the equimolar surface as the dividing surface, which means Ni,s =
0 and Nd = Nl, and we also assume that the vapour behaves like an ideal
gas (eq. (2.20) for one component case) we have ∆µ = −kT0 lnS and the
formation free energy of eq. (3.15) becomes

∆ϕ = ∆µNd + σA = −NdkT0 lnS + σA.

Now we express the area in terms of the molecular number using V = Ndvl =
4
3πr3, r =

(3V
4π

)1/3
and

A = 4πr2 = 4π
(3V

4π

)2/3
=
(43π332

42π2

)1/3
v
2/3
l N

2/3
d =

(
36π
)1/3

v
2/3
l N

2/3
d .

Inserting this to the expression of the formation free energy gives
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Fig. 3.9. Droplet formation free energy as a function of the number of molecules in
the droplet for pure water. The surface and volume contributions to the free energy
are shown separately. The volume term is a straight line with a slope ∆µ = −kT ln S,
and the slope of the surface term depends both on liquid density (molecular volume)
and surface tension.
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Fig. 3.10. Droplet formation free energy as a function of the number of molecules
in the droplet for pure water with different saturation ratios S.

∆ϕ = −NdkT0 lnS + N
2/3
d σ(36π)1/3v

2/3
l , (3.16)

which is plotted as a function of Nd in Fig. 3.9.
The term proportional to Nd is negative when S > 1. This is the volume

term with ∆µ = µl(Pv) − µv(Pv), and it tells us how much lower energy the
molecules would have in a bulk liquid under a flat surface (liquid pressure
equal to vapour pressure), than they have in vapour. When S > 1 the stable
phase is liquid and energy of the bulk liquid is lower.
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The surface term proportional to N
2/3
d is always positive (with σ > 0): this

is the energy needed to build the interface between vapour and liquid. The
surface energy is the reason why supersaturated vapour does not immediately
turn to liquid. The sum of these two terms has a maximum at the critical size
N∗

d when S > 1. This is seen more clearly in the upper panel of Fig. 3.10 where
the surface and volume terms have been left out. The location and height of
the maximum depends on S, as seen in the lower panel. For S = 1 the volume
term is zero, and for S < 1 the volume term is also positive (vapour is the
stable phase), and there is no maximum in the free energy curve which just
continues to rise as a function of cluster size.

We were looking at the minimum in ∆ϕ, but now we see that the equi-
librium droplet is actually a maximum of ∆ϕ. In the flat surface case we

noted that we have to also require

(
∂2S
∂x2

)
= 0, but we did not investigate

the nature of extrema for the spherical surface case. The equilibrium droplet
is in an unstable equilibrium: if the droplet size changes a little there is no
mechanism to bring it back to the equilibrium size. If it shrinks a little it will
get smaller and smaller until it has evaporated into vapour. If it grows a little
its size increases uncontrollably (until the growth of the droplet has eaten
up the vapour so that the saturation ratio has lowered to S = 1). Clusters
smaller than the critical size Nd < N∗

d tend to decay because the free energy
hill goes down toward smaller sizes. But if somehow a cluster of size N∗

d man-
ages to form, it tends to grow since downhill is now toward the larger sizes.
The formation of critical clusters is nucleation and the formation rate is the
nucleation rate, which describes how many clusters per unit time and volume
grow over the hill top.

If there are pre-existing droplets, particles or microscopic surfaces on which
vapour can condense, critical clusters form more easily, because the surface
term is smaller (not a whole surface of a sphere is formed, but only some part
of it as seen in Fig. 3.11). In this case nucleation is heterogeneous.

Flat surface
Pre-existing
spherical
particle

Fig. 3.11. Droplet formation on a pre-existing flat surface and spherical particle.
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We first concentrate on homogeneous nucleation, where spherical droplets
form in vapour without pre-existing concentration surfaces. Chapter 7 covers
the basics of heterogeneous nucleation.

3.10 Treating non-equilibrium clusters

Strictly speaking our thermodynamic analysis and formula for ∆ϕ are not well
defined for other sizes than the critical size: these are not equilibrium systems.
To treat these non-equilibrium clusters thermodynamically, we have to apply
some extra force field, which makes them stable. This could be imagined to
be some kind of a cling film, hairnet or tweezers like in Fig. 3.12 which hold
the droplet together and do not allow it to change size.

Fig. 3.12. Imaginary tweezers holding a non-equilibrium cluster together.

Another way around the problem is to assume that the droplet properties
are independent of the surrounding vapour pressure: We search for the auxil-
iary vapour pressure P ′

g(Nd) where a cluster with Nd molecules is the critical
cluster, calculate the formation energy in that vapour, and convert the result
back to the real vapour.

The only term in eq. (3.16) that depends on the vapour pressure is ∆µ,
since surface tension σ and molecular volume vl for incompressible liquid are
independent of the surroundings if temperature T is unchanged. Chemical
potential difference in the auxiliary vapour is

∆µ′ = µl(P
′
g) − µg(P

′
g)

and in the real vapour
∆µ = µl(Pg) − µg(Pg).
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The difference between ∆µ and auxiliary ∆µ′ can now be expressed as

∆µ − ∆µ′ = µl(Pg) − µl(P
′
g) − [µg(Pg) − µg(P

′
g)]. (3.17)

We integrate the Maxwell equation (2.13) dµ = vdP in the gas (for ideal gas

PV = NkT0 and vg = kT0
P ) leading to

µg(Pg) − µg(P
′
g) = kT0 ln(

Pg

P ′
g

)

and in liquid (assumed incompressible, vl = constant) resulting in

µl(Pg) − µl(P
′
g) = vl(Pg − P ′

g).

Inserting these results for chemical potential differences in the gas and liquid
into eq. (3.17) we get

∆µ − ∆µ′ = vl(Pg − P ′
g) − kT0 ln(

Pg

P ′
g

) (3.18)

In the auxiliary vapour the free energy of the critical Nd cluster is given by
eq. (3.16)

∆ϕ′ = −NdkT0 lnS′ + N
2/3
d σ(36π)1/3v

2/3
l , (3.19)

where S′ =
P ′

g

Pe(T0)
. Now we assume that the only difference between the free

energies is due to different gas phase pressures which affects both the liquid
and gas chemical potentials in ∆µ = µl(Pg) − µg(Pg) leading to

∆ϕ = ∆ϕ′ + Nd(∆µ − ∆µ′). (3.20)

Using equations (3.18) and (3.19) the formation free energy in the real vapour
can be written as

∆ϕ = − NdkT0 ln
P ′

g

Pe(T0)
+ N

2/3
d σ(36π)1/3v

2/3
l

+ Nd

(
vl(Pg − P ′

g) − kT0 ln(
Pg

P ′
g

)

)
,

(3.21)

which simplifies to

∆ϕ = kT0 ln
Pg

Pe(T0)
+ vl(Pg − P ′

g) + N
2/3
d σ(36π)1/3v

2/3
l , (3.22)

where Pg/Pe(T0) = S. We have already shown that vl(Pg − P ′
g) term is small

compared to kT0 lnS (see p. 30) and indeed we get with a good accuracy also
for non-equilibrium clusters

∆ϕ = −NdkT0 lnS + N
2/3
d σ(36π)1/3v

2/3
l ,

which means that the curves in Figures 3.9 and 3.10 are justified.
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3.11 Free energy barrier in the Ising model

As a reminder that any first-order phase transition can be treated with the
same machinery as a gas-liquid transition, we have a look at a phase transition
in a magnetic system, and show that the formation free energy curves are
similar to those drawn in section 3.9.

We have an array of spins in a magnetic field with magnetic flux density
B directed along the z-axis as in Fig. 3.13. All the spins would like to point
to the same direction with the field when |B| > 0. The stable phase is all
up (or down), but the energy barrier hinders this. When B = 0, the stable
phase would be totally random orientations with as many spins up and down.
If only nearest neighbour interactions are taken into account, this system is
called the Ising model. In the basic Ising system the spins are arranged as a
cubic lattice in one, two or three dimensions. The energy in the Ising model
is

E = −ε
∑

<lm>

slsm + kTb
∑

l

sl, (3.23)

where < lm > denotes a summation over nearest neighbours with each pair
counted only once, ε is the spin-spin coupling constant, and h is the param-
eter describing the interaction with an external field (b = µsB/(kT ), where
µs is the magnetic dipole moment of the spin particles). The value of the z-
component of the spins, sl, is restricted to ±1. For a three-dimensional cubic
lattice the coupling constant may be expressed in terms of the numerically
determined critical temperature Tc according to ε/(kTc) = 0.221656, where
Tc marks the transition temperature between the ferromagnetic and param-
agnetic states at B = 0. We see from eq. (3.23) that if the neighbouring spins
are both up (sl = +1) or both down (sl = −1), the contribution to energy is
−ε, but if one is up and one is down, the contribution is +ε. Thus the surface
between regions of up spins and down spins leads to increased energy just like
surface tension.

Here we look at a three-dimensional Ising lattice with the magnetic field B
pointing up. The free energy of formation of a region of i up spins in a lattice
where the all the spins are originally down is given by

∆ϕ/(kT ) = ζi2/3 − 2bi,

where ζ is related to the surface σ tension via ζ = (36π)1/3σ/(kT ) (Heermann
et al. 1984). The number of spins on the surface of the “up” region containing
i spins is for a spherical cluster proportional to i2/3.
Fig. 3.14 shows the free energy as a function of cluster size for two magnetic
field strengths corresponding to b = 0.3 and b = 0.25 with critical cluster sizes
37 and 65, respectively.

The Ising model is easy to study by computer simulations. Thus, Ising
model nucleation has been extensively simulated and the results have been
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B

Fig. 3.13. Schematic figure of array of spins in a magnetic field B.
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Fig. 3.14. Formation free energy as a function of the cluster size for two magnetic
field values in a three dimensional Ising model. For temperature T/Tc = 0.59 surface
tension parameter has the value ζ = 3 (Heermann et al. 1984).

compared to classical theory predictions (Heermann et al. 1984; Wonczak
et al. 2000; Acharyya and Stauffer 1998; Vehkamäki and Ford 1999).

3.12 Multicomponent case

Now we develop a practicable formula for the formation free energy as a
function of the number of molecules for a multicomponent cluster. We start
again with eq. (3.15)
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∆ϕ =
∑

∆µiNi,l + σA +
∑

(µi,s − µ0
i,g)Ni,s.

Now the chemical potential difference ∆µi and surface tension σ are functions
of mole fractions

xi,l =
Ni,l∑

Nj,l

and Ni,s �= 0 even for equimolar surface and we have to deal with them as
well as the chemical potential difference (µi,s − µ0

i,g), which fortunately dis-
appeared from the free energy formula in the one-component system.

For non-critical clusters µi,s �= µ0
i,g, but we have to assume that µi,s =

µi,l(Pl, xi,l) to proceed. This assumption is justified if the diffusion between
the surface and the “core” of the cluster is much faster compared to the diffu-
sion between the droplet and the original phase, which is normally the case in
vapour-liquid nucleation. Now the familiar integral of the Maxwell equation
(2.13) for an incompressible liquid gives µi,l(Pl, xi,l) = µi,l(Pg, xi,l)+vi,l(Pl −
Pg) and we can express the chemical potential difference (µi,s − µ0

i,g) as

µi,s − µ0
i,g = µi,l(Pl, xi,l) − µ0

i,g

= µi,l(Pg, xi,l) + vi,l(Pl − Pg) − µ0
i,g

= ∆µ + vi,l(Pl − Pg)

with the definition (2.14) ∆µ ≡ µi,l(Pg, xi,l) − µ0
i,g.

Again we have to find a vapour pressure P ′
g at which our cluster is critical:

Only then is eq. (3.15) really justified and phase equilibrium gives the pressure
difference as

vi,l(Pl − P ′
g) =

2σvi,l

r

according to the Laplace equation (2.8). We make the ideal gas assumption

to get ∆µ′ = −kT0 ln
A′

i,g

Ai,l(xi,l)
. As in the one-component case, we assume

cluster properties independent of the surrounding vapour and convert back
to Pi,g just like in the one-component case on p. 66. If we neglect again the
small terms vi,l(Pg − P ′

g) we see that eq. (3.15) is very accurately valid also
for non-equilibrium clusters and the difference in chemical potentials is given
by

µi,s − µ0
i,g = ∆µi +

2σ(xi,g)vi,l(xi,l)

r
(3.24)

where

∆µi = −kT0 ln
Ai,g

Ai,l(xi,l)
.

Now we know almost everything needed to plot the formation free energy
using eq. (3.15). Only the surface excess numbers Ni,s, i = 1, ..., n are left to
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calculate. We need n conditions to find these unknown numbers. One is the
equimolar surface condition (3.13)∑

Ns,ivl,i(xi,l) = 0. (3.25)

The Gibbs adsorption isotherm (1.12)∑
dµi,sNi,s + Adσ = 0

gives n − 1 equations in the following way: we assumed dµi,s = dµi,l(Pl, xi,l)
and the liquid is characterised by n− 1 mole fractions xj,l. The derivatives in
the Gibbs adsorption isotherm can be taken with respect to any of these mole
fractions ∑

i

Ni,s

(
∂µi,s

∂xj,l

)
xk �=j,l,r

+ A

(
∂σ

∂xj,l

)
xk �=j,l,r

= 0, (3.26)

for j = 1, ...n − 1. Surface phase chemical potentials µi,s can be calculated
from eq. (3.24) as

µi,s = µi,l = µ0
i,g + ∆µi +

2σ(xi,g)vi,l(xi,l)

r
,

where µ0
i,g is just a constant with respect to the liquid mole fractions. The

chemical potential derivatives required for equations (3.26) are(
∂µi,s

∂xj,l

)
xk �=j,l,r

=

(
∂µi,l

∂xj,l

)
xk �=j,l,r

=

(
∂∆µi

∂xj,l

)
xk �=j,l

+
2σ

r

(
∂vi,l

∂xj,l

)
xk �=j,l

+
2vi,l

r

(
∂σ

∂xj,l

)
xk �=j,l

,

(3.27)

where the last term containing the derivative of the surface tension is usually
numerically so small that it can be neglected.

For two-component systems (n = 2) the solution of equations (3.26) and
(3.25) is (Laaksonen et al. 1999; Noppel et al. 2002)

N2,s =

A
dσ

dx2,l

v2,l

v1,l

(
∂µ1,l

∂x2,l

)
−
(

∂µ2,l

∂x2,l

)

N1,s =

A
dσ

dx2,l

v1,l

v2,l

(
∂µ2,l

∂x2,l

)
−
(

∂µ1,l

∂x2,l

)
.

(3.28)

The formation free energy in eq. (3.15) can be simplified using eq. (3.24)
in the following way
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∆ϕ =
∑

∆µiNi,l + σA +
∑

(µi,s − µ0
i,g)Ni,s

=
∑

∆µiNi,l + σA +
∑(

∆µi +
2σvi,l

R

)
Ni,s

=
∑

∆µi

(
Ni,l + Ni,s

)
+ σA +

2σ

R

∑
vi,lNi,s

∆ϕ =
∑

i

∆µiNi,d + σA, (3.29)

since
∑

vi,lNi,s = 0 for an equimolar surface (3.13). For an ideal gas mixture
and incompressible liquid, ∆µ is given by eq. (2.20) and the formation free
energy (3.29) has the form

∆ϕ = −kT
∑

i

ln

( Ai,g

Ai,l(xi,l)

)
Ni,d + σA. (3.30)

Now it looks as if we needed to know only the total number of cluster
molecules Ni,d, and the division to core Ni,l and surface excess numbers Ni,s

would be irrelevant, but this is a crucial mistake: the chemical potential dif-
ference ∆µi = ∆µi(xi,l) (or liquid phase activity Ai,l(xi,l)), surface tension
σ = σ(xi,l) and partial molecular volumes vl = vl(xi,l) depend on the bulk
mole fractions xi,l =

Ni,l∑
Ni,l

�= Ni,d∑
Ni,d

and the difference (unfortunately) mat-
ters. Also the partial molecular volumes enter the free energy of formation via
the surface area A

A = 4πr2 = 4π
(3V

4π

2/3)
= (36π)1/3

[∑
vi,l(xi,l)Ni,l

]2/3

and we need xi,l, and thus Ni,l here as well (although
∑

vi,lNi,l =
∑

vi,lNi,d

for an equimolar surface).
We are ready to draw free energy as a function of Ni,d (or Ni,l) (in the

two-component system for simplicity):

1. Select the core molecular numbers N1,l, N2,l.

2. Calculate the core mole fraction x2,l =
N2,l

N1,l + N2,l
.

3. Solve for the surface excess numbers N2,s and N2,s from equations (3.28)
using equations (3.27) for the chemical potential derivatives. If the surface
excess numbers are not small compared to core numbers, the theory is
probably falling apart.

4. Put it all together and you get N1,d, N2,d,∆ϕ.
5. Repeat for several N1,l, N2,l and plot ∆ϕ as a function of N1,d and N2,d.
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In the two-component case the surface of ∆ϕ(N1,d, N2,d) is a saddle surface
and the critical cluster is identified as the saddle point of the surface. This
means that in one direction the point is a maximum and in the perpendicular
direction(s) it is a minimum. If there are more components, the critical size
is a maximum in only one direction, and a minimum in other directions.
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Fig. 3.15. Formation free energy as a function of the numbers of molecules of
two components. The left-hand figure shows the three-dimensional surface and the
right-hand figure is a contour plot of the same surface. Critical size is marked with
a vertical line in the surface plot and a star in in contour plot.

If you use erroneously

x2,l =
N2,d

N1,d + N2,d

the figure gives a different (and wrong) critical cluster compared to the equi-
librium conditions (2.23) and (2.24)

∆µ1

v1,l
=

∆µ2

v2,l

r =
2σv1,l

∆µ1

A similar error is made if you use ∆ϕ =
∑

i ∆µiNi,l + σA instead of ∆ϕ =∑
i ∆µiNi,d +σA, and take the derivative of this with respect to Ni,l to derive

the equilibrium conditions (see p. 54). In this case you are left with a derivative
of surface tension in the equilibrium conditions, because there are no surface
excess molecules and you cannot use a Gibbs adsorption isotherm to get rid
of this derivative. Instead of the correct Kelvin equation (2.15) you end up

with ∆µi +
2σvi,l

r + 4πr2
(

∂σ
∂Ni

)
= 0, and the surface tension derivative will
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appear also in equations for composition (2.23) and radius (2.24) of the critical
cluster, which are just differently arranged Kelvin equations. The theory where
surface tension derivatives cancel is often referred to as the revised theory, and
it has been proved to be the thermodynamically consistent version by several
authors (Flood 1934; Volmer 1939; Neumann and Döring 1940; Reiss 1950;
Nishioka and Kusaka 1992; Wilemski 1984; Renninger et al. 1981; Wilemski
1987; Mirabel and Reiss 1987; Laaksonen et al. 1993).

An example of the consequences of neglecting the surface excess molecules
is given by Fig. 3.16 describing the free formation free energy surface in
a water-ethanol system. The critical size (172 water molecules, 26 ethanol
molecules) given by the equilibrium conditions (2.23) and (2.24) is marked
also in the figure. The molecular number in the horizontal and vertical axes
are the core numbers Ni,l. If you neglect the contribution of the surface excess
molecules, you get a free energy surface which would suggest a critical size
around 70 water molecules, and 35 ethanol molecules, but this point does not
satisfy the equilibrium conditions (2.23) and (2.24).
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Fig. 3.16. The free energy surface for water-ethanol mixture with the surface ex-
cess molecules neglected. Temperature is T=260K, gas phase activities of the two
components are equal A1,g = A2,g = 1.5. The critical size (172 water molecules, 26
ethanol molecules) given by the equilibrium conditions (2.23) and (2.24) is marked
with a star. The horizontal and vertical axes show the core numbers Ni,l.

Unfortunately the water-ethanol system is so strongly surface active that clas-
sical theory breaks down: if we try to calculate the surface excess numbers
they turn out to be large and fluctuating, so that it is not possible to plot the
correct free energy surface where the axes would correspond to total (core and
surface excess) numbers. If such a surface could be plotted, the saddle point
would be in the correct place given by the equilibrium conditions.
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3.13 Consistency issues

Expressions (3.16), (3.29) and (3.30) suffer from self-consistency problems:
They do not give zero formation free energy for a single molecule. This is
easily seen in one-component saturated vapour, where S = 1 and the volume
term gives zero, but the surface term is non-zero. Another inconsistency is
that if we reach the spinodal the formation free energy should vanish, but the
classical results give again a non-zero free energy barrier even for the spinodal
conditions.

3.14 Summary of free energies for droplet formation

• If you assume that the droplet is small compared to the vapour phase and
its formation does not affect the vapour pressure or composition, you can
use either the Helmholtz free energy, the Gibbs free energy or the grand
potential as the free energy.

• The numbers of molecules in the droplet Ni,d are calculated as the sum
of hypothetical bulk liquid values Ni,l and surface excess correction terms
Ni,s. The division between these two terms is arbitrary and depends on
the chosen position of the dividing surface. In classical theory we have
to assume that the dividing surface is the equimolar surface and that it
coincides with the surface of tension. This assumption is equivalent to using
curvature independent surface tension. Such an assumption is not justified
in surface active mixtures, and causes sometimes unphysical predictions. In
a more general description the surface of tension and the equimolar surface
do not coincide, and the distance between these two dividing surfaces is
called Tolman’s length (Tolman 1949), which determines the first curvature
correction to surface tension.

• The general form for droplet formation free energy is

∆ϕ =
∑

∆µiNi,d + σA

with ∆µ = −kT
Ai,g

Ai,l(xi,l)
for an ideal mixture of ideal gases. It must be

noted that activity, surface tension and density (which is needed to calcu-
late area A) can not be directly calculated from total numbers of molecules
in the droplet Ni,d, but the bulk liquid numbers Ni,l must be solved first.

• In a one-component system the formation free energy takes the form

∆ϕ = −NdkT0 lnS + N
2/3
d σ(36π)1/3v

2/3
l .

• The formulae above can be used also for non-equilibrium clusters, although
strictly speaking the thermodynamic machinery we have used is applicable
only to equilibrium systems. Thus you can plot the free energy for different
cluster sizes and compositions using these equations.
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• For a critical cluster the formation energy is given by

∆ϕ∗ =
4

3
πσ∗r∗2.

Problems

3.1. For the constant temperature case the free energy change in droplet for-
mation is ∆ϕ = (P 0

g − Pl)V + Aσ +
∑

i(µi,l − µ0
i,g)Ni,l +

∑
i(µi,s − µ0

i,g)Ni,s.
Derive conditions for the equilibrium droplet by
– taking the differential with respect to Ni,l keeping Nj �=i,l, Ni,s and V con-
stant
– taking the differential with respect to Ni,s keeping Ni,l, Nj �=i,s and V con-
stant
– taking the differential with respect to V keeping Ni,l and Ni,s constant.
The last derivative means moving the hypothetical dividing surface, but keep-
ing the real physical properties of the cluster unchanged. You need the Gibbs-
Duhem equation, the Gibbs adsorption isotherm and definition of the surface
of tension to obtain the familiar equilibrium conditions. Quantities with su-
perscript 0 are always constants.

3.2. Derive a compressibility-corrected Kelvin equation assuming that the
liquid density increases linearly with increasing pressure ρl = ρ0 +α(Pl −P0),
where ρ0, P0 and α are constants.

3.3. Plot the radius of an equilibrium cluster in pure water vapour as a func-
tion of
a) relative humidity at temperature 298K.
b) temperature with constant relative humidity 500%.
c) temperature with constant vapour concentration ρg=6.33 mol/m3.

The saturation vapour pressure of water is (T in Kelvin)
Pe = exp[77.34 − 7235.42/T − 8.2 ln(T ) + 0.00571T ] Pa.
Density of liquid water is
ρl = (1049.572 − 0.1763T ) kg/m3.
Molar mass of water is 18.02 g/mol.
Surface tension of pure water is
σ = (0.117 − 0.152 · 10−3T ) N/m.
Water vapour is assumed to be an ideal gas, and liquid is assumed incom-
pressible.

3.4. The formation free energy of a cluster is ∆ϕ = Aσ+
∑

i ∆µNi,d. Express
this in terms of the a) cluster radius r b) numbers of molecules in the cluster
Ni,d for multicomponent systems (you do not have to do anything to the
chemical potential difference ∆µ and surface tension σ, just manipulate the
surface area A and Ni,d appropriately).
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3.5. Plot the free energy curves for water at temperatures 280K, 300K and
320K with saturation ratios S=2, 5 and 10.

The saturation vapour pressure of water is (T in Kelvin)
Pe = exp[77.34 − 7235.42/T − 8.2 ln(T ) + 0.00571T ] Pa.
Density of liquid water is
ρl = (1049.572 − 0.1763T ) kg/m3.
Molar mass of water is 18.02 g/mol. Surface tension of pure water is
σ = (0.117 − 0.152 · 10−3T ) N/m.
Water vapour is assumed to be an ideal gas, and liquid is assumed incom-
pressible.

3.6. Consider a two-component system.
a) Show that if you take the formation free energy of a cluster to be
∆ϕ =

∑2
i=1 ∆µiNi,l + σA, and derive equilibrium conditions by taking the

partial derivatives of the formation free energy with respect to N1,l and N2,l,
you get conditions

∆µ1 +
2σv1,l

r − 4πr2
(

∂σ
∂x

)
x 1

N1,l+N2,l
= 0 and

∆µ2 +
2σv2,l

r + 4πr2
(

∂σ
∂x

)
(1 − x) 1

N1,l+N2,l
= 0,

where x =
N2,l

N1,l+N2,l
.

b) Solve this pair of equations for N1,l and N2,l in water-ethanol system at
260K and Aw=Ae=1.5. Compare the critical cluster size you obtain with the
saddle surface in Fig. 3.16.

The saturation vapour pressures of water and ethanol are (Pa, T in Kelvin):
P o

w,e = exp[77.34 − 7235.42/T − 8.2 ln(T ) + 0.00571T ] and
P o

e,e = 6.137 · 106

· exp{[−8.4565739(1 − T/513.92) + 0.090430576(1 − T/513.92)1.5

−4.83483(1 − T/513.92)3 + 3.7610779(1 − T/513.92)6]513.92/T}.
At T=260K liquid phase activities are
Aw,l = (1 − x)100.4x2/(x+(0.4(1−x))/0.64)2

Ae,l = x100.64(1−x)2/(1−x+(0.64x)/0.4)2 .
At T=260K liquid density is [kg/m3]
ρl = 1000 · (0.997056 − 0.127749x − 0.447381x2 + 0.716194x3 − 0.320963x4).
Surface tension of the mixture is (N/m, T in Kelvin)
σ = 0.001 · exp[4.821 − 0.00188T + (2.775 − 0.01955T )y
+(−19.04 + 0.07446T )y2 + (27.47 − 0.09442T )y3 + (−11.78 + 0.03748T )y4],
where y = 4x/(1 + 3x), x is the mole fraction of ethanol.
Molar mass of water is 18.02 g/mol and that of ethanol 46.07 g/mol.
Vapour assumed to be an ideal gas, liquid assumed incompressible.
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Equilibrium cluster distribution

So far we have studied one cluster forming in a vapour. Now we want to cal-
culate the cluster distribution in an equilibrium vapour (Frenkel 1939; Abra-
ham 1974). Let the number concentration [1/m3] of clusters of composition
{Ni,l} = (N1,d, N2,d, N3,d, · · · ) be C({Ni,d}). This cluster has for example N1,d

water molecules, N2,d sulphuric acid molecules, N3,d ammonia molecules and
so on. When one component, say that with index k, needs to be highlighted
in the derivation, we write the cluster composition as {Ni,d} = {Ni,d, Nk,d}.

We treat the formation (and break-up) of clusters as a series of chemical
reactions

Mk + D({Ni,d, Nk,d}) � D({Ni,d, Nk,d + 1}) (4.1)

where Mk stand for single molecule, monomer, of substance k and
D({Ni,d, Nk,d}) stands for a droplet/cluster with composition {Ni,d, Nk,d}.
We take this chemical reaction to occur at constant total pressure P0 and
constant temperature T0, and with constant total number of molecules of each
type. According to p. 45 the suitable potential which should have a minimum
in equilibrium is the Gibbs free energy.

We treat the mixture of monomers and clusters of all sizes as an ideal
mixture of ideal gases. The energy of the mixture is

U = T0S − P0V +
∑

clusters

µ({Ni,d})V C({Ni,d}),

where the summation goes over all cluster types including monomers. Chemi-
cal potential µ({Ni,d}) is the increase in energy of the system when one cluster
of size {Ni,d} is added to it. The Gibbs free energy per volume unit gv is

gv ≡ G

V
=

U − T0S + P0V

V
=
∑

clusters

µ({Ni,d})C({Ni,d}),

and the equilibrium cluster distribution is obtained by finding the cluster
concentrations Ce({Ni,d}) for which gv has a minimum.
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The chemical potential µ({Ni,d}) depends on the concentration of clusters
{Ni,d} via (see eq. 2.21, p. 30)

µ({Ni,d}) = µp,P0({Ni,d}) + kT ln
C({Ni,d})

Ctot
,

where the total number of clusters (including monomers) is

Ctot =
∑

clusters

C({Ni,d}) (4.2)

and µp,P0({Ni,d}) is the chemical potential of {Ni,d} clusters in a gas con-
sisting solely of them at pressure P0 = kTCtot, and thus independent of
concentration C({Ni,d}). When monomers join the cluster the total number
of clusters decreases but the volume of the container is adjusted so that the
concentration of clusters Ctot and the pressure P0 stay constant.

Now we are ready to find the minimum by setting the differential of Gibbs
free energy

gv =
∑

clusters

µp,P0({Ni,d})C({Ni,d}) + kT
∑

clusters

C({Ni,d}) ln
C({Ni,d})

Ctot

to zero. We perform the variations of the concentrations by letting reactions
(4.1) occur from left to right: for the three cluster types involved, the changes
of concentrations are related as

dCk,mon : dC({Ni,d, Nk,d}) : dC({Ni,d, Nk,d + 1}) = −1 : −1 : 1, (4.3)

where Ck,mon is the concentration of monomers of type k. All the other clus-
ter concentrations are unchanged. In the case of a pure dimer {Ni,d} =
(0, 0, · · · , 2, · · · , 0, 0) (a cluster with two molecules, both of the same type)
formation there are only two cluster types involved, and the relation is

dCk,mon : dC((0, 0, · · · , 2, · · · , 0, 0)) = −2 : 1. (4.4)

By collecting the terms proportional to dC({Ni,d} under the first summations
we get for the change of Gibbs free energy

dgv =
∑

clusters

(
µp,P0({Ni,d}) + kT ln

Ce({Ni,d})
Ce

tot

)
dCe({Ni,d})

+ kT
∑

clusters

Ce({Ni,d})d
(

ln
Ce({Ni,d})

Ce
tot

)
= 0.

(4.5)

Now we first show that the second summation in eq. (4.5) yields zero:
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clusters

Ce({Ni,d})d
(

ln
Ce({Ni,d})

Ce
tot

)

=
∑

clusters

Ce({Ni,d}) Ce
tot

Ce({Ni,d})

(
Ce

totdCe({Ni,d}) − Ce({Ni,d})dCe
tot

(Ce
tot)

2

)

=
∑

clusters

dCe({Ni,d}) − Ce({Ni,d})
Ce

tot
dCe

tot

=
∑

clusters

dCe({Ni,d}) − dCe
tot

Ce
tot

∑
clusters

Ce({Ni,d})︸ ︷︷ ︸
Ce

tot

=
∑

clusters

dCe({Ni,d}) − dCe
tot.

We have used the fact that Ce
tot and its differential are independent of the

summation indices and can thus be taken outside the summations. By using
the differential of relation (4.2) for total number of clusters we note that this
term indeed vanishes.

In the first sum of derivative (4.5) only three terms (two in the case of
pure dimer formation) corresponding to the product and reactants of reaction
(4.1) are non-zero. Using relation (4.3) for the concentration differentials we
get

dgv = − µp,P0({Ni,d}) − kT ln
Ce({Ni,d})

Ce
tot

+ µp,P0({Ni,d, Nk,d + 1})

+ kT ln
Ce({Ni,d, Nk,d + 1})

Ce
tot

− µp,P0

k,mon − kT ln
Ce

k,mon

Ce
tot

= 0,

which can be rearranged to give

kT ln
Ce({Ni,d, Nk,d + 1})

Ce({Ni,d, Nk,d})

= kT ln
Ce

k,mon

Ce
tot

− [µp,P0({Ni,d, Nk,d + 1}) − µp,P0({Ni,d, Nk,d}) − µp,P0

k,mon],

which gives a formula for the equilibrium concentration of the product of the
growth reaction (4.1)

Ce({Ni,d, Nk,d + 1}) = Ce({Ni,d, Nk,d})
Ce

k,mon

Ce
tot

· exp

[
− 1

kT

(
µp,P0({Ni,d, Nk,d + 1}) − µp,P0({Ni,d, Nk,d}) − µp,P0

k,mon

)]
.

(4.6)
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In the case of dimer formation only two terms in the sum (4.5) are non-zero:

dgv =µp,P0((0, · · · , 2, · · · , 0)) + kT ln
Ce((0, · · · , 2, · · · , 0))

Ce
tot

− 2

(
µp,P0

k,mon + kT ln
Ce

k,mon

Ce
tot

)
= 0,

which leads to

Ce((0, · · · , 2, · · · , 0)) =

(Ce
k,mon)2

Ce
tot

exp

[
− 1

kT

(
µp,P0((0, · · · , 2, · · · , 0)) − 2µp,P0

k,mon

)]
.

(4.7)

Eq. (4.6) actually reduces to (4.7) when the reaction occurs between two
similar monomers.

We can build any cluster one by one from monomers applying eq. (4.6)
successively and we get the equilibrium cluster distribution in an n-component
system

Ce({Ni,d}) = Ce
tot

(
Ce

1,mon

Ce
tot

)N1,d

· · ·
(

Ce
i,mon

Ce
tot

)Ni,d

· · ·
(

Ce
n,mon

Ce
tot

)Nn,d

· exp

{
− 1

kT

[
µp,P0({Ni,d}) −

n∑
i=1

Ni,dµ
p,P0

i,mon

]}
.

(4.8)

Result (4.8) can be written in the form of law of mass action. It is important to
note that the exponential is independent of the partial pressures of monomers,
and the monomer pressure dependences can be separated out as

Ce({Ni,d}) = (Ce
1,mon)N1,d · · · (Ce

i,mon)Ni,d · · · (Ce
n,mon)Nn,dK(T0, P0), (4.9)

where K(T0, P0) is equilibrium constant dependent on total pressure P0 =
kTCe

tot, temperature T0 and naturally also the cluster size {Ni,d}.
To relate the equilibrium cluster distribution to the formation free energies

derived earlier we need to express the chemical potentials in a hypothetical
system, µp,P0

i,mon and µp,P0({Ni,d}), in terms of the properties of our mixture
of clusters and monomers. Eq. (3.7) can be used to calculate the Gibbs free
energy of a vapour consisting of only one type of monomers at pressure P0

and temperature T0
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G = µi,g(P0, T0)Ni,g,

where Ni,g = V Ce
i,mon is the number of monomers in the system. The chemical

potential of a monomer in this vapour is by definition (1.1)

µp,P0

i,mon =

(
∂G

∂Ni,g

)
T0,P0

= µi,g(P0, T0),

which is quite a natural result.
The Gibbs free energy of a system consisting of only {Ni,d} clusters as a

generalisation of eq. (3.8) is

G = N({Ni,d})
[
(P0 − Pl)Vl + σA +

∑
i

µi,lNi,l +
∑

i

µi,sNi,s

]
,

where N({Ni,d}) = V Ce({Ni,d}) is the number of clusters in the system, and
Ni,d = Ni,l + Ni,s is the number of component i molecules in each cluster.
The chemical potential of a {Ni,d} cluster in this vapour is

µp,P0({Ni,d}) =

(
∂G

∂N({Ni,d})
)

T0,P0

=(P0 − Pl)Vl + σA +
∑

i

µi,lNi,l +
∑

i

µi,sNi,s.
(4.10)

The combination of chemical potentials inside the exponential in the cluster
distribution (4.8) can now be written in the following way

µp,P0({Ni,d}) −
∑

i

Ni,dµ
p,P0

i,mon = (P0 − Pl)Vl + σA

+
∑

i

µi,lNi,l +
∑

i

µi,sNi,s −
∑

i

(Ni,l + Ni,s)µi,g(P0, T0)

=(P0 − Pl)Vl + σA +
∑

i

[µi,l − µi,g(P0, T0)] Ni,l

+
∑

i

[µi,s − µi,g(P0, T0)]Ni,s.

(4.11)

This expression is almost equal to the formation free ∆ϕ energy given for
example as a change in grand potential when droplet forms( ∆Ω) by eq. (3.6).
The only difference is that in eq. (3.6) for the formation free energy we have
the chemical potential of the vapour at partial pressure of the corresponding
monomer vapour (denoted as µ0

i,g = µi,g(Pi, T0), where Pi = kTCe
i,mon), and

here we have the chemical potentials of the vapour at the pressure P0 =
kTCe

tot.
We convert the chemical potentials from pressure P0 to the partial pres-

sures of monomers using the ideal gas results (2.21)
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µi,g(P0, T0) = µi,g(Pi, T0) + kT ln
P0

Pi
= µ0

i,g + kT ln
Ce

tot

Ce
i,mon

. (4.12)

By inserting result (4.12) to expression (4.11) and using Ni,d = Ni,l +Ni,s we
get

µp,P0({Ni,d}) −
∑

i

Ni,dµ
p,P0

i,mon = (P0 − Pl)Vl + σA

+
∑

i

[
µi,l − µ0

i,g

]
Ni,l +

∑
i

[
µi,s − µ0

i,g

]
Ni,s − kT

∑
i

Ni,d ln
Ce

tot

Ce
i,mon

=∆ϕ − kT
∑

i

ln

(
Ce

tot

Ce
i,mon

)Ni,d

.

(4.13)

The cluster distribution can now be written as

Ce({Ni,d}) = Ce
tot

(
Ce

1,mon

Ce
tot

)N1,d

· · ·
(

Ce
i,mon

Ce
tot

)Ni,d

· · ·
(

Ce
n,mon

Ce
tot

)Nn,d

· exp

⎧⎨
⎩− 1

kT

⎡
⎣∆ϕ − kT

∑
i

ln

(
Ce

tot

Ce
i,mon

)Ni,d
⎤
⎦
⎫⎬
⎭

=Ce
tot

∏
i

(
Ce

i,mon

Ce
tot

)Ni,d

exp

(−∆ϕ

kT

)
exp

⎡
⎣ln
∏

i

(
Ce

tot

Ce
i,mon

)Ni,d
⎤
⎦ ,

where the latter exponent cancels the logarithm inside it; after that the prod-

ucts
∏

i

(
Ce

i,mon

Ce
tot

)Ni,d

and
∏

i

(
Ce

tot

Ce
i,mon

)Ni,d

cancel, and we get the equilibrium

cluster distribution in terms of the formation free energy of the cluster

Ce({Ni,d}) = F e exp

(−∆ϕ({Ni,d})
kT

)
, (4.14)

where we have denoted the cluster size independent pre-factor (of the expo-
nential) by F e = Ce

tot.
Some remarks on the equilibrium distribution:

• In principle results (4.8) and (4.14) are only applicable to true equilibrium
situations, for example a vapour in equilibrium with some liquid. Some-
times it has been applied to so-called supersaturated equilibrium, meaning
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a nucleating vapour that is necessarily supersaturated with respect to the
liquid having critical cluster composition. This liquid is thought to be
forced to equilibrium with some extra force field similar to that discussed
on p. 65. In eq. (4.14) ∆ϕ({Ni,d}) is then the formation energy of a clus-
ter in the vapour in question, and Ce

tot = P0/(kT ) is the total number of
clusters in the same vapour. In this book we use cluster distributions (4.8)
and (4.14) only for true equilibrium vapour, which is a thermodynamically
more sound approach.

• We have derived the equilibrium cluster distribution relying on the as-
sumption that the mixture of clusters is an ideal mixture of ideal gases. If
we also assume the liquid state to be incompressible we have according to
eq. (3.30)

∆ϕ({Ni,d}) = −kT
∑

i

ln
Ai,g

Ai,l(xi,l)
+ σA.

As shown on p. 99 this means that the distribution (4.14) can be written
in the form (4.9), with gas phase activities Ai,g ∝ Ci,mon carrying the
monomer concentration dependencies.

• Most often monomers have much higher concentrations than any other
clusters in the equilibrium vapour, and the pre-factor F e = Ce

tot is approx-
imated by the sum of monomer concentrations in the equilibrium vapour∑

i Ce
i,mon.

• Approximation F e =
∑

i Ce
i,mon is often said to violate the mass action

law (4.9), because it introduces explicit dependence of pre-factor F e (or
equilibrium constant K(T0, P0)) on monomer concentrations. However, it
must be kept in mind that the equilibrium constant does depend on the
total pressure P0, and if monomers dominate the vapour, dependence on
total pressure means dependence on total concentration of monomers, and
there is no discrepancy.

• The form of the chemical potential of a cluster given by eq. (4.10) is not
consistent with statistical mechanical considerations. This leads to the
fact that the pre-factor F e = Ce

tot is not a correct normalisation constant
for the equilibrium cluster distribution (Abraham 1974; Lothe and Pound
1962), but an experimentally tested consensus for the correct pre-factor is
not available to this date.

• The cluster size distribution (4.14) suffers from various self-consistency
problems. In the one-component case the distribution does not give monomer
concentration Cmon when applied to clusters consisting of only one molecule.
This is due to the fact that the formation free energy given by eq. (3.29)
does not reduce to zero for monomers, because the surface term of free
energy does not vanish for a single molecule (see p. 74).
In multicomponent systems we have the same problem of not getting con-
sistent monomer concentrations from distribution (4.14). The problem is
more severe since with Si �= 1 in addition to the surface term also the lnS
terms of free energy also gives a non-zero contribution for monomers.
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Furthermore, the multicomponent distribution should reduce to a one-
component distribution at the limit where all gas phase activities but
one are set to zero. Various artificial devices for ensuring both types of
consistencies have been developed in the literature (Wilemski and Wys-
louzil 1995; Wilemski 1995; Girshick and Chiu 1990). Some of these self-
consistent versions involve using a cluster size dependent pre-factor F e if
the distribution is written in the form (4.14).

Problems

4.1. a) Plot the equilibrium cluster distributions Ce(n) for pure water at
T=280K and T=300K.
b) Derive an expression for the cluster distribution C(n) in nucleating one-
component steady-state vapour and plot this distribution in figure a) with
S=5 and S=10 at T=280K and T=300K.

The saturation vapour pressure of water (T in Kelvin)
Pe = exp[77.34 − 7235.42/T − 8.2 ln(T ) + 0.00571T ] Pa.
Density of liquid water is
ρl = (1049.572 − 0.1763T ) kg/m3.
Molar mass of water is 18.02 g/mol.
Surface tension of pure water is
σ = (0.117 − 0.152 · 10−3T ) N/m.
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Nucleation kinetics

Now we leave the stationary picture of equilibrium thermodynamics and see
how the clusters are formed and how they break up (Nowakovski and Ruck-
enstein 1991a,b; Wilcox and Bauer 1991).

Clusters grow when monomers collide with them. There are many more
monomers than clusters in normal vapours, so collisions between two clus-
ters are very rare compared to cluster-monomer collisions. Thus they can be
neglected. We also assume that only single monomers leave the cluster at a
time. The rate at which monomers of type i collide with {Ni,d} clusters is
given by the kinetic gas theory as βi({Ni,d}) · C({Ni,d}), where C({Ni,d}) is
the concentration of the clusters and the condensation coefficient βi({Ni,d})
is given by the kinetic gas theory (Friedlander 1977; Chapman and Cowling
1970):

βi({Ni,d}) =Ci,mon

(
3

4π

)1/6(
6kT0

m({Ni,d}) +
6kT0

mi

)1/2

·
{

[V ({Ni,d})]1/3
+ [vp

i,l]
1/3
}2

.

(5.1)

Here Ci,mon is the concentration of type i monomers, m({Ni,d}) and mi are
the masses of the cluster and the monomer, V ({Ni,d}) is the volume of the
cluster assumed to be a spherical droplet (the volume is calculated using
liquid density for the cluster core composition xi,l) and vp

i,l is the volume
of the monomer (calculated as the molecular volume in pure liquid i). βi is
calculated by studying how often molecules following the Maxwell-Boltzmann
velocity distribution hit a surface of a moving sphere, whose velocity is also
given by a Maxwell-Boltzmann distribution. If the cluster is much larger than
a monomer, m({Ni,d}) >> mi and V ({Ni,d}) >> vp

i,l, we can neglect the vp
i,l

and 1/m({Ni,d}) terms in (5.1) (which is equivalent of neglecting the fact that
also the cluster moves), and the condensation coefficient takes the form
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βi({Ni,d}) = Ci,monA({Ni,d})
√

kT

2πmi
,

where A({Ni,d}) is the area of a spherical cluster with radius

r =
(

3
4π

)1/3
V ({Ni,d})1/3.

In this book we have included the monomer concentration in the conden-
sation coefficient, and the number of clusters grown per unit time is given by
C({Ni,d})β. Another possibility is to define β′ = β/Ci,mon, which means that
the number of clusters grown in a unit time is given by β′Ci,monC({Ni,d}),
which better shows the symmetry of the condensation rate with respect to
the concentrations of the colliding parties. Using β′ would make the notation
longer, and in the interest of simplicity we use β in this book.

Clusters of size {Ni,d} loose one molecule of type k with a rate
γk({Ni,d}) ·C({Ni,d}), where γ({Ni,d}) is the evaporation coefficient. See Fig.
5.1 for an illustration of the transitions between different cluster sizes in a
two-component system.

We separate the number of molecules of type k arriving or leaving from all
other types j �= k by writing {Ni,d} ≡ {Nj,d, Nk,d} as illustrated in Fig. 5.2.
The concentration of size {Nj,d, Nk,d} clusters changes due to the following
processes:

1. Smaller ones grow:
+d
∑

k βk({Nj,d, Nk,d − 1}) · C({Nj,d, Nk,d − 1}).
A monomer of type k hits a cluster {Ni,d, Nk,d − 1} which is otherwise
like {Nj,d, Nk,d}, but one molecule of type k is missing

2. The clusters themselves grow by a monomer of any type k:
−d
∑

k βk({Nj,d, Nk,d}) · C({Nj,d, Nk,d}).
3. Larger ones break up:

+d
∑

k γk({Nj,d, Nk,d + 1}) · C({Nj,d, Nk,d + 1}).
A monomer of type k leaves a cluster {Nj,d, Nk,d + 1} which is otherwise
like {Ni,d, Nk,d}, except that is has one more molecule of type k.

4. The clusters themselves break up, a molecule of type k leaves:
−d
∑

k γk({Nj,d, Nk,d}) · C({Nj,d, Nk,d}).
The birth-death equation tells how the concentration of clusters change

with time:

dC({Nj,d, Nk,d})
dt

=d
∑

k

[
βk({Nj,d, Nk,d − 1}) · C({Nj,d, Nk,d − 1})

− β({Nj,d, Nk,d}) · C({Nj,d, Nk,d})
− γk({Nj,d, Nk,d}) · C({Nj,d})

+ γk({Nj,d, Nk,d + 1}) · C({Nj,d, Nk,d + 1})
]
.

(5.2)

We define the flow of the clusters for size {Ni,d} in direction k as
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b2
g2

I2

I1

b2
g2

b1

g1

b1

g1

Fig. 5.1. Evaporation and condensation flows between adjacent cluster sizes in
a two-component system. βi is the condensation coefficient and γi is the evapo-
ration coefficient for component i = 1, 2. Both the evaporation and condensation
coefficients are dependent on the cluster size and composition, but the arguments
indicating this dependency have been left out from the symbols in this figure for
simplicity.

N +1k,l

b({N ,N })j,l k,l

Nk,l

g({N ,N +1})j,l k,l

Fig. 5.2. Flows between two cluster sizes in the direction of the component k.
βe

k({Nj,d, Nk,d}) is the rate at which molecules of type k hit the cluster with Nk,d

molecules of type k. The number of molecules Nj,d of all types j �= k stay constant.
The cluster formed in this process is denoted {Nj,d, Nk,d + 1}, it has one molecule
of type k more than the original cluster. The rate at which these clusters break up
by emitting one molecule of type k is γk({Nj,d, Nk,d + 1}).

Ik({Nj,d, Nk,d}) =βk({Nj,d, Nk,d}) · C({Nj,d, Nk,d})
− γk({Nj,d, Nk,d + 1}) · C({Nj,d, Nk,d + 1}). (5.3)

With this definition the birth-death equation takes a simple form
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dC({Nj,d, Nk,d})
dt

= d
∑

k

Ik({Nk,d, Nk,d − 1}) − Ik({Ni,d, Nk,d}). (5.4)

We can solve the evolution of cluster concentrations C({Ni,d}) from the set
of birth-death equations (5.2) if we know the evaporation coefficients γk. This
is the point where we once more have to turn back to equilibrium considera-
tions. In the equilibrium vapour the concentrations of clusters stay constant:

C({Ni,d}) = Ce({Ni,d}) = constant in time,
dCe({Ni,d})

dt
= 0.

Nothing flows in the system either, Ik({Ni,d, Nk,d}) = 0 , which means we
have to have detailed balance: the rate of each process is equal to the rate of
its counter-process.

γk({Nj,d, Nk,d+1})·Ce({Nj,d, Nk,d+1}) = βe
k({Nj,d, Nk,d})·Ce({Nj,d, Nk,d}).

(5.5)
We assume that the probabilities of clusters to break up, in other words the

evaporation coefficients, are independent of the vapour where the clusters are:
We can calculate the evaporation coefficients in the true equilibrium vapour
from

γk({Nj,d, Nk,d + 1}) = βe
k({Nj,d, Nk,d}) Ce({Nj,d, Nk,d})

Ce({Nj,d, Nk,d+1}) . (5.6)

NOTE 1: The condensation coefficient is calculated for the equilibrium
vapour, so through βe

k it is proportional to the equilibrium concentration of
monomers Ce

mon,k, not the monomer concentration in the studied, nucleat-
ing vapour. For multicomponent systems we can use the equilibrium vapour
over a liquid of any composition to calculate the evaporation coefficients. The
reference liquid composition cancels in our calculations (see p. 99).

NOTE 2: Often especially in older literature the equilibrium constants are
calculated in a hypothetical supersaturated equilibrium vapour, see p. 83.

The evaporation coefficients can also be calculated from the equality of
condensation rate and evaporation rate for a single spherical droplet which
is in equilibrium with the surrounding vapour. The pressure of this vapour
is the saturation vapour pressure over a flat surface of the solution times the
Kelvin factor exp[2σvi,l/(rkT )]. With the approximation A({Nj,d, Nk,d+1})−
A({Nj,d, Nk,d}) = ∂A

∂Nk,d
the result is the same as obtained from eq. (5.6).

We will now study nucleation in a supersaturated steady-state vapour,
where the concentrations of all clusters stay constant dC({Ni,d})/dt = 0, but
in contrast to the equilibrium situation there is a flow of molecules through
the system and the detailed balance is not valid. We assume that the vapour
always behaves like an ideal gas, and thus concentrations are directly propor-
tional to pressures.
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5.1 One-component steady-state nucleation

In a one-component system k = 1 always, so component index k is not needed
in the following. Denote {Ni,d} ≡ n, C({Ni,d}) ≡ C(n) and so on, with n
as the number of molecules in the cluster. The monomer concentration is
Cmon = C(1) = SP p

e (T0)/(kT0) and the saturation ratio must be greater than
one for nucleation to occur, S = C(1)/Ce(1) > 1.

The net flow to size n (eq. 5.3) simplifies to

I(n) = β(n)C(n) − γ(n + 1)C(n + 1).

The flow I(n) gives the net flow of n molecule clusters (n-mers) to n + 1
molecule clusters taking into account both growth from n to n + 1 and decay
from n + 1 to n .

The birth-death equation (5.2) takes the form

dC(n)

dt
=β(n − 1)C(n − 1) − β(n)C(n) − γ(n)C(n) + γ(n + 1)C(n + 1)

=I(n − 1) − I(n).

g(n)C(n)

b(n)C(n)b(n-1)C(n-1)

g(n+1)

C(n+1)�
n-1 n+1n

Fig. 5.3. Evaporation and condensation flows between sizes n − 1, n and n + 1
in a one-component system. β(n) is the condensation coefficient and γ(n) is the
condensation coefficient for size n.

In a steady state the cluster concentrations do not change
dC(n)

dt
= 0, which

implies that the flow of molecules from size (n − 1) to size n is independent
of n, I(n− 1) = I(n) = I. We want to calculate the formation rate of critical
clusters, the nucleation rate J , which is thus equal to I. Now β(n)C(n) �= γ(n+
1)C(n + 1) and there is a flow through the system. In the steady state all the
cluster concentrations and the monomer concentrations stay constant. This
requires a continuous monomer source, or we have to assume that clusters are
so rare compared to the monomers that their formation does not significantly
lower the monomer concentration.

NOTE: In equilibrium Ie(n) = 0 for each n.
Using a detailed balance (5.5) to calculate evaporation coefficients as in

eq. (5.6) we get
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γ(n + 1) = βe(n)
Ce(n)

Ce(n + 1)

and the flow is

I = β(n)C(n) − βe(n)Ce(n)
C(n + 1)

Ce(n + 1)

= βe(n)Ce(n)

(
β(n)

βe(n)

C(n)

Ce(n)
− C(n + 1)

Ce(n + 1)

)
.

The condensation coefficient β(n) is proportional to the pressure of the nu-
cleating vapour, β(n) ∝ SPs, and βe(n) is proportional to the pressure of
the equilibrium vapour, βe(n) ∝ Ps, and thus β(n)/βe(n) = S. Using this
and inserting Sn+1 to the nominator and denominator at the second stage we
obtain

I = βe(n)Ce(n)

(
S

C(n)

Ce(n)
− C(n + 1)

Ce(n + 1)

)

= βe(n)Ce(n)Sn+1

(
C(n)

Ce(n)Sn − C(n + 1)

Ce(n + 1)Sn+1

)

= Sβe(n)︸ ︷︷ ︸
β(n)

Ce(n)Sn

(
C(n)

Ce(n)Sn − C(n + 1)

Ce(n + 1)Sn+1

)

I = β(n)Ce(n)Sn

(
C(n)

Ce(n)Sn − C(n + 1)

Ce(n + 1)Sn+1

)
.

This equation can be rearranged to give

I

β(n)Ce(n)Sn =
C(n)

Ce(n)Sn − C(n + 1)

Ce(n + 1)Sn+1 . (5.7)

We sum up equations (5.7) with n = 1, . . . ,N where N is so far any arbitrary
number > 2.

I

β(1)Ce(1)S
=

C(1)

Ce(1)S1 − C(2)

Ce(2)S2

I

β(2)Ce(2)S2 =
C(2)

Ce(2)S2 − C(3)

Ce(3)S3

...

I

β(N )Ce(N )SN
=

C(N )

Ce(N )SN
− C(N + 1)

Ce(N + 1)SN+1
.

The last term on the right-hand side of each equation is cancelled by the first
term on the right-hand side of the next equation and we get
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I

N∑
n=1

1

β(n)Ce(n)Sn =
C(1)

Ce(1)S
− C(N + 1)

Ce(N + 1)SN+1
. (5.8)

The monomer concentration (∝ pressure) is related to the saturation ratio and
equilibrium monomer concentration (∝ saturation vapour pressure), C(1) =
Ce(1)S, which means that the first term on the right-hand side of eq. (5.8)
equals 1. If we take N to infinity and assume

C(N + 1)

Ce(N + 1)SN+1
→ 0 for N → ∞, (5.9)

then eq. (5.8) reduces to

I

∞∑
n=1

1

β(n)Ce(n)Sn = 1 − 0 = 1,

from which we can solve the flow I which is equal to the nucleation rate J

J = I =

[ ∞∑
n=1

(
1

β(n)Ce(n)Sn

)]−1

. (5.10)

The sum in eq. (5.10) can be calculated accurately to get the nucleation
rate, but more often people go to the continuum limit and calculate the sum
as an integral

I−1 =

∞∑
n=1

1

β(n)Ce(n)Sn ≈
∫ ∞

1

1

β(n)Ce(n)Sn dn. (5.11)

One could make the continuum approximation in differential form already
earlier in eq. (5.7) and arrive at the same integral by writing

I

β(n)Ce(n)Sn = − ∂

∂n

(
C(n)

Ce(n)Sn

)
,

the integral of which gives∫ ∞

1

Idn

β(n)Ce(n)Sn = −
∞/

1

C(n)

Ce(n)Sn = 1.

The last equality follows since C(1) = Ce(1)S and we assume that

lim
n→∞

C(n)

Ce(n)Sn
= 0.

To calculate the integral we recall the form of the equilibrium cluster distri-
bution (4.14)
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Ce(n) = F e exp

(
− ∆ϕe(n)

kT0

)
.

Remember that we are using the equilibrium distribution in the true equi-
librium vapour and specify this choice by adding the superscript e to the
formation free energy. The denominator of the integrand in eq. (5.11) can be
written as

Ce(n) · Sn = F e · exp

(−∆ϕe(n) + kT0n lnS

kT0

)
, (5.12)

where
∆ϕe(n) = n∆µe + Aσ,

but for one-component equilibrium vapour S = 1 and thus ∆µe = kT0 lnS = 0
and the function inside the exponential in eq. (5.12) can be written as

1

kT0
(−∆ϕe(n) + kT0n lnS) =

1

kT0
(−Aσ + kT0n ln S) = −∆ϕ(n))

which is the formation energy in the supersaturated vapour (for ideal gas
∆µ = kT0 lnS in one-component system).

The integral (5.11) can now be written as

I−1 =

∫ ∞

1

dn
1

β(n)Ce(n)Sn =

∫ ∞

1

1

β(n)

1

F e exp

(
∆ϕ(n)

kT0

)
.

The behaviour of ∆ϕ(n)
kT0

and exp
(∆ϕ(n)

kT0

)
as functions of n are sketched in Fig.

5.4, both of them have a maximum at the critical size, but the maximum of
exp
(∆ϕ(n)

kT0

)
is much sharper.

n*

��/(kT )0

N n*

exp[ /(kT )]�� 0

Fig. 5.4.
∆ϕ(n)

kT0
and exp

(
∆ϕ(n)

kT0

)
as a function of number of molecules in the cluster

n.

The maximum of the exponential is so sharp that only the region around
the critical size contributes to the integral. Inside the integral we will thus
approximate
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β(n) ≈ β(n∗)

and use (see p. 83)

F e = Ce(1) +

∞∑
n=2

Ce(n) ≈ Ce(1)

assuming there are many more monomers than clusters in the equilibrium
vapour. We can also expand ∆ϕ as a Taylor series around n∗:

∆ϕ(n) = ∆ϕ(n∗) +

(
∂∆ϕ

∂n

)
n∗

(n − n∗) +
1

2

(
∂2∆ϕ

∂n2

)
n∗

(n − n∗)2 + · · ·

Because ∆ϕ has a maximum at n∗, the first derivative is zero(
∂∆ϕ

∂n

)
n∗

= 0

and the second derivative denoted by W ∗ is negative

−W ∗ ≡
(

∂2∆ϕ

∂n2

)
n∗

< 0.

With these assumptions and definitions the integral (5.11) becomes

I−1 =
1

β(n∗)Ce(1)

∫ ∞

1

exp

(
∆ϕ∗

kT0
+

1

2

−W ∗

kT0
(n − n2)2

)
dn

=
exp(

∆ϕ∗

kT0
)

β(n∗)Ce(1)

∫ ∞

−∞

exp

(−W ∗

2kT0
x2

)
dx,

where we have changed the integration variable to x = n − n∗ and treated
the integration limits loosely: the integrand is almost zero for very low n and
very high n, so we can replace the lower limit with −∞. Starting this integral
from x = 0 instead of −∞ would leave out half of the most important region
around the critical size, and is thus erroneous, but is sometimes done in the
literature.

Now from an integral table (or with residy tricks)∫ ∞

−∞

exp

(
− az2

)
dz =

√
π

a

and we can evaluate the integral∫ ∞

−∞

exp

(−W ∗

2kT0
x2

)
dx =

√
2πkT0

W ∗ ,
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which gives

I−1 =
exp(

∆ϕ∗

kT0
)

β(n∗)Ce(1)

√
2πkT0

W ∗ .

The nucleation rate is finally

J = I = β(n∗)Ce(1) exp(
−∆ϕ∗

kT0
)Z, (5.13)

where

Z ≡
√

W ∗

2πkT0

is called the Zeldovich non-equilibrium factor, which we will now calculate.
We need the second derivative of the formation free energy with respect to

the number of molecules in the cluster taken at the critical size n∗. To make
the derivation easier the formation free energy is first expressed in terms of
the radius r instead of n using nvl = 4/3πr3 and A = 4πr2.

∆ϕ = n∆µ + σA =
4

3
πr3 ∆µ

vl
+ 4πr2σ. (5.14)

We also need the derivative of radius with respect to number of molecules in
the cluster ∂n

∂r
= 4πr2/vl ⇔ ∂r

∂n
= vl/(4πr2)

NOTE: The partial derivatives behave like normal derivatives since r only
depends on n and there are no other variables involved. In a one-component
system, taking the derivatives is generally easy since vl, σ and ∆µ are con-
stants. This is because composition (and temperature) is unchanged.

The first derivative of the formation free energy is

∂∆ϕ

∂n
=

∂∆ϕ

∂r

∂r

∂n
=

(
∆µ

vl
4πr2 + 8πrσ

)
vl

4πr2
= ∆µ +

2vlσ

r
.

This is a familiar result, actually the left-hand side of the Kelvin eq. (2.15), and
the previous derivation shows how to arrive at the Kelvin equation by finding
the extrema of the formation free energy in a one-component system with a
radius-independent surface tension. We have to take the second derivative for
the Zeldovich factor

−W ∗ =

(
∂2∆ϕ

∂n2

)
∗

=

∂

(
∆µ +

2vlσ

r

)
∂r

∂r

∂n
|∗ =

−2vlσ

r∗2
vl

4πr2
=

−v2
l σ

2πr∗4
.

The Zeldovich factor becomes
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Z =

√
W ∗

2πkT0
=

√
σ

kT0

vl

2πr∗2
. (5.15)

We would have arrived at this neat form with more cumbersome manipulations
if we had expressed the area A in eq. (5.14) in terms of n and taken all the
derivatives directly with respect to n.

Summary of predicting one-component nucleation rate

To get the nucleation rate we have to

1. Calculate the critical cluster radius r∗ from eq. (2.24), which for a one-
component system reduces to

r =
2σvl

−∆µ
=

2σvl

kT lnS
. (5.16)

Composition does not need to be solved, there are no options for it.
2. Calculate the formation free energy for the critical cluster, or in other

words, the nucleation barrier height, given by eq. (3.9)

∆ϕ∗ = −kT0n
∗ lnS + A∗σ∗ =

4

3
πσr∗2.

3. Calculate the condensation coefficient β(n∗) from eq. (5.1) which for a
one component system with Cmon = SP p

e (T0)/(kT0) takes the form

β(n∗) = SP p
e (T0)

√
6

kT0

( 3

4π

)1/6( 1

n∗m1
+

1

m1

)1/2(
v∗1/3 + v

1/3
l

)2
,

where m1 is the mass of molecule of the nucleating vapour and vl is the
molecular volume in the bulk liquid and we have used the ideal gas as-
sumption for the monomer concentration Cmon = C(1) = SP p

e (T0)/(kT0).
4. Calculate the nucleation rate itself from equation

J = β(n∗)Ce(1) exp
(− ∆ϕ∗

kT0

)√ σ

kT0

vl

2πr∗2
. (5.17)

Nucleation rate is often written as a product of three terms:

J = β(n∗) · C∗ · Z = β(n∗) · Ce
1 · exp

(−∆ϕ∗

kT0

) · Z, (5.18)

where C∗ = Ce
1 exp

(−∆ϕ∗

kT0

)
. C∗ is not the equilibrium concentration of size

n∗ clusters, because ∆ϕ∗ is calculated in the supersaturated vapour.
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C∗ = Ce
1 exp

(−∆ϕ∗

kT0

)
= Ce

1 exp
(−∆ϕe(n∗)

kT0

)
Sn∗ = Ce(n∗)Sn∗

Ce(n∗) is the concentration of n∗ clusters in the equilibrium vapour. So C∗ is
not really a concentration of n∗ sized clusters in any vapour. However, C∗ is
the most important term since it contains the nucleation barrier height ∆ϕ∗.
The higher the barrier, the lower the nucleation rate, and dependence of the
rate on the barrier height is strong because ∆ϕ∗ is in the exponent.

5.2 1/S factor

If we had used the equilibrium cluster distribution (4.14) in the hypothetical
supersaturated vapour (instead of the true equilibrium vapour) to calculate
the evaporation coefficients the expression for the nucleation rate would be

JS = β(n∗) · C1(S) · exp
(−∆ϕ∗

kT0

) · Z = β(n∗)CeS(n∗)Z, (5.19)

where CeS(n∗) is the concentration of critical clusters in the hypothetical su-
persaturated equilibrium vapour. In this case the formula for the nucleation
rate can be interpreted as follows: the nucleation rate is the growth rate of
critical clusters β(n∗) times the concentration of critical clusters in supersat-
urated equilibrium CeS(n∗), times the Zeldovich factor Z which accounts for
the fact that nucleating vapour is not in equilibrium. The Zeldovich factor
is often called the Zeldovich non-equilibrium factor. However, the Zeldovich
factor can not be used to calculate steady-state cluster concentrations from
equilibrium (hypothetical or true) concentrations. Z is a rather abstract result
of an integral performed around the critical size region, and accounts, among
other things, for the fact that clusters do not only move toward larger sizes
at the critical size, but there is evaporation flow to smaller clusters as well.

The difference between the formula (5.17), (or equivalently eq. 5.18) and
formula (5.19) is a factor J/JS = 1/S. The 1/S factor arises also if we calcu-
late evaporation coefficients using the equilibrium distribution (4.14) in the
hypothetical supersaturated vapour and

• modify the pre-factor F e to be the monomer concentration in the saturated
vapour to avoid making F e dependent on monomer concentrations, which
would seemingly violate the mass action law (see p. 83).

• make the equilibrium cluster distribution in hypothetical supersaturated
equilibrium self-consistent in the sense that the distribution gives the
correct result for single monomers (see p. 84). 1/S factor in front of
Ce(n) = Cmon exp[(−nkT lnS + σA)/kT ] causes the lnS-dependent part
to behave consistently for monomers, but another factor is needed for the
surface term.
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Eq. (5.19) is the form of the nucleation rate originally derived using clas-
sical theory, and there has been a lot of debate about the 1/S factor in the
literature (Courtney 1961; Weaklim and Reiss 1994; Blander and Katz 1972).
In this book the 1/S version (5.17) is preferred due to the fact that true equi-
librium is believed to be the only thermodynamically acceptable reference
state for calculating the evaporation coefficients.

5.3 Two-component steady-state nucleation

In a two-component case we denote {Ni,d} ≡ (i, j), C({Ni,d}) ≡ C(i, j) and
so on. C(i, j) is the concentration of clusters with i molecules of type 1 and j
molecules of type 2. The birth-death equation has the form

dC(i − 1, j)

dt
= I1(i − 1, j) − I1(i, j) + I2(i, j − 1) − I2(i, j) ≈ −∂I1

∂i
− ∂I2

∂j
,

where we have gone to the continuum limit. In two-component systems we

define a vector operator ∇ = ( ∂
∂i

, ∂
∂j

) and a net flow vector I =

(
I1

I2

)
. The

birth-death equation at the continuum limit takes the form
dC(i, j)

dt
= −∇· I

and in the steady state we have
dC(i, j)

dt
= 0 = −∇ · I

Outline for calculating the multicomponent nucleation rate

Now we would like to find out the magnitude and direction of the critical
cluster flow in the (i, j)-plane. We will then assume that only the critical size
region contributes to the integral and in that region the flow direction θ is
constant.

In the (x, y)- coordinate system with x-axis parallel to the critical size flow
the critical region flow then has the form

Ix,y =

(
Ix

0

)
,

and the gradient of the flow in these coordinates gives

∇x,y · Ix,y =
∂Ix

∂x
+

∂0

∂y
= 0,

which tells that
∂Ix

∂x
= 0.

So Ix can depend only on y, not on x

Ix = Ix(y),
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xy

i

j

Fig. 5.5. Rotated coordinate system (x, y) with saddle point flow along the x-axis.

in other words Ix is constant along lines parallel to the x-axis (parallel to the
critical size flow). We can integrate the flow along these lines, get Ix out of
the integral and solve it just like in the one-component case. Then we can
integrate Ix(y) over different values of y and get the total flow passing the
critical size region. We have to begin with finding an expression for I and

a coordinate system where the flow has the form Ix,y =

(
Ix

0

)
around the

critical size.

The flow vector in two-component systems

Net flow in direction 1 is defined as

I1(i, j) = β1(i, j)C(i, j) − γ1(i + 1, j)C(i + 1, j).

Using the detailed balance to eliminate the evaporation coefficients we get

I1(i, j) = β1(i, j)C(i, j) − βe
1(i, j)

Ce(i, j)

Ce(i + 1, j)
C(i + 1, j)

= βe
1(i, j)C

e(i, j)

[
β1(i, j)C(i, j)

βe
1(i, j)Ce(i, j)

− C(i + 1, j)

Ce(i + 1, j)

]
.

β1(i, j) ∝ A1,gP
p
1,e(T0), in other words the condensation coefficient β1 is pro-

portional to the vapour pressure of component 1 in the nucleating vapour,
whereas the condensation coefficient βe

1 is proportional to the equilibrium
vapour pressure over some reference liquid with composition xe

l , βe
1(i, j) ∝

A1,l(x
e
l )P

p
1,e(T0).
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Choice of the reference liquid

Now we show that we can choose any reference liquid xe
l . In the equilibrium

vapour over that liquid the gas phase activities are Ae
1,g = A1,l(x

e
l ) and Ae

2,g =
A2,l(x

e
l ). We denote

βe
1(i, j) = Ae

1,gβ
0
1(i, j),

where β0
i is the part which is independent of gas phase activities (see eq. 5.1)

β0
i (i, j) = P p

i,e(T0)

√
6

kTO

( 3

4π

)1/6( 1

m(i, j)
+

1

m1

)1/2(
v(i, j)1/3 + v

1/3
1

)2
.

The equilibrium cluster distribution is given by eq. (4.14)

Ce(i, j) = F e exp
(−∆ϕe(i, j)

kT0

)
.

For an ideal gas mixture the formation energy of a cluster is

∆ϕe(i, j) = Aσ − ikT0 ln
Ae

1,g

A1,l(i, j)
− jkT0 ln

Ae
2,g

A2,l(i, j)

and the equilibrium distribution takes the form

Ce(i, j) = F e exp

(−Aσ + ikT0 ln
Ae

1,g

A1,l(i,j)
+ jkT0 ln

Ae
2,g

A2,l(i,j)

kT0

)

= F e

( Ae
1,g

A1,l(i, j)

)i( Ae
2,g

A2,l(i, j)

)j

exp

(−A(i, j)σ(i, j)

kT0

)
. (5.20)

By replacing i with i + 1 we get

Ce(i + 1, j) =F e

( Ae
1,g

A1,l(i + 1, j)

)i+1( Ae
2,g

A2,l(i, j)

)j

· exp

(−A(i + 1, j)σ(i + 1, j)

kT0

)
.

Now the evaporation coefficient can be calculated from the detailed balance
(5.5)

γ1(i, j) = βe
1(i − 1, j)

Ce(i − 1, j)

Ce(i, j)

and it reads

γ1(i, j) =Ae
1,gβ

0
1(i, j)

F e

F e

[A1,l(i + 1, j)]i+1

Ae
1,g[A1,l(i, l)]

i

· exp

(
A(i + 1, j)σ(i + 1, j) − A(i, j)σ(i, j)

kT0

)
,

and we can derive a similar equation for γ2(i, j). We see that γ1 and γ2 are
independent of the chosen equilibrium vapour used as a reference case since
Ae

1,g (and Ae
2,g) cancel.
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Developing the formula for the flow vector

Using a reference liquid with Ae
1,g and Ae

2,g we get the expression for the net
flow in the form

I1(i, j) =βe
1(i, j)Ce(i, j)

(A1,g

Ae
1,g

C(i, j)

Ce(i, j)
− C(i + 1, j)

Ce(i + 1, j)

)

=βe
1(i, j)Ce(i, j)

(A1,g

Ae
1,g

)i+1(A2,g

Ae
2,g

)j

·
(

C(i, j)

Ce(i, j) · (A1,g/Ae
1,g)

i · (A2,g/Ae
2,g)

j

− C(i + 1, j)

Ce(i + 1, j) · (A1,g/Ae
1,g)

i+1 · (A2,g/Ae
2,g)

j

)

=β1(i, j)C
e(i, j)

(A1,g

Ae
1,g

)i(A2,g

Ae
2,g

)j

·
(

C(i, j)

Ce(i, j) · (A1,g/Ae
1,g)

i · (A2,g/Ae
2,g)

j

− C(i + 1, j)

Ce(i + 1, j) · (A1,g/Ae
1,g)

i+1 · (A2,g/Ae
2,g)

j

)
,

where we have multiplied both the nominator and the denominator with(A2,g/Ae
2,g

)j
in anticipation of combining I1 and I2 to a single vector I and

used β1/βe
1 = A1,g/Ae

1,g. The cluster size distribution Ce(i, j) above the ref-
erence liquids is given by eq. (5.20) and we get

Ce(i, j)

(A1,g

Ae
1,g

)i(A2,g

Ae
2,g

)j

=F e exp

(−A(i, j)σ(i, j + ikT0

Ae
1,g

A1,l(i, j)
+ jkT0

Ae
2,g

A2,l(i, j)
)

kT0

)

·
(A1,g

Ae
1,g

)i(A2,g

Ae
2,g

)j

=F e

( Ae
1,g

A1,l(i, j)

)i( Ae
2,g

A2,l(i, j)

)j

exp

(−A(i, j)σ(i, j)

kT0

)(A1,g

Ae
1,g

)i(A2,g

Ae
2,g

)j

=F e exp

⎛
⎝−Aσ + ikT0 ln

A1,g

A1,l(x) + jkT0 ln
A2,g

A2,l(x)

kT0

⎞
⎠ = F e exp

(−∆ϕ(i, j)

kT0

)
,

where energy ∆ϕ(i, j) is the formation energy of the (i, j) cluster in the nucle-
ating vapour with gas phase activities A1,g and A2,g. At the continuum limit
the flow in direction of component 1 is
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I1(i, j) =β1(i, j)C
e(i, j)

(A1,g

Ae
1,l

)i(A2,g

Ae
2,l

)j

·

⎛
⎜⎜⎜⎝− ∂

∂i

⎛
⎜⎜⎜⎝ C(i, j)

Ce(i, j)

(A1,g

Ae
1,l

)i(A2,g

Ae
2,l

)j

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

=β1(i, j)F
e exp

(−∆ϕ(i, j)

kT0

)
·

⎛
⎜⎜⎝− ∂

∂i

⎛
⎜⎜⎝ C(i, j)

F e exp

(−∆ϕ(i, j)

kT0

)
⎞
⎟⎟⎠
⎞
⎟⎟⎠ ,

and similarly the flow in direction of component 2 is

I2(i, j) =β2(i, j)C
e(i, j)

(A1,g

Ae
1,l

)i(A2,g

Ae
2,l

)j

·

⎛
⎜⎜⎜⎝− ∂

∂j

⎛
⎜⎜⎜⎝ C(i, j)

Ce(i, j)

(A1,g

Ae
1,l

)i(A2,g

Ae
2,l

)j

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

=β2(i, j)F
e exp

(−∆ϕ(i, j)

kT0

)
·

⎛
⎜⎜⎝− ∂

∂j

⎛
⎜⎜⎝ C(i, j)

F e exp

(−∆ϕ(i, j)

kT0

)
⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

We construct a vector I =

(
I1

I2

)
describing the flow of clusters in all directions

(Binder and Stauffer 1976)

I = −RF e exp

(−∆ϕ(i, j)

kT0

)
∇

⎛
⎜⎜⎝ C

F e exp

[−∆ϕ(i, j)

kT0

]
⎞
⎟⎟⎠ ,

where the growth matrix R is defined as

R =

(
β1(i, j) β1,2(i, j)
β1,2(i, j) β2(i, j)

)
.

The off-diagonal elements of R (β1,2) are equal to zero in this case, but
they can also be non-zero if we take cluster-cluster collisions and cluster “fis-
sions” into two daughter clusters (both larger than a monomer) into account
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(Binder and Stauffer 1976; Arstila 1997; Katz et al. 1966). This is especially
important in associated vapours, where the concentration of monomers is ex-
ceeded by the concentration of some other cluster size with a negative forma-
tion energy. Acetic acid is an example of associated one-component systems
(Heist et al. 1976) (in acetic acid dimers dominate), and sulphuric acid-water
is an associated two-component system, where sulphuric acid forms hydrates
(Jaecker-Voirol et al. 1987; Heist and Reiss 1974; Shugard et al. 1974; McGraw
and Weber 1998; Hanson and Eisele 2000; Re et al. 1999), small clusters with
one sulphuric acid and 1-3 water molecules which are more stable and thus
more common than monomers.

We study I around the critical size and find the direction of I for the critical
size. We express ∆ϕ as a two-variable Taylor series in the region around the
critical size

∆ϕ = ∆ϕ∗ +

(
∂∆ϕ

∂i

)
∗

(i − i∗) +

(
∂∆ϕ

∂j

)
∗

(j − j∗) +
1

2

(
∂2∆ϕ

∂i2

)
∗

(i − i∗)2

+

(
∂2∆ϕ

∂i∂j

)
∗

(i − i∗)(j − j∗) +
1

2

(
∂2∆ϕ

∂j2

)
∗

(j − j∗)2 + ...

The first derivatives are zero for the critical size,(
∂∆ϕ

∂i

)
∗

=

(
∂∆ϕ

∂j

)
∗

= 0.

We form a matrix W ∗ of the second derivatives of the free energy

W ∗ =

⎛
⎜⎜⎝
(

∂2∆ϕ
∂i2

)
∗

(
∂2∆ϕ
∂i∂j

)
∗(

∂2∆ϕ
∂i∂j

)
∗

(
∂2∆ϕ
∂j2

)
∗

⎞
⎟⎟⎠

and a vector ∆n representing the size variables

∆n =

(
i − i∗

j − j∗

)
.

NOTE: i and j stand for the total numbers of molecules in the cluster,
Ni,d, not the bulk values, Ni,l.

With the aid of these definitions the free energy around the critical size
becomes

∆ϕ ≈ ∆ϕ∗ +
1

2
∆n

T
W ∗∆n.

We also approximate R ≈ R∗ as in the one-component case and get
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I = −R∗F e exp

(−∆ϕ∗

kT0

)
exp

(
− 1

2kT0
∆n

T
W ∗∆n

)

· ∇

⎛
⎜⎜⎝ C

F e exp

(−∆ϕ∗

kT0

)
exp

(
− 1

2kT0
∆n

T
W ∗∆n

)
.

⎞
⎟⎟⎠ .

F e and exp
(

∆ϕ∗

kT0

)
are constants and can be taken out of the derivatives, and

they cancel out to give

I = −R∗ exp

(
− 1

2kT0
∆n

T
W ∗∆n

)
∇

⎛
⎜⎜⎝ C

exp

(
− 1

2kT0
∆n

T
W ∗∆n

)
⎞
⎟⎟⎠ .

(5.21)

Coordinate transformations

Next we seek to change the variables so that we get rid of R∗, as R∗ couples
the components of ∇ (C/ exp(..)) with each other, and we want to have a

clear situation where Ix ∝ ∂
∂x

(C/ exp(..)) and Iy ∝ ∂
∂y

(C/ exp(..)) (Trinkaus

1983). In order to achieve this we need to find a matrix R∗1/2 for which
R∗1/2 ·R∗1/2 = R∗ and convert ∆n, I, C and ∇ to new variables ∆η, ι, ξ and
∇η using the following rules:

∆n = R∗1/2∆η

I =
1

det
(
R∗1/2

)R∗1/2ι

C =
ξ

det
(
R∗1/2

)

∇ ≡ ∇i,j =

(
∂

∂i
,

∂

∂j

)
= R∗−1/2∇η

∇η =

(
∂

∂∆η1
,

∂

∂∆η2

)
.

We should keep in mind that R∗, W ∗ and R∗1/2 are real, symmetric matrices.
The conversion for differential operator ∇ follows from the general rule (which
you can check)

v = Au → ∇v =
(
AT
)−1 ∇u (5.22)
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in the symmetric case where A = R∗1/2 =
(
R∗1/2

)T

. In terms of the new

variables eq. (5.21) becomes

1

det
(
R∗1/2

)R∗1/2 · ι = −R∗ exp

( −1

2kT0

(
R∗1/2∆η

)T

· W ∗ ·
(
R∗1/2∆η

))

· R∗−1/2∇η

⎛
⎝ ξ

det
(
R∗1/2

) · exp

(
1

2kT0

(
R∗1/2∆η

)T

· W ∗
(
R∗1/2∆η

))⎞⎠ .

First we note that det
(
R∗1/2

)
is a constant and cancels. On the right-hand

side, the exponential is a scalar and we can combine R∗ · R∗−1/2 = R∗1/2

and thus also R∗1/2 cancels from both sides. Now we insert a unity matrix
1 = R−1/2R1/2 into the interior of the exponentials(

R∗1/2∆η
)T

· W ∗ ·
(
R∗1/2∆η

)
=
(
R∗1/2∆η

)T

R∗−1/2R∗1/2W ∗
(
R∗1/2∆η

)
.

You can show that
(
R∗1/2∆η

)T

R∗−1/2 = ∆η
T

and the interior of the expo-

nential becomes
∆η

T
R∗1/2W ∗R∗1/2∆η.

We denote
Γ = R∗1/2W ∗R∗1/2.

For the future it is important to note that Γ is a symmetric matrix as well.
The flow in the new coordinates is

ι = − exp

(
− 1

2kT0
∆η

T
Γ∆η

)
∇η

(
ξ exp

(
1

2kT0
∆η

T
Γ∆η

))
. (5.23)

To calculate ∆η
T
Γ∆η we want to find a coordinate system where Γ be-

comes diagonal. The axes of the new coordinate system are parallel to the
eigenvectors eλ of Γ and the diagonal elements of Γ are the eigenvalues λ
which satisfy the following equation

Γeλ = λeλ,

which in terms of W ∗ and R∗ reads

R∗1/2W ∗R∗1/2eλ = λeλ.

Since Γ is symmetric, eλ1
and eλ2

are orthogonal, and so are the axes of the
new coordinate system, and the transformation from ∆η to ∆η

′
, where the

latter is in the eigenvector coordinates, is a pure rotation represented by an
orthogonal matrix O, (orthogonal matrix satisfies O ·OT = 1 and det O = 1).
We express ι, ∆η1, Γ , ∆η2 and ∇η in this eigenvector system:
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∆η
′
= O∆η

ι′ = Oι

Γ ′ = O · Γ · OT

∇η′ = O∇η

The last of these transformations follows from the general rule (5.22) in the
case of an orthogonal matrix OT = O−1. The whole point of this coordinate
transformation is that in the eigenvalue coordinate system Γ ′ is diagonal

Γ ′ = O · Γ · OT =

(
λ1 0
0 λ2

)

and
∆η′T Γ ′∆η′ = ∆η′2

1 λ1 + ∆η′2
2 λ2,

which means that eq. (5.23) can be written as

ι′ = − exp

(
− 1

2kT0

(
∆η′2

1 λ1 + ∆η′2
2 λ2

))

· ∇η′

(
ξ exp

(
1

2kT0

(
∆η′2

1 λ1 + ∆η′2
2 λ2

)))

and the directions ι′1 and ι′2 can be completely separated:

ι′1 = − exp

(
− 1

2kT0

(
∆η′2

1 λ1 + ∆η′2
2 λ2

))

· ∂

∂∆η′
1

(
ξ exp

(
1

2kT0

(
∆η′2

1 λ1 + ∆η′2
2 λ2

))) (5.24)

ι′2 = − exp

(
− 1

2kT0

(
∆η′2

1 λ1 + ∆η′2
2 λ2

))

· ∂

∂∆η′
2

(
ξ exp

(
1

2kT0

(
∆η′2

1 λ1 + ∆η′2
2 λ2

)))
.

(5.25)

Using the rule for calculating the determinant of a product of matrices,
det(AB) = det(A) det(B), we get

det Γ ′ = det(OΓOT ) = 1 · det(Γ ) · 1 = det
(
R∗1/2W ∗R∗1/2

)
= detR∗1/2 det W ∗ det R∗1/2 = (detR∗)1/2 detW ∗(det R∗)1/2

= detR∗ det W ∗.

The determinant of the growth matrix is always positive since condensation
coefficients are positive
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det(R∗) = det

(
β∗

1 0
0 β∗

2

)
= β∗

1β∗
2 > 0.

Even if we take cluster-cluster processes into account and R∗ has non-zero
off-diagonals and its determinant is always positive. Since the critical size
is a saddle point in the free energy surface, the determinant of the second
derivative matrix W ∗ is negative

det(W ∗) = det

⎛
⎜⎜⎝
(

∂2∆ϕ
∂i2

)
∗

(
∂2∆ϕ
∂i∂j

)
∗(

∂2∆ϕ
∂i∂j

)
∗

(
∂2∆ϕ
∂j2

)
∗

⎞
⎟⎟⎠ < 0.

Thus det Γ < 0. But det Γ = λ1λ2, which means that one of the λ1 and
λ2 must be positive and the other negative. We choose λ1 as the negative
eigenvalue. Even in systems with more than two components exactly one of
the eigenvalues of matrix Γ is negative, corresponding to the only direction
where the critical size is a maximum.

Now we assume that we have found the desired coordinates x = ∆η′
1 and

y∆η′
2: we believe that around the critical size the flow direction is constant

and ∆η′
1-axis is in the flow direction, in other words the flow ι′ � eλ1

is in
the direction of eigenvector for eigenvalue λ1. Thus we have to have ι′2 = 0,
which according to eq. (5.25) requires that

∂

∂∆η′
2

(
ξ exp

(
1

2kT0

(
∆η′2

1 λ1 + ∆η′2
2 λ2

)))
= 0

around the critical size. Furthermore, for a steady state ι′1 must be inde-
pendent of x = ∆η′

1, but can depend on y = ∆η′
2. In eq. (5.24) constants

exp(
∆η

′2
2 λ2

2kT0
) can be cancelled to give

ι′1 = − exp

(
− 1

2kT0

(
∆η′2

1 λ1

)) ∂

∂∆η′
1

(
ξ exp

(
1

2kT0

(
∆η′2

1 λ1

)))
.

This equation can be rearranged as

ι′1

exp

(
− 1

2kT0
λ1∆η

′2
1

) = − ∂

∂∆η′
1

(
ξ exp

(
1

2kT0
λ1∆η

′2
1

))

which we integrate from ∆η′
1 = −∞ to ∆η′

1 = ∞. The origin of the ∆η′
1, ∆η′

2

coordinate system is the critical size:

∆n = (i − i∗, j − j∗) = OR∗1/2∆η

∆n = (0, 0) ⇔ ∆η′ = 0 ⇔ i = i∗ and j = j∗.
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Since ∆η1 = ∆η2 = 0 at the critical size, and as in the one-component case an
integral from 0 to ∞ would leave some area very near the critical size out, we
should start from ∆η′

1 = −∞. Now ι′1 is constant in the integral with respect
to ∆η′

1

ι′1

∫ ∞

−∞

exp

(−|λ1|
2kT0

∆η2
1

)
d∆η′

1 = −
∞/

−∞

ξ exp

(
1

2kT0
λ1∆η

′2
1

)
,

where we have denoted λ1 = −|λ1| to underline the fact that eigenvalue λ1 is
negative. We multiply both the nominator and denominator of the right-hand

side by F e exp
(

1
2kT0

λ2∆η
′2
2

)
exp
(

∆ϕ∗

kT0

)
to get

ι′1

∫ ∞

−∞

exp

(−|λ1|
2kT0

∆η2
1

)
d∆η′

1

= −
∆η′

1
=∞/

∆η′
1
=−∞

C det(R∗1/2)F e

exp(∆ϕ/(kT0))︷ ︸︸ ︷
exp

(
1

2kT0
(λ1∆η

′2
1 + λ2∆η

′2
2 )

)
exp

(
∆ϕ∗

kT0

)
F e exp

(
1

2kT0
λ2∆η

′2
2

)
exp

(
∆ϕ∗

kT0

) ,

which can be rearranged to read

ι′1

∫ ∞

−∞

exp

(−|λ1|
2kT0

∆η2
1

)
d∆η′

1

= −
∆η′

1
=∞/

∆η′
1
=−∞

C det(R∗1/2)F e

F e exp

(−∆ϕ

kT0

)
exp

(
1

2kT0
λ2∆η

′2
2

)
exp

(
∆ϕ∗

kT0

)

= − det(R∗1/2)F e exp

(
−λ2∆η

′2
2

2kT0

)
exp

(−∆ϕ∗

kT0

) ∆η′
1
=∞/

∆η′
1
=−∞

C

F e exp

(−∆ϕ

kT0

) ,

(5.26)

where in the last stage all constants independent of the integration variable
∆η′

1 have been collected in the beginning of the right-hand side expression.
Assume that for ∆η′

1 → ∞
C

F e exp

(−∆ϕ

kT0

) → 0

and for ∆η′
1 → −∞ (which is loosely like (i, j) → (0, 1) or (i, j) → (1, 0), see

p. 93)
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C

F e exp

(−∆ϕ

kT0

) → 1.

The left-hand side of eq. (5.26) is calculated with the help of the table integral∫ ∞

−∞

exp
(−ax2

)
dx =

√
π

a

and we get

ι′1 ·
√

2πkT0

|λ1| = (−0 + 1) · det(R∗1/2)F e exp

(
−λ2∆η

′2
2

2kT0

)
exp

(−∆ϕ∗

kT0

)

= det(R∗1/2)F e exp

(−∆ϕ∗

kT0

)
exp

(
− λ2

2kT0
∆η2

2

)
,

which gives the flow as

ι′1 =

√
|λ1|

2πkT0
det(R∗)1/2F e exp

(−∆ϕ∗

kT0

)
exp

(
− λ2

2kT0
∆η2

2

)
.

This result clearly reflects the assumption that ι′1 depends only on ∆η2 and
not on ∆η1.

We still have to sum up ι′1 for all ∆η′
2 to get the nucleation rate . The

required integral over ∆η′
2 is

∫∞

−∞
exp
(
− λ2

2kT0
∆η

′2
2

)
d∆η′

2 =

√
2πkT0

λ2
(re-

member that λ2 > 0) and we get

J =

∫ ∞

−∞

ι′1d∆η′
2

=

√
|λ1|

2πkT0
det(R∗1/2)F e exp

(−∆ϕ∗

kT0

)√
2πkT0

λ2

=

√
|λ1|

2πkT0
det(R∗1/2)F e exp

(−∆ϕ∗

kT0

)√ |λ1|
2πkT0√

|λ1|
2πkT0

√
λ2

2πkT0

=
|λ1|

2πkT0

det(R∗1/2)F e exp

(−∆ϕ∗

kT0

)
√

|λ1|λ2

2πkT0 · 2πkT0

,
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where we have multiplied both the nominator and denominator with

√
λ1

2πkT0

since we seek to combine the terms to form the determinant

|det(Γ )| = |λ1|λ2 = |det(R∗W ∗)| = |det(R∗)||det(W ∗)|.

We move terms 1
2πkT0

which are under the square root inside the determinant
using

det(
W ∗

2πkT0
) = det

⎛
⎜⎜⎝

1
2πkT0

(
∂2∆ϕ
∂i2

)
∗

1
2πkT0

(
∂2∆ϕ
∂i∂j

)
∗

1
2πkT0

(
∂2∆ϕ
∂i∂j

)
∗

1
2πkT0

(
∂2∆ϕ
∂j2

)
∗

⎞
⎟⎟⎠

= det(W ∗)

(
1

2πkT0

)2

and get the final form for the nucleation rate

J =
|λ1|

2πkT0
F e exp

(−∆ϕ∗

kT0

)
·

√
det R∗√∣∣∣∣ det

(
W ∗

2πkT0

) ∣∣∣∣ det R∗

J =
|λ1|

2πkT0
F e exp

(−∆ϕ∗

kT0

)
1√∣∣∣∣ det

(
W ∗

2πkT0

) ∣∣∣∣
. (5.27)

This is a general result for multicomponent systems: λ1 is always the only
negative eigenvalue of product matrix R∗W ∗. For two-component systems
you see that 2πkT0 would actually cancel, but we have on purpose written the
result in the form above since it works for any number of components. It should
be noted that eq. (5.27) does not reduce to one-component nucleation rate
in the case we set gas phase activities of all but one component to zero. The
matrices involved in multicomponent nucleation theory have zero determinant
if we set the number of molecules of some component to zero, and thus they
do not have well-defined eigenvalues either. The same applies to reducing the
n component formula to n − 1 component formula in general.

In the original coordinates (i, j) the flow vector is given by

I =
1

det
(
R∗1/2

) (R∗)
1/2

ι =
1

det
(
R∗1/2

) (R∗)
1/2 · OT ι′
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and we see that the transformation between I and ι′ is not a pure rota-
tion, it changes the length scales as well |I| �= |ι|, (R∗1/2 is not orthogonal
R∗1/2(R∗1/2)T = R∗ �= 1). The direction of the critical size flow ι in (∆η1,∆η2)
coordinates is given by the eigenvector of R∗1/2W ∗R∗1/2 related to the nega-
tive eigenvalue λ1 satisfying

R∗1/2W ∗R∗1/2ι = λ1ι

where
ι = det(R∗1/2)R∗−1/2I.

In terms of the flow vector in original coordinates the eigenvalue equation
reads

R∗1/2W ∗R∗1/2 det(R∗1/2)R∗−1/2I = λ1 det(R∗1/2)R∗−1/2I

which simplifies to
R∗1/2W ∗ = λ1R

∗−1/2I

and by multiplying both sides with R∗1/2 we get

R∗W ∗I = λ1I, (5.28)

which shows that λ1 is also an eigenvalue of R∗W ∗ and even in (i, j) coor-
dinates the direction of I is that of the eigenvector of R∗W ∗ related to the
negative eigenvalue λ1.

What has been said in chapter 5.2 about the 1/S factor applies also to
multicomponent systems. The value used for the pre-factor F e depends on
whether supersaturated or true equilibrium has been used to calculate the
evaporation coefficients. Self-consistency corrections to the equilibrium cluster
distribution affect the value of F e. In multicomponent systems F e is often
taken to be a sum of the monomer concentrations in either a nucleating or
equilibrium vapour (see p. 83).

5.4 Usual formula for binary rate

Motivated by the one-component result (5.13) the two-component nucleation
rate is often written in the form

J = RavF e exp

(−∆ϕ∗

kT0

)
Z, (5.29)

where Rav is called the average growth rate and Z is the Zeldovich factor.
The Zeldovich factor is defined as
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Z =
−W ∗

x,y(1, 1)√
|detW ∗|

and the average growth rate as

Rav =
det R∗

β∗
1 sin2 θ + β∗

2 cos2 θ − 2β∗
1,2 sin θ cos θ

,

where θ is the angle of the critical size flow in the (i, j)-coordinate system,
and W ∗

x,y is the second derivative matrix W ∗ in a coordinate system with the
x-axis parallel to the critical size flow and the y-axis perpendicular to that.
β∗

1 and β∗
2 are the diagonal and β∗

1,2 is the off-diagonal element of the growth
matrix (the growth matrix is symmetric, which means that the off-diagonal
elements, which are non-zero in associated vapours, are equal to each other).
W ∗

x,y can be calculated using the flow direction angle θ as

W ∗
x,y =

(
cos θ sin θ
− sin θ cos θ

)(
W11 W12

W21 W22

)(
cos θ − sin θ
sin θ cos θ

)

=
W11 + 2W12 tan θ + W22 tan2 θ

1 + tan2 θ

where we have used notations

W11 ≡
(

∂2∆ϕ
∂i2

)
∗

, W12 ≡
(

∂2∆ϕ
∂i∂j

)
∗

and W22 ≡
(

∂2∆ϕ
∂j2

)
∗

for the second derivatives of the free energy.
The flow angle θ can be calculated as before from the eigenvector of R∗W ∗,

and in the two-component system tan θ can be expressed with a compact
analytical formula

tan θ =
−W11β

∗
1 + W22β

∗
2

2
(
W12β∗

1 + W22β∗
1,2

)
−
√

4 (W12β∗
1 + W22β∗

12) (W11β∗
12 + W12β∗

2) + (W11β∗
1 − W22β∗

2)
2

2
(
W12β∗

1 + W22β∗
1,2

) .

(5.30)

Eq. (5.29) is the most widely used formula originally derived for two-
component systems as the first multicomponent case in the 1970’s (McDonald
1962; Stauffer 1976). Eq. (5.27) for two-component systems is actually identi-
cal to formula (5.29), which can rather easily be shown by finding the explicit
formula of the eigenvalue λ1 and comparing it with W ∗

x,y(1, 1) · R∗
av, with θ

given by eq. (5.30).
Often the nucleation rate (5.29) is simplified by setting the Zeldovich factor

equal to one,
Z ≈ 1
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Fig. 5.6. The direction angle θ for the critical cluster flow (also called the saddle
point flow) in a two-component system.
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Fig. 5.7. The direction of the vector connecting the origin and the critical size φ is
often used as an approximation for the flow direction θ.

or using the virtual monomer approach (Kulmala and Viisanen 1991) where
the one-component Zeldovich factor (5.15)
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Z =

√
σ

kT0

v∗
x

2πr∗2
(5.31)

is used for two-component systems with the virtual monomer volume defined
as

v∗
x = (1 − x∗)v∗

1,l + x∗v∗
2,l, (5.32)

where x∗ is the mole fraction of component 2 in the critical cluster. In the
simplified approaches the direction angle θ is calculated either simply from
the direction angle φ of the vector connecting origin and critical size as shown
in Fig. 5.7

θ ≈ φ = arctan

(
j∗

i∗

)
. (5.33)

or the steepest descent approximation. The steepest descent direction is the
direction where the maximum of ∆ϕ is sharpest, and it can be found as the
direction of the eigenvalue of matrix W ∗ connected to the negative eigenvalue
of this second derivative matrix. The real direction of flow I

∗
deviates from the

steepest descent because of the different condensation rates for components 1
and 2. If the concentration of vapour 1, for example, is much higher than that
of vapour 2, the fact that molecules of substance 1 collide with the critical
cluster much more often than molecules of type 2 bend the flow from the
energetically optimal direction toward the axis representing component 1.

5.5 Comparison of classical theory predictions with
experimental results

The classical theory often fails in predicting the temperature dependence of
the experimental nucleation rates. With many substances, the theoretical nu-
cleation rates are too low at low temperatures, and too high at high tempera-
tures (Hung et al. 1989; Schmitt et al. 1982; Viisanen et al. 1993; Strey et al.
1986; Kacker and Heist 1985).
Fig. 5.8 shows experimental data (Wölk and Strey 2001) and classical pre-
dictions for water nucleation rates at different temperatures as function of
saturation ratio. The S dependence of the classical nucleation rate is correct,
but temperature dependence is different from the experiments, as at 259K
the theoretical and experimental curves agree, but when the temperature gets
lower the deviation starts to increase. Looking from the point of view of nucle-
ation theorems (Chapter 6), a correct S dependence, but wrong temperature
dependence suggests that the classical theory predicts the size of the critical
cluster correctly, but fails in describing the energy of the cluster.
Fig. 5.9 shows similar behaviour for 1-pentanol; the theoretical nucleation
rates are about four orders of magnitude too low compared to experiments, but
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Fig. 5.8. Comparison of experimental nucleation rates (Wölk and Strey 2001) and
classical theory predictions for water.
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Fig. 5.9. Comparison of experimental nucleation rates (Iland et al. 2004) and clas-
sical theory predictions for 1-pentanol. The curves from left to right correspond to
temperatures 265 K, 260 K, 255 K, 250 K, 245 K, 240 K and 235 K.

the saturation dependence is well predicted, and the temperature dependence
is again erroneous.

Compared to experiments, classical theory also predicts too low critical
supersaturations (too high nucleation rates) in associated vapours and highly
polar fluids: heptonoic, decanoic and myristic acids (Agarwal and Heist 1980),
acetic acid (Heist et al. 1976), formic and propanoic acid (Russell and Heist
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1978), acetonitrile (Wright et al. 1991), benzonitrile, nitromethane and ni-
trobenzene (Wright et al. 1993).

Fig. 5.10 shows experimental sulphuric acid-water nucleation rates (Viisa-
nen et al. 1997) at 298K and at two different relative humidities as a function
of sulphuric acid vapour phase concentration. The diagonal lines represent the
uncertainty regions of the experimental results. Also the classical predictions
are shown.
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Fig. 5.10. Comparison of experimental results (Viisanen et al. 1997) and classical
theory predictions for water-sulphuric acid nucleation rate as a function of sulphuric
acid concentration in vapour phase. The acid concentration includes all the molecules
in the vapour phase, also those bound to small stable pre-critical clusters (hydrates).

Considering the number of approximations used on the way the theory does
quite well, especially in predicting the sulphuric acid dependence of the nu-
cleation rate. This is however only true for systems with no or weak surface
activity. In two-component systems, where strong surface enrichment occurs
(e.g. water-alcohol systems), classical theory can predict unphysical behaviour,
a decrease in the nucleation rate with increasing vapour pressures (Schmitt
et al. 1990; Oxtoby and Kashchiev 1994; Strey et al. 1992), as shown for
water-ethanol on p. 124.

Problems

5.1. Derive an explicit formula for one-component evaporation coefficients
starting from eq. (5.6). Show that with approximation A(n + 1)−A(n) = dA

dn
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the equilibrium coefficient reduces to

γclu =

(
8πkT (mclu + m1)

m1mclu

)1/2

(rclu + r1)
2 P o

e (T )

kT
exp

(
2m1σ

ρlkTrclu

)
.

Show that the same result follows from calculating the evaporation coeffi-
cient from the equality of condensation rate and evaporation rate for a single
spherical droplet which is in equilibrium with the surrounding vapour.

5.2. Plot the evaporation coefficient (independent of saturation ratio!) and
condensation coefficient of water for saturation ratios S = 4, 6, and 8 at tem-
perature 290K an a function of cluster radius. Identify critical cluster sizes
from the equality of evaporation and condensation rates, and compare with
critical sizes obtained from the Kelvin equation.

The saturation vapour pressure of water is (T in Kelvin)
Pe = exp[77.34 − 7235.42/T − 8.2 ln(T ) + 0.00571T ] Pa.
Density of liquid water is
ρl = (1049.572 − 0.1763T ) kg/m3.
Molar mass of water is 18.02 g/mol.
Surface tension of pure water is
σ = (0.117 − 0.152 · 10−3T ) N/m.
Water vapour is assumed to be an ideal gas, and liquid is assumed incom-
pressible.

5.3. Plot the pure water nucleation rate as a function of
a) relative humidity at T= 263K and T= 298K
b) as a function of temperature with constant RH=500%
c) as a function of temperature with constant vapour concentration ρg= 6.33
mol/m3.

The saturation vapour pressure of water is (T in Kelvin)
Pe = exp[77.34 − 7235.42/T − 8.2 ln(T ) + 0.00571T ] Pa.
Density of liquid water is
ρl = (1049.572 − 0.1763T ) kg/m3.
Molar mass of water is 18.02 g/mol.
Surface tension of pure water is
σ = (0.117 − 0.152 · 10−3T ) N/m.

5.4. For pure ethanol at T=298K plot the nucleation rate as a function of
saturation ratio using
a) eq. (5.13) resulting from integration
b) accurate eq. (5.10) with the sum
(test how large of an upper limit of the sum (N ) you have to choose so that
the result does not change significantly if you increase N further)
c) same as a) but assuming the Zeldovich factor Z=1.
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The saturation vapour pressure of ethanol is (T in Kelvin)
Pe,e = exp(69.3268 − 7055.3056/T − 6.41 ln(T )) Pa.
Density of liquid ethanol is
ρl = 1037.31 − T · 0.845941kg/m3 and
surface tension is
σ = 0.04794 − T · 0.08807 · 10−3 N/m.
Molar mass of ethanol is 46.07 g/mol.

5.5. Show that for any geometry where the surface area is A ∝ n2/3, the
one-component Zeldovich factor

Z =

√
−1

2πkT

(
∂2∆ϕ

∂n2

)∗

can be written as

Z =

√
∆ϕ∗

3πkTn∗2
.

5.6. a) Calculate explicitly ∆n
T
W ∗∆n

b) Show that ∇ = ((A)T )−1∇∆η, where

∇ = ( ∂
∂i

, ∂
∂j

)

∇η =
(

∂
∂∆η1

, ∂
∂∆η2

)
∆n =

(
i − i∗

j − j∗

)
∆n = A∆η.
What is the result if A is a real, symmetric matrix?
What if A is an orthogonal matrix (AT = A−1)?

c) Calculate
(
R∗1/2∆η

)T

R∗−1/2

when R−1/2R1/2 = 1 and both R−1/2 and R1/2 are real, symmetric matrices.

5.7. Calculate the nucleation rate for mixture of n-octane and i-octane at the
following experimental points and compare with experimental results.

T/K An,g Ai,g Jexp/(cm3s)
226 25.32 12.48 300.18
226 12.70 18.76 246.70
226 38.28 6.29 3215.40

Use the binary nucleation rate in the form

J = RavZF e exp(−∆G∗/(kT )).

You can take F e as the sum of monomer concentrations in pure saturated
vapours and
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a) use approximation Z ≈ 1
b) use the one-component Zeldovich factor (5.31) based on the virtual monomer
concept.

Densities of pure i- and n-octane (kg/m3) are
ρi,l = 103{0.93769777 − 0.71540871 · 10−3T − [10.661614/(591.47583 − T )]}
ρn,l = 103{0.94450295 − 0.69548492 · 10−3T − [12.603612/(624.03296 − T )]}
In an ideal liquid mixture, the density is
ρl(xmass, T ) = ρn,lρi,l/[(1 − xmass)ρi,l + xmassρn,l].
Surface tensions of pure i- and n-octane (N/m) are
σi = (44.7778 − 0.0887439T )10−3 and
σn = (49.4838 − 0.0951049T )10−3.
In an ideal liquid mixture, the surface tension is
σ(xmol) = (1 − xmol)σn + xmolσi.
The saturation vapour pressures of pure compounds P o

i,e and P o
n,e (Pa) are

given by:
P o

i,e = Pi,c · exp[(1/(1 − xi)) · (Aixi + Bix
1.5
i + Cix

3
i + Dix

6
i )] and

P o
n,e = Pn,c · exp[(1/(1 − xn)) · (Anxn + Bnx1.5

n + Cnx3
n + Dnx6

n)], where
Pi,c = 2568 · 103, Ti,c = 543.957, xi = 1 − (T/Ti,c),
Ai = −7.6501166, Bi = 1.8899385,
Ci = −4.2070574, Di = −0.22322060,
Pn,c = 2488 · 103, Tn,c = 568.841, xn = 1 − (T/Tn,c),
An = −8.1621949, Bn = 2.1052126,
Cn = −5.4163890 and Dn = −0.15830507.
In an ideal liquid mixture, the activities are
Ai,l = xmol

An,l = 1 − xmol.
Molar masses are mi=mn=144.23g/mol.
In these formulae T is always in Kelvin,
xmol is the mole fraction of i-octane and xmass is the mass fraction of i-octane.
Experimental data and thermodynamic properties are taken from Doster et
al. Journal of Chemical Physics Vol 113, pages 7197-7203 (note that they have
a wrong formula for the density of an ideal mixture).
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Nucleation theorems

Now we study how the formation free energy and the nucleation rate depend
on gas phase activities and temperature. The results obtained in this chapter
are very useful in gaining insight into the critical cluster properties by using
experimental data for nucleation rate.

The applicability of nucleation theorems is not restricted to classical nucle-
ation theory. The theorems are independent of the model we use for the
cluster, and they can be derived based on general statistical mechanical
considerations.

In this book we operate within classical theory, and derive the theorems based
on classical formation free energy. The formation free energy of the critical
cluster is given by (see p. 54):

∆ϕ∗ = (P ∗
0 − P ∗

l ) V ∗
l + A∗σ∗. (6.1)

The underlying idea in the differentials of this chapter is that we change
the vapour properties and temperature, but our cluster size and composition
change accordingly so that the cluster is a critical cluster all the time. The
total differential of the critical cluster formation free energy is

d (∆ϕ∗) = (dP0 − dP ∗
l ) V ∗

l + (P0 − P ∗
l ) dV ∗

l + A∗dσ∗ + σ∗dA∗.

Equilibrium conditions are always valid for the critical cluster and thus

(P ∗
l − P0) = σ

dA∗

dV ∗ =
2σ∗

r∗
,

with the help of which we see that the second and third terms of d (∆ϕ∗)
cancel in the following way:
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(P0 − P ∗
l ) dV ∗

l + σ∗dA∗ =
2σ∗

r∗
dV ∗

l + σ∗dA∗ = dV ∗

(−2σ∗

r∗
+ σ∗ dA∗

dV ∗

)
= 0,

and we are left with the differential

d (∆ϕ∗) = (dP0 − dP ∗
l ) V ∗

l + A∗dσ∗. (6.2)

The Gibbs-Duhem equation (1.9) for the vapour phase gives

V ∗
g dP0 − S∗

g dT0 =
∑

N∗
i,gdµ0

i,g ⇒ V ∗
g dP0 =

∑
N∗

i,gdµ0
i,g + S∗

g dT0

and for the liquid phase

V ∗
l dP ∗

l − S∗
l dT0 =

∑
N∗

i,ldµ∗
i,l ⇒ V ∗

l dP ∗
l =

∑
N∗

i,ldµ∗
i,l + S∗

l dT0.

The Gibbs adsorption equation for the surface phase gives

−S∗
s dT0 =

∑
N∗

i,sdµ∗
i,s + A∗dσ∗ ⇒ A∗dσ∗ = −

∑
N∗

i,sdµ∗
i,s − S∗

s dT0.

P0, T0 and µ0
i,g are the intensive properties of the gas that we change; N∗

i,g,
N∗

i,l, N∗
i,s, V ∗

l , V ∗
g , V ∗

s , µ∗
i,l, µ∗

i,v, A∗ and σ∗ follow so that the cluster stays
critical. Eq. (6.2) can now be written in the form

d (∆ϕ∗) =
V ∗

l

V ∗
g

V ∗
g dP0 − V ∗

l dP ∗
l + A∗dσ∗

=
V ∗

l

V ∗
g

(∑
N∗

i,gdµ0
i,g + S∗

g dT0

)
−
∑

N∗
i,ldµ∗

i,l + S∗
l dT0

−
∑

N∗
i,sdµ∗

i,s + S∗
s dT0.

Since the cluster is always in equilibrium, the chemical potentials are equal in
different phases

µ∗
i,s = µ∗

i,l = µ0
i,g

and the differential of the formation free energy is

d (∆ϕ∗) = −
∑

i

(
N∗

i,l + N∗
i,s −

V ∗
l

V ∗
g

N∗
i,g

)
dµ0

i,g

−
(
S∗

l + S∗
s − V ∗

l

V ∗
g

S∗
g

)
dT0

= −
∑

i

(
N∗

i,d − V ∗
l

V ∗
g

N∗
i,g

)
dµ0

i,g

−
(
S∗

d − V ∗
l

V ∗
g

S∗
g

)
dT0,

(6.3)



6 Nucleation theorems 121

where we have defined the total entropy of the cluster as a sum of bulk liquid
and surface contributions S∗

d = S∗
l + S∗

s in the same way as we have done for
the molecular numbers N∗

i,d = N∗
i,l + N∗

i,s. Various terms in eq. (6.3) can be
understood as follows:
N∗

i,g

V ∗
g

is the average density of molecules i in the vapour.

V ∗
l

N∗
i,g

V ∗
g

tells how many molecules of type i would fit to the volume of the

cluster if it was filled with vapour.

∆N∗
i ≡ N∗

i,d − V ∗
l

N∗
i,g

V ∗
g

tells the difference in number of molecules if there is a

cluster in volume V ∗
l compared to the same volume being filled with vapour

(see Fig. 6.1).

�i (R)

R

ri,g

Fig. 6.1. The difference in number of molecules between volume V ∗
l = 4/3πr3

containing a cluster and the same volume containing only homogeneous vapour.

S∗
g

V ∗
g

is the entropy per unit volume in the vapour, and ∆S∗ = S∗
d − V ∗

l
V ∗

g
S∗

g is

the entropy increase due to cluster formation. With these definitions we get

d(∆ϕ∗) = −
∑

i

∆N∗
i dµ0

i,g − ∆S∗dT0.

If we take the derivative with respect to vapour phase chemical potential
µ0

i,g of one component i, keeping the other chemical potentials in the vapour
µ0

j �=i,g constant we get the most general form of the first nucleation theorem
1

1 NOTE: This relation is a close relative to the basic equation Ni = −
(

∂Ω
∂µi

)
T,V,µ
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(
∂∆ϕ∗

∂µ0
i,g

)
T0,µ0

j �=i,g

= −∆N∗
i . (6.4)

If the derivative is taken with respect to temperature keeping all gas phase
chemical potentials µ0

i,g, and T0 constant we get the most general form for the
second nucleation theorem 2

(
∂∆ϕ∗

∂T0

)
µ0

i,g

= −∆S∗. (6.5)

6.1 First nucleation theorem

First we study the derivative of formation free energy with respect to chemical
potential µ0

i,g (Viisanen et al. 1993; Oxtoby and Kashchiev 1994; Kashchiev

1982). We want to know the partial derivative of ∆ϕ∗

kT0
with respect to lnAi,g

since the former appears in the expression of the nucleation rate, and the
nucleation rate is usually measured as a function of gas phase activities Ai,g.
We use the logarithm of the activity for convenience only.

The rules for changing variables in partial derivatives give(
∂ ∆ϕ∗

kT0

∂ lnAi,g

)
µ0

j,g,T0

=

(
∂ ∆ϕ∗

kT0

∂µ0
i,g

)
T0,µ0

j,g

(
∂µ0

i,g

∂ lnAi,g

)
T0,µ0

j,g

. (6.6)

We calculate the derivative of chemical potential with respect to gas phase
activity (∂µ0

i,g/∂ lnAi,g)T0,µ0

j,g
. If the vapour with pressure P0 is a mixture of

ideal gases with mole fractions xi,g, each vapour behaves as if it was alone
and having pressure xi,gP0. Using the Maxwell equation (2.13) and ideal gas
law we get (see p. 30)

µ0
i,g =µp

i,g(xi,gP0) = µp
i,g(P

p
i,e) +

∫ xi,gP0

P p
i,e

dµi,g

=µp
i,g(P

p
i,e) +

∫ xi,gP0

P p
i,e

kT0

P
dP = µp

i,g(P
p
i,e) + kT0 ln

(
xi,gP0

P p
i,e

)

=µp
i,g(P

p
i,e) + kT0 lnAi,g.

2 NOTE: This is closely linked with the basic relation S = −
(

∂Ω
∂T

)
V,µ
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P p
i,e(T0) is the saturation vapour pressure of pure component i and does not

depend on the activity, but only on temperature, and also the chemical po-
tential of pure i, µp

i,g(P
p
i,e), depends only on temperature, and we get(

∂µ0
i,g

∂ lnAi,g

)
T0,µ0

j,g

= kT0. (6.7)

We also see that when temperature is kept constant, keeping chemical poten-
tials µj,g constant is equivalent to keeping gas phase activities Ai,g constant.
Inserting result (6.7) together with the general form of the first nucleation
theorem (6.4) to eq. (6.6) we get the ideal gas form for the free energy version
of the first nucleation theorem (1/(kT0) is just a constant when taking the
derivative) (

∂ ∆ϕ∗

kT0

∂ lnAi,g

)
Aj,g,T0

= − 1

kT0
kT0∆N∗

i = −∆N∗
i . (6.8)

The nucleation rate is given by J = C∗Z exp
(−∆ϕ∗

kT0

)
. If C∗ and Z are

weak functions of Ai,g, we get the most readily applicable form of the first
nucleation theorem (

∂ lnJ

∂ lnAi,g

)
Aj,g,T0

≈ ∆N∗
i . (6.9)

For a one-component case it is easy to show that the contribution of the
pre-exponential equals 1 and(

∂ lnJ

∂ lnS

)
T0

= ∆N∗ + 1.

Also for multicomponent cases the contribution of the pre-exponential is of
the order of 1. The first nucleation theorem can be used in two directions (for
simplicity in one-component systems):

1. If you know how the nucleation rate depends on the saturation ratio at
constant temperature, you know the critical size as a a function of satu-
ration ratio. Remember that the theorem is actually model independent,
so the critical size you obtain is not dependent on the classical droplet
model.

2. If you know experimentally the nucleation rate J0 at one saturation ratio
S0 (and temperature T0) together with the critical size as a function of
saturation ratio S you can predict the S-dependence of the nucleation
rate:

ln

(
J

J0

)
=

∫ S

S0

∆N∗d (lnS) =

∫ S

S0

∆N∗

S
dS.

The critical size can be obtained, for example, with computer simulations.
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6.2 Activity plots

Often experimentalists have measured the onset conditions where a certain nu-
cleation rate J0 is observed. The gas phase activity needed to produce a certain
threshold nucleation rate (if not explicitly mentioned, often J0 =1/(cm3s)) is
called the critical gas phase activity (in a one-component system critical sat-
uration ratio or the critical supersaturation).

In two-component systems these results can be expressed in the form of
activity plots: The gas phase activity of component 2 as a function of the
gas phase activity of component 1 for constant temperature and constant
nucleation rate (see Fig. 6.2). To derive the slope of the activity plot in terms
of critical cluster properties we use the general partial derivative identity:(

∂A

∂B

)
C

(
∂B

∂C

)
A

(
∂C

∂A

)
B

= −1

for lnJ , lnAi,g and lnAj,g and get(
∂ lnJ

∂ lnAi,g

)
Aj,g,T0

(
∂ lnAi,g

∂ lnAj,g

)
ln J,T0

(
∂ lnAj,g

∂ lnJ

)
Ai,g,T0

= −1.

Using the first nucleation theorem for the first and third partial derivatives
this becomes

∆N∗
i

(
∂ lnAi,g

∂ lnAj,g

)
ln J,T0

1

∆N∗
j

= −1,

which gives (
∂ lnAi,g

∂ lnAj,g

)
ln J,T0

= −∆N∗
j

∆N∗
i

. (6.10)

So if we plot Ai,g as a function of Aj,g for constant nucleation rate, the slope

of the curve is −∆N∗
j

∆N∗
i

.

Fig. 6.2 shows an activity plot for a water-ethanol mixture, constant nu-
cleation rate J = 107/(cm3s) (Viisanen et al. 1994). The “hump” seen in
the theoretical prediction for water-ethanol is typical for surface active sys-

tems. For the uphill part

(
∂ lnAi,g

∂ lnAj,g

)
ln J,T0

> 0, which means according to

eq. (6.10) that ∆N∗
j < 0 or ∆Ni < 0. This is clearly an unphysical result

and it is caused by the assumption that the equimolar surface and the surface
of tension coincide. When plotting the nucleation rate as a function of su-
persaturation, the same problem causes the nucleation rate to decrease with
increasing supersaturation as seen in Fig. 6.3(

∂ lnJ

∂ lnAi,g

)
Aj,g,T0

≈ ∆N∗
i < 0.
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Fig. 6.2. Activity plot for water-ethanol nucleation at temperature 260K and nu-
cleation rate J0 = 107/(cm3s). Experimental results from Viisanen et al. (1994).
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Fig. 6.3. Theoretical nucleation rate in water-ethanol system at temperature 260K
for two gas phase activities of water. We have used eq. (5.29) with flow direction
(5.33) and Zeldovich factor equal to one. (Due to the negative molecular number an
accurate Zeldovich factor can not be rigorously evaluated.)

6.3 Clausius-Clapeyron equation and the order of phase
transition

To derive a practical form for the second nucleation theorem we need the
Clausius-Clapeyron equation. If we have vapour and liquid in equilibrium
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(flat surface and one-component case) the temperature, pressure and chemical
potential are the same on both sides of the surface.

The Gibbs free energy of each of the phases can be written as

G = U + PV − TS = TS − PV + µN + PV − TS = µN

where we have used the fundamental equation U = TS −PV + µN . When N
molecules change phase at equilibrium, their Gibbs free energy stays constant
since chemical potentials in coexisting phases are equal µg = µl,

Gg = µgN = µlN = Gl.

T0

Pe

dGl

dGg

Fig. 6.4. The Gibbs free energy change along the phase equilibrium curve.

When we move along the co-existence curve (Fig. 6.4), the Gibbs free energy
on the gas side changes as (see p. 46)

dGg = −SgdTg + VgdPg + µgdN

and on the liquid side the change is

dGl = −SldTl + VldPl + µldN.

The number of molecules in our theoretical sample is kept constant, dN = 0,
and equilibrium conditions guarantee that dPg = dPl = dP p

e , dTg = dTl =
dT0, and the free energy changes can be simplified to

dGg = −SgdT0 + VgdP p
e

and



6.3 Clausius-Clapeyron equation and the order of phase transition 127

dGl = −SldT0 + VgdP p
e .

Since Gg = Gl, the changes of free energies in gas and liquid must be equal,
dGg = dGl, and we get

(Sg − Sl) dT0 = (Vg − Vl) dP p
e(

∂P p
e

∂T0

)
coex

=
Sg − Sl

Vg − Vl

Using the definition of enthalpy (p. 47), the temperature can be expressed as

T =
(

∂H
∂S
)

P,N
, which gives Sg − Sl = ∆Hp,e

T0
when P , N are constants and

∆Hp,e = Hg − Hl is the latent heat or phase transition enthalpy. We have
emphasized the fact that we are dealing with a pure one-component system
by the superscript p in the latent heat. Latent, in other words hidden, heat
means heat flow in or out of the system without change of temperature. The
counterpart of latent heat is sensible heat, meaning heat flow resulting in
temperature change.

The derivative of saturation vapour pressure with respect to temperature
takes a form called the Clausius-Clapeyron equation

(
dP p

e

dT0

)
coex

=
1

T0

∆Hp,e

∆V p,e =
1

T0

∆hp,e

∆vp,e (6.11)

where ∆V p,e = Vg − Vl is the volume change in the phase transition, ∆vp,e is
the volume change per molecule, and ∆hp,e is the latent heat per molecule.
Superscript e refers to the equilibrium vapour and liquid. ∆hp,e is the energy
released or bound in a first-order phase transition.

The average molecular volume in the vapour is greater than in the liquid,
∆V p,e = Vg − Vl > 0. It can also be shown using stability conditions (p. 18)
that ∆Hp,e = Hg − Hl < 0 when l is the lower temperature phase (liquid)
and g is the higher temperature phase (vapour). So the system requires energy
for the vapour to evaporate, but releases energy when the vapour condenses.
You can sense this, for example, when your skin is wet: you start to feel chilly
because the evaporation of water takes energy from your body. In a humid
sauna, when the water vapour starts to condense on your skin, you feel hot.

Latent heat ∆Hp,e, and discontinuities in the density (or molecular vol-
ume) as well as other system properties are fingerprints of first-order phase
transitions. Free energy is always continuous in the transition, but its first- or

higher-order derivatives are discontinuous. Heat capacities CV =
(d-Q
∂T

)
V,N

and CP =
(d-Q
∂T

)
P,N

are infinite at the transition point, since heat en-
ters/exists the system, but temperature change is zero.
Fig. 6.5 shows the behaviour of the free energy and its first derivatives in
first- and second-order transitions. Table 6.1 compares the features of first-
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Fig. 6.5. The behaviour of the Gibbs free energy and its first derivative in a first-
order (left) and second-order (right) phase transition. T t is the phase transition
temperature.

and second-order transitions. All “everyday” transitions are of first order. The
standard example of a second-order transition is the transition between fer-
romagnetic and paramagnetic phases.

Table 6.1. Comparison of first- and second-order phase transitions.

First-order transition:
First derivatives of G are discon-
tinuous
Nucleation
Latent heat
Second derivatives discontinuous

Second-order transition:
First derivatives of G are contin-
uous
No nucleation
No latent heat
Second derivatives discontinuous

6.4 Second nucleation theorem

The most general form for the second nucleation theorem was (p. 122)(
∂∆ϕ∗

∂T0

)
µ0

i,g

= −∆S∗.
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We want to relate this to the nucleation rate, so we need the derivative of
∆ϕ∗/(kT0) which is inside the exponential in the expression for nucleation
rate,(

∂ ∆ϕ∗

kT0

∂T0

)
µ0

i,g

=
1

kT0

(
∂∆ϕ∗

∂T0

)
µ0

i,g

−∆ϕ∗

kT 2
0

= −∆S∗

kT0
−∆ϕ∗

kT 2
0

= −∆ϕ∗ + T0∆S∗

kT 2
0

.

(6.12)

We use the definition of entropy change ∆S∗ = S∗
d − V ∗

l
V ∗

g
S∗

g ,

formation free energy of the critical cluster
∆ϕ∗ = (P0 − P ∗

l )V ∗
l + A∗σ∗ = P0V

∗
l − P ∗

l V ∗
l + A∗σ∗,

and the definition of the total volume of the system Vtot = V ∗
l + V ∗

g ,
which can be multiplied by constant pressure P0 to give

P0V
∗
l + P0V

∗
g = P0Vtot. (6.13)

Furthermore, the definition of the total number of molecules Ni,tot = N∗
i,d +

N∗
i,g,

and the equality of chemical potentials in equilibrium µ∗
i,l = µ0

i,g

can be combined to give∑
N∗

i,dµ
∗
i,l +

∑
N∗

i,gµ
0
i,g −

∑
Ni,totµ

0
i,g = 0. (6.14)

By inserting identities (6.13) and (6.14) to the nominator of eq. (6.12) we get

∆ϕ∗ + T0∆S∗ =
(
−P ∗

l V ∗
l + A∗σ∗ + T0S∗

d +
∑

N∗
i,dµ

∗
i,l

)
+
(
−P0V

∗
g + T0S∗

g +
∑

N∗
i,gµ

0
i,g

)
−
(
−P0Vtot + T0S∗

g

(
1 +

V ∗
l

V ∗
g

)
+
∑

N∗
i,totµ

0
i,g

)
≡ ∆U∗. (6.15)

In eq. (6.15) the first and second brackets represent the energy of the critical
cluster plus the vapour around it, respectively, and the third brackets the
energy the homogeneous vapour in volume Vtot would have with P0,T0 and
µ0

i,g. The factor (
1 +

V ∗
l

V ∗
g

)
=

V ∗
g + V ∗

l

V ∗
g

=
Vtot

V ∗
g

scales the gas phase entropy from S∗
g in volume V ∗

g to volume Vtot. Thus
∆U∗ = ∆ϕ∗ + T0∆S∗ is the change of internal energy in the critical cluster
formation: (

∂ ∆ϕ∗

kT0

∂T0

)
µ0

i,g

= −∆U∗

kT 2
0

.
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To link with experiments we have to convert the derivative with constant µ0
i,g

to a derivative with constant Ai,g or lnAi,g. For a moment we denote

∆ϕ∗

kT0
= f = f

(
T0, µ

0
1,g(A1,g, T0), µ

0
2,g(A2,g, T0), ...

)
.

The general rule for changing variables in partial derivatives gives(
∂f

∂T0

)
Ai,g

=

(
∂f

∂T0

)
µ0

i,g

+

(
∂f

∂µ0
1,g

)
T0,µ0

j,g

(
∂µ0

1,g

∂T0

)
Ai,g

+

(
∂f

∂µ0
2,g

)
T0,µ0

j,g

(
∂µ0

2,g

∂T0

)
Ai,g

+ ...,

which in our case reads(
∂f

∂T0

)
Ai,g

= −∆U∗

kT 2
0

−
∑

i

∆N∗
i

kT0

(
∂µ0

i,g

∂T0

)
Ai,g

, (6.16)

where we used the first theorem

(
∂f

∂µ0
i,g

)
T0,µ0

j,g

= −∆Ni
kT0

.

Now we still have to calculate the derivative of the chemical potential with

respect to temperature

(
∂µ0

i,g

∂T0

)
Ai,g

.

On pages 30 and 122 we derived µ0
i,g = µp

i,g(P
p
i,e)+kT0 lnAi,g for the ideal

mixture of ideal gases and thus(
∂µ0

i,g

∂T0

)
Ai,g

=

(
∂µp

i,g(P
p
i,e)

∂T0

)
+ k lnAi,g. (6.17)

To calculate

(
∂µp

i,g(P
p
i,e)

∂T0

)
we use the Gibbs-Duhem equation (1.9) for pure

i,
Np

i,gdµp
i,g = V p

i,gdP p
g − Sp

i,gdT0

divide it by Np
i,g to get

dµp
i,g = vp

i,gdP p
g − sp

i,gdT0,

where vp
i,g and sp

i,g are the volume and entropy per molecule in pure i vapour,
and we obtain (

∂µp
i,g(P

p
i,e)

∂T0

)
= vp,e

i,l

∂P p
i,e

∂T0
− sp,e

i,g .

But the equilibrium vapour pressure in pure vapour P p
i,e depends only on

temperature, and partial derivatives can be converted to normal derivatives.
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Thus,
∂P p

i,e

∂T0
=

dP p
i,e

dT0
is the equilibrium vapour pressure derivative given by

the Clausius-Clapeyron equation (6.11) and we get

∂µp
i,g(P

p
i,e)

∂T0
= vp,e

i,g

∆hp,e

T0∆vp,e − sp,e
i,g ,

where the change of volume per molecule in the phase transformation is

∆vp,e = vp,e
i,g − vp,e

i,l

and the latent heat per molecule is

∆hp,e = hp,e
i,g − hp,e

i,l .

Since vp,e
i,l << vp,e

i,g , in other words molecules occupy on average much more
space in gas than in liquid, we have vp,e

i,g /∆ve ≈ 1 and

∂µi,g(P
p
i,e)

∂T0
=

hp,e
i,g − hp,e

i,l

T0
− sp,e

i,g

=
hp,e

i,g − sp,e
i,g T0

T0
− hp,e

i,l

T0
.

For a one-component system the enthalpy reads (p. 47)

H = U + PV = TS + µN,

which gives for chemical potential

µ = h − sT

and the derivative of the chemical potential can be expressed as

∂µi,g(P
p
i,e)

∂T0
=

µp,e
i,g

T0
− hp,e

i,l

T0
.

Finally, we substitute this result and result (6.17) to eq. (6.16) and arrive at(
∂ ∆ϕ∗

kT0

∂T0

)
Ai,g

= −∆U∗

kT 2
0

−
∑ ∆N∗

i

kT0

(
µp,e

i,g

T0
+

kT0 lnAi,g

T0
− hp,e

i,l

T0

)

=
−∆U∗

kT 2
0

−
∑ ∆N∗

i

kT 2
0

(
µ0

i,g − hp,e
i,l

)

=
−1

kT 2
0

(
∆U∗ +

∑
i

∆N∗
i

(
µ0

i,g − hp,e
i,l

))
.

(6.18)

Now in eq. (6.15) for ∆U∗ we approximate V ∗
g ≈ Vtot which means (1 +

V ∗
l /V ∗

g ) ≈ 1 and eq. (6.15) can be written as
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∆U∗ = −P ∗
l V ∗

l + A∗σ∗ + T0S∗
d +
∑

N∗
i,dµ

∗
i,l +

∑
(Ni,g − Ni,tot) µ0

i,g

= P ∗
l V ∗

l + A∗σ∗ + T0S∗
d +
∑

N∗
i,dµ

∗
i,l −

∑
N∗

i,dµ
0
i,g.

If the liquid is much more dense than the gas we can also make the approxi-
mation

∆N∗
i ≈ N∗

i,d.

The bracketed expression in the last form of eq. (6.18) gives

∆U∗ +
∑

∆N∗
i

(
µ0

i,g − hp,e
i,l

)
=
(
−P ∗

l V ∗
l + A∗σ∗ + T0S∗

d +
∑

N∗
i,dµ

∗
i,l

)
−
(∑

N∗
i,dh

p,e
i,l

)
.

(6.19)

The final approximation is that in the liquid phase the molecular enthalpy
equals the molecular energy because the molecular volume is very small

hp,e
i,l = up,e

i,l + Pvp,e
i,l ≈ up,e

i,l

where energy per molecule in pure liquid is up
i,l =

Up
i,l

Np
i,l

. The term in the

first brackets of eq. (6.19) is the energy of the critical cluster. The term in
the second brackets can now be written as

∑
N∗

i,du
p,s
i,l , which is the energy

the molecules of the cluster would have in pure equilibrium liquids. The free
energy version of the second nucleation theorem finally takes the form

(
∂ ∆ϕ∗

kT0

∂T0

)
Ai,g

= −∆U∗
l,p

kT 2
0

. (6.20)

where ∆U∗
l,p is defined as the difference between the energy of the cluster and

the energy the molecules of the cluster would have in pure equilibrium liquids
(Ford 1996).
The energy difference has three different sources:

• the pressure in the cluster is higher than in an equilibrium liquid with a
flat surface

• the surface of the cluster contributes to the energy
• the molecules have different interaction energies in the mixture than in a

pure liquid.

The nucleation rate is

J = C∗Z exp

(
∆ϕ∗

kT0

)
,

and if we neglect the derivative of the pre-exponential we get the practical
form of the second nucleation theorem
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(
∂ lnJ

∂T0

)
Ai,g

≈ ∆U∗
l,p

kT 2
0

. (6.21)

In a one-component system the contribution of the pre-exponential can be
calculated explicitly to give(

∂ lnJ

∂T0

)
Ai,g

=
(∆hp,e)2 − kT0 + ∆U∗

l,p

kT 2
0

.

Also the second theorem can be used in two directions

1. If we have nucleation rate data as a function of temperature at constant
gas phase activities (saturation ratio in one-component systems), we can
calculate the internal energy of the critical cluster. Energies per molecule
in pure liquid are usually known or can be calculated using tables of
thermodynamic data. Remember again that the theorem is model inde-
pendent, and the energy obtained is free from the assumptions of classical
theory.

2. If we know the nucleation rate at one temperature and, for example from
simulations, the temperature dependence of the internal energy of the
critical cluster, we can integrate the second nucleation theorem and get
the temperature dependence of nucleation rate.
For one-component systems where the nucleation rate is J0 at the satu-
ration ratio S0 and temperature T0, the temperature dependence of the
nucleation rate is given by

ln

(
J

J0

)
=

∫ T

T0

∆U∗
l,p

kT 2
0

dT.

Problems

6.1. Using the analytical expression for one-component nucleation rate (5.13)
show that (

∂ lnJ

∂ lnS

)
T0

= ∆N∗ + 1

You have to assume m1 >> m∗ and v∗ >> vl to get exactly 1 for the contri-
bution of the pre-exponential.

6.2. Experimental data (Hruby et al. J. Chem. Phys. 104, p. 5181, 1996 ) for
nucleation rate of n-pentanol can be fitted to equation lnJ = a − b(c/T −
1)3/(ln S)2, where the units are [J ]=1/(m3s), [T ]=K. The coefficients are
a = 68.5, b = 101 and c = 591K.
a) Calculate the expression for critical cluster size, and plot n∗ as a function
of saturation ratio (7<S<20) for T=240K and T=270K.



134 6 Nucleation theorems

b) Compare the plots in a) with the classical prediction for n∗.
c) Calculate the latent heat of evaporation/condensation for n-pentanol using
the Clausius-Clapeyron equation.
d) Calculate the excess energy ∆U∗

l,o of the critical cluster and plot the excess
energy as a function of critical cluster size.

For n-pentanol the saturation vapour pressure (Pa) is
Pe = 133.324 exp(90.08 − 9788/T − 9.90 ln T ),
the surface tension is (N/m)
σ = 10−3[(26.85469 − 0.07889(T − 273.15K)]
and the liquid density is (mol/m3)
ρl = 103(3.06 + 21.90T

1/3
r − 95.46T

2/3
r + 218.1Tr − 210.5T

4/3
r + 74.37T

5/3
r )

where Tr = T/(588.15K), T always in Kelvin.



7

Basics of heterogeneous nucleation

In heterogeneous nucleation the critical cluster is not formed in the middle
of the vapour, but on a pre-existing surface. The surface can be provided by
a microscopic pre-existing particle, also called a condensation nucleus, nucle-
ation seed or centre, or on a planar macroscopic surface, for example a wall
of the instrument. A special case of heterogeneous nucleation is ion-induced
nucleation, where the cluster is formed on a charged particle or around a
molecular ion (Girshick et al. 1996; Chan and Mohnen 1980; Diamond et al.
1985; Raes and Janssens 1985; Laakso et al. 2002; Yu and Turco 2000). The
heterogeneous nucleation rate is higher than homogeneous nucleation rate in
the same conditions: the existing surface reduces the cost of surface forma-
tion, and the nucleation barrier is lower. In the case of ion-induced nucleation
the electrostatic forces enhance the interaction between the nucleation centre
and the nucleating molecules, and again the nucleation barrier is lower than
in homogeneous nucleation. In this book we study only a case where the pre-
existing surface is electrically neutral and insoluble to the nucleating fluid,
and thus we allow no exchange of molecules between the surface and vapour
or liquid phases.

In classical nucleation theory the cluster is modelled as part of a sphere,
and the interaction between the cluster and the underlying surface is described
with a contact angle ϑ . ϑ is the angle between the (tangent of the) underlying
surface and the tangent of the cluster surface at the point where these surfaces
meet, see Figures 7.1 and 7.2. The contact angle is related to the surface
tensions between liquid and solid, σl,sol, vapour and liquid, σg,l, and vapour
and solid σg,sol according to Young’s equation

cos ϑ =
σg,sol − σl,sol

σg,l
. (7.1)

Since the surface of the equilibrium droplet is not moving along the solid
surface, Young’s equation can be derived by requiring the three surface tension
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related forces acting on a surface line element of length dl to balance each other
in the direction parallel to the solid surface (Young 1805), or by more refined
thermodynamic means (Roura and Fort 2004). Fig. 7.1 shows the mechanical
force balance, each force acting parallel to the corresponding surface as in Fig.
1.5.

�g,soldl

�l,soldl

tr

r
� �

�g,ldl

Fig. 7.1. A cluster on a planar surface. The tangent of the cluster surface is marked
with tr, r is the cluster radius and ϑ is the contact angle. Forces σl,soldl, σg,ldl, and
σg,soldl arising from surface tension between solid sol, liquid l and vapour g acting
on a surface line element of length dl are also shown. The location of the surface
line element (perpendicular to the page plane) is marked with a white circle.

The thermodynamics and kinetics of heterogeneous nucleation follow those
of the homogeneous case; only the surface energy term and geometric relations
differ.

7.1 Free energy and geometric relations

The surface contribution to the free energy (see, for example equations 3.6
and 3.29), which in the homogeneous case is Aσ + (µi,s − µ0

i,g)Ni,s, is in the
heterogeneous case

∆ϕhet
surf =σg,lAg,l + (σl,sol − σg,sol)Al,sol +

∑
i

(µi,s(g,l) − µ0
i,g)N

het
i,s(g,l)

+
∑

i

(µi,s(l,sol) − µ0
i,g)Ni,s(l,sol) −

∑
i

(µi,s(g,sol) − µ0
i,g)Ni,s(g,sol)

.

(7.2)

Ag,l and Al,sol are the surface areas of the cluster (against the vapour) and
the contact area between the cluster and the solid surface. When a cluster
is formed, the surface between vapour and solid is replaced by a surface be-
tween solid and liquid, and an additional surface between vapour and liquid is
created. We have marked the surface excess numbers and chemical potential
of the gas-liquid surface by Nhet

i,s(g,l) and µi,s(g,l), respectively. Ni,s(l,sol) and
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Ni,s(g,sol) are the surface excess molecules related to the liquid-solid surface
and same area of gas-solid surface, respectively, and µi,s(l,sol) and µi,s(g,sol)

are the chemical potentials of these surface phases. The volume contribution
to free energy still has the form (see eq. 3.15)

∆ϕhet
vol =

∑
i

∆µiN
het
i,l ,

but the relation of cluster volume V het
l and thus Nhet

i,d to the cluster radius
r has to be modified compared to the homogeneous case and this relation
depends also on the contact angle and the radius Rp of the pre-existing particle
which is assumed spherical.

To derive expressions for the surface areas Ag,l and Al,sol and the volume
of the cluster V het

l in terms of radii r and Rp, and contact angle ϑ, we first
study Fig. 7.2 (Fletcher 1958).

�
tRp

tr

R
p

d

r
�

Fig. 7.2. A cluster on a surface of a spherical particle. The tangent of the cluster
surface is marked with tr, tangent of the particle surface with tRp. r is the cluster
radius, Rp the particle radius and ϑ is the contact angle. The corners of the triangle
shown are the centre of the spherical particle, the centre of the cluster sphere and
the point where cluster and particle surfaces meet. Tangent tr is perpendicular to
the side (radius) r and tangent tRp is perpendicular to the side (radius) Rp.

Applying the cosine rule to the triangle shown in Fig. 7.2 gives the length of
side d as

d2 = r2 + R2
p − 2rRp cos ϑ = r2(1 + X2 − 2XM) = r2d2

X , (7.3)

where we have used dimensionless notation X = Rp/r, M = cos ϑ and
dX =

√
1 + X2 − 2XM. By dividing the triangle in Fig. 7.2 into two right-

angled triangles, as shown in Fig. 7.3, we obtain the angle φ shown in Fig.
7.3
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cos φ =
Rp − r cos ϑ

d
=

X −M
dX

. (7.4)

R
pR

-
rco

s

p

�

�
d

r
�rco

s�
Fig. 7.3. A cluster on a surface of a spherical particle. r is the cluster radius, Rp

the particle radius and ϑ is the contact angle. We have constructed right triangles
to determine the angle φ.

Using another right-angled triangle with sides Rp, Rp cos φ and rcap we find
the angle ψ in Fig. 7.4 as

cos ψ =
Rp cos φ − d

r
= −r − Rp cos ϑ

d
=

−(1 − XM)

dX
, (7.5)

where we have used equations (7.3) and (7.4) for d and cos φ, respectively.
The volume of the heterogeneous cluster is the difference in volumes (V1

and V2) of the caps 1 and 2 shaded in Figures 7.5 and 7.6, respectively. The
surface areas Ag,l and Al,sol are the areas of these caps, respectively. The
radius of the base of both of these caps is according to Fig. 7.4

rcap = Rp sin φ,

and the heights of the caps are according to Figures 7.5 and 7.6

h1 = r(1 − cos ψ)

and
h2 = Rp(1 − cos φ).

The volume of the cluster is
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�

R
p d

r�

R cosp �

�
R cos -dp �

rcap�

Fig. 7.4. A cluster on a surface of a spherical particle. r is the cluster radius, Rp

the particle radius and ϑ is the contact angle. We have constructed right-angled
triangles to determine the angle ψ and the radius of the base of the cap rcap.

r

�

rcos�

h1 r�

Fig. 7.5. A cluster on a surface of a spherical particle. r is the cluster radius. We
have used a right-handed triangle with angle ψ and side r to determine the height
h1 of the shaded cap 1.

V het
l =V1 − V2 =

π

3
h2

1(3r − h1) − π

3
h2

2(3Rp − h2)

=
π

3
r3(2 − 3 cos ψ + cos3 ψ) − π

3
R3

p(2 − 3 cos φ + cos3 φ)
(7.6)

and the surface areas are given by

Ag,l = 2πrh1 = 2πr2(1 − cos ψ) (7.7)

and
Al,sol = 2πRph2 = 2πR2

p(1 − cos φ). (7.8)
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�
R cosp �RpRp

h2�

Fig. 7.6. A cluster on the surface of a spherical particle. Rp the particle radius.
We have used the right-angled triangle with angle φ and side Rp to determine the
height h2 of the cap 2.

The length of the contact line between the cluster and the particle, needed
later in the kinetic considerations, is

L = 2πrcap = 2πRp sin φ. (7.9)

The volume of the cluster can be expressed in terms of molecular numbers,
V het

l =
∑

i Nhet
i,l vi,l (see eq. 3.14), which can be solved to give the cluster

radius and furthermore the surface areas needed for the surface term of the
formation free energy (7.2). The critical cluster conditions are obtained by
taking the derivative of the rather complicated form of free energy

∆ϕ =∆ϕhet
surf + ∆ϕhet

vol

=σg,l2πr2(1 − cos ψ) + (σl,sol − σg,sol)2πR2
p(1 − cos φ)

+
∑

i

∆µiN
het
i,l + (µi,s(g,l) − µ0

i,g)N
het
i,s(g,l)

+
∑

i

(µi,s(l,sol) − µ0
i,g)Ni,s(l,sol) −

∑
i

(µi,s(g,sol) − µ0
i,g)Ni,s(g,sol)

(7.10)

with respect to bulk and surface excess numbers of molecules of each compo-
nent at a time. We use the Gibbs-Duhem equation (1.9) for bulk liquid and
the Gibbs adsorption isotherm (1.12) for gas-liquid, gas-solid and solid-liquid
surfaces to get rid of the derivatives of all chemical potentials and surface
tensions. It must be kept in mind that angles ψ and φ depend on cluster
radius and thus number of molecules in the cluster. Taking the complicated
derivatives of eq. (7.10) is not necessary, since the equilibrium conditions turn
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out to be the same as in the homogeneous case, in other words the Kelvin
equation (2.15)

∆µi +
2σg,lvi,l

r∗
= 0

is valid also in the heterogeneous case. This is a natural result, as the liquid
under the curved surface of the droplet has to be in equilibrium with the
vapour above the surface irrespective of the fact that the cluster is attached
to a pre-existing surface. Also the chemical potentials in all phases must be
equal in equilibrium

µi,s(g,l) = µi,s(g,sol) = µi,s(l,sol) = µi,l = µ0
i,g.

Thus, the composition and radius of the heterogeneous critical cluster are
the same as in homogeneous nucleation at the same temperature and vapour
concentrations.

The number of molecules in a homogeneous critical cluster at the same
conditions is given by

Nhom∗
i,l = x∗

i,l

4π

3
r∗3ρl(x

∗
i,l, T0),

the number of molecules in the heterogeneous cluster is

Nhet∗
i,l = fV Nhom∗

i,l ,

where the geometric factor relating heterogeneous cluster volume, and thus
also number of bulk molecules, to the homogeneous case, fV = V ∗het

l /V ∗hom
l =

Nhet
i,l /Nhom

i,l , can be written as

fV =
1

4

{
2 + 3

(
1 − XM

dX

)
−
(

1 − XM
dx

)3

−X3

[
2 − 3

(
X −M

dX

)
+

(
X −M

dX

)3
]}

.

(7.11)

Surface excess numbers related to the gas-liquid surface can be solved in
the same way as in the homogeneous case on p. 70. The set of equations to
solve is (3.25) and (3.26) with j = 1, ...n − 1. The area A in eq. (3.26) is in
the heterogeneous case the area of gas-liquid surface Ag,l = 2πr2(1 − cos ϑ),
and the chemical potential differentials needed are given by eq. (3.27), as in
the homogeneous case.

In equilibrium, the formation energy of the critical cluster becomes
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∆ϕhet∗ =
∑

i

∆µiN
het∗
i,d + σg,lA

∗
g,l + (σg,sol − σl,sol)A

∗
l,sol

=
∑

i

∆µiN
het∗
i,d + σg,lA

∗
g,l − cos ϑσg,lA

∗
l,sol,

where we have used Young’s equation (7.1) to express the surface tensions
σg,sol and σl,sol in terms of contact angle and surface tension σg,l. Using Kelvin
equations (2.15) for the chemical potential differences we get

∆ϕhet∗ = −
∑

i

Nhet∗
i,d vi,l

2σ∗
g,l

r∗
+ σ∗

g,lA
∗
g,l + cos ϑσ∗

g,lA
∗
l,sol

=σ∗
g,l

(−2V het∗
l

r∗
+ A∗

g,l − cos ϑA∗
l,sol

)
,

(7.12)

where we have used the equimolar surface result (3.14) to convert
∑

i Nhet∗
i,d vi,l

to cluster volume.
Substitution of expressions (7.6), (7.7) and (7.8), for the volume Vl, area

A∗
gl and area A∗

ls, respectively, to eq. (7.12) gives

∆ϕhet∗ =
2πr2σg,l

3

[
1 − cos3 ψ +

(
Rp

r

)3

(2 − 3 cos φ + cos φ3)

−3 cos ϑ

(
Rp

r

)2

(1 − cos φ)

]
,

which can be written as

∆ϕhet∗ = fϕ
4πr∗2σg,l

3
= fϕ∆ϕhom∗, (7.13)

where ∆ϕhom∗ is the formation free energy of the homogeneous critical cluster
at the same conditions, and the geometric factor fϕ can be written in terms
of the ratio of radii X = r∗/Rp and cosine of the contact angle M as

fϕ =
1

2

{
1 +

(
1 − XM

dX

)3

+ X3

[
1 − 3

(
X −M

dX

)
+

(
X −M

dX

)3
]

+3MX2

(
X −M

dX
− 1

)}
.

(7.14)

For all values of X and M the geometric factor is lower than one, 0 < fϕ ≤ 1,
reflecting the fact that in heterogeneous nucleation the energetic barrier is
lower than in homogeneous nucleation as shown in Fig. 7.7. Note that the
location of the maximum in the curve showing the formation free energy
as a function of the cluster radius is the same in both heterogeneous and
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homogeneous cases, reflecting the fact that the critical radii are the same.
However, the number of molecules in the critical cluster is smaller in the
heterogeneous case by a factor of fV . Heterogeneous nucleation occurs at
much lower vapour concentrations than homogeneous nucleation, typically
soon after saturation ratio exceeds 1. The homogeneous case, fϕ = fV = 1, is
obtained by setting X = 0 (Rp = 0) or M = −1 (contact angle π or 180◦).

fo
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Fig. 7.7. Formation free energy of a cluster as a function of the cluster radius in
homogeneous and heterogeneous cases.

7.1.1 Flat pre-existing surface

The geometric relations simplify considerably if the nucleus forms on a planar
surface. Fig. 7.8 shows that the height of the cap can now be written as

h = r(1 − cos ϑ)

and the radius of the base of the cap is

rcap = r sin ϑ.

The volume of the cap is now

V het
l =

π

3
h2(3r − h) =

πr3

3
(2 − 3 cos ϑ + cos3 ϑ),

and the surface area of the cap is

Ag,l = 2πrh = 2πr2(1 − cos ϑ)

the area of the liquid-solid surface is

Al,sol = πr2
cap = πr2 sin2 ϑ,
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r
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�

Fig. 7.8. A cluster on a planar surface. r is the cluster radius, and ϑ is the contact
angle. The left-hand side (radius r) of angle ϑ in the right-angled triangle is perpen-
dicular to the tangent of the cluster surface tr, and the right-hand side that angle
(vertical line) is perpendicular to the pre-existing surface, and thus this angle is the
same as the contact angle between the planar surface and the tangent of the cluster
surface.

and the length of the contact line is

L = 2πrcap = 2πr sin ϑ.

Substituting these to eq. (7.12) shows that the geometric factor for free energy
equals that for the volume in the flat condensation surface case,

fϕ = fV =
1

4

(
2 − 3 cos ϑ + cos3 ϑ

)
=

1

4

(
2 − 3M + M3

)
.

This result can also be obtained from the general expressions (7.11) and (7.14)
at the limit X = Rp/r → ∞.

7.2 Nucleation rate

The analysis leading to a general expression for the nucleation rate (eq. 5.27)
is valid also in the heterogeneous case, and the heterogeneous nucleation rate
can be written as

Jhet =
|λhet

1 |
2πkT0

F e
het exp

(−∆ϕhet∗

kT0

)
1√∣∣∣∣ det

(
W ∗

het

2πkT0

) ∣∣∣∣
. (7.15)

The components of matrix W ∗
het are the second derivatives of the heteroge-

neous formation free energy (7.10) with respect to the numbers of molecules
Nhet

i,d in the cluster, and λhet
1 is the negative eigenvalue of of product matrix

R∗
hetW

∗
het. R∗

het is the heterogeneous growth matrix, whose components give
the rate at which monomers of different types collide with the critical cluster.
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F e
het is the normalization factor in the cluster size distribution. In the hetero-

geneous case the cluster distribution in question is the distribution of different
cluster sizes on the pre-existing particle surfaces, and as in the homogeneous
case it can be approximated by the sum of monomer concentrations on the
surfaces of pre-existing particles in the equilibrium vapour F e

het =
∑

i Ce,het
i,mon.

7.2.1 Concentration of adsorbed monomers

The monomer concentration on the pre-existing particle surfaces can be esti-
mated using various methods. The simplest approach is to assume that the
condensation nuclei are covered with a monolayer (Inada 2002) of condens-
ing molecules. The thickness of the monolayer is the diameter of an average
monomer (see also p. 113), 2rx, where 4πr3

x/3 =
∑

xi,gv
o
i,l is the average

volume of a monomer. We have assumed that the mole fractions of different
components on the surface are the same as in the gas phase. The monolayer
approach gives for a number of adsorbed particles per unit area

Ce,het
i,mon = xi,g

2rx

vx
. (7.16)

This is a very crude approximation, but gives an upper limit for the concen-
tration of adsorbed monomers.

The equilibrium concentration for adsorbed monomers can also be cal-
culated by balancing the flux of molecules hitting the particle surfaces with
the flux of particles escaping the surface. According to kinetic gas theory the
incoming monomer flux per unit area is

Ce,vapour
i,mon

√
kT0

2πmi
, (7.17)

where Ce,vapour
i,mon is the concentration of monomers in the equilibrium vapour.

The outgoing desorption flux per unit area is

Ce,het
i,monνi,des exp

[−∆ei,des

kT0

]
, (7.18)

where νi,des is the frequency of vibration of the adsorbed molecule on the sub-
strate, and ∆ei,des is the adsorption/desorption energy per molecule (Prup-
pacher and Klett 1997). Equating (7.17) with (7.18) gives the number of ad-
sorbed molecules per unit area as

Ce,het
i,mon = Ce,vapour

i,mon

√
kT0

2πmi

1

νi,des
exp

[
∆ei,des

kT0

]
. (7.19)
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7.2.2 Growth coefficients

If we assume the growth of the critical cluster to occur by vapour molecules
hitting the cap surface, the growth coefficients βhet

i (unit 1/s) (components
of matrix R∗

het) are given by the monomer flux per unit area (7.17) times the
area of the cap (7.7),

βhet
i = Ce,vapour

i,mon

√
kT0

2πmi
2πr∗2(1 − cos ψ∗). (7.20)

This approach is called the direct vapour deposition model (Pruppacher and
Klett 1997; Inada 2002).

In the surface diffusion approach, the critical cluster grows when monomers
adsorbed on the pre-existing particle diffuse along the particle surface into the
cluster. If the adsorbed molecules jump on average a distance δi, molecules
in a circular band of length L∗ and width δi around the cluster are in po-
sition to join the cluster. Here L∗ is the length of the contact line between
the surface and the cluster given by (7.9). The number of molecules in that
band is Ce,het

i,monL∗δi = Ce,het
i,monδi2πRp sin φ∗. If νi,diff is the frequency related to

vibrations leading to diffusion jumps and ∆ei,diff is the activation energy for
surface diffusion, the frequency of diffusion jumps is νi,diff exp[−∆ei,diff/(kT0)]
and the growth coefficient (1/s) is

βhet
i = Ce,het

i,monδi2πRp sin φ∗νi,diff exp

[−∆ei,diff

kT0

]
. (7.21)

In reality, both surface diffusion and direct vapour deposition are working
at the same time. The growth rate due to direct vapour deposition is however
typically orders of magnitude smaller than the rate of surface diffusion, and
thus it is enough to use the surface diffusion growth coefficients.

7.2.3 Units of nucleation rate and nucleation probability

The growth coefficients (7.20) and (7.21) have units 1/s, and the eigenvalue
λhet

1 has units J/s as in the homogeneous case. F e in eq. (7.15) has units of
Ce,het

i,mon, namely 1/m2. Thus the unit of heterogeneous nucleation rate given
by eq. (7.15) is 1/(m2s) – the number of critical clusters formed per unit area
of pre-existing surface per second. If we want the number of critical clusters
formed per time and volume unit, we have to multiply Jhet of eq. (7.15) by the
number concentration of pre-existing particles (1/m3) and the surface area of
one such particle, 4πR2

p. We can also express the nucleation rate as the number
of critical clusters formed per condensation nucleus per unit time, in which
case we have to multiply Jhet of eq. (7.15) by 4πR2

p.
The quantity that is most often measured in heterogeneous nucleation

is nucleation probability P , which is the probability that one critical clus-
ter forms on a pre-existing condensation nucleus in a chosen (experimental)
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time period t. Using our notation (7.15) for nucleation rate, the nucleation
probability is given by

P = 1 − exp(−Jhet4πR2
pt). (7.22)

Fig. 7.9 shows that the nucleation probability as a function of saturation
ratio resembles a step function, which rises from zero to one soon after the
saturation ratio exceeds 1.
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Fig. 7.9. One-component nucleation probability as a function of saturation ratio of
the nucleating vapour.

7.2.4 One-component case

In the one-component case, the heterogeneous nucleation rate can be written
as

Jhet = βhet∗Ce,het
mon exp(

−∆ϕhet∗

kT0
)Zhet, (7.23)

where the growth coefficient βhet∗ is given by either eq. (7.20) or eq. (7.21),
the number of adsorbed monomers Ce,het

mon is given by either eq. (7.19) or eq.
(7.16), and the formation free energy ∆ϕhet∗ is obtained from the homoge-
neous formation free energy at the same temperature and saturation ratio by
multiplying with the geometric factor fϕ given by eq. (7.14).

As in the homogeneous case (see p. 94), the Zeldovich factor is defined as

Zhet =

√
−1

2πkT0

(
∂2∆ϕhet

∂(Nhet
d )2

)∗

.
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To obtain an explicit form for the Zeldovich factor we have to take the second
derivative of formation free energy (7.10) in the one-component case. We use
the equimolar surface condition Ns = 0, which means Nhet

d = Nhet
l , and the

volume term is simply
∆ϕhet

vol = ∆µNhet
d ,

and the first derivative of the volume term gives

∂∆ϕhet
vol

∂Nd
= ∆µ.

Using equations (7.3), (7.4) and (7.5) for d and angles φ and ψ, respectively,
the surface term can be written as

∆ϕhet
surf = 2πσg,l

⎛
⎝r2 −MR2

p +
r3 − r2RpM− rR2

pM2 + R3
pM√

r2 − 2rRpM + R2
p

⎞
⎠ . (7.24)

The derivative is easiest to take using the chain rule

∂∆ϕhet
surf

∂Nd
=

(
∂∆ϕhet

surf

∂r

)(
∂r

∂Nhet
d

)
=

(
∂∆ϕhet

surf

∂r

)(
∂Nhet

d

∂r

)−1

. (7.25)

Thus we also need the dependence of the number of molecules on the radius
given by Nhet

d = V het
l /vl, which, using again equations (7.3),(7.4) and (7.5)

in formula (7.6) for the cluster volume, gives (after reduction)

Nhet
d =

π

3vl

(
2r3 − 2R3

p

+
2r4 − 2r3RpM− r2R2

p(M2 − 1) − 2rR3
pM + 2R4

p√
r2 − 2rRpM + R2

p

) (7.26)

The derivatives of equations (7.25) and (7.26) with respect to r written in
terms of the dimensionless parameter X are

∂∆ϕhet
surf

∂r
= 2πrσg,l

{
2 +

(1 −MX)[2 − 4MX − (M2 − 3)X2]

(1 − 2MX + X2)3/2

}

and
∂Nhet

d

∂r
=

πr2

vl

{
2 +

(1 −MX)[2 − 4MX − (M2 − 3)X2]

(1 − 2MX + X2)3/2

}
.

The first derivative of the formation free energy is
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∂∆ϕhet

∂Nhet
d

=
∂∆ϕhet

vol

∂Nhet
d

+
∂∆ϕhet

surf

∂r

(
∂Nhet

d

∂r

)−1

= ∆µ +
2σg,lvl

r
,

which explicitly confirms that (in the one-component case) the Kelvin equa-
tion is obtained by setting the first derivative of the formation free energy to
zero. The second derivative is then

(
∂2∆ϕhet

∂(Nhet
d )2

)
=
−2σg,lvl

r2

(
∂r

∂Nhet
d

)
=

−2σg,lvl

r2

(
∂Nhet

d

∂r

)−1

=
−2σg,lv

2
l

πr4

⎡
⎣ 1

2 + (1−MX)[2−4MX−(M2−3)X2]
(1−2MX+X2)3/2

⎤
⎦ ,

and the Zeldovich factor has the form

Zhet =
vl

πr∗2

√
σg,l

kT0

√
1

2 + (1−MX∗)[2−4MX∗−(M2−3)X∗2]
(1−2MX∗+X∗2)3/2

=Zhom

√
4

2 + (1−MX∗)[2−4MX∗−(M2−3)X∗2]
(1−2MX∗+X∗2)3/2

.

Zhet reduces to Zhom = vl/(2πr∗2)
√

σg,l/(kT0) when M = −1 or X∗ = 0, as
it should.

7.3 Heterogeneous nucleation theorems

Nucleation theorems are valid also for the heterogeneous case, and the free
energy versions read (Kashchiev 2000)⎛
⎝ ∂ ∆ϕhet∗

kT0

∂ lnAi,g

⎞
⎠

Aj,g,T0

= −
(

Nhet∗
i,d − V het∗

l

Nhet∗
i,g

V het∗
g

+ Ni,s(l,sol) − Ni,s(g,sol)

)

and ⎛
⎝∂ ∆ϕhet∗

kT0

∂T0

⎞
⎠

Ai,g

= −
(

∆Uhet∗
l,p + ∆Ul,sol,p − ∆Ug,sol,p

kT 2
0

)
,

where ∆Ul,sol,p is the energy differences of molecules on the liquid-solid inter-
face compared to the same molecules in the pure bulk liquid. ∆Ug,sol,p is the
energy difference between molecules on the area Al,sol of gas-solid interface
compared to the same molecules in pure bulk liquids.
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The contribution of the kinetic pre-factor to (∂ lnJhet/∂ lnAi,g)Aj,g,T0
and

(∂ lnJhet/∂T0)Ai,g
is small also in the heterogeneous case. The exact value of

the contribution of the pre-factor depends on which model is used for growth
and concentration of adsorbed molecules.

The nucleation theorems can be explicitly derived for classical heteroge-
neous formation energy by taking a derivative of eq. (7.13), which involves the
derivative of homogeneous formation free energy and geometrical pre-factor
fϕ and using the homogeneous nucleation theorems. Young’s equation (7.1)
is used to express contact angle in terms of surface tensions, and we also
use the Gibbs-Duhem equation (1.9) for bulk liquid and the Gibbs adsorp-
tion isotherm (1.12) for gas-liquid, gas-solid and solid-liquid interfaces. The
heterogeneous nucleation theorems can also be derived with less algebraic
manipulation starting from a more general expression for the formation as we
did in the homogeneous case on p. 119. In the heterogeneous case the critical
cluster surface energy σ∗A∗ must be replaced by σ∗

g,lA
∗
g,l+(σ∗

l,sol−σ∗
g,sol)A

∗
l,sol.

Problems

7.1. Plot the formation free energy of homogeneous and heterogeneous water
clusters on planar glass surface as a function of
a) number of molecules
b) radius
of the cluster at saturation ratio 5 and temperature is 298.15K.
Contact angle for water on steel is 14◦.

The saturation vapour pressure of water is (T in Kelvin)
Pe = exp[77.34 − 7235.42/T − 8.2 ln(T ) + 0.00571T ] Pa.
Density of liquid water is
ρl = (1049.572 − 0.1763T ) kg/m3.
Molar mass of water is 18.02 g/mol.
Surface tension of pure water is
σ = (0.117 − 0.152 · 10−3T ) N/m.
Water vapour is assumed to be an ideal gas, and liquid is assumed incom-
pressible.

7.2. Plot the formation free energy of homogeneous and heterogeneous criti-
cal clusters as a function of pre-existing particle radius. The clusters consist
of water, and the pre-existing particles are made of steel. Saturation ratio is
4 and temperature is 273.15K.
Contact angle for water on steel is 75◦.

The saturation vapour pressure of water is (T in Kelvin)
Pe = exp[77.34 − 7235.42/T − 8.2 ln(T ) + 0.00571T ] Pa.
Density of liquid water is
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ρl = (1049.572 − 0.1763T ) kg/m3.
Molar mass of water is 18.02 g/mol.
Surface tension of pure water is
σ = (0.117 − 0.152 · 10−3T ) N/m.
Water vapour is assumed to be an ideal gas, and liquid is assumed incom-
pressible.

7.3. Plot the geometric factors for volume (fV )and free energy (fϕ), ratio of
gas-liquid surface areas Ag,l,het/Ahom, and the ratio of one-component Zel-
dovich factors Zhet/Zhom as a function of
a) ratio of radii X∗ = Rp/r∗ with constant contact angles 10◦, 70◦ and 110◦.
b) contact angle with X∗ = 1, X∗ = 100 and X∗ = 106.
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Beyond the classical theory

8.1 Improved classical theories

Several improvements to the basic classical theory have been suggested. The
motivation for some of the improvements is to get rid of the theoretical in-
consistencies (p. 74) of the classical theory (Girshick and Chiu 1990; Girshick
1991; Courtney 1961; Blander and Katz 1972), like the non-zero formation en-
ergy of a single vapour molecule. The consistency requirements involve also the
normalisation factor (F e, see p. 82) in the cluster distribution (Wilemski and
Wyslouzil 1995). Another motivation is to incorporate physical phenomena
that are not properly included in the original version of the classical theory,
such as curvature dependence of the surface tension, the contribution of the
translational and rotational degrees of freedom to the free energy (Lothe and
Pound 1962; Reiss et al. 1968; Dillmann and Meier 1989, 1991; Ford et al.
1993; Delale and Meier 1993; Kalikmanov and van Dongen 1993a,b) and sur-
face segregation (Flageollet-Daniel et al. 1983; Laaksonen 1992). In general,
the self-consistent theories succeed no better in predicting observed nucleation
rates than does the classical theory. However, models that incorporate sur-
face enrichment in binary systems give reasonable values in cases where the
original classical theory gives unphysical results. Often the improved theories
predict the rates well for some substances and conditions, but fail in other
cases, just like the original classical theory.

8.2 Scaling theories

In Hale’s scaling model (Hale 1986), the density and the surface tension of
one-component clusters are assumed to depend only on the reduced temper-
ature T/Tc (Tc is the temperature at the critical point) and properties of the
liquid at the critical point, and some material-dependent empirical constants.
The formation energy is calculated using the classical formula. The theories
give dimensionless forms for the temperature dependence of nucleation rate



154 8 Beyond the classical theory

and critical saturation ratio. Another form of scaling model (McGraw 1981)
is obtained by assuming that the ratio ∆ϕ

n∗∆µ differs from its classical value of
1/2 by a correction function which depends on n∗ and ∆µ. By using the first
nucleation theorem and some simplifying assumptions this can be shown to
lead to the conclusion that real formation free energy and classical formation
free energy differ by a semi-empirical function that depends only on temper-
ature. The scaling models predict the value of onset saturation ratio well in
many cases where the original form of the classical theory fails.

8.3 The density functional theory

The density functional theory is based on statistical mechanics, and allows
the use of realistic molecular interactions instead of macroscopic properties
of matter (Evans 1979; Zeng and Oxtoby 1991b,a; Henderson 1992). Surface
enrichment and curvature effects are naturally taken into account in this the-
ory. The nucleating system is treated as an inhomogeneous fluid, where the
average density of molecules varies with the position in space. The free energy
is a non-local functional of the density function. The density profile and the
formation free energy are obtained by searching for the point in the function
space at which the functional derivative of the free energy with respect to
the density vanishes. Some attempts have been made to use the concepts of
the density functional theory and calculate directly the nucleation rate, not
only the formation energy, of the critical cluster (Langer and Turski 1973;
Talanquer and Oxtoby 1995). The numerical solution of density functional
theory gets complicated if the cluster is not spherically symmetric, and thus
most of the systems studied are simplified model systems that describe some
features of real systems. Potentials describing, for example, real water lead to
a situation where the spherical symmetry of the cluster is broken, and com-
putational costs increase beyond practical use. Researchers have developed
suitable symmetric potentials that describe to some extent hydrogen bound,
polar and asymmetric molecules and used them in density functional stud-
ies (Talanquer and Oxtoby 1993; Oxtoby and Evans 1988). Seok and Oxtoby
(1998) have used density functional theory to study alkanes and Napari et al.
(2000) have studied a model system imitating a surface-active water-ethanol
mixture. Agreement with experimental nucleation rate is qualitatively good
for several systems. Especially the temperature dependence of the nucleation
rate, which is inaccurate in the classical theory, is clearly improved. In bi-
nary systems, measurable deviations from the classical theory can be seen in
Lennard-Jones mixtures that mimic systems with surface segregation (Laakso-
nen and Oxtoby 1995). The density functional theory gives reasonable results
even in situations where the predictions of the classical theory are unphysical.



8.5 Molecular simulations 155

8.4 The diffuse interface theory

In the diffuse interface theory, the formation energy is evaluated in terms of
a characteristic interface thickness. The characteristic thickness is related to
properties of bulk liquid, namely the volumetric heat of evaporation and the
surface tension of planar surface. This theory gives a curvature correction to
the surface tension up to second order in terms of the characteristic thickness.
The nucleation formulae are quite simple, and the level of approximation
is between the classical theory and the density functional theory. For several
systems the agreement is better than with classical theory, but for some others,
for example pure water, the predictions are poorer than those of classical
theory (Granasy 1993, 1996).

8.5 Molecular simulations

Here, we mean by simulations computer algorithms that mimic – “simulate”
– the movement of molecules in time or the sequence of molecular configura-
tions statistically likely in nature. In these methods the description of clusters
starts from the location of individual molecules and atoms within them, in the
case of quantum mechanical methods even electrons, rather than some aver-
age position-related quantity like molecular density. This short description of
nucleation-related computer simulations is modified from an extended review
abstract (Vehkamäki 2004).

8.5.1 Interaction potentials

Choosing a realistic interaction potential is the starting point of any real-
istic molecular nucleation studies like density functional methods, not only
computer simulations. Classical simulation methods typically use pair poten-
tials, for example combinations of a Lennard-Jones potential and electrostatic
Coulomb interaction, to describe the interaction between atoms or molecules.
Simple Lennard-Jones potentials represent noble or relatively inert gases quite
well. Many-body contributions can also be included by modifying the pair po-
tential according to the location of other atoms or molecules in the environ-
ment, or introducing explicit many-body terms which depend on the location
of several molecules. A typical example is a polarisable water model, where
the point charges located at the two hydrogen and one oxygen site of the
model depend on the electric field due to all the other water molecules in the
system (Guillot and Guissani 2001). Classical molecular models are often stiff,
but the atoms of a molecule can also be attached to each other with springs,
and various torsion terms can be used to describe the energy associated with
intermolecular interactions. Each classical potential is tuned to reproduce a
certain set of measurable properties like liquid density or pair correlation func-
tion accurately, but can fail drastically to describe some other properties like
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saturation vapour pressure or surface tension. This is the case with, for ex-
ample, water which has proved to be very difficult to model with a classical
potential (Guillot 2002). The partial or full proton transfer reactions occur-
ring in pure water, but more importantly in mixtures like water-sulphuric acid,
are hard to capture without quantum mechanics. Somewhat surprisingly, rigid
non-polarisable water models often predict experimental findings as well, or
even better, than flexible potentials with charge transfer.

Ab initio methods (Kohn 1999) are based on the solution of the Schrödin-
ger equation, and, in contrast to classical models, they take the quantum
mechanical effects truly into account. Ab initio, Latin for “from the beginning”,
is a slightly misleading term, since there are a number of approximations
commonly used within these electron structure calculations:

• For a given system’s electron density, electron A has a lower probabil-
ity density near to electron B due to Coulomb repulsion (“correlation”)
and Pauli exclusion (“exchange”). The Hartree-Fock method treats ex-
change exactly, but neglects correlation, and in quantum mechanical den-
sity functional methods1 both exchange and correlation are described ap-
proximately.

• Often, only valence electrons are treated explicitly and core electrons are
described using fitted pseudopotentials assuming that their state is not
affected when the atom forms bonds with other atoms.

• The electronic wave functions can be expressed as a combination of basis
set functions, and the choice of these functions may affect the results.

The parameters of classical potentials have often been selected so that they
reproduce the cluster structures and energies obtained using ab initio simula-
tions. The increasing computer power is also starting to make it possible to
use the quantum mechanical approach at non-zero temperatures for clusters
relevant to nucleation, as recently demonstrated for water (Dunn et al. 2004).

8.5.2 Extent of system studied

Molecular simulations relevant to gas-liquid nucleation can be classified ac-
cording to the extent of the system studied. The simulation can mimic the
whole supersaturated vapour where clusters are forming and decaying, and we
can follow the birth and growth of the cluster that eventually becomes stable
and eats up the vapour until a saturation with respect to the droplet surface
is reached. We can also study the properties of a single cluster, which is com-
putationally much more efficient, and use the cluster properties to identify the
critical size and predict the nucleation rate. The most commonly used cluster

1 Not to be confused with the classical density functional theory discussed in section
8.3. In ab initio methods the density of electrons is the underlying function,
whereas classical density functional theory is based on density of molecules or
atoms
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property is the formation free energy, but also both truly dynamic growth and
decay rates and statistical growth and decay probabilities can be extracted
from the simulations.

The definition of a cluster and its lifetime is one major issue in the com-
puter simulations (Reiss et al. 1990; Senger et al. 1999a; Oh and Sorensen
1997; Schaaf et al. 1999). If we know the total (potential + kinetic) energy
for all the simulated particles, bound particles can be distinguished from free
ones. It must be kept in mind that there are also bound states with positive
energy due to the effective potential created by angular momentum. In dy-
namic studies it has been observed that atoms can travel quite far from the
cluster, and still return to it, and thus following the trajectory of a particle
even after its energy has turned positive is essential (Harris and Ford 2003;
Barrett 2002). In statistical simulations where particle velocity is not explicitly
followed, energetic cluster definitions can not be applied, and various geomet-
rical cluster definitions have been developed. The Stillinger (Stillinger 1963)
definition treats the cluster as connected networks of molecules: a molecule is
part of the cluster if it is closer than some chosen limiting distance from any
molecule in the cluster. In the Lee-Barker-Abraham (Lee et al. 1973) defini-
tion, molecules inside a sphere centered at the centre of mass of the cluster are
part of the cluster, and the choice of the radius of this sphere is ambiguous,
just like the choice of Stillinger’s distance.

8.5.3 Simulation methods

The simulation methods can roughly be divided into three categories: molec-
ular dynamics (MD), Monte Carlo (MC), and search for the minimum energy
configurations. Molecular dynamics (Binder et al. 2004) is a numerical solu-
tion of Newton’s equations, it describes the dynamic behaviour of the system,
and we can follow the trajectory of atoms or molecules and answer questions
like how long does cluster formation take. Although dynamic Monte Carlo
methods also exist (Gentile 2001) the variations of the Monte Carlo method
(Metropolis and Ulam 1949; Metropolis et al. 1953; Yao et al. 1982) used in
nucleation studies are based on calculating statistical averages of cluster prop-
erties in different ensembles depending on which control parameters (temper-
ature, pressure, total energy, volume, chemical potential) are kept constant in
the studied system. In principle, MD is the only realistic way to simulate nu-
cleating clusters, since statistical averages are related to equilibrium systems,
and nucleation is essentially a non-equilibrium process.

Monte Carlo methods are computationally much faster than MD, and
many nucleation studies have been performed with MC. Simultaneous tem-
perature control of clusters and vapour around it has also proved to be prob-
lematic in molecular dynamics, but using Monte Carlo methods constant tem-
perature simulations are straightforward.

Especially when using ab initio methods, simulations are often used only
to calculate the most stable configuration of a cluster at absolute zero tem-
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perature (Ianni and Bandy 1999; Larson et al. 1999; Maheshwary et al. 2001;
Bandy and Ianni 1998; Re et al. 1999). The moments of inertia and force
constants for this configuration (and possibly and a set of slightly modified
arrangements) are used to estimate the rotational and vibrational contribu-
tions to the enthalpy H and entropy S. With enthalpy and entropy values
known, the free energy at non-zero temperatures is then calculated using the
textbook formula G = H − TS.

8.5.4 Examples of nucleation studies with molecular methods

The vast majority of computer simulations have been performed using Lennard
-Jones potentials, which represent some noble gases like argon rather well. The
choice is not so much due to practical interest in the nucleation of this kind
of gas, but due to the computational simplicity of the Lennard-Jones (LJ)
potential. New theoretical methods and computational algorithms are often
first tested with a LJ fluid, because the simulations are fast and many fea-
tures of the fluid and LJ clusters have already been studied, providing good
opportunities for checking and comparison. Most MC studies have aimed at
determination of free energy and identification of the critical cluster (Chen
et al. 2001; Hale and Ward 1982; Kusaka 2003; Kusaka and Oxtoby 1999;
Oh and Zeng 1999, 2000; Senger et al. 1999b), and some MD studies also
belong to this category (McGinty 1973; Laasonen et al. 2000). Toxvaerd and
Zhukhovitski performed direct molecular dynamic nucleation simulations for
a LJ fluid (Toxvaerd 2001, 2002; Zhukhovitskii 1995). Napari and Vehkamäki
(2004) studied lifetimes of LJ clusters. Researchers have also studied MD
growth and decay rates (Ford and Harris 2004; Napari and Vehkamäki 2004;
Schaaf et al. 2001), and MC growth and decay probabilities (ter Horst 2003;
Vehkamäki and Ford 2000). Many groups have studied the surface tension of
LJ clusters both using MD, MC and density functional theory (Hale 1996;
ten Wolde and Frenkel 1998; Moody and Attard 2003; Napari and Laakso-
nen 2001; Thompson et al. 1984). People have investigated the effect of an
inert carrier gas surrounding the nucleating LJ vapour and thus acting as the
heat bath which ensures that the temperature stays constant despite ongoing
evaporation and condensation (Novikov 1997; Toxvaerd 2003; Yasuoka and
Matsumoto 1998a).

The second most studied substance in molecular nucleation is water. Kath-
mann, Schenter and co-workers (Kathmann et al. 1999; Schenter et al. 1999;
Kathmann et al. 2002; Schenter et al. 2002) have studied condensation prob-
abilities, evaporation probabilities and Helmholtz free energies of small water
clusters using a Monte Carlo method, and they also report sensitivity of the
result to the interaction potential model at temperature 243K. They have
used both non-polarisable and polarisable rigid water models. Kusaka and
co-workers (Kusaka et al. 1998; Kusaka and Oxtoby 2000) have proposed a
method for identifying physical clusters and their equilibrium size distribu-
tion, and have applied it for rigid, non-polarisable water (298K) and polaris-
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able water-hydronium ion clusters (200K and 300K). Gao et al.(1999) have
studied the effect of an external electric field on the vapour-liquid coexistence
curve and formation free energies (the latter at 298K and 323K) of a cluster
made of rigid, non-polarisable water molecules. Hale and DiMattio (2000) and
Merikanto et al. (2004) have shown that a rigid, non-polarisable water model
reproduces the experimental temperature and saturation ratio dependence of
the nucleation rate, although the absolute values of the rates are off by a
constant factor. The need of a constant correction factor can be attributed to
ambiguities regarding the pre-exponential factor in classical nucleation theory,
or a constant level shift of the formation energies. Yasuoka and Matsumoto
(1998) have studied nucleation of water in the presence of a thermostatted
(350K) carrier gas directly by molecular dynamics. They obtained nucleation
rates orders of magnitude lower and critical clusters far larger than the clas-
sical nucleation theory predictions and experimental results.

Simulation groups have also studied nucleation barriers of n-alkanes (Chen
and Tsai 2002), polar model fluid described using Stockmayer potential (ten
Wolde et al. 1999; Oh et al. 1998), and Ising model (Vehkamäki and Ford
1999; Wonczak et al. 2000).



Summary

At present, molecular nucleation models can only be applied to hypotheti-
cal test systems. Predicting nucleation rates for real experimental substances
is either impossible due to lack of realistic interaction models between real
molecules, or enormous computational costs. Even if an interaction potential
modelling a real substance like water is used in simulations, the results apply
only to the model water rather than to real water. The great advantage of
classical nucleation theory is that only basic thermodynamic data (density,
surface tension, saturation vapour pressures and activities) are needed to ap-
ply the theory. For complex mixtures even these data are not often available,
or there are incompatible experimental results in the literature. The nucle-
ation rates predicted by classical theory can be several orders of magnitude
off the experimental results. However, the dependencies on temperature and
saturation ratio are rather correct (as seen in section 5.5), and it must be kept
in mind that the nucleation rate is an exponential function of the key quantity,
formation free energy, and it is extremely sensitive to small inaccuracies in the
thermodynamic description. Improvements to classical theory are disputable
and often they do not lead to better agreement with experiments.

When searching for possible nucleation agents classical thermodynamics
is very useful: we should look for compounds that have very low saturation
vapour pressure, and preferably also low surface tension. Especially promis-
ing are substances with vanishingly small saturation vapour pressures over
some solution; sulphuric acid has a very strong tendency to nucleate with wa-
ter, which can be already seen from the fact that the activity coefficient of
sulphuric acid in water solution is small.

For most practical purposes, classical nucleation theory is still the only
means of predicting nucleation rates and critical cluster sizes. More accurate
thermodynamic data can be obtained by measurements if the nucleation pro-
cess in question is considered important. In practice we are often interested
in the value of vapour concentration required for significant nucleation (see
activity plots in section 6.2), rather than the actual nucleation rate, and when
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the results of classical theory are looked upon from this angle, they agree well
with the experiments.

Classical nucleation theory is a neat example of how thermodynamics and
kinetic theory can be put together to form a complete description of a measur-
able physical process – a process which remains extremely topical. Nucleated
clusters are on the verge of the microscopic and macroscopic world: they are
typically too large to be treated on a molecular level, but too small to be safely
within the scope of continuum theories like thermodynamics. In the cases
where critical clusters are large, thermodynamic description of nucleation is
well grounded, but when critical clusters consist of only a few molecules, the
justification of the thermodynamic description is doubtful. It is, however, sur-
prising how small clusters can be treated with thermodynamics with results in
line with experiments. The perfect nucleation theory would be a combination
of molecular model and thermodynamics, where the large clusters are treated
using thermodynamics, and the really small ones with molecular theory or
thermodynamics where key parameters like surface tension and density are
size dependent and fitted to data obtained by molecular models.
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Clausius inequality, 44
Clausius-Clapeyron equation, 127
closed system, 3
cluster distribution, 77
co-existence, 22, 126
compressibility, 18
condensation coefficient, 85, 95
condensation nucleus, 135
contact angle, 135
continuum limit, 91
core, 56
critical cluster, 54, 64
critical point, 22, 36
critical saturation ratio, 124
critical supersaturation, 124

detailed balance, 88, 98, 99
dimer, 78
direct vapour deposition, 146
dividing surface, 21, 56

eigenvalue, 104, 106, 109
energy, 45
enthalpy, 45
entropy, 4, 45
equation of state, 3
equilibrium, 3
equilibrium cluster, 54
equilibrium conditions, 18, 21, 29, 31,

34, 45, 54, 72
equimolar surface, 59
evaporation coefficient, 86
extensive, 3, 46

first law, 5
first nucleation theorem, 122, 123
first order phase transition, 38
fluid, 1
free energy, 44, 49
free energy diagram, 50
functions of state, 3
fundamental equation, 10

gas, 1
gas phase activity, 25
Gibbs adsorption equation, 12
Gibbs adsorption isotherm, 12
Gibbs free energy, 45, 52
Gibbs phase rule, 21, 22
Gibbs-Duhem equation, 12
grand free energy, 45, 52
grand potential, 45

heat, 3
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heat bath, 42
heat capacity, 18, 47
Helmholtz free energy, 45, 53
heterogeneous nucleation, 64, 135
hump, 124
hydrate, 102

ideal mixture, 24, 29
insulated, 2
intensive, 3, 46
ion induced nucleation, 135
irreversible, 9
Ising model, 67
isolated, 2

Kelvin effect, 32
Kelvin equation, 29, 62
kinetic gas theory, 85

Laplace equation, 21, 58
generalised, 58

latent heat, 127
law of mass action, 80
liquid, 1
liquid phase activity, 24

mass action law, 80
Maxwell construction, 35
Maxwell equations, 27, 47
monolayer, 145
monomer, 77

non-critical cluster, 65
non-equilibrium cluster, 65
nucleation barrier, 96
nucleation probability, 147
nucleation rate, 64, 89, 91, 95, 108

open system, 3
order parameter , 1

particle bath, 42
phase diagram, 22
phase equilibrium, 18, 21, 29, 31, 34, 72
pre-existing particle, 135
pressure bath, 42

quasi-static, 7

relative acidity, 24
relative humidity, 24

reversible, 7
revised theory, 73

saddle point, 72
saturated vapour, 22
saturation ratio, 23, 24
saturation vapour pressure, 22, 23
second law, 6
second nucleation theorem, 122, 132,

133
self-consistency, 74, 83
sensible heat, 127
size distribution, 77
solid, 1
spin, 67
spinodal, 36
stability conditions, 18
state, 3
steady state, 88
steepest descent, 113
supersaturated equilibrium, 96
supersaturation, 24
surface active, 55
surface diffusion, 146
surface excess molecules, 56, 70
surface of tension, 57
surface tension, 7
surface term, 64
surface work, 7
system, 2

Taylor series, 93, 102
third law, 7
Tolman’s length, 74
triple point, 22

Van der Waals fluid, 32
vapour, 1
variables of state, 3
virtual monomer, 113
volume term, 63
volume work, 7

work, 3

Young’s equation, 135

Zeldovich factor, 94
heterogeneous, 147

zeroth law, 5
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